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Long Short-Term Memory Network Based
Trajectory Prediction Incorporating
Air Traffic Dynamics

Jean-Luc Overkamp,
supervised by Junzi Sun and Jacco M. Hoekstra
Control and Simulation, Faculty of Aerospace Engineering, Delft University of Technology

Abstract—Accurate four dimensional trajectory predictions
are required for the continued implementation of Trajectory
Based Operations. In addition, decentralized, free routing can
make medium- to long-term flight trajectories more difficult
to predict. Novel trajectory prediction techniques are needed,
independent of waypoint-to-waypoint navigation and air traffic
control operator behavior. The effect of air traffic dynamics on
flight trajectories are currently under-explored. This research
aims to improve the accuracy of medium- to long-term 4D flight
trajectory predictions by incorporating a model that encompasses
the dynamics of the air traffic situation. Data-driven techniques
are well-suited to trajectory prediction purposes as high-fidelity
air traffic and environmental data are more widely available. A
statistical analysis is first conducted to select the most suitable air
traffic dynamics features for the purpose of trajectory prediction.
Six features are identified that correlate to the track deviation.
This paper proposes a composite, deep neural network to predict
individual trajectories, merging a Long Short-Term Memory
(LSTM) network with a 2D convolutional LSTM (ConvLSTM)
based network. The air traffic dynamics features are translated
to a spatiotemporal map and processed by a series of ConvLSTM
layers. 75% of the 4D flight trajectory predictions, with traffic
density as a feature, have a cross-track error under 15 NM at a 28
minutes of look-ahead time. Moreover, under certain conditions,
the proposed model is able to make trajectory predictions with
higher accuracy compared to the filed flight paths. However,
there is no observable improvement in the trajectory prediction
accuracy by incorporating air traffic dynamics into the proposed
composite ConvLSTM model compared to a stacked LSTM
model without the air traffic dynamics. The surrounding air
traffic dynamics are of some, but minimal, influence to the 4D
trajectories of individual flights. With an improved model, it
is likely that traffic density can contribute to more accurate
4D flight trajectory predictions. The results encourage further
research on the effects of air traffic dynamics on the individual
trajectories.

Index Terms—Air traffic dynamics, air traffic complexity, tra-
Jectory prediction, 4D trajectories, Long Short-Term Memory net-
works, ConvLSTM.

I. INTRODUCTION

HE operational capabilities of traditional Air Traffic
Management (ATM) are reaching the ceiling of capacity,
efficiency, and cost effectiveness. Trajectory Based Operations

Junzi Sun is an assistant professor of Communication, Navigation, Surveil-
lance/Air Traffic Management with the Control and Simulation research group
at the TU Delft

Jacco M. Hoekstra is a full professor of Communication, Navigation,
Surveillance/Air Traffic Management with the Control and Simulation re-
search group at the TU Delft

(TBO) are part of the solution and allow increased capacity,
safety, and efficiency. The adaptation of TBO demands an
improvement in Four Dimensional (4D) trajectory prediction
accuracy because of the interconnected nature of all stages of
the trajectory cycle. In addition to TBO, the implementation of
free routing provides a pilot more freedom to fly the preferred
flight path. However, losing the dependency on waypoint-to-
waypoint navigation, (inefficient but predictable) Air Traffic
Control (ATC) interventions, and use of standardized routes
reduces the predictability of flight trajectories.

In a controller- and route independent environment, it is
expected that the air traffic situation encountered en-route
affects the flight intent of individual aircraft, thus changing
the flown flight path. Consequently, a relationship between air
traffic dynamics and individual en-route flight paths can be
used to predict trajectories. However, the effects between air
traffic dynamics and the flown trajectory and how this can
be used to predict flight trajectories has not been previously
studied. The combination of recently published high-fidelity
air traffic and environmental data with data-driven techniques
provide a novel opportunity to address this research gap.

The objective of this research is to improve the accuracy of
medium- to long-term flight trajectory predictions by incorpo-
rating a model that encompasses the dynamics of the air traffic
situation. To achieve this, a two-step method is conducted. In
the first phase, a statistical analysis is conducted between the
air traffic dynamics and individual trajectories. The purpose
of the first phase is to understand, identify, and select relevant
features of the air traffic dynamics that have a relationship
with individual trajectories. In the second phase, the trajectory
prediction is performed. The purpose of this phase is to
design and test a novel data-driven trajectory predictor that
incorporates the selected air traffic dynamics features, thereby
aiming to improve the accuracy of the trajectory prediction.

This research paper presents the related works (Section II);
followed by the methodology (Section III), including the
calculation of the air traffic dynamics features, the statistical
analysis, and the deep learning trajectory prediction model; in
Section IV, the experimental set-up of the trajectory predic-
tion phase is presented; the results of the statistical analysis
are presented in Section V; followed by the results of the
trajectory prediction phase, in Section VI; last, the discussion,
conclusion, and recommendations are provided in Section VII,
VIII, and IX, respectively.



II. RELATED WORKS
A. Developments in Air Traffic Management

The Single European Sky initiative and its USA equivalent,
NextGen, are ongoing modernization projects aiming to in-
crease capacity, overall efficiency, and safety, as well as to
reduce environmental impact. A cornerstone of both projects
is the ATM concept of TBO'.

TBO places 4D trajectory information in the center of
the ATM chain, demanding that all stages of the trajectory
life-cycle -from planning to execution and amendments- are
linked. In TBO, the pilot and airliner have the freedom to
choose and optimize the route, and are not strictly limited
to waypoint-to-waypoint navigation upon ATM instruction.
Interconnection, sharing of information, and the integration
with decision support tools will allow optimized services for
all ATM stakeholders. This integration, and thus dependability,
of services can only be attained with high accuracy (4D)
trajectory prediction. Moreover, ATC capacity, procedures, and
a lack of shared information place significant restrictions on
the demand and capacity balance. Accurate global navigation
and improved decision support tools for ATC have allowed
an increased shift from ground navigational aid use to area
navigation operations, providing timely alerts when an aircraft
deviats from its assigned route. Naturally, this also places an
increased requirement on the accuracy to be able to predict
the position of an aircraft.

Implementation of the Free Route Airspace’ (FRA) is a
key element of TBO. FRAs are specified volumes of upper
airspace that support the concept of operations in which a
user has the freedom to plan a route between defined entry and
exit waypoints. FRA has been implemented in three quarters
of European (upper) airspace. Flights remain subject to ATC
and, depending on airspace availability, routing is possible via
intermediate waypoints. The freedom to execute any preferred
route by pilots reduces the predictability because of reduced
ATC standardization and reduced dependency on (consistent,
thus predictable) controller strategies. Next generation 4D
trajectory predictors therefore need to be less controller and
route dependent and more dependent on individual aircraft
behavior.

B. Air Traffic Dynamics

Literature related to the modelling of air traffic dynamics
can be roughly divided into two categories, depending on the
phase of flight: (pre-)tactical or in-flight. The tactical flight
planning phase refers to hours or minutes prior to departure.
In this phase, the Air Traffic Flow and Capacity Management
requires air traffic dynamical models to predict and solve the
demand and capacity balance. Currently, the in-flight phase
requires an air traffic dynamics model to model the real-time,
local, air traffic complexity. Quantifying the sector complexity
can help the Air Navigation Service Provider predict the
workload of controllers and make tactical decision on how

Uhttps://www.icao.int/airnavigation/tbo/Pages/Why-Global-TBO-
Concept.aspx
Zhttps://www.eurocontrol.int/concept/free-route-airspace

to ’simplify’ the traffic distribution to relieve the Air Traffic
Control Operator (ATCO) workload. In fact, it is the so-
called flight intent of pilots and ATCOs that causes track
deviations from planned trajectories, not the demand and
capacity balance. For these reasons, this literature overview
will focus on air traffic complexity and workload modeling in
order to quantify the air traffic dynamics.

1) Air Traffic Complexity and Workload Modelling: A
quantitative assessment of the cognitive complexity was
needed to control and understand sector capacity as well as
to make progress in the automation of ATM. However, the
subjective ATCO workload is highly complex and includes
qualitative as well as quantitative metrics. The relationship be-
tween complexity and workload is mediated by several factors,
including equipment quality, individual controller differences,
controller cognitive strategies, and ATC procedures [1], [2],
[3]. Multiple efforts have been taken to objectively measure
and model the air traffic complexity, which will serve as a
basis for the air traffic dynamical models.

NASA was first to propose Dynamic Density (DD) [4]. This
metric is composed of traffic density and traffic complexity,
which constitutes of various weighted complexity factors. The
purpose was to measure the ATCO workload. It is a weighted
linear function, initially including eight air traffic complexity
terms in addition to air traffic density. Multiple variations of
this model have been validated, contributing to a vast set
of air traffic complexity factors. A more novel approach to
modelling controller workload, but with an effectively similar
working principle to the linear regression of DD, is the use
of Neural Networks (NNs). In [3] and [5] a large variety of
complexity factors is fed into a standard multilayer perceptron.
The network outputs an estimate of the complexity. Using such
methods reduces the dependency on the concept of operations,
making it a better universal approximator.

2) Next Generation Complexity Modelling: With the in-
crease of aircraft on-board autonomy and self-separation, a
renewed push is made to model the air traffic dynamics and
complexity without the controller workload in the loop. This
will lead towards a partially decentralized control scheme for
ATM. Piroddi and Prandini argue that the next generation
ATM complexity evaluation will support the functionality of
on-board trajectory prediction [6], [7].

Three-dimensional aircraft proximity maps evaluate the fu-
ture probability of presence of aircraft at any given point of the
airspace in [8]. Similarly to these proximity maps, Prandini in-
troduces a conflict map to study the effect of these probabilities
on surrounding aircraft [9]. This concept is further developed
in [10], where the uncertainty in future aircraft positions are
taken into account to evaluate the complexity. This approach is
potentially useful as it includes timely identification of conflict
situations which require maneuvering.

On a very different note, in [1] it is questioned if the
complexity factors that are applied in DD models during en-
route based operations are also applicable to TBO. This led
to a number of factors that have been shown to accurately
represent ATC complexity under TBO conditions.

In a geometric approach, complexity is defined as a geo-
metric zone of influence, which is an envelope of possible



motions that lead to the set of possible locations reachable
by an aircraft from its intended trajectory. This approach has
been researched in various studies, including in the Solution
Space Diagram research [11]. To reduce the subjectivity error,
Delahaye et al. [12] evolved this approach and evaluate
complexity in which the relative motion of aircraft represents
intrinsic traffic disorder. The traffic disorder is represented by
a three-dimensional complexity coordinate, composed of three
axes: density, divergence/convergence, and (in)sensitivity. The
spatial approaching rates have also been successfully explored
in [13] as a measure for complexity. Perhaps the most sig-
nificant work on modelling the intrinsic complexity of the
air traffic is also by Delahaye et al. [14], by pure dynamical
systems modeling. The so-called Lyapunov exponents are a
traffic disorder metric that measure the sensitivity to initial
conditions of the dynamical system.

C. Data Driven Trajectory Prediction

Three classes of trajectory predictors are observed: nominal
(deterministic), worst-case, and probabilistic. Nominal meth-
ods predict a single trajectory by propagating the observed
aircraft and atmospheric states along a single trajectory. Gen-
erally speaking, this means that the models used to calculate
a trajectory are (analytical) performance based models. Data-
driven prediction models are inherently probabilistic because
historical data or input data with a specific distribution are
translated into the most-likely numerical solution. Data-driven
techniques allow trajectory predictions based on machine
learning and agent-based modeling methods, considering all
relevant, actual historical data, including contextual features.
Therefore, these methods can encapsulate more parameters
and underlying relations which remain hidden with analytical
methods. SESAR’s Data-driven AiRcraft Trajectory prediction
research® (DART) project emphasizes the importance and
potential benefits of such novel applications and has conducted
several comparative studies [15].

An important remark is that many studies apply clustering
of the highly repetitive flight trajectories and thus resemble a
classification problem. Clustering, often applied in conjunction
with data driven trajectory predictions, is not applied in this
research because the application of this research is concerned
with FRA and en-route flights, aiming to predict trajecto-
ries independent of standard routes. The trajectory prediction
problem in this research is therefore a continuous time-series
regression problem without primarily discrete nor categorical
elements.

In 2013, Leege et al. [16] proposes Generalized Linear
Model (GLM) to predict the time over points along the fixed
arrival route. A novelty is the stepwise regression approach to
determine the explanatory power of each input variable. How-
ever, by direct comparison between Multiple Linear Regression
(MLR) and NNs, the NNs outperform MLR for the trajectory
prediction task [17], [18]. Ayhan [19] proposes a Hidden
Markov Model (HMM) to predict 4D aircraft trajectories,
taking into account atmospheric uncertainty. The airspace is
represented as set of (discrete) 3D cubes, where each cube

3http://dart-research.eu/

contains homogeneous environmental data. A trajectory is then
predicted by a sequence of these cubes with spatiotemporal
attributes. This successful concept can be translated to this
research, in which the cubes contain air traffic dynamics
instead of weather information.

Next, Recurrent Neural Networks (RNNs) are especially
suitable for sequence modeling and employing (time-varying)
spatiotemporal patterns, as observed with (multiple) aircraft
trajectories. The LSTM network is a popular adaptation of
a RNN and has been proposed and applied to trajectory
prediction [20], [21]. For certain time-series prediction tasks, it
has been shown that LSTM NNs outperform the autoregressive
moving average and support vector regression models [22],
[23]. The LSTM has been shown to also outperform Markov
Models for flight trajectory prediction [24]. Applied ensemble
methods such as Gradient Boosting Machines (GBM) and
random forest models, are well-suited to the trajectory pre-
diction problem [25], [26]. In direct comparison, GBM and
random forest models perform similarly and outperform other
ensemble techniques as well as logistic regression methods
[27], [28].

A novel extension of a LSTM layer is the 2D Convolutional
LSTM (ConvLSTM) layer, which allows spatiotemporal se-
quence forecasting. A ConvLSTM network combines pattern
recognition of 2D feature maps of convolutional networks
with the memory properties of a LSTM network (needed
for time-series). Novel and successful applications include
precipitation nowcasting* [29] and weather forecasting®. In
2019, a LSTM NN was proposed for trajectory prediction
that embeds convolutional layers to incorporate the convective
weather condition along with a flight plan [30]. This is a
similar approach to this research, except the weather condition
is substituted with air traffic dynamics. Reference [30] trains
a model based on a single trajectory. The ConvLSTM layers
provide an opportunity to include spatiotemporal air traffic
dynamics feature maps into a deep LSTM network and extract
complex patterns that are useful for trajectory prediction.

A deep LSTM network with ConvLSTM layers is expected
to be the most suitable data-driven trajectory predictor for the
application of this research because of the absence of cluster-
ing; the sequential, time-varying nature of flight trajectories;
and the spatiotemporal features of air traffic dynamics.

III. METHODOLOGY

The methodology proposed in this section consists of four
parts. First, the chosen input data is presented. Second, the air
traffic dynamics model is described. Third, the method of the
statistical analysis of these air traffic dynamics is proposed.
Then, the fourth section explains the working principle of
the LSTM and the ConvLSTM layers; discusses the data
preparation needed to perform the trajectory prediction; and
last, proposes the deep learning model design.

4Nowcasting is forecasting of the near-future.
Shttps://medium.com/@rajin250/precipitation-prediction-using-convlstm-
deep-neural-network-b9e9b617b436



A. Input Data

The data used for this study includes flight points, flight
airspaces, and flight details sourced from the Eurocontrol R&D
Data Archive®. This data is collected from all commercial
flights operated in and over Europe. It is a processed data
set to ensure accuracy that includes data from air navigation
service providers’ flight data systems, radar, and data link
communications. Each flight is recorded as a sequence of
flight points with time, flight level, latitude, and longitude at
each point. Moreover, the data set includes key details on the
flight, such as departure and arrival airport; departure time;
and aircraft type and operator.

The Eurocontrol September 2018 Monthly Network Op-
erations Report reveals that from the available months and
years of the Eurocontrol R&D data set, September 2018 had
the highest ever recorded daily traffic levels at around 34,000
flights [31]. The region that experienced the highest level of
en-route delay in September 2018 is the Karlsruhe Upper Area
Control (UAC). It is expected to be more likely for a flight
to deviate from the filed flight path when passing through
a highly congested region, thus revealing stronger patterns
between air traffic dynamics and flown trajectories. At night,
the airspace is not congested and so a variety of air traffic
dynamics is included in the selected data set. In line with the
objective of this study, Karlsruhe UAC is a FRA enabled area.
It is for these reasons that the Karlsruhe UAC is a suitable
region to apply this research, although the length of some
flights extend outside the UAC.

B. Air Traffic Dynamics

The air traffic dynamics are modeled by selecting fea-
tures which capture the most mathematically fundamental
and intuitive relationships which might be considered by
ATCOs and pilots in-flight. The reason to choose features
with distinctive and intuitive differences is so that this can
in turn lead to distinctive, understandable, and reproducible
differences in the trajectory prediction results. The proposed
features that constitute the model are based on the DD
model, the TBO complexity indicators, and one feature from
the Dynamic Weighted Network. The proposed features are
shown to correlate with (subjective) complexity in various
studies [1], [3]-[5], [13]. The selection is made based on the
literature study, evaluating each feature based on the following:
controller independence, route independence, objectivity, and
expected indicator of complexity. The following list includes
the proposed air traffic dynamics features, where each feature
is computed for each grid at each time step :

1) Traffic Density (7D);

2) Aircraft count (ACCO);

3) Heading change Count of aircraft making >
15°heading angle change within 2 minute period
(HdgCnt) and average heading change for aircraft
passing this threshold (HdgAvg);

4) Speed change Fraction of aircraft with an airspeed
change of >10 kts within a 2 minute period (SpdCnt)

Shttps://www.eurocontrol.int/dashboard/rnd-data-archive

and average airspeed change for aircraft passing this
threshold (SpdAvg);

5) Altitude change Fraction of aircraft making >750 ft
altitude change within 2 minute period (AltCnt) and av-
erage heading change for aircraft passing this threshold
(AltAvg);

6) Minimum distance Count of aircraft pairs at 3D Eu-
clidean distance less than 5 NM (MinDst5), 5-10 NM
(MinDst10), and 10-50 NM (MinDst50) separation.;

7) Mean separation Average horizontal distance between
all aircraft (AvgDst);

8) Heading Variance Standard deviation of aircraft head-
ing angles (SDHdg);

The purpose is to study and utilize the effects of the
air traffic dynamics on a single trajectory, therefore the air
traffic dynamics features must represent the interaction effects
between surrounding traffic, but not the entire sector. For
instance, a pilot will not alter the flight path when four aircraft
at a distance of 200 NM are changing their heading angle.
Computing each feature in a grid representation allows for the
consideration of surrounding air traffic in computing air traffic
dynamics features, as seen in Figure 1. To capture possible
differences in the consideration horizon of pilots and ATCOs
alike, the analysis is repeated for varying grid sizes: 0.5°,
1°and 1.5°. A 1°x1°grid is in the order 40x60 NM, but slightly
varies depending on the latitude. This approach has previously
been used for trajectory prediction based on weather informa-
tion in various papers [19], [28]. Kernel Density Estimation
(KDE) is applied to mitigate the discretization error of some
features.

G°E 7°E B°E 9°E 10°E 11°E 12°E 13°E 14°E 15°E

52°N

51°N

S0°N

49°N

45°N

GE TE BE OF 10°F L°F 12°F 13 14°F 15°E
Fig. 1: The computed KDE of Traffic Density, shown on the
grid representation with 0.5 degree grid size.

C. Statistical Analysis

The purpose of the statistical analysis is to provide a basis
for the trajectory prediction by better understanding the air
traffic dynamical behaviour and flight response to certain
features. The analysis also helps to indicate the potential
predictive power of the selected features. This in-turn allows
to verify the feature inputs to the prediction model, aiming to
increase the prediction model performance.



The statistical analysis is conducted between the dependent
variables as listed in Section III-B and three independent
variables: delay, instantaneous track deviation, and aggregated
track deviation. The three independent variables are metrics
used to evaluate the trajectory. In this paper, delay is defined
as the difference between the actual and filed duration of time
that an aircraft takes to pass through a sector. This is done by
comparing the filed and actual entry and exit times for each
flight. This way, the delay of a flight prior to entry does not
affect the results. The purpose of this metric is characterize
the effect of the air traffic dynamics features on the temporal
behavior of flights. Track deviation is defined as the geodesic
distance between the actual flight point and the nearest filed
flight point. The vertical element of track deviation is a direct
comparison between the altitude of the filed and the nearest
actual flight point: Flight Level (FL) deviation. The instanta-
neous track deviation equals to the average track deviation of
all flights in each grid at each time step. The purpose of this
metric is to capture generalized spatial effects that are time-
invariant. In other words, do the local air traffic dynamics
of surrounding traffic have a direct (short-term) effect on the
flown trajectory? The aggregated track deviation is calculated
through time integration of the track deviation between the first
and last point on the trajectory for each flight. The purpose of
this metric is to capture possible delayed or anticipated effects
to the air traffic dynamics features.

The instantaneous track and FL deviations are tested against
the corresponding air traffic feature grid values, at each time
step. The instantaneous features are the 13 features from
Section III-B plus the KDE of the following features: HdgCnt,
AltCnt, SpdCnt, MinDst5, MinDst10, MinDst50.

The aggregated track deviation and delay -one per flight-
are tested against the cumulative air traffic feature grid values
encountered by all flight points per flight. The cumulative fea-
tures consists of the 13 features, where only 7D is calculated
as a KDE, plus the size of each trajectory, measured by the
amount of (evenly sampled) flight points.

The statistical analysis is conducted by performing Spear-
man’s coefficient of rank correlation because the data is
numerical and does not pass the tests for normality. The
Spearman coefficient is a Pearson’s coefficient between the
rank variables and given in Equation (1)7. The Spearman’s
coefficient of rank correlation is a non-parametric statistical
test and provides a measure of how close two sets of rankings
correlate with another. The threshold for rejecting the null-
hypothesis lies at p < « = 0.02. This threshold is often set
at 0.05, but the amount of data samples is large, so a higher
threshold can be demanded.

2
pzl_cov(Rm,Ry)zl_ 6> d; )

Oy Oy n(n? —1)

Where, R, , denotes the rank variables, o, , is the stan-
dard deviation, d; is the difference in paired ranks, and n
is the number of pairs. Moreover, cross-correlation testing
is performed to detect any pair of features for which the

Thttps://statistics.laerd.com/statistical-guides/spearmans-rank-order-
correlation-statistical-guide.php

distributions are too similar. Cross-correlation testing is a step
in the statistical analysis process for dimensionality reduction
and reducing bias. The cross-correlation is tested by computing
the normalized covariance matrix.

D. Trajectory Prediction

In the second phase of this research, a LSTM based deep
NN with two branches is proposed that can incorporate air
traffic dynamics features to predict 4D trajectories. The flight
point and information input data is passed to one branch with
a LSTM layer. The spatiotemporal air traffic dynamics maps
serve as inputs to the branch with ConvLSTM layers.

1) LSTM Network: The LSTM is a type of RNN with
a specialized LSTM module designed to handle long-term
dependencies [32]. Instead of a single RNN module with
a tanh activation function, the LSTM has a unique module
that adds and removes information to the cell state through
structures called gates, in order to only pass on relevant
information. This avoids the vanishing gradient problem as
seen with RNNs. The structure of the repeated LSTM module
is shown in Figure 2.
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Fig. 2: An unrolled RNN with the repeated module showing
the LSMT with four interacting layers[33].

Equation (2) gives the gates, cell state, and activation
function equations, as explained below.

fi =0 Wypzy + Wiphi—1 + by)

iy = 0 (Waiwy + Whihi—1 + b;)

C, = tanh (Waecxse + Whohi—1 + bo)
Ct :ftQCt_l +it®ét

oy =0 (onxt + Whohtfl + bo)

ht = oy ® tanh (C})

Where © represents an element wise product. There are
three gates: the forget, f;; the input, i;; and the output gate, o;.
Each gate contains a sigmoid (o) layer which passes through
either all the information (1) or none (0). The forget gate, f,
can store or disregard the information from the cell state at
t — 1: Cy_1. The input gate, i;, controls the information that
will be added to the cell state, C;. The input gate first decides
to update the cell state or not through the sigmoid layer. The
tanh layer ([-1,1]) creates new feature values which are used
to update the potential new cell state, C;. The output gate, oy,
filters’ the cell state and determines how much of the updated
cell state to pass through as an output. First the sigmoid layer
decides which part to output, which is then passed through a
tanh function to map it between -1 and 1. C; and h; denote the
activation vector for each cell and memory block, respectively.
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Wy, Wi, We, and W, are the coefficient matrices. by, b;, bc,
and b, are the bias matrices. x; are the model inputs.

2) 2D Convolutional LSTM: A Convolutional Neural Net-
work (CNN) is a deep learning algorithm that can process
images and 2D spatial data, learn to distinguish and extract
features from the input data, and recognize patterns. The
spatiotemporal map, as seen in Figure 1, is essentially a low
resolution image consisting of a matrix of pixel values. The
architecture of a CNN is based around sequential convolutional
layers that apply relevant filters to the input data. A filter,
also called kernel, is a 2D array of weights that detects
certain patterns and is typically a 3x3 matrix. A convolutional
operation consists of the kernels passing over the input image
data and extracting features or patterns from the image. A
single layer can typically detect low-level features such as
edges or colors. With added layers, the network architecture
is adapted to high-level features. The output is known as a
feature map®.

The LSTM layer can capture temporal patterns, a convo-
lutional layer can capture spatial patterns. The ConvLSTM
layers can process sequential and spatial information. The
ConvLSTM has convolutional structures in the input-to-state
and state-to-state (recurrent) transitions and applies convo-
lutional operation instead of matrix multiplication [29]. By
stacking several layers, a specialized network model is build
for general spatiotemporal sequence forecasting problems. The
formulations in Equation (3) illustrate the difference with the
LSTM module as seen in Equation (2).

fr=0Wapx Xe +WhypxHi1 + Wep ©Coq + by)
iy =0 (Waix Xy + Whix He1 + Wei ©Croq + ;)
Cy = tanh (W % Xy 4+ Wie % Hy_1 + be)
Ct :ftQthl +zt®C’t
0 =0 (W];O x X+ Who* Hie1 + Weo ©@Cy + bo)
H; = oy © tanh (C;)
3)

Where * denotes convolutional operation and ® denotes an
element-wise product. This formulation of the ConvLSTM by
Shi et al.[29] is an extension to the LSTM in Equation (2),
introduced by Gers [34]. The effect of this ’peephole” variant
is the added cell state feedback at each gate (W, ®C;_1). The
main difference between the ConvLSTM and the LSTM is that
the inputs A}, cell states C, hidden states H, and gates iy, f,
and o; are 3D tensors, of which the last two dimensions are
spatial dimensions. Consequently, the multiplication between
the weight matrices and input and the weight matrices and pre-
vious hidden states are replaced with convolutional operation
(Wy x Xy and Wy, *« Hyi_1).

