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a b s t r a c t

A newmethodology for creating highly accurate, static nonlinear maps from scattered, multivariate data
is presented. This newmethodology uses the B-form polynomials ofmultivariate simplex splines in a new
linear regression scheme. This allows the use of standard parameter estimation techniques for estimating
the B-coefficients of the multivariate simplex splines. We present a generalized least squares estimator
for the B-coefficients, and show how the estimated B-coefficient variances lead to a new model quality
assessment measure in the form of the B-coefficient variance surface. The newmodeling methodology is
demonstrated on a nonlinear scattered bivariate dataset.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The creation of accurate static nonlinear maps from scattered,
multivariate data is a non-trivial problem in many fields of science
and engineering. Many methods exist for creating such maps such
as neural networks, polynomial neural networks, kernel methods,
and multivariate splines. Multivariate splines have as advantage
over othermethods that they consist of ordinarymultivariate poly-
nomials. Multivariate splines have, until recently, been limited to
approximating data on rectangular grids. Anderson et al. showed
in Anderson, Cox, andMason (1993) that multivariate tensor prod-
uct splines are incapable of approximating scattered multivariate
data. Recently, Awanou et al. presented a new type of multivariate
spline, themultivariate simplex spline, which is capable of approx-
imating scattered multivariate datasets (Awanou, Lai, & Wenston,
2005). The scheme for creating the multivariate simplex splines
from scattered data as presented in Awanou et al. (2005), however,
does not allow the use of standard parameter estimation tech-
niques for estimating the parameters of the multivariate simplex
splines and their variances.
The objective of this paper is to present a newmethodology for

creating accurate static nonlinear maps from scattered, multivari-
ate data. This newmethodology is based on a new linear regression
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scheme formultivariate simplex splines. This new linear regression
scheme enables the use of standard parameter estimation tech-
niques for estimating the parameters of the multivariate simplex
splines. In this paper a generalized least squares estimator for the
parameters of the multivariate simplex splines is introduced. The
linear regression scheme allows the estimation of the variances in
these parameters which, together with their spatial location, facil-
itates the definition of a spatial parameter variance structure. This
structure aids the localization of model deficiencies and may com-
plement the process of model structure selection.

2. Preliminaries on multivariate simplex splines

This section serves as a brief introduction on the theory of the
multivariate simplex spline. For a more complete and in-depth
coverage of the matter, we would like to refer to the work of Lai
and Schumaker (2007).

2.1. The simplex and barycentric coordinates

The basis polynomials of the simplex spline are defined on sim-
plices. A simplex is a geometric structure that provides a minimal,
non-degenerate span of n-dimensional space. For example, the
2-simplex is the triangle and the 3-simplex the tetrahedron. A sim-
plex is defined as follows. Let V be a set of n + 1 unique, non-
degenerate, points in n-dimensional space:

V := {v0, v1, . . . , vn} ∈ Rn. (1)

Then the convex hull of V is the n-simplex t:

t := 〈V 〉 . (2)
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The simplex has its own local coordinate system in the form of the
barycentric coordinate system. The principle of barycentric coor-
dinates is the following; every point x = (x1, x2, . . . , xn) inside or
outside an n-simplex t , with t as in (2), can be described in terms of
a unique weighted vector sum of the vertices of t . The barycentric
coordinate b(x) = (b0, b1, . . . , bn) of x with respect to simplex t
are these vertex weights:

x =
n∑
i=0

bivpi ,
n∑
i=0

bi = 1 (3)

with pi sorted vertex indices, i.e. pi < pi+1.

2.2. Triangulations of simplices

A triangulation T is a special partitioning of a domain into a set
of J non-overlapping simplices.

T :=

J⋃
i=1

ti, ti ∩ tj ∈
{
∅, t̃

}
, ∀ti, tj ∈ T (4)

with the edge simplex t̃ a k-simplex with 0 ≤ k ≤ n− 1.
One of the most commonly used triangulation methods is the

Delaunay triangulation. Fig. 1 shows a simple Delaunay triangula-
tion consisting of three simplices (triangles).

