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A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic 
Reynolds-stress models (EARSM) from high-fidelity data is developed building on the 
frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and 
the production of transported turbulent quantities of a baseline linear eddy viscosity 
model (LEVM) are expressed as functions of tensor polynomials selected from a library 
of candidate functions. The CFD-driven training consists in solving a blackbox optimization 
problem in which the fitness of candidate EARSM models is evaluated by running RANS 
simulations. The procedure enables training models against any target quantity of interest, 
computable as an output of the CFD model. Unlike the frozen-training approach, the 
proposed methodology is not restricted to data sets for which full fields of high-fidelity 
data, including second flow order statistics, are available. However, the solution of a high-
dimensional expensive blackbox function optimization problem is required. Several steps 
are then undertaken to reduce the associated computational burden. First, a sensitivity 
analysis is used to identify the most influential terms and to reduce the dimensionality 
of the search space. Afterwards, the Constrained Optimization using Response Surface 
(CORS) algorithm, which approximates the black-box cost function using a response surface 
constructed from a limited number of CFD solves, is used to find the optimal model 
parameters. Model discovery and cross-validation is performed for three configurations of 
2D turbulent separated flows in channels of variable section using different sets of training 
data to show the flexibility of the method. The discovered models are then applied to the 
prediction of an unseen 2D separated flow with higher Reynolds number and different 
geometry. The predictions of the discovered models for the new case are shown to be 
not only more accurate than the baseline LEVM, but also of a multi-purpose EARSM model 
derived from purely physical arguments. The proposed deterministic symbolic identification 
approach constitutes a promising candidate for building accurate and robust RANS models 
customized for a given class of flows at moderate computational cost.
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1. Introduction

Computational Fluid Dynamics (CFD) simulations of turbulent flows for industrial applications largely rely on the 
Reynolds-Averaged Navier-Stokes (RANS) equations supplemented with linear eddy viscosity models (LEVM) for the Reynolds 
stresses. Despite their generally inaccurate predictions of non-equilibrium turbulent flow with strong pressure gradients, 
streamline curvature, anisotropy and separation [2,3] LEVM are usually preferred to more sophisticated models –namely, 
Reynolds stress models (RSM)– due to their superior robustness and lower computational cost. RSM involve additional 
transport equations for the Reynolds stresses [4–6], which in principle can be derived exactly from the Navier–Stokes equa-
tions. Unfortunately, this process introduces a number of additional unclosed terms (pressure-strain correlations, diffusion 
and dissipation rates) that need suitable mathematical modeling, as well as the calibration of the associated closure co-
efficients. The predictive performance and the numerical robustness of RSM is sensitive to the modeling of these terms. 
Furthermore, RSM involve the solution of seven additional transport equations (for 3D flows), thus increasing computational 
cost compared to LEVM.

A trade-off between LEVM and RSM consists in the development of so-called generalized eddy viscosity models [7]. 
Within this class of models, Explicit Algebraic Reynolds Stress Models (EARSM) generalize the linear eddy viscosity concept 
by assuming that the anisotropic part of the Reynolds stress not only depends on the mean strain rate tensor Sij but also on 
the rotation rate tensor �i j through a non linear relationship. Specifically, Reynolds stress anisotropy is written as a tensor 
polynomial of Sij and �i j [7], the coefficients of which can be determined from the RSM equations simplified under local 
equilibrium [8] as functions of tensor invariants.

In this sense, classical EARSM partly inherit from modeling hypothesis used for the development of RSM. Furthermore, 
they also require the calibration of a number of closure coefficients, which is usually done for a set of simple canonical 
flows. Due to the uncertainties associated with the choice of both the mathematical structure and the closure coefficients 
the EARSM, as well as other RANS models, are not universally valid and may perform poorly for flow configurations very 
dissimilar to the calibration ones. The reader may refer to [9] for a discussion of RANS modeling uncertainties.

Several recent studies have illustrated the potential of data-driven approaches for the development of turbulence mod-
els, customized for specific classes of flows (see, e.g., [10,9]). Such approaches use machine learning techniques to infer the 
functional form of the Reynolds stress tensor from high-fidelity experimental or, most often, numerical data. While many of 
them use black-box machine learning such as Gaussian processes, Deep Neural Networks or Random Forests [11–13] to re-
construct or correct the Reynolds stress tensor, some others have considered open-box machine learning techniques, relying 
on the use of a set of candidate solutions or function dictionaries to build physically interpretable turbulence models similar 
to EARSM. In [14], this goal is achieved by using non deterministic symbolic regression based on an evolutionary algorithm 
(Gene Expression Programming, GEP). The GEP is efficient in constructing models with improved accuracy for separated 
flows. Moreover, learned models involving only a few nonlinear terms are found to exhibit lower training and prediction 
error and higher numerical robustness [15–17]. However, the random nature of the search algorithm discovers a model with 
a different mathematical form at each run, using the same training data. A deterministic symbolic identification algorithm 
called SpaRTA (Sparse Regression of Turbulent Stress Anisotropy) has been proposed in [1]. SpaRTA combines functions from 
a predefined library of candidates without any random recombination. The algorithm constrains the search towards algebraic 
models of minimal complexity using sparsity-promoting regression techniques [18,19]. This method has also shown its ef-
ficiency in improving RANS models for the simulation of separated flows behind steps or in convergent-divergent channels. 
Recently, SpaRTA has been applied to flows around 3D bluff body geometries [20], to wind turbine wake modeling [21] and 
it has been coupled with LES in a multi-fidelity optimization framework, allowing significant improvements over designs 
based on a simple LEVM [22]. Furthermore, the SpaRTA methodology has also been applied and extended to discover con-
stitutive laws for elastic solids [23]. A similar deterministic identification approach has been also proposed in [24], whereby 
unclosed tensors in the RANS or Reynolds-stress transport equations are written as linear combinations of a tensor basis, 
whose coefficients are learned from synthetic or DNS data of simple flows using l1-constrained mean square regression. 
The results are compared to a constitutive law using a similar decomposition, but with coefficients built on Neural Net-
works (NN) [12]. Because the deterministic identification methodology seeks to uncover underlying physics, far less data is 
required to achieve reasonable learned models. As a consequence, it represents potentially an excellent modeling construct 
for sparse datasets, such as those available from experiments.

A limitation of the above-mentioned symbolic identification algorithms relies in their training procedure. The latter uses 
a frozen-field (or a priori [25]) mode, whereby frozen mean-field and Reynolds stress high-fidelity data are used to train 
the constitutive equation for the Reynolds stresses. Once the training is completed, the resulting model is plugged in a CFD 
solver and used to predict a new flow. Such a strategy has the advantage of simplicity and extremely low cost (no CFD 
solves are required for the training procedure). The drawbacks are: 1) the need for full-field, high quality data for first and 
second-order flow statistics (namely, the Reynolds stresses); the latter are generally available only for simple geometries 
and low to moderate Reynolds numbers, for which DNS or well-resolved LES are possible; 2) due to the offline training, 
the learned model may cause numerical stiffness once coupled with a CFD code, requiring the introduction of relaxation 
coefficients [1] or implicit treatment to stabilize the CFD calculations and improve their conditioning [24]; 3) offline training 
using frozen high-fidelity fields does not guarantee consistency with the system of RANS equations (see [25] for a more 
detailed discussion).
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The above-mentioned limitations have motivated recent work toward the development of so-called model-consistent 
or CFD-driven training algorithms [26–28]. In such an approach, the CFD model is embedded within the training process. 
This is expected to enable flexible use of incomplete or noisy training data for any flow quantity at hand. Moreover as 
each candidate model is evaluated through a RANS simulation, models preventing the convergence of the solution can be 
eliminated during the training process. Hence, learned models are expected to be robust. Finally, the CFD-driven approach 
ensures coupling of the mean field and turbulent transport equations at any stage of the training process, thus guaranteeing 
model consistency. However, the price to pay is a much higher computational cost of the training procedure, due to the 
multiple CFD solves required to evaluate model fitness.