As merging with the vector output from the LSTM layer
is required, the output of the final ConvLSTM is flattened to
match the network model dimensions. A visual representation
of a convolutional operation is shown in Figure 3, the exact
model architecture is given in Section III-D4.

3) Data Preparation: The flight points and information
input data represent information which is generally available
to ATC:

8https://cs23 1n.github.io/convolutional-networks/#overview

3x3 kernel ConvLSTM; ConvLSTM,  Output

Input )

Fig. 3: General schematic structure of a convolutional opera-
tions of the ConvLSTM network branch.

1) Actual flight points Longitude, latitude, and FL at
constant time intervals, at least 5 minutes prior to the
first time instance of the prediction.

2) Filed flight points Longitude, latitude, and FL at con-
stant time intervals. The total time spans from the time
of the first actual flight point to the time at the longest
desired look-ahead time. e.g. 5 minutes of actual flight
points input and a 30 minutes look-ahead time require
35 minutes of filed flight points.

3) Time stamps Time of each flight point is formatted in
hours as a float with 2 decimal points at each instance.
The time stamp is only included as a variable for the
actual flight points.

4) Weekday The day of the week upon arrival in the sector
is formatted with hot-one encoding as a categorical
variable.

5) ICAO Flight Type Scheduled or non-scheduled com-
mercial operation is formatted with hot-one encoding as
a categorical variable.

6) STATFOR Market Segment Various market segments
of the flights are formatted with hot-one encoding as a
categorical variable.

The spatial coordinates are transformed from the spherical
coordinate system into 3D Cartesian coordinates, defined with
respect to the local tangent reference frame with East, North,
and Up (ENU) conventions and all numerical variables are
Min-Max normalized. Bucketing is applied to the filed flight
points because the filed flight points consists of a longer time
frame. Next, the data is formatted according to the the LSTM
input layer shape: [samples, time steps, features]. The length
of the samples vector equals the number of flights in the data
set, the time steps vector equals the number of actual flight
points, and features vector equals the number of variables.
Note that the length of the features vectors is larger than the
six mentioned variables in the list due to bucketting of the filed
flight points; Hot-one encoding of the categorical variables;
and depends on which weekdays are part of the data set.
The air traffic dynamics feature maps are the input to the
ConvLSTM layers and thus transformed into 5D tensor with
shape: [samples, time steps, channels, rows, columns]. The
length of the samples vector equals the number of flights.
The time steps span the length of the filed flight points, but
can have different time intervals. Therefore, the length of
the vector is not necessarily identical to the length of the
filed flight points vector. The channels refer to the number
of features, which will be fixed to one at a time. The rows



and columns equal to the length of grid rows and columns as
shown in Figure 1 and depend on the chosen grid size.

The output vector has the shape: [samples, time steps,
features]. For the output, this means samples length equals
the number of flights in the particular data set (training or
testing), the time steps equal the desired look-ahead time, and
the number of features is three (z, y, 2).

Two methods for splitting the data set into training and
testing sets are tested. The first method splits the data set
based on whole days. A caveat, however, is that there could
be a strong difference in flight patterns between days due to
passenger behavior differences in, for example, weekends or
weekdays. These patterns might not be properly recognized
if there are no repeated days in the training and testing set.
Therefore, the second method of splitting the data set is a
randomized split, with a 75/25 ratio in size of training and
testing data, respectively. A randomization of the flights might
result in the model training with a unrealistic (lower) airspace
occupancy.

4) Composite ConvLSTM Model Design: The deep learning
network processes two input data sources and utilizes both
LSMT layers as ConvLSTM layers, as introduced in Sec-
tion III-D1 and Section III-D2, respectively. The composite
ConvLSTM model architecture includes a variety of additional
layers and processing steps for the model to perform as
intended, as shown in Figure 4. The model is implemented
using the Keras® library in Python, which runs on top of
Tensorflow!?, an open-source platform for machine learning.

This model can be classified as a Multiple Parallel Input and
Multi-Step Output predictor'!. A model specifically developed
for forecasting variable length output sequences (sequence-to-
sequence) is called the Encoder-Decoder LSTM. The encoder
is a model responsible for reading and interpreting the input
sequence. Both ConvLSTM2D and the first LSTM layer con-
stitute encoding models. All ConvLSTM layers are followed
by a BatchNormalization layer in order to standardize the
inputs to the next layer, reducing the sensitivity to initial
weights and stabilizing as well as speeding up the learning
process. Tests have shown that a second ConvLSTM layer
leads to significantly improved prediction capabilities, but
at higher computational costs. Nonetheless, the performance
gain outweighs the computational costs. A RepeatVector is
implemented to repeat the fixed-length output of the encoder
so that the decoder part ’fits’ to the encoder. The model must
output a prediction for each time step in the output sequence,
rather than a single prediction at the end of the sequence.
Therefore, the decoding layers have the return_sequence set
to True. Dropout regularization is implemented to reduce
overfitting. Flattening allows the output shapes of the two
branches to be matched prior to the Concatenate layer which
merges the two branches. Finally, the TimeDistributed wrapper
on the output layer is used to wrap a fully connected Dense
layer. The TimeDistributed wrapper allows the same output
layer to be reused for each element in the output sequence.

9https://keras.io/api/layers/recurrent_layers/lstm/

Ohttps://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

Uhttps://machinelearningmastery.com/how-to-develop-lstm-models-for-
time-series-forecasting/
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Fig. 4: Schematic representation of the architecture of the
composite ConvLSTM model, a direct output of Keras.

In deep learning, anticipating the effect of each specialized
layer and the hyperparameters can be a challenge. The (hyper-
)parameters, tabulated in Table I, are selected by careful
consideration of the model and data types as well as by simple
sensitivity studies that observe the effect of experimentally
changing the values.

TABLE I: Table with relevant (hyper-)parameters.

Parameter Layers Argument
Units Istm_1 16
All other 128
Dropout All 0.25
Filters conv_lIst_m2d 32
conv_lIst_m2d_1 16
Kernel size All ConvLSTM 3x3
Activation All LSTM and
Function ConvLSTM tanh
Recurrent . ,
Activation LSTM sigmoid
ConvLSTM hard sigmoid
Optimizer ADAM
Loss Function MSE
Batch Size 64
Shuffle False
Epochs 50

A batch size of 1 allows online learning. This means that
after each training step, the network weights are updated and
the true output of the previous time step is used to make a
new prediction. In practice, this is computationally much too



heavy. Testing various batch has shown that a batch size of
64 only slightly deteriorates performance but allows a much
better computational time per epoch. The only consequence is
that it adds some instability to the learning process.

IV. EXPERIMENTAL SET-UP OF THE TRAJECTORY
PREDICTION PHASE

This section will specify the steps taken to test and evaluate
the deep learning models, as proposed in Section III. First,
the metrics used to present and analyze the results of the
trajectory predictor are discussed. Next, the direct comparison
between the air traffic dynamics and the three verification tests
are explained. Fourth, some iterative model improvements are
elaborated upon. Table II presents an overview of all the tests
that are conducted for the trajectory prediction.

A. Model Evaluation

To assess the learning ability and behavior of the models;
evaluate the prediction performance; and present the results, a
variety of metrics and methods are applied.

1) Model Loss and Accuracy: The loss and accuracy func-
tions of the training and validation data sets are evaluated
after each run. This plot is used to evaluate the training
progress, convergence speeds as well as stabilization, and over-
or underfitting of the model. The loss function corresponds to
the Mean Square Error and measures the error in the learning
process. The model accuracy calculates the percentage of
predicted values that match the actual values.

2) Prediction Accuracy: Three conventional navigation-
error metrics are used evaluate the model output. The flight
level error is a direct comparison between the actual flight
points and predicted model output. The prediction accuracy in
the horizontal plane is evaluated by measuring the Cross-Track
Error (CTE) and the Along-Track Error (ATE). The horizontal
errors are visualized in Figure 5. These are presented as a
box-plot for each look-ahead time. The box-plots include the
median as well as the outer bounds of the prediction accuracy.
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Fig. 5: The horizontal performance metrics between the actual
flight path (red) and predicted flight path (blue).

3) Visual Inspection: A random selection of flights is
translated to a map to visually inspect the difference between
input flight points, input filed flight points, the predicted flight
points, and the actual flight points.

4) Computational Effort: The models are trained on a
GPU (NVIDIA K80) backed server provided by Kaggle. This
significantly speeds up the training process but has time and
RAM limits on allowed usage. The time taken per epoch is
used to compare training speeds per model, which helps assess
the model efficiency.

B. Direct Comparison between Air Traffic Dynamics Features

The composite ConvLSTM network is used to compared the
performance of the selected air traffic dynamics features. The
purpose of these tests is to observe the difference in trajectory
prediction accuracy for the various air traffic dynamics fea-
tures. The tests include feature grids with randomized values
and all-zero values to test if the air traffic dynamics features
have any effect on the prediction accuracy. The comparison is
performed with identical models and identical random seeds.

As mentioned in Section III-D, the model is tested with two
types of data set splits: based on whole days and randomly
sampled flights. However, certain distributions of the whole
day data split lead to significant overfitting. An example
model suffering from overfitting can be found in Appendix A.
The prediction accuracies of these runs cannot be reliably
compared with the runs that do not suffer from overfitting.
Therefore, experiment la -as seen in Table II- includes only
days 2 and 3 as training days and day 1 as the testing day and
does not suffer from overfitting.

In order to further mitigate this effect as well as to verify
the difference between air traffic dynamics features, the ex-
periment is repeated with some changes to the experimental
set-up. Test 1b includes seven days of flight data; a random
split of training and testing flights at a 0.75/0.25 ratio; and 2
minute time intervals between points as well as feature grids.
This experiment corresponds to test 1b in Table II. Note that
test 1a does not include the results of the randomly sampled
data split due to a similarity in results to test 1b.

C. Baseline Experiment

A baseline model is used to further test the effects of the
air traffic dynamics features on the accuracy of the trajectory
prediction. The baseline model is a fully-connected LSTM
network that is essentially a stack of the right hand branch
of the composite ConvLSTM model with the three remaining
LSTM layers, as shown in Figure 4. The baseline model can
be classified as a stacked LSTM network and has the same
Dropout layer as well as a TimeDistributed wrapper to wrap
a fully connected Dense layer. The input is identical to the
flight point and information input data as used in the main
experimental model 1b, using a randomly sampled data split
only. The (hyper-)parameters are equal to those relevant to
the LSTM layers as presented in Table I. The set-up of the
baseline experiment is presented as test 2a in Table II.

D. Verification

1) Accuracy of Filed Flight Points: The accuracy of the
filed flight plan is considered to evaluate the deep learning
model effectiveness. A deep learning model -with the filed



flight points as inputs- can be expected to predict the flight
points with at least the same accuracy as the raw filed flight
points. This test correspond to test 3 in Table II.

2) Prediction Model Simplification: A simplified composite
ConvLSTM model is also tested. The idea is that this will
reduce noise and model error and thus make differences
between air traffic dynamics features more distinguishable.
The aim of this verification test is to test if the air traffic
dynamics features contain information that can be recognized
by the ConvLSTM layers. This model does not include any
flight information nor filed flight points but does contain 5
minutes of actual flight points (x,y,z) prior to the prediction.
The prediction only consists of a single predicted flight point
at 24 minutes look-ahead time. The runs are performed with
the selected air traffic dynamics features as well as all-zero
grid values. See test 4 in Table II for the details.

E. Iterative Model Improvements

During the tuning, testing, and result collection phase,
observations and analyses are continuously made that lead to
model improvements. Nevertheless, not all intermediate results
are discarded as some direct comparisons still reveal certain
insights into the effect of air traffic dynamics and on the model
performance. For that reason, Section VI includes intermediate
results that do not necessarily correspond to the most optimal
model design or set-up, as seen with test 1a. Moreover, this
section presents an improvement made to the baseline model.

1) Initialization Error: The models of test la, 1b, and 2a
used to comparing the air traffic dynamics features suffer from
unexpected initialization errors. The observation is classified
as a model error because the predictions at short look-ahead
times should correspond closely with the actual flight points
that are part of the model input data. A simple linear ex-
trapolation of the input flight points would produce better
initial predictions than most of the observed predictions with
initialization error. These errors are highlighted in Section VI
and are visualized for further reference in Appendix B.

2) Improved Baseline Model: To better explain the re-
sults of the deep learning models as well as to mitigate
the initialization error, an improved version of the baseline
model is included in the results: test 2b in Table II. To make
a reliable comparison between the baseline model and the
ConvLSTM model, the improved baseline model is not used
in the assessment of the air traffic dynamics features. The
following two improvements are made to the baseline model.

First, the length of the input time vector is increased. The
initial input time vector includes 6 minutes of data, corre-
sponding to a sequence of 3 data points. The input sequence
is too short for the model to accumulate enough information
over the time inputs. To mitigate this limitation, the length of
the input sequence is increased to 6 points, corresponding to
12 minutes. Consequentially, the total considered time frame
of each flight is increased from 35 to 42 minutes, which
significantly reduces the number of selected flights from the
data set'?. To mitigate the loss of data, the data set is extended

2The data selection from the raw data source includes several filters in
order to select suitable en-route flights. For example, the flights must remain
above a certain FL to be inside the UAC.

TABLE II: An overview of all the tests that are conducted in
Section VI, including variations to the model.

Model/Test  Data set  Train/Test Interval Input Output
Test Type [days] Split [minute] Sequence  Sequence
P Y P Length Length
la ConvLSTM 3 Whole days 1 5 points 30 points
1b ConvLSTM 7 Rand 0.75/0.25 2 3 points 14 points
2a Baseline 7 Rand 0.75/0.25 2 3 points 14 points
op  Improved Rand 0.75/025 2 6 points 12 points
Baseline
Filed Flight .
3 Point CTE 7 2 17 points
L . 1 point
4 Simplified 7 Rand 0.75/0.25 1 5 points at 24 mins

to include 2 weeks of flights and the look-ahead time is
reduced to 24 minutes. Second, the default bias initializer
generates tensors intitialized to zero. This is sufficient when
long time sequence inputs allow a faulty initialization to be
corrected by accumulating enough information. However, in
the case of short input sequences, this is not the case. To
make the model more responsive to initial weights and speed
up learning, the bias tensors are initialized to one.

V. RESULTS OF THE STATISTICAL ANALYSIS

This section presents the results of the statistical analysis
by first analyzing the rank correlations followed by a cross-
correlation analysis. In Section V-C an evaluation of the
statistical analysis is performed.

A. Rank Correlation

The results of the Spearman test and the corresponding p-
value with a grid size of 0.5 degrees on a geodetic coordinate
system are given in Table III and Table IV. The bandwidth of
the KDE is set to three times the grid size.

TABLE III: Spearman’s coefficient of rank correlation for the
instantaneous features at 0.5 degree grid size

Feature Track Deviation FL deviation
p p-value p p-value

TD 0.540 0.000 0.005 0.130
ACC 0.341 0.000 -0.014  0.062
HdgCnt 0.060 0.000 0.030 0.000
HdgCntKDE -0.178  0.000 0.008 0.129
HdgAvg 0.118 0.000 0.050 0.000
SpdCnt 0.063 0.000 0.013 0.072
SpdCntKDE 0.297 0.000 0.007 0.097
SpdAvg 0.048 0.000 0.034 0.000
AltCnt 0.063 0.000 -0.029  0.000
AltCntKDE 0.255 0.000 -0.007  0.106
AltAvg 0.048 0.000 -0.019  0.009
MinDst5 0.140 0.000 -0.008  0.286
MinDst5KDE -0.215  0.000 -0.008  0.137
MinDst10 0.175 0.000 -0.016  0.024
MinDstIOKDE ~ 0.067 0.000 -0.002  0.658
MinDst50 0.200 0.000 -0.011  0.145
MinDst50KDE 0475 0.000 0.004 0.238
AvgDst -0.080  0.000 0.001 0.864
SDHdg 0.286 0.000 -0.009 0.213




TABLE IV: Spearman’s coefficient of rank correlation for the
aggregated features at 0.5 degree grid size

Feature Track Deviation FL Deviation Delay
p p-value p p-value p p-value

TD 0.433  0.000 -0.003  0.831 -0.048  0.000
ACC 0.464  0.000 -0.004  0.760 -0.044  0.001
HdgCnt 0222 0.000 0.043 0.002 -0.031  0.022
HdgAvg 0.376  0.000 0.057 0.000 -0.031  0.023
SpdCnt 0.303  0.000 0.014  0.294 -0.061  0.000
SpdAvg 0.363  0.000 0.041 0.002 -0.031  0.024
AltCnt 0.174  0.000 -0.032  0.017 -0.114  0.000
AltAvg 0.142  0.000 -0.005 0.734 -0.114  0.000
MinDst5 0.182  0.000 -0.024  0.080 -0.049  0.000
MinDst10  0.253  0.000 -0.018  0.197 -0.040  0.004
MinDst50 0361  0.000 -0.009  0.492 -0.056  0.000
AvgDst 0.545  0.000 0.021 0.129 0.010  0.453
SDHdg 0.320  0.000 0.001 0.942 -0.037  0.006
Size 0.547  0.000 0.020  0.142 -0.016  0.238

B. Cross-Correlation

Cross-correlation testing is performed between the depen-
dent variables calculated for each grid at each instant as well
as aggregated over each flight. The analysis points out that
from the instantaneous measures of the variables, the following
variables are correlated, of which the latter is discarded: AltCnt
and AltAvg; TD and ACC; AvgDst and ACC; MinDst50 and
‘KDE of MinDst50’. The analysis of the aggregated measures
of the variables shows correlation between AvgDst and Size,
of which Size is discarded as a variable. MinDst50, ACC, and
TD are all highly correlated, MinDst50 and ACC are discarded
as variables.

Last, based on the cross-correlation analysis it is argued that
the KDE of the variables cannot be reliably evaluated. Some
grid values that are zero for non-KDE features contain a value
for KDE features due to the KDE-distribution. Consequently,
the KDE-features have increased rank correlation at these grids
that were previously zero. As a result, the KDE of the variables
are cross-correlated. However, these correlations do not form
a causal relationship but are a statistical flaw that introduces
bias. Therefore, the KDE correlations are excluded from the
evaluation of the feature rank correlation.

C. Evaluation of Statistical Analysis

First, the following caveats to the statistical analysis must
not be overlooked. The independent variables of the statisti-
cal analysis are not identical to the output variables of the
predictive model, thus a discrepancy is expected to remain.
Correlations do not imply causality: this is observed with the
cross-correlated KDE of the variables and also between the
highly correlated Size and AvgDist variables for aggregated
features. Moreover, bivariate testing is not indicative of possi-
ble trivariate (or higher) relationships between the metrics and
features. It is expected however, that multivariate relationships
can be captured by the composite ConvLSTM network.

None of the computed features have a convincing statis-
tical monotonic relation with FL deviation. 14 of the 19
variables for individual grid features do not pass the null-
hypothesis. The aggregated variables lead to similar outcomes.
This suggests that the FL deviations are insignificant and/or
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randomly distributed. ATCOs and pilots are not inclined to
resort to vertical manoeuvres to de-conflict air traffic situations
and at the same time, the deviations are very small. The
vertical separation requirement is much smaller in magnitude
compared to the horizontal, so any vertical manoeuvre is
small. As a consequence, predicting the vertical component
of the trajectory is not a priority and is kept separate from the
horizontal component during performance evaluation.

The results of the delay metric suggest that there are no
significant correlations between the air traffic features and
delay. A majority of the variables pass the null-hypothesis,
but the magnitude of the correlations are mostly insignificant.
Multiple variations to the delay metric have been tested with
similar outcomes. Two explanations can be attributed to this
unexpected result, which are not mutually exclusive. First,
computing delay depends on the irregular sector boundaries
and all flights have different entry and exit points. This is
even the case between the actual and filed flight points for the
same flight. These statistical impurities may cause an excess
of noise. Second, the results could mean that for en-route
traffic, delay is not significantly affected by the surrounding air
traffic dynamics. This conclusion does not coincide with the
expectation. Therefore, this may be interpreted as an indication
that the relation between the air traffic features and temporal
effects are highly non-linear and/or multivariate.

The results of the horizontal track deviation support the
research question and lead to valuable insights that are applied
during the trajectory prediction. The individual features per
grid show that the standard deviation of the heading angle and
traffic density have the highest rank correlation. Generalizing,
the remaining KDE of the features have higher correlation,
but are disregarded as mentioned before. Especially with the
aggregated features, significant correlations can be observed
with the track deviation. The difference between individual
grid feature values and aggregated values verify that there is
a strong time-varying effect between feature grid value and
track deviation. This verifies the suitability of the LSTM layers
which capture temporal effects.

Comparing the results of different grid sizes suggests that
the grid size of 1.5°has consistently higher rank correlations
with track deviation, for both the individual as well as the ag-
gregated features. However, an increased number of flights in a
grid also translates to increasing the value of many complexity
feature values. This can be confirmed by the increased cross-
correlation at large grid sizes. The grid size is an important
parameter because it can capture the consideration horizon
of a pilot or ATCO. In other words, the grid size parameter
addresses the question: What distance ahead of the flight
direction is considered when making tactical route decisions?
The use of convolutional layers is especially suitable for
mitigating the risk of choosing the *wrong’ grid size as any
feature/pattern is extracted, regardless the grid size. Therefore,
the smallest grid size is chosen: 0.5°.

The following air traffic dynamics features have a statis-
tically significant correlation to the flown trajectory. These
features are most likely to include information which can be
extracted by the ConvLSTM network, in order of highest to
lowest likelihood:



o Traffic Density (7D)

« Heading Variance (SDHdg)

o Mean Separation (AvgDst)

« Average Speed Change (SpdAvg)

o Average Heading Change (HdgAvg)

o Altitude Change Count (AlrCnt)

TD is primarily used to test, tune, and verify the composite
ConvLSTM network as it has the most convincing correla-
tion. SDHdg and AvgDst are also included in the trajectory
predictions. The three remaining features have relatively weak
correlations, it is not expected that these will result in a
increased trajectory prediction accuracy and are therefore not
included henceforth.

VI. RESULTS OF TRAJECTORY PREDICTION

This section presents the results as well as brief analyses
of the composite ConvLSTM model and the various verifica-
tion tests. The results are presented in correspondence with
Table II.

A. Composite ConvLSTM Model Trajectory Prediction

1) Test la: Three Days Data Set: The loss function scores
are summarized in Table V. The loss scores with TD and
SDHdg are lower compared to the random and all-zero grid
values.

TABLE V: Loss score with three days of data comparing the
air traffic features. Test la in Table II.

Run  Feature Data split [days] Loss score  Overfit
Training  Testing

1 TD 2,3 1 0.00032 -

2 SDHdg 2,3 1 0.00053 -

3 AvgDst 2,3 1 0.00140 -

4 Random 2,3 1 0.00077 -

5 All zeros 2,3 1 0.00070 -

For the example shown in Figure 6, the loss function reveals
that the model does not suffer from overfitting, albeit strong
fluctuations are visible in both the loss and accuracy function.
These fluctuations are expected to cause the difference in loss
scores between the different runs seen in Table V.

30 minutes look-ahead time, with a median slightly above 20
NM. At 30 minutes look-ahead time, the prediction accuracy
is similar for the remaining features, except the SDHdg which
has slightly better performance (shown in Appendix C). The
distribution of the CTEs versus look-ahead time is different
for all models, except with TD and the random grid values.
A noteworthy observation in Figure 7c is that the all-zero
grid features produce much smaller CTEs at lower look-ahead
times. For this run, the initialization error is clearly observed.
For the remaining features, the variation in performance is
expected to be due to model randomness, as seen in Figure 6.
The computational time per epoch is around 80 seconds.

TABLE VI: Loss score of the composite ConvLSTM model
with seven days of data. The training and testing data set in-
cludes whole-day splits as well as random splits at a 0.75/0.25
ratio to study the effect that full days have on the prediction
accuracy. Test 1b in Table II.

Run Feature Data split [days] Loss score  Overfit
Training  Testing

1 D 1,2,3,5,7 6,4 0.00077 -

2 D 1,2,34,7 5,6 0.00180 Yes
3 D 2,3.4,5,7 1,6 0.00074 -

4 D 2,4,5,6,7 1,3 0.00079 -

5 D 1,2,4,5,6 3,7 0.0019 Yes
6 D 1,2,3,4,5 6,7 0.00539 Yes
7 D rand 0.75 rand 0.25  0.00009 -

8 SDHdg rand 0.75 rand 0.25  0.00011 -

9 AvgDst rand 0.75 rand 0.25  0.00086 -
10 random  rand 0.75 rand 0.25  0.00105 -

11 zeros rand 0.75 rand 0.25  0.00013 -
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Fig. 6: The
Table V.

loss and accuracy corresponding to run 1 in

Figure 7 presents the prediction accuracy for the models
with 7D, random, and all-zero feature grid values. 75% of the
predictions with 7D feature values have a CTE under 30 NM at

2) Test 1b: Seven Days Data Set: Comparing Figure 6 and
Figure 8, the model loss and accuracy functions are much
improved and more consistent when using seven days of data
and randomly sampled sets. Moreover, it is confirmed that
whole day data set splits lead to worse training behavior and
a higher tendency to overfit, as seen in runs 1-6 compared
to runs 7-11 in Table VI. This is exaggerated when the two
testing days are consecutive days.

Figure 9 presents the prediction accuracy of the models
with TD, random, and all-zero grid values. The 7D feature
(Figure 9a) leads to the best prediction accuracy at long look-
ahead times: 75% of the predictions have CTEs well under 15
NM at 28 minutes look-ahead time, with a median around 8
NM. However, the model with the all-zero feature grid values
can be seen to produce more accurate predictions at short look-
ahead times (< 10 mins). The results of the SDHdg and AvgDst
are shown in Appendix C. The AvgDst, SDHdg, and random
grid values all generate predictions that are very similar to one
another, but with worse accuracy compared to 7D and the all-
zero grid values. The computational time per epoch is around
130 seconds.

In both Figure 9a and Figure 9b, the initialization error is
observed. The highest prediction accuracy is achieved between
6 and 10 minutes of look-ahead time. This observation is also
made for the SDHdg and AvgDst feature models.

3) Analysis of Composite ConvLSTM Model: The overall
prediction accuracy of the model with the seven day data
set improved the prediction accuracy significantly, seen by
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Fig. 7: A difference in prediction accuracy can be observed between the models incorporating random and all-zero grid values.
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comparing the corresponding sub-figures from Figure 7 with
Figure 9. Increasing the number of days beyond one week
however, exceeds the computational limits.

It is confirmed that using non-consecutive testing days lead
to better results (Run 1 versus 6 in Table VI). The significant
difference in training ability as well as prediction accuracy
between certain variations of data set splits based on whole
days suggests that there are temporal effects between days that
must not be overlooked. The temporal effect between days is
likely caused by different flight traffic patterns (e.g. weekend-
versus week-days).

