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Εἴ τίς με ἐλέγξαι καὶ παραστῆσαί μοι, ὅτι οὐκ
ὀρθῶς ὑπολαμβάνω ἢ πράσσω, δύναται,

χαίρων μεταθήσομαι: ζητῶ γὰρ τὴν ἀλήθειαν,
ὑφਡ ἧς οὐδεὶς πώποτε ἐβλάβη, βλάπτεται

δὲ ὁ ἐπιμένων ἐπὶ τῆς ἑαυτοῦ ἀπάτης καὶ ἀγνοίας.

If someone can prove me wrong and
show me my mistake in any thought or acࢡon,

I shall gladly change. I seek the truth,
which never harmed anyone: the harm is to

persist in one’s own self-decepࢡon and ignorance.

- Marcus Aurelius (Meditaࢢons Қ:Ɖƈ)
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Summary

Arࢢficial intelligence, and in parࢢcularmachine learning, is concerned with teaching com-
puter systems to perform tasks. Tasks such as autonomous driving, recognizing tumors
in medical images, or detecࢢng suspicious packages in airports. Such systems learn by
observing examples, i.e. data, and forming a mathemaࢢcal descripࢢon of what types of
variaࢢons occur, i.e. a staࢢsࢢcal model. For new input, the system computes the most
likely output and makes a decision accordingly. As a scienࢢfic field, it is situated between
staࢢsࢢcs and and algorithmics. As a technology, it has become a very powerful tool due to
the massive amounts of data being collected and the drop in the cost of computaࢢon.

However, obtaining enough data is sࢢll very difficult. There are o[en substanࢢal finan-
cial, operaࢢonal or ethical consideraࢢons in collecࢢng data. The majority of research in
machine learning deals with constraints on the amount, the labeling and the types of data
that are available. One such constraint is that it is only possible to collect labeled data from
one populaࢢon, or domain, but the goal is to make decisions for another domain. It is un-
clear under which condiࢢons this will be possible, which inspires the research quesࢢon of
this thesis: when and how can a classificaࢢon algorithm generalize from a source domain
to a target domain?

My research has looked at different approaches to domain adaptaࢡon. Firstly, we have
asked some criࢢcal quesࢢons on whether the standard approaches to model validaࢢon
sࢢll hold in the context of different domains. As a result, we have proposed a means
to reduce uncertainty in the validaࢢon risk esࢢmator, but that does not solve the prob-
lem completely. Secondly, we modeled the transfer from source to target domain using
parametric families of distribuࢢons, which works well in simple contexts such as feature
dropout at test .meࢢ Thirdly, we looked at a more pracࢢcal problem: ssueࢢ classifiers
trained on data from one MRI scanner degrade when applied to data from another scan-
ner due to acquisiࢢon-based variaࢢons. We tackled this problem by learning a represen-
taࢢon for which detrimental variaࢢons are minimized while maintaining ssueࢢ contrast.
Finally, considering that many approaches fail in pracࢢce because their assumpࢢons are
not met, we designed a parameter esࢢmator that never performs worse than the naive
non-adapࢢve classifier.

Overall, research into domain-adapࢢvemachine learning is sࢢll in its infancy, withmany
interesࢢng challenges ahead. I hope that this work contributes to a be�er understanding
of the problem and will inspire more researchers to tackle it.

xi





Samenvaࢰng

Kunstmaࢢge intelligenࢢe, en in het bijzonder machinaal leren, draait om computersyste-
men die leren om taken uit te voeren. Taken zoals autonoom rijden, tumor herkenning in
medische beelden, of detecࢢe van verdachte pakke�en op vliegvelden. Zulke systemen
leren door het observeren van voorbeelden, i.e. data, en vormen een wiskundige beschrij-
ving van de variaࢢes die voorkomen, i.e. een staࢢsࢢschmodel. Voor nieuwe input berekent
het systeem demeest waarschijnlijke output enmaakt op basis daarvan een beslissing. Als
wetenschappelijk veld staat machinaal leren tussen staࢢsࢢek en algoritmiek. Als techno-
logie is het een krachࢢg stuk gereedschap vanwege de beschikbaarheid van grote hoeveel-
heden data en de lage kosten van berekeningen uitvoeren.

Maar genoeg data verzamelen is nog steeds erg moeilijk. Er zijn vaak lasࢢge financiële,
operaࢢonele of ethische overwegingen in data collecࢢe. Onderzoek in machinaal leren
draait daarom vooral om het omgaan met beperkingen op de hoeveelheid, de annotaࢢe
en de typen data die beschikbaar zijn. Eén zo’n beperking is dat het alleen mogelijk is om
data te krijgen van één populaࢢe, o[ewel domein, terwijl het doel is om beslissingen te
maken voor een andere populaࢢe. Het is onduidelijk onder welke condiࢢes dit mogelijk is.
Dit leidt tot mijn onderzoeksvraag: wanneer en hoe kan een classificaࢢe algoritme gene-
raliseren van een bron domein naar een doel domein?

Mijn onderzoek hee[ gekeken naar verschillende manieren om domein adaptaࢡe aan
te pakken. Ten eerste, hebben we kriࢢsche vragen gesteld over model validaࢢe in de con-
text van verschillen in domeinen. Daaruit is een methode voortgekomen die de onzeker-
heid van een validaࢢe scha�er reduceert, maar daarmee lijkt nog niet alles gezegd te zijn.
Ten tweede, hebben we de overgang van bron naar doel domein gemodelleerd met uitval-
distribuࢢes, wat goed werkt wanneer informaࢢe in het doel domein wegvalt. Ten derde,
hebben we gekeken naar een iets prakࢢscher probleem: weefsel classificeerders getraind
op data van één MRI scanner presteren slecht op data van een andere scanner. Om dit op
te lossen hebben we een representaࢢe geleerd waarin scanner-gerelateerde variaࢢe mi-
nimaal word terwijl weefsel contrast bewaard blij[. Als laatste, omdat veel methoden in
de prakࢢjk niet werken vanwege invalide assumpࢢes, hebben we een parameter scha�er
ontworpen die nooit slechter presteert dan de naïeve non-adapࢢeve aanpak.

Tot slot, onderzoek naar domein-adapࢢef machinaal leren staat nog in de kinderschoe-
nen, met vele interessante open vragen. Ik hoop dat dit werk andere onderzoekers aan-
spoort om deze uitdaging ook aan te gaan.

xiii





1
Introducࢢon

In this chapter, I first introduce the concept of computer systems that learn to perform a
task. Branching out from the standard framework of supervised learning, I pose my re-
search quesࢡons on generalizing across domains. Following those, I discuss a number of
theoreࢡcal analyses that have proven to be very insigh�ul and present a categorizaࢡon of
approaches including important algorithms. Finally, I briefly discuss the contribuࢡons of
this thesis to domain-adapࢡve machine learning.
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2 1. Introducࢢon

Intelligent systems learn from data to recognize pa�erns, predict outcomes and make
decisions [ƈ, Ɖ]. In data-abundant problem seࢰngs, such as recognizing objects in images,
these systems achieve super-human levels of performance [Ɗ]. Their strength lies in their
ability to process huge amounts of examples and obtain a detailed esࢢmate of what does
and does not consࢢtute the object they are looking for. In recent years, the explosion in
data collecࢢon and open access has thrusted machine learning into the limelight. It is now
a key technology in self-driving cars [Ƌ], drone guidance [ƌ], computer-assisted diagnosis
[Қ], online commerce [ƍ], satellite cartography [қ], exo-planet discovery [Ǝ], and machine
translaࢢon [ƈƇ], with many more applicaࢢons on the horizon.

Machine intelligence refers to a computer’s ability to learn to perform a task [ƈƈ]. Super-
vised systems learn through training, where the system is rewarded or punished based on
whether it produces the right output for a given input [ƈƉ, ƈƊ]. In order to train an intelli-
gent system, one requires a set of matching inputs and outputs. Most o[en, inputs consist
of complicated objects such as images while outputs consists of decisions such as ’yes’ or
’no’ or classes such as ’apple’, ’pear’, ’berry’, etc. The system will try out many classifica-
onࢢ funcࢢons on the set of inputs and select the funcࢢon that produced the least errors. If
the examples in the dataset are similar to new inputs, then the system will make accurate
decisions in the future as well. Classifying new inputs based on a finite set of examples, is
called generalizaࢡon. For example, suppose paࢢents are measured on various biometrics
such as blood pressure, and have been classified as ’healthy’ or ’ill’. Then, a system can
be trained by finding the decision funcࢢon that best diagnoses the paࢢents. If they are an
accurate reflecࢢon of the populaࢢon of all possible paࢢents, then the trained system will
generalize to new paࢢents as well.

However, if the collected data it is not an accurate reflecࢢon of the populaࢢon, then
the system will not generalize well. Data is biased if certain events are observed more fre-
quently than usual while others are observed less frequently. If data is biased, then the
system will think that certain outcomes are also more likely to occur. For example, data
collected from older paࢢents is biased with respect to the total human populaࢢon. Re-
searchers in staࢢsࢢcs and social sciences have long studied problems with sample biases
and have developed a number of techniques to correct for biased data [ƈƋ–ƈҚ]. However,
there are sࢢll fundamental limitaࢢons on generalizing towards wider populaࢢons. Instead,
machine learning researchers are a�empࢢng to generalize towards specific target popu-
laࢢons. For instance, can we use informaࢢon from adult humans to train an intelligent
system for diagnosing infant heart disease?

In order to target specific populaࢢons, we need at least some idea of what it looks like.
Labeled data, i.e. input-output pairs, is o[en not available from the target populaࢢon. But
usually there is some unlabeled data as well as some labeled data from another source.
Under certain condiࢢons, relaࢢonships between populaࢢons can be found. Given such a
relaࢢonship, an intelligent system can now adapt, i.e. change its decisions from the source
populaࢢon to generalize more towards the specific target populaࢢon [ƈƍ].
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A more detailed example of adaptaࢢon is the following: in clinical imaging seࢰngs, ra-
diologists manually annotate ,ssuesࢢ abnormaliࢢes, and pathologies of sets of paࢢents.
Biomedical engineers then use these annotaࢢons to train systems to perform automaࢢc
ssueࢢ segmentaࢢon or pathology detecࢢon in medical images. Now suppose a hospital
installs a new MRI scanner. Unfortunately, due to the mechanical configuraࢢon, calibra-
,onࢢ vendor and acquisiࢢon protocol of the scanner, the images it produces will differ from
images produced by other scanners [ƈқ–ƉƇ]. Consequently, systems trained on data from
other scanners would fail to perform well on the new scanner. However, an adapࢢve sys-
tem would find correspondences in images between scanners, and change its decisions
accordingly. Thus it avoids the ,meࢢ money and energy needed to annotate data for the
target populaࢢon (in this case, images from the new scanner) [ƈқ, ƈƎ]. Chapter ƌ of this
thesis describes a method that allows for targeted generalizaࢢon towards a parࢢcular MRI
scanner.

Adaptaࢢon is making an impact in a number of other fields as well: in bioinformaࢢcs,
adapࢢve approaches have been successful in sequence classificaࢢon [Ɖƈ, ƉƉ], gene expres-
sion analysis [ƉƊ, ƉƋ], and biological network reconstrucࢢon [Ɖƌ, ƉҚ]. There, the types
of populaࢢons that are predominantly considered are different model organisms or dif-
ferent data-collecࢢng research insࢢtutes [Ɖƍ]. In predicࢢve maintenance, every meࢢ the
fault prognosis system raises an alarm and designates that a component has to replaced,
the machine changes its properࢢes [Ɖқ]. That means that the system will have to adapt
to the new seࢰng, unࢢl another component is replaced and it will have to adapt again.
In search-and-rescue roboࢢcs, a system that needs to autonomously navigate wilderness
trails will have to adapt to detect concrete structures if it is to be deployed in an urban
environment [ƌ, қ]. Computer vision systems that recognize acࢢviࢢes have to adapt across
different surroundings as well as different groups of people [ƉƎ–Ɗƈ]. In natural language
processing, texts from different publicaࢢon pla�orms are tricky to analyze due to different
contexts and differences between how authors express themselves. For instance, financial
news arࢢcles use a vocabulary that differs from the one in biomedical research abstracts
[ƊƉ]. Similarly, online movie reviews are linguisࢢcally different from tweets [ƊƊ]. Senࢢ-
ment classificaࢢon relies heavily on context as well; people use different words to express
whether they like a book versus whether they like an electronic gadget [ƊƋ]. Adapࢢng for
the target populaࢢon is very important to online retailers that use senࢢment classifiers in
their recommender systems. When a new product category is introduced, there is no data
available to link users and items. In that case, there is an interest in using online reviews
from other product categories to aid in classifying senࢢments in the new category [ƊƋ, Ɗƌ].

In some situaࢢons, the target populaࢢon is a subpopulaࢢon. Personalizaࢡon is an ex-
treme case of this. One of the first types of systems to target subpopulaࢢons are spam
filters: they are o[en iniࢢalized as general systems but adapt to specific users [ƊҚ]. Male
users receive different kinds of spam than female users for instance, which the system can
detect and adapt to based purely on text staࢢsࢢcs. Alternaࢢvely, in speaker recogniࢢon,
an iniࢢal speaker-independent system can adapt to new speakers [Ɗƍ]. Similarly, general
face recogniࢢon systems can be adapted to specific persons [Ɗқ] and person-independent
acࢢvity recogniࢢon algorithms can be specialized to parࢢcular individuals [ƊƎ].
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However, the analysis of adaptaࢢon is not complete, and it is not clear which condiࢢons
have to be fulfilled in order for the system to perform well. It seems that in cases where it
is difficult to describe how two populaࢢons relate to each other, adapࢢve systems suffer
from high variability: they are highly uncertain about their decisions. In this thesis, sev-
eral approaches to the adaptaࢢon problem are explored. But in order to study it in greater
detail, it is necessary to delve into several core concepts from machine learning. The next
secࢢon gives a short explanaࢢon of how intelligent decision-making systems work. Follow-
ing that, various types and causes of biases are described. The last secࢢon of this chapter
presents an overview of approaches to adaptaࢢon.

1.1. Risk minimizaࢢon
One of the most thoroughly researched frameworks for the design, construcࢢon and anal-
ysis of intelligent systems is risk minimizaࢡon. It is part of staࢢsࢢcal decision theory and is
based on the noࢢon that objects vary [ƋƇ, Ƌƈ]. In order to represent an object digitally, we
measure one ormore features. For example, an apple can be described in terms of its over-
all color. A feature captures informaࢢon about the object; many apples are red, some are
green, but none are blue. These variaࢢons over color 𝑥 can be described by a probability
distribuࢢon 𝑝(𝑥). In order to decide between an apple and say, a berry, the system needs
to knowwhich of the two is more probable for a given color, i.e. 𝑝(apple |𝑥) > 𝑝(berry |𝑥)
or 𝑝(apple | 𝑥) < 𝑝(berry | 𝑥) [ƋƉ]. Figure ƈ.ƈa describes two probability distribuࢢons as a
funcࢢon of color; the red distribuࢢon corresponds to apples and the blue to berries.
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(a) Probability distribuࢢons of apples and
berries, as a funcࢢon of color

(b) Error of the opࢢmal classifier, consisࢢng of
the gray area under the distribuࢢons

Figure ƈ.ƈ: Example of a classificaࢢon problem.

A decision-making problem can be abstractly described as a seࢰng where a system has
to assign a class, from a finite set of possible classes, to every possible variaࢢon of an ob-
ject. Decision-making systems are therefore called staࢢsࢢcal classifiers. In their most basic
form they consist purely of a funcࢢon that takes as input an object, encoded by features,
and outputs one of the possible classes, e.g. ℎ(𝑥) = berry. Its output is also called its
predicࢢon, as there are problem seࢰngs where classificaࢢon errors are unavoidable. We
will refer to the classifier itself as ℎ, while its predicࢢon is denoted by its applicaࢢon to a
parࢢcular object ℎ(𝑥). Returning to the apple-berry problem, a classifier can be seen as a
threshold, illustrated in Figure ƈ.ƈb by a black verࢢcal line. It designates everything to the
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le[ as a berry and everything to the right as an apple. Hence, all apples le[ of the line
and all berries to the right are misclassified. The classificaࢢon error is visualized as the gray
region under the distribuࢢons and can be wri�en mathemaࢢcally as:

𝑒(ℎ) = ∫
𝒳
[ℎ(𝑥) ≠ apple] 𝑝(𝑥 | apple)𝑝(apple) d𝑥

+ ∫
𝒳
[ℎ(𝑥) ≠ berry] 𝑝(𝑥 | berry)𝑝(berry) d𝑥 , (ƈ.ƈ)

where ℎ(𝑥) refers to the decisionmade by the classifier. 𝑝(apple) and 𝑝(berry) refer to the
probability of encountering apples and berries in general, while𝑝(𝑥|apple) and𝑝(𝑥|berry)
refer to the probabiliࢢes of seeing an apple or berry of a given color 𝑥 (also known as the
class-condiࢡonal distribuࢢons). The classifier should be able to make a decision over all
possible colors𝒳. Since color is a conࢢnuous variable, the decision funcࢢon is integrated
over all possible colors. If the objects were measured on a discrete variable, then the inte-
graࢢon would be equivalent to a sum. Essenࢢally, the first term describes how o[en the
classifier will make a mistake in the form of deciding that an actual apple is not an apple
and the second term describes how o[en it thinks that a berry is not a berry. Summing
these two terms consࢢtutes the overall classificaࢢon error 𝑒(ℎ).

If apples and berries are encoded into a more general form, as a variable 𝑦, then the
classificaࢢon error can be wri�en as follows:

𝑒(ℎ) = ∑
፲∈𝒴

∫
𝒳
[ℎ(𝑥) ≠ 𝑦] 𝑝(𝑥, 𝑦) d𝑥 . (ƈ.Ɖ)

where 𝑝(𝑥, 𝑦) = 𝑝(𝑥 | 𝑦)𝑝(𝑦). 𝒴 numerically represents the set of classes, in this case
𝒴 = {apple = −1, berry = +1}. Objects are o[en not described by one feature but
by mulࢢple measured properࢢes. As such, 𝑥 is a 𝐷-dimensional random vector, and can
be conࢢnuous, i.e. consisࢢng of real values 𝒳 ⊆ ℝፃ, can be discrete, i.e. consisࢢng of
integers𝒳 ⊆ ℕፃ, or a mix of both.

1.1.1. Loss funcࢢons
The noࢢon of disagreement between the predicted and the true class can be described
in a more general form by using a funcࢢon that describes the numerical cost of correct
versus incorrect classificaࢢon. This funcࢢon is known as a loss funcࢢon ℓ, which takes as
input the classifier ℎ along with the object 𝑥 and the object’s true class 𝑦: ℓ(ℎ(𝑥), 𝑦) ≥
0. The pure classificaࢢon error is known as the 0/1 loss, denoted ℓኺ/ኻ, that has value 0
whenever the predicࢢon is exactly equal to the true label and value 1 whenever they are
not equal; ℓኺ/ኻ(ℎ(𝑥), 𝑦) = [ℎ(𝑥) ≠ 𝑦]. Other examples of loss funcࢢons are the quadraࢡc
or squared loss, ℓqd(ℎ(𝑥), 𝑦) = (ℎ(𝑥) − 𝑦)ኼ, the logisࢡc loss ℓlog(ℎ(𝑥), 𝑦) = 𝑦ℎ(𝑥) −
log∑፲ᖣ∈ፘ exp(𝑦ᖣℎ(𝑥)) or the hinge loss ℓhinge(ℎ(𝑥), 𝑦) =max(0, 1−𝑦ℎ(𝑥)). These are
called convex surrogate losses, as they approximate the 0/1 loss but use a formulaࢢon that
is easier to work with computaࢢonally. Overall, the choice of a loss funcࢢon has a major
impact on the behaviour of the resulࢢng classifier.
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Considering that we are integraࢢng the loss funcࢢon with respect to probabiliࢢes, we
are actually looking at the expected loss, also called the risk, of a parࢢcular classifier:

𝑅(ℎ) = 𝔼𝒳,𝒴 ℓ(ℎ(𝑥), 𝑦) , (ƈ.Ɗ)

where 𝔼 stands for the expectaࢢon. Its subscript denotes which variables are being inte-
grated over. Given a risk funcࢢon, we can evaluate mulࢢple possible classifiers and select
the one for which the risk is as small as possible:

ℎ∗ = argmin
፡

𝔼𝒳,𝒴 ℓ(ℎ(𝑥), 𝑦) . (ƈ.Ƌ)

The asterisk superscript denotes opࢢmality with respect to the chosen loss funcࢢon. There
aremanyways to perform thisminimizaࢢon step, with vastly different computaࢢonal costs.
The main advantage of convex loss funcࢢons is that they do not contain local minima and
efficient opࢢmizaࢢon procedures such as gradient descent can be used [ƋƊ].

1.1.2. Generalizaࢢon
Up to this point, we have only considered the case where the probability distribuࢢons are
completely known. In pracࢢce, this is rarely the case: only a finite amount of data can
be collected. Measurements of objects can be described as a dataset 𝒟፧ = {(𝑥። , 𝑦።)}፧።዆ኻ,
where each 𝑥። is an independent sample from the random variable𝒳, and is labeled with
its corresponding class 𝑦።. The expected value with respect to the joint distribuࢢon of data
and labels can be approximated with the sample average:

�̂�(ℎ | 𝒟፧) = 1
𝑛

፧

∑
።዆ኻ

ℓ(ℎ(𝑥።), 𝑦።) . (ƈ.ƌ)

�̂� is called the empirical risk funcࢢon. It evaluates classifiers given a parࢢcular dataset (the
symbol ” | ” denotes that a funcࢢon is dependent on something). Note that the true risk
𝑅 from (ƈ.Ɗ) does not depend on a dataset. Minimizing the empirical risk with respect to a
classifier for a parࢢcular dataset, is called training the classifier:

ℎ̂ = argmin
፡∈ℋ

�̂�(ℎ | 𝒟፧) (ƈ.Қ)

whereℋ refers to the collecࢢon of all possible classifiers that we consider, also known as
the hypothesis space. A risk-minimizaࢢon system is said to generalize if it uses informaࢢon
on specific objects to make decisions for all possible objects.

Generally, more samples lead to be�er approximaࢢons of the risk, and the resulࢢng
classifier will be closer to the opࢢmal one. For 𝑛 samples that are independently drawn
and idenࢢcally distributed, due to the law of large numbers, the empirical risk converges
to the true risk [ƈƊ]:

lim
፧→ጼ

1
𝑛

፧

∑
።዆ኻ
ℓ(ℎ(𝑥።), 𝑦።) = 𝔼𝒳,𝒴 ℓ(ℎ(𝑥), 𝑦) , (ƈ.ƍ)
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and it can be shown that the resulࢢng classifier will converge to the opࢢmal classifier
lim
፧→ጼ

ℎ̂ → ℎ∗ [ƈƊ, ƋƋ]. The minimizer of the empirical risk deviates from the true risk due

to the esࢢmaࢢon error, i.e. the difference between the sample average and the actual
expected value, as well as the opࢢmizaࢢon error, i.e. the difference between the true
minimizer and the one obtained through the opࢢmizaࢢon procedure [ƈƊ, Ƌƌ].

Ulࢢmately, we are not interested in the error of the trained classifier on the givendataset,
but in the error on all possible future samples: 𝑒(ℎ̂) = 𝔼𝒳,𝒴[ℎ̂(𝑥) ≠ 𝑦]. This error is known
as the generalizaࢡon error [ƈƊ, ƋҚ]. As mistakes are someࢢmes inevitable, we mostly fo-
cus on how much larger the generalizaࢢon error of the trained classifier is compared to
the generalizaࢢon error of the opࢢmal classifier 𝑒(ℎ̂) − 𝑒(ℎ∗). Ideally, we would like to
know if the generalizaࢢon error will be small, i.e., less than some small value 𝜖. In other
words, that our classifier will be approximately correct. However, because classifiers are
funcࢢons of datasets, and datasets are random, we can only describe how probable it is
that any classifier is approximately correct. Hence, the Probably Approximately Correct
(PAC) bound:

Pr𝒟፧ [ 𝑒(ℎ̂) − 𝑒(ℎ∗) ≤ 𝜖 ] ≥ 1 − 𝛿 , (ƈ.қ)

where 𝛿 is a small number [Ƌƍ, Ƌқ]. Every dataset leads to a different ℎ̂ and we can there-
fore integrate over trained classifiers by integraࢢng over the probability of drawing any
parࢢcular dataset (hence the subscript 𝒟፧). Essenࢢally, the PAC bound states that, with
probability at least 1 − 𝛿, the classifier is close to opࢢmal. Specific values for 𝛿 and 𝜖 can
be found through plugging in a probability distribuࢢon and a funcࢢon class.

PAC bounds do not study single datasets or choices of algorithms, but describe how
the generalizaࢢon error depends on sample size, the joint distribuࢢon and classifier com-
plexity. They avoid the randomness inherent to evaluaࢢng specific classifiers on parࢢcu-
lar datasets, which makes them useful tools for comparisons and analysis. Many variants
of PAC bounds have been proposed, some using different measures of complexity, such
as Rademacher complexity [ƋƎ] or Vapnik-Chervonenkis dimensions [ƌƇ, ƌƈ], while others
use Bayesian inference [ƌƉ–ƌƋ]. Generalizaࢢon error bounds, as well as learning bounds
- inequaliࢢes describing how many samples a parࢢcular algorithm requires to achieve a
specific generalizaࢢon error - can incorporate assumpࢢons or prior knowledge [ƈƊ, ƌƌ–ƌƍ].
Bounds with assumpࢢons do not hold universally, but are restricted to the seࢰngs spec-
ified by the assumpࢢon. Due to these restricࢢons, these bounds are o[en ghterࢢ (there
is more certainty whether the classifier will be approximately correct). Such ghterࢢ gen-
eralizaࢢon bounds o[en inspire new algorithms, such as Adaboost or the Support Vector
Machine [ƌқ, ƌƎ].

Learning bounds also tell us that the flexibility, or complexity, of a classifier has to be
traded off with the number of available training samples [ƋƋ, ƌƍ, ҚƇ]. In parࢢcular, a very
flexible model can minimize the error on a given dataset completely, but will be too spe-
cific to generalize to new samples. This is known as overfiࢯng. Figure ƈ.Ɖc illustrates an
example of a classifier that has perfectly fi�ed to the training set. As can be imagined,
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it will not perform as well for new samples. In order to combat overfiࢰng, an addiࢢonal
term is introduced in the empirical risk esࢢmator that punishes model flexibility. This reg-
ularizaࢡon term is o[en a simple addiࢢve term in the form of the norm of the classifier’s
parameters [ƈƉ, Қƈ]. Figure ƈ.Ɖb visualizes an example of a properly regularized classifier,
that will probably generalize well to new samples. Figure ƈ.Ɖa shows an example of a too
heavily regularized classifier, also known as an ”underfi�ed” classifier.
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(a) Underfi�ed classifier.
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(b) Well-fi�ed classifier.
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(c) Overfi�ed classifier.

Figure ƈ.Ɖ: Examples of classifier complexiࢢes.
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1.2. Research quesࢢon
Normally, samples from one distribuࢢon are used to generalize towards new samples from
the same distribuࢢon. However, in pracࢢce, new samples are o[en drawn from a dif-
ferent distribuࢢon: the training data might be drawn from a local populaࢢon, such as a
social science experiment where only university students are measured, whereas the test
data might be drawn from the naࢢonal populaࢢon (an example of a biased sample). Or,
it could be that the object of interest (unknowingly) changes over meࢢ (an example of
a non-staࢢonary data-generaࢢng process). Hence, there is a strong interest in develop-
ing machine learning methods that can generalize from data from one distribuࢢon to data
from another.

Such problem seࢰngs are known as domain adaptaࢡon or transfer learning seࢰngs
[ƈƍ, ҚƉ, ҚƊ]. The distribuࢢon of interest is called the target domain, for which labels are
usually not available and training a classifier is not possible. However, if a similar domain
is available, it could be used as a source of addiࢢonal informaࢢon. Now the challenge is to
overcome the differences between the domains so that a classifier trained on the source
domain generalizes well to the target domain. Such a method is called a domain-adapࢡve
classifier. If successful, domain-adapࢢve classifiers can, for example, make accurate diag-
noses for rare forms of cancer based on knowledge from common forms of cancer [ҚƋ],
detect real-world driving lanes from data of high-quality driving simulaࢢons [Қƌ], or parse
part-of-speech tags in literature based on data from news arࢢcles [ҚҚ].

Generalizing across distribuࢢons is very difficult and it is not clear under which condi-
onsࢢ it is possible. My work therefore focuses on the quesࢢon:

When and how can a staࢢsࢢcal classifier generalize from a source to a target domain?

In the other chapters, I present two analyses (Chapters Ɖ and Ɗ) and three methods
(Chapters Ƌ,ƌ and Қ). Each chapter studies the problem from a different perspecࢢve. The
discussion chapter reflects onmy findings, lists some of the quesࢢons that have opened up
and presents ideas for future work. For the remainder of this introducࢢon chapter, I will ex-
plain domains in greater detail, discuss types of domain shi[s and present a categorizaࢢon
of approaches to domain adaptaࢢon.
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1.3. Domain adaptaࢢon
Unfortunately, there exists quite a bit of confusion in the literature concerning definiࢢons
that are important to the process of generalizing to a different distribuࢢon. A clarifica-
onࢢ is therefore in order. To be precise, we define domains as the combinaࢢon of an in-
put space 𝒳, an output space 𝒴 and an associated probability distribuࢢon 𝑝. Inputs are
subsets of the 𝐷-dimensional real space ℝፃ, while outputs are classes. Classes can be
binary, in which case 𝒴 corresponds to {−1,+1} or can be 𝐾-order mulࢢ-class, in which
case 𝒴 = {1,…𝐾}. Given two domains, we call them different if they are different in at
least one of their consࢢtuent components, i.e., the input space, the output space, or the
probability density funcࢢon. For example, image capࢢon generators from computer vision
generalize from the ”image domain” to the ”text domain”, which would be an example of
differences between the input spaces [Қƍ, Ққ]. This thesis is restricted to the case where
only the probability distribuࢢons differ. We denote the source domain as (𝒳,𝒴, 𝑝𝒮) and
will someࢢmes refer to it in shorthand as 𝒮. The target domain is denoted (𝒳,𝒴, 𝑝𝒯)with
the shorthand 𝒯. Domain-specific funcࢢons will be marked with the subscript 𝒮 or 𝒯 as
well. For example, the expected value with respect to the target domain will be wri�en
as: ∑፲∈𝒴 ∫𝒳 𝑓(𝑥, 𝑦) 𝑝𝒯(𝑥, 𝑦) d𝑥 = 𝔼𝒯[𝑓(𝑥, 𝑦)]. With some abuse of notaࢢon for the
sake of clarity, we will mark marginal and condiࢢonal distribuࢢons with 𝒮 and 𝒯 as well;
𝑝𝒯(𝑥, 𝑦) for the target joint distribuࢢon, 𝑝𝒯(𝑥) for the target data marginal distribuࢢon
and 𝑝𝒯(𝑥 | 𝑦) for the target class-condiࢢonal distribuࢢon.

Samples from the source domain are denoted with (𝑥። , 𝑦።), and the source dataset is
referred to as 𝒟፧𝒮 = {(𝑥። , 𝑦።)}፧።዆ኻ. Note that 𝑥 refers to an element of the input space
𝒳 while 𝑥። refers to a specific observaࢢon drawn from the source distribuࢢon, 𝑥። ∼ 𝑝𝒮 .
Likewise, samples from the target domain are denotedwith (𝑧፣ , 𝑢፣), with its dataset𝒟፦𝒯 =
{(𝑧፣ , 𝑢፣)}፦፣዆ኻ.

Generalizing across domains
The PAC bound from (ƈ.қ) describes howmuch a classifier trained on samples from a distri-
buࢢon will generalize to new samples from that distribuࢢon. However, this result is based
on Hoeffding’s inequality, which only describes deviaࢢons of the empirical risk esࢢmator
from its own true risk, not deviaࢢons from other risks [ƈƊ, ҚƎ, ƍƇ]. Since Hoeffding’s in-
equality does not hold in a cross-domain seࢰng, the standard generalizaࢢon error bound
does not hold either.