In the present paper, we propose a CFD-driven extension of the SpaRTA algorithm [1] that evaluates the fitness of can-
didate models by running RANS simulations. The new method generates data-driven EARSM of the same general form of 
the frozen-training SpaRTA algorithm. Unlike the latter, however, it is applicable to configurations for which full fields of 
first and second-order turbulent statistics are not available (for example, experimental databases), as it can be trained with 
any kind of observable data. Examples include incomplete velocity or pressure fields, wall distributions of pressure or skin 
friction coefficients, or integral quantities such as aerodynamic coefficients. Such data can be made available through exper-
iments in addition to simulations, opening the way to the development of data-driven models for complex, high-Reynolds 
flows. In order to reduce the computational burden associated with model training in a highly dimensional parameter space, 
a preliminary local sensitivity analysis is used to identify the most influential parameters. Subsequently, a pre-screening of 
candidate models is carried out using the Reynolds stress anisotropy barycentric map representation [29], so that parameter 
ranges leading to violation of the realizability conditions are discarded. An important advance over the state of the art is 
represented by the introduction of a surrogate-based CFD-driven training strategy. More precisely, we use a response surface 
methodology [30] to build an inexpensive surrogate of the costly black-box function from a moderate number of CFD eval-
uations. An approximate solution to the optimization problem is then computed by running the optimizer on the response 
surface. As in the frozen-training SpaRTA approach, the turbulence models obtained at the end of the procedure are sparse 
data-driven EARSM models involving a small subset of the initial library of candidate functions. Numerical experiments for 
selected separated flows are used to illustrate the accuracy and the generalization capabilities of the models.

The paper is organized as follows. In Section 2, we briefly recall the formulation of LEVM and EARSM models of turbu-
lence. Datasets used for model training and validation are described in Section 3. In Section 4, we recall the main features of 
the frozen-training SpaRTA algorithm. Section 5 is devoted to numerical results and discussion. Conclusions and perspectives 
for future work are provided in Section 6.

2. Reynolds-averaged Navier–Stokes equations and turbulence models

The incompressible RANS equations read:

∂ui

∂xi
= 0 (1)

∂ui

∂t
+ ∂(uiu j)

∂x j
= − 1

ρ

∂ p

∂xi
+ ∂

∂x j

(
ν

∂ui

∂x j
− u′

iu
′
j

)
, (2)

where ρ is the constant density, ν the fluid kinematic viscosity, ui and p the averaged velocity components and pressure 
and u′

i the velocity fluctuations.

The unclosed term τi j = u′
iu

′
j is the kinematic Reynolds stress tensor. It can be decomposed into an isotropic part 2

3 kδi j

and an anisotropic part aij = 2kbij (with bij a non-dimensional anisotropy tensor), such that:

τi j = u′
iu

′
j = 2k(bij + 1

3
δi j), (3)

where k = tr(τi j)/2 is the turbulent kinetic energy. Therefore, the modeling of the entire range of turbulent scales in the 
RANS approach reduces to the modeling of k and of the anisotropy tensor. This is generally done by introducing a constitu-
tive relation for bij , i.e. a functional form relating its components to the mean field.

2.1. Boussinesq analogy and LEVM models

Most turbulence models currently used in industrial codes are LEVM. Such models rely on the so-called Boussinesq 

analogy, whereby the anisotropic part of τi j is written as a linear function of the mean rate-of-strain Sij = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
:

bij = −νt

k
Si j (4)

with νt the eddy viscosity coefficient.
The LEVM constitutive relation (4) is then closed by expressing νt as a function of the mean flow. Most often, νt is 

computed using a transport-equation model such as the k − ω SST [31], used here as the baseline model. For completeness, 
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the SST k − ω equations are recalled in Appendix A. Although this model is believed to be one of the most accurate LEVM 
models on average, it still shows limitations in providing reliable results for flows with separation, streamline curvature or 
strong pressure gradients [2,3].

2.2. Augmented Boussinesq analogy and EARSM models

To overcome the limitations of LEVM models, more sophisticated approaches have been developed, such as the gen-
eralized eddy viscosity models [7]. In particular, EARSM generalize the linear eddy viscosity concept by assuming that 
the anisotropy of the Reynolds-stress depends not only on the strain rate tensor Sij but also on the rotation rate tensor 

�i j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
through a non linear relationship.

Such models can be constructed from a baseline LEVM using the so-called augmented Boussinesq analogy:

bij = bbl
i j + b	

i j , (5)

where bbl
i j = −νt

k
Si j and b	

i j is the extra anisotropy tensor, used to correct the baseline Boussinesq model bbl
i j .

Following this approach, an EARSM can be constructed by specifying a non linear relationship between the extra anisotropy 
tensor b	

i j and the strain rate tensor and the rotation rate tensor. Following [7], the most general form of the anisotropic 
Reynolds-stress correction is derived via the Cayley-Hamilton theorem:

b	
i j ( Ŝ i j, �̂i j) =

10∑
λ=1

Gλ(I1, ..., I5)T (λ)
i j , (6)

using a minimal integrity basis of ten tensors T (λ)
i j and five invariants Im , written as functions of the non-dimensional mean 

strain rate Ŝ i j = 1

2ω

(
∂ui

∂x j
+ ∂u j

∂xi

)
and rotation rate �̂i j = 1

2ω

(
∂ui

∂x j
− ∂u j

∂xi

)
. In the following, we focus on two-dimensional 

flow cases, for which the first three base tensors form a linearly independent basis and only the first two invariants are 
nonzero [7], and the set of base tensors and invariants reads

T (1)
i j = Ŝ i j, T (2)

i j = Ŝ ik�̂kj − �̂ik Ŝkj,

T (3)
i j = Ŝ ik Ŝkj − 1

3 δi j Ŝmn Ŝnm

I1 = Ŝmn Ŝnm, I2 = �̂mn�̂nm.

(7)

Deriving EARSM models then consists in finding a set of scalar functions Gλ , which are classically obtained from physical 
considerations [7,8]. In the following, we present a deterministic symbolic identification method to build EARSM models 
from high-fidelity data sets, cast in the form of equations (3), (5) and (6).

In the numerical experiments of section 5, we also consider a general purpose EARSM, recently proposed in [32] and 
referred-to as BSL-EARSM, for comparison with customized data-driven models. Its formulation is briefly recalled in Ap-
pendix B.

2.3. CFD solver

The CFD-SpaRTA methodology requires the implementation of the general formulation of the augmented EARSM in a 
CFD solver. In the present work, the open-source finite-volume code OpenFOAM [33] has been used. The RANS equation 
system (equations (1) and (2)) are solved using the SIMPLE algorithm [34]; the convective terms are discretized using linear 
upwinding and viscous terms with 2nd order central differencing. The solution is advanced to the steady state using a 
Gauss-Seidel smoother.

3. Flow configurations and data sets

The aim of the present work being the development of data-driven corrections to turbulence models, all numerical ex-
periments are carried out for a family of flow configurations that challenge standard RANS models, and specifically LEVM. In 
particular, we have considered the same cases reported in [1], representing flows in 2D channels with variable cross sections. 
High fidelity data from DNS or well-resolved LES are available for model training and validation. To ensure that discretization 
errors remain low with respect to turbulence modeling errors, the RANS simulation use sufficiently fine meshes.

More details on the flow configurations and data sets used in the present numerical experiments are given below.
4
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3.1. Periodic hill flow (PH10595)

The so-called periodic hill flow consists of a flow through a channel constrained by periodic restrictions (hills) of height 
h. For a channel segment comprised between two adjacent hills, the flow separates on the lee-side of the first hill and reat-
taches between the hills. The test case has been widely investigated in the literature, both experimentally and numerically. 
The high-fidelity LES data used in the present work are from [35] for Re = 10595 (PH10595), where Re is a Reynolds number 
based on the bulk velocity in the restricted section and the hill height. Our RANS simulations use a computational grid 
consisting of 120 x 130 cells. Cyclic boundary conditions are used at the inlet and outlet and a forcing term is applied to 
maintain a constant flow rate through the channel.

3.2. Converging-diverging channel at Re=12600 (CD12600)

This configuration corresponds to a 2D channel of half-height H with an asymmetric bump of height h ≈ 2/3H located 
on the bottom wall. The Reynolds number (based on the channel half-height and inlet conditions) is Re = 12600. A small 
separation occurs on the lee-side of the bump. For this test case, high-fidelity DNS data from [36] are available. The RANS 
simulations are based on a mesh of 140 x 100 cells. A velocity profile obtained from a companion channel-flow simulation 
is imposed at the inlet of the computational domain.

3.3. Curved backward-facing step (CBFS13700)

The case consists in a 2D flow over a gently-curved backward-facing step of height h, producing a separation bubble. 
The upstream channel height is 8.52h and the Reynolds number, based on the inlet velocity and step height, is 13700. 
High-fidelity LES data from [37] are used for training. For the RANS simulations, the mesh consists of 140 x 150 cells. Slip 
conditions are used at the upper boundary, and a velocity profile obtained from a fully-developed boundary layer simulation 
is set at the domain inlet.