Furthermore, it is confirmed that randomly sampling the
flights greatly improves the model learning behavior as well
as the prediction accuracy. In this approach, reoccurring flight
patterns on each day are taken into consideration. In the real
world, this translates to making predictions based on reference
observations that occur simultaneously or in the future, which
is not realistic. Nevertheless, this approach makes the results
much more consistent and makes differences between air
traffic dynamics features more apparent. Thus, seven days of
data with randomly sampled testing and training sets allow for
a more reliable comparison between the air traffic dynamics.

The analysis of the performance between the air traffic
dynamics features is based on the seven day data set with
randomly sampled sets. The difference between AvgDst, SD-
Hdg, and random grid values is not observable, which indicates
that the AvgDst and SDHdg do not contribute to the trajectory
prediction. The 7D performs marginally better compared to the
all-zero grid value model at higher look-ahead times. Based
only on these results, the inclusion of traffic density appears
to improve the trajectory prediction accuracy compared to the
other features as well as without any air traffic dynamics

model outperforms the other feature grid values as well as
the random grid values. Thus, it is possible that non-zero
grid values make it ‘more difficult’ for the model to extract
information from the remaining input data. This would indicate
a limitation to the model and not necessarily mean that the
remaining air traffic features do not contain useful information.

Last, a brief remark on the initialization error. As mentioned
in Section IV-E, the initialization errors are counter-intuitive
because the initial predictions are expected to be more accurate
than the predictions at longer look-ahead times. Therefore, the
error indicates that there is some degree of model error or the
model is unable to extract the useful information from the
input data. The absence of initialization error in Figure 9c is
not observed for all repeated runs, which are not all shown
here. These observations indicate that the initialization error
is inherent to the model and not to the air traffic dynamics
features.

Further analysis in the following sections is needed to
understand if the difference in performance is due to (random)
model error or if there is indeed a measurable improvement
in trajectory prediction accuracy from the inclusion of 7D.

B. Baseline Experiment

1) Test 2a: Baseline model: The results of the baseline
model are shown in Figure 10. 75% of the predictions have
CTE:s slightly under 20 NM at 28 minutes look-ahead time,
with a median around 10 NM. The computational time per
epoch is 4 seconds.

Compared to Figure 9a, the prediction accuracy of the
composite ConvLSTM with the TD feature is better beyond
10 minutes of look-ahead times. However, the results depicted
are an average representation of the repeated experiments,
which cannot all be visualized in this paper. Two examples of
better and worse performance of the baseline model are shown
in Appendix D. Therefore, it cannot be reliably concluded
that there is a observable difference in trajectory prediction
accuracy between the ConvLSTM model with 7D and the
baseline model, test 2a. The baseline model also suffers from
the initialization error.

2) Test 2b: Improved Baseline model: Figure 12 depicts
the results of the improved baseline model, including the loss
function, CTE, ATE, and FL deviation for completeness. The
initialization error is reduced and the CTE is more constant
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Fig. 11: A random selection of predicted trajectories corre-
sponding to test 2b.

compared to test 2a. This is especially true for the upper
quartiles and extremities of the CTEs. 75% of the predictions
have CTEs below 10 NM at 24 minutes look-ahead time, with
a median around 5 NM. The ATE follows a similar pattern
compared to the CTE. The FL error is small: The FL error
of 75 % of the predictions at 24 minutes of look-ahead time
are below 400 meters. The loss function shows that the model
learns well and does not suffer at all from overfitting. At 24
minutes look-ahead time, the performance is very similar to
the composite ConvLSTM with the 7D feature.

Figure 11 presents a random selection of trajectories, trans-
lated on a map. The initial prediction is generally accurate.
Two observations stand out: First, for flights that deviate far

from the filed trajectory, the predicted trajectories outper-
form the filed trajectories significantly (e.g. the flight starting
furthest south-east, above Austria). Second, for flights that
gradually approach the filed flight path, the predictions tends
to follow the initial deviation of the filed flight paths. Thus, the
prediction diverges over time (e.g. the northern most flight).

To conclude, it is suspected that the marginal differences
between the baseline and composite ConvLSTM model are
a consequence of the model and possibly GPU backend
library randomness. The baseline only captures the difference
within similar LSTM-based models -with or without air traffic
dynamics-. However, the baseline comparison does not verify
the model effectiveness to this problem. The highly complex
air traffic dynamics input data and model randomness make it
difficult to reliably assess the model effectiveness and the thus
also the effect of air traffic dynamics on trajectory prediction.
Therefore, the verification tests are needed.

C. Verification

To further analyze the model and air traffic dynamics, this
section includes two verification tests to: (1) Compare the
prediction accuracy directly to the accuracy of the filed flight
points in order to verify the model learning capabilities. (2)
Isolate the air traffic features and observe any effect between
the prediction accuracy and the various air traffic features.

1) Test 3: Accuracy of the Filed Flight Points: The CTE
and ATE of the filed flight points are shown in Figure 13.
The median of CTE of the filed flight points slightly above
0 NM and thus much lower than any previous trajectory
prediction. However, in comparison with the CTE of test 2b
(Figure 12a) and test 1b with 7D (Figure 9a), the upper
quartile values and the extremities are consistently higher
for the filed flight points. This reveals that the both the
composite ConvLSTM and the stacked LSTM-network are
able to make better trajectory predictions when the filed flight
points are significantly deviated from the actual flight points.
This coincides with the observations made in Figure 11. For
many flights however, the filed flight path coincides with the
actual flight path, as also seen in Figure 11. For these flights,
the trajectory prediction cannot be more accurate than the
filed flight path. A well-functioning prediction should match
this accuracy for these types of flights. As for the ATE, the
predictions of the improved baseline model are nearly identical
to the ATE of the filed flight points.
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2) Test 4: Simplified Model: The results of test 4 are
summarized in Table VII'3.

TABLE VII: The RMSE with the seven days sets for four
features grid values.

Run  Feature RMSE
x [NM] y [NM] Altitude [m]
1 TD 42.6 40.1 2298
2 SDHdg 57.1 55.2 2388
3 AvgDst 57.3 57.3 2397
4 zeros 54.9 54.7 2375

The absolute prediction accuracy is poor compared to the
previously tested models. However, this coincides with the
expectation because the filed flight points are not included
in this model. There is a measurable increase in prediction
accuracy in the horizontal plane with the 7D feature compared
to the remaining features, including the all-zero grid values.

3Because the prediction and the reference actual flight point are single
points instead of trajectories, the CTE and ATE cannot be calculated. Instead,
the navigational accuracy metric is the RMSE in 3D Cartesian coordinates
defined w.r.t. the local tangent reference frame (ENU).

The purpose of the simplified model is to test if the
ConvLSTM layers are reactive to spatiotemporal feature maps
and use the information embedded in the grids to produce
a prediction. This is confirmed by the results. Consequently,
the conclusion of the statistical analysis can also be (par-
tially) verified through the simplified model: there exists an
observable relationship between the surrounding traffic density
and the flown trajectory; in addition, the vertical component
of an en-route flight is not affected by the surrounding air
traffic dynamics. However, there is a possibility that the model
learns to predict towards grids with higher 7D, as a higher
TD increases the likelihood that the flight in question passes
through that area.

VII. DISCUSSION

The discussion will emphasize two aspects of this study, in
line with the research objective.

A. The Effect of Air Traffic Dynamics on Trajectory Prediction

Based on the observations made in this research, it is likely
that the air traffic dynamics -especially traffic density- can



be used to improve trajectory predictions. The following three
observations are made to support this statement. First, the traf-
fic density has a statistically significant correlation with track
deviation. Second, the traffic density causes an occasional
improvement in prediction accuracy in direct comparison to
the baseline model. Third, the inclusion of traffic density
improves the predictive capabilities of the simplified model.
These three observations are the result of different tests. The
fact that the results point in the same direction makes it likely
that the traffic density can contribute to an increased accuracy
of a trajectory predictor. However, the contribution is expected
to be very small because the solution space of an en-route
flight is very large at medium- to long-term look-ahead times.
This means that the required adjustments in flight path or in
speed for (medium- to long-term) conflict avoidance are in the
order of a few degrees or knots.

To build upon the discussion above, the very small flight
path or speed adjustments made by en-route flights in response
to air traffic dynamics has two potential consequences. First, it
is likely that both the statistical analysis and the deep learning
model are not sensitive enough to detect such marginal ad-
justments and simultaneously correlate this to the air traffic
dynamics. Second, it is difficult to detect the small effect
on trajectory predictions consistently due to model variations
and because the filed flight points dominate the trajectory
prediction. A solution, which is discussed in greater detail in
Section IX, is to apply increased filtering of flights.

The selected data set purposely includes highly congested
days. It is possible that this actually made it more difficult to
find a relation between the air traffic dynamics and the flight
trajectory behavior because a ‘busy’ day means that pilots must
adhere more strictly to the procedures and ATCO commands.
It is possible that during ‘quiet’ days the effect is more sig-
nificant because pilots have more freedom to fly their desired
flight path. However, the chosen time-frame includes the night,
with low levels of air traffic. Therefore, the chosen data set
should reveal both patterns of flight behavior. Nevertheless,
both the statistical analysis and the trajectory prediction might
reveal different insights for scenarios exclusively with low
amounts of air traffic.

The difference in model behavior depending on which days
were part of the training and testing set indicate that the
temporal effects between days are significant. It is possible
to exploit these effects for trajectory prediction, but the data
set must then include repeated days of the week. However,
taking multiple weeks of data in order for each day to
reoccur and allow for repetitive training was not possible
due to computational limits. A different scheme of selecting,
filtering, and interpolating data would be necessary in order
for the computational effort to be within acceptable bounds.
An alternative, for example, is to take flight data from all
Mondays during two or more consecutive months.

It is a challenge to determine the causality of the correlation
found between traffic density and predicted flight points (test
4). The deep learning model may learn to predict a trajectory
to move towards a region of higher traffic density because
there is a higher likelihood that any aircraft will pass through
that region. This challenge will remain, even if a future model
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does improve the predictions by using air traffic dynamics.

Last, there is a difference in the results between the sta-
tistical analysis and the deep learning model. The statistical
analysis reveals that there is a monotonic relation between the
three selected air traffic dynamics features and the horizontal
track deviation. The deep learning model is only able to verify
a relationship with traffic density. This is in-part because
different metrics were used to evaluate the trajectory. Never-
theless, it can be argued that the statistical analysis is of added
value to this research. It would be a black-box if the features
were not analysed prior to the trajectory prediction phase.
Even though deep learning models are celebrated because
heavy filtering and structuring of the input data are often not
needed, the two-step method applied in this study allows a
better understanding of the relationship between the air traffic
dynamics and track deviation.

B. Suitability of LSTM-based Model to Predict 4D Flight
Trajectories

The composite ConvLSTM model with the chosen input
features does not observably improve the accuracy of the 4D
trajectory prediction, based on the conditions of this research:
beside the small flight track and speed adjustments, it is
assumed that three limitations to the model contribute to this
conclusion. First, the randomness and variability of the results
during repeated experiments makes reliable observations on
the performance of the models a challenge. Second, the differ-
ence between the composite ConvLSTM model performance
with zero and non-zero grid values indicate that the model has
difficulty to extract information from the spatiotemporal input
data. Third, the extent to which the filed flight points dominate
the trajectory prediction overshadow any contribution of the
air traffic dynamics. Therefore, based on the evidence in
this study, the contribution of air traffic dynamics into the
composite ConvLSTM model does not outweigh the factor 40
increase in computational time per epoch.

The increase in performance of the improved baseline model
means that the tested composite ConvLSTM model is sub-
optimal. It can therefore be questioned if the effect of air traffic
dynamics is indeed not observable due to the above explained
reasons or if the model does not yet perform adequately.
Evidently, it can be recommended to improve the compos-
ite ConvLSTM model accordingly and repeat this research.
However, this has not been done for several reasons. First, one
of the two baseline model improvements involves increasing
the input sequence length. As explained in Section IV-E, two
or more weeks of flights have to be selected in order to
maintain an acceptable look-ahead time as well as a sufficient
amount of flights. A different and larger selection of flights
means that the air traffic dynamics features have to be re-
computed and the size of the input tensor grows significantly.
Consequently, this exceeds the computational limits. There
are solutions to mitigate this limitation: a larger time interval
for data interpolation can be applied; a new scheme of data
selection based on flight patterns or minimum track deviation
can be designed; the grid size can be increased. The solutions
would alter the input data set to an extent that comparing the



results to the current test 1,2 and 3 is no longer reliable and all
the experiments in this research must be repeated. Therefore,
it is recommended to process these model improvements in a
future, follow-up study.

Next, under the conditions of this research, both models are
capable of generating better trajectory predictions compared
to the filed flight path. The ’shape’ of the flown path as well
as the magnitude of deviation from the filed flight path have
a significant effect on the performance of the predictor. For
example, the deep learning models do improve the prediction
accuracy for flights that have a very inaccurate filed flight
path. Thus, multiple separate, specialized predictive models,
based on certain flight path characteristics, could lead to better
results: this is further discussed in Section IX. Moreover, at
en-route flight speed, small errors in the initial prediction
accumulate to large spatial errors with 30 minutes of look-
ahead time. With live air traffic data, regular model updating
would ensure that predictions under 30 minutes of look-ahead
time do not ever diverge to an unacceptable extent. Similar to
online learning, this can mean that the model is updated with
the new actual flight points every couple minutes or when the
prediction error exceeds a threshold.

An uncertainty which potentially inhibits the model from
learning are the time-vector discrepancies. The two branches
of the ConvLSTM network initially have a similar data struc-
ture. However, after merging, the time steps are no longer a
single dimension of the data structure ([samples, time steps,
features]). It is not certain if the model is able to match the
ConvLSTM input timed matrices with the associated timed
vectors of the (filed) flight points. Although the input data is
carefully selected and structured, it can be argued that this
research has depended too much on the capabilities of a deep-
NN (extract patterns among unstructured data). Merging two
different data sources with different structured time vectors
might have inhibited the ConvLSTM network from functioning
as expected.

VIII. CONCLUSION

The research objective is to improve the accuracy of
medium- to long-term flight trajectory predictions by incorpo-
rating a model that encompasses the dynamics of the air traffic
situation. The shift towards TBO and free flight reduce the
dependency on (inefficient) standard routes while demanding
an improved ability to predict 4D trajectories. To the best
of my knowledge, this research is the first to incorporate air
traffic dynamics features into a trajectory predictor using a
deep LSTM-based NN that includes ConvLSTM layers.

The air traffic dynamics features are quantitatively repre-
sented on a spatiotemporal map. In the first phase of this
research, the statistical analyses reveal that the traffic density,
mean separation between flights, and heading variance have
a significant monotonic correlation with horizontal track de-
viation. No statistically significant relation is found between
the air traffic dynamics and the flight level deviation nor with
flight delays.

The second phase involves incorporating the selected air
traffic dynamics features into a novel 4D trajectory predictor.
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The trajectory predictor is a composite deep NN, merging
a ConvLSTM-based network with a stacked-LSTM network.
The model is able to predict the 4D flight trajectories with
reasonable accuracy: 75% of the predictions have a CTE
below 15 NM at 28 minutes of look-ahead time, with a
median at roughly 8 NM. However, based on the evidence in
this research, it is concluded that incorporating the air traffic
dynamics in the current ConvLSTM-based NN does not lead
to observable improvements to the accuracy of medium- to
long-term 4D flight trajectory predictions. The effects of air
traffic dynamics on the accuracy of trajectory prediction are
non-observable as a consequence of three reasons combined.
First, the adjustments in flight path and speed made by en-
route flights are very small. Second, there are variations in
model performance that cannot be ignored. Running very large
data sets or a large number of repeated experiments is not
feasible due to computational limits. Third, the filed flight
points dominate the performance of the trajectory predictor.

The conclusion is based on the evidence collected from a
sub-optimal composite ConvLSTM model and thus, have not
been validated. Nevertheless, based on the evidence, it is likely
that an improved version of the composite ConvLSTM with
air traffic dynamics, especially traffic density, can improve the
predictions of 4D flight trajectories. However, compared to a
stacked-LSTM NN, the significant increase in computational
effort that is required for an all-encapsulating composite
ConvLSTM NN with a large variety of input data does not
outweigh the suspected small gain in 4D trajectory prediction
accuracy.

The gained knowledge to the ATM-domain is as follows.
The proposed method in this study is independent from
standardized routes and controller behavior or procedures,
which makes it especially suitable for free flight trajectory
prediction. It is shown that the surrounding air traffic dynamics
are of some, but minimal, influence to the 4D trajectories of
individual flights. This means that pilots and in-part ATCOs
may not be as sensitive to the surrounding air-traffic situation
as previously expected. This conclusion only holds for en-
route flights in FRA. This, in fact, encourages the adaptation
of free flight because insensitivity to surrounding air traffic
dynamics also means that excessive ATC interventions and
procedures may be obsolete. This conclusion however, must
be validated in follow-up research.

Improvements to the model design, more extensive pre-
filtering, and a better understanding of air traffic dynamics
are required to successfully implement the LSTM-based deep
NN for trajectory prediction under TBO-enabled regions.

IX. RECCOMENDATIONS

In response to this research, several recommendations are
proposed for future studies and as improvements to the deep
learning model.

To improve the efficiency and performance of the LSTM-
based model, a few recommendations are proposed. First, the
improvements to the stacked-LSTM model can be translated
to the composite ConvLSTM model, as discussed in Sec-
tion VII-A. Next, it is recommended apply more filtering of



flights and split the LSTM NN up in several specialized parts.
This approach resembles clustering, which is applied in mul-
tiple studies on data-driven trajectory predictions. However,
instead of clustering standard routes, it proposed to define
the clusters based on the flight path pattern. First, the flights
could be passed through a classifier to distinguish between
flights that adhere to the flight plan or not. Second, another
classifier could use the filed flight plan to distinguish between
flight patterns: straight flight paths, right- and left-hand turning
flights above a threshold, and irregular flight paths including
significant vertical manoeuvres. Alternatively, clustering is
also possible based on feature distribution, such as DBSCAN.
One can analyze and process these eight batches of flights
separately, which will also allow longer time-frames -in excess
of one month- to be considered. For flights with straight paths
that adhere to the filed path, it is probably best to simply
follow the filed flight path. For flights that do not adhere to the
flight plan, the input data can be passed through two parallel
networks: a stacked LSTM network with the flight path and
information data; and in parallel, a ConvLSTM network to
incorporate air traffic dynamics information. Although the
use of ConvLSTM layers is a proven technique to deal with
spatiotemporal data structures, it is expected that the time
vector discrepancies limit the usability when merging various
data sources. It is therefore not recommended to merge the two
networks but allow each network to process the unique input
data, and make separate predictions. Separate predictions can
be combined through a simple NN in order to obtain a single
prediction. This will also allow for increased explainability of
the model and features. Finally, validation of the deep learning
model entails testing the model under various realistic envi-
ronmental conditions, such as region of application and time-
frames. Moreover, a comparison of the prediction accuracy
to an exiting trajectory predictor (mostly aircraft performance
models) would complete the validation.

In my opinion, understanding the effects of the surrounding
air traffic dynamics on individual flights will become increas-
ingly important due to the rise in TBO and free flight. This
study has identified some weak relationships. However, it is
recommended to study these relationships in-depth and pro-
duce validated conclusions. Some air traffic dynamics models
that are recommended to be studied in further detail are the
Lyapunov exponents, convergence-divergence rates (although
intrinsic to the Lyapunov exponent), and conflict predictions.
It is suitable to conduct human-in-the-loop experiments by
subjecting pilots to various air traffic dynamics scenarios. If
the conclusion holds that en-route flights are largely insensitive
to surrounding air traffic and it is better understood how air
traffic dynamics affect pilot decision making, it may allow a
relaxation of ATC interventions and speed-up the adaptation of
free flight. This development could be disruptive to the ATM
domain. It is therefore strongly recommended that further
research is done in this field.
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APPENDIX
A. A Case of Overfitting

The purpose of this section is to present the results of an
example experiment that suffers from extreme overfitting. The
results of run 6 from Table VI are given. In Figure 14, the
loss and accuracy function is given. It is apparent that the
model trains very well on the training set, however this is not
translated to the testing set.
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Fig. 14: The loss and accuracy function of run 6 from Table VI.

For illustrative purposes, the CTE, ATE and FL error are
depicted in Figure 15, Figure 16, and Figure 17, respectively.
The predictions are very poor and cannot be explained.
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Fig. 15: The CTE of run 6 from Table VI.
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Fig. 16: The ATE of run 6 from Table VI.
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B. A Visual Representation of the Initialization Error

Test la, 1b, and 2a suffer from the initialization error.
This is deduced by observing the poor initial CTE, followed
by an improvement of the CTE. However, it can also be
observed well by simply looking at the trajectories on a map.
In Figure 18, a few randomly selected flights are depicted,
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Fig. 17: The FL error of run 6 from Table VI.

including the predictions. For nearly all the flights, the initial
prediction lies far away from the last actual flight points. In
most cases, the accuracy of the prediction actually increases
slightly at increased look-ahead time. The expected reason for
this increase is that the model has accumulated more sequential
input information from the filed flight points.
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Fig. 18: A random selection of predicted trajectories at 28 min-
utes of look-ahead time, compared to the actual trajectories.
This figure corresponds to run 10 in Table VI.

C. Results of the Unseen Air Traffic Dynamics Features

In the body of the paper, the results of 7D, random grid
values, and all-zero grid values are shown only. In this section,
the results of the remaining air traffic dynamics features,
SDHdg and AvgDst are presented.

1) Test la: The results of Test la correspond to the three
day data set with whole day splits to separate the testing
and training data. In Figure 19, the CTE remains practically
constant with increased look-ahead time, whereas the CTE
in Figure 20 gradually deteriorates. However, the CTE of
AvgDst starts better but at long look-ahead times has slightly
worse CTE. Despite the different distribution, the order of
magnitude of the CTEs in both figures is similar to that of
TD and the random grid values depicted in Figure 7a and
Figure 7b, respectively.
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Fig. 20: Test 1a, run 3 in Table V: The CTE of the model
with AvgDst feature values.

2) Test 1b: The results of Test 1b correspond to the seven
day data set with randomized testing and training data sets.
Figure 21 and Figure 22 present the CTEs of the runs with
SDHdg and AvgDst grid values, respectively. Both models
suffer from the initialization error. Generalizing, the accuracies
of both predictions are comparable to the model with random
grid values, seen in Figure 9b. The model with SDHdg grid
vlaues is slightly better compared to the random grid values
whereas the AvgDst grid values is slightly worse.
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Fig. 21: Test 1b, run 8 in Table VI: The CTE of the model
with SDHdg feature values.
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D. Baseline Model Performance Variations

This section intends to illustrate the variations in baseline
model performance due to model and suspected GPU backend
library randomization. This section is based on test 2a, the
results can be directly compared to Figure 10. All three
results (including Figure 10) are repeated runs of identical
models with identical data sets and an identical random seed.
In Figure 23, the baseline model leads to very small CTEs
across all look-ahead times. In Figure 24, the CTE is larger
at all look-ahead times. Both models suffer from initialization
error. The difference in performance between these runs is
significant.
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Fig. 23: Test 2a, an example baseline model run with good
prediction performance.
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Summary

The arrival of Trajectory Based Operations in the next generation ATM system and increased pressure on
efficiency of air transportation require improved trajectory prediction capabilities. This preliminary report is
part of a thesis project to better understand the effects of the air traffic dynamics on individual trajectories
and apply this knowledge to improve the performance of trajectory predictions. This two-step research will
consist of both modeling the dynamics of the air traffic situation and analyzing the correlation of this model
with trajectory changes by statistical analysis. Next, the selected features with the most significant correlation
will be included in the trajectory prediction in an attempt to improve the performance of the predictor. This
will be done using the Long Short-Term Memory Neural Network. The region of application will be one of
the most congested en-route regions in Europe, the Karlsruhe Upper Area Control. This report includes a
literature study on models of air traffic dynamics situations and data-driven trajectory prediction methods.
From this study, conclusions are drawn about the most suitable models and method to analyse and predict
the trajectories. The statistical analysis suggests that some features derived from the Dynamic Density air
traffic complexity model are correlated with the horizontal track deviation. The correlations with delay and
Flight Level deviations are non-significant. It is concluded that analysis of additional features that model the
air traffic dynamics are required. Nevertheless, the most promising features are selected to be included in
the Neural Network. The Long Short-Term Memory model is most suitable for the time series 4D trajectory
prediction. This report gives a structured overview of the necessary steps that need to be taken to perform
this prediction and subsequently validate the results. Lastly, the planning for the remaining phase of this
thesis project is made.
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Introduction

Due to the ever growing demand for air transportation, the operational capabilities of Air Traffic Management
(ATM) are reaching their ceiling in terms of capacity, efficiency, and cost effectiveness. The disruption of
commercial air transportation from the COVID pandemic forced extra pressure on the efficiency and cost
effectiveness of the ATM system.

In the past years, a shift is made towards Trajectory Based Operations (TBO). Interconnection, sharing of
information, and the integration with decision support tools will allow optimized services for all ATM stake-
holders. This integration, and thus dependability, of services can only be attained with high accuracy 4D-
trajectory prediction. In other words, it is increasingly important to be able to predict the future path that an
aircraft will fly, especially when given more freedom to choose ones own trajectory. TBO has been embraced
and placed high on the agenda at both the Single European Sky program as well as with the Next Generation
Air Transportation System project of the FAA. [7, 14]

There continues to be a discrepancy between the predicted trajectories and the actual flown trajectories,
especially at medium- to long-term look-ahead times. The deviations are expected to come from ATC inter-
ventions or a change in aircraft intent to ensure optimum and safe operations. Research has been done on
various factors that affect the trajectory such as the weather, aircraft intent, fixed (arrival) routes, fixed loca-
tions of way points, and aircraft types(8, 54]. However, the effects of surrounding air traffic and the dynamic
behavior of this traffic has so far been under-explored in previous research as a contributing factor to indi-
vidual trajectories. The assessment and impact of the air traffic complexity has been considered in various
research related to Air Traffic Controller (ATC) workload modeling, which to a limited extend relates to air
traffic dynamics. From this point onward, the term air traffic dynamics refers to the instantaneous and time-
varying state of the air traffic inside a specified region as well as the inter-aircraft dynamical behavior. As
air traffic and environmental data is more widely available and of higher fidelity, it is increasingly beneficial
to apply data-driven techniques for trajectory prediction. One of the advantages of using data-driven tech-
niques is that it can encapsulate more parameters and trends previously unforeseen with analytical methods.
If, by including all relevant data, it can be shown that these interventions adhere to a patterns, big data ana-
lytics and machine learning techniques could reveal such a pattern.