However, it is possible to derive generalizaࢢon error bounds if more is known on the
relaࢢonship between 𝒮 and 𝒯 [ƈƍ, ƌƋ, ƍƈ–қƈ]. For example, one of the first target general-
izaࢢon error bounds uses the condiࢢon that there exists a classificaࢢon funcࢢon that can
perform well on both domains [ƈƍ, ƍƉ]. This low-joint-domain-error condiࢢon is expressed
asmin፡∈ℋ [𝑒𝒮(ℎ)+𝑒𝒯(ℎ)] ≤ 𝜆. As will be shown later, the deviaࢢon between the target
generalizaࢢon error of a classifier trained in the source domain 𝑒𝒯(ℎ̂𝒮) and the target gen-
eralizaࢢon error of the opࢢmal target classifier 𝑒𝒯(ℎ∗𝒯) depends on this value 𝜆. If 𝜆 is too
large, then the source trained classifier can never be approximately correct in the target
domain.
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Addiࢢonally, we need some measure of how much two domains differ from each other.
For this bound, the symmetric difference hypothesis divergence (ℋΔℋ-divergence) is used,
which takes two classifiers and looks at to what extent they disagree with each other on
both domains [ƈƍ]:

𝑑ℋጂℋ(𝑝𝒮 , 𝑝𝒯) = 2 sup
፡,፡ᖣ∈ℋ

| Pr𝒮 [ℎ ≠ ℎᖣ] − Pr𝒯 [ℎ ≠ ℎᖣ] | , (ƈ.Ǝ)

where the probability Pr can be computed through integraࢢon: Pr𝒮[ℎ ≠ ℎᖣ] = ∫𝒳[ℎ(𝑥) ≠
ℎᖣ(𝑥)]𝑝𝒮(𝑥)d𝑥. The sup stands for the supremum, which in this context finds the pair of
classifiers ℎ, ℎᖣ for which the difference in probability is largest and returns the value of
that difference [ƈƍ, ƍƉ, қƉ].

Given the condiࢢon of low-joint-domain-error and the ℋΔℋ-divergence, one can for-
mulate a domain adapࢢve PAC bound as:

Pr𝒟፧𝒮 [ 𝑒𝒯(ℎ̂𝒮) − 𝑒𝒯(ℎ
∗
𝒯) ≤ 𝜆 +

1
2𝑑ℋጂℋ(𝑝𝒮 , 𝑝𝒯) + 𝒞(ℋ)] ≥ 1 − 𝛿 , (ƈ.ƈƇ)

where 𝑒𝒯 is the true error on the target domain, ℎ̂𝒮 is the classifier trained on a sample from
the source domain, ℎ∗𝒯 is the opࢢmal classifier in the target domain, and 𝜆 describes the
maximum joint-domain-error (TheoremƊ, [ƈƍ]). 𝒞(ℋ) describes the complexity of the type
of classificaࢢon funcࢢonsℋ we are using, and comes up in standard generalizaࢢon error
bounds that incorporate classifier complexity [қƊ]. Overall, this bound states that, with
probability at least 1 − 𝛿, the generalizaࢢon error of a classifier, with complexity 𝒞(ℋ),
trained on source data, will be less than the maximum joint-domain-error and the domain
discrepancy. Or simpler said: the larger 𝜆 and 𝑑ℋጂℋ are for a given domain adaptaࢢon
problem, the less a source classifier will generalize to the target domain.

In conclusion, in order to generalize from one domain to another, we need some knowl-
edge on how the two domains relate to each other. Someࢢmes, these relaࢢonships are
simple in the sense that only some variables have shi[edwhile the remainder stay the same
across domains. The secࢢon on shi[s below, secࢢon ƈ.Ɗ.ƈ, elaborates on how this informa-
onࢢ can be exploited. Formore general domain discrepancies, there aremore complicated
condiࢢons that have to be fulfilled. These are shortly discussed in secࢢon ƈ.Ɗ.ƈ. Secࢢon ƈ.Ƌ
describes proposed methods that make use of one or more of these condiࢢons.

1.3.1. Shi[s
We are ulࢢmately interested in minimizing the target risk 𝑅𝒯 , but we want to do this by
making use of the source domain. One of the most straigh�orward ways to incorporate
the source distribuࢢon in the target risk is as follows:

𝑅𝒯(ℎ) =∑
፲∈ፘ

∫
𝒳
ℓ(ℎ(𝑥) | 𝑦) 𝑝𝒯(𝑥, 𝑦) d𝑥

=∑
፲∈ፘ

∫
𝒳
ℓ(ℎ(𝑥) | 𝑦) 𝑝𝒯(𝑥, 𝑦)𝑝𝒮(𝑥, 𝑦)

𝑝𝒮(𝑥, 𝑦) d𝑥 . (ƈ.ƈƈ)
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One could now approximate this risk funcࢢon by plugging in source samples and weighࢢng
their loss by the raࢢo of distribuࢢons; 𝑛ዅኻ ∑፧። ℓ(ℎ(𝑥።), 𝑦።)𝑝𝒯(𝑥። , 𝑦።)/𝑝𝒮(𝑥። , 𝑦።) (note that
𝑝𝒯(𝑥። , 𝑦።) evaluates the probability of a source sample under the target distribuࢢon). How-
ever, in order to compute the raࢢo 𝑝𝒯/𝑝𝒮 , wewould need labeled data from both domains,
which is o[en not available. Fortunately, if the domains are shi[ed versions of each other,
then we do not always need labeled target data. The following subsecࢢons discuss three
types of shi[s: between prior distribuࢢons, between data / covariate distribuࢢons, and
between class-posteriors / concepts. Other types of shi[s can occur, for instance mixture
component shi[s [қƋ], but those are outside the scope of this work.

Prior shi[
First of all, there is the case where only the prior probabiliࢢes of the classes are different:
𝑝𝒮(𝑦) ≠ 𝑝𝒯(𝑦). This can occur in for example fault detecࢢon seࢰngs, where a new main-
tenance policy might cause less faults [қƌ], or in the detecࢢon of oil spills before versus
a[er an incident [қҚ]. Since only the priors are different, the class-condiࢢonal distribu-
onsࢢ are sࢢll the same: 𝑝𝒮 | 𝒴(𝑥 | 𝑦) = 𝑝𝒯 | 𝒴(𝑥 | 𝑦). We can exploit this informaࢢon by
reducing the raࢢo of joint probability distribuࢢons [қƍ]:

𝑅𝒯(ℎ) =∑
፲∈ፘ

∫
𝒳
ℓ(ℎ(𝑥), 𝑦)�����𝑝𝒯(𝑥 | 𝑦) 𝑝𝒯(𝑦)

����𝑝𝒮(𝑥 | 𝑦) 𝑝𝒮(𝑦)
𝑝𝒮(𝑥, 𝑦) d𝑥

= 𝔼𝒮 [ℓ(ℎ(𝑥), 𝑦) 𝑤(𝑦)] , (ƈ.ƈƉ)

where the weights 𝑤(𝑦) = 𝑝𝒯(𝑦)/𝑝𝒮(𝑦) represent the change in the balance between
classes. Using this approach, we require no unlabeled target samples, only a number of
target labels. Figure ƈ.Ɗa illustrates an example of two class-condiࢢonal distribuࢢons with
imbalanced classes in the source domain (solid lines) and balanced classes in the target
domain (do�ed lines). Figure ƈ.Ɗb shows the opposite case; going from an imbalanced
class to an even more imbalanced class.
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(a) Imbalanced to balanced classes.
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(b) Imbalanced to more imbalanced classes.

Figure ƈ.Ɗ: Examples of types of class-prior shi[.

Re-weighࢢng each sample fromaparࢢcular class is very similar to cost-sensiࢢve learning,
wherewe are not correcࢢng for inappropriate priors but are arࢢficially assigning newpriors
[ққ]. But prior shi[s have also been extensively studied from a different perspecࢢve: when



1.3. Domain adaptaࢢon

1

13

it is more difficult to collect data from one class than the other [қƎ]. For example, in a few
countries, the government gives women above a certain age the opportunity to be tested
for breast cancer [ƎƇ]. The vast majority that responds does not show signs of cancerous
ssueࢢ and only a small minority is tested posiࢢve. There is therefore a class imbalance in
the data. Furthermore, because the test voluntary, only certain groups of women respond.
The sample is therefore biased and there is no guarantee that the class proporࢢons of the
sample also hold for the whole populaࢢon. However, if the general prevalence of a disease
is known, then the prior shi[ can be corrected for [Ǝƈ, ƎƉ].

Covariate shi[
Covariate shi[ is one of the most studied means of data shi[s. For these cases, we know
that 𝑝𝒯(𝑦 | 𝑥) = 𝑝𝒮(𝑦 | 𝑥). This informaࢢon can be exploited by rewriࢢng the raࢢo of
joint distribuࢢons in (ƈ.ƈƈ) into a raࢢo of class-posterior mesࢢ marginal data distribuࢢons
and canceling out the class-posteriors:

𝑅(ℎ) =∑
፲∈ፘ

∫
𝒳
ℓ(ℎ(𝑥), 𝑦)�����𝑝𝒯(𝑦 | 𝑥) 𝑝𝒯(𝑥)

����𝑝𝒮(𝑦 | 𝑥) 𝑝𝒮(𝑥)
𝑝𝒮(𝑥, 𝑦) d𝑥 (ƈ.ƈƊ)

= 𝔼𝒮 [ℓ(ℎ(𝑥), 𝑦) 𝑤(𝑥)] , (ƈ.ƈƋ)

where the weights 𝑤(𝑥) = 𝑝𝒯(𝑥)/𝑝𝒮(𝑥) indicate how the probability of a source sample
should be corrected to reflect the probability under the target distribuࢢon.
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(a) Wider target domain.
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(b) Limited support overlap.
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(c) Narrower target domain.

Figure ƈ.Ƌ: Examples of types of covariate shi[.

There are many causes for covariate shi[s, with sample selecࢢon bias being the most
known one [ƈƋ, ƈҚ, ƎƊ]. Especially in the social sciences where survey sampling is done
locally, i.e. in universiࢢes, companies or city centers, the observed data reflects the local
populaࢢon and not the global one [ƈƌ, ƎƋ]. This is o[enmodeledwith an addiࢢonal variable
𝑠 that denotes how probable it is that 𝑥 will be selected. For example, suppose we go to a
city that is populated according to a normal distribuࢢon, i.e., most people live in the center
and the habitaࢢon density decreases as a funcࢢon of the distance from the center. Local
sampling, in the form of asking people on the main square to fill in a survey, corresponds
to seࢰng 𝑝(𝑠 = 1 | 𝑥) very high in in the interval close to 0. Applying Bayes’ theory, i.e.,
𝑝(𝑥 | 𝑠 = 1) = 𝑝(𝑠 = 1 | 𝑥)𝑝(𝑥)/𝑝(𝑠 = 1), shows that the collected surveys 𝑝(𝑥 | 𝑠 = 1)
only represent people from the main square instead of the whole city’s inhabitants 𝑝(𝑥).
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From a domain adaptaࢢon perspecࢢve, the biased sampling defines the source domain
𝑝𝒮(𝑥) = 𝑝(𝑥 | 𝑠 = 1). As the goal is to correct for the selecࢢon bias, the target domain
consists of the selecࢢon variable being integrated out: 𝑝𝒯(𝑥) = ∑፬∈{ኺ,ኻ} 𝑝(𝑥 | 𝑠).

Similar to sample selecࢢon bias, another cause for covariate shi[ ismissing data [Ǝƌ, ƎҚ].
In pracࢢce, data can be missing as measurement devices fail or because a subject dropped
out of the experiment. When there is a consistent mechanism behind how the data went
missing, referred to as missing-not-at-random (MNAR), the missingness consࢢtutes an ad-
diࢢonal variable. This variable acts in the same way as the selecࢢon variable, as it decides
whether or not a sample will be included in the training set.

The last common cause for covariate shi[, is the use of different measurement instru-
ments. For example, using different cameras to take photos of objects [ҚƉ]. The object
itself and how o[en it occurs, remain constant, which means that the priors and class-
posteriors are equivalent in both domains. However, different camera seࢰngs lead to dif-
ferent photos, which means the marginal data distribuࢢons differ. Considering that these
seࢰngs aremechanical and have a physical origin, one could argue that there exists a trans-
formaࢢon from photos from one camera to photos from another [Ǝƍ, Ǝқ].

Concept shi[
In the case of concept shi[s, the definiࢢon of the class changes. For instance, [ƎƎ] con-
sider a medical seࢰng where the aim is to make a prognosis for a paࢢent based on their
age, severity of their flu, general health and their socio-economic status. The classes are
originally defined as ”remission” and ”complicaࢢons”, but at test ,meࢢ other aspects are
counted as a formof ”complicaࢢon” and are thusly labeled. Therefore, the classifier trained
on the original labeling deteriorates in performance. Alternaࢢvely, in computer security,
what consࢢtutes an ”anomaly” can not only be different for different users but can also
change over meࢢ [ƈƇƇ].

If only the concept has changed, then that means that the marginal data distribuࢢons
remain the same: 𝑝𝒮(𝑥) = 𝑝𝒯(𝑥). This knowledge can again be exploited through:

𝑅𝒯(ℎ) =∑
፲∈ፘ

∫
𝒳
ℓ(ℎ(𝑥), 𝑦)𝑝𝒯(𝑦 | 𝑥)�

��𝑝𝒯(𝑥)
𝑝𝒮(𝑦 | 𝑥)���𝑝𝒮(𝑥)

𝑝𝒮(𝑥, 𝑦) d𝑥

However, unless there is some prior knowledge on the concept shi[, adaptaࢢon in this set-
ngࢢ is impossible without labeled target data. Unlike the prior and covariate shi[ cases,
where only the data marginal or the class marginal distribuࢢons change, in this case a con-
diࢡonal distribuࢢon changes. To esࢢmate condiࢢonal distribuࢢons, one requires simulta-
neous observaࢢons of both variables. Figure ƈ.ƌa shows an example of a shi[ in the locaࢢon
of the decision boundary, towards the right, but not in the condiࢢonal variance. Figure ƈ.ƌb
shows the opposite example of a shi[ in the condiࢢonal variance, but not in the posiࢢon.
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(a) Change in posiࢢon.

-5 0 5
0

0.2

0.4

0.6

0.8

1
S|y=-1

S|y=+1

T|y=-1

T|y=+1

(b) Change in variance.

Figure ƈ.ƌ: Examples of types of concept shi[.

Unfortunately, this remarkably difficult seࢰng occurs quite frequently as classifiers are
deployed in non-staࢢonary environments [ƈƇƈ]. For smoothly varying non-staࢢonariࢢes
such as ,me-seriesࢢ however, there is again addiࢢonal informaࢢon that can be exploited:
the shi[s are ordered and are relaࢢvely small between neighboring meࢢ steps. Such a
me-dependentࢢ seࢰng is o[en referred to separately as concept dri[. In many dynami-
cal learning approaches, such as online learning or bandit seࢰngs, the classifier receives
feedback a[er every decision it makes [ƈƇƉ]. This feedback allows it to detect whether a
concept dri[ has occurred and allows it to esࢢmate how it should adapt accordingly [ƈƇƊ–
ƈƇƌ].

Domain discrepancies
In the most general case, more than one of the above shi[s will have occurred. There are
many possible ways in which two datasets of the same objects may differ from one an-
other. For example, if one were to search online for images, then one encounters posed
objects on white backgrounds on commercial websites, natural photos with highly clut-
tered backgrounds on travel sites, indoor shots with widely varying lighࢢng condiࢢons on
socialmedia, andmanymore [ƈƇҚ]. As can be imagined, this is themost difficult seࢰng and
learning will o[en not be possible at all [ƍқ, ƈƇƍ]. In order to generalize well, the domains
have to be related in some other exploitable way. Examples of exploitable relaࢢonships
include: the existence of a single good predictor for both domains [ƈƍ, ƍƉ, ƍқ, ƈƇқ], con-
strained worst-case labellings [ƈƇƎ, ƈƈƇ], low-data-divergence [ƈƍ, ƍƉ, ƍқ], the existence of
a domain manifold [ҚƉ, ƈƈƈ, ƈƈƉ], condiࢢonal independence of class and target given source
data [ƈƈƊ] and unconfoundedness [ƈƈƋ]. This thesis does not explore the case of mulࢢple
sources [ƈƈƌ, ƈƈҚ], or the related problem seࢰngs ofmulࢢ-task learning [ƍƈ], online learning
[ƈƈƌ, ƈƈƍ] or acࢢve learning [ƈƈқ, ƈƈƎ].

1.4. Approaches
This secࢢon discusses a number of approaches to domain adaptaࢢon based on supposed
relaࢢonships between domains. In order to illustrate the ideas of some of the approaches,
we use an example seࢰng. Figure ƈ.Қ visualizes a 2-dimensional sca�er plot of red versus
blue dots in the source domain (le[) and the target domain (right). Training a classifier
on the source samples will result in the black line (le[), which will probably generalize
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well to future source samples. However, applying it directly to the target samples without
adaptaࢢon, will lead to a number of misclassificaࢢons. As can be imagined, in cases where
the domains are very far apart, such an approach might lead to worse results than random
classificaࢢon.
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Figure ƈ.Қ: Example of a ƉD domain adaptaࢢon problem. (Le[) Data from the source domain, with a classifier
(black line) trained to discriminate blue from red dots. (Right) Data from the target domain. Applying the classifier
trained on the source domain leads to subopࢢmal results as it is misclassifying the top red dots.

1.4.1. Importance-weighࢢng
Most importance weighࢢng techniques are designed for covariate shi[ and most esࢢmate
the weights first, before training a weighted classifier. Figure ƈ.ƍ shows a sca�erplot with
weighted source samples. The do�ed black line is the adapted classifier, trained on the
importance-weighted source samples, and generalizes more to the target domain. De-
pending on the problem seࢰng, some methods esࢢmate the numerator and denominator
of the raࢢo of probabiliࢢes separately, and others esࢢmate the raࢢo directly. In this sec-
,onࢢ we discuss several of the most popular techniques.

In the sample selecࢢon bias seࢰng, the target domain is the whole populaࢢon, where
each sample has probability 1 of being selected. That means that the numerator in the
raࢢo of probability distribuࢢons is constant and it suffices to esࢢmate the selecࢢon likeli-
hood for the source samples. There has been a tremendous amount ofwork from the ƈƎƍƇs
onwards in the staࢢsࢢcs and social sciences communiࢢes that a�empts to control for selec-
onࢢ biases [ƈƋ, ƎƊ]. Most of these approaches incorporated knowledge of the specific data
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Figure ƈ.ƍ: Example of importance-weighࢢng. (Le[) The source samples from Figure ƈ.Қ have been weighted
(larger dot size is larger weight) based on their relaࢢve importance to the target domain. The resulࢢng
importance-weighted classifier (black do�ed line) deviates from the source classifier (solid black line in Figure
ƈ.Қ). (Right) Applying the adapted classifier to the target samples leads to less misclassificaࢢons as compared to
the original source classifier.

collecࢢon schemes, such as survey sampling , while others focused on esࢢmaࢢng proba-
biliࢢes non-parametrically [ƈƉƇ]. Knowing exactly how the sample space was discreࢢzed,
for instance dividing up paࢢents’ age into intervals, can directly aid the esࢢmaࢢon of the
selecࢢon bias [ƈƉƈ].

In seࢰngs with data missing-not-at-random (MNAR), some samples are more likely to
be observed than others [Ǝƌ, ƎҚ]. This is essenࢢally equivalent to the sample selecࢢon bias
seࢰng and in this case, one also aims to generalize to the case where all samples would
be observed. However, this ,meࢢ there may be prior knowledge available on what causes
the missingness. This may be incorporated separately, with a model of how the data was
generated [ƈƉƉ, ƈƉƊ]. Given knowledge of how likely a sample is of being observed, also
known as its propensity score 𝑒(𝑥) = 𝑝(observed | 𝑥), one can correct for the MNAR bias
in the data [ƈƈƋ, ƈƉƋ, ƈƉƌ]. Correcࢢons are based on weighing each sample with its inverse
propensity score 𝑒(𝑥)ዅኻ. These types of correcࢢons are o[en employed in the causal in-
ference community, where missingness arises in observaࢢonal experimental studies [ƈƉҚ–
ƈƉқ]. From the causal inference community, they are now finding their way into machine
learning as counterfactual risk minimizaࢢon [ƈƉƎ–ƈƊƉ].
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In general cases of covariate shi[, the raࢢo of probability distribuࢢons are most o[en
esࢢmated as Gaussian distribuࢢons [ƈƊƊ]. Unfortunately, closer inspecࢢon of families of
probability distribuࢢons revealed that the use of exponenࢢal funcࢢons had a negaࢢve ef-
fect on the variance of the importance weights [ƍƋ, ƍƌ, ƈƊƋ]. For example, if the source
distribuࢢon is a univariate Gaussian distribuࢢon with mean 0 and variance 1, and the tar-
get distribuࢢon is a univariate Gaussian with mean 0 and variance 𝜎ኼ𝒯 , then the weights
consist of 𝑝𝒯(𝑥)/𝑝𝒮(𝑥) = 𝒩(𝑥 | 0, 𝜎ኼ𝒯) / 𝒩(𝑥 | 0, 1) = 𝜎ዅኻ𝒯 exp(𝑥ኼ(−1 + 𝜎ኼ𝒯)/(2𝜎ኼ𝒯)).
For this example, if the target variance is larger than 2, then the variance of the weights,
𝔼𝒮[(𝑤(𝑥)−𝔼𝒮[𝑤(𝑥)])ኼ], diverges to infinity. Large weight variancemeans that it is highly
probable that one sample will receive a very large weight, while the rest will receive very
small weights. Consequently, at training ,meࢢ the classifier will only pay a�enࢢon to this
one important sample and will neglect everything else. The resulࢢng classifier is o[en
pathological and will not generalize well. Alternaࢢvely, the distribuࢢons are o[en esࢢ-
mated through kernel density esࢢmaࢢon [ƈƈƉ, ƈƊƌ, ƈƊҚ].

Methods that directly esࢢmate importance weights𝑤, instead of the source 𝑝𝒮 and tar-
get 𝑝𝒯 distribuࢢons separately, are usually based on minimizing some type of discrepancy
between the weighted source and the target distribuࢢons: D [𝑤, 𝑝𝒮 , 𝑝𝒯] [ƈƊƍ]. However,
just minimizing this objecࢢve with respect to 𝑤 might cause highly varying or unusually
scaled values, which would not be valid outcomes if we esࢢmated the numerator and de-
nominator separately [ƈƊқ]. This unwanted behaviour can be combated through incorpo-
raࢢng a property of the reweighed source distribuࢢon:

1 = ∫
𝒳
𝑝𝒯(𝑥)d𝑥

= ∫
𝒳
𝑤(𝑥)𝑝𝒮(𝑥)d𝑥

≈ 1𝑛

፧

∑
።዆ኻ
𝑤(𝑥።) for 𝑥። ∼ 𝑝𝒮 , (ƈ.ƈƌ)

where the symbol ∼ refers to the fact that 𝑥። are drawn from 𝑝𝒮 . Restraining the weight
average to be close to 1, disfavors large values for weights. The approximate equality can
be enforced by constraining the absolute deviaࢢon of the weight average to 1 to be less
than some small value: | 𝑛ዅኻ ∑፧። 𝑤(𝑥።) − 1 | ≤ 𝜖. Note that in the sample selecࢢon bias
case, the inverse selecࢢon probability lies in the interval [1,∞), which will not average to
1. Incorporaࢢng the average weight constraint, along with the constraint that the weights
should all be non-negaࢢve, direct importance weight esࢢmaࢢon can be formulated as the
following opࢢmizaࢢon problem:

minimize
፰∈ፖ

D [ 𝑤, 𝑝𝒮 , 𝑝𝒯 ]

s.t. 𝑤(𝑥።) ≥ 0

| 𝑛ዅኻ
፧

∑
።
𝑤(𝑥።) − 1 | ≤ 𝜖 . (ƈ.ƈҚ)
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Depending on the choice of discrepancy measure, this opࢢmizaࢢon problem could be lin-
ear, quadraࢢc or contain even more constraints.

One of the most common measures of distribuࢢon discrepancies is the Kullback-Leibler
Divergence [ƈƊƎ–ƈƋƈ]. Sugiyama et al. have developed a number of techniques based on
this formulaࢢon, among which the most famous is called the Kullback-Leibler Importance
Esࢢmaࢢon Procedure (KLIEP) [ƈƋƉ–ƈƋƋ]. The KL-divergence between the true target distri-
buࢢon and the importance-weighted source distribuࢢon can be simplified as:

DKL [𝑤, 𝑝𝒮 , 𝑝𝒯] =∫
𝒳
𝑝𝒯(𝑥) log

𝑝𝒯(𝑥)
𝑝𝒮(𝑥)𝑤(𝑥)

d𝑥

=∫
𝒳
𝑝𝒯(𝑥) log

𝑝𝒯(𝑥)
𝑝𝒮(𝑥)

d𝑥 − ∫
𝒳
𝑝𝒯(𝑥) log𝑤(𝑥)d𝑥 . (ƈ.ƈƍ)

Since the first term in the right-hand side of (ƈ.ƈƍ) is independent of𝑤, only the second term
is used as in the opࢢmizaࢢon objecࢢve funcࢢon. This second term is the expected value of
the logarithmic weights with respect to the target distribuࢢon, which can be approximated
with unlabeled target samples: 𝔼𝒯[ log𝑤(𝑥)] ≈ 𝑚ዅኻ ∑

፦
፣ log𝑤(𝑧፣). They formulated 𝑤

as a funcࢢonal model consisࢢng of an inner product of weights 𝛼 and basis funcࢢons 𝜙,
i.e. 𝑤(𝑥) = 𝛼ዉ𝜙(𝑥) [ƈƋƌ]. This allows them to apply the importance-weight funcࢢon to
both the test samples in the KLIEP objecࢢve from (ƈ.ƈƍ) and to the training samples for the
constraint in (ƈ.ƈƌ).

Addiࢢonally, the group of Sugiyama has also produced another approach to direct esࢢ-
maࢢon of the importance weights [ƈƋҚ, ƈƋƍ]. They formulated the weights as a funcࢢonal
model again and formed an objecࢢve funcࢢon based on minimizing the squared error be-
tween the esࢢmated weights and the actual raࢢo of distribuࢢons:

DLS[𝑤, 𝑝𝒮 , 𝑝𝒯] =
1
2 ∫𝒳

(𝑤(𝑥) − 𝑝𝒯(𝑥)𝑝𝒮(𝑥)
)
ኼ
𝑝𝒮(𝑥)d𝑥

=12 ∫𝒳
𝑤(𝑥)ኼ𝑝𝒮(𝑥)d𝑥 − ∫

𝒳
𝑤(𝑥)𝑝𝒯(𝑥)d𝑥 + constant . (ƈ.ƈқ)

As this squared error is used as an opࢢmizaࢢon objecࢢve funcࢢon, the constant term drops
out. We are then le[ with the expected value of the squared weights with respect to the
source distribuࢢon, and the expected value of the weights with respect to the target distri-
buࢢon. Expanding the weight model, 𝑤(𝑥) = 𝛼ዉ𝜙(𝑥), gives 1/2 𝛼ዉ𝔼𝒮[𝜙(𝑥)𝜙(𝑥)ዉ]𝛼 −
𝔼𝒯[𝜙(𝑥)]. Replacing the expected values with sample averages allows for plugging in this
objecࢢve into the nonparametric weight esࢢmator in (ƈ.ƈҚ). The authors have dubbed this
technique the Least-Squares Importance Fiࢰng procedure.

Another very popular measure of domain discrepancy is the Maximum Mean Discrep-
ancy, which is based on the two-sample problem from staࢢsࢢcs [ƈƋқ–ƈƌƇ]. Fortet and
Mourier originally formulated a hypothesis test to see if two sets of samples came from
the same distribuࢢon. It measures the distance between the means a[er subjecࢢng the
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samples to the conࢢnuous funcࢢon that pulls them maximally apart (hence the name). In
order to actually compute themeasure, funcࢢons from a Reproducing Kernel Hilbert Space
(RKHS) are used instead, which, under certain condiࢢons, are able to approximate any con-
nuousࢢ funcࢢon arbitrary well [ƈƌƈ–ƈƌƋ]. Furthermore, for the subset of funcࢢons that are
bounded above, the maximizaࢢon operaࢢon can be subsumed in the RKHS norm [ƈƌƇ]. As
such, the discrepancy measure, including the reweighed source samples, can be expressed
as [ƈƌƌ]:

DMMD [𝑤, 𝑝𝒮 , 𝑝𝒯] = ‖ 𝔼𝒮 [𝑤(𝑥)𝜙(𝑥)] − 𝔼𝒯 [𝜙(𝑥)] ‖ℋ , (ƈ.ƈƎ)

where ‖ ⋅ ‖ℋ denotes the norm in RKHS space [ƈƌƋ]. Basis funcࢢons from RKHS can be
infinitely-dimensional, but by taking the square of the MMD one takes their inner prod-
ucts instead, which is again finite-dimensional. This is known as the kernel trick [ƈƌҚ–
ƈƌƎ]. Through kernels the squared empirical MMD can be computed as: D̂ኼMMD[𝑤, 𝑋, 𝑍] =
𝑛ዅኼ ∑፧።,።ᖣ 𝑤(𝑥።)𝜅(𝑥። , 𝑥።ᖣ)𝑤(𝑥።ᖣ)−2/(𝑚𝑛)∑

፧
። ∑

፦
፣ 𝑤(𝑥።)𝜅(𝑥። , 𝑧፣)+𝑚ዅኼ ∑

፦
፣ 𝜅(𝑧፣ , 𝑧፣ᖣ) . Min-

imizing the empirical MMD with respect to the importance weights, is called Kernel Mean
Matching (KMM) [ƈƌƌ, ƈҚƇ]. Depending on if, and how, the weights are upper bounded, al-
gorithmic computaࢢonal complexiࢢes and convergence criteria for KMM can be computed
as well [ƈƊҚ, ƈƌƇ, ƈƌƌ]

Taking a different direcࢢon, Bickel et al.’s work focuses on modeling the data generaࢢon
process andworkingwith domain selecࢢon variables [ƈƊƌ, ƈҚƈ]. They reformulated the raࢢo
of probability distribuࢢons as a selecࢢon likelihood raࢢo, 𝑝(𝑠 = 1)/𝑝(𝑠 = 1|𝑥), for which
no explicit modeling of the separate probability distribuࢢons is necessary. Modeling this
likelihood raࢢo with a kernel logisࢢc model leads to a consistent esࢢmator for the weights
[ƈҚƈ]. Through their generaࢢve modeling, the authors are able to combine the weight esࢢ-
maࢢon and the weighted classifier training into a single opࢢmizaࢢon procedure [ƈҚƉ]. For
some experiments, the integrated models outperformed the two-step approach of esࢢ-
maࢢng the selecࢢon likelihood raࢢo with a classifier and training an importance-weighted
classifier [ƈƊƌ]. But for other experiments, there was no difference between simultaneous
and separate opࢢmizaࢢon. Their formulaࢢon also sheds new light on KMM, as it can also
be re-formulated as a selecࢢon likelihood raࢢo esࢢmator [ƈƊƌ].