4. Symbolic identification methodology

In this section, we introduce the general form of candidate models, constructed from a library of functions. Then we 
recall the frozen-training SpaRTA algorithm of [1]. Finally, we describe in detail the steps of the new CFD-driven symbolic 
identification algorithm.

4.1. Symbolic identification of EARSM

Following the approach proposed in [1], the scalar functions Gλ are approximated as linear combinations of candidate 
functions of I1 and I2, consisting of monomials up to order 6:

B = [c, I1, I2, I2
1, I1 I2, I2

2, I3
1, I2

1 I2, I1 I2
2, I3

2, I4
1, I3

1 I2, I2
1 I2

2, I1 I3
2,

I4
2, I5

1, I4
1 I2, I3

1 I2
2, I2

1 I3
2, I1 I4

2, I5
2, I6

1, I5
1 I2, I4

1 I2
2, I3

1 I3
2, I2

1 I4
2, I1 I5

2, I6
2]T .

(8)

Given this library, the full expression of eq. (6) becomes:

b	
i j (Sij,�i j) = θ

b	
i j

0 T (1)
i j + θ

b	
i j

1 I1T (1)
i j + θ

b	
i j

2 I2T (1)
i j + . . .

+θ
b	

i j
26 I1 I5

2 T (1)
i j + θ

b	
i j

27 I6
2 T (1)

i j

+θ
b	

i j
28 T (2)

i j + θ
b	

i j
29 I1T (2)

i j + θ
b	

i j
30 I2T (2)

i j + . . .

+θ
b	

i j
54 I1 I5

2 T (2)
i j + θ

b	
i j

55 I6
2 T (2)

i j

+θ
b	

i j
56 T (3)

i j + θ
b	

i j
57 I1T (3)

i j + θ
b	

i j
58 I2T (3)

i j + . . .

+θ
b	

i j
82 I1 I5

2 T (3)
i j + θ

b	
i j

83 I6
2 T (3)

i j ,

(9)

where the vector of coefficients:

�
b	

i j =
[
θ

b	
i j

0 , θ
b	

i j
1 , θ

b	
i j

2 , . . . , θ
b	

i j
83

]T ∈R84 (10)

has to be determined.
A major improvement proposed in [1] consists in the introduction of a corrective term in the turbulent transport equa-

tions, in addition to the use of the generalized eddy viscosity formulation. Specifically, a residual term R is added to the 
model transport equations and the augmented k-ω-SST model becomes:
5
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∂k

∂t
+ u j

∂k

∂x j
= Pk + R − β∗kω + ∂

∂x j
[(ν + σkνt)

∂k

∂x j
] (11)

∂ω

∂t
+ u j

∂ω

∂x j
= α

νt
(Pk + R) − βω2 + ∂

∂x j
[(ν + σωνt)

∂ω

∂x j
] + C Dkω, (12)

with Pk = min(−2k(bbl
i j + b	

i j )∂ j U i, 10β∗ωk).
The residual R can be positive or negative and it represents a correction of the model production term. Introducing a 

suitable non-dimensional correction tensor bR
ij , the model for R writes:

R = 2kbR
ij

∂u j

∂xi
, (13)

where bR
ij is also decomposed according to the Cayley-Hamilton theorem:

bR
ij(Sij,�i j) = θ R

0 T (1)
i j + θ R

1 I1T (1)
i j + θ R

2 I2T (1)
i j + . . .

+θ R
26 I1 I5

2 T (1)
i j + θ R

27 I6
2 T (1)

i j

+θ R
28T (2)

i j + θ R
29 I1T (2)

i j + θ R
30 I2T (2)

i j + . . .

+θ R
54 I1 I5

2 T (2)
i j + θ R

55 I6
2 T (2)

i j

+θ R
56T (3)

i j + θ R
57 I1T (3)

i j + θ R
58 I2T (3)

i j + . . .

+θ R
82 I1 I5

2 T (3)
i j + θ R

83 I6
2 T (3)

i j ,

(14)

The vector of coefficients:

�R =
[
θ R

0 , θ R
1 , θ R

2 , . . . , θ R
83

]T ∈R84 (15)

needs to be determined alongside with �b	
i j .

Once the general library of candidate models has been chosen, the difference between the frozen-training and the CFD-

driven approaches relies in the method used to determine �b	
i j and �R .

4.2. Frozen-training SpaRTA algorithm

In this approach, high fidelity data for the velocity field, u∗
i , turbulent kinetic energy k∗ and Reynolds-stresses τ ∗

i j are 
used to train the model. Such data are pre-processed prior to use for model learning.

The high-fidelity anisotropy tensor b∗
i j is obtained from equation (3). The next step of the method is the determination 

of the high fidelity values for b	
i j and R . Knowing b∗

i j , b	,∗
i j = b∗

i j + ν∗
t

k∗ S∗
i j is directly derived if a high-fidelity ansatz of the 

turbulent viscosity ν∗
t is provided. The latter can be computed using the relation (A.3), setting k = k∗ . However, a high 

fidelity value of ω is also needed. For this purpose, a so-called k-corrective-frozen-RANS algorithm is used, whereby a high-
fidelity estimate of the residual R∗ is computed alongside ω∗ . This process consists in injecting ui

∗ , k∗ and b∗
i j in equations 

(11) and (12) and iteratively computing ω∗ by solving equation (12). At each iteration, R∗ is computed as the residual of 
equation (11) and fed back into equation (12). On completion of the preceding manipulations, high fidelity fields for b	,∗

i j
and R∗ are available.

High-fidelity counterparts of the terms in the library B∗ and of the basis tensors T (λ,∗)
i j are computed from the high-

fidelity velocity field by using relations (7), (8); B∗ and T (λ,∗)
i j are then used to compute the b	

i j and R fields corresponding 

to candidate models defined by specifying the sets of coefficients �b	
i j and �R . For each field 	 (	 indicating either b	

i j or 
R) the following optimization problem can be constructed:

� = argmin
�̂

‖	∗ − 	(�̂)‖2
2 + regularization terms, (16)

where ‖ • ‖2 stands for the l2 norm of the error, �̂ is the vector �b	
i j (respectively �R ) if 	 represents b	

i j (respectively R). 
	∗ is the high fidelity value of the field and 	(�̂) is the field reconstructed using the model corresponding to �̂.

The choice of the regularization terms is crucial to efficiently select a small subset of relevant terms among those con-
stituting the highly dimensional symbolic library. The goal of the whole methodology being the construction of augmented 
RANS models optimized for a specific class of flows, the learnt model should be general enough to be effective for the 
simulation of flows belonging to the same class (e.g. flows with separations). Without the regularization terms, the problem 
formulated by equation (16) reduces to a standard mean-squares optimization problem whose resolution leads to dense 
coefficient vectors �b	

i j and �R , possibly overfitting the data.
6
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Fig. 1. Technical flow diagram of the CFD-driven SpaRTA method. U represents any quantity of interest considered as the target for model training.

In [1], this effect is mitigated by using an elastic net regularization, known to be sparsity promoting [38,39]:

regularization terms = λρ‖�̂‖1 + 0.5λ(1 − ρ)‖�̂‖2
2, (17)

where ρ ∈ [0, 1] is the blending parameter between the l1− and l2− norm regularization and λ is the regularization weight. 
The blending parameter ρ relaxes the l1− regularization, that tends to select only one function in sets of correlated functions 
and therefore degrade the predictive performance of the inferred models. This relaxation allows to find sparse models with 
good predictive performance. The regularization weight λ also controls the sparsity of the inferred models (independently 
of ρ). As the optimal value of (ρ, λ) is not known a priori, the optimization problem given in equation (16) must be solved 
for a grid of pairs (ρ1≤i≤N , λ1≤ j≤M). In Schmelzer et al. [1], a set of optimizations is carried out a grid of 9 × 100, leading 
to the discovery of 900 concurrent models, some of which have the same abstract form (i.e. involve the same functional 
terms). Once the abstract model forms have been identified, an inference step based on ridge regression is used to calibrate 
the model coefficients. The computational cost of model discovery and calibration is of the order of minutes, since no 
additional CFD solve is required at this stage. Finally, best-performing models are selected from the wide set of learned 
models through cross validation [40]. In order to not overcharge the role of the training data from k-corrective-frozen-
RANS, the validation task is performed a posteriori by implementing candidate models in a CFD solver. This allows validation 
against quantities other than those used in the training process, namely velocity data. Specifically, data for cases PH10595 , 
CD12600 and CBFS13700 are used, leading to approximately 200 CFD calculations.

