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1 Introduction

We will try to convey the broad scope of this thesis by reordering the information
from our various papers into a learnable structure. Hence it is organized a bit
differently than most PhD theses, with chapters differentiated by theme instead of
according to where the information was published. For example, this introductory
chapter will be completely devoted to motivating the research problem and out-
lining the thesis, and should be readable by my parents, thus there will be almost
no discussion herein of mathematics or control techniques. The remaining thesis is
divided up into two main parts, “Part I” dealing with the mathematical methods,
derivations, and proofs, and “Part II” dealing only with Part I’s use in control of
dynamical systems. Hence readers interested in computational methods can just
read Part I, and those interested just in control applications can read only Part II
if they choose.

In this chapter we’ll first overview the motivations of distributed control and
the inherent difficulties and research problems, and provide a brief summary of
previous attempts at resolving them by other researchers in the field, relegating all
details to Part II. In section 1.2 we’ll then very briefly describe our own approach
to the problems, and outline our specific goals and contributions of this thesis, after
which we’ll finish with a detailed description of the organization of the following
chapters, with some recommendations for the reader on how best to proceed.

1.1 Fish and Birds: Distributed Systems

Distributed dynamical systems are all around us, from the flocks of birds in the
sky and schools of fish in the sea to the traffic jams at rush hour and in server
networks to even the fluid dynamics of the air we breath and the immune response
of our bodies. Sometimes we would like to design, analyze, or control such sys-
tems, and this has been a hot research topic for around 40 years, with applications
such as boundary layer and transition control in fluid mechanics [1], [2], flexible
structures [3], heat conduction [4], highway traffic control [5] and vehicle platoon-
ing [6], iterative circuit networks [7], building anti-earthquake systems [8], aircraft
and satellite formation flight [9], [10], large adaptive telescope mirrors [11], image
processing [12], paper processing [13], irrigation networks [14], tissue development

1



2 Chapter 1 Introduction

Figure 1.1: School of Barracuda. Photo by Robin Hughes, used under the creative
commons license: http://www.flickr.com/photos/robinhughes/404457553/

from stem-cells [15], biochemical reactions [16], wind turbine farms [17][18], and
varmint population control [19].

What makes these problems so interesting is their size; such systems consist of
thousands or hundreds of thousands of individual parts, all moving and interacting
in a dynamic way, leading to very rich and often unexpected behavior, making them
difficult to predict or control using standard methods. Even when the subsystems
themselves are relatively simple (e.g. linear and spatially homogeneous), compli-
cated results can arise. For example, in [20] it is shown that the linearized Navier
Stokes equations can exhibit turbulent ‘streaking’ and other features that have
long been considered to be purely ‘nonlinear behavior’. This ‘emergent’ complex-
ity makes distributed systems difficult, but the flip side of the coin is that simple
control methods, when combined together on a large scale, can have very high per-
formance. For example, no one has ever accused a herring of being intelligent, but a
school of herring are certainly brilliant when dodging an attacking orca or porpoise,
and the most advanced distributed control methods in existence can’t compare to
their performance for controlling a 3-D, nonlinearly coupled, dynamically changing
configuration of fish (see figure 1.1).

Likewise with the octopus (see figure 1.2). Octopuses are often cited as being
the most intelligent invertebrates, and they can control their noodly appendages,
consisting of literally thousands of actuators and sensors connected nonlinearly,
with an extraordinary degree of speed and precision which the control community
has been hard pressed to match [21], using distributed processing (octopuses keep
most of their brains and much of their memory in their legs![22]).

Humans are also capable of distributed control, e.g. Rockettes-style dancers (see
figure 1.3) can, without warning, pass a kick wave down the line with a dancer to
dancer propogation rate twice as fast as the minimum human visual reaction time,
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Figure 1.2: Octopus. Photo by Margaret, used under the creative commons
license: http://www.flickr.com/photos/flashmaggie/3196980819/

Figure 1.3: Rockettes: Photo by Seth Vidal, used under the creative commons
license: http://www.flickr.com/photos/skvidal/2239922329/

we’re just not as good at it; birds with no formal training can pass maneuvers in any
direction through a 3-D flock at three times their visual reaction rate[23], so fast
that it lead early observers to believe that they used some type of electromagnetic
or extra-sensory communication (telepathy!).

So we are constantly being reminded of the fantastic potential of distributed
control, but due to the incredible size and complexity of such systems, engineering
methods haven’t caught up yet. Because of these complications, special theoretical
and numerical techniques for dealing with distributed systems are being developed.
In this thesis we will focus on the numerical aspects.

The challenge has been in the computational cost. The system matrix describ-
ing the input-state-output behavior of N interconnected subsystems (ODE’s), each
of size (order) n, will be nN × nN , and thus most matrix arithmetic operations
will require O(n3N3) floating point operations, making traditional robust or opti-
mal controller design prohibitively expensive (slow) for fine discretizations or large
numbers of discrete subsystems.

Many special approaches have been developed to surmount this obstacle. Re-
searchers have used the special matrix structure to ‘decouple’ the systems from
eachother for easier control [24][25][26][10], or tackle the structure directly for
faster computations [27][28][29][30]. Other approaches model the systems as in-
terconnections of smaller subsystems, and use special LMI techniques to compute
topologically similar interconnected controllers[4][31][32][33][34]. There have also
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Figure 1.4: locally heated rebar can be approximated via finite difference as a set
of interconnected linear systems

been recent results on actually computing distributed controllers in a distributed
way, see e.g. [35][36]. These results approach half of what we might call ‘dis-
tributed intelligence’; the ability to rely entirely on distributed sensors, actuators,
and processors to handle a large scale distributed system from start to finish; the
other half of the necessary results involve System Identification (SysID).

In multiagent systems, where each subsystem is dynamically decoupled from its
neighbors (see e.g. [37]), structured SysID is easy: each subsystem is separately
identified using whichever method is preferred, then they are coupled together
using the (user designed) cost function. However, in distributed systems where
the subsystems are dynamically connected, such as PDE’s and many of the appli-
cations listed in the first paragraph of this subsection, SysID seems to be much
more difficult than control or estimation, and there has not been much progress
in comparison. In the 70’s and early 80’s, there were many methods developed
for SysID of spatially homogeneous PDE’s and ‘inverse’ problems (see [38] for an
overview), and in [39][40][41] more general circulant and spatially invariant state
space models are efficiently identified (see [42] for extensions to more general in-
terconnection structures, and also the recent [43]). Unfortunately, often systems
are not homogeneous in practice, and blindly applying standard SysID methods
won’t work very well, as they will be too computationally complex (e.g. Subspace
ID and Output Error Methods [44] are at the very least O(N3)) and anyway will
produce an identified model without any distributed structure, such that the above
distributed controller synthesis methods will be of no use.

Hence in spite of these recent advances, for many distributed systems problems
the computational techniques are still not satisfactory in speed or resulting con-
troller performance, often with O(N3) complexity or significant conservatism or
both. To illustrate how important this issue of complexity is, we will now discuss
a simple conceptual example.

Rebar, the thick steel wires used to reinforce concrete, are formed by pouring
liquid steel into extremely long casters. The rebar is then ‘tempered’ by reheating
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to a certain temperature and allowing it to slowly cool. In tempering processes, the
rate and homogeneity of the temperature is very important to the overall strength
of the steel, so it might be desirable to use real-time control to monitor the tem-
perature and adjust local heating or cooling to maximize the strength (in reality,
rebar is dirt-cheap, so no one would actually do this, but the concept extends to
more realistic applications). By approximating the heat conduction PDE, using
standard finite difference methods, as a set of coupled ODE’s or equivalently inter-
connected subsystems, as shown in figure 1.4, the problem of finding a real time
controller to regulate the local heating can be written as a standard centralized
or distributed control problem. However, the longer the section of rebar is, and
the more mini-heaters under consideration, the longer it will take to perform the
computations necessary for controller design. Using the standard centralized opti-
mal control methods, or the special structured LMI methods mentioned above, the
number of flops necessary to design the controller will be O(N3), where N is the
number of local heaters. For N = 80, 100, 200, 300, 400, 500, 600, the corresponding
computation times are shown for standard centralized control design in figure 1.5
as a solid line. As we see, the computational time grows alarmingly with increasing
N , and if we extend this O(N3) trend to N = 10, 000, the computation will take
about 5.3 days, which is just too long. What we would like to find is efficient
methods for control design for such problems; i.e. methods that grow in computa-
tional complexity proportional to the amount of information in the problem. If the
rebar and local heater system is heterogeneous, that is, if each of the mini-heaters
is different from its neighbors, or the rebar changes in thickness or composition
along its length, then the problem will contain O(N) data, and we could hope for
O(N) complexity algorithms, as shown as a dotted line in figure 1.5 (leading to a
time of ∼ 15 minutes for N = 10, 000). If the rebar and heater system is mostly
homogeneous, that is to say, if all of the heaters are identical, and the rebar is
constant in composition and thickness over its entire length (except at the ends),
the problem will contain O(1) data, and we could hence hope for O(1) complexity
algorithms, as shown as dash-dotted line in figure 1.5 (with a time of ∼ 7.2 seconds
for N = 10, 000). As we will show in this thesis, such efficient control synthesis
computations actually are possible (the dotted and dash-dotted lines in figure 1.5
were produced with algorithms developed in this thesis, and discussed in Chapters
4 and 6).

1.2 Scope and Contributions of this Thesis

Our approach to the problem of computing distributed controllers can be summa-
rized as follows. Interconnections of subsystems, such as those shown above, induce
a special structure in their ‘lifted’ system matrices, for which we can develop ‘effi-
cient’ (e.g. O(N) or O(1)) structure preserving arithmetics: routines for calculating
matrix addition, multiplication, inversion, and norm. Such arithmetics can then be
used in special iterative algorithms (e.g. the sign iteration for solving Riccati equa-
tions) that preserve the structure, leading to computational methods for efficient
design of controllers with this same matrix structure, which can be ‘redistributed’
into a set of subcontrollers linked in the same interconnection topology as the orig-
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Figure 1.5: Controller synthesis times for heat conduction

inal subsystems. These techniques can be used for efficient stability and H2, H∞
performance analysis and H2, H∞ controller synthesis for fully homogeneous, ho-
mogeneous with boundary conditions, and fully heterogeneous systems. They can
also be extended to D-scalings and ‘D-K’ iterations for robustness analysis and
synthesis, structured model order reduction, and to multiple spatial dimensions, in
a similarly efficient way.

For fully heterogeneous distributed systems, exploitation of the special matrix
structure also makes efficient (O(N)) parametric system identification possible,
where the resulting system model is in the correct form for analysis and controller
design using the above methods. Furthermore, for fully heterogeneous problems,
due to the special form taken by the arithmetic, it’s actually possible to perform
all of these sysID, analysis and synthesis computations in a distributed manner, on
a linear interconnection of microprocessors with distributed memory. Hence, given
an unknown heterogeneous distributed system on a cartesian grid, it should now
be possible to distribute microprocessors with local memory, sensing, actuation,
and communication abilities, and have them first perform a distributed system
identification, then using the resulting model, a distributed controller synthesis, and
then to analyze the resulting closed loop performance, all in linear computational
complexity (O(N) for N subsystems on a line)1.

In this thesis we will lay out clearly all of the steps necessary for other students,
researchers, or practitioners in the field to proceed from a fundamental knowledge
of control and linear algebra to develop all of the results necessary to implement
their own numerical Riccati solvers and distributed controller synthesis routines.
Some of this material will be review, but much of it has been newly developed
within this PhD project and has either recently been published or is first published
in this thesis. These contributions are (in the order in which they will appear):

1. New derivations of structure preserving arithmetics of Laurent matrices with
rational symbols, SSS matrices, and stable realizations of continuous domain

1Note that the O(N) complexity is proven in this thesis for all of these computations except
for SysID, for which it is only observed in examples, see Chapter 4
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transfer functions, and the new development of a structure preserving arith-
metic of SSS matrices with almost Toeplitz structure (Chapter 2).

2. Proofs of the convergence of the above structured operators and matrices un-
der the matrix sign iteration, and hence of the structure of solutions of Riccati
and Lyapunov equations, and H2 and H∞ optimal controllers (Chapter 3).

3. Using the structured solutions to Riccati and Lyapunov equations above, the
structured arithmetics in 1. are extended to multiple levels (Chapter 3)

4. Application of 1. and 2. to distributed systems with heterogeneous, ho-
mogeneous, and finite homogeneous structures, to develop computationally
efficient and structure preserving distributed analysis, controller synthesis,
model order reduction, and system identification routines. (Chapters 4-6).

5. For the fully heterogeneous case, a method to perform the computations in
4. on a distributed linear processor array. (Chapter 4).

6. Extensions of 4. to distributed systems with uncertainty and distributed
systems in multiple spatial dimensions. (Chapters 7,8).

7. Application of 1. and 2. to computationally efficient synthesis and analysis
of repetitive and iterative learning controllers (Chapter 9).

8. Application of 1. and 2. to analysis and synthesis of linear parameter varying
systems and controllers (Chapter 10).

The last two items, ILC/RC and LPV control, of course don’t have much to do
with distributed control, but the computational methods of this thesis may also be
applied to them, so we include these chapters as a bonus.

1.3 Structure of this Thesis

This thesis is divided into two main parts. Part I is devoted to the explanation
and development of the fundamental tools, such as the structure preserving matrix
arithmetics and sign iterations, and Part II is devoted to applying the resulting
methods to different types of control and analysis problems. We will show how each
application leads to a control problem involving one of the structures in Chapter
2, on which we then use the iterative techniques in Chapter 3 to design controllers
of the same structure, demonstrating the computational efficiency on a practical
example.

There are no physical applications in Part I and (almost) no proofs in Part II,
and readers can selectively choose their chapters of interest accordingly. In the
following we will give a detailed description of the contents of each of the chapters.
At the end of each chapter listing, we will reference our publications in which this
work first appeared, which are in turn listed at the end of this chapter.

• Part I: Fundamentals
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– Chapter 2: “Mixed Causal Input-Output Operators and their Arith-
metic” is the densest of the thesis. After a background overview of
structured matrices, the paradigm of mixed causal systems is used to
fully derive a structure preserving arithmetic of Laurent matrices with
rational symbols. In the following sections, these results are extended
(using the same derivation method) to SSS matrices, SSS matrices with
almost Toeplitz structure, and stable realizations of transfer matrices on
the imaginary axis. First appeared in: [D][F][G][J]

– Chapter 3: “Structure Preserving Iterations” begins with an overview
of the matrix sign function and iteration, and some applications in sys-
tems and control(some of which are new). The matrix sign function is
then applied to the structured matrices and operators from Chapter 2,
and different types of convergence are proven, providing results on e.g.
the structure of Riccati solutions and the structure of H∞ controllers.
These results are in turn used to extend the arithmetics of Chapter 2
to multiple levels, and thus multiple physical dimensions. The effects of
numerical rounding and approximation errors, and techniques for over-
coming them, are also discussed. First appeared in: [A][D][F][H][L][J]

• Part II: Applications of Part I to different classes of large scale systems

– Chapter 4: “Heterogeneous Distributed Systems” deals with arbitrarily
spatially varying systems connected on a line, with examples of H2 and
H∞ control synthesis, model order reduction, system identification, and
distributed computing, all in O(N) computational complexity. First
appeared in: [A][B][H][I][L][M].

– Chapter 5: “Doubly Infinite Homogeneous Distributed Systems” treats
perfectly homogeneous systems on a line, with scalar and matrix ex-
amples of LQR synthesis for heat conduction and a comparison with
some other distributed control techniques on a car platooning example.
Relevant publications: [D][E][J].

– Chapter 6: “Homogeneous Distributed Systems with Boundary Condi-
tions”, deals with systems that are mostly homogeneous, with hetero-
geneities at the boundaries, in O(1) computational complexity. Shows
a scalar example of H2 synthesis. First appeared in: [F].

– Chapter 7: “Uncertain Distributed Systems”, extends chapters 4,5,6 to
systems with uncertainties, with a matrix example of robust synthesis
(H∞ and D-scalings) for a heterogeneous system on a line in O(N)
computational complexity. First appeared in: [K].

– Chapter 8: “Multi Dimensional Distributed Systems” treats systems
on cartesian grids, with a 2-D scalar example of LQR synthesis. First
appeared in: [D].

– Chapter 9: “Repetitive and Iterative Learning Control” is a bonus chap-
ter, which shows how to fit RC/ILC for LTV systems into the SSS struc-
ture, leading to RC/ILC design in O(N) computational complexity, with
an example of LQG control of a beamer. First appeared in: [C].
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– Chapter 10: “LPV Analysis and Synthesis”. Another bonus chapter,
illustrating how the results of Part I can be used with stable realizations
of transfer functions on the imaginary axis to perform some basic LPV
computations. First appeared in: [G].

The thesis ends with Chapter 11: Reflections, Recommendations, and Conclusions.

As stated at the beginning of the chapter, this thesis is organized with the reader
in mind, and we thus have some advice for effective reading order. As shown in
figure 1.6, we recommend that the reader first thoroughly absorb the background
methods in Part I, before splitting off to read about distributed systems in Track
1 or other applications in Track 2. However, Part I is probably too boring for
most people who pick up this thesis, so we’ve made it possible to understand the
chapters in Part II without fully comprehending the underlying math. One of the
chapters 4,5, or 6 should be read as background before hitting chapters 7 or 8. For
the particularly time-pressed reader, it is also probably possible to skip Chapters
2-10 completely, but gain enough from the summary in Chapter 11 to pretend to
have read the whole thesis, but we don’t condone it.
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Notation

R set of Real numbers
C set of Complex numbers
N set of Natural numbers
Z set of Integers
ℜ(·) Real part of ·
ℑ(·) Imaginary part of ·
C− Open left half plane
C+ Open right half plane
R− set of strictly negative real numbers
R+ set of strictly positive real numbers

T unit circle: T = {e
√
−1θ∀θ ∈ [0, 2π)}

Tr(·) trace operator
(·)T transpose operator
(·)∗ complex conjugate transpose operator
‖ · ‖F Frobenius norm
‖ · ‖∞ H∞ norm of a system
‖ · ‖2 2-norm of a vector or induced 2-norm of a matrix

or H2-norm of a system
λ(X) spectrum of operator X
X ≻ 0 indicates positive definiteness: X = XT , λ(X) > 0
ρ(X) spectral radius: ρ(X) = supλ0∈λ(X) |λ0|
X ⊗ Y Kronecker product between the matrices X and Y
l2 = l2(Z, Cp) the set of sequences, x ∈ l2 with norm: ‖x‖2

l2
=

∑∞
k=−∞ ‖x(k)‖2

2 < ∞
l1 the set of sequences, x ∈ l1 with norm: ‖x‖l1 =

∑∞
k=−∞ |x(k)| < ∞

l∞ the set of sequences, x ∈ l∞ with norm: ‖x‖l∞ = supk |x(k)| < ∞
L∞(T) the space of matrix valued functions essentially bounded on T

RL∞(T) the real proper rationally parametric subspace of L∞(T)
L2(T) L2(T) = {F (z) : ‖F (z)‖L2 = 1

2π

∫ 2π

0
Tr(F ∗(eiθ)F (eiθ))dθ < ∞}

(̄·) indicates a lifted vector or structured matrix ·
I identity matrix of arbitrary dimension
Im identity matrix of defined dimension l ∈ N

Fz Fourier Transform



2
Mixed Causal Input-Output
Operators and their
Arithmetic

Not everything that is more difficult is more meritorious.

-Saint Thomas Aquinas

2.1 Introduction

As we discussed in Chapter 1, in the modeling of distributed systems we often
encounter very large matrices. Multiplying and inverting such large matrices is in
turn very ‘computationally expensive’ i.e. it takes a long time, even on a fast com-
puter, and this makes control design or analysis difficult or impossible. However,
in certain cases, matrices have a special ‘structure’ that can be used to dramat-
ically speed up computations, permitting control design for systems of even the
most enormous dimensions. In this chapter we will investigate a few types of re-
lated matrix structure, deriving very fast computational methods for their addition,
multiplication, and inversion. As we will see in Part II, these structured matrices
represent distributed and repetitive systems, and can be used with the iterative
methods in Chapter 3 for very fast controller design and analysis. This chapter is
structured such that readers who are unfamiliar with complex structured matrices
should be able to gradually get a feel for them. After a brief overview of the idea
of structured matrices, we’ll discuss mixed causal systems, which we will use in
section 2.2 to derive the arithmetic of Laurent matrices with rational symbols. We
will rather painstakingly show every step of the derivations in this section, so that
they can then be used as blueprints for the derivations of the arithmetics of SSS
matrices in section 2.3, ‘almost-Toeplitz’ SSS matrices in section 2.4, and stable
realizations of transfer matrices on the imaginary axis in section 2.5.

First we should get a clear idea of what we mean by computational complexity.
We will measure complexity in terms of ‘flops’ that is, floating-point arithmetic
computations. The number of flops necessary to solve a certain computational
problem is a good measure of the time required. Since we will be concerned in this
thesis with very large problems, we are more interested in how the computational
cost grows as a function of the size of the problem than on the precise number of

13
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flops itself. To represent the functional dependency in computational complexity,
we will use ‘big O’ notation,

Definition 2.1 [45] A positive function is f(N) ∈ O(Nα) if there exist finite
positive constants, ∞ > c, κ > 0 such that f(N) < cNα, ∀N > κ.

Informally, we will say that a procedure ‘is’ O(g) if it can be computed in f(N) ∈
O(g) flops. O(1) will mean bounded from above by a constant. Often, complex-
ity is rather arbitrarily broken up into the categories of ‘tractable’ for problems
with any degree of polynomial complexity (O(Na), a ∈ R) and ‘intractable’ for
others, such as exponentially complex problems. However, high-degree polynomial
complexity (e.g. O(N10)) is often just as useless for large scale problems as ex-
ponential or combinatorial complexity, whereas decreasing a solution method from
cubic (O(N3))to linear(O(N)) complexity makes a huge difference in practice. It
is this sort of improvement that we will focus on in this work.

2.1.1 The Idea of Structured Matrix Arithmetic

For dense unstructured matrices in RN×N , trace is O(N), transpose, Frobenius
norm, and addition are O(N2), multiplication, inversion, and 2-norm are O(N3).
For many applications with N = 5 or N = 10, this doesn’t matter, but for some of
the very large distributed systems discussed in chapter 1, we might have N > 10000,
for which O(N3) is completely impractical. However, there are some special types
of matrices for which these complexities can be improved. The special matrices we
will discuss next will all fit in the category of ‘data sparse’. (Note that most of
the information in this section is well known, and unless specified otherwise, can
be found in Golub and van Loan’s famous [46] or even Wikipedia).

Traditionally, ‘sparse’ matrices are considered to be matrices in RN×N with
only O(N) non-zero entries. Obviously, addition, and Frobenius norm are O(N)
for such matrices, but addition and multiplication generally decrease the ‘sparsity’
of the matrices, and the inverse of a sparse matrix might be ‘full’ (having O(N2)
non-zero entries) as we see here:

  
-1

=

Comment 2.1 The picture above is an image of a matrix made with Matlab’s
‘imagesc’ function. In this section, for illustrative purposes, we will always display
the logarithm of the absolute value of the elements of matrices, i.e. in Matlab
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notation log10(abs(X)) to better show the zero(black) and non-zero(gray and white,
depending on intensity) areas.

But this is not true of all sparse matrices. A simple example is the class of
diagonal matrices; diagonal matrices in R

N×N have O(N) complexity for all of the
operations listed above. Furthermore, arithmetic preserves the diagonal structure;
e.g. if you multiply two diagonal matrices together and then invert the product,
you still have a diagonal matrix. The same holds for block diagonal matrices. Such
matrices aren’t very general in distributed systems though, and a more useful type
of matrix, the ‘banded’ matrix, e.g. tridiagonal, does not have all of these nice
characteristics. While tridiagonal matrices may be added and multiplied in O(N),
the inverse of a tridiagonal matrix is generally full:

  
-1

=

This motivates the more useful characterization of such matrices as ‘data-
sparse’, which means that a matrix in RN×N can be stored using only O(N) data.
This class obviously contains ‘sparse’ matrices, but also some full matrices, for
example, a low rank matrix A ∈ RN×N may be factored into the form A = UΣV
where U ∈ RN×m, V ∈ Rm×N , Σ ∈ Rm×m, m ≪ N , and cheaply stored this way,
although A may very well be a full matrix. Low rank matrices may also be added
and multiplied in O(N), although they often gain rank and complexity through
these operations, and of course they cannot be inverted!

Other types of nice ‘data-sparse’ matrices, which are also often used to model
distributed systems, are Toeplitz(Hankel) matrices, which have the virtue of being
constant along their diagonals(anti-diagonals). While such matrices can be added
in O(N), and multiplied and inverted in O(N2), they unfortunately lose their
structure under multiplication and inversion.

  
-1

=
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The fact that Toeplitz, low rank, and banded matrices all lose their structure
under some of these basic arithmetic operations is unfortunate, since it prevents
the efficient use of iterative algorithms. This motivates new types of data sparse
matrices that do preserve their structure under these operations, and still have
very low computational complexity. Research into such matrices began in the late
90’s, and resulted in the class of Sequentially Semi-Separable(SSS) Matrices [47][48]
with O(N) complexity, and the class of Hierarchical Matrices(H-matrices) [49] with
O(N log(N)) complexity. Both classes of matrices preserve their structure through
+, ×, and −1, and additionally LU and QR factorizations, and can also have their
Frobenius norms calculated quickly.

H matrices have already been used in structure preserving iterations[28][50]
involving discretizations of PDEs, and we will not discuss them further in this
section (see Chapter 11 for more perspective), but will only discuss SSS matrices
and near relatives.

2.1.2 The Idea of Mixed Causal Systems

The SSS matrices and their infinitely large operator counterparts that we will be
working with happen to have interpretations as the input-output maps of ‘mixed
causal’ linear systems, and thinking of them in this way will help us to derive
their arithmetic, and also to have some intuition as for how and why it works. In
the linear systems and control field, we’re used to dealing with systems that move
forward in time, e.g. the discrete time system:

x(t + 1) = fc(x(t)) (2.1)

where fc() is some function, t is time, and x is the state. Because our model steps
forward in time; the state at time t is dependent on the state at previous times
t−1, t−2, ..., and not vice-versa, we call such a system ‘causal’ with respect to time.
Conversely, we can imagine systems that are ‘anti-causal’ and move backwards in
time:

x(t − 1) = fa(x(t)) (2.2)

We as humans don’t encounter such systems very often; we generally think of time
as only moving in one direction. However, anti-causal systems still work out math-
ematically, basically in the same way as causal systems (except backwards), and
for relating inputs u(t) ∈ l2, to outputs y(t), an anti-causal system representation
might be just as valid as a causal one.

Example 2.1 Consider the causal linear LTI system:

xk+1 = Axk + Buk

yk = Cxk + Duk (2.3)

where A is assumed invertible. If we define a new state variable as a backwards
shift of the old one: x̂(k) = x(k + 1) then the same input-output behavior can be
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captured by the anti-causal system:

x̂k−1 = A−1x̂k − A−1Buk

yk = CA−1x̂k + (D − CA−1B)uk (2.4)

That is to say, for some input signal u, the outputs of the two systems will be
identical.

As we said before, systems moving backwards in time aren’t commonly encountered,
but anti-causal systems in other variables, such as spatial, can be very useful, as
we will see later on.

In the following, we won’t require any fancy results of mixed causal systems,
we’ll just use the intuition to derive a structure preserving arithmetic for SSS
matrices and three other closely related classes of matrix and operators in an easy
and constructive way. We will start with Laurent operators with rational symbols
because they are the simplest class that we consider, and because the derivation
techniques we use for them can be easily extended to work for all of the other
classes.

2.2 Discrete LTI Systems and Laurent Matrices
with Rational Symbols

Consider the discrete linear time invariant(LTI) mixed causal system:

[
xa

i−1

xc
i+1

]

=

[
W 0
0 R

] [
xa

i

xc
i

]

+

[
V
Q

]

ui, yi =
[
U P

]
[
xa

i

xc
i

]

+ Dui (2.5)

for i ∈ Z. The state variables here, xa
i and xc

i , are extraneous, so called ‘latent
variables’ in behavioral systems jargon, and we can eliminate them by substitution
to obtain an equation that just relates the outputs y to the inputs, u ∈ l2:
















...
yi

yi+1

yi+2

yi+3

yi+4

...
















︸ ︷︷ ︸

ȳ

=






















. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . D UV UWV UW 2V UW 3V
. . .

. . . PQ D UV UWV UW 2V
. . .

. . . PRQ PQ D UV UWV
. . .

. . . PR2Q PRQ PQ D UV
. . .

. . . PR3Q PR2Q PRQ PQ D
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .






















︸ ︷︷ ︸

Ā
















...
ui

ui+1

ui+2

ui+3

ui+4

...
















︸ ︷︷ ︸

ū

(2.6)

Ā is called a ‘Laurent matrix’ because it is doubly infinite and has a Toeplitz
structure, which is to say that it is constant down the diagonals (see [51] and [52]
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Figure 2.1: the log of the absolute value of a 40 by 40 section of a Laurent
Matrix(we can’t show the whole thing, since it is infinite!). In Matlab notation:
log10(abs(Ā(i : i + 40, i : i + 40))) for any i ∈ Z

for a very nice introduction to Laurent matrices). Assuming that ρ(R), ρ(W ) < 1,
the absolute values of the entries moving away from the diagonal on either side are
bounded by an exponential decay. For example, in figure 2.1 we show a section of
one of these Laurent matrices. However, Ā in (2.6) actually has even more than just
Laurent structure, in that the formulas for the diagonals are related to eachother.
Such an Ā is said to have a ‘rational symbol’, as we will next discuss.

2.2.1 Fourier Transform, the Operator Symbol, and Useful
Equivalencies

First we’ll need a some mathematical background. Fz will indicate the Fourier
transform mapping a (matrix) function X(k) ∈ l2(Z) to a (matrix) function X(z) ∈
L2(T)

FzX(k) = X(z) =

∞∑

k=−∞
X(k)zk, F−1

z X(z) = X(k) =
1

2πi

∮

T

X(z)zk−1dz

If we apply this Fourier transform to the input-output equation above (assuming
that ρ(R), ρ(W ) < 1):

Fz ȳ = FzĀF−1
z Fzū (2.7)

Then we get the transfer function form, in the Laplace domain:

y(z) = [P (zI − R)−1Q + D + U(z∗I − W )−1V ]
︸ ︷︷ ︸

A(z)

u(z), z ∈ T (2.8)
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Where the transfer matrix A(z) is called the ‘symbol’ of the Laurent operator Ā.
The nice thing about such rational symbols is that if you have a stable realization
of it ({P, R, Q, D, U, W, V } with ρ(R), ρ(W ) < 1), you can construct the Laurent
matrix directly. Hence we will use the notation Ā = Lr{P, R, Q, D, U, W, V } as
shorthand for the infinite dimensional Laurent matrix Ā, so

Lr{P, R,Q, D, U, W,V } =



















. . .
. . .

. . .
. . .

. . .
. . .

. . . D UV UWV UW 2V
. . .

. . . PQ D UV UWV
. . .

. . . PRQ PQ D UV
. . .

. . . PR2Q PRQ PQ D
. . .

. . .
. . .

. . .
. . .

. . .
. . .



















(2.9)

Because the Fourier transform is an isometric isomorphism, this gives us a way
to construct an arithmetic of these infinite Laurent matrices [51]:

Ā + B̄ = F−1
z A(z)Fz + F−1

z B(z)Fz = F−1
z (A(z) + B(z))Fz

ĀB̄ = F−1
z A(z)FzF−1

z B(z)Fz = F−1
z (A(z)B(z))Fz

Ā−1 = (F−1
z A(z)Fz)

−1 = F−1
z (A(z)−1)Fz (2.10)

That is to say, the computations of addition, multiplication, and inversion of Lau-
rent matrices can equivalently be performed on the symbols of the matrices. There
are also nice equivalencies between the norm and spectra [51][52](the spectral equiv-
alence on the right is only guaranteed for rational symbols):

‖X̄‖ = ‖X(z)‖∞, λ(X̄) = λ(X(T)) =
⋃

z∈T

λ(X(z)) (2.11)

(The first is familiar for causal systems, ({P, R, Q, D, 0, 0, 0}), where the transfer
function H∞ norm is equal to the system induced l2 norm.) The last formula is
interesting to contemplate: the spectrum of the Laurent matrix, X̄ , is just equal
to the spectrum of the transfer matrix X(z) everywhere on the unit circle z ∈ T,
or equivalently, the union of the spectrums of the matrices X(z0) at each point
z0 ∈ T (for those readers who are familiar: λ(X̄) is the Nyquist plot of X(z)).
Since X(z) is a rational function (2.8)and has no poles on the unit circle, it is
therefore a continuous function of z ∈ T. Since the eigenvalues of some complex
matrix X(z0) are continuous functions of the entries of that matrix, λ(X(z)) is a
continuous function of z and thus forms a closed curve in the complex plane (or
curves, if X(z) is a matrix).
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Figure 2.2: 2000 point discretization of the spectrum of Ā, with the unit circle
shown for reference

Example 2.2 Consider: Ā = Lr{P, R, Q, D, 0, 0, 0} with D = 0.2120 and

P =
[
−0.7126 −0.5247 0.7653

]
, R =





0.2144 1.0358 1.5484
−0.6355 0.9121 −1.2734
−0.1434 −0.7232 −0.9274



 , Q =





−0.5810
−0.1888
−0.8399





To find ‖Ā‖, since it is causal (lower triangular), we can simply use the Bounded
Real Lemma:

‖Ā‖ = ‖A(z)‖∞ = ‖
[

R Q
P D

]

‖∞ = 12.4657 (2.12)

as implemented in Matlab for discrete time systems: Asymbol = ss(R, Q, P, D,−1);
Anorm = norm(Asymbol, ‘inf ′). This method would also work if Ā were anti-
causal(upper triangular), but note that for ‘full’ Laurent matrices with both lower
and upper sides, we will need to be more creative, as we will see in section 2.2.8.

As for the spectrum, to get a good picture of λ(Ā), we can calculate λ(A(z0))
sampled over the unit circle z0 ∈ T, as in figure 2.2. Note that our 2000 points
z0 are uniformly sampled on the unit circle, but this doesn’t lead to a uniform
distribution of points in λ(Ā), and herein lies the danger. Even though we’ve used
alot of points in our drawing above, there are still large gaps of about 0.3 at the
right end of the curve. We know that our spectrum will be continuous, but it can
otherwise be arbitrarily quickly varying, and needs not even be Lipschitz smooth [53],
so there could be cusps and other evil things in our curve that we might miss, even
with very fine sampling. For this reason, we’ll have to develop other techniques for
reliably calculating or bounding ρ(Ā) (see Chapter 3).

Note that much wilder curves are possible, and if A(z) were in Cn×n, there
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would be n closed curves in its spectrum instead of 1, additionally confounding the
problem (see example 2.4).

So, while the infinite dimensional matrices may be puzzling, we’ve seen that we
can drastically simplify things by looking at their symbols. In the next subsection
we’ll show a way to make symbol arithmetic even easier.

2.2.2 S-realizations

In the last subsection, we motivated using the rational symbols of Lr matrices,
instead of the big, infinite extent, unwieldy matrices themselves. However, the
symbols come in the form of transfer matrices, and transfer matrix arithmetic is
computationally slow (especially inversion, the available algorithms for which are
either ill-conditioned, or use symbolic algebra[54][55]) and often leads to unneces-
sarily high orders, so it is undesirable for us to actually use the transfer matrix
form of the symbols of our Laurent operators. Instead we will work only in the
state space of stable realizations of these symbols, for which we will develop a sim-
ple and efficient arithmetic in this section. This will make our technique fast and
efficient in practice, and easy to program in software like Matlab. Before starting
any definitions, we will first motivate the need to differentiate between ‘stable’ and
‘unstable’ realizations.

Note that a bounded Lr matrix, X̄ , with structure as in (2.6), has a unique
symbol, X(z) ∈ RL∞(T) [51], but can be represented by many different state space
realizations Lr{P, R, Q, D, U, W, V }. We can say that:

Lemma 2.1 An Lr matrix X̄ is a bounded operator if and only if there exists a
realization of matrices X̄ = Lr{P, R, Q, D, U, W, V } each bounded in norm, with
ρ(R) < 1 and ρ(W ) < 1. Proof: We start with sufficiency: ‖X̄‖ = ‖X(z)‖∞ ≤
‖D‖ + ‖P (zI − R)−1Q‖∞ + ‖V ∗(zI − W ∗)−1U∗‖∞. For necessity, we know that
X̄ is bounded if and only if its symbol, X(z) is bounded on the unit circle: X(z) ∈
RL∞(T)([51], theorem 1.1). When this is the case, X(z) can always be split up into
X(z) = D+Xout(z)+X in(z) with D constant, Xout(z) ∈ RH⊥

∞ analytic inside the
unit circle and X in(z) ∈ RH∞ analytic outside the unit circle. Bounded strictly
stable realizations (P, R, Q) and (U, W, V ) can then be found such that X in(z) =
P (zI − R)−1Q and such that Xout(z) = U(z−1I − W )−1V . �

Furthermore, some rational matrix function A(z) ∈ RL∞(T) can be the symbol
of many Laurent matrices, not all of them bounded (in fact, only one of them
bounded).

Example 2.3 Consider the symbol A(z) = z
z+2 . This could have an unstable real-

ization of Lr{1,−2,−2, 1, 0, 0, 0}, leading to an unbounded lower triangular Laurent
matrix, or a stable realization of Lr{0, 0, 0, 0, 1

2 ,− 1
2 , 1} leading to a bounded upper

triangular Laurent matrix. See how these matrices would look in (2.9)) or in the
log10| · | pictures of their sections below:
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The matrix on the left is using the first, unstable realization, while the right is the
stable realization. If these finite sections were extended to be doubly infinite Laurent
matrices, the left would be unbounded and the right would be bounded

An unbounded Laurent matrix would be difficult to physically implement, so it
is essential that we only work with stable realizations. However, for high rational
orders and large input and output dimensions, actually calculating a stable Lr re-
alization of some transfer matrix X(z) is computationally expensive (the so called
‘realization problem’, see e.g. [56]). In the following we will thus assume that we
are given realizations of bounded Lr matrices (a fair assumption in distributed sys-
tems), and from then on we will only work with these stable state-space realizations
and operations thereon. This motivates the following definition:

Definition 2.2 (Stable Realization) Realizations of the form of {P, R, Q, D, U,
W, V } with stable multiplier terms (with ρ(R), ρ(W ) < 1) will be called stable re-
alizations. The space of such realizations will be denoted by S. The norm and
spectrum of an S realization will be defined as those of its Lr operator.

With some abuse of notation, we will use X̄ to refer both to the bounded Lr

matrix and to a specific realization. Hence X̄ = S{P, R, Q, D, U, W, V } will denote
both the Lr matrix X̄ itself in equation (2.6), and the specific stable realization:
{P, R, Q, D, U, W, V } ∈ S, so:

S{P, R, Q, D, U, W, V } = Lr{P, R, Q, D, U, W, V } (2.13)

Note that Lr matrices with S realizations are clearly exponentially spatially decay-
ing operators [57], and when square, generate C0 semi-groups. We also note that
this type of matrix is actually bounded on a larger set of signals:

Lemma 2.2 All Lr operators in S are in the Wiener Algebra, and hence are
bounded on l∞. Proof: S matrices have stable causal and anticausal parts, with
finite H∞ norms. The H∞ norm and the system order can be used to bound the
row l1 norm from above [58], thus guaranteeing inclusion in the Wiener Algebra.

�

In the next few subsections, we will basically develop a way to add, multiply,
invert, transpose, and calculate the norm of these mixed causal transfer functions,



2.2 Discrete LTI Systems and Laurent Matrices with Rational Symbols 23

X ( z)

Y ( z)

u y

vX

vY

Figure 2.3: system representations of X̄ and Ȳ connected in parallel

using only their stable realizations. The result will be an easily programmable,
fast, efficient structure preserving arithmetic of Lr matrices.

2.2.3 Addition of Lr Matrices with S Realizations

Before getting started with the actual derivations, let’s put this in perspective.
We’re trying to develop a method of adding, multiplying, and inverting (block)Laurent
matrices with rational symbols (that is, to develop an arithmetic). Since Laurent
matrices are doubly infinite, we can’t just start multiplying rows by columns as
with finite matrices. Fortunately, as we saw in section 2.2.1, Laurent matrix arith-
metic can equivalently be performed on the symbols of the Laurent matrices, which
are just rational transfer matrices in our case, for which arithmetic is trivial. How-
ever, arithmetic of transfer matrices is slow, and it’s crucial for rebuilding our
Laurent matrices that we keep separate the stable and anti-stable components of
the symbols (as we saw in example 2.3). One way to do this is to store the transfer
functions as stable causal+anticausal realizations, as in Definition 2.2. One benefit
of doing this is that we can use the mixed causal LTI systems interpretation of
such realizations (equation (2.5)) and our own LTI systems background knowledge
to derive simple formulas for this arithmetic, as we will now demonstrate.

To start with, adding two Lr matrices with input-output operator interpreta-
tions is like putting the system realizations of their symbols in parallel, hence we
can use mixed causal systems theory to find a formula for S-realization addition:

Lemma 2.3 Given

X̄ = S{PX , RX , QX , DX , UX , WX , VX}
Ȳ = S{PY , RY , QY , DY , UY , WY , VY }

Then a realization of the sum: Z̄ = X̄ + Ȳ is:

Z̄ = S{
[
PT

X

PT
Y

]T

,

[
RX 0
0 RY

]

,

[
QX

QY

]

, (DX + DY ),
[
UX UY

]
,

[
WX 0
0 WY

]

,

[
VX

VY

]

}

Proof: We’ll use the diagram in figure 2.3 with the two mixed causal system
realizations:

[
xa

i−1

xc
i+1

]

=

[
WX 0

0 RX

] [
xa

i

xc
i

]

+

[
V X

QX

]

ui, vX
i =

[
UX PX

]
[
xa

i

xc
i

]

+ DXui(2.14)
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Y Xu v y

Figure 2.4: system representations of X̄ and Ȳ connected in series

[
za

i−1

zc
i+1

]

=

[
WY 0
0 RY

] [
za

i

zc
i

]

+

[
V Y

QY

]

ui, vY
i =

[
UY PY

]
[
za

i

zc
i

]

+ DY ui (2.15)

Now yi = vX
i + vY

i , so:







za
i−1

xa
i−1

zc
i+1

xc
i+1







=







WY 0 0 0
0 WX 0 0
0 0 RY 0
0 0 0 RX













za
i

xa
i

zc
i

xc
i







+







V Y

V X

QY

QX







ui

yi = vX
i + vY

i =
[
UY UX PY PX

]







za
i

xa
i

zc
i

xc
i







+ (DY + DX)ui (2.16)

�

The result is also easily verifiable by inspection.

We note that Z̄ ∈ S since RX , RY , WX , WY are stable since X̄, Ȳ ∈ S, so
not just the rational Laurent structure, but also the stability of the realization is
preserved.

2.2.4 Multiplication of Lr Matrices with S Realizations

Likewise, multiplication of two Laurent matrices with input-output operator in-
terpretations is like putting the system realizations of their symbols in series: (as
in figure 2.4) By thinking of the operation in this way, we can use our systems
knowledge to derive a formula for the resulting composite system, and thus the
product of the two Lr matrices.

Lemma 2.4 Given:

X̄ = S{PX , RX , QX , DX , UX , WX , VX} (2.17)

Ȳ = S{PY , RY , QY , DY , UY , WY , VY } (2.18)
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X̄Ȳ = Z̄ = S{PZ , RZ , QZ , DZ , UZ , WZ , VZ} with

DZ = DXDY + PXSVY + UXTQY

PZ =
[
DXPY + UXTRY PX

]
, UZ =

[
DXUY + PXSWY UX

]
,

RZ =

[
RY 0

QXPY RX

]

, WZ =

[
WY 0

VXUY WX

]

QZ =

[
QY

QXDY + RXSVY

]

, VZ =

[
VY

VXDY + WXTQY

]

where S and T are the unique solutions to the Stein equations:

S = RXSWY + QXUY , T = WXTRY + VXPY

Proof: This will work the same as in the above proof of addition; by considering
X̄ and Ȳ as input output operators for LTI systems:

[
xa

i−1

xc
i+1

]

=

[
WX 0
0 RX

] [
xa

i

xc
i

]

+

[
VX

QX

]

vi, yi =
[
UX PX

]
[
xa

i

xc
i

]

+ DXvi (2.19)

[
za

i−1

zc
i+1

]

=

[
WY 0
0 RY

] [
za

i

zc
i

]

+

[
VY

QY

]

ui, vi =
[
UY PY

]
[
za

i

zc
i

]

+ DY ui (2.20)

connecting them in series, and calculating the resulting LTI system, hence Z̄. Con-
necting Y (z) and X(z) together gives us:







xa
i−1

za
i−1

xc
i+1

zc
i+1







=







WX VXUY 0 VXPY

0 WY 0 0
0 QXUY RX QXPY

0 0 0 RY













xa
i

za
i

xc
i

zc
i







+







VXDY

VY

QXDY

QY







ui

yi =
[
UX DXUY PX DXPY

]







xa
i

za
i

xc
i

zc
i







+ (DXDY )ui (2.21)

Now this is fine, except there are coupling terms between the causal and anticausal
parts that we need to get rid of. To do this, we first rewrite the system as:







−WX 0 0 0
0 I 0 0
0 0 −RX 0
0 0 0 I













xa
i

za
i−1

xc
i

zc
i+1







=







−I VXUY 0 VXPY

0 WY 0 0
0 QXUY −I QXPY

0 0 0 RY













xa
i−1

za
i

xc
i+1

zc
i







+







VXDY

VY

QXDY

QY







ui

now solve Stein equations:

S = RXSWY + QXUY , T = WXTRY + VXPY
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and perform a state transformation:







xa
i−1

za
i

xc
i+1

zc
i







=







I 0 0 T
0 I 0 0
0 S I 0
0 0 0 I













x̂a
i−1

za
i

x̂c
i+1

zc
i







(2.22)

But from the original equations, we know that, on the left side of the resulting
equation, the terms: −(WXT + T )zc

i+1 = −(WXT + T )RY zc
i +−(WXT + T )QY ui

and −(RXS + S)za
i−1 = −(RXS + S)WY za

i +−(RXS + S)VY ui. Using these, and
since T and S solve the Stein equations, we then have:






−W X 0 0 0
0 I 0 0
0 0 −RX 0
0 0 0 I













x̂a
i

za
i−1
x̂c

i
zc
i+1







=







−I VXUY 0 0
0 WY 0 0
0 0 −I QXPY

0 0 0 RY













x̂a
i−1
za
i

x̂c
i+1
zc
i







+







VXDY + WXTQY

VY

QXDY + RXSVY

QY







ui

or






x̂a
i−1

za
i−1

x̂c
i+1

zc
i+1







=







WX VXUY 0 0
0 WY 0 0
0 0 RX QXPY

0 0 0 RY













x̂a
i

za
i

x̂c
i

zc
i







+







VXDY + WXTQY

VY

QXDY + RXSVY

QY







ui

But we also need to fix the output equation. From the state transformation, we see
that:

[
xa

i

xc
i

]

=

[
I 0 0 T
0 S I 0

]







x̂a
i

za
i−1

x̂c
i

zc
i+1







(2.23)

but za
i−1 = WY za

i + VY ui and zc
i+1 = RY za

i + QY ui, so:

xa
i = x̂a

i + TRY zc
i + TQY ui (2.24)

xc
i = x̂c

i + SWY za
i + SVY ui (2.25)

substituting these into the output equation, we then get:

yi =
[
UX , DXUY + PXSWY , PX , DXPY + UXTRY

]







x̂a
i

za
i

x̂c
i

zc
i







+

(DXDY + UXTQY + PXSVY )ui

which matches our above formulas for Z(z) and Z̄. �

These formulas are also easy to verify by inspection once we realize that S =
∑∞

k=0 Rk
XQXUY W k

Y and T =
∑∞

k=0 W k
XVXPY Rk

Y . As with the addition, note that
the Lr operator structure, and also the stability of the realizations, is preserved
under this multiplication: X̄, Ȳ ∈ S ⇒ Z̄ ∈ S.
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2.2.5 Order Reduction of Lr Matrices with S Realizations

The reader will have noticed that through the above two operations (Lr matrix
addition and multiplication), Z̄ will have a rational symbol with ‘order’ larger
than X̄ or Ȳ .

