
 
 

Delft University of Technology

Localised estimation and control of linear instabilities in two-dimensional wall-bounded
shear flows

Tol, H. J.; Kotsonis, M.; De Visser, C. C.; Bamieh, B.

DOI
10.1017/jfm.2017.355
Publication date
2017
Document Version
Accepted author manuscript
Published in
Journal of Fluid Mechanics

Citation (APA)
Tol, H. J., Kotsonis, M., De Visser, C. C., & Bamieh, B. (2017). Localised estimation and control of linear
instabilities in two-dimensional wall-bounded shear flows. Journal of Fluid Mechanics, 824, 818-865.
https://doi.org/10.1017/jfm.2017.355

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1017/jfm.2017.355
https://doi.org/10.1017/jfm.2017.355


This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics

1
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A new framework is presented for estimation and control of instabilities in wall-bounded
shear flows described by the linearised Navier-Stokes equations. The control design
considers the use of localised actuators/sensors to account for convective instabilities
in an H2 optimal control framework. External sources of disturbances are assumed to
enter the control domain through the inflow. A new inflow disturbance model is proposed
for external excitation of the perturbation modes that contribute to transition. This
model allows efficient estimation of the flow perturbations within the localised control
region of a conceptually unbounded domain. The state-space discretisation of the infinite
dimensional system is explicitly obtained, which allows application of linear control
theoretic tools. A reduced order model is subsequently derived using exact balanced
truncation that captures the input/output behaviour and the dominant perturbation
dynamics. This model is used to design an H2 optimal controller to suppress the
instability growth. The 2-D non-periodic channel flow is considered as an application
case. Disturbances are generated upstream of the control domain and the resulting
flow perturbations are estimated/controlled using point wall shear measurements and
localised unsteady blowing and suction at the wall. The controller is able to cancel the
perturbations and is robust to both unmodelled disturbances and sensor inaccuracies.
For single frequency and multiple frequency disturbances with low sensor noise nearly a
full cancellation is achieved. For stochastic forced disturbances and high sensor noise an
energy reduction in perturbation wall shear stress of 96% is shown.

1. Introduction

It is widely accepted that if the initial perturbations are small, the initial phase of the
laminar-turbulent transition in wall-bounded shear flows is largely governed by linear
mechanisms (Schmid & Henningson 2001; Butler & Farrell 1992; Trefethen et al. 1993;
Jovanovic & Bamieh 2005). The application of linear control theory to fluid flows is
therefore considered as a viable route to suppress instabilities and delay transition for
reducing skin-friction drag (Joshi et al. 1997; Cortelezzi & Speyer 1998; Bewley & Liu
1998; Högberg et al. 2003a; Baramov et al. 2004; Chevalier et al. 2007; Bagheri et al.

2009b; Semeraro et al. 2013; Jones et al. 2015). In particular, optimal multivariable
control strategies (LQG/H2,H∞) (Zhou et al. 1996; Skogestad & Postlethwaite 2005)
have been successfully applied, see Kim & Bewley (2007); Bagheri & Henningson (2011);
Sipp & Schmid (2016) for an in-depth review on this subject. These control strategies
can be decomposed in a state estimation problem from non-ideal (noisy) measurements
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and a state feedback control problem. Once the evolution of the flow perturbations is
sufficiently estimated, the estimated state can subsequently be used for feedback control
of the perturbations. The construction of an accurate linear state-space model describing
the perturbation dynamics from all inputs to all outputs is the corner stone of linear
model based control and is considered as a significant challenge (Bagheri & Henningson
2011; Sipp & Schmid 2016). Limits related to unmodelled dynamics and nonlinearities are
commonly assessed from case to case (Semeraro et al. 2013; Fabbiane et al. 2015) and/or
addressed using robust design techniques such as H∞ loop shaping (Jones et al. 2015;
Flinois & Morgans 2016). For example, in Jones et al. (2015) the effect of nonlinearity
is attenuated by a linear feedback controller that employs high loop gain over a selected
frequency range. As recently reviewed in Sipp & Schmid (2016); Schmid & Sipp (2016),
different difficulties arise for modelling and control of globally unstable oscillator flows
and convectively unstable amplifier flows. Oscillator flows, such as bluff body flows and
open cavity flows, are characterized by the presence of global instabilities that oscillate
at a particular frequency and are rather insensitive to upstream perturbations. Modelling
the external disturbance environment is thus less of an issue for suppressing global
instabilities (Samimy et al. 2007; Barbagallo et al. 2009; Ma et al. 2011; Sipp & Schmid
2016), but it raises different issues related to nonlinear saturation of global instabilities
(Flinois & Morgans 2016). On the other hand amplifier flows, such as channel flows and
boundary layer flows, are characterized by the presence of convective instabilities that
amplify downstream (in space) in a broadband frequency spectrum in both space and
time. Amplifier flows are highly sensitive to external disturbances and there exists only
a small window in time to suppress convective instabilities. This poses great challenges
for control design and accurately modelling the upstream disturbance environment is
crucial since it forms the basis for estimation and control of the flow perturbations
(Hœpffner et al. 2005; Bagheri et al. 2009b; Semeraro et al. 2011). This paper focuses
on convective instabilities due to their strong relevance to engineering problems such as
laminar-turbulent transition of flow over aerofoils. Besides the distinction in instability
behaviour, two approaches with regard to the flow modelling and the controller synthesis
are frequently further distinguished from each other (Bagheri & Henningson 2011),
namely the wavenumber approach for distributed control design and the localised control
approach using reduced order models. The framework presented in this paper is inspired
by both approaches which are discussed next.

1.1. Distributed control and localised computations

A large number of studies, including the seminal works by Joshi et al. (1997) and
Bewley & Liu (1998), consider full-domain distributed sensing and actuation to derive
the control laws. Distributed control designs often exploit the spatial invariance property
of parallel flows to derive low order models of the perturbation dynamics. In the case of
spatial invariance it is assumed that the base flow is invariant in the streamwise (x) and
spanwise (z) directions and that the sensors and actuators are fully distributed along
these coordinates. By using a Fourier-Galerkin decomposition or a Fourier transform
along the spatially invariant coordinates, the system can be block-diagonalised and
decoupled in terms of discrete sets of wavenumbers that replace the spatially invariant
coordinates (Joshi et al. 1997; Bewley & Liu 1998). Analysis and design of the controller
can thus be carried out on a parameterised lower-dimensional system. The resulting
feedback controllers can subsequently be reconstructed in physical space by computing
the so called control convolution kernels (Bamieh et al. 2002; Högberg et al. 2003a).
In Hœpffner et al. (2005); Chevalier et al. (2006) stochastic models for external sources
of excitation were introduced that allow the computation of well-resolved estimation
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convolution kernels for shear stress and pressure measurements. These estimation/control
convolution kernels have a localised structure in space and it was shown in Bamieh
et al. (2002) that localisation of the convolution kernels is a universal property of
spatially invariant optimal control problems. Although, strictly speaking the wavenumber
approach is only applicable to spatially invariant systems, it has also been successively
applied to spatially developing boundary layers (Högberg & Henningson 2002; Chevalier
et al. 2007; Monokrousos et al. 2008) and fully turbulent flows (Lee et al. 2001; Högberg
et al. 2003b; Sharma et al. 2011). The use of control/estimation convolution kernels
avoids the need for online fast Fourier transforms (FFT) of the measurement vector and
inverse Fourier transform (iFFT) of the control vector. While this approach introduces a
controller with the same order as the system, it is shown in Högberg et al. (2003a) that
spatially truncating the convolution kernels does not degrade the closed-loop performance
of the control system. Since these convolution kernels are localised, the feedback controller
can be implemented with only localised computations. As a result, relatively small
computational domains can be considered for an effective control design. For example in
Chevalier et al. (2007) and Monokrousos et al. (2008) all perturbations were generated
upstream of the control domain and they were able to suppress Tollmien-Schlichting
waves and streaks in a flat plate boundary layer using small strips of distributed sensors
and actuators.

1.2. Model reduction and localised control

The exploitation of the spatial invariance property for control design, although effective
for distributed feedback control, requires sensor and actuator distributions that are
currently not available or cannot be manufactured in a cost effective way. Moreover, in
practice efficient control can be achieved using only a few localised sensors and actuators,
leading to a more cost-effective control design. This led to the use of reduced order
modelling techniques for control design that make no assumptions on the flow geometry
and the shape and distribution of the actuators/sensors. This approach, also known
as the reduced order modelling approach, accounts for physically realisable localised
actuators/sensors and has been validated in experiments (Samimy et al. 2007; Pastoor
et al. 2008; Fabbiane et al. 2015). Galerkin projection is commonly applied, in which a
reduced order model (ROM) is obtained by projecting the Navier-Stokes equations onto
a reduced set of modes. The choice of these modes is critical and greatly determines
the effectiveness of the ROM for control application (Barbagallo et al. 2009; Bagheri
et al. 2009c; Ilak & Rowley 2008). The global eigenfunctions (EF) of the linear operator
(Åkervik et al. 2007), as well as different variants of proper orthogonal decomposition
modes (POD) (Noack et al. 2003; Siegel et al. 2008) have been successfully applied for
model reduction and control design. Another approach is the use of balanced modes, also
known as balanced truncation, which typically produces models that are more robust
and are better able to capture the input-output behaviour of the system (Rowley 2005;
Barbagallo et al. 2009; Bagheri et al. 2009c; Ilak & Rowley 2008).
Balanced truncation is widely used for model reduction of linear systems (Moore

1981) and has the advantage of having a-priori error bounds and guaranteed stability
of the reduced order model. This method requires an initial model of the flow in
finite dimensional state-space format and constructs a ROM by extracting the most
controllable and observable modes of the state-space system. The construction of these
so-called balanced modes involves the computation of the controllability and observability
Gramians of the high order model. These Gramians are obtained by solving a set of
Lyapunov equations which becomes computationally intractable for very large systems
(e.g. 105 states or more). Furthermore this method requires a model of the flow in
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state-space format, which is not always available for complex flow control problems.
To reduce the complexity, an approximate method is proposed by Rowley (2005), called
balanced POD (BPOD), in which empirical Gramians are computed directly from impulse
response snapshots of the system and the related adjoint. This method is suitable for
large systems as it avoids the direct computation of the Gramians and is successfully
applied for modelling of the channel flow (Ilak & Rowley 2008), and control of both
boundary layer flows (Bagheri et al. 2009b,a; Bagheri & Henningson 2011) and globally
unstable flows (Ahuja & Rowley 2010; Barbagallo et al. 2009).
A limitation of BPOD is that it requires full-state snapshots and adjoint simulations

to form the bi-orthogonal sets and thus cannot be applied to experimental data. Another
approach is the use of system identification methods in which low order models are
obtained from a sample of input-output measurements. In particular the eigensystem
realisation algorithm (ERA) (Juang & Pappa 1985) was recently used to construct
reduced order models for fluid flows (Ma et al. 2011; Illingworth et al. 2012; Dadfar
et al. 2013; Semeraro et al. 2013; Belson et al. 2013; Flinois & Morgans 2016). ERA is
based on the impulse response measurements and does not require prior knowledge of
the high order system. It is shown in Ma et al. (2011) that ERA can theoretically obtain
the same reduced-order models as BPOD and in Flinois & Morgans (2016) it is shown
that ERA can also directly be applied to globally unstable flows.

1.3. Scope and outline of the present study

Modelling the influence of upstream disturbances is crucial for the control of con-
vective instabilities. The disturbance sources are generally not precisely known in real
experiments and modelling assumptions have to be made. For localised transition control
the disturbance is commonly represented by a localised body force placed upstream
of the control actuators, see e.g. Bagheri et al. (2009b); Semeraro et al. (2011, 2013);
Belson et al. (2013). For example, in Semeraro et al. (2011) the disturbance was modelled
as a localised initial condition that provides the maximum energy amplification of the
perturbation at a given final time. Different choices and placements of the disturbance
model result in different spatial and temporal scales of the perturbations in the control
region. To properly account for the upstream disturbance environment, relatively large
computational domains are often considered to derive the ROM. These result in high
dimensional systems and prohibit the direct state-space modelling from the governing
equations. Currently, direct modelling is avoided, also due the computational challenges,
and low order linear approximations of the dynamics are obtained from snapshots through
(adjoint) numerical simulations or from input-output data using system identification.
Often the same disturbance that is used to synthesise the ROM and control laws is
also used to evaluate the controller through numerical simulations. Robustness of the
controller to unmodelled disturbances is often not shown or addressed.
In this paper a new approach is presented for localised modelling and control of convec-

tive instabilities in 2-D wall bounded shear flows. The objective is to provide a systematic
procedure to efficiently model upstream disturbance environments and to design reduced
order controllers directly from the governing equations without the use of numerical
simulations or system identification. Inspired by the earlier work regarding distributed
control, very large systems are avoided by focussing on localised computations. When
using spatially localised actuators/sensors for feedback control, the control domain that
encapsulates the actuators/sensors is much smaller than the complete physical domain.
It is assumed that external sources of disturbances enter the control domain through
the inflow boundary. A novel physically motivated inflow disturbance model is proposed
for the external excitation, which allows efficient estimation of the flow perturbations
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within the localised control domain using wall shear sensors. Unlike common practices for
localised control, the state-space system used for discretisation of the infinite dimensional
system is explicitly obtained. The state-space modelling in this paper can make a large
set of powerful and mature control theoretic tools for model reduction and control
directly applicable to the linearised Navier-Stokes equations. In this work the modelling
is combined with exact balanced truncation to reduce the order of the controller and the
truncated dynamics are taken into account in the control system design.
The scope of this paper is input-output modelling of the flow dynamics (actua-

tors/sensors and upstream perturbations) and H2 optimal reduced order controller
design. A super-critical 2-D nonperiodic channel flow is chosen as application case.
This is both mathematically and physically one of the best understood geometries
and allows for a rigorous verification of the modelling method and the control design
using the classical linear stability theory. The formulation and the methods presented
in this paper can in principle be applied to general geometries and any actuator/sensor
configuration and allow for a straightforward extension to spatially developing boundary
layers. A feedforward actuator/sensor configuration (Belson et al. 2013) is considered in
which upstream sensors are used to detect the incoming perturbations. Such a set-up
is commonly considered for convectively unstable flows (Bagheri et al. 2009b; Semeraro
et al. 2013; Sipp & Schmid 2016) and guarantees the best nominal performance (Belson
et al. 2013). Nonetheless a feedforward approach can be more sensitive to unmodelled
disturbances/dynamics as compared to feedback configurations as argued in (Belson et al.