Lastly, directly esࢢmaࢢng importance weights can also be done through tessellaࢢng the
feature space into Voronoi cells [ƈҚƊ]. Each cell is a polygon of variable size and denotes an
area of equal probability. The cells approximate a probability distribuࢢon funcࢢon in the
same way that a mulࢢ-dimensional histogram does: with more Voronoi cells, one obtains
a more precise descripࢢon of the change in probability between neighbouring samples.
Voronoi tesselaࢢons, and more general spacing esࢢmators, have been used as empirical
mulࢢ-dimensional density and entropy esࢢmators [ƈҚƋ, ƈҚƌ]. However, [ƈҚҚ] uses them for
esࢢmaࢢng importance-weights. First, one forms the Voronoi cell 𝑉። of each source sample
𝑥።, which consists of the part of feature space that lies closest to 𝑥።. The raࢢo of target over
source is then approximated by counࢢng the number of target samples 𝑧፣ that lie within
each Voronoi cell: 𝑤(𝑥።) = |𝑉። ∩ {𝑧፣}፦፣዆ኻ|, where ∪ denotes the intersecࢢon between
the Voronoi cell and the set of target samples and | ⋅ | denotes the cardinality of this set.
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Voronoi cells can be obtained through a ƈ-nearest-neighbour classifier, which means it is
less computaࢢonally expensive than the discrepancy-based direct weight esࢢmators. This
is also where it lends its name from: nearest neighbour weighࢢng (NNeW) [ƈҚҚ]. It does
not require hyperparameter opࢢmizaࢢon, but one sࢢll has the opࢢon to perform Laplace
smoothing, the simplest one of which adds a ƈ to each cell [ƈҚƍ]. This counters the variance
of the weights and ensures that no source samples are given a weight of 0 and are thus
completely discarded.

1.4.2. Subspace mapping
In situaࢢons where the acquisiࢢon device noisily samples an object, domains may lie in dif-
ferent subspaces [Ǝқ, ƈƇҚ]. In cases where cameras have the same resoluࢢon, and there-
fore measure the same feature space, there potenࢢally exists a mapping from one domain
to the other [ҚƉ, Ққ]. For example, the mapping may correspond to a rotaࢢon, an affine
transformaࢢon, or amore complicated nonlinear transformaࢢon [Ǝƍ, Ǝқ]. Figure ƈ.қ visual-
izes a translaࢢon and rotaࢢon from the source to the target domain, as well as the resulࢢng
classifier. Someࢢmes, such as for online product images and natural images , the domains
look completely different from each other and the underlying mapping can be very compli-
cated. Using too flexible transformaࢢons can easily lead to overfiࢰng which means these
methods will work well on the given target samples but fail for new target samples. Also,
any structural relaࢢonships between domains, such as equal class-posterior distribuࢢons
will most likely not be valid anymore a[er applying subspace mappings. Finally, the tech-
niques for finding these transformaࢢons are unsupervised and ignore class informaࢢon.
That can be dangerous because it potenࢢally introduces class overlap.

The simplest technique for finding a subspace mapping is to take the principal compo-
nents in each domain, 𝐶𝒮 and 𝐶𝒯 , and find the rotaࢢon from source to target 𝐶𝒮𝐶ዉ𝒮 𝐶𝒯 [Ǝқ].
However, it is likely that a porࢢon of the components are purely based on noise. Includ-
ing these into the rotaࢢon esࢢmaࢢon step might cause overfiࢰng. Luckily, this Subspace
Alignment (SA) approach can also be used to find an subspace dimensionality parameter;
a lower dimension means less parameters which means less overfiࢰng. Addiࢢonally, this
technique is a�racࢢve because its limited flexibility also means that it is quite robust to
unusual problem seࢰngs. It is computaࢢonally not very expensive, easily implemented
and intuiࢢve to explain. Because of these a�racࢢve properࢢes, it has been extended by
other researchers a couple of .mesࢢ For instance, there is a landmark-based kernelized
alignment [ƈҚқ] and a subspace distribuࢢon alignment technique [ƈҚƎ].

Before Subspace Alignment, there was another method based on principal components
[Ǝƍ, ƈƍƇ]. First, theMMDmeasure is rewri�en as a joint domain kernel,K = [𝜅𝒮,𝒮 𝜅𝒮,𝒯; 𝜅𝒯,𝒮
𝜅𝒯,𝒯] [ƈƍƈ]. From this kernel, components are extracted by minimizing the trace of the pro-
jecࢢon, under the constraint that the projecࢢon applied to the centered joint kernel is
equivalent to the idenࢢty matrix:

minimize
ፂ

𝑡𝑟(𝐶ዉKLK𝐶)

s.t. 𝐶ዉKHK𝐶 = 𝐼 , (ƈ.ƉƇ)
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Figure ƈ.қ: Example of subspace mapping. (Le[) The source samples from Figure ƈ.Қ have been translated and
rotated tomatch the data from the target domain. Subsequently, a classifier is trained on themapped source data
(black do�ed line). (Right) Applying the adapted classifier to the target samples leads to less misclassificaࢢons as
compared to the original source classifier.

where 𝑡𝑟(⋅) is shorthand for the trace of a matrix, 𝐶 corresponds to the component ma-
trix, L the normalizaࢢon matrix that divides each entry in the joint kernel by the sample
size of the domain from which it originated, andH is the matrix that centers the joint ker-
nel matrix K [Ǝƍ]. In the original formulaࢢon, a regularizaࢢon term 𝑡𝑟(𝐶ዉ𝐶) along with a
trade-off parameter is included as well. Essenࢢally, the projecࢢon error is minimized, un-
der the constraint that the projected joint kernel matrix is orthonormal. This formulaࢢon
resembles kernel PCA and, likewise, its opࢢmizaࢢon resembles an eigenvalue decomposi-
onࢢ [ƈƍƉ, ƈƍƊ].

The advantage of principal component based techniques is that it is possible to map
data to lower-dimensional representaࢢons. Lower dimensionaliࢢes mean that these al-
gorithms scale well to large datasets. Furthermore, several researchers have argued that
in computer-vision seࢰngs there exists a specific lower-dimensional subspace that allows
for maximally discriminaࢢng target samples based on source samples. The Transfer Sub-
space Learning approach aims to find the subspace with the minimal Bregman divergence
to both domains [ƈƍƋ]. Their idea was later generalized by re-formulaࢢng the objecࢢve as
the subspace fromwhich the reconstrucࢢon error was minimal [ƈƍƌ]. First, the source data
is mapped to a lower-dimensional representaࢢon, and then mapped back to the original
dimensionality. The reconstrucࢢon error then consists of the mismatch between the re-
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constructed source samples and the target samples, measured through the squared error
or the Frobenius norm for instance. Interesࢢngly, this objecࢢve is very similar to that of a
contracࢢve autoencoder, where the inverse mapping is restricted to be the transpose of
the original mapping: ‖𝜙(𝜙(𝑥𝑊)𝑊ዉ)−𝑧‖ [ƈƍҚ]. Contracࢢve and denoising autoencoders
are deep learning methods, that can stack mulࢢple layers of projecࢢng and reconstrucࢢng
samples on top of each other. Stacking allows them to achieve very flexible transforma-
onsࢢ [ƈƍƍ]. [ƈƍқ] implemented a stacked autoencoder to find a mapping from source to
target domain. This approach works well when large amounts of source data are available,
as the overall transformaࢢon can be made more complex. It has not only been success-
ful for adapࢢve computer vision, but for adapࢢve natural language processing as well .
The computaࢢons for reconstrucࢢng in each layer were later simplified by through noise
marginalizaࢢon [ƈƍƎ].

Outside of principal components based techniques and methods for learning transfer
subspaces, there are also a number of methods that aim to find transformaࢢons that aid
specific subsequent classifiers [ƈқƇ–ƈқƉ]. First, we review Informaࢢon-Theoreࢢc Metric
Learning (ITML), where a Mahalanobis metric, i.e. 𝑑ኼፖ(𝑥, 𝑧) = (𝑥 − 𝑧)ዉ𝑊(𝑥 − 𝑧), is
learned for use in a later nearest-neighbour classifier [ƈқƇ, ƈқƊ]. Metrics describe ways of
compuࢢng distances between points in vector spaces. If the standard Euclidean metric,
𝑑ኼፄ(𝑥, 𝑧) = (𝑥 − 𝑧)ዉ(𝑥 − 𝑧), states that the distance between points 𝑥 and 𝑧 is large, but
theMahalanobismetric states that the distance is small, then one could say that theMaha-
lanobis metric transformed the space. In fact, first transforming the space and then mea-
suring distances with the Euclidean metric is equivalent to measuring distances with the
Mahalanobis metric: (𝑊ኻ/ኼ𝑥−𝑊ኻ/ኼ𝑧)ዉ(𝑊ኻ/ኼ𝑥−𝑊ኻ/ኼ𝑧) = (𝑥−𝑧)ዉ𝑊(𝑥−𝑧). In order
to use theMahalanobis metric for classificaࢢon, it is necessary to include some constraints
[ƈқƋ]. If a small number of target labels is available, then these correspondence constraints
would consist of thresholding the pairwise distance between source and target samples of
the same label, 𝑑ኼፖ(𝑥፤ , 𝑧፤) ≤ 𝑢 with 𝑢 as an upper bound, as well as thresholding the
pairwise distance between source and target samples of different classes, 𝑑ኼፖ(𝑥፤ , 𝑧፤ᖣ) ≥ 𝑙
with 𝑙 as a lower bound. This ensures that the learned metric regards samples of the same
class but different domains as similar, while regarding samples of different classes as dis-
similar. If no target labels are available, then one is required to encode similarity in other
ways.

ITML is restricted tofinding transformaࢢons betweendomains in the same feature space.
However, someࢢmes different descriptors are used for different image databases. One
descriptor might span a source feature space of dimensionality 𝐷𝒮 while another spans
a feature space of dimensionality 𝐷𝒯 . The symmetric ITML approach can be extended to
an asymmetric case, where 𝑑ፖ(𝑥, 𝑧) ≠ 𝑑ፖ(𝑧, 𝑥). Asymmetric Regularized Cross-domain
transfer (ARC-t) incorporates non-squaremetricmatrices𝑊ፃ𝒮×ፃ𝒯 to find generalmappings
between feature spaces of different dimensionaliࢢes [ƈқƈ, ƈқƌ].

Instead of finding a unsupervisedmetric and constraining it with respect to class similar-
ity, one could learn a supervised metric as well. The Fisher criterion consists of the raࢢo of
between-class sca�er, 𝑆ፁ = ∑

ፊ
፤ 𝜋፤(𝜇፤ − �̄�)(𝜇፤ − �̄�)ዉ with 𝜇፤ the mean of the 𝑘-th class,
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�̄� the overall mean and 𝜋፤ the class-prior, and average within-class sca�er, 𝑆ፖ = ∑
ፊ
፤ 𝜋፤Σ፤

with Σፊ as the covariance matrix of the 𝑘-th class [ƈқҚ, ƈқƍ]. The Fisher criterion can be
used to extract a set of basis vectors that maintain class separability, much like a super-
vised form of PCA [ƈққ]. It is o[en used in feature extracࢢon, where the criterion is maxi-
mized with respect to a mapping to a lower-dimensional representaࢢon that maintains as
much class separability as possible. They have been adapted to account for domain shi[
in the form of FIDOS, a FIsher based feature extracࢢon method for DOmain Shi[ [ƈқƎ].
FIDOS incorporates mulࢢple source domains and creates a between-class sca�er matrix
of the weighted average of the between-class sca�er matrices in each domain as well as
a within-class sca�er matrix of the weighted average of each domains within-class scat-
ter. It aims to both maximize class-separability and minimize domain differences, with a
trade-off parameter to fine-tune the balance between these two objecࢢves for parࢢcular
seࢰngs. Besides metrics for subsequent metric-using classifiers, there are also techniques
that align class margins for subsequent maximum-margin classifiers [ƈƎƇ].

1.4.3. Domain manifolds
One can make stronger assumpࢢons than the existence of a subspace mapping: that there
exists a domainmanifold [ƈƈƉ, ƈƎƈ–ƈƎƊ]. Amanifold is a curved lower-dimensional subspace
embedded in a larger vector space. Every point on a domain manifold generates a single
domain. For example, the domain manifold might consist of a set of camera opࢢcs param-
eters, where each seࢰng would measure the data in one vector space basis [ƈƈƈ, ƈƈƉ]. This
assumpࢢon is useful because it signifies that there exists a path along that manifold, going
from the source domain to the target domain [ƈƎƋ, ƈƎƌ]. In turn, this implies that there ex-
ists an intermediate domain for every step along the path [ƈƎҚ–ƈƎқ]. Figure ƈ.Ǝ visualizes
what a classifier trained on interpolated domains might look like. Addiࢢonal samples have
been drawn from the supposed intermediate domains.

One of the first approaches to incorporate manifolds looked at the idea of learning in-
cremental small subspace transformaࢢons instead of a single large transformaࢢon [ƈƈƈ].
This idea of incremental learningwas originally explored in situaࢢons with me-dependentࢢ
concept shi[s [ƈƎƎ]. In the domain adaptaࢢon context, the goal is to learn the most likely
intermediate subspaces between the source and target domain. The space of all possi-
ble 𝐷-dimensional subspaces in an 𝑛-dimensional real-valued vector space ℝ፧ can be de-
scribed by theGrassmannmanifold [ƉƇƇ–ƉƇƊ]. Each point on the Grassmannian generates
a basis that forms a subspace [ƈƎҚ, ƈƎƍ, ƉƇƊ]. One canmove from one subspace to another
by following the geodesic path. Compuࢢng the direcࢢon and speed of geodesic flow is
performed based on the matrix exponenࢢal flow of the starࢢng subspace [ƉƇƋ]. Another
opࢢon would be to compute the sampling spline flow [ƈƎƌ]. Given the geodesic flow, all
intermediate subspaces are computed and the source data is projected onto each of them
separately. A classifier then trains on labeled data from a starࢢng subspace and predicts
labels for the next subspace, which are used as the labeled data in the next step. This pro-
cess of inferring labels for every following step resembles self-learning in semi-supervised
learning, where one iteraࢢvely labels unlabeled samples with the classifiers predicࢢon and
incorporates them in the next training stage [ƉƇƌ]. The iteraࢢon was later proven redun-
dant by a technique called Geodesic Flow Kernel (GFK), that incorporates the projecࢢons
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Figure ƈ.Ǝ: Example of interpolaࢢng along a domain manifold. (Le[) Addiࢢonal samples have been drawn from
distribuࢢons that are believed to be intermediate domains between the source and the target domain. A classifier
is now trained on both the source and the addiࢢonal samples (black line). The resulࢢng classifier (black do�ed
line) does not deviate much from the original classifier in the part of feature space where the source domain
resides, but does deviate along the interpolated domains. (Right) Applying the adapted classifier to the target
samples leads to less misclassificaࢢons around the target domain, but results in a few misclassificaࢢons around
the source domain part of feature space.

on all subspaces into a single training stage [ƈƎҚ, ƈƎƍ]. Naturally, it will be hard to recover
the true path, but having mulࢢple source domains or a small number of target labels will
benefit geodesic flow esࢢmaࢢon [ƈƎƊ].

Working with Grassmann manifolds for subspace mappings is just one opࢢon. Alterna-
,velyࢢ one could look at staࢢsࢢcal manifolds, where each point generates a probability dis-
tribuࢢon [ƈƈƉ]. Especially for rich families of distribuࢢons, such as the exponenࢢal family,
a path on the staࢢsࢢcal manifold may describe a complicated process of turning one distri-
buࢢons into another. In this case, the length of the geodesic path along the staࢢsࢢcal man-
ifold, called the Hellinger distance, is used as a measure of domain discrepancy [ƈƇƋ, ƉƇҚ].
The Hellinger distance is closely related to the total variaࢢon distance between two distri-
buࢢons, which is used in a number of other domain adaptaࢢon works without reference
to the staࢢsࢢcal manifold [ƈƍ, ƍƉ, ƉƇƍ]. Adaptaࢢon consists of either importance-weighࢢng
samples or transforming parameters to minimize the Hellinger distance [ƈƈƉ, ƉƇқ].

1.4.4. Domain-invariance
The problem with transformaࢢons between domains or moving along a domain manifold
is that the classifier remains in a domain-specific representaࢢon. But variaࢢon due to do-
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mains is o[en more of a nuisance instead of an interesࢢng factor. Ideally, we would like to
represent the data in a space which is invariant to specific domains. Figure ƈ.ƈƇ shows an
example of such a space: in this case the data can be mapped to a line (new 1-dimensional
representaࢢon) such that the source and target distribuࢢons vary onlyminimally, while the
variaࢢon between classes (red versus blue) is sࢢll the same. Note that a domain-invariant
representaࢢon need not be lower dimensional. The advantage of this approach is that clas-
sificaࢢon is now the same as in standard supervised learning (training on source data and
applying to target data).

Most domain-invariant projecࢢon techniques stem from the computer vision and (biomed-
ical) image processing communiࢢes, where domains are o[en caused by different acqui-
siࢢon methods. For instance, in computer vision, camera-specific variaࢢon between sets
of photos is an unwanted factor of variaࢢon [ƈƎƇ, ƈƎƋ]. Furthermore, we could argue that
there exists a true representaࢢon of the object and that each camera is a different noisy
representaࢢon of it. Similarly, in medical imaging, there exists a true representaࢢon of a
paࢢent and each MRI scanner is a different noisy representaࢢon [ƈқ, ƉƇ]. Since there is
extensive knowledge of the acquisiࢢon device, it is possible to design specific techniques
that work quite well.
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Figure ƈ.ƈƇ: Example of a domain-invariant representaࢢon. (Le[) The source data ismapped to a representaࢢon in
which the variaࢢon over domains is minimal; the source data and target lie on the same ኻ-dimensional (line). The
variaࢢon over classes is maintained; the red and blue dots are sࢢll as separable as before. The classifier trained
on the source data in the domain-invariant representaࢢon (do�ed black line) can now directly be applied to the
target samples (right).
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Learning the projecࢢon to the domain-invariant can be done in a number of ways. The
Domain-Invariant Projecࢢon (DIP) approach from [ƈƎƋ] , later renamed to Distribuࢢon-
Matching Embedding (DME) [ƉƇқ], aims to find a projecࢢon matrix that minimizes the
MMD:

DDME[𝑊, 𝑝𝒮 , 𝑝𝒯] = ‖ 𝔼𝒮[𝜙(𝑊ዉ𝑥)] − 𝔼𝒯[𝜙(𝑊ዉ𝑥)] ‖ℋ , (ƈ.Ɖƈ)

where 𝑊 is the projecࢢon matrix that is being minimized over, with the addiࢢonal con-
straint that it remains orthonormal;𝑊ዉ𝑊 = 𝐼. This constraint is necessary to avoid patho-
logical soluࢢons to the minimizaࢢon problem. However, although the MMD encourages
moments of distribuࢢons to be similar, it does not encourage smoothness in the new space.
To this end, it is possible to add a regularizaࢢon term that punishes the within-class vari-
ance in the domain-invariant space, to encourage class clustering. Alternaࢢvely, the same
authors have also proposed the same technique, but with the Hellinger distance instead
of the MMD [ƉƇқ]. This approach resembles Transfer Component Analysis, but minimizes
discrepancy instead of maximizing joint domain variance [Ǝƍ].

DME is sࢢll limited by its use of a linear projecࢢon matrix; unless the specific acqui-
siࢢon device only causes linear noise, a linear projecࢢon matrix will not be able to find
the true underlying domain-invariant representaࢢon. A nonlinear projecࢢon is muchmore
flexible and much more likely to recover the true domain-invariant space. The Nonlin-
ear Distribuࢢon-Matching Embedding achieves this addiࢢonal flexibility by performing the
linear projecࢢon in kernel space; 𝑊ዉ𝜙(𝑥) [ƉƇқ]. However, using a kernel-within-kernel
approach is expensive in terms of memory and computaࢢonal resources.

Alternaࢢvely, [ƉƇƎ] proposed to learn the kernel for MMD itself: instead of weighࢢng or
projecࢢng samples and then using a universal kernel tomeasure their discrepancy, it is also
possible to find a basis funcࢢon for which the two sets of distribuࢢons are as similar as pos-
sible. The space spanned by this learned kernel then corresponds to the domain-invariant
space. Considering that different distribuࢢons generate different means in kernel space, it
is possible to describe a distribuࢢon of kernel means [ƈƌƋ, ƉƈƇ]. The variance of this meta-
distribuࢢon, termed distribuࢡonal variance, should then be minimized. This is achieved by
incorporaࢢng a lower-dimensional orthogonal transform into the inner product of the ba-
sis funcࢢons, also known as the Gram matrix, and minimizing the empirical distribuࢢonal
variance with respect to this transform matrix [Ɖƈƈ]. However, this is fully unsupervised
and could introduce class overlap. The funcࢢonal relaࢢonship between the input and the
classes can be preserved by incorporaࢢng a central subspace in which the input and the
classes are condiࢢonally independent [ƉƈƉ, ƉƈƊ]. Constraining the opࢢmizaࢢon objecࢢve
with maintaining this central subspace, ensures that classes remain separable in the new
domain-invariant space. Overall, as this approach is interpreted as finding kernel compo-
nents that minimize distribuࢢonal-variance while maintaining the funcࢢonal relaࢢonship,
it is coined Domain-Invariant Component Analysis (DICA) [ƉƇƎ]. It has been expanded on
for the specific case of spectral kernels by [ƉƈƋ].

Although the kernel approaches have the capacity to recover any nonlinear mapping,
they require mulࢢple computaࢢons of 𝑛×𝑛matrices and therefore do not scale well with
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respect to the number of samples. For larger datasets, one might employ neural networks
since they also have the capacity to recover any nonlinear mapping but scale much bet-
ter in terms of the number of samples [Ɖƈƌ, ƉƈҚ]. Neural networks are layered, and when
going from one layer to the next, the input representaࢢon is transformed using a linear
operaࢢon and pushed through a nonlinear acࢢvaࢢon funcࢢon. By increasing the complex-
ity of a layer and stacking mulࢢple layers on top of each other, under certain condiࢢons,
any possible transformaࢢon can be achieved [ƌƌ, Ɖƈƍ–ƉƈƎ]. Its opࢢmizaࢢon procedure,
known as backpropagaࢢon, pushes the network to find a transformaࢢon that maps the
data into a space in which it is maximally linearly separable. Fortunately, by using different
loss funcࢢons in the top layer, we can achieve different forms of transformaࢢons [ƉƉƇ].
Domain-Adverserial Neural Networks (DANN) have one classificaࢢon-error minimizing top
layer and one domain-error maximizing top layer [ƉƉƈ]. Essenࢢally, the network finds a
domain-invariant space when its domain classifier cannot recognize from which domain a
new sample has come, without introducing class overlap. The idea of maximizing domain-
confusion while minimizing classificaࢢon error has been taken up and applied to various
seࢰngs by a number of approaches [ƉƉƉ, ƉƉƊ].

Finally, if we were to have a small collecࢢon of target labels, then it might be possible
to compare the classifiers found in each domain and transform the space such that these
become as similar as possible [ƉƉƋ]. The formulaࢢon here consists of encoding an addi-
onalࢢ variable denoࢢng to which domain each sample belongs, along with its correspond-
ing modeled class-posterior distribuࢢon, and marginalizing this variable out. As more do-
mains imply more restricࢢons on the possible transformaࢢons, this method benefits from
incorporaࢢng mulࢢple sources.

Mapping data to a domain-invariant space resembles the seࢰng where we are correct-
ing for sample selecࢢon bias. Essenࢢally, the domain-invariant space corresponds to the
super-populaࢢon and our data mapped to the domain-invariant space corresponds to an
unbiased sampling from this super-populaࢢon. They differ perhaps, in that, in the selecࢢon
bias seࢰng, certain samples are very common in one dataset and rare in another, while, in
the domain-invariance seࢰng, an object might be equally common in both datasets, but
look different in each of them.

1.4.5. Feature augmentaࢢon
In natural language processing (NLP), domains present themselves in the form of differ-
ences between word frequency staࢢsࢢcs over text corpora. This happens mostly because
people express themselves differently in different contexts [ƉƉƌ, ƉƉҚ]. For instance, the
word ‘useful’ occurs more o[en to denote posiࢢve senࢢment in kitchen appliance reviews
than in book reviews [ƊƋ]. It can even happen that certain words occur only in parࢢcular
contexts, such as ’opioid receptors’ in abstracts of biomedical papers but not in financial
news [ƈƇқ]. Hence, domains present a large problem for the field.

Fortunately, NLP systems can exploit the fact that words tend to signal each other; in
a bag-of-words (BoW) encoding each document is described by a vocabulary and a set of
word counts [ƉƉƍ]. Words that signal each other, tend to occur together in documents.
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Co-occurring words lead to correlaࢢng features in a BoW encoding. Correlaࢢng features
can be exploited as follows: suppose a parࢢcular word is a strong indicator of posiࢢve or
negaࢢve senࢢment and only occurs in the source domain. Then one could find a correlat-
ing ”pivot” word that occurs frequently in both domains, and find the word in the target
domain that correlates most with the pivot word. This target domain word, is most likely
the corresponding word to the original source domain word and will be a good indicator
of posiࢢve versus negaࢢve senࢢment as well [ƊƉ]. Thus, by augmenࢢng the bag-of-words
encoding with pivot words and learning correspondences, it is possible to overcome do-
main differences [ƊƉ, ƈƇқ, ƉƉқ, ƉƉƎ]. Figure ƈ.ƈƈ shows an idealized example of augmenࢢng
a feature space. 𝑥ኽ is added to both the source (le[) and the target (right) domain. This
addiࢢonal feature allows for training a classifier (grey plane) that will perform as well on
the source domain as on the target domain, regardless of the iniࢢal differences between
them.

Figure ƈ.ƈƈ: Example of an augmented feature space. (Le[) The source domain is augmented with an addiࢢonal
feature (፱ኽ) that does not vary over domains. (Right) The target domain is augmented with the same feature.
Now, regardless of the iniࢢal difficulty of adaptaࢢon, a classifier (grey plane) can be trained that generalizes well.

How to find corresponding features, or in general how to couple subspaces, is an open
quesࢢon. Note thatwithmore features, there is a larger chance to find a goodpivot feature.
The earliest approaches have extracted pivot features through joint principal components
or maximizing cross-correlaࢢon [ƊƋ, ƈƇқ]. However, such techniques are linear and can
only model linear relaࢢonships between features. Later approaches are more nonlinear
through the use of kernelizaࢢon or by employing ”co-training” approaches [ƉƉқ, ƉƉƎ].
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Feature augmentaࢢon shares a lot of overlap with the approach of finding a domain-
invariant space, as the augmentaࢢon is essenࢢally an arࢢficially created invariant space.
The key difference lies in the fact that retaining the original features can be helpful when
there indeed exist correspondences between features. Addiࢢonally, feature augmentaࢢon
also shares overlap with the subspace mapping seࢰng as the domain-specific features are
now different subspaces of the overall feature space. For example, in bag-of-word encod-
ings, target samples essenࢢally have value0 onwords that only occur in the source domain.
If we were to encode all samples in the union of words, then the source domain could be
mapped to the target domain by a transformaࢢon through the domain-specific part of the
total feature space.

1.4.6. Robust adaptaࢢon
When any of the aforemenࢢoned approaches are applied to seࢰngs where their assumed
shi[ is actually not happening, then they tend to mis-esࢢmate how to adapt and perform
terribly [ƉƊƇ, ƉƊƈ]. In short, they are not robust to unexpected changes. Although some
methods are more robust to invalid assumpࢢons, such as maximum-margin based clas-
sifiers, others can be made more robust [ƉƊƉ]. To ensure a robust level of performance,
a few approaches assume worst-case seࢰngs. Worst-case seࢰngs are o[en formalized
as minimax opࢢmizaࢢon problems [ƋƇ, ƉƊƊ]. However, as there are no target labels, the
worst-case is not unique and no opࢢmizaࢢon algorithm will converge. Considering that
there is addiࢢonal informaࢢon in the form of the source domain, it is possible to constrain
the worst-case seࢰng. One of the most interesࢢng approaches here is the use of worst-
case importance weights [ƈƇƎ]:

(ℎ̂, �̂�) = argmin
፡∈ℋ

argmax
፰∈ፖ

1
𝑛

፧

∑
።዆ኻ
ℓ(ℎ(𝑥።), 𝑦።)𝑤(𝑥።) . (ƈ.ƉƉ)

By training a classifier under worst-case weights, it should be more robust against the ad-
verse effects of density raࢢo esࢢmaࢢon errors.

Another minimax strategy, dubbed the robust bias-aware classifier [ƈƈƇ], plays a game
between a risk minimizing target classifier and a risk maximizing target class-posterior dis-
tribuࢢon, where the adversary is constrained to pick posteriors that match themoments of
the source distribuࢢon staࢢsࢢcs. The constraint is important, as the adversary would oth-
erwise be able to design posterior probabiliࢢes that result in degenerate classifiers (e.g.
assign all class-posterior probabiliࢢes to 1 for one class and 0 for the other). Effecࢢvely,
this means theminimax esࢢmator returns high confidence predicࢢons in regions with large
probability mass of the source density and uniform class predicࢢons in regions with small
source probability mass. This behaviour nicely reflects the larger difficulty of an adaptaࢢon
problem with a larger domain dissimilarity, but restricts this approach to problems where
the probability masses of both domains overlap to some extent. However, it also means
that their approach loses predicࢢve power in areas of feature space where the source dis-
tribuࢢon has limited support, and thus is not suited very well for problems where the do-
mains are very different.
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Conservaࢢsm can also be expressed through algorithmic robustness [ƉƊƋ]. An algorithm
is deemed robust if it can separate a labeled feature space into disjoint sets such that the
variaࢢon of the classifier is bounded by a factor dependent on the training set. Intuiࢢvely,
a robust classificaࢢon algorithm does not change its predicࢢons much whenever a training
sample is changed. Separaࢢng the space with a robust algorithm implies that the loss is
bounded in each parࢢࢢon, regardless of the distribuࢢon of samples. [ƉƇƍ] employs this
noࢢon to construct a robust adapࢢve algorithm. They introduce 𝜆-shi[, a measure of how
far the value of the target class posterior probability differs from the source class posterior
probability, which is used as a constraint on the loss on target samples in a support vector
machine formulaࢢon. The classifier finds a separaࢢng hyperplane such that the hinge loss
on the source set is similar to the loss of the target domain. The downside of this approach
is that if the class posterior distribuࢢons of both domains are very different (e.g. orthogonal
decision boundaries), it will not perform well on both sets.
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1.5. Contribuࢢon
Each chapter in this thesis builds upon different approaches to domain adaptaࢢon.

Chapters Ɖ and Ɗ are concerned with the popular importance-weighࢢng technique and
address two open quesࢢons regarding cross-validaࢢon under covariate shi[. Chapter Ɖ
shows that importance weighࢢng the source validaࢢon dataset is not sufficient to obtain
hyperparameters that are opࢢmal in the target domain, while Chapter Ɗ extends this work
by hypothesizing that this insufficiency is due to problems with unbounded variance of the
importance weights. Experiments with reducing the sampling variance of the importance-
weighted risk esࢢmator show that the esࢢmator improves, but sࢢll does not find the opࢢ-
mal regularizaࢢon parameter.

Chapter Ƌ switches to the case of subspace mappings. We formulated a condiࢢon that,
when fulfilled, allows for recovering the opࢢmal target classifier. The difficulty lies in finding
the correct parameterizaࢢon of what we call a transfer model. Looking at a simple case of
transfer, namely dropout (prevalent in cases of missing data at test meࢢ and bag-of-word
encodings), we present an algorithm that esࢢmates the transfer model’s parameters and
trains a classifier that ignores features that are not important in the target domain.

Chapter ƌ combines machine learning with medical imaging. Tissue classifiers do not
generalize well across MRI-scanners due to unknown acquisiࢢon-related variaࢢons. We
tackle this problem by mapping images from different MRI-scanners to a domain-invariant
representaࢢon. We used anMR simulator that allows us to vary scan sequence parameters
on the same subjects, thereby isolaࢢng acquisiࢢon-related factors of variaࢢon. A Siamese
convoluࢢonal neural network is used to learn the acquisiࢢon-invariant representaࢢon. Us-
ing a measure of distance between datasets, the proxy 𝒜-distance, we are able to show
that, in some cases, it can be very beneficial to add data from another scanner, while, in
other cases, it can be very disrupࢢve to training a ssueࢢ classifier.

Finally, Chapter Қ formulates a robust parameter esࢢmator that is guaranteed to never
perform worse than the source classifier on the target domain. When applied to the dis-
criminant analysis framework, it even ensures that the resulࢢng adapࢢve classifier will al-
ways perform be�er than the source classifier, in terms of model likelihood. No perfor-
mance guarantees of this kind have been proposed before.

