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CNN-Based Pose Estimation System for Close-Proximity
Operations Around Uncooperative Spacecraft

L. Pasqualetto Cassinis ∗, R. Fonod † and E. Gill ‡

Delft University of Technology, Kluyverveg 1, 2629 HS, Delft, The Netherlands

I. Ahrns §

Airbus DS GmbH, Airbusallee 1, 28199, Bremen, Germany

J. Gil Fernandez¶

ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands

This paper introduces a novel framework which combines a Convolutional Neural Net-
work (CNN) for feature detection with a Covariant Efficient Procrustes Perspective-n-Points
(CEPPnP) solver and an Extended Kalman Filter (EKF) to enable robust monocular pose
estimation for close-proximity operations around an uncooperative spacecraft. The relative
pose estimation of an inactive spacecraft by an active servicer spacecraft is a critical task in
the design of current and planned space missions, due to its relevance for close-proximity oper-
ations, such as In-Orbit Servicing and Active Debris Removal. The main contribution of this
work stands in deriving statistical information from the Image Processing step, by associating
a covariance matrix to the heatmaps returned by the CNN for each detected feature. This
information is included in the CEPPnP to improve the accuracy of the pose estimation step
during filter initialization. The derived measurement covariance matrix is used in a tightly-
coupled EKF to allow an enhanced representation of the measurements error from the feature
detection step. This increases the filter robustness in case of inaccurate CNN detections. The
proposed method is capable of returning reliable estimates of the relative pose as well as of
the relative translational and rotational velocities, under adverse illumination conditions and
partial occultation of the target. Synthetic 2D images of the European Space Agency’s Envisat
spacecraft are used to generate datasets for training, validation and testing of the CNN. Like-
wise, the images are used to recreate representative close-proximity scenarios for the validation
of the proposed method.

I. Introduction

Nowadays, key Earth-based applications such as remote sensing, navigation, and telecommunication, rely on satellite
technology on a daily basis. To ensure a high reliability of these services, the safety and operations of satellites in

orbit has to be guaranteed. In this context, advancements in the field of Guidance, Navigation, and Control (GNC) were
made in the past years to cope with the challenges involved in In-Orbit Servicing (IOS) and Active Debris Removal
(ADR) missions [1, 2]. For such scenarios, the estimation of the relative position and attitude (pose) of an uncooperative
spacecraft by an active servicer spacecraft represents a critical task. Pose estimation systems based solely on a monocular
camera are recently becoming an attractive alternative to systems based on active sensors or stereo cameras, due to
their reduced mass, power consumption and system complexity [3]. However, given the low Signal-To-Noise Ratio
(SNR) and the high contrast which characterize space images, a significant effort is still required to comply with most
of the demanding requirements for a robust and accurate monocular-based navigation system. Interested readers are
referred to Ref. [4] for a recent overview of the current trends in monocular-based pose estimation systems. Notably,
the pose estimation problem is in this case complicated by the fact that the target satellite is uncooperative, namely
retained as not functional and/or not able to aid the relative navigation. Above all, the navigation system cannot rely
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on known visual markers, as they are typically not installed on an uncooperative target. Since the extraction of visual
features is an essential step in the pose estimation process, advanced Image Processing (IP) techniques are required to
extract keypoints (or interest points), corners, and/or edges on the target body. In model-based methods, the detected
features are then matched with pre-defined features on an offline wireframe 3D model of the target to solve for the
relative pose. In other words, a reliable detection of key features under adverse orbital conditions is highly desirable
to guarantee safe operations around an uncooperative spacecraft. Moreover, it would be beneficial from a different
standpoint to obtain a model of feature detection uncertainties. This would provide the navigation system with additional
statistical information about themeasurements, which could in turn improve the robustness of the entire estimation process.

Unfortunately, standard pose estimation solvers such as the Efficient Perspective-n-Point (EPnP) [5], the Efficient
Procrustes Perspective-n-Point (EPPnP) [6], or the multi-dimensional Newton Raphson Method (NRM) [7] do not have
the capability to include features uncertainties. Only recently, a Covariant EPPnP (CEPPnP) solver was introduced
to exploit statistical information by including feature covariances in the pose estimation [8]. The authors proposed
a method for computing the covariance which takes different camera poses to create a fictitious distribution around
each detected keypoint. Furthermore, other authors [9] proposed an improved pose estimation method based on
projection vector in which the covariance is associated to the image gradient magnitude and direction at each feature
location. However, in both methods the derivation of features covariance matrices cannot be directly related to the actual
detection uncertainty. In this context, Convolutional Neural Networks (CNN) could be exploited to return relevant statis-
tical information about the detection step. This could in turn provide a reliable representation of the detection uncertainty.