2013). In this paper closed-loop convergence is shown with respect to the truncated
dynamics and the robustness to unmodelled disturbances is assessed from case to case.
The controllers are evaluated using linear simulations based on the assumption that
the amplitude of the perturbations is small. In Semeraro et al. (2013) it is verified
through nonlinear simulations that a fully linear control approach can be effective in
delaying transition in the presence of perturbation amplitudes up to 1% of the free
stream velocity. Limitations with respect to strong nonlinear dynamics at transitional
amplitudes are out of the scope of this work. However, the modelling presented in this
article also enables the application of linear H∞ robust design strategies, of the sort
presented in Baramov et al. (2004); Jones et al. (2015); Flinois & Morgans (2016), to
account for modelling uncertainties. This would require a change of control setup to
include feedback measurement information to effectively account for model uncertainty
in the control design.
The outline of this paper is as follows. Section 2 outlines the dynamic modelling and the

problem formulation for control of convective instabilities. Section 3 presents the design
and synthesis of the reduced order controller. In section 4 the controller is evaluated using
numerical simulations of the closed-loop system. All disturbances are generated upstream
of the computational domain for the control model. Three different disturbance cases are
considered in order to demonstrate the effectiveness and the robustness of the proposed
control design. In the last section concluding remarks are given and a discussion regarding
the application of this method to more complex flow geometries is laid out. This paper
is complemented with two Appendices. In appendix A the numerical scheme to derive
the finite dimensional state-space system of the flow is described. This numerical scheme
is based on multivariate B-splines defined on triangulations (Farin 1986; de Boor 1987;
Lai & Schumaker 2007) and is an extension of the model reduction scheme for parabolic
PDEs presented in Tol et al. (2016) to fluid flows. In Appendix B the state-space formulas
for the controller that solves the H2 optimal control problem are given.



6 H. J. Tol, M. Kotsonis, C. C. de Visser and B. Bamieh

2. Dynamic modelling and problem formulation

This section presents the dynamic modelling and a generalised problem formulation for
localised control of instabilities that contribute to transition in 2-D wall bounded shear
flows. The classical route to transition is considered, in accordance with the linear stabil-
ity theory (LST) (Schmid & Henningson 2001), triggered by linear growth of convective
instabilities. The 2-D non-periodic channel flow is considered as application case. First the
channel geometry and the governing equations are given in section 2.1. In section 2.2 the
feedforward actuator/sensor configuration used for control is presented. The new inflow
disturbance model to account for upstream disturbance environments is introduced in
section 2.3. To apply linear control theoretical tools the input-output system must be
formulated into the standard state-space form. To generalise the framework the system
is written as an abstract equation in operator form (Bewley et al. 2000; Curtain & Zwart
1995) in section 2.4. Explicit discrete expressions are obtained for all operators and the
underlying numerical method (Appendix A) is discussed in section 2.5. Finally the H2

optimal control problem to account for the flow perturbations is defined in section 2.6.

2.1. Governing equations

This paper considers a 2-D non-periodic flow between two infinite flat plates. The flow
is non-dimensionalised using the maximum centerline velocity U0 and half-height h with
corresponding Reynolds number Re = U0ρh

µ where ρ is the density and µ the dynamic
viscosity of the fluid. For flow simulations a total non-dimensional length Lsim = 16π is
considered. This section focuses in particular on the flow model that is used for control
design. For control design purposes a localised region with a length of Lc = 8π is consid-
ered. External sources of disturbances are assumed to enter the control domain though
the inflow. The geometry of the flow is shown in figure 1. A supercritical case is studied
at Re = 7000 for which the flow field is convectively unstable. However, the non-periodic
flow configuration is globally stable since any initial perturbation eventually leaves the
computational domain. The control objective is to stabilise convective perturbations

around the steady-state parabolic velocity profile U(y) =
[
1− y2, 0

]T
. The dynamics

of small-amplitude perturbations in a viscous incompressible flow are governed by the
Navier-Stokes equations linearised around the base flow and the continuity equation

∂u

∂t
+ (U · ∇)u+ (u · ∇)U −

1

Re
∆u+∇p = f in Ω (2.1a)

∇ · u = 0 in Ω (2.1b)

u = ub on ΓD (2.1c)

−pn+
1

Re
(n · ∇)u = 0 on Γout (2.1d)

where u(x, t) = [u(x, t), v(x, t)] and p(x, t) denote the velocity and pressure perturbation
field, x = (x, y) is the spatial coordinate and f(x, t) is an in-domain body force field
per unit mass typically used for applying control. The system is closed by the boundary
conditions (2.1c)-(2.1d) where ΓD = Γin∪Γr is the Dirichlet part of the boundary, Γin the
inflow part of the boundary, Γr are the rigid walls and Γout the Neumann outflow part of
the boundary. ub(x, t) is a prescribed velocity input profile used for boundary control at
the wall boundary Γr and for the external disturbances at the inflow boundary Γin. The
outflow boundary condition (2.1d) is known as a no-stress condition and has proven to
be well suited for unidirectional outflows (Rannacher et al. 1996). It is naturally satisfied
by the variational formulation used in the numerical method (see appendix A). The
artificial non-physical effect of this boundary condition near the outflow is investigated
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disturbances

Control domain
Γr2

Γr1

ΓoutΓin

ν2

ν1

gc2

gc1

q2

q1

1285.572.39 3.822.860−4

1

−1

y

x×π

Figure 1: Channel flow geometry and control layout including the shear sensor locations
νi, boundary actuator distributions gi(x) and controlled output distribution qi(x).

in section 3. In this study only boundary feedback control is considered, therefore the
in-domain body force is set to zero (f = 0) in the remainder of this section. However,
in-domain disturbances are considered to evaluate the controller in section 4.

2.2. Inputs and outputs

The chosen control objective is to suppress the effect of inflow disturbances on the fluc-
tuating wall shear stress. The control actuation is achieved by means of unsteady blowing
and suction at the wall and boundary shear sensors are used to extract the measurements.
A feedforward actuator/sensor configuration (Belson et al. 2013) is considered in which
two point shear sensors at the walls are placed upstream of the control actuators. A
schematic representation of the control layout is shown in figure 1. It is shown in Belson
et al. (2013) that feedforward configurations achieve the best disturbance attenuation,
but can be less robust to additional disturbances not seen by the sensor. The shear
sensors νm are therefore placed close to the control actuators gc. In addition a controlled
shear output q is defined which will be used to define the performance objective of the
controller. The specifications will be discussed next. The boundary actuation is modelled
through the boundary conditions (2.1c) and is decomposed into an external disturbance
and a control

u|ΓD
= ub = uc(x, t) + ud(x, t) (2.2)

with uc(x, t) the actuation imposed at the rigid walls and ud(x, t) the external distur-
bance imposed at the inflow. This disturbance model is discussed in detail in the next
section. To manipulate the flow, localised wall-normal blowing and suction with zero-
net-mass-flux is considered. It is assumed that the spatio-temporal actuator model is
described by the following state-space description

η̇c = τ−1 (φ− ηc) = Acηc + Bcφ

uc = Gcηc = Ccηc (2.3)

with ηc(t) ∈ R2 the actuator state that describes the magnitude of the blowing and
suction, φ(t) ∈ R2 the control input and uc(x, t) is the actuator velocity output at
the wall. The temporal dynamics is described by a first order low-pass filter defined
by Ac = −τ−1I, Bc = τ−1I with τ the time constant of the filter. A fast actuator is
assumed with τ = 0.1, that is a stable approximation of a pure integrator typically used
for boundary control in shear flows, see e.g. (Högberg & Henningson 2002; Högberg et al.

2003a). The actuator output at the wall is defined by Cc = Gc(x) = [gc1(x), gc2(x)] with
gci ∈ L2(Γri)

2 the spatial distribution function that describes how ηci(t) is distributed
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on the rigid boundary. A localised sinusoidal spatial distribution function is considered

gc(x) =







[

0 sin
(

2π(x−xg)
Lg

) ]T

if x ∈ [xg, xg + Lg]
[
0 0

]T
elsewhere

(2.4)

Such a setup is frequently considered in a fully distributed setting to control single
wavenumber pairs, see e.g. Bewley & Liu (1998); Jones et al. (2015); Aamo & Krstic
(2002). Here a localised distribution is considered with a spatial length of Lg = 3 ≈ 0.95π
and origin at xg = 9 ≈ 2.86π. The length Lg is less than half the wavelength of the
dominant spatial perturbation mode which is 2π (See next section).
Information about the perturbation field is given by two wall normal shear stress point

measurements

νmi
=

∫

Γri

δ(x− xm)t · (n · ∇)u|Γri
dx+ wni

=

∫

Γri

δ(x− xm)
∂u

∂y
|Γri

dx+ wni
(2.5)

where n is the inward unit normal on Γr and t the corresponding unit tangential vector
and the Dirac function δ indicates a point measurement. The term wall shear stress is
used loosely here as the shear stress at the wall τxy|Γr

= (1/Re)∂u/∂y|Γr
also depends on

the Reynolds number. It is assumed that the Reynolds number is known, so that ∂u/∂y|Γr

may easily be determined from measurements of τxy|Γr
. The measurement noise wn(t)

is assumed to be a Gaussian stochastic process with zero means and co-variances

E {wn(t)} = 0, E
{
wn(t)w

T
n (τ)

}
= Iσ2

nδ(t− τ) (2.6)

with σ2
n the variance of both sensors. A feedforward configuration is chosen where the

sensor is placed upstream of the control actuators at xm = 7.5 ≈ 2.39π. In addition to
the measured output, also two controlled outputs are defined

qi =

∫

Γri

h(x)t · (n · ∇)u|Γri
dx (2.7)

where h(x) is determined by the desired performance specifications in the domain. In
this study we wish to stabilise the perturbations by minimising the wall shear stress
downstream of the control actuators integrated over a localised region over the boundary.
To this end h(x) is chosen as a Gaussian distribution function

h(x) = e
−

(x−xq)2

σ2
x (2.8)

With xq = 17.5 ≈ 5.57π the center of the distribution and σx = 1 the radius. The
controlled output is used to define the control objective in the H2 control framework
later in this section.

2.3. Inflow disturbance model

2-D flow perturbations are characterised by unsteady fluctuations over a broad range of
length scales and time scales. This makes the problem of estimating and controlling these
perturbations inherently difficult. In particular the performance of the state estimation
relies on the construction of a proper model for the external flow disturbances (Hœpffner
et al. 2005). In this section a new inflow disturbance model is introduced which allows
for an efficient estimation of the flow perturbations within the localised control domain.
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To generate the external disturbances a superposition of eigenmodes from the spectrum
of the Orr-Sommerfeld (OS) operator is used. These modes are calculated from the OS
equation at the desired temporal frequencies. With this approach, specific modes of the
flow perturbations can thus be selected and are included in the control design. In this
way the most dominant modes that contribute to transition can be precisely targeted by
the controller. These modes are included in the state-space model by imposing them at
the inflow boundary of the control domain. Such a boundary condition has been used
to introduce disturbances in DNS, e.g. for evaluating controllers (Baramov et al. 2004;
Kotsonis et al. 2013). However, the use of such boundary conditions as a disturbance
model that is included in the design of the controller has so-far not been reported. We
consider H2 optimal control which is a design methodology in which the external sources
of excitation are stochastic. First the disturbance model is presented for the case of
stochastic excitation of the modes in section 2.3.1 and in section 2.3.2 the specific modes
are selected that are included in the control design.