Fortunately, since we represent Z̄ as the sum of a lower and upper stable Lr

operators Z̄ = L̄ + Ū with stable LTI causal and anticausal interpretations, re-
spectively, we can efficiently perform an order reduction on Z̄ by performing stan-
dard LTI state space model order reductions on its upper and lower triangular
parts separately. If we perform order reductions such that ‖L(z) − L̃(z)‖∞ < eL,

‖U(z) − Ũ(z)‖∞ < eU , then the reduced order Lr operator ˜̄Z = ˜̄L + ˜̄U has error

bound ‖Z̄ − ˜̄Z‖ < eL + eU .

As for actually calculating such an order reduction, there are many possible
methods, e.g. balanced truncation, Hankel optimal, etc. We will generally use
balanced truncation since it can be simply extended to LTV systems and multiple
dimensions (as we will see in Chapter 3). Balanced truncation was proposed in the
early 1980’s ([59]), and stability and the error bound were proven shortly there-
after (see [60] for an overview), and is now very well known, but we will state the
result here for the reader’s reference, as well as for comparison with our later use
of similar LTV and multidimensional results.

Lemma 2.5 ([60]) Suppose you have a stable system L(s) =

[
A B
C 0

]

with A ∈
Rn×n. Solve the Lyapunov equations:

APA∗ − P + BB∗ = 0

A∗QA − Q + C∗C = 0

P � 0, Q � 0, so R = PQ has a real and non-negative spectrum. Find a diagonal-
ization V −1RV = Λ where the eigenvalues in Λ are ordered to be non-increasing
down the diagonal: λi ≥ λi+1. Perform a state transformation to get the balanced
realization:

L(s) =

[
V −1AV V −1B

CV 0

]

=





Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 0



 (2.26)

where Â11 ∈ Rq×q.

Then the truncated qth order system L̂(s) =

[
Â11 B̂1

Ĉ1 0

]

is guaranteed stable

and the H∞ error bound: ‖L̂(s) − L(s)‖∞ ≤ 2(λq+1 + λq+2 + ...λn) holds.

As we said before, using this on the

[
R Q
P 0

]

and

[
WT UT

V T 0

]

parts of an

S realization S(P, R, Q, D, U, W, V ) yields a reduced order S realization with a
guaranteed error bound.
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2.2.6 Transpose and Permutations of Lr Matrices with S Re-
alizations

Finding the transpose of Lr matrices is conceptually and computationally easy:
looking at X̄ in (2.6), we see that X̄T = S(V T , WT , UT , DT , QT , RT , PT ).

We can also permute Lr operators together to form block Lr operators, and
vice versa (in the same way that block Toeplitz matrices may be permuted to
form Toeplitz block matrices), where the Laurent spatial orders will increase only
additively; i.e. we can move between the two equivalent representations:

[
ē
f̄

]

=

[
W̄ X̄
Ȳ Z̄

] [
ḡ
h̄

]

,

[
e
f

]

= P̄

[
g
h

]

(2.27)

These operations are very useful later on, because they enable us to avoid using

‘block arithmetic’ i.e. if we want to invert

[
W̄ X̄
Ȳ Z̄

]

we first permute it into P̄ ,

calculate a single inversion: P̄−1, then permute back to find

[
W̄ X̄
Ȳ Z̄

]−1

, instead

of trying to do some type of block inversion using Schur complements and many
additions, multiplications, and inversions.

Lemma 2.6 Given Laurent operators R, X, Y , Z with S realizations:

R = S(BRm, WRm, CRm, AR, BRp, WRp, CRp)

X = S(BXm, WXm, CXm, AX , BXp, WXp, CXp)

Y = S(BY m, WY m, CY m, AY , BY p, WY p, CY p)

Z = S(BZm, WZm, CZm, AZ , BZp, WZp, CZp)

and lifted vectors e, f , g, h, the relations (2.27) are equivalent, to within a permu-
tation, where P = S(B̂m, Ŵm, Ĉm, Â, B̂p, Ŵ p, Ĉp) with

Â =

[
AR AX

AY AZ

]

, Ĉ∗ =

[
diag(CR∗, CX∗)
diag(CY ∗, CZ∗)

]

B̂∗ = diag(
[

BR∗ BX∗ ]
,
[

BY ∗ BZ∗ ]
)

Ŵ ∗ = diag(WR∗, WX∗, WY ∗, WZ∗)

and the ∗’s are held constant as m or p in each term. Proof: This is easily
verified with permutation matrices such that

ΠL

[
R̄ X̄
Ȳ Z̄

]

ΠR = P̄
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with realizations:

ΠL =

[

S(0, 0, 0,

[
I
0

]

, 0, 0, 0), S(0, 0, 0,

[
0
I

]

, 0, 0, 0)

]

ΠR =

[
S(0, 0, 0,

[
I 0

]
, 0, 0, 0)

S(0, 0, 0,
[
0 I

]
, 0, 0, 0)

]

�

The transformation from
































...
e−2

e−1

e0

e1

e2

e3

...
f−2

f−1

f0

f1

f2

f3

...
































=

[
e

f

]

→
[
e
f

]

=





























...
e−2

f−2

e−1

f−1

e0

f0

e1

f1

e2

f2

e3

f3

...





























could be called a

‘shuffle’ permutation, since e and f are shuffled like a deck of cards to get

[
e
f

]

.

The reverse operation is also possible:

Lemma 2.7 Given

P = S(

[
B1m

B2m

]

, Wm,
[
C1m C2m

]
,

[
A11 A12

A21 A22

]

,

[
B1p

B2p

]

, W p,
[
C1p C2p

]
), the re-

lations (2.27) are equivalent, to within a permutation, where:

R = S(B1m, Wm, C1m, A11, B1p, W p, C1p)

X = S(B1m, Wm, C2m, A12, B1p, W p, C2p)

Y = S(B2m, Wm, C1m, A21, B2p, W p, C1p)

Z = S(B2m, Wm, C2m, A22, B2p, Ŵ p, C2p)

and everything is assumed conformably partitioned. Proof: This is easily verified
by permutation matrices such that

ΦLP̄ΦR =

[
R̄ X̄
Ȳ Z̄

]

If all of the generators of the operators in Lemmas 2.6 and 2.7 are appropriately
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sized, then ΠL = ΠT
R = ΦT

L = ΦR. �

2.2.7 Inversion of Lr Matrices with S Realizations

So far, we have shown the closure of S under addition and multiplication and devel-
oped easy formulas for performing these operations, but for our iterative methods,
we will also need inversion, which now follows. We won’t try to use the LTI sys-
tems interpretation directly as before, but the proof is still simple, and only requires
basic algebra:

Lemma 2.8 Given a Laurent operator Y = S{P, R, Q, D, U, W, V }, if the non-
symmetric discrete algebraic Riccati equation(DARE):

S = RSW + (Q − RSV )
︸ ︷︷ ︸

Π

(X − PSV )−1

︸ ︷︷ ︸

Φ

(U − PSW )
︸ ︷︷ ︸

Ψ

(2.28)

has a stabilizing solution, e.g., an S for which both

WF = W − V ΦΨ, RF = R − ΠΦP

are stable, then Y has an inverse Ȳ −1 = F̄ ∈ S which has the form

F̄ = S{PF , RF , QF , DF , UF , WF , V F } (2.29)

where DF = Φ + UF TQF and

UF = ΦΨ, QF = ΠΦ

V F = −V Φ + WF TQF , PF = −ΦP + UF TRF

where T is the (unique) solution to the Stein equation

T = WF TRF + V ΦP (2.30)

Proof: Let’s first assume that Y may be factored into Y = L̄Ū , which are upper
and lower triangular, respectively:

L = S{C, A, B, D, 0, 0, 0}, U = S{0, 0, 0, E, F, G, H}

and let’s further assume that they respectively have bounded lower and upper tri-
angular inverses; both D and E are each invertible and both ρ(A − BD−1C) < 1,
ρ(G − HE−1F ) < 1, hence:

L̄−1 = S{−D−1C, A − BD−1C, BD−1, D−1, 0, 0, 0}
Ū−1 = S{0, 0, 0, E−1, E−1F, G − HE−1F,−HE−1}

Now obviously

Y
(−1)

= Ū−1L̄−1 := S{PZ , RZ , QZ , XZ , UZ , WZ , VZ} (2.31)
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where (using Lemma 2.4), we can calculate that

QZ = BD−1, UZ = E−1F

RZ = (A − QZC), WZ = (G − HUZ)

PZ = −(DE)−1C + UZTRZ VZ = −H(DE)−1 + WZTQZ

XZ = (DE)−1 + UZTQZ (2.32)

where

T = WZTRZ + H(DE)−1C (2.33)

and also we can calculate, again using Lemma 2.4, that

Y = L̄Ū = S{C, A, BE + ASH, DE + CSH, DF + CSG, G, H}

where

S = BF + ASG (2.34)

but we know that this must match Y = S{P, R, Q, X, U, W, V }, giving us the fol-
lowing constraints on A, B, C, D, E, F, G, H:

C = P, A = R, G = W, H = V

DE = X − PSV, B = QE−1 − RSV E−1, F = D−1U − D−1PSW(2.35)

If we substitute these constraints into (2.34), (2.33), (2.32) and perform a bit of
algebra, then we get the Sylvester and Riccati equations in Lemma 2.8, which are
only in terms of the original P, R, Q, X, U, W, V .

Now we first assumed that such a fortuitous L̄Ū pair existed, but notice that if
the Riccati equation (2.28) has a stabilizing solution S; then S stabilizes both

RZ = R − (Q − RSV )(X − PSV )−1P = A − BD−1C

WZ = W − V (X − PSV )−1(U − PSW ) = G − HE−1F

and provides X − PSV invertible from which we can chose some full rank factors
DE = X − PSV , which, along with (2.35), give us all the appropriate A, B, C,
D, E, F, G, H in L̄ and Ū , thus guaranteeing that they exist (by construction),
completing the proof. �

Note that the statement only goes one way; the Riccati equation (2.28) will not
have a stabilizing solution for every invertible Ȳ , however, in the Hermitian case,
we can do better:

Lemma 2.9 Given a Hermitian X̄ = S{P, R, Q, Y, Q∗, R∗, P ∗}, the Riccati equa-
tion

S = RSR∗ + (Q − RSP ∗)
︸ ︷︷ ︸

Π

(Y − PSP ∗)−1

︸ ︷︷ ︸

Φ

Π∗ (2.36)



32 Chapter 2 Mixed Causal Input-Output Operators and their Arithmetic

will have a stabilizing solution, S, if and only if X̄ ≻ 0, in which case X̄−1 = Z̄ =
S{PZ , RZ , QZ , YZ , Q∗

Z, R∗
Z , P ∗

Z}, where

PZ = −ΦP + (ΠΦ)∗T (R − ΠΦP ), RZ = R − ΠΦP

QZ = ΠΦ, YZ = Φ + (ΠΦ)∗T (ΠΦ)

where T is the unique solution to the Stein equation:

T = P ∗ΦP + (R − ΠΦP )∗T (R − ΠΦP ) (2.37)

Proof: The equivalence of the existence of a stabilizing S and X̄ ≻ 0 is exactly the
Riccati equation version of the discrete time Positive Real Lemma (see e.g. [61],
Lemma 8.C.2). The existence of Z̄ ∈ S and its formula follow as a special case of
Lemma 2.8. �

Since Lemma 2.9 will always work for X̄ ≻ 0, this also provides a method that
will always work for non-Hermitian operators:

Lemma 2.10 Assume Ā ∈ S. Then ∃Ā−1 ∈ S ⇔ 0 /∈ λ(Ā). Furthermore, we
can calculate it using the formulas in Lemma 2.9. Proof: First assume that
0 /∈ λ(Ā), then clearly 0 ≺ ĀĀ∗ ∈ S, and we can use Lemmas 2.4 and 2.9 to
calculate Ā−1 = Ā∗(ĀĀ∗)−1 ∈ S
Now assume that ∃Ā−1 ∈ S, hence Ā−1 is bounded which always implies 0 /∈ λ(Ā).

�

We will call such Ā ∈ S with Ā−1 ∈ S ‘regular’. Note that we have been assuming
Ā square, but these results could easily be extended to nonsquare Ā using left and
right inverses.

We also note that the rational order of the symbol of Ā−1, as calculated in
Lemma 2.10, will be generally 3 times the rational order of Ā.However, this is not
the case for the method in Lemma 2.8, and hence we use it whenever possible in
order to speed up computations.

Example 2.4 As an example, we’ll invert the following non-symmetric Lr opera-
tor:

Ā = S(

[
−0.7839 −0.9566
1.5162 0.3232

]

,

[
0.1075 −0.0889
0.5697 0.4035

]

,

[
−0.3552 0.5337
0.1482 −0.6705

]

,

[
1.6969 0.7925
0.7260 0.6034

]

,

[
−0.4356 0.6894
0.9516 −1.6815

]

,

[
0.0178 0.0327
0.0053 −0.0255

]

,

[
0.1650 −0.7986
0.4571 0.1393

]

)

The nonsymmetric Riccati solution is:

S =

[
0.9323 −1.6527
−0.6405 1.1630

]

(2.38)
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which stabilizes RF and WF : ρ(RF ) = 0.2930, ρ(WF ) = 0.6863. Hence the Lya-

punov equation has a unique solution: T =

[
−0.8416 −0.3807
−0.1634 −0.2149

]

, leading to the

generators:

Ā
−1 = S(

[
0.6535 0.5894
−0.9272 −0.3618

]

,

[
−1.4548 −1.0115
1.6536 1.0907

]

,

[
−0.7469 0.6443
0.5779 −0.4161

]

,

[
0.6239 −0.0779
−0.2939 0.4205

]

,

[
−0.7095 1.2267
1.0764 −1.9402

]

,

[
0.9945 −1.7192
0.1796 −0.3159

]

,

[
−0.3305 0.3413
−0.2420 −0.0246

]

)

where everything has been rounded off at 4 decimal points. In the figure below we
have the spectrum of Ā on the left and that of Ā−1 on the right(with the unit circle
for reference):

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

Note how each point on the spectrum of Ā is inverted to get the spectrum of the
inverse of Ā. This makes sense from (2.10) and (2.8).

It’s interesting to notice that Lemma 2.8 makes almost no assumptions on Ā: D
need not be square, and R and W can be different sizes even, leading to a non-
square Riccati equation!

However, in the next example we’ll emphasize that this inversion problem is
more subtle than it might seem, and the nonsymmetric Riccati equation doesn’t
always have the answer:

Example 2.5 Consider Ā = S(0, 0, 0, 0, 1/2,−1/2, 1) from example 2.3. If we
were to try to use our finite dimensional intuition on Ā, we would conclude that
since it is strictly upper triangular, with a zero diagonal, it shouldn’t be invertible
at all. This is false though; the spectrum is in figure 2.5. Since 0 /∈ λ(Ā), we can
invert it according to Lemma 2.10. However, the nonsymmetric Riccati equation
in Lemma 2.8 doesn’t work, so we use the trick in Lemma 2.10 to turn it into
a symmetric problem. The symmetric Riccati equation does have a solution (as
it must), and yields: Ā−1 = S(−1, 0,−2, 1, 0, 0, 0). So not only is the strictly
upper triangular Laurent matrix invertible, but its inverse is lower triangular (this
could never happen with finite dimensional matrices)! This example shows that
these infinite dimensional Laurent matrices can indeed be tricky, and we should be
careful.
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Figure 2.5: spectrum of Ā in Example 2.5

2.2.8 l2 Induced Norm of Lr Matrices with S Realizations

Later, in Chapter 3, we’ll use the arithmetic we just derived in iterative algo-
rithms, for which we’ll need some measure of convergence. We’ll use the induced
l2 norm. Unlike in example 2.2, where Ā was lower triangular, for general Ā ∈ S,
‖Ā‖ = ‖A(z)‖∞ is not trivial to calculate, due to the presence of both ‘causal’ and
‘anticausal’ components. First we need an outer factorization:

Lemma 2.11 (Outer Factorization) Assume we have a Hermitian X̄ = S{P, R,
Q, Y, Q∗, R∗, P ∗}, X̄ ≻ 0. Then ∃

L̄ = S{PL, RL, QL, DL, 0, 0, 0}
L̄−1 = S{(D−1

L PL), (RL − QLD−1
L PL), (−QLD−1

L ), D−1
L , 0, 0, 0}

with DL invertible such that L̄L̄∗ = X̄. Furthermore, such an L̄ can be calculated
as:

PL = P, RL = R, QL = (Q − RSP ∗)D−∗
L , DLD∗

L = Y − PSP ∗

Where S � 0 is the stabilizing solution to the Riccati equation(2.36) such that Y −
PSP ∗ ≻ 0, and DL can thus be calculated via Cholesky factorization. Proof: Fol-
lows from the proofs of Lemmas 2.8 and 2.9 �

If we have some non-Hermitian Ā ∈ S, (maybe singular), and we want to find

the norm ‖Ā‖, then we can equivalently calculate: ‖Ā‖ =
√

‖L̄L̄∗‖ − 1, where
L̄L̄∗ = Ā∗Ā+I ≻ 0 is an outer factorization, and hence L̄ has a stable lower(causal)
representation, L(z). Since ‖L̄L̄∗‖ = ‖L̄‖2 = ‖L(z)‖2

∞ we can then use the
Bounded Real Lemma for stable discrete LTI systems [61] to find ‖L(z)‖∞ and
thus ‖A‖.
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2.2.9 Calculating the Path Integral of the Symbol of an S
Realization Over the Unit Circle

We have one more calculation to discuss: the integral of the symbol of an Lr matrix
over the unit circle, which has the following very nice result:

Lemma 2.12 Assume that X̄ ∈ S has symbol: X(z) = P (zI − R)−1Q + D +
U(z∗I − W )−1V over z ∈ T. Then

1

2π

∫ 2π

0

Tr[X(ejθ)]dθ = Tr(D) (2.39)

Proof: We can rewrite the integral, pulling out the constant and using a change
of variables(z = eiθ; dz = ieiθdθ) as:

1

2π

∫ 2π

0

Tr[D]dθ +
1

2πi

∮

T

Tr[P (zI − R)−1Q + U(z∗I − W )−1V ]

z
dz (2.40)

or, trivially solving the first integral and splitting up the remaining integral to make
it easier to deal with:

= Tr[D] + Tr[
1

2πi

∮

T

P (zI − R)−1Q

z
dz] + Tr[

1

2πi

∮

T

U(z∗I − W )−1V

z
dz] (2.41)

Since we are evaluating z on the unit circle, z∗ = z−1, and making a change of
variables in the second integral to z = 1

ζ and dz = −1
ζ2 dζ where ζ is also on the unit

circle, but going clockwise, hence the negative sign cancels out:

= Tr[D] + Tr[
1

2πi

∮

T

P (zI − R)−1Q

z
dz] + Tr[

1

2πi

∮

T

V ∗(zI − W ∗)−1U∗

z
dz](2.42)

We will first consider the first integral, then generalize to the second. Since T

is a Jordan curve, we can consider it to be counter-clockwise inclosing all of the
poles in R, or alternatively clockwise encircling the rest of the extended complex
plane, including ∞, where it might have a residue. Thus according to the residue
theorem [62]:

1

πi

∮

T

P (zI − R)−1Q

z
dz = −2Res[

P (zI − R)−1Q

z
,∞] (2.43)

To calculate the residue at ∞, we write out the Laurent series expansion of the
integrand around the neighborhood of ∞. We have:

P (zI − R)−1Q

z
= P (

I

z2
+

R

z3
+

R2

z4
+

R3

z5
+ ...)Q (2.44)

Where the series expansion is valid because z is large(in the neighborhood of infinity)
and R is stable. So the coefficient corresponding to z−1 is 0 as is the residue and
hence the integral. This same idea, since W is stable, applies to the second integral,
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which is thus also zero, completing the proof. �

The utility of this formula isn’t immediately obvious, but it will be essential for
calculating the spatiotemporal H2 norm in chapter 5.

2.2.10 Summary, Lr Matrices with S Realizations

In this section we’ve studied bounded Laurent operators with rational symbols
and gained some intuition about them. We’ve seen how they can be thought of
as input output operators of mixed causal LTI systems, and learned about their
strange (compared to finite dimensional matrices) spectrums. We’ve also used the
LTI system idea to derive +, ×, and −1 operations for them, based only on their
stable realizations, which can be performed very fast (compared to treating them as
matrices of transfer functions) using Matlab. We saw how under these calculations,
the ‘order’ of the operators (the rational orders of their symbols) increase, but that
we can use simple LTI model-order reductions to find close approximations using
lower orders. We also developed fast and easy formulas for the transpose, the
shuffle permutation, and a way to calculate the l2 induced norm. The following
sections will have similar results for other matrix structures, so we showed the
detailed derivations of all of the formulas in this chapter to save on space (readers
can derive the later formulas by themselves).

Next, we will study Sequentially Semi-Separable matrices, which are the finite
time LTV analog of the infinite time LTI systems used to generate the Lr matrices.
This is where the results get interesting, because SSS matrices can be used to
represent more realistic systems!

2.3 Discrete LTV Systems and SSS matrices

In the last section we studied and developed a structure preserving arithmetic for
Laurent matrices with rational symbols, which can be thought of as the input-
output operators for mixed causal LTI systems over all time t ∈ Z. In this section,
we will do the same thing, but for the input-output matrices of mixed causal linear
time varying(LTV) systems over a finite time interval. This type of structured
matrix will be called ‘Sequentially Semi-Separable’(SSS).

Our LTV system over finite time steps will take the form:

[
xa

i−1

xc
i+1

]

=

[
Wi 0
0 Ri

] [
xa

i

xc
i

]

+

[
Vi

Qi

]

ui, yi =
[
Ui Pi

]
[
xa

i

xc
i

]

+ Diui (2.45)

for i ∈ {1, ..., N}. We are trying to use very similar form and notation to the
previous section, in order to indicate the parallels between the two structures. As
before, the state variables xa

i , xc
i are extraneous, and we can cancel them out to
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Figure 2.6: example of an SSS matrix (log10 | · |)

write down the input output mapping over time i ∈ {1, ..., N}:













y1
y2
y3
y4

.

.

.
yN













︸ ︷︷ ︸

ȳ

=




























D1 U1V2 U1W2V3 U1W2W3V4

.
.
.

.

.

.

P2Q1 D2 U2V3 U2W3V4

.
.
.

.

.

.

P3R2Q1 P3Q2 D3 U3V4

.
.
.

.

.

.

P4R3R2Q1 P4R3Q2 P4Q3 D4

.
.
.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
. UN−1VN

. . . . . . . . . . . . PN QN−1 DN




























︸ ︷︷ ︸

Ā













u1
u2
u3
u4

.

.

.
uN













︸ ︷︷ ︸

ū

(2.46)

Ā is an SSS matrix, which we will abbreviate using the notation Ā = SSS(Ps, Rs,
Qs, Ds, Us, Ws, Vs) from now on. To compare to the Laurent matrices in the last
section, see figure 2.6, an example of an SSS matrix with N = 40. Notice how
it’s finite, and not Toeplitz, but the exponential decay away from the diagonal is
similar to that of the section of the Lr matrix in figure 2.1.

Sequentially Semi-Separable matrices (also called ‘quasi-separable’ and ‘matri-
ces of low Hankel rank’) were first discussed in [47] and [63], but their roots go back
through semi-separable matrices to semi-separable integral kernels in the 1960’s in
Kailath’s paper [64], and much of the SSS arithmetic was worked out as far back as
[65]. The interest of [47] was in applications to LTV systems theory, but since then
SSS matrices have been studied with respect to scattering theory [48], super-fast
Toeplitz solvers[66], Szego polynomials, [67][68] and for their own sake as interest-
ing structured matrices [69][70][71][72][73][74][75][76][77][78]. The result of all of
this research is essentially a ‘superfast’, linear computational complexity (O(N))
arithmetic of SSS matrices, including +, ×, inverse, transpose, and Cholesky and
QR factorizations. In this thesis, we will mostly just use this arithmetic, although
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we will also state the relevent formulas in the next few subsections to show their
similarity to those for rationally symboled Lr matrices, and the methods used to
derive the Lr matrix arithmetic in the last section can be used identically to derive
the SSS arithmetic in this section. Notice that these formulas are extremely similar
to those in the previous section, except in the points where one might expect them
to be different: e.g. where for the inversion of Lr operators a Riccati equation is
solved, for the inversion of SSS matrices a Riccati recursion is iterated from 1 to
N .

2.3.1 SSS Addition

To add together two conformably sized SSS matrices, X = SSS(PX
s , RX

s , QX
s , DX

s

, UX
s , WX

s , V X
s ) and Y = SSS(PY

s , RY
s , QY

s , DY
s , UY

s , WY
s , V Y

s ) and obtain the SSS
generator form of their sum: X + Y = Z = SSS(PZ

s , RZ
s , QZ

s , DZ
s , UZ

s , WZ
s , V Z

s ),
simply perform the same computation as in Lemma 2.3:

PZ
s =

[
PX

s PY
s

]
, DZ

s = DX
s + DY

s , UZ
s =

[
UX

s UY
s

]

V Z
s =

[
V X

s

V Y
s

]

, QZ
s =

[
QX

s

QY
s

]

, , WZ
s =

[
WX

s 0
0 WY

s

]

, RZ
s =

[
RX

s 0
0 RY

s

]

for each 0 < s < N . This formula can also be found in [48], and can be derived
using the methods in section 2.2 by treating the SSS matrices as the input output
matrices of two LTV systems put in parallel.

2.3.2 SSS Multiplication

To multiply together two conformably sized SSS matrices, X = SSS(PX
s , RX

s , QX
s ,

DX
s , UX

s , WX
s , V X

s ) and Y = SSS(PY
s , RY

s , QY
s , DY

s , UY
s , WY

s , V Y
s ) and obtain the

SSS generator form of their product: XY = Z = SSS(PZ
s , RZ

s , QZ
s , DZ

s , UZ
s , WZ

s , V Z
s ),

there are essentially two calculations iterated, one forwards, and one backwards.
We will call them M1, and M2, and henceforth these symbols will denote the
following calculations:

M1 :

















RZ
s =

[
RY

s 0
QX

s PY
s RX

s

]

WZ
s =

[
WY

s 0
V X

s UY
s WX

s

]

QZ
s =

[
QY

s

QX
s DY

s + RX
s SsV

Y
s

]

UZ
s =

[
DX

s UY
s + PX

s SsW
Y
s UX

s

]

Ss+1 = QX
s UY

s + RX
s SsW

Y
s

s = s + 1
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and

M2 :











PZ
s =

[
DX

s PY
s + UX

s TsR
Y
s PX

s

]

DZ
s = DX

s DY
s + PX

s SsV
Y
s + UX

s TsQ
Y
s

V Z
s =

[
V Y

s

V X
s DY

s + WX
s TsQ

Y
s

]

Ts−1 = V X
s PY

s + WX
s TsR

Y
s

s = s − 1

To perform the SSS multiplication, we just calculate M1 for s = 1 : N starting
with S0 = 0, and then M2 for s = N : 1 starting with TN = 0, leading to Z̄
with O(N) computational complexity. Notice the similarity to Lemma 2.4: here
we just iterate Lyapunov recursions through each s, instead of solving steady state
equations. A similar set of formulas can be found in [48]. This can also be derived
using the methods in section 2.2, by treating the SSS matrices as the input output
matrices of two LTV systems put in series.

2.3.3 SSS Inversion

We will next find a formula to calculate the generators of the inverse of an SSS
matrix X = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs). As with the SSS multiplication, there
are two essential iterations performed in this calculation:

I1 :









Ss+1 = RsSsWs + (Qs − RsSsVs)
︸ ︷︷ ︸

Πs

(Ds − PsSsVs)
−1

︸ ︷︷ ︸

Φs

(Us − PsSsWs)
︸ ︷︷ ︸

Ψs

UF
s = ΦsΨs, QF

s = ΠsΦs

WF
s = Ws − VsΦsΨs, RF

s = Rs − ΠsΦsPs

s = s + 1

I2 :









UF
s = ΦsΨs, QF

s = ΠsΦs

V F
s = −VsΦs + WF

s TsQ
F
s , PF

s = −ΦsPs + UF
s TsR

F
s

DF
s = Φs + UF

s TsQ
F
s

Ts−1 = WF
s TsR

F
s + VsΦsPs

s = s − 1

Starting with S1 = 0, iterate I1 for s = 1 : N , then starting with s = N and
Ts = 0, iterate I2 for s = N : 1, at which point the SSS inversion is finished,
resulting in X̄−1 = F̄ = SSS(PF

s , RF
s , QF

s , DF
s , UF

s , WF
s , V F

s ).

Our formula above is believed to be similar to that in [63], and can also be
derived using the methods in section 2.2, by first assuming an LU factorization,
then solving for the appropriate generators. Note the similarity to the S realization
inversion formula in Lemma 2.8: here we iterate a Riccati recursion from s = 1 : N
whereas for the S realizations we solve a steady state Riccati equation. We should
also note that there are many other methods of performing O(N) inversions of
SSS matrices, based on ULV and QR factorizations etc. [47][48][71], which may be
numerically better, and even this method might be improved in many ways, e.g.
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by using a square root implementation of the Riccati recursion [79], but we use this
version for its clear and easy derivation, and connection to our other arithmetics.

We can also prove something interesting about the iteration:

Lemma 2.13 X = SSS(Cs, As, Bs, Ds, B
T
s , AT

s , CT
s ) ≻ 0 implies that Ds ≻ 0,

and Ss � 0 in I1. Proof: The fact that X̄ ≻ 0 implies that all of its principal
minors are also positive definite, hence Ds ≻ 0. Also, the first leading principal
minor implies D0 ≻ 0, and the second, using the Schur complement, implies D1 −
C1B0D

−1
0 BT

0 CT
1 ≻ 0, etc. In fact, these positive definite matrices are exactly the

(Ds −CsSsC
T
s ) terms occurring in the iteration on Ss. Since S0 = 0 � 0, and each

Ss+1 is a sum of semi-positive quadratic products of Ss and (Ds −CsSsC
T
s )−1 ≻ 0,

hence by induction all Ss � 0. �

Among other things, this lemma proves that for positive definite symmetric X,
this algorithm will always work, hence providing a method that can invert any
invertible Ā, in the same way as for Lr matrices, using the pseudoinverse formulas:
either ĀT (ĀĀT )−1 or (ĀT Ā)−1ĀT .

2.3.4 SSS Order Reduction

As with the Lr model order reduction, we can split up the SSS matrix into its
lower and upper triangular parts, and reduce each separately. This is by no means
optimal with respect to the matrix norm, but it works pretty well in practice.

Given some SSS matrix X = SSS(Cs, As, Bs, Ds, Es, Fs, Gs) where the sizes
As, Fs ∈ Rnx×nx are larger than is practical for fast computations, one might like
to find a close SSS approximation X ≈ Z = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) of
lower ‘SSS order’: Rs, Ws ∈ Rnz×nz where nz < nx.For brevity, we will only show
the ‘lower triangular’ version; the algorithm for the Cs, As, Bs part of the matrix,
since Ds is not affected, and the ‘upper triangular’ Es, Fs, Gs is just a transposed
version of the lower triangular and can thus be easily derived.

As with the SSS multiplication and inversion, there are two essential iterations
performed in this calculation:

R1 :

(
Ss+1 = AsSsA

T
s + BsB

T
s

s = s + 1

R2 :


















Ts = AT
s Ts+1As + CT

s Cs

VsΛsV
−1
s = SsTs

Âs = V −1
s+1AsVs

Ĉs = CsVs

B̂s = V −1
s+1Bs

Rs = Âs(1 : nz, 1 : nz)

Ps = Ĉs(:, 1 : nz)

Qs = B̂s(1 : nz, :)
s = s − 1
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where VsΛsV
−1
s in the second line of R2 is an ordered eigenvalue decomposition

Λ = diag(λ1, λ2, λ3...) with λj ≥ λj+1, and we have used Matlab notation in
lines 6 through 8 of R2 to indicate the selected rows and columns of the matrices.
The iteration proceeds as follows: Starting with s = 1 and Ss = 0, iterate R1 for
s = 1 : N . Then starting with TN = 0 and s = N , iterate R2 for s = N : 1.

If we compare this with Lemma 2.5 in section 2.2 for Lr matrices, we see
that this procedure is equivalent to a balanced truncation method of model order

reduction performed on an LTV system (

[
As Bs

Cs 0

]

) over time steps s = 1 : N ,

for which error bounds are also available, see [80]. Other methods for SSS order
reduction are based on SVD’s [48] or optimally minimizing the error in the Hankel
norm[47].

2.3.5 SSS Transpose and Permutation

Calculating the transpose of SSS matrices is easy, just like for S realizations, except
the computation must be performed at each s ∈ [1, 2, 3...N ]:

X̄T = SSS(V T
s , WT

s , UT
s , DT

s , QT
s , RT

s , PT
s ) (2.47)

Likewise, the shuffle permutation of SSS matrices just consists of using the earlier
formulas in Lemmas 2.6 and 2.7, once at each s ∈ [1, 2, 3...N ].

2.3.6 Calculating Norms of SSS Matrices

For Lr matrices, we used an outer factorization and the Bounded Real Lemma to
efficiently calculate the induced l2 norm, and something similar is possible for the
matrix 2-norm, or ‘spectral norm’ of SSS matrices. It is clear that ‖Ā‖ < γ if and
only if ĀĀT − γ2I ≻ 0, and we can check if ĀĀT − γ2I is positive definite in the
following way:

Lemma 2.14 X̄ = SSS(Ps, Rs, Qs, Ys, Q
T
s , RT

s , PT
s ) is positive definite if and only

if, when performing the Riccati recursion:

Ss+1 = RsSsR
T
s + (Qs − RsSsP

T
s )(Ys − PsSsP

T
s )−1(Qs − RsSsP

T
s )T (2.48)

(in I1), (Ys − PsSsP
T
s )−1 ≻ 0, ∀s ∈ [0, N ]. Proof: Necessity comes from the

proof of Lemma 2.13. Sufficiency goes as follows: If (Ys − PsSsP
T
s )−1 ≻ 0, then

we can calculate a Cholesky factorization of X̄ = L̄L̄T :

L̄ = SSS(Cs, As, Bs, Ds, 0, 0, 0) (2.49)

where

Cs = Ps, As = Rs, Bs = (Qs − RsSsP
T
s ) (2.50)
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and Ys − PsSsP
T
s = DsD

T
s is a Cholesky factorization. The existence of the

Cholesky factors L̄ prove that X̄ ≻ 0. �

Of course, the above norm calculation involves a bisection on γ (so does that
in the Laurent operator case, once you get to the Bounded Real Lemma), where
each step is O(N), but we can actually calculate the Frobenius norm much faster:
‖Ā‖2

F = Trace(ĀĀT ) with just an SSS transpose, multiplication, and trace, each
of which is O(N), without any bisection iterations. Unless we specifically need the
2-norm (as in H∞ synthesis in Chapter 3), we will often use the Frobenius norm
for this reason.

2.3.7 Partial Derivatives of an SSS Matrix-Vector Product

We have one more calculation to derive for SSS matrices in this section, which isn’t
much related to the previous or following calculations, but will be used only later
on in Chapter 4: a partial derivative of the product Āx̄ with respect to each of the
generators of Ā. Given

Ā = SSS(Pk, Rk, Qk, Dk, Uk, Wk, Vk)

=
















D1 U1V2 U1W2V3 U1W2W3V4
. . .

...

P2Q1 D2 U2V3 U2W3V4
. . .

...

P3R2Q1 P3Q2 D3 U3V4
. . .

...

P4R3R2Q1 P4R3Q2 P4Q3 D4
. . .

...
. . .

. . .
. . .

. . .
. . . UN−1VN

. . . . . . . . . . . . PNQN−1 DN
















and x =
[
xT

1 xT
2 ... xT

N

]T
, where we will assume that the generators of the SSS

matrix are constantly sized for s = 1 : N (although this doesn’t have to be the case)
and that the upper triangular Us, Ws, Vs side has the same order, nw, as the lower
triangular Ps, Rs, Qs side: Us, Ps ∈ Rnr×nw , Rs, Ws ∈ Rnw×nw , Qs, Vs ∈ Rnw×nc ,
Ds ∈ Rnr×nc , where nr is the number of rows in each block and nc the number of
columns, hence xs ∈ Rnc , x̄ ∈ RNnc , and Ā ∈ RNnr×Nnc . It’s then easy to see that

Āx̄ =












D1x1 + U1V2x2 + U1W2V3x3 + U1W2W3V4x4 + U1W2W3W4V5x5 + . . .
P2Q1x1 + D2x2 + U2V3x3 + U2W3V4x4 + U2W3W4V5x5 + . . .

P3R2Q1x1 + P3Q2x2 + D3x3 + U3V4x4 + U3W4V5x5 + . . .
P4R3R2Q1x1 + P4R3Q2x2 + P4Q3x3 + D4x4 + U4V5x5 + . . .

P5R4R3R2Q1x1 + P5R4R3Q2x2 + P5R4Q3x3 + P5Q4x4 + D5x5 + . . .
...











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and now we would like to calculate ∂[Āx̄]

∂θ̄•

for each of

θ̄P =








vec(PT
1 )

vec(PT
2 )

...
vec(PT

N )








, θ̄R =








vec(RT
1 )

vec(RT
2 )

...
vec(RT

N )








, θ̄Q =








vec(QT
1 )

vec(QT
2 )

...
vec(QT

N )








, θ̄D =








vec(DT
1 )

vec(DT
2 )

...
vec(DT

N )








,

θ̄U =








vec(UT
1 )

vec(UT
2 )

...
vec(UT

N )








, θ̄W =








vec(WT
1 )

vec(WT
2 )

...
vec(WT

N )








, θ̄V =








vec(V T
1 )

vec(V T
2 )

...
vec(V T

N )








It’s then easy to derive by hand that:

∂[Āx̄]

∂θ̄P
= SSS(0, 0, 0, Inr

⊗

ΦT
k , 0, 0, 0)

∂[Āx̄]

∂θ̄R
= SSS(Ps, Rs, Inw

⊗

ΦT
k , 0, 0, 0, 0)

∂[Āx̄]

∂θ̄Q
= SSS(Ps, Rs, Inw

⊗

xT
k , 0, 0, 0, 0)

where

Φ1 = 0, Φk+1 = RkΦk + Qkxk (2.51)

and

∂[Āx̄]

∂θ̄D
= SSS(0, 0, 0, Inr

⊗

xT
k , 0, 0, 0, 0) (2.52)

For the upper triangular side, the formulas are very similar (although not trans-
posed, as one might expect) as follows.

∂[Āx̄]

∂θ̄U
= SSS(0, 0, 0, Inr

⊗

βT
k , 0, 0, 0)

∂[Āx̄]

∂θ̄W
= SSS(0, 0, 0, 0, Inw

⊗

βT
k , Wk, Vk)

∂[Āx̄]

∂θ̄V
= SSS(0, 0, 0, 0, Inw

⊗

xT
k , Wk, Vk)

where

βN = 0, βk−1 = Wkβk + Vkxk (2.53)

So we see that the derivatives of Āx̄ with respect to each of the θ̄• vectors of
generators is actually a low order SSS matrix with N blocks. Actually, they have
even more in common than that: they all share common upper and lower multiplier
terms: each having either 0’s or Rs and Ws respectively. Hence when all of the
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θ̄•’s are ‘shuffled’ together to form

θ̄ =








θ̆1

θ̆2

...

θ̆N








, θ̆k =













vec(PT
k )

vec(RT
k )

vec(QT
k )

vec(DT
k )

vec(UT
k )

vec(WT
k )

vec(V T
k )













(2.54)

then the corresponding partial derivative of Āx̄ with respect to θ̄ will also have a
very low order, which can be calculated explicitly as:

∂[Āx̄]

∂θ̄
= SSS(Ps, Rs, Q̆s, D̆s, Us, Ws, V̆s) (2.55)

Where

Q̆s =
[
0nw×nwnc

Inw

⊗
ΦT

k Inw

⊗
xT

k 0nw×(nrnc+nw(nc+nr)+n2
w)

]

D̆s =
[
Inr

⊗
ΦT

k 0nr×(n2
w+nwnc) Inr

⊗
xT

k Inr

⊗
βT

k 0nr×(n2
w+nwnc)

]

V̆s =
[
0nw×(nw(2nc+nr)+n2

w+nrnc) Inw

⊗
βT

k Inw

⊗
xT

k

]

We should note that ∂[Āx̄]

∂θ̄
has Nnw rows, N(2n2

w +2nw(nr +nc)+nrnc) columns,
and SSS order nw, hence its computational complexity for arithmetic will be some-
thing like O(n5N) (where nw, nr, nc ∼ n). Fortunately, since the iterations for Φ

and β are both O(N), the SSS generators of ∂[Āx̄]

∂θ̄
can be computed and populated

in O(N).

We’ll leave this computation for now, coming back in Chapter 4 to use it for
fast distributed system identification.

2.3.8 SSS Inversion O(N) example

Now that we’ve derived the arithmetic and other computations for SSS matri-
ces, we’ll actually demonstrate the O(N) complexity on a simple example. We
randomly generated an SSS matrix and extended it to be longer and longer (in
a Toeplitz manner), and recorded the times to invert it and the resulting error
(as measured by ‖X̄X̄−1 − I‖) for different lengths, as compared to MATLAB’s
standard inversion solver(O(N3)). As we see in figure 2.7, the SSS inversion is in-
deed O(N) in practice, and thus much faster than standard dense solvers, without
sacrificing accuracy.

2.3.9 Summary, SSS matrices

So, we’ve now extended our structure preserving arithmetic of doubly infinite
Toeplitz Lr operators in the last chapter to finite dimensional, non-Toeplitz SSS
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Figure 2.7: Computational complexity and error comparisons

matrices in this section. The arithmetic includes +, ×, −1, and LU factorization,
and is only O(N), as opposed to the usual O(N2) and O(N3) complexity for dense
matrices. We can also calculate the transpose, shuffle permutation, and Frobenius
and 2-norm (to within some tolerance) in only O(N). As we saw in the exam-
ple, this complexity is real, and quickly (N ≈ 110) becomes faster than the usual
MATLAB dense matrix computations.

We also note that any banded matrix of bandwidth 2n + 1 can be put into
SSS structure of order n using the algorithm in appendix 2.7 in only O(Nn3)
computational complexity. So the inverse of the tridiagonal matrix shown in section
2.1.1 isn’t tridiagonal, but it is SSS.

Also, if trying to actually form an SSS matrix as a large dense matrix, a naive
method of filling in each of the N2 entries individually will be high O(N3) com-
plexity, but there are two clever methods for doing it in only O(N2) (the minimal
possible complexity) in appendix 2.8.

In our formulation of the SSS structure, we assumed that the generators at
each s ∈ [0, N ] could be arbitrarily different from eachother. In this case, it makes
sense that we cannot make an arithmetic that is any faster than O(N), since the
matrix is defined by O(N) data, and each piece of data should be used at least once.
However, in many cases this assumption is too general; often all of the generators in
s ∈ [0, N ] are identical, except for a few at the ends. This is the case, for example,
for the input-output operators of LTI systems over a finite horizon, and in certain
distributed control problems for homogeneous systems with boundary conditions.
In this case we require only order O(1) data to store our matrix, and so would
hope for an O(1) arithmetic, independent of the size, N . It turns out that this is
possible, using a specialization of the SSS arithmetic, as we will show in the next
section.
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2.4 Discrete LTI Finite Length Systems and
Almost Toeplitz SSS Matrices

In the first section, we considered LTI systems over infinite time, in the second
section, we considered LTV systems over finite time, and in this section, we will
look at an intermediate case: LTI systems over finite time. These will induce SSS
matrices with an additional ‘almost Toeplitz’ structure that will enable arithmetic
calculations that are even faster than O(N).

Our mixed causal system will take the same form as in the last section:

[
xa

i−1

xc
i+1

]

=

[
Wi 0
0 Ri

] [
xa

i

xc
i

]

+

[
Vi

Qi

]

ui, yi =
[
Ui Pi

]
[
xa

i

xc
i

]

+ Diui (2.56)

for i ∈ {1, ..., N}, but with all generators constant for NT < i < N −NB, and only
varying in s ∈ [0, NT ] and s ∈ [N − NB, N ]. As in the previous sections, we can
resolve the state variables, leading to the input-output relationship:












y1

y2

y3

y4

..

.
yN












=



















D1 U1V2 U1W2V3 U1W2W3V4

. . .
...

P2Q1 D2 U2V3 U2W3V4

. . .
..
.

P3R2Q1 P3Q2 D3 U3V4

. . .
.
..

P4R3R2Q1 P4R3Q2 P4Q3 D4

. . .
...

. . .
. . .

. . .
. . .

. . . UN−1VN

. . . . . . . . . . . . PNQN−1 DN



















︸ ︷︷ ︸

Ā












u1

u2

u3

u4

..

.
uN












(2.57)

which has the same SSS structure as in the last section, but additionally with all
generators constant for NT < i < N − NB, meaning that the submatrix Ā(NT :
N − NB, NT : N − NB) is Toeplitz, as we see in an example in figure 2.8.