2.3. Spline spaces

A spline space is the space of all spline functions s of a given
degree d and continuity order C r on a given triangulation T . Such
spline spaces have been studied extensively, see e.g. Lai (1990), Lai
and Schumaker (1998) and Lai and Schumaker (2007). We use the
definition of the spline space from Lai and Schumaker (2007):

Srd(T ) := {s ∈ C
r(T ) : s|t ∈ Pd, ∀t ∈ T } (5)

with Pd the space of polynomials of degree d. For example, S13(T )
is the space of all cubic spline functions with continuity order C1
defined on the triangulation T .

2.4. The B-form of the multivariate simplex spline

The simplex spline is a B-spline in the sense that it can be ex-
pressed in the well known B-form, see de Boor (1987). The B-form
follows from the multinomial theorem:

(b0 + b1 + · · · + bn)d =
∑

κ0+κ1+···+κn=d

d!
κ0!κ1! · · · κn!

n∏
i=0

bκii . (6)

Introducing the multi-index κ:

κ := (κ0, κ1, . . . , κn) ∈ Nn+1. (7)

The 1-norm of the multi-index is:

|κ| = κ0 + κ1 + · · · + κn = d, d ≥ 0. (8)

The factorial of the multi-index is defined as:

κ! = κ0!κ1! · · · κn!. (9)

Lai and Schumaker (2007) introduced a very useful lexicographical
sorting order on the elements of the multi-index:

κd,0,0···0 > κd−1,1,0···0 > κd−1,0,1,0···0 > · · ·

> κ0···0,1,d−1 > κ0···0,0,d. (10)

The total number of valid permutations of κ is d̂:

d̂ =
(d+ n)!
n!d!

(11)

Fig. 1. B-net for third degree basis function on 3 simplices together with C1
continuity structure (bold lines).

with the multi-index the multinomial equation (6) can be
simplified into:

(b0 + b1 + · · · + bn)d =
∑
|κ|=d

d!
κ!
bκ . (12)

The basis function Bdκ(b) of the multivariate spline can now be
defined as follows:

Bdκ(b) :=
d!
κ!
bκ . (13)

de Boor proved (de Boor, 1987) that
{
Bdκ(b), κ ∈ Nn+1, |κ| = d

}
is

a stable basis for the space of polynomials of degree d. This means
that any polynomial p(b) of degree d can be written as a linear
combination of Bdκ ’s as follows:

p(b) =
∑
|κ|=d

cκBdκ(b). (14)

This is the B-form of the multivariate simplex spline. In (14),
cκ is a vector of coefficients called control coefficients, or more
commonly, B-coefficients. The B-coefficients uniquely determine
the shape of the polynomial in the B-form. The total number of
B-coefficients and basis functions for a dth degree polynomial on
an n-dimensional simplex is equal to d̂, the total number of valid
permutations of κ . The B-form can be evaluated using either the
de Casteljau algorithm (Hu, Han, & Lai, 2007), or directly by simply
expanding the B-form (14), which we found to be more efficient
computationally.

2.5. The B-coefficient net

The B-coefficients are strongly structured in what is called the
B-coefficient net, or B-net for short. The B-net has a well known
spatial representation that provides insight into the structure of
B-form polynomials, see e.g. Farin (1986), Lai (1997) and Lai and
Schumaker (2007). The B-net is also very useful in the visualization
of the structure of continuity between simplices. Fig. 1 shows
the spatial representation of the B-net corresponding with a third
degree basis function (i.e. d = 3) defined on a triangulation con-
sisting of the three simplices ti, tj and tk.
There exists a direct relationship between the multi-index of

a B-coefficient and its spatial location in barycentric coordinates
b(cκ)with respect to a simplex:

b(cκ) =
κ

d
, |κ| = d. (15)

2.6. Continuity between simplices

A spline function is, per definition, a piecewise defined poly-
nomial function with C r continuity between its pieces. Continuity
between the polynomial pieces of the simplex spline are enforced
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by continuity conditions which are defined for every facet shared
by two neighboring simplices. Let two neighboring n-simplices ti
and tj, differing by only the vertexw, be defined as follows:

ti = 〈v0, v1, . . . , vn−1, w〉 , tj = 〈v0, v1, . . . , vn−1, vn〉 . (16)