2.3.1. External disturbances

Assuming that the perturbations are sufficiently small, a single mode of the flow
perturbation in a 2-D unbounded domain takes the form

u = Real
[

A0ũ(y)e
i(αx−ωt)

]

(2.9)

With A0 the initial amplitude, ũ(y) = ũr(y)+ iũi(y) ∈ C the eigenfunction, ω the radial
frequency and α the non-dimensional wavenumber. The eigenfunction ũ for a particular
frequency and wavelength can be determined from the Orr-Sommerfeld equation which
will be discussed in the next section. The inflow is considered as the disturbance source
which generates the perturbation (2.9) at a particular frequency that grows in space.
Thus, the case ω ∈ R and α = αr + iαi ∈ C is considered and the spatial wavelength
of the perturbation is given by λx = 2π

αr
. At the inflow x = 0 a single mode of the

perturbation can be described by

u|Γin
= ud = Real

[
A0ũ(y)e

−iωt
]

= ũr A0 cos(ωt)
︸ ︷︷ ︸

ηr
d

+ũiA0 sin(ωt)
︸ ︷︷ ︸

ηi
d

(2.10)

Equation (2.10) corresponds to a solution of a modal perturbation imposed at the inflow.
The spatial content consists of the real and imaginary part of the eigenmode each excited
with a persistent sinusoidal temporal input, where ηrd is the input that excites the real
part of the eigenmode and ηid the input that excites the imaginary part of the eigenmode.
The two temporal components are not independent and for a modal perturbation the two
components are 90o out of phase, that is ∠ηrd = ∠ηid+90o. However, external disturbances
are accounted for in a stochastic control framework in which the temporal disturbances
are considered as independent inputs. To effectively account for modal perturbations in
the control design, ηd is not regarded as an external disturbance, but as a dynamic state
in the disturbance model. The phase dependency can then be included in the model by
exploiting the fact that ηid = − 1

ω η̇
r
d for the case of a modal perturbation with frequency

ω. Let ηrd = ηd and ηid = − 1
ω η̇d, (2.10) can be represented in terms of a single temporal

component and its derivative

ud = ũrηd −
1

ω
ũiη̇d (2.11)
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where the imaginary part of the eigenfuction is scaled with the perturbation frequency to
account for the phase. Accounting for the phase in the model will reduce the non-modal
spatial transients introduced by the perturbation near the inflow as will be shown in
section 3.1. To account for the inflow perturbation (2.11) in the control design a second
order low-pass filter is proposed for the temporal dynamics

η̈d = ω2
nwd − 2ζωnη̇d − ω2

nηd (2.12)

with ζ the damping ratio, ωn the undamped natural frequency and wd the external
disturbance assumed to be an uncorrelated white Gaussian stochastic process with zero
mean and variance

E {wd(t)} = 0, E {wd(t)wd(τ)} = σ2
dδ(t− τ) (2.13)

The low pass filter (2.12) allows the frequency response shaping of ud at the inflow. The
parameters are chosen such that the filter amplifies the frequencies near the frequency ω
of the perturbation mode. The damping ratio is set to ζ = 0.25. The natural frequency is
chosen such that the peak frequency ωp = ωn

√

1− 2ζ2, where the filter has the maximum
magnitude, is equal to the frequency of the perturbation mode. The magnitude plot of
the filter as a function of the normalized frequency ω/ωp is shown in figure 2. With these
settings the filter amplifies the disturbance magnitude by approximately a factor two
at ωp. By increasing the magnitude at the perturbation frequency the controller will be
better able to target the mode. The filter attenuates the disturbance at higher frequencies
which will also make the controller design more robust to unresolved dynamics (Jones
et al. 2015). Finite dimensional representations of the system (discussed in the next
section) are used for the control design which only resolve a finite number of modes,
typically those with a lower temporal frequency. By suppressing the magnitude of the
disturbance at higher frequencies, the situation where the disturbance excites unresolved
plant dynamics is avoided. This in turn avoids that the controller, which is designed based
on the disturbance model, estimates unresolved plant dynamics. This phenomenon is also
known as spillover and can destabilise the infinite-dimensional system (Balas 1979).

The disturbance model defined by (2.11) and (2.12) can be written in state-space
format as

[
η̇d
η̈d

]

=

[
0 1

−ω2
n −2ζωn

]

︸ ︷︷ ︸

Ad

[
ηd
η̇d

]

︸ ︷︷ ︸
η̄d

+

[
0
ω2
n

]

︸ ︷︷ ︸

Bd

wd

ud =
[
ũr − 1

ω ũ
i
]

︸ ︷︷ ︸

Cd

[
ηd
η̇d

]







⇒
˙̄ηd = Adη̄d + Bdwd

ud = Cdη̄d

(2.14)

where η̄d = [ηd, η̇d] is the state, wd is the external disturbance and the perturbation
velocity ud at the inflow is the output. For the case when multiple N modes are
accounted for in the control design, the state-space systems for the selected frequencies
and wavenumbers can be combined in diagonal form as Ad = diag{Ad1 , · · · ,AdN

},
Bd = diag{Bd1, · · · ,BdN

} and Cd = [Cd1 , · · · , CdN
].

2.3.2. Selection of the perturbation modes

The next step is to select the modes that contribute to the transition process to include
in the disturbance model (2.14) for control design. The modes are computed from the

Orr-Sommerfeld equation. Let ũ = [∂ψ̃/∂y,−∂ψ̃/∂x] = [ψ̃′, − iαψ̃]T . The eigenfunction
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Figure 2: Magnitude plot of the low pass filter (2.12) used for the disturbance model.
The frequency is normalized with the peak frequency ωp.

for the stream function ψ̃ satisfies the Orr-Sommerfeld equation
(

U −
ω

α

)(

ψ̃
′′

− α
2
ψ̃
)

− U
′′

ψ̃ = −
i

αRe

(

ψ̃
′′′′

− 2α2
ψ̃

′′

+ α
4
ψ̃
)

, ψ̃(±1) = ψ̃
′(±1) = 0 (2.15)

which is an eigenvalue problem with ψ̃ the eigenfunction of the problem and with either α
or ω the eigenvalue of the problem. The prime superscript in (2.15) denotes differentiation
with respect to y. The spatial amplification theory is considered to generate the modes.
Thus a real frequency ω is chosen and (2.15) is solved for the complex eigenfunction and
complex wavenumber α. At each frequency and Reynolds number this gives a spectrum
of spatial eigenvalues. Figure 3 shows the spectrum at the most dominant frequency that
includes the mode with the maximum growth rate given by the imaginary part of the
spatial eigenvalue (wavenumber). For the case Re = 7000 the dominant frequency is
approximately ω = 0.253. Only the least stable eigenvalues that contribute to a physical
downstream response are shown in figure 3 (Schmid & Henningson 2001, pp. 260). The
spectrum contains one spatially growing mode (k = 1) with a negative imaginary part.
This is the leading or most unstable mode that contributes to the primary route to
transition (Saric et al. 2002) in 2-D channel flows. The left branch k = 2, · · · , k = 13, k =
15 are “center modes” (Kim & Bewley 2007) with very little support near the walls and
represent perturbations in the free-stream.Mode k = 14 is highly stable and has negligible
influence in the transition process. Figure 4 shows the spatial eigenvalue of the first or
most unstable (k = 1) mode as a function of the temporal frequency. Although the flow
is unstable over the frequency range 0.216 6 ω 6 0.286, only the leading mode calculated
at the most amplified frequency ω = 0.253 is included in the control design. This will be
referred to as the design point in the remainder of the paper. Figure 5 shows the shape
of the eigenfunction for this particular mode. This mode is used to define the inflow
perturbation (2.14). Note that the design frequency becomes part of the disturbance
model. This model can easily be extended to include the dominant modes calculated
for different temporal frequencies. However, it is found that adding more eigensolutions
does not improve the performance of the control system. This is a direct result of the
near-linear dependence of the leading eigenmodes for different temporal frequencies. In
other words the modes are very similar. It will be shown in section 3 that also at other
frequencies than the design point, the single mode inflow disturbance will quickly develop
in-domain to a travelling wave with a spatial growth as predicted by the Orr-Sommerfeld
equation (2.15).
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Figure 3: Spatial Orr-Sommerfeld spectrum for ω = 0.253 and Re = 7000. Only the
dominant eigenvalues that contribute to a physical downstream response are shown.
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Figure 4: The leading or most unstable wavenumber as function of the temporal frequency
ω at Re = 7000. (a) The imaginary part αi. Negative values of αi characterise unstable
modes (gray region). (b) The real part αr. The point marked by ’o’ corresponds to the
most amplified frequency for the investigated conditions.
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Figure 5: The selected eigenfunction included in the inflow disturbance model for the
control design. The Orr-Sommerfeld eigenfunction for u (a) and v (b) calculated at Re =
7000, ω = 0.253. The corresponding wavenumber for this mode is α = 1− 0.0047i.
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2.4. State-space formulation

In this section the Linearised Navier-Stokes equations (LNSE) including the inputs,
outputs and the inflow disturbance model are written as a boundary control system in the
standard state-space format (u̇ = Au + Bφ, ν = Cu). This is required for defining the
control objective and applying control theoretic tools. Boundary control systems do not fit
directly into the standard form. However, we can extract the boundary controlled part of
the dynamical model and rewrite the system on an extended state-space in standard form.
This method originates from Fattorini (1968) and has been applied for boundary control
of wall bounded shear flows (Högberg & Henningson 2002; Högberg et al. 2003a; Chevalier
et al. 2007). We also refer to Curtain & Zwart (1995, Sec 3.3) for more information on this
formulation. Let X (Ω) be the space of n-dimensional divergence free functions defined

on Ω with inner product (u1,u2) =
∫

Ω u1 · u2dx and norm ‖u1‖2 = (u1,u1)
1/2

where
u1,u2 ∈ X . Furthermore, let the trajectory segment u(·, t) = {u(x, t), x ∈ Ω} be the
state and u(t)|Γ ∈ U the value of u(t) on the boundary defined in a separable Hilbert
space U . The LNSE (2.1) in X (Ω), including the boundary inputs (2.2), the measurements
(2.5) and the controlled output (2.7), can be written as

u̇ = A u

Bu = uc + ud (2.16)

q = Qu

νm = Cu+wn

The operator A : D(A ) ⊂ X 7→ X corresponds to evaluating the linear differential
operator of the LNSE. The pressure can be eliminated from the equations by using a
space of velocity fields which are divergence free (Bewley et al. 2000), which is also done
here (see also Appendix A for the variational formulation). B : X 7→ U is a boundary
operator which maps the flow field to its values on the boundary and C, Q are output
operators, respectively defined as

Bu = u|ΓD
, Ciu =

(
δ(x − xm), t · (n · ∇)u|Γri

)
, Qiu =

(
h(x), t · (n · ∇)u|Γri

)

To extract the boundary controlled part the first step is to construct two operatorsZc, Zd

such that

Zc : U 7→ X , BZcuc = uc

Zd : U 7→ X , BZdud = ud

The boundary condition can then be removed by decomposing the state into

u = uh + Zcuc + Zdud (2.17)

The dynamics of the new state uh is governed by the following evolution equation with
homogeneous boundary conditions (Curtain & Zwart 1995)

u̇h = Auh −Zcu̇c + A Zcuc −Zdu̇d + A Zdud (2.18)

where the operator A : D(A) 7→ X is defined as

Auh(t) = A uh(t), for uh ∈ D(A),

D(A) = D(A ) ∩ ker(B) = {uh ∈ X| uh(t)|ΓD
= 0} (2.19)

If uh is a solution of the homogeneous system (2.18), then u defined by (2.17) is a solution
of the original system (2.16) (Fattorini 1968; Curtain & Zwart 1995). Equation (2.18)
contains both the temporal inputs and their time derivatives which is undesirable since
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they are not independent inputs. This can be eliminated by reformulating (2.18) on the
extended state-space X e = X ⊕ U





u̇h

u̇c

u̇d



 =





A A Zc A Zd

0 0 0
0 0 0









uh

uc

ud



+





−Zc

I
0



 u̇c +





−Zd

0
I



 u̇d (2.20)

The inflow perturbation velocity and the wall actuation velocity have become a state
of the system in this formulation. The external input is actually the time derivative
of the boundary velocity. From the actuator model (2.3) it follows that uc = Ccηc,
u̇c = CcAcηc + CcBcφ and from the disturbance model (2.14) it follows that ud = Cdηd,
u̇d = CdAdη̄d + CdBdwd. Substituting these expressions in (2.20), and combining this
system with the actuator dynamics (2.3) and the disturbance dynamics (2.14), gives the
following augmented system





u̇h

η̇c
˙̄ηd



 =





A A ZcCc −ZcCcAc A ZdCd −ZdCdAd

0 Ac 0
0 0 Ad





︸ ︷︷ ︸

Ā





uh

ηc

η̄d





︸ ︷︷ ︸
ue

+





−ZcCcBc

Bc

0





︸ ︷︷ ︸

B̄c

φ+





−ZdCdBd

0
Bd





︸ ︷︷ ︸

B̄d

wd

q =
[
Q QZcCc QZdCd

]

︸ ︷︷ ︸

Q̄





uh

ηc

η̄d



 (2.21)

νm =
[
C CZcCc CZdCd

]

︸ ︷︷ ︸

C̄





uh

ηc

η̄d



+wn

where also included are the resulting output equations from the state transformation
(2.17). (2.21) can be compactly written as

u̇e = Āue + B̄cφ+ B̄dwd

q = Q̄ue (2.22)

νm = C̄ue +wn

with ue the extended state. A final remark is given about the controllability of the
system. By formulating the system on the extended state-space (2.18) pure integrators
have been added at the system external inputs. This results in additional system poles
at the origin. As a result, the system in the form (2.18) is not stabilisable, which means
that not all uncontrollable modes are asymptotically stable. This is a direct result of
the fact that both the control and disturbance are defined at the boundary and both
appear as a state in the system. It is not possible to influence the additional poles of the
disturbance dynamics by means of control and vice-versa (Assumption (i) is violated,
and assumptions (iii) and (iv) are violated for ω = 0, see Appendix B). By including
the actuator dynamics and disturbance dynamics, the uncontrollable poles at the origin
are moved to the stable left half plane to the location of the eigenvalues of Ac and Ad.
The state-space formulation (2.21) is thus stabilisable which allows the synthesis of H2

optimal controllers.
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Figure 6: Triangulations used for the simulation model and the model that is used for
model reduction and control design. (a) Triangulation with 960 triangles used for the
control model. (b) Triangulation with 1920 triangles used for the simulation model.