Our definition of ‘almost Toeplitz’ SSS matrices will basically be the type of
matrices produced by ‘lifting’ the LTI mixed causal system over N steps to produce
equation (2.57). They will of course still have the SSS structure, but the generators
of the SSS matrices can be separated into three sections; the top, interior, and bot-
tom. For example, for Ā = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) above, the generators
(Ps, Rs, Qs, Ds, Us, Ws, Vs) in the top, for 0 < s < NT , and in the bottom, for
N −NB < s < N can be arbitrarily varying, but in the interior will be constant for
all NT < s < N − NB, which we will denote by (P∞, R∞, Q∞, D∞, U∞, W∞, V∞).

The great thing about such matrices, hereafter referred to as ‘Almost Toeplitz
Sequentially Semi Separable’ (ATSSS), is that their structure is closed under addi-
tion, multiplication, and inversion, although the sizes of NT and NB may change a
little bit. Furthermore, the Toeplitz structure of the interior can be used to break
the usual O(N) complexity of standard SSS arithmetic when NB + NT ≪ N . The
crux of our method is that because the interior of the SSS matrix is Toeplitz, the
iterations M1, M2, I1, I2, R1 in the SSS arithmetic formulas will quickly converge
to a steady state behavior, allowing us to skip to the other boundary, avoiding
iterating through the rest of the interior, and thus the bulk of the O(N) SSS
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Figure 2.8: Schematic diagram of an ‘almost Toeplitz’ SSS matrix

computational load, leading to O(1) complexity (assuming NT + NB ∈ O(1)).

In the following, we will show this arithmetic, which is identical to the standard
SSS arithmetic shown in the previous section, except modified to take advantage
of the convergence of the iterations in the interior. This convergence is proven in
section 2.4.6.

2.4.1 ATSSS Addition

To add together two conformably sized ATSSS matrices, X = SSS(PX
s , RX

s , QX
s ,

DX
s , UX

s , WX
s , V X

s ) and Y = SSS(PY
s , RY

s , QY
s , DY

s , UY
s , WY

s , V Y
s ) and obtain the

ATSSS generator form of their sum: X+Y = Z = SSS(PZ
s , RZ

s , QZ
s , DZ

s , UZ
s , WZ

s , V Z
s ),

does not involve any iterations, and is thus identical to the usual SSS calculation,
with the exception that the interior calculation of the generator matrices only needs
to be performed once, instead of N − NB − NT times. Simply perform: A1 above
for each 0 < s < NT , s = ∞ and N − NB < s < N .

2.4.2 ATSSS Multiplication

To multiply together two conformably sized ATSSS matrices, X = SSS(PX
s , RX

s ,
QX

s , DX
s , UX

s , WX
s , V X

s ) and Y = SSS(PY
s , RY

s , QY
s , DY

s , UY
s , WY

s , V Y
s ) and obtain

the ATSSS generator form of their product: XY = Z = SSS(PZ
s , RZ

s , QZ
s , DZ

s , UZ
s ,
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WZ
s , V Z

s ), there are two calculations iterated, just as in SSS multiplication, started
variously with different initial conditions.

For a standard SSS matrix without any Toeplitz structure, we would just cal-
culate M1 for s = 1 : N starting with S0 = 0, and then M2 for s = N : 1 starting
with TN = 0, leading to Z̄ with O(N) computational complexity, as in section
2.3.2. When X̄ and Ȳ have the ATSSS structure though, the iterations on S and
T converge(see Lemma 2.16), and we can skip most of the interior of the matrix,
saving alot of time when NT + NB ≪ N .

The iteration proceeds as follows, given some small positive tolerance, γ (chosen
heuristically to be very small, e.g. γ = 10−12). Starting with s = 1 and Ss = 0,
iterate M1 while ‖Ss+1 −Ss‖ > γ. The lowest s such that ‖Ss+1 −Ss‖ < γ will be
NT for Z̄. Having achieved convergence, we then skip the rest of the interior, by
setting S∞ = SNT

, RZ
∞ = RZ

NT
, WZ

∞ = WZ
NT

, QZ
∞ = QZ

NT
, UZ

∞ = UZ
NT

and finish at
the bottom by setting s = N − NB, Ss = S∞, and iterating M1 until s = N .

Starting with s = N and Ts = 0, we should then iterate M2 while ‖Ts−1−Ts‖ >
γ. The lowest N − s such that ‖Ts−1 −Ts‖ < γ will be NB for Z̄. Having achieved
convergence, we then skip the interior, by setting T∞ = TNB

, PZ
∞ = PZ

NB
, DZ

∞ =

DZ
NB

, V Z
∞ = V Z

NB
, and finish at the top, by setting s = NT , Ts = T∞, and iterating

M2 until s = 0, at which point the ATSSS multiplication is finished, resulting in
Z̄.

2.4.3 ATSSS Inversion

For ATSSS inversion, we will only show the method for positive definite matri-
ces, since we can prove convergence of the iterations in this case (see section
2.4.6) and since all inversion problems can be turned into positive definite in-

version problems via pseudoinverse formulas: Y
−1

= Y
T
(Y Y

T
)−1, where Y Y

T
=

X = SSS(Cs, As, Bs, Ds, B
T
s , AT

s , CT
s ) is positive definite, and thus this method is

not restrictive. However, experiments show that the non-symmetric SSS inversion
method, when applied to ATSSS methods, also converges in practice.

As with the ATSSS multiplication, there are two essential iterations performed
in this calculation, just as in the SSS version in section 2.3.3: I1, I2.

Starting with s = 1 and Ss = 0, iterate I1 while ‖Ss+1 − Ss‖ > γ. The lowest
s such that ‖Ss+1 − Ss‖ < γ will be the NT for Z̄. We then skip the interior, by
setting S∞ = SNT

, R∞ = RNT
, Q∞ = QNT

and finish at the bottom by setting
s = N − NB, Ss = S∞, and iterating I1 until s = N .

Starting with s = N and Ts = 0, we should then iterate I2 while ‖Ts−1−Ts‖ >
γ. The lowest N − s such that ‖Ts−1 − Ts‖ < γ will be the NB for Z̄. We then
skip the interior, by setting T∞ = TB, P∞ = PNB

, F∞ = FNB
and finish at the top,

setting s = NT , Ts = T∞, and iterating I2 until s = 0, at which point the ATSSS
inversion is finished, resulting in X̄−1 = Z̄ = SSS(Ps, Rs, Qs, Fs, Q

T
s , RT

s , PT
s ).
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2.4.4 ATSSS Order Reduction

Given some ATSSS matrix X = SSS(Cs, As, Bs, Ds, Es, Fs, Gs) where the sizes
As, Fs ∈ Rnx×nx are larger than is practical for fast computations, one might like
to find a close ATSSS approximation X ≈ Z = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) of
lower ‘SSS order’: Rs, Ws ∈ Rnz×nz where nz < nx. Just as for the SSS version in
section 2.3.4, for brevity, we will only show the ‘lower triangular’ version.

As with the ATSSS multiplication and inversion, there are two essential iter-
ations performed in this calculation, started variously with different initial condi-
tions: R1, R2. The iteration proceeds as follows:

Starting with s = 1 and Ss = 0, iterate R1 while ‖Ss+1 − Ss‖ > γ. The lowest
s such that ‖Ss+1−Ss‖ < γ will be NT for Z̄. We then skip the interior, by setting
S∞ = SNT

and finish at the bottom, setting s = N − NB, Ss = S∞, and iterating
R1 until s = N .

Starting with TN = 0 and s = N , we should then iterate R2 while ‖Ts−1−Ts‖ >
γ. The lowest N − s such that ‖Ts−1 − Ts‖ < γ will be NB for Z̄. We then skip
the interior, by setting T∞ = TNB

, C∞ = CNB
, A∞ = ANB

, B∞ = BNB
and finish

at the top, setting s = NT , Ts = T∞, and iterating R2 until s = 0, at which point
the ATSSS order reduction is finished, resulting in Z̄.

2.4.5 ATSSS Transpose & Permutations & Norm Calcula-
tion

For ATSSS matrices, the transpose and permutation algorithms are obvious exten-
sions of the SSS versions: just perform the same calculations as for the regular SSS
methods, but only at each 0 < s < NT , s = ∞ and N − NB < s < N .

As for the norm calculations, both the ‖ · ‖2 and ‖ · ‖F norm work as in the SSS
version, except with the same convergence as in the inversion and multiplication.

2.4.6 Convergence of ATSSS Arithmetic

There are only two types of iterations in the arithmetic calculations above that need
to converge in the interior for the ATSSS techniques to work; Sylvester iterations
on Ss in M1 and R1 and on Ts in M2, I2, and R2 and a Riccati iteration on Ss in
I1. When these matrices converge, so do all of the generators, allowing us to skip
the large interior of the matrices, reducing the computational complexity.

Lemma 2.15 Assume that the ATSSS matrix X = SSS(Cs, As, Bs, Ds, B
T
s , AT

s , CT
s )

is positive definite, X ≻ 0, then in the interior of X̄, Ss in I1 converges exponen-
tially fast to the the unique positive semi-definite stabilizing solution of the Riccati
equation:

S∞ = A∞S∞AT
∞ + (B∞ − A∞S∞CT

∞)(D∞ − C∞S∞CT
∞)−1(B∞ − A∞S∞CT

∞)T(2.58)
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Proof: Using the fact that D∞ ≻ 0 from Lemma 2.13, and assuming that A∞ is

stable, (A∞ −B∞D−1
∞ C∞, C∞) is detectable and (A∞ − B∞D−1

∞ C∞,−B∞D
−1/2
∞ )

is stabilizable, satisfying the conditions of Lemma 14.5.8 of [61], and combining this
with our result that Ss � 0 ∀s ∈ N, from our Lemma 2.13, the generators of X̄
thus satisfy the conditions in Theorem 14.5.2 of [61], hence proving that ‖Ss−S∞‖
converges exponentially fast. �

Note that above we assumed that ρ(Ā∞) < 1, which can be justified by physical
considerations inherent in the type of systems that we would like to consider (see
Chapter 6) and the fact that the ATSSS arithmetic derived above preserves this
stability (trivially for addition, multiplication, and model order-reduction, and for
inversion, we proved in Lemma 2.15 that S∞ is the stabilizing solution, hence R∞
is stable).

Now we can treat the Sylvester iterations. Once the iterations have left the
boundaries and entered the interior, they all take the basic form of:

Xs+1 = AXsB + C (2.59)

where ρ(A), ρ(B) < 1.

Lemma 2.16 Xs in equation (2.59) converges exponentially fast to the unique
solution X∞ = AX∞B + C, regardless of the initial condition X0. Proof: Sub-
tracting X∞ from equation (2.59), we get Xs+1 − X∞ = A(Xs − X∞)B. Hence
‖Xs − X∞‖ ≤ ‖As‖‖Bs‖‖X0 − X∞‖. There exists an r and an M such that
ρ(A)ρ(B) < r < 1 and ‖As‖‖Bs‖ < Mrs, for all s (see [81]), completing the proof.

�

From Lemma 2.15 and Lemma 2.16 we see that once the iterations in the SSS
calculations enter the homogeneous interior of an ATSSS matrix, they quickly
(exponentially fast) approach a steady state solution, which can be used for the
entire interior, allowing one to skip the rest of the iterations in the interior and go
to the other boundary, decreasing the computational complexity, and preserving
the ‘almost Toeplitz’-ness. Note that we wouldn’t expect the iterations to reach
a steady state while still in one of the boundaries (although this can happen if
the boundary is almost homogeneous), so usually, after each ATSSS arithmetic
operation, the sizes of the heterogeneous boundaries NT and NB of the resulting
ATSSS matrix will be greater than before. However, since the iterations converge
exponentially fast, the values of NT and NB will not grow very much. Thus when
NB + NT ≪ N , considerable savings are possible.

2.4.7 Example

We now extend the example in section 2.3.8 to our ATSSS algorithms. Using the
same matrices as before, we again recorded the time to invert them and the error
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Figure 2.9: Computational complexity and error comparisons

(as measured by ‖X̄X̄−1−I‖) for different lengths, and compared them to the SSS
routines and to MATLAB’s standard inversion solver, as we see in figure 2.9. Note
that, using the ATSSS routines, it doesn’t take any longer to invert the matrix of
size N = 200 than for N = 25 because the iterations converge and most of the
interior is skipped.

2.4.8 Summary, ATSSS matrices

So, in this section we’ve shown that when the SSS matrices of the previous section
have an additional ‘almost Toeplitz’ structure, the recursions in the SSS arithmetic
converge exponentially fast in the Toeplitz interior, allowing one to skip to the next
boundary, cutting out most of the computational load. The result is an arithmetic
for ATSSS matrices with O(1) complexity, that is, independent of the size, N . We
saw that this really works in the example.

We also note that these ATSSS methods are very close in concept to the ‘IVI’
systems of equations in [79], which deals with infinite matrices that are shift in-
variant in either direction off to infinity, but varying in the middle. See Chapter
11 for further extensions of these ideas.

2.5 Continuous LTI Systems and Their Transfer

Matrices

In the previous three sections, we’ve always been talking about mixed causal sys-
tems operating in discrete time, which induce input-output operators of Laurent
matrices, or SSS matrices. However, in section 1 we saw that all of our arithmetic
on Laurent matrices could just as well be thought of as arithmetic on stable real-
izations of transfer functions over the unit circle. This of course begs the question:
can we do the same thing for transfer functions on the imaginary axis? The an-
swer is yes, as we’ll show in this section, and such a transfer function arithmetic is
even useful, as we’ll see later in Chapter 10 for LPV systems (and likely also for
continuum distributed systems).
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Our mixed causal continuous time systems will take the form:

[
ẋa(t)
ẋc(t)

]

=

[
−W 0

0 R

] [
xa(t)
xc(t)

]

+

[
V
Q

]

u(t), y(t) =
[
U P

]
[
xa(t)
xc(t)

]

+ Du(t)

for t ∈ R, where R and W are Hurwitz; R is stable and −W is anti-stable. Instead
of thinking of this as a system moving forward in time with stable and antistable
parts, we can think of it as a system with a stable part moving forward in time,
xc(t), and a stable part moving backward in time, xa(t). Notice the similarity
between this and equations (2.5) in section 2.2.

Just as before, we can resolve the state variables to write this just in terms of
the inputs u(t) and outputs y(t), although we don’t get a matrix anymore, but
a convolution operator.Hence we can’t use our matrix intuition like before, but
by using a Fourier transform, we can just think of this convolution operator as a
transfer function:

A(s) = D + P (sI − R)−1Q + U(s∗I − W )−1V (2.60)

where s is on the imaginary axis and R and W are both strictly stable. We’ll
abbreviate such transfer functions as:

A = Sc(P, R, Q, D, U, W, V ) (2.61)

and we will use the notation Ā ∈ Sc to indicate that Ā is a mixed causal realization
of A(s) with stable (with respect to the imaginary axis) causal and anticausal parts.

By again using our LTI systems thinking, except now in continuous time, we
can construct a structure preserving arithmetic of such realizations, as follows. The
following formulas and results can be derived analogously to those in section 2.2,
and are very similar.

2.5.1 Sc Addition

Lemma 2.17 Given

X̄ = Sc{PX , RX , QX , DX , UX , WX , VX}
Ȳ = Sc{PY , RY , QY , DY , UY , WY , VY }

Then a realization of the sum: Z̄ = X̄ + Ȳ is:

Z̄ = Sc{
[
PT

X

PT
Y

]T

,

[
RX 0
0 RY

]

,

[
QX

QY

]

, (DX + DY ),
[
UX UY

]
,

[
WX 0
0 WY

]

,

[
VX

VY

]

}

Proof: This is verifiable by inspection, and follows that in discrete time in Lemma
2.3 �
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2.5.2 Sc Multiplication

Lemma 2.18 Given:

X̄ = Sc{PX , RX , QX , DX , UX , WX , VX} (2.62)

Ȳ = Sc{PY , RY , QY , DY , UY , WY , VY } (2.63)

X̄Ȳ = Z̄ = Sc{PZ , RZ , QZ , DZ , UZ , WZ , VZ} with

DZ = DXDY , PZ =
[
PX DXPB + UXS

]

RZ =

[
RX QXPY

0 RY

]

, QZ =

[
QXDY + TVY

QY

]

UZ =
[
UX DXUY + PXT

]
, WZ =

[
WX VXUY

0 WY

]

, VZ =

[
VXDY + SQY

VY

]

where S and T are the unique solutions to the Sylvester equations:

WXS + SRY + VXPY = 0, RXT + TWY + QXUY = 0

Proof: This is easy to verify using LTI continuous time systems theory, where
we consider X and Y to be mixed-causal system realizations that we put in series.
The derivation follows that in discrete time as in Lemma 2.4. �

Note that the proper rational transfer function structure, and also the stability of
the realizations, is preserved under these addition and multiplication algorithms:
X̄, Ȳ ∈ Sc ⇒ Z̄ ∈ Sc.

2.5.3 Sc Inversion

We have shown the closure of Sc under addition and multiplication, but we will
also need inversion.

Lemma 2.19 Given A = Sc{P, R, Q, D, U, W, V }, if the nonsymmetric CARE:

(R − QD−1P )T + T (W − V D−1U) + TV D−1PT + QD−1U = 0 (2.64)

has a stabilizing solution, e.g., a T for which both

WF = W − V D−1(U − PT )

RF = R − (Q − TV )D−1P

are stable, then A has an inverse Ā−1 = F̄ = Sc{PF , RF , QF , DF , UF , WF , V F }
where

DF = D−1, UF = DF (U − PT ), QF = (Q − TV )DF

V F = SQF − V DF , PF = UF S − DF P
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where S is the (unique) solution to the Sylvester equation

WF S + SRF + V DF P = 0 (2.65)

Proof: can be derived similarly to Lemma 2.8 by first assuming an outer factor-
ization Ā = L̄Ū then constraining the resulting product. �

Note that whereas in the S version in Lemma 2.8 we had a discrete algebraic Riccati
equation and a Stein equation, here we have a continuous algebraic Riccati equation
and a Lyapunov type equation. Similarly to the S case, the Riccati equation (2.64)
will not have a stabilizing solution for every invertible Ā, but in the symmetric
case it does:

Lemma 2.20 Given a Hermitian X̄ = Sc{P, R, Q, Y, Q∗, R∗, P ∗}. Then X̄ ≻ 0 if
and only if the Riccati equation

RG + GR∗ + ΦY Φ∗ = 0 (2.66)

where Φ = (Q−GP ∗)Y −1 and Π = R−ΦP , has a stabilizing solution G, in which
case the Lyapunov equation

Π∗H + HΠ + P ∗Y −1P = 0 (2.67)

has a unique solution H, and X̄−1 = Z̄ = Lr{PZ , RZ , QZ , YZ , QT
Z , RT

Z , PT
Z }, may

be calculated as:

PZ = Φ∗H − Y −1P, RZ = Π, QZ = Φ, YZ = Y −1

Proof: Set F (s) = 1
2Y +P (sI−R)−1Q, and this follows directly from the Positive

Real Lemma ([60], Lemma 13.27). Note that X(s) ≻ 0∀s ∈ ℑ implies Y ≻ 0, and
that λ(R − ΦP ) ∈ C− is sufficient for (2.67) to have a unique solution and for Z̄
to be stable. Note that the adjoint is characterized as: Sc{P, R, Q, D, U, W, V }∗ =
Sc{V ∗, W ∗, U∗, D∗, Q∗, R∗, P ∗}. The inversion formula then follows as a special
case of Lemma 2.19 �

Just as with the Lr matrices, we can now extend to the nonsymmetric case:

Lemma 2.21 Assume Ā ∈ Sc. Then ∃Ā−1 ∈ Sc ⇔ 0 /∈ λ(Ā). Furthermore,
we can calculate it using the formulas in Lemma 2.20. Proof: ⇐ Then clearly
0 ≺ ĀĀ∗ ∈ Sc, and we can use Lemma 2.20 to calculate Ā−1 = Ā∗(ĀĀ∗)−1 ∈ Sc

⇒ A bounded Ā−1 always implies 0 /∈ λ(Ā). �

We will call such Ā ∈ Sc with Ā−1 ∈ Sc ‘regular’. Note that we have been assuming
Ā square, but these results could easily be extended to nonsquare Ā using left and
right inverses.
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We also note that the rational order of Ā−1, as calculated above in Lemma
2.21, will be generally 3 times the rational order of Ā. However, often this can
be avoided by inverting Ā directly, if(2.64) does have a stabilizing solution (which
can always be calculated using the sign iteration [82]), notice that the resulting F̄
does not increase in order from Ā. This is often the case in practice, allowing us
to greatly speed up our iterative computations.

2.5.4 Sc Order Reduction

Through the above two operations, Z(s) will be a rational transfer matrix with
order larger than X(s) or Y (s). In the same way as for the Lr matrices in section
2.2, since we represent Z̄ as the sum of Z(s) = L(s) + U(s) with LTI causal and
anticausal interpretations, respectively, we can efficiently perform order reduction
on Z by performing standard LTI state space model order reduction on its upper
and lower triangular parts separately. Since each is stable, using, e.g. balanced
truncation, we also obtain an H∞ bound on the error of the transfer function(see
e.g. [60]). If we perform balanced truncations such that ‖L(s) − L̃(s)‖∞ < eL,

‖U(s)−Ũ(s)‖∞ < eU , then the reduced order realization ˜̄Z = ˜̄L+ ˜̄U has error bound

‖Z̄ − ˜̄Z‖ < eL +eU . This is just the continuous domain analog of the procedure for
Lr matrices in section 2.2, and formulas for continuous domain balanced truncation
can be found in [60], so we will omit them here.

2.5.5 Sc Transpose, Permutation, and Norm

The transpose and permutation formulas are exactly those in section 2.2.6 of the
Laurent matrix section. The norm is also computed in the same way as in section
2.2.8, only the outer-factorization is different on the imaginary axis from on the
unit circle:

Lemma 2.22 (Outer Factorization) Assume we have a Hermitian X̄ = Sc{P,
R, Q, Y, Q∗, R∗, P ∗}, X̄ ≻ 0. Then ∃

L̄ = Sc{PL, RL, QL, DL, 0, 0, 0}
L̄−1 = Sc{(D−1

L PL), (RL − QLD−1
L PL), (−QLD−1

L ), D−1
L , 0, 0, 0}

with DL invertible such that L̄L̄∗ = X̄. Furthermore, such an L̄ can be calculated
as: PL = P, RL = R, DLD∗

L = Y, QL = (Q − GP ∗)Y −1DL, where G � 0
is the stabilizing solution to the Riccati equation(2.66). DL can be calculated via
Cholesky factorization. Proof: The derivation is part of that of the inversion.
Since X̄ ≻ 0, a stabilizing G exists by the positive real lemma. L̄ ∈ Sc since RL = R
is stable, and L̄−1 ∈ Sc since G is stabilizing and thus (RL −QLD−1

L PL) is stable.
�

As for the L2 induced norm of an Sc realization, we can use the Bounded Real
Lemma for stable continuous LTI systems [60] to find the infinity norm of L(s) and
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thus A(s), where L̄L̄∗ = Ā∗Ā + I ≻ 0, is an outer factorization as explained in
section 2.2.8 for Lr matrices.

2.5.6 Summary, Sc realizations

So, in this section we have basically replicated the results of transfer functions on
the unit circle in section 2.2 for transfer functions on the extended imaginary axis.
All of the results are very nicely similar; continuous domain Riccati equations
instead of discrete time Riccati equations, Lyapunov equations instead of Stein
equations, etc. However, our uses of these arithmetics will be very different, as we
will see in chapters 5 and 10.

2.6 Conclusion

In this chapter we have seen that the input output operators of mixed-causal sys-
tems have a special structure (S, SSS, ATSSS, or Sc, depending on the domain
and properties of the system), and that by using basic linear algebra and basic lin-
ear systems theory, we can develop an arithmetic(+,×,−1) of such operators that
preserves the special structure (in contrast to the other structures in subsection
2.1.1). In the cases of the rationally symbolled Laurent matrices and the mixed
causal transfer functions over the imaginary axis, this arithmetic took the form
of using finite matrix calculations on stable realizations to equivalently do calcu-
lations for infinite dimensional operators, while for SSS and ATSSS matrices, we
saw that similarly by performing all calculations on the small ‘generator matri-
ces’, such operations could be reduced from O(N3) to O(N) and O(1) complexity,
respectively.

Next, in Chapter 3, we will show how these results can be used not just for
arithmetic, but that we can build structured Riccati and Lyapunov solvers with
them using iterative algorithms, and thus ultimately do controller synthesis and
analysis very efficiently. In Part II (Chapters 4-10) of this thesis, we will then see
how the structured matrices of this chapter can be profitably used to represent
repetitive, LPV, and varius kinds of distributed systems.

2.7 Appendix: Algorithm for finding SSS matrix

representations of banded matrices

For full matrices, there are already published O(N2n2) methods for finding the SSS
generators [47][48]. However, since in distributed systems applications, matrices are
often banded, we will print here a O(Nn3) specialization of these methods to such
matrices.

Say we have a banded matrix, A ∈ R
N×N , with n nonzero bands directly on

either side of the diagonal, which we would like to find an SSS representation
for: Ā = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs). We assume that this is a scalar, not a
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block, SSS matrix for simplicity here, and will just show the Matlab pseudocode
for the upper triangular U, W, V side, since lower triangular can be found just by
a transpose of this. The routine is as follows:

initialize variables:

U = 0(1, n, N); W = 0(n, n, N); V = 0(n, 1, N);

H = A(1, 2 : n + 1);
[
L, M, GT

]
= svd(H);

L = [L, 0(1, n − 1)];

M = [M, 0(1, n − 1); 0(n − 1, n), 0(n − 1, n − 1)];

G = [G; 0(n − 1, n)];

U(:, :, 1) = L(1, 1 : n);

V (:, :, 2) = M(1 : n, 1 : n) ∗ G(1 : n, 1 : nc);

T = M(1 : n, 1 : n) ∗ G(1 : n, nc + 1 : size(G, 2));

now run the loop:

for i = 2 : N − 1

H = [[T, 0(n, size(H2, 2) − size(T, 2))]; A(i, 1 + i : min(i + n, N))];
[
L, M, GT

]
= svd(H);

L = [L, 0(size(L, 1), n − 1)];

M = [M, 0(size(M, 1), n − 1); 0(n − 1, size(M, 2)), 0(n − 1, n − 1)];

G = [G; 0(n − 1, size(G, 2))];

W (:, :, i) = L(1 : n, 1 : n);

U(:, :, i) = L(1 + n : size(L, 1), 1 : n);

V (:, :, i + 1) = M(1 : n, 1 : n)G(1 : n, 1);

T = M(1 : n, 1 : n)G(1 : n, 2 : size(G, 2));

end (2.68)

Where svd() is a singular value decomposition, min() is the minimum of two argu-
ments, and size() finds the dimensions of a matrix. This routine outputs N length
arrays of matrices U(:, :, 1 : N), W (:, :, 1 : N), and V (:, :, 1 : N) which are the SSS
generators of the upper triangular part of Ā. The loop cycles N times, each time
computing some matrix multiplications and an SVD of size n × n, and hence is
O(Nn3) complexity.

2.8 Appendix: Algorithms for Building Dense ma-

trices out of SSS representations in O(N2)

This appendix will provide an algorithm for doing basically the opposite of the last
appendix; given an SSS representation: Ā = SSS(P, R, Q, D, U, W, V ), we’d now
like to build a full matrix, filling in each of it’s O(N2) entries, as fast as possible.
It turns out that this is possible in only O(N2), using two different methods.

The first, thought of by Ivo Houtzager, is to employ the O(N) SSS matrix-
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vector routine in [48] to multiply Ā by each of the N columns of the N × N
identity matrix. This is fast and easy to program, and works best when the ‘SSS
order’ (the dimensions of the R and W matrices) is much larger than row size, nr,
of P and U and the column size, nc, of Q and V (empirically, 15 times larger).

When the SSS order is not so large, there is another routine that works much
faster, as follows. We will show the routine in Matlab pseudo-code, and only for
the lower triangular P, R, Q side of the matrix, since the other half can be built
using a transpose of this method. The routine is as follows:

initialize variables:

L = zeros(nrN, ncN);

fill in the first diagonal:

for k = 2 : N

r = k; c = k − 1;

L((nr(r − 1) + 1) : nr(r), (nc(c − 1) + 1) : nc(c)) = P (:, :, r)Q(:, :, c);

end

initialize variables:

Π = zeros(size(R,2), size(R, 2), N − 1);

for i = 1 : N − 1

Π(:, :, i) = I ;

end

fill in the rest of the matrix:

for k = 2 : N

z = 1; Π̂ = 0;

for i = k : N − 1

Π̂(:, :, z) = R(:, :, i)Π(:, :, z);

r = i + 1; , c = i − (k − 1);

L((nr(r − 1) + 1) : nr(r), (nc(c − 1) + 1) : nc(c)) = P (:, :, r)Π̂(:, :, z)Q(:, :, c);

z = z + 1;

end

Π = Π̂;

end

The result of this routine will be L, the lower triangular half of A.



3
Structure Preserving
Iterations

Having developed computationally fast and structure preserving arithmetics for
four types of large matrices and operators in Chapter 2, in this chapter we will
investigate controller synthesis and analysis routines which can be built on these
arithmetics. This progression will eventually lead to computationally efficient sys-
tem analysis and controller synthesis routines for all of the structures in Chapter
2, and also for operators with multiple levels, each level having one of the afore-
mentioned structures. Such computation methods will then be employed in Part
II for distributed and repetitive control systems, the system matrices of which can
be shown to have these structures.

3.1 Introduction

Why consider structure preserving iterations at all? Because many of the tradi-
tional methods for control and analysis scale very badly to large problems. Con-
sider as an example H∞ synthesis for a linear system with state, input, and output
dimensions N .

Perhaps the most used approachs these days are the LMI approach [83] of O(N6)
complexity, and the Riccati equation approach [84] of O(N3) complexity(due both
to the necessity of solving Riccati equations (probably using a QZ method) and
calculating SVDs). These techniques both work very well on small problems (N <
50), but not so well on large ones; the computational load and memory necessary
just become too much for practical use; no one wants to spend 3 weeks of computer
time to design a controller.

Furthermore, LMIs, QZ methods, and SVDs all require ‘parsing’ of the data or
an ordering of eigenvalues that generally destroys any nice matrix structure. Hence
even for large problems (N > 500) that have realizations of matrices possessing
some of the special structures we discussed in Chapter 2, this cannot be used to
any advantage.

However, there are techniques that can be used to solve Riccati equations which
preserve certain matrix structures, and it turns out that, with care, such techniques
can be used to perform each step of H∞ analysis and synthesis in a structure

59
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preserving way. In this chapter, we’ll discuss such a method, called the matrix sign
function. Our motive for investigating it is that it will turn out that at least one
method for calculating the matrix sign function (called the matrix sign iteration)
can be performed extremely efficiently, and in a structure preserving way, for each
of the special operator structures discussed in the previous chapter.

The beginning of this chapter will just be an overview of the matrix sign func-
tion, its history and characteristics. Section 3.2 will be devoted to finding clever
ways to use the matrix sign function to do the jobs usually done by QZ, eigenvalue
decompositions, and SVDs. The end of the chapter (sections 3.4, 3.5) will then
connect this work to the rest of this thesis; it will show how the matrix sign func-
tion preserves the special matrix structures in Chapter 2, allowing for very fast and
efficient computation of large scale structured control problems, on one or multiple
levels.

3.1.1 History

There are many types of algorithms that are called ‘structure preserving’, but
we will only talk about a few which happen to converge very fast, with easily
computable bounds, and which solve all of the problems that we are presented
with in a common framework. Specifically, most of our discussion in this chapter
will be focused on the ‘matrix sign function’, its calculation, uses, and properties.
We will also briefly discuss the matrix sign iteration’s discrete domain sibling, the
doubling algorithm, in section 3.1.3.

The matrix sign function was first discovered for use in control circa 1971 by
J.D. Roberts and made privately available in the form of an internal report, but
not published in a publicly available journal until [85](although the matrix sign
function was evidently used as early as 1877 for other purposes (see [86] for a
history)). Since then it has been used in control and many other fields involving
eigenvalue decompositions and matrix roots. For a comprehensive survey up to
1995, see [86], and for more recent work, [87]

3.1.2 Useful Definitions

The matrix sign function is actually a generalization to matrices of the ‘sign’ func-
tion generalized to the open complex plane

sign(x) =







−1, if ℜ(x) < 0
0, if ℜ(x) = 0
1, if ℜ(x) > 0

(3.1)

but restricted to a domain everywhere but on the imaginary axis D = C−
⋃

C+.
Hence the Jordan decomposition definition of the matrix sign function is:

Definition 3.1 [86] Given matrix X with Jordan decomposition X = P

[
L 0
0 R

]

P−1
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where λ(L) ∈ C−, λ(R) ∈ C+,the matrix sign of X is defined as sign(X) =

P

[
−IL 0
0 IR

]

P−1 where IL and IR are the same size as L and R, respectively.

Note that this is not an elementwise generalization of a scalar function to matrices,
but instead a generalization via the spectrum of the matrix (see e.g. the excellent
book [87]). For the scalar sign function, it’s clear that sign(x) is infinitely con-
tinuously differentiable on x ∈ D, hence the matrix sign function, sign(X), is a
continuous function on the set of matrices X ∈ Cn×n with spectrum in D ([87],
Theorem 1.19).

It turns out that the matrix sign function, for matrices X with λ(X) ∈ C−
⋃

C+,
can equivalently be defined by a Newton iteration, usually called ‘the matrix sign
iteration’:

Algorithm 3.1 (Sign Iteration [85])

Z0 = X

Zk+1 =
1

2
(Zk + Z−1

k ) for k = 0, 1, 2, ...

sign(X) = lim
k→∞

Zk

which is fortunate, since Jordan Decompositions are impractical for actual com-
putations. The matrix sign function also has other equivalent definitions based
on integral representations, the matrix square root, and Green’s functions, but we
won’t use any of them, so just refer the reader to [86].

3.1.3 Useful Facts

The following facts (1:4 are from [86]), are all easily confirmed using Definition 3.1:

1. X and sign(X) commute: Xsign(X) = sign(X)X

2. if V is nonsingular: sign(V −1XV ) = V −1sign(X)V

3. if c is a scalar in D, then sign(cX) = sign(c)sign(X)

4. sign(XT ) = sign(X)T

5. sign(sign(X)) = sign(X)

6. ∀k ∈ N: sign(Zk) = sign(X)

7. X ∈ Rn×n has Trace(sign(X))+n
2 eigenvalues in C+ and Trace(sign(X))−n

2 eigen-
values in C−
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Figure 3.1: Typical sign iteration convergence

Comment 3.1 (Equivalence to Doubling Algorithm) Another really nice thing
about the sign iteration is that, while it may not be immediately obvious, it is
equivalent to a doubling algorithm, as first shown by Anderson [88]. Define Tk =
(Zk + I)(Zk − I)−1, or alternatively Zk = (Tk + I)(Tk − I)−1, where Zk is the
iteration in Algorithm 1 above, then it is not too difficult to prove that Tk+1 = T 2

k ;
Tk is being squared at each step k. Note that the transformation between Zk and
Tk is a bilinear transformation mapping the imaginary axis to the unit circle. So it
is no surprise that using bilinear transformations, one can use the sign iteration to
solve discrete time control problems, and doubling algorithms to solve continuous
time control problems, but this doesn’t seem useful, as the convergence (and hence
complexity, in the case of the matrix structures discussed in chapter 2) is the same.

Another important characteristic of the sign iteration is its quadratic rate of con-
vergence:

Lemma 3.1 ([87], Theorem 5.6) Let X have no eigenvalues on the imaginary axis,
then Zk converges to sign(X) quadratically fast:

‖Zk+1 − sign(X)‖ ≤ 1

2
‖Z−1

k ‖‖Zk − sign(X)‖2 (3.2)

See e.g. figure 3.1 for a typical convergence curve (actually, convergence can be
made even faster [86] by scaling Algorithm 1 using Fact #3 above, but this won’t
change the character of our results, so we won’t discuss it.) While this proves
quadratic convergence, it doesn’t give us much intuition about what makes Zk

converge quickly or slowly.

Some insight can be given in the following way. Assume V ΛkV −1 is an eigen-
value decomposition (this also works with Jordan decompositions, but is easier to
understand with a diagonalization) of Zk, with Λk the diagonal matrix of eigenval-
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Figure 3.2: A strange trajectory starting at λ0 = 0.3 + 4.2i, with unit circle for
reference

ues. Then it’s easy to see from Algorithm 1 that:

1

2
(Z0 + Z

−1
0 ) =

1

2
(V Λ0V

−1 + V Λ−1
0 V

−1) = V
1

2
(Λ0 + Λ−1

0 )V −1 = V Λ1V
−1 = Z1

1

2
(Z1 + Z

−1
1 ) =

1

2
(V Λ1V

−1 + V Λ−1
1 V

−1) = V
1

2
(Λ1 + Λ−1

1 )V −1 = V Λ2V
−1 = Z2

...

Hence V always reduces Zk to a diagonal matrix, and the iterations on X can
equivalently be thought of as iterations on its eigenvalues, each by itself: Λk+1 =
1
2 (Λk + Λ−1

k ). The convergence of Zk is thus dominated by the convergence of its
eigenvalues, λ to sign(λ) through the scalar sign iteration. From Definition 3.1 we
know that λk → 1, ∀λ0 ∈ C+ and λk → −1, ∀λ0 ∈ C−, but this iterated scalar
map can actually have some strange behavior, as shown in figure 3.2. We see that
progress is definitely not monotonic, and λk comes very close to the imaginary
axis before finally going out to +1. However, it is possible to analyze the iterative
map and figure out some bounds on how many steps it takes λk to get within
ǫ to sign(λ). Using these bounds, one can then bound the convergence of the
matrix sign iteration based on its ‘worst’ eigenvalues, and the conditioning of the
generalized eigenvectors V ,V −1 as follows:

Lemma 3.2 For a matrix X with no purely imaginary eigenvalues, the number of
sign iterations k to reach ‖Zk−sign(X)‖2 ≤ ǫ for X = PJP−1 will be O(log2(η)2+

log2(log2(ǫ
−1 + cond(P )))), where η = maxi{1 + |ℜ(λi)| + |ℜ(λi)|−1 + |ℑ(λi)|

|ℜ(λi)|}
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Proof: [28], Lemma 3.5 �

So, using the following assumptions:

• A1: ∃β1 : ρ(X) < β1 < ∞
• A2: ∃β2 : mini |ℜ(λi(X))| > β2 > 0

• A3: ∃β3 : cond(P ) < β3 < ∞ for X = PJP−1

we can use the finite values β1, β2, β3 to bound the number of iterations, k, to
reach some finite tolerance ‖Zk − sign(x)‖ < ǫ. A1 and A2 imply that η in Lemma
3.2 will always be finite, but do not seem very restrictive, as they just imply some
analytic continuity around the imaginary axis and a finitely bounded spectrum. A3
just makes up for the difference between the spectral radius and spectral norm, and
keep in mind that β3 can be very large without unduly increasing k, for example
log2(log2(10100)) < 9. From now on the set of matrices that satisfy A1, A2, and
A3 will be denoted as A.

Comment 3.2 (When λ(X) hits the imaginary axis) A basic assumption in
our definition of the matrix sign is that the spectrum of X does not intersect the
imaginary axis. However, it could happen that we unknownly try to perform the
sign iteration on a matrix which does not satisfy this condition. In this case, two
things can happen: the iteration can go on forever without converging, or one of the
Zk can turn up singular, halting the iteration. The values of λ on the imaginary
axis which will lead to a singular Zk are countable infinite, so we will randomly
encounter them with probability zero, but we may hit a Zk that is numerically
singular.

We also note that as the spectrum of X approaches the imaginary axis, as we
saw in Lemma 3.2, the number of iterations necessary for convergence increases,
so it can be hard to tell if X has spectrum on the imaginary axis, or just very near
it. Anyway, when λ(X) has elements very near the imaginary axis, the computa-
tional results usually aren’t very good(see Chapter 4, section 6), so in practice this
difference doesn’t really matter.

We’ve now overviewed the definition of the sign function and some basic facts
about it, and gotten some intuition for how the sign iteration converges. We’ve
seen that the convergence is locally quadratic but not monotonic, and that given
a few assumptions on our matrices, we can guarantee convergence to some small
tolerance ǫ in a finite, and low, number of iterations. Next, we’ll show how the sign
function can be used in many control problems.

3.2 Applications

In Roberts’s original paper [85], he showed how the matrix sign function could be
used to solve Lyapunov and Riccati equations, and perform a model order reduction
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by eliminating the fast modes. In this section we will show some extensions of some
of these results, and derive a few new applications.

3.2.1 Matrix Stability and Square Root

The matrix sign can be used to check if the spectrum of a matrix is entirely in one
half plane, as follows:

Lemma 3.3 For some matrix X, sign(X) = −I if and only if ℜ(λ(X)) < 0. �
Proof: Assume sign(X) = −I, then sign(X) = P−1sign(X)P = sign(P−1XP ) =

sign(

[
L 0
0 R

]

) = −I, hence R ∈ C0×0, L ∈ Cn×n, and thus ℜ(λ(X)) < 0. For ne-

cessity, assume ℜ(λ(X)) < 0, then sign(X) = Psign(

[
L 0
0 R

]

)P−1, but R ∈ C0×0

and L ∈ Cn×n, so sign(X) = P (−I)P−1 = −I �

Hence to check the stability of a system, ẋ = Ax, we can simply check if
sign(A) = −I. In addition, through the Cayley transform Xc = C(Xd) ≡ (I +
Xd)(−I + Xd)

−1, it is well known that ρ(Xd) < 1 ⇔ ℜ(λ(Xc)) < 0, so we could
also check the spectral radius, or the spectral norm (‖Xd‖ = ρ(XdX

T
d ) in a similar

way. However, through the bilinear transformation (see comment 3.1) this would

be equivalent to the simpler task of repeatedly squaring Xd to see if X2k

d → 0
(Note: see section 3.3.1 for comments on the numerical viability of such a method,
and how to improve on it).

Another computation we’ll need, although less often, is the square root:

Lemma 3.4 Given A with no eigenvalues which are both non-positive and real,

sign(

[
0 A
I 0

]

) =

[
0 A1/2

A−1/2 0

]

(3.3)

Proof: [89]. �

3.2.2 Lyapunov and Riccati Equations

In most control and analysis applications, we deal with symmetric Lyapunov and
Riccati equations, but as we’ve already seen in the structured matrix inversion
methods in Chapter 2, sometimes in this thesis we encounter nonsymmetric prob-
lems, and so will state the most general results:

Consider the nonsymmetric Riccati equation:

A2X + XA1 − XFX + G = 0 (3.4)



66 Chapter 3 Structure Preserving Iterations

Lemma 3.5 ([82], Theorem 4) There exists a unique stabilizing solution Xp = X
to (3.4) if and only if In(H) = (n, 0, n), and Xp is the unique solution to:

[
Z12

Z22 + I

]

Xp = −
[
Z11 + I

Z21

]

(3.5)

where In() is the matrix inertia, H =

[
A1 −F
−G −A2

]

, and sign(H) =

[
Z11 Z12

Z21 Z22

]

The gist of this Lemma is that any time the Riccati equation (3.4) has a stabilizing
solution, we can calculate it using the matrix sign function. When A1 = AT

2

and F and G are symmetric, then H is a Hamiltonian matrix, and the inertia
condition reduces to the familiar ‘H has no eigenvalues on the imaginary axis’. In
this symmetric case, we will refer to (3.5) as the ‘matrix sign equations’ for the
Hamiltonian matrix H and Riccati equation (3.4).

Also, when F = 0 and A1 and A2 are both stable, the Riccati equation reduces
to a Lyapunov equation:

A2X + XA1 + G = 0 (3.6)

which can be solved even easier:

Lemma 3.6 There exists a unique solution to (3.6):

sign(

[
A1 0
−G −A2

]

) =

[
−I 0
−2X I

]

(3.7)

Proof: follows from Lemmas 3.5 and 3.3. �

As for the discrete versions, the nonsymmetric Riccati equation:

X = RXW + (Q − RXV )(D − PXV )−1(U − PXW ) + Z (3.8)

can be solved for a stabilizing X using the doubling algorithm (see comment 3.1)
in [90], which for D, Q, V, U, P = 0 and ρ(R), ρ(W ) < 1, reduces to using the ‘Smith
Squared’ iteration [91] to solve the Sylvester equation:

RXW − X + Z = 0 (3.9)

As discussed above in Comment 3.1, these iterations are just a bilinear transform
away from the sign iteration, and share its quadratic rate of convergence.

3.2.3 Block Diagonalization

We can also use the matrix sign function for block diagonalization, which will in
turn be used for model order reduction in the next section.
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Lemma 3.7 Given some constant matrix X ∈ Cc×c with positive real eigenvalues,
where c ∈ N, and some scalar α such that X − αI has Jordan decomposition

X − αI =

[
P11 P12

P21 P22

] [
R 0
0 L

] [
P11 P12

P21 P22

]−1

(3.10)

with L ∈ Ca×a, R ∈ Cb×b, λ(L) < 0, λ(R) > 0. If 0 /∈ λ(P11)
⋃

λ(P22), then

V = sign(X − αI) +

[
IR 0
0 −IL

]

︸ ︷︷ ︸

K

(3.11)

block diagonalizes X: V XV −1 =

[
Y1 0
0 Y2

]

, where Y1 ∈ C
a×a, Y2 ∈ C

b×b,

λ(Y1)
⋃

λ(Y2) = λ(X) with λ(Y1) > α and λ(Y2) < α. Proof:

V = sign(X − αI) + K = PKP−1 + K

= (PK + KP )P−1 = 2

[
P11 0
0 −P22

]

P−1

V XV −1 = 2

[
P11 0
0 −P22

]

P−1X
1

2
P

[
P−1

11 0
0 −P−1

22

]

=

[
P11(R + αI)P−1

11 0
0 P22(L + αI)P−1

22

]

This result is a simplified but extended(to X ∈ C) version of that in [92]. �

The interesting and useful part of this result is that we need only compute sign(X)
and K, but not the Jordan Decomposition, and while we do not know a priori the
sizes of IR and IL, after computing sign(X) it is easy to find the dimensions of K
using fact #7. Hence all of this can be done with the matrix sign.

Actually, even more complicated spectral splitting computations are also possi-
ble, e.g. a generalized block Schur decomposition, and an optimal low rank approx-
imation, by employing QR and Cholesky factorizations and multiple computations
of the above block diagonalization.

3.2.4 Balanced Model Order Reduction

Roberts, in his original [85], also had model order reduction in mind as an appli-
cation of the matrix sign function, but ‘balanced truncation’ hadn’t been invented
yet, so his method didn’t have error bounds, and isn’t very useful for us. In the
following, we will show how to use the sign iteration for model order reduction with
an H∞ error bound.