In closing, Chapter ƍ reflects on some of the most important findings and discusses
promising avenues for further research.
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2
Cross-validaࢢon under covariate

shi[

This chapter idenࢡfies a problem with the usual procedure for 𝐿ኼ-regularizaࢡon parameter
esࢡmaࢡon in a domain adaptaࢡon seࢯng. In such a seࢯng, there are differences between
the distribuࢡons generaࢡng the training data (source domain) and the test data (target
domain). The usual cross-validaࢡon procedure requires validaࢡon data, which can not be
obtained from the unlabeled target data. The problem is that if one decides to use source
validaࢡon data, the regularizaࢡon parameter is underesࢡmated. One possible soluࢡon is
to scale the source validaࢡon data through importance weighࢡng, but we show that this
correcࢡon is not sufficient. The chapter is concluded with an empirical analysis of the effect
of several importance weight esࢡmators on the esࢡmaࢡon of the regularizaࢡon parameter.

This chapter is based on the paper ”On regularizaࢢon parameter esࢢmaࢢon under covariate shi[”.
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2.1. Introducࢢon
In supervised learning, there is a (mostly implicit) assumpࢢon that the training data is an
unbiased sampling of the underlying distribuࢢon of interest. However, that may not be
the case. In a variety of problems there is o[en an unknown bias in the sampling proce-
dure. These arise due to environmental effects, such as temperature in different genome
sequencing centers [ƈ–Ɗ], or due to the use of parࢢcular measuring instruments, such as
types of cameras in computer vision [Ƌ, ƌ]. This means the training dataset (source do-
main) and the test dataset (target domain) are technically generated by different distri-
buࢢons and generalizaࢢon might no longer be possible. The challenge lies in using the
labeled source data and the unlabeled target data to classify new target data; a problem
seࢰng o[en referred to as domain adaptaࢢon, transfer learning or sample selecࢢon bias
[Қ–ƈƈ]. Most research focuses on classifiers that incorporate informaࢢon on the difference
between the data in both domains, but unfortunately most of these approaches overlook
the role of the regularizaࢢon parameter.

Regularizaࢢon is used to combat overfiࢰng of complex models and is a vital component
in most classifiers to ensure they generalize to unseen data. It consists of a trade-off be-
tween how well the classifier can discriminate training samples and how complex it must
become to do so. This balance is described by the regularizaࢢon parameter which is usually
esࢢmated by holding out a small subset of unseen labeled data and evaluaࢢng the trained
classifier (cross-validaࢢon). However, since there are no labeled target samples available,
it is not possible to construct a target validaࢢon set. If one were to alternaࢢvely construct
a validaࢢon set from source data, the esࢢmator converges in distribuࢢon to the source risk
and not the target risk [ƈƉ].

We study how the generalizaࢢon performance of a classifier behaves as a funcࢢon of the
regularizaࢢon parameter and the domain dissimilarity. There are many factors that influ-
ence the value of the opࢢmal regularizaࢢon parameter, such as the moments of the class-
condiࢢonal distribuࢢons in each domain (differences in variance, skewness, etc.), concept
dri[ (different class priors in each domain), types of adapࢢng classifiers (some require less
regularizaࢢon than others) and high-dimensional distribuࢢon esࢢmaࢢon errors, but we fo-
cus on differences in variance between domains. The first correcࢢon that comes to mind
consists of scaling the source validaࢢon risk with importance weights and although this
remedies the problem somewhat, we show that the opࢢmal regularizaࢢon parameter for
the target domain remains underesࢢmated.

2.2. Esࢢmaࢢon problem
Domains are different biased samplings, which correspond to different joint probability
distribuࢢons over the same input space𝒳 and output space 𝒴 = {−1,+1}. We will refer
to the source domain with 𝒮 and the target domain with 𝒯. Source data 𝑋 with labels 𝑦
consists of 𝑛 samples from 𝑝𝒮(𝑥, 𝑦), denoted as a data set {(𝑥። , 𝑦።)}፧።዆ኻ, and target data
𝑍 with labels 𝑢 consists of 𝑚 samples from 𝑝𝒯(𝑥, 𝑦), denoted as a data set {(𝑧፣ , 𝑢፣)}፦፣዆ኻ.
The input space is a 𝐷-dimensional feature space, which means that 𝑥። and 𝑧፣ are vectors:
𝑥። = (𝑥።ኻ, … , 𝑥።ፃ) and 𝑧፣ = (𝑧፣ኻ, … , 𝑧፣ፃ). A classifier is a funcࢢon that takes as input data
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and outputs a class predicࢢon, ℎ ∶ 𝒳 → 𝒴.

2.2.1. Regularized risk
The risk minimizaࢢon framework allows one to construct classifiers through searching a
class of hypotheࢢcal funcࢢons ℋ (e.g., linear) and selecࢢng the one that minimizes the
expected loss ℓ ∶ ℝ × 𝒴 → ℝዄ. The source and target risk are defined respecࢢvely as:

𝑅𝒮(ℎ) =∫
𝒳
∑
፲∈𝒴

ℓ(ℎ(𝑥), 𝑦) 𝑝𝒮(𝑥, 𝑦) d𝑥 (Ɖ.ƈ)

𝑅𝒯(ℎ) =∫
𝒳
∑
፲∈𝒴

ℓ(ℎ(𝑥), 𝑦) 𝑝𝒯(𝑥, 𝑦) d𝑥 . (Ɖ.Ɖ)

Note that for any ℎ, the source and target risks differ only through the joint probabiliࢢes
𝑝𝒮(𝑥, 𝑦) and 𝑝𝒯(𝑥, 𝑦). The goal is to find the classificaࢢon funcࢢon ℎ that will minimize
the target risk, based on source data.

Unfortunately, minimizing the empirical source riskwith respect to ℎ directly, o[en leads
to a soluࢢon that does not generalize well to other samples (overfiࢰng), let alone samples
from another distribuࢢon. In order to prevent the classifier from becoming too specific for
the training data set, a complexity term is added to the empirical risk during training. Most
o[en, the 𝐿ኼ-norm of the classifier’s parameters 𝜃 is chosen as the complexity term. The
regularized empirical risk can be wri�en as:

�̂�ፓ(𝜃᎘) =
1
|𝑇| ∑

፭∈ፓ
ℓ(ℎ(𝑥፭ ∣ 𝜃), 𝑦፭) + 𝜆‖𝜃‖ኼኼ (Ɖ.Ɗ)

where the subscript 𝑇 denotes the set of indices indicaࢢng which source samples are used
for training 𝑇 ⊂ {1,… , 𝑛} (not the target samples), | ⋅ | denotes the cardinality and ‖.‖ኼ
denotes the 𝐿ኼ-norm. Note that the empirical risk is now a funcࢢon of the classifier’s pa-
rameters 𝜃, instead of ℎ, and that it has received the subscript 𝑇 to indicate that it is the
empirical risk with respect to the source training samples. In the following, we will use
other subscripts to indicate empirical risks with respect to other data sets.

The regularizaࢢon parameter 𝜆 trades off the empirical risk and the 𝐿ኼ-norm. It is usually
esࢢmated by defining a set of values Λ, training a classifier for each and selecࢢng 𝜆 ∈ Λ
with the minimal risk according to an evaluaࢢon on a disjoint validaࢢon dataset. The set
of regularized classifiers can be denoted as:

𝜃ጉ = {𝜃᎘ = argmin
᎕∈ጆ

�̂�ፓ(𝜃᎘) | 𝜆 ∈ Λ} . (Ɖ.Ƌ)

where 𝜃᎘ refers to the classifier that is trained using 𝜆. Θ is the classifier parameter space,
which for linear classifiers is, for instance, the set of 𝐷+1-dimensional real vectorsℝፃዄኻ.
The regularizaࢢon parameter space Λ is o[en taken to be an exponenࢢally increasing set
of nonnegaࢢve values; for example {0, 0.01, 0.1, 1, 10, 100, 1000}.
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If we choose a quadraࢢc loss funcࢢon, ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦) = (ℎ(𝑥 ∣ 𝜃) − 𝑦)ኼ, with a linear
hypothesis class, then the soluࢢon tominimizing equaࢢon Ɖ.Ɗ with respect to the classifier
parameters is 𝜃᎘ = (𝑋ዉፓ𝑋ፓ +𝜆𝐼)ዅኻ(𝑋ዉፓ𝑦ፓ), where 𝑋 refers to the 𝑛 ×𝐷 data matrix. Note
that for the same training data 𝑋ፓ, 𝜃᎘ varies due to different choices of 𝜆.

2.2.2. Evaluaࢢon measure

Evaluaࢢng a classifier consists of compuࢢng its empirical risk on a novel dataset. We will
be studying two validaࢢon sets, the first being held-out source data, and the second being
target data. Wewill incorporate the quadraࢢc loss in the risk funcࢢon for validaࢢon as well.
The held-out source validaࢢon data will be marked with the subscript 𝑉, which indicates
the set of indices that are disjoint from the training set 𝑉 ∩ 𝑇 = ∅). Plugging in source
validaࢢon {(𝑋ፕ , 𝑦ፕ)} and target validaࢢon data {(𝑍, 𝑢)}, the empirical risks are:

�̂�ፕ(𝜃᎘) = 1 − 2
|𝑉|𝑦

ዉ
ፕ 𝑋ፕ𝜃᎘ +

1
|𝑉|𝜃

ዉ
᎘ 𝑋ዉፕ𝑋ፕ𝜃᎘ (Ɖ.ƌ)

�̂�ፙ(𝜃᎘) = 1 − 2
|𝑍|𝑢

ዉ𝑍𝜃᎘ +
1
|𝑍|𝜃

ዉ
᎘ 𝑍ዉ𝑍𝜃᎘ . (Ɖ.Қ)

Cross-validaࢢon consists of holding out each source sample at least once, training a clas-
sifier on the remainder and evaluaࢢng on the held out validaࢢon set. One round of cross-
validaࢢon is performed for each 𝜃᎘ ∈ 𝜃ጉ and the minimizer of the set with respect to the
empirical risk corresponds to the esࢢmated regularizaࢢon parameter.

2.2.3. Problem seࢰng

For any ℎ, the empirical source validaࢢon risk �̂�ፕ converges to the true source risk 𝑅𝒮
by independently sampling validaࢢon data sets infinitely many mesࢢ [ƈƊ]. Unfortunately,
this is not equal to the target risk 𝑅𝒯 . Hence, selecࢢng a regularizaࢢon parameter based
on source validaࢢon data will not be equivalent to selecࢢng a regularizaࢢon parameter
based on target validaࢢon data. Furthermore, the larger the difference between 𝑝𝒮(𝑥, 𝑦)
and 𝑝𝒯(𝑥, 𝑦), the larger the difference between the selected regularizaࢢon parameters.
In order to obtain a regularizaࢢon parameter esࢢmate that is closer to the one found by
validaࢢng on the target risk, we need a way to match the validaࢢon empirical risks.

2.3. Covariate Shi[
A natural approach to designing a corrected validaࢢon procedure, would be to employ
some funcࢢonal relaࢢon between the source and target risks. Fortunately, such a relaࢢon
exists for a subset of the class of domain adaptaࢢon problems: if one makes the covari-
ate shi[ assumpࢢon that the class posterior distribuࢢons are equivalent in both domains,
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𝑝𝒯(𝑦 | 𝑥) = 𝑝𝒮(𝑦 | 𝑥), then the target risk can be rewri�en into a weighted source risk:

𝑅𝒲(ℎ) =∫
𝒳
∑
፲∈𝒴

ℓ(ℎ(𝑥), 𝑦) 𝑝𝒯(𝑦, 𝑥)𝑝𝒮(𝑦, 𝑥)
𝑝𝒮(𝑥, 𝑦) d𝑥

=∫
𝒳
∑
፲∈𝒴

ℓ(ℎ(𝑥), 𝑦) 𝑝𝒯(𝑦 | 𝑥) 𝑝𝒯(𝑥)𝑝𝒮(𝑦 | 𝑥) 𝑝𝒮(𝑥)
𝑝𝒮(𝑥, 𝑦) d𝑥

=∫
𝒳
∑
፲∈𝒴

ℓ(ℎ(𝑥), 𝑦) 𝑝𝒯(𝑥)𝑝𝒮(𝑥)
𝑝𝒮(𝑥, 𝑦) d𝑥 .

The funcࢢonal relaࢢon thus consists of weighࢢng the source samples appropriately. It can
be shown that under the addiࢢonal assumpࢢon of a small domain discrepancy, this prob-
lem seࢰng is learnable [ƈƋ].

2.3.1. Generaࢢng a covariate shi[ seࢰng
Since we are restricࢢng the analysis to covariate shi[ seࢰngs, we need to generate such a
problem. First, we choose a set of source class-condiࢢonal distribuࢢons 𝑝𝒮(𝑥 | 𝑦), a set of
priors 𝑝ፒ(𝑦) and compute the class posterior distribuࢢons 𝑝𝒮(𝑦 | 𝑥) through Bayes’ rule.
Then, by choosing a different target distribuࢢon 𝑝𝒯(𝑥), mulࢢplying by the derived class-
posterior distribuࢢons 𝑝𝒯(𝑦|𝑥) = 𝑝𝒮(𝑦|𝑥) and inverࢢng Bayes’ rule, the class-condiࢢonal
target distribuࢢons 𝑝𝒯(𝑥 | 𝑦) are obtained. Note that this also implies that the priors are
equal in both domains: 𝑝𝒮(𝑦) = 𝑝𝒯(𝑦). Figure Ɖ.ƈ (le[) visualizes an example of this prob-
lem for Gaussian class-condiࢢonal distribuࢢons. We plo�ed the labeled source distribu-
onsࢢ in red and blue with the unlabeled target distribuࢢons in black. The class posteriors
of this problem are plo�ed in Figure Ɖ.ƈ (right), and are equivalent. An arࢢficial dataset
can be generated by sampling from these distribuࢢons, either through inverse transform
sampling or rejecࢢon sampling.

(a) Class-condiࢢonal distribuࢢons of each
domain.

(b) Class-posterior distribuࢢons of the source (le[) and
the target domain (right).

Figure Ɖ.ƈ: An arࢢficially generated ƈ-dimensional covariate shi[ problem.

If we fix the source class-condiࢢonal distribuࢢons to be Gaussian distribuࢢons, with the
blue class as𝒩(𝑥|−1, 1) and the red class as𝒩(𝑥|1, 1), then we can generate ƌ problem
seࢰngs by choosing ƌ different target distribuࢢons. Figure Ɖ.Ɖ (le[) shows ƌ Gaussian tar-
get distribuࢢons with equal means as the source distribuࢢons but with different variances
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𝜎ኼ𝒯 ∈ {0.5, 1, 2, 3, 4}. If we train a classifier based on the source class-condiࢢonal distri-
buࢢons and evaluate it using the target empirical risk, then it becomes apparent that the
difference between the minimizer of the source risk and the target risk starts to increase
as the difference between the distribuࢢons start to increase. Figure Ɖ.Ɖ (right) plots the
empirical risk as a funcࢢon of 𝜃᎘ for the ƌ covariate shi[ problems, with the minimum for
eachmarkedwith a black square. Note that for𝜎ኼ𝒯 = 1 the distribuࢢons are equivalent and
its minimizer is equivalent to the minimizer of the source risk. The curves show a gradual
increase in the minimizers as the variance increases.

Figure Ɖ.Ɖ: (Le[) ƌ covariate shi[ problems, with the target variance ᎟ኼ𝒯 ∈ {ኺ.኿, ኻ, ኼ, ኽ, ኾ}. (Right) The corre-
sponding target empirical risk curves. The black squares denote the minima of these curves.

2.3.2. Difference in error curves
If we minimize the empirical risk curves of the source validaࢢon data (Ɖ.ƌ) with respect to
the trained regularized classifier 𝜃᎘, we obtain:

𝜃᎘̂ፕ = argmin᎕᎘
�̂�ፕ(𝜃᎘)

= (𝑋ዉፕ𝑋ፕ)ዅኻ(𝑋ዉፕ𝑦ፕ) .

The subscript �̂�ፕ is used to signify that this is the regularizaࢢon parameter chosen by vali-
daࢢng on the held-out source data; since the same training data 𝑋ፓ is used, 𝜃᎘ only differs
through the choice of 𝜆. Similarly, minimizing the empirical risk on the target validaࢢon
data produces:

𝜃᎘̂ፙ = argmin᎕᎘
�̂�ፙ(𝜃᎘)

= (𝑍ዉ𝑍)ዅኻ(𝑍ዉ𝑢)

where �̂�ፙ denotes the opࢢmal regularizaࢢon parameter we would have chosen, had we
been able to validate on labeled target data.

Studying these two forms, we see that these esࢢmates of 𝜆 differ mainly through the
data inner products (i.e., the uncentered, unnormalized covariance matrices). To illustrate
this point, we can decompose the data through a singular value decomposiࢢon, allowing
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us to express the minimizers as:

𝜃᎘̂ፕ = (𝑉ፕ𝐷ፕ𝑈ዉፕ )𝑦ፕ
𝜃᎘̂ፙ = (𝑉ፙ𝐷ፙ𝑈ዉፙ )𝑢

where the diagonal matrices 𝐷ፕ and 𝐷ፙ consist of the normalized singular values 𝐷ፕ,።። =
𝛼ፕ,።/𝛼ኼፕ,። and 𝐷ፙ,።። = 𝛼ፙ,።/𝛼ኼፙ,።. Apart from a change of basis from 𝑉ፕ to 𝑉ፙ and 𝑈ፕ to 𝑈ፙ,
the difference lies mainly in the scale of the eigenvalues.

If we were to apply a scaling operaࢢon to the validaࢢon risk, then the difference be-
tween these curves can be minimized. Finding the opࢢmal regularizaࢢon parameter for
the target domain will then be equivalent to finding the opࢢmal regularizaࢢon parameter
for the scaled validaࢢon risk.

2.3.3. Importance-weighted validaࢢon
Sugiyama et al. (ƉƇƇƍ) employ just such a scaling transformaࢢon in the form of importance
weighࢢng the validaࢢon risk, with weights 𝑤 as esࢢmates of the raࢢo of data marginals
𝑝𝒯(𝑥)/𝑝𝒮(𝑥) [ƈƉ]. These weights scale the risk of each individual validaࢢon sample sepa-
rately. This leads to an importance weighted source validaࢢon risk as follows:

�̂�ፖ(𝜃᎘) = 1 −
2
|𝑉|𝑦

ዉ
ፕ𝑊𝑋ፕ𝜃᎘ +

1
|𝑉|𝜃

ዉ
᎘ 𝑋ዉፕ𝑊𝑋ፕ𝜃᎘

where𝑊 is a matrix with the importance weights for the validaࢢon samples on its diago-
nals. This formulaࢢon has the following minimizer:

𝜃᎘̂ፖ = (𝑋ዉፕ𝑊𝑋ፕ)ዅኻ(𝑋ዉፕ𝑊𝑦ፕ) .

The raࢢo of probabiliࢢes can have a very large variance, depending on how likely it is
to encounter either extremely large target probabiliࢢes or extremely small source prob-
abiliࢢes. Furthermore, in the small sample size seࢰng, esࢢmaࢢon errors increase the
possibility of a numerical explosion, such as when Ɖ samples are drawn that lie so close
together that the esࢢmated target distribuࢢon resembles a Dirac distribuࢢon. Lastly, the
cross-validaࢢon esࢢmator has its own variance [ƈƌ] which is now directly affected by the
variance of the importance weight esࢢmator. For a be�er understanding of the behavior
of an importance weighted cross-validaࢢon esࢢmator, we performed a number of experi-
ments with a large diversity of weight esࢢmators in the following secࢢon.

2.4. Experiments
We conducted an experiment on an arࢢficial problem seࢰng and one on a typical real-
world domain adapࢢon problem where there is no knowledge on whether the covariate
shi[ assumpࢢon holds. Our goal is to evaluate the ability of a number of both parametric
and nonparametric importance weight esࢢmators to correctly esࢢmate the opࢢmal regu-
larizaࢢon parameter in the target domain. These experiments illustrate that a large diver-
sity of exisࢢng esࢢmators tends to underesࢢmate the opࢢmal target parameter.
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2.4.1. Importance weight esࢢmators
We selected four importance weight esࢢmators with a diverse set of behaviors.

Raࢢo of Gaussians
A baselinemethod of esࢢmaࢢng themarginal data raࢢo throughmodeling each sample set
with a separate Gaussian distribuࢢon [ƈҚ]:

�̂�rG =
𝒩(𝑥 | �̂�𝒯 , �̂�ኼ𝒯)
𝒩(𝑥 | �̂�𝒮 , �̂�ኼ𝒮 )

,

where𝒩 denotes the Gaussian distribuࢢon funcࢢon, �̂�𝒮 denotes the esࢢmated mean of
the source data set, �̂�𝒯 the esࢢmated mean of the target data set, �̂�ኼ𝒮 denotes the es-
matedࢢ variance of the source set and �̂�ኼ𝒯 the esࢢmated variance of the target set. Note
that the datamarginals in our problem are actually Gaussian and that this is thus a correctly
specified model.

Kullback-Leibler importance esࢢmaࢢon procedure
This popular method is based on minimizing the Kullback-Leibler divergence between the
re-weighted source samples and the target samples [ƈƍ]:

�̂�KLIEP = argmax
፰∈ፖ

፦

∑
፣዆ኻ

log
፧

∑
።
𝑤።𝜅(𝑥። , 𝑧፣) ,

s.t.
፧

∑
።
𝑤።𝜅(𝑥። , 𝑧፣) = 𝑛 ,

where 𝜅 is a kernel funcࢢon, in this case between the source samples 𝑥 and the target
samples 𝑧. We chose aGaussian kernel, with the kernelwidth esࢢmated through a separate
Ɗ-fold cross-validaࢢon procedure [ƈƍ].

Kernel Mean Matching
Another popular weight esࢢmator that is moࢢvated by assigning weights that minimize
the Maximum Mean Discrepancy (MMD) between the re-weighted source and the target
samples [ƈқ]. The MMD is the distance between the means of two sets of samples under
a worst-case transformaࢢon (one that pushes them as far away as possible):

�̂�KMM = argmin
፰∈ፖ

1
2𝑤

ዉ𝜅(𝑥, 𝑥ᖣ)𝑤 − 𝑛
𝑚

፦

∑
፣዆ኻ
𝜅(𝑧፣ , 𝑥)𝑤 ,

s.t. 𝑤። ∈ [0, 𝐵]

|1𝑛

፧

∑
።዆ኻ
𝑤። − 1| ≤ 𝜖

where the constraints ensure that theweights are non-negaࢢve, bounded above and roughly
average to 1. For the kernel funcࢢon 𝜅, we selected a radial basis funcࢢon with Silverman’s
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rule of thumb for bandwidth selecࢢon. Huang et al. recommend seࢰng epsilon to 𝐵/√𝑛,
which ensures that the allowed deviaࢢon from the sample size depends on both the upper
bound for each weight and the sample size itself.

Nearest Neighbour
Lastly, we have a nonparametric esࢢmator based on a Voronoi tessellaࢢon of the space
[ƈƎ]. The procedure consists of assigning a weight to each source sample based on the
number of target samples that are nearest neighbors of it. It is proporࢢonal, up to the
raࢢo of sample sizes, to the raࢢo of marginal distribuࢢons [ƉƇ, Ɖƈ]. It is expressed as:

�̂�NN = |𝐶። ∩ {𝑧፣}፦፣዆ኻ| + 1 ,

where 𝐶። refers to the Voronoi cell of sample 𝑥።. The tessellaࢢon can be smoothed by
adding a value of ƈ to each cell, a technique also known as Laplace smoothing.

2.4.2. Arࢢficial data
Our first experiment consists of an evaluaࢢon of different importance weight esࢢmators
and their resulࢢng minimizers of 𝜃᎘. The set 𝜃᎘ was constructed with a least-squares clas-
sifier𝜃᎘ = (𝑋ዉፓ𝑋ፓ+𝜆𝐼)ዅኻ(𝑋ዉፓ𝑦ፓ). Λwas taken from -ƈƇƇ to ƌƇƇ in ƈƇƈ steps. For the source
data, we drew ƈƇƇ samples from two Gaussian class-condiࢢonal distribuࢢon with means
𝜇𝒮 ∈ {−1, 1} and unit variances𝜎ኼ𝒮 = 1. The target class-condiࢢonal distribuࢢons have the
same mean 𝜇𝒯 ∈ {−1, 1}, but with a different set of variances 𝜎ኼ𝒯 ∈ {0.1, 0.5, 1, 2, 3, 4}.
The raࢢo of themarginal distribuࢢons is sensiࢢve in regions of low probability of the source
distribuࢢon: really small probabiliࢢes in the denominator explode theweight value. There-
fore, we expect the minimizers of the importance weight esࢢmators to be close to the tar-
get minimizer for smaller target variances 𝜎ኼ𝒯 < 𝜎ኼ𝒮 . Consequently, we expect erraࢢc be-
havior for target variance larger than the source variance 𝜎ኼ𝒯 > 𝜎ኼ𝒮 . Table Ɖ.ƈ displays the
esࢢmated regularizaࢢon parameters for the source validaࢢon risk, the importance-weight
esࢢmators, the actual raࢢo of marginals 𝑝𝒯(𝑥)/𝑝𝒮(𝑥), and for the empirical target risk.
Shown are the means and standard errors over ƈƇƇ repeࢢࢢons.

Table Ɖ.ƈ: The mean and standard error of the esࢢmated regularizaࢢon parameter ᎘̂ for different importance
weight esࢢmators and an increasingly larger target variance in a covariate shi[ problem.

𝜎ኼ𝒯 Ƈ.ƈ Ƈ.ƌ ƈ.Ƈ Ɖ.Ƈ Ɗ.Ƈ Ƌ.Ƈ

ℎ᎘̂ፕ Ƌ (ƈƎ) Ɗ (ƉƇ) ƌ (ƉƇ) Ɗ (ƉƇ) Ƌ (ƉƇ) Ƌ (ƈƎ)

�̂�rG -ƈƌ (ƉƇ) -ƈƇ (ƈƎ) Қ (ƈƍ) ƊƇ (ƉƋ) ƌƌ (Ƌƈ) ƌқ (ƊҚ)
�̂�KLIEP -ƉƊ (ƊƊ) -Ɖ (ƉƇ) Ɗ (ƉƇ) Ƈ (ƈƍ) Ƌ (ƉƋ) ƈƍ (Ɖƌ)
�̂�KMM ƉƉ (ƉƋ) ƈƍ (ƉҚ) ƈƈ (Ɖƌ) -ƈ (ƉƋ) -ƈƌ (Ɖƈ) -ƈƋ (ƈƎ)
�̂�NN -ƈқ (Ɖқ) -ƈƊ (Ɖƈ) Ƌ (ƉƊ) ƊƊ (ƉƋ) ƌƊ (ƉƋ) ҚƋ (ƉҚ)

𝑝𝒯/𝑝𝒮 -ƋҚ (Ƌƍ) -ƊƊ (Ɖƈ) Ɗ (ƈқ) ƋҚ (ƋƋ) ƍƉ (ƌƇ) ƍƍ (ƌƇ)

ℎ᎘̂ፙ ƈƍƎ (ƈƊƍ) -ƉƋ (Ɖƈ) ƌ (Ɖƈ) ƈƇƉ (Ɖқ) ƉƇƍ (Ɗқ) ƉƎҚ (Ƌƌ)
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It seems that all importance weight esࢢmators as well as the true raࢢo of marginals un-
deresࢢmate the target risk minimizer. Furthermore, it seems that �̂�KMM leads to increas-
ingly smaller minimizers for an increasing target variance. Even though �̂�KLIEP is increasing,
it sࢢll underesࢢmates the true value the most. �̂�rG is the most accurate one, but that will
probably not be the case if themarginal distribuࢢons are not Gaussian anymore (i.e., model
misspecificaࢢon). �̂�NN is the other most accurate one and lies closest to true importance
weights. Considering that it does not rely on an assumpࢢon of normality, it might be the
preferred esࢢmator in a more general seࢰng.

2.4.3. Heart disease
The arࢢficial data represents a case where we know exactly what the dissimilarity is be-
tween domains and whether assumpࢢons are valid. However, it is also interesࢢng to eval-
uate on datawherewe do not have this knowledge. For this we have selected a UCI dataset
[ƉƉ] on medical data where the domain dissimilarity is caused by a geographically biased
sampling of paࢢents. The goal is to classify the presence of a heart disease based on symp-
toms. The four domains correspond to hospitals in ‘Cleveland’, ‘Virginia’, ‘Hungary’ and
‘Switzerland’, containing ƊƇƊ, ƉƇƇ, ƉƎƋ and ƈƉƊ samples each respecࢢvely. There are a
total of ƈƋ symptoms, but Ɖ contained so much missing data (> 99%) that these were re-
moved from the set. All other missing data was imputed with 0 values a[er z-scoring, i.e.
subtracࢢng the mean of each feature and normalizing by its standard deviaࢢon. Table Ɖ.Ɖ
displays the minimizers found by the importance weight esࢢmators compared with those
found by the unweighted source validaࢢon risk ℎ᎘̂ፕ and the target validaࢢon risk ℎ᎘̂ፙ , for
all combinaࢢons of treaࢢng one hospital as the source domain and another as the target.
Shown are the means and standard errors over ƈƇ repeࢢࢢons.

Table Ɖ.Ɖ: Heart disease dataset. Mean and standard error of the esࢢmated regularizaࢢon parameter ᎘̂ for dif-
ferent importance weight esࢢmators. The le�ers are abbreviaࢢons of the Ƌ hospitals: C=’Cleveland’, V=‘Virginia’,
H=’Hungary’ and S=’Switzerland.

𝒮 𝒯 ℎ᎘̂ፕ �̂�rG �̂�KLIEP �̂�KMM �̂�NN ℎ᎘̂ፙ
C V ƈ (ƌ) -ƈ (қ) ƈ (ƌ) Ǝ (ƈƊ) Ɖ (ƌ) ƌƇƇ (Ƈ)
C H ƈ (Ƌ) Ƌ (Қ) ƈ (Қ) Ɖ (ƈƋ) Ƌ (ƌ) ƌƇƇ (Ƈ)
C S Ƌ (Қ) ƍ (Ǝ) Ƈ (ƌ) Ǝ (ƈƉ) -ƈ (Ǝ) ƌƇƇ (Ƈ)
V H ƌ (ƌ) Ǝ (ƈƊ) Ɗ (Қ) Ɖ (ƌ) ƍ (Ǝ) Ƌƈƍ (ҚҚ)
V S Ɗ (Ƌ) -ƈ (ƈƉ) Ɗ (Қ) Ɖ (Ɗ) ƍ (қ) -ҚƇ (ƉқƋ)
H S Ɗ (Қ) ƊƋ (Ƌқ) Ɗ (қ) ƋƋ (ƋƇ) Ƌ (Қ) ƌƇƇ (Ƈ)
V C Ƌ (ƌ) -ƈ (Ǝ) Ɖ (Ƌ) Ɖ (Ɗ) Ƌ (Ƌ) ƌƇƇ (Ƈ)
H C ƈ (ƌ) Ƈ (ƍ) Ɖ (ƍ) Ɗƈ (ƉƎ) Ƈ (Қ) ƌƇƇ (Ƈ)
S C Ɖ (Ƌ) -ƈ (Ƌ) Ɖ (Ƌ) ƈ (Ɗ) Ɖ (Ƌ) Ƌққ (ƊƇ)
H V Ƌ (Ƌ) -ƈƌ (ƈƋ) Ƌ (ƍ) Ɖƌ (ƋƊ) Ƌ (Ǝ) ƌƇƇ (Ƈ)
S V Ɖ (Ƌ) -ƈ (Ƌ) ƈ (ƍ) ƈ (Ɗ) Ƌ (Ƌ) -Ǝƌ (ƉƌƊ)
S H Ƈ (Ƌ) Ƌ (қ) Ɖ (Қ) Ƈ (ƌ) Ƌ (Ƌ) ƉқƎ (қƎ)
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The results show that also for real datasets all importance weight esࢢmators underes-
mateࢢ the opࢢmal target regularizaࢢon parameter. Note that the standard errors are Ƈ
for all ℎ᎘̂ፙ with value ƌƇƇ, because ƌƇƇ is the right boundary of the set Λ. Extending the
boundary would produce even larger values for the opࢢmal target regularizaࢢon parame-
ter. It seems that �̂�KMM is the best performing esࢢmator here. �̂�rG also produces reason-
able results, but that would probably not be the case if we had not z-scored each feature
first. That ensures an overlap of the regions with high probability mass in each domain.
The other esࢢmators seem to find weight values close to ƈ, as they are not very different
from the unweighted source validaࢢon risk.