2.5. Finite dimensional system

Equation (2.22) represents the continuous formulation of the flow control problem. For
simulation and control design a finite dimensional representation of (2.22) is required.
In Tol et al. (2016) a framework is presented for deriving state-space descriptions for
a general class of linear parabolic PDEs to which standard control theoretic tools can
be applied. This method is also used in this work and uses multivariate B-splines of
arbitrary degree and smoothness defined on triangulations (Farin 1986; de Boor 1987;
Lai & Schumaker 2007) to find matrix representations of all operators in (2.21). This
method has the flexibility of the finite element method to use local refinements and to
cope with irregular domains, and the high approximation power of spectral methods.
The triangulations used to construct the simulation model, and the model that is used
as a starting point for model reduction and control design are shown in figure 6. The use
of spline spaces provides a convenient way for stating the degree and smoothness of the
spline model. In addition, the approximation properties of such spline spaces have been
extensively studied in literature (Lai & Schumaker 2007). Let T be the triangulation of
Ω. The spline space is the space of all smooth piecewise polynomial functions of arbitrary
degree d and arbitrary smoothness r over T with 0 6 r < d

Sr
d (T ) := s ∈ Cr (Ω) : s|t ∈ Pd, ∀t ∈ T (2.23)

With Pd the space of all polynomials of total degree d and t denotes a triangle. We
construct a basis for the smooth divergence free spline subspace S such that S ⊂ X
in conjunction with a Galerkin scheme to obtain a finite dimensional representation
of the governing equations. The pressure is eliminated from the equations by using a
space of velocity fields which are divergence free and a suitable choice of the variational
formulation. This will also avoid singularities in the numerical method. The Galerkin-
type variational formulation through which the spline approximation is determined and
the corresponding numerical method is described in detail in Appendix A.
To derive the full order control model a structured triangulation is used, refined near
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the walls to properly resolve the shear features of the flow consisting of nt = 960 triangles,
and the S0

4 (T960)
2
spline space is chosen as approximating space for the velocity field.

C0 continuous spline elements are chosen which allows an accurate interpolation of
the actuator distribution function at the boundary. Degree d = 4 elements are chosen
which allows the construction of an exactly divergence free basis and to obtain better
approximation properties (Lai & Schumaker 2007; Awanou et al. 2005). With this degree
each element t has a total of Nt = 15 degrees of freedom. The complete basis for L2(Ω)2

has a total of N = nt × Nt × 2 = 28800 degrees of freedom. This basis is used to
spatially discretise the system. The resulting discrete system is transformed to state-
space format using a null space projection method (Tol et al. 2016). This projection
employs a similar state transformation as in (2.17), but in a discrete setting, and results
in a reduced number of states that have a minimal non-zero support for the smooth
divergence free spline space S ⊂ X . The reduction is equal to the total rank R∗ of the
discrete divergence, boundary and smoothness operators. The order of the state-space
model resulting from the null-space projection is N−R∗ = 5569. The large reduction can
be contributed to the fact that the constrained smooth divergence free subspace is much
smaller than the unconstrained space. The order of the model is sufficiently small to allow
a direct application of balanced truncation for model reduction. For the case of spatially
periodic boundary conditions the accuracy of the model can be assessed via comparison
of the model spectra with the temporal spectra of the Orr-Sommerfeld equation (2.15).
This comparison is demonstrated in Appendix A.2. The numerical accuracy of the first 22
dominant eigenvalues varies between 2×10−8 6 |λk−λ

OS
k | 6 2×10−3. This is considered

accurate for the purpose of control design and demonstration. A more physical validation
of the model for the non-periodic case considered in this study is conducted in section 3.
A different model is used for simulating the response of system. The simulation model is
defined on a longer domain with a total length of Lsim = 16π. A similar triangulation
consisting of 1920 triangles is used and the simulation model has approximately the same
accuracy as the control model. In the next sections we focus on the control model and
use the notation (A,B,C,D) to represent the full order finite dimensional system and use
the notation (A,B,C,D) to represent a reduced order system resulting from balanced
truncation.

2.6. Formulation of the H2 control problem

In this section the feedback design problem for the state-space representation of the
flow (2.22) is cast as an H2 optimisation problem. The state-space formulas for the
optimal solution are given in Appendix B. We refer to Doyle et al. (1989); Skogestad &
Postlethwaite (2005); Zhou et al. (1996) for more detail on this control theory. The main
objective of the feedback control design is to find a control input φ based on the output
measurement νm that minimises the wall shear stress defined by q in the presence of the
disturbances wd and wn. First the standard control formulation that is considered by
H2 control is presented. The application of H2 control to the state-space representation
of the flow (2.22) will follow thereafter. Let w be the vector of exogenous disturbances
and z the vector of performance measures to be minimised. The H2 control problem is
a disturbance rejection problem and considers the standard control configuration shown
in figure 7 which is described by

[
z

ν

]

= G(s)

[
w

φ

]

=

[
Gzw(s) Gzφ(s)
Gνw(s) Gνφ(s)

] [
w

φ

]

(2.24)

φ = K (s)ν
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Figure 7: The general control configuration. System G, controller K , output measurement
ν, control input φ, performance objective z and exogenous disturbances w.

with K (s) the controller to be synthesised and G(s) the open-loop transfer function
matrix of the generalised plant defined by

G(s) = Cp (sI −Ap)
−1 Bp +Dp (2.25)

with the state-space realisation

G(s) =







Ap

[
B1 B2

]

[
C1
C2

] [
0 D12

D21 0

]






=





Ap Bp

Cp Dp



 (2.26)

To account for the state disturbances wd and the measurement noise wn in a H2 control
framework the state-space system (2.22) is formulated as a generalised plant (2.26) and
scaled in terms of two parameters which may be individually adjusted to achieve the
desired closed-loop performance. A similar scaling was also presented in Bewley & Liu
(1998). The control objective is to counteract the influence of the state disturbance wd

on the controlled output defined by q = Q̄ue. Therefore the controlled output is used to
define the performance measure z

z =

[
Q̄
0

]

ue +

[
0
lI

]

φ (2.27)

which also includes a penalty on the control defined by the parameter l. The parameter l
determines the trade-off between a low control effort (φTφ) and a low controlled output
energy (qTq). For the design of the controller, decisions must be made about the expected
state disturbances and measurement noise. The temporal magnitude of these disturbances
in the state-space system is defined by the expected covariances of the temporal state
disturbance (2.13) and the measurement noise (2.6). In this study it is assumed that
nothing is known a-priori about the expected covariances. To make a parametric study
for the controller design tractable, a relative magnitude of the measurement noise is
defined

γ =
σn
σd

(2.28)

which is the ratio between the root mean square of the expected variance of respectively
the sensor noise and the state disturbance. The state disturbance and measurement noise
are respectively modelled as wd = σdw1 and wn = σnw2 with w1 andw2 defined as white
noise with unit intensity. The system is parameterised in terms of γ by defining a new
scaled observation that is used for feedback

ν =
γ

σn
νm =

γ

σn

(
C̄ue + σnw2

)

=
γ

σn
C̄ue + γw2 (2.29)
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and the system is normalised such that σd = 1. Using this normalisation it follows
from (2.28) that γ = σn and the observation (2.29) is obtained by a simple change of
variables. For the control design γ does not represent a physical root mean square value
of the measurement noise, but a relative measure with respect to the state disturbance,
used to tune the controller. Defining the vector of disturbances as w = [w1, wT

2 ]
T and

the following system matrices

Ap = Ā, B1 =
[
σdB̄d 0

]
, B2 = B̄c

C1 =

[
Q̄
0

]

, D12 =

[
0
lI

]

, C2 = γ
σn

C̄, D21 =
[
0 γI

]
(2.30)

the system (2.22) can be written as a generalised plant with the state-space formulation
(2.26), that is

u̇e = Apu
e + B1w + B2φ,

z = C1u
e +D12φ (2.31)

ν = C2u
e +D21w

The H2 control design problem for this system is to find a controller K (s) that, based on
the measurement information ν, generates a control input φ which stabilises the system
(2.31) internally and minimises

‖Tzw(s)‖2 =

√

1

2π

∫ ∞

−∞

Trace{T ∗
zw(iω)Tzw(iω)}dω =

√
√
√
√

1

2π

∫ ∞

−∞

∑

i,j

|T i,j
zw(iω)|2dω

(2.32)
Equation (2.32) is referred to as the H2-norm of the closed-loop transfer function matrix
Tzw from the external disturbances w to the control objectives z and |T i,j

zw | denotes
the magnitude of the closed-loop transfer function from the j-th disturbance to the i-th
objective. Tzw is given by

Tzw(s) =
z(s)

w(s)
= Gzw(s) + Gzφ(s)K (s) (I − Gνφ(s)K (s))

−1
Gνw(s) (2.33)

which follows from (2.24). Physically, the H2 norm in (2.32) can be interpreted as
the amplification of the system from w to z integrated over all frequencies. In the
time-domain, this is equivalent to the variance amplification of stochastic disturbances
(Jovanovic & Bamieh 2005). By minimising the H2 norm, the controlled output power
E[zTz] of the system, due to unit white Gaussian disturbances w, is minimised. The
state-space formulas for the optimal controller K (s) that minimise (2.32) are given in
Appendix B. It combines a state estimator (Kalman filter) for the flow field and a state
feedback, and has a state-space description of the form

u̇e
K = AKue

K + BKν (2.34)

φ = CKue
K

with ue
K the estimated state and AK = A+ B2CK −BKC2. The controller input matrix

BK represents the estimator gain and the output matrix CK represents the state feedback
gain. The controller (2.34) can be structured using the separation principle, which means
that the estimator and state feedback can be tuned independently. Thus the control
penalty l and the estimation parameter γ may be individually adjusted to achieve the
desired characteristics for the closed-loop system Tzw. A low value for the control penalty
l results in higher gain state feedback CK . Similarly, when γ is small (high signal to noise
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ratio) the observation is fed back more aggressively (high observer gain BK) than when
γ is high. The controller K (s) in (2.34) represents the full order controller. Such a high
order controller is usually not real-time implementable for practical flow configurations.
To synthesise a reduced order controller Kr(s) for the high order plant the so called
reduce-then-design approach (Anderson & Liu 1989) is used, which is discussed in detail
in the next section. This section also includes a parametric study for the parameters γ
and l.

3. Controller design and synthesis

In this section the reduced order controller is designed and synthesised for the problem
defined in the previous section. An input-output analysis (Bagheri et al. 2009b) is
conducted in section 3.1 for the uncontrolled system using the spatio-temporal frequency
response (Jovanovic & Bamieh 2005; Baramov et al. 2004) to identify the perturbation
modes that are captured by the inflow disturbance model and are retained in the reduced
order model. The input-output analysis reveals the non-modal transients introduced by
the inflow disturbance as well as the modal unstable perturbation modes. In section 3.2 a
reduced order model that captures the input-output behaviour is derived using balanced
truncation. This model is used to design the optimal controller and the truncated
dynamics are taken into account in the control system design. This section also includes a
parametric study for the estimator and state feedback design problem. Finally, the closed-
loop performance of three selected controllers is evaluated in the frequency domain in 3.3.
These three controllers will also be evaluated in section 4 using numerical simulations of
the closed-loop system.