Given some system G =

[
A B
C 0

]

, we compute P, Q � 0 such that (for
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continuous time, but discrete time works analogously):

AP + PA∗ + BB∗ = 0 (3.12)

A∗Q + QA + C∗C = 0 (3.13)

Since P, Q � 0, R = PQ will have real non-negative spectrum λ(R) ∈ R
+
0 , and

the square roots of λ(R) will be the Hankel singular values of the system. If we
then pick some α > 0 and apply the partial diagonalization procedure described
above to calculate V such that

V (−1)RV =

[
Σ1 0
0 Σ2

]

(3.14)

with λ(Σ1) = {λ(R) > α}, λ(Σ2) = {λ(R) < α}, and perform the corresponding

‘partial balancing’ state transformation:

[
V −1AV V −1B

CV 0

]

=





Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 0





then the truncated system Ĝ =

[
Â11 B̂1

Ĉ1 0

]

can be shown to only be a state trans-

formation away from the fully balanced truncated system[93], and thus has the same
stability properties and error bound: Â11 is guaranteed stable and ‖G − Ĝ‖∞ <
2

∑
(λi(Σ2))

1/2. We note that this error upper bound can be efficiently calculated
as 2Tr((Σ2)

1/2) interpreted as the matrix square root, which can also be com-
puted using the matrix sign- see Lemma 3.4. Hence, using the above methods
for Lyapunov equations, block diagonalizations, and matrix square roots, we now
have a procedure for balanced truncation state space model order reduction, only
requiring matrix arithmetic and multiple calculations of the matrix sign. For com-
parison with the usual balanced truncation method, which uses a full eigenvalue
decomposition, see Lemma 2.5.

3.2.5 H2 and H∞ Analysis and Controller Synthesis

After showing how to solve Riccati equations and check stability, it isn’t much of
a stretch to assume that we can solve H2 and H∞ control problems, but it’s still a
bit of a trick to do it without ever using an SVD or rank revealing factorization, so
we’ll show the formulas here. We’ll just show continuous time, although discrete
time can also be derived similarly using doubling algorithms.

Analysis of H2 and H∞ Performance.

Given some stable G =

[
A B
C 0

]

, the H2 norm can be calculated as follows:

‖G‖2
2 = Tr(X) where X = CT WcC and AWC +WCAT +BBT = 0 or X = BWoB

T

and AT Wo +WoA+CT C = 0. Since either Lyapunov equation can be solved using
the matrix sign as in section 3.2.2, this is no problem. The H∞ case is a bit trickier:
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Lemma 3.8 For some γ > 0, λ(A) ∈ C−, we have ‖D + C(σI − A)−1B‖∞ < γ
if and only if ‖D‖2 < γ, and the Riccati equation(see Lemma 3.5 and comments
thereafter) corresponding to the Hamiltonian matrix:

H =

[
A + BRγDT C BRγBT

−CT (I + DRγDT )C −(A + BRγDT C)T

]

(3.15)

(where Rγ = (γ2I −DT D)−1) has a stabilizing solution. Proof: It is well known
that ‖D + C(σI − A)−1B‖∞ < γ if and only if ‖D‖2 < γ and H has no eigenval-
ues on the imaginary axis, which in turn implies that the Riccati equation has a
stabilizing solution [60]. Conversely, if ‖D‖2 < γ then BRγBT � 0, and then the
existence of a stabilizing Riccati solution X implies that H has no eigenvalues on
the imaginary axis [94]. �

To bound the H∞ norm of a transfer function, one need not actually compute
the solution to the Riccati equation, but just verify that H has no eigenvalues on
the imaginary axis. As is suggested in [95] we can use this condition for narrowing
bounds on the H∞ norm of transfer functions by bisection, but we should note that
using the sign iteration to find the norm exactly will not work, since as γ approaches
‖D + C(σI − A)−1B‖∞ from above, the eigenvalues of (3.15) will approach the
imaginary axis, thus breaking assumption A2, but we may compute upper and
lower bounds to within some fine tolerance.

H2 and H∞ Synthesis

Setting γ = ∞ in H∞ synthesis recovers the H2 case, so we’ll omit this and just
focus on the H∞ case. We will first restate versions of some well known results in
H∞ synthesis, specialized to suit our situation. For a state space system:

Σ :





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x
w
u



 (3.16)

if we define K as the set of controllers K such that Fl(Σ, K) is internally stable,
then specifically, we would like to find some sub-optimal controller K ∈ K such
that ‖Fl(Σ, K)‖∞ < γ where γopt + γtol ≥ γ > γopt = infK∈K ‖Fl(Σ, K)‖∞. For
some γ and under some general assumptions on Σ, we have the existence result:

Lemma 3.9 [96] For the system Σ, with the assumptions of the ‘general prob-
lem’ [96] of (A1, B2, C2) stabilizable and detectable, D12 full column rank and D21

full row rank (all of the measurements y are corrupted by noise, and all of the inputs
u are present in the cost term, z), and the transfer function matrices of y = Σ(21)w
and z = Σ(12)u have no invariant zeros on the imaginary axis, there exists a con-

troller K ∈ K such that ‖Fl(Σ, K)‖∞ < γ if and only if γ > max(‖D̂11‖2, ‖D̃11‖2),
and
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1. The Hamiltonian matrices:

HX =

[

Â + B̂1D̂
T
11D̂

−1
γ Ĉ1 (B̂1D̂

−1
γT B̂T

1 − B̂2B̂
T
2 )

−(γ2ĈT
1 D̂−1

γ Ĉ1) −(Â + B̂1D̂
T
11D̂

−1
γ Ĉ1)

T

]

HY =

[
(Ã + B̃1D̃

T
11D̃

−1
γ C̃1)

T C̃T
1 D̃−1

γ C̃1 − C̃T
2 C̃2

−(γ2B̃1D̃
−1
γT B̃T

1 ) −Ã − B̃1D̃
T
11D̃

−1
γ C̃1

]

(3.17)

have no eigenvalues on the imaginary axis.

2. The matrix sign equations ((see Lemma 3.5 and comments thereafter)) of the
Hamiltonian matrices HX and HY have unique solutions, X � 0, Y � 0

3. γ−2ρ(XY ) < 1.

where the˜andˆmatrices are defined as:

B̂2 = B2D
+
12, Â = A − B̂2C1; B̂1 = B1 − B̂2D11

C̃2 = D+
21C2, Ã = A − B1C̃2; C̃1 = C1 − D11C̃2

Ĉ1 = (I − D12D
+
12)C1 D̂11 = (I − D12D

+
12)D11

B̃1 = B1(I − D+
21D21) D̃11 = D11(I − D+

21D21)

D̂γ = (γ2I − D̂11D̂
T
11), D̂γT = (γ2I − D̂T

11D̂11)

D̃γ = (γ2I − D̃11D̃
T
11), D̃γT = (γ2I − D̃T

11D̃11)

Proof: This follows from the Riccati equations formulation in [96], and the proof
of Lemma 3.5 in [82]. �

As suggested in [97], for some γ > γopt we will perturb the Hamiltonians (3.17)
by subtracting εI ≻ 0 from the (2, 1) blocks, or equivalently, adding εI to the G
matrix of the corresponding Riccati equations (3.4), where ε is small enough such
that there exist stabilizing solutions: Xε ≻ 0 and Yε ≻ 0. The scaled inverses of
these perturbed solutions will satisfy the H∞ Riccati Inequalities ([97]), allowing
the computation of explicit controllers using LMI results:

Lemma 3.10 Given some sub-optimal γ and positive definite stabilizing solutions

to the perturbed Riccati equations, a stabilizing controller: K =

[
AK BK

CK DK

]

such

that ‖Fl(Σ, K)‖∞ < γ may be constructed as follows:

Set Z = (I − γ−2YεXε)
−1 and define:

D′
K = −D+

12D11D
+
21

B′
K = Z

[
B2D

′
K + B1D

+
21

]
+ ZΩT

B

C′
K = −

[
D′

KC2 + D+
12C1

]
+ ΩC (3.18)

A′
K = Z(Â + Ã − A + γ(B2ΩC − ΩT

BC2) + γ−2Yε(A + B2D
′
KC2)

T Xε − B2D
′
KC2)

−
[

B̃T
1 ZT − DT

21ΩBZT

γ−1(C1 + D12D
′
KC2)YεZ

T

]T [
−γI DT

cl

Dcl −γI

]−1 [
γ−1(B1 + B2D

′
KD21)

T Xε

Ĉ1 − D12ΩC

]
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where

ΩB = γ−2(D+
21)

T (DT
clC1 + (γ2 − DT

clD11)C̃2)Yε

ΩC = γ−2D+
12(DclB

T
1 + (DclD

T
11 − γ2)B̂T

2 )Xε

Dcl = D11 + D12D
′
KD21

and + indicates the MP pseudo-inverse. Then the state space matrices of K can
be computed as:

AK = A′
K − B′

KD22P
′C′

K , BK = B′
K − B′

KD22P
′D′

K

CK = P ′C′
K , DK = P ′D′

K (3.19)

where P ′ = (I + D′
KD22)

−1 is assumed to exist.

Proof: The controller K ′ formulas follow from the LMI methods in [83] for
the central controller and under our regularity assumptions, with a slight change of
notation, and picking the free parameters such that Xε and Yε need not be inverted.
The conversion from K ′ to K is to reparameterize the controller to the D22 6= 0
case.

Comment 3.3 Note that there is a typographical error in [83] on page 1011, equa-
tion (41). The second time that ΘB appears in this equation, it should be transposed.

�

Note that in presenting our H∞ controller synthesis routine, we’ve only em-
ployed Riccati solutions, and checked positive definiteness, spectral radius, and
spectral norm, all of which can be done using the matrix sign, and basic arith-
metic.

It is now apparent why we do not attempt to find an H∞ optimal controller.
As γ approaches γopt from above, it has been shown [96] that the eigenvalues of
HXε

, HYε
,Xε, Yε, or C(γ−2XεYε) could asymptotically approach the imaginary

axis, thus necessarily breaking assumption A2, and we will no longer be able to
use the sign iterations efficiently. However, we can still calculate a controller that
is arbitrarily close to achieving the optimal solution.

3.3 Numerical Problems and What to Do about
Them

In the previous section we gave routines for checking stability, solving Lyapunov
and Riccati equations, performing balanced truncations and H2 and H∞ synthesis
etc. using only basic arithmetic and the matrix sign function. The obvious goal
of this development is to use these analysis and synthesis results on the structured
matrices of Chapter 2 (as we will see in section 3.4 of this chapter).
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However, everything is not as simple as we have made it out to be, due to nu-
merical problems. While the iteration in Algorithm 1 and its convergence analysis
looks simple, each step performed in floating point arithmetic introduces rounding
errors, and when used with one of the structure preserving arithmetics in Chapter
2, order reductions introduce additional errors.

3.3.1 Numerical Problems

With respect to rounding errors, the sign function has been found to often work just
as well as invariant subspace techniques [98], but as expected, larger intermediate
approximations often cause larger residual errors.

Such errors can have disastrous consequences on ill-conditioned calculations.
For example, for non-Hermitian X with complex λ0 ∈ λ(X) the iterated map
λk+1 = 1

2 (λk + λ−1
k ) that occurs during the sign iteration of X may lead to some

very erratic behavior of λk ∈ λ(Zk). We know that when λ0 is not on the imaginary
axis, then limk→∞ λk ∈ {−1, 1}, but λk can come arbitrarily close to the imaginary
axis during its journey to −1 or 1 (remember figure 3.2!). This is unfortunate, since
if λk jumps over the imaginary axis due to an approximation induced error, the
resulting computed sign(X) might be very inaccurate indeed.

For checking matrix stability, an unsuitable low-order approximation could
bump an unstable eigenvalue into the left half plane, or vice-versa, falsifying the
result. For stable matrices, ℜ(λ(X)) < 0, X ∈ A, due to the erratic behavior of
the spectrum λ(Zk) during the iterations, any approximation, Z̃k, must be very
accurate: ‖Zk − Z̃k‖2 < β2

β1β3
to guarantee that no eigenvalues cross the imaginary

axis.

A concrete example of this problem can occur when using our suggestion in
subsection 3.2.1 to use the Cayley transform on some Xd to use the sign iteration to
check if sign(C(Xd)) = −I and hence ρ(Xd) < 1. By using the Cayley transform on
the sign iteration as mentioned in comment 3.1, this can be shown to be equivalent
to repeatedly squaring X̄d to check if limk→∞ ‖Xk

d‖ = 0 and hence ρ(Xd) < 1,
which is well known to be numerically problematic [99].

Hence we cannot ‘solve’ the Lyapunov and Riccati equations; there will always
be non-zero residuals, L(X̃), R(X̃), the norms of which are not necessarily a good
measure of the backwards error[100][101], and the criteria suggested for which
are not easily calculable. Furthermore, due to the potential fragility of optimal
controllers[102] it is not acceptable to blindly use an approximated controller and
assume that it will have the expected closed loop stability and performance; some
kind of satisfactory closed loop test is needed, which we will next describe.

3.3.2 What to Do about Them

The solution is to deal with symmetric matrices, for which it’s much easier to check
stability; it is equivalent to negative definiteness. For all of our matrix structures
in the previous chapter, this doesn’t even require any iterations, just a single check
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consisting of a low dimensional Riccati equation or recursion corresponding to
the Positive Real Lemma (Chapter 2 subsections 2.2.7, 2.3.6, 2.5.3) (Also, for
general matrices, the matrix sign iteration is numerically much nicer for symmetric
problems, see [103] ) Fortunately, we can turn the verification problems of stability
and performance analysis into symmetric stability checks.

It is well known[104] for some E, P ∈ RN×N , P = PT with EP +PET ≺ 0, that
ℜ(λ(E)) < 0 if and only if P ≻ 0. Hence one can use the matrix sign function to
solve AP + PAT + I = 0 for P using iterative approximations, and if the resulting
P̃ ≻ 0 and AP̃ + P̃AT ≺ 0, which are both symmetric stability problems, then it
is guaranteed that ℜ(λ(A)) < 0.

As for the closed loop H2 performance, after stability has been verified, the
Lyapunov equation: AS + SAT + BBT = 0, may be relaxed to a strict inequality:
‖C(sI−A)−1B‖2 < γ if and only if ∃Π: Tr(CΠCT ) < γ2 where AΠ+ΠAT +BBT ≺
0. For any such γ, there exists some small ǫ > 0 such that, Tr(CSǫC

T ) < γ2, where
Sǫ is the solution to the perturbed Lyapunov equation[105]: L(Sǫ) = ASǫ +SǫA

T +
BBT + ǫI = 0. In practice, this means that we can use the matrix sign function
to solve such a perturbed Lyapunov equation for some S̃ǫ using a small ǫ, and
(Tr(CS̃ǫC

T ))1/2 < γu is an upper bound on the H2 norm, as long as the residual
satisfies L(S̃ǫ) ≺ ǫI, which is just a symmetric stability problem. Since Sǫ = S+ǫP ,
then given the residuals of the closed loop stability performance equations, any ǫ

such that
(

AS̃ + S̃AT + BBT
)

+ ǫ
(

AP̃ + P̃AT
)

≺ 0, with corresponding S̃ǫ =

S̃ + ǫP̃ will work.

All of these arguments and techniques very similarly go through for discrete
time (see [106]) and H∞ performance (see [107]) using Riccati equations. So we
will not repeat them here.

In summary, the iterative techniques presented in this chapter can cause nu-
merical problems in the analysis, controller synthesis, and model order reduction
schemes, but the a posteriori stability and performance analysis can be converted
to symmetric stability problems, and thus checked reliably.

3.4 Application to this Thesis

The reason we have spent this whole chapter so far investigating the details and
applications of the matrix sign function is because it can be performed using the
structure preserving arithmetics we built in the previous chapter. To be clearer, for
some Z̄0 = X̄ with SSS, S, ATSSS, or Sc, structure, each step of the sign iteration:

Z̄1 =
1

2
(Z̄0 + Z̄−1

0 )

Z̄2 =
1

2
(Z̄1 + Z̄−1

1 )

...
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only uses scalar multiplication, operator addition, and operator inversion. Each
of these calculations can be performed in a structure preserving way as developed
in Chapter 2; so if X̄ = Z̄0 has the structure, so will Z̄1 and Z̄10. Furthermore,
these steps can be performed using the explicit arithmetic we developed in these
chapters for each of these structures. So if X̄ has SSS structure, each step of the
sign iteration will be O(N), likewise Z̄10 or Z̄20 can be computed in O(N), and
due to the fast convergence of the sign iteration, we can thus find a very close
approximation to sign(X̄) in O(N). The same idea holds for the other structures.

Hence, we can do all of the applications (stability check, model order reduction,
H∞-synthesis, etc) discussed in this section, very quickly, and preserving the special
matrix structure. In the next subsection we will make these results precise.

3.4.1 Structure Preserving Property and Convergence Re-
sults

For the Laurent operators with rational symbols of Chapter 2, section 2, we want
to prove ‘uniform convergence’, or ‘convergence in the operator norm’ of the sign
iteration. This implies that for any ǫ > 0, there is some m such that ‖Z̄k −
sign(X̄)‖ < ǫ, ∀k > m. We have the following results:

Theorem 3.1 For some Laurent matrix X̄ ∈ S, assume that λ(X̄) ∈ C−
⋃

C+.
Then Zk(z) converges uniformly, sign(X(z)) ∈ L∞(T) is continuous in z ∈ T,
and Z̄∞ = sign(X̄) is a Laurent matrix. Proof: Since the scalar sign function,
sign(x), is infinitely continuously differentiable on x ∈ D, Theorem 1.19 of [87]
states that the matrix sign function, sign(X), is a continuous function on the set
of matrices X ∈ Cn×n with spectrum in D. Since X̄ ∈ S, hence X(z) is continuous
on z ∈ T, and since λ(X̄) ∈ D, thus X(T) is in the set of matrices with spectrum
in D, i.e. the set of matrices for which sign() is continuous. So sign(X(z))
is a continuous function of a continuous function of z ∈ T, and hence is itself
continuous on z ∈ T.

Also, we need a general result:

Lemma 3.11 Assume Ȳ is a bounded operator and ρ(Ȳ ) < 1. Then limn→∞ ‖Ȳ n‖ =

0 Proof: Follows from Gelfand’s formula (see e.g. [108]): ρ(Ȳ ) = limn→∞ ‖Ȳ n‖ 1
n

�

Now we make a change of variables and iteration. For all k ∈ N, define [87]:

Gk(z) = (Zk(z) − sign(X(z)))(Zk(z) + sign(X(z)))−1 (3.20)

Since both Z0(z) and sign(X(z)) are continuous thus bounded over z ∈ T, G0(z)
is also continuous and bounded over z ∈ T. Since the spectrum of Z0(z) doesn’t
touch the imaginary axis, the spectrum of G0(z) is strictly inside the unit circle.
Furthermore, it can be shown that Gk+1(z) = (Gk(z))2.
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Lemma 3.12 limk→∞ ‖Gk(z)‖∞ = 0 . Proof: Since G0(z) is continuous, its
spectrum is compact and ρ(G0(z)) < 1. Since G0(z) is bounded, limp→∞ ‖(G0(z))p‖∞ =
0 by Lemma 3.11, and Gk(z), k ∈ N is a subsequence of (G0(z))p, p ∈ N and thus
also converges uniformly to 0. �

Lemma 3.13 Zk(z) converges uniformly to sign(X(z)). Proof: From (3.20) it
directly follows that Zk(z) − sign(X(z)) = 2(I − Gk(z))−1Gk(z)sign(X(z)). If we
have gotten to some k such that ‖Gk(z)‖ < 1 (no problem, by Lemma 3.12), then:

‖Zk(z) − sign(X(z))‖ ≤ 2(1 − ‖Gk(z)‖)−1‖Gk(z)‖‖sign(X(z))‖

So if I want some m such that ‖Zk(z) − Z∞(z)‖ < ǫ, ∀k > m, it is good enough to
just find some m such that

∀k > m : ‖Gk(z)‖ <
ǫ

2‖sign(X(z))‖+ ǫ
(3.21)

sign(X(z)) is continuous on the compact set z ∈ T and hence bounded, so ‖sign(X(z))‖
is finite, hence the righthand side of (3.21) is positive. By Lemma 3.12, there exists
such an m, completing the proof. �

Now to get back to our Laurent matrices, Since T is compact, then sign(X(z)) ∈
L∞(T) (a continuous function is always bounded on a compact set), and also
sign(X(T)) is compact, and thus the symbol of a Laurent matrix [51]. So sign(X̄)
is a bounded Laurent matrix. �

So for some X̄ ∈ S with no spectrum on the imaginary axis, sign(X̄) will be
a Laurent operator, but we note that it will not always have a rational symbol,
since the space of rational functions is not complete. However, Z̄k ∈ S, ∀k < ∞
and thus we can approximate sign(X̄) arbitrarily close in S, and the approximation
generated by the halted sign iteration converges uniformly, and locally quadratically
fast to sign(X̄).

Since the sign iteration can be used to solve Riccati and Lyapunov equations
etc., as shown in section 3.2, this essentially means that we can solve S realization
Lyapunov and Riccati equations, order reductions, H2 and H∞ synthesis problems,
etc. to arbitrary accuracy, and our result will also have the S realization structure.
See appendix 3.7 for details.

However, matrices with spectrums very near the imaginary axis will take longer
to converge than those with spectrums very near ±1. Hence, one could construct a
sequence of SSS or ATSSS matrices growing in size N with spectrums that asymp-
totically approach the imaginary axis. Calculating the matrix sign to some accuracy
ǫ thus would not be O(N) since the number of sign iterations necessary would in-
crease with N . We will thus assume that the set of matrices that we will work with
are all in A for some specific β1, β2, and β3 (although they may be arbitrarily large
or arbitrarily small). This assumption basically guarantees that all matrices in this
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class can have their matrix sign computed to ǫ in less than some fixed kc < ∞
iterations (We will see some physical examples of this in Chapters 4 and 9). When
this is the case, we can say:

Lemma 3.14 For the set of SSS matrices X ∈ A ∀N ∈ N, an SSS approxima-
tion, S̃ to sign(X) can be calculated to within some prespecified positive tolerance
ǫ > ‖S̃ − sign(X)‖2 in O(N).�

Since for SSS matrices we can calculate sign(X̄) to arbitrary accuracy in O(N),
we can hence perform all of the other applications in section 3.2 in O(N) also, from
model order reduction to H∞ synthesis (assuming relevant matrices are in A). As
for ATSSS matrices, since the number of kc iterations necessary to get within ǫ for
some set satisfying A is independent of how each iteration is calculated, we have
the corresponding result:

Lemma 3.15 For the set of ATSSS matrices X ∈ A ∀N ∈ N, with N >> NT +
NB ∈ O(1), an ATSSS approximation, S̃, to sign(X) can be calculated to within
some prespecified positive tolerance ǫ > ‖S̃ − sign(X)‖2 in O(1). Proof: Ob-
viously, for this set of matrices, less than kc iterations are needed to converge to
within ǫ. Even though the NT and NB may grow during the sign iteration, there
are only a finite number of iterations, so they can only grow finitely, and there will
always be an N ∈ N above which their largest values are NT , NB ≪ N , and hence
independent of N , for all iterations k. �

Since for ATSSS matrices we can calculate sign(X̄) to arbitrary accuracy in
O(1), we can hence perform all of the other applications in sections 3.2 in O(1)
(assuming again that the relevant matrices are in A).

As for the transfer functions over the extended imaginary axis:

Lemma 3.16 For some transfer function on the imaginary axis, X̄ ∈ Sc, as-
sume that λ(X̄) does not touch the imaginary axis. Then Zk(s) converges uni-
formly on the extended imaginary axis, and sign(X(s)) is continuous and bounded
Proof: X(s) is continuous on the extended imaginary axis, which is compact,
and hence the proof is formally identical to that for the sign iteration on transfer
functions on the unit circle above. �

Just as for the Laurent matrices, we note that Z∞(s) = sign(X(s)) will not
always be rational, since the space of rational functions is not complete, but we can
approximate sign(X̄) arbitrarily close in Sc, and the approximation generated by
the halted sign iteration converges locally quadratically fast to sign(X̄) in operator
norm, so in practice this is not a problem. Also as with the Lr matrices (see
appendix 3.7, the proofs for Sc realizations are similar), this result essentially shows
that we can solve Sc realization Riccati equations etc. to arbitrary accuracy, and
our result will also have the Sc realization structure.
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3.4.2 Summary

So, we’ve seen that for a broad set of SSS and ATSSS matrices, the matrix sign
can be calculated to some ǫ precision in less than an a priori bounded number of
iterations, kc, resulting in O(N) and O(1) computational complexities, respectively.

As for the Laurent matrices with rational symbols and rational transfer func-
tions on the imaginary axis, if the matrix sign exists, then the iteration converges
uniformly, meaning also that we can get to within some ǫ precision in less than an
a priori bounded number of iterations, kc.

Hence, using the sign iteration and doubling algorithms, we can solve Lyapunov
and Riccati equations, order reductions, H2 and H∞ synthesis problems, etc. for
systems with realizations of SSS, ATSSS, S and Sc realizations. The SSS and
ATSSS computations are O(N) and O(1) computational complexities, respectively.
Furthermore, the results will preserve the structure, whichever it may be.

3.5 Multi-level Structured Operators

While the above results are nice, in many applications in nature, as we will discuss
in the second part of the thesis, problems will not be on one level, but in two or
more(see e.g. the school of fish in Chapter 1). Fortunately, our results generalize
to this case as follows. We will just discuss an example of multi-level Laurent
matrices, but the same could be done for operators on direct products of all kinds
of different spaces; e.g. a Laurent matrix with blocks that have SSS structure,
whose generators are Sc operators.

3.5.1 From 1-D to 2-D to n-D

As an example we will consider 2-level Laurent operators with rational symbols.
Such matrices are block Laurent, where the blocks have Laurent structure too. See
figure 3.3 for an example of a truncation of such a matrix. Such operators have
symbols:

Fz
¯̄FF−1

z = F̄ (z) = B̄(zĪ − W̄ )−1C̄ + Ā + Ē(z−1Ī − R̄)−1Ḡ

bounded on z ∈ T that also have the Lr structure, and which, when Fourier
transformed again, in a different variable, have symbols that take the form of
multivariable transfer functions:

FζFz
¯̄FF−1

z F−1
ζ = F (z, ζ) = B(ζ)(zI −W (ζ))−1

C(ζ) + A(ζ) + E(ζ)(z−1
I −R(ζ))−1

G(ζ)
(3.22)

Where B(ζ), W (ζ), C(ζ), A(ζ), E(ζ), R(ζ), G(ζ) ∈ RL∞(T) are the symbols of B̄, W̄ ,
C̄, Ā, Ē, R̄, Ḡ respectively.

For multilevel Lr matrices, we will use Sn to indicate a stable realization
in multiple levels, such as in (3.22) we will use ¯̄F ∈ S2 to indicate that ¯̄F =
S(B̄, W̄ , C̄, Ā, Ē, R̄, Ḡ) with each B̄, W̄ , C̄, Ā, Ē, R̄, Ḡ ∈ S and ρ(R̄), ρ(W̄ ) < 1.
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Figure 3.3: Note that this 2-level Laurent matrix is truncated twice, once in the
overall Laurent structure, and once to make each block finite!

Lemma 3.17 All Lr operators in S, S2, S3 etc, with finitely many levels, are in
the Wiener Algebra, and hence are bounded on l∞. Proof: Any Laurent matrix
in Sn will have a multivariable rational transfer function, holomorphic with respect
to each variable independently, everywhere on the unit circle. The main result of
[109] then states that the row of such a Laurent matrix is absolutely summable,
hence the Laurent matrix is in the Wiener Algebra and is bounded on l∞. �

Comment 3.4 As an interesting aside, if we remember that the spectrums of Lr

matrices with S realizations were continuous mappings of the unit circle onto the
complex plane, generating weird closed curves, it makes sense that the spectrums of
2-level Lr matrices are weird warpings of a toroid, or rather the planar projection
thereof. See figure 3.4 for an example. Note that since the spectrums of such
operators are not points or lines, but areas, in practice it is not uncommon for a
randomly generated S2 realization to be singular.

We now have all of the computational tools in 1-D to build an arithmetic in 2-D,
and by induction n-D. We first point out that all of the operator sign, Lyapunov,
Riccati, and model-order reduction computations described in section 3.2 just con-
sist of multiple applications of the basic arithmetic in Chapter 2, so we will only
describe how to perform these +, ×, order reduction, −1, norm, and permutation
computations in 2-D, and the rest follows by induction.

Addition and multiplication of 2-D operators ¯̄X , ¯̄Y ∈ S2 can be performed
almost exactly as in the 1-D versions in Chapter 2, just adding an extra bar to
each term. They will require the addition and multiplication of 1-D operators,
and the solution of Sylvester equations in 1-D operators (subsection 3.2.2). As
a concrete example, we will show the explicit form for multiplication of 2-Level
Laurent matrices:
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Figure 3.4: sampled spectrum of an S2 matrix, with unit circle for reference

Lemma 3.18 Given: ¯̄X = S{P̄X , R̄X , Q̄X , D̄X , ŪX , W̄X , V̄X} and ¯̄Y = S{P̄Y , R̄Y ,

Q̄Y , D̄Y , ŪY , W̄Y , V̄Y }, then ¯̄X ¯̄Y = ¯̄Z = S{P̄Z , R̄Z , Q̄Z , D̄Z , ŪZ , W̄Z , V̄Z} where

D̄Z = D̄XD̄Y + P̄X S̄V̄Y + ŪX T̄ Q̄Y

P̄Z =
[
D̄XP̄Y + ŪX T̄ R̄Y P̄X

]
ΠR, ŪZ =

[
D̄X ŪY + P̄X S̄W̄Y ŪX

]
ΠR,

R̄Z = ΠL

[
R̄Y 0

Q̄XP̄Y R̄X

]

ΠR, W̄Z = ΠL

[
W̄Y 0

V̄X ŪY W̄X

]

ΠR

Q̄Z = ΠL

[
Q̄Y

Q̄XD̄Y + R̄X S̄V̄Y

]

, V̄Z = ΠL

[
V̄Y

V̄XD̄Y + W̄X T̄ Q̄Y

]

where S̄ and T̄ are the unique solutions to the Sylvester equations:

S̄ = R̄X S̄W̄Y + Q̄X ŪY , T̄ = W̄X T̄ R̄Y + V̄X P̄Y

which can be solved using an S structure preserving doubling algorithm, as discussed
in subsection 3.2.2, and ΠL and ΠR are the permutation operators given in Lemma
2.6 for turning Laurent block matrices into block Laurent matrices.

Note how closely this Lemma follows the form of Lemma 4 in Chapter 2; the only
difference is the additional permutations ΠL and ΠR. The other arithmetic oper-
ations can similarly be extended, as follows. Order reduction of 2-D Lr operators
with S2 realizations can be performed using the order reduction for 1-D Lr oper-
ators as just described in section 3.2.4. Calculating the inverse and norm of 2-D
Laurent operators also follows the same pattern as in Lemma 2.8 and subsection
2.2.8 respectively; they require the same operations as in addition and multiplica-
tion, with the supplement of solving discrete domain 1-D Laurent operator Riccati
equations, which is possible using the techniques in subsection 3.2.2 Finally, the
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permutation of a block of 2-D Laurent operators into a 2-D block Laurent operator,
and vice versa, follows the 1-D version in subsection 2.6 of Chapter 2 exactly, with
the addition of extra 1-D permutations on the lower level.

To move on to 3-D S3 arithmetic, we simply perform the same induction using
the 2-D arithmetic; the arithmetic operations being performed in a hierarchical
manner, down the spatial dimensions. Hence, in theory at least, we can now
efficiently perform arithmetic computations on n-D Laurent operators, and by using
the tools described in sections 3.2 extended to this dimension, synthesize controllers
with arbitrarily small loss of optimality, and calculate closed loop stability and
performance.

In the case of multilevel SSS and ATSSS matrices we also accomplish the prag-
matically more important result of extending the O(N) and O(1) computational
complexity to multiple dimensions in similar complexity; e.g. O(NM) complexity
for a 2-level SSS matrix with N and M blocks and O(1) if the matrix is additionally
‘almost Toeplitz’ on each level. For large problems e.g. N,M∼ 1000, This provides
an important boost in computational efficiency over traditional methods for such
matrices, which would be O(N3M3) complexity.

3.5.2 Dealing with Approximation Errors on Multiple Levels

However, in practice there are additional problems caused by the spatial order re-
ductions. In 1-D, we repeatedly perform spatial order reductions on the Laurent
operator symbols to keep the complexity low and the eventual implementation of
the controller simple, but this introduces small errors in the iterative computa-
tions. For multiple dimensional operators and calculations, the situation is even
more complicated, as the order reductions are being performed on more than one
level, and errors on the lower level are being introduced even when evaluating the
accuracy on the upper level, e.g. in a norm calculation.

In addition, for multiple spatial dimensions we can no longer hope to find exact
rational solutions using our S arithmetic. For example, for some invertible X̄ ∈ S,
we know that we can always find a X̄−1 = F̄ ∈ S where the rational order of F (z)
is no greater than three times that of X(z). However, for multidimensional oper-
ators, for some rational X(z, ζ) as in (3.22), our procedure as outlined above will
calculate a rational X̃−1(z, ζ), but it will be an approximation of some irrational
X−1(z, ζ), since a 1-D Riccati equation with an irrational solution is solved in the
process. This will often necessitate higher order approximations in these multiple
dimensional problems (as we will see in Chapter 8) and the spatial order reductions
will correspondingly cause larger errors.

However, as in section 3.3.2, symmetry saves the day a posteriori. The verifica-
tion of closed loop stability and ǫ sub optimal performance in n-D can be reduced
to checking the strict positive definiteness of n-D Hermitian Lr operators. This in
turn can be performed by similarly finding strictly positive definite (n-1)-D Lr op-
erator certificates (a solution to a Riccati equation and the Riccati residual) using
the Positive Real Lemma (as in Lemma 2.9). Checking the positive definiteness
of these (n-1)-D Lr operator certificates can then in turn be performed by finding
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(n-2)-D Lr operator certificates using the Positive Real Lemma again, and hence
on down to the 0 spatial dimensional problem, where the Positive Real Lemma uses
a Riccati matrix equation in finite dimensions, which can be solved using Matlab.

3.6 Conclusion

So, in this chapter we overviewed the matrix sign function and the matrix sign
iteration for calculating it, and showed that it can be used for many things, from
model order reduction to H∞ synthesis. We also showed that when applying the
matrix sign iteration to our different arithmetics from Chapter 2, it preserves the
structure, and allows for very fast computations; O(N) and O(1) for SSS and
ATSSS matrices respectively, hence allowing extremely efficient controller synthesis
for large systems with this structure. We then showed how these techniques allowed
us to ‘lift’ these results to higher dimensions, by using the solutions to 1-level
Lyapunov and Riccati equations to generate an arithmetic of 2-level operators,
and so on.

The rest of this thesis will be devoted to simply applying these results to a
variety of different examples in different ways, to show how they work, and how
diverse the potential applications are.

3.7 Appendix: Special Control Related Results
for Laurent Matrices

Unlike for the SSS and ATSSS matrices, as we go to infinite dimensions, things
can get a little bit weird (see examples in Chapter 2), so it’s necessary that we
first prove some things about closedness, uniqueness, and error bounds regarding
the use of the sign iteration for solving Lr operator control problems. We will only
show the results which are a little bit tricky or non-obvious: stability analysis,
Riccati and Lyapunov solutions, H2 performance, and balanced truncation model
order reduction. All matrices with a ¯bar in this appendix will be assumed to be in
S.

Lemma 3.19 For some X ∈ S, sign(X) = −Ī if and only if ℜ(λ(X)) < 0. �
Proof: Since the Fourier transform is an isomorphism, we can say that sign(X) =
−Ī if and only if Fsign(X)F−1 = F(−Ī)F−1, but obviously F(−Ī)F−1 = −I and

Fsign(X)F−1 = sign(FXF−1) = sign(X(z)), z ∈ T (3.23)

from Lemma 3.3 we know that in finite dimensions, at every z0 ∈ T, sign(X(z0)) =
−I ⇔ ℜ(λ(X(z0))) < 0. Since λ(X) = λ(X(T)) this completes the proof. �

Now for the Riccati equation:

X̄Ā + Ā∗X̄ + Q̄ − X̄R̄X̄ = 0 (3.24)
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where Q̄ = Q̄∗, R̄ = R̄∗, which can be solved, just as in finite dimensions, by
calculating the sign of a Hamiltonian operator:

sign(H) = sign(

[
Ā −R̄
−Q̄ −Ā∗

]

) =

[
S̄11 S̄12

S̄21 S̄22

]

(3.25)

and solving the linear system of equations:

[
S̄12

S̄22 + I

]

X̄ = −
[
S̄11 + I

S̄21

]

(3.26)

Note that in calculating sign(

[
Ā −R̄
−Q̄ −Ā∗

]

) here, in practice we will avoid block

arithmetic, instead using Lemma 2.6 to permute H into H̄ , then calculating sign(H̄)

using algorithm 1, then using 2.7 to permute sign(H̄) back into block form;

[
S̄11 S̄12

S̄21 S̄22

]

.

In fact, as in the finite constant matrix case, this procedure will always work if
(3.24) has a stabilizing solution:

Lemma 3.20 The Riccati equation (3.24) has a unique bounded exponentially sta-

bilizing solution, X̄, if and only if

[
Ā −R̄
−Q̄ −Ā∗

]

has no spectrum on the imaginary

axis and

[
S̄12

S̄22 + I

]

has a left inverse. Proof: This proof works basically in the

same way as in Lemma 3.19, by using the Fourier transform to reduce everything to
finite dimensions, parametrized on the unit circle, and then using the corresponding
finite dimensional result [82] at each z ∈ T. The boundedness of the solution comes
from Theorem 3.1. �

For R = 0, the above Lemma specializes to:

Lemma 3.21 The Lyapunov equation X̄Ā + Ā∗X̄ + Q̄ = 0 has a unique solution
if and only if ℜ(λ(Ā)) < 0, in which case

sign(

[
Ā 0
−Q̄ −Ā∗

]

) =

[
−I 0
2X̄ I

]

(3.27)

Furthermore, X̄ ∈ S. Proof: This follows from Lemmas 3.20 and 3.19. The
fact that X̄ ∈ S, unlike for Riccati solutions, follows from the other, computa-
tionally unattractive, method for solving rational Lyapunov equations; vectorizing
X(z)A(z)+A∗(z)X(z)+Q(z) = 0 and solving the resulting linear system for X(z),
which will be of high but finite rational order. �

The H2 performance calculation of a system G(s) =

[
A B

C 0

]

is also tricky,

since the matrix trace of an Lr matrix will be either 0 or infinite, hence we need a
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slightly different definition. The H2 spatiotemporal norm (in continuous time and
discrete space) is defined as [26]

‖G‖2
2 = (

1

2π
)2

∫ 2π

0

∫ ∞

−∞
Tr[G(ejθ , jω)G(ejθ , jω)∗]dωdθ (3.28)

We can calculate the integral on the imaginary axis using the traditional finite
dimensional result (see e.g. [105]), at each θ, to get:

=
1

2π

∫ 2π

0

Tr[X(ejθ)]dθ (3.29)

where either X̄ = C̄∗W̄cC̄ with ĀW̄c + W̄cĀ
∗ = −B̄B̄∗ or X̄ = B̄W̄oB̄

∗ with
Ā∗W̄o + W̄oĀ = −C̄∗C̄, which can be efficiently calculated to arbitrary accuracy
using the Lr operator sign function as in Lemma 3.21. As for the remaining integral
on θ, it reduces simply in Lemma 2.12.

The last component in need of special consideration is structure preserving

model order reduction. Given some system of S realizations: G(s) =

[
A B

C 0

]

,

we would like to calculate an S realization approximation, Ĝ(s) =

[

Â B̂

Ĉ 0

]

which is ‘near’ to G: ‖G− Ĝ‖ < γ and is guaranteed stable, but has a smaller state
dimension: dim(A(z)) > dim(Â(z)). As in the previous few subsections, we can
use an extension of finite dimensional results.

Lemma 3.22 Suppose that for stable G(s) =

[
A B

C 0

]

we have some solutions

P � 0, Q � 0 to the operator Lyapunov equations:

ĀP̄ Ā∗ − P̄ + B̄B̄∗ = 0, Ā∗Q̄Ā − Q̄ + C̄∗C̄ = 0

such that there is a ‘shuffle’ permutation operator Π as in Chapter 2 Lemma 7 such
that

ΠP̄ Q̄Π∗ =

[
Σ̄1 0
0 Σ̄2

]

(3.30)

where λ(Σ̄1) > λ(Σ̄2). Then, if we similarly permute the system:

[
Π∗ĀΠ Π∗B̄
C̄Π 0

]

=





ˆ̄A11
ˆ̄A12

ˆ̄B1

ˆ̄A21
ˆ̄A22

ˆ̄B2

ˆ̄C1
ˆ̄C2 0




 then the truncated system ˆ̄G =

[
ˆ̄A11

ˆ̄B1

ˆ̄C1 0

]

will also be sta-

ble, and will satisfy the error bound

‖G(s) − Ĝ(s)‖∞ ≤ sup
z0∈T

2

k∑

i=1

(λi(Σ2(z0)))
1/2 (3.31)
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where Σ2(z0) ∈ Ck×k. Proof: Using the norm equivalence between Lr operators

and their symbols: ‖G(s) − Ĝ(s)‖∞ = supz∈T
‖G(s, z) − Ĝ(s, z)‖∞ and if we just

consider the problem of order reduction of G(s, z0) =

[
A(z0) B(z0)
C(z0) 0

]

at each

point z0 ∈ T, then

‖G(s, z0) − Ĝ(s, z0)‖∞ ≤ 2

k∑

i=1

(λi(Σ2(z0)))
1/2 (3.32)

using the ‘partial balancing’ technique in finite dimensions of [93], thus giving us
equation (3.31) for the operator version. �

Note that we are performing a model order reduction of a ‘non-nuclear’ system,
e.g. we are cutting off an infinite number of non-zero Hankel singular values, but
still have a finite error bound, so this result might be a bit surprising.



4
Heterogeneous Distributed
Systems

As was discussed in Chapter 1, distributed systems are common and difficult to
deal with, especially if they’re spatially heterogeneous. The system matrix describ-
ing the input-state-output behavior of N interconnected subsystems (ODE’s) in
a line (as in figure 4.1), each of size(order) n, will be nN × nN , and thus most
matrix operations will be O(n3N3) floating point operations, making traditional
robust or optimal controller design prohibitively expensive for fine discretizations
or large numbers of discrete subsystems. Much research has been dedicated to
surmounting this computational obstacle. In [27] and [28], multilevel techniques
and the special matrix structure(H-matrix) have been exploited in iterative meth-
ods for finding fast (O(N2), O(N log(N)) ) approximate solutions to Lyapunov
and Riccati equations for systems governed by discretized PDE’s. In [32][33] an
efficient LMI method for distributed controller synthesis for finitely many het-
erogeneous subsystems in an array with boundary conditions was developed with
O(n2αNα)(where 3.5 < α < 5) complexity. For model order reduction, there have
been similar results [110][111]. There has also been a conservative extension of the
results of [4] to control of heterogeneous systems through robust synthesis and by
treating the heterogeneity as norm bounded uncertainty [34]. There are of course
also many other approaches to controlling distributed systems, e.g. distributed
model predictive control [37][112], for a more thorough overview of distributed and
decentralized control research, see [113], [114], and the introduction to [4].

In this Chapter we will show that the methods developed in Chapters 2 and
3 can be used to attack these problems with O(N) complexity, non-conservative
distributed controller synthesis routines. We will also show how to use the results
of Chapter 2 for efficient identification of such distributed systems, the first step
necessary in practice before applying any of these control methods.

4.1 Heterogeneous String Interconnected Systems

⇔ SSS Matrices

In this chapter we consider arbitrarily spatially varying distributed systems: we
will generally allow each subsystem Σs, in figure 4.1 to be arbitrarily different from
every other subsystem, even having different state, input, and output dimensions,

85
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Figure 4.1: String interconnection of fully heterogeneous subsystems

as long as the interconnections are of correct size. We assume that the subsystems,
Σs, have the following structure:

Σs :









ẋs

vp
s−1

vm
s+1

zs

ys









=









As Bp
s Bm

s B1
s B2

s

Cp
s W p

s Zm
s Lp

s V p
s

Cm
s Zp

s Wm
s Lm

s V m
s

C1
s Jp

s Jm
s D11

s D12
s

C2
s Hp

s Hm
s D21

s D22
s

















xs

vp
s

vm
s

ws

us









(4.1)

where xs are the local states, vm
s and vp

s are interconnections to other subsys-
tems, with performance channels and disturbance inputs (zs and ws), and measured
outputs and controlled inputs (ys and us). The W •

s terms represent information
feedthrough between subsystems Σs+1 and Σs−1. This type of subsystem has
appeared in [4], [32] and associated papers, and is also similar to subsystems con-
sidered earlier in [7] and [12]. As in these works, we will assume that the subsystem
interconnections vm and vp are ideal, without any delay.

Six examples of such subsystem models will be shown in the following sec-
tions, and others are available in the literature, such as multiple vehicle sys-
tems [34], flight formations [9], offshore bases [115], and discretizations of various
PDE’s [116], [4], [3] etc.

Due to the non-zero Zp
s and Zm

s terms, the interconnection between subsys-
tems (4.1) might not be well-posed (see [4] for a discussion). Fortunately, there
exist sufficient conditions for well-posedness of N interconnected subsystems that
can be verified in O(N), (see for example, [107])For structural reasons to be re-
vealed shortly, we will always assume that the Zm and Zp terms are 0, assuming
that the system is inherently in this form (as in the case of discretizations of PDE’s),
or has been converted to this form using a method like that in [107].

4.1.1 Interconnected System =⇒ SSS Matrices

If N of these subsystems (4.1) are connected together in a string (see Figure 4.1)
with zero boundary inputs (vm

1 = 0,vp
N = 0) and the interconnection variables are

resolved, we obtain the interconnected system:

Σ :





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x
w
u



 (4.2)
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where the overline indicates a ‘lifted’ variable; for vectors: x =
[

xT
1 xT

2 ... xT
N

]T
,

and the system matrices have the SSS structure, as discussed in Chapter 2:

A = SSS(Bm
s , Wm

s , Cm
s , As, B

p
s , W p

s , Cp
s )

B1 = SSS(Bm, Wm, Lm, B1, Bp, W p, Lp)

B2 = SSS(Bm, Wm, V m, B2, Bp, W p, V p)

C1 = SSS(Jm, Wm, Cm, C1, Jp, W p, Cp)

D11 = SSS(Jm, Wm, Lm, D11, Jp, W p, Lp)

D12 = SSS(Jm, Wm, V m, D12, Jp, W p, V p)

C2 = SSS(Hm, Wm, Cm, C2, Hp, W p, Cp)

D21 = SSS(Hm, Wm, Lm, D21, Hp, W p, Lp)

D22 = SSS(Hm, Wm, V m, D22, Hp, W p, V p)

Since all of the matrices in the realization have this structure, structure preserving
iterations can be used to compute controllers (e.g. H2 or H∞) in O(N), as discussed
in Chapter 3. Since the iterations preserve the structure, the controller itself will
have a realization of SSS matrices, which is very convenient for implementation
purposes, as follows.