The above explained research gap thus leads to the following research goals. The first goal of this research
is to understand and identify relevant features of the air traffic dynamics that have a relationship with the
trajectory. Secondly, these relevant features will be incorporated in existing data-driven trajectory predictors,
thereby aiming to improve the performance of the trajectory prediction.

The research goals are specified further in Chapter 2 including the research objective and the research method-
ology. Next, Chapter 3 will cover the literature review. This chapter will include insights into previous research
done on the air traffic dynamics, trajectory prediction, and introduce the input data that will be used. Based
on the literature, the most promising air traffic dynamics model and trajectory prediction algorithm are pro-
posed. Chapter 4 will give a overview of the experimental set-up for the trajectory prediction phase, including
means to validate the results. Chapter 5 covers the preliminary analysis of the air traffic dynamics models.
Although complete, the analysis has not yet been finalized. The identified limitations will be mitigated in the
next phase of this research. Last, Chapter 6 gives a planning for the remainder of this thesis project.

30



Problem Statement

The purpose of this chapter is to present and elaborate upon the research objective. The research objective
includes the research questions that this thesis attempts to answer. In Section 2.2, the methodology will be
outlined. In this section it will become clear why and how this thesis is split into two major phases.

2.1. Research Objective

This project focuses on the medium- to long-term predictions of flight trajectories using a data-driven ap-
proach. The novelty of this project is to model the dynamics of the air traffic and incorporate this model in
an attempt to improve flight trajectory predictions in the novel TBO environment. In other words, the main
research objective of this thesis is:

To improve the accuracy of medium- to long-term flight trajectory predictions by incorporat-
ing a model that encompasses the dynamics of the air traffic situation.

To achieve this objective, a series of sub-goals are defined. First, a study will be conducted on certain models
and features that best describe the dynamics of air traffic situations. Next, a method must be devised to
quantify and assess the selected models and features of the air traffic situation, either in real-time or as a
forecast. Then, a data-driven trajectory prediction method is to be selected by assessing the suitability of the
method in the chosen environment. An analysis will be conduced to asses the effect of the novel air traffic
dynamics model and features on the performance of the trajectory predictor by a baseline comparison.

The main research question is as stated, followed by a series of sub-question that will provide necessary
answers.

To what extend do the air traffic dynamics have an effect on the individual trajectory in a free
routing airspace and how can this knowledge be used to improve the predictability of aircraft
trajectories?

In order to help answer the main research question as well as steer the conducted research methodology, a
series of sub-questions are defined below that will need to be addressed.

1. What model derived from literature is most suitable to quantify the air traffic dynamics for the purpose
of medium-to long-term trajectory predictions?
la. What are existing models that quantify the air traffic dynamics and complexity?
1b. What features of the air traffic situation are expected have an impact on the flown trajectories?

1c. What characteristics of the air traffic dynamics model make it suitable to a data-driven trajectory
prediction application?
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2. Problem Statement

1d.

How can the air traffic dynamic model be best visualized and represented for human intuitive
understanding?

2. Whatis the correlation between the air traffic dynamics and the flown trajectories of individual aircraft?

2a.

2b.
2c.

What is the most suitable method for deriving the relationship between the chosen air traffic sit-
uation parameters and the flown trajectories?

What metrics of a trajectory will be taken into account to evaluate the flown trajectory?

Is there a statistically significant relation between the air traffic dynamics variables and the trajec-
tory metric variables? If so, what is that relation?

3. Which existing data-driven trajectory prediction methods is best suited to incorporate the air traffic
situation forecast?

3a.

3b.

3c.

What are the requirements and operating environment of the trajectory predictor and what makes
it suitable?

What are suitable data-driven trajectory prediction methods and what can be said about the ex-
pected accuracy?

What is the output metric of the trajectory predictor?

4. What can be concluded about the performance of the extended trajectory predictor?

4a.
4b.
4c.

4d.

What are the means to assess the performance of the trajectory predictor?
To what extend does the air traffic feature influence the performance of the trajectory prediction?

Is it possible to compare the same trajectory prediction with and without the air traffic dynamics
as a baseline comparison?

What implications do the results have on the air traffic management in a practical context? This
can be evaluated based on the throughput per unit of time or based on the (strategical) demand
and capacity balance.

2.2. Research Methodology

This section will summarize the high-level method that will be followed during the research. Figure 2.1 pro-
vides a schematic overview of the conceptual model that provides the basis of the method. The four different
parts are elaborated below.
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Figure 2.1: The conceptual model

The theoretical basis of the work consists of several parts. First, a collection of air traffic dynamics models
derived from literature will be selected. This will answer research question 1. Next, the selection of models or
features will be analyzed. The air traffic dynamics and complexity metrics will undergo feature engineering
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as well as a classical statistical analysis to evaluate if any relationships are significant. If this does not suffice,
a method for feature evaluation will also be derived from literature. This will answer research question 2.
Besides, a comparison of trajectory prediction methods will be made based on the available literature. The
scope of the research will have to indicate whether it is sufficient to select one - most suitable- trajectory
prediction technique or if multiple are needed for a reasonable comparison of results. This step will answer
research question 3.

The scope of the conducted research will have implications on the extend of the research and must be very
carefully chosen. The scope consists, among others, of the flight phase and region of application that is
considered. The look-ahead time as well as the prediction output and metrics will be very decisive for the
most suitable air traffic model. Prediction metrics are used to evaluate the output variables. The trajectory
prediction can output a 4D trajectory which is a 3D individual trajectory with respect to time. However,
this might not fit the scope of the research, in which the prediction will consists of at least a single time
of arrival at the edge of the chosen region of application - a delay. Together, these results and choices will
lead to a conclusion about the effect of the air traffic model on the trajectories. This will answer research
question 4. A baseline comparison will be conducted. Lastly, the airspace capacity is dictated by the ATC
capacity and required safe separation margins. By improving the trajectory prediction, it will be explored
if the safe separation margins can be relaxed and thereby increase the airspace capacity. This will answer
research question 4d. Following the initial stages of the research, including the literature study, a detailed
work flow diagram was made and can be seen in Figure 2.2.
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Figure 2.2: Work Flow diagram of entire research project.



Literature Review

This chapter gives an overview of the related research that has been conducted on topics that relate to this
Thesis. This includes the developments in Air Traffic Management in Section 3.1, a study about air traffic
dynamics in Section 3.2, Trajectory prediction in Section 3.3. In Section 3.4, the data is introduced that will be
used in this study. Section 4.1 and Section 4.2 bring together the studied content and proposes which models
are most suitable for the application of this Thesis. This is covered in the next chapter as part of the research
plan but relates strongly to the literature review.

3.1. Developments in Air Traffic Management

The operational capabilities of ATM are reaching the ceiling in terms of capacity, efficiency, and cost effec-
tiveness. This has been a continuing challenge for many decades. Already in 1983 the Future Air Navigation
System special committee of ICAO was created to make long-term recommendations on solution. The Single
European Sky initiative and USA equivalent of NextGen are ongoing modernization projects both aiming to
increase capacity, increase overall efficiency, increase safety, and reduce environmental impact. The inter-
national demand for air transportation has been greatly reduced as a result of the COVID-19 pandemic. The
effects of this disruptive event is expected to suppress the demand for air transportation for several years.
This has put even more pressure on the profit margins of all stakeholders part of the air transportation chain
as well as the increased the call for efficiency. The areas of development for both projects span across all
relevant domains and all flight phases. A cornerstone of both projects is the ATM concept of TBO.

Trajectory Based Operations

TBO places four dimensional trajectory information in the center of the ATM chain, demanding that all stages
of the trajectory life-cycle, from planning to execution and amendments, are linked. In TBO the pilot and
airliner have more freedom to choose and optimize the route, and are not strictly limited to waypoint-to-
waypoint navigation upon ATM instruction. Interconnection, sharing of information and the integration
with decision support tools will allow optimized services for all ATM stakeholders. This integration, and thus
dependability, of services can only be attained with high accuracy (4D) trajectory prediction. A key element
of TBO is the Performance Based Navigation, enabling aircraft to navigate along their optimal trajectories.
Moving away from point-to-point navigation along NAVAIDS and procedures based on standardized routes
and towards more flexible PBO can increase the efficiency, capacity, and safety. Figure 3.1 shows the evolution
of en-route navigation and operation from ground-based navigation aids to Area Navigation (RNAV) and
Required Navigation Performance(RNP).

Moreover, ATC capacity, procedures, and a lack of shared information places significant restrictions on the
demand and capacity balance. Accurate global navigation and improved decision support tools for ATC have
allowed an increased shift to RNAV operations, providing timely alerts when an aircraft deviated from its
assigned route. Naturally, this places an increased requirement on the accuracy to be able to predict the
position of an aircraft. PBN and operations are adjusted based on the environment and predicted air traffic
demand. [14] A descriptive overview of the benefits of increased accuracy of trajectory prediction in all flight
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Figure 3.1: Evolution of en-route navigation and operations. [14]

phases is shown in Figure 3.2. The required alterations to operations cannot change overnight. Eurocontrol
works with so called Free Route Airspace (FRA).
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Figure 3.2: The benefits of improved trajectory prediction in all flight phases. [18]

Free Route Airspace

FRA are specified volumes of upper airspace that support the concept of operations in which a user has the
freedom to plan a route between defined entry and exit waypoints. Flights remain subject to ATC and, de-
pending on airspace availability, routing is possible via intermediate waypoints. The FRA can be considered a
operationalisation of RNAV, in which aspects of a TBO environment are realised. Studies by Eurocontrol show
that the workload of controllers is decreased as a result of FRA. In line with the objective of this study;, it is de-
sirable to study the air traffic dynamics in a sector that has some degree of autonomy. Otherwise, there exists
arisk that dynamical effects are entirely dictated or possibly nullified by the strict procedural ATC commands.
It is therefore relevant to consider airspace that supports FRA in order to study the dynamical inter-aircraft
behavior. Figure 3.3 shows the implementation of FRA in European Upper Control Area airspace in 2018. !

3.2. Air Traffic Dynamics
3.2.1. Air Traffic Dynamical Models and its Applications

Literature related to the modelling of air traffic dynamics can be roughly divided into two categories, depend-
ing on the phase of flight under consideration: (pre-)tactical or in-flight. The tactical flight planning phase

Ihttps:/ /www.eurocontrol.int/concept/free-route-airspace
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Free Route Airspace Implementation
End 2018

Figure 3.3: FRA implementation in the various Upper Control Area’s in 2018.

refers to hours or minutes prior to departure. During this flight phase, the so called Demand and Capacity
Balance (DCB) must be solved to try and accommodate all the departing or incoming flights. This includes
en-route in a sector, whose capacity can vary during a day. It is important for the Air Navigation and Service
Provider(ANSP) to know how many flights to expect in a sector prior to arrival in that sector. Any capacity
issues will then delay the aircraft from departing or require alternate trajectories. [18] In this process, the Air
Traffic Flow Management, requires air traffic dynamical models to predict what the airspace demand will be
and how this varies over time. The in-flight phase, so the execution of the trajectory, relates to a different type
of air traffic dynamics model. This type of air traffic dynamics model has been explored for air traffic com-
plexity and workload modelling. Quantifying how complex a sector is can help ANSP predict the workload
of controllers and make tactical decision on how to 'simplify’ the traffic distribution to relieve the Air Traffic
Control Operator (ATCO) workload. Thus, this type of air traffic dynamics (or complexity) modelling is mostly
for shorter look-ahead times and individual trajectories instead of solving the DCB in a whole sector.

In fact, it is the intent of pilots and ATCOs that causes track deviations from planned trajectories. This intent
is more likely to be influenced by air traffic complexity than by the DCB. Moreover, a change to the DCB
might cause the publishing of a new filed flight plan, so it won't cause measurable track deviations. For these
reasons, this literature study will focus on air traffic complexity and workload modeling in order to quantify
the air traffic dynamics.

3.2.2. Air Traffic Complexity and Workload Modelling

The modelling of air traffic complexity has, in the early years of ATM, been done with the purpose of modelling
the ATCO workload. For readability, a ATCO is from this point onward referred to as controller. A quantita-
tive assessment of the cognitive complexity was needed to control and understand sector capacity as well as
make progress in the automation of ATM. [5] However, the subjective controller workload is highly complex
and includes qualitative as well as quantitative metrics. Mathematically, it thus seems near to impossible to
reconstruct a perfect model of controller workload without sacrificing either the qualitative or quantitative
model accuracy. Although this thesis is not focused on controller actions, understanding the previous work
in these air traffic complexity metrics from the controller workload point of view is expected to contribute to
the understanding of air traffic dynamics.

No doubt, complexity does directly influence the perceived difficulty to maintain safe and effective air traffic
flow and in turn have an effect on the airspace sector capacity. But, as Radisic agues, 'complexity is not
a synonym for workload’.[38] Although a crucial factor for measuring controller workload, the relationship
between complexity and workload is mediated by several factors, including equipment quality, individual
controller differences, controller cognitive strategies, and ATC procedures. [5, 38] It cannot be assumed that
controller workload is analogous for ATC complexity, which is especially true for a TBO environment. For
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this study, complexity is defined as the traffic factors that impact the level of difficulty of the ATC task,
disregarding internal system, procedural, and airspace factors.

Dynamic Density

The NASA was first to propose Dynamic Density (DD). This metric is composed of traffic density and traf-
fic complexity, which constitutes of various weighted complexity factors. The purpose was to measure the
air traffic controller workload, with real-time operational functionality. It is a weighted linear DD function,
initially including eight air traffic complexity terms in addition to air traffic density. Initially, the proposal
included controller intent, but this was operationally not feasible. The linear equation for dynamic density is
as follows:

DD=) W;TC;+TD (3.1)

n
i=1

where W; is the weight for each ith factor, T'C; is the ith air traffic complexity factor, and TD is the traffic den-
sity. [23] The weights were determined experimentally, and it was concluded that DD is a robust method to
capture the air traffic complexity and substantial amount (22%)of variance in controller activity that would
have not been accounted for by traffic density alone. [45] Over time, three more studies have been performed
which led to three more sets of air traffic complexity factors, totalling up to forty unique factors. See Ap-
pendix A for the full set of unique factors. Various sets of factors have been shown to perform well depending
on the specific sector, without any set of factors clearly outperforming the rest.[20] This suggests that the
method of weighted linear density functions and especially the factor weights are very sector dependent as
well as subjected to highly subjective controller workload ratings. This leads to situations in which the factor
weights are too sector specific, much like overfitting a network, and thus it cannot be validated for a more
general environment.

Masalonis et al. [32] suggested a reduced model that consists of 12 factors from the original 40 and made
an attempt to identify and distinguish between subjective complexity and useful metrics for real-time Traffic
Flow Management decision support. Again, correlation was found with the set of factors, but was also spe-
cific for each observed sector. In this paper, it was proposed to include a real-time workload prediction score
per sector. This can then be used to make better informed decisions about rerouting. This is a interesting ap-
proach and if implemented would not only help improve the capacity balance, it would make the (re)routing
choices predictable.

Artificial Neural Networks

A more novel approach to modelling controller workload, but with an effectively similar working principle to
the linear regression of DD, is the use of Artificial Neural Networks (ANN). This is done by Andrasi et al. [3] and
Szamel et al. [46] By feeding a large variety of complexity factors into a standard multilayer perceptron, which
is a universal function approximator, the network will output a estimate of the complexity. Interestingly,
the frequency of use for each complexity factor was recorded, giving insight into the weight that each factor
affects the final complexity. The feature importance and performance is very similar to the DD. The main
advantage over DD is that the input data does not have to be filtered based on the concept of operations,
which is the case when comparing conventional route based and trajectory based operations. Also, the model
can easily be adapted to suit a different output metric, such as delay or trajectory deviation. This can be a
useful in practice, in which many different combinations of sectors, input factors, and outputs metrics can
be studied without very heavy labor intensive data pre-processing phase.

Input-Output

A controller focused air traffic complexity model that is worth mentioning is the input-output approach by
Lee et al. [24] This method considers the minimum control activity needed to accept an aircraft entering
the sector to maintain a conflict-free situation. This scalar information can potentially be used a a factor to
present complexity. A major disadvantages is that this method is very much focused and uniquely applica-
ble to controller workload, which is not the primary focus of this study. Moreover, this paper has not done
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proper validation, so the performance cannot be assessed reasonably. However, the concept of representing
complexity in a map based on the needed trajectory corrections need not be overlooked.

3.2.3. Free-routing and Decentralized Complexity Modelling

Controller workload centered methods all experience the discrepancy caused by the subjectivity of ATC work-
load which introduces an unreliability from the raters or, if the method is control independent, have a difficult
time verifying the reliability of the workload indicator. Moreover, it is continually questioned what the impli-
cations of ATC workload mean for the sector capacity, traffic flow, and safety. This raises the question on what
complexity is in the context of ATC workload.

With the gradual increase of aircraft on-board autonomy and self-separation with the implementation of
TBO, a renewed push is made to model the air traffic dynamics and complexity without the controller work-
load in the loop at all. This will lead towards a partially decentralized control scheme for ATM. As described
by Piroddi et al, the next generation ATM complexity evaluation will support the functionality of on-board
trajectory prediction. Optimizing the effectiveness of the flight could include high complexity zones, poten-
tially requiring an entering aircraft too many tactical manoeuvres to pass them through. [35] This section will
cover a few of the methods that make such an attempt.

Proximity maps

A very different approach is that taken by Salaun et al. [43] In this approach, 'three-dimensional aircraft
proximity maps that evaluate the future probability of presence of aircraft at any given point of the airspace’
are introduced. [43] Unlike the previous two methods, this method is concerned with medium- and long-
term horizons of 30 minutes or more for controller and TFM applications. The presence mapsindicate regions
of higher aircraft density and have potential to be of value in assessing the sector air traffic dynamic. This way,
the higher density regions are clustered and not generalized in an entire sector, which is expected to help
identify trajectory patterns within a sector. A downside is that the proximity maps are based on clustering of
recurring trajectories, while the application of this project is concerned with TBO. This is a potential pitfall
because within a TBO sector, aircraft do not adhere to strict reoccurring routes. However, the idea of proximity
maps in combination with congestion or weather patterns can be used to study the effects of certain factors
on the air traffic system, visualized and quantified by the proximity maps. Figure 3.4 shows the clustering of
flow, represented by a distribution with respect to the centroid.
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Figure 3.4: A 3D representations of a cluster of an ascending flow, used to generate proximity maps [43]

Trajectory Based Operations Complexity Indicators

Radisic et al. [38] questioned if the complexity factors that are applied in previous linear models, as explained
in Section 3.2.2, during en-route based operations are also applicable to TBO. It was found that not only
the inclusion of TBO trajectories significantly reduced controller subjective complexity, the predictive linear
model using 20 standard en-route complexity factors did not perform well.(increasingly worse as fraction of
TBO aircraft increased) This is because the TBO trajectories are 'strategically deconflicted’[38] and thus do not
adhere to traditional flight patterns that have been studied in the past. These standard factors relate to those
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mentioned in Section 3.2.2. Multiple stepwise linear regression analysis was performed with additional TBO
specific factors and was used to verify the TBO-specific factors. Listed in order of importance, 6 factors were
identified to most accurately represent ATC complexity: "Number of aircraft, number of conflicts between
conventional aircraft and aircraft flying according to TBO (aggregated over 600 seconds) (TBO-specific), frac-
tion of aircraft in climb or descent, number of aircraft near sector boundary (<10 NM), fraction of TBO aircraft
(TBO-specific), and number of aircraft pairs at 3D Euclidean distance less than 5 NM. This finding can be
valuable in understanding the air traffic dynamics under TBO environment.

Probabilistic Approach

Similarly to the proximity maps, Prandini et al. [36] introduces a conflict map, but this method is based on
the probability that an aircraft with reach a certain point in the section at a certain time. The current state
and aircraft intent determine the future position, taking into account the uncertainty. This relies in part on
trajectory prediction. The complexity maps is thus dynamic leading to the capability of trajectory predic-
tion and moreover being able to identify regions with a "limited inter-aircraft maneuverability space". [36] A
novelty, one that is useful for trajectory prediction, is that this approach allows the evaluation of complexity
along a trajectory of a single aircraft, meaning that this can be done on-board per aircraft. However, this ap-
plication was only successful in the case that aircraft are following a fixed heading and velocity trajectory. It
is a promising method, but the implementation has not yet deemed feasible, especially in real-world cases.

Geometric Approach

Self-separation, on-board routing, and increased autonomy would not be computationally viable if each air-
craft has to continuously evaluate the air traffic dynamics of the entire sector. A proposed solution consists
of each aircraft to compute its own zone of influence and map any possible conflicts with other aircraft. [35]
The zone of influence is a envelope of possible motions that leads to the set of possible locations reachable
by an aircraft from its intended trajectory. "Complexity is then related to the presence and magnitude of in-
tersections between influence zones of different aircraft." [35] It has been shown that hundreds of aircraft can
be handle without excessive computational load. By approximating the influence zones with a polyhedron
it is theoretically also possible to include other time varying no-fly zones, such as weather formations or re-
stricted airspace. This has not been explored but falls within the realm of possibilities using this method of
(geometrical) complexity. The advantage of this method is that this geometric approach relates complexity
to the range of possible solutions, irrespective of context. This is how pilots and controllers alike will solve
conflicts. If then, this geometric approach can be translated into a useful metric, it might be a good quantita-
tive approximation that is related to the conflict resolution done by airspace users and thus be a good factor
to predict the conflict resolution and thus the trajectory.

A similar approach put to practical use is the Solution Space Diagram (SSD), in which the SSD is thought of
as a measure for sector complexity. [41] A schematic overview of how a solution space is defined is given in
Figure 3.5. This approach however is intended to measure sector complexity for controller workload for short
to medium time ranges. [47] Nevertheless, the concept can be adapted and applied in the relevant context.

Vinax

Figure 3.5: A schematic overview of a two aircraft condition, where the Forbidden Beam Zone is translated to a Solution Space. [41]

To reduce the subjectivity error, Delahaye et al. [10] introduced a methods to model the intrinsic traffic dis-
order which capture complexity and improve the dynamic density model. This is a geometrical approach,
in which the relative motion of aircraft represents the traffic disorder, in similar fashion as in done by the
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human brain. The traffic disorder is represented by a three-dimensional complexity coordinate, composed
of three axes: density, divergence/convergence, and (in)sensitivity. The advantages of this factor is that it is
point specific and does not generalize the entire sector into a single value.

Dynamic Weighted Network

A novel objective measurement of air traffic complexity is proposed by the dynamic weighted network ap-
proach [48]. This model considers the effects of airspace structure and traffic characteristics by measuring
the spatial approaching rate of three types of relationships: aircraft-aircraft, aircraft-waypoint, aircraft-route
segment. Each summation of complexity measurements are normalized and aggregated with weighted fac-
tors for each complexity factor. It is found that this complexity measurement correlates directly with traffic
count, correlates with a time-shift to trajectory changes, and correlates directly with sector conflict rate. The
advantage of this method is the independence from sector geometry, and relative ease of computation. Only
the aircraft-aircraft relationship is useful if used in a objective weighting scheme due to the scope of this
thesis. This complexity metric, based on between aircraft spatial approaching rates (convergence), can sup-
plement other complexity measurements. The between-aircraft complexity is given in Equation (3.2):
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Where E; ;(1) is the ellipsoid distance between aircraft i and j at time t. VlA] (?) is the between-aircraft ellipsoid
distance changing rate, see Equation (3.3). When VIA] (2) is larger than 0, the traffic situation is diverging. 4
is the adjustment coefficient for between-aircraft spatial proximity, which is not further specified.
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Subsequently, the complexity values are then added for all aircraft pairs inside a selected region.

Lyapunov Exponents

Perhaps the most significant work done on modelling the intrinsic complexity of the air traffic is by Delahaye
etal. [11], by pure dynamical systems modeling. The so called Lyapunov exponents are a traffic disorder met-
ric that measure the sensitivity to initial conditions of the dynamical system. In words, Delahaye et al. explain
this concept as follows: "The Lyapunov exponent map determines the area where the underlying dynamical
system is organized. It identifies the places where the relative distances between aircraft do not change with
time (low real value) and the ones where such distance change a lot (high real value)." [11] Figure 3.6 displays
a Lyapunov Exponent map.

The inputs to this model are sets of trajectories, composed of positions and speed vectors. This method pro-
vides a very intrinsic and objective measures of complexity that is completely controller and sector geometry
independent, can be represented on a map and the look ahead time is irrespective to the working method.

Eurocontrol’s Complexity Metrics for ANSP Benchmarking Analysis

Both the ATC controllers and the pilot do not rely on advanced air traffic prediction models to forecast future
state of the airspace in order to optimize the near-future trajectory. As such, the information that dictates the
trajectory should be basic and intuitive, similar to basic human spatial awareness but also from the perspec-
tive of each individual aircraft. This is in part the reason why it is preferred to determine the complexity at
spatiotemporal level on a map instead of a single scalar for the whole sector. Complexity Metrics for ANSP
Benchmarking Analysis provides a method for determining the complexity based on each aircraft level of in-
teractions with surrounding aircraft: "Interactions express the fact that it is the presence of several aircraft in
the same area at the same time that generates complexity, particularly if those aircraft are in different flight
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Figure 3.6: The results of the Lyapunov Exponent complexity of French Airspace, the red areas are regions of higher complexity [11]

phases, have different headings and/or different performances.”.[2] The simplistic metric can easily be com-
puted per aircraft through time as it passes through a sector. This is more a whole sector measure, but can be
adjusted, aggregated per flight. This will allow for individual differences in the air traffic to make a valuable
contribution to the regression model complexity indicators. The four factors are as follows, where each factor
is defined as the ratio between the hours of interactions and flight hours:[2]

¢ Adjusted density - An interaction is defined as the simultaneous presence of two aircraft in a cell of
20x20 NM and 3000ft in height.

¢ Potential vertical interactions - Captures the potential interactions between climbing, cruising and de-
scending aircraft.

¢ Potential horizontal interactions - Provides a measure of the potential interactions based on the aircraft
headings.

» Potential speed interactions - Assesses the potential interactions based on the aircraft speeds.

3.2.4. Metrics to Evaluate the Air Traffic Dynamical Models

The intent to determine the air traffic dynamics relate to the trajectory prediction in a TBO environment
in which FRA and self-separation will play a crucial role in the next generation ATM. It is with the research
objective in mind that requirements are imposed on the air traffic dynamics model. These requirements, the
air traffic dynamics metrics, are imposed to evaluate the suitability to trajectory prediction applications, and
are described as follows. The method to evaluate the different complexity assessment model is inspired by
Prandini et al. [37]

Air Traffic Complexity

As elaborated upon in Section 3.2.2, all the aforementioned models are means to determine the air traffic
complexity. Not all methods are equally suitable to model the air traffic complexity for the application of this
research. As mentioned, workload is mediated by procedures and ATC equipment, so a workload score is
not always proportional to the air traffic complexity. The complexity model needs to be route independent,
which is relevant for FRA and en-route traffic. Lastly, some previous work have introduced novel, but very
specific, air traffic complexity features. These features might provide unique insight but do not provide an all
encapsulating air traffic complexity model.
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Look-ahead time

The time horizon will dictate the suitability of each model. Short- to medium-term complexity models often
rely on conflict detection. These are computed based on the propagation of aircraft state and intent informa-
tion over a time horizon up to 15 minutes. Accuracy as well as computational effort do not scale well beyond
this time horizon. Medium- to long-term complexity model are computed based on flight plan and trajectory
optimization. Regions of high complexity need to be identified along the planned trajectory which require
excessive tactical maneuvers. The chosen model needs to be suitable for the desired medium- to long-term
look ahead time in line with the objective of this research.