3.1. Analysis of the uncontrolled system

In this section the uncontrolled system from the disturbance input w to the shear
output ν, that is Gνw = [Gνw1 ,Gνw2 ] in (2.24), is analysed in the frequency domain.
In particular the effect of the inflow disturbance w1 on ν is investigated from an input-
output viewpoint. The disturbance input w1 excites the Orr-Sommerfeld eigenfunction
calculated for the most amplified frequency (ω = 0.253) at the inflow, see also section 2.3
and figure 5. The perturbation shear stress created by the disturbance along the complete
lower wall, ν1(x) = ∂u

∂y (x,−1), is considered as output in the analysis. In this way the
spatial transients created by the inflow disturbance can be evaluated and the perturbation
modes that are excited can be identified. The same results hold for the upper wall due
to the symmetry of the geometry. If a linear system is forced by a sinusoidal input at a
particular frequency, once the initial temporal transients have died out asymptotically,
the output will also be sinusoidal, at the same frequency, but with a change in amplitude
and a phase shift. The magnitude amplification and phase shift of the output are equal to
the magnitude and phase of the frequency response of the system. The frequency response
is obtained by evaluating the transfer function on the imaginary axis, that is s = iω. The
asymptotic response for the shear output along the lower wall in the spatio-temporal
frequency domain is given by

ν1(iω, x) = Gν1w1(iω, x)w1(iω) (3.1)

where Gν1w1(iω, x) is obtained from the (1,1) element of

Gνw(iω, x) = C2(x) (iωI −Ap)
−1

B1 (3.2)

Gν1w1(iω, x) is the spatio-temporal frequency response function (Jovanovic & Bamieh
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Figure 8: The magnitude of the spatio-temporal frequency response from the inflow
disturbance w1 to the shear along the lower wall ν1(x, y = −1). The 10 contour levels lie
within |Gν1w1 | ∈ [6.9, 69.4].

2005) from the inflow disturbance w1 to the shear stress along the lower wall. It is
a function of temporal frequency and streamwise direction. Gν1w1(iω, x) is visualised
using the magnitude bode plot |Gν1w1(iω, x)| which is shown in figure 8. To support
the interpretation of the magnitude the fully developed open-loop response for ω =
0.25 and ω = 0.35 is shown in figure 9. The effect of the low-pass filter (2.12) on the
magnitude at the inflow and the amplification at the design frequency ω = 0.253 can
clearly be observed. After initial spatial transients near the inflow boundary, the modal
perturbations are revealed and the magnitude linearly increases or decreases depending
on the frequency of w1. At the design frequency an insignificant transient is involved for
the mode to develop in the domain. Larger transients can be observed near the inflow
at other frequencies than the design point. These non-modal transients do not cause a
problem for control design as they have died out in the control region (x > 2π). The
outflow boundary condition (2.1d) gives rise to an artificial gain near the outflow x > 6π.
This does not result in reflections (wiggles) in the control domain. No special attention
needs to be taken for the non-physical region as long as no measurement sensors are placed
in this region. For validation purposes the exponential growth for the perturbation shear
output is compared with predictions from linear stability theory. The exponential growth
can be calculated using

αi = −
1

x1 − x0
ln

|Gν1w1(iω, x1)|

|Gν1w1(iω, x0)|
(3.3)

The location of the shear sensor x0 = xm = 2.39π and the location of the controlled
shear output x1 = xq = 5.57π are chosen to compute the growth rate. Within this region
the magnitude varies linearly over a wide range of frequencies. Figure 10 shows the
magnitude of Gν1w1(iω, x) at the two spatial locations and the exponential growth rate
of the magnitude compared with the growth rates from LST. Good agreement with LST
predictions can be observed. Both the model and the OS-equation predict instability
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Figure 9: Fully developed open-loop response of the streamwise perturbation velocity for
two inflow disturbance frequencies. (a) 10 levels in the range u ∈ [−1.61, 1.61]. (b) 10
levels in the range u ∈ [−1.00, 1.00].

within the range 0.216 6 ω 6 0.286. The real part of the wavenumber αr and the
corresponding wavelength λx = 2π/αr of the perturbation can be evaluated using the
phase response of the system. Let ∠Gν1w1(iω, x) be the phase in degrees for the shear
output along the lower wall. The real part of the wavenumber can be calculated using

αr =
|∠Gν1w1(iω, x1)− ∠Gν1w1(iω, x0)|

π
180

x1 − x0
(3.4)

Figure 11 shows the phase at the two spatial locations and the resulting wavenumbers
compared with the predictions from LST. It can be observed that also the wave lengths
are in good agreement with LST. At ω = 0.25 LST predicts a wavelength of λx =
2π/αr ≈ 2π and at ω = 0.35 a wavelength of λx ≈ 1.6π. These wavelengths can also be
observed in figure 9.
These results verify that the single mode inflow disturbance model accurately captures

the wavelengths and growth rates in a wider frequency band in the actuator/sensor region.
Also at other frequencies than the design frequency, the disturbance will quickly develop
in-domain to a travelling wave with a spatial wavelength and growth rate as predicted
by the Orr-Sommerfeld equation. It provides confidence that the followed modelling
procedure allows for an efficient estimation of the dominant flow perturbations in the
localised control domain using wall shear sensors. In the next section the controller is
designed to reduce the magnitude of the shear downstream of the control actuators.

3.2. Reduced order controller

The reduce-then-design approach (Anderson & Liu 1989) is used to construct a reduced
order controller for the high order plant. First, exact balanced truncation (Moore 1981)
is applied to construct a reduced order model (ROM) of the full order system after which
the ROM is used to synthesise the optimal controller. Exact balanced truncation requires
dense matrix factorizations and generally results in a computational complexity ofO(N3)
and a storage requirement of O(N2). Exact balanced truncation is not computationally
tractable for very large systems and approximate methods, such as proposed by Rowley
(2005), could be used in this case. However, the modelling approach in this paper avoids
very large systems through localised computations allowing to apply exact balanced
truncation (N = 5569 for the control model). Since the current flow configuration
is globally stable, balanced truncation can directly be applied without the need of
separating the stable and unstable subspaces. Only the application of balanced truncation
for model reduction and control design is discussed in this section. We refer to Moore
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Figure 11: (a) Phase of the shear output at two x-locations and (b) resulting wavelength
(3.4) compared with the solutions of the Orr-Sommerfeld equation.

(1981) for more detail and to Rowley (2005); Kim & Bewley (2007) for more background
in the context of flow control.
Balanced truncation extracts the most controllable and observable modes of the system

and first involves creating a balanced realisation of the system such that each state has
an equal measure for both controllability and observability. Let Gb(s) = (Ab,Bb, Cb,Db)
be a balanced realisation of the generalised plant G(s) = (Ap,Bp, Cp,Dp) given by (2.26)
such that the controllability Gramian and observability Gramian respectively defined as

P =

∫ ∞

0

eAbtBbB
T
b e

AT
b tdt (3.5)

Q =

∫ ∞

0

eA
T
b tCT

b Cbe
Abtdt (3.6)

are given by P = Q = diag(σH
1 , σ

H
2 , · · · , σ

H
N ) =: Σ where σH

1 > σH
2 > · · · > σH

N > 0
are the Hankel singular values of the system. An efficient algorithm for creating balanced
realisations is available in Matlab (balreal). This algorithm computes the similarity trans-
formation ue

b 7→ Sue, which balances the plant matrices through Ab = S−1ApS, Bb =
S−1Bp, Cb = CpS and Db = Dp. The similarity transformation S is obtained from the
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Figure 12: The first 150 Hankel singular values (’•’ markers), the theoretical upper bound
(dashed line) and theoretical lower bound (solid line) for the maximum error of the
reduced order model.

Cholesky factorization of the Gramians (Laub et al. 1987). The Gramians are computed
by solving a set of Lyapunov equations (Moore 1981). This method is also stable if
the system contains nearly uncontrollable/unobservable modes which are present in the
linearised Navier-Stokes operator (Bewley & Liu 1998; Kim & Bewley 2007).
The balanced realisation and corresponding singular values can be partitioned as

Ab =

[
A11 A12

A21 A22

]

, Bb =

[
B1

B2

]

, Cb =
[
C1 C2

]
, Σ =

[
Σ1 0
0 Σ2

]

(3.7)

where Σ1 = diag(σH
1 , σ

H
2 , · · · , σ

H
r ) and Σ2 = diag(σH

r+1, σ
H
r+2, · · · , σ

H
N ). The reduced

order model of order r is obtained by truncating the least observable/controllable modes,
that is truncating the r + k, k = 1, · · · , N − r modes: Gr(s) = (A11,B1, C1,Db) :=
(A,B,C,D). Note that balanced truncation does not depend on Db and it follows that
Db = Dp = D. A feature of balanced truncation is the existence of upper and lower
bounds for the maximum error of the reduced order model

σH
r+1 6 ‖G − Gr‖∞ < 2

N∑

k=r+1

σH
k (3.8)

with σH
r+1 the first neglected Hankel singular value. Figure 12 shows the first 150 Hankel

singular values of the system and the upper and lower bound for the maximum error. The
steep initial drop indicates that the input-output behaviour can be captured using low
order models. However, no guarantees are available about the stability and performance of
a controller designed for Gr on the original system G and the truncated dynamics should
be taken into account in the performance analysis. Therefore, instead of evaluating the
performance of the ROM, the performance of the reduced order controller in combination
with the original system is evaluated for increasing order r.
The reduced order model Gr is used to synthesise the H2 optimal reduced order

controller Kr(s) that minimises (2.32) (See appendix B), and takes the form

u̇e
K = AKue

K + BKν (3.9)

φ = CKue
K

with ue
K ∈ Rr the controller state. The resulting closed-loop system from the disturbance
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w to the control objective z is obtained by combining the controller (3.9) with the original
system (2.31) and is given by

[
u̇e

u̇e
K

]

=

[
Ap B2CK

BKC2 AK

]

︸ ︷︷ ︸

Acl

[
ue

ue
K

]

+

[
B1

BKD21

]

︸ ︷︷ ︸

Bcl

w

z =
[
C1 D12CK

]

︸ ︷︷ ︸

Ccl

[
ue

ue
K

]

(3.10)

For the design of the controller, the performance of the closed-loop system (3.10) is
characterised for different combinations of control penalties l and estimation penalties
γ. As in Bewley & Liu (1998) a parametric study is conducted for the H2 norms of the
following two closed-loop transfer functions

Tqw =
[
C1 0

]
(sI −Acl)

−1 Bcl (3.11)

Tφw =
[
0 CK

]
(sI −Acl)

−1
Bcl (3.12)

which are the closed-loop transfer function matrices from the disturbance to respectively
the controlled output q and the control input φ. The definition of the closed-loop system
matrices (Acl,Bcl, Ccl) follow from (3.10). The H2 norms of these transfer functions are
related by

‖Tzw‖
2
2 = ‖Tqw‖

2
2 + l2‖Tφw‖

2
2 (3.13)

with Tzw = Ccl (sI −Acl)
−1

Bcl the transfer function from the disturbance to the com-
bined performance objective z. A low value for ‖Tqw‖2 indicates a good controller
performance while a low value for ‖Tφw‖2 indicates a low control effort. A finite value for
these norms means an exponentially stable closed-loop system. Figure 13 shows the norms
as function of the order r of the controller for the combination γ = 1, l = 1. The norm
of the full order controller (r = N) is indicated by the asymptotes. It can be observed
that the performance of the closed-loop system converges quickly to the case of a full
order controller. Similar results were obtained for other combinations. We select r = 50
to design and implement the controller. With this order the performance has converged
and there is no loss in performance due to the truncated dynamics. The input-output
behaviour of the ROM with r = 50 is compared to full system in figure 14. Shown is the
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Figure 14: Performance of the ROM (r = 50). Magnitude frequency response from the
state disturbance w1 to the measured output ν1 (a) and from the control input φ1 to the
controlled shear output q1 (b) at the lower wall.

magnitude frequency response of the transfer function Gν1w1 from the inflow disturbance
w1 to the measured output ν1 (a) and the transfer function Gq1φ1 from the control input
φ1 to the controlled output q1 at the lower wall (b). There is a good agreement and the
ROM accurately captures the input-output (disturbance and control) behaviour.

Figure 15 shows the contours of the H2 norms and the relative energy norm
‖Tqw‖

2
2/‖Gqw‖

2
2 for the order r = 50 controller. It can be observed that an energy

reduction between 90% − 99% can easily be achieved by a proper choice of the design
parameters. The performance for the case l → ∞, γ → ∞ converges to the uncontrolled
case. The control penalty l can be used to tune the feedback gain CK in (3.9) and
determines the trade-off between control effort and magnitude of the shear perturbation
q. Lower values lead to an increased controller performance (low ‖Tqw‖2) at the costs
of a higher control effort. It is found that choosing l < 10 does lead to a significantly
increase in performance. The parameter γ can be used to tune the estimator, that
is the output injection gain BK in (3.9). Low values for γ (high to noise ratio) lead
to a higher magnitude of estimator feedback and an increased performance. However,
choosing a lower value for γ leads to a reduced robustness. The role of γ is to account
for uncertainties in the estimated output which also arise in the case of unmodelled
dynamics and unmodelled disturbances. High estimator gain feedback can in this case
result in larger overshoots which should be avoided since they can aggravate the initial
stage to transition. From the contour of ‖Tqw‖2 it can be observed that for a given control
penalty l, the estimation penalty γ, and thus the robustness, can be increased up to the
curvature of the contour level without significant loss of performance. Thus choices for l
and γ on the curvature of a desired performance level can be considered as an optimal
trade-off between robustness and the desired performance. In this study robustness is
valued more than control effort in determining the trade-off. Three controllers will be
investigated in the next sections for evaluating the performance in the frequency domain
and through numerical simulation. The design parameters for the controllers are marked
in figure 15. The first (I) is a high gain controller with l = 10, γ = 1.5 corresponding to
approximately a 99.9% energy reduction. The second (II) is an intermediate controller
with l = 20, γ = 5 corresponding to a 99% energy reduction and the third (III) is a
lower gain controller with l = 40, γ = 15 corresponding to a 90% energy reduction.
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Figure 15: Contours of the closed-loop system norms ‖Tqw‖2 (a), ‖Tφw‖2 (b) and the
relative energy norm ‖Tqw‖
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2
2 (c) with a r = 50 reduced order controller for

different combinations of control parameter l and estimation parameter γ (‖Gqw‖2 =
16.90). Controllers (I) l = 10, γ = 1.5, (II) l = 20, γ = 5 and (III) l = 40, γ = 15 are
considered for evaluating the closed-loop response of the system.