2.5. Discussion
Considering the significance of regularizaࢢon to generalizaࢢon, it would be interesࢢng to
further study factors that influence the difference between the risk minimizers in each do-
main. At the moment we assume that no concept dri[ has occurred (a difference between
class priors in each domain), but if this assumpࢢon is violated then the difference in scale
depends on the two dominant classes in each domain. The minimizers of the empirical
risk would be dominated by the proporࢢons of samples that belong to one class, which
can get very complicated in the mulࢢ-class seࢰng. Furthermore, it would be interesࢢng to
describe the minimizers in terms of general measures of domain dissimilarity, such as the
discrepancy distance [ƉƊ] or theℋ-divergence [қ].

The main difficulty in esࢢmaࢢng the appropriate weights lies in the fact that it is hard to
esࢢmate exactly how the two domains differ fromeach other. Most adaptaࢢon approaches
are sensiࢢve to only a parࢢcular type of relaࢢon between domains or rely on assumpࢢons
that can not be checked in advance. Furthermore, esࢢmaࢢon errors tend to propagate.
For instance, if the distribuࢢons of each domain’s data marginals are poorly esࢢmated,
then the importanceweights explode, leading to amore erroneous esࢢmate of the opࢢmal
target regularizaࢢon parameter. In domain adaptaࢢon seࢰngs with so many sources of
uncertainty, it seems that simple methods work best.

2.6. Conclusion
We have shown an empirical analysis of regularizaࢢon parameter esࢢmaࢢon in the context
of differing variances in covariate shi[ problems. It seems that the generalizaࢢon perfor-
mance of an unadapted source classifier can be improved by importance weighࢢng the
source validaࢢon risk. However, most popular weight esࢢmators underesࢢmate the opࢢ-
mal target regularizaࢢon parameter.
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3
Sampling variance of

importance-weighted risks

Covariate shi[ classificaࢡon problems can in principle be tackled by importance-weighࢡng
training samples. However, the sampling variance of the risk esࢡmator is o[en scaled up
dramaࢡcally by theweights. Thismeans that during cross-validaࢡon -when the importance-
weighted risk is repeatedly evaluated - subopࢡmal hyperparameter esࢡmates are produced.
We study the sampling variances of the importance-weighted versus the oracle esࢡmator
as a funcࢡon of the relaࢡve scale of the training data. We show that introducing a control
variate can reduce the variance of the importance-weighted risk esࢡmator, which leads
to superior regularizaࢡon parameter esࢡmates when the training data is much smaller in
scale than the test data.

This chapter is based on the paper ”Reducing sampling variance in covariate shi[ using control variates”.
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3.1. Introducࢢon
Inmany real-world classificaࢢon problems, training data is not gathered in a completely un-
biasedmanner. An unbiased sample refers to events that were observed according to their
true probabiliࢢes, whereas a biased sample refers to events that were observed more/less
frequently [ƈ–Ɗ]. For example, clinical data collected from a single hospital will be biased
because the local paࢢent populaࢢon deviates from the global paࢢent populaࢢon. Con-
sequently, a computer-aided diagnosis system trained on data from that hospital will not
generalize well to hospitals in other countries. Unfortunately, collecࢢng completely unbi-
ased data can be extremely difficult. Instead, we are interested in staࢢsࢢcal models that
correct for biased samplings and generalize to target populaࢢons [Ƌ–қ]. In parࢢcular, we
propose an adjusted correcࢢon procedure that will aid hyperparameter opࢢmizaࢢon.

In classificaࢢon seࢰngs, bias correcࢢons are o[en performed based on individual sam-
ple probabiliࢢes: each sample is weighed by a factor that matches its current probability
to the probability of encountering it in the target populaࢢon. For example, if a parࢢcular
event occurs very frequently in the training set but rarely in the target populaࢢon, then it
is not deemed important. Vice versa, if it occurs very rarely in the training set but o[en
in the target populaࢢon, then it is deemed important. As such, this correcࢢon is known
as importance weighࢢng [Ǝ]. Sample importance originates from Monte Carlo (MC) simu-
laࢢon, where it is used to draw samples from rare yet interesࢢng regions of a distribuࢢon
[ƈƇ, ƈƈ]. The main difference between importance sampling in Monte Carlo simulaࢢon and
importance weighing in a classificaࢢon seࢰng is that in the former case the importance
sampling distribuࢢon is designed, whereas, in the la�er case, it is fixed; it consists of the
already collected biased training data. Although importance weighࢢng can be very useful
in controlling for biases in data, there are also a number of pracࢢcal problems. The pre-
dominant one is weight bimodality: a small number of samples are assigned a very large
weight while the remainder is assigned a near-zero weight. Essenࢢally, only a handful of
samples are deemed important, which greatly reduces effecࢢve sample size [ƈƉ].

We focus on cross-validaࢢon in the face of biased data. More specifically, we consider
the example of selecࢢng a regularizaࢢon parameter for a least-squares classifier [ƈƊ]. If the
collected training datawere unbiased, a classifier can be evaluated by holding out a porࢢon
of the training data, training on the remainder and validaࢢng on the held-out set. Split-
ngࢢ the dataset into 𝑘 parts where each is hold out once, is called 𝑘-fold cross-validaࢢon
[ƈƋ, ƈƌ]. By repeaࢢng this procedure for different values of hyperparameters, such as regu-
larizaࢢon parameters, the parameter can be selected that generalizes best to unseen data.
However, since the training data is biased, the hyperparameter esࢢmate that is obtained
through cross-validaࢢon will not be opࢢmal with respect to the whole populaࢢon [ƈҚ, ƈƍ].
It is essenࢢally over-fi�ed to the biased training data [ƈқ]. One could correct for the dis-
crepancy caused by the biased data by assigning importance-weights to the validaࢢon set
[Ǝ]. However, the weight variance scales the sampling variance of the cross-validaࢢon es-
,matorࢢ which affects its ability to select the opࢢmal hyperparameter [ƈƎ]. This chapter
proposes an adjustment to the importance-weighted cross-validaࢢon esࢢmator that coun-
teracts the increase in sampling variance due to the importance weights.
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The sampling variance of an esࢢmator describes the variaࢢon in its esࢢmates for differ-
ent datasets. This sampling variance depends on the size of the sample: as the esࢢmator
gets more samples, it will return more accurate esࢢmates. However, the size of a given
dataset is o[en fixed. Instead of increasing the number of samples in order to obtain a
more accurate esࢢmate, it is possible to directly reduce the sampling variance of the esࢢ-
mator [ƉƇ]. In fact, there are many variance reducࢢon techniques that were designed to
makeMC simulaࢢonmore efficient and pracࢢcal [ƈƈ, ƈƉ]. These techniques incorporate ad-
diࢢonal informaࢢon on the data distribuࢢon. For example, with anࢢtheࢢc variates one has
the knowledge that the data-generaࢢng distribuࢢon is symmetric around some point. This
knowledge can be exploited by mirroring the exisࢢng samples and augmenࢢng the dataset
[Ɖƈ]. Alternaࢢvely, a control variate consists of a funcࢢon that is known to correlate strongly
with the esࢢmand. By subtracࢢng a value from the esࢢmandwhen the control variate rises
and adding a value when the control variate shrinks, one reduces the esࢢmator’s deviaࢢon
from its mean. It essenࢢally returns more accurate esࢢmates using the same dataset [ƉƉ].

We showhowwecanuse control variates to reduce the sampling varianceof importance-
weighted cross-validaࢢon (see Secࢢon Ɗ.Ƌ). For the correlaࢢng funcࢢon, we chose the im-
portance weights themselves. Instead of scaling up the sampling variance of the esࢢmator
whenever the weight variance increases, it now helps us to perform more accurate esࢢ-
maࢢons. Furthermore, we show that this improved risk esࢢmator can be used to evaluate
classifiers and leads to be�er hyperparameters when employed in cross-validaࢢon (see
Secࢢon Ɗ.ƌ). In the next secࢢon we first introduce the problem seࢰng, known as covariate
shi[ [Ɗ], in more detail (see Secࢢon Ɗ.Ɖ).

3.2. Covariate shi[
In this secࢢon, we introduce some concepts and notaࢢon, followed by an explanaࢢon of
covariate shi[ along with an example that will be used throughout this chapter.

3.2.1. Notaࢢon
Biased training data that stems from local sampling and unbiased test data that stems from
global sampling can be described as different domains. A domain in this context is defined
as the combinaࢢon of an input space𝒳, an output space 𝒴 and an associated probability
distribuࢢon𝑝. Given two domains, we call themdifferent if they are different in at least one
of their consࢢtuent components, i.e., the input space, the output space, or the probability
density funcࢢon.

We focus on the case where only the probability distribuࢢons differ. Inputs remain the
same, namely the𝐷-dimensional real spaceℝፃ and outputs stay the same as well, namely
the classes 𝒴 = {−1,+1}. We denote the source domain as (𝒳,𝒴, 𝑝𝒮) and will refer to it
as 𝒮. The target domain is denoted (𝒳,𝒴, 𝑝𝒯) with the shorthand 𝒯. The challenge is to
use informaࢢon from the source domain to generalize to the target domain.

Domain-specific funcࢢons will be marked with the subscript 𝒮 or 𝒯 as well, for example
𝔼𝒯 . With some abuse of notaࢢon for the sake of clarity, we will mark marginal and condi-
onalࢢ distribuࢢons with 𝒮 and 𝒯 as well: 𝑝𝒯(𝑥, 𝑦) for the target joint distribuࢢon, 𝑝𝒯(𝑥)
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for the target datamarginal distribuࢢon and 𝑝𝒯(𝑥|𝑦) for the target class-condiࢢonal distri-
buࢢon. The source data is denoted as the set {(𝑥። , 𝑦።)}፧።዆ኻ. Note that 𝑥 refers to an element
of the input space 𝒳, while 𝑥። refers to a specific observaࢢon drawn from the source dis-
tribuࢢon, 𝑥። ∼ 𝑝𝒮 . Likewise, the target domain data consists of the set {(𝑧፣ , 𝑢፣)}፦፣዆ኻ.

3.2.2. Specifics of covariate shi[

Covariate shi[ refers to the case where the class-posterior distribuࢢons remain equal,
𝑝𝒮(𝑦 | 𝑥) = 𝑝𝒯(𝑦 | 𝑥). Furthermore, it is assumed that the class-priors are equal in both
domains as well, 𝑝𝒮(𝑦) = 𝑝𝒯(𝑦). It is therefore called covariate shi[ because only the
covariates - the marginal data distribuࢢons - have shi[ed; 𝑝𝒮(𝑥) ≠ 𝑝𝒯(𝑥).

Throughout the chapter, we will use a running example of a basic covariate shi[ seࢰng
to illustrate several concepts: the target data distribuࢢon is set to be a normal distribu-
onࢢ with mean 0 and standard deviaࢢon 1, 𝑝𝒯(𝑥) = 𝒩(𝑥 | 0, 1), its priors are set equal
𝑝𝒯(𝑦) = 1/2, and its class-posterior distribuࢢon is set to a cumulaࢢve normal distribuࢢon
withmean 0 and standard deviaࢢon 1, 𝑝𝒯(𝑦|𝑥) = Φ(𝑦𝑥). As the goal is to create a covari-
ate shi[ seࢰng, the target’s class-posterior distribuࢢon is set to be equal to the source’s:
𝑝𝒯(𝑦 | 𝑥) = 𝑝𝒮(𝑦 | 𝑥). The source’s priors are set to be equal as well, 𝑝𝒮(𝑦) = 1/2, but
its data marginal distribuࢢon is set to be a normal distribuࢢon with mean 0 and standard
deviaࢢon 𝛾, 𝑝𝒮(𝑥) = 𝒩(𝑥 | 0, 𝛾). 𝛾 controls the scale of the source domain. The further 𝛾
deviates away from 1 (the target domain’s scale in this example seࢰng) in either direcࢢon,
the further the domain dissimilarity increases.

Figure Ɗ.ƈ plots the distribuࢢons of the example; the le[ column corresponds to the
source domain and the right column to the target domain. The top row corresponds to the
data distribuࢢons 𝑝(𝑥), themiddle row to the class-posteriors 𝑝(𝑦|𝑥) and the bo�om row
to the class-condiࢢonal distribuࢢons 𝑝(𝑥 |𝑦). Red lines represent the negaࢢve class, while
blue lines represent the posiࢢve class. For this figure, we visualized the case of 𝛾 = 2.
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Figure Ɗ.ƈ: Example of a covariate shi[ seࢰng: the le[ column shows the source domain and the right column the
target domain. The top row plots the data distribuࢢons ፩(፱), the middle row the class-posterior distribuࢢons
፩(፲ | ፱) and the right column the class-condiࢢonal distribuࢢons ፩(፱ | ፲). The only difference between the
domains is their standard deviaࢢon, which is set to ኻ in the target domain and ኼ in the source domain.

3.3. Importance-weighࢢng
The empirical risk minimizaࢢon framework describes a classifiers performance by its ex-
pected loss. The risk funcࢢon integrates the loss ℓ of the classifiers parameters 𝜃 over the
joint distribuࢢon 𝑝 and is hence domain-specific. We are interested in generalizing to the
target domain, which is another way of saying that we are interested in the classifier that
minimizes the target risk 𝑅𝒯:

𝑅𝒯(𝜃) =∫
𝒳
∑
፲∈𝒴

ℓ (ℎ (𝑥 | 𝜃) , 𝑦) 𝑝𝒯 (𝑥, 𝑦) d𝑥 .

This integral is an expected value, 𝑅𝒯(𝜃) = 𝔼𝒮 [ℓ (ℎ (𝑥 | 𝜃) , 𝑦)], which can be esࢢ-
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mated through the sample average of data drawn from the target domain:

�̂�𝒯(𝜃) =
1
𝑚

፦

∑
፣዆ኻ
ℓ (ℎ(𝑧፣ | 𝜃), 𝑢፣) . (Ɗ.ƈ)

We will refer to esࢢmators with a ̂ symbol. By the law of large numbers, the esࢢmated
value will converge to the true target risk: lim

፦→ጼ
�̂�𝒯(𝜃) = 𝑅𝒯(𝜃) for all 𝜃 [ƉƊ].

Note that target labels {𝑢፣}፦፣዆ኻ are required for this risk esࢢmator. Unfortunately, these
are not available in a covariate shi[ problem seࢰng. Consequently, we are interested in
esࢢmators of the target risk that do not depend on the target labels. One of the most pop-
ular ones is the importance-weighted risk esࢢmator. It starts by mulࢢplying and dividing
the target distribuࢢon with the source distribuࢢon as follows:

𝑅𝒲(𝜃) =∫
𝒳
∑
፲∈𝒴

ℓ (ℎ (𝑥 | 𝜃) , 𝑦) 𝑝𝒯(𝑥, 𝑦)𝑝𝒮(𝑥, 𝑦)
𝑝𝒮(𝑥, 𝑦) d𝑥 .

Under the assumpࢢon that the class-posterior distribuࢢons are equivalent, 𝑝𝒯(𝑦 | 𝑥) =
𝑝𝒮(𝑦 | 𝑥), the importance-weighted risk simplifies to [ƉƋ]:

𝑅𝒲(𝜃) =∫
𝒳
∑
፲∈𝒴

ℓ (ℎ (𝑥 | 𝜃) , 𝑦) 𝑝𝒯(𝑥)𝑝𝒮(𝑥)
𝑝𝒮 (𝑥, 𝑦) d𝑥 .

For this risk we can again formulate an esࢢmator based on the sample average. Except this
,meࢢ data from the source domain is used:

�̂�𝒲(𝜃) =
1
𝑛

፧

∑
።዆ኻ
ℓ(ℎ(𝑥። | 𝜃), 𝑦።)

𝑝𝒯(𝑥።)
𝑝𝒮(𝑥።)

. (Ɗ.Ɖ)

Note that this esࢢmator does not depend on target labels 𝑢.

We will abbreviate the raࢢo of probability distribuࢢons through 𝑝𝒯(𝑥)/𝑝𝒮(𝑥) = 𝑤(𝑥).
Equaࢢon Ɗ.Ɖ already shows why importance-weighࢢng can be problemaࢢc: 1 over a small
probability equals a very large weight. In the example seࢰng laid out in Secࢢon Ɗ.Ɖ.Ɖ, the
weight funcࢢon can be derived: 𝑤(𝑥) = 𝛾 exp (−𝑥ኼ(𝛾ኼ − 1)/(2𝛾ኼ)). In this case, the
importance weights are an exponenࢢal funcࢢon of the domain dissimilarity (𝛾ኼ − 1) and
canbecomevery large, very quickly. In parࢢcular, if we take the variance of theweightswith
respect to the source distribuࢢon, 𝕍𝒮[𝑤(𝑥)] = −1 + 𝛾ኼ/√2𝛾ኼ − 1, then we can idenࢢfy
two scenario’s: for 𝛾 > 1 the variance rises slowly, while for 𝛾 < 1 the variance diverges
to infinity as 𝛾 approaches 1/√2 (see Figure Ɗ.Ɖ). The former scenario corresponds to the
case where the source domain is larger in scale and the goals is to generalize to a parࢢcular
subset. The la�er scenario corresponds to the case where the source domain is smaller in
scale and the goal is to generalize to a larger populaࢢon. Based on the weight variance, it
seems that the la�er case is far less feasible than the former.
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Figure Ɗ.Ɖ: Variance of the importance weights as a funcࢢon of domain dissimilarity, for the example problem
seࢰng described in Secࢢon Ɗ.Ɖ.Ɖ.

3.3.1. Sampling variances
Although the expected values of �̂�𝒯 and �̂�𝒲 are the same, they behave differently for
finite sample sizes. It is much more difficult to esࢢmate the target risk using samples from
another domain; �̂�𝒲 esࢢmates tend to vary much more than �̂�𝒯 ’s ones for a fixed sample
size. The variance of an esࢢmator with respect to its samples is known as the sampling
variance (not to be confused with sample variance, which is the variance between samples
in a set). In the following, we will compare the sampling variance of �̂�𝒯 versus that of �̂�𝒲.
The sampling variance with respect to a set of samples consists of the average squared
deviaࢢon of the esࢢmator from its true risk:

𝕍𝒯[�̂�𝒯] = 𝔼𝒯[ (�̂�𝒯 − 𝑅𝒯)
ኼ ] . (Ɗ.Ɗ)

Using the fact that samples are drawn independently and are idenࢢcally distributed (iid),
(Ɗ.Ɗ) can be simplified by pulling the sum over samples outside of the expectaࢢon:

𝔼𝒯[ (�̂�𝒯 − 𝑅𝒯)
ኼ ] = 𝔼𝒯[(

1
𝑚

፦

∑
፣዆ኻ
ℓ(ℎ(𝑧፣ | 𝜃), 𝑢፣) − 𝑅𝒯)ኼ]

= 1
𝑚ኼ

፦

∑
፣዆ኻ
𝔼𝒯[(ℓ(ℎ(𝑧፣ | 𝜃), 𝑢፣) − 𝑅𝒯)ኼ]

= 1
𝑚𝔼𝒯[(ℓ(ℎ(𝑥 | 𝜃), 𝑦) − 𝑅𝒯)

ኼ] . (Ɗ.Ƌ)

The sampling variance with respect to a single sample, 𝔼𝒯[(ℓ(ℎ(𝑥 | 𝜃), 𝑦) −𝑅𝒯)ኼ], will be
referred to as 𝜎ኼ𝒯 .
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The source data is drawn iid as well. That means that the same simplificaࢢon holds for
the importance-weighted risk esࢢmator:

𝕍𝒮[�̂�𝒲] = 𝔼𝒮[ (�̂�𝒲 − 𝑅𝒲)
ኼ ]

= 1𝑛𝔼𝒮[(ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥) − 𝑅𝒲)
ኼ] . (Ɗ.ƌ)

Similar to before, the sampling variance with respect to a single sample will be referred to
as 𝜎ኼ𝒲.

Expanding the squares in (Ɗ.Ƌ) leads to 𝔼𝒯[ℓ(ℎ(𝑥 | 𝜃), 𝑦)ኼ] − 𝑅ኼ𝒯 and expanding (Ɗ.ƌ)
leads to 𝔼𝒯[ℓ(ℎ(𝑥 | 𝜃), 𝑦)ኼ𝑤(𝑥)] − 𝑅ኼ𝒲. Note that 𝑅𝒲 = 𝑅𝒯 and that the only difference
between 𝜎ኼ𝒯 and 𝜎ኼ𝒲 is the addiࢢon of the importance weights. Thus, the weights directly
scale the sampling variance of the esࢢmator. So, even though �̂�𝒲 and �̂�𝒯 are esࢢmators
of the same risk, the fact that �̂�𝒲 is based on data from another distribuࢢon makes it a
less accurate esࢢmator.

Figure Ɗ.Ɗa computes the esࢢmators for the running example using a least-squares clas-
sifier: ℓ(ℎ(𝑥 | 𝜃), 𝑦) = (𝑥𝜃ዉ − 𝑦)ኼ with 𝜃 = [𝜃ኻ, 𝜃ኺ] [Ɖƌ]. Since the probability dis-
tribuࢢons are known, the Bayes opࢢmal classifier for the source domain can be derived:
𝜃∗ = [√2/𝜋/√1 + 𝛾ኼ, 0]. This 𝜃∗ was used to compute the risk esࢢmates. The figure
shows a learning curve of 10኿ repeࢢࢢons of the esࢢmated risk as a funcࢢon of the size
of the validaࢢon set (𝑚 and 𝑛 for the target and the importance-weighted risk esࢢmators
respecࢢvely). A source standard deviaࢢon of 𝛾 = 2was chosen for this visualizaࢢon. Note
that the importance-weighted risk varies much more than the target risk.

Figure Ɗ.Ɗb displays the sampling variance of �̂�𝒯 and �̂�𝒲 as a funcࢢon of the domain
dissimilarity. For 𝛾 = 1, the domains are the same and the sampling variances are equal.
For 𝛾 > 1, the sampling variance of �̂�𝒯 drops off, while the sampling variance of �̂�𝒲 slowly
increases. For 𝛾 < 1, the �̂�𝒯 ’s variance remains relaࢢvely steady, while the �̂�𝒲’s variance
diverges to infinity at 𝛾 = 1/√2. The shape of this curve reflects the influence of the
variance of the importance weights, as shown in Figure Ɗ.Ɖ.
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(a) Esࢢmated risk of the target (yellow) versus the importance-weighted (blue)
esࢢmator as a funcࢢon of the number of validaࢢon set samples, for the example
seࢰng with 𝛾 = 2.
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(b) Sampling variance of the target (yellow) versus importance-weighted (blue)
risk esࢢmators as a funcࢢon of the source domain standard deviaࢢon 𝛾.

Figure Ɗ.Ɗ: Comparison of the importance-weighted source versus the target risk esࢢmator.

3.4. Reducing sampling variance
The increased sampling variance of the importance-weighted risk esࢢmator is problemaࢢc
for procedures that rely on accurate esࢢmates of the target risk. One such procedure is
cross-validaࢢon, which we discuss in Secࢢon Ɗ.ƌ. Our goal is to reduce the sampling vari-
ance of �̂�𝒲. To that end, we will introduce a control variate [ƈƉ, ƉƉ]. A control variate is a
funcࢢon that correlateswith the esࢢmator andwhose expected value is known: (�̂�−𝔼[�̂�]).
These two properࢢes mean that it essenࢢally contains addiࢢonal informaࢢon on the func-
onࢢ of interest, which can be used to reduce sampling variance. Whenever the correlaࢢng
funcࢢon’s value rises above its expected value, (�̂�−𝔼[�̂�]) > 0, so does the risk esࢢmator’s
value rise above its expected value (the true risk), (�̂� −𝑅) > 0. By subtracࢢng the control
variate from the risk esࢢmate, �̂� − (�̂� −𝔼[�̂�]), the esࢢmator’s deviaࢢon from the true risk
is reduced. Hence, its variance is reduced. It is however important that the control variate
is appropriately scaled, as subtracࢢng a too large value can increase the sampling variance
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as well. A parameter 𝛽 is used to control the scaling: �̂� − 𝛽(�̂� − 𝔼[�̂�]).

We chose the importance-weights 𝑤(𝑥) themselves as the control variate, since their
expected value is known: 𝔼𝒮[𝑤(𝑥)] = ∫𝒳 𝑤(𝑥)𝑝𝒮(𝑥)d𝑥 = ∫𝒳 𝑝𝒯(𝑥)d𝑥 = 1. Adding the
weight-based control variate to the importance-weighted risk, forms the following esࢢma-
tor:

�̂�ᎏ =
1
𝑛

፧

∑
።዆ኻ
ℓ(ℎ(𝑥። | 𝜃), 𝑦።) 𝑤(𝑥።) − 𝛽(𝑤(𝑥።) − 1) .

Note that the added term does not bias the overall esࢢmator: the expected value of the
control variate 𝔼𝒮[𝛽(𝑤(𝑥።)−1)] = 𝛽(𝔼𝒮[𝑤(𝑥።)] − 1) = 0 for all values of 𝛽. This means
that the expected value of the controlled esࢢmator is the same as that of the importance-
weighted esࢢmator: 𝔼𝒮[�̂�ᎏ] = 𝑅𝒲.

3.4.1. Sampling variance of the controlled esࢢmator
The effect of the control variate on the sampling variance of the importance-weighted risk
esࢢmator can be described exactly [ƉƉ]:

𝕍𝒮[�̂�ᎏ] = 𝔼𝒮[ (�̂�ᎏ − 𝑅ᎏ)
ኼ ]

= 𝔼𝒮[(
1
𝑛

፧

∑
።዆ኻ
ℓ(ℎ(𝑥። | 𝜃), 𝑦።)𝑤(𝑥።) − 𝛽(𝑤(𝑥።) − 1) − 𝑅𝒲)

ኼ
]

= 1𝑛𝔼𝒮[(ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥))
ኼ
− ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥)𝛽(𝑤(𝑥) − 1)

− ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥)𝑅𝒲 − 𝛽(𝑤(𝑥) − 1)ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥)
+ 𝛽ኼ(𝑤(𝑥) − 1)ኼ + 𝛽(𝑤(𝑥) − 1)𝑅𝒲 − 𝑅𝒲ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥)
+ 𝑅𝒲 𝛽(𝑤(𝑥) − 1) + 𝑅ኼ𝒲]

= 1𝑛𝔼𝒮[ (ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥) − 𝑅𝒲)
ኼ

− 2𝛽(𝑤(𝑥) − 1)(ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥) − 𝑅𝒲)
+ 𝛽ኼ(𝑤(𝑥) − 1)ኼ]

= 1𝑛[𝜎
ኼ
𝒲 − 2𝛽 ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] + 𝛽ኼ 𝕍𝒮[𝑤(𝑥)]] . (Ɗ.Қ)

The ℂ𝒮 stands for the covariance, in this case between the weighted loss and the weights
themselves. The scale parameter 𝛽 of the control variate can be opࢢmized tominimize the
overall sampling variance of the esࢢmator:

𝜕
𝜕𝛽∗ [

𝜎ኼ𝒲
𝑛 − 2𝛽

∗

𝑛 ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] +
𝛽∗ኼ
𝑛 𝕍𝒮[𝑤(𝑥)]] = 0

−2𝑛 ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] +
2
𝑛𝛽

∗ 𝕍𝒮[𝑤(𝑥)] = 0
ℂ𝒮 [ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] / 𝕍𝒮 [𝑤(𝑥)] = 𝛽∗
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where 𝛽∗ is the minimizer. Plugging 𝛽∗ back in to (Ɗ.Қ) simplifies the sampling variance to:

𝜎ኼᎏ = 𝜎ኼ𝒲 − 2 ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] / 𝕍𝒮[𝑤(𝑥)] ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)]

+ ( ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] / 𝕍𝒮[𝑤(𝑥)] )
ኼ
𝕍𝒮[𝑤(𝑥)]

= 𝜎ኼ𝒲 − ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)]
ኼ
/ 𝕍𝒮[𝑤(𝑥)] . (Ɗ.ƍ)

Considering that both the squared covariance termand the variance termare non-negaࢢve,
the sampling variance of a controlled esࢢmator is never larger than that of the standard
esࢢmator [ƉҚ]. In parࢢcular, mulࢢplying ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)]ኼ
/ 𝕍𝒮[𝑤(𝑥)] with 𝜎ኼ𝒲/𝜎ኼ𝒲, allows (Ɗ.ƍ) to be wri�en as:

𝜎ኼᎏ = 𝜎ኼ𝒲(1 − 𝜌ኼ) ,

where𝜌 denotes the correlaࢢonbetween theweighted loss (the esࢢmand), and theweights
(the control variate). Essenࢢally, the more the weights correlate - posiࢢvely or negaࢢvely
- with the weighted loss, the larger the reducࢢon in variance.

Compuࢢng 𝛽∗ is not possible without knowledge of the probability distribuࢢons, but it
can be esࢢmated from data:

�̂� = [1𝑛

፧

∑
።
(ℓ(ℎ(𝑥። | 𝜃), 𝑦።)𝑤(𝑥።) − �̂�፧𝒲)(𝑤(𝑥።) − 1)] /[

1
𝑛

፧

∑
።
(𝑤(𝑥።) − 1)

ኼ] .

Figure Ɗ.Ƌa provides an illustraࢢon similar to the one of Figure Ɗ.Ɗa), but adds the esࢢ-
mated risk of the controlled importance-weighted esࢢmator. This is sࢢll the case of 𝛾 = 2,
for which �̂�ᎏ’s sampling variance is much smaller than that of �̂�𝒲. Similarly, Figure Ɗ.Ƌb
is the equivalent of Figure Ɗ.Ɗb, which plots the sampling variance for the three esࢢma-
tors �̂�ᎏ, �̂�𝒲, and �̂�𝒯 . For 𝛾 > 1, the sampling variance of the controlled esࢢmator 𝜎ኼᎏ
reduces to roughly the same level as the original target risk esࢢmator 𝜎ኼ𝒯 . For 𝛾 < 1, 𝜎ᎏ
also diverges at 1/√2, but rises much more slowly.
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(a) Esࢢmated risk of the target (yellow), the importance-weighted (blue) and the
controlled importance-weighted (green) esࢢmator esࢢmator as a funcࢢon of the
number of validaࢢon set samples, for the example seࢰng with 𝛾 = 2.
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(b) Sampling variance of the target (yellow), the importance-weighted (blue) and
the controlled importance-weighted (green) risk esࢢmators as a funcࢢon of the
source domain standard deviaࢢon 𝛾.

Figure Ɗ.Ƌ: The effect of the addiࢢon of the control variate.

3.5. Cross-validaࢢon

Accurate esࢢmaࢢon of the target risk is important for cross-validaࢢon, which is, in turn,
important for hyperparameter opࢢmizaࢢon. In this case, it is used to find an opࢢmal reg-
ularizaࢢon parameter. In order to account for the covariate shi[, the validaࢢon data is
importance-weighted [Ǝ]. However, as Secࢢon Ɗ.Ɗ.ƈ has shown, weighࢢng can increase the
sampling variance, making the cross-validaࢢon esࢢmator less accurate. Fortunately, the
control variate can counteract this negaࢢve influence. The following subsecࢢons describe
an experiment that compares the importance-weighted versus the controlled importance-
weighted risk esࢢmators in a cross-validaࢢon context.
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3.5.1. Experimental setup
In the following experiments, the source set is split up into 10 folds, each of which is held
out once for validaࢢon. Training samples are marked as {(𝑥፭ , 𝑦፭)}፭∈ፓ and validaࢢon sam-
ples are marked as {(𝑥፯ , 𝑦፯)}፯∈ፕ, where the sets 𝑇 and 𝑉 together make up the total index
set of the source samples 𝑇 ∪ 𝑉 = {1,… , 𝑛}. For the classifier, we employ a kernelized
version of a regularized least-squares classifier [ƈƊ]. So for risk evaluaࢢon, we evaluate the
mean squared error (MSE): ℓ(ℎ(𝑥 | 𝜃), 𝑦) = (ℎ(𝑥 | 𝜃) − 𝑦)ኼ. In parࢢcular, a quadraࢢc
polynomial kernel is taken: 𝜃᎘ = ∑፭∈ፓ(𝜅(𝑥፭ᖣ , 𝑥፭) + 𝜆𝐼)ዅኻ𝑦፭, with 𝜅(𝑥ᖣ, 𝑥) = (𝑥ᖣ𝑥ዉ +1)ኼ.
Note that the classifier’s parameters 𝜃᎘ are dependent on the regularizaࢢon parameter 𝜆.
Predicࢢons are made by applying the kernel to new samples and taking the inner product
with the classifier parameters: ℎ(⋅ | 𝜃᎘) = 𝜅(⋅, 𝑥፭)𝜃᎘.