The implementation of CNNs for monocular pose estimation in space has already become an attractive solution in
recent years [10–12], also thanks to the creation of the Spacecraft PosE Estimation Dataset (SPEED) [11], a database of
highly representative synthetic images of PRISMA’s TANGO spacecraft made publicly available by Stanford’s Space
Rendezvous Laboratory (SLAB) applicable to train and test different network architectures. One of the main advantages
of CNNs over standard feature-based algorithms for relative pose estimation [3, 13, 14] is an increase in the robustness
under adverse illumination condition, as well as a reduction in the computational complexity. Since the pose accuracies
of the first adopted CNNs proved to be lower than the accuracies returned by common pose estimation solvers, especially
in the estimation of the relative attitude [10], recent efforts investigated the capability of CNNs to perform keypoint
localization prior to the actual pose estimation [15–18]. The output of these networks is a set of so called heatmaps
around pre-trained features. The coordinates of the heatmap’s peak intensity characterize the predicted feature location,
with the intensity and the shape indicating the confidence of locating the corresponding keypoint at this position [15].
Additionally, due to the fact that the trainable features can be selected offline prior to the training, the matching of the
extracted feature points with the features of the wireframe model can be performed without the need of a large search
space for the image-model correspondences, which usually characterizes most of the edges/corners-based methods [19].

To the best of the authors’ knowledge, the reviewed implementations of CNNs feed solely the heatmap’s peak
location into the pose estimation solver, despite multiple information could be extracted from the detected heatmaps.
Only in Ref. [15], the pose estimation is solved by assigning weights to each feature based on their heatmap’s peak
intensities, in order to penalize inaccurate detections. Yet, there is another aspect related to the heatmaps which has not
been considered. It is in fact hardly acknowledged how the overall shape of the detected heatmaps returned by CNN
can be translated into a statistical distribution around the peak, allowing reliable feature covariances and, in turn, a
robust navigation performance. Despite the general claim that visual-based navigation filters can generally work with
an a-priori, overestimated, constant measurement covariance matrix, an accurate representation of the measurements
uncertainty can in fact be beneficial also for the estimation of the relative state vector, which would include the relative
pose as well as the relative translational and rotational velocities.

In this framework, the main contribution of this paper is to combine a CNN-based feature detector with a CEPPnP
solver and an Extended Kalman Filter (EKF). The filter accounts for representative feature covariances, computed directly
from the statistical distribution derived from the CNN heatmaps, and is initialized by the CEPPnP at time t0. Specifically,
the novelty of this work stands in linking the current research on CNN-based feature detection, covariant-based PnP
solvers, and navigation filters for relative pose estimation. The work is driven by two main objectives:

1) To improve filter initialization by incorporating heatmaps-derived covariance matrices in the CEPPnP
2) To guarantee a robust estimation by including a representative measurement covariance matrix in the EKF.
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(a) Co-moving LVLH frame [20] (b) PnP problem (Figure adapted from [3])

Fig. 1 Representation of the relative motion framework (left), and schematic of the pose estimation problem
using a monocular image (right).

The paper is organized as follows. The overall pose estimation framework is illustrated in Section II. Section III
introduces the proposed CNN architecture together with the adopted training, validation, and testing datasets. In Section
IV, special focus is given to the derivation of covariance matrices from the CNN heatmaps, whereas Section V describes
the CEPPnP solver. Besides, Section VI provides a description of the adopted EKF. The simulation environment is
presented in Section VII together with the simulation results. Finally, Section VIII provides the main conclusions and
recommendations.

II. Pose Estimation Framework
This work considers a servicer spacecraft flying in relative motion around a target spacecraft located in a Low

Earth Orbit (LEO), with the relative motion being described in a Local Vertical Local Horizontal (LVLH) reference
frame co-moving with the servicer (Figure 1a). Furthermore, it is assumed that the servicer is equipped with a single
monocular camera. The relative attitude of the target with respect to the servicer can then be defined as the rotation
of the target body-fixed frame B with respect to the servicer camera frame C, where these frames are tied to each
spacecraft’s body. The distance between these two frames defines their relative position. Together, these two quantities
characterize the relative pose. This information can then be transferred from the camera frame to the servicer’s center of
mass by accounting for the relative pose of the camera with respect to the LVLH frame.