3.3. Closed-loop frequency response

In this section the three selected controllers are evaluated in the frequency domain.
The magnitude frequency response from w1 to the controlled output q1 (2.7) is shown
in figure 16. The magnitude of the closed-loop system Tq1w1 is compared with the
magnitude of the open-loop system Gq1w1 . The frequency domain performance for the
three controllers is in accordance with the results in figure 15. Controller (III) limits
the control effort and takes higher levels of sensor inaccuracies into account. It is more
conservative also with respect to higher frequencies. The three controllers significantly
suppress the most amplified frequencies close to the design frequency ω = 0.253 as well
as the off-design frequencies. The peak magnitude is equal to the H∞ norm of Tq1w1

which is reduced between approximately 80%− 99% for the three controllers.
The perturbation shear reduction along the complete walls, as well as spatial transients

introduced by the control can be evaluated using the spatio-temporal frequency response.
Figure 17 shows the magnitude for the shear along the lower wall for the open-loop
system (a) and closed-loop (b) system with controller (II). Compared to the open-loop
magnitude it can be observed that the controller significantly reduces the shear in the
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Figure 16: Closed-loop frequency response from the inflow disturbance w1 to the
controlled output q1 along the lower wall.
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Figure 17: Open loop (a) and closed-loop (b) magnitude frequency response from the
inflow disturbance w1 to the shear stress ν1 along the lower wall. The 10 contour levels
lie within |Gν1w1 |, |Tν1w1 | ∈ [6.9, 69.4] (l = 20, γ = 5). The triangles indicate respectively
the position of the measurement sensors (▽), the actuators (△) and the controlled outputs
(⊲).

entire downstream region of the control actuators. The magnitude at the most dominant
frequencies 0.1 6 ω 6 0.4 is significantly suppressed and only small amplifications are
present in the region of the control actuator.

4. Closed-loop simulations

In this section the effectiveness of the proposed control design is evaluated using linear
simulations of the closed-loop system. The three controllers characterised by (I) l =
10, γ = 1.5, (II) l = 20, γ = 5 and (III) l = 40, γ = 15 are again considered, see also
figure 15. The model defining a channel with a total length of Lsim = 16π, as discussed
in section 2.5, is used for simulating the response. Disturbances are generated upstream
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of the control domain and propagate downstream. Three different disturbance cases are
considered to demonstrate the robustness of the control design. In the first case (Case A,
section 4.1), a single frequency perturbation is considered which is generated using the
disturbance model presented in section 2. This case can be seen as the design case, since
the same disturbance model is used for both simulation and control design. In the second
test case (case B, section 4.2) a multiple-frequency disturbance is considered in the form
of a wave-train consisting of a linear combination of Orr-Sommerfeld modes. This case is
used to verify the spatio-temporal frequency domain results in the previous section and
to test if the controller based on the single mode inflow disturbance model indeed allows
for efficient estimation and control of perturbations in a wider frequency band. In the
third test case (case C, section 4.3) the controller is evaluated for a stochastic excited
body force located at the upper wall. Similar body forces have been used by Bagheri
et al. (2009b); Dadfar et al. (2013) to evaluate controllers for transition delay. The case
is used to study the effectiveness of the controller in a transient unmodelled environment.
For simulating the response, the original unscaled system (2.22) is considered. For the
design of the controller no a-priori knowledge is assumed about the expected covariances
σ2
d and σ2

n of respectively the state and measurement disturbances. Therefore, a scaling
is introduced in terms of an expected relative magnitude of the sensor noise γ = σn/σd. γ
plays a role for accounting measurement uncertainties in the control design and is not used
for defining the measurement noise in the simulations. We also wish to investigate the
robustness of the three controllers with respect to unmodelled measurement inaccuracies.
Therefore each disturbance case is considered with both a low sensor noise σn = 0.01 and
a high sensor noise σn = 0.2. In total 18 different cases were simulated: three disturbance
cases (A,B,C) with three controllers and two sensor noise intensities. The cases and the
results are summarised in table 1 and are discussed in more detail in the next three
sections.

4.1. Case A: Single frequency disturbance

In the first case a single frequency modal disturbance, of the form (2.9), is considered
with ω = 0.253 which has the maximum growth rate for the investigated conditions.
This disturbance is generated at the inlet x = −4π of the simulation domain using the
disturbance model presented in section 2.2. The shape of the disturbance corresponds
to the eigenfunction calculated from the Orr-Sommerfeld equation at ω = 0.253 (see
figure 5). To mimic the transitional regime in the simulations the amplitude of the
perturbation is set to A0 = 0.01. First the performance of controller (II) with l =
20, γ = 5 and a low sensor noise σn = 0.01 is investigated. Figure 18 shows the temporal
evolution of the shear measurements νm that are used for feedback, the control input
φ (amplitude of the blowing and suction), the perturbation energy (E = ‖u‖2L2) and
the norm of the controlled output ‖q‖2. q reflects the controller performance as it is
used within the control objective that is minimized by the controller, see (2.27). As the
perturbation convects downstream towards the control region, the amplitude of blowing
and suction increases to cancel the perturbation. The effect of the noise on the shear
measurements can be observed and the resulting control input confirms the filtering
and feedback of these measurements. Both control actuators at the upper and lower
wall act in phase which is to be expected due to the symmetry of the geometry and
the control layout. A snapshot at t = 200 of the flow perturbation field in the control
domain x ∈ [0, 8π] is shown in figure 19. The performance of the state estimation is best
visualised without control applied. Figure 19(a) shows the estimated flow field without
control, figure 19(b) shows the real flow field without control and figure 19(c) shows the
real controlled flow. The estimated flow field is computed from the controller state ue

K
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Case Control penalty estimation penalty Shear energy reduction control effort
l γ ‖qcon‖

2
2/‖qunc‖

2
2 rms φ

A1.I 10 1.5 0.000088 0.002404
A2.I 10 1.5 0.001521 0.002398
A1.II 20 5 0.001940 0.002319
A2.II 20 5 0.003669 0.002312
A1.III 40 15 0.041873 0.001932
A2.III 40 15 0.044999 0.001924
B1.I 10 1.5 0.000112 0.001064
B2.I 10 1.5 0.007609 0.001091
B1.II 20 5 0.002147 0.001023
B2.II 20 5 0.007735 0.001045
B1.III 40 15 0.048270 0.000840
B2.III 40 15 0.047928 0.000855
C1.I 10 1.5 0.027664 0.001026
C2.I 10 1.5 0.038694 0.001017
C1.II 20 5 0.030085 0.000985
C2.II 20 5 0.041530 0.000972
C1.III 40 15 0.078881 0.000806
C2.III 40 15 0.092690 0.000791

Table 1: The controlled shear output energy reduction and the control effort for three
controllers. Three disturbance cases (A, B, C) are considered with both a low sensor noise
(A1, B1, C1) and with a high sensor noise (A2, B2, C2). Each case is evaluated using three
controllers (A1.I, A1.II, A1.III). Disturbance case A-C corresponds respectively to the
single frequency disturbance, multiple frequency disturbance and stochastic in-domain

forcing. (rms φ =
√

1
T

∫ T

0
|φ|2 dt)
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Figure 18: Closed-loop performance for the single frequency disturbance case. Controller
(II) with low sensor noise is considered. (a) Shear measurements νm used for feedback.
(b) Control input φ (amplitude of the blowing and suction). (c) Perturbation energy
E = ‖u‖2L2 . (d) Norm of the controlled perturbation shear output ‖q‖2.
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Figure 19: Snapshot of the perturbation velocity within the control domain x ∈ [0, 8π]
at t = 200 for the uncontrolled and controlled single frequency (ω = 0.253) disturbance.
Controller (II) with low sensor noise is considered. (a) Estimated velocity without control.
(b) True velocity without control. (c) True velocity with control. The triangles indicate
respectively the position of the measurement sensors (▽), the actuators (△) and the
controlled outputs (⊲).

through ue
K 7→ S−1

r ue
K where S−1

r are the first r columns of the inverse of the similarity
transformation as discussed in section 3.2. It can be seen that the flow perturbations are
well reconstructed in the control region where the measurements are taken, actuation is
applied and where the performance objective q is defined. As a result the controller is
effective in cancelling the perturbations by minimising the effect of the perturbation on
q. Only low amplitude oscillations remain. The required amplitude of the blowing and
suction is of the same order as the magnitude of the perturbation as can be seen in the
snapshot for the wall-normal velocity component in figure 19(c).
To compare the performance of the three controllers, the spatial evolution of the per-

turbation is evaluated. We define the amplitude of the streamwise velocity perturbation
as

A(x) = max
t,y

√

|u|2 (4.1)

figure 20 shows the amplitude for the three controllers with both low (σn = 0.01) and
high (σn = 0.2) measurements noise. The amplitude reduction for the three controllers
is in accordance with the frequency domain results in figure 16. The controllers are also
robust to higher levels of sensor noise. Controller (III) takes higher sensor inaccuracies
into account and the performance is preserved in the case of high sensor noise, see also
table 1. Controllers (I) and (II) do not take such high measurement noise into account
and the performance is less preserved. However, no severe deterioration can be observed.
This can also be contributed to the simple structure of the perturbation.

4.2. Case B: Multiple frequency disturbance

In the second test case a multiple-frequency disturbance is considered. The total
disturbance consists of a linear combination of Orr-Sommerfeld modes. In total 16 modes
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Figure 20: The maximum amplitude of the streamwise perturbation velocity (4.1) of the
single frequency disturbance for three controllers. (a) Feedback with low measurement
noise σn = 0.01. (b) Feedback with high measurement noise σn = 0.2. The triangles
indicate respectively the position of the measurement sensors (▽), the actuators (△) and
the controlled outputs (⊲).

Frequency ω wavelength αr growth rate αi

0.10 0.5611 0.0666
0.12 0.6247 0.0511
0.14 0.6843 0.0369
0.16 0.7418 0.0242
0.18 0.7982 0.0134
0.20 0.8541 0.0049
0.22 0.9095 0.0010i
0.24 0.9646 -0.0042
0.26 1.0193 -0.0044
0.28 1.0735 -0.0015
0.30 1.1270 0.0047
0.32 1.1797 0.0145
0.34 1.2314 0.0281
0.36 1.2817 0.0469
0.38 1.3300 0.0687
0.40 1.3757 0.0971

Table 2: Spectrum of the multiple frequency wave packet for
Case B

in the frequency range ω ∈ [0.1, 0.4] are excited. Thus the disturbance is generated using
16 eigenfunctions whose shape corresponds to the eigenfunction calculated from the Orr-
Sommerfeld equation at the selected frequencies. The temporal frequencies, the spatial
wave lengths and spatial growth rates of these modes are listed in table 2. The spectrum
includes 3 convectively unstable modes and 13 stable modes. Each mode is given the
same amplitude A0 = 0.002 such that the total disturbance is in the form of a wave-train
that is modulated as it propagates downstream. First the performance of controller (II)
with a low sensor noise σn = 0.01 is again investigated. The input-output signals and
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Figure 21: Closed-loop performance for the multiple frequency disturbance case.
Controller (II) with low sensor noise is considered. (a) Shear measurements νm used
for feedback. (b) Control input φ. (c) Perturbation energy E = ‖u‖2L2 . (d) Norm of the
controlled perturbation shear output ‖q‖2.
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Figure 22: Snapshot of the perturbation velocity within the control domain x ∈ [0, 8π]
at t = 200 for the uncontrolled and controlled multiple frequency disturbance. Controller
(II) with low sensor noise is considered. (a) Estimated velocity without control. (b) True
velocity without control. (c) True velocity with control. The triangles indicate respectively
the position of the measurement sensors (▽), the actuators (△) and the controlled outputs
(⊲).
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Figure 23: The wall normal maximum amplitude of the rms streamwise perturbation
velocity (4.2) of the multiple frequency disturbance for three controllers. (a) Feedback
with low measurement noise σn = 0.01. (b) Feedback with high measurement noise
σn = 0.2. The triangles indicate respectively the position of the measurement sensors
(▽), the actuators (△) and the controlled outputs (⊲).