4.1.2 SSS Matrices =⇒ Interconnected System

Suppose the methods in Chapters 2 and 3 have been used to design such a con-

troller K :

[

ξ̇
u

]

=

[
AK BK

CK DK

] [
ξ
y

]

, for the distributed system (4.2), where the SSS

generators of each matrix are:

AK = SSS(Gm
s , Mm

s , Nm
s , Fs, G

p
s, M

p
s , Np

s )

BK = SSS(Km
s , Rm

s , Qm
s , Gs, K

p
s , Rp

s , Q
p
s)

CK = SSS(Sm
s , T m

s , Um
s , Ns, S

p
s , T p

s , Up
s )

DK = SSS(Xm
s , Zm

s , Pm
s , Ys, X

p
s , Zp

s , P p
s )

then it can be verified that such a controller can be directly distributed into sub-
controllers:

Ks :







ξ̇s

fp
s−1

fm
s+1

us







=







Fs Ĝp
s Ĝm

s Gs

N̂p
s R̂p

s 0 Q̂p
s

N̂m
s 0 R̂m

s Q̂m
s

Ns Ŝp
s Ŝm

s Ys













ξs

fp
s

fm
s

ys







(4.3)

where

Ĝ•
s =

[
G•

s K•
s 0 0

]
, Ŝ•

s =
[
0 0 S•

s X•
s

]
, R̂•

s = diag(M•
s , R•

s , T
•
s , Z•

s )

N̂•
s =

[
(N•

s )T 0 (U•
s )T 0

]T
, , Q̂•

s =
[
0 (Q•

s)
T 0 (P •

s )T
]T
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Figure 4.2: Distributed Controllers Ks are equivalent to K̄

where • is held constant as either m or p in each term. This is obviously the
same structure as the subsystems, as shown in figure 4.2, where the f•

s channels
represent the communications between each subcontroller. This illustrates a key
advantage of SSS over H matrix or frequency domain controller design methods
for distributed systems: SSS structured controllers admit a simple distributed con-
troller implementation, similar in structure to those sought in [4] and [32], without
any additional computation.

Another nice feature of such SSS structured controllers is that their communi-
cation dimensions can be tuned after the fact in an easy and efficient way. One
consequence of using high SSS orders in the computation of the distributed con-
troller is that it increases the resulting dimension of the communication links (f•

in Figure 4.2) between the subcontrollers. In fact, the dimension of f• is the sum
of the SSS orders of Āk, B̄kC̄k, and D̄k, making this a serious matter, since such a
large interconnection dimension could over-tax the inter-controller communication
links. However, the SSS order reductions of Chapter 2 can trivially be used (along
with the shuffle permutation) to decrease the dimension of f•, in the following way:

Through the SSS versions of the S realization Lemmas 2.6 and 2.7, the input-
output and state dynamics of the controller (K̄) may be expressed as a single block

SSS matrix:

[

ξ̇s

us

]

= P

[
ξs

ys

]

with

P = SSS(

[
Ĝm

s

Ŝm
s

]

, R̂m
s ,

[

N̂m
s Q̂m

s

]
,

[
Fs Gs

Ns Ys

]

,

[
Ĝp

s

Ŝp
s

]

, R̂p
s,

[

N̂p
s Q̂p

s

]
) (4.4)

And by doing either a spatial truncation, or an SSS model order reduction (as in
section 3.4 of Chapter 2) on this matrix, the size of the R̂•

s terms, and hence the
f•

s terms, may be reduced without destroying the distributed structure.

This also illustrates a useful feature of the controllers produced within the SSS
framework: the communication links (fm

s ,fp
s ) may by large if desired, correspond-

ing to a more centralized and higher performance controller. In fact, it can be
shown that any centralized controller can be distributed in the form of (4.3) using

large enough communication channels: nfm
s

, nfp
s
≥ ∑N

s=1 (nxs
+ max(nxs

, nys
)+

max(nxs
, nus

) + max(nus
, nys

)). Of course, for implementation, smaller is better,
and as we will see in the examples, the freedom to pick the size of the communica-
tion links may be very useful in terms of design trade-offs.
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Figure 4.3: Conceptual diagram of SSS distributed control synthesis

4.1.3 Distributed Computation of SSS Algorithms

The SSS distributed controller synthesis method as we have described it can be
summarized in Figure 4.3. In the first step, the model of the distributed system
(4.1) is ‘lifted’ into an SSS structured system (4.2). In the second step, conducted
offline on a desktop or mainframe computer, the special SSS structure is exploited
in iterative computations for O(N) controller synthesis, producing a controller K
with SSS structure, which can in step 3 be ‘redistributed’ into subcontrollers Ks,
as in Fig 4.2, for online distributed implementation.

It’s also interesting to note that SSS matrices can alternatively be thought of as
computational interconnected networks [117], and due to the specific forms taken by
the SSS arithmetic routines, by pursuing this idea [118], step 2 above may actually
be performed in a distributed way by the micro-controllers themselves; steps 1
and 3 are unnecessary, and all computations may be performed using distributed
computing.

For this method to work, we assume that each of the N micro-controllers (called
‘agents’) can perform small dense matrix computations; addition, multiplication,
inversion, SVD, etc, each of size O(n), and has a local cache of size O(n2) and local
RAM memory of size O(n2). The agents have message-passing capabilities only to
nearest neighbors, that is, they are connected in a ‘linear processor array’(see Fig
4.2) in distributed computing terminology [119].

While this is a nice result for practical applications, the specific calculation
and communication schemes are rather boring and unenlightening, so for specific
formulas, please see [118]. The distributed memory and linear communication
properties of this method will be demonstrated on an example in section 4.2.
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4.1.4 Summary

In this section, we have shown how interconnections of heterogeneous subsystems
on a line lead to interconnected systems with realizations of Sequentially Semi Sep-
arable matrices (SSS matrices), and likewise how the reverse is also true: systems
with realizations of SSS matrices can be distributed into interconnections of het-
erogeneous subsystems on a line. In combination with the O(N) SSS arithmetic in
Chapter 2 and the structure preserving sign iteration techniques for system analy-
sis and controller synthesis in Chapter 3, these results lead to relatively very fast
(O(N), compared to O(N3)) distributed system analysis and distributed controller
synthesis methods. Furthermore, as discussed in subsection 4.1.3, due to the special
character of the SSS arithmetic operations, such synthesis and analysis computa-
tions can actually be performed online, on a distributed processing and memory
array.

In the following sections, we will demonstrate these results using six numerical
examples (five of them physically motivated). We will thereby see that the method
described can produce low communication order controllers with closed-loop per-
formance nearly equal to that of the centralized optimal controller, computationally
much more efficiently. The first example in section 4.2 will be the simplest, and
will just demonstrate a stability check on a mass-spring-damper-actuator array. In
this section (and only this section) the distributed computing capabilities will also
be demonstrated. The second example in section 4.3 will demonstrate distributed
H2 synthesis on a more complicated car platooning system, and the third example
in section 4.4 will demonstrate distributed H∞ synthesis on a discretization of the
wave PDE. The fourth example in section 4.5 demonstrates structure preserving
model order reduction, and is purely numerical, to better show the features of such
an approach. The fifth example, in section 4.6 demonstrates SSS structure para-
metric system identification on a heat conduction problem. The sixth example,
in section 4.7.3, is actually a counterexample. In it, we show what can go wrong
in SSS controller synthesis when one of the assumptions A1,A2, or A3 for sign
iteration convergence in chapter 3 is not satisfied.

4.2 Example: Stability Check

As in the example of [120] we consider point masses mi on a line, connected by
springs and dampers kij , cij , with surface friction λ = 200, except in our model,
each mass is connected directly by spring and damper to its two nearest neighbors
on each side(note also that the first mass is anchored to a static reference to avoid
drift), and the parameters are independently generated randomly from a uniform
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Figure 4.4: On the left we see the computational times comparison of multi-
agent/SSS vs Matlab stability check. ‘Error bars’ indicate maximum and min-
imum times.On the right we see the communication complexity of multi-agent
stability check

distribution, U :

mi = 500U(0.5, 1.5), ∀i ∈ 1, 2, ...N

cij = 10U(0, 1), ∀i, j ∈ 1, 2, ...N, |i − j| = 1

cij = 0.1U(−0.5, 0.5), ∀i, j ∈ 1, 2, ...N, |i − j| = 2

kij = 400U(0, 1), ∀i, j ∈ 1, 2, ...N, |i − j| = 1

kij = 4U(−0.5, 0.5), ∀i, j ∈ 1, 2, ...N, |i − j| = 2

Since some of the damping and spring coefficients may take negative values(note
that this is not suggested for an actual system, just as a numerical example),
and thus the subsystems are not strictly passive(as they are in [120]), the overall
stability of the system is nontrivial, and must be numerically checked. We can
write this in subsystem form (4.1)(where zs, ws, ys, us are nonexistent for this case),
implicitly generating the SSS matrices as listed in (4.2). Checking the overall
system stability can then be done by either using commercially available eigenvalue
methods to check that all of the eigenvalues of A in (4.2) have negative real parts,
or by using the iterative SSS structure preserving sign function iterations, as in
Chapter 3.

For the distributed calculation of the system stability, as discussed in section
4.1.3, we created a simple object-oriented based multi-agent test environment in
Matlab to simulate the necessary message passing and local distributed memory
and computing. For 25 random realizations of the above platoon example for sizes
N = [50, 100, 200, 400, 600, 800], the overall computational time, the local memory
space utilized, and the amount of data communicated in agent-to-agent messages
was recorded during a matrix sign function based stability check(see [121] for a
discussion of notions of complexity in distributed computations).

In Fig. 4.4 we see the average computational time for the distributed SSS
based method, confirming our estimate of O(N) complexity, compared to central-
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ized eigenvalue methods as used by Matlab(using function eig()), where the SSS
computations are faster than those of Matlab for N & 250. Of course, this only
represents the actual calculations performed, and for a real distributed computa-
tion, the inter-agent communications would add significantly to this time. However,
as we see in Fig. 4.4, the average total number of double precision values commu-
nicated between neighboring agents in the same computations also increases only
linearly with the number of agents, and hence the total processing time for a real
distributed system, while slower than that in Fig. 4.4, will still scale linearly for
large N . Also, in each of the above computations, the maximum amount of each
agent’s local memory used at any given time was less than 800 double precision
values(∼ 6 kilobytes). Hence the distributed computation scheme we have de-
scribed should be implementable on commercially available microcontrollers with
only local memory.

4.3 Example: H2 Control of a Vehicle Platoon

For our next demonstration, we will compute an H2 controller for a car platoon.
The dynamics of each car is modeled as a simple point mass with an actuator
gain(gs) and lag(τs):





ẋ1
s

ẋ2
s

ẋ3
s



 =





0 1 0
0 0 1
0 0 −1

τs









x1
s

x2
s

x3
s



 +





0
q1
s

0



 vs +





0
0
gs



us

which is similar to models previously considered in the literature[122][123][124],
with a force disturbance input vs(t) representing wind gusts. Each car measures
its own velocity, and the relative position between itself and the car in front of it:

ys =

[
−c1

s 0
0 c2

s

] [
x1

s

x2
s

]

+

[
c1
s

0

]

x1
s−1 +

[
q3
s 0
0 q4

s

]

ns

except for the front car, which measures its own position. The cost function will
be based on each car’s input, z1

s = f1
s us, and the difference between its following

distance and a reference, z2
s = (x1

s−1 − x1
s − r̂s), where the reference: ˙̂r = −1

κs
r̂ + rs,

is treated as a disturbance, but filtered through a lag to keep the H2 norm finite
and better represent a real situation. Note that the dynamics are uncoupled in this
example(although linear draft dynamics could easily be added), but the vehicles are
coupled through their measurements and cost functions. Such an interconnected
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Figure 4.5: On the left we see an average computational time comparison of SSS
vs Matlab H2 synthesis routines for the platooning example. Error bars indicate
maximum and minimum times. Note the linear trend for the SSS based solver
compared to the cubic trend of Matlab’s unstructured solver. On the right we
see the closed loop performance of communication-reduced controllers.

system can be put in subsystem form(4.1) simply as:

Σs :





















0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 q1
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τs
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κs
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0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 f1

s

−f2
s 0 0 −f2

s 0 f2
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
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












where the disturbance input is partitioned as: ws =
[

vs rs nT
s

]T
, and each

car is allowed to measure its own unfiltered reference: y3
s = rs.

This subsystem model can then be used to form the lifted system of SSS matrices
in (4.2), allowing the use of the computational tools described in Chapter 3 to
perform H2 controller synthesis.

4.3.1 O(N) Demonstration

For this example, we will allow the coefficients to vary randomly in space. Each
coefficient will have the following mean values: {τ, κ, q1, g, f1, f2, c1, c2, q3, q4} =
{0.1, 0.5, 0.1, 1, 1, 1, 1, 1, 0.1, 0.1}, but at each point s ∈ {1, 2, ...N} they will be
allowed to randomly vary within 20% of this value(except for κ which is held
constant). For example, at each s ∈ {1, 2, ...N}, gs = (1 + 1

5U(−1, 1))g, where U



94 Chapter 4 Heterogeneous Distributed Systems

is a uniform distribution. For problems of size N = {5, 10, 25, 50, 100, 150, 200} we
did this 50 times each using our SSS solver and MATLAB’s h2syn. The closed
loop ‖ · ‖2 norms varied between about 2 and 15, and the H2 performance of the
SSS controllers was always within 10−5 of that of the MATLAB centrally optimal
controllers.

In figure 4.5 we see a comparison of the synthesis computation times, where
the bars show the maximum and minimum time for each value of N , and the
SSS approach becomes an advantage after about N ≈ 150. For reference to the
algorithmic discussions, SSS orders of wu = wl = 16 were used in all iterative
schemes, and the sign iterations took about 11 iterations to converge.

Comment 4.1 This example was published in [103], mostly as we see it above.
However, since then it has come to our attention that the platooning cars Σs as
we have formulated them, lead to a distributed system Σ̄ with an H2 problem and
corresponding Riccati equation Hamiltonions that do not actually satisfy assump-
tions A1,A2,A3 in Chapter 3. This was brought to our attention by [125], where it
is pointed out that the vehicles should also each have absolute position tracking in
order for the infinite system to be well posed. It’s interesting to note though that
this doesn’t appear to ruin the O(N) complexity, looking at figure 4.5, but actually
it does, it’s just hard to notice since the assumptions are violated in an almost be-
nign way, so that the number of steps necessary for the sign iteration to converge
only increases extremely slowly as N → ∞. So if figure 4.5 were expanded out
to N = 104 and beyond, we would probably see something more like O(N log(N))
complexity. Unfortunately, as we’ll discuss in the example of section 4.7.3, such
violations of A1:A3 do not always have such benign results.

4.3.2 Distributedness

We’ll now ‘tune’ the dimension of the subcontroller Ks interconnection links f•
s

using the method mentioned in section 4.1.2. For a typical example with N =
50, figure 4.5 shows the decrease in closed loop H2 norm with the increase in
communication order. All reduced controllers with communication links of size at
least 3 were stable, and as we see, there is an exponential-like decrease, with high
performance controllers even for very small communication links.

4.4 Example: H∞ control of the Wave Equation

For our third heterogeneous systems example, we will demonstrate the more diffi-
cult task of H∞ synthesis. As discussed in Chapter 3, it’s not practical (and prob-
ably not desirable) to seek the absolute H∞ optimal controller using our methods,
so we will find ǫ sub-optimal controllers, but much faster and less conservatively
than other distributed control methods.
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4.4.1 Introduction/Discretization

Consider the 1-dimensional spatially heterogeneous wave equation with position-
fixed boundary conditions:

∂2x

∂t2
= k(s)

∂2x

∂s2
+ b(s)u + q1(s)w1, x(0) = x(L) = 0

with some performance and measurement outputs:

z1 = f1(s)x, z2 = f2(s)u, y = c(s)x + q2(s)w2

where x(s), u(s), y(s), z1(s), z2(s), w1(s), and w2(s) are in Hilbert spaces de-
fined on s ∈ [0, L]. Using a finite difference approximation, x, y, z1, z2, w1, w2, u
can be restricted to be in some finite dimensional Euclidean space RN , where we
approximate the spatial derivative to 4th order accuracy [126]:

∂2x(s)

∂s2
≈ 1

12∆2
s

(−xs−2 + 16xs−1 − 30xs + 16xs+1 − xs+2) + O(∆4
s)

where ∆s = L
N and with new discrete indices s ∈ {0, 1, 2, ..., N}. The approximated

system can be written in the form of (4.1) where

As =

[
0 1

−ks
5

2∆2
s

0

]

, Bm
s = Bp

s =

[
0 0

2ks

3∆2
s

2ks

3∆2
s

]

, W p
s = Wm

s =

[
0 − 1

8
0 0

]

,

B1
s =

[
0 0
q1
s 0

]

, B2
s =

[
0
bs

]

, D12
s =

[
0
f2

s

]

Cp
s = Cm

s =

[
1 0
1 0

]

, C1
s =

[
f1

s 0
0 0

]

, C2
s =

[
cs 0

]
, D21

s =
[
0 q2

s

]

and the other terms are 0. These parameters can then be used to form the lifted
system of SSS matrices in (4.2), allowing the use of the computational tools de-
scribed in Chapter 3 to perform H∞ controller synthesis. The first computational
subsection will demonstrate the O(N) computational complexity for nearly cen-
trally optimal controllers, and the second will show how the communication-order
reduction described in section 4.1.2 can be used to approximate these controllers
with very small sized communication channels.

4.4.2 O(N) H∞ Synthesis

To demonstrate the application to heterogeneous systems, the system parameters
will be chosen to vary randomly in space. This is not meant to represent systems
actually encountered in practice, but instead to demonstrate that there is no loss of
algorithmic performance or gain in conservatism for the very heterogeneous case.
Each coefficient (ks, q

1
s , bs, f

2
s , f1

s , cs, q
2
s) was taken independently to be 1, plus a

value picked from a uniform random distribution at each s ∈ {1, 2...N}; for exam-
ple, ks = 1 + 1

2U(−1, 1). To show the consistency of the iterative methods, 25 ran-
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vs Matlab H∞ vs distributed LMI synthesis routines for the wave example. Error
bars indicate maximum and minimum times. On the right we see the closed loop
H∞ performance of communication-reduced controllers

dom systems were generated for each problem size N ∈ {5, 10, 25, 50, 100, 175, 250},
and H∞ sub-optimal controllers produced using MATLAB’s hinfsyn (using the
Riccati solver option) and the SSS based solver with γtol = 10−2. The γopt values
ranged between ≈ 2 and ≈ 3, and both the MATLAB and SSS based closed loop
H∞ norm values, γM and γSSS , were within the tolerance for each trial of each
problem size. In figure 4.6 we see a comparison of the synthesis computation times,
where the bars show the maximum and minimum time for each value of N , and the
linear complexity of the SSS approach becomes an advantage after about N ≈ 200.

The LMI based distributed control method as implemented in the Graph Con-
trol Toolbox [33] was also used to synthesize controllers for the reduced set of
problem sizes N ∈ {5, 10, 25, 50, 100}, with the same γ tolerance as before. The
results in figure 4.6 roughly confirm the polynomial computational complexity es-
timated in [32] (The number of LMI variables in [32] and [33] are about the same
for this type of problem).

For reference to the algorithm discussions, SSS orders of wu = wl = 18 were used
in all iterative schemes, the sign iterations took about 10 iterations to converge,

ε was taken to be 10−3, and
√

ρ(XεY ε) was the most prominent constraint for

the greatest lower bound of γopt. To produce distributed controllers with nearly
centrally-optimal performance, a small γtol was chosen, but if this constraint were
made less severe, lower order (wu, wl) approximations could probably be used, with
a considerable decrease in computation time.

4.4.3 Distributed Implementation

For a typical example with N = 50, figure 4.6 shows the decrease in closed loop
H∞ norm with the increase in communication order, using a simple suboptimal
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SSS order reduction algorithm (see [48]) similar in result to the balanced trunca-
tion method discussed in Chapter 2. Putting the system matrix into the appro-
priate ‘proper’ ([48]) form for reduction took 0.45 seconds (the process is O(N)),
and thereafter each order reduction consisted of simply truncating the appropriate
matrices to the reduced dimension, taking negligible time. All reduced controllers
with communication links of size at least 2 were stable, and as we see, there is an
exponential-like decrease, with high performance controllers even for very small
communication links. For comparison, using the truncation-based distribution
method, it was necessary to truncate out to 17 spatial indices for a stabilizing
controller, and 19 spatial indices to get decent performance (γT = 3.24).

On this same example we used the LMI method as implemented in the Graph
Control Toolbox [33], and obtained a closed loop performance of γLMI = 9.260,
with communication size 6 (although it should be possible to reduce this to 2 [33]).
This is somewhat surprising: while the original high SSS-order controller K should
be non-conservative with respect to the centralized methods, it is unexpected that
the communication-reduced controllers would still have superior performance to
the dedicated LMI technique, and this is likely not a general result (although it
occurred for all examples tested by the authors).

4.5 Example: SSS Structure Preserving Model Or-
der Reduction

Having now demonstrated H2 and H∞ synthesis, and thus proven the effectiveness
of our Riccati solvers from Chapter 3, we will now switch to model order reduction,
to demonstrate the Lyapunov solvers and the block diagonalization technique. We
use a contrived computational example with no physical meaning in order to better
exhibit some of the subtle numerical issues discussed in Chapter 3.

Consider the discrete time system Ḡ :

[
x̄k+1

ȳk

]

=

[
Ā B̄
C̄ 0

] [
x̄k

ūk

]

where we have
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picked

Ā = − 1

10
SSS(

[
−2
1

]

,−.1,
[
1 2.5

]
,

[
1 1
2 .5

]

,

[
.3

−.01

]

, .7,
[
9 5

]
),

B̄ = SSS(

[
1.6
−.7

]

, .4,−1.5,

[
1.3
.2

]

,

[
1.7
−.2

]

, .7, 1.7)

C̄ = SSS(2.6,−.5,
[
0.2 1.7

]
,
[
.5, .3

]
, 3.5, .4,

[
.5 −.5

]
) (4.5)

to be spatially invariant for s = 1 : 200 for simplicity, although as in the H2

and H∞ cases, the computational methods and complexity hold also for hetero-
geneous systems. The original system with state dimension 400 has l2 induced
norm ‖Ḡ‖∞ ≈ 197.2 and with Matlab’s reduce() using balanced truncation, a
non-structured reduced order system Ĝ with state dimension 200 was found with
‖Ḡ − Ĝ‖∞ ≈ 7.4565. Using the SSS structured methods (with SSS order of 10 for

all calculations) of Chapters 2 and 3, an SSS structured reduced order system ˆ̄G

with state dimension 200 was found with ‖Ḡ − ˆ̄G‖∞ ≈ 6.3795. In this case, only
3 α-iterations were needed to find the correct value for splitting the eigenvalues,
and by extending N to larger values, it was found that the estimate of linear com-
putational complexity(O(N)) holds, and the SSS model order reduction routines
become faster than the Matlab routines at N ≈ 350 and ≈ 110 seconds.

In figure 4.7 we see how solving Lyapunov inequalities instead of equations in the

balanced truncation method, using offset κΠL

[
I 0
0 0

]

ΠR, affects the eigenvalues of

R̄ for this problem. For κ = 0, there is not much gap (leading to more bisection α-

iterations), the resulting V̄ matrix is ill-conditioned, and ˆ̄A11 has large off diagonal
elements (see figure 4.8, left hand side) making it difficult to implement. However,
for κ = 5 the resulting gap in λ(R) is noticeable, leading to faster α-bisection

convergence and a nicer realization of ˆ̄A11 (see figure 4.8 right hand side). Note
that the figures show the entrywise log10 of the absolute values of the matrices,

and we thus see that ˆ̄A11 clculated with κ = 5 has an exponential spatial decay
away from the diagonal, making it much easier to implement.

However, unnecessarily large κ values lead to decreased accuracy in the approx-
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imation, for example, with κ = 25 we have ‖Ḡ − ˆ̄G‖∞ ≈ 8.0516 and for κ = 100

we have ‖Ḡ− ˆ̄G‖∞ ≈ 10.2025, but an appropriate κ value can be iteratively found
by bisection and checking that the off diagonal corners of V̄ (−1) approach 0. It
would be interesting to research how to optimally pick the offset scalar κ, or some
other more general offset, so as to end up with a nice SSS structure and a small
error (see Chapter 11 for further discussion).

4.6 Example: Fast Structured System ID

In this section, we will use our SSS results for System Identification (SysID), by ex-
ploiting the SSS structure in the partial derivatives present in an Extended Kalman
Filter(EKF) employed for parameter estimation. The result will be an O(n5NT )
complexity algorithm for system identification of this type of structured system,
where N is the number of subsystems, n is their much smaller size(n << N), and
T is the number of EKF steps until convergence. Furthermore, since the method
preserves the SSS structure at each point, the resulting identified system will have
a realization of SSS matrices, allowing the use of the aforementioned O(N) SSS
analysis and synthesis routines and distributed implementation. For the same rea-
son, this computation could actually be performed on a distributed processor array,
as discussed in section 4.1.2.

4.6.1 EKF for Parametric ID

The SysID method we will use is a rather old one, which employs the Extended
Kalman Filter as a parameter estimator, but it is still popular, and we will overview
it for ease of reference in later discussions. This method has been much discussed
in the literature, and we will take the following form of the formulas from [127]
(see this reference for further discussion and other relevant literature). Basically
the idea is that given some LTI system:

xt+1 = A(θ)xt + B(θ)ut + wt

yt = C(θ)xt + vt (4.6)

where

E[wjw
T
k ] = Qδjk, E[vjv

T
k ] = Rδjk,

E[wjv
T
k ] = Sδjk, E[x0] = 0, E[x0x

T
0 ] = Πx (4.7)

and θ is some vector of unknown parameters with E[θθT ] = Πθ, given input output
data ut, yt, t = 1 : N , we can use Kalman filtering, but additionally append a
parameter estimate θ̂t to the unknown state x̂t, to simultaneously perform state
estimation and SysID. This is a nonlinear estimation problem, for which we can
use the ‘extended Kalman Filter’ (EKF), which takes the form:
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Tt =
[
Ct Nt

]
Πt

[
Ct Nt

]T
+ R

[
Kt

Lt

]

= (

[
At Mt

0 I

]

Πt

[
Ct Nt

]T
+

[
S
0

]

)T−1
t

x̂t+1 = Atx̂t + Btut + Kt(yt − Ctx̂t)

θ̂t+1 = θ̂t + Lt(yt − Ctx̂t)

Πt+1 =

[
At Mt

0 I

]

Πt

[
At Mt

0 I

]T

−
[
Kt

Lt

]

Tt

[
Kt

Lt

]T

+

[
Q 0
0 0

]

where

Π0 =

[
Πx 0
0 Πθ

]

, Nt =
∂

∂θ
[C(θ)x̂t]|θ̂t

Mt =
∂

∂θ
[A(θ)x̂t + B(θ)ut]|θ̂t

(4.8)

At = A(θ̂t), Bt = B(θ̂t), Ct = C(θ̂t)

(note that there is a typographical error in [127] in equation (3.16a), which we
have corrected in the formula above). As is know well known, this method is
not always guaranteed to converge, has problems with bias, etc, but often works
well in practice given a decent initial guess x̂0 and θ̂0. It can also be modified
to have guaranteed convergence [127] and this method will be used here as an
exposition of our computational method, which hopefully can be applied to other
SysID techniques as well.

Our approach will be to now assume that the matrices Ā(θ), B̄(θ), C̄(θ), R̄, S̄, Q̄
in (4.6) and (4.7) come from a heterogeneous distributed system composed of a
linear interconnection of subsystems as in (4.1), and hence each have the SSS
structure as previously discussed. Under such circumstances, all of the EKF cal-
culations above, consisting of simple matrix arithmetic and partial derivatives (see
section 2.3.7), could be performed in O(N), leading to O(N) complexity steps in
the EKF.

Note that we are parameterizing each of Ā, B̄, C̄ by roughly O(Nn2) val-
ues, far less than the N2(2 + nx)(ny + nu) parameters that are considered ‘mini-
mal’ for characterizing a state space system of input, state, output dimensions of
Nnu, Nnx, Nny in companion matrix form[128]. This is of course only possible
because we are assuming a specific type of factorization of the matrices Ā, B̄, C̄,
but we should also note that our above parameterization via θ̄ may still not be the
most minimal possible for a particular problem, but this shouldn’t concern us too
much, since in the end the O(N) complexity of this routine overcomes any minor
inefficiencies.
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4.6.2 Numerical Demonstration

We will only demonstrate a very simple example here, where each subsystem Σs in
figure 4.2 has only one input, one output, and one state variable, but the technique
and formulas as shown above work generally on any type of subsystems with vector
inputs, outputs, and states, in the form of (4.1).

Introduction

We consider a heat conduction (diffusion) problem with a negative offset to make
it nicely stable:

Ṫ (r) = k(r)
∂2T (r)

∂r2
− 1

2
T (r) (4.9)

with boundary conditions T (R) = T (0) = 0. Using a second order finite difference

approximation (∂2T (r)
∂r2 ≈ Ts−1 − 2Ts + Ts+1 for s = 1 : N), we can write this down

as a coupled set of ODE’s in a tridiagonal matrix Āc, which we can convert to
discrete time using a bilinear(Cayley) transform: Ād = (I + Āc)(I − Āc)

−1. We
then add an input, u(t) and output y(t) to to make a distributed system fitting
into the description of (4.1) (4.2):

T̄k+1 = ĀdT̄k + diag(bs)ūk, ȳk = diag(cs)T̄k (4.10)

over s = 1 : N , where ks, bs, cs are spatially varying heat conduction coefficient,
and input/output weights.

Demonstration of Convergence, N = 50

For our demonstration here we’ll sample each ‘real’ ks, bs, ds from a uniform random
distribution at each s ∈ [0, 1]: e.g. ks ∈ 1 + U [−1, 1], but start the estimates in θ
as identically 1 for all s. This would correspond to trying to identify a spatially
heterogeneous problem, using a homogeneous initial guess. In order to nicely show
the convergence, we set x̂0 = N (0, 1) and sample vt and wt from 10−4N (0, 1).

Running this scenario, the iteration converges to almost steady state and pro-
duced system estimates that were many times better than the initial guess, as
shown in figure 4.9, where Σ̂t is the estimated system transfer function at time t,
Σr is the ‘real’ system, and Σ̂0 is the system corresponding to the initial guess θ0.
In this case, with N = 50 subsystems, ‖Σr‖∞ = 6.0895, ‖Σr − Σ0‖∞ = 4.0363,
and ‖Σr − Σ100‖∞ = 1.1 × 10−3, so the improvement in the system estimate with
respect to the infinity norm is enormous. The improvement in ‘variance accounted
for’(VAF) [44] is also impressive: V AFΣ̂0

= 67.7470 compared to V AFΣ̂100
=

99.5192.

While the parameter estimates θ̄t do not give us ki directly, since they are
parameterized on Ād instead of Āc, we can still perform a ‘reverse’ Cayley transform
to find back Āc(θ̂) = (I + Ād(θ̂))−1(Ād(θ̂) − I) and thus find an estimate k̂ for
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the ‘real’ heat conduction coefficient. In figure 4.10 we show these conduction
coefficient estimates over a section of space s ∈ [26 : 36] for various times during
the identification, and see that while the initial parameter estimate is bad, the
estimates actually converge pretty quickly to near the exact values, leading to a
very accurately identified heterogeneous heat conduction system.

Demonstration of O(N) Complexity

For this part of the example, we’ll increase the size of the problem by slowly in-
creasing N , the number of subsystems in figure 4.2, which in this case is the size
of the heat conduction problem, and investigate the time necessary for the com-
putations in section 4.6.1 to converge. For this part, we’ll start out with a closer
initial guess of x̂(0) = x(0) + 1

10N (0, 1) and sample the ‘real’ parameters ks, bs,cs

from 1 + 1
5U [−1, 1] to decrease the randomness in the number of steps to conver-

gence. We then set the initial estimates to be identically 1 just as before, and
randomly generate 10 systems for each size N ∈ {25, 50, 75, 100, 150, 200, 300}, and

run the EKF until convergence, defined here as when ‖ ˆ̄θt− ˆ̄θt−1‖2√
N

< 5 × 10−4 (us-

ing this criteria, the values of ‖Σ̂t−Σr‖∞

‖Σ̂0−Σr‖∞

at convergence were on average about
1
30 , and did not increase with N), measuring the times and final errors for each
SysID. The time complexity results are shown in figure 4.11, where we see that not
only is the average EKF time clearly increasing linearly with N (just as is guar-
anteed by the SSS arithmetic), the overall EKF time to convergence also appears
to be, on average, linear, since in this case the number of steps to convergence did
not seem to increase with N (on average the steps needed for convergence were
{22.9, 23.4, 22.6, 24.3, 24.5, 23.9, 24.6}), or if it did, it was extremely slowly. This
is fortuitous, providing truly linear computational complexity distribute system
SysID in this case, although this may not always happen; it is unknown if or under
what circumstances the number of steps to convergence would grow with N .
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4.6.3 Discussion

While we can’t absolutely bound the number of steps, T , necessary for a good
identification using the simple algorithm above (nor even guarantee that the EKF
will converge), we saw in the example that in practice the procedure seems to
work very well, and that sometimes T is independent of the size of the distributed
system, N leading to truly linear computational complexity structured distributed
SysID.

Future work should be devoted to extending these ideas to other types of SysID,
e.g. those with guaranteed convergence, and developing a distributed (or parallel)

computational method for generating the initial parameter estimate ˆ̄θ0 with which
to seed this procedure.

While our numerical example was a very simple heat conduction problem, we
note that this approach potentially has its greatest advantage in identifying more
complicated distributed systems, particularly when the subsystems cannot easily be
isolated and analyzed separately from eachother, such as in many systems biology
examples ( e.g. reaction-diffusion systems in [129][130][131]) for which current
SysID methods (called ‘reverse engineering’ methods) are computationally very
expensive (see e.g. [132] at O(N4)).

4.7 Counterexample: Control of a Smart Blade

We’ve now seen five examples of distributed systems where our SSS methods work
well: they satisfy the necessary assumptions A1:3 in section 3.1.3 and so have
O(N) complexity and produce very good (nearly optimal) results. However, it’s
very important for the end user of these techniques that it be clear under what
conditions, and in what way, these techniques will fail, so we will devote the last
section and example of this Chapter to a case where our SSS sign iteration methods
don’t work well (due to a failure to satisfy assumption A1 of section 3.1.3).

4.7.1 Distributed Model

The model under consideration is that of a ‘smart blade’ of a wind turbine; e.g.
one with distributed sensors and actuators. In this thesis we will only briefly go
into the details of smart-blade design considerations, see [133] for details. We will
consider a single rotor blade modeled as a Euler-Bernoulli beam with only a flap-
wise degree of freedom, and viscous but not strain damping, at a fixed angle of
rotation, giving us the partial differential equation:

ρ(r)
∂2s(r, t)

∂t2
+γ(r)

∂s(r, t)

∂t
+

∂2

∂r2

(

E(r)I(r)
∂2s(r, t)

∂r2

)

= Fu(r, t)+Fd(r, t) (4.11)
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with clamped-free boundary conditions:

s(0, t) =
∂s

∂r
(0, t) = EI(L)

∂2s

∂r2
(L, t) =

∂

∂r

(

EI(r)
∂2s

∂r2
(r, t)

)

(L) = 0 (4.12)

where r ∈ [0, L] is the spanwise position along the blade from the clamped root (r =
0) to the free tip (r = L), s(r, t) is the displacement in the flapwise direction, ρ is the
linear density, γ is the viscous damping constant, EI is the bending stiffness, and
Fu and Fd are the control and disturbance linear force intensity inputs, respectively.

We will consider strain sensors, since they are the most widely employed type
of sensor in smart blades, although our framework could incorporate accelerometer
data and flow data, were such sensors present. Our measurements, y will thus be
of the form:

y(r, t) = p(r)
∂2s

∂r2
+ η(r)n(r, t) (4.13)

where n(r, t) is random measurement noise and p(r) and η(r) are some sensor
proportionality constants, related to the type of sensor used and the position on
the blade.

In actual wind turbine design, the engineer must consider power quality, gen-
erator loads, gear loads, etc (see e.g. [134]), but even given an accurate wind
turbine model including these effects, the task of then finding appropriate impor-
tance weights for these factors is a difficult and complicated problem of economics
and systems engineering. To simplify it for meaningful analysis we will consider
only the fatigue damage caused by vibrations and accompanying stresses in our
single blade.

There are techniques for estimating the ‘damage intensity’ (e.g. [135]) of an
open loop transfer function, but there are no direct methods to use control to
minimize the damage in closed loop (although there are indirect, optimization based
methods [136]), and we will not pursue this. However, from Miner’s rule [137], it’s
apparent that one should try to minimize both the amplitude of the vibration-
induced strain oscillations, and the frequency with which they occur. We thus
define our cost z to include both strain(z1) and strain-velocity (z2) components:

[
z1(r)
z2(r)

]

=

[

pz1(r) ∂2

∂r2 0

0 pz2(r) ∂2

∂r2

][
s(r)
ṡ(r)

]

(4.14)

Decreasing the ‘strain velocity’ should damp the high frequency oscillatory modes
(intuitively, like a derivative term in a PID controller), and decrease the number
of strain oscillations in the closed loop, thus decreasing the damage intensity. The
relative weights pz1 and pz2 , and their dependence on the blade location (r), should
be picked so as to minimize the damage on the section of the blade with the shortest
life (probably heuristically or empirically in practice).

We will model our disturbance as:

Fd(r) = κ(r)d(r, t) (4.15)
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from random wind gusts, turbulence, shadow, etc; To keep our model simple, we
will not incorporate any detailed stochastic disturbance model knowledge(although
detailed filters can be used to describe the turbulence spectrum [138] or other
disturbance sources, as discussed in [139]), and will just assume them to be location
dependent and bounded, where d(r, t) is a random bounded vector and κ(r) is
another proportionality constant, related to the location on the blade.

Probably the most difficult hardware issue for the smart-blade concept is the
design of well-functioning actuators reliable enough to operate in a corrosive off-
shore environment, through lightening strikes, etc. Whichever type of actuation
(or combination of types) is chosen for the smart-blade, each actuator will have
its own dynamics, due to the internal mechanical movements involved, and poten-
tial aero-elastic coupling. For the notational simplicity of our demonstration, our
model will have a gain and a low pass filter to represent the limited bandwidth of
the mechanical actuator. We thus have the transfer function:

Fu(r) =
g(r)

1
2πhσ + 1

u(r) (4.16)

where h is the actuator bandwidth in Hertz, g is the gain, and σ is the Laplace
variable. Note also that the gain g(r) can vary with r; we might have different
actuators with different effects on the lift at different locations on the blade.

Of course, to implement these actuators on a real wind turbine, we should
also note that the controller effort, u(r), is not free; it will use energy, and the
corresponding movement will cause wear and tear on the actuator itself, and thus
should be kept minimal. Hence we introduce an additional term:

z3 = ξ(r)u (4.17)

to our cost function in (4.14), which our feedback control design will attempt to
minimize.

Keep in mind that in a real wind turbine, there would be nonlinear aero-elastic
coupling, such as Beddoes-Leishman dynamic stall [140], and uncertainty in the
actuator lag and gain, but we are leaving these out for this nominal controller
synthesis problem. For a model incorporating uncertainty, see [133].

4.7.2 Finite Difference Discretization

While technically correct, equations (4.11), (4.12), (4.13), and (4.14) are not ac-
tually very useful for analysis and design. The variables y, s, z are on infinite
dimensional Hilbert spaces, and some of the infinite dimensional operators are het-
erogeneous, making computations quite difficult. We thus divide the function space
s : L2[0, L] into a finite number (N) of points, s = [s1, s2, s3...sN ]T and approxi-
mate the spatial partial derivatives using finite difference 2nd order Taylor series
expansions [126] (although higher order would also fit into our framework). Such
a formulation will also allow us a realistic representation of our actuators, which
will likely be discrete in space.
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By doing this, we turn our continuous space model into a discrete space model
of banded matrices, which can then be put into SSS form, and thus made ready for
distributed controller synthesis, as in previous examples. Due to the complexity
of the model, we will not do this by hand, but instead use one of the automatic
SVD methods for finding SSS realizations of banded matrices (see the appendix in
section 2.7), then use the SSS version of the shuffle permutations in Lemma 2.6 to
create an SSS state space model, and thus an interconnected model.

4.7.3 Computational Difficulties

For our computations, we assume a constant apparent wind velocity and angle of
attack, etc, and use the stiffness, density, and blade profile from a LM38.8 wind
turbine blade [141]. We stretch the blade to be L = 50 meters, and try to perform
H∞ synthesis, but unfortunately, our attempts always fail, since as we increase the
number of points, N , in the discretization, the spectrums of the Hamiltonion matri-
ces (see Lemma 3.9) diverge from the real axis, while simultaneously approaching
the imaginary axis, as we see in figure 4.12. This clearly violates assumption A1
in section 3.1.3, and increases the value of η in that Lemma 3.2, thus increas-
ing the number of iterations necessary for convergence of the sign iteration, and
destroying the desired O(N) complexity. Additionally, due to the placement of
these eigenvalues (very small real and very large imaginary components) on the
way to convergence, the eigenvalues will pass very close to the imaginary axis (see
Figure 3.2), making it likely that an eigenvalue will jump over the axis, causing
very large resulting errors. Physically, these eigenvalues correspond to increasingly
badly damped vibratory modes in the closed loop blade as we increase N , which
is just a physical characteristic of our model and desired control law. This effect
can be somewhat mitigated by increasing the control authority, i.e. increasing the
available force from the actuators, but in practice this just isn’t an option; one can
only get so much force from the wind.

H∞ controllers are shown in [133] to make significant improvements in wind
turbine performance by decreasing the damage intensity during blade use, but
unfortunately due to the bad damping of the closed loop system, computationally
efficient controller synthesis using current SSS based methods may not be an option
for such problems. H2 SSS synthesis fails as well. See the recommendations in
Chapter 11 for possible improvements or solutions to these problems.

4.8 Chapter Conclusion

In this chapter we finally provided some motivation for the lengthy derivations of
structured matrix arithmetic in Chapter 2 and proofs of sign iteration convergence
in Chapter 3. We showed how heterogeneous subsystems interconnected together
on a line lead to a system with a Sequentially Semi-Separable matrix realization,
and that the opposite is also true, leading to an O(N) complexity analysis and
synthesis method for distributed controllers, and even O(N) identification of het-
erogeneous distributed systems. We also discussed how due to the special form of
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Figure 4.12: spectrum of Hamiltonians in C− for X Riccati with growing N

SSS arithmetic, such computations can also be performed in a distributed manner,
on distributed memory machines.

Finally, in a few numerical examples, we demonstrated this O(N) complexity
in comparison with other O(N3) distributed techniques, and found that for large
problems, it was not only much faster, but also less conservative. For balance,
we also showed a distributed control problem where our SSS methods failed, due
to a violation of an assumption necessary for the speedy convergence of the sign
iteration, caused by certain physical properties of this example.

The following chapters in Part II will follow much the same format as this one,
except for different applications and different operator structures.



5
Homogeneous Distributed
Systems

In the last chapter, we saw an application of Part I to heterogeneous, finite extent,
systems. We presented such systems first because they are the least abstract and
hence easiest to understand of our applications, and should provide some intuition
for the rest of our work, such as this chapter. Herein, we’ll see a much more
abstract example of a distributed system, which will induce Lr matrices instead
of SSS matrices, but the rest of the results and treatment will be much the same.
We will still use the structure preserving iterations of Chapter 3 on one of the
arithmetics of Chapter 2, and it will still produce a distributed controller that is
arbitrarily close to optimal.

The class of spatially invariant (or ‘shift invariant’) systems, such as arises in
spatially discretized PDE’s with spatially constant coefficients and no boundary
conditions [26], or doubly infinite arrays of identical interconnected subsystems [4],
has enjoyed significant attention lately. Such problems are interesting for their
controllability/observability relations to very large homogenous finite dimensional
problems [125].

The continued difficulty with this class of system is in finding non-conservative
computational methods for checking stability and performance, and synthesizing
controllers. Using Fourier transforms to transform a countably infinite dimensional
multilevel L-operator Riccati equation into a family of finite dimensional Riccati
equations parameterized in multiple variables over the unit circle is not necessarily
a simplification: we still have to solve an uncountable number of finite dimensional
Riccati equations.

A few advances have been made in this direction; while in [142] and [26] only
simple examples are solved by hand, in [143] it is suggested to approach the infinite
dimensional solution by solving progressively larger finite dimensional problems, a
slowly converging algorithm resulting in high order approximations to a parametric
DARE is proposed in [144] (see also [145] for other iterative techniques), and in
[4] and [146], LMI relaxations are used to find conservative controllers with a low
rational order or ‘localized’ structure, respectively. However, it is still often de-
sirable to have non-conservative stability and performance analysis and controller
synthesis for both continuous and discrete time systems, and a way to calculate
them in a relatively efficient manner.

109
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ΣΣΣΣΣ ΣΣΣΣΣ ......

Figure 5.1: String interconnection

To address this problem, we will use the results of Chapters 2 and 3 in Part I of
this thesis. In short, will use the structure preserving arithmetic for S-realizations
of Lr matrices from Chapter 2 in the sign iteration based controller synthesis
techniques of Chapter 3 to compute controllers with realizations of Lr matrices.
In the same way as for the SSS matrices of the previous chapter, we can then
redistribute such structured controllers into the same interconnection structure as
the plant, to achieve a distributed controller implementation.

5.1 Subsystems and Interconnected System

In this Chapter we will study an infinite number of subsystems Σs, as in figure 5.1,
which are identical to eachother for all s ∈ Z. We assume that the subsystems, Σs,
have the following structure:

Σs :







ẋs

vp
s−1

vm
s+1

ys







=







A Bp Bm B
Cp W p Zp V p

Cm Zm Wm V m

C Hp Hm D













xs

vp
s

vm
s

us







(5.1)

where xs are the local states, vm
s and vp

s are interconnections to other subsystems,
and ys and us are measured outputs and controlled inputs. The Ws terms represent
information feedthrough between subsystems Σs+1 and Σs−1.