From a high-level perspective, a model-based monocular pose estimation system receives as input a 2D image and
matches it with an existing wireframe 3D model of the target spacecraft to estimate the pose of such target with respect
to the servicer camera. Referring to Figure 1b, the pose estimation problem consists in determining the position of the
target’s centre of mass tC and its orientation with respect to the camera frame C, represented by the rotation matrix RC

B .
The Perspective-n-Points (PnP) equations,

rC =
(
xC yC zC

)T
= RC

Br
B + tC (1)

p = (ui, vi) =
(

xC

zC
fx + Cx,

yC

zC
fy + Cy

)
, (2)

relate the unknown pose with the corresponding point p in the image plane. Here, rB is a point in the 3D model,
expressed in the body-frame coordinate system B, whereas fx and fy denote the focal lengths of the camera and (Cx,Cy)
is the principal point of the image.

From these equations, it can already be seen that an important aspect of estimating the pose resides in the capability
of the IP system to extract features p from a 2D image of the target spacecraft, which in turn need to be matched with
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Incoming light

CNN-based IP

2D Image

Initialization

CEPPnP

Navigation

Covariance computationFeature detection

Peak location

Covariance

Fig. 2 Functional flow of the proposed pose estimation architecture.

pre-selected features rB in the wireframe 3D model. Notably, such wireframe model of the target needs to be made
available prior to the estimation. Furthermore, it can be expected that the time variation of the relative pose plays a
crucial role while navigating around the target spacecraft, e.g. if rotational synchronization with the target spacecraft is
required in the final approach phase. As such, it is clear that the estimation of both the relative translational and angular
velocities is an essential step beside the pose estimation itself.

The proposed architecture combines the above key ingredients in three main stages, which are shown in Figure 2
and described in more detail in the following sections. In the CNN-based IP block, a CNN is used to extract features
from a 2D image of the target spacecraft. Statistical information is derived by computing a covariance matrix for each
features using the information included in the output heatmaps. In the Navigation block, both the peak locations and the
covariances are fed into an EKF, which estimates the relative pose as well as the relative translational and rotational
velocities. The filter is initialized by the CEPPnP block, which takes peak location and covariance matrix of each feature
as input and outputs the initial relative pose by solving the PnP problem in Eqn.1-2. Thanks to the availability of a
covariance matrix of the detected features, this architecture can guarantee a more accurate representation of feature
uncertainties, especially in case of inaccurate detection of the CNN due to adverse illumination conditions and/or
unfavourable relative geometries between servicer and target. Together with the CEPPnP initialization, this aspect
can return a robust and accurate estimation of the relative pose and velocities and assure a safe approach of the target
spacecraft.

III. Convolutional Neural Network
CNNs are currently emerging as a promising features extraction method, mostly due to the capability of their

convolutional layers to extract high-level features of objects with improved robustness against image noise and
illumination conditions. In order to optimize CNNs for the features extraction process, a stacked hourglass architecture
has been proposed in Ref. [15, 16], and other architectures such as the U-net [21], or variants of the hourglass, were
tested in recent years. Compared to the network proposed in Ref. [15], the adopted architecture is composed of only
one encoder/decoder block, constituting a single hourglass module. The encoder includes six blocks, each including a
convolutional layer, a batch normalization module and max pooling layer, whereas the six decoder blocks accomodate
an up-sampling block in spite of max pooling. Each convolutional layer is formed by a fixed number of filter kernels of
size 3×3. In the current analysis, 128 kernels are considered per convolutional layer. Figure 3 shows the high-level
architecture of the network layers, together with the corresponding input and output.

As already mentioned, the output of the network is a set of heatmaps around the selected features. Ideally, the
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Fig. 3 Overview of the single hourglass architecture. Downsampling is performed in the encoder stage, in
which the image size is decrease after each block, whereas upsampling occurs in the decoder stage. The output
of the network consists of heatmap responses, and is used for keypoints localization.