The CFD solver used in [1] is OpenFOAM [33], in which the general formulation of the augmented EARSM has been im-
plemented as a new class of models. The coefficients are passed by the optimizer to the OpenFoam input file RASproperties 
using a python interface.

An implementation of a general EARSM model in OpenFOAM is available here: https://github .com /shmlzr /general _earsm .
git.

4.3. CFD-driven symbolic identification

The technical flow diagram of the CFD-driven algorithm that we have developed in the present work to determine �b	
i j

and �R is sketched in Fig. 1.
The first step of the method consists in gathering high fidelity data for a flow or a class of flows for which we want 

to improve the accuracy of the baseline model. It should be emphasized that, while the frozen-training approach requires 
data for second-order quantities like k and τi j , observations available for any quantity of interest (velocity or pressure 
measurements, global aerodynamic coefficients, etc.) can be used as a target for training. In the flowchart of Fig. 1, we 
assumed that high fidelity data are available for a quantity of interest U : this could be, for instance, the streamwise velocity 
component u1 but the same procedure applies for any other data set. Typically, U is a vector of high-fidelity samples 
extracted at selected locations in the flow field and concatenated into a single vector.

In the second step, the general form of the augmented turbulence model is implemented in the CFD-solver, as described 
in Section 4.2. The latter is used to evaluate the quantity U using a candidate augmented turbulence model specified by 
any instance of the vectors �̂b	

i j and �̂R . The output RANS data for U are indicated as U R AN S (�̂
b	

i j , �̂R). Then, the fitness 
of candidate models is evaluated in terms of the mean squared error ‖U ∗ − U R AN S (�̂

b	
i j , �̂R)‖2

2 between the high fidelity 
data U∗ and the RANS model prediction U R AN S (�̂

b	
i j , �̂R). The model can then been constructed by solving the following 

optimization problem:

(�
b	

i j ,�R) = argmin
ˆ b	

i j ˆ R

‖U − U R AN S(�̂
b	

i j , �̂R)‖2
2 + regularization terms, (18)
(� ,� )
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where regularization terms are added to the least squares formulation to prevent overfitting of the high fidelity data. The 
choice of the regularization is discussed in the following.

The preceding cost function is a non-linear black-box function involving a RANS simulation for any choice of �̂b	
i j , �̂R , 

and is therefore costly in terms of CPU time. In the following, problem (18) is optimized using the Constrained Optimization 
using Response Surface (CORS) algorithm [30], which uses the response surface methodology to approximate the expensive 
function using a limited number of function evaluations. The optimization is subsequently performed on this response 
surface which is further enriched at each iteration with a new function evaluation at the provisional optimum location 
(see Appendix C for a short description of the algorithm). Here we use a version of the CORS algorithm adapted from the 
package available in the blackbox python module (see Ref. [41]).

A first modification is introduced to account for diverging or poorly converging CFD simulations due to non realiz-
able/non robust candidate models. If convergence is not achieved according to the prescribed criteria, the candidate model 
is eliminated and the coefficients are resampled by slightly decreasing their magnitude. The procedure is repeated until con-
vergence is obtained. Then, the initial response surface is built using n function evaluations, while additional m evaluations 
are used to converge the solution. The parameters m and n are set independently and typically n < m and n + m > 2D to 
ensure a good exploration of the parameter space and a satisfactory convergence to the optimum, with D the dimensionality 
of the search space. Note that in the original CORS algorithm n = m = N/2, with N > 2D .

Given the difficulty of constructing accurate response surfaces in highly dimensional parameter spaces (here, D = 168), a 
preliminary local sensitivity analysis is conducted to identify the most influential parameters and reduce the search space. 
Afterwards, search ranges for model parameters are assigned based on Reynolds-stress realizability considerations. Finally, 
the regularization terms in the fitness function definition (18) are specified. These three steps are described into more 
details in the following.

4.3.1. Local sensitivity analysis
In the CORS algorithm here implemented, the total number of evaluations N = n +m must satisfy the constraint N > 2D . 

As the general formulation of the augmented model involves 168 coefficients, we have N > 336. In addition to the large 
numerical cost of the training procedure, for highly dimensional spaces, the response surface may not provide an accurate 
enough approximation of the true cost function.

To reduce the size of the parameter space, we have carried out a local sensitivity analysis around the baseline model 
formulation (corresponding to θb	 = 0 and θ R = 0) to determine the most influential coefficients. For that purpose, each 
coefficient is varied by a small perturbation (O (10−3)), and the corresponding CFD solution is determined. The derivatives 
of the cost function are then evaluated by one-sided finite differences. More precisely, we investigate the sensitivity of the 
mean squared error on prescribed reference data to parameters �b	

i j and �R of the general EARSM.
The results of the sensitivity study are reported in the following for the three flow configurations PH10595, CD12600 and 

CBFS13700 of Section 3. For the three flows, the cost function is based on high fidelity velocity and Reynolds stress profiles. 
The profiles are selected at the following streamwise locations: for PH10595 at x/h = (0.05, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,7.0,

8.0); for CD12600 at x/H = (5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12); and for CBFS13700 x/h = (0.1, 1.5, 3.0, 4.5, 6.0, 7.5).
The sensitivity derivatives of the cost function with respect to the parameters of the b	 model are reported in Fig. 2, 

where the abscissas correspond to parameter subscripts. Parameters with subscripts 0 ÷ 27, 28 ÷ 55 and 56 ÷ 83 appear in 
the function coefficients of T (1)

i j , T (2)
i j and T (3)

i j , respectively. Several comments are in order. First, the parameters associated 
with T (1)

i j (corresponding to a correction of the linear eddy viscosity coefficient) are overall more influential than the param-

eters involved in the quadratic tensorial terms T (2)
i j and T (3)

i j , which govern higher-order corrections of the constitutive law. 
Second, the parameter sensitivity decays rapidly with the degree of the monomial functions, and terms up to the second 
degree are at least one order of magnitude larger than the coefficients of the higher order terms. This has led us to retain 
only monomials up to the second order in the library of candidate functions (equation (8)). Similar results are found for the 
parameters of bR . On the basis of this analysis, the dimensionality of the search space is reduced to 36 instead of the initial 
value 168.

4.3.2. Selection of parameter ranges

The initial range of each model coefficient must be specified prior to the CORS optimization. For each �1≤i≤36 of �b	
i j

and �R , the search space is set as:

ai ≤ �i ≤ bi (19)

where ai ∈ R and bi ∈ R are respectively the lower and upper bound of the range of variation of candidate model co-
efficients. In our setup of the CFD-driven method, the coefficients ranges are set with the aim to ensure the realizability 
constraint [42].

As stressed in Section 4.3 and in Appendix C candidate models are evaluated by running RANS simulations at each iter-
ation of the optimization loop. When a candidate model is found to be non robust, preventing convergence, it is eliminated 
and resampled until a robust model is obtained. This procedure introduces an additional computational cost that depends 
on the number of non robust models to be evaluated. This number increases with the dimension of the search space D . 
I. Ben Hassan Saïdi, M. Schmelzer, P. Cinnella et al. Journal of Computational Physics 457 (2022) 111037
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Fig. 2. Sensitivity derivatives of the cost function (based on the velocity components) to the parameters θb	
for the three test cases.
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Fig. 3. Modeled anisotropy tensor at each mesh cell placed in the barycentric map for 100 random vectors �b	
i j sampled using uniform Latin Hypercube 

sampling. (a) sampling in range [−7, 7]18. (b) Sampling in range [−2, 2]18.

Hence, the a priori specification of parameter ranges results from the following trade-off. On one hand, the parameter range 
must be large enough to obtain substantial modification of the baseline model. On the other, it must be as small as possible 
to reduce the number of non robust candidate models and avoid the overcost associated with testing / elimination and 
resampling.

For that purpose, a realizability study is performed using the Reynolds stress anisotropy barycentric map representation 
[29,43,44].

A priori realizability study. The modeled anisotropy tensor is initially computed from high fidelity data with each parameter 
�

b	
i j varying in the range [−7, 7]. The tensor eigenvalues are noted λ1, λ2 and λ3 (with λ1 ≥ λ2 ≥ λ3). Following [29], we 

construct an equilateral triangle defined by the three corners x1C , x2C and x3C , where x = (x, y) is a position vector. The 
three corners the triangle represent the three limiting physical states of turbulence. We then construct the following linear 
mapping between the anisotropy eigenvalues and the coordinates x:

x = x1C (λ1 − λ2) + x2C (2λ2 − 2λ3) + x3C (3λ3 + 1). (20)

As any realizable state of turbulence is a convex combination of the three limiting states of turbulence, x must lie within 
the triangle if λ1, λ2 and λ3 correspond to a realizable anisotropy tensor. For a given set of coefficients �b	

i j , the eigenvalues 
of bij can be computed for each mesh point and the corresponding x can be placed in the barycentric map in order to 
verify if the resulting anisotropy tensor field corresponds to a physically realizable flow.