Control effort independence

Some models are generated independently of controller workload, but the application is concerned with
modeling or aiding the (ground) control effort needed to handle the complexity of the air traffic. This is less
problematic compared to subjective controller workload as an input because the control activity in future
ATM is shifted from ground to user, but will not disappear. If a highly assumptive control effort prediction
is used in the prediction of future trajectory, it is near to impossible to find causal relationships between air
traffic complexity features and performance of trajectory prediction.

Prandini et al. [37] has introduced the notion of flexibility, which could exclude any controller dependency. It
is proposed that the extent to which non-conflicting trajectories are present can be expressed by a degree of
flexibility. Thereby not suggesting any preferential control action. The notion of flexibility differs depending
on the look-ahead time. The long-term application of flexibility is concerned with weather systems, no fly-
zones, and regions of high air traffic complexity for example. My considering how a model measures this
flexibility, the control effort independence is evaluated.

Sector Independence

Ideally, FRA operates in a sector-free context, using Functional Airspace Blocks. Currently, this is not yet viable
due to surrounding non-FRA operations and thus mandatory entry and exit points are defined. However,
next generation ATM is heading towards largely sector independent operations. This means that air traffic
complexity models should not be intrinsically dependent on the sector boundaries and other relevant sector
specific characteristics. This does pose a problem when considering the air traffic density of a sector, which
lies at the core of most complexity models. However, clustering and grid-like representation of density can
help isolate airspace and substitute the need for strict sector boundaries.

Output Form

Air traffic dynamics is both space- and time-dependent. By condensing the aggregated space and/or time
information of the traffic situation, the traffic dynamics can be expressed. [37] The air traffic dynamics can
thus be expressed as scalar values, possibly dependent on time or alternatively space, to a spatiotemporal
complexity map. Scalar values of complexity along the current and intended trajectory could provide mean-
ingful information. For the long-term applications, it could be more insightful to identify a region of high
complexity which the aircraft is expected to avoid. These two means of expressing the air traffic dynamics are
not mutually exclusive.

3.2.5. Review of Air Traffic Dynamical Models

This section aims to summarize and give a structured overview of the possible methods to determine the
air traffic dynamics. Table 3.1 provides a overview for each air traffic complexity method, evaluated for the
metrics as determined in Section 3.2.4.

The output form of all methods is either a scalar or a map. In the case of scalar complexity values, it is the
grid or sector size that largely determines the value. As such, some components that compose the scalar
complexity value, can also be represented by a, discrete map. Density, for example, can be computed for the
entire sector, but also on a smaller scale for a few square kilometers. The choice of grid size is therefore very
important.
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Nevertheless, since the scalar complexity values are the sum of a weighted linear regression model, or net-
work, is is possible to discretize the scalar values on a grid representation. A significant number of researchers
tend toward a weighted network of individual complexity features. Each individual feature can then be tested
for correlation with a (later chosen) metric. This will be of great value during the feature engineering phase,
in which certain features are selected and adapted to best suit the predictive model.

The probabilistic approach and geometric approach has not yet been proven successful on a scale that is
needed in this research. That is because for long-term applications, the propagation of each aircraft tra-
jectory needed to compute the available maneuvering space and influence zone respectively has not been
proven accurate. The Lyapunov Exponent provides a spatiotemporal complexity map that is expected to
closely resemble the intrinsic complexity, without a controller nor sector dependency and has no major lim-
itation regarding the look-ahead time. The Eurocontrol complexity metrics are well suited to complement a
grid-like representation and add to the scalar complexity value.

It can be concluded that a well reasoned selection of scalar complexity features in a regressive model, similar
to the DD, ANN, and TBO complexity indicators is a promising method to determine the air traffic complex-
ity, to which the Eurocontrol complexity metrics and a measure of traffic convergence can be added. Fur-
thermore, the Lyapunov Exponent is the more viable map-based complexity method that takes into account
system dynamics.

For the application of this research simplicity is very important, for two reasons. In order to understand
and be able to distinguish between different features, there is no point in aggregating very many features
together. On top of this, a pilot nor controller have a mental model of such a complex model, so the relation
to the tactical trajectory changes must be based on actionable information.
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3.3. Trajectory Prediction

Trajectory prediction been bee performed by numerous methods. In order to understand the various ap-
proaches and be able to comment on the advantages, disadvantages, and applications, the working principle
must be understood. In this literature overview, the working principle of any predictor will be primarily de-
fined by two main categorizations. The first categorization will be based on the prediction method used to
define a trajectory, either nominal, worst-case, or probabilistic. The second categorization refers to the model
used to actually propagate the aircraft and environment states to estimate a trajectory or set of trajectories.
Moreover, aircraft intent inference is relevant for this research and will be further elaborated upon.

3.3.1. Trajectory Prediction Methodologies

Three different methods of trajectory predictions are observed:

* Nominal (Deterministic)
Nominal methods predict a single trajectory by propagating the observed aircraft and atmospheric
states along a single trajectory. This approach does not consider any uncertainties in the measure-
ments making it only suitable for very short look-ahead times in a specific phase of flight and cannot
be done before flight initiation [19, 27, 53].

¢ Worst-case Worst-case methods consider the range of possible trajectories and, depending on the ob-
jective, consider the worst-case scenario for trajectory prediction. This is a highly conservative method
and inherently inaccurate since the trajectory with the highest likelihood is not by definition the worst-
case, thus introducing error.

¢ Probabilistic Probabilistic methods take into account the known uncertainties to model the possible
changes to the trajectory inputs or outputs. This can yield both analytical or numerical solutions. Nom-
inal and worst-case approaches can be translated into a probabilistic approach. A nominal trajectory
prediction corresponds to a case in which an aircraft follows a maximume-likelihood trajectory with
probability of one. A worst-case prediction corresponds to a worst-case scenario in which a set of tra-
jectories has equal likelihood.

Avisual representation of the three mentioned methods is given in Figure 3.7. This categorization of methods
is most applicable to performance based trajectory prediction models, which is further elaborated upon in
Section 3.3.2. Nominal trajectory predictions are inherently deterministic as it yields an exact, analytical so-
lution. Generally speaking, this means the models used to calculate a trajectory are (analytical) performance
based models. Most data-driven prediction models are inherently probabilistic because historical data or
input data with a specific distribution are translated into a most likely numerical solution, whether this is
achieved by a machine learning algorithm or a Monte-Carlo simulation.

A

(a) (b) (c)

Figure 3.7: Visual representation of the nominal (a), worst-case (b), and probabilistic (c) trajectory prediction methods. [22]
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3.3.2. Performance Based Trajectory Prediction Models

Performance Based Methods (PBM) rely on advanced aircraft models, called Aircraft Performance Models
(APMs) as a function of the aircraft states and atmospheric conditions. This approach yields an analytically
determined trajectory. The Base of Aircraft Data point-mass model is an example of a widely used perfor-
mance model [1]. Point-mass models are a simplification of the aircraft dynamical system, considered rea-
sonably accurate and commonly used in ATM research. [30] Common variables to APMs include: horizontal
(X)Y) positions, altitude, heading angle, flight path angle, bank angle, true airspeed, Mach number speed,
vertical speed, temporary level-offs, air temperature, lapse rate, wind.

APMs are a popular choice for many current applications of trajectory prediction. APMs are compatible with
current ATM and ATC systems. This means changes to aircraft parameters can be easily applied to the existing
system. For research or training purposes, these APMs give the flexibility of generating imaginary routes and
scenarios while maintaining relatively accurate aircraft behavior. Missing or previously unseen information,
such as geographic positions or routes, do therefore not limit its use. The look-ahead time however is limited
to several minutes since the APM propogate current states and cannot predict a route. Intent information
is necessary to predict with a longer look-ahead time. Moreover, nominal performance based methods are
inherently inaccurate because these methods apply a deterministic model to a stochastic process [15]. The
Base of Aircraft Data is a very accurate aircraft performance model, but a analytical approach will introduce
intrinsic errors that produce deviation between the predicted and actual trajectory.

Note that the use of PBMs does not mean that probabilistic solutions to trajectory predictions are excluded.
It simply refers to the dynamical aircraft model that is used to model aircraft behavior. For example, Monte-
Carlo simulations to map the aircraft modeling discrepancies or weather forecast uncertainty allow for a
Bayesian estimation problem to provide numerical solutions to aircraft trajectory prediction. Alternatively,
Rudnyk et al. applied distribution functions to the various model inputs to model the prediction accuracy of
PMDs. (30, 40].

3.3.3. Intent Inference

A major drawback of the PMBs is the look-ahead time. PMBs essentially propagate the current and some-
times the past states into the future, a path prediction. Utilizing intent information can greatly increase the
trajectory prediction along a route. Extracting the information on what the aircraft is most likely doing to do
is referred to at intent inference. Intent inference does not only refer to waypoint-to-waypoint intent but also
as a consequence of other information, such as weather patterns that might alter the planned route. [21] A
visual explanation of what intent is is seen in Figure 3.8.

@ Intent?
=

Current Weather
Heading

/ Intent? NG EmEm SS

Observed Past Motion - .-

Direction to TCP
! S Intent?

Way Point (TCP)

Figure 3.8: Understanding what aircraft intent is. Not only the waypoint determines the intent. [21]

Krozel et al. has made a match between the human flight control decision making process and intent infer-
ence. As Krozel et al. putit: "Intent inference is related to inferring the declarative and procedural decisions of
the pilot, and path prediction is related to inferring the path that the pilot attains from regulatory and reflex-
ive control inputs."[21]. This approach of looking at intent is a novelty and moves away from pure en-route
intent prediction, making a gesture towards the possibility to derive aircraft intent in a FRA. For example, in
Figure 3.8, the weather system can be replaced high a traffic complexity system, and the intent model still
applies. Using sensory information that comes naturally in the human decision making process is a very im-
portant consideration to make when devising the air traffic complexity model. Since the information in this
model should represent the same information on which a pilot makes meta-intent decisions. "Meta-intent"
refers to the pilot intent at navigational level. Although this research is not concerned with PBMs, this way
of thinking provides valuable insight into trajectory prediction in FRA and using environment information to
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generate a humanly intuitive air traffic complexity model. Figure 3.9 is a schematic control model that links
the human decision making process to the aircraft control sequence.

Knowledge
Base
Decision Sensory le—
Making Inputs
Human l
Primitive Intent }
Meta — Intent rmitive fnten Regulation
i l |
‘
Navigation Guidance Control , Airframe > Flight
Inputs
Aircraft 1
Aircraft P
Sensors

Figure 3.9: The human decision making process for flying an aircraft according to Krozel et al.[21]

Two more concepts taken from the intent inference research can be adapted to this research. First, a finite set
of probabilistic intent models determine the range of possibilities, limiting the infinitely many elements that
in fact determine intent. These models represent the range of possible pilot’s action and are constrained by
ATC regulations and procedures, such as 'hold pressure altitude of spatial location of waypoint’ [53] However,
it is questionable whether this 'discretization’ is necessary when applying a machine learning algorithm to
determine intent. Lastly, the performance of online trajectory prediction and intent updating is improved
by only updating the prediction when the deviations between actual and predicted exceed a certain pre-
determined threshold. This approach makes the prediction accuracy-driven instead being driven by a fixed
look-ahead time, thus improving the reliability. [54]

3.3.4. Data-Driven Trajectory Prediction Models

In recent years, purely data-driven methods have been explored increasingly. These, naturally probabilis-
tic, data-driven methods are independent from any aircraft model and sensory data, and have the ability to
take into account various sources of uncertainty and learn from historical data. Although strictly speaking
the application of a Monte-Carlo simulation on a PBM as mentioned in Section 3.3.2 is also data-driven, the
notion of data-driven methods has a different meaning in this context. In this study, data-driven techniques
allow trajectory predictions based on machine learning and agent-based modeling methods, considering all
relevant, actual historical data, including contextual features. This means that these methods can encap-
sulate more parameters and underlying relations previously unforeseen with analytical methods. SESAR’s
Data-driven AiRcraft Trajectory prediction research (DART) project emphasizes the importance and potential
benefits that research into this field will bring. This section will cover a few of the most relevant and distin-
guishable approaches to data-driven trajectory prediction.

Machine Learning: A General Overview

In machine learning we can classify algorithms based on the type of learning and based on the functionality,
how they work. The three main learning styles are supervised learning, unsupervised learning, and reinforce-
ment learning. In supervised learning the input data is called training data and has a known output. Gen-
erally speaking, supervised learning attempt to model a relationship between the target prediction output
and the input features. The supervised learning class depend on the domain of prediction target: continuous
variable or discrete (categorical) variable. A continuous function approximation is a regression problem. A
discrete function approximation is a classification problem. In unsupervised learning, the training data does
not include the desired output. In this case, the model has to mathematically organize the data according
to unknown patterns or rules. Models that attempt to reduce feature redundancy are called Dimensionality
Reduction algorithms. Models that attempt to group elements according so similarity are clustering algo-
rithms. Lastly, Reinforcement Learning is a reward-based learning style in which a learning algorithm (agent)
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is trained by interacting with an environment. Reinforcement Learning will not be further considered after
this point. Classifying algorithms based on the functionality allows one to understand the working principle,
advantages, disadvantages and suitability to type of problem. An in-depth explanation of the algorithm will
be done only on those that are applied in the related research. Many algorithms can actually be adapted for
several types of learning problems. Neural networks, for example, can be applied to a regression, clustering,
and classification problem. Figure 3.10 gives a illustrative overview of a variety of algorithms.?

[ Machine Learning ]
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Learning Learning Learning
|
I 1
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reduction
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5 Ensemble 1 .Gaussian Mix[ure.
‘_ Raveliaves ‘ | Methods ‘ Model |
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Figure 3.10: An overview of a variety of Machine Learning algorithms. Note that the algorithms are not all
exclusive to each learning type.

Machine Learning Algorithms Applied to Trajectory Prediction

Machine learning is particularly suitable to the problem of trajectory prediction for several reasons. Firstly,
there is more data becoming available every day. Second, it is a high dimensional environment. Many vari-
ables, including aircraft performance parameters, aircraft characteristics, and many external variables may
play a role in the decision and execution of a trajectory, making it nearly impossible to find an analytical
solution. Each external variable has a distinct distribution and influence on the trajectory, including: atmo-
spheric conditions, convective weather, strategic routing, ATC interventions, conflicting air traffic, air traffic
complexity, availability of airspace, airspace structure and even calendar properties. [15, 42] If any of these
variables respond to a pattern, machine learning algorithms might identify them once the proper system
features are considered. Lastly, the output variable are well defined and understood, spatial coordinates or
Estimated Time of Arrival (ETA) at certain predefined points.(delay) This makes it intuitively comprehensible,
thereby making the selection of algorithm type, hyperparameter tuning, and accuracy analysis feasible. The
complexity of the problem can grow exponentially if the spatiotemporal boundary conditions are expanded
(sector size and look-ahead time). The problem formulation can be a non-linear regression problem, where
the trajectory represents a function that needs to be modelled. Alternatively, some researchers opt for a classi-
fication problem. In simple terms, this means that at every state, a discrete set of choices can be made on the
propagation of that state. Lastly, clustering is also frequently observed, grouping sets of trajectories and mak-
ing predictions based on the identified clusters. Frequently, data-drive trajectory prediction methods utilize
a combination of techniques. This makes it rather cluttered to categorize each approach since there is much
overlap. This section will cover the previous work grouped by similarly of the method, and not necessarily by
algorithm or learning type.

¢ Linear Regression Model

Published in 2013, Leege et al. [8] trains a Generalized Linear Model (GLM) to predict the time over
points along the fixed arrival route. The GLM is a supervised regression problem. Since the prediction

Zhttps:/ /nl.mathworks.com/help/stats/machine-learning-in-matlab.html
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is performed along a fixed route, the output variables are relatively low dimensional. A GLM is in fact
not very different to a ordinary linear regression model, where a linear predictor is used to predict the
output variables that have a certain probability distribution. A novelty is that Leege et al. applied a step-
wise regression approach to determine the explanatory power of each input variable. The distribution
of the output metrics are then compared for the varying input variable to understand the effect of each
input variable on the model accuracy. Figure 3.11 shows this distribution. It can be seen well that at
a 15NM prediction horizon, the addition of altitude and speed significant reduces the time error. This
concept of introducing input variables with a stepwise approach to observe the model accuracy can be
very valuable in understanding the explanatory power of the input variables. This is a common issue
for 'black box’ models. However, a GLM is expected to not capture the highly dimensional interaction
effects present in this research problem.

= Aircraft Type

+ Altitude & Speed
+ Surface Wind

+ Altitude Winds
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Probability Density []
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- THR 18R

Prediction Horizon [NM] Time Error [s]

Figure 3.11: The Probability density distribution of the time error for GLM with varying inout variables. [8]

¢ Markov Models

In 2006, Choi et al. was one of the first to represent a trajectory as a Markov Model [34]. This was a
novelty since a Marvok model relies on a discrete system representation and is particularly suitable
to stochastic systems. It means that a trajectory has to be broken up in segments, where the transi-
tion between states is represented by a stochastic model, which is learned from the data. Ayhan et al.
further developed this idea and applies the Hidden Markov Model (HMM) to 4D aircraft trajectory pre-
diction, taking into account atmospheric uncertainty [4]. Ayhan et al. represents the airspace as set of
3D cubes, where each cube contains homogeneous environment data. A trajectory is then represented
by a sequence of these cubes with spatiotemporal attribute including weather conditions, as seen in
Figure 3.12.

A learning HMM is applied to represent the transitions between these segments and subsequent the
Viterbi algorithm to compute the sequence of transitions, or the trajectory. A horizontal accuracy of
12.6 km is achieved (mean cross-track error). However, the highest spatial resolution was 13 km, so this
proved to be the most limiting factor to the accuracy. If a similar approach is chosen in this research,
which is possible due to the grid representation of the air traffic dynamics, careful consideration must
be made to the grid size. The learning algorithm is very suitable to this problem representation. [12]

* Neural Networks The straightforward principle of a Neural Network (NN) does allow it to be adapted
to a variety of tasks. NNs can be applied to classification, regression and clustering problems and have
been used for trajectory prediction research as early as 1999. In more recent years, adaptations of NNs
have been applied to the trajectory prediction problem. This literature review will focus only on re-
cent developments. A much cited researcher, Daniel Delahaye, co-authored several research papers
on ATM and 4D trajectory prediction. Together with Delahaye, Wang et al. [49, 50] performed a direct
comparison between MLR and NNs and concluded that that NNs outperform MLR for the trajectory
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Figure 3.12: ’A set of spatio-temporal data cubes defining an aligned
trajectory’[4] The dots represent weather observation nodes.

prediction task. This work was extended by comparing shallow NNs to deep NNs. The most straight-
forward adaptation of a single-layered (shallow) NN is by adding hidden layers, to generate a so called
deep NN. It is shown that deep NNs consistently outperform shallow NN’s . This is especially true for
noisy data with a large number of outliers. However, excessive numbers of hidden layers (three in this
case) causes overfitting, thus deteriorating accuracy and computational efficiency. [51] Next, Recurrent
Neural Networks(RNNs) are especially suitable for sequence modeling and employing (time-varying)
spatiotemporal patterns, as observed with (multiple) aircraft trajectories. Long Short-Term Memory
(LSTM) is a popular adaptation of a RNN and has been proposed and researched for the application of
trajectory prediction.[26, 55] The LSTM NN has a memory function because the output of the LSTM NN
depends on the previous calculation results and the current input. For certain time-series prediction
tasks, it has been shown that LSTM NN outperform the autoregressive moving average (ARIMA) model
as well as the Support Vector Regression (SVR) model. [16, 25] Lastly, LSTM has been shown to also
outperform Markov Models for flight trajectory Prediction by Shi et al. [44] Markov Models, as men-
tioned, are know to performed well for time-series processing. This result, along with the related work
on LSTM and deep NNs, prove that adaptations of shallow NNs are suitable for trajectory prediction
and are serious contenders to be applied in this research.

Ensemble Meta-Estimators Lastly, ensemble machine learning methods, are known to be powerful es-
timations applied to trajectory prediction problems. A clear definition is given by Hernadez et al. [17]:
"Ensemble-meta estimators can be defined as a collection of multiple learning algorithms that average
the predictions from multiple models to yield a final prediction.” This method can be applied to both
regression and classification problems, but is most suited to classification problems. Applied ensemble
methods are Gradient Boosting Machines (GBM) and random forest models, which have been shown
to be very suitable to the trajectory prediction problem.[9, 17] In direct comparison, GBM and random
forest models perform similarly and outperform other ensemble techniques as well as logistic regres-
sion. [6, 27] Note that these last two studies applied a classification problem. In the only study found
to compare LSTM to GBM for trajectory prediction as a regression problem, Dek et al. [9] concludes
that GBM is the superior machine learning algorithm. However, this study does apply clustering and
is applied in an environment with highly repetitive flight trajectories and short look-ahead times. This
problem favors GBM because of the categorical indicators and high similarity between flight situations,
making it almost resemble a classification problem.
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Hybrid Clustering and Trajectory Prediction Methods

A commonly observed approach to trajectory prediction is that of a hybrid clustering and machine learning
method. This method is widely applied in the context of trajectory prediction since it greatly reduces the
computational complexity and for its explanatory power as shown by Wang et al. [50], Marcos et al. [31], Liu et
al. [28], Lui and Klein et al. [29] and Dek [9]. The most common methods for clustering are K-means clustering
and Density-Based Spatial Clustering of Application with Noise (DBSCAN). Generalizing, DBSCAN performs
well with large data sets and in the detection of outliers. Clustering can help identify the feature importance
and often works well with supervised learning algorithms for classification problems. Note that clustering
itselfis not a prediction method, it has to be combined with a prediction algorithm that considers the features
on which the clustering is based and places a trajectory in a cluster. There are two general applications of
clustering in the context of trajectory prediction.

First is trajectory clustering and nominal route prediction. The clustering algorithm is used to identify route
choices based of relevant features. The machine learning algorithm is used to model the aircraft route choice,
placing a trajectory in a cluster. The actual trajectory prediction is then the (usually) median of that cluster,
see Figure 3.13. This essentially makes it a classification problem. The machine learning algorithms that
have been applied are Logistic Regression, SVR, Random Forest, GMB, and HMM. [15, 28, 29]. As Lui et al.
mentions: "...instead of directly predicting individual flight tracks, [the approach] predicts the aircraft route
choices by consolidating a large number of trajectories into several clusters within which flight tracks are sim-
ilar to each other."[28] The use of clustering and nominal trajectory prediction should be carefully scrutinized
as it can potentially contradict the objectives of this particular research, as it relies or recurrent trajectories
and standard routes.

FLL = JFK JFK = FLL LAX = SEA

Figure 3.13: An example of three routes, each with a set of clusters. The white line represents the median 'nominal’ route. [28]

The second hybrid approach consists of clustering to assign a trajectory to a cluster and subsequently fol-
lowed by a machine learning algorithm to predict the individual trajectories within that cluster. This has been
done mostly for aircraft inside the TMA that follow the standard arrival/departure procedure and regular ATC
instructions. [50? ] The machine learning algorithms applied range from Multi-cell NN, Multiple Linear
Regression Model, Muli-layer Perceptron, GBM, and LSTM NNs. In is important to note that this hybrid ap-
proach only uses clustering to generate a subset with similar trajectories, as a dimensionality reduction. The
trajectory prediction step in fact is no different to the pure machine learning approaches. Therefore, these
studies will be taken into account to compare suitability, accuracy and efficiency for this study.

Summarizing, it is not expected that clustering will be needed for this research for three reasons. Firstly, this
research is concerned with FRA and en-route data, aiming to make trajectory predictions that are indepen-
dent of standard 'nominal’ routes. Secondly, generating a subset to reduce the dimension is not expected
in this research due to the availability of aircraft intent information. Aircraft intent is expected to already
narrow down the range of possible trajectories enough. Third, the en-route data does not visually appear to
have major reoccurring routes that can be clustered well, see Figure 3.14. However, if the model complexity
and highly-dimensional problem prove to be too much for the application of this research, clustering is a
tried-and-tested approach to reduce the dimensionality.
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Figure 3.14: All the trajectories of 01-09-2018 in the selected region.

3.3.5. Trajectory Prediction Metrics

The scope of the trajectory prediction can range from single delay prediction upon entering the airspace
to 4D trajectory prediction with online intent updating and a long look-ahead time. The required output,
evaluated by certain metrics, dictates what algorithm is most suitable. The evaluation metrics are based on
the difference between the predicted an the actual trajectory. The metrics that are observed are :

e ETA or delay prediction error. This entails a fixed location and a estimated time.

¢ Spatial prediction error. This entails a fixed time and a estimated position. This could be along any, or
multiple axis. Cross-track error, along-track error, horizontal-track error and altitude error are among
the observed metrics. See Figure 3.15 for a geometrical representation of the (horizontal) spatial errors.

e Flight properties. Other properties can also be included in the prediction, or may be used to determine

the time or spatial error. Such properties include speed and heading angle.
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Figure 3.15: Geometric overview of horizontal, along-track, and cross-track error. [39]

The navigation accuracy is analyzed by X-percentile method, Circular Error Probable, Root Mean Square Error
(RMSE), and x-sigma. It is chosen that the RMSE and/or MSE is most suitable. In case of a classifier, a ROC
curve is used to evaluate the accuracy. [6] The errors are evaluated based on a number of variables. A critical
variable that is very relevant for this research is the navigation accuracy at various look-ahead times.
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3.4. Input Data

3.4.1. Eurocontrol RD dataset

The data source used in the first phase of the research, understanding the relation between air traffic dynam-
ics and aircraft trajectory, is from the Eurocontrol RD data archive. This data is collected from all commercial
flights operated in and over Europe, including flights that depart outside of Europe but arrive inside Europe,
and vice versa. It is a processed data set to ensure accuracy that includes data from air navigation service
providers’ flight data systems, radar, and data link communications. According to Eurocontrol, this results in
data that "represents the best view as used by air traffic management" [13].