Fig. 4 Illustration of the selected features for a given Envisat pose.

heatmap’s peak intensity associated to a wrong detection should be relatively small compared to the correctly detected
features, highlighting that the network is not confident about that particular wrongly-detected feature. At the same
time, the heatmap’s amplitude should provide an additional insight into the confidence level of each detection, a large
amplitude being related to large uncertainty about the detection. The network is trained with the x- and y- image
coordinates of the feature points, computed offline based on the intrinsic camera parameters as well as on the feature
coordinates in the target body frame, which were extracted from the wireframe 3D model prior to the training. During
training, the network is optimized to locate 16 features of the Envisat spacecraft, consisting of the corners of the main
body, the Synthetic-Aperture Radar (SAR) antenna, and the solar panel, respectively. Figure 4 illustrates the selected
features for a specific target pose.

A. Training, Validation and Test
For the training, validation, and test datasets, synthetic images of the Envisat spacecraft were rendered in the Cinema

4D© software. Table 1 lists the main camera parameters adopted. A constant Sun elevation and azimuth angles of
30 degrees were chosen in order to recreate favourable as well as adverse illumination conditions. Relative distances
between camera and target were chosen in the interval 90 m - 180 m. Relative attitudes were generated by discretizing
the yaw, pitch, and roll angles of the target with respect to the camera by 10 degrees each. Together, these two choices
were made in order to recreate several relative geometries between the servicer and the target. The resulting database
was then shuffled to randomize the images, and was ultimately split into training (40,000 images), validation (4,000
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Table 1 Parameters of the camera used to generate the synthetic images in Cinema 4D©.

Parameter Value Unit

Image resolution 512×512 pixels

Focal length 3.9·10−3 m

Pixel size 1.1·10−5 m

Fig. 5 A montage of eight synthetic images selected from the training set.

images), and test (∼10,000 images) datasets. Figure 5 shows some of the images included in the training dataset.
During training, the validation dataset is used beside the training one to compute the validation losses and avoid
overfitting. In this work, a learning rate of 0.1 is selected together with a batch size of 20 images and a total number of
20 epochs. Finally, the network performance after training is assessed with the test dataset.

Preliminary results on the network performance were already reported in Ref. [22]. Above all, one key advantage of
relying on CNNs for feature detection was found in the capability of learning the relative position between features
under a variety of relative poses present in the training. As a result, both features which are not visible due to adverse
illumination and features occulted by other parts of the target can be detected. Besides, a challenge was identified in
the specific selection of the trainable features. Since the features selected in this work represent highly symmetrical
points of the Envisat spacecraft, such as corners of the solar panel, SAR antenna or main body, the network is in some
scenarios unable to distinguish between similar features, and returns multiple heatmaps for a single feature output.
Figure 6 illustrates these findings.

Although improving on the CNN architecture is expected to cope with the above challenges and return more accurate
heatmaps, it is also believed that these scenarios can be properly handled, if a large uncertainty can be associated to
a wrong and/or inaccurate detection. This task can be performed by deriving a covariance matrix for each detected
feature, in order to represent its detection uncertainty. Above all, this can prevent the pose solver and the EKF from
trusting wrong detections, by relying more on other accurate features.

IV. Covariance Computation
In order to derive a covariance matrix associated to each feature from the heatmaps detected by the CNN, the first

step is to obtain a statistical population around the heatmap’s peak. This is done by thresholding each heatmap image so
that only the x- and y- location of heatmap’s pixels are extracted. Secondly, each pixel within the population is given a
normalized weight wi based on the gray intensity at its location. This is done in order to give more weight to pixels
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(a) Occulted spacecraft body (b) Heatmap of a single solar panel’s corner

Fig. 6 Robustness and challenges of feature detection with the proposed CNN. On the left-hand side, the
network has been trained to recognize the pattern of the features, and can correctly locate the body features
which are not visible, i.e. parts occulted by the solar panel and corners of the SAR antenna. Conversely, the
right-hand side shows the detection of multiple heatmaps for a single corner of the solar panel. As can be seen,
the network can have difficulties in distinguishing similar features, such as the corners of the solar panel.

which are particularly bright and close to the peak, and less weight to pixels which are very faint and far from the peak.
Finally, the obtained statistical population of each feature is used to compute the weighted covariance between x, y and
consequently the covariance matrix Ci:

Ci =

(
cov(x, x) cov(x, y)
cov(y, x) cov(y, y)

)
(3)

where

cov(x, y) =
n∑
i=1

wi(xi − px) · (yi − py). (4)

In this work, the mean is replaced by the peak location p = (px, py) in order to represent a distribution around the peak
of the detected feature, rather than around the heatmap’s mean. This is particularly relevant when the heatmaps are
asymmetric and their mean does not coincide with their peak.