The true data marginal distribuࢢons are not known in pracࢢce. In most cases it is also
not known to which family of distribuࢢons the data marginals belong to. As such, we opt
for a nonparametric approach. Both the source and target distribuࢢons are esࢢmated with
a kernel density esࢢmator [Ɖƍ]. A normal kernel was used, with its bandwidth set through
Silverman’s rule of thumb [Ɖқ]. A[er esࢢmaࢢon, the raࢢo of distribuࢢons is taken to com-
pute the importance weights: �̂�(⋅) = (𝑚ዅኻ ∑፦፣ 𝜅(𝑧፣ , ⋅))/(𝑛ዅኻ ∑

፧
። 𝜅(𝑥። , ⋅)).

We compare the following 4 risk esࢢmators:

�̂�𝒮(𝜃᎘) =
1
|𝑉| ∑

፯∈ፕ
(𝜅(𝑥፯ , 𝑥፭) 𝜃᎘ − 𝑦፯)

ኼ

�̂�𝒲(𝜃᎘) =
1
|𝑉| ∑

፯∈ፕ
(𝜅(𝑥፯ , 𝑥፭) 𝜃᎘ − 𝑦፯)

ኼ �̂�(𝑥፯)

�̂�ᎏ(𝜃᎘) =
1
|𝑉| ∑

፯∈ፕ
(𝜅(𝑥፯ , 𝑥፭) 𝜃᎘ − 𝑦፯)

ኼ �̂�(𝑥፯) − �̂� (�̂�(𝑥፯) − 1)

�̂�𝒯(𝜃᎘) =
1
𝑚

፦

∑
፣዆ኻ
(𝜅(𝑧፣ , 𝑥፭) 𝜃᎘ − 𝑢፣)

ኼ .

�̂�𝒮 corresponds to validaࢢng on source data without compensaࢢng for the covariate shi[,
�̂�𝒲 compensates with the importance weights, �̂�ᎏ uses the control variate, and �̂�𝒯 cor-
responds to the oracle case, i.e., validaࢢng on labeled target samples. |𝑉| refers to the
cardinality of the validaࢢon set. We start with a set of 100 regularizaࢢon parameter val-
ues, ranging from 0 to 𝑛. The 4 risk esࢢmators are used to select the �̂� for which the risk
is minimal. This selected parameter is then used to train a classifier on all the source data
and is evaluated using the target risk esࢢmator.

3.5.2. Data
The ionosphere dataset from the UCI machine learning repository was used. To allow for
visualizaࢢon, the dimensionality of the data was reduced to 2 using principal components
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analysis. To simulate a covariate shi[ seࢰng, we perform a biased sampling: a normal dis-
tribuࢢon is placed at the center with a standard deviaࢢon of 𝛾 mesࢢ the covariance matrix
of the whole set. Each sample from the ionosphere dataset is evaluated under this distri-
buࢢon and the resulࢢng probabiliࢢes are used to draw - without replacement - a subset of
50 samples. 𝛾 is chosen from a logarithmic range between 2ዅኽ and 2ኾ, which represents a
very local, biased sampling to a nearly uniform, unbiased sampling. Figure Ɗ.ƌ shows scat-
terplots of samples selected as part of the source domain (top) and the remainder as part
of the target domain (bo�om), for 𝛾 = 0.5.
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(a) Source domain. Red markers denote the posiࢢve class, blue the
negaࢢve one and black the unselected samples. The black ellipses de-
note the source domain sampling distribuࢢon, for 𝛾 = 0.5.
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(b) Target domain. Magenta markers denote the posiࢢve class, cyan
mark the negaࢢve one and black mark the previously selected source
samples.

Figure Ɗ.ƌ: Example of the biased sampling for the ionosphere dataset.
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3.5.3. Results

Figure Ɗ.Қa plots the esࢢmated regularizaࢢon parameters as a funcࢢon of the scale of the
source domain’s sampling distribuࢢon. The value of the opࢢmal regularizaࢢon parameter
tends to be quite large, but decreases from 𝛾 > 0.5 onwards. �̂�𝒲 and �̂�ᎏ differmuchmore
in the regime 0.5 < 𝛾 < 2. From 𝛾 > 2 onwards, the source domain covers the dataset so
well, that all samples evaluate to nearly the same probability under the source domain’s
sampling distribuࢢon. Hence, the selected data is an unbiased sample and there is no
covariate shi[. Figure Ɗ.Қb shows the risk of the esࢢmated regularizaࢢon parameter and
indicates that the large differences between esࢢmated regularizaࢢon parameters cause
large differences in the resulࢢng risks. Conversely, no difference in �̂� causes no difference
in risks, from 𝛾 > 2 onwards. The improvement from �̂�𝒲 over �̂�𝒮 is largest where the
domains are the most different, as is the improvement of �̂�ᎏ over �̂�𝒲. Overall, �̂�ᎏ always
leads to superior or equal esࢢmates compared to �̂�𝒲.
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(a) Regularizaࢢon parameter 𝜆 esࢢmated by �̂�𝒮 (dark blue), �̂�𝒲 (light blue), �̂�ᎏ
(green) and �̂�𝒯 (yellow), as a funcࢢon of domain dissimilarity.
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(b) Target risk resulࢢng from training with the selected regularizaࢢon parameter
esࢢmated by �̂�𝒮 (dark blue), �̂�𝒲 (light blue), �̂�ᎏ (green) and �̂�𝒯 (yellow), as a
funcࢢon of domain dissimilarity.

Figure Ɗ.Қ: Results for the experiment on the ionosphere dataset.
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3.6. Conclusion
We presented a study of the sampling variance of the importance-weighted risk esࢢmator
as compared to the target risk esࢢmator in the context of covariate shi[. We showed that
the sampling variance can increase substanࢢally as a funcࢢon of the scale of the source
domain, leading to a far less accurate esࢢmator for a given sample size. Furthermore, we
introduced a control variate to reduce the sampling variance of the importance-weighted
risk esࢢmator. This reducࢢon is beneficial for hyperparameter opࢢmizaࢢon in cases where
the sampling variance becomes problemaࢢc. As it is never detrimental, the controlled
importance-weighted risk esࢢmator is the preferred choice.

In this work, only the addiࢢve control variate has been studied. Mulࢢplicaࢢve control
variates or more complex funcࢢons applied to the addiࢢve control variate have the poten-
alࢢ to increase its correlaࢢon with the esࢢmand, thus decreasing the sampling variance of
the esࢢmator even further. However, it is hard to predict whether a more complex control
variate will be useful.
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4
Modeling feature-level transfer

Domain adaptaࢡon is the supervised learning seࢯng in which the training and test data
are sampled from different distribuࢡons: training data is sampled from a source domain,
whilst test data is sampled from a target domain. We propose and study an approach,
called feature-level domain adaptaࢡon (FLDA), that models the dependence between the
twodomains bymeans of a feature-level transfermodel that is trained to describe the trans-
fer from source to target domain. Subsequently, we train a domain-adapted classifier by
minimizing the expected loss under the resulࢡng transfer model. For linear classifiers and
a large family of loss funcࢡons and transfer models, this expected loss can be computed or
approximated analyࢡcally, and minimized efficiently. Our empirical evaluaࢡon of FLDA fo-
cuses on problems comprising binary and count data in which the transfer can be naturally
modeled via a dropout distribuࢡon, which allows the classifier to adapt to differences in the
marginal probability of features in the source and the target domain. Our experiments on
several real-world problems show that FLDA performs on par with state-of-the-art domain-
adaptaࢡon techniques.

This chapter is based on the paper ”Feature-level domain adaptaࢢon”.
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4.1. Introducࢢon
Domain adaptaࢢon is an important research topic in machine learning and pa�ern recog-
niࢢon that has applicaࢢons in, among others, speech recogniࢢon [ƈ], medical image pro-
cessing [Ɖ], computer vision [Ɗ], social signal processing [Ƌ], natural language processing
[ƌ], and bioinformaࢢcs [Қ]. Domain adaptaࢢon deals with supervised-learning seࢰngs in
which the common assumpࢢon that the training and the test observaࢢons stem from the
same distribuࢢon is dropped. This learning seࢰng may arise, for instance, when the train-
ing data is collected with a different measurement device than the test data, or when a
model that is trained on one data source is deployed on data that comes from another
data source. This creates a learning seࢰng in which the training set contains samples from
one distribuࢢon (the so-called source domain), whilst the test set consࢢtutes samples from
another distribuࢢon (the target domain). In domain adaptaࢢon, one generally assumes a
transducࢢve learning seࢰng: that is, it is assumed that the unlabeled test data are available
to us at training meࢢ and that the main goal is to predict their labels as well as possible.

The goal of domain-adaptaࢢon approaches is to exploit informaࢢon on the dissimilarity
between the source and target domains that can be extracted from the available data in
order to make more accurate predicࢢons on samples from the target domain. To this end,
many domain adaptaࢢon approaches construct a sample-level transfer model that assigns
importance weights to observaࢢons from the source domain in order the make the source
distribuࢢon more similar to the target distribuࢢon [ƍ–ƈƈ]. In contrast to such sample-level
reweighing approaches, in this work, we develop a feature-level transfer model that de-
scribes the shi[ between the target and the source domain for each feature individually.
Such a feature-level approachmayhave advantages in certain problems: for instance, when
one trains a natural language processing model on news arࢢcles (the source domain) and
applies it to Twi�er data (the target domain), the marginal distribuࢢon of some of the
words or n-grams (the features) is likely to vary between target and source domain. This
shi[ in the marginal distribuࢢon of the features cannot be modeled well by sample-level
transfer models, but it can be modeled very naturally by a feature-level transfer model.

Our feature-level transfer model takes the form of a condiࢢonal distribuࢢon that, condi-
onedࢢ on the training data, produces a probability density of the target data. In other
words, our model of the target domain thus comprises a convoluࢢon of the empirical
source distribuࢢon and the transfer model. The parameters of the transfer model are
esࢢmated by maximizing the likelihood of the target data under the model of the target
domain. Subsequently, our classifier is trained as to minimize the expected value of the
classificaࢢon loss under the target-domain model. We show empirically that when the
true domain shi[ can be modeled by the transfer model, under certain assumpࢢons, our
domain-adapted classifier converges to a classifier trained on the true target distribuࢢon.
Our feature-level approach to domain adaptaࢢon is general in that it allows the user to
choose a transfer model from a relaࢢvely large family of probability distribuࢢons. This al-
lows pracࢢࢢoners to incorporate domain knowledge on the type of domain shi[ in their
models. In the experimental secࢢon, we focus on a parࢢcular type of transfer distribuࢢon
that is well-suited for problems in which the features are binary or count data (as o[en en-
countered in natural language processing), but the approach we describe is more generally
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applicable. In addiࢢon to experiments on arࢢficial data, we present experiments on sev-
eral real-world domain adaptaࢢon problems, which show that our feature-level approach
performs on par with the current state-of-the-art in domain adaptaࢢon.

The outline of the remainder of this chapter is as follows. In Secࢢon Ɖ, we give an
overview of related prior work on domain adaptaࢢon. Secࢢon Ɗ presents our feature-level
domain adaptaࢢon (FLDA) approach. In Secࢢon Ƌ, we present our empirical evaluaࢢon of
feature-level domain adaptaࢢon and Secࢢon ƌ concludes the chapter with a discussion of
our results.

4.2. Related Work
Current approaches to domain adaptaࢢon can be divided into one of three main types.
The first type consࢢtutes importance weighࢡng approaches that aim to reweigh samples
from the source distribuࢢon in an a�empt to match the target distribuࢢon as well as possi-
ble. The second type are sample transformaࢡon approaches that aim to transform samples
from the source distribuࢢon in order to make them more similar to samples from the tar-
get distribuࢢon. The third type are feature augmentaࢡon approaches that aim to extract
features that are shared across domains. Our feature-level domain adaptaࢢon (FLDA) ap-
proach is an example of a sample-transformaࢢon approach.

4.2.1. Importance-weighࢢng
Importance-weighࢢng approaches assign a weight to each source sample in such a way as
to make the reweighed version of the source distribuࢢon as similar to the target distribu-
onࢢ as possible [ƍ–ƈƊ]. If the class posteriors are idenࢢcal in both domains (that is, the
covariate-shi[ assumpࢢon holds) and the importance weights are unbiased esࢢmates of
the raࢢo of the target density to the source density, then the importance-weighted clas-
sifier converges to the classifier that would have been learned on the target data if labels
for that data were available [ƍ].

Despite their theoreࢢc appeal, importance-weighࢢng approaches generally do not to
perform very well when the data set is small, or when there is li�le ”overlap” between the
source and target domain. In such scenarios, only a very small set of samples from the
source domain is assigned a large weight. As a result, the effecࢢve size of the training set
on which the classifier is trained is very small, which leads to a poor classificaࢢon model.
In contrast to importance-weighࢢng approaches, our approach performs a feature-level
reweighing. Specifically, FLDA assigns a data-dependent weight to each of the features that
represents how informaࢢve this feature is in the target domain. This approach effecࢢvely
uses all the data in the source domain and therefore suffers less from the small sample size
problem.

4.2.2. Sample transformaࢢon
Sample-transformaࢢon approaches learn funcࢢons thatmake the source distribuࢢonmore
similar to the target distribuࢢon [ƈƋ–ƉƉ]. Most sample-transformaࢢon approaches learn
global (non)linear transformaࢢons that map source and target data points into the same,



4

88 4. Modeling feature-level transfer

shared feature space in such a way as to maximize the overlap between the transformed
source data and the transformed target data [ƈҚ–ƈƎ, Ɖƈ].

Approaches that learn a shared subspace in which both the source and the target data
are embedded o[enminimize themaximummean discrepancy (MMD) between the trans-
formed source data and the transformed target data [ƈҚ, ƈƎ]. If used in combinaࢢon with
a universal kernel, the MMD criterion is zero when all the moments of the (transformed)
source and target distribuࢢon are idenࢢcal. Most methods minimize the MMD subject to
constraints that help to avoid trivial soluࢢons (such as collapsing all data onto the same
point) via some kind of spectral analysis. An alternaࢢve to the MMD is the subspace dis-
agreement measure (SDM) of [ƈқ], which measures the discrepancy of the angles between
the principal components of the transformed source data and the transformed target data.

Most current sample-transformaࢢon approaches work well for ”global” domain shi[s
such as translaࢢons or rotaࢢons in the feature space, but are less effecࢢve when the do-
main shi[ is ”local” in the sense that it strongly nonlinear. Similar limitaࢢons apply to the
FLDA approach we explore, but it differs in that (ƈ) our transfer model does not learn a sub-
space but operates in the original feature space and (Ɖ) the measure it minimizes to model
the transfer is different, namely, the negaࢢve log-likelihood of the target data under the
transferred source distribuࢢon.

4.2.3. Feature augmentaࢢon
Several domain-adaptaࢢon approaches extend the source data and the target data with
addiࢢonal features that are similar in both domains [ƈƋ, ƉƊ]. Specifically, the approach by
[ƈƋ] tries to induce correspondences between the features in both domains by idenࢢfying
so-called pivot features that appear frequently in both domains but that behave differently
in each domain; singular value decomposiࢢon is applied on the resulࢢng pivot features to
obtain a low-dimensional, real-valued feature representaࢢon that is used to augment the
original features. This approach works well for natural language processing problems due
to the natural presence of correspondences between features, e.g. words that signal each
other.

The approach of [ƈƋ] is related tomany of the instanࢢaࢢons of FLDA thatwe consider, but
it is different in the sense that we only use informaࢢon on differences in feature presence
between the source and the target domain to reweigh those features (that is, we do not
explicitly augment the feature representaࢢon). Moreover, the formulaࢢon of FLDA is more
general, and can be extended through a relaࢢvely large family of transfer models.

4.3. Feature-level domain adaptaࢢon
Suppose we wish to train a senࢢment classifier for reviews, and we have a data set with
book reviews and associated senࢢment labels (posiࢢve or negaࢢve review) available. Af-
ter having trained a linear classifier on word-count representaࢢons of the book reviews,
we wish to deploy it to predict the senࢢment of kitchen appliance reviews. This leaves
us with a domain-adaptaࢢon problem on which the classifier trained on book reviews will
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likely not work very well: the classifier’s parameters will be very large for, for instance,
words such as ”interesࢢng” and ”insigh�ul”, because these suggest posiࢢve book reviews.
But these words hardly ever appear in reviews of kitchen appliances. As a result, a classi-
fier trained naively on the book reviews may perform poorly on kitchen appliance reviews.
Since the target domain data (the kitchen appliance reviews) are available at training ,meࢢ
a natural approach to resolving this problem may be to down-weigh features correspond-
ing to words that do not appear in the target reviews, for instance, by applying a high level
of dropout [ƉƋ] to the corresponding features in the source data when training the clas-
sifier. The use of dropout mimics the target domain scenario in which the ”interesࢢng”
and ”insigh�ul” features are hardly ever observed during the training of the classifier, and
prevents that these features are assigned large parameter values. Feature-level domain
adaptaࢢon FLDA aims to formalize this idea in a two-stage approach that (ƈ) fits a proba-
bilisࢢc sample transformaࢢon model that aims to model the transfer between source and
target domain and (Ɖ) trains a classifier by minimizing the risk of the source data under the
transfer model.

In the first stage, FLDA models the transfer between the source and the target domain:
the transfer model is a data-dependent distribuࢢon that models the likelihood of target
data condiࢢoned on observed source data. Examples of such transfer models may be a
dropout distribuࢢon that assigns a likelihood of 1 − 𝜁 to the observed feature value in the
source data and a likelihood of 𝜁 to a feature value of 0, or a Parzen density esࢢmator in
which themean of each kernel is shi[ed by a parࢢcular value. The parameters of the trans-
fer distribuࢢon are learned by maximizing the likelihood of target data under the transfer
distribuࢢon (condiࢢoned on the source data). In the second stage, we train a linear classi-
fier to minimize the expected value of a classificaࢢon loss under the transfer distribuࢢon.
For quadraࢢc and exponenࢢal loss funcࢢons, this expected value and its gradient can be
analyࢢcally derived whenever the transfer distribuࢢon factorizes over features and is in
the natural exponenࢢal family; for logisࢢc and hinge losses, pracࢢcal upper bounds and
approximaࢢons can be derived [Ɖƌ–Ɖƍ].

In the experimental evaluaࢢon of FLDA, we focus on applying dropout transfer models
to domain-adaptaࢢon problems involving binary and count features. These features fre-
quently appear in, for instance, bag-of-words features in natural language processing [Ɖқ]
or bag-of-visual-words features in computer vision [ƉƎ]. However, we note that FLDA can
be used in combinaࢢon with a larger family of transfer models; in parࢢcular, the expected
loss that is minimized in the second stage of FLDA can be computed or approximated effi-
ciently for any transfer model that factorizes over variables and that is in the natural expo-
nenࢢal family.

4.3.1. Notaࢢon
Consider an input space𝒳, part of a 𝐷-dimensional vector space, and a set of classes𝒴 =
{−1,+1}. A source domain is a joint distribuࢢon defined over these spaces, (𝒳,𝒴, 𝑝𝒮,𝒴),
marked with the subscript 𝒮 and a target domain is another (𝒳,𝒴, 𝑝𝒯,𝒴), marked with 𝒯.
Samples from the source domain are denoted as the pair (𝑥, 𝑦), with 𝑛 samples forming
the source dataset𝒟፧𝒮 = {(𝑥። , 𝑦።)}፧።዆ኻ. Similarly, target samples are denoted as (𝑧, 𝑢)with
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𝑚 samples forming the target dataset 𝒟፦𝒯 = {(𝑧፣ , 𝑢፣)}፦፣዆ኻ.

4.3.2. Target risk
We adopt the empirical risk minimizaࢢon (ERM) framework for construcࢢng our domain-
adapted classifier. The ERM framework proposes a classificaࢢon funcࢢon ℎ ∶ ℝፃ → ℝ and
assesses the quality of the hypothesis by comparing its predicࢢons with the true labels on
the empirical data using a loss funcࢢon ℓ ∶ ℝ ×𝒴 → ℝዄ. The empirical loss is an esࢢmate
of the risk, which is defined as the expected value of the loss funcࢢon under the data distri-
buࢢon. Below, we show that if the target domain carries no addiࢢonal informaࢢon about
the label distribuࢢon, the risk of a model on the target domain is equivalent to the risk on
the source domain under a parࢢcular transfer distribuࢢon.

We first note that the joint source data, target data and label distribuࢢon can be decom-
posed into two condiࢢonal distribuࢢons and one marginal source distribuࢢon; 𝑝𝒴,𝒯,𝒮 =
𝑝𝒴∣𝒯,𝒮 𝑝𝒯∣𝒮 𝑝𝒮 . The first condiࢢonal 𝑝𝒴∣𝒯,𝒮 describes the full class-posterior distribuࢢon
given both source and target distribuࢢon. Next, we introduce our main assumpࢢon: the
labels are condiࢢonally independent of the target domain given the source domain (𝒴 ⊥⊥
𝒯 ∣ 𝒮), which implies: 𝑝𝒴∣𝒯,𝒮 = 𝑝𝒴∣𝒮 . In other words, we assume that we can construct an
opࢢmal target classifier if (ƈ) we have access to infinitely many labeled source samples—
we know 𝑝𝒴∣𝒮 𝑝𝒮—and (Ɖ) we know the true domain transfer distribuࢢon 𝑝𝒯∣𝒮 . In this
scenario, observing target labels does not provide new informaࢢon.

To illustrate our assumpࢢon, imagine a senࢢment classificaࢢon problem. If people fre-
quently use the word ”nice” in posiࢢve reviews about electronics products (the source do-
main) and we know that electronics and kitchen products (the target domain) are very sim-
ilar, then we assume that the word ”nice” is not predicࢢve of negaࢢve reviews of kitchen
appliances. In otherwords, knowing that ”nice” is predicࢢve of a posiࢢve review and know-
ing that the domains are similar, it cannot be the case that ”nice” is suddenly predicࢢve
of a negaࢢve review. Under this assumpࢢon, learning a good model for the target do-
main amounts to transferring the source domain to the target domain (that is, altering the
marginal probability of observing the word ”nice”) and learning a good predicࢢve model
on the resulࢢng transferred source domain.

Admi�edly, there are scenarios in which our assumpࢢon is invalid: if people like ”small”
electronics but dislike ”small” cars, the assumpࢢon is violated and our domain-adaptaࢢon
approach will likely not work well. We do note, however, that our assumpࢢon is less strin-
gent than the covariate-shi[ assumpࢢon, which assumes that the posterior distribuࢢon
over classes is idenࢢcal in the source and the target domain (i.e. that 𝑝𝒴∣𝒮 = 𝑝𝒴∣𝒯). The
covariate-shi[ assumpࢢon does not facilitate the use of a transfer distribuࢢon 𝑝𝒯∣𝒮 .
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We start by rewriࢢng the risk of the target domain 𝑅𝒯 as follows:

𝑅𝒯(ℎ) =∫
𝒳
∑
፲∈𝒴

ℓ(ℎ(𝑧), 𝑦) 𝑝𝒴,𝒯(𝑦, 𝑧) d𝑧

=∫
𝒳
∑
፲∈𝒴

∫
𝒳
ℓ(ℎ(𝑧), 𝑦) 𝑝𝒴,𝒯,𝒮(𝑦, 𝑧, 𝑥) d𝑥 d𝑧

=∫
𝒳
∑
፲∈𝒴

∫
𝒳
ℓ(ℎ(𝑧), 𝑦) 𝑝𝒴∣𝒯,𝒮(𝑦 ∣ 𝑧, 𝑥) 𝑝𝒯∣𝒮(𝑧 ∣ 𝑥) 𝑝𝒮(𝑥) d𝑥 d𝑧 .

Using the assumpࢢon 𝑝𝒴∣𝒯,𝒮 = 𝑝𝒴∣𝒮 (or equivalently, 𝒴 ⊥⊥ 𝒯 ∣ 𝒮) as introduced above, we
can rewrite this expression as:

𝑅𝒯(ℎ) =∫
𝒳
∑
፲∈𝒴

∫
𝒳
ℓ(ℎ(𝑧), 𝑦) 𝑝𝒴∣𝒮(𝑦 ∣ 𝑥) 𝑝𝒯∣𝒮(𝑧 ∣ 𝑥) 𝑝𝒮(𝑥) d𝑥 d𝑧

=∫
𝒳
𝔼𝒴,𝒮[ℓ(ℎ(𝑧), 𝑦) 𝑝𝒯|𝒮(𝑧 ∣ 𝑥)] d𝑧 .

Next, we replace the target risk with its empirical esࢢmate by plugging in source data 𝒟𝒮
for the source joint distribuࢢon 𝑝𝒴,𝒮:

�̂�𝒯(ℎ ∣ 𝒟𝒮) =
1
𝑛 ∫𝒳

፧

∑
።዆ኻ
ℓ(ℎ(𝑧), 𝑦።) 𝑝𝒯∣𝒮(𝑧 ∣ 𝑥 = 𝑥።) d𝑧

= 1𝑛

፧

∑
።዆ኻ
𝔼𝒯∣𝒮዆፱። [ ℓ(ℎ(𝑧), 𝑦።) ] . (Ƌ.ƈ)

Feature-level domain adaptaࢢon (FLDA) trains classifiers by construcࢢng a parametric
model of the transfer distribuࢢon 𝑝𝒯∣𝒮 and, subsequently, minimizing the expected loss in
Equaࢢon Ƌ.ƈ on the source data with respect to the parameters of the classifier. For lin-
ear classifiers, the expected loss in Equaࢢon Ƌ.ƈ can be computed analyࢢcally for quadraࢢc
and exponenࢢal losses if the transfer distribuࢢon factorizes over dimensions and is in the
natural exponenࢢal family; for the logisࢢc and hinge losses, it can be upper-bounded or ap-
proximated efficiently under the same assumpࢢons [Ɖƌ–Ɖƍ]. Note that no observed target
samples 𝑧፣ are involved Equaࢢon Ƌ.ƈ; the expectaࢢon is over the transfer model 𝑝𝒯∣𝒮 , con-
diࢢoned on a parࢢcular sample 𝑥።. The target data is only used to esࢢmate the parameters
of the transfer model.

4.3.3. Transfer model
The transfer distribuࢢon 𝑝𝒯∣𝒮 describes the relaࢢon between the source and the target do-
main: given a parࢢcular source sample, it produces a distribuࢢon of which target samples
are likely to be observed (with the same label). The transfer distribuࢢon is modeled by se-
lecࢢng a parametric distribuࢢon and learning the parameters of this distribuࢢon from the
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source and target data (without looking at the source labels). Prior knowledge on the rela-
onࢢ between source and target domain may be incorporated in the model via the choice
for a parࢢcular family of distribuࢢons. For instance, if we know that the main variaࢢon
between two domains consists of parࢢcular words that are frequently used in one domain
(say, news arࢢcles) but infrequently in another domain (say, tweets), then we choose a
distribuࢢon that alters the relaࢢve frequency of words.

Given a model of the transfer distribuࢢon 𝑝𝒯∣𝒮 and a model of the source distribuࢢon
𝑝𝒮 , we can work out the marginal distribuࢢon over the target domain as

𝑞𝒯(𝑧 ∣ 𝜁, 𝜂) = ∫
𝒳
𝑝𝒯∣𝒮(𝑧 ∣ 𝑥, 𝜁) 𝑝𝒮(𝑥 ∣ 𝜂) d𝑥 , (Ƌ.Ɖ)

where 𝜁 represents the parameters of the transfer model, and 𝜂 the parameters of the
source model. We learn these parameters separately: first, we learn 𝜂 by maximizing the
likelihood of the source data under the model 𝑝𝒮(𝑥 ∣ 𝜂) and, subsequently, we learn 𝜁
by maximizing the likelihood of the target data under the compound model 𝑞𝒯(𝑧 ∣ 𝜁, 𝜂).
Hence, we first esࢢmate the value of 𝜂 by solving:

�̂� = argmax
᎔

፧

∑
።዆ኻ

log𝑝𝒮(𝑥። ∣ 𝜂) .

Subsequently, we esࢢmate the value of 𝜁 by solving:

̂𝜁 = argmax
᎓

፦

∑
፣዆ኻ

log 𝑞𝒯(𝑧፣ ∣ 𝜁, �̂�) . (Ƌ.Ɗ)

For the moment, we focus on domain-adaptaࢢon problems involving binary and count
features. In such problems, wewish to encode changes in themarginal likelihoodof observ-
ing non-zero values in the transfer model. To this end, we employ a dropout distribuࢢon
as transfer model that can model domain-shi[s in which a feature occurs less o[en in the
target domain than in the source domain. Learning a FLDA model with a dropout transfer
model has the effect of strongly regularizing classifier parameters for features that occur
infrequently in the target domain.

Dropout transfer
To define our transfer model for binary or count features, we first set up a model that
describes the likelihood of observing non-zero features in the source data. This model
comprises a product of independent Bernoulli distribuࢢons:

𝑝𝒮(𝑥። ∣ 𝜂) =
ፃ

∏
፝዆ኻ

(1 − 𝜂፝)፱።፝዆ኺ 𝜂፱።፝ጽኺ፝ , (Ƌ.Ƌ)

where 𝑑 indicates the 𝑑-th feature. In this case, 𝜂፝ corresponds to the probability of a
non-zero value for the 𝑑-th feature; 𝑥፝ ≠ 0. For a Bernoulli distribuࢢon, the maximum
likelihood esࢢmate of 𝜂፝ is the sample average: �̂�፝ = 1/𝑛∑

፧
።዆ኻ[𝑥።፝ ≠ 0].
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Next, we define a transfer model that describes how o[en a feature has a value of zero
in the target domain when it has a non-zero value in the source domain. We assume an
unbiased dropout distribuࢢon [ƉҚ, ƊƇ] that sets an observed feature in the source domain
to zero in the target domain with probability 𝜁፝:

𝑝𝒯∣𝒮(𝑧፝ ∣ 𝑥 = 𝑥።፝ , 𝜁፝) = {
𝜁፝ if 𝑧፝ = 0
1 − 𝜁፝ if 𝑧፝ = 𝑥።፝ /(1 − 𝜁፝)

, (Ƌ.ƌ)

where ∀𝑑 ∶ 0 ≤ 𝜁፝ ≤ 1. The outcome of not dropping out is modeled as 𝑥።፝/(1 − 𝜁፝) in
order to ensure that the transfer model centers on the parࢢcular source sample:

𝔼𝒯∣𝒮[𝑧፝] = 𝜁፝0 + (1 − 𝜁፝)
𝑥።𝑑
1 − 𝜁፝

= 𝑥።፝ .
We assume that features are independent, whichmeans that the joint transfer distribuࢢon
consists of the product of univariate transfer distribuࢢons: 𝑝𝒯∣𝒮(𝑧 ∣ 𝑥። , 𝜁) = ∏

ፃ
፝ 𝑝𝒯∣𝒮(𝑧፝ ∣

𝑥።፝ , 𝜁፝). Equaࢢon Ƌ.ƌ defines a transfer distribuࢢon for a single source sample. We apply
this model to each source sample and share the parameters. That ensures that we can
average over all source samples 𝑥። to esࢢmate 𝜁.