The data is historic data of all commercial flights (excluding military, state, and general aviation flights) from
four sample months: March, June, September, December. The data includes flights from the years 2015,
2016, 2017, and 2018. This is large-scale data, including access to seasonal patterns suitable to the research
objective. The data consists of the following metadata that is used in this research:

 Flights A list of flights with key flight details. Below are two sample rows including the data fields. The
data from September 2018 returns just under 1 million flights.

FILED FILED ACTUAL ACTUAL AC AC ICAO STATFOR Reg- A'f‘mﬂl
ADEP ADEP ADES ADES OFF OFF AC N . Dist.
ECTRLID ADEP N N ADES N N ARRIVAL ARRIVAL Oper- Regist- Flight Market uested
Latitude Longitude Latitude Longitude BLOCK TIME BLOCK TIME Type ator ration e  Segment FL Flown
TIME TIME e 8 (nm)
01-09- 01-09- 31-08- 01-09-
222570350 EPKT  50.47417 19.08000 LGTS 4051972 2297083 2018 2018 2018 2018 A320 Z7ZZ LZMDK N Charter 370.0 647
00:00:00  01:49:37  23:56:00 01:45:42
01-09- 01-09- 01-09- 01-09-
222570351 KOAK 37.71667 -122.21667 ESSA  59.65194 17.91861 2018 2018 2018 2018 B789 NAX LNLNL S Lowcost 370.0 4880

00:00:00  09:27:15  00:06:00  09:42:52

Table 3.2: Sample data from 'Flights’ dataset

 Flight points Both actual and filed flight points of all flights as in 'Flights’ metadata. The data from
September 2018 returns in the order of 30 million filed and 30 million actual flight points. Below are
two sample rows including the data fields.

ECTRLID Sequence Number Time Over Flight Level Latitude Longitude
0 222570356 76 01-09-2018 08:58:30 400 50.19056  12.33861
1 222570356 77 01-09-2018 09:03:05 400 50.37861  11.42528

Table 3.3: Flightpoint example data entries

» Flight Through Airspaces Both the filed and actual entry and exit time into a Flight Information Re-
gion (FIR) and ATC Unit Airspace (AUA) for each aircraft. The dataformat of FIR and AUA metadata is
identical, apart from the FIR/AUA ID. Below is a sample row including the data fields.

ECTRLID Sequence Number FIRID Entry Time Exit Time
0 222570350 0 TAXI_OUT 31-08-2018 23:56:00  01-09-2018 00:06:00
1 222570350 1 EPWWFIR  01-09-2018 00:06:00 01-09-2018 00:16:26

Table 3.4: FIR entry and exit example data

¢ ATM environment data Three sets of metadata that refer to the structure of the airspace are also pro-
vided. It is not expected that this data will be used.

— AIRAC This dataset defines a series of common dates and an associated standard aeronautical
information publication. Not used for this research.

— Routes Includes route identifier, route point sequence number, and the coordinates of that point
on the route. Not used for this research.
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— FIRs Includes the coordinates and flight level range of the boundary of the sector, both FIRs and
UIRs.

3.4.2. Flight Region and Date Selection

The entire geographic extent of the available data is not applied. This has several reasons.

Free Route Airspace As explained in Section 3.1, in line with the objective of this study a sector of
airspace should be studied where an aircraft has some degree of autonomy over the chosen route on a
tactical level. Since the most recent available data is from 2018, it is preferable to apply this study to the
dark green airspace sectors in Figure 3.3.

High Congestion In the first phase of this study it is preferred to study a frequently congested airspace
to capture any air traffic dynamical effects on the flown trajectory. If the airspace is barely congested,
is it expected an aircraft does not have to deviate from its planned trajectory as frequently. So, for the
statistical analysis higher levels of congestion are expected to reveal more patterns. In the second phase
of this study however, it is important to include low levels of congestion in the training phase in order
to understand how the different levels of congestion lead to different trajectory changes and secondly,
be able to create robust predictors. The September 2018 Monthly Network Operations Report reveals
that from the available months and years of the Eurocontrol RD dataset, September 2018 had the high-
est ever recorded daily traffic levels at around 34,000 flights. [13] This corresponds to the cumulative
number of flights of around 1 million as seen in the Eurocontrol RD dataset. It is chosen to use data
from this month for the first phase of this study.

The region that experienced the highest level of en-route delay in September 2018 is the Karlsruhe Up-
per Area Control (UAC), as can be seen in fig. 3.16. This does not mean that the flights got delayed inside
the respective UACs. On the contrary, it is expected that much of the delay occurs prior to entering the
sector since the capacity is limited and so flights have to wait before entering a sector. This often occurs
prior to take-off.
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Figure 3.16: The distribution of delay per region in Europe.[13]

Airspace size Since the analysis and trajectory prediction will be performed on en-route flights, the sec-
tor size must be large enough for cruising aircraft to spend significant time in the sector. This is needed
in order to capture enough trends and also be able to make med-long term prediction. It is possible to
include data from many adjacent sectors. However, it is expected that differences in controller behav-
ior and/or policy in different areas lead to different air traffic dynamic behavior. It would then not be
possible to capture this behavior well in a single model.

The above mentioned considerations for selecting the appropriate time and sector for this study has led to
the airspace under control of Karlsruhe UAC and part of Maastricht UAC during Sepember 2018 to be selected
for the first statistical phase of the study. These are the FIRs of Upper Airspace Hannover UIR (EDVV) and
Rhein UIR (EDUU), both at flight level 245 and above. If during the analysis this proves to be too small, the
area of consideration will be extended with the remaining Maastricht UAC UIR’s: Amsterdam UIR (EHAA)
and Brussels UIR (EBUR). For the trajectory prediction phase, careful consideration must be taken to select
representative data that has enough datapoints and variability.
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3.5. Summarizing Remark on the Literature Survey

The goal of the literature review is to provide an academic framework on which this thesis can build. The
two dominant topics in this literature review are the air traffic dynamics and the trajectory prediction. The
literature review provides a starting point on these topics. Derived from the literature review are the proposed
air traffic dynamics model and the method for trajectory prediction. Although these are direct results of the
literature study, the proposed models and algorithms are summarized in Section 4.1 and Section 4.2 as part
of the research plan.



Trajectory Prediction Research Plan

This chapter will give an overview of the experimental phase to be conducted in this thesis, the trajectory
prediction. The research objective is to improve the performance of the medium to long term trajectory
prediction by incorporating the air traffic dynamics. The work in the first phase of this research is focused on
quantitatively representing the air traffic dynamics and selecting which model, or features of the model, that
are expected to be most suitable as part of a trajectory predictor. This chapter will first include the proposed
models, both for the air traffic dynamics in Section 4.1 and for the trajectory prediction in Section 4.2. This is
derived and based upon the literature review in Chapter 3.

Next, this chapter will discuss how the data is prepared for the trajectory prediction using the LSTM NN.
This includes the defining of the input variables, the output variables, and steps that will be taken to reduce
the dimensions. If during the execution of the experimental phase of this study it is concluded that LSTM
NNs are not the best algorithm, parts of this chapter might become obsolete. Next, the trajectory prediction
experiment will be introduced. Since this experiment has not been conducted yet, this section will give insight
into the baseline experiment, the steps taken to perform the trajectory prediction, as well as means to perform
the validation of the trajectory prediction.

Note that the research plan for conducting the preliminary statistical analysis is not covered in this section.
This is because this phase has been conducted and the preliminary results are discussed in Chapter 5.

4.1. Proposed Air Traffic Dynamics Models

Following the literature review, it is selected that the following three air traffic dynamical models are most
suitable for the application of this research. Although ingenious, most advanced complexity models don’t
lend itself well to the context and application of this research. The argumentation of each model and if nec-
essary specification is given below. Essentially it comes down to three different representations: one captures
the most simple and basic features which might be considered by ATC and pilot during tactical trajectory pre-
diction; The Lyapunov exponent is an aggregated mathematical measure of disorder; Lastly, the Eurocontrol
Complexity Metrics represent the one factor which ATC and pilots attempt to avoid, which is the number of
interactions between aircraft.

Regression Model

The proposed features that will constitute the regression model are based on the Dynamic Density model,
the TBO complexity indicators, and one feature from the Dynamic Weighted Network. This selection is based
on the literature study, evaluating each feature based on the following: Controller independence, Route in-
dependence, objectivity, and expected complexity indicator. The features that have been chosen have widely
shown the highest correlation with (subjective) complexity ratings from Radisic et al. [38], Andrasi et al. [3],
Szamel et al [46], and Wang et al. [48]

Traffic Density At various scales depending on sector area (TD);

56
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Aircraft count At various scales depending on sector area (ACC);

Heading change Count of aircraft making >15 degree heading change within 2 minute period (HdgCnt) and
average heading change for aircraft passing this threshold (HdgAvg);

Speed change Fraction of aircraft with an airspeed change of >10 kts within a 2 minute period (SpdCnt) and
average airspeed change for aircraft passing this threshold (SpdAvg);

Altitude change Fraction of aircraft making >750 ft altitude change within 2 minute period (AltCnt) and av-
erage heading change for aircraft passing this threshold (AltAvg);

Minimum distance Count of aircraft pairs at 3D Euclidean distance less than 5 NM (MinDst5), 5-10 NM
(MinDst10), and 10-50 NM (MinDst50) separation. Possibly be split in vertical and horizontal separation;

Average Distance Average weighted horizontal distance between all aircraft(AvgDst);
Heading Vaiance Standard deviation of aircraft headings (SDHdg);
Conflict predicted Conflict predicted. Fraction of aircraft predicted to be in conflict within 600 seconds (Cfl);

Convergence Rates Between-aircraft complexity, based on spatial approaching rates, see eq. (3.2) (ConvRt).

Lyapunov Exponent

In contrast to separate, basic features, that each contribute to complexity with various weighting, the Lya-
punov exponent provides a method to compute the complexity in a single indicator. It is a intrinsic measure
of complexity measuring level of order, convergence, and sensitivity to initial conditions. A risk however, is
that the Lyapunov Exponent complexity measure does not measure the same entity that is determinant for
trajectories. This will have to be proven during the feature selection and engineering phase. There exists a
possibility that there is cross-correlation with convergence rates as named above since it is a element of the
Lyapunov Exponent.

Eurocontrol’s Complexity Metrics

The complexity metrics proposed in Eurocontrol’s study provide a simplified complexity model intended to
express the air traffic dynamics as basic and intuitively as possible. This way, the air traffic complexity is
expressed similarly to the how the decision making unit would process the information. This is a novel and
unique method that is very different to the other models and therefore worthy to consider. It’s results are
expected to be different to the previously chosen air traffic complexity indicators. Also it is well adapted to
’add’ to the Dynamic Density features. There is a possibility that this measure correlates with the Heading,
Speed, and Altitude change features from the regression model .

4.2. Proposed Trajectory Prediction Algorithm

In line with the objective of this research, a data-driven trajectory prediction algorithm is chosen instead of a
PBM. It is chosen to not initially apply clustering for dimensionality reduction before the training of the tra-
jectory predictor for the following reasons: The en-route flight profiles in upper airspace are less dependent
on standard routes than, for example, TMAs, especially in regions with FRA capability. It is often seen that
hybrid prediction methods are performed on either standard routes or within TMAs.; The selection of route-
independent air traffic dynamical models make it likely that the features will not correlate with any route
information.; Lastly, Principle Component Analysis (PCA) is a well-known and effective method to reduce the
dimensions and feature redundancy prior to the training of any supervised machine learning algorithm. The
most promising machine learning algorithms are HMM, GBM, and LSTM. These methods have proven to be
suitable for trajectory prediction, albeit under different conditions. A LSTM NN is the preferred choice of
trajectory prediction algorithm because of the following reasons: The absence of routes, SIDs, or STARS and
clusters make it unlikely that the supervised learning problem will resemble a classification problem, making
a algorithm optimized for regression a better choice; The 4D trajectory prediction is expected to depend not
only on the most recent datapoint, but on a sequence of datapoints and delayed effects of air traffic dynamics,
making a LSTM the method of choice. Note that without performing tests and perhaps a direct comparison it
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cannot be said with certainty which methods performs the best, especially when taking into account compu-
tational effort as well (LSTM are quite heavy relative to GBM and HMM). If during the execution of the final
phase the results are not acceptable, a re-evaluation will need to happen.

The Long Short-Term Memory Neural Network

To understand the architecture and basic working principle of a LSTM, a description will be given. It is as-
sumed that the fundamental working principle of a NN is understood. ARNN is different from a Feed Forward
NN since it has a recurrent condition on each module of the hidden layers, which ensures that sequential in-
formation is captured in the input data of each hidden sate: internal memory. The difference between a RNN
and a LSTM NN is the way in which the memory is stored, see Figure 4.1 for the general structure of a RNN
and LSTM.

Feed-forward Feed-forward

Network Network

Outputs Outputs
’/ Qutput layer ” Output layer
layer
layer Hidden layers Y Hidden layers
Backpropogation Baci-(propoation
(a) Recurrent Neural Network (b) LSTM Neural Network

Figure 4.1: Architectural differences between RNN and LSTM NNs

The RNN suffers from long-term dependencies when the 'distance’ between the relevant information x; and
place it is needed h;;; become too large. The weights of the NN are updated proportionally through back-
propagation and become very small after several time steps, until the network practically stops learning: the
Vanishing Gradient Problem. The LSTM is designed to deal with these long-term dependencies. In Figure 4.2,
the LSTM network is visualized. Where A represents the recurrent module of NN, x the input vector, and h
the output. RNNs have a single recurrent NN module, of which the activation function is often tanh, this can
be seen to be different for the LSTM.
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Figure 4.2: A unrolled RNN with the repeated module showing the LSTM with four interacting NN layers. [33]

The horizontal line across the top is the cell state, which carries the information through the entire chain.
The LSTM module adds and removes information to the cell state through structures called gates. This way
the cell state only relies on relevant information. There are three gates: the forget, the input, and the output
gate. Each gate contains a sigmoid (o) layer which passes through either all the information (0) or none (1).
The input gate also contains a tanh layer ([-1,1]), hence the four interacting layers.

The forget gate consists of a single sigmoid layer and can store or disregard the information from the cell state
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at ¢t — 1: keep or forget current cell state. The input gate controls the information that will be added to the cell
state. The input gate first decides to update the cell state or not through the sigmoid layer. The tanh layer
creates new feature values which is used to update the cell state. The output gate 'filters’ the cell state and
determines how much of the updated cell state to pass through as an output. First the sigmoid layer decides
which part to output, which is then passed through a tanh function to map it between -1 and 1.

4.3. Data Preparation

This section will outline the data format required for LSTM NNs including a few processing steps, means for
dimensionality reduction, and the input variables, output variables.

4.3.1. LSTM NN data format

The famous machine learning credo of 'Garbage in, garbage out’ is as relevant for NNs as it is for all other Ma-

chine Learning algorithms. However, not only does the input data need to be well understood and structured,

it must also adhere strict coding formats. In Python, LSTM NNs can be implemented with the Keras! and Ten-

sorflow? library. The LSTM NN input variables requires a 3D format of [samples, time steps, features].
The samples are each flight, consisting of n timesteps, which correspond to the datapoints. If the amount of
datapoints are not sufficient, then the flightpoints will be interpolated with shorter timesteps. So the shape

of the input data will be: (num of flights, num of flightpoints, num of features).

Some features that will be implemented are categorical text features. These can be converted to numerical
variables by using dummy variables. This is done by allocating a column to each categorical element and
setting a column to 1 if the sample falls in the category and 0 otherwise: binary vectoring. For example,
say there are three aircraft type in a training data-set: A320, B787, and A350. As a variable, these would be
formatted as: [1,0,0], [0,1,0], and [0,0,1], respectively. Applying dummy variables as such is also referred to as
One-Hot-Encoding, but the wording dummy variable will be used in this report.

Training a network on unscaled data can possibly slow down the learning and converging of a NN. A variable
with mean value of 1000 will initially be much more dominant over a variable with a mean value of 0.1. This
can introduce ’bias’ into the network, pushing the network towards local optimum, slowing convergence
and in extreme cases it can even prevent the network from converging at all. This is a very common issue,
also for analytical regression methods. Feature scaling can mitigate this issue. Standardization, also called
z-score normalization, rescales the distribution of samples around a mean of 0 and standard deviation of 1.
Min-Max normalization rescales the samples between 0 and 1. Standardization is most suitable for variables
with a Gaussian sample distribution. As is observed in Section 5.3, this is not the case for most variables.
Therefore min-max normalization is deemed to be the better rescaling approach, and is done according to
Equation (4.1).

UV—UVmi
Y= — T (4.1)

Umax — Vmin

4.3.2. Geographical Coordinate System Transformation

The input data is defined in a spherical coordinate system (latitude ¢, longitude A, height k). For the LSTM,
we must transform the coordinates into 3D Cartesian coordinates (X.,Y;,Z.), defined with respect to the
local tangent reference frame with East, North, and Up (ENU) conventions. This is done in two steps, first
transform the spherical coordinate system to Cartesian coordinates w.r.t. the Earth-Centered, Earth-Fixed
(ECEF) reference frame and then convert this to the local tangent reference frame. Figure 4.3 depicts the
three reference frames.?

The spherical coordinates are converter to Cartesian coordinates w.r.t ECEF reference frame by the following
Equation (4.2).

Ihttps:/ /keras.io/api/ layers/recurrent_layers/Istm/
2https:/ /www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
Shttps:/ /en.wikipedia.org/wiki/File:EarthTangentialPlane.png
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Figure 4.3: The three reference frames, spherical (yellow), ECEF (blue), and ENU (green)

Xc=N(¢p)+ hcos¢pcos A
Y. = N(¢) + hcos¢psinA (4.2)
Z.=N(p) + hsing

Where,

(12

N(¢p) = (4.3)
\/a2 cos? ¢ + b2 sin? ¢

Where a and b denotes the equatorial and polar radius. To convert to ENU reference frame. The reference
point, [X;, Y, Z,] is taken at lowest latitude and longitude of grid representation. The data points are denoted
[Xg, Yg, Zg].

X —sinA, cosA;, 0 Xg— X
y | =] —sin¢,cosd, —sin¢,sind, coso, Yo— Y (4.4)
z cos¢,cosd, cos¢p,sinA,  sing; Zg—Zy

4.3.3. Input Variables
Flight Characteristics

It is expected that airline operators, aircraft models, departure and destination airports, and type of flight play
a part in the tactical trajectory planning and execution. To illustrate, each FIR charges an aircraft for pass-
ing through. Low-cost flights are expected to avoid 'expensive’ FIRs, whereas higher market segment flights
might opt for direct routes, saving valuable flight time. For this reason, it is valuable routing information
that will be included in the the network model. None of the following features will be included as a time-
series varying feature. They are stationary features for an entire trajectory (sample). Table 4.1 summarizes
the aircraft characteristics input features.

Feature Unit Feature Engineering
Departure Airport - dummy variables
Destiation Airport - dummy variables
Aircraft Type - dummy variables
Aircraft Operator - dummy variables
ICAO Flight Type - dummy variables
STATFOR Market Segment - dummy variables

Table 4.1: Flight characteristics that will be used as features in the NN.
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Flight Points

Naturally, current flight position data is crucial to predict the trajectory of a flight. Only the current position
will be included for each sample. This is possible since the LSTM model is designed for time series and
utilizes the data from the past. If the timesteps are all equal, the time does not actually need to be specified
as a feature. However, since the time itself might influence controller strategy and procedures, it is used as a
feature. At night the flown routes differ from daytime. Time is taken as seconds from midnight. This means
that the day of the week will be a feature too, so that weekend effects are considered. It is not expected that
the day of the month will play a role in the flown trajectory. If the computuational time allows, the NN can
be trained on multi-year and multi-month data. The month will also be regarded as a feature to account for
seasonal effects. However, to be conservative, this will be included initially. The architecture of LSTM NNs
allows one to include a sequence of flight points. If this proves successful, then a time series sequence of past
flight points can be included as an input Table 4.2 summarizes the flight point input variables.

Feature Unit Time-series Feature Engineering Required

Time of day seconds yes Min-Max normalisation

Day of week - no dummy variables

Month of year - no dummy variables

Flight Level feet yes Min-Max normalisation

Latitude (y) - yes Min-Max normalisation

Transfer to Cartesian Coordinate system (x,y)

Longitude (x) - yes Min-Max normalisation

Transfer to Cartesian Coordinate system (x,y)

Table 4.2: Flight points input variables

Aircraft Intent

The filed flight points are perhaps the best indicator for aircraft intent. It is reasonable to include as a fea-
ture since ATC controllers currently have access to the filed flight plan and with the arrival of TBO and next
iteration of ADS-B, it is expected that aircraft will have access as well. Instead of taking the same sequence
number of filed flight point, the nearest filed flight point ahead of the actual flight point will be taken into
account. It is assumed that this is where the aircraft will be headed. The architecure of LSTM NNs allows one
to include a sequence to flight points. If this proves sucessful, then the entire sequence of future filed flight
points can be included as an input. The filed flight points are in the same format as the actual flight points,
as given in Table 4.2. The only difference is that the upcoming filed flight points will be taken instead of the
current and past. Moreover, month of the year and day of the week will not be included.

Air Traffic Complexity Features

The inclusion of these features into the LSTM is what this research is focused on. This step must be done
with due diligence. The LSTM NN can take multivariate inputs, but each feature has a single input value for
each sample and timestep. This means that it is not possible to include the entire 2D grid representation as
an input to each sample at each time step. In fact, a similar approach as with the statistical analysis must be
taken, where each flight point corresponds to a single feature value. This approach is inspired by Ayhan et
al. [4] as summarized in Section 3.3.4 and seen in Figure 3.12. The grid size once again is a crucial param-
eter that must be carefully tuned, similar to the hyperparameters of any machine learning model. Since the
grid feature values are a time-series, the past values can be taken into consideration. The features, selected
from the statisical anaylsis are summarized in Table 5.3. Note that not all the features from the air traffic dy-
namical models that have been selected as part of the literature study have been computed and analyzed yet.
This means that the exact features have yet to be determined. This includes conflict predicted, convergence
rates, Lyapounov Exponent, and the Eurocontrol Complexity Metrics. Each feature will undergo Min-Max
normalisation.

Moreover, it is chosen to also consider grid values just ahead of the current grid in the direction of travel, like
aradial extension. This will be vital in the ’steering’ of an aircraft in a certain direction, similar to the changing
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aircraft intent in Figure 3.8. A visual representation of this is seen in Figure 4.4. The size of this surrounding
grid will have to be determined.
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Figure 4.4: The grids "in front’ of an aircraft will also be considered to take into account surrounding complexity, but not
have to consider the entire grid each time step.

4.3.4. Output Variables

Naturally, the output variables need to be carefully selected and defined. A trajectory is a sequence of spatio-
temporal positions, expressed as numerical output. Since the input variables used are Cartesian coordinates,
so will the output features that define the predicted trajectory. Altitude will also be included. The trajectory
will be predicted as a time-series, this has many advantages. The architecture of the LSTM allows one to make
predictions at incremental time steps. This means that a single network can make predictions at various look-
ahead times.

Output variable Unit Time-series
Flight Level ft yes
Longitude - yes
Latitude - yes
Delay seconds no

Table 4.3: Output variables

4.3.5. Dimensionality Reduction

Dimensionality Reduction has already been conducted in the statistical analysis by feature selection. Further
dimensionality reduction is conducted by actively performing a transformation on the data from a large set
of variables to a smaller one. This will be done by Principal Component Analysis (PCA) . PCA transfers the
variance of two variables and compresses redundant information. The new variables are the principal com-
ponents and are uncorrelated. The PCA tried to place as much information in each variable as possible. By
ranking the eigenvectors in order of the eigenvalue, the principal components are ordered. Disregarding the
components with little variance will reduce the dimensions without losing much information.
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4.4. Trajectory Prediction Experiment

In order to conduct the core experiment in this research, several steps need to be taken. It will be assumed
that the air traffic complexity features have been calculated and all the input data formatted as presented in
the previous section. A step-wise approach will be taken in which input features will be trained one-by-one.
This is a necessary approach in order to satisfy the research objective and answer research question 5b. It
will help make the trajectory prediction explainable, quantify the effects of air traffic dynamics features and
move towards understanding the overall dynamics of air traffic. During every iteration, the performance of
the trajectory prediction will be assessed based on the horizontal, cross-track, along-track, and vertical error
for the positional output variables. The delay will be assessed based on a time-difference. The metrics have
been discussed in Section 3.3.5.

4.4.1. Baseline Experiment

The baseline experiment is the first iteration of the the step-wise training of the NN. It will be the model that
does not include any air traffic dynamic features. As the name suggests, this experiment provides a baseline
to which all the other experiments are compared. Any performance differences compared to the baseline will
be attributed to the air traffic dynamics features and carefully analyzed.

4.4.2. Cross-Validation

Prior to training the NN, we must split the dataset into three subsets: training data, validation data, and
testing data. This is done to prevent overfitting. Testing data is altogether separated from the other subsets,
and used to test the performance of the neural network on a fresh, unseen set of data. The general 80-20 rule
is applied here, where 20% of the initial dataset is kept separated for testing. The remaining 80 % will be used
to train and validate the neural network. The training data is used to actually fit the model. The validation
data is used to frequently evaluate the model to tune the hyperparameters. Now the model does not actually
use this model to fit the datas. However, since the data has an effect on the parameters and learning process,
the model can become biased towards this validation dataset. Hence the use of a unseen testing dataset.

The choice of training and validation subsets can still coincidentally be biased. It is therefore recommended
to reshuffle the training data and iteratively train and validate the model on randomized sets. The results of
the iterative model runs are then averaged. This is called k-fold cross-validation and will be applied in this
research. Note that the testing dataset is not involved, it is kept separated from the very beginning. A visual
representation of this method is seen in Figure 4.5%.
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Figure 4.5: An example of 10 iterations of k-fold cross-correlation on the training dataset.

4http://karlrosaen.com/ml/learning-log/2016-06-20/
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4.5. Evaluation, Validation, and Limitations

Evaluation

Evaluation of intermediate results is done primarily during the statistical analysis of the air traffic dynamics
feature. By performing a carefully conducted statistical analysis, it is verified that there are relationships be-
tween the air traffic dynamics features and trajectory anomalies, which is indicative that it provides valuable
information for the trajectory prediction. Throughout this phase, unit tests, integration testing, and frequent
visual representation of the data ensure verification.

Verification of a neural network is slightly less transparent compared to a statistical analysis. As mentioned,
cross-validation is the primary method to ensure that the training phase is conducted as intended.

Analysis of the final trajectory prediction performance is done by evaluating the performance metrics, sum-
marized in Section 3.3.5. Since all the results are numerical, ROC curves will not be used. RMSE and MSE
are therefore the leading measures to evaluate the performance. During the execution and hyperparameter
tuning of the NN, the output variables from Table 4.3 will be directly evaluated. Only as a final validation,
possibly comparing the results to those of related works, the actual metrics will be used. For each model
iteration (including different features), the performance will be assesed by comparing the look-ahead time
(Dependent variable)versus the performance metrics (Independent variables) which are measures as either
RMSE or MSE. The baseline model serves as the 'ground truth’ to which the remaining models are verified
against.