Figure 7 shows the overall flow to obtain the covariance matrix for three different heatmap shapes. The ellipse
associated to each features covariance is obtained by computing the eigenvalues λx,y of the covariance matrix,(

x
λx

)2
+

(
y

λy

)2
= s (5)

where s defines the scale of the ellipse and is derived from the confidence interval of interest, e.g. s = 2.2173 for a 68%
confidence interval. As can be seen, different heatmaps can result in very different covariance matrices. Above all, the
computed covariance can capture the different CNN uncertainty over x,y. Notice that, due to its symmetric nature, the
covariance matrix can only represent normal distributions. As a result, asymmetrical heatmaps such as the one in the
third scenario are approximated by Gaussian distributions characterized by an ellipse which might overestimate the
heatmap’s dispersion over some directions.

V. Pose Estimation
The CEPPnP method proposed in Ref. [8] was selected to estimate the relative pose from the detected features as

well as from their covariance matrices. The first step of this method is to rewrite the PnP problem in Eqn.1-2 as a
function of a 12-dimensional vector y containing the control point coordinates in the camera reference system:
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Fig. 7 Schematic of the procedure followed to derive covariance matrices from CNN heatmaps. The displayed
ellipses are derived from the computed covariances by assuming the confidence intervals 1σ = 0.68 and
3σ = 0.99.

My = 0 (6)

where M is a 2n×12 known matrix. This is the fundamental equation in the EPnP problem [5]. The likelihood of each
observed feature location ui is then represented as

P(ui) = k · e−
1
2∆u

T
i C
−1
ui
∆ui (7)

where∆ui is a small, independent and unbiased noise with expectation E[∆ui] = 0 and covariance E[∆ui∆uTi ] = σ
2Cui

and k is a normalization constant. Here, σ2 represents the global uncertainty in the image, whereas Cui is the 2x2
uncertainty covariance matrix of each detected feature, computed from the CNN heatmaps. After some calculations, the
EPnP formulation can be rewritten as

(N − L)y = λy. (8)

This is an eigenvalue problem in which both N and L matrices are a function of y and Cui . The problem is solved
iteratively by means of the closed-loop EPPnP solution for the four control points, assuming no feature uncertainty.
Once y is estimated, the relative pose is computed by solving the generalized Orthogonal Procrustes problem used in
the EPPnP [6].

VI. Navigation Filter
From a high level perspective, two different navigation architectures are normally exploited in the framework of

relative pose estimation. A tightly-coupled architecture, where the extracted features are directly processed by the
navigation filter as measurements, and a loosely-coupled architecture, in which the relative pose is computed prior to
the navigation filter to derive pseudomeasurements from the target features [23]. Usually, a loosely-coupled approach
is preferred for an uncooperative tumbling target, due to the fact that the fast relative dynamics could jeopardize
feature tracking and return highly-variable measurements to the filter. However, one shortcoming of this approach is
that it is generally hard to obtain a representative covariance matrix for the pseudomeasurements. This can be quite
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challenging when filter robustness is demanded. Remarkably, the adoption of a CNN in the feature detection step can
overcome the challenges in feature tracking by guaranteeing the detection of a constant, pre-defined set of features.
At the same time, theCNNheatmaps can be used to derive ameasurements covariancematrix and improve filter robustness.

Following this line of reasoning, a thighly-coupled EKF was chosen in this work. The state vector is composed
of the relative pose between the servicer and the target, as well as the relative translational and rotational velocities.
Under the assumption that the camera frame onboard the servicer is co-moving with the LVLH frame, with the camera
boresight aligned with the along-track direction, this translates into

x =

©«
tC

v

q

w

ª®®®®¬
(9)

where the unit quaternion q replaces the direction cosine matrix RC
B to represent the coordinate transformation. The state

propagation step decouples the translational dynamics from the rotational dynamics. The perturbation-free, closed-form
solution of the well known Clohessy-Wiltshire linear equations was chosen to describe the relative motion between the
servicer and the target: (

tC

v

)
k+1

= ΦCW

(
tC

v

)
k

(10)

where

ΦCW =

©«

1 0 6(∆θs − sin∆θs) 1/ωs(4 sin∆θs − 3∆θs) 0 2/ωs(1 − cos∆θs)
0 cos∆θs 0 0 1/ωs sin∆θs 0
0 0 4 − 3 cos∆θs 2/ωs(cos∆θs − 1) 0 sin∆θs/ωs