A total of 50000 vectors �b	
i j are generated using uniform Latin Hypercube sampling. For each sample, the corresponding 

anisotropy tensor eigenvalues are plotted in the barycentric map coordinate system for each mesh point. Sets of parameters 
leading to a violation of the realizability condition are then discarded. For the remaining sets of parameters, we compute the 

average value, the standard deviation and the minimum and maximum values taken by each component of �
b	

i j

l . Realizable 
values of the coefficients are equal to 0 in the mean, with a variance of approximately 4. Therefore, ranges [−2, 2] are finally 
adopted for the parameters �b	

i j and the same search range is assumed to be appropriate for the �R
i j .

In Fig. 3a, results for the PH10595 case are reported. For the sake of clarity, the modeled anisotropy tensor at each mesh 
cell has been placed in the barycentric map using only 100 random vectors �b	

i j sampled using uniform Latin Hypercube 
sampling in range [−7, 7]18. The figure shows that the anisotropy tensor is not realizable for a large fraction of mesh points. 
In Fig. 3b, the sampling has been performed in range [−2, 2]18. The fraction of mesh points possibly corresponding to non 
realizable anisotropy tensors is drastically reduced. Therefore, an initial parameter range [−2, 2] ensures that most candidate 
models lead to realizable anisotropy tensor fields in the entire computational domain. Generally, this choice yields more 
robust models and limits the risk non-converging CFD simulations. The remaining non-robust models are excluded from the 
CORS optimization as mentioned in Section 4.3 (see also Appendix C).

CFD-based realizability study. As an alternative to using high-fidelity full field data, a CFD-based realizability study can be 
performed prior to the optimization step. Here, a set of 300 random vectors �b	

i j are sampled using the uniform Latin 
Hypercube, with �b	

i j ∈ [−7, 7]18. Each �b	
i j vector corresponds to a candidate model, for which an OpenFOAM simulation 

of the PH10595 case is carried out. With the chosen range, approximately 94% of the sampled models prevents solution 
convergence. For the remaining simulations, we extract the anisotropy tensor bij at each mesh point and we examine the 
location of its eigenvalues with respect to the barycentric map. We observe that 84% of the robust models yield realizable 
states at all mesh points. For these models, we compute the mean, the standard deviation and the minimum and maximum 

values for each component of �
b	

i j . These quantities are displayed in Fig. 4, which shows that the coefficients yielding 
l
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Fig. 4. Mean value, variance, minimum and maximum value of each coefficient �
b	

i j

1≤l≤18 among vector samples corresponding to realizable models.

realizable states are approximately equal to 0 in the mean and have a variance of approximately 4. For the study conducted 
here, only 300 random samples have been considered. Even though this number is not sufficient for the statistical quantities 
to achieve convergence, the results are in good accordance with the previously discussed a priori realizability study, since 
each sample generates a Reynolds stress field and realizability can be checked at each mesh point.

We then performed the same study with 300 random vectors �b	
i j sampled in the range [−2, 2]18. More than 50 % of the 

samples led to convergence of the simulation and approximately 70% of these models yielded to fully realizable Reynolds 
stress fields. We then optimize the model in the narrower parameter range [−2, 2], and check a posteriori that the algorithm 
selects a realizable optimum. The computations can be run in parallel and some of them can be re-used to initialize the 
CORS algorithm at the subsequent optimization step.

We point out that the CFD-based realizability study can be skipped, since unrealizable models tend to be numerically 
unstable and in any case less accurate, and tend to be naturally discarded by the optimizer. In this case, arbitrary search 
ranges must be assigned by the user to the optimizer, and the realizability of the learned models is only assessed a posteriori. 
Based on the present a priori and a posteriori studies, we recommend using ranges of [−2, 2] or less.

4.3.3. Regularization terms
The regularization terms of the optimization problem (18) have to be specified. Unlike the frozen-training SpaRTA, the 

CFD-driven training involves a nonlinear dependency of the cost function on the model parameters, due to the nonlinearity 
of the RANS equations. Sparsity-promoting regularization of nonlinear parameters would require an approximate computa-
tion of the cost function derivatives with respect to the parameters or function linearization [45,46]. This can be efficiently 
done for CFD using an adjoint solver, which is not always promptly available. For this reason, we choose to simply add a 
LASSO regularization, and we examine its effect on the complexity and generalizability of the resulting models. The opti-
mization problem of equation (18) is reformulated as:

� = argmin
�̂

‖U − U R AN S(�̂)‖2
2 + λ‖�̂‖1, (21)

where λ is the regularization weight Since its optimal value is not known a priori, the optimization problem given 
in equation (21) must be solved for N values λi with 1 ≤ i ≤ N . In particular in this work we have selected λ =
10−1, 10−2, 10−3, 10−4, 10−5, 10−6. This results in six alternative models for each test case of section 3. Cross-validation 
[40] is then used to select the best-performing model across all validation data sets. The performance of each candidate is 
arbitrarily evaluated as the mean squared error with respect to the high fidelity velocity data. Other choices are possible.

5. Numerical results

5.1. Model discovery

In the following, the CFD-driven SpaRTA is applied to the flow configurations of Section 3. Two series of numerical 
experiments are carried out, using different training data.

In a first series of experiments, high-fidelity data for the Reynolds stresses are used to train the model, as in the 
frozen-training SpaRTA algorithm. However, in this case no additional data for the velocity field or the transported 
turbulent quantities is needed and the k-corrective frozen-RANS procedure is not applied. More precisely, the training 
data are vertical profiles of τ11, τ22 and τ12. Profiles at x/h = (0.05, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) are used for 
11
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Fig. 5. Cross-validation errors based on velocity profiles (u1, u2) for models trained on Reynolds-stress data. The errors are normalized with the mean-
squared error of the baseline k-ω SST model. Black: models trained on PH10595. Red: models trained on CD12600. Blue: models trained on CBFS13700. �: 
λ = 10−1. ◦: λ = 10−2. •: λ = 10−3. 
: λ = 10−4. �: λ = 10−5. �: λ = 10−6. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 6. Convergence of the optimization for Model 1: value of the cost function with respect to the iteration.

the PH10595 case; for the CD12600 we use profiles at x/H = (5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12); finally, the profiles at 
x/h = (0.1, 1.5, 3.0, 4.5, 6.0, 7.5) are considered for case CBFS13700. The amount of data used for the training is very sparse 
compared to the number of degrees of freedom used to solve the CFD problem: they represent 8.3%, 5.7% and 4.28% of the 
total number of mesh points, used respectively for PH10595, CD12600 and CBFS13700. Six values of the regularization weight 
λ are considered, as discussed previously. For each of the six values of λ, the CORS algorithm has been run using N = 300
function evaluations, and setting n = 39 and m = 261. The model training step leads to the discovery of 3 × 6 alternative 
models that are submitted to cross-validation: models trained for a flow configuration are applied to the two other cases. 
A total of 5400 RANS simulations (using 12 cores each on a standard workstation) have therefore been performed for the 
model discovery and the cross-validation. The overall cost of the learning procedure corresponds to approximately 16500 
core-hours. This is obviously much more expensive than the frozen-training procedure but it remains affordable without 
use of intensive computational facilities. Mean squared errors on velocities, normalized by the mean-squared error of the 
baseline k − ω SST model, are reported in Fig. 5. Most models show an improvement over the baseline. Models trained 
on CBFS13700 produce errors of the same order than the baseline model. Models trained on CD12600 with low values of λ
produce the smallest errors averaged on the validation set.

The best-performing model, identified as the one having the lowest average error across the validation set, is trained on 
CD12600 with λ = 10−5, and is referred-to as Model 1 in the following. The convergence history of the cost function residual 
for this model is shown in Fig. 6. We see that a satisfactory convergence of the optimization is reached. The model exhibits 
only a few terms that are bigger than 10−1 in magnitude. The other terms, are mostly O (10−2) or lower, and are neglected 
in the selected formulation of the model.