Then ti and tj meet along the facet t̃ given by:

t̃ = ti ∩ tj = 〈v0, v1, . . . , vn−1〉 . (17)

Clearly, t̃ is an (n-1)-simplex. As de Boor observed in de Boor (1987)
the facet simplex t̃ is indirectly defined by either one of the vertices
vn and w. This is an important observation, because it simplifies
the implementation of the algorithm for formulating the continu-
ity conditions. We use the formulation for the continuity condi-
tions from Awanou et al. (2005) and Lai and Schumaker (2007):

cti(κ0,...,κn−1,m) =
∑
|γ |=m

c
tj
(κ0,...,κn−1,0)+γ

Bmγ (w), 0 ≤ m ≤ r (18)

with γ = (γ0, γ1, . . . , γn) amulti-index independent of κ . In Fig. 1
the graphical interpretation of the C1 continuity structure for a
third degree B-net on three simplices is shown. This graphical in-
terpretation is well known in the literature, see e.g. Farin (1986)
and Lai (1997). It is easy to check that the formulation from (18)
is valid only for the continuity between simplices ti and tj in Fig. 1
while it fails to describe the correct continuity structure between
tj and tk. In general, for a globally indexed B-net (such as the B-net
in Fig. 1), the location of the constant in the multi-index (i.e. them
and 0) is equal to the location of the single non-zero value in the
multi-index of B-coefficients located at the out-of-edge verticesw
and vn, respectively. For example, the correct continuity structure
for tj and tk in Fig. 1 is obtained by reformulating (18) into

c
tj
(κ0,m,κ2)

=

∑
|γ |=m

ctk(0,κ1,κ2)+γ B
m
γ (ve), 0 ≤ m ≤ r.

For C r continuity there are a total of R continuity conditions per
edge:

R =
r∑
m=0

(d−m+ n− 1)!
(n− 1)!(d−m)!

. (19)

Eventually we want all continuity conditions for all edges formu-
lated in the following matrix form:

Hc = 0 (20)

where matrix H is the so-called smoothness matrix. Each row in
H contains a single continuity condition (18) which is equated to
zero. The vector c is the global vector of B-coefficients. Vector c is
constructed as follows:

c =
[
ctj
]J
j=1 ∈ RJ·d̂×1 (21)

with ctj the per-simplex vector of lexicographically sorted B-
coefficients:

ctj = [ctjκ ]|κ|=d ∈ Rd̂×1. (22)

With C r continuity between simplices we have H ∈ R(E·R)×(J·d̂),
with E the total number of edges in a triangulation and R and d̂ as
in (19) and (11) respectively. In general we have rank(H) ≤ (E · R)
but only for the simplest of triangulations will H be of full rank. As
Lai and Schumaker observed in Lai and Schumaker (2007), the rank
deficiency of H is caused by the fact that there are redundant con-
tinuity equations for triangulations with an interior vertex. For our
purposes, we require H to be of full rank, that is, when H ∈ RR

∗
×J·d̂

with R∗ ≤ E · Rwe have:

rank H = R∗. (23)

Our algorithm for constructing H therefore detects and removes
any redundant continuity equations.

3. A linear regression scheme using B-form polynomials

In this section we present the new linear regression scheme for
multivariate simplex splines. This regression scheme allows the
use of the B-form basis polynomials of the multivariate simplex
spline as regressors in a standard linear regression framework. We
present a generalized least squares parameter estimator for the B-
coefficients of the multivariate simplex spline, as well as a method
for estimating B-coefficient variances.

3.1. Linear regression with polynomials in the B-form

Consider the pair of observations (x(i), y(i)) related as follows:
y(i) = f (x(i))+ r(i), i = 1, 2, . . . ,N (24)
with f an unknown function andwith r(i) a residual term.We now
introduce a regression model structure for approximating f that is
equivalent to a linear combination of B-form polynomials (14) of
degree d, defined on a triangulation consisting of J simplices:

y(i) =
J∑
j=1

∑
|κ|=d

c
tj
κ Bdκ(b(i))+ r(i) (25)

with b(i) the barycentric coordinate of x(i) with respect to the
simplex tj as in (3). The model structure in (25) is an entirely valid
linear regression structure, but it would not lead to a meaningful
approximation scheme because all data points x(i) contribute to
the approximation on a simplex tj regardless of whether they are
inside or outside tj. In order to obtain a per-simplex interpolation
scheme, a simplex membership operator δjk(i) is introduced:

δjk(i) =

{
1, if j = k(i)
0, if j 6= k(i) (26)

with k(i) an index function that produces the index of the simplex
which contains the data point x(i), i.e., x(i) ∈ tk(i),∀i. The mem-
bership operator (26) is now applied to the regression model (25),
which leads to ourmultivariate simplex spline based linear regres-
sion model:

y(i) =
J∑
j=1

(
δjk(i)

∑
|κ|=d

c
tj
κ Bdκ(b(i))

)
+ r(i). (27)

This expression can be restated in a matrix form that includes all
measurements. For this purpose we first have to define a vector
formulation of the B-form from (14). First, let Bdtj be the vector of
lexicographically sorted basis polynomial terms for the simplex tj:

Bdtj(i) = [B
d,tj
κ (b(i))]|κ|=d ∈ R1×d̂ (28)

where the simplex identifier tj was added to the definition of the
basis function for clarity. With (22) and (28) the per-simplex B-
form in vector formulation is:

p(b(i)) = Bdtj(i) · c
tj . (29)

We introduce the per-simplex d̂ × d̂ diagonal data membership
matrix for observation i as follows:

Dtj(i) =
[
(δj,k(i))q,q

]d̂
q=1 ∈ Rd̂×d̂. (30)

The full-triangulation basis function vector for a single observation
is:

Bd(i) = [ Bdt1(i) Bdt2(i) · · · BdtJ (i) ] ∈ R1×J·d̂. (31)

The block diagonal full-triangulation datamembershipmatrixD(i)
for a single observation is a matrix with Dtj(i) blocks on the main
diagonal:

D(i) =
[(

Dtj(i)
)
j,j

]J
j=1
∈ R(J·d̂)×(J·d̂). (32)
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Using (21), (31) and (32) the B-form of the multivariate simplex
spline for the complete triangulation in vector form becomes:

P(b(i)) = Bd(i) · D(i) · c. (33)

Now let X(i) be a single row in the full-triangulation regression
matrix for all observations X ∈ RN×J·d̂ as follows:

X(i) = Bd(i) · D(i) ∈ R1×J·d̂. (34)

For a single observation on ywe then have:

y(i) = X(i)c+ r(i) (35)

which, for all observations, leads to the well known formulation:

Y = Xc+ r ∈ RN×1. (36)

3.2. A generalized least squares estimator for the B-coefficients

Equation (36) can be solved using many different methods, de-
pending on the assumptions made on the nature of the residual
term r. Wewill introduce a generalized least squares (GLS) estima-
tor for (36), which implies the following assumptions on the resid-
ual r:
E(r) = 0, Cov(r) = Σ (37)

withΣ ∈ RN×N the residual covariance matrix, which is both non-
singular and positive definite. The well known (see e.g. Kariya and
Kurata (2004)) GLS cost function is:

JGLS(c) =
1
2
(Y− Xc)>Σ−1(Y− Xc). (38)

Up to this point we have not discussed how continuity between
simplices is achieved in the frame of the new regression scheme. As
explained in Section 2.6, the continuity conditions are contained in
the smoothness matrix H from (20). The continuity conditions act
as constraints on B-coefficients located in the continuity structure
of a triangulation. Therefore, the complete optimization problem
can be stated as an equality constrained GLS problem (ECGLS) as
follows:

min
c
JGLS(c), subject to Hc = 0. (39)

Using Lagrange multipliers this optimization problem can be for-
mulated as a Karush–Kuhn–Tucker (KKT) system:[
X>Σ−1X H>

H 0

] [
c
ν

]
=

[
X>Σ−1Y
0

]
(40)

with ν vector of Lagrangemultipliers. The coefficientmatrix in (40)
is the KKT matrix. The solution of the KKT system is:[
ĉ
ν̂

]
=

[
C1 C2
C3 C4

]
·

[
X>Σ−1Y
0

]
(41)

with ĉ and ν̂ estimators for c and ν respectively. Rao showed in Rad-
hakrishna Rao (2002) that the matrix in (41) is equal to the pseu-
doinverse of the KKT matrix:[
C1 C2
C3 C4

]
=

[
X>Σ−1X H>

H 0

]+
. (42)

Note that the sizes of the submatricesC1,C2 andC3 in (42) are equal
to the sizes of X>Σ−1X, H> and H respectively.