0 0 6ωs(1 − cos∆θs) 4 cos∆θs − 3 0 2 sin∆θs
0 ωs sin∆θs 0 0 cos∆θs 0
0 0 3ωs sin∆θs −2 sin∆θs 0 cos∆θs

ª®®®®®®®®®¬
. (11)

Here, ωs and ∆θs represent the servicer’s argument of perigee and true anomaly variation for a time step ∆t, respectively.
The relative quaternions and the rotational velocity are also propagated assuming a perturbation-free dynamics with
constant angular velocity:

qk+1 = qk ⊗ q(wk∆t) (12)

ωk+1 = ωk (13)
where the term q(wk∆t) represents the unit quaternion equivalent to a rotation of wk∆t. The propagation of the state
covariance matrix P is done by accounting for a linearized version of Eqn.12. The reader is referred to Ref. [24] for a
detailed description of this derivation.

In the measurements update step, the measurements vector is made of the x- and y- coordinates of the n = 16
detected features in the image plane,

z = (x1, y1 . . . xn, yn)T . (14)
As anticipated, the measurement covariance matrix R is a time-varying block diagonal matrix constructed with the

heatmaps-derived covariances Ci in Eqn.3,

R =
©«
C1

. . .

Cn

ª®®®¬ . (15)
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Notice that Ci can differ for each feature in a given frame as well as vary over time.
The observation model h is a 2n×1 column vector representing the x- and y- coordinates of the 16 features detected

by the CNN. Referring to Eqn.1-2, this translates into the following equations for each detected point pi:

hi =

(
xCi
zCi

fx + Cx,
yCi

zCi
fy + Cy

)T
(16)

rC = q ⊗ rBi ⊗ q + tC (17)

where ⊗ denotes the quaternion product. As a result, the Jacobian H of the observation model with respect of the state
vector is a 2n×13 matrix computed as

H =
©«
HtC,i 02n×3 Hq,i 02n×3
...

...
...

...

HtC,n 02n×3 Hq,n 02n×3

ª®®®¬ (18)

where

Hr,i = H int
i · H

ext
tC,i

(19)

Hq,i = H int
i · H

ext
q,i (20)

H int
i =

∂hi

∂rCi
=

©«
fx
zCi

0 −
fx

(zCi )
2 xCi

0 fy

zCi
−

fy

(zCi )
2 y

C

ª®¬ (21)

Hext
q,i =

∂rCi
∂q
=
∂
(
q ⊗ rBi ⊗ q

)
∂q

; Hext
tC,i
=
∂rCi
∂ tC

= I3. (22)

The partial derivative in Eqn.22 is computed according to Ref. [24].
After the measurements update step, brute-force normalization is performed to ensure unity of the estimated

quaternion [24].

VII. Simulations
In this section, the simulation environment and the results are presented. Firstly, the impact of including a

heatmaps-derived covariance in the pose estimation step is addressed by comparing the CEPPnP method with a standard
solver which does not account for feature uncertainty. Secondly, the performance of the EKF is evaluated by comparing
the convergence profiles with a heatmaps-derived covariance matrix against covariance matrices with arbitrary selected
covariances. Initialization is provided by the CEPPnP for all the scenarios.
Two separate error metrics are adopted in the evaluation, in accordance with Ref. [11]. Firstly, the translational error
between the estimated relative position t̂C and the ground truth t is computed as

ET = | t
C − t̂C |. (23)

This metric is also applied for the translational and rotational velocities estimated in the navigation filter. Secondly, the
attitude accuracy is measured in terms of the Euler axis-angle error between the estimated quaternion q̂ and the ground
truth q,

β =
(
βs βv

)
= q ⊗ q̂ (24)

ER = 2 arccos (|βs |). (25)

10

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
7,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

14
57

 



A. Pose Estimation
Three representative scenarios are selected from the CNN test dataset for the evaluation. These scenarios were

chosen in order to analyze different heatmaps’ distributions around the detected features. A comparison is made between
the proposed CEPPnP and the EPPnP. Figure 8 shows the characteristics of the covariance matrices derived from the
predicted heatmaps. Here, the ratio between the minimum and maximum eigenvalues of the associated covariances is
represented against the ellipse’s area and the RMSE between the Ground Truth (GT) and the x, y coordinates of the
extracted features,

ERMSE,i =

√
(xGT,i − xi)2 + (yGT,i − yi)2. (26)
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(a) Test scenario 1
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(b) Test scenario 2
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(c) Test scenario 3

Fig. 8 Characteristics of the ellipses derived from the covariance matrices for the three selected scenarios.