the closed-loop performance are shown in figure 21 and a snapshot at t = 200 of the
perturbation field in the control domain is shown in figure 22. The modulation of the
perturbation can clearly be observed and the perturbation presents a richer structure
as compared to the single frequency case. With respect to the closed-loop performance
the same observations can be made. The measurements are successfully filtered and the
real flow is reconstructed well in the control domain as can be seen in figure 22. The
controller is again able to cancel the perturbations and to suppress the perturbation wall
shear stress. Although the unstable modes are dominant in the simulations, the (nearly)
stable modes have not damped out and are still present as can be seen in figure 22.
Nevertheless, the controller achieves nearly a full cancellation of the perturbations. This
corroborates the findings of the input-output analysis presented in section 3.1 showing
that the single mode disturbance model accurately captures the spatial wavelength and
spatial growth of perturbations in a wider frequency band in the actuator/sensor region.
As such the controller is able to effectively estimate and control a broader frequency
spectrum of modes. To compare the performance of the three controllers, the spatial
evolution of the perturbation is again evaluated. Since the amplitude of the perturbation
also varies in time a measure for the time averaged amplitude is defined

Ā(x) = max
y

√

1

T

∫ T

0

|u|2 dt (4.2)

which is the wall normal maximum amplitude of the root mean square (rms) streamwise
velocity perturbation (Andersson et al. 1999). Figure 23 shows the time averaged am-
plitude for the three controllers with both low and high measurements noise. It can be
observed that the amplitude reduction in case of high measurement noise for controller
(I) is reduced more significantly. This is to be expected since the controller does not
take high measurement inaccuracies into account. However, it still achieves a robust
performance. Actually controller (I) and (II) have a comparable performance, see also
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Figure 24: Contours of the spatial distribution F = [Fx, Fy]
T of the in-domain

disturbance used for Case C.

table 1. This indicates that there is no large sensitivity in the choice of design parameters
in case of high sensor noise. Again, the performance of controller (III) is preserved and
is in accordance with its design.

4.3. Case C: Stochastic in-domain forcing

In the third most challenging test case a stochastic in-domain forcing is considered
which is generated at the upper wall near the inflow. In this case the momentum equation
is forced with

f(x, y, t) = F (x, y)w(t) (4.3)

where w(t) is zero mean white noise with a normal distribution at unit intensity. The
spatial distribution of the ’vibrating ribbon’ at the upper wall (y = 1) corresponds to
that of Bertolotti et al. (1992) and has the form Fx = ∂ψ/∂y, Fy = −∂ψ/∂x with

ψ(x, y) = ǫexp

(

−
(x− xr)

2

σ2
x

−
(y − 1)2

σ2
y

)

(y − 1)2 cos((x − xr)) (4.4)

where ǫ = 0.5 is the amplitude of the force, σx = 1, σy = 0.1 the spatial lengths,
xr = −3π the x-position of the ribbon. The spatial distribution of this force is shown
in figure 24. The body force (Fx, Fy) is both divergence free and satisfies the no-slip
boundary conditions. First the performance of controller (II) with a low sensor noise
is investigated. The input-output signals and the closed-loop performance are shown in
figure 25 and a snapshot at t = 350 of the perturbation field in the control domain is
shown in figure 26. In addition, to better visualise the evolution of the perturbation and
the controller performance, the temporal evolution for the shear stress along the lower
wall for the uncontrolled case and the controlled case is shown in figure 27.
The stochastic disturbance excites a spectrum of frequencies which results in large

initial transients after which the disturbance develops in the form of wavepackets as can
be seen in the energy plot in figure 25. The transients can also observed in the temporal
evolution of the wall-shear stress in figure 27 and are also present in the control region. It
can be observed that the controller is still able to properly estimate the flow field and is
effective in both minimising the wall-shear stress and reducing the perturbation energy
in the domain. Although a complete cancellation of the disturbance is not possible,
the controller manages to achieve a reduction of 97% in the controlled shear output
power, see also table 1. Note that the disturbance is completely independent of the
disturbance model used to design the controller. It is defined in-domain and creates
initially asymmetric developing perturbations while the complete input-output layout
is symmetric. Furthermore the transients are not accounted for in the control design
and the perturbations are not fully developed in the control domain. Nevertheless, the
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Figure 25: Closed-loop performance for the stochastic disturbance case. Controller (II)
with low sensor noise is considered. (a) Shear measurements νm used for feedback.
(b) Control input φ. (c) Perturbation energy E = ‖u‖2L2. (d) Norm of the controlled
perturbation shear output ‖q‖2.
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Figure 26: Snapshot of the perturbation velocity within the control domain x ∈ [0, 8π] at
t = 350 for the uncontrolled and controlled stochastic disturbance. Controller (II) with
low sensor noise is considered. (a) Estimated velocity without control. (b) True velocity
without control. (c) True velocity with control. The triangles indicate respectively the
position of the measurement sensors (▽), the actuators (△) and the controlled outputs
(⊲).
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the channel for the stochastic forced disturbance. The triangles indicate respectively the
position of the measurement sensors (▽), the actuators (△) and the controlled outputs
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Figure 28: The wall normal maximum amplitude of the rms streamwise perturbation
velocity (4.2) of the stochastic forced disturbance for three controllers. (a) Feedback
with low measurement noise σn = 0.01. (b) Feedback with high measurement noise
σn = 0.2. The triangles indicate respectively the position of the measurement sensors
(▽), the actuators (△) and the controlled outputs (⊲).

controller achieves a high level of robustness to unmodelled disturbances; no overshoots
can be observed in the perturbation energy and the controlled output, and the controller
does not aggravate the flow. This can be contributed to the fact that the controller is
able to estimate and stabilize the underlying modes that are present in the disturbance
as can be seen from figure 26.
Figure 28 shows the time averaged amplitude for the three controllers with both low

and high measurements noise. It can be observed that controllers (I) and (II) have
comparable performance, also for the low sensor noise case. This can be contributed
to the fact that uncertainties in output measurements also arise due to the unmodelled
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disturbances. This indicates that there is also no large sensitivity in the choice of design
parameters in case of unmodelled disturbances.

5. Conclusion

The paper presented a new framework to design and synthesise H2 optimal controllers
for control of linear instabilities in 2-D laminar wall-bounded shear flows. The 2-D non-
periodic channel flow is considered as a case study. The flow modelling accounts both for
localised actuation/sensing and the dominant perturbation dynamics in physical space.
A new inflow disturbance model is presented for external sources of excitation. This
model allows for an efficient estimation of the flow perturbations in the localised control
domain using wall shear sensors. The perturbation modes that contribute to transition
can be selected and are included in the control design. In this way the most dominant
modes of the flow can be precisely targeted by the controller. A reduced order model
(r = 50) that captures the input-output behaviour is derived directly from the linearised
Navier-Stokes equations using exact balanced truncation. No numerical simulations are
required to synthesise the controller. The reduced order model is used to design an H2

optimal controller to minimise the wall shear stress created by the perturbations. It
is shown that there is no loss in performance due to the truncated dynamics and the
reduced order controller maintains the closed-loop performance as compared to the full
order controller. The controller is evaluated with linear simulations of the closed-loop
system. Three different disturbance cases are considered to evaluate the effectiveness
and robustness of the proposed control design. It is shown that the controller is able
to cancel the perturbations and is robust to both unmodelled disturbances and sensor
inaccuracies.
The modelling presented in this paper provides an efficient means to design and

synthesise controllers directly from the governing equations. This can be contributed
to the fact that the aim is to capture the input-output behaviour for localised sensors
and actuators, and the dominant perturbation dynamics within this localised region.
It is shown that with the new inflow disturbance model only minor spatial transients
are involved for the perturbation modes to develop in the domain. This allows an
arbitrary placement of the computational inflow boundary as it does not affect the
spatial length scales of the perturbations in the control region. Small computational
domains can thus be used to create the control models. Furthermore, to achieve effective
control it is not required to fully resolve the flow at all length scales in the initial model.
Only the dominant modes that contribute to transition and are included in the control
design should be accurately resolved. These features can make the extension to 3-D
computationally feasible. Transition in 3-D flows is also governed by algebraic growth
of non-modal perturbations, which bypasses the classical transition scenario considered
in this study. To effectively apply this method to 3-D flows requires the inclusion of
multiple perturbation modes at different wavenumbers in the disturbance model or the
use of optimal inflow perturbations, e.g. of the form presented in Andersson et al. (1999).
In this paper multivariate splines are used in the underlying numerical method which
are effective in creating control models. Multivariate splines are defined on triangulations
allowing to approximate any domain and to use local refinements in regions of interest.
Secondly, they are general in terms of smoothness and degree allowing for a higher
resolving power. It is also worth noting that the framework is generalised, independently
of the spatial discretisation method used in this study.
Significant work remains to be done to apply this method in real-life applications. We

are currently extending this method for control of Tollmien-Schlichting waves in spatially
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developing boundary layer flows and are working towards experimental validation of
this method in the wind-tunnel. Future work will focus on the application for efficient
modelling and control of 3-D disturbances. This paper focussed on optimal control and
no other model uncertainties, such as input/actuator uncertainties and uncertainties in
the Reynolds number were addressed. Recently in Fabbiane et al. (2015) it is shown
through experiments that deviations from the design conditions can destabilise optimal
controllers. Future work will also focus on addressing model uncertainties by integrating
this method in a H∞ robust control framework.
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Appendix A. Multivariate spline state-space representation of the

flow

In this section the finite dimensional state-space system for the flow control problem
is derived. This method uses multivariate splines defined on triangulation’s (Farin 1986;
de Boor 1987; Lai & Schumaker 2007) to find matrix representations of all operators in
(2.21) and applies to general geometries and general control configurations. This method
is an extension of the model reduction scheme for parabolic PDEs presented by Tol
et al. (2016) to fluid flows. In Awanou & Lai (2004) a numerical scheme is presented
for approximating steady Navier-Stokes equations in velocity pressure formulation using
multivariate splines. This numerical scheme is combined with the framework from Tol
et al. (2016) to derive state descriptions for the linearised Navier-Stokes equations and is
presented A.1. The state-space system for the case of the non-periodic channel flow was
validated in section 3 by comparing the spatial stability with the predictions from LST.
For completeness and to mathematically verify the numerical method, the state-space
system for the case of the periodic channel flow is validated using the temporal stability
theory in section A.2.

A.1. Numerical Method

In this appendix the state equations are considered which are given by the forced LNSE

∂u

∂t
+ (U · ∇)u+ (u · ∇)U −

1

Re
∆u +∇p = f in Ω (A.1a)

∇ · u = 0 in Ω (A.1b)

u = ub on ΓD (A.1c)

−pn+
1

Re
(n · ∇)u = 0 on Γout (A.1d)

We refer to Tol et al. (2016) for the derivation of the output equations (2.5) and (2.7).
We first present the Galerkin-type variational formulation through which the spline
approximation is determined. In order to introduce the variational formulation some
functions spaces need to be defined. Let L2(Ω) be the space of square-integrable functions
over Ω. We define the following Sobolev spaces

H1(Ω) =

{

u ∈ L2(Ω),
∂u

∂xi
∈ L2(Ω) for i = 1, · · · , n

}

H1
0 (Ω) =

{
u ∈ H1(Ω), u|ΓD

= 0
}
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H1(Ω) consists of square integrable functions whose first order derivative exists in the
weak sense and H1

0 (Ω) is the subspace in which the functions vanish on the Dirichlet
portion of the boundary ΓD. For vector valued functions the notation H1(Ω) = H1(Ω)n

is used. We define the bilinear form

a (v,u) =
1

Re

∫

Ω

∇v : ∇u dΩ =:
1

Re

∫

Ω

n∑

i=1

n∑

j=1

∂ui
∂xj

∂vi
∂xj

dΩ ∀ v,u ∈ H1(Ω)

and the trilinear form

b(v,u,w) =

∫

Ω

v · (u · ∇)w dΩ =

∫

Ω

n∑

i=1

n∑

j=1

viuj
∂wi

∂xj
dΩ ∀ v,u,w ∈ H1(Ω)

Also the inner product for functions belonging to L2(Ω) is given by

(v,u) =

∫

Ω

v · u dΩ

Equation (2.1) has no dynamic equation for the pressure that can be utilised for control.
Therefore the pressure is eliminated from the equations by using a space of velocity fields
which are exactly divergence free. Let

V0 =
{
v ∈ H1

0(Ω), ∇ · v = 0
}

Vg =
{
u ∈ H1(Ω), u|ΓD

= ub, ∇ · u = 0
}

The weak form of A.1 can be obtained by taking the inner product of the first equation
(A.1a) with v ∈ V0

∫

Ω

{

v ·
∂u

∂t
−

1

Re
v ·∆u + v · (U · ∇)u+ v · (u · ∇)U + v · ∇p

}

dΩ =

∫

Ω

v · f dΩ

(A.2)
Applying integration by parts and the divergence theorem to the diffusion term and the
pressure gradient term gives

∫

Ω

{

v ·
∂u

∂t
+

1

Re
∇v : ∇u+ v · (U · ∇)u+ v · (u · ∇)U − p (∇ · v)