To compute the maximum likelihood esࢢmate of 𝜁, the dropout transfer model from
Equaࢢon Ƌ.ƌ and the source model from Equaࢢon Ƌ.Ƌ are plugged into Equaࢢon Ƌ.Ɖ to
obtain (see Appendix A for details):

𝑞𝒯(𝑧 ∣ 𝜁, 𝜂) =
ፃ

∏
፝዆ኻ

∫
𝒳፝
𝑝𝒯∣𝒮(𝑧፝ ∣ 𝑥፝ , 𝜁፝) 𝑝𝒮(𝑥፝ ∣ 𝜂፝) d𝑥፝

=
ፃ

∏
፝዆ኻ

(1 − (1 − 𝜁፝) 𝜂፝)
፳፝዆ኺ

((1 − 𝜁፝) 𝜂፝)
፳፝ጽኺ

. (Ƌ.Қ)

Plugging this expression into Equaࢢon Ƌ.Ɗ and maximizing with respect to 𝜁, we obtain:

̂𝜁፝ =max{ 0, 1 −
1/𝑚∑፦፣዆ኻ[𝑧፣፝ ≠ 0]
1/𝑛∑፧።዆ኻ[𝑥።፝ ≠ 0]

} ,

We note that our parࢢcular choice for the transfer model cannot represent rate changes,
such as whether a word is used on average ƈƇ mesࢢ in a document versus on average only
Ɗ .mesࢢ The dropout distribuࢢon only captures whether a feature is present or not.

Because our dropout transfer model factorizes over features and is in the natural expo-
nenࢢal family, the expectaࢢon in Equaࢢon Ƌ.ƈ can be analyࢢcally computed. In parࢢcular,
for a transfer distribuࢢon condiࢢoned on source sample 𝑥።, its mean and variance are:

𝔼𝒯∣፱። [𝑧] = 𝑥።

𝕍𝒯∣፱። [𝑧] = 𝑥። diag(
𝜁

1 − 𝜁 ) 𝑥
ዉ
። .
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𝕍𝒯∣፱። [𝑧] is a diagonal matrix because we assumed that features are independently trans-
ferred, i.e., the joint transfer model consists of the product of 𝐷 univariate transfer distri-
buࢢons.

4.3.4. Classificaࢢon
In order to perform classificaࢢon with the risk formulaࢢon in Equaࢢon Ƌ.ƈ, we first need
to select a loss funcࢢon ℓ. Popular choices for the loss funcࢢon include the quadraࢢc loss
(used in least-squares classificaࢢon), the exponenࢢal loss (used in boosࢢng), the hinge loss
(used in support vector machines) and the logisࢢc loss (used in logisࢢc regression). Equa-
onࢢ Ƌ.ƈ has been studied before in the context of dropout training for the quadraࢢc, expo-
nenࢢal, and logisࢢc loss by [Ɖƌ, ƉҚ], and for hinge loss by [Ɖƍ]. For the moment, we use
only the quadraࢢc and logisࢢc loss funcࢢons, but we note that FLDA can also be used in
combinaࢢon with exponenࢢal and hinge losses.

Secondly, we have to select an hypothesis class of classifier funcࢢons. We focus on linear
classifiers in this paper, but nonlinear extensions using basis funcࢢons are possible as well.
Linear classifiers project a sample onto a parameter vector, 𝜃 = (𝜃ኻ, … , 𝜃ፃ , 𝜃ኺ), and make
decisions based on which side of its decision boundary it ends up. The classifier funcࢢon
is: ℎ(𝑧) = ∑ፃ፝዆ኻ 𝑧፝𝜃፝ + 𝜃ኺ. However, with some abuse of notaࢢon, it will be wri�en as
ℎ(𝑧) = 𝑧𝜃, with the implicit requirement that 𝑧 is augmented to [𝑧 1].

Quadraࢢc loss
The quadraࢢc loss funcࢢon punishes the squared deviaࢢon between the classifier’s pre-
dicࢢon and the true label: ℓ(ℎ(𝑧), 𝑦) = (ℎ(𝑧) − 𝑦)ኼ. Using this loss, the expectaࢢon in
Equaࢢon Ƌ.ƈ can be expressed as:

�̂�𝒯(ℎ ∣ 𝒟𝒮) =
1
𝑛

፧

∑
።዆ኻ
𝔼𝒯∣፱። [(𝑦። − 𝑧፣𝜃)ኼ]

= 1𝑛

፧

∑
።዆ኻ
𝑦ኼ። − 2 𝑦።𝔼𝒯∣፱። [𝑧]𝜃 + 𝜃 (𝔼𝒯∣፱። [𝑧]ዉ𝔼𝒯∣፱። [𝑧] + 𝕍𝒯∣፱። [𝑧]) 𝜃 ,

Minimizing the risk with respect to the classifier’s parameters yields the opࢢmal ones. For
the quadraࢢc loss, the result is called the least-squares classifier. Taking the gradient and
seࢰng it to zero yields the following closed-form soluࢢon:

�̂� =(
፧

∑
።዆ኻ
𝔼𝒯∣፱። [𝑧]ዉ𝔼𝒯∣፱። [𝑧] + 𝕍𝒯∣፱። [𝑧])

ዅኻ
(

፧

∑
።዆ኻ
𝔼𝒯∣፱። [𝑧]𝑦።) . (Ƌ.ƍ)

For mulࢢ-class problems (𝒴 = {1,… , 𝐾}), mulࢢple predictors can be built in an one-vs-all
fashion or in an one-vs-one fashion.

The soluࢢon in Equaࢢon Ƌ.ƍ is very similar to the soluࢢon of a standard ridge regres-
sion model. The main difference is that, in a standard ridge regressor, the regularizaࢢon
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is independent of the data. By contrast, the regularizaࢢon of FLDA is determined by the
variance of the transfer model: hence, it is different for each dimension and it depends on
the transfer from source to target domain. Algorithm ƈ summarizes the training of a binary
quadraࢢc-loss FLDA classifier with dropout transfer.

Algorithm ƈ FLDA-q
for d=ƈ to D do

𝜁፝ =max { 0, 1 − (1/𝑚∑፦፣ [𝑧፣፝ ≠ 0]) / (1/𝑛∑
፧
። [𝑥።፝ ≠ 0])}

end for

�̂� = (∑፧። 𝑥ዉ። 𝑥። + 𝑥ዉ። diag(𝜁/(1 − 𝜁))𝑥።)
ዅኻ( ∑፧። 𝑥።𝑦።)

return 𝑧፣�̂� for 𝑗 = 1,… ,𝑚

Logisࢢc loss

The logisࢢc loss funcࢢon punishes incorrect predicࢢons heavily but drops off as the pre-
dicࢢon improves; ℓ(ℎ(𝑧), 𝑦) = − log[exp(𝑦ℎ(𝑧))/(∑፲ᖣ∈𝒴 exp(𝑦ᖣℎ(𝑧)))]. The logisࢢc
version of FLDA can be expressed as:

�̂�𝒯(ℎ ∣ 𝒟𝒮) =
1
𝑛

፧

∑
።዆ኻ
𝔼𝒯∣፱። [ − 𝑦።𝑧𝜃 + log ∑

፲ᖣ∈𝒴
exp(𝑦ᖣ𝑧𝜃)]

= 1𝑛

፧

∑
።዆ኻ
−𝑦።𝔼𝒯∣፱። [𝑧]𝜃 + 𝔼𝒯∣፱። [ log ∑

፲ᖣ∈𝒴
exp(𝑦ᖣ𝑧𝜃)] . (Ƌ.қ)

The expectaࢢon is a linear operaࢢon and can therefore be applied to both terms of the
sum separately. As the expectaࢢon does not depend on the classifier parameters, they can
be pulled out: 𝔼𝒯∣፱። [𝑧𝜃] = 𝔼𝒯∣፱። [𝑧]𝜃.

Equaࢢon Ƌ.қ is a convex funcࢢon in 𝜃 because the original logisࢢc loss funcࢢon is con-
vex and the expectaࢢon operaࢢon is convexity-preserving. Hence, the risk funcࢢon has
a global opࢢmum. However, the expectaࢢon cannot be computed analyࢢcally. Following
[ƉҚ], we approximate the expectaࢢonof the log-parࢢࢢon funcࢢon using a Taylor expansion.
To avoid notaࢢonal overload, we first introduce 𝐴(⋅) = log∑፲ᖣ∈𝒴 exp(𝑦ᖣ⋅) as shorthand
notaࢢon for the log-parࢢࢢon funcࢢon. Now, 𝔼𝒯∣፱። [𝐴(𝑧𝜃)] is approximated around the
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point 𝑥።𝜃:

𝔼𝒯∣፱። [𝐴(𝑧𝜃)] ≈ 𝔼𝒯∣፱። [𝐴(𝑥።𝜃)] +

𝔼𝒯∣፱። [
𝜕𝐴(𝑥።𝜃)
𝜕𝑥።𝜃

(𝑧𝜃 − 𝑥።𝜃)] +

𝔼𝒯∣፱። [
1
2
𝜕ኼ𝐴(𝑥።𝜃)
𝜕(𝑥።𝜃)ኼ

(𝑧𝜃 − 𝑥።𝜃)ኼ]

= 𝐴(𝑥።𝜃) +
𝜕𝐴(𝑥።𝜃)
𝜕𝑥።𝜃

(𝔼𝒯∣፱። [𝑧𝜃] − 𝑥።𝜃) +

1
2
𝜕ኼ𝐴(𝑥።𝜃)
𝜕(𝑥።𝜃)ኼ

𝔼𝒯∣፱። [(𝑧𝜃 − 𝑥።𝜃)ኼ] (Ƌ.Ǝ)

= 𝐴(𝑥።𝜃) +
𝜕𝐴(𝑥።𝜃)
𝜕𝑥።𝜃

(𝔼𝒯∣፱። [𝑧] − 𝑥።)𝜃 +

1
2
𝜕ኼ𝐴(𝑥።𝜃)
𝜕(𝑥።𝜃)ኼ

𝜃ዉ𝔼𝒯∣፱። [(𝑧 − 𝑥።)ኼ]𝜃 (Ƌ.ƈƇ)

= log ∑
፲ᖣ∈𝒴

exp(𝑦ᖣ𝑥።𝜃) + 1/2(1 − 𝛽ኼ። /𝛼ኼ። )𝜃ዉ𝕍𝒯∣፱። [𝑧]𝜃 ,

where 𝛼። = ∑፲ᖣ∈𝒴 exp(𝑦ᖣ𝑥።𝜃) and 𝛽። = ∑፲ᖣ∈𝒴 𝑦ᖣ exp(𝑦ᖣ𝑥።𝜃). As there is no 𝑧 in 𝐴(𝑥።𝜃),
the expectaࢢon disappears in the first term on the right-hand side of Equaࢢon Ƌ.Ǝ. For that
same reason, the derivaࢢves 𝜕𝐴(𝑥።𝜃)/𝜕𝑥።𝜃 and 𝜕ኼ𝐴(𝑥።𝜃)/𝜕(𝑥።𝜃)ኼ can be pulled out of
the expectaࢢon. In Equaࢢon Ƌ.ƈƇ, 𝜃 is pulled out of the quadraࢢc term: (𝑧𝜃 − 𝑥𝜃)ኼ =
((𝑧 − 𝑥)𝜃)ኼ = 𝜃ዉ(𝑧 − 𝑥)ኼ𝜃. As 𝔼𝒯∣፱። [𝑧] = 𝑥።, 𝔼𝒯∣፱። [(𝑧 − 𝑥።)ኼ] corresponds to the
variance of the transfer model𝕍𝒯∣፱። [𝑧]. Furthermore, note that the whole first-order term
of the approximaࢢon disappears if an unbiased transfer model is used, 𝔼𝒯∣፱። [𝑧] = 𝑥።,
which makes (𝔼𝒯∣፱። [𝑧] − 𝑥።) equal to 0.

Unfortunately, there is no closed-form soluࢢon to the minimizaࢢon of the risk approxi-
maࢢon with respect to the classifiers parameters. In order to find them, we perform gra-
dient descent. The derivaࢢon of the gradient can be found in Appendix B. Algorithm Ɖ
presents pseudocode for FLDA with the logisࢢc loss and a dropout transfer distribuࢢon.

4.4. Experiments
In our experiments, we first study the empirical behavior of FLDA on arࢢficial data forwhich
we know the true transfer distribuࢢon. Following that, we measure the performance of
our method in a ”missing data at test ”meࢢ scenario, as well as on two image data sets and
three text data sets with varying amounts of domain transfer.
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Algorithm Ɖ FLDA-l
for d=ƈ to D do

𝜁፝ =max { 0, 1 − (1/𝑚∑፦፣ [𝑧፣፝ ≠ 0]) / (1/𝑛∑
፧
። [𝑥።፝ ≠ 0])}

end for

�̂� = argmin᎕∈ጆ 1/𝑛∑
፧
። [ − 𝑦።𝑥።𝜃 + log∑፲ᖣ∈𝒴 exp(𝑦ᖣ𝑥።𝜃) +

1/2(1 − [∑፲ᖣ∈𝒴
፲ᖣ exp(፲ᖣ፱።᎕)

∑፲ᖥ∈𝒴 exp(፲ᖥ፱።᎕)
]ኼ) 𝜃ዉ(𝑥።diag(

᎓
ኻዅ᎓ )𝑥

ዉ
። )𝜃]

return 𝑧፣�̂� for 𝑗 = 1,… ,𝑚

4.4.1. Arࢢficial data
Wefirst invesࢢgate the behavior of FLDA on a problem in which themodel assumpࢢons are
saࢢsfied. We create such a problem seࢰng by first sampling a source domain data set from
known class-condiࢢonal distribuࢢons. Subsequently, we construct a target domain data
set by sampling addiࢢonal source data and transforming it using a pre-defined (dropout)
transfer model.

Adaptaࢢon under correct model assumpࢢons
We perform experiments in which the domain-adapted classifier esࢢmates the transfer
model and trains on the source data; we evaluate the quality of the resulࢢng classifier by
comparing it to an oracle classifier that was trained on the target data (that is, the classifier
one would train if labels for the target data were available at training .(meࢢ

In the first experiment, we generate binary features by drawing 100, 000 samples from
two bivariate Bernoulli distribuࢢons. The marginal distribuࢢons are [0.7, 0.7] for class
one and [0.3 0.3] for class two. The source data is transformed to the target data using a
dropout transfer model with parameters 𝜁 = [0.5, 0]. This means that ƌƇ% of the values
for feature ƈ are set to Ƈ and the other values are scaled by 1/(1−0.5). For reference, two
naive least-squares classifiers are trained, one on the labeled source data (s-ls) and one
on the labeled target data (t-ls), and compared to FLDA-q. s-ls achieves a misclassificaࢢon
error of 0.40 while t-ls and FLDA-q achieve an error of 0.30. This experiment is repeated
for the same classifiers but with logisࢢc losses: a source logisࢢc classifier (S-LR), a target
logisࢢc classifier (T-LR) and FLDA-l. In this experiment, S-LR again achieves an error of 0.40
and T-LR and FLDA-l an error of 0.30. Figure Ƌ.ƈ shows the decision boundaries for the
quadraࢢc loss classifiers on the le[ and the logisࢢc loss classifiers on the right. The figure
shows that for both loss funcࢢons, FLDA has completely adapted to be equivalent to the
target classifier in this arࢢficial problem.
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Figure Ƌ.ƈ: Sca�er plots of the target domain. The data was generated by sampling from bivariate Bernoulli class-
condiࢢonal distribuࢢons and transformed using a dropout transfer. Red and blue dots show different classes. The
lines are the decision boundaries found by the source classifier (s-ls/S-LR), the target classifier (t-ls/T-LR) and the
adapted classifier (le[ FLDA-q, right FLDA-l). Note that the decision boundary of FLDA lies on top of the decision
boundary of t-ls/T-LR.

In the second experiment, we generate count features by sampling from bivariate Pois-
son distribuࢢons. Herein, we used rate parameters [2, 2] for the first class and [6, 6] for
the second class. Again, we construct the target domain data by generaࢢng new samples
and dropping out the values of feature ƈ with a probability of 0.5. In this experiment s-ls
achieves an error of 0.181 and t-ls / FLDA-q achieve an error of 0.099, while S-LR achieves
an error of 0.170 and T-LR / FLDA-l achieve an error of 0.084. Figure Ƌ.Ɖ shows the decision
boundaries of each of these classifiers and that FLDA has fully adapted to the domain shi[.
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Figure Ƌ.Ɖ: Sca�er plots of the target domain with decision boundaries of classifiers. The data was generated
by sampling from bivariate Poisson class-condiࢢonal distribuࢢons and the decision boundaries were constructed
using the source classifier (s-ls/S-LR), the target classifier (t-ls/T-LR), and the adapted classifiers (le[ FLDA-q, right
FLDA-l). Note that the decision boundary of FLDA lies on top of the decision boundary of t-ls / T-LR.

Learning curves
One quesࢢon that arises from the previous experiments is how many samples FLDA needs
to esࢢmate the transfer parameters and adapt to be (nearly) idenࢢcal to the target classi-
fier. To answer it, we performed an experiment in which we computed the classificaࢢon
error rate as a funcࢢon of the number of training samples. The source training and vali-
daࢢon data was generated from the same bivariate Poisson distribuࢢons as in Figure Ƌ.Ɖ.
The target data was constructed by generaࢢng addiࢢonal source data and dropping out the
first feature with a probability of 0.5. Each of the four data sets contained 10, 000 samples.
First, we trained a naive least-squares classifier on the source data (s-ls) and tested its per-
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formance on both the source validaࢢon and the target sets as a funcࢢon of the number of
source training samples. Second, we trained a naive least-squares classifier on the labeled
target data (t-ls) and tested it on the source validaࢢon and another target validaࢢon set as
a funcࢢon of the number target training samples. Third, we trained an adapted classifier
(FLDA-q) on equal amounts of labeled source training data and unlabeled target training
data and tested it on both the source validaࢢon and target validaࢢon sets. The experiment
was repeated 50 mesࢢ for every sample size to calculate the standard error of the mean.

The learning curves are plo�ed in Figure Ƌ.Ɗ, which shows the classificaࢢon error on the
source validaࢢon set (top) and the classificaࢢon error on the target validaࢢon (bo�om).
As expected, the source classifier (s-ls) outperforms the target (t-ls) and adapted (FLDA-q)
classifiers on the source domain (do�ed lines), while FLDA-q and t-ls outperform s-ls on
the target domain (solid lines). In this problem, it appears that roughly ƉƇ labeled source
samples and ƉƇ unlabeled target samples are sufficient for FLDA to adapt to the domain
shi[. Interesࢢngly, FLDA-q is outperforming s-ls and t-ls for small sample sizes. This is
most likely due to the fact that the applicaࢢon of the transfer model is acࢢng as a kind of
regularizaࢢon. In parࢢcular, when the learning curves are computed with 𝐿ኼ-regularized
classifiers, then the difference in performance disappears.

Figure Ƌ.Ɗ: Learning curves of the source classifier (s-ls), the target classifier (t-ls), and adapted classifier (FLDA-q).
The top figure shows the error on a validaࢢon set generated from two bivariate Poisson distribuࢢons. The bo�om
figure shows the error on a validaࢢon set generated from two bivariate Poisson distribuࢢons with the first feature
dropped out with a probability of Ƈ.ƌ.

Robustness to transfer model parameter esࢢmaࢢon errors
Another quesࢢon that arises is how sensiࢢve the approach is to esࢢmaࢢon errors in the
transfer parameters. To answer this quesࢢon, we performed an experiment in which we
arࢢficially introduce an error in the transfer parameters by perturbing them. As before,
we generate 100, 000 samples for both domains by sampling from bivariate Poisson dis-
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tribuࢢons with rates [2, 2] for class ƈ and [6, 6] for class Ɖ. Again, the target domain is
constructed by dropping out feature ƈ with a probability of Ƈ.ƌ. We trained a naive clas-
sifier on the source data (s-ls), a naive classifier on the target data (t-ls), and an adapted
classifier FLDA-q with four different sets of parameters: the maximum likelihood esࢢmate
of the first transfer parameter ̂𝜁ኻ with an addiࢢon of 0, 0.1, 0.2, and 0.3. Table Ƌ.ƈ shows
the resulࢢng classificaࢢon errors, which reveal a relaࢢvely small effect of perturbing the es-
matedࢢ transfer parameters: the errors only increase by a few percent in this experiment.

Table Ƌ.ƈ: Classificaࢢon errors for a naive source classifier, a naive target classifier, and the adapted classifier with
a value of Ƈ, Ƈ.ƈ, Ƈ.Ɖ, and Ƈ.Ɗ added to the esࢢmate of the first transfer parameter ᎓̂ኻ.

sl tl ̂𝜁ኻ + 0 ̂𝜁ኻ + 0.1 ̂𝜁ኻ + 0.2 ̂𝜁ኻ + 0.3

Quadraࢢc Ƈ.ƉƋƌ Ƈ.ƈƊƍ Ƈ.ƈƊқ Ƈ.ƈƋƌ Ƈ.ƈƋƎ Ƈ.ƈƌƇ
Logisࢢc Ƈ.ƉҚƋ Ƈ.ƈƊƎ Ƈ.ƈƊƎ Ƈ.ƈƋƇ Ƈ.ƈƋƉ Ƈ.ƈƋҚ

To further illustrate the effect of the transfer parameters, Figure Ƌ.Ƌ shows the decision
boundaries for the perturbed adapted classifiers. The figures show that the linear bound-
aries start to angle upwards when the error in the transfer parameter esࢢmate increases.
Overall, one could describe the effect of a dropout transfer model as steering the direcࢢon
of the linear classifier. This experiment shows the importance of an accurate esࢢmaࢢon
of the transfer parameters to obtain high-quality adaptaࢢon. Nonetheless, our results do
suggest that FLDA is robust to relaࢢvely small perturbaࢢons.
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Figure Ƌ.Ƌ: Sca�er plots of the target data and decision boundaries of two naive and four adapted classifiers with
transfer parameter esࢢmate errors of Ƈ, Ƈ.ƈ, Ƈ.Ɖ, and Ƈ.Ɗ. Results are show for both the quadraࢢc loss classifier
(FLDA-q; le[) and the logisࢢc loss classifier (FLDA-l; right).

4.4.2. Natural data
In a second set of experiments, we evaluate FLDA on a series of real-world data sets and
compare it with several state-of-the-art methods. The evaluaࢢons are performed in the
transducࢢve learning seࢰng: wemeasure the performance of the classifier on the already
given, but unlabeled target samples.

As baselines, we consider eight alternaࢢve methods for domain adaptaࢢon. All of these
employ a two-stage procedure. In the first step, importanceweights, domain-invariant fea-
tures, or a transformaࢢon of the feature space is esࢢmated. In the second step, a classifier
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is trained using the results of the first stage. In all experiments, we esࢢmate the hyper-
parameters, such as 𝐿ኼ-regularizaࢢon parameters, via cross-validaࢢon on held-out source
data. It should be noted that these values are opࢢmal for generalizing to new source data
but not necessarily for generalizing to the target domain [Ɗƈ]. Each of the eight baseline
methods is described briefly below.

Naive support vector machine (S-SVM)
Our first baseline method is a support vector machine trained on only the source samples
and applied on the target samples. We made use of the libsvm package by [ƊƉ] with a ra-
dial basis funcࢢon kernel and we performed cross-validaࢢon to esࢢmate the kernel band-
width and the 𝐿ኼ-regularizaࢢon parameter. All mulࢢ-class classificaࢢon is done through
an one-vs-one scheme. This method can be readily compared to subspace alignment (SA)
and transfer component analysis (TCA) to evaluate the effects of the respecࢢve adaptaࢢon
approaches.

Naive logisࢢc regression (S-LR)
Our second baseline method is an 𝐿ኼ-regularized logisࢢc regressor trained on only the
source samples. Its main difference with the support vector machine is that it uses a linear
model, a logisࢢc loss instead of a hinge loss, and that it has a natural extension to mulࢢ-
class as opposed to one-vs-one. The value of the regularizaࢢon parameter was set via
cross-validaࢢon. This method can be readily compared to kernel mean matching (KMM),
structural correspondence learning (SCL), as well as to the logisࢢc loss version of feature-
level domain adaptaࢢon (FLDA-l).

Kernel mean matching (KMM)
Kernel mean matching [қ, ƈƇ] finds importance weights by minimizing the maximummean
discrepancy (MMD) between the reweighed source samples and the target samples. To
evaluate the empirical MMD, we used the radial basis funcࢢon kernel. The weights are
then incorporated in an importance-weighted 𝐿ኼ-regularized logisࢢc regressor.

Structural correspondence learning (SCL)
In order to build the domain-invariant subspace [ƈƋ], the ƉƇ features with the largest pro-
porࢢon of non-zero values in both domains are selected as the pivot features. Their values
were dichotomized (ƈ if 𝑥 ≠ 0, Ƈ if 𝑥 = 0) and predicted using a modified Huber loss [ƊƊ].
The resulࢢng classifier weight matrix was subjected to an eigenvalue decomposiࢢon and
the eigenvectors with the ƈƌ largest eigenvalues are retained. The source and target sam-
ples are both projected onto this basis and the resulࢢng subspaces are added as features
to the original source and target feature spaces, respecࢢvely. Consequently, classificaࢢon
is done by training an 𝐿ኼ-regularized logisࢢc regressor on the augmented source samples
and tesࢢng on the augmented target samples.

Transfer component analysis (TCA)
For transfer component analysis, the closed-form soluࢢon to the parametric kernel map
described in [ƈҚ] is computed using a radial basis funcࢢon kernel. Its hyperparameters
(kernel bandwidth, number of retained components and trade-off parameter 𝜇) are esࢢ-
mated through cross-validaࢢon. A[ermapping the data onto the transfer components, we
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trained a support vector machine with a radial basis funcࢢon kernel, cross-validaࢢng over
its kernel bandwidth and the regularizaࢢon parameter.

Geodesic flow kernel (GFK)
The geodesic flow kernel is extracted based on the difference in angles between the prin-
cipal components of the source and target samples [ƈқ]. The basis funcࢢons of this kernel
implicitlymap the data onto all possible subspaces on the geodesic path between domains.
Classificaࢢon is performed using a kernel ƈ-nearest neighbor classifier. We used the sub-
space disagreement measure (SDM) to select an opࢢmal value for the subspace dimen-
sionality.

Subspace alignment (SA)
For subspace alignment [Ɖƈ], all samples are normalized by their sum and all features are
z-scored before extracࢢng principal components. Subsequently, the Frobenius norm be-
tween the transformed source components and target components is minimized with re-
spect to an affine transformaࢢon matrix. A[er projecࢢng the source samples onto the
transformed source components, a support vector machine with a radial basis funcࢢon
kernel is trained with cross-validated hyperparameters and tested on the target samples
mapped onto the target components.

Target logisࢢc regression (T-LR)
Finally, we trained a 𝐿ኼ-regularized logisࢢc regressor using the normally unknown target
labels as the oracle soluࢢon. This classifier is included to obtain an upper bound on the
performance of our classifiers.

Missing data at test meࢢ
In this set of experiments, we study ”missing data at test ”meࢢ problems in which we argue
that dropout transfer occurs naturally. Suppose that for the purposes of building a classi-
fier, a data set is neatly collected with all features measured for all samples. At test ,meࢢ
however, some features could not be measured, due to for instance sensor failure, and the
missing values are replaced by 0. This seࢰng can be interpreted as two distribuࢢons over
the same space with their transfer characterized by a relaࢢve increase in the number of
0 values, which our FLDA with dropout transfer is perfectly suited for. We have collected
six data sets from the UCI machine learning repository [ƊƋ] with missing data: Hepaࢢࢢs
(hepat.), Ozone (ozone; [Ɗƌ]), Heart Disease (heart; [ƊҚ]), Mammographic masses (mam.;
[Ɗƍ]), Automobile (auto), and Arrhythmia (arrhy.; [Ɗқ]). Table Ƌ.Ɖ shows summary staࢢs-
csࢢ for these sets. In the experiments, we construct the training set (source domain) by
selecࢢng all samples with no missing data, with the remainder as the test set (target do-
main). We note that instead of doing 0-imputaࢢon, we also could have usedmethods such
asmean-imputaࢢon [ƊƎ, ƋƇ]. It is worth noࢢng that the FLDA framework can adapt to such
a seࢰng by simply defining a different transfer model (one that replaces a feature value
by its mean instead of a 0).

Table Ƌ.Ɗ reports the classificaࢢon error rate of all domain-adaptaࢢon methods on the
before-menࢢoned data sets. The lowest error rates for a parࢢcular data set are bold-faced.
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Table Ƌ.Ɖ: Summary staࢢsࢢcs of the UCI repository data sets with missing data.

hepat. ozone heart mam. auto. arrhy.

Features ƈƎ ƍƉ ƈƊ Ƌ ƉƋ ƉƍƎ
Samples ƈƌƌ ƉƌƊƋ ƍƇƋ ƎҚƈ ƉƇƌ ƋƌƉ
Classes Ɖ Ɖ Ɖ Ɖ Қ ƈƊ
Missing ƍƌ Ққƌ Қƈƌ ƈƊƇ ƍƉ ƊқƋ

Table Ƌ.Ɗ: Classificaࢢon error rates on Қ UCI data sets with missing data. The data sets were parࢢࢢoned into
a training set (source domain), containing all samples with no missing features, and a test set (target domain),
containing all samples with missing features.

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

hepat. .ƉƈƊ .ƋƎƊ .ƊƋƍ .ƋқƇ .ƉƌƊ .ƉƉƍ .ƉƈƊ .ƉƉƍ .ƉƇƇ .ƈƌƇ
ozone .ƇҚƇ .ƈƉƋ .ƈƉҚ .ƈƊҚ .ƇƋƍ .ƇƎƊ .ƈƋƇ .ƇƋƍ .ƇƍƎ .ƇҚƎ
heart .ƋƇƎ .ƊƊқ .ƊƎƇ .ƊƈƎ .ƌƎҚ .ƊҚƉ .ƊƎƈ .ƉƇƊ .ƉƇƊ .ƈƍƍ
mam. .ƊƊƈ .ƋҚƉ .ƋƋҚ .ƋҚƉ .ƊƉƊ .ƋƉƊ .ƊƉƊ .ƋҚƉ .ƋƊƈ .ƈƎƋ
auto. .қƋқ .ƎƊƌ .ƎƈƊ .ƎƊƌ .ƌқƍ .ƌҚƌ .қƋқ .қƋқ .қƋқ .Ɗƍƈ
arrhy. .ƎƊƇ .қƌƋ .ҚƉƇ .қƈқ .ƋƈƋ .Қƌƈ .ƎƊƇ .ƋƌҚ .ққƎ .ƊƌƊ

From the results presented in the table, we observe that whilst there appears to be li�le
difference between the domains in the Hepaࢢࢢs and Ozone data sets, there is substanࢢal
domain shi[ in the other data sets: the naive classifiers even perform at chance level on
the Arrhythmia and Automobile data sets. On almost all data sets, both FLDA-q and FLDA-l
improve substanࢢally over the S-LR, which suggests that they are successfully adapࢢng to
themissing data at test .meࢢ By contrast, most of the other domain-adaptaࢢon techniques
do not consistently improve although, admi�edly, sample transformaࢢonmethods appear
to work reasonable well on the Ozone, Mammography, and Arrhythmia data sets.

Handwri�en digits
Handwri�en digit data sets have been popular in machine learning due to the large sample
size and the interpretability of the images. Generally, the data is acquired by assigning an
integer value between Ƈ and Ɖƌƌ proporࢢonal to the amount of pressure that is applied
at a parࢢcular spaࢢal locaࢢon on an electronic wriࢢng pad. Therefore, the probability of
a non-zero value of a pixel informs us how o[en a pixel is part of a parࢢcular digit. For
instance, the middle pixel in the digit 8 is a very important part of the digit because it
nearly always corresponds to a high-pressure locaࢢon, but the upper-le[ corner pixel is
not used that o[en and is less important. Domain shi[ may be present between digit data
sets due to differences in recording condiࢢons. As a result, we may observe pixels that
are discriminaࢢve in one data set (the source domain) that are hardly ever observed in
another data set (the target domain). These pixels cannot be used to classify digits in the
target domain, and we would like to inform the classifier that it should not assign a large
weight to such pixels.
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Wecreated adomain adaptaࢢon seࢰngby considering twohandwri�endigit sets, namely
MNIST [Ƌƈ] and USPS [ƋƉ]. In order to create a common feature space, images from both
data sets are resized to ƈҚ by ƈҚ pixels. To reduce the discrepancy between the size of
MNIST data set (which contains 70, 000 examples) and the USPS data set (which contains
9, 298 examples), we only use 14, 000 samples from the MNIST data set. The classes are
balanced in both data sets.