3.3. A rank requirement for the KKT matrix

For our purposes we require the KKT matrix in (40) to be
non-singular, which is the case when the dispersion matrix
Q = X>Σ−1X ∈ RJ·d̂×J·d̂ is positive definite on the kernel of the
smoothness matrix H:

Hc = 0, c 6= 0 H⇒ c>Qc > 0. (43)

This statement holds if Q and H are both of full rank. The proof
of (43) for the general KKT matrix is well known in the literature,
see e.g. Boyd and Vandenberghe (2004). In Section 2.6 we stated
that H is of full rank when no redundant continuity conditions are
present. The following theorem will prove that the rank of Q is
dependent on the volume and configuration of the data.

Theorem 1. The dispersion matrix Q is non-singular when every
simplex in a triangulation T contains a minimum of d̂ non-coplanar
data points, with d̂ as in (11).

Proof. The proof requires that the data content of every individual
simplex is considered separately. We therefore first re-order the
rows in X and Σ−1 such that they are in block diagonal form. This
operation does not alter the rank of Q. We denote the per-simplex
blocks Xj, andΣ−1j with j = 0, 1, . . . , J . The number of data points
in the simplex tj is Nj. The rank of Q is now simply the sum of the
ranks of the diagonal sub-blocks:

rank Q =
J∑
j=0

rank X>j Σ−1j Xj. (44)

For Q to be of full rank, we must have for every set of blocks:

rank X>j Σ−1j Xj = d̂ (45)

wemake use of a nested form of the rank statement fromHorn and
Johnson (1985):

rank X>j + rankΣ−1j Xj − Nj ≤ rank X>j Σ−1j Xj

≤ min{rank X>j , rankΣ−1j Xj} (46)

where the rank ofΣ−1j Xj is given by:

rankΣ−1j + rank Xj − Nj ≤ rankΣ−1j Xj

≤ min{rankΣ−1j , rank Xj}. (47)

BecauseΣ is invertible, its rank is equal to the total number of data
points Nj in simplex tj. The rank of Xj is:

rank Xj = min{Nj, d̂}. (48)

When Nj < d̂, i.e. when there are less than d̂ non-coplanar
data points in simplex tj, we get rank Xj = Nj with which the
inequalities in (47) reduce to the following equality:

rankΣ−1j Xj = Nj. (49)

Using this result in (46), and eliminating the inequalities we get:

rank X>j Σ−1j Xj = Nj < d̂. (50)

This result proves that Q is singular when there are one or more
simplices with less than d̂ non-coplanar data points. When Nj ≥ d̂
we have rank Xj = d̂with which the inequalities in (47) reduce to:

rankΣ−1j Xj = d̂. (51)

Substituting this result in (46) and eliminating the inequalities we
get:

rank X>j Σ−1j Xj = d̂ (52)

which proves that Q is non-singular only if Nj ≥ d̂. �

3.4. Model quality assessment

The quality of multivariate spline based models created with
the new linear regression scheme can be assessed in two different
ways. First, the model residue r from (36) can be analyzed directly.
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Second, the new linear regression scheme enables the use of a
statistical model quality measure based on the B-coefficient
covariance matrix. Rao showed in Radhakrishna Rao (2002) that
if the pseudoinverse in (42) is equal to the true inverse, the GLS
parameter covariance matrix of ĉ is equal to the C1 submatrix in
(42). We proved earlier that the KKT matrix from (40) is invertible
when sufficient data is present in every simplex, and when the
smoothness matrix H is of full rank; in the following we will
assume that both these conditions are met. In that case the GLS
parameter covariance matrix is given by:

Cov(ĉ) = C1 (53)

with B-coefficient variances equal to the main diagonal of Cov(ĉ):