The resulting mathematical expressions for the two correction tensors involve 4 out of the 36 candidate functions left 
after parameter space reduction:

b	
i j = −1.47 × 10−1 I2

1 T (1)
i j − 2.6791 × 10−1T (2)

i j (22)

bR = 4.6018 × 10−1T (1) − 1.6779 × 10−1T (3) (23)
i j i j i j
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Fig. 7. Cross-validation errors based on velocity profiles (u1, u2) for models trained on velocity and skin friction data. The errors are normalized with the 
mean-squared error of the baseline k-ω SST model. Black: models trained on PH10595. Red: models trained on CD12600. Blue: models trained on CBFS13700. �: λ = 10−1. ◦: λ = 10−2. •: λ = 10−3. 
: λ = 10−4. �: λ = 10−5. �: λ = 10−6.

Fig. 8. Convergence of the optimization for Model 2: value of the cost function with respect to the iteration.

In the second series of experiments, the method is trained against high fidelity velocity profiles and skin friction data to 
test its ability to discover models optimized for any target quantity of interest and to assess the sensitivity of the symbolic 
identification procedure to the kind of training data. Velocity profiles (u1 and u2) are extracted at the same locations of the 
Reynolds stress profiles, whereas the skin friction data are extracted along the bottom walls in all cases. In this setting the 
data represent 9.1%, 6.7% and 4.95% of the total number of mesh points for PH10595, CD12600 and CBFS13700, respectively. 
Cross validation errors for the 18 discovered models are reported in Fig. 7. The target variable (the longitudinal velocity) 
being the same as the training one, the validation errors are lower.

The best-performing model is the one learned on CD12600 with λ = 10−2 and it is hereafter named Model 2. The con-
vergence history of the cost function residual for training of Model 2 is shown in Fig. 8. Again, a satisfactory convergence of 
the optimization is reached.

As for Model 1, Model 2 is sparse and the retained mathematical expression with coefficients O (10−1) or higher is:

b	
i j = −2.8356 × 10−1T (1)

i j − 1.4738 × 10−1 I2
2 T (2)

i j (24)

bR
ij = (1.0375 × 10−1 I2 − 2.8833 × 10−1 I1 I2)T (3)

i j (25)

For both models we checked a posteriori that the realizability conditions are satisfied throughout the flow domain for 
all cases.

In the following, a detailed assessment of the two learned models against the high-fidelity data is carried out for a 
number of flow quantities, and the results are compared to those of the k − ω SST model. For comparison, we also include 
the results of the BSL-EARSM model of Menter et al. [32] and those of a frozen-training SpaRTA model reported in Ref. [1], 
given in the following:

b	
i j = 0 (26)

bR = 3.9 × 10−1T (1) (27)
i j i j
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Table 1
Mean-squared errors of predicted velocity, turbulent kinetic energy and Reynolds shear-stress profiles and skin 
friction distribution with respect to high-fidelity data for various models. The errors are normalized by the mean-
squared error of the baseline k-ω SST model.

Velocity ((u1, u2)

PH10595 CD12600 CBFS13700

Model 1 0.1901 0.1993 0.1687
Model 2 0.1932 0.1767 0.2012
frozen-training 0.2067 0.2067 0.1711
BSL-EARSM 0.3207 0.5999 0.7762

Turbulent kinetic energy k

PH10595 CD12600 CBFS13700

Model 1 0.3677 0.7279 0.6136
Model 2 0.4740 0.9510 0.9889
Frozen-training 0.3478 0.7472 0.6135
BSL-EARSM 0.6881 0.9821 1.0065

Reynolds shear stress τ12

PH10595 CD12600 CBFS13700

Model 1 0.5485 0.9204 0.721
Model 2 0.519 0.9545 0.834
Frozen-training 0.5535 0.9394 0.7162
BSL-EARSM 1.2229 0.9524 0.8061

Skin friction coefficient C f

PH10595 CD12600 CBFS13700

Model 1 0.6828 0.6004 0.3194
Model 2 0.5888 0.5548 0.5836
Frozen-training 0.6427 0.5958 0.3125
BSL-EARSM 0.8443 0.6383 0.2203

and that corresponds to a simple correction of the production terms in the k − ω transport equations.
Finally, the learned models are applied to an unseen flow case not included in the training and testing datasets, namely 

the periodic hill flow at Re = 37000, and the results are compared to the reference data and to the models mentioned in 
the above.

5.2. Results for flow configurations in the training and validation sets

The predictions of the discovered models Model 1 and Model 2 for the 3 test cases are presented in Figs. 9, 10, 11 and 12
for the streamwise velocity u1, the turbulent kinetic energy k, the Reynolds shear stress τ12 and the skin friction coefficient 
C f , respectively. Their results are compared with those of the baseline k-ω SST model, the frozen-training SpaRTA model, 
the BSL-EARSM model and the high-fidelity data. For a more quantitative evaluation we report in Table 1 the mean squared 
errors on the longitudinal and wall-normal velocities, turbulent kinetic energy and Reynolds shear stress (τ12) profiles, as 
well as for the skin friction coefficient C f , respectively. In all cases, the errors are normalized with the mean-squared error 
of the baseline k-ω SST model.

Both discovered models drastically improve velocity when compared to the k − ω-SST and the BSL-EARSM models, 
particularly within the separated regions (see Fig. 9) for the 3 flow cases. Furthermore, their accuracy is similar to the 
frozen-training SpaRTA. Model 2, learned using high fidelity velocity profiles and skin friction training data, provides a 
lower error in velocity than Model 1, learned using high fidelity Reynolds stress profiles as training data.

The discovered models improve the prediction of k profiles over the LEVM k − ω SST for the 3 learning flow configu-
rations. As expected, Model 1 yields better prediction of turbulent kinetic energy than Model 2 for all cases. Nonetheless, 
Model 2 overall improves the prediction of k with respect to the baseline. Of note, the accuracy of Model 1 and the frozen-
training model (also trained Reynolds stresses) in predicting k is very similar for the 3 flow cases.

The discovered models also improve the prediction of τ12 profiles over the LEVM (see Fig. 11 and Table 1), Model 1 
having better prediction capabilities than Model 2 and its accuracy is similar to the frozen-training model.

The skin friction results are reported in Fig. 12 and Table 1. As expected, Model 2, trained on the skin friction, yields 
better predictions than Model 1 and the frozen-training model. Both models improve the prediction of the reattachment 
point location for cases PH10595 and CBFS13700 with respect to the predictions of the k − ω SST model, as shown in Table 2. 
However, neither of the two models captures the small recirculation bubble predicted by the DNS of case CD12600 . The 
predictions of the separation and reattachment point locations for case CD12600 are therefore not shown in Table 2.
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Table 2
Predicted separation and reattachment points (x/h) for various models.

Separation points

PH10595 CBFS13700

LES 0.2154 0.9429
k-ω SST 0.2696 0.7655
Model 1 0.278 1.0895
Model 2 0.278 1.0895
frozen-training 0.2845 1.0503
BSL-EARSM 0.2817 0.8181

Reattachment points

PH10595 CBFS13700

LES 4.7595 4.2409
k-ω SST 7.6418 6.0296
Model 1 4.860 4.3334
Model 2 4.860 4.1694
frozen-training 5.0115 4.4754
BSL-EARSM 4.5613 5.1107

Table 3
Mean-squared errors of predicted velocity, turbulent kinetic energy and Reynolds shear-stress profiles and skin 
friction distribution with respect to high-fidelity data for Model 1FF. The errors are normalized by the mean-
squared error of the baseline k-ω SST model.

u1, u2 k τ12 C f

P H10595 0.2029 0.3488 0.5524 0.6474
C D12600 0.2048 0.7440 0.9388 0.5956
C B F S13700 0.1694 0.6144 0.7209 0.3232

5.3. Model learning from full-field high fidelity data

In this Section, we investigate the effect of the amount of data required to train the model. For that reason we retrained 
Model 1 using the full high-fidelity fields for the Reynolds stresses, interpolated on the RANS computational grid.

The resulting learned model is hereafter referred-to as Model 1FF (FF: Full Field). The correction tensors involve only 1 
out of the 36 candidate functions:

b	
i j = 0, (28)

bR
ij = 4.0120 × 10−1T (1)

i j . (29)

We report in Table 3 the mean squared errors on the longitudinal and wall-normal velocities, turbulent kinetic energy 
and Reynolds shear stress, and skin friction coefficient. We note that drastically increasing the amount of data does not 
improve solution accuracy.