Lemma 5.1 [147] The set of interconnected systems (5.1) is well-posed [4] if and

only if the matrix pencil z

[
I −Zp

0 Wm

]

−
[

W p 0
−Zm I

]

has no generalized eigenvalues on

the unit circle. In this case, the interconnected system can always be transformed
into ‘Kronecker canonical’ form, wherein Zm = 0, Zp = 0. Proof: See the
Appendix in section 5.6 �

Hence from now on we will make this assumption, Zm = 0, Zp = 0, without loss
of generality. In this case the coupling terms, vm

s and vp
s , are superfluous, and if

we resolve them we get a ‘lifted system’:

Σ̄ :

[
¯̇x
ȳ

]

=

[
Ā B̄
C̄ D̄

] [
x̄
ū

]

(5.2)
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ΣΣΣΣΣ ΣΣΣΣΣ

K K K K K K K K K K...
... ...

...
Figure 5.2: String interconnection with similarly connected controller

with states x̄ =
[
. . . xT

−1 xT
0 xT

1 xT
2 . . .

]T
, and similarly structured inputs ū

and outputs ȳ assumed in l2. Ā, B̄, C̄, D̄ are block Laurent operators with rational
symbols, as in Chapter 2 section 2; Ā = S(Bm, Wm, Cm, A, Bp, W p, Cp). Hence,
using the iterative techniques in Chapter 3, we can compute a similarly structured

controller K̄ :

[

ξ̇
u

]

=

[
AK BK

CK DK

] [
ξ
y

]

, where AK , BK , CK , DK ∈ S.

In the same way that the interconnected subsystems Σs induce a system of
Lr operators, Σ̄, a controller of Lr operators, K̄, can be directly distributed into
interconnected subcontrollers Ks of the same structure as the plant, as shown in
figure 5.2 (the formulas for doing so are the same as in Chapter 4 for SSS matrices).

In the following sections, we will exhibit a few examples of how well this works.
In this chapter we will limit ourselves to continuous time LQR problems and an H2

problem, since they have been considered as worthy problems in the literature [26],
but the techniques from Part I could just as well be applied to H∞ control or model
order reduction, and also in discrete time. (In fact, in Chapter 8, in the course
of solving LQR problems for 2-D homogeneous systems, we will have to solve 1-D
Lr matrix discrete domain Lyapunov and Riccati equations and perform balanced
truncation model order reductions)

5.2 Scalar Example: LQR of a Thin Heated Rod

Consider the heat conduction equation on an infinite bar:

Ṫ (r) =
∂2T (r)

∂r2
+ u(r), y(r) = T (r)

for temperature T over continuous domain −∞ < r < ∞ with controlled input
u(r) and measured output y(r). Discretizing the domain and approximating the

derivative using finite difference: ∂2T (r)
∂r2 ≈ Ts−1 − 2Ts + Ts+1 for s ∈ Z, and then

using the Fourier transform, the LQR problem reduces to solving the parametric
Riccati equation: A(z)∗X(z) + X(z)A(z) − X(z)BB∗X(z) + C∗C = 0, z ∈ T

where A = z−1 − 2 + z, B = 1, and C = 1. Because it is scalar, we can solve for
the positive solution by hand: X(z) = (z−1 − 2 + z) +

√
z−2 − 4z−1 + 7 − 4z + z2,

which has an exponential spatial decay([26][57]) but is irrational, and hence does
not lead to controllers with discrete subcontroller implementations.

To use our L-operator sign iteration technique, we first must form S realizations
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of A(z), B(z), C(z):

Ā = S{1, 0, 1,−2, 1, 0, 1}, B̄ = S{0, 0, 0, 1, 0, 0, 0}, C̄ = S{0, 0, 0, 1, 0, 0, 0}

Note that this realization step is only necessary because we are working with a
discretized PDE. Had our system been provided in subsystem form as in equation
(5.1), we could have pulled out the S realizations, Ā, B̄, C̄ directly.

Following the procedures in Chapters 2 and 3, using balanced truncation model
reductions after each step, we get convergence of the sign iteration after just k = 6
iterations, and in figure 5.3 we see that for larger rational orders, our iterative

solution, ˜̄X , approaches the exact solution X̄ in norm to almost machine preci-
sion (note that ‖X̄‖ = 1). Due to the rational symbol of the resulting L-operator
controller realizations, they will also admit convenient distributed implementations,
as in figure 5.2.

5.3 Matrix Example: LQR for a

Square Heated Bar

Of course, the previous example was too easy! Since it was scalar, we could just
solve the Riccati equation for its exact solution by hand. So in this section we’ll
tackle a much more difficult problem, where the parametric Riccati equation will
consist of large matrix blocks which cannot be solved by hand.

We consider the system:

Ṫ (r, m, n) = (
∂2

∂r2
+

∂2

∂m2
+

∂2

∂n2
)T (r,m,n) + u(r, m, n), y(r,m, n) = T (r,m, n)

of temperature T over continuous 3-dimensional spatial domain −∞ < r < ∞,
1 < m < 5, 1 < n < 5 with controlled input u(r, m, n) and measured output
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y(r, m, n). Note that while our PDE is in three dimensions, we are still considering
a 1-D S operator problem here, in that the system is only infinite in one direction.
We will have to wait for Chapter 8 to treat systems which are infinite in multiple
directions.

Discretizing the domain and approximating the derivative using finite difference,
we get:

Ṫr,m,n = −6Tr,m,n + Tr−1,m,n + Tr+1,m,n + Tr,m−1,n + Tr,m+1,n +

Tr,m,n−1 + Tr,m,n+1 + ur,m,n

yr,m,n = Tr,m,n

over r ∈ Z, m ∈ {1, 2, 3, 4, 5]}, n ∈ {1, 2, 3, 4, 5]}, with zero temperature boundary
conditions at m = 0, 6 and n = 0, 6. If we then use the Fourier transform in the
r direction, the LQR problem reduces to solving the parametric Riccati equation:
A(z)∗X(z) + X(z)A(z) − X(z)BB∗X(z) + C∗C = 0, z ∈ T where B = I,
C = I, and A(z) is a 25 × 25 transfer matrix. Hence it would be prohibitively
difficult to solve explicitly by hand, and we must use numerical techniques.

Compared to the thin rod in section 5.2, for this example much higher orders
were necessary due to the increased state size, and it was impossible to compare the
numerical solutions to the exact solution, as it could not be explicitly computed.
So on a 1000 point discretization of T, the finite dimensional complex problem
A(z0)

∗X(z0)+X(z0)A(z0)−X(z0)BB∗X(z0)+C∗C = 0 was solved using Matlab,
and the solution was compared to our Lr-operator sign iteration produced solution
X̃(z) at each z0 ∈ T. The sign iteration took 7 steps to converge, and produced very
close approximations: for a rational order of X̃(z) of 100, we found maxz0 ‖X(z0)−
X̃(z0)‖ = 6.7 × 10−12, and for order 50, maxz0 ‖X(z0) − X̃(z0)‖ = 1.27 × 10−6,
where ‖X(z)‖∞ ≈ 0.5986. So, even for problems with large local dimension, this
numerical approach works very well.

5.4 Matrix Example: H2 Control of a Platoon,

with Comparison to Other Techniques

For our next example, we consider the problem of controlling the absolute and
relative distances in an infinite-dimensional car platoon,assuming a second order
model for each vehicle [125]. The dynamics are described by the following:

[
ẋ1

i

ẋ2
i

]

=

[
0 1
0 0

] [
x1

i

x2
i

]

+

[
0
q

]

wi +

[
0
g

]

ui (5.3)

for i = −∞ . . . + ∞; x1
i is the position, x2

i is the velocity, ui is the control input,
wi is the disturbance input, and q and g are constants which we assume to be both
1 for ease of presentation. The measured output will be the state itself, while as
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performance output zi we choose the following:

zi =





ui

f1x
1
i

f2

(
1
2x1

i−1 − x1
i + 1

2x1
i+1

)



 (5.4)

The performance outputs include the control effort, a symmetric measure of the
relative position, and absolute position (for well-posedness, as explained in [125]),
weighted by f2 and f1.

In order to apply our methods to this example, we simply write it as a set of
interconnected subsystems as in (5.1):

Σs :









A Bp Bm B1 B2

Cp W p Zm Lp V p

Cm Zp Wm Lm V m

C1 Jp Jm D11 D12

C2 Hp Hm D21 D22









=

















0 1 0 0 0 0
0 0 0 0 q1

s gs

1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

−f2
s 0

f2
s

2
f2

s

2 0 0
f1

s 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

















(5.5)
then resolve the interconnection variables to get the Lr operator system (as in
(5.2)), in which we can apply our structure preserving iterative techniques.

5.4.1 Exact H2 Solution

We consider the H2 optimal state feedback problem ([60] 14.8.1) and hence only
have to solve one Riccati equation, which in our case reduces to:

Ā∗P̄ + P̄ Ā + C̄∗
1 C̄1 − P̄ B̄∗

2B̄2P̄ = 0 (5.6)

with controller K = −B̄∗
2 P̄ , which minimizes the spatiotemporal H2 norm (see the

appendix of Chapter 3) from the disturbance w to the output z. By using a Fourier
transform we convert the infinite dimensional Lr matrix Riccati equation into an
infinite set of finite sized Riccati equations, parametrically dependent on z ∈ T,for
which the stabilizing solution is:

P (z) =

[√

2k
√

k
√

k√
k

√

2
√

k

]

, with k =

(

f2
1 + f2

2

(
3

2
− z−1 − z +

1

4
z−2 +

1

4
z2

))

(5.7)

Unfortunately, this solution is irrational, and hence doesn’t have a nice dis-
cretely distributed controller implementation as in figure 5.2, and solving such
problems by hand isn’t an option for more complicated situations, as in the previ-
ous example, so we’ll use our numerical methods.
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5.4.2 Numerical Comparisons

In this example, we’ll use our methods from Part I to numerically solve for the H2

solution, and compare it to the exact optimal solution derived from (5.7). Also,
we’ll compare our result in terms of H2 performance to two other methods of
numerically computing distributed controllers: the decomposable system approach
described in [10] and extended to infinite extent systems in [148] and the distributed
LQR method described in [149] and extended to infinite extent systems in [148].

In our technique, we solve for some Lr operator ¯̃X such that ‖X̄ − ¯̃X‖ <

ǫ, for some small ǫ and such that ¯̃K = −B̄∗
2

¯̃X will have a discrete distributed
implementation as in Figure 5.2. Just as in the previous two examples, we used the
S realization arithmetic of Chapter 2 and the sign iteration techniques of Chapter
3 to solve the Laurent matrix Riccati equation.

For comparison between our sign iteration method and the actual optimal con-
troller, we gridded over 1000 points on the unit circle, solved the H2 optimal
control problem at each problem, then integrated over the unit circle to find the
corresponding spatiotemporal H2 optimal cost. The normalized Riccati error of our
solution was less than 10−12 in norm (estimated over the same 1000 grid points),
and the relative difference between our H2 cost and the optimal was less than
10−15, indicating that our approximate solution performs very very well.

While our technique gives a solution with almost identical performance to the
optimal, this is not necessarily easy, nor true for all techniques. To demonstrate
this, we compared the results of our technique with those for the other two methods
for different values of the weighting parameter f2 while keeping f1 = 1. f2 weights
the penalty on the relative positions of the vehicles in the platoon, so for f2 → 0
the problem turns into decentralized control.
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Figure 5.4: Closed-loop performance of the four different controllers.
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The results are depicted in Figure 5.4, which shows the spatiotemporal H2 norm
achieved with four different methods: the centralized optimal controller (identical
to the performance of our method, to within 10−15), the truncated version of this
optimal controller, with only one off-diagonal band on each side (tri-diagonal),
the decomposable system approach described in [10], and the distributed LQR
controller described in [149].

The centralized optimal controller of course yields the best performance, while
its truncated version is slightly better than the controller given by the decompo-
sition approach, followed by the distributed LQR controller. We also see that as
the coupling weight becomes small (f2 → 0) (leading to fully decentralized optimal
controllers), the four controllers seem to converge to the same performance.

Thanks to Paolo Massioni and Tamas Keviczky, who collaborated with the au-
thor on this numerical example.

5.5 Conclusion

To summarize, in this chapter we’ve seen how spatially homogeneous distributed
systems on a line lead to Lr matrices, and how this fact can be used with the
machinery of Chapters 2 and 3 of Part I to efficiently synthesize non-conservative
distributed controllers on a line. Both scalar and matrix examples were shown, and
the methods were found to be very accurate and high performing, compared both
with alternative methods and with the optimal solutions.

5.6 Appendix: Proof of Lemma 5.1

Well-posedness is equivalent to det(

[
z−1I 0

0 zI

]

−
[
W p Zp

Zm Wm

]

) 6= 0, ∀z ∈ T. [4].

First we need an intermediate result:

Lemma 5.2 det(

[
z−1I 0

0 zI

]

−
[
W p Zp

Zm Wm

]

) 6= 0, ∀z ∈ T ⇔ the matrix pencil:

z

[
I −Zp

0 Wm

]

−
[

W p 0
−Zm I

]

(5.8)

has no eigenvalues on the unit circle. Proof: Postmultiply ∆−Ass by

[
I 0
0 z−1I

]

then premultiply by

[
I 0
0 −I

]

to get (5.8). Since both of these multiplication matri-

ces are invertible for z ∈ T, these are equivalent. �
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Now for the constructive proof; to save space, we will only show the transformations
without us and ys. This method was first derived in [147]. Proof: Subsystem Σs

in (5.1) is equivalent to:





I 0 −Bm

0 I −Zp

0 0 Wm









ẋs

vp
s−1

vm
s



 =





A Bp 0
Cp W p 0

−Cm −Zm I









xs

vp
s

vm
s+1



 (5.9)

Now, according to Lemma 5.2, if and only if the system is well posed, then the
matrix pencil has no eigenvalues on the unit circle, and then there exists Q and P
matrices, both unitary, such that

Qz

[
I −Zp

0 Wm

]

P − Q

[
W p 0
−Zm I

]

P = z

[
T11 T12

0 T22

]

−
[
S11 S12

0 S22

]

(5.10)

where zT11−S11 has eigenvalues inside the unit circle and zT22−S22 has eigenvalues
outside the unit circle (this is called a generalized Schur decomposition, see e.g.
[46]). Hence S22 and T11 are both invertible. If we premultiply equation (5.9) by
[
I 0
0 Q

]

, and perform a state transformation

[
vp

s

vm
s+1

]

= P

[
v̂p

s

v̂m
s+1

]

, then from (5.9)

we arrive at:




I ♣ ♣
0 T11 T12

0 0 T22









ẋs

v̂p
s−1

v̂m
s



 =





A ♣ ♣
♣ S11 S12

♣ 0 S22









xs

v̂p
s

v̂m
s+1



 (5.11)

Where the ♣’s just represent variables who’s values don’t matter for the proof.
Now if we solve the following discrete algebraic Sylvester equations:

S11T
−1
11 XT22S

−1
22 − X + (S11T

−1
11 T12 − S12)S

−1
22 = 0 (5.12)

T−1
11 S11Y S−1

22 T22 − Y + T−1
11 (S12S

−1
22 T22 − T12) = 0 (5.13)

the unique solutions X and Y can be shown to satisfy the coupled continuous
algebraic Lyapunov equations: T11Y + XT22 + T12 = 0, S11Y + XS22 + S12 = 0,

and thus premultiplying the bottom two rows of (5.11) by

[
I X
0 S−1

22

]

and performing

a state transformation:

[
v̂p

s

v̂m
s+1

]

=

[
T−1

11 Y
0 I

] [
ṽp

s

ṽm
s+1

]

yields:





I ♣ ♣
0 I 0
0 0 S−1

22 T22









ẋs

ṽp
s−1

ṽm
s



 =





A ♣ ♣
♣ S11T

−1
11 0

♣ 0 I









xs

ṽp
s

ṽm
s+1



 (5.14)

or 



ẋs

ṽp
s−1

ṽm
s+1



 =





♣ ♣ ♣
♣ S11T

−1
11 0

♣ 0 S−1
22 T22









xs

ṽp
s

ṽm
s



 (5.15)
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which is in the correct form, with ρ(S11T
−1
11 ), ρ(S−1

22 T22) < 1, so it produces Laurent
matrices bounded on l2. �



6
Homogeneous Distributed
Systems with Boundary
Conditions

In Chapter 5 we investigated doubly infinite extent, perfectly homogeneous sys-
tems, and in Chapter 4 we investigated finite, arbitrarily heterogeneous systems.
However, there is a gap in these methods; often in real applications, the intercon-
nected systems are mostly homogeneous, but with only heterogeneous boundary
conditions. For such systems the class of perfectly homogeneous interconnected
systems in Chapter 5 (shift invariant systems which are doubly infinite and have
no boundary conditions) is too narrow (all real, non-periodic systems have bound-
ary conditions), but the class of fully heterogeneous systems, as in Chapter 4, is
often too broad. Such interconnected subsystems still result in lifted systems of
SSS matrices, but they also have the additional structure of being ‘almost Toeplitz’.
To lump these into the heterogeneous class is to ignore this extra structure, and to
miss out on an opportunity for faster computations.

It is well known that, in some ways, finite Toeplitz matrices are good approxima-
tions for bi-infinite Laurent matrices, and vice versa, and this fact has been previ-
ously used for each to try to calculate Riccati solutions involving the other [29][30].
The difficulty is the boundary conditions; the solution of a Riccati equation of
Toeplitz matrices will often be Toeplitz in the middle, but there will be boundary
effects at the ends (which of course do not show up in the bi-infinite Laurent opera-
tor Riccati solution). It’s difficult to know a priori how far in these boundary effects
will reach, and it’s not clear how to nicely calculate them, even if the Toeplitz part
in the middle is known, without solving the whole Riccati equation again (it’s also
ill-advised to simply truncate a Laurent operator controller, as it may be fragile).
There also exist suboptimal design methods for systems described by symmetric
Toeplitz or circulant systems [24][150], often in O(N) or O(N log(N)).

There are many definitions of ‘almost Toeplitz’ and ‘Toeplitz-like’ matrices in
the literature, see e.g. [151][29] and the references therein. Our definition will
be most closely related to that in [29], in which ‘almost Toeplitz’ matrices are
basically defined as matrices in which the interior is Toeplitz, and the boundaries
are bounded in their non-Toeplitz-ness by a power decay. But we will instead rely
on our own definition of ‘almost Toeplitz SSS matrices’(ATSSS) from Chapter 2,
which are nicely physically motivated from interconnected systems (as we will see
in the next section), and will provide an elegant specialization of the SSS control
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Figure 6.1: String interconnection of Homogeneous system with boundary con-
ditions

methods of Chapter 4. Thereafter, in the same pattern as in Chapters 4 and 5,
the structure preserving iterations of Chapter 3 will be used on the O(1) ATSSS
arithmetic to analysize systems and synthesize controllers of the same structure,
all in O(1). In section 6.2 we will see this demonstrated on a heat conduction
example, with comparisons to the O(N) SSS methods of Chapter 4 and the O(N3)
methods of Matlab’s ‘h2syn’.

6.1 Almost Toeplitz Systems

In this section, we will specialize the iterative structure preserving methods of
Chapter 4 to a subclass of SSS systems, with additionally ‘almost Toeplitz’ struc-
ture, for even faster computations. Specifically, we assume that the subsystems
have the following structure:

Σs :









ẋs

vp
s−1

vm
s+1

zs

ys









=









As Bp
s Bm

s B1
s B2

s

Cp
s W p

s 0 Lp
s V p

s

Cm
s 0 Wm

s Lm
s V m

s

C1
s Jp

s Jm
s D11

s D12
s

C2
s Hp

s Hm
s D21

s D22
s

















xs

vp
s

vm
s

ws

us









(6.1)

connected together as in figure 6.1. Each subsystem Σs has a realization as in (6.1),
but we assume that only the small left and right boundaries, for s ∈ {1, 2, ...NT} and
s ∈ {N − NB, ..., N − 1, N}, respectively, are heterogeneous, whereas the interior,
which we assume to be much larger (N ≫ NB + NT ∈ O(1)), is homogeneous; all
Σs, NT < s < N −NB are identical, and we will denote them as Σ∞. We will also
assume that W p

s and Wm
s are stable in the interior; ρ(W p

∞), ρ(Wm
∞ ) < 1 (otherwise

the resulting lifted system matrices could become unbounded with growing N).

Just as in the previous chapters, assuming zero boundary inputs (vm
1 = 0,vp

N =
0), if the interconnection variables are resolved, we obtain the interconnected sys-
tem:

Σ :





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x
w
u



 (6.2)



6.2 Example: H2 control of a heated rod 121

ΣΣΣΣΣ ΣΣΣΣ. . .
1 N2 Σ Σ Σ Σ Σ

HomogeneousHeterogeneous Heterogeneous

NN-1T NBN-∞ ∞ ∞ ∞ ∞
. . . . . .

. . .K1 K2 K K . . .
N’T ∞

K
∞

K
∞ N’BN-

K. . . . . . . . .
NN-1 KK

Heterogeneous HeterogeneousHomogeneous

Figure 6.2: String interconnection of Homogeneous system with boundary con-
ditions and ATSSS controller

where the overline indicates a ‘lifted’ variable; for vectors: x =
[
xT

1 xT
2 ... xT

N

]T
,

and the interconnected system matrices, e.g. A, are structured. They will of
course still have the SSS structure, as in Chapter 4, but the generators of the
SSS matrices can be separated into three sections; the top, interior, and bottom.
For example, for Ā = SSS(Bm

s , Wm
s , Cm

s , As, B
p
s , W p

s , Cp
s ) above, the generators

(Bm
s , Wm

s , Cm
s , As, B

p
s , W p

s , Cp
s ) in the top, for 0 < s < NT , and in the bottom, for

N −NB < s < N can be arbitrarily varying, but in the interior will be constant for
all NT < s < N −NB, which we will denote by (Bm

∞, Wm
∞ , Cm

∞, A∞, Bp
∞, W p

∞, Cp
∞).

These are our ‘almost Toeplitz Sequentially Semi Separable’ (ATSSS) matrices of
Chapter 2, which have an O(1) complexity arithmetic. Since all of the matrices
in the realization (6.2) have this structure, structure preserving iterations can be
used to compute controllers (e.g. H2 or H∞) in O(1), as discussed in Chapter
3 (assuming that the control problem satisfies the growth assumptions therein, e.g.
the relevant Hamiltonion matrices ∈ A∀N ∈ N). Since the iterations preserve the
structure, the controller itself will also have a realization of ATSSS matrices, which
is very convenient, as follows.

Just as for the Lr and SSS matrices of Chapters 4 and 5, if the above mentioned
iterative methods are used to calculate a controller with ATSSS realization K :[

ξ̇
u

]

=

[
AK BK

CK DK

] [
ξ
y

]

for the system in figure 6.1, then it can be shown that

K̄ can be redistributed into a homogeneous distributed system with boundary
conditions as shown in figure 6.2 (see Chapter 4 for formulas for the redistribution
step). Note that in figure 6.2 we have shown the sizes of the boundaries of the
controller (N ′

T and N ′
B) to be one larger than the sizes of the boundaries of the

system (NT and NB), but this is just an example for illustrative purposes. In
general nothing is known a priori about the size of the boundaries of the controller
relative to those of the original system, but in practice they are usually slightly
larger.

6.2 Example: H2 control of a heated rod

In Chapter 2 we developed an ATSSS arithmetic that was structure preserving,
and which had computational complexity independent of the size of the interior
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Figure 6.3: On the left is a comparison of the H2 controller synthesis times.
Shown on the right is the non-Toeplitz-ness of Āk; the difference between the
upper left corner of Āk and its interior. In MATLAB notation: log10 |Āk(1 :
20, 1 : 20) − Āk(NT + 1 : NT + 20, NT + 1 : NT + 20)|

N − NB − NT , as long as it was large enough for the iterations to converge to
steady state. Formally, using this arithmetic for fast H2 controller synthesis is
straightforward: the ATSSS arithmetic can be used in place of the standard SSS
arithmetic to synthesize controllers with ATSSS structure and do ATSSS structure
preserving model order reductions. For a computational example we consider a
heated rod:

Ṫ (r) =
∂2T (r)

∂r2
+ u(r) + w1(r), z(r) =

[
T (r)
u(r)

]

, y(r) = T (r) + w2(r)

with temperature T over continuous domain 0 < r < N with controlled input
u(r), measured output y(r), cost z(r), and disturbances w1(r), w2(r). Discretizing

the domain and approximating the derivative using finite difference: ∂2T (r)
∂r2 ≈

Ts−1 − 2Ts + Ts+1 for s ∈ {1...N}, gives us an Nth order system:

Ṫ = ĀT + ū + w̄1, z̄ = C̄1T̄ + D̄12ū, ȳ = T̄ + w̄2

where Ā = SSS{1, 0, 1,−2, 1, 0, 1}, C̄1, D̄12 have ATSSS structure, with NT =
NB = 1. By varying the size of the problem, N , and computing an H2 optimal
controller using standard MATLAB QZ-based Riccati solvers (where all structure
is ignored), the existing SSS structure preserving solver from Chapter 4 (where the
‘almost Toeplitz’ structure is ignored), and the new ATSSS structure preserving
solver, we can show that this new technique is indeed much faster for very large N .

As expected, in figure 6.3 we see the cubic O(N3) complexity of the MAT-
LAB unstructured solver, the linear O(N) complexity of the SSS solver, and the
constant complexity of the ATSSS solver. The linear complexity of the SSS ap-
proach becomes an advantage after about N ≈ 400, and the ATSSS approach is
advantageous after only N ≈ 200. The small bit of variation in the computa-
tional times for the ATSSS solver were just random variations due to the load on
the desktop computer, since the actual calculations performed were exactly the
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same for each N ; the left and right boundary effects and interiors of the result-
ing controllers were all identical, the only difference was the size of the interior.
Hence in practice, the ATSSS synthesis only needs to be performed once, and the
resulting ATSSS generators of the controller can be applied to systems of all differ-
ent interior lengths N ∈ {100, 200, 300, 400, 500, 600} etc, just by correspondingly
stretching the lengths of the interiors of the controller matrices.

In figure 6.3 is a comparison of the upper left corner vs. the interior of one of
the controller matrices ĀK ; as we see, the non-Toeplitzness is mostly limited to
the first few rows and columns. The sizes of the non-Toeplitz boundaries, NT and
NB of ĀK , B̄K , C̄K were between 20 and 30, and thus did not grow very much
in the iterative ATSSS calculations of the Riccati solvers, due to the exponential
convergence proven in Chapter 2, but as we see in the figure, these boundaries
probably could have been even smaller without sacrificing much accuracy. As for
the overall accuracy of the solvers, for all the sizes, N , the closed loop H2 norm
of the controllers produced by the ATSSS and SSS methods were less than 10−13

different (relative error) from the closed loop H2 norm of the controller produced
by MATLAB’s unstructured solver using ‘H2syn’; so the ATSSS results were very
close to optimal.

6.3 Conclusion

In this chapter we’ve shown how homogeneous interconnected subsystems on a line
with arbitrary boundary conditions lead to systems with realizations of ATSSS
matrices, thus allowing the use of our O(1) ATSSS arithmetic of Chapter 2 and
structure preserving iterations of Chapter 3 to design controllers with ATSSS real-
izations in only O(1) complexity. In section 6.2 we demonstrated this result on a
heat conduction example, showing that the O(1) complexity did work in practice,
providing controllers arbitrarily close to optimal (within 10−13 in the H2 norm)
much faster than the O(N3) of Matlab’s unstructured solvers, or even the O(N)
of our SSS solvers (which ignore the ‘almost Toeplitz’ structure).

Note that many of the other results from Chapter 4 could be easily specified to
work in O(1) for the ATSSS case (e.g. H∞ synthesis), while others might require
more work (e.g. for SysID, the measured inputs and outputs would also need to
be homogeneous in the interior, a nontrivial assumption).
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7
Uncertain Distributed
Systems

“In theory there is no difference between theory and practice. In practice there is.”

- attributed to Yogi Berra

Robustness analysis and synthesis, being considerably more difficult than ordi-
nary control techniques for small scale systems, are even more of a challenge for
distributed systems, although some extensions to robustness considerations of the
distributed LMI techniques (see the introduction of Chapter 4) have appeared in
the literature, e.g.[33][34][152].

In this chapter we will show how to extend some of the previous chapters’ results
to robustness analysis and controller synthesis using D scalings. For simplicity,
our presentation will be for finite heterogeneous systems and SSS matrices, as in
Chapter 4, but the methods and computational results could easily be extended
to S realizations of Lr operators and ATSSS matrices, and thus also the types of
systems described in Chapters 5 and 6.

7.1 Subsystem model/Interconnection Structure

The subsystem models considered will most generally consist of state space real-
izations:

Σs :









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ẋs
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
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
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

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
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s
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









(7.1)

where vm
s and vp

s are interconnections to other subsystems (see Figure 7.1), zs

and ws are performance channels and disturbance inputs, ys and us are measured
outputs and controlled inputs, and z∆

s and w∆
s are uncertainty interconnections,

with block diagonal structured uncertainty w∆
s = ∆sz

∆
s where ∆s ∈ ∆s, which is

not coupled to any of the other uncertainties. The Ws terms represent information
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Figure 7.1: String interconnection with uncoupled uncertainties

feedthrough between subsystems Σs+1 and Σs−1. This type of subsystem has
appeared in [4] and associated papers, and also in Chapters 4, 5, and 6.

If N of these subsystems (7.1) are connected together in a string (see Figure
7.1) with zero boundary inputs (vm

1 = 0,vp
N = 0) and the interconnection variables

are resolved, we obtain the interconnected system:

Σ :







ẋ
z∆

z
y







=




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C∆ D∆ L∆ V ∆
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

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

x
w∆

w
u







(7.2)

with corresponding block diagonal lifted uncertainty: w∆ = ∆z∆ where ∆ ∈
∆ = diag(∆0,∆1, . . . ,∆N ). The overline indicates a ‘lifted’ variable; for vec-

tors: x =
[
xT

1 xT
2 ... xT

N

]T
, and the interconnected lifted system matrices have

‘Sequentially Semi Separable’(SSS) structure, just as in Chapter 4.

This formulation leads up to one of the fundamental problems in robust control
research, extended to SSS distributed systems:

Problem 7.1 (Robust Performance Synthesis) Given Σ and ∆, find a stabi-
lizing controller K with SSS structure, such that:

‖Fl(Fu(Σ, ∆P ), K)‖∞ < 1, ∀∆P ∈ ∆P (7.3)

where ∆P =

[
∆ 0
0 ∆f

]

, ‖∆P ‖∞ < 1, and ∆f ∈ Cnw×nz .

We constrain the controller to have a realization of SSS matrices K :

[
AK BK

CK DK

]

since such controllers can be readily distributed into the same interconnection struc-
ture as the system, as in figure 7.2(see Chapter 4 for discussion and formulas).

In the next section we will illustrate how the characteristics of SSS matrices
can be exploited to allow for structure preserving O(N) algorithms for ‘D-scalings’,
building up to O(N) controller-scaling iteration steps for synthesis of controllers
with SSS structure, and thus a distributed implementation.
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Figure 7.2: Controller implementation

7.2 Computational Methods

In previous chapters, iterative methods based on the structure preserving matrix
sign iteration were used to solve Lyapunov and Riccati equations, check matrix
stability, and ultimately, to synthesize nominal H2 and H∞ controllers with SSS,
ATSSS, and rational Laurent structure for interconnected systems such as (7.2).
In the following, we will adapt another matrix iteration, Osborne’s method [153],
to be SSS/ATSSS/Laurent structure preserving, for use with the H∞ methods of
Chapter 3 for SSS/ATSSS/Laurent structure preserving D − K iterations.

7.2.1 Upper bound for the matrix structured singular value

For some complex matrix M and block diagonal class of norm bounded structured
uncertainties ‖∆‖2 < 1 we would like to solve the minimization problem:

ν = inf
D∈D

‖DMD−1‖2 (7.4)

where D is some set of complex matrices such that D and ∆ ∈ ∆ commute. That is,
we would like to compute some upper bound, ν for the matrix structured singular
value(SSV), µ defined as µ = max∆∈∆ ρ(M∆), which often occurs in problems
of robust stability and performance [60]. It is well known that this so called ‘D-
scalings’ method of computing upper bounds for µ can be linearized through a
variable change and then written as an LMI, but for the sake of computational
efficiency we will use a different, more conservative method, that of Osborne [153],
which has a long history of being used for fast SSV upper-bound computations
[154]. In [155], Osborne’s cyclic method is slightly modified into the so called
‘EBE’ method for faster Matlab implementation, and is applied to upper-bound
computation for complex and mixed uncertainties. It can further be shown that
Algorithm 1 is equivalent to this method,
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Algorithm 7.1 (EBE: Matrix Version)

M0 = M ;

for k = 1, 2, 3, ...

R2
k = Do([Mk − Do(Mk)] [Mk − Do(Mk)]

T
)

S2
k = Do([Mk − Do(Mk)]

T
[Mk − Do(Mk)])

Dk = (Sk)1/2(Rk)−1/2

Mk+1 = DkMkD−1
k

end

only in a matrix format, where limk→∞ ‖DkMD−1
k ‖F = infD∈D ‖DMD−1‖F and

Do(X) = diag(X(11), X(22), ...X(NN)) for some matrix X where X(ij) represents

the element on the ith row and jth column of matrix X . We can also define
a modified operator D∆

o () to be similar to Do(), except operating in a way as
conformably partitioned with ∆. For a block diagonal ∆ with scalar complex
blocks, complex repeated blocks, and complex full blocks, for N blocks in total, we
define D∆

o (Z) = diag(F(Z(11)), F(Z(22)), ..., F(Z(NN))) where Z(ss) is the block on
the diagonal of Z of appropriate size to match the corresponding uncertainty block
∆j , and

F(X(ii)) =

{
‖X(ii)‖F In×n : ∆(ii) ∈ Cn×n|n > 1

X(ii) : ∆(ii) ∈ pIn×n|p ∈ C

Using D∆
o () in the above algorithm (and with (Sk)1/2(Rk)−1/2 interpreted as the

matrix square root) extends the EBE method to uncertainties with full and re-
peated complex blocks(without the guarantee on optimality). In addition, since we
have rewritten the EBE iteration only in terms of matrix-matrix multiplications,
D∆

o () operations, and square roots and inverses of block diagonal matrices, it can
clearly be implemented in O(N) for M with SSS structure, and further, the opti-
mal D scalings will also have SSS structure(trivially, since they are block diagonal).
Note that without exploiting the SSS structure of M , each iteration of Algorithm
1 would be O(N3) complexity, and that the computation of (7.4) using standard
LMI solvers is O(N∼6).

7.2.2 D-K iteration for Decoupled Uncertainty Structure

In this subsection, we will describe how the structure preserving EBE method may
be used with the SSS H∞ methods of Chapter 4 to perform efficient D-K iterations
to attack Problem 7.1.

All of the robust control results that we will use are standard (our innovation
will be the O(N) complexity and preserving the SSS structure through each step),
but the reader might want to consult [60] for an explanation of D-K iteration, which
can be summarized in 4 steps:
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Solve an H∞ problem for Σ

More precisely, we would like to minimize: ‖Fl(Σ, K)‖∞ over all stabilizing con-
trollers K ∈ K. This step can be efficiently completed using the Riccati based
γ-iteration method for SSS matrices as demonstated in Chapter 4. However, in
this case, the system(7.2) will have uncertainty channels leading to generalized

performance output
[
zT
∆ zT

]T
and generalized disturbance input:

[
wT

∆ wT
]T

which need to be ‘shuffle permuted’, via the SSS version of Lemma 2.6 to avoid
block arithmetic. We also note that it can be shown that the stabilizability, de-
tectability, regularity, and invariant zeros assumptions for H∞ synthesis will hold
for the system with uncertainty channels (7.2) if they hold for the nominal system
without.

Compute D-scalings on a frequency grid

At each point on a frequency grid ωk ∈ [0, ωmax]: solve:

inf
D

ωk
P

∈DP

‖(Dωk

P Fl(Σ(iωk), K(iωk))(D
ωk

P )−1‖2 (7.5)

where DP∆P = ∆PDP . It can easily be shown that at each frequency iωk,
Fl(Σ(iωk), K(iωk)) will be a 2 × 2 block complex matrix, with each block hav-
ing SSS structure. Therefore a sub-optimal solution to this step can computed
efficiently by using Osborne’s method(Section 7.2.1) extended for ∆P at each fre-
quency point ωk.

Interpolate to form DP (ω), D
−1

P (ω) ∈ RH∞

Due to the structure of ∆P , each scaling will have the structure:

D
ωk

P = diag(Dωk

1 , Dωk

2 , ..., Dωk

N , Inz×nz
)

where the scalar corresponding to ∆f has just been absorbed by the other values

at each frequency [60]. Due to this block diagonal structure of each matrix D
ωk

P ,
the corresponding interpolation problem: to create a stable rational proper transfer
function DP (ω) with stable inverse, such that |DP (iωk)| ≈ D

ωk

P can just be split up
into N small uncoupled interpolation problems: find Ds(ω) such that |Ds(iωk)| ≈
Dωk

s , for each s ∈ {1, 2, ..., N}. Each interpolation problem will be of small size
nz∆

s
× nw∆

s
, and may be computed efficiently with available software [156].

Set Σ → DP ΣD
−1

P and return to step 1)

Fortunately, the block diagonal structure of DP will allow this step to be done on
a local level Σs → DsΣsD

−1
s using minimal realizations of Ds and D−1

s . This step
will cause the state dimension of the realization of each subsystem Σs to grow by
nxs

→ nxs
+ mDs

+ mD−1
s

where mDs
and mD−1

s
are the McMillan degrees of each
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Ds and D−1
s (See the appendix in section 7.6 for the exact changes made to each

Σs), but will preserve the SSS structure of Σ, allowing us to return to step 1) and
begin another round of upper bound minimization. We also note here that since
DP is stable and has a stable inverse, the H∞ synthesis assumptions about the
stabilizability, detectability, regularity and invariant zeros will hold for the newly

scaled system DP ΣD
−1

P if they held for the old Σ.

The D-K iteration method described above can be continued until the D-scalings
approximately converge, the user gives up, or (7.3) is satisfied. After each iteration,

‖DPFl(Σ, K)D
−1

P ‖∞ (7.6)

can be efficiently(O(N)) upper bounded via SSS arithmetic used with the sign
iteration in Lemma 3.8.

Remark 7.1 We also note that sometimes we would like to find the largest bounded
uncertainty set such that we have a certain guaranteed robust performance, or,
given a bounded uncertainty set, find the optimal robust performance. Both of
these problems can be approached by rescaling Fl(Σ, K) and repeating the µ-upper
bound analysis[94].

Remark 7.2 To make a rigorous claim of O(N) complexity for D − K iteration
steps as we have outlined them, it would also be necessary to assume bounds on the
number of EBE iterations, and the fine-ness of the necessary frequency gridding
in the interpolation step. Such assumptions would doubtlessly be overly restrictive,
and we will only note that in practice, the EBE matrix iteration converges in 2-4
steps, and for reasonably damped systems < 100 frequency points ωk seem to be
sufficient.

7.3 Other uncertainty structures

As we have seen, the block diagonal uncertainty structure of ∆ is absolutely essen-
tial for allowing us to perform D-K iterations. The most obvious source of such a
decoupled uncertainty structure is a ‘local’ uncertainty within each subsystem Σs,
thus it initially appears that we cannot model uncertainties in the interconnections
between systems. However, by utilizing some classic methods from robust control,
it is often possible to decouple uncertain interconnections.

7.3.1 Parametric Uncertainty in Σs

For example, suppose we have ks real norm-bounded parametric uncertainties |δi
s| <

1 for 1 ≤ i ≤ ks occurring in our subsystem state space model (7.1)(leaving out
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the uncertainty channels), which we repartition as:

[
ẋs

ŷs

]

=

[
As(δs) B̂s(δs)

Ĉs(δs) D̂s(δs)

]

︸ ︷︷ ︸

Ps(δs)

[
xs

ûs

]

where ŷs =







vp
s−1

vm
s+1

zs

ys







and ûs =







vp
s

vm
s

ws

us







are generalized outputs and inputs, and the

matrices are correspondingly grouped. If we further assume that the uncertainties
occur affinely:

Ps(δs) = P 0
s +

ks∑

i=1

δi
sP

i
s

then using a well known method [94] we may pull out the uncertainties and create
an efficient model of the form:





ẋs

ŷs

z∆
s



 =





A0
s B̂0

s L1
s

Ĉ0
s D̂0

s L2
s

R1
s R2

s 0









xs

ûs

w∆
s





which is of the same form as (7.1)(to a permutation) and with uncoupled un-
certainty connections w∆

s = ∆sz
∆
s , as in Fig (7.1). Each ∆s is diagonal, with

ks real repeated blocks, each of dimension rank(P i
s) for 1 ≤ i ≤ ks. This fac-

torization technique for each subsystem will require ks SVD’s of matrices of size
(nxs

+ nŷs
) × (nxs

+ nûs
), and must be performed on each of the N subsystems,

and thus will only be O(N) for the interconnected system.

This procedure is just a trivial extension of a method used for ordinary state
space models, but it allows us to model parametric uncertainties in all of the
subsystem components, including the communication terms between individual
subsystems.

7.3.2 Dynamically Coupled Uncertainties

The idea of decoupling can also be used on interconnected dynamic uncertainties,
such as the set of interconnected subsystems:

Σc
s :







ẋs

vp
s−1

vm
s+1

zδ
s







=







As Bp
s Bm

s Bδ
s

Cp
s W p

s 0 Gm
s

Cm
s 0 Wm

s Gp
s

Cδ
s F p

s Fm
s 0













xs

vp
s

vm
s

wδ
s







(7.7)
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…

…

Σc
1 Σc

2 Σc
3 Σc

N

∆c
1∆c
1 ∆c

2 ∆c
3 ∆c

N

u1, w1 y1, z1

zδ
1 wδ

1

vm
2

vp
1

vδm
2

vδp
1

u2, w2 y2, z2

zδ
2 wδ

2

vm
3

vp
2

vδm
3

vδp
2

Figure 7.3: Coupled uncertainty

(neglecting the inputs us, ws and outputs zs, ys) with coupled dynamic uncertain-
ties:

∆c
s :





wδ
s

vδp
s−1

vδm
s+1



 =





∆A
s ∆Bp

s ∆Bm
s

∆Cp
s ∆Wp

s 0
∆Cm

s 0 ∆Wm
s









zδ
s

vδp
s

vδm
s





interconnected as in figure 7.3. By pulling the uncertainty couplings (vδp
s , vδm

s )
down into the Σs subsystem interconnections using identity feedthrough terms, it
is not difficult to decoupled this interconnected system into the form of figure 7.1
with uncertainty structure ∆s = diag(∆A

s , ∆Bp
s , ∆Cp

s , ∆Wp
s , ∆Bm

s , ∆Cm
s , ∆Wm

s ).

This is not the most general uncertainty structure imaginable, but nevertheless
any subsystem can be coupled with any other through a series of dynamic uncer-
tainties. This could also be generalized to dynamic weightings on the uncertainties,
with some increased complexity in the resulting Σs.

Such models could be very useful for designing controllers for systems with
dynamic uncertain or nonlinear interconnections, such as the aerodynamic draft
effect for formation flight experiments and car platooning. Another possible appli-
cation could be a posteriori closed loop robust stability analysis for uncertainties
in the distributed controller, i.e. distortion, lags, or delays in the sub-controller
intercommunication channels fm

s , fp
s (see [33][157] for such considerations in the

LMI framework).

7.4 Example: O(N) D-K iterations

We consider Example ‘A’ of [4] restricted to 1 spatial dimension, made spatially
heterogeneous, and with parametric uncertainty. To demonstrate the application
to heterogeneous systems, the system parameters will be chosen to vary randomly
in space. This is not meant to represent systems actually encountered in practice,
but instead to demonstrate that there is no loss of algorithmic performance from
the spatially invariant case to the very heterogeneous case.
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For each subsystem, Σs we have:

ẍs =
1

4
(k1

s + δsk
2
s)(xs−1 + 2xs + xs+1) +

1

4
q1
s(w1

s−1 − 2w1
s + w1

s+1) + bsus

z1
s =

1

4
f1

s (xs−1 − 2xs + xs+1), z2
s = f2

s us, ys = csxs + q2
sw2

s

which can be rewritten in the form of (7.1) as:

As =

[

0 1
k1

s

2
0

]

, B
m
s = B

p
s =

[

0 0
k1

s

4
0

]

, B
2
s =

[
0
bs

]

B
∆
s =

[

0
k2

s

4

]

, B
1
s =

[

0 0
−q1

s

2
0

]

, C
p
s = C

m
s =

[
1 0
1 0

]

, C
1
s =

[
−f1

s

2
0

0 0

]

L
m
s =

[
q1

s−1

k1
s−1

0

0 0

]

, L
p
s =

[
q1

s+1

k1
s+1

0

0 0

]

, D
12
s =

[
0
f2

s

]

, J
p = J

m =

[

0
f1

s

4

0 0

]

C
∆ =

[
2 0

]
, F

P = F
m =

[
0 1

]
, D

21
s =

[
0 q2

s

]
, C

2
s =

[
cs 0

]

,

with the rest of the terms 0 and with w∆
s = δsz

∆
s . In this example, N = 50 for the

purposes of demonstration, so s ∈ {1, 2, ..., 50}.

7.4.1 Spatially Homogeneous, Nominal

First, all of the coefficients (k1
s , bs, q

1
s , q2

s , f1
s , f2

s , cs) are set to 1 ∀s ∈ {1, 2, ...N},
except k2

s = 0, so this represents a spatially invariant system with no uncertainty.
MATLAB’s Hinfsyn, given a γtol = 10−2 computes a centralized controller with
closed loop H∞ norm γM = 3.9994, while the SSS based solver from Chapters
2 and 3, using SSS orders wu = wl = 10 for all iterative computations, found a
distributed controller with γSSS = 4.0006 with communication interconnection(fm

s ,
fp

s in Figure 7.2) size of only 6.

7.4.2 Spatially Heterogeneous, Nominal

For this demonstration, the nominal case is still considered: k2
s = 0∀s, but now

the coefficients will be randomly spatially varying, as in Chapter 4. At each s ∈
{1, 2, ...N} each coefficient will take its original value plus a sample from a zero-
mean normal distribution with a standard deviation one-third that of the original:
N (0, 1

3 ). For example, k1
s = 1 + 1

3N (0, 1) independently sampled at each s ∈
{1, 2, ...N}.