Var(ĉq) = Cov(ĉ)q,q, q = 1, 2, . . . , J · d̂. (54)

The estimation of the B-coefficients and the B-coefficient covari-
ancematrix requires the residual covariancematrixΣ to be known,
which in general is not the case. Calculation of Σ is not trivial,
and many different methods for constructing it are presented in
the literature, see e.g Radhakrishna Rao (2002) and Kariya and Ku-
rata (2004). We propose a two-stage method that considers only
per-simplex correlations in the residual r. In the first stage, it is as-
sumed thatΣ = σ I, in which case (40) reduces to an ordinary least
squares problem. Under this assumption the estimator for the B-
coefficients (41) is still unbiased, but less efficient, leading to inac-
curate estimates for the B-coefficient variances. The residual vector
r is then calculated with (36) using the estimated B-coefficients.
With the residual vector, per-simplex residual covariance matrix
blocksΣtj ∈ RNj×Nj can now be estimated as follows:

Σtj =
1
Nj

Nj−k∑
i=1−l

rtj(i− l)rtj(i− l+ k), k, l = 1, 2, . . . ,Nj. (55)

The per-simplex residual covariancematrix blocks are then assem-
bled into the full-triangulation, block diagonal, residual covariance
matrixΣ as follows:

Σ =
[
(Σtj)j,j

]J
j=1
∈ RN×N (56)

where it is assumed that every per-simplex residual covariance
matrix block Σtj is non-singular and positive definite. In the sec-
ond stage of the estimation procedure, the B-coefficients are rees-
timated with (41) using the estimatedΣ from (56). An estimate of
the B-coefficient variances can then be obtained with (54).

4. Demonstration of the newmodeling method

In this section the newmodelingmethodology is demonstrated
with a simple bivariate data fitting experiment. In the experiment,
bivariate simplex spline functions of varying polynomial degree
and continuity order are used to approximate a nonlinear, scat-
tered, bivariate dataset on a triangulation consisting of 3 simplices.
The quality of the spline approximation is assessed using the resid-
ual and statistical analysismethods from Section 3. Finally, the sys-
tem matrices for a first degree spline function with C0 continuity
are written out.

4.1. Demonstration setup

For the numerical experiment 1000 scattered data points
(x1, x2) ∈ R2 on the interval [0, 1] were generated using a uni-
form random number generator. The data values were generated
with a bivariate function f (x1, x2) as follows:

f (x1, x2) = x22 sin(10x1 + 10)+ x1 cos(5x2)+ k(tj) · ν (57)

Fig. 2. Triangulation T3 and identification dataset (left) and data generating
function f (x1, x2) (right).

with k(tj) · ν a uniformly distributed white noise sequence of
simplex-dependent magnitude k(tj). The linear regression model
from (36)was used tomodel this dataset. A non-type-I/II triangula-
tion T3 consisting of 3 simpliceswas assumed, see Fig. 2. The values
for the noise magnitude were chosen to be {k(t1), k(t2), k(t3)} =
{0.2, 0.05, 0.02}. In this case it is clear that Cov(r) 6= σ I which
warrants the use of the GLS estimator from (41).

4.2. Demonstration results

A number of spline spaces were used to approximate the data.
In Fig. 3 the general performance of these spline spaces is shown
in the form of RMS of the residual r(x1, x2). Also shown in Fig. 3
are the estimated mean B-coefficient variances. This figure clearly
shows that increasing the degree of the spline spaces reduces the
residual RMS, as expected. From Fig. 3 it is clear that the estimated
B-coefficient variances depend heavily on the continuity order of
the spline spaces.
In Fig. 4 the s ∈ S26(T3) spline approximation is shown together

with the residual r(x1, x2), which consists mostly of the added
white noise. Fig. 5 shows the estimated B-coefficient variance
structure for the s ∈ S26(T3) spline together with a simulated B-
coefficient variance structure. The simulated B-coefficient variance
structure was obtained by numerically calculating the variance
in the estimated B-coefficients for 1000 noise realizations. Fig. 5
clearly shows a close correspondence between estimated and
simulated B-coefficient variances. Note that the B-coefficient
variances shown in Fig. 5 are lowest around the internal vertex.