Interestingly, the formulation of Model 1FF is very close to the formulation of model M1 of Ref. [1] (see equations (26)
and (27)) trained on the same data. Moreover Model 1, Model 1FF and the full-field frozen-training model M1 have similar 
coefficients of the dominant term (4.6018 × 10−1, 4.0120 × 10−1 and 3.9 × 10−1, respectively). A possible interpretation is 
as follows: although more accurate than the baseline LEVM, a generalized eddy viscosity model remains an imperfect model 
that cannot match the data even with the best possible set of parameters (i.e. the mean squared error cannot be reduced 
below a given threshold). The algorithm compensates this effect by minimizing the second term in the cost function, leading 
to a sparser model.

To better discriminate among the learned models, in the next Section we evaluate their extrapolation performance to a 
flow configuration outside the training and test sets.

5.4. Extrapolation to an unseen flow

To test the ability of the CFD-driven SpaRTA to serve as a predictive model for 2D turbulent flow with separations, 
the two CFD-driven models learned for cases PH10595, CD12600 and CBFS13700 are applied to the 2D periodic hill flow case 
at Re=37000 (noted PH37000). Model 1 and Model 2 have been learned on CD12600, therefore, for both models, PH37000
represents an extrapolation to a higher Reynolds number and a different geometry, even if the flow still belongs to the class 
of 2D incompressible separated flow in a variable section channel. The results for the streamwise velocity u1 , the turbulent 
kinetic energy k, the Reynolds shear stress τ12 and the skin friction coefficient C f are compared to LES data from [47] in 
Figs. 13, 14, 15 and 16, respectively. The results of the baseline LEVM, of the BSL-EARSM and of the frozen-training SpaRTA 
model are also reported for comparison.
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Fig. 9. Assessment of various CFD-driven, frozen-training and standard turbulence models for flows in the training and test set: streamwise velocity profiles 
(u1/Ub + x/h). k-ω-SST: ( ), High fidelity data: ( ), Model 1: ( ), Model 2: ( ), frozen-training: ( ), BSL-EARSM: ( ).

Table 4
Mean-squared errors of predicted velocity, turbulent kinetic energy and Reynolds shear-stress profiles and skin 
friction distribution with respect to high-fidelity data for various models applied to the PH case at Re=37000. The 
errors are normalized by the mean-squared error of the baseline k-ω SST model.

u1, u2 k τ12 C f

Model 1 0.2926 3.0006 0.6803 0.9828
Model 2 0.2726 1.1259 0.6606 0.8911
frozen-training 0.3280 2.5153 0.6841 0.9292
BSL-EARSM 0.4380 3.7959 1.4510 0.9912
16



Fig. 10. Assessment of various CFD-driven, frozen-training and standard turbulence models for flows in the training and test set: turbulent kinetic energy 
profiles (12k/U 2

b + x/h). k-ω-SST: ( ), High fidelity data: ( ), Model 1: ( ), Model 2: ( ), frozen-training: ( ), BSL-EARSM: ( ).

The normalized mean squared errors with respect to the high-fidelity data from [47] are reported in Table 4 and the 
predicted separation and reattachment points are given in Table 5.

Model 1 and Model 2 improve the predictions of all quantities of interest, except the turbulence kinetic energy, showing 
their superior performance with respect to the baseline k-ω SST even at a higher Reynolds number and for a different 
geometry. Model 2 is more accurate than Model 1 and the frozen-training for each considered quantity of interest, while 
Model 1 yields overall the same accuracy as the frozen-training model.

BSL-EARSM provides poor predictions with respect to the learned models for PH37000, degrading the accuracy of the k-ω
SST model for 2 of the 4 quantities, one quantity being predicted with the same accuracy than the k-ω SST model.

These results show that the CFD-driven models robustly improve predictive accuracy of the k-ω SST model also for a 
2D separated flow outside the training set and exhibit a comparable or better extrapolation performance than the frozen-
training SpaRTA.
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Fig. 11. Assessment of various CFD-driven, frozen-training and standard turbulence models for flows in the training and test set: Reynolds shear stress 
profiles (20τ12/U 2

b + x/h). k-ω-SST: ( ), High fidelity data: ( ), Model 1: ( ), Model 2: ( ), frozen-training: ( ), BSL-EARSM: ( ).

Table 5
Predicted separation and reattachment points (x/h) for various models.

separation reattachment

LES 0.2552 4.0170
k-ω SST 0.2679 7.5479
Model 1 0.2780 4.4600
Model 2 0.2780 4.3799
frozen-training 0.2951 4.6303
BSL-EARSM 0.2898 4.2333
18
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Fig. 12. Assessment of various CFD-driven, frozen-training and standard turbulence models for flows in the training and test set: skin friction distributions 
along the bottom wall. k-ω-SST: ( ), High fidelity data: ( ), Model 1: ( ), Model 2: ( ), frozen-training: ( ), BSL-EARSM: ( ).

6. Conclusions

A CFD-driven counterpart of the SpaRTA method initially proposed in [1] has been presented. The new method aims at 
discovering data-augmented EARSMs with improved performance for a given class of flows with respect to a baseline LEVM 
through deterministic symbolic identification of terms from a predefined library of candidate functions. As in SpaRTA, the 
discovered models use a generalized eddy viscosity formulation in conjunction with corrective terms for the production 
of the transported turbulent variables. The CFD-driven approach is intended to overcome limitations of the frozen-training 
model discovery in terms of numerical robustness of the learned models and to enable flexible use of any kind of data 
for model training. Importantly, the CFD-driven approach does not necessarily require data for second-order turbulence 
statistics, namely, the Reynolds stresses, which are not always easily available, e.g., in experimental data sets.

In the present work we focused on correcting the k − ω SST model for a class of 2D turbulent flows with separations 
caused by an enlargement of the channel section. The methodology may however be adapted to other eddy viscosity models 
and different flow configurations. The present test cases include the well-known periodic hill flow, a converging-diverging 
channel and the flow behind a curved backward facing step, for which high-fidelity DNS or LES data are available in the 
19
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Fig. 13. Assessment of various CFD-driven, frozen-training and standard turbulence models for a flow outside the training and test set: streamwise velocity 
profiles normalized with bulk velocity: u1/Ub + x for PH37000. k-ω-SST: ( ), High fidelity data: ( ), Model 1: ( ), Model 2: ( ), frozen-
training: ( ), BSL-EARSM: ( ).

Fig. 14. Assessment of various CFD-driven, frozen-training and standard turbulence models for a flow outside the training and test set: turbulent kinetic 
energy profiles: 12k/U 2

b + x for PH37000. k-ω-SST: ( ), High fidelity data: ( ), Model 1: ( ), Model 2: ( ), frozen-training: ( ), BSL-
EARSM: ( ).

Fig. 15. Assessment of various CFD-driven, frozen-training and standard turbulence models for a flow outside the training and test set: Reynolds shear stress 
profiles: 20τ12/U 2

b + x for PH37000. k-ω-SST: ( ), High fidelity data: ( ), Model 1: ( ), Model 2: ( ), frozen-training: ( ), BSL-EARSM: 
( ).

literature. To show the ability of the CFD-driven method to train models with any kind of data, two sets of high-fidelity 
data have been considered. First, models are learned using data for Reynolds stress profiles at a few streamwise locations. 
Second, we prove the flexibility of the proposed approach by training models against selected velocity profiles and skin 
friction data.

The computational cost of CFD-driven model identification is obviously greater than frozen-training approach. An impor-
tant novel contribution is the introduction of a surrogate model for alleviating the cost of the CFD-driven training process. 
Such an approach, here coupled with the deterministic sparse identification procedure, could be also effectively coupled 
with different learning techniques, such as Gene Expression Programming ([27]), to lower the overall cost of CFD-driven 
20
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Fig. 16. Assessment of various CFD-driven, frozen-training and standard turbulence models for a flow outside the training and test set: skin friction dis-
tribution along the bottom wall. k-ω-SST: ( ), High fidelity data: ( ), Model 1: ( ), Model 2: ( ), frozen-training: ( ), BSL-EARSM: 
( ).

training. By so doing, a complete model identification run, including model training and selection via cross-validation, re-
quires approximately 5000 CFD solves, which remains affordable even on a standard workstation for 2D flow cases.

The CFD-driven discovered models are sparse and numerically robust, thanks to the regularization constraints on model 
parameters. They satisfy realizability conditions throughout the computational domain. For flow configurations in the train-
ing and validation sets, they exhibit improved accuracy not only over the baseline LEVM, but also over a general purpose 
EARSM model [32]. Furthermore, their have an accuracy comparable to a data-driven model generated with the frozen-
training SpaRTA algorithm. The model learned from velocity and skin friction data is overall more accurate than the one 
trained on Reynolds stress data for the prediction of the velocity and skin friction. On the opposite, the model trained on 
the Reynolds stresses consistently provides better predictions of the turbulent kinetic energy and the Reynolds shear stress.