Of course, the resulting closed loop norm will vary depending on the specific
values, but we will just give the results for one example deemed representative.
For the same tolerance as before, MATLAB produced a centralized controller with
closed loop H∞ norm γM = 11.1108, while the SSS based method, using the same
iterative order size as before, found a distributed controller with γSSS = 11.1178
and communication size again of only 6. Thus we see that this interconnected
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system is quite sensitive to heterogeneity, but that the SSS matrix H∞ technique
adds no unnecessary conservatism.

7.4.3 Heterogeneous, Uncertain

In this section, we again consider the spatially varying case, but with uncertainty.
All of the coefficients will be held identical from the previous case, except the uncer-
tainty coefficient: k2

s = 1
100N (0, 1) independently sampled at each s ∈ {1, 2, ...N}.

After rescaling, it was found that the best upper bound on robust performance
from small gain theory alone was γ = 52.4, but D-scalings computed using the
above EBE based SSS method pushed the robust performance upper bound down
to νSSS = 13.5 after 2 iterations, while Matlab’s dkit achieved νM = 16.22 af-
ter 9 iterations (note that due to the non-convexity of the problem, we shouldn’t
necessarily expect νSSS ≥ νM ).

These results show us that even a little bit of uncertainty in this system may
cause alot of trouble, but that scaled small gain theorem can get rid of much of the
conservatism, and the modified EBE method works very well.

For reference to the algorithmic discussions, the Riccati sign iterations usually
converged in only 5 steps, the resulting residuals were of order 10−7. The EBE
iterations in this example took only 2 or 3 iterations to converge at each frequency
point, but since they are in complex arithmetic, the D-scaling at each step took
approximately the same amount of time as the H∞ synthesis, which scales as
O(N)(as shown in Chapter 4).

7.5 Conclusions

In summary, in this chapter we have demonstrated how the EBE [155] method of
SSV upper bounding can be made SSS structure preserving and used to extend
the O(N) H∞ synthesis methods of Chapter 4 to robust synthesis for decoupled
uncertainty structures using D−K iterations. A few methods of finding models of
such distributed systems with decoupled uncertainties were outlined, which suggest
that this technique might be applicable to a broad set of distributed systems with
uncertain or non-linear interconnections. For example, they could perhaps be used
to capture the errors generated by discretizing PDE’s for control, thus guarantee-
ing that the discrete domain controller would stabilize the continuum system, a
direction to be investigated in the future.

The computational method was demonstrated on an extended example from
the literature, in which it performed comparably to Matlab µ-synthesis routines
in terms of performance, but scales very favorably in computational complexity
(O(N)).

In the bigger picture, each step of Algorithm 1 could also be easily performed
if M̄ were an Lr operator or an ATSSS matrix, so these robust analysis and syn-
thesis techniques can also be extended to systems that are infinite and homoge-
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nous (Chapter 5), and finite but homogeneous with boundary conditions (Chapter
6).

7.6 Appendix: Absorbing D-scalings

If we create minimal state space realizations of each Ds(ω) and D−1
s (ω):

Ds :

[
AL

s BL
s

CL
s DL

s

]

, D−1
s :

[
AR

s BR
s

CR
s DR

s

]

then D and D
−1

can be absorbed into Σ with a realization using subsystems of the
form of (7.1) where the following variables have been changed:

xs →





xR
s

xs

xL
s



 , As →





AR
s 0 0

B∆
s CR

s As 0
BL

s D∆
s CR

s BL
s C∆

s AL
s



 , Bm
s →





0
Bm

s

BL
s Fm

s



 ,

Bp
s →





0
Bp

s

BL
s F p

s



 , B2
s →





0
B2

s

BL
s V ∆

s



 , B∆
s →





BR
s

B∆
s DR

s

BL
s D∆

s DR
s



 , B1
s →





0
B1

s

BL
s L∆

s





Cm
s →

[
Gm

s CR
s Cm

s 0
]

Gm
s →

[
Gm

s DR
s

]
, Cp

s →
[
Gp

sC
R
s Cp

s 0
]

Gp
s →

[
Gp

sD
R
s

]
, C2

s →
[
H∆

s CR
s C2

s 0
]

Fm
s →

[
DL

s Fm
s

]
, F p

s →
[
DL

s F p
s

]
, H∆

s →
[
H∆

s DR
s

]

L∆
s →

[
DL

s L∆
s

]
, V ∆

s →
[
DL

s V ∆
s

]
, J∆

s →
[
J∆

s DR
s

]

C1
s →

[
J∆

s CR
s C1

s 0
]
, D∆

s →
[
DL

s D∆
s DR

s

]

C∆
s →

[
DL

s D∆
s CR

s DL
s C∆

s CL
s

]
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8 Multi-D Distributed Systems

So far in this thesis we’ve come up with very fast, nice, and nearly optimal solutions
to control systems distributed in one spatial dimension. However, in nature and
engineering, often systems are distributed in 2 or 3 spatial dimensions, such as in ir-
rigation networks [14], the development of tissues from stem-cells [15], multi-cellular
gene regulatory networks[158], large adaptive telescope mirrors [11], biochemical
reactions [16], wind turbine farms [17], and computer animations [159].

Some distributed control techniques trivially extend to multiple dimensions.
The LMI methods of [4][31][32][33][10][34] all work easily in multiple spatial di-
mensions, or even arbitrary interconnection topologies. The structured matrix
methods of [27] and [28] also readily work in multiple spatial dimensions(and per-
haps on other interconnection structures to), although it is unknown if they are
able to synthesize distributed controllers. The ideas in [26][143] also apply readily
to multiple dimensions, even if the computation methods are not yet fully realized.

A drawback of many of these results is the computational complexity (basically
the same problem as in 1 dimension). For example, unstructured Riccati based
techniques can solve optimal control problems for subsystems of size m linked to-
gether on a 2-D grid of N by M points in O(m3N3M3) complexity, while the
structured LMI methods discussed above take something like O(m6N3M3) com-
plexity. For large problems, e.g. N, M > 1000 this is simply too slow.

In this Chapter, we will extend the results of Chapters 4, 5, and 6 to multiple
spatial dimensions. The results of this chapter can be applied to any of the SSS,
Lr, or ATSSS structures, or even combinations of them; e.g. a 2-D system that is
heterogeneous in one direction and homogeneous in another, but we will just discuss
the situation for multi-D Laurent operators, as they are simplest. The basic result
of this chapter is showing how the multilevel operators discussed in section 3.5
can be used to represent distributed systems, after which the iterative methods of
Chapter 3 can be used with the structure preserving arithmetic of Chapter 2 to
synthesize similarly structured controllers.

137
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Σ1,−2 Σ1,−1 Σ1,0 Σ1,1 Σ1,2

Σ0,−2 Σ0,−1
Σ0,0 Σ0,1 Σ0,2

Σ−1,−2 Σ−1,−1 Σ−1,0 Σ−1,1 Σ−1,2

Σ1

Σ0

Σ−1

Figure 8.1: 2-D array ⇒ 1-D String of 1-D Strings

8.1 Multi-D structure

Consider the system distributed on a 2-D array in figure 8.1. If we resolve the rows
into systems of Lr-operators, Σ−1, Σ0, Σ1 as in Chapter 5, we see that we have an
infinite vertical string of infinite horizontal string systems, which we may again lift

to get the final system Σ, which has a realization of 2-level Laurent operators with
rational symbols (see Chapter 3, section 5), e.g. ¯̄F with symbol:

Fz
¯̄FF−1

z = F̄ (z) = B̄(zĪ − W̄ )−1C̄ + Ā + Ē(z−1Ī − R̄)−1Ḡ

bounded on z ∈ T, which also have the Lr structure (where we have used Ī to
indicate an infinite identity matrix of appropriate dimension), and which, when
Fourier transformed again, in a different variable, have symbols that take the form
of multivariable transfer functions, e.g.

FζFz
¯̄FF−1

z F−1
ζ = F (z, ζ) = B(ζ)(zI−W (ζ))−1C(ζ)+A(ζ)+E(ζ)(z−1I−R(ζ))−1G(ζ)

(8.1)
Where B(ζ), W (ζ), C(ζ), A(ζ), E(ζ), R(ζ), G(ζ) ∈ RL∞(T) are the symbols of B̄,
W̄ , C̄, Ā, Ē, R̄, Ḡ respectively.

As with the 1-D case, it also holds that any system with a realization of multi-
level Lr operators can be exactly written as an interconnected system distributed
over multiple dimensions (see the appendix in section 8.4 for the 2-D case). Hence
if we compute multilevel Lr structured controllers, they in turn have multidimen-
sional distributed systems implementations, in the same interconnection topology
as the original system. So we again have the challenge of finding structured so-
lutions to our distributed control problems, and the motivation is still stronger;
if sampling a transfer matrix over one variable on the unit circle and trying to
interpolate to draw conclusions about stability, or design a controller, is difficult,
then the equivalent calculation for transfer matrices in multiple variables is much
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worse. Fortunately, the induction process in section 3.5 allows us to form structure
preserving arithmetics for such multilevel matrices, allowing the use of the itera-
tive methods in Chapter 3 for efficient structured controller synthesis, just as in
Chapters 4, 5, 6, and 7.

In the next section we will show a simple example of using the structure pre-
serving arithmetic of multilevel Lr operators to solve an LQR problem for a heat
conduction problem in two spatial dimensions.

8.2 Numerical Example: Heat Flow on a Flat Plate

Consider the system:

Ṫ (m, n) = k1
∂2T (m, n)

∂2
+ k2

∂2T (m, n)

∂n2
+ bu(m, n), y(m, n) = cT (m, n)

of temperature T over continuous 2-dimensional spatial domain −∞ < m < ∞,
−∞ < n < ∞ (an infinite flat plate) with controlled input u(m, n) and measured
output y(m, n). k1, k2, b, and c are constants relating to the sensors, actuators, and
the heat conduction. Note that it is probably not physical to have differing heat
conduction coefficients k1 6= k2 in different directions, but this could be due to e.g.
different length scales. Discretizing the domain and approximating the derivative
using finite difference, we get:

Ṫm,n = −2(k1 + k2)Tm,n + k1(Tm−1,n + Tm+1,n) + k2(Tm,n−1 + Tm,n+1) + bum,n

ym,n = cTm,n

over m ∈ Z, n ∈ Z, with zero temperature boundary conditions on top and bottom.
If we then Fourier transform the system in the m and n directions, the LQR
problem reduces to solving the parametric Riccati equation: A(z, ζ)∗X(z, ζ) +
X(z, ζ)A(z, ζ) − X(z, ζ)BB∗X(z, ζ) + C∗C = 0, z ∈ T, ζ ∈ T where B = bI,
C = cI, and A(z, ζ) = −2(k1 + k2) + k1(z

−1 + z) + k2(ζ
−1 + ζ).

For values k1 = 1, k2 = 5, c = 7, b = 7, we used our 2-D Laurent operator
arithmetic in the sign iteration methods of chapter 3 to solve this Riccati equation

(approximately) for a 2-D Laurent operator
˜
X with rational symbol X̃(z, ζ). The

sign iteration converged after 4 steps, and an approximate solution X̃(z, ζ) with
order 15 in z and 30 in ζ was found with maxζ0,z0 ‖X̃(z0, ζ0)−X(z0, ζ0)‖ = 3.41×
10−7, which was calculated by discretizing over 100 points in z ∈ T, and 100 points
in ζ ∈ T, solving for the finite solution X(z0, ζ0), and comparing with X̃(z0, ζ0).
Hence the solution was quite accurate, although much higher orders were required
than for the 1-D example in Chapter 5.

In figure (8.2) we see the elementwise log10 | · | truncation (to 11 points in m and

n) of
˜
X , where the exponential spatial decay is clear. We also see the effect of the

different heat conduction coefficients; the spatial decay is sharper in the vertical
than horizontal direction.
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Figure 8.2: On the left, we have the truncation of the multilevel Laurent matrix

log10 | ˜̄̄
X |, where the log10 | · | is taken elementwise, and on the right, we show the

magnitude of log10 | ˜̄̄
X | in (m, n) space, where i is an indice for m and j is an indice

for n.

8.3 Conclusion

In summary, we have seen that multidimensional infinite extent homogeneous in-
terconnected systems on a cartesian grid can be represented by multilevel Lr op-
erators. We can thus use the structured arithmetic of such operators built up in
Chapters 2 and 3 in the structure preserving iterations of Chapter 3 to design multi-
level Lr structured controllers which are arbitrarily close to optimal, which in turn
have multidimensional distributed systems implementations, in the same intercon-
nection topology as the original system. Due to limitations in our computational
resources, we only demonstrated this result on a 2-dimensional homogeneous heat
conduction problem, but as discussed in the introduction and Chapter 3, these
results could be extended to 3 dimensional problems and beyond, and also to ar-
bitrarily heterogeneous systems(like those in Chapter 4) or homogeneous systems
with boundary conditions(like those in Chapter 6). The end result being O(NM)
or O(1) computational complexity synthesis routines for an N × M 2-D grid of
subsystems, compared to the conventional O(N3M3) discussed in the introduction
of this chapter.
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8.4 Appendix: 2-level Lr operator ⇒ 2-D inter-
connected system

Consider the system ¯̄Σ : ẋ = Fx where: F = S(B, W, C, A, E, R, G) and

B = S(HB , ZB, JB, DB, KB, Y B, LB), W = S(HW , ZW , JW , DW , KW , Y W , LW )

C = S(HC , ZC , JC , DC , KC , Y C , LC), A = S(HA, ZA, JA, DA, KA, Y A, LA)

E = S(HE , ZE, JE , DE , KE , Y E , LE), R = S(HR, ZR, JR, DR, KR, Y R, LR)

G = S(HG, ZG, JG, DG, KG, Y G, LG)

It is time consuming, but not difficult to show that this 2-D rational Laurent
operator system is equivalent to the following set of interconnected subsystems:

over s ∈ Z, r ∈ Z.
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9
Repetitive and Iterative
Learning Control

In the previous few chapters we’ve used the structure preserving iterations of Chap-
ter 3 on the structured matrix and operator arithmetics of Chapter 2 for applica-
tions to the analysis and control of distributed systems of various kinds. In this
chapter, we’ll do something completely different; we use these techniques on Repet-
itive/Iterative Learning Control, where the matrices are lifted in time instead of
space.

9.1 Background/Survey

Often in industrial processes, a certain task, such as the movement of a wafer stage
or the cantilever of an atomic force microscope, is executed repetitively, where
the final conditions of one trial can be considered the initial conditions of the
next. The tracking performance of such a system can be improved from trial to
trial by updating a feed-forward control signal based on previous trial knowledge.
This is called Repetitive Control(RC), or Iterative Learning Control(ILC), if the
initial conditions are reset after each trial. ILC/RC became a popular research
topic beginning with [160], and since then has proven to be a powerful method for
high performance reference tracking. A recent overview of ILC with an extensive
bibliography of applications is available in [161].

The lifted approach ([162]) has been shown to be especially useful for analysis
of the stability of ILC/RC controllers and the difficulties for non-minimum phase
systems([163],[164]), which are quite common for sampled-continuous time sys-
tems ([165]). In [166] it is shown that many of the traditionally non-lifted ILC/RC
methods can be written as lifted controllers of a certain general type, yet only
recently ([167]) have the tools of optimal control theory been applied to designing
lifted type ILC/RC laws. The hesitation to apply linear optimal and robust control
synthesis is due to the potentially very large size of the matrices involved in such
optimization problems, where the size of the matrices is often proportional to the
trial length.

In the literature, for short trial lengths this issue of computational complex-
ity has often been ignored, and it is common to compute the singular value de-
compositions(SVD) of large lifted matrices for controller design([167],[168]) or use

143



144 Chapter 9 Repetitive and Iterative Learning Control

the eigenvalues of a large lifted matrix as a stability criteria([166],[162]). In the
BLQG(Batch-LQG) method of [169], and [170] the lifted approach is extended to
state space representations, and the ILC/RC problem is formulated as a large LQG
problem, requiring solutions of Riccati equations in the lifted variables(see also the
unconstrained case in [171]).

However, with modern data acquisition systems, sampling frequencies may be
in the kHz or MHz, with trial lengths of N = 1, 000 − 80, 000 or greater([172],
[173], [174], [175]), rendering many lifted analysis and design techniques compu-
tationally infeasible, since the computation of SVD’s, eigenvalue decompositions,
and the solutions of Riccati equations is generally of at least O(N3) computational
complexity, and even the implementation of such a controller is O(N2) due to the
cost of matrix-vector multiplications. Such computations and resulting controllers
may need to be approximated, possibly leading to a loss of performance or even
stability.

Fortunately, if derived in a certain way, the relevant matrices can be shown
to have Sequentially Semi-Separable structure, and hence the O(N) analysis, syn-
thesis, and implementation routines built in Chapters 2 and 3 can be used, as
we will next show. We note that the link between repetitive/iterative learning
control and distributed control has previously been investigated and exploited for
analysis/control within the multi-dimensional systems community, see e.g. recent
papers [176], [177], [178], however, our techniques and computational methods will
be quite different in form.

9.2 Formulation of ILC/RC into an Output Feed-
back Problem

We consider the LTV system:

Σ :

{
xt+1 = Atxt + Btut + Ftdt

yt = Ctxt + Dtut + Gtnt
(9.1)

where x ∈ Rnx is the state, y ∈ Rny is the output, u ∈ Rnu is the input, d ∈ Rnd is
the process disturbance, and n ∈ Rnn is the measurement noise. All matrices are
appropriately dimensioned, and the dimensions may change in time ([47])(but for
simplicitywe write all matrix dimensions here as if constant). This class of systems
is quite broad and includes LTI systems, systems that actually vary in time, LPV
systems with known scheduling variables, and nonlinear systems linearized along
some trajectory ([179]). In this paper we will not consider the range of validity
for such modeling approaches; we will simply assume that Σ is accurate for all
x, u, d, n. LTV system models may also, of course, be obtained through dedicated
system identification experiments, such as in [180],[181].

For a trial of N + 1 time steps: t ∈ {0, 1, 2, ..., N}, we can ‘lift’ Σ to show the
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full relation between the input and state:

xN+1
︸ ︷︷ ︸

x
k+1
0

= Φ(0,N)
︸ ︷︷ ︸

Â

x0
︸︷︷︸

xk
0

+
[

Φ(1,N)B0 ... ANBN−1 BN

]

︸ ︷︷ ︸

B̂








u0

u1

...
uN








︸ ︷︷ ︸

ūk

+
[

Φ(1,N)F0 ... ANFN−1 FN

]

︸ ︷︷ ︸

F̂








d0

d1

...
dN








︸ ︷︷ ︸

d̄k

(9.2)

and for the output:








y0

y1

...
yN








︸ ︷︷ ︸

ȳk

=








C0

C1A0

...
CNΦ(0,N−1)








︸ ︷︷ ︸

Ĉ

x0
︸︷︷︸

xk
0

+








G0 0 ... 0
0 G1 ... 0
...

...
. . .

...
0 ... 0 GN








︸ ︷︷ ︸

Ĝ








n0

n1

...
nN








︸ ︷︷ ︸

n̄k

+








D0 0 ... 0
C1B0 D1 ... 0

...
...

. . .
...

CNΦ(1,N−1)B0 ... CNBN−1 DN








︸ ︷︷ ︸

D̂








u0

u1

...
uN








︸ ︷︷ ︸

ūk

+








0 0 ... 0
C1F0 0 ... 0

... C2F1

. . .
...

CNΦ(1,N−1)F0 ... CNFN−1 0








︸ ︷︷ ︸

Ĥ








d0

d1

...
dN








︸ ︷︷ ︸

d̄k

(9.3)

where Φ(i,j) = AjAj−1...Ai, ˆ indicates a ‘lifted’ system matrix, ¯ a lifted vector,

k indicates the trial index, B̂ ∈ Rnx×(N+1)nu and Ĉ ∈ R(N+1)ny×nx are called
the extended controllability and extended observability matrices, respectively, and
D̂ ∈ R(N+1)ny×(N+1)nu is the extended impulse response matrix. We are also
assuming here that the initial state of trial k + 1, (xk+1

0 ), is the final state of trial
k. This is actually RC, but the problem could also be formulated with 0 or random
initial conditions as an ILC problem.

The measurement noise, nk, is assumed to be some random trial-uncorrelated
bounded signal, but the process disturbance may consist of a trial-uncorrelated
component and an integrated ‘random walk’ component ([182],[169]):

d
k

= vk + wk, where vk = vk−1 + ζ
k

(9.4)
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with wk and ζ
k

also random trial-uncorrelated bounded. This is a quite versatile
noise formulation; the process noise has a stochastic component, but also a random
walk nature, so the ‘repetitive disturbance’ can vary between trials. In addition,
the noise and disturbances can be correlated in time.

From (9.3) we define a ‘non-stochastic’ output:

yk
RC = yk − Ĥwk − Ĝnk = Ĉxk

0 + D̂uk + Ĥvk (9.5)

and if we also define the lifted tracking error: ek = yk−ref for some lifted reference
signal ref , then we have a ‘non-stochastic’ error: ek

RC = yk
RC − ref , which is

independent of the random disturbances from trial k: wk, nk.

Defining ∆zk = zk − zk−1, or, the change between two trials, we find that:

ek
RC = ek−1

RC + Ĉ∆xk
0 + D̂∆uk + Ĥζ

k
(9.6)

where the lifted system matrices, (Â, B̂, Ĉ, D̂, Ĥ, Ĝ) and the desired reference signal
ref are considered trial invariant, but the results in this paper could easily be
extended to a trial-varying system formulation.

Again using the ∆ operator, and from (9.2), (9.6), and (9.4), we can derive an
(extremely large dimensional) stochastic linear system, which we call ΣRC :





ek
RC

wk

∆xk+1
0



 =





I 0 Ĉ
0 0 0

0 −F̂ Â





︸ ︷︷ ︸

A





ek−1
RC

wk−1

∆xk
0



 +





Ĥ 0
0 I

F̂ F̂





︸ ︷︷ ︸

Bw

[

ζ
k

wk

]

+





D̂
0

B̂





︸ ︷︷ ︸

B

∆uk(9.7)

ek =
[

I 0 Ĉ
]

︸ ︷︷ ︸

C





ek−1
RC

wk−1

∆xk
0



 + D̂
︸︷︷︸

D

∆uk +
[

Ĥ Ĥ Ĝ
]

︸ ︷︷ ︸

Dw





ζ
k

w̄k

nk



 (9.8)

which we write simply as:

ΣRC :

{
X k+1 = AX k + B∆uk + νk

ek = CX k + D∆uk + µk (9.9)

where the output is the reference error at trial k, and the input is the change in trial
input. In the following, we will assume that the measurement noise and process
disturbance signals from (9.7) and (9.8) can be modeled as nk ∼ N (0, Rn), wk ∼
N (0, Rw), and ζ

k ∼ N (0, Rζ); that is, they are zero-mean stationary Gaussian, and
we will assume that they are uncorrelated with each other. Thus the disturbance
joint covariance matrix of µk and νk from (9.9) is calculated as (using the stochastic
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expectation(E[·]) [44]):

E

[[
µk

νk

]
[
µjT νjT

]
]

=

[
Rw ST

w

Sw Qw

]

δ(k − j) (9.10)

=









Dw





Rζ 0 0
0 Rw 0
0 0 Rn



DT
w ∗

Bw

[
Rζ 0 0
0 Rw 0

]

DT
w Bw

[
Rζ 0
0 Rw

]

BT
w









δ(k − j)

where δ is the Kronecker delta function.

Having now clearly defined the system we are working on, define the RC output
feedback problem:

RC Problem: Given ΣRC in (9.7),(9.8), design a dynamic feedback controller:

ΥRC :

[
Ac Bc

Cc 0

]

such that ΥRC stabilizes ΣRC .

The controller is assumed strictly proper; Dc is assumed 0, because current trial
measurements are assumed unavailable for feedback(However, a real-time feedback
controller may be incorporated into this structure, the formulas for which we ex-
clude for brevity. See section 9.3 for a brief discussion).

This formulation is advantageous in the sense that resulting control laws may
be ‘mixed causal’, using all of the available information from the previous trial
to compute the input of trial k, uk

t , at each time step t. By requiring that ΥRC

stabilizes ΣRC , we guarantee exponential convergence of the RC algorithm. While
this does not guarantee the monotonic convergence recommended in ([183]), it
should avoid the terrible learning transients experienced with some ’universal’ laws,
as described in the paper. Also, since the proposed controller is dynamic, the RC
input updating laws will be generally higher order(see [184] for a discussion of the
advantages of higher order ILC/RC laws).

However, calculating a stabilizing repetitive controller using optimal control
techniques, or given a prospective controller, even verifying closed loop stability,
will generally be O(N3) computational complexity, and thus infeasible for long trial
lengths(N). Hence in the following, we will show how to rewrite ΣRC in such a
way as to make possible fast, numerically robust, structure preserving calculation
techniques for optimal control synthesis and analysis.

9.2.1 SSS structure of RC problem

It is now possible to show how our system matrices A,B, C,D,Rw,Qw,Sw in (9.7),
(9.8), and (9.10) can be permuted to fit well into the SSS structure. For conve-



148 Chapter 9 Repetitive and Iterative Learning Control

nience, we rewrite the system (9.7) and (9.8) as:





ek
RC

wk

∆xk+1
0



 =

[ A11 A12

A21 Â

]

︸ ︷︷ ︸

A





ek−1
RC

wk−1

∆xk
0



 +

[
Bw

1

Bw
2

]

︸ ︷︷ ︸

Bw

[

ζ
k

wk

]

+
[

BT
1 B̂T

]T

︸ ︷︷ ︸

B

∆uk

ek =
[

C1 Ĉ
]

︸ ︷︷ ︸

C





ek−1
RC

wk−1

∆xk
0



 + D∆uk + Dw





ζ
k

wk

nk



 (9.11)

where we have just partioned the matrices in a different way and renamed them
for the following discussion. Unfortunately, to make this clear we will need a little
bit of additional notation (which doesn’t appear in any other chapters).

From Chapter 2 the reader should be familiar with the generator notation of
SSS matrices, and of their LTV input-output map interpretation. Hence we will
next speak about the ‘order’ of an SSS matrix, which would be the ‘order’ of its
corresponding LTV system, defined precisely in the following:

Definition 9.1 The maximum lower and upper order of an SSS matrix is the
largest size of its lower and upper multiplier terms(Rs and Ws in X = SSS(P, R, Q,
D, U, W, V )), respectively. The class of SSS matrices of maximum lower and upper
orders wl and wu with N diagonal terms is denoted as SSSwl,wu,N .

Hence the growing order of SSS matrices under arithmetic can be related as:

Lemma 9.1 For conformably partitioned matrices A ∈ SSSal,au,N and
B ∈ SSSbl,bu,N , then A + B = C ∈ SSScl,cu,N where cl ≤ al + bl, cu ≤ au + bu,
and AB = D ∈ SSSdl,du,N where dl ≤ al + bl, du ≤ au + bu. Proof: This can
be seen from the addition and multiplication algorithms (Chapter 2, section 3) for
SSS matrices, and makes sense under the LTV interpretation of SSS addition as
LTV systems in parallel, and SSS multiplication as LTV systems in series. �

We will now use this new notation to show how all of the matrices in (9.7) and
(9.8) can be permuted to fit well into the SSS structure.

From (9.3), we can clearly see that D ∈ SSSnA,0,N+1 but it is not obvious how
A, for example, can be put into the SSS structure. However, it is clear that A11 con-
sists of four matrices each having SSS structure(I ∈ SSS0,0,N+1, 0 ∈ SSS0,0,N+1).
If we perform a ‘shuffle’ permutation on the top part of the state vector in (9.11):
[

ek−1
RC

wk−1

]

→
[

ek−1
RC

wk−1

]

, in which the elements of the lifted vectors ek−1
RC and wk−1

are interleaved together to form the lifted vector

[

ek−1
RC

wk−1

]

, then by the SSS version

of Lemma 2.6, A11 will be permuted into Ap
11 ∈ SSS0,0,N+1 and B1 and C1 will

be permuted into B1 → Bp
1 ∈ SSSnA,0,N+1, C1 → Cp

1 ∈ SSS0,nA,N+1(where we use
the superscript p to indicate the matrices after permutations). If we additionally
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permute





ζ
k

w̄k

nk



 →





ζk

wk

nk



 and

[

ζ
k

w̄k

]

→
[

ζk

wk

]

then Dw and Bw
1 will also be

permuted into low order SSS matrices.

In addition, it can be shown that

[
0 Ap

12

Ap
21 Â

]

∈ SSSna,na,N+2, and since

Ap =

[
0 Ap

12

Ap
21 Â

]

+

[
Ap

11 0
0 0

]

where

[
Ap

11 0
0 0

]

∈ SSS0,0,N+2, then by

Lemma 9.1, Ap ∈ SSSna,na,N+2. The same argument can be used to show that
Bp,Bp

w ∈ SSS2nA,0,N+2 and Cp ∈ SSS0,2nA,N+2.

Finally, if the noise covariances Rζ , Rn, Rw also have SSS structure (for ex-
ample, if ζt, nt, wt are the outputs of linear systems, or if they are white noise
sequences, corresponding to diagonal Rζ , Rn, Rw) then, after they are permuted
to match the noise signals, Rp

w , Sp
w, Qp

w will all have SSS structure due to the
closedness property of the structure under multiplication.

So, permutations of the state and disturbance vectors have allowed us to write
a linear system equivalent to ΣRC with a realization entirely of matrices with SSS
structure. We note that no permutations were performed on the error ek or the
input ∆uk. Now that this is estabilished, we can use the SSS arithmetic of Chapter
2 in the structure presering iterations of Chapter 3 for O(N) control design, as we
will show in the next section in an example.

9.3 Illustrative Example

The infinite horizon discrete time LQG solution is well known ([185]). The resulting
controller stabilizes ΣRC and the weights can be chosen so as to minimize the
expectation of the error over all time:

J = E( lim
T→∞

1

T

T∑

k=0

‖ek‖2
2) (9.12)

Such a minimization is useful for industrial applications, in which 100’s or 1,000’s
of trials may be run. In this paper we will focus on keeping the computational cost
of implementation low, so we will use the simplified stationary(in the trial domain)
version of the optimal LQG controller. Some of the advantages of framing repet-
itive control problems in the lifted domain as LQR/LQG problems have already
been demonstrated in the literature(e.g. [167], [169], [170]), but without feasible
computational methods for long trial lengths.

In the following, we will show the usefulness of optimal repetitive and non-
repetitive disturbance rejection in the LQG format, on a test-case for which very
long trial lengths are an important consideration. We use a simple but realistic
2nd order SISO example similar to the Digital Light Processing(DLP) projection
system considered in [186]. We stress that the chosen example is LTI, but treated
as an LTV system using the computational methods outlined in Chapter 2, to
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Figure 9.1: These plots are for the temporary disturbance. On the left we see
error norms compared to noise terms in the trial domain, while on the right we see
the output compared to reference over a number of trials.

simplify the demonstration only. Our techniques work the same, and have the
same O(N) computational complexity, irrespective of the LTI or LTV nature of
the problem. We also note that while our example is minimum-phase SISO, the
authors have observed these techniques to work well on a very diverse variety
of systems, including intermittently unstable, LTV, MIMO non-minimum phase
systems.

DLP systems work at a very high sampling frequency(≥ 3×104Hz), potentially
leading to very long trial lengths(N) and making computation and implementa-
tion of lifted ILC laws difficult. The input-output behavior is described by the
continuous time transfer function:

y(s) =
1
cs + τ

ω2

s2 + 2λωs + ω2
(u(s) + d(s)) + n(s) (9.13)

With c = 10−4, τ = 1, λ = 0.15, ω = 2π(7500) chosen to closely match frequency
responses given in the reference. We then found a discrete time state space repre-
sentation of this transfer function for the sampling time: Ts = 1 × 10−6 seconds.
We assume disturbance and noise covariances of Rw = Rζ = 5I and Rn = 1

10I (not
included in the original reference).

9.3.1 Closed Loop Simulations

For an example trial length of N = 80, the RC controllers(as calculated using the
methods in Chapter 3) were implemented on the discretized DLP model and sim-
ulated. To demonstrate the advantage of formulating the various noise and distur-
bances (see (9.4) and surrounding discussion) as filtered random noise components
in an LQG setting, we consider the closed loop response to both a ‘non-repetitive’
and ‘repetitive’ disturbance(ILC/RC laws often have trouble dealing with both si-
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Figure 9.2: These plots are for the permanent disturbance. On the left we see
error norms compared to noise terms in the trial domain, while on the right we see
the output compared to reference over a number of trials.

multaneously). The same white noise realizations of wk, nk, ζk are used in each
simulation, with the exception of a large magnitude disturbance at trial k = 25,
time t = {62, 63, 64, 65, 66} with magnitude 200. For both simulations, the RC
controller was initialized at trial k = 0 with a 0-vector input u0 = 0, and initial es-
timates of e−1

RC and w0,w−1 being equal to ref and 0-vectors, respectively. The fast
initial convergence to the reference trajectory can be seen(identically) in Figures
(9.1), (9.2).

The ‘non-repetitive’ disturbance is input to the system through the wk term(and
thus only lasts for a single trial, as we see in the ‖Ĥdk‖ plot in Figure 9.1) whereas
the ‘repetitive disturbance’ is input to the system through the ζk term, and thus
continues to have an effect in v for all trials thereafter(as we see in the ‖Ĥdk‖ plot
in Figure 9.2). However, in both non-repetitive and repetitive cases, we see that
after the large disturbances are introduced at k = 25, the trial errors ‖ek‖, quickly
converge back to almost ‖Ĝn̄k + Ĥ(w̄k + ζ̄k)‖, the completely random component
of the error in trial k, which we cannot hope to control using RC. We also see
this in the outputs in Figures 9.1 and 9.2 for the non-repetitive and repetitive
disturbances, respectively. At trial k = 25, time t = 62, the large disturbances
completely derail the output yt from the reference, and likewise, trials k = 26
and k = 27 have fairly bad tracking, as the RC controller tries to compensate,
but after 10 trials the output of both simulations has returned to almost perfect
tracking(considering the noise and other random disturbances present).

We note that the errors ‖ek‖ of the trial in which the large disturbance is
introduced and those directly after(e.g. k = 25, 26, 27), may be much reduced
using a real time feedback controller, but a good RC controller would still be
necessary to re-achieve perfect tracking after the introduction of a new repetitive
disturbance. Within the framework of ([182]), such feedback controllers can be
well-incorporated into the lifted system for RC, resulting in a lifted system similar
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Figure 9.3: A comparison of Matlab’s QZ based Riccati solver (O(N3) com-
plexity) and the SSS Riccati solver (O(N) complexity).

to (9.7) and (9.8), with an additional nx states, and thus will similarly fit into the
SSS structure for RC design.

9.3.2 Computational Complexity and Accuracy of the SSS
Structure Preserving Techniques

Given our sampling frequency, reference trajectories of length 2×10−5, 4×10−5, 8×
10−5, 1.6 × 10−4, 2.4 × 10−4, 3.2 × 10−4, 4 × 10−4, and 4.8 × 10−4 seconds produce
trial lengths of N = {20, 40, 80, 160, 240, 320, 400, 480}, respectively. We used the
algorithms described in Chapters 2 and 3 to compute the LQG controller matrices
for each of these trial lengths, and compared these in computational time and
closed loop H2 performance to the results of Matlab’s QZ based DARE solver.
The SSS controllers(all of which were closed loop stable) were found to have closed
loop performances, γSSS , of only slightly higher than those produced by Matlab;
for all values of N tested, the normalized difference was γSSS−γM

γM
< 2 × 10−5,

and in Fig. 9.3, we see the comparison of the Matlab function DARE with the
SSS Riccati solver in computation times. The linear complexity of the SSS solver
becomes an advantage after about N = 325, and following the linear and cubic
trends in figure 9.3, for a trial of N = 3000(as we would have for the period of
3 × 10−3s given in [186]), the SSS solver would take approximately 25 minutes,
while the Matlab solver would require about 1.3 days (assuming the computer
didn’t run out of memory). Hence exploiting the SSS structure for RC optimal
controller synthesis, as developed in this paper, is absolutely essential for such large
problems. Note that the SSS structured RC controller will also be advantageous for
implementation, since SSS structured matrix-vector computations are only O(N)
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complexity, as opposed to O(N2) complexity for general dense matrices.

For reference to the algorithmic discussions, the SSS orders of the controllers
and Riccati solutions were constrained to be wu = wl = 20 for all computations,
and the doubling iterations for solving the LQR and Kalman filter Riccati equations
took about 4 and 6 iterations to converge, respectively.

9.4 Conclusions

In this chapter we have formulated the RC problem for stochastic LTV systems
as a large linear output feedback problem, including repetitive and non-repetitive
noise and disturbances. The special SSS matrix structure of the RC system has
been exploited to find LQG solutions with guaranteed exponential convergence in
only linear computational complexity (O(N)), allowing this method to be used on
trials with a large number of samples.

It should not be difficult to generalize the system (9.1) to include a separate
performance output zt and thus consider the problem within the generalized plant
H2 and H∞ framework, and it is likely that such problems also have exploitable
SSS structure. Also, as mentioned in section 9.2, a trial varying reference, rk

ef ,

and system matrices, Âk etc. could also be treated in this framework, and the
non-stationary Kalman filter could be implemented for the LQG solution with a
slight increase in online computation.

We would also like to make clear that while we have considered the particu-
lar problem of synthesis and closed loop analysis of a lifted LQG controller, the
techniques and algorithms presented herein should be of use in many other areas
of lifted ILC/RC research. For example, eigenvalue stability criteria for lifted ILC
laws, such as those found in [166], may be computed in O(N) using the sign itera-
tion stability check in Lemma 3.3, assuming that the ILC matrices themselves fit
into the SSS structure(e.g. diagonal, banded, or impulse response matrices), as is
often the case.

Within the larger context of this thesis, we should also point out that while this
chapter has only used SSS matrices to represent LTV systems lifted to form RC
problems, one can also use ATSSS matrices to represent LTI systems lifted to form
RC problems, and thus decrease the computational complexity further even from
O(N) to O(1) in such cases. This should be the subject of future investigation.
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10 LPV Analysis and Synthesis

In the previous few chapters we’ve used structure preserving iterations on struc-
tured matrix and operator arithmetics for applications in the analysis and control
of distributed systems of various kinds. In this chapter, we’ll use these techniques
to develop a novel approach to LPV systems.

10.1 Background/Survey

In recent years, system models in many important applications have been shown to
have a Linear Parameter Varying(LPV) structure, e.g. wind turbines [187], auto-
mated lane keeping systems [188], steam generators for nuclear power plants [189],
biomedical applications [190], web servers [191], and bicycles [192]. Correspond-
ingly, there has been a burgeoning field of LPV analysis and synthesis techniques,
see e.g. [193][194][195][196][197][198] and the references therein.

An important problem in LPV analysis and control is to find parameter de-
pendent solutions to parameter dependent Lyapunov and Riccati equations and
inequalities of both the algebraic and differential type, valid over some set of ad-
missible parameters and parameter rates. Such solutions can be used to guar-
antee exponential LPV stability or performance [199] or to construct parameter
dependent controllers with guaranteed stability and performance(see e.g. [200]
and references therein). Unfortunately, finding such parameter dependent so-
lutions (or even verifying that a given solution satisfies a parameter dependent
equation or inequality over the entire parameter set) turns out to be quite a
difficult problem; even though the inequalities are linear in the unknowns, we
must search or optimize over the (often infinite) space of admissible parame-
ters. Such problems can often be cast as verifying or solving a parametric matrix
equation (Lyapunov, Riccati) or Linear Matrix Inequality(LMI) for which various
techniques have been developed: e.g. [201][144](parametric equations) [202][203]
[204][205][206][207][208][209](parametric LMI’s). However, these techniques either
require some restrictive a priori assumption on the form of the solution’s parame-
ter dependence (e.g affine, polynomial or rational of order n, etc), the gridding of
the parameter space, conservative relaxations, or relaxations which are asymptoti-
cally nonconservative but lead to very large (and thus computationally expensive)
LMI’s.
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However, under certain system assumptions, we can use computational tech-
niques based on transfer function arithmetic and the matrix sign function which
avoids these problems, and allows us to solve certain parameter dependent algebraic
Lyapunov and Riccati equations arbitrarily accurately, thus providing a different
approach to such LPV problems. Our idea is to construct a sequence of rationally
parametric matrices which approach the exact(and perhaps irrational) solution of
the Lyapunov or Riccati equation quadratically fast, using the matrix sign function.
Instead of using the computationally expensive operations on transfer matrices, we
work only in Sc realizations.

In section 10.2 we overview the type of LPV systems considered, and show how
to convert them into realizations of Sc operators. In section 10.3 we then show how
the tools developed in Chapter 3 can be used for some practical LPV analysis and
synthesis problems, with an example in section 10.4.

10.2 Background, notation, and conversion to Sc

realizations

We will consider systems of the sort:

Σ :





ẋ
z
y



 =





A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)









x
w
u



 (10.1)

where ρ ∈ R̂+ (the extended positive real line; R̂+ = R+

⋃
+∞) and α < ρ̇ < β are

bounds on the measurable parameter ρ(t) and its rate of variation, and the system
matrices are assumed to have a proper rational parameter dependence, e.g. A(ρ) =
H +G(ρI −E)−1F . At first glance this formulation seems ungainly; parameters of

most physical systems won’t vary over ρ ∈ R̂+, however, some common situations
may be transformed into this one:

Example 10.1 (Affine Parameter Dependence on an Interval) Say we have
an affine LPV operator K(µ) = ςµ + κ valid over µ ∈ [α, β]. We can perform a

transformation to parameterize µ = α−β
ρ+1 + β over ρ ∈ R̂+ and equivalently write:

K(ρ) = ς α−β
ρ+1 + ςβ + κ or as a state space realization of an LFT:

K(ρ) = ς
︸︷︷︸

G

(ρI − (−1)
︸︷︷︸

E

)−1 (α − β)
︸ ︷︷ ︸

F

+ ςβ + κ
︸ ︷︷ ︸

H

over ρ ∈ R̂+. Note that this construction is well posed and easily generalizable to
matrices. Also note that the above parametrization can be extended to any polyno-
mial in µ, a practical example of which we will exhibit in section 10.4. ⋆

For our computational methods, the system in (10.1) is not yet suitable. Given

some K(ρ) = G(ρI − E)−1F + H , ρ ∈ R̂+, addition, multiplication, and inversion
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of such operators is trivial (and identical in form to that of LTI transfer functions
over the imaginary axis or unit circle), but calculating the induced norm ‖K(ρ)‖,
or finding order reduced approximations K̃(ρ) ≈ K(ρ)∀ρ ∈ R̂+, which will be
integral to our iterative procedures, is not. Hence we will further reparametrize such
K(ρ) ∀ρ ∈ R̂+ into mixed-causal transfer functions over the extended imaginary
axis: K(s), ∀s ∈ ℑ.

For any well posed K(ρ), this can trivially be accomplished via a change of
variables: K(ρ) = H + G(ρI − E)−1F = H − G(s2I + E)−1F where ρ = −s2.
This parametrization can in turn be split up into stable and antistable parts, for a
stable ‘mixed causal’ realization:

Lemma 10.1 Assuming that K(−s2) = H − G(s2I + E)−1F is well posed for all
s ∈ ℑ, then equivalently,

K(−s2) = H − G(sI − (−Z))−1XF − GX(s∗I − (−Z))−1F

where Z := (−E)1/2 with ℜ(λ(Z)) > 0 and X is the unique solution to the
Sylvester equation ZX + XZ + I = 0. Proof: Now since we assume that
K(−s2) is well posed for all s ∈ ℑ, then E must have no purely real eigenval-
ues in C+. Hence −E has no purely real eigenvalues in C−, and a unique real
(−E)1/2 := Z exists with ℜ(λ(Z)) > 0 [210]. We can hence rewrite: K(−s2) =

H − G [(sI + Z)(sI − Z)]
−1

F or K(−s2) = H −
[
G 0

]
(sI −

[
−Z I
0 Z

]

)−1

[
0
F

]

.

If we then solve the Sylvester equation ZX + XZ + I = 0 for the unique X, and

apply the similarity transformation

[
I −X
0 I

]

, then we get:

K(−s2) = H −
[
G GX

]
(sI −

[
−Z 0
0 Z

]

)−1

[
XF
−F

]

which we can seperate into stable ‘causal’ and ‘anticausal’ parts: K(ρ) = H −
G(sI − (−Z))−1XF −GX(s∗I − (−Z))−1F (note that for s on the imaginary axis,
s∗ = −s), where we remember that ℜ(λ(−Z)) < 0 and thus both parts are stable.

�

We have thus successfully rewritten the operator K(ρ) in

K(s) = D + P (sI − R)−1Q + U(s∗I − W )−1V (10.2)

form, where R and W are both strictly stable, but such stable mixed causal real-
izations of K(s) are highly non unique, and given some K(s) in transfer function
form with high rational orders, finding a minimal realization, while trivial, is ex-
tremely computationally inefficient. However, note that K(s) in this form is just
an Sc realization from Chapter 2. Hence we can avoid this step in the following
by only dealing with Sc realizations of K(s) (instead of the elementwise transfer
function version), and using the structure preserving arithmetic from Chapter 2 in
the iterative analysis and design methods of Chapter 3.
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10.3 Use for LPV analysis and synthesis

As we have outlined it above, we can put terms of the form K(ρ) into Sc form,
and thus, using the techniques in Chapters 2 and 3, we can check the positive
definiteness of operators (and hence check whether some X(ρ) satisfies a useful
LMI or Riccati inequality), and solve Lyapunov and Riccati equations of the sort:
A(ρ)T (ρ)+T (ρ)A(ρ)T +Q(ρ) = 0 or A(ρ)S(ρ)+S(ρ)A(ρ)T +Q(ρ)+S(ρ)R(ρ)S(ρ) =

0 to arbitrary accuracy over all ρ ∈ R̂+.

However, LPV analysis and control for dynamically varying parameters requires
more than this: there is a derivative term in the inequalities. For verifying solutions
to such LMI’s, this provides no added difficulty, for example:

Lemma 10.2

A(ρ)S(ρ) + S(ρ)A(ρ)T + Q(ρ) + ρ̇
∂S(ρ)

∂ρ
≺ 0 (10.3)

over all ρ ∈ R̂+, ρ̇ ∈ [α, β] if and only if

A(ρ)S(ρ) + S(ρ)A(ρ)T + Q(ρ) + γ
∂S(ρ)

∂ρ
≺ 0

∀ρ ∈ R̂+ for both γ ∈ {α, β}. Proof: (10.3) is convex in ρ̇. �

where the derivative with respect to ρ can be calculated as:

Lemma 10.3 Given X(ρ) = P (ρI − R)−1Q, bounded on ρ ∈ R̂+,

∂X(ρ)

∂ρ
=

[
P 0

]
(

ρI −
[
R −I
0 R

])−1 [
0
Q

]

(10.4)

Proof: Chain rule. �

Note that (10.4) is in the usual LFT form in ρ, which we can use the results of
Lemma 10.1 to change back into a transfer matrix on s for further computations.