Validation

Validation of the LSTM NN include performing the trajectory prediction with the selected air traffic features
under different environmental conditions, such as region of application and timespan. For example, testing
the model in a low and high traffic environment will reveal that the model works as intended. In contrast to
a high traffic environment, the trajectory prediction in a low traffic environment is expected to not be signifi-
cantly different to the baseline model. As the features and model have been selected for sector-independence,
testing the model in a completely different sector should still reveal promising results. This is also true for
seasonal effects, testing the model in different times of the year.

The post-analysis of the results can be related to the higher objective of this study. The benefits of improved
trajectory prediction include increased airspace capacity. This can be quantified by calculating increased
potential throughput by lowering safety margins taken to separate aircraft or by redistribution of aircraft in a
sector, thus optimizing the demand and capacity balance.

Lastly, throughout the research a core design principle related to machine learning will be adhered to as much
as reasonably possible. This involves the explainability of Al. This will be done by reporting on intermediate
results and by visual analytics. This is vital if the knowledge gained from the research were to be used by
controllers or pilots alike.

Limitations

At this stage of the research, the following limitations have been identified. As mentioned HMM, GMB, and
LSTM are identified as most feasible algorithms. It is determined in Section 4.2 that LSTM is the most suitable
of the three. However, this dependency on a single algorithm is a risk. The great advantage of machine
learning is also the greatest risk in this case. This is the fact that the algorithms can identify patterns that are
cognitively inconceivable and at a huge scale compared to possible analytical methods. This also means it
is practically impossible to predict if the model will work and which exact adaptation to a model is the best
performing. Based on previous experience in related work and general understanding of the model and the
problem a choice is made. However, the risk remains that a HMM or GBM outperforms the LSTM.

Despite the feature selection and semi-verification of relationships between the features and the output vari-
ables, there remains the risk of not improving the accuracy of the trajectory prediction. In the case that the
performance of the trajectory prediction is not improved, a detailed analysis will still be conducted. The ex-
pected knowledge gain from better understanding the relationship between the air traffic dynamics and the
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flown trajectory or anomalies to the filed flight plan will still be valuable. This is so because as ATM moves
towards free routing and TBO, decentralized ATC will become more important. Any knowledge on how the
local air traffic situation does or does not affect controller or pilot intent will contribute to this shift towards
decentralized ATC. In fact, this could seen as an additional reason that on-board and decentralized ATM are
not so dependent on surrounding traffic behavior.



Preliminary Analysis of Air Traffic Dynamic
Features

This chapter goes into detail on the statistical preliminary analysis of the relationship between the air traffic
dynamics features and the track deviation and delay. Frist, Section 5.1 will give insight into a key few aspects of
the data representation prior to the computing of the features. Section 5.2 will give details on how each feature
is calculated and defined. Then, in Section 5.3 the actual statistical analysis and evaluation is conducted,
followed up by a more in depth discussion of some suprising results in Section 5.4

5.1. Data Representation

Prior to conducting the statistical analysis, some choices and pre-processing steps need to be taken. This
includes devising the grid representation of the sector feature values, interpolating the raw flight points, and
calculating the Kernel Density Estimation to reduce the discretization errors.

Grid Representation

Some of the air traffic dynamics features can be represented as scalar values unique to each aircraft. Is is thus
possible to find relations between the individual dynamics and the flown trajectory. However, this would
exclude the interaction effects of surrounding air traffic. Alternatively, it is possible to compute the air traffic
dynamics feature value for an entire region, such as the EDUU UIR. The maximum distance between two
point within EDUU is over 800 km. It is highly unlikely that air traffic dynamics between such a distance
affects one another. A grid representation allows for the consideration of surrounding air traffic in computing
air traffic dynamics features. This approach has previously been used during trajectory prediction based on
weather information in various research [4, 27]. In order to capture the consideration horizon of pilot and
controllers it makes sense to only consider a volume of space around the aircraft. The volume of airspace
around an aircraft that will be monitored for air traffic and acted upon varies for a number of reasons. The
vertical, lateral and longitudinal separation requirement could define the minimum grid size, however it is
unlikely that aircraft will interact within the protected zone since it should never be more than 1 aircraft. The
TCAS Traffic Advisory regions is expected to be a suitable minimum grid size. An visual overview of the TCAS
protected volumes of airspace is shown in Figure 5.1 The TCAS display range is the maximum distance at
which it is expected for a pilot to consider surrounding at traffic. However, for controllers this distance can be
even greater and depends on the size of area of responsibility and personal controller behavior. Tuning the
grid size so that it accurately represents this 'consideration horizon’ will be important to capture air traffic
dynamics effects.

Another consideration is error introduced due to discretization. To illustrate, if two aircraft are near each
other but each in a different grid it would introduce an error. For that reason, Kernel Density Estimation
(KDE) is applied to represent a distribution around the grid. See Figure 5.2 for a visual representation of the
aircraft count in a grid for varying grid sizes. Notice the discretization effects at the boundaries of some grids.
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Figure 5.1: The TCAS protected volume of airspace for a typical aircraft. Note that the traffic advisory depends on time, so
the distance is a function of the speed. Figure taken from Eurocontrol.
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Figure 5.2: ACC in a grid representation for two different grid sizes.

Kernel Density Estimation

As mentioned, to represent some features more like a heatmap, KDE is applied. The bandwidth of the kernel
should be carefully selected to represent realistic volumes of airspace that might have an effect on the trajec-
tory. The KDE is implemented with a quartic kernel shape: Equation (5.1) represents the intensity at a point
as a result of the initial intensity at the center point of the kernel that is within the selected kernel radius:

15 d\2y2
I:PE(I—(E) ) (5.1)
Where, 1 is the (KDE) intensity, P is the local intensity (from raw data), d is point distance, h is the kernel
radius. The effects from implementing the KDE on a 0.5 degree grid size with a 1.5 degrees kernel size is
shown in Figure B.6.

Flight Point Interpolation

The raw data set contains roughly 30 data points per total trajectory. This means that only a few data points
will span across the selected region. Also, all the time steps are different per flight. It is chosen to interpolate
the flight points to allow a higher sampling rate of feature grid values along a trajectory. It is chosen to perform
linear interpolation because most of the flights fly at a fairly constant heading angle, the turning radii are
small compared to the scale of the sector, and if there is a slight curvature in the trajectory the flight point
will most likely still fall in the right grid. Each variable is independently interpolated with respect to time.
During the initial phase of the study, the size of the interpolation is fixed at 30 points with the selected region.
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Figure 5.3: AltCnt feature with and without KDE applied.

At a later stage, the air traffic dynamic features are calculated at constant interval time stamps. It is ensured
that these time stamps are included in the interpolation to return accurate position data of flights. Figure 5.4
shows the results of a few interpolated flights. The colored dots represent the original flight points, the black
dots represent the interpolated flight points. Notice that the interval of the black dots are not constant, to
accommodate for the set time intervals, in this case every 5 minutes.
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Figure 5.4: A flight showing the filed (blue) and actual (trajectory).

5.2. Data Processing

This section will cover the data processing steps taken to compute each air traffic feature from the air traffic
models and also the metrics that will be used to compare the features against.

5.2.1. Independent Variables

The goal of the final predictive model is not to best predict an existing complexity model. The goal is to better
predict aircraft trajectories. Section 3.3.5 covers the metrics that evaluate the output of the final trajectory pre-
diction model. The statistical analysis must also be evaluated based on similar output metrics. It is expected
that the relation between an exact spatial difference, either as polar coordinates or cross- and along-track
deviation, and the selected features are highly dimensional and far too non-linear to capture with a statisti-
cal analysis. The closest variables that represents the predicted position or position error from the filed data
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points is the horizontal track deviation and the delay. Therefore we must consider differences between the
filed and the actual trajectory in order to understand the air traffic dynamics and identify what features play
a role in the flown trajectory. To evaluate the suitability of a feature in predicting the flown trajectory, the
correlation is sought. In this statistical analysis, these differences are the metrics that are used to evaluate the
features. These metrics are the delay accumulated while passing through the sector and the spatial deviation
between the actual trajectory and the filed trajectory.

5.2.2. Delay

In this research delay is defined as the difference between the actual and filed duration that an aircraft takes
to pass through a sector. This is done by comparing the filed and actual entry and exit times throughout the
sector, see Equation (5.2). Many flights are already delayed before entering the region, taking the absolute
difference between filed and actual exit times would thus not say anything about the trajectory anomalies
that occurred while passing the region of interest. Moreover, some aircraft enter and exit the region multiple
times when flying in the vicinity of the sector boundary. These cases are only considered if the filed flight
plan and the actual flight points have the same amount of entry and exits. Otherwise it is not possible to
distinguish which actual entry and exit logs correspond to those that are filed. This method of computing the
delay means that negative delay is possible, meaning some aircraft need less time to pass through the region
than filed. Although the general consensus may be that delay is worse than being ahead of schedule, this is
not necessarily true since it is also disruptive to nominal operations. Also, there is no reason to assume that
the 'negative delay’ does not occur as a result of the air traffic dynamics. Therefore the 'negative delay’” will
be taken into account in further analysis. This definition of delay does leave some room for interpretation,
which will discussed after the results are analysed.

Duration = Time of Entry — Time of Entry

. . 2
Delay = Duration sy — Duration f;jeq (5.2)

5.2.3. Track Deviation

Track deviation in this research is defined as the spatial difference between the filed trajectory and the actual
flown trajectory. As mentioned in Section 3.3.5, there are multiple metrics for spatial errors. For the statistical
analysis however it is expected that the trends between the cross- and along-track error and a single Euclidean
distance in the horizontal plane will not be significantly different. However, the horizontal and vertical plane
will be kept separated.

¢ Instantaneous Track Deviation per Grid At each time instant, the average and the sum of the track
deviation for all flights per grid will be computed and compared to the air traffic dynamical feature
at that grid at the same instance of time. This is done by computing the geodesic distance between
each actual flight point and the nearest filed flight point and directly computing the difference in flight
level. This method is time invariant. The reason for using the nearest filed flight point instead the same
sequence number of flight point is because for many flights the starting and end point in a region to do
not at all correspond. This can be seen in Figure 5.4. The distance is the geodesic distance, the shortest
distance on the surface of an ellipsoidal model of the earth. The summed horizontal track deviation
per grid at a certain time is seen in Figure B.7c.

¢ Aggregated Track Deviation per Flight The direct comparison of instantaneous track deviation will
neglect any delayed effects. It is reasonable to assume that some effects of air traffic dynamics are
measurable only a short while later in time. A pilot or controller could react to a situation, of which the
effects are noticed with a certain delay. Therefore, the cumulative track deviation over a full trajectory
is compared to the cumulative air traffic feature grid values encountered at each flight point. This
approach is expected to take into account any delayed effects between air traffic dynamics and the track
deviation. For each flight, the total aggregated distance is calculated by integrating the track deviation
between the first and last point on the trajectory with respect to time. Since each trajectory is equally
divided in a number of interpolated flight points, the integral is in fact equal to the sum of the individual
track deviations over the whole trajectory.
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5.2.4. Dependent Variables

The power of a NN is that it can identify and apply underlying relationships and patterns that we, humans,
have not or cannot anticipate up front. So if an existing, highly processed, model were to serve as an input
to a predictive model, it is possible that some of these relationships are missed. It therefore makes sense
to consider the inputs to the existing model as individual values and not as a single aggregated value for
complexity. The features are chosen in Section 4.1 and adapted to suit the context of this thesis.

Aircraft count

This straightforward feature counts the number of aircraft in each grid. See fig. B.1a for a visual representation
at a time instant. For the delay and aggregated track deviation, the count in each grid is summed over the
trajectories.

Density

Density is calculated by the Kernel Density Estimation. This is relevant because this is a spatial feature and the
selected size of the area has a big effect on the value. See fig. B.1b for a visual representation at a time instant.
For the delay and aggregated track deviation, the Density in each grid is summed over each trajectories.

Heading Change

This features results in two dependent variables per grid. First, the total count of aircraft making >15 degree
heading change within 2 minute period. Second, the average heading change of aircraft making >15 degree
heading change within 2 minute period. The two parameters: threshold for heading change; and time period
should be tuned. The heading change count features is also calculated with KDE. See fig. B.2a, fig. B.2b,
and fig. B.2c for a visual representation at a time instant. For the delay and aggregated track deviation, both
feature values in each grid are summed over each trajectories.

The heading angles are calculated by solving the so called inverse geodesic problem. At each timestep, the
coordinates of the consecutive points are used to compute the forward azimuth angle, which is the path
direction from the first point. The azimuth angle corresponds to the bearing angle with respect to true north.
The assumption is made that the aircraft do not experience drift from wind effects, and thus the bearing angle
with respect to true north is assumed to equal the heading angle.

Note that the literature review suggested this feature be computed as a fraction, not a sum. It is chosen to take
the sum in each grid because the original Dynamic Density feature was considered for the whole sector. A
sum in that case correlates too much with the total aircraft count, thus a fraction is more representative. Since
in a grid the amount of aircraft are much smaller, often 1 or 2, the law of small numbers would mean that a
fraction of the total will easily be misinterpreted. For example, one out of 2 aircraft making a large heading
change would result in a 0.5 value. However, 3/9 aircraft making a significant heading change is definitely
more 'complex’, however the fraction in that case would only be 0.33. This is also true for the speed change
and altitude change features.

Speed Change

This features results in two dependent variables per grid. First, the total count of aircraft with an airspeed
change of >10 kts within a 2 minute period. Second, the average speed change of aircraft with an airspeed
change of >10 kts within a 2 minute period. The two parameters: threshold for speed change; and time period
should be tuned. The speed change count features is also calculated with KDE. See fig. B.3a, fig. B.3b, and
fig. B.3c for a visual representation at a time instant. For the delay and aggregated track deviation, both feature
values in each grid are summed over each trajectories. The speed at each point is computed by dividing the
geodesic distance by the time difference between two flight points.
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Flight Level Change

This features results in two dependent variables per grid. First, the summation of aircraft making >750 ft alti-
tude change within 2 minute period. Second, the average altitude change of aircraft making >750 ft altitude
change within 2 minute period. The two parameters: threshold for altitude change; and time period should
be tuned. The speed change count features is also calculated with KDE. See fig. B.4a, fig. B.4b, and fig. B.4c
for a visual representation at a time instant. For the delay and aggregated track deviation, both feature values
in each grid are summed over each trajectories.

Minimum Distance

This feature results in three dependent variables per grid. The features equals the count of aircraft pairs
at 3D Euclidean distance less than 5 NM, between 5-10 NM, and between 10-50 NM. Since the difference
in altitude for en-route flights is relatively small, only the horizontal euclidean distance is considered. The
distance between each aircraft pair equals the geodesic distance. This feature is split into three variable as
this might shed light on what distance range might have an effect on an aircraft trajectory anomalies. Since
this feature is a discrete count of occurrences per grid, it is reasonable to apply KDE. See fig. B.5a, fig. B.5b,
fig. B.5c, fig. B.6a, fig. B.6b, fig. B.6¢ for a visual representation at a time instant.

Mean Separation

This features is simply the average distance between all aircraft pairs in the sector, calculated per grid. Since
it already is an averaged variable, processing it by KDE is not suitable. See fig. B.7a for a visual representation
at a time instant.

Standard Deviation of Aircraft Headings

This feature is computed by considering all aircraft in each grid and computing the standard deviation of the
heading angles. Since this result is a aggregated value, the standard deviation, computing a KDE for continuity
would not be suitable. See fig. B.7b for a visual representation at a time instant.

Size

This feature is a result from the aggregation of features over a whole trajectory. The aggregation is taken at
constant flight instances, for example, every 5 minutes. The size counts the number of instances recorded for
the aggregate features. For aircraft that spend little time in the selected region, the size is thus relatively small.
The size thus relates to the duration flown inside the sector.

5.3. Statistical Data Analysis

To analyze the relationship between the dependent variables and the independent variables, a statistical anal-
ysis is conducted. The choice of appropriate statistical test depends on the type of data. The first obvious
distinction is that the input and output variables consist of numerical data: ratio or interval. This means that
Pearson’s correlation coefficient (parametric) and Spearman’s rank coefficient (non-parametric) are the most
suitable statistical tests. To asses which statistical test ought to be used, the following steps need to be taken.

Remove Noise

Each time instance produces a grid-representation of data. However, the majority of grid bins are not occu-
pied by any aircraft nor hold any feature values. These grids carry no statistical information. The grids that
contain no values of either independent or dependent variables are taken into consideration, also if the other
respective variable has no information. In addition, outliers are removed from the data by disregarding data
that is outside 3 standard deviations.



72 5. Preliminary Analysis of Air Traffic Dynamic Features

Test for Normality

Pearson’s correlation coefficient is a parametric test, meaning that it works under the assumption that the
variables are individually normally distributed (bivariate normality). If this assumption is not met, a non-
parametric test should be conducted, the Spearman’s rank coefficient test. Data can be tested for normality
by graphical methods or formal statistical methods. Graphical methods include Q-Q plots, histograms or box
plot. There are various formal statistical tests for normality. However, with very large sample sizes, formal
statistical tests are not reliable.[52] Therefore, it is chosen to use the Q-Q plots in combination with box-plots
to graphically confirm or deny the assumption of normality for each variable. In Figure 5.5, an example of the
Q-Q plot and boxplot is shown of a feature that does not pass the normality test.
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Figure 5.5: Tests of normality not passed for the average speed change above the thresholds.

In fact, with a selected grid size equal to half a degree on a geodetic coordinate system, none of the features
pass the normality test with confidence. This is true for the aggregated and non-aggregated features. Three
conclusions can be drawn from the data, as seen in Appendix B. Firstly, the spread of the data is so large that
even after removing outliers, the spread is too large. This can be seen by the ourliers in the boxplots and in the
divergent tails of many Q-Q plots. Secondly, some features are discrete and do not have enough observations
to resemble any distribution. Third, several features have a one-sided distribution, meaning the mean is zero
and the samples follow a normal-like distribution to one direction. This data cannot be classified as normal.
Methods exists to solve this last issue but it is not deemed very beneficial for this application. Moreover, it is
desirable to use the same statistical test for all features to best compare the features directly.

The third assumption for the Pearson test is that of linearity. The most practical method to asses this is visually
with a scatter plot. However, since it is concluded that none of the features pass the normality test with
confidence, the features do not need to be tested for linearity and the Pearson’s correlation coefficient is not
calculated.

Spearman’s Coefficient of Rank Correlation

Spearman’s coefficient of rank correlation is a non-parametric statistical test and provides a measure of how
close two sets of rankings correlate with another. The Spearman coefficient (p) ranges between -1 and 1.
Spearman’s coefficient is suitable for both continuous and discrete ordinal data. This is relevant since the
‘count’ features are discrete ordinal variables. The threshold for rejecting the null-hypothesis lies at p < a =
0.02. Usually, this threshold is 0.05, but the amount of data samples is so large that a higher threshold can be
demanded. In contrast to the Pearson test, the Spearman coefficient is not a measure of linear association.
The spearman coefficient assesses monotonic relationships. If one variable increases in value and so does
the other (or the perfect inverse) there is a monotonic relationship. The Spearman coefficient is actually a
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Pearsons coefficient between the rank variables and given in Equation (5.3) ..

6y d?

cov(Ry, Ry)
- n(n%-1)

Ox,0y

p=1- (5.3)

Where, Ry, denotes the rank variable, oy, is the standard deviation, d; is the difference in paired ranks, and
n is the number of pairs.

The results of the Spearman test and the corresponding p-value with a gridsize of 0.5 degrees on a geodetic

coordinate system are given in Table 5.1 and Table 5.2. The value of / in the KDE is set at 1.5 degrees.

# Feature Track Deviation  FL Deviation # Feature Track Deviation FL Deviation
o p-value p p-value o p-value p p-value
1 ‘;‘izfla:: heading 118 0000 0050  0.000 11 Count10-50NM  0.200 0.000  -0.011 0.145
A d
2 ng;a;ee spee 0.048 0.000  0.034 0.000 12 Aircraftcount 0341  0.000  -0.014 0.062
3 Average FLchange 0.048 0.000  -0.019 0.009 13 Density KDE 0540 0.000  0.005 0.130
, Headingchange 00 000 0.030  0.000 14 Headingchange o0 000 0008 0.129
count count KDE
Flch
5 Flchangecount  0.063 0.000  -0.029 0.000 15 KDCE angecount .55 0.000  -0.007 0.106
g Speedchange 0063 0.000 0013 0.072 16 Speedchange o0 b 000 0007 0097
count count KDE
; Standarddeviation 00000 0009 0213 17 CountO-SNM 010 0000 -0.008 0.137
heading KDE
8  Meanseparation  -0.080 0.000  0.001  0.864 18 I(égém SINM 567 0000 -0.002 0.658
£ 10-50NM
9 Count0-5NM 0.140 0.000  -0.008 0.286 19 Eg‘;n 0475 0.000  0.004 0238
10 Count5-10NM 0.175 0.000  -0.016 0.024

Table 5.1: Spearman’s coefficient of rank correlation for the individual features at 0.5 degree grid size

To study the sensitivity to the grid size, several tests are run at varying grid sizes. Due to the scale of the data,
testing the data at a higher fidelity is not necessary. Any errors introduced by the interpolation is expected to
be random and thus not affect the distribution with such large sample sizes. The remaining results are given
in Appendix B. Note that for the aggregate features, an additional metric is present. This is the mean FL devi-
ation aggregated over a trajectory, where the FL deviation per grid is the sum of all aircraft in that particular
grid. The reason for adding this metric is to experiment if different aggregations lead to higher correlations,
since the FL deviation correlations are consistently very weak and many statistically insignificant.

Cross-Correlation

Before the analysis can be conducted, one must test for cross-correlation to detect any features who's dis-
tribution are too similar. This is done for dimensionality reduction and to avoid bias in the model. The
cross-correlation is tested by computing the normalized covariance matrix. So in fact, the cross-correlation
is the Pearson’s coefficient between variables. The Spearman rank is not suitable for this since then the rank
determines the correlation, not the actual sample distribution. Figure 5.6 and Figure 5.7 shows the corre-
lation matrix of the features and aggregated features respecitvely for a grid size of 0.5 degrees. The labels
correspond to the numbering as in Table 5.1 and Table 5.2. The cross-correlation matrices for the remaining
grid size are in Appendix B.

There is no fixed correlation coefficient threshold at which it is fair to say two variables are too similar in
distribution. Some pairs will be evaluated:

¢ Heading change count and Average heading change: It is logical that these two correspond since these
variables are adaptations of the same feature. The Spearman rank correlation is very different between

Ihttps://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
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FL deviation FL deviation

#  feature TD aggregated integral mean Delay

o p-value p p-value p p-value p p-value
19 Average heading change 0.376  0.000 0.057  0.000 0.078  0.000 -0.031 0.023
20 Size 0.547 0.000 0.020 0.142 0.032 0.018 -0.016 0.238
21 Average speed change 0.363 0.000 0.041  0.002 0.062  0.000 -0.031 0.024
22 Average FL change 0.142 0.000 -0.005 0.734 0.001  0.953 -0.114 0.000
23 Heading change count 0.222  0.000 0.043  0.002 0.053  0.000 -0.031 0.022
24  Fl change count 0.174 0.000 -0.032 0.017 -0.021 0.123 -0.114 0.000
25 Speed change count 0.303  0.000 0.014  0.294 0.035  0.011 -0.061  0.000
26 Standard deviation heading 0.320 0.000 0.001  0.942 0.019  0.153 -0.037 0.006
27 Mean separation 0.545 0.000 0.021 0.129 0.031 0.023 0.010  0.453
28 Count 0-5NM 0.182 0.000 -0.024 0.080 -0.012  0.395 -0.049 0.000
29 Count5-10NM 0.253  0.000 -0.018 0.197 -0.003 0.843 -0.040 0.004
30 Count 10-50NM 0.361 0.000 -0.009 0.492 0.015  0.282 -0.056  0.000
31 Aircraft count 0.464 0.000 -0.004 0.760 0.013 0.334 -0.044 0.001
32 Density KDE 0.433 0.000 -0.003 0.831 0.020  0.146 -0.048 0.000

Table 5.2: Spearman’s coefficient of rank correlation for the aggregated features at 0.5 degree grid size
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Figure 5.6: The cross-correlation matrix for the features at a grid size of 0.5 degrees.

these variables. So, especially with a varying grid size this feature is deemed different enough to main-
tain.

» Average FL change and Fl change count: This is the same as above. For the individual features, FL
change count has higher rank correlation, it is decided to remove the average FL change.

e Aircraft count is highly cross correlated with both density KDE and mean separation. Since Density
shows a much higher Spearman rank coefficient and mean separation is not cross correlated with den-
sity KDE, it is decided to remove aircraft count. The aircraft count makes sense to resemble the density
since the area in which aircraft are counted is the same area as used to compute the density.

¢ Both the KDE and non-KDE Count of 10-50NM separation show relatively high correlation with several
other features. This is especially true for the KDE variable. The reason to not remove this feature is that
is shows high rank correlation with the track deviation. However, the highest cross-correlation is with
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Figure 5.7: The cross-correlation matrix for the aggregated features at a grid size of 0.5 degrees.

density and speed change count which both also have a reasonably high rank coefficient. Therefore it
is decided to remove the Count of 10-50NM KDE feature.

¢ The features for which a KDE has been estimated show high levels of cross correlation (bottom right).
This can be explained. The track deviation value is zero for grids that don’t contain flights. However, the
KDE features can include feature values in grids that don’t contain any flights because they are near to
the edge of surrounding grids. The grids that are zero for non-KDE features, but contain a value for KDE
features are correlated with the KDE distribution that is applied. So grids that were zero are allocated
a value, hence the rank is increased. However, these effects should be neglected since it is not a causal
relationship but a statistical flaw that introduces bias. Therefore the KDE correlations will be excluded
from the evaluation of the feature rank correlation.

For the aggregated features:

¢ Size and Mean Separation: These two features are highly correlated. Initially, this may seem somewhat
surprising because the size refers to the number of flight points that are taken into account for the
aggregation. This would suggest there is a relationship between the time spend inside the sector and
the mean separation. This can be explained because flights that spend a lot of time inside the sector will
often fly through the center of the sector, and tend to have a lower mean separation. The size feature
will be removed because it is (intuitively) less related to the air traffic dynamics.

e Lastly, the Count at 10-50NM, Aircraft count, and Density KDE are all highly correlated. This is a logical
conclusion since all these features depend on the separation between aircraft in a enclosed space (the
grid). If the grid size is within the 10-50NM range, it is essentially the same measure. It is expected
that this result will vary for different grid size but not significantly. The cross-correlation is the highest
between Density KDE and the other two features. Therefore the total Aircraft count and Count at 10-
50NM are removed.