The effect of the amount of data required to train the model has then been investigated. Model 1 has been retrained 
using the full high-fidelity fields for the Reynolds stresses, interpolated on the RANS computational grid. We showed that 
drastically increasing the amount of data does not improve solution accuracy, but leads to a sparser model, whose formula-
tion is very close to the frozen-training SpaRTA M1 model of Ref. [1], trained on the same data.

The CFD-driven models have then been applied to a separated flow outside the training and validation sets, characterized 
by a higher Reynolds number and a different geometry. For this configuration, the learned models provide significantly 
improved results for most flow quantities of interest, not only over the LEVM but also over the general purpose BLS-EARSM 
model. The CFD-driven models yield a comparable or better accuracy than the frozen-training SpaRTA.

In conclusion, the CFD-driven SpaRTA represents a promising method to generate data-driven EARSMs. The computational 
overcost of the training algorithm is justified by the possibility of using any kind of available data, including incomplete data 
sets, as those potentially obtained from experiments. Furthermore, such models are by construction numerically robust.

Code

An implementation of a general EARSM model in OpenFOAM is available here: https://github .com /shmlzr /general _earsm .
git.
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Appendix A. The k-ω SST model

Transport equations of k and ω write:

∂k

∂t
+ U j

∂k

∂x j
= Pk − β∗kω + ∂

∂x j
[(ν + σkνt)

∂k

∂x j
] (A.1)

∂ω

∂t
+ U j

∂ω

∂x j
= α

νt
Pk − βω2 + ∂

∂x j
[(ν + σωνt)

∂ω

∂x j
] + C Dkω, (A.2)

with Pk = −2νt Si j∂ j U i . The corresponding eddy viscosity writes

νt = a1k

max(a1ω, S F2)
. (A.3)

The other standard terms read

C Dkω = max(2σω2
1
ω (∂ik)(∂iω),10−10),

F1 = tanh[(min[max(
√

k
β∗ωy , 500ν

y2ω
),

4σ
ω2 k

C Dkω y2 ])4],
F2 = tanh[(max( 2

√
k

β∗ωy , 500ν
y2ω

)])2],
� = F1�1 + (1 − F1)�1,

(A.4)

in which the latter blends the coefficients � → (�1, �2)

α = (5/9,0.44), β = (3/40,0.0828), σk = (0.85,1.0), σω = (0.5,0.856). (A.5)

The remaining terms are β∗ = 0.09, a1 = 0.31.

Appendix B. The BSL-EARSMmodel

We here recall the formulation of the BSL-EARSM of Menter et al. [32]. This model is based on the EARSM formulation 
of Wallin and Johansson [48] (WJ model) for the stress-strain relationship. In the WJ model, the stress-strain relationship is 
combined with the k-ω transport equations of Wilcox [2]. In the BSL-EARSM, in order to avoid the freestream sensitivity of 
the Wilcox model, the WJ stress-strain relationship is combined with the BSL k-ω model of Menter [31].

Following [7], the Reynolds stress anisotropy tensor aij is projected onto a tensor basis:

aij = β1T1,i j + β2T2,i j + β3T3,i j + β4T4,i j + β6T6,i j + β9T9,i j, (B.1)

where

T1,i j = S∗
i j; T2,i j = S∗

ik S∗
kj − 1

3 I1δi j; T3,i j = �∗
ik�

∗
kj − 1

3 I2δi j;
T4,i j = S∗

ik�
∗
kj − �∗

ik Skj; T6,i j = S∗
ik�

∗
kl�

∗
l j + �∗

ik�
∗
kl Slj − 2

3 I4δi j − I2 S∗
i j;

T9,i j = �∗
ik S∗

kl�
∗
lm�∗

mj − �∗
ik�

∗
kl S∗

lm�∗
mj + 1

2 I2(S∗
ik�

∗
kj − �∗

ik S∗
kj),

(B.2)

with S∗
i j and �∗

i j , the non-dimensional mean strain rate and rotation rate defined as follows:

S∗
i j = τ

2
(
∂Ui

∂x j
+ ∂U j

∂xi
), �∗

i j = τ

2
(
∂Ui

∂x j
− ∂U j

∂xi
) (B.3)

where τ is a turbulent time scale with a Kolmogorov limiter [49]:

τ = max(
1

Cμω
,6

√
ν

Cμkω
). (B.4)

The tensor invariants I1, I2 and I4 read:

I1 = S∗
i j S∗

ji, I2 = �∗
i j�

∗
ji, I4 = S∗

ik�
∗
kj�

∗
ji . (B.5)

The coefficients of the tensor basis βi in (B.1) are defined as:

β1 = − N

Q
, β2 = 0, β3 = − 2I4

N Q 1
, β4 = − 1

Q
, β6 = − N

Q 1
, β9 = 1

Q 1
, (B.6)

with
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Q = (N2 − 2I2)

A1
, Q 1 = Q

6
(2N2 − I2) (B.7)

where

N = C ′
1 + 9

4

P̃k

ε
(B.8)

and

A1 = 1.2, C ′
1 = 9

4
(C1 − 1) and C1 = 1.8. (B.9)

N is a solution of the cubic equation:

N3 − C ′
1N2 − (2.7I1 + 2I2)N + 2C ′

1 I2 = 0 (B.10)

which is given by:⎧⎨
⎩

N = C ′
1

3 + (P1 + √
P2)

1/3 + sign(P1 − √
P 2) | P1 − √

P2 |1/3 at P2 ≥ 0

N = C ′
1

3 + 2(P 2
1 − P2)

1/6cos( 1
3 arccos( P1√

P 2
1−P2

)) at P2 < 0 (B.11)

with

P1 = C ′
1(

C ′2
1

27
+ 9

20
I1 − 2

3
I2), P2 = P 2

1 − (
C ′2

1

9
+ 9

10
I1 + 2

3
I2)

3. (B.12)

The BSL-EARSM constitutive equation is then supplemented by transport equations for k and ω. These are the same as 
in Appendix A, where a modified production term is used:

P̃k = min(−τi j
∂Ui

∂x j
,10.ρβ∗kω). (B.13)

The reader is referred to [32] for further details.

Appendix C. CORS algorithm

The main steps of the algorithm proceed as follows:

• The total number of function evaluations, noted N, is set from the beginning.
• Initial step:

– An initial sampling of size n of the parameter space S1 =
{
�̂i |i = 1,2, . . . ,n

}
is performed using the Latin Hypercube 

sampling method. It must satisfy the condition D < n < N , where D is the dimensionality of the search space.
– An initial response surface f̂1 is constructed using cubic radial basis functions (RBF) and the initial sampling S1. The 

functions are of the form:

f̂1(�̂) =
N/2∑
i=1

λiφ(‖�̂ − �̂i‖) + bT �̂ + a, (C.1)

where φ is a cubic function (φ(r) = r3) and λi , b and a are coefficients determined by interpolating the available 
samples.

• Steps 1 to m = N − n:
– The candidate sample �̂i minimizing the surface response f̂ i−1 is selected. In order to prevents the algorithm from 

being trapped in a local minimum, a ball of radius r is placed around each of previously sampled points and the 
candidate sample minimizing the surface response is required to be outside of any ball. The radius of the balls r
decrease (all balls have the same radius) with iterations, with a given rate. The size of the balls is controlled by two 
parameters: their initial density ρ0, and the rate of decay of their radius p. The density ρ is the total volume of the 
balls divided by the total volume of the search space. At a given iteration i (1 ≤ i ≤ N/2), the density and the radius 
are:

ρi = ρ0(
m − i

m − 1
)p , (C.2)

ri = (
ρi

)
1
D , (C.3)
(n + i − 1)v1
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where n and m are respectively the number of initial samples and the number of subsequent steps; D is the di-
mensionality of the search space and v1 is a volume of a ball with radius 1, that can be expressed with the gamma 
function �:

v1 = π
D
2

�( D
2 + 1)

. (C.4)

– The cost function is evaluated for �̂i .
– A new response surface f̂ i is constructed using the sampling Si−1

⋃
�̂i

The candidate sample �̂ corresponding to the lowest evaluated value of the cost function is the solution of the problem 
proposed by the algorithm.
During both the initial and subsequent steps, RANS simulations are performed using candidate models in order to eval-
uate the cost function of the optimization problem. To force the research towards robust models, each model preventing 
the convergence of the solution is eliminated and a new model is resampled by introducing a slight perturbation into 
the non robust model. This procedure is repeated until a candidate model allowing convergence of the RANS simulation 
is obtained.
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