4.3. First degree spline with 0th order continuity

We will now derive the regression matrix X, the observation
vector Y and the smoothness matrix H for the s ∈ S01(T3) spline
function. In this case we have 3 B-coefficients per simplex which,
according to (15), are located at the simplex vertices, see Fig. 6. The
global B-coefficient vector c (21) is:

c = [ ct1100 ct1010 ct1001 ct2100 ct2010 ct2001 ct3100 ct3010 ct3001 ]
>.

Now let x(i) = (x1(i), x2(i)) be a single data point located inside
simplex t1, and let b(i) be its barycentric coordinate with respect
to t1. The regression structure (33) for y(i) then is:

y(i) = B1(i) · D(i) · c

= [ B1t1(i) B1t2(i) B1t3(i) ] ·
[
I3×3 0
0 06×6

]
· c

= [ b0(i) b1(i) b2(i) 0 0 0 0 0 0 ] · c.
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Fig. 3. RMS of the residual r(x1, x2) (left) and mean B-coefficient variances (right)
for the different spline spaces.

Fig. 4. Sixth degree spline functionwithC2 continuity (left) andmodel error (right).

Fig. 5. Estimated (= solid) and simulated (= wireframe) B-coefficient variance
structure (left) and the error in the variance estimation (right). The dot corresponds
to the B-coefficient at which the largest error between estimated and simulated
variance occurs.

The continuity conditions for the given triangulation are formu-
lated using (18). For example, the continuity conditions of t1 with
respect to t2 are:

ct1(κ0,0,κ2) =
∑
|γ |=0

ct2(κ0,0,κ2)B
0
γ (v2) = c

t2
(κ0,0,κ2)

.

Fig. 6. Exploded view of the B-net for s ∈ S01 (T3).

It can be checked that the complete, full rank smoothness matrix
H for C0 continuity for this example is:

H =


−1 0 0 1 0 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 −1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 0 1
0 0 0 0 −1 0 0 1 0


where rows1 and2 are the continuity conditions for t1with respect
to t2, rows 3 and 4 the continuity conditions for t1 with respect to
t3 and row 5 the single continuity condition for t2 with respect to
t3. Note that the continuity condition c

t2
001 = c

t3
001 was removed as

it was redundant, causing H to be rank deficient.

5. Conclusions

In this paper, a new methodology for creating accurate static
nonlinear maps from scattered multidimensional data is pre-
sented. This methodology uses B-form polynomials in barycen-
tric coordinates inside an equality constrained linear regression
scheme. The linear regression scheme requires a new vector for-
mulation for theB-formof themultivariate simplex spline,which is
derived in this paper. A generalized least squares estimator for the
B-coefficients of the multivariate simplex splines is presented. The
new linear regression scheme facilitates the estimation of the vari-
ances of the B-coefficients. These variances can be used, together
with the spatial location of the B-coefficients, to define variance
hypersurfaces.
A numerical demonstration experiment was conducted in

which the newmodeling methodology was applied in the approx-
imation of a nonlinear, scattered dataset with simplex splines of
varying degree and continuity order. The statistical model quality
assessment method introduced in this paper was shown to com-
plement the standard residual analysis. Furthermore, it was shown
that increasing the continuity order of a spline function reduces B-
coefficient variances, especially for B-coefficients located near in-
ternal vertices.
Finally, the practicality of the new methodology has been de-

monstrated in de Visser, Mulder, and Chu (2009), in which a highly
nonlinear aerodynamic dataset is modeled with multivariate sim-
plex splines inside a linear regression framework.

References

Anderson, I. J., Cox, M. G., & Mason, J. C. (1993). Tensor-product spline interpolation
to data on or near a family of lines. Numerical Algorithms, 5, 193–204.

Awanou, G., Lai, M. J., & Wenston, P. (2005). The multivariate spline method for
scattered data fitting and numerical solutions of partial differential equations.
InWavelets and splines.

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University
Press.