Note also that ∂X(ρ)
∂ρ is bounded on ρ ∈ R̂+ if X(ρ) is bounded on ρ ∈ R̂+.

So verifying (10.3) is as easy as checking positive definiteness of two parametric

matrices over ρ ∈ R̂+, which can be efficiently done in the s ∈ ℑ domain using
Lemma 19 of Chapter 2.

However, actually finding such an S(ρ) is much more difficult, and we give only
a suggestion for solving such problems. We propose the following strategy (for
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Lyapunov inequalities): pick some ℘ ∈ R, and solve sequentially for S0, S1, ... in:

A(ρ)S0(ρ) + S0(ρ)A(ρ)T + Q(ρ) = −ǫI

A(ρ)S1(ρ) + S1(ρ)A(ρ)T + Q(ρ) + ℘
∂S0(ρ)

∂ρ
) = −ǫI

A(ρ)S2(ρ) + S2(ρ)A(ρ)T + Q(ρ) + ℘
∂S1(ρ)

∂ρ
) = −ǫI

. . . (10.5)

Since A(ρ) is assumed stable, Si+1(ρ) is continuous in ℘∂Si(ρ)
∂ρ , and we showed in

Lemma 10.3 that ∂Si(ρ)
∂ρ is continuous in Si(ρ), assuming that Si(ρ) is bounded on

ρ, there thus exists a ℘ small enough such that Si(ρ) will converge to a unique
S∞(ρ) by the Banach Fixed Point Theorem [108], satisfying

A(ρ)S∞(ρ) + S∞(ρ)A(ρ)T + Q(ρ) + ℘
∂S∞(ρ)

∂ρ
) = −ǫI

It then remains to check for what bounds ℘+ < ρ̇ < ℘− our solution S∞ satisfies
the inequality (10.3), a problem like that in Lemma 10.2, which we can easily
check. We note that this same idea works for the Riccati inequalities(where the
convergence follows using the analyticity results from [211]).

Of course, this will only provide a posteriori rate bounds ℘+ < ρ̇ < ℘− in which
our closed loop system has stability or performance, and it is not yet clear how
to pick ℘ and ǫ(or some other offset matrix) in (10.5) in order to achieve a priori
desired bounds (see Chapter 11 for ideas).

10.4 Airfoil Flutter Example

For now we will apply our method to a simple static parameter model of a fluttering
airfoil. Our model comes from section 4.9 of [212], wherein a 2-D quasi-static flutter
model is derived for a ‘smart’ airfoil; i.e. one with trailing edge flap actuators.
The model has four states, one controlled input (flap angle), and two measured
outputs (angle of attack and vertical displacement), and is polynomially dependent
on the freestream velocity, v, in the following form:

ẋ = (A0 + A1v + A2v
2)x + (B2v

2)u, y = C0x

We would like to design a controller, u = −K(v)x that stabilizes the system for
all static values of v ∈ [5, 15]m

s . We do this via LQR; by solving the parameter
dependent Riccati equation:

A(v)T X(v) + X(v)A(v) + CT C + X(v)B(v)BT (v)X(v) = 0

for X(v), and then using the feedback gain K(v) = BT (v)X(v). Using our methods
outlined above, we found an X(v) that satisfied the Riccati equation with a residual
error norm of only ≈ 3.79 × 10−7. In figure 10.1 we see a comparison of the open



160 Chapter 10 LPV Analysis and Synthesis

0 1 2
0

2

4

6

8

10

12

14

16

18

20
 

 

 

  
  

 

 

 

 

 15m
s

v =

  5 m
s

v =

 10.5 
m

s
v =

Figure 10.1: Open loop eigenvalues(*) vs closed loop eigenvalues(·)

loop vs closed loop spectrum: for open loop, the system goes unstable around
v = 10.5m

s , but for closed loop the system is stable for the entire range v ∈ [5, 15]m
s .

This particular example is actually very ill-suited for our technique. As dis-
cussed in Chapter 3, while the ultimate convergence of the sign iteration for calcu-
lating sign(H) is quadratic, the initial steps may be very slow, largely dependent
on the location of the spectrum of the Hamiltonion, H . If the elements of the
spectrum are close to +1 or −1, are mostly real, and stay away from the imaginary
axis, convergence will be fast, otherwise it will be initially slow and nonmonotonic,
requiring high rational orders. In our case of the flutter system above, as we see in
figure 10.1, the closed loop spectrum is badly damped, with a relatively very large
imaginary component, requiring ∼ 17 sign iterations for convergence (5-7 usually
suffices in the other examples in this thesis). Hence we expect that on other LPV
examples, this technique will perform even better.

10.5 Conclusion

We have demonstrated a new computational approach for efficiently and accurately
finding parametric solutions to rationally parametric Lyapunov and Riccati equa-
tions, and shown how this might be used in a number of LPV analysis and synthesis
problems. We note that this might also be useful in certain robust control applica-
tions, and that while we have only developed the framework for a single parameter
in this paper, all of the techniques should be extendable to multiple parameters via
section 3.5, in the same way that the 1-D distributed system techniques in Chapter
5 can be extended to n-D in Chapter 8.

Future work could be devoted to case-study comparisons of this technique with
other control methods for parameter dependent systems in terms of performance,
and investigations of under what conditions (e.g. on the closed loop spectrum) this
method provides significant improvements in computational complexity.



11
Reflections,
Recommendations, and
Conclusions

“Men have become the tools of their tools”

-Henry David Thoreau

11.1 Research Results

This research project was started in order to find robust ways to invert nonlinear
systems, by any means necessary. For the practically minded author and promo-
tor, this led to Iterative Learning Control(ILC) and Repetitive Control(RC) in the
lifted setting, which led to large structured matrices. This structure and its gen-
eralizations were more useful than anticipated, leading to a number of unexpected
applications, and provided 3 years worth of ideas for study.

The original structure turned out to be called ‘Sequentially Semi-Separable’(SSS),
which had already been extensively studied [47][63][48] resulting in O(N) com-
putational complexity routines for structure preserving addition, multiplication,
inversion, Cholesky factorization, and QR factorization. That is to say, for SSS
matrices, these arithmetic operations result in SSS matrices, and only take O(N)
flops to compute, compared to O(N3) for unstructured dense matrices. We found
that it is also possible to compute the spectral norm of SSS matrices in O(N) and
perform structure preserving shuffle, or interlacing, permutations on SSS matrices
also in O(N).

More importantly, we found that the derivation techniques for the SSS arith-
metic could be extended and specialized to other related structures of matrices. If
SSS matrices additionally have ‘almost Toeplitz’ structure (together called ‘ATSSS’
structure), then the SSS results can be specialized to be O(1) complexity, and
preserve the ATSSS structure for all of the SSS arithmetic operations mentioned
above.

Further, if the SSS structure is forced to be perfectly Toeplitz and extended
to infinite length in both directions, the resulting operators are called ‘Laurent
operators with rational symbols’ (Lr operators), and the SSS arithmetic can also be
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specialized to this case, including the structure preserving property. Such operators
are equivalent, through a Fourier transform, to transfer functions on the unit circle,
and this Lr arithmetic is thus also a computationally efficient method for dealing
with such objects. The derivation of this arithmetic ties into a number of classic
discrete domain systems theory results, such as the Bounded Real Lemma and the
Positive Real Lemma, and provides a rare application for nonsymmetric Riccati
equations.

In the same way as the arithmetic for the Lr symbols can be derived, which is
equivalent to an arithmetic of transfer functions on the unit circle, a similar state-
space based arithmetic can be derived for transfer functions on the imaginary axis,
using the continuous time BRL and PRL, with the discrete domain nonsymmetric
Riccati equations replaced by continuous domain nonsymmetric Riccati equations.

While some of these derivations and results are elegant and generally pleasant
by themselves, all of the above matrix structures also have interesting applications
to relevant and important control problems. As first stated, SSS matrices can be
used to represent the lifted matrices in ILC/RC, and also to represent distributed
systems consisting of an interconnection of arbitrarily heterogeneous subsystems
on a line. Likewise, ATSSS matrices correspond to homogeneous interconnected
systems on a line with boundary conditions, and Lr operators represent fully ho-
mogeneous, doubly infinite interconnected systems. Not surprisingly, given the
known connections between LPV synthesis and distributed systems, the arithmetic
of transfer functions on the imaginary axis can be used to represent certain types of
rationally dependent LPV systems. In Figure 11.1 we see the connections between
the matrix structures and eachother, and their respective areas of application.

In some of these applications, just the introduction of an efficient arithmetic
and norm calculation for their repsective operators is a step forward. However,
for all of the four structured arithmetics above, it is also possible to use the ‘sign
iteration’ and other structure preserving iterations to check stability, solve Riccati
equations, synthesize H∞ controllers, compute D − K robustness iterations, and
perform model order reductions, all in a structure preserving way. Given some
basic assumptions on the systems to be controlled, these routines are very com-
putationally efficient; e.g. O(N) for systems represented by SSS matrices and
O(1) for systems represented by ATSSS matrices. Furthermore, since this method
finds structured approximations arbitrarily close to the centralized solutions, the
resulting controllers are arbitrarily close to optimal, a great result for the perfectly
homogeneous distributed system and LPV problems.

For the distributed systems, not only do interconnected systems induce our
structured operators, but the opposite holds true as well, hence if the structure
preserving arithmetic is used to construct a controller that has the same structure
as the system, then the controller can be perfectly distributed, in the same inter-
connection topology as the system. This is illustrated in figure 11.2, where the
different types of distributed systems are presented in 3 columns, and the process
of lifting, structured controller synthesis, and redistribution is presented from top
to bottom. (Note, this is actually my poster from the 2009 CDC. I include the
whole thing because I think it presents the results in a very understandable way).
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Furthermore, the dimension of the interconnection variables of the subcontrollers,
Ks, is the sum of the orders of the structured matrices in the realization of the
controller K̄. Since there are efficient (O(N) for SSS and O(1) for ATSSS) order
reduction techniques, this allows one to easily make a tradeoff between performance
and the required connectivity in the distributed controller. Such order reductions
can be performed cheaply after synthesis, making this a nice tuning method.

For fully heterogeneous distributed systems, exploitation of the SSS structure
also makes efficient (O(N)) parametric system identification possible, where the
resulting system model is in the correct form for analysis and controller design
using the above results. Furthermore, for fully heterogeneous problems, due to the
special form taken by the SSS arithmetic it’s actually possible to perform all of
these SysID, analysis and synthesis computations in a distributed manner, on a
linear interconnection of microprocessors with distributed memory. Hence, given
an unknown heterogeneous distributed system on a cartesian grid, it should now
be possible to distribute microprocessors with local memory, sensing, actuation,
and communication abilities, and have them first perform a distributed system
identification, then using the resulting model, a distributed controller synthesis, and
then to analyze the resulting closed loop performance, all in linear computational
complexity (O(N) for N subsystems on a line)1. These results should also make
adaptive distributed control computationally feasible, resulting in what we could
call ‘distributed intelligence’.

All of these results have been for ‘one-dimensional’ problems; the distributed
systems are all on a line, the LPV systems are dependent on only one variable.
However, by using the structure preserving iterations on the first level to solve
structured Lyapunov and Riccati equations and perform model order reductions, we
can ‘lift ourselves up by our own bootstraps’ and create an arithmetic on the second
level, and so on, extending all of our above computational results to multilevel
operators. Furthermore, distributed systems on cartesian grids can be understood
as ‘strings of strings’ as we see in figure 11.3 (borrowed from Chapter 8), and
hence be modeled by multilevel structured operators. The same idea applies to
certain types of LPV systems dependent on multiple variables, and could even be
used to mix the types of structures together on different levels. For example, one
could in theory use these results for repetitive control of an infinite dimensional
homogeneous string of interconnected LPV systems, resulting in a model with a
realization of SSS matrices with generators of Laurent operators which in turn
have realizations consisting of transfer functions on the imaginary axis (3-level
operators).

The usefulness of these results has been shown on numerous computational
examples, where their computational complexity and accuracy have been demon-
strated and favorably compared with other techniques from the literature, where
possible.

1Note that the O(N) complexity is proven in this thesis for all of these computations except
for SysID, for which it is only observed in examples, see Chapter 4
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Figure 11.3: 2-D array ⇒ 1-D String of 1-D Strings

11.2 Research Recommendations

The results presented in this thesis are satisfying, with many of the obvious ques-
tions answered, but there are still many opportunities for improvement and exten-
sion of these techniques.

• The Sc realizations of transfer functions on the imaginary axis were the last
structure to be studied, and the least developed. In addition to LPV ap-
plications, such realizations can also be used to represent operators in infi-
nite extent homogeneous distributed continuum systems, e.g. PDE operators
without boundary conditions. Further, in the same way that we extended the
arithmetic of S realizations to SSS matrices and ATSSS matrices in Chapter
2, it should be possible to extend the Sc arithmetic to represent continuum
PDE operators that vary arbitrarily in space, or are homogeneous except at
the boundaries. In the inversion formula in such arithmetics we would have a
differential matrix Riccati equation, instead of the steady state matrix Riccati
equation in Lemma 2.19, and it would be necessary to use some numerical
integration method (e.g. Runga Kutta) to solve it from one boundary to
the other. We conjecture that in the continuum analog of the ATSSS case,
the Riccati solution would similarly converge to steady state in the interior,
leading to computational savings. Similarly, for the multiplication and model
order reduction operations, we would have differential Lyapunov equations,
but they would also converge in the interior in the homogeneous-with-BC’s
case. The computational complexity of such approaches would depend on the
stepsize, and this might be a better way to deal with control of PDE systems,
instead of first discretizing using finite difference, then designing controllers.

• Also, we once used the Carleman linearization(e.g. [213]) to approximate
nonlinear maps in an attempt to use SSS methods for control of nonlinear



11.2 Research Recommendations 167

systems, but the SSS realizations proved to be unstable, leading to numerical
problems. A better idea may be to convert some nonlinear(but rational)
function A(x) on x ∈ [a, b] into a mixed causal stable transfer function A(s)
on the imaginary axis using Example 10.1 and Lemma 10.1, then to try to
develop some structure preserving arithmetic for use with the sign iteration.

• The ATSSS arithmetic was also developed late in the project, and probably
has many more applications. For example, if the LTV or periodic systems
used in ILC/RC in Chapter 9 were LTI instead, then the resulting lifted
matrices would have ATSSS structure instead of SSS. Hence in this special
case (which nonetheless applies to many ILC/RC problems), it should be
possible to reduce the O(N) complexity of SSS controller synthesis to the
O(1) complexity of ATSSS matrices.

• In the application of ATSSS matrices to distributed control of homogeneous
systems with boundary conditions in Chapter 6, we mentioned that the result-
ing controller K̄ with ATSSS structure would actually have the same ATSSS
‘generators’ no matter how large the interior got, hence only one synthesis
computation needs to be performed, whether the intended system has size
N = 100, N = 1000, or N = 108. We note here that this might also have an
interesting application in distributed systems that change size.

For example, vehicles might join or leave a homogeneous platoon while it
is driving down the highway, and the ATSSS generators produced by one
synthesis problem will correspond to ATSSS controllers that are stable, no
matter what the length, but stability of employing these controllers while the
platoon changes length is another question, and is an interesting switched
stability problem. Define the length of the interior as Nint = N −(NT +NB),
and assume we’ve computed an ATSSS state feedback controller K̄ such that
Ācl = Ā− B̄K̄ is stable for one Nint and hence stable for all Nint larger than
some threshold and less than infinity. Since Ācl is stable for any chosen Nint,
the solution, P̄ , to the Lyapunov equation ĀclP̄ + P̄ Ācl + I = 0 will also
have the ATSSS structure, and its generators will also satisify the Lyapunov
equation for other interior lengths, Nint. But while the ATSSS generators of
P̄ satisfy a Lyapunov inequality for the generators of Ācl for many different
lengths Nint, these different lengths induce different actual matrices P̄ , and
hence it is not exactly a joint Lyapunov function, and does not prove switch
stability. However, in simulation such systems do seem to be switch-stable,
so it would be interesting to further investigate if and under what conditions
this can actually be proven.

• Also, we specified the ‘almost Toeplitz’ component of the ATSSS definition
as Toeplitz in the middle, with heterogeneities at the ends, but this could be
generalized to SSS matrices that are Toeplitz almost everywhere, with just a
few spots of non-Toeplitzness anywhere in the matrix. The iterations in the
ATSSS arithmetic would then proceed from one point to another, converging
in each of the long Toeplitz sections, and thus would still be O(1) for very large
interior Toeplitz sections. Such matrices could be used to represent mostly
homogeneous systems with boundary conditions and just a few problem spots
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of heterogeneity. Furthermore, the Toeplitz sections would not even have to
be homogeneous with respect to eachother. An application of this might be
heat conduction on a very long but finite discretized bar, where the heat
conduction coefficient changes at the half-way point.

• Another application that has been investigated for SSS matrices is in fast
optical flow computation [214]. Since the matrices involved represent two di-
mensional Laplacians, they should fit into our multilevel SSS or even ATSSS
matrices, making for very fast computations, particularly useful, as men-
tioned in the reference, for HDTV resolutions of 1920 × 1080 or higher (an
‘ultra high def’ TV was developed in 2006 with 7680× 4320 pixels).

• While our examples and discussion have focussed on the case where an inter-
connected system has controllable inputs and measurable outputs everywhere
or almost everywhere, it turns out that in some cases, the results of this thesis
may be profitably used for boundary control and/or boundary estimation. To
explain, if the open loop spectrum of the system is well into the left half plane
and nicely damped, no matter what the actuators are, a quadratic optimal
control design is unlikely to place the closed-loop poles in a badly damped
place. Hence the sign iteration will converge quickly, and a nice, low-order,
boundary controller will be produced. A physical example on which this
works well is the stabilized and discretized heat conduction problem studied
in section 4.6.2 modified to only have dual boundary actuators. We sug-
gest that many boundary control problems are open loop stable with decent
damping, and hence this approach may have wide application, and should be
further studied.

• Heterogeneous subsystems connected in a ‘loop’ instead of a string also can
be lifted to form an interconnected system with SSS state space matrices (al-
though with much more complicated generators), and thus some of the results
herein described (such as stability and performance analysis) should also be
readily applicable to these systems. However, for such systems, after a con-
troller, K, with SSS matrix realization is computed, it is not yet clear how
to extract subcontrollers, Ks, that are also interconnected in a loop, instead
of a string with very large feedthrough terms. This problem could be the
subject of future research. We also note that for the matrices induced by
such systems, it may be better to develop a new arithmetic based on SSS
methods but specialized to the circulant structure(see also the next item).

• While we have focused in this thesis on structures of input-output operators
of linear systems lifted over time, it is possible the general idea of structure
preserving iterations to quickly calculate structured controllers with special
implementations can be extended to other structures also. Indeed, the first
structure preserving use of the sign iteration for control design was using
Hierarchical matrices (H-matrices) for O(Nlog(N)) computation of LQR for
a heat conduction problem [28]. The results for control using H matrices are
not very complete; it is unclear how to make guarantees against controller
fragility, or if distributed implementation and distributed computation are
possible, but the potential for H matrices to represent much more complicated
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tree interconnections is very interesting. We can imagine how an investigation
of the similarities and differences between H and SSS arithmetic could lead
to generalizations of both, perhaps leading to arithmetics for any kind of
data-sparse matrices representing interconnected subsystems. Hierarchically
semi-separable (HSS)[215] matrices seem to be a first step in this direction.

• One of the least satisfying aspects of our results is the sometimes-slow con-
vergence of the sign iteration when solving Riccati equations (as shown in
section 4.7). We recognize that this is simply due to badly damped closed
loop poles or a ‘stiff’ system, but as of yet there is nothing we can do about
it.

One idea for approaching this problem is as follows. In almost all of our
techniques, we solve a Riccati equation to find the optimal solution, but there
exist relaxations to Riccati inequalities that provide suboptimal solutions.
While the sign iteration and doubling algorithms cannot yet be used to solve
general LMI problems, there has recently been promising work on solving a
sequence of Riccati equations to arrive at an LMI solution[216], and it would
be interesting to see if these methods could be used to exploit this freedom to
find faster converging solutions. For example, if an SSS structure preserving
method can be found for solving certain LMI’s, then the closed loop spectrum
can be bounded inside an LMI area, perhaps guaranteeing fast convergence
of the sign iterations, and hence low SSS ordered controllers. Alternatively,
one could try to enforce a banded (or some other) sparsity structure to the
suboptimal solutions. Such approaches might also benefit the LPV work in
Chapter 10, wherein an LMI could perhaps be solved to find controllers stable
for larger parameter variation rates.

• Finally, the most difficult part of distributed control, beyond theory, compu-
tation, modeling, or even identification, is implementation, and it would be
nice to see how the results of this thesis might fair on real systems. While
their are many potential applications for 1-D distributed systems (see the
Introduction chapter), there are not many for 2-D systems where it would
be feasible to actually build a setup with enough actuators, microcontrollers,
and sensors to make our structured techniques worth-while compared to 1-D
SSS methods (We estimate perhaps 1000× 1000). One potential application
is in adaptive optics, which seem favorable since the sensors and actuators
are cheap and the funding is plentiful. Furthermore, since such systems are
generally modeled as being homogeneous with boundary conditions, 2-level
ATSSS matrix methods might be applied to great effect, although some care
will need to be taken regarding the changing string length (such adaptive
optics sensor arrays are usually hexagonal in shape). However, we suggest
that this presents no fundamental difficulty, since the three sets of ATSSS
generators will be the same from line to line, the size of the interiors will just
be different, but this has no affect on the computations, just book-keeping.

• For any real application of these techniques, robustness will be an impor-
tant factor to consider, given the necessary uncertainty of first principles
distributed system models, especially with respect to the sub-controller com-
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munication links. Given that the robust analysis and synthesis methods in
Chapter 7 seem to work well in numerical examples, further research should
be spent on modeling sub-controller communication errors and failures in this
format so that distributed controllers can be designed which are non-fragile.

11.3 Reflections

It is very rewarding to arrive at these nice, extremely fast algorithms, however,
these methods still have an enormous way to go before being viable for real world
applications. As we discussed in the introduction to this thesis, there are fantastic
distrubuted controllers out there being implemented on difficult nonlinear time
varying and uncertain distributed systems, but they’ve been designed by either
4.5 billion years of evolutionary optimization, or by God. Either way I think the
successful control of simple examples in the literature gives a false sense of what is
possible for us as engineers.
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[16] M. R. Jovanović, M. Arcak, and E. D. Sontag, “Remarks on the stability of spatially
distributed systems with a cyclic interconnection structure,” Proc. Amer. Control
Conf., pp. 2696–2701, 2007.

171



172 Bibliography

[17] A. D. Hansen, P. Sorensen, F. Iov, and F. Blaabjerg, “Centralised power control of
wind farm with doubly fed induction generators,” Renewable Energy, vol. 31, pp.
935–951, 2006.

[18] M. Soleimanzadeh, R. Wisniewski, and S. M. Shakeri, “Wind deficit model in a wind
farm using finite volume method,” Proceedings of the American Control Conference,
2010.

[19] R. Padhi and S. Balakrishnan, “Optimal management of beaver population using
a reduced-order distributed parameter model and single network adaptive critics,”
IEEE Trans. on Control Syst. Technol., vol. 14, pp. 628–640, 2006.

[20] M. Jovanovic and B. Bamieh, “The spatio-temporal impulse response of the lin-
earized Navier-Stokes equations,” proceedings of the ACC, pp. 1948–1953, 2001.

[21] I. D. Walker, D. M. Dawson, T. Flash, F. W. Grasso, R. T. Hanlon, B. Hochner,
W. M. Kier, C. C. Pagano, C. D. Rahn, and Q. M. Zhang, “Continuum robot arms
inspired by cephalopods,” Proc. SPIE, vol. 5804, 2005.

[22] R. T. Hanlon and J. B. Messenger, Cephalopod Behaviour. Cambridge University
Press, 2008.

[23] W. K. Potts, “The chorus-line hypothesis of manoeuvre coordination in avian
flocks,” Nature, vol. 309, pp. 344–345, 1984.

[24] R. W. Brockett and J. L. Willems, “Discretized partial differential equations: Ex-
amples of control systems defined on modules,” Automatica, vol. 10, pp. 507–515,
1974.

[25] M. Hovd, R. D. Braatz, and S. Skogestad, “SVD controllers for H2-, H∞- and
µ-optimal control,” Automatica, vol. 33, pp. 433–439, 1997.

[26] B. Bamieh, F. Paganini, and M. A. Dahleh, “Distributed control of spatially invari-
ant systems,” IEEE Trans. Autom. Control, vol. 47, pp. 1091–1106, 2002.

[27] I. Rosen and C. Wang, “A multilevel technique for the approximate solution of
operator Lyapunov and algebraic Riccati equations,” SIAM Journal of Numerical
Analysis, vol. 32, pp. 514–541, 1995.

[28] L. Grasedyck, W. Hackbusch, and B. Khoromskij, “Solution of large scale algebraic
matrix Riccati equations by use of hierarchical matrices,” Computing, vol. 70, pp.
121–165, 2003.

[29] M. Fardad, “The operator algebra of almost Toeplitz matrices and the optimal
control of large-scale systems,” Proc. Amer. Control Conf., pp. 854–859, 2009.

[30] N. Motee and A. Jadbabaie, “Approximation methods and spatial interpolation in
distributed control systems,” Proc. Amer. Control Conf., pp. 860–865, 2009.

[31] C. Langbort and R. D’Andrea, “Distributed control of spatially reversible intercon-
nected systems with boundary conditions,” SIAM Journal on Control & Optimiza-
tion, vol. 44, pp. 1–28, 2005.

[32] G. E. Dullerud and R. D’Andrea, “Distributed control of heterogeneous systems,”
IEEE Trans. Autom. Control, vol. 49, pp. 2113–2128, 2004.

[33] C. Langbort, R. Chandra, and R. D’Andrea, “Distributed control design for systems
interconnected over an arbitrary graph,” IEEE Trans. Autom. Control, vol. 49, pp.
1502–1519, 2004.

[34] F. Wu, “Distributed control for interconnected linear parameter-dependent sys-
tems,” IEEE Proceedings on Control Theory Applications, vol. 150, pp. 518–527,
2003.



Bibliography 173

[35] C. Langbort, X. Lin, R. D’Andrea, and S. Boyd, “A decomposition approach to dis-
tributed analysis of networked systems,” IEEE Conference on Decision and Control,
2004.

[36] A. Rantzer, “On prize mechanisms in linear quadratic team theory,” Proc. IEEE
Conf. Decision and Control, pp. 1112–1116, 2007.

[37] T. Keviczky, F. Borrelli, and G. J. Balas, “Decentralized receding horizon control
for large scale dynamically decoupled systems,” Automatica, vol. 42, pp. 2105–2115,
2006.

[38] A. Sarwar, “Spatiotemporal systems: Gradual variations, indentification, adap-
tation and robustness,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2009.

[39] A. P. Featherstone and R. D. Braatz, “Control relevant identification of sheet and
film processes,” Proceedings of the American Control Conference, pp. 2692–2696,
1996.

[40] P. Massioni and M. Verhaegen, “Subspace identification of circulant systems,” Au-
tomatica, vol. 44, pp. 2825–2833, 2008.

[41] A. Sarwar and P. Voulgaris, “Spatially invariant systems: identification and adapta-
tion,” Proc. of the 3rd Int. Conf. on App. Math., Sim., Modelling, Circuits, Systems
and Signals, pp. 208–215, 2009.

[42] P. Massioni and M. Verhaegen, “Subspace identification of distributed, decompos-
able systems,” IEEE Conference on Decision and Control, pp. 3364–3369, 2009.

[43] M. Ali, S. S. Chughtai, and H. Werner, “Identification of spatially interconnected
systems,” IEEE Conference on Decision and Control, pp. 7163–7168, 2009.

[44] M. Verhaegen and V. Verdult, Filtering and System Identification- A Least Squares
Approach. Cambridge University Press, 2007.

[45] D. E. Knuth, “Big omicron and big omega and big theta,” ACM SIGACT News,
vol. 8, pp. 18–24, 1976.

[46] G. H. Golub and C. F. V. Loan, Matrix Computations. JHU Press, 1996.

[47] P. Dewilde and A. J. V. D. Veen, Time-Varying systems and Computations. Kluwer
Academic Publishers, 1998.

[48] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, A.-J. van der Veen, and D. White,
“Fast stable solvers for sequentially semi- separable linear systems of equations,”
Report, Lawrence Livermore National Laboratory, 2003.

[49] W. Hackbusch, “A sparse matrix arithmetic based on H-matrices, part i: Introduc-
tion to H-matrices,” Computing, vol. 62, pp. 1436–5057, 1999.

[50] U. Baur and P. Benner, “Gramian-based model reduction for data-sparse systems,”
Preprint, 2007.

[51] A. Bottcher and B. Silberman, Introduction to Large Truncated Toeplitz Matrices.
Springer, 1991.

[52] I. Gohberg, S. Goldberg, and M. Kaashoek, Classes of Linear Operators Vol. II,
I. Gohberg, Ed. Birkhauser Verlag, 1993.

[53] S. Boyd and V. Balakrishnan, “A regularity result for the singular values of a
transfer matrix and a quadratically convergent algorithm for computing its L∞

norm,” Systems & Control Letters, vol. 15, pp. 1–7, 1990.



174 Bibliography

[54] P. S. Stanimirovi’c, “A finite algorithm for generalized inverses of polynomial and
rational matrices,” Applied Mathematics and Computation, vol. 144, pp. 199–214,
2003.

[55] P. S. Stanimirovi’c and M. B. Tasi’c, “Computing generalized inverses using lu
factorization of matrix product,” International Journal of computer Mathematics,
vol. 85, pp. 1865–1878, 2008.

[56] L. M. Silverman, “Realization of linear dynamical systems,” IEEE Transactions on
Automatic Control, vol. AC-16, pp. 554–567, 1971.

[57] N. Motee and A. Jadbabaie, “Optimal control of spatially distributed systems,”
IEEE Trans. Autom. Control, vol. 53, pp. 1616–1629, 2008.

[58] S. Boyd and J. Doyle, “Comparison of peak and RMS gains for discrete-time sys-
tems,” Systems & Control Letters, vol. 9, pp. 1–6, 1987.

[59] B. Moore, “Principal component analysis in linear systems: Controllability, ob-
servability, and model reduction,” IEEE Transactions on Automatic Control, vol.
AC-26, pp. 17–31, 1981.

[60] K. Zhou, K. Glover, and J. C. Doyle, Robust and Optimal Control. Prentice Hall,
1996.

[61] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, T. Kailath, Ed. Pren-
tice Hall, 2000.

[62] L.-S. Hahn and B. Epstein, Classical Complex Analysis. Jones & Bartlett, 1996.

[63] Y. Eidelman and I. Gohberg, “On a new class of structured matrices,” Integral
Equations and Operator Theory, vol. 34, pp. 292–324, 1999.

[64] T. Kailath, “Fredholm resolvents, weiner-hopf equations, and riccati differential
equations,” IEEE Transactions on Information Theory, vol. 15, pp. 665–672, 1969.

[65] A.-J. van der Veen and P. Dewilde, “Large matrix inversion using state space tech-
niques,” Workshop on VLSI Signal Processing, 1993.

[66] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, “A superfast algorithm
for toeplitz systems of linear equations,” SIAM Journal on Matrix Analysis and
Applications, vol. 29, pp. 1247–1266, 2007.

[67] T. Bella, V. Olshevsky, and P. Zhlobich, “Classifications of recurrence relations via
subclasses of (h,m)-quasiseparable matrices,” SIAM Journal of Matrix Analysis, p.
in press, 2007.

[68] T. Bella, Y. Eidelman, I. Gohberg, and V. Olshevsky, “Computations with qua-
siseparable polynomials and matrices,” Theoretical Computer Science, vol. 409, pp.
158–179, 2008.

[69] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A. J. V. der Veen, and
D. White, “Some fast algorithms for sequentially semi-separable representations,”
SIAM Journal of Matrix Analysis and Applications, vol. 27, pp. 341–364, 2005.

[70] Y. Eidelman and I. Gohberg, “On generators of quasiseparable finite block matri-
ces,” Calcolo, vol. 42, pp. 187–214, 2005.

[71] Y. Eidelman, I. Gohberg, and V. Olshevsky, “The QR iteration method for Hermi-
tian quasiseparable matrices of an arbitrary order,” Linear Algebra and its Appli-
cations, vol. 404, pp. 305–324, 2005.

[72] ——, “Eigenstructure of order-one-quasiseparable matrices. three-term and two-
term recurrence relations,” Linear Algebra and its Applications, vol. 405, pp. 1–40,
2005.



Bibliography 175

[73] L. Gemignani, “Quasiseparable structures of companion pencils under the qz algo-
rithm,” Cacolo, vol. 42, 2005.

[74] E. Alijagic and P. Dewilde, “Minimal quasi-separable realizations for the inverse
of a quasi-separable operator,” Linear Algebra and its Applications, vol. 414, pp.
445–463, 2006.

[75] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, “A fast QR algorithm for companion
matrices,” Operator Theory: Advances and Applications, vol. 179, pp. 111–143,
2007.

[76] Y. Eidelman and I. Gohberg, “Out-of-band quasiseparable matrices,” Linear Alge-
bra and its Applications, vol. 429, pp. 266–289, 2008.

[77] S. Delvaux and M. van Barel, “A qr-based solver for rank structured matrices,”
SIAM. J. Matrix Anal. & Appl., vol. 30, pp. 464–490, 2008.

[78] R. Vandebril, G. Golub, and M. V. Barel, “A quasi-separable approach to solve the
symmetric definite tridiagonal generalized eigenvalue problem,” SIAM. J. Matrix
Anal. & Appl., vol. 31, pp. 154–174, 2009.

[79] P. Dewilde and A.-J. van der Veen, “Innerouter factorization and the inversion of
locally finite systems of equations,” Linear Algebra and its Applications, vol. 313,
pp. 53–100, 2000.

[80] H. Sandberg and A. Rantzer, “Balanced truncation of linear time-varying systems,”
IEEE Trans. Autom. Control, vol. 49, pp. 217–229, 2004.

[81] A. Householder, The Theory of Matrices in Numerical Analysis. Blaisdell Publish-
ing Company, 1964.

[82] C. Kenney, A. J. Laub, and E. Jonckheere, “Positive and negative solutions of dual
Riccati equations by matrix sign function iteration,” Systems and Control Letters,
vol. 13, pp. 109–116, 1989.

[83] P. Gahinet, “Explicit controller formulas for LMI-based H∞ synthesis,” Automatica,
vol. 32, pp. 1007–1014, 1996.

[84] K. Glover and J. C. Doyle, “State-space formulae for all stablizing controllers that
satisfy an H∞-norm bound: and relations to risk sensitivity,” Systems & Control
Letters, vol. 11, pp. 167–172, 1988.

[85] J. Roberts, “Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function,” International Journal of Control, vol. 32, pp. 677–687,
1980.

[86] C. S. Kenney and A. J. Laub, “The matrix sign function,” IEEE Trans. Autom.
Control, vol. 40, pp. 1330–1348, 1995.

[87] N. J. Higham, Functions of Matrices: Theory and Computation. SIAM, 2008.

[88] B. D. O. Anderson, “Second-order convergent algorithms for the steady state Riccati
equation,” International Journal of Control, vol. 28, pp. 295–306, 1978.

[89] N. J. Higham, “Stable iterations for the matrix square root,” Numerical Algorithms,
vol. 15, pp. 227–242, 1997.

[90] X.-X. Guo, W.-W. Lin, and S.-F. Xu, “A structure-preserving doubling algorithm
for nonsymmetric algebraic riccati equation,” Numerische Mathematik, vol. 103, pp.
393–412, 2006.

[91] R. Smith, “Matrix equation XA+BX = C,” SIAM Journal of Applied Mathematics,
vol. 16, p. No. 1, 1968.



176 Bibliography

[92] A. Beavers and E. Denman, “A computational method for eigenvalues and eigevec-
tors of a matrix with real eigenvalues,” Numer. Math., pp. 389–396, 1973.

[93] A. Varga, “Balancing free square-root algorithm for computing singular pertur-
bation approximations,” Proc. IEEE Conf. Decision and Control, pp. 1062–1065,
1991.

[94] C. Scherer, Theory of Robust Control (Course notes). Delft Center for Systems
and Control, Unpublished, 2001.

[95] S. Boyd, V. Balakrishnan, and P. Kabamba, “A bisection method for computing
the H∞ norm of a transfer matrix and related problems,” Mathematical control of
signals and systems, vol. 2, pp. 207–219, 1989.

[96] P. Gahinet, “On the game Riccati equations arising in H∞ control problems,” SIAM
Journal on Control and Optimization, vol. 32, pp. 635–647, 1994.

[97] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞ control,”
International Journal of Nonlinear and Robust Control, 1994.

[98] R. Byers, C. He, and V. Mehrmann, “The matrix sign function method and the
computation of invariant subspaces,” SIAM Journal of Matrix Analysis and Appli-
cations, vol. 18, pp. 615–632, 1997.

[99] N. J. Higham and P. A. Knight, “Matrix powers in finite precision arithmetic,”
SIAM Journal of Matrix Analysis and Applications, vol. 16, pp. 343–358, 1995.

[100] N. J. Higham, “Perturbation theory and backward error for AX − XB = C,” BIT
Numerical Mathematics, pp. 124–136, 1993.

[101] C. Kenney, A. J. Laub, and M. Wette, “Error bounds for Newton refinement of solu-
tions to algebraic Riccati equations,” Mathematics of Control, Signals, and Systems,
vol. 3, pp. 211–224, 1990.

[102] L. Keel and S. Bhattacharyya, “Robust, fragile or optimal,” Proc. Amer. Control
Conf., pp. 1307–1313, 1997.

[103] J. K. Rice and M. Verhaegen, “Distributed control: A sequentially semi-separable
approach,” Proc. IEEE Conf. Decision and Control, 2008.

[104] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge University
Press, 1991.

[105] M. Dettori, “LMI techniques for control with application to a compact disc player
mechanism,” Phd Thesis, 2001.

[106] J. K. Rice and M. Verhaegen, “A structured matrix approach to efficient calculation
of lqg repetitive learning controllers in the lifted setting,” International Journal of
Control, vol. 83, pp. 1265–1276, 2010.

[107] ——, “Distributed control: A sequentially semi-separable approach for heteroge-
neous linear systems,” IEEE Trans. Autom. Control, vol. 54, pp. 1270–1283, 2009.

[108] E. Kreyszig, Introductory Functional Analysis with Applications. John Wiley and
Sons, 1978.

[109] J. H. Justice and J. L. Stevens, “Stability criterion for N-dimensional digital filters,”
IEEE Transactions on Automatic Control, vol. June, pp. 284–286, 1973.

[110] S. Samar and C. Beck, “Model reduction of heterogeneous distributed systems,”
Proc. IEEE Conf. Decision and Control, 2003.

[111] H. Sandberg and R. M. Murray, “Model reduction of interconnected linear systems
using structured gramians,” IFAC World Congress, 2008.



Bibliography 177

[112] D. Doan, T. Keviczky, I. Necoara, M. Diehl, and B. D. Schutter, “A distributed
version of han’s method for dmpc using local communications only,” Journal of
control Engineering and Applied Informatics, vol. 11, pp. 6–15, 2009.

[113] A. Robinson, “A survey of optimal control of distributed-parameter systems,” Au-
tomatica, vol. 7, pp. 371–388, 1971.

[114] N. R. S. Jr., P. Varaiya, M. Athans, and M. G. Safonov, “Survey of decentralized
control methods for large scale systems,” IEEE Trans. Autom. Control, vol. 23, pp.
108–129, 1978.

[115] P. Sharma and C. Beck, “Modelling and distributed control of mobile offshore
bases,” Proc. Amer. Control Conf., pp. 5238–5243, 2004.

[116] R. D’Andrea, “Linear matrix inequalities, multidimensional system optimization,
and control of spatially distributed systems: An example,” Proc. Amer. Control
Conf., pp. 2713–2717, 1999.

[117] A.-J. van der Veen and P. Dewilde, “Modeling computational networks by time-
varying systems,” Integration, the VLSI Journal, 1993.

[118] J. K. Rice and M. Verhaegen, “Distributed computations and control in multi-agent
systems,” ICARA, 2009.

[119] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, 1997.

[120] J.-M. Contet, F. Gechter, P. Gruer, and A. Koukam, “Multiagent system model for
vehicle platooning with merge and split capabilities,” In Int. Conf. on Autonomous
Robots and Agents, 2006.

[121] F. Bullo, J. Cortes, and S. Martinez, Distributed Control of Robotic Networks.
Manuscript preprint. Electronically available at http://coordinationbook.info, 2008.

[122] E. Shaw and J. K. Hedrick, “String stability analysis for heterogeneous vehicle
strings,” in Proc. Amer. Control Conf., 2007.

[123] B. Shu and B. Bamieh, “Robust H2 control of vehicular strings,” Submitted to
ASME Journal of Dynamics, Meas. and Control.

[124] S. Sheikholeslam and C. Desoer, “Longitudinal control of a platoon of vehicles,” In
Proc. Amer. Control Conf., pp. 291–296, 1990.
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Summary
Efficient Algorithms for Distributed Control: A Structured Matrix

Approach

Justin K. Rice

Distributed systems are all around us, and they are fascinating, and have an enor-
mous potential to improve our lives, if their complexity can be properly harnessed.
All scientists and engineers are aware of the great potential of this subject, since
we witness fantastic distributed control systems every day, in the flocks of birds
in the sky and fish in the sea. However, the collective behavior of millions of
dynamically-coupled heterogeneous subsystems is hard to analyze and control for
computational reasons.

Our approach to the problems of analysis and control of distributed systems
is to exploit the matrix structure of array-interconnected systems in fast iterative
algorithms. Since these algorithms preserve the original matrix structure of the
system, the resulting centrally optimal controller realizations have the same struc-
ture, which can conveniently be ‘redistributed’ into a set of subcontrollers linked
in the same interconnection topology as the original system.

For P interconnected subsystems, traditional analysis and control synthesis
methods are O(P 3) computational complexity, but for N heterogeneous subsystems
on a line, the above method is only O(N) complexity. If the system is homogeneous
with only heterogeneous boundary conditions, the complexity can be reduced to
O(1), independent of the size of the homogeneous section. These results also extend
to multiple spatial dimensions: for heterogeneous or homogeneous subsystems on an
N×M 2-D cartesian grid, the complexity is reduced to O(MN) or O(1) complexity
respectively, as compared to O(M3N3) complexity of traditional techniques, an
impressive improvement for very large systems N, M > 1000. Furthermore, due to
the special form of the structured matrix arithmetic, the computations can actually
be performed in a distributed way, on a distributed processor and memory system,
with only linear complexity communication and memory requirements.

Using these efficient structured techniques, one can perform stability and H2

and H∞ analysis to an arbitrary degree of accuracy, and sub-optimally upper-bound
the structured singular value for robustness analysis. For synthesis, controllers
with H2 and H∞ performance arbitrarily close to optimal are possible, and D-K
iterations can be performed for robust design. Structure preserving model order
reduction, and even system identification are also possible.

It is also possible to apply this approach to analysis and synthesis of controllers
for linear parameter varying(LPV) systems, and of repetitive controllers for trials
with many time steps, T ,in only O(T ) complexity which would otherwise be O(T 3).
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Samenvatting
Efficinte algoritmen voor gedistribueerde besturing: Een

gestructureerde aanpak van matrix

Justin K. Rice

Gedistribueerde systemen zijn overal om ons heen, en ze zijn fascinerend, en
hebben een enorme potentieel om onze levens te verbeteren, als hun complexiteit
naar behoren kan worden benut. Alle wetenschappers en ingenieurs zijn zich bewust
van de grote potentieel van dit onderwerp, omdat we getuige van een fantastisch
verdeeld controlesystemen elke dag, in de kudden van vogels in de lucht en vissen
in de zee. Echter, het collectieve gedrag van miljoenen dynamisch gekoppelde
subsystemen is moeilijk te analyseren en controle voor de computationele redenen.

Onze aanpak van de problemen van de analyse en controle van gedistribueerde
systemen te benutten is de matrix-structuur van de array met elkaar verbonden
systemen in de snelle iteratieve algoritmes. Aangezien deze algoritmen het be-
houd van de originele matrixstructuur van het systeem, de resulterende centraal
optimale regelaar realisaties hebben dezelfde structuur, , die gemakkelijk kan wor-
den ‘herverdeeld’ in een reeks van subcontrollers elkaar verbonden zijn in een en
dezelfde interconnectie als de topologie oorspronkelijke systeem.

Voor P onderling verbonden subsystemen, traditionele analyse en controle syn-
these methoden zijn O(P 3) computationele complexiteit, maar voor N heterogene
subsystemen op een lijn, de hierboven beschreven methode wordt slechts O(N)
complexiteit. Als het systeem is homogeen Alleen heterogene randvoorwaarden,
kan de complexiteit worden verlaagd tot O(1), onafhankelijk van de grootte van
de homogene sectie. Deze resultaten worden uitgebreid tot meerdere ruimtelijke
Afmetingen: voor heterogene of homogene subsystemen op een N × M 2-D carte-
sische rooster, wordt de complexiteit verminderd tot O(MN) of O(1) complexiteit
respectievelijk als vergeleken met O(M3N3) complexiteit van de traditionele tech-
nieken, een indrukwekkende verbetering voor zeer grote systemen N, M > 1000.
Bovendien, als gevolg van de bijzondere vorm van de gestructureerde matrix reke-
nen, kan de berekeningen daadwerkelijk worden uitgevoerd in een gedistribueerde
manier, op een gedistribueerd systeem processor en het geheugen, met Enkel lin-
eaire complexiteit communicatie en geheugenfuncties.

Met behulp van deze technieken efficint gestructureerd, kan men uitvoeren sta-
biliteit en H2 en H∞ analyse naar een willekeurige mate van nauwkeurigheid, en
sub-optimaal bovengrensconcentraties de gestructureerde enkelvoud waarde voor
robuustheid analyse. Voor de synthese, controllers met H2 end H∞ prestaties
willekeurig dicht bij optimaal zijn mogelijk is, en DK iteraties kan worden uitgevo-
erd voor robuuste ontwerp. Structuur-model om het behoud van de korting, en
zelfs systeem identificatie zijn ook mogelijk.

Het is ook mogelijk om deze aanpak toe te passen voor analyse en synthese van
controllers voor lineaire parameter varirende (LPV) systemen, en van repetitieve
controllers voor proeven met veel tijd stappen, T , slechts in O(T ) complexiteit die
anders zou zijn O(T 3).
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