}

dΩ

−

∫

ΓD

v ·

(

−pn+
1

Re
(n · ∇)u

)

dΓ −

∫

Γout

v ·

(

−pn+
1

Re
(n · ∇)u

)

dΓ

=

∫

Ω

v · f dΩ (A.3)

The Neumann outflow boundary condition A.1d occurs in (A.3) as a boundary integral
term and can therefore naturally be imposed by setting it to zero. Furthermore, ∇·v = 0
and v|ΓD

= 0 for all v ∈ V0. The variational formulation of the problem (A.1) can thus
be stated as: Find u ∈ L2 (0, T ;Vg) such that

(

v,
∂u

∂t

)

+ a (v,u) + b (v,U ,u) + b (v,u,U) = (v,f) ∀ v ∈ V0 (A.4)

The multivariate spline space is used as approximating space for the velocity. Let T be
the triangulation (triangular mesh) of the domain Ω. The spline space is the space of all
smooth piecewise polynomial functions of arbitrary degree d and arbitrary smoothness r
over T with 0 6 r < d

Sr
d (T ) := s ∈ Cr (Ω) , s|t ∈ Pd, ∀t ∈ T (A.5)
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With Pd the space of all polynomials of total degree d and t denotes a triangle. To
approximate the velocity vector u = (u, v) we use su = (s1, s2) ∈ Sg with Sg = Sr

d (T )
2
∩

Vg. The spline approximation of (A.4) is to seek su(·, t) ∈ Sg ⊂ Vg such that

(

sv,
∂su
∂t

)

+ a (sv, su) + b (sv,U , su) + b (sv, su,U) = (sv,f) ∀ sv ∈ S0 (A.6)

After constructing a basis for S0 and Sg, (A.6) is equivalent to a system of ordinary differ-
ential equations. However, the implementation of such divergence free spline elements of
arbitrary degree and smoothness is very complicated. Awanou & Lai (2004) streamlined
this process by skipping the construction of smooth divergence free finite elements.
Instead, they used discontinuous piecewise polynomial functions over a triangulation
and treated desired smoothness properties together with the boundary conditions and
the incompressibility condition as side constraints. This approach is also applied here to
the time dependent problem (A.6). The multivariate spline function is represented using
the B-form of splines(de Boor 1987; Farin 1986). We use the vector formulation from
de Visser et al. (2009)

si(x, t) = B
d(x)ci(t)

with Bd(x) ∈ R1×·ned̂ the global vector of B-form basis polynomials, ne the number of

elements in T and d̂ =
(

n
n+d

)
the number of basis polynomials per element. The spline

function is identified by its B-coefficient vector ci(t) ∈ Rned̂×1 which are used as the
time-varying expansion coefficients. Since s has a certain smoothness, the smoothness
conditions can be expressed by a linear system (Awanou et al. 2005) and (Lai &
Schumaker 2007, pp.133-135). That is s ∈ Cr if and only if

Hci = 0

Constructing H is not trivial and we refer to de Visser et al. (2009) for a general
formulation of the continuity conditions and the procedure to derive them. The Dirichlet
boundary condition (A.1c) provides additional constraints on the B-coefficient vector.
For control application the boundary condition is of the form u|ΓD

= ub(x, t) =
[g1(x), g2(x)]

TφΓ (t) with gi(x) the spatial distribution function for the ith velocity
component and φΓ (t) the temporal boundary control input. The discrete constraints
for this condition can also be given by a linear system (Awanou & Lai 2004; Tol et al.
2016)

Rci = GiφΓ

Where Gi is a vector of B-coefficients that interpolates gi(x) at the boundary ΓD. The
function s ∈ Cr(Ω) is guaranteed to be r-times continuously differentiable on the domain
Ω. To approximate the variational formulation only first order derivatives are required.
There exist matrices Di (de Visser et al. 2011; Awanou & Lai 2004) which map the B-
coefficient vector of any spline function s ∈ Sr

d(T ) to the B-coefficient vector of ∂
∂xi

s,
that is

∂

∂xi

[
B

d(x)c
]
= B

d−1(x)Dic

The spline approximation su = (s1, s2) is identified with B-coefficients c = (c1, c2).
Hence the discrete equivalent of ∇ · u = 0 is given by (Awanou & Lai 2004)

D1c1 + D2c2 =
[

D1 D2

]
c = D̄c = 0
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Let H̄ and R̄ be the matrices that encode the smoothness conditions and the boundary
conditions for the complete discrete velocity field. Furthermore let

L =
[

H̄T R̄T D̄T
]T
, Ḡ =

[
0 GT 0

]T

then for all spline vector functions s = (s1, s2) with B-coefficient c = (c1, c2) satisfying

Lc = ḠφΓ (A.7)

we have that s ∈ Sg, and can thus be used to approximate the variational formulation.
Let d denote the B-coefficient vector of the test function sv, then (A.6) translates to:
Find c satisfying (A.7) such that

dT
M
d

dt
c+ dT

Kc = dT
Fφ ∀d with Ld = 0 (A.8)

where M is a velocity mass matrix and dT
Kc denotes the discretisation of the linear

diffusion term and the two linear convective terms. The right hand side matrix F contains
the contribution of the in-domain forcing model and φ(t) denotes the temporal in-domain
control input. We refer to Awanou & Lai (2004); Tol et al. (2016) for details regarding
the constructive aspects and assembling of the matrices in (A.8). The side constraints are
commonly enforced through Lagrange multipliers (Awanou & Lai 2004; Lai & Wenston
2004). In Tol et al. (2016) a null space approach is proposed to transform (A.8) to
state-space format. This approach result in a reduced set of coefficients with minimal
non-zero support for Sg which makes the resulting state-space model suitable for control
applications. Let V be a basis for null(L) such that LV = 0 and let cp = ZφΓ be a
particular solution of (A.7). The general solution set for (A.7) can be written as

c = Vch + ZφΓ (A.9)

with ch ∈ RN−R∗

the coordinate vector of c relative to the basis for null(L) and with R∗

the rank of L. Since Ld = 0 for all B-coefficient vectors d of splines in S0, the solution
set for d can be written as d = Vdh Substituting this set for d and the solution set (A.9)
for c in (A.8) gives

dT
h V

T
M

(

V ċh + Z φ̇Γ

)

+ dT
h V

T
K

(

Vch + ZφΓ

)

= dT
h V

T
Fφ (A.10)

which is a reduced unconstrained system of order N −R∗ projected on the null space of
the side constraints. Since (A.10) must hold for all dh, (A.10) is equivalent to

(
V

T
MV

)
ċh = V

T
[

−KVch − KZφΓ + Fφ− MZ φ̇Γ

]

(A.11)

Defining the following matrices

A = −
(
V

T
MV

)−1
V

T
KV , AΓ = −

(
V

T
MV

)−1
V

T
KZ

BΩ =
(
V

T
MV

)−1
V

T
F , BΓ = −

(
V

T
MV

)−1
V

T
MZ

(A.11) can be written as

ċh = Ach + AΓφΓ + BΓ φ̇Γ + BΩφ

Finally we obtain the system in state-space format
[

ċh

φ̇Γ

]

=

[
A AΓ

0 0

] [
ch
φΓ

]

+

[
BΓ

1

]

φ̇Γ +

[
BΩ

0

]

φ (A.12)
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A.2. Validation

In this section the numerical method is validated using the temporal stability theory.
By considering the channel flow (figure 1) with spatially periodic boundary conditions
the eigenvalues of the state-space model (A.12) can be compared with the temporal
eigenvalues of the Orr-Sommerfeld equation (2.15). The channel of length L = 8π is
considered for the case Re = 7000. The S0

4(T960) state-space model which is used for the
controller synthesis is again considered but now with periodic boundary conditions. Pe-
riodic boundary conditions can be applied in the numerical method by simply extending
the inter-element continuity between the inflow and outflow. The open-loop uncontrolled
system has the following state-space representation

ċh = Ach

We wish to compare the eigenvalues λ of A with the eigenvalues ω of the Orr-Sommerfeld
equation. The eigenvalues of A correspond to fundamental solutions eλt in the time
domain. From (2.9) it follows that the temporal frequencies of the Orr-Sommerfeld
equation can be related to system eigenvalues by

λOS = −iωOS (A.13)

Furthermore, the wavelengths that fit in a periodic channel of box size L are given by
λx = L

j , j ∈ N+. Hence the corresponding wavenumbers are given by αj = 2πj
L =

jα0, j ∈ N
+ with α0 the fundamental wavelength. To compare the eigenvalues of the

state-space model we solve the Orr-Sommerfeld equation for a set of integer multiples of
the fundamental wavenumber and apply the conversion (A.13) to relate the frequencies ω
to system eigenvalues λ. The dominant eigenvalues of the Orr-Sommerfeld equation and
the spline model are listed in table 3. The spline model accurately captures the dominant
dynamics of the flow.

Appendix B. Solution of the H2 optimal control problem

This section presents the state-space formulas for the controller that solves the H2

optimal control problem. The reader is referred to Doyle et al. (1989) and Zhou et al.

(1996, chapter 14) for the derivation of the formulas and more information about this
control theory. The H2 control problem considers the generalised plant with state-space
realisation

u̇ = Au+ B1w + B2φ,

z = C1u+ D12φ

ν = C2u+ D21w

The output feedback φ(s) = K (s)ν(s) must internally (exponentially) stabilise the
system and minimise the H2 norm of the closed-loop map Tzw defined by (2.32). This
problem has a unique solution provided that
(i)(A,B2,C2) is stabilisable and detectable
(ii)D12 and D21 have full rank.

(iii)

[
A − iωI B2

C1 D12

]

has full column rank for all ω

(iv)

[
A − iωI B1

C2 D21

]

has full row rank for all ω
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k Orr-Sommerfeld λOS spline λ |λ − λOS |

1 0.00171539 - 0.25292937i 0.00171537 - 0.25292939i 0.00000003
2 -0.00759183 - 0.16438997i -0.00759179 - 0.16439009i 0.00000013
3 -0.01182921 - 0.34340007i -0.01183063 - 0.34339614i 0.00000418
4 -0.01747563 - 0.03476212i -0.01747563 - 0.03476210i 0.00000002
5 -0.01806727 - 0.10889122i -0.01806702 - 0.10889070i 0.00000058
6 -0.02099365 - 0.22879485i -0.02099071 - 0.22879873i 0.00000487
7 -0.02111395 - 0.22887111i -0.02111549 - 0.22886843i 0.00000309
8 -0.02144973 - 0.08601143i -0.02144968 - 0.08601153i 0.00000011
9 -0.02973214 - 0.47006733i -0.02975512 - 0.47005252i 0.00002734
10 -0.02982088 - 0.47011896i -0.02982758 - 0.47015029i 0.00003204
11 -0.03010486 - 0.18403967i -0.03010637 - 0.18403908i 0.00000162
12 -0.03639968 - 0.71336680i -0.03574655 - 0.71362950i 0.00070398
13 -0.03646103 - 0.71340240i -0.03643618 - 0.71340606i 0.00002512
14 -0.03770525 - 0.21175241i -0.03763012 - 0.21170367i 0.00008956
15 -0.03799777 - 0.21196786i -0.03804988 - 0.21203181i 0.00008249
16 -0.04198552 - 0.95771911i -0.04124565 - 0.95600997i 0.00186241
17 -0.04201606 - 0.95773859i -0.04200127 - 0.95779573i 0.00005902
18 -0.04238220 - 0.24852281i -0.04238296 - 0.24852450i 0.00000185
19 -0.04672358 - 0.41404472i -0.04669017 - 0.41400991i 0.00004825
20 -0.04686574 - 1.20274634i -0.04683349 - 1.20289856i 0.00015560
21 -0.04687263 - 1.20274602i -0.04810140 - 1.20071794i 0.00237128
22 -0.04951767 - 0.08897461i -0.04951630 - 0.08896558i 0.00000913

Table 3: Dominant eigenvalues of the S0
4(T960) spline model compared

with the solution of the Orr-Sommerfeld equation for αj =
2πj
L , j ∈ N+.

The channel with a length L = 8π is considered for the case Re = 7000
with spatially periodic boundary conditions

The state-space realisation of the optimal controller K (s) is then given by

u̇K = AKuK + BKν

φ = CKuK

where

CK = − (B∗
2X + D

∗
12C1)

BK = (YC
∗
2 + B1D

∗
21)

AK = A + B2CK − BKC2

and where X and Y are the unique solution of the following algebraic Riccati equations

(A − B2D
∗
12C1)

∗
X + X (A − B2D

∗
12C1)− XB2B

∗
2X + C

∗
1C1 − C

∗
1D12D

∗
12C1 = 0

(A − B1D
∗
21C2)Y + Y (A − B1D

∗
21C2)

∗
− YC

∗
2C2Y + B1B

∗
1 − B1D

∗
21D21B

∗
1 = 0

For the control objective considered in this paper there are no cross terms in the cost
function z, that is D∗

12C1 = 0 and the process noise and measurement noise are assumed
to be uncorrelated, that is B1D∗

21 = 0.
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