Notably, interesting relations can be established between the three quantities reported in the figure. In the first scenario,
the correlation between the sub-pixel RMSE and the large eigenvalues ratio suggests that a very accurate CNN detection
can be associated with circular-shaped heatmaps. Moreover, the relatively low ellipse’s areas indicate that, in general,
small heatmaps are expected for an accurate detection. Conversely, in the second scenario the larger ellipses’ area
correlates with a larger RMSE. Furthermore, it can be seen that the largest difference between the x- and y- components
of the RMSE occurs either for the most eccentric heatmap (ID 13) or for the one with the largest area (ID 6). The same
behaviour can be observed in the last scenario, where the largest RMSE coincides with a large, highly eccentric heatmap.
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Table 2 Pose Estimation performance results.

Metric Scenario CEPPnP EPPnP

ET [m]
1 [0.18 0.22 0.24] [0.17 0.22 0.24]
2 [0.35 0.41 0.59] [0.14 0.4 22.8]
3 [0.49 0.12 1.41] [0.56 0.16 5.01]

ER [deg/s]
1 0.36 0.35
2 0.75 6.08
3 1.99 2.72

Fig. 9 Montage of the VBAR approach scenario 1 (Top) and 2 (Bottom). Images are shown every 12 s for
clarity.

Table 2 lists the pose estimation results for the three scenarios. As anticipated in Figure 8, the statistical information
derived from the heatmaps in the first scenario is uniform for all the features, due to the very accurate CNN detection.
As a result, the inclusion of features covariance in the CEPPnP solver does not help refining the estimated pose. Both
solvers are characterized by the same pose accuracy.
Not surprisingly, the situation changes as soon as the heatmaps are not uniform across the feature IDs. Due to its
capability of accomodating feature uncertainties in the estimation, the CEPPnP method outperforms the EPPnP for the
remaining scenarios. In other words, the CEPPnP solver proves to be more robust against inaccurate CNN detections by
accounting for a reliable representation of the features covariance.

B. Navigation Filter
To assess the performance of the proposed EKF, two rendezvous scenarios with Envisat are rendered in Cinema

4D©. These are perturbation-free VBAR trajectories characterized by a relative velocity ‖v‖ = 0 m/s. In both scenarios,
the Envisat performs a roll rotation of ‖ω‖ = 5 deg/s, with the servicer camera frame aligned with the LVLH frame.
Table 3 lists the initial conditions of the trajectories, whereas Figure 9 shows some of the associated rendered 2D images.
It is assumed that the images are made available to the filter every 2 seconds for the measurement update step, with the
propagation step running at 1 Hz. In both scenarios, the EKF is initialized with the CEPPnP pose solution at time t0.
The other elements of the initial state vector are randomly chosen assuming a standard deviation of 1 mm/s and 1 deg/s
for all the axes of terms (v̂0 − v) and (ω̂0 − ω), respectively. Table 4 reports the initial conditions of the filter.

Table 3 VBAR approach scenarios. The attitude is represented in terms of ZYX Euler angles for clarity.

Scenario θ0 [deg] ω [deg/s] tC [m] v [mm/s]
1 [-180 30 -80]T [-2.5 -4.3 0.75]T [0 150 0]T [0 0 0]T

2 [-180 -50 160]T [3.8 1.1 -3.02]T [0 180 0]T [0 0 0]T

In order to assess the impact of the measurements covariance on the performance of the EKF, two diagonal matrices
are considered aside from the proposed heatmaps-derived covariance in Eqn.15: a matrix R = 10 · I2n, in which 10 is the
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Table 4 Initial state vector in the EKF.