5.3.1. Evaluation

To draw conclusions from the statistical analysis, a few aspects must be kept in consideration. Firstly, cor-
relation does not imply causality. Secondly, the law (of better said, fallacy) of small numbers. Moreover, the
bivariate testing is not indicative of possible trivariate relationships between the metrics and two (or more)
features. Relating to the last remark, the purpose of this statistical analysis is to learn about the possible
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effect of air traffic dynamics on trajectory anomalies and provide a knowledge basis on which to perform
data-driven trajectory prediction using LSTM NNs.

To start with the FL Deviation. None of the computed features have a convincing statistical monotonic rela-
tion with FL deviation. 14 of the 19 variables for individual grid features do not pass the null-hypothesis. The
aggregated features lead to similar outcomes, both the integrated and mean FL deviations. This suggests two
things: the FL deviations are so small that there are no significant correlations and the FL deviations are too
random to prove any significance. It suggests that ATC and pilots barely resort to vertical manoeuvres in or-
der to de-conflict complex air traffic situations. This is as expected as it is a know controller strategy. This has
interesting implications for the trajectory prediction. Since there are not even one or two features that can be
singled out, FL prediction is a high uncertainty for the trajectory prediction. It is theoretically possible that
highly non-linear multivariate relations exists between the air traffic dynamical features and FL deviations,
but deemed unlikely. It is suggested that in the very least the vertical element of the trajectory prediction is
kept separated from the horizontal component. If the computational efforts are too high, the first adaptation
will be to remove the vertical component from the trajectory prediction.

Next, the delay metric. Quite surprisingly, there is practically no correlation between the air traffic dynami-
cal features and the delay. Several adaptations of this metric have also been tested, including: The absolute
value of the delay to try and find any correlation with only the magnitude of delay but also with that metric no
noteworthy correlations are found; The positive delay values (so only aircraft taking longer to pass through
the region), but again no noteworthy correlations are found. This can mean a few things. Either the metric
calculation is faulty and the metric does not represent the conventional concept of delay. Delay is the differ-
ence in duration to pass through the sector between the filed and actual flight points. The edges of the sector
are not straight lines, as as seen in Figure 5.4, the entry and exit points do not correspond. So naturally, the
exit and entry times are very different. This is a major source of noise. Alternatively, the conclusion is that
for en-route traffic, delay is not significantly (linearly or low order non-linearly) affected by the surrounding
air traffic dynamics. This last conclusion does not correspond with the expectation. However, it is important
to note that the metrics of the statistical analysis, track deviation, FL deviation, and delay, are not inputs nor
direct outputs of the LSTM NN. This is further discussed in the discussion below.

As for the horizontal track deviation, there are some interesting and promising results. The individual fea-
tures per grid show that the standard deviation of heading angle and density have the highest rank correla-
tion. Generalizing, the KDE features have higher correlation, but are ignored as mentioned before. Especially
for the aggregated features, significant correlations can be observed with the track deviation. The difference
between individual grid feature values and aggregated values suggests that there is a strong delay effect be-
tween grid value and track deviation. This is precisely the reason why the aggregated features have been
included in this phase of the study. So, the knowledge gained from this phase of the study means that it is
important to include time varying effects in the trajectory prediction. That means that at a certain time, the
trajectory prediction will depend on grid values at past time instances. This does put more confidence in the
choice of machine learning algorithm, since the LSTM NN is adapted for time-series and takes into account
past information.

Lastly, comparing the results for different grid sizes suggests that the grid size of 1.5 degrees has consistently
higher rank correlations with track deviation, for both the individual as the aggregated features. 1.5 degrees is
in the order of 160-170 km. This is larger than expected and and is because of the increased number of flights
in a grid, increasing the value of many complexity feature values. This can be confirmed by the increasing
cross-correlation at large grid sizes. This is further discussed in the discussion below.

On a final note, the output variables of the LSTM NN and this statistical analysis are not identical. This means
that one must be careful drawing definitive conclusions from this phase of the study about the trajectory
prediction. Nevertheless, a overview of most promising features is given in Table 5.3

5.4. Discussion and Lessons Learned

To try and find correlations with the delay, is possible to filter the data further and isolate only the flights that
enter without a delay and observe the results. Also, the opposite can be done, to investigate if the behavior of
flights is different when the flight have a delay prior to entering the region. Possibly a flight 'speeds up’ and
‘cuts corners’ when it has a existing delay which it tries to minimize. However, these approaches tend toward
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Feature Remarks
Density KDE
Standard deviation

of heading angle

Whole sector correlation is higher than that

of 10-50NM separation. So tuning of gridsize is required.
Tuning of threshold parameters required, difference with
speed change count not apparent, can be interchanged
Average heading change Tuning of threshold parameter required

FL change count KDE; Tuning of threshold parameter required

Count 10-50NM separation Tune parameter based on grid size (2-3x grid size)

Mean Separation

Average speed change

Table 5.3: Air Traffic Dynamics features in order of highest likelihood to have significant effect on the flown trajectory.

confirmational bias and have not been pursued. The Eurocontrol complexity metrics for ANSP benchmarking
identified the German UIR as one of the most complex of all European regions. This verifies that the cause
of this lack of correlation is not because the region is not complex enough. [2] These observations on delay
are not necessarily problematic for the performance of the trajectory prediction since the primary prediction
metric will be the spatial coordinates at time-steps. (4D trajectory). The delay is derived from the trajectory
prediction. The cross-correlation between track deviation and delay is 0.16 and statistically significant, which
does suggest that there is a relationship.

On another note, at this stage the feature values are calculated by summing the individual aircraft feature
values in each grid. The alternative is taking the mean of the individual feature values in each grid. However,
during initial testing with small grid sizes the mean value was quite meaningless because of the law of small
numbers: the number of aircraft in a grid was too small for the mean to statistically represent anything of
value. However, it can be seen that the rank correlations are higher for large grid sizes. Since the feature
values are summed in a grid, there is increasing cross-correlation with the number of samples in a grid. This
problem will be attempted to be solved by normalizing the feature values with respect to the grid size. Either
way, the sensitivity to the grid size which as been observed must be analysed by means of a sensitivity study
as part of the trajectory prediction.

The air traffic dynamical features that have been chosen in Section 4.1 which have not yet been tested in-
clude: Lyapunov Exponents, Convergence-Divergence Rates, Conflict predicted, and the Eurocontrol Com-
plexity metrics. Since the preliminary statistical study does suggest that there are relationships between the
air traffic dynamics features and the flown trajectory, it is more effective to first move forward with the tra-
jectory prediction. Once the concept of the trajectory prediction has been proven effective, the remaining
features can be calculated. Since the Lyapunov Exponents are a unique and intrinsic measure of complexity,
the priority will be in modelling the Lyapunov Exponents, then the Convergence-Divergence Rates, then the
Conflict Predicted, and lastly the Eurocontrol Complexity Metrics.

The statistical analysis was performed on data from one day. For robustness and verification of these conclu-
sions, multiple sample days in different months should be analysed. This should also include days that are
not congested at all. This is very important because on those days it it more likely that the pilot has higher
freedom to choose its route instead of having to follow strict procedures and commands by ATC during 'busy’
days. It might therefore be a better capture of the true air traffic dynamics.

Since the uneven edges of the sector introduce a lot of noise and inconsistency with the data, it is chosen to
extend the sector edges. This will also allow for a longer look-ahead time.



Scheduling and Planning

For the planning of the remained of the thesis project, we must consider all the major phases that are to be
conducted. An overview of the phases is found in the Work Flow Diagram in Figure 2.2 and includes the
execution steps as follows:

1. Data Pre-processing This phase is completed.

2. Air Traffic Dynamic Feature Selection This phase is nearing completion and the working principle
has been proven. However, the following features remain to be computed and implemented in the
statistical analysis:

¢ Conflict predicted
* Convergence rate
¢ Eurocontrol Complexity Metrics

¢ Lyapunov Exponent
3. Data Preparation for TP The steps needed to be taken in this phase are covered in Section 4.3.

4. Trajectory Prediction and Baseline Comparison This phase is the main experimental phase of the
study. Once the preparation is done, this phase only consists of training the NN with the various inputs
and testing the results.

5. VV and Result Analysis This very important phase will conclude the content of this Thesis project and
draw conclusions on the results.

The conduct of the remained of this thesis will not be strictly in the same order as the phases mentioned
above. With the current features, the data will be prepared for a trial trajectory prediction experiment. This
will verify that the current plan and steps included are adequate and lead to some results that can be eval-
uated. Once the concept has been proven successful, the remaining features will be computed in order as
given above. This will be conducted depending on the initial results and scope. If the set of features at each
state provides sufficient results it will be chosen to emphasize on the analysis of those features. The planning
is made with respect to time in the Gantt chart in Figure 6.1.

78



79

1 abeq

— 707 A

1zoz Ainr 1

m_ mm_mm_ vmf £5| 2
.Jm_ 1z _

M6z

rN.:i._

Lzoz i

1z Ao |

udy 5 ==

1202 udyr |

Lz,

m_ rm__um_wl Wlh:w'_mv_vl mf_Nv__.v_g [

: mm_ hm_ nm_ St

Lz ey

tmf ml Nm_ 53
Lza3

_um_ awf wmf hN_ N_ mw_ vmf mln_ ko4

_.N:u:

_uN.uuh__

0207 #290120 L¢

__N__uwfm.;n—_

_uN.zu_i

hr_wﬁ_m:v_._m

08,330 |

6
0z, tas |

8| £| 9| S| ¥| €| 2
Rk MR

pzoz Anr L«
I
oz

T2, |6z

TZ ST

Tt

TZ, e

Tz, InT6T

T, unrot

TTunre

T, ABWOT

TZ, unrot

T ARWET

12,y 7T

T2, 1dyVST

TZ,ARWET

T2, Ay sT

17,40 T

TZ 92461

TZ. 9248

TZ, 92461

TE, uerg

0z, @011

0T, BOTT

0z, dasvz

0z,das ¢

0z, 8ny sz

0z, |nrLe

0T, BOLT

0, Inré

ysnyg

0Z, d2SHZPam 9'o1

syaam 7 auaaQ sIsay L
syaam 7 Ul-puByY SIsaY L
Sfaavn g maA3) BN uIID
AN YodaJ sisays yeiq
SHIIM 5 aouayaq pue Buipoday
Haam | uonEpllEn
SY3am 7 )1BSI[ENSIA BIBP "SISA|BUY
}aaMT  uosledwod aulaseg
SHIIM sishjeue di
SHIIM £ 2UNIEIY MU T 4] eI

Haam T dL3ST wuopad
syaam 7 uonesedasd peg
HfaIm g uoIPIpaId Aoydafell

yaam [ Funasw manal wial-piy
syaam ¢ Huium uodal Aeuiwiald
SYH2BM 7 WOJ1Es|[EMS|A B SIsAjBuY
syaam p11e91) g Fussatoad eleg
HEamg uoRd3ps 2n3eay
SHIIWN £ wonesedad eeg
sy@an gN1eaj JJen Jie andwoy

Sfaam Hussalsoudald-eieq

TZ, US[ § ${29M ZT [9POWM SWRLAT dgesr A1y

syaam £ uonipald Aoialel)

}aam T UoPIARS JMmead
Sfaam £ SoweuAq NyelL Ay
SyaaME  yaeasal punosdyoeg

Apnis aimyesay

yaam [ saifojopoyia yaueasay
s3I 0 Bnaajn yopn
EQL Suwe yseL

Be

s

91

b1

¥l

£l

<l

a

Figure 6.1: Gantt chart of entire Thesis planning



Conclusion

The objective of this thesis is to to improve the accuracy of medium- to long-term flight trajectory predictions
by incorporating a data-driven model that encompasses the dynamics of the air traffic situation. In previous
research, the features associated with air traffic dynamics have not been included in trajectory predictions. It
will be a novelty to do so. However, the available literature on air traffic dynamics is primarily focused on the
demand and capacity balance and air traffic complexity for controller workload modelling.

This thesis will be conducted in two phases that divide this research. The first phase includes generating and
verifying a model for air traffic dynamics that relate to the flown trajectory. In this research the air traffic
dynamical models based on Dynamic Density for air traffic complexity will be taken as a starting point. A
statistical analysis is conducted to select features of this model that will be passed on to the second phase
of this study. The second phase of this study includes predicting the 4D trajectory by including the features
from the air traffic dynamics model. This is done by applying the Long Short-Term Memory Neural Network,
which is specifically adapted for time-series prediction. A baseline comparison will be conducted that does
not include any air traffic dynamics features in order to validate the effect of the features.

The preliminary results from the first phase of this thesis suggest that the horizontal track deviation corre-
late with some features from the Dynamic Density air traffic complexity model. The delay in duration of
passing though the selected region (Karlsruhe UAC) as well as the Flight Level deviation do not have a sta-
tistically significant relationship with the selected dynamics features. However, since the output variables of
the statistical analysis are not identical to the desired output of the trajectory prediction there remains an
uncertainty. Moreover, there are some remaining and promising features that still need to be modelled. It
can be concluded that there is a high probability that the selected features will have a beneficial effect to the
performance of the trajectory prediction and therefore it is reasonable to begin the execution of the second
phase of this thesis project. It is decided to first move forward with the trajectory prediction and following the
proof of concept include the remaining air traffic dynamics features.

This preliminary report summarizes the first phase of this thesis project and includes a proposal of the
method to adapt existing air traffic dynamics models and use these in a machine learning trajectory pre-
diction. A planning is made that outlines the steps to be taken and estimates the time that is required to
successfully conduct the research.
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Air Traffic Comlexity factors

A (incomplete) list of unique air traffic complexity factors. Note that for each factor, many variations are
possible and have been used in previous research. Where, for example, the sector geometry can be expressed
by the number of sides or by a equation expressed in terms of major axis length and aspect ratio. Alternatively,
the number of path changes can be a count of path changes when the heading changes by 5°, 10°, or 15°and
the amount of altitude change for it to count as a path change can also vary. This list thus gives an overview
of broad, undefined factors that need specification but can each contribute to the air traffic complexity.

1.
2.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Number of aircraft
Aircraft density or traffic volume

Aircraft handled in prior time interval (e.g., last
hour)

Number of arrivals
Number of departures
Number of emergencies
Number of special flights
Coordination

Traffic mixture (arrivals, departures, and over
flights)

Number of airport terminals

Traffic distribution

Staffing

Weather conditions

Equipment status

Number of communications with aircraft
Number of communications with other sectors
Presence of conflicts

Number of path changes

Preventing conflicts (crossing or overtake)

Number of handoffs and printouts
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21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

. Handling pilot requests
Traffic flow structure
Clustering of aircraft

Control adjustments involved in merging and
spacing

Mixture of aircraft types

Combing and descending aircraft flight plans
Number of intersecting flight paths
Number of required procedures
Number of military flights

Airline hub location

Weather and its severity

Aircraft routing

Special use airspace

Sector geometry

Sector size

Requirements for longitudinal and lateral spac-
ing

Radar coverage
Frequency congestion

Number of altitudes used



Intermediate Results Statistical Analysis

This appendix includes the results of the statistical analysis, including box plots, Q-Q plots, Spearman rank
correlation coefficients for all the features at varying grid sizes, and lastly, the correlation matrices for all grid
sizes.

Visualisations of the air traffic dynamics features
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(a) Aircraft count per grid at 12:00:00 02-09-2018. (b) Density KDE per grid at 12:00:00 02-09-2018.

Figure B.1: Features at each time instant for each grid.
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(b) Heading angle count per grid at 12:00:00
02-09-2018.
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(c) Heading angle count with KDE per grid at
12:00:00 02-09-2018.

Figure B.2: Heading change features at each time instant for each grid.
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(a) Average speed change per grid at 12:00:00
02-09-2018.
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(b) Speed change count per grid at 12:00:00
02-09-2018.
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(c) Speed change count with KDE per grid at
12:00:00 02-09-2018.

Figure B.3: Speed change features at each time instant for each grid.
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(a) Average FL change per grid at 12:00:00
02-09-2018.
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(b) FL angle count per grid at 12:00:00
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Figure B.4: FL change features at each time instant for each grid.
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B. Intermediate Results Statistical Analysis
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(a) Count of 0-5NM separation pairs per grid at
12:00:00 02-09-2018.
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(b) Count of 5-10NM separation pairs per grid at
12:00:00 02-09-2018.
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(c) Count of 10-50NM separation pairs per grid at
12:00:00 02-09-2018.

Figure B.5: Count of minimum separation pairs at each time instant for each grid.
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(a) KDE of count of 0-5NM separation pairs per
grid at 12:00:00 02-09-2018.
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(b) KDE of count of 5-10NM separation pairs per
grid at 12:00:00 02-09-2018.
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(c) KDE of count of 10-50NM separation pairs per
grid at 12:00:00 02-09-2018.

Figure B.6: KDE of count of minimum separation pairs at each time instant for each grid.
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Figure B.7: Features at each time instant for each grid.
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Figure B.8: Tests of Normality for individual features.
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Figure B.10: Tests of Normality for individual features.
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Figure B.11: Tests of Normality for individual features.
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Figure B.12: Tests of Normality for individual and aggregated features.
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Figure B.13: Tests of Normality for individual features.
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Figure B.17: Tests of Normality for aggregated features.
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Figure B.18: Tests of Normality for aggregated features.
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Cross Correlation Matrices
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(a) The individual features (b) The aggregated features
Figure B.20: Cross-correlation matrices of the features with 0.25 degree grid size.
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Figure B.21: Cross-correlation matrices of the features with 1 degree grid size.
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Figure B.22: Cross-correlation matrices of the features with 1.5 degree grid size.

Spearman’s Coefficient of Rank Correlation Tables
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#  Feature Track Deviation  Flight Level Deviation #  Feature Track Deviation  Flight Level Deviation

o p-value p p-value o p-value p p-value
1  Average heading change 0.076  0.000 0.052  0.000 11  Count 10-50NM 0.045  0.000 -0.011  0.078
2 Average speed change 0.011  0.105 0.037  0.000 12 Aircraft count 0.182  0.000 -0.010 0.115
3 Average FL change -0.007  0.297 -0.024  0.000 13 Density KDE 0.386  0.000 0.003  0.237
4  Heading change count 0.024  0.000 0.033  0.000 14 Heading change countKDE -0.519 0.000 0.006  0.167
5  Flchange count -0.007  0.254 -0.030  0.000 15 Fl change count KDE -0.083  0.000 -0.015  0.000
6  Speed change count -0.001 0.831 0.018  0.005 16  Speed change count KDE -0.029  0.000 0.001  0.682
7 Standard deviation heading  0.107  0.000 -0.008  0.213 17 Count 0-5NM KDE -0.528  0.000 -0.012  0.009
8 Mean separation -0.033  0.000 0.005  0.451 18  Count 5-10NM KDE -0.242  0.000 -0.006  0.093
9 Count 0-5NM 0.086 0.000 -0.004 0.529 19  Count 10-50NM KDE 0.304 0.000 0.002 0.321
10 Count 5-10NM 0.050 0.000 -0.008 0.216

Table B.1: Spearman’s coefficient of rank correlation for the individual features at 0.25 degree grid size

#  Feature Track Deviation  Flight Level Deviation #  Feature Track Deviation  Flight Level Deviation

o p-value p p-value o p-value p p-value
1  Average heading change 0.232  0.000 0.051  0.000 11  Count 10-50NM 0.469 0.000 -0.008 0.401
2 Average speed change 0.158  0.000 0.041  0.000 12 Aircraft count 0.547  0.000 -0.016 0.101
3 Average FL change 0.163  0.000 -0.030  0.002 13 Density KDE 0.763  0.000 0.002  0.748
4  Heading change count 0.154  0.000 0.034  0.000 14 Heading change countKDE 0.149  0.000 0.021  0.010
5  Flchange count 0.241  0.000 -0.040  0.000 15 Flchange count KDE 0.528  0.000 -0.009 0.189
6  Speed change count 0.239  0.000 0.013  0.166 16  Speed change count KDE 0.557  0.000 0.009 0.221
7  Standard deviation heading 0.441  0.000 -0.014 0.141 17 Count 0-5NM KDE 0.119  0.000 0.002  0.830
8 Mean separation -0.237  0.000 -0.009 0.336 18 Count 5-10NM KDE 0.344  0.000 -0.003 0.695
9 Count 0-5NM 0.221 0.000 -0.007 0.464 19 Count 10-50NM KDE 0.671  0.000 0.001 0.910
10 Count5-10NM 0.305 0.000 -0.018 0.067

Table B.2: Spearman’s coefficient of rank correlation for the individual features at 1 degree grid size

#  Feature Track Deviation  Flight Level Deviation #  Feature Track Deviation  Flight Level Deviation

o p-value p p-value o p-value p p-value
1  Average heading change 0.319  0.000 0.060  0.000 11  Count 10-50NM 0.633  0.000 -0.009 0.473
2 Average speed change 0.230  0.000 0.039  0.002 12 Aircraft count 0.694 0.000 -0.016  0.206
3 Average FL change 0.234  0.000 -0.021  0.093 13 Density KDE 0.807  0.000 0.008  0.319
4  Heading change count 0.267  0.000 0.044  0.000 14 Heading change count KDE 0.460 0.000 0.020  0.041
5  Flchange count 0.407  0.000 -0.036  0.004 15 Flchange count KDE 0.699  0.000 0.007  0.408
6  Speed change count 0.408  0.000 0.007  0.584 16  Speed change count KDE 0.717  0.000 0.011 0.213
7  Standard deviation heading 0.501  0.000 -0.028  0.024 17  Count 0-5NM KDE 0.408  0.000 0.007  0.510
8 Mean separation -0.372  0.000 -0.027  0.030 18 Count 5-10NM KDE 0.575  0.000 0.002 0.789
9 Count 0-5NM 0.306 0.000 0.001 0.921 19 Count 10-50NM KDE 0.729  0.000 0.005 0.514
10 Count5-10NM 0.427 0.000 -0.018 0.154

Table B.3: Spearman’s coefficient of rank correlation for the individual features at 1.5 degree grid size
FL deviation FL deviation
#  feature TD aggregated . Delay
integral mean
o p-value p p-value p p-value p p-value

19 Average heading change 0.383 0.000 0.063  0.000 0.083  0.000 -0.025 0.066
20 size 0.547 0.000 0.020  0.142 0.032  0.018 -0.016 0.238
21 Average speed change 0.354 0.000 0.042  0.002 0.064  0.000 -0.026  0.052
22 Average FL change 0.078 0.000 -0.006  0.657 0.000 0.981 -0.112  0.000
23 Heading change count 0.207  0.000 0.055  0.000 0.062  0.000 -0.028 0.037
24 Fl change count 0.089  0.000 -0.023  0.093 -0.015 0.268 -0.105 0.000
25 Speed change count 0.289 0.000 0.027  0.050 0.047  0.001 -0.052  0.000
26 Standard deviation heading 0.241  0.000 -0.007 0.589 0.011 0.433 -0.032  0.020
27 Mean separation 0.551 0.000 0.022  0.113 0.031 0.021 0.013  0.338
28 Count 0-5NM 0.154 0.000 -0.011  0.439 -0.001 0.917 -0.046  0.001
29 Count5-10NM 0.236  0.000 -0.010 0.454 0.003  0.836 -0.032  0.020
30 Count 10-50NM 0.387  0.000 -0.008 0.575 0.016  0.234 -0.052  0.000
31 Aircraft count 0.507 0.000 0.007 0.601 0.022 0.102 -0.026  0.051
32 Density KDE 0.453 0.000 -0.006  0.650 0.014 0.306 -0.044 0.001

Table B.4: Spearman’s coefficient of rank correlation for the aggregated features at 0.25 degree grid size
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FL deviation

FL deviation

#  feature TD aggregated integral mean Delay
P p-value p p-value p p-value p p-value
19 Average heading change 0.399 0.000 0.063  0.000 0.082  0.000 -0.014 0.313
20 size 0.547  0.000 0.020  0.142 0.032  0.018 -0.016 0.238
21 Average speed change 0.411 0.000 0.041 0.003 0.059  0.000 -0.034 0.012
22 Average FL change 0.293  0.000 -0.009 0.523 -0.006  0.641 -0.102  0.000
23 Heading change count 0.256  0.000 0.034 0.013 0.047 0.001 -0.017  0.203
24 Flchange count 0.295 0.000 -0.022 0.102 -0.009 0.501 -0.094 0.000
25 Speed change count 0.341 0.000 0.011 0.426 0.033 0.016 -0.059 0.000
26 Standard deviation heading 0.422  0.000 -0.001 0.933 0.016  0.227 -0.038 0.005
27 Mean separation 0.550 0.000 0.020 0.134 0.031 0.023 0.013 0.344
28 Count 0-5NM 0.227  0.000 -0.014 0.286 -0.002 0.875 -0.052  0.000
29  Count 5-10NM 0.280 0.000 -0.011 0.427 0.008 0.569 -0.038 0.005
30 Count 10-50NM 0.343  0.000 -0.006 0.679 0.018 0.191 -0.057  0.000
31 Aircraft count 0.436  0.000 -0.002 0.888 0.017  0.204 -0.047 0.001
32 Density KDE 0.431 0.000 -0.001 0.936 0.021 0.116 -0.048 0.000
Table B.5: Spearman’s coefficient of rank correlation for the aggregated features at 1.0 degree grid size
FL deviation FL deviation
#  feature TD aggregated integral mean Delay
o p-value p p-value p p-value p p-value

19 Average heading change 0.422  0.000 0.047  0.001 0.066  0.000 -0.026  0.056
20 size 0.547  0.000 0.020  0.142 0.032  0.018 -0.016  0.238
21  Average speed change 0.443 0.000 0.029  0.034 0.045  0.001 -0.038 0.005
22 Average FL change 0.368  0.000 -0.006 0.659 -0.002  0.857 -0.091 0.000
23 Heading change count 0.299 0.000 0.022  0.111 0.040  0.003 -0.036  0.007
24 Flchange count 0.353  0.000 -0.015 0.275 0.004 0.770 -0.079  0.000
25 Speed change count 0.368 0.000 0.003  0.802 0.025  0.065 -0.052  0.000
26 Standard deviation heading 0.466 0.000 -0.007 0.605 0.011  0.430 -0.038 0.005
27 Mean separation 0.553  0.000 0.018 0.194 0.028  0.039 0.010 0.478
28 Count 0-5NM 0.255  0.000 -0.007 0.624 0.010  0.460 -0.042  0.002
29 Count 5-10NM 0.303 0.000 -0.011 0.436 0.008  0.534 -0.044 0.001
30 Count 10-50NM 0.347  0.000 -0.005 0.718 0.020  0.145 -0.049 0.000
31 Aircraft count 0.437 0.000 -0.004 0.747 0.017  0.204 -0.042  0.002
32 Density KDE 0.436  0.000 0.000  0.993 0.023  0.087 -0.047 0.001

Table B.6: Spearman’s coefficient of rank correlation for the aggregated features at 1.5 degree grid size
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