Author's personal copy

C.C. de Visser et al. / Automatica 45 (2009) 2903–2909 2909

de Boor, C. (1987). B-form basics. In G. Farin (Ed.)., Geometric modeling: Algorithms
and new trends. SIAM.

de Visser, C. C., Mulder, J. A., & Chu, Q. P. (2009). Global nonlinear aerodynamic
model identification with multivariate splines. In AIAA Atmospheric Flight
Mechanics Conference.

Farin, G. (1986). Triangular bernstein-bézier patches. Computer Aided Geometric
Design, 3, 83–127.

Horn, R. A., & Johnson, C. R. (1985).Matrix analysis. Cambridge University Press.
Hu, X. L., Han, D. F., & Lai, M. J. (2007). Bivariate splines of various degrees for
numerical solution of partial differential equations. SIAM Journal on Scientific
Computing , 29, 1338–1354.

Kariya, Takeaki, & Kurata, Hiroshi (2004). Generalized least squares. John Wiley &
Sons, Inc..

Lai, M. J. (1997). Geometric interpretation of smoothness conditions of triangular
polynomial patches. Computer Aided Geometric Design, 14, 191–199.

Lai,M. J., & Schumaker, L. L. (1998). On the approximation power of bivariate splines.
Advances in Computational Mathematics, 9, 251–279.

Lai, M. J., & Schumaker, L. L. (2007). Spline functions over triangulations. Cambridge
University Press.

Lai, M. J. (1990). Some sufficient conditions for convexity of multivariate bernstein-
b’ezier polynomials andbox spline surfaces. Studia ScientiarumMathematicarum
Hungarica, 28, 363–374.

Radhakrishna Rao, C. (2002). Linear statistical inference and its applications. John
Wiley & Sons, Inc.

C.C. deVisser received the B.Sc. andM.Sc. degrees from the
Faculty of Aerospace Engineering of the Delft University of
Technology in 2006 and 2007. From 2007 he has been a
Ph.D. candidate at the Faculty of Aerospace Engineering,
Delft University of Technology, Delft, The Netherlands. His
research interests include nonlinear system identification,
multivariate spline theory, flight dynamics, aerodynamics
and fault tolerant control.

Q.P. Chu received his Ph.D. degree from the Faculty of
Aerospace Engineering, Delft University of Technology,
The Netherlands, in 1987. Currently, he is an Associate
Professor at the Faculty of Aerospace Engineering, Delft
University of Technology, responsible for aerospace guid-
ance, navigation and control education, and research ac-
tivities. He has (co)authored more than 150 journal and
conference papers ranging from adaptive control, non-
linear control, robust control and intelligent control to
nonlinear state estimation, system identification and non-
linear optimization for aerospace vehicles. Dr. Chu was

the designer of the attitude control system for the third Dutch satellite Sloshsat
launched in Feb. 2005 and is a member of the American Institute of Aeronautics
and Astronautics (AIAA).

J.A. Mulder graduated with honors as engineer-pilot from
the faculty of Aerospace Engineering of the Delft Univer-
sity of Technology, The Netherlands, in 1968. He received
his Ph.D. degree on aerodynamic model identification in
1986 with honors and was next appointed Full Profes-
sor in 1989 as chair of the Control and Simulation Divi-
sion in the Faculty of Aerospace Engineering. He is the
founding Scientific Director of the Institute for research
in Simulation, Motion and Navigation Technologies (SI-
MONA) and of the institute for Aerospace Software and
Technologies (ASTI) of Delft University of Technology. He

has (co)authoredmore than 200 conference and journal papers on subjects ranging
from human–machine interface design and cybernetics to identification, estima-
tion and advanced flight control. Prof. Mulder has served in numerous ministerial
advisory committees, as advisor to the board of the National Aerospace Laboratory
(NLR) and the Radiobiological Institute of the Netherlands Organization for Applied
Scientific Research (TNO). He was a member of the AGARD Flight Mechanics panel
from 1982 to 1997. Presently he is member of the Aerospace Control & Guidance
Systems Committee of the Society of Automotive Engineers (SAE), of the Society of
Flight Test Engineers (SFTE) and senior member of the American Institute of Aero-
nautics and Astronautics (AIAA), of its Avionics Committee and Associate Editor of
the AIAA Journal of Aerospace Computing, Information, and Communication and of
the Journal of Micro Aerial Vehicles.