Scenario θ̂0 [deg] ω̂0 [deg/s] t̂C0 [m] v̂0 [mm/s]
1 [-180.17 28.74 -80.63]T [-2.07 -4.1 0.1]T [0.11 0.07 149.69]T [2.8 -1.3 3]T

2 [-179 -51.06 156.25]T [-2.07 -4.1 0.1]T [0.10 0.26 181.9]T [2.8 -1.3 3]T

Fig. 10 Comparison of the selected navigation scenarios throughout the whole rotational sequence of Envisat,
based on the mean eccentricity (Top) and mean area (Bottom) derived from the features covariances.

selected variance, and a matrix Ravg, which uses an averaged variance of the diagonal elements of the heatmaps-derived
covariance.

Figure 10 illustrates two selected mean characteristics of the heatmaps, calculated over the n features in each frame,
for the two rotational sequences of the Envisat. First of all, the mean eccentricity of the feature covariances, represented
by the ratio λmin/λmax , indicates that the first scenario is characterized by more circular heatmaps than the second one.
Moreover, the intra-frame dispersion of the ellipses’ shape, represented by the ±1σ envelope, is much larger for the
second scenario than it is for the first one. This suggests that the covariances Ci in the second scenario can be very
different from each other within a given frame. Lastly, it can be seen that the ellipses’ areas in the second scenario
are larger than the ones in the first scenario throughout the entire rotational sequence. Overall, these considerations
emphasize a worse detection accuracy for certain features in the second scenario.

Figures 11-12 show the convergence profiles for the translational and rotational state for the first scenario, respectively.
Overall, the selection of the measurements covariance seems not to impact on the filter performance. As already
anticipated, this is a consequence of the nearly circular, small heatmaps which characterize almost every feature
throughout this sequence. As such, a diagonal covariance of 10 pixels, an heatmap-derived covariance, or an averaged
diagonal covariance return an almost identical convergence profile. The situation differs considerably when analyzing
the convergence profiles for the second scenario (Figures 13-14). Despite similar convergences occur for the rotational
state as well as for the relative velocity, it can be seen that the selection of the measurement covariance plays a key role in
the along-track error. Specifically, the error trend of the heatmaps-derived covariance oscillates around zero as opposed
to the other two biased estimates. This seems to indicate that the statistical information derived from the CNN heatmaps
can represent the measurements uncertainty and aid the filter convergence also in case of inaccurate feature detections.
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Fig. 11 Estimation error for the relative position and velocity - Scenario 1.
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Fig. 12 Estimation error for the relative attitude and angular velocity - Scenario 1.

Fig. 13 Estimation error for the relative position and velocity - Scenario 2.
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Fig. 14 Estimation error for the relative attitude and angular velocity - Scenario 2.

VIII. Conclusions and Recommendations
This paper introduces a novel framework to estimate the relative pose of an uncooperative target spacecraft with a

single monocular camera onboard a servicer spacecraft. A method is proposed in which a CNN-based IP algorithm is
combined with a CEPPnP solver and an EKF to return a robust estimate of the relative pose as well as of the relative
translational and rotational velocities.

The main novelty of the proposed CNN-based method stands in introducing a heatmaps-derived covariance represen-
tation of the detected features. This is done in order to incorporate feature uncertainties in both the pose estimation step
and in the navigation filter. Preliminary results indicate that the correlation between the accuracy of the CNN detection
and the shape of the detected heatmaps can be exploited to compute a covariance matrix for each detected feature.
This covariance can be incorporated in the CEPPnP solver to improve the pose estimation accuracy under inaccurate
CNN detections. Furthermore, the same statistical information can be used to build a representative measurements
covariance matrix and improve the measurements update step of the navigation filter. Together, these improvements
proved to return a more robust and accurate estimate for the considered VBAR approach scenarios. Overall, the
results suggest a promising scheme to copewith the challenging demand for robust navigation in close-proximity scenarios.

However, further work is required in several directions. First of all, more recent CNN architectures shall be
investigated to assess the achievable robustness and accuracy in the feature detection step. Secondly, the comparison
between the CEPPnP and the covariance-free EPPnP solvers shall be extended to the entire test dataset, in order to
validate the improved accuracy so far observed for only three representative scenarios. Moreover, the NRM shall be
included in the pose estimation step to refine the accuracy of the CEPPnP solver and improve filter initialization. Besides,
more close-proximity scenarios shall be recreated to investigate more complex relative trajectories as well as to assess
the impact of perturbations on the accuracy and robustness of the navigation filter. In this context, other navigation
filters such as the Unscented Kalman Filter and the Multiplicative EKF shall be investigated. Finally, alternative datasets
such as SPEED shall be considered as a benchmark for the proposed method.
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