Figure Ƌ.ƌ: Visualizaࢢon of the probability of non-zero values for each pixel on the MNIST data set (le[) and the
USPS data set (right).

Figure Ƌ.Қ: Classifier parameter values assigned by the naive source classifier to the ኺ-digit predictor (le[), the
transfer model parameters of the dropout transfer model (middle), and the classifier parameter values assigned
by the adapted classifier to the ኺ-digit predictor for training on USPS images and tesࢢng onMNIST (right;ፔ → ፌ).

Figure Ƌ.ƌ shows a visualizaࢢon of the probability that each pixel is non-zero for both
data sets. The visualizaࢢon shows that while the digits in theMNIST data set occupymostly
the center region, the USPS digits tend to occupy a substanࢢally larger part of the im-
age, specifically a center column. Figure Ƌ.Қ (le[) visualizes the classifier parameter val-
ues of the naive linear classifier (S-LR), (middle) the dropout probabiliࢢes 𝜁, and (right) the
adapted classifier’s parameter values (FLDA-l). Themiddle image shows that dropout prob-
abiliࢢes are large in regions where USPS pixels are frequent (the white pixels in Figure Ƌ.ƌ
right) but MNIST pixels are infrequent (the black pixels in Figure Ƌ.ƌ, le[). The parameter
values of the naive classifier appear to be shaped in a somewhat noisy circular pa�ern in
the periphery, with the center containing negaࢢve values (if these center pixels have a low
intensity in a new sample, then the image is more likely to be a 0 digit). By contrast, the
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parameter values of the FLDA classifier are smoothed in the periphery, which indicates that
the classifier is placing more value on the center pixels and is ignoring the peripheral ones.

Table Ƌ.Ƌ shows the classificaࢢon error rates where the rows correspond to the com-
binaࢢons of treaࢢng one data set as the source domain and the other as the target. The
results show that there is a large difference between the domain-specific classifiers (S-LR
and T-LR), which indicates that the domains are highly dissimilar. We note that the error
rates of the target classifier on the MNIST data set are higher than usual for this data set
(T-LR has an error rate of Ƈ.ƉƊƋ), which is because of the down-sampling of the images to
16 × 16 pixels and the smaller sample size. The results presented in the table highlight an
interesࢢng property of FLDA with dropout transfer: while FLDA performs well in seࢰngs
in which the domain transfer can be appropriately modeled by the transfer distribuࢢon
(U→M seࢰng where pixels that appear in the USPS do not appear in MNIST), it does not
perform well the other way around. The dropout transfer model does not capture pix-
els appearing more o[en instead of less o[en in the target domain. To work well in that
seࢰng, it is presumably necessary to use a richer transfer model.

Table Ƌ.Ƌ: Classificaࢢon error rates obtained on both combinaࢢons of treaࢢng one domain as the source and the
other as the target. M=’MNIST’ and U=’USPS’.

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

M→U .ƌƉƉ .ƍƋƍ .ƍƋқ .ƍƋƍ .қƎƇ .ƋƎƍ .қƇқ .қƈƈ .Қƍқ .Ƈƌƌ
U→M .ƍҚҚ .ƍƍƇ ƍҚƎ .қƇқ .ƍƌƍ .ҚҚƇ .қƌƍ .ҚƋƇ .ҚқƋ .ƉƊƋ

Office-Caltech
The Office-Caltech data set [ƋƊ] consists of images of objects gathered using four differ-
ent methods: one from images found through a web image search (referred to as ’C’),
one from images of products on Amazon (A), one taken with a digital SLR camera (D) and
one taken with a webcam (W). Overall, the set contains ƈƇ classes, with ƈƈƉƊ samples from
Caltech, Ǝƌқ samples from Amazon, ƈƌƍ samples from the DSLR camera, and ƉƎƌ samples
from the webcam. Our first experiment with the Office-Caltech data set is based on fea-
tures extracted through SURF features [ƋƋ]. These descriptors determine a set of interest
points by finding local maxima in the determinant of the image Hessian. Weighted sums
of Haar features are computed in mulࢢple sub-windows at various scales around each of
the interest points. The resulࢢng descriptors are vector-quanࢢzed to produce a bag-of-
visual-words histogram of the image that is both scale and rotaࢢon-invariant. We perform
domain-adaptaࢢon experiments by training on one domain and tesࢢng on another.

Table Ƌ.ƌ shows the results of the classificaࢢon experiments, where compared to com-
peࢢng methods, SA is performing well for a number of domain pairs, which may indicate
that the SURF descriptor representaࢢon leads to domain dissimilariࢢes that can be accu-
rately captured by subspace transformaࢢons. This result is further supported by the fact
that the transformaࢢons found by GFK and TCA are also outperforming S-SVM. FLDA-q and
FLDA-l are among the best performers on certain domain pairs. In general, FLDA does ap-
pear to perform at least as good or be�er than a naive S-LR classifier.The results on the



4

106 4. Modeling feature-level transfer

Table Ƌ.ƌ: Classificaࢢon error rates obtained by ten (domain-adapted) classifiers for all pairwise combinaࢢons of
domains on the Office-Caltech data set with SURF features (A=’Amazon’, D=’DSLR’,W=’Webcam’, and C=’Caltech’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

A→D .ƌƎƎ .Қƈқ .ҚƈҚ .ҚƉƈ .ҚƉƍ .ҚƉƋ .ҚƉƋ .ƌƎƎ .ҚƉƋ .ƊƇƊ
A→W .Қққ .Қƍƌ .ҚҚқ .ҚқҚ .ҚƇҚ .ҚƊƈ .ƍƈƉ .ҚƋқ .Қƍқ .ƈқƈ
A→C .ƌƌƍ .ƌƌƊ .ƌҚƊ .ƌƌƌ .ƌƎƋ .ҚƈƋ .ƌƍƎ .ƌҚƌ .ƌƌƇ .ƋƉƍ
D→W .ƊƈƉ .ƊƈƉ .ƊƋҚ .Ɗƈƍ .ƈҚƍ .ƈƌƊ .ƉƎƌ .ƊƉƉ .ƊƈƉ .ƈқƈ
D→C .ƍƋƋ .ƍƈƉ .ƍƊƋ .ƍƈƉ .Қƌƌ .ƍƇҚ .ҚқƇ .ƍƈƉ .ƍƈƇ .ƋƉƍ
W→C .ƍƉƈ .ҚƎқ .ƍƇƎ .ƍƇƌ .Қƍƍ .ҚƎƍ .Қққ .Қƍƌ .ƍƇƈ .ƋƉƍ
D→A .қƍҚ .ƍƈƎ .ƍƉƍ .ƍƉƋ .ҚƈҚ .ҚқƇ .ҚƌƇ .ƍƇƇ .ƍƉƉ .Ɖƌқ
W→A .ҚƍҚ .ҚƎƌ .ƍƇҚ .ƍƇƍ .ҚƊƈ .ҚҚƌ .ҚҚқ .Қƍƈ .ҚƎƈ .Ɖƌқ
C→A .ƋƎƊ .ƌƉƊ .ƌƈƌ .ƋƎҚ .ƌƊқ .ƌƎƉ .ƌƇƋ .ƋƎƇ .Ƌƍƌ .Ɖƌқ
W→D .ƈƎқ .ƈƎƈ .ƈƍқ .ƈƎқ .ƉƈƋ .ƈƉƈ .ƈҚҚ .ƈƎƈ .ƈқƌ .ƊƇƊ
C→D .ҚƈƉ .ҚƈҚ .ҚƊƈ .ƌқƊ .ƌƍƌ .ƌƎƎ .ҚƈƉ .ƌƈƇ .ƌƎƎ .ƊƇƊ
C→W .ƍƈƉ .ƍƉƌ .ƍƉƎ .ƍƉƋ .ҚƇƇ .ҚƇƊ .ҚƎƌ .ҚƌƋ .ƍƇƉ .ƈқƈ

Office-Caltech data set depend on the type of informaࢢon the SURF descriptors are ex-
tracࢢng from the images. We also studied the performance of domain-adaptaࢢon meth-
ods on a richer visual representaࢢon, produced by a pre-trained convoluࢢonal neural net-
work. Specifically, we used a data set provided by [Ƌƌ], who extracted ƈƇƇƇ-dimensional
feature-layer acࢢvaࢢons (so-called DeCAFዂ features) in the upper layers of the a convolu-
onalࢢ network that was pre-trained on the Imagenet data set. Donahue et al. [Ƌƌ] used a
larger superset of theOffice-Caltech data set that contains Ɗƈ classeswith Ɖқƈƍ images from
Amazon, ƋƎқ from the DSLR camera, and ƍƎƌ from the webcam. The results of our experi-
ments with the DeCAFዂ features are presented in Table Ƌ.Қ. The results show substanࢢally
lower error rates overall, but they also show that domain transfer in the the DeCAFዂ fea-
ture representaࢢon is not amenable to effecࢢve modeling by subspace transformaࢢons.
KMM and SCL obtain performances that are similar to the of the naive S-LR classifier but in
one experiment, the naive classifier is actually the best-performing model. Whilst achiev-
ing the best performance on Ɖ out of Қ domain pairs, the FLDA-q and FLDA-l models are
not as effecࢢve as on other data sets, presumably, because dropout is not a good model
for the transfer in a conࢢnuous feature space such as the DeCAFዂ feature space.

Table Ƌ.Қ: Classificaࢢon error rates obtained by ten (domain-adapted) classifiers for all pairwise combinaࢢons of
domains on the Office data set with DeCAFዂ features (A=’Amazon’, D=’DSLR’, and W=’Webcam’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

A→D .ƋƇҚ .Ɗққ .ƋƇƉ .ƋƉƉ .ƋҚƇ .ƋƉƋ .Ɗƌƈ .ƋƉқ .Ɗққ .ƈƇƋ
A→W .ƋƊƋ .ƋҚқ .Ƌƌƌ .ƋƍƋ .ƋƎƎ .Ƌƍƍ .ƋƉҚ .ƋƎƈ .ƋҚқ .ƇҚƋ
D→W .ƇқҚ .ƇƍƎ .ƇқƊ .ƇƍƋ .ƈƇƊ .ƇƍƊ .Ƈқƍ .Ƈққ .ƇƍƎ .ƇҚƋ
D→A .ƌƈҚ .ƋƎҚ .ƌƇƉ .ƋƎƍ .ƌƉƇ .ƌҚƎ .ƋқƎ .ƌқƎ .Ƌқƍ .ƉƈҚ
W→A .ƌƉƇ .ƋƎҚ .ƌƈƋ .ƌƇҚ .ƌƋƈ .ƌқƋ .ƌƈƇ .ҚƋƌ .ƌƇƈ .ƉƈҚ
W→D .ƇƊƋ .ƇƊƇ .ƇƊƉ .ƇƊƋ .ƇҚƉ .ƇƌƉ .ƇƋƉ .ƇƉƋ .ƇƋƋ .ƈƇƋ
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IMDb
The Internet Movie Database (IMDb) [ƋҚ] contains wri�en reviews of movies labeled with
a ƈ-ƈƇ star raࢢng, which we dichotomize by seࢰng values > 5 as +1 and values ≤ 5 as
−1. Using this dichotomy, both classes are roughly balanced. From the original bag-of-
words representaࢢon, we selected only the features with more than ƈƇƇ non-zero values
in the enࢢre data set, resulࢢng in ƋƈқƇ features. To obtain the domains, we split the data
set by genre and obtained ƊƋƇƉ reviews of acࢢon movies, ƈƉƋƎ reviews of family movies,
and ƊҚƎƍ reviews of war movies. We assume that people tend to use different words to
review different genres of movies, and we are interested in predicࢢng viewer senࢢment
a[er adapࢢng to changes in the word frequencies. To visualize whether this assumpࢢon is
valid, we plot the proporࢢon of non-zero values of ƈƇ randomly chosen words per domain
in Figure Ƌ.ƍ. The figure suggests that acࢢonmovie andwarmovie reviews are quite similar,
but the word use in family movie reviews does appear to be different.

Table Ƌ.ƍ reports the results of the classificaࢢon experiments on the IMDb database.
The first thing to note is that the performances of S-LR and T-LR are quite similar, which
suggests that the frequencies of discriminaࢢve words do not vary too much between gen-
res. The results also show that GFK and TCA are not as effecࢢve on this data set as they
were on the handwri�en digits and Office-Caltech data sets, which suggests that finding a
joint subspace that is sࢢll discriminaࢢve is hard, presumably, because only a small number
of the ƋƈқƇ words actually carry discriminaࢢve informaࢢon. FLDA-q and FLDA-l are bet-
ter suited for such a scenario, which is reflected by their compeࢢࢢve performance on all
domain pairs.
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Figure Ƌ.ƍ: Proporࢢon of non-zero values for a subset of words per domain on the IMDb data set.

Spam
Domain adaptaࢢon seࢰngs also arise in spam detecࢢon systems. For this experiment, we
concatenated twodata sets from theUCImachine learning repository: one containing ƋƉƇƌ
emails from the Enron spam database [Ƌƍ] and one containing ƌƊƊқ text messages from
the SMS-spam data set [Ƌқ]. Both were represented using bag-of-words vectors over ƋƉƍƉ
words that occurred in both data sets. Figure Ƌ.қ shows the proporࢢons of non-zero values
for some example words, and shows that there exist large differences in word frequencies
between the two domains. In parࢢcular, much of the domain differences are due to text
messages using shortened words, whereas email messages tend to be more formal.
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Table Ƌ.ƍ: Classificaࢢon error rates obtained by ten (domain-adapted) classifiers for all pairwise combinaࢢons of
domains on the IMDb data set. (A=’Acࢢon’, F=’Family’, and W=’War’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

A→F .ƈƋƌ .ƈƊҚ .ƈƊƊ .ƈƊƊ .ƈқƋ .ƉƍҚ .ƉƊƇ .ƈƊƌ .ƈƊҚ .ƈƎҚ
A→W .ƈƌқ .ƈƌƌ .ƈƌƌ .ƈҚƌ .ƈҚƊ .ƉƋƎ .ƉҚҚ .ƈƌқ .ƈƌƋ .ƈҚƊ
F→W .ƉƌҚ .ƉƇҚ .ƉƇқ .ƉƇҚ .ƈқƉ .ƉқƎ .Ɗƌƌ .ƉƇƌ .ƉƇƉ .ƈҚƊ
F→A .ƉƇƈ .ƈƎƌ .ƈƎƊ .ƈƎқ .ƈƎƊ .ƉƎҚ .ƊҚƊ .ƈƎƋ .ƈƎƋ .ƈҚƎ
W→A .ƈҚқ .ƈҚƇ .ƈƌƎ .ƈƌƎ .ƈҚƍ .ƉƊқ .ƉƉƉ .ƈƌƌ .ƈƌƍ .ƈҚƎ
W→F .ƊƋƇ .ƈҚƍ .ƈҚƊ .ƈҚƊ .ƉƊƉ .ƉƎƉ .ƉƇƊ .ƈƍƉ .ƈƌƎ .ƈƎҚ
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Figure Ƌ.қ: Proporࢢon of non-zero values for a subset of words per domain on the spam data set.

Table Ƌ.қ shows results from our classificaࢢon experiments on the spam data set. As
can be seen from the results of T-LR, fairly good accuracies can be obtained on the spam
detecࢢon task. However, the domains are so different that the naive classifiers S-SVM and
S-LR are performing according to chance or worse. Most of the domain-adaptaࢢon mod-
els do not appear to improve much over the naive models. For KMM this makes sense,
as the importance weight esࢢmator will assign equal values to each sample when the em-
pirical supports of the two domains are disjoint. There might be some features that are
shared between domains, i.e., words that are spam in both emails and text messages, but
considering the performance of SCL these might not be corresponding well with the other
features. FLDA-q and FLDA-l are showing slight improvements over the naive classifiers, but
the transfer model we used is too poor as the domains contain a large amount of increased
word frequencies.

Table Ƌ.қ: Classificaࢢon error rates obtained by ten (domain-adapted) classifiers for both domain pairs on the
spam data set. (S=’SMS’ and M=’E-Mail’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

S→M .ƋҚƇ .ƌƉƉ .ƌƉƈ .ƌƉƋ .ƋƋƌ .ƋƎƈ .ƌƇқ .ƌƈƈ .ƌƉƈ .ƇƍƊ
M→S .қƊƇ .қƇƋ .ƍƎƎ .қƇƋ .ƋƇқ .ҚƎҚ .қҚƊ .ҚƊҚ .ƍƉƍ .ƈƊƊ

Amazon
We performed a similar experiment on the Amazon senࢢment analysis data set of product
reviews [ƋƎ]. The data consists of a 30, 000 dimensional bag-of-words representaࢢons of
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27, 677 reviewswith the labels derived from the dichotomized ƌ-star raࢢng (raࢢngs> Ɗ are
+ƈ and raࢢngs≤ Ɗ as -ƈ). Each reviewdescribes a product fromoneof four categories: books
(ҚƋҚƌ reviews), DVDs (ƌƌқҚ reviews), electronics (ƍҚқƈ reviews) and kitchen appliances
(ƍƎƋƌ reviews). Figure Ƌ.Ǝ shows the probability of a non-zero value for some example
words in each category. Some words, such as ’portrayed’ or ’barbaric’, are very specific to
one or two domains, but the frequencies of many other words do not vary much between
domains. Weperformed experiments on the Amazon data set using the same experimental
setup as before.
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Figure Ƌ.Ǝ: Proporࢢon of non-zero values for a subset of words per domain on the Amazon data set.

In Table Ƌ.Ǝ, we report the classificaࢢon error rates on all pairwise combinaࢢons of do-
mains. The difference in classificaࢢon errors between S-LR and T-LR is up to ƈƇ%, which sug-
gests there is potenࢢal for success with domain adaptaࢢon. However, the domain transfer
is not capturedwell by SA, GFK, TCA: on average, thesemethods are performingworse than
the naive classifiers. We presume this happens because only a small number of words are
actually discriminaࢢve, and these words carry li�le weight in the sample transformaࢢon
measures used. Furthermore, there are significantly less samples than features in each
domain which means models with large amounts of parameters are likely to experience
esࢢmaࢢon errors. By contrast, FLDA-l performs strongly on the Amazon data set, achiev-
ing the best performance on many of the domain pairs. FLDA-q performs substanࢢally
worse than FLDA-l, presumably, because of the singular covariance matrix and the fact
that least-squares classifiers are very sensiࢢve to outliers.

4.5. Discussion and conclusions
We have presented an approach to domain adaptaࢢon, called FLDA, that fits a probabilisࢢc
model to capture the transfer between the source and the target data and, subsequently,
trains a classifier by minimizing the expected loss on the source data under this transfer
model. Whilst the FLDA approach is very general, in this chapter, we have focused on one
parࢢcular transfer model, namely, a dropout model. Our extensive experimental evalua-
onࢢ with this transfer model shows that FLDA performs on par with the current state-of-
the-art methods for domain adaptaࢢon.

An interesࢢng interpretaࢢon of our formulaࢢon is that the expected loss under the
transfer model performs a kind of data-dependent regularizaࢢon [ƉҚ]. For instance, if a
quadraࢢc loss funcࢢon is employed in combinaࢢon with a Gaussian transfer model, FLDA



4

110 4. Modeling feature-level transfer

Table Ƌ.Ǝ: Classificaࢢon error rates obtained by ten (domain-adapted) classifiers for all pairwise combinaࢢons of
domains on the Amazon data set. (B=’Books’, D=’DVD’, E=’Electronics’, and K=’Kitchen’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

B→D .ƈқƇ .ƈҚқ .ƈҚҚ .ƈҚƍ .ƋƈƋ .ƊƎƉ .ƋƈƊ .ƊƇƊ .ƈҚҚ .ƈƌƊ
B→E .Ɖƈƍ .ƉƉƈ .ƉƉƉ .ƉƉƇ .ƊƍƉ .ƋƉƎ .ƊҚƎ .ƊƋƊ .ƉƈƇ .ƈƈҚ
B→K .ƈққ .ƈққ .ƈқƎ .ƈқƋ .Ɗƍƈ .ƋƋƊ .ƊƊқ .ƊқƋ .ƈқƌ .ƇƎƌ
D→E .ƉƇƈ .ƉƇƉ .ƉƇƌ .ƉƇƍ .ƋƇƊ .ƋқƇ .Ɗқƌ .ƊҚƎ .ƈƎҚ .ƈƈҚ
D→K .ƈқƉ .ƈқƉ .ƈқƌ .ƈƎƇ .ƊƊƇ .ƋƎƋ .ƊҚƇ .ƊƍƎ .ƈқƌ .ƇƎƌ
E→K .ƈƇқ .ƈƈƇ .ƈƇҚ .ƈƈƉ .Ɗƈƈ .ƋƈҚ .ƉҚƈ .ƊƇқ .ƈƇƋ .ƇƎƌ
D→B .ƈƎƉ .ƈƎƇ .ƈƎƈ .ƉƇƉ .Ɗƌƈ .Ɗққ .ƋƉƇ .ƊҚқ .ƈқҚ .ƈƋƌ
E→B .Ɖƌƍ .ƉҚƉ .ƉƌƊ .ƉҚƇ .ƊƍƉ .ƋƋƌ .Ƌқƈ .ƋƇҚ .ƉҚƈ .ƈƋƌ
K→B .ƉҚƈ .Ɖƍƍ .ƉҚқ .ƉƍƊ .ƋƈƋ .Ƌƈқ .ƋƉҚ .ƊƎƎ .Ɖƍƈ .ƈƋƌ
E→D .ƉƋƌ .ƉƋƇ .ƉƊқ .ƉƋƉ .ƊƎқ .ƋƋƈ .ƋƉƍ .ƊқƋ .ƉƊқ .ƈƌƊ
K→D .ƉƊƇ .ƉƊƇ .ƉƊƇ .ƉƊƈ .ƊқƊ .ƋƈƇ .ƋƇƇ .ƊƍƇ .ƉƉқ .ƈƌƊ
K→E .ƈƉƊ .ƈƊƈ .ƈƉҚ .ƈƉҚ .ƉƎƇ .ƊƌƊ .ƉƎҚ .ƉƎƉ .ƈƈƎ .ƈƈҚ

reduces to a transfer-dependent variant of ridge regression [ƌƇ]. This transfer-dependent
regularizer increases the amount of regularizaࢢon on features when it is undesired for the
classifier to assign a large weight to that feature. In other words, the regularizer forces
the classifier to ignore features that are frequently present in the source domain but very
infrequently present in the target domain.

In some of our experiments, the adaptaࢢon strategies are producing classifiers that per-
form worse than a naive classifier trained on the source data. A potenࢢal reason for this
is that many domain-adaptaࢢon models make strong assumpࢢons on the data that are in-
valid in many real-world scenarios. In parࢢcular, it is unclear to what extent the relaࢢon
between source data and classes truly is informaࢢve about the target labels. This issue
arises in every domain-adaptaࢢon problem: without target labels, there is noway of know-
ing whether matching the source distribuࢢon 𝑝𝒮 to the target distribuࢢon 𝑝𝒯 will improve
the match between 𝑝𝒴∣𝒮 and 𝑝𝒴∣𝒯 .
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4.6. Appendix A
For some combinaࢢons of source and target models, the source domain can be integrated
out. For others, we would have to resort to Markov Chain Monte Carlo sampling and sub-
sequently averaging the samples drawn from the transferred source distribuࢢon 𝑞𝒯 . For
the Bernoulli and dropout model defined in Equaࢢons Ƌ.Ƌ and Ƌ.ƌ respecࢢvely, the inte-
graࢢon as in Equaࢢon Ƌ.Қ can be performed by plugging in the specified probabiliࢢes and
performing the summaࢢon:

𝑞𝒯(𝑧 ∣ 𝜂, 𝜁) =
ፃ

∏
፝዆ኻ

∫
𝒳፝
𝑝𝒯∣𝒮(𝑧፝ ∣ 𝑥፝ , 𝜁፝) 𝑝𝒮(𝑥፝ ∣ 𝜂፝) d𝑥፝

=
ፃ

∏
፝዆ኻ

𝑝𝒯∣𝒮(𝑧፝ ∣ [𝑥፝ = 0], 𝜁፝) 𝑝𝒮([𝑥፝ = 0]; 𝜂፝) +

𝑝𝒯∣𝒮(𝑧፝ ∣ [𝑥፝ ≠ 0], 𝜁፝) 𝑝𝒮([𝑥፝ ≠ 0]; 𝜂፝)

=
ፃ

∏
፝዆ኻ

{𝑝𝒯∣𝒮(𝑧፝ = 0 ∣ [𝑥፝ = 0], 𝜁፝)(1 − 𝜂፝) + 𝑝𝒯∣𝒮(𝑧፝ = 0 ∣ [𝑥፝ ≠ 0], 𝜁፝)𝜂፝𝑝𝒯∣𝒮(𝑧፝ ≠ 0 ∣ [𝑥፝ = 0], 𝜁፝)(1 − 𝜂፝) + 𝑝𝒯∣𝒮(𝑧፝ ≠ 0 ∣ [𝑥፝ ≠ 0], 𝜁፝)𝜂፝

=
ፃ

∏
፝዆ኻ

{1(1 − 𝜂፝) + 𝜁፝𝜂፝ if 𝑧፝ = 0
0(1 − 𝜂፝) + (1 − 𝜁፝)𝜂፝ if 𝑧፝ ≠ 0

=
ፃ

∏
፝዆ኻ

(1 − (1 − 𝜁፝) 𝜂፝)
፳፝዆ኺ

((1 − 𝜁፝) 𝜂፝)
፳፝ጽኺ

.

Note that we chose our transfer model such that the probability is Ƈ for a non-zero target
sample value given a zero source sample value; 𝑝𝒯∣𝒮(𝑧፝ ≠ 0 ∣ [𝑥፝ = 0], 𝜁፝) = 0. In other
words, if a word is not used in the source domain, then we expect that it is also not used
in the target domain. By seࢰng different values for these probabiliࢢes, a different type of
transfer is modeled.
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4.7. Appendix B
This appendix lists the second-order Taylor approximaࢢon of the logisࢢc loss version of
FLDA with a general transfer model and presents its gradient with respect to the classifier
parameters. To keep the derivaࢢons manageable, we use the following shorthands:

𝛼። = ∑
፲ᖣ∈𝒴

exp(𝑦ᖣ𝑥።𝜃)

𝛽። = ∑
፲ᖣ∈𝒴

𝑦ᖣ exp(𝑦ᖣ𝑥።𝜃)

𝛾። = ∑
፲ᖣ∈𝒴

exp(𝑦ᖣ𝑥።𝜃)𝑥ዉ።

𝛿። = ∑
፲ᖣ∈𝒴

𝑦ᖣ exp(𝑦ᖣ𝑥።𝜃)𝑥ዉ። .

The risk funcࢢon of FLDA with a logisࢢc loss and a general transfer model is:

�̂�𝒯(ℎ ∣ 𝒟𝒮) =
1
𝑛

፧

∑
።዆ኻ
−𝑦።𝔼𝒯∣፱። [𝑧]𝜃 + 𝐴(𝑥።𝜃)+

𝜕𝐴(𝑥።𝜃)
𝜕𝑥።𝜃

(𝔼𝒯∣፱። [𝑧] − 𝑥።)𝜃 +
1
2
𝜕ኼ𝐴(𝑥።𝜃)
𝜕(𝑥።𝜃)ኼ

𝜃ዉ𝕍𝒯∣፱። [𝑧]𝜃

=1𝑛

፧

∑
።዆ኻ
−𝑦።𝔼𝒯∣፱። [𝑧]𝜃 + log(𝛼።)+

𝛽።
𝛼።
(𝔼𝒯∣፱። [𝑧] − 𝑥።)𝜃 +

1
2(1 −

𝛽ኼ።
𝛼ኼ።
) 𝜃ዉ𝕍𝒯∣፱። [𝑧]𝜃 .

The gradient of the risk is:

𝜕
𝜕𝜃 �̂�𝒯(ℎ ∣ 𝒟𝒮) =

1
𝑛

፧

∑
።዆ኻ
−𝑦።𝔼𝒯∣፱። [𝑧]ዉ +

𝛽።
𝛼።
𝑥ዉ። +

( 𝛾።𝛼።
− 𝛽።𝛿።𝛼ኼ።

)(𝔼𝒯∣፱። [𝑧] − 𝑥።)𝜃 +
𝛽።
𝛼።
(𝔼𝒯∣፱። [𝑧] − 𝑥።)ዉ

1
2(1 −

𝛽ኼ።
𝛼ኼ።
)(𝕍𝒯∣፱። [𝑧] + 𝕍𝒯∣፱። [𝑧]ዉ)𝜃 − (

𝛽ኼ። 𝛿።
𝛼ኽ።

− 𝛽።𝛾።𝛼ኼ።
)𝜃ዉ𝕍𝒯∣፱። [𝑧]𝜃 .
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5
Acquisiࢢon-invariant

representaࢢons

Voxelwise classificaࢡon approaches are popular and effecࢡve methods for ssueࢡ quanࢡfi-
caࢡon in brain magneࢡc resonance imaging (MRI) scans. However, generalizaࢡon of these
approaches is hampered by large differences between sets of MRI scans such as differences
in field strength, vendor or acquisiࢡon protocols. Due to this acquisiࢡon related variaࢡon,
classifiers trained on data from a specific scanner fail or under-perform when applied to
data that was acquired differently. In order to address this lack of generalizaࢡon, we pro-
pose a Siamese neural network (MRAI-NET) to learn a representaࢡon that minimizes the
between-scanner variaࢡon, while maintaining the contrast between brain ssuesࢡ neces-
sary for brain ssueࢡ quanࢡficaࢡon. The proposed MRAI-NET was evaluated on both sim-
ulated and real MRI data. A[er learning the MR acquisiࢡon invariant representaࢡon, any
supervised classificaࢡon model that uses feature vectors can be applied. In this chapter,
we provide a proof of principle, which shows that a linear classifier applied on themrai rep-
resentaࢡon is able to outperform supervised convoluࢡonal neural network classifiers for
ssueࢡ classificaࢡon when li�le target training data is available.

This chapter is based on the paper ”MR acquisiࢢon-invariant representaࢢon learning”.
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5.1. Introducࢢon
Very few of the many medical image analysis algorithms that were proposed in the litera-
ture are applicable in clinical pracࢢce. One of the reasons for this is the complexity of the
medical image data, i.e. the vast amount of variaࢢon that is present in this data. A more
specific example of this, is brain ssueࢢ segmentaࢢon in MRI scans. Many automaࢢc meth-
ods have been proposed [ƈ–қ], but due to a lack of generalizaࢢon, large scale use in clinical
pracࢢce remains a challenge [Ǝ]. In order to test the capacity of algorithms to general-
ize to new data, a representaࢢve sample (dataset) is required. This entails idenࢢfying all
factors of variaࢢon in the data that would influence algorithm performance with respect
to the medical image analysis task at hand. For brain ssueࢢ segmentaࢢon in MRI scans,
we idenࢢfy for example subject related variaࢢon (i.e. pathology, age, ethnicity, gender)
and acquisiࢢon related variaࢢon (i.e. MR field strength, protocol seࢰngs, scanner vendor,
artefacts).

Supervised voxel classificaࢢon approaches have been shown to perform well on small
data sets [ƈƇ–ƈƉ]. However, in order to ensure generalizaࢢon, these algorithms should
be trained and tested on a sufficiently large representaࢢve dataset that covers all possi-
ble types of variaࢢon. This is pracࢢcally infeasible since training and tesࢢng require not
only the MRI scans, but also manual labels as ground truth. The manual segmentaࢢon
process is labor intensive and meࢢ consuming, and adds another layer of variaࢢon due to
non-standardized manual segmentaࢢon protocols and inter- and intra-observer variability.
To address this problem, we propose an alternaࢢve approach, by learning a representa-
onࢢ of the data [ƈƊ] that is invariant to disturbing types of variaࢢon, while preserving the
variaࢢon relevant for the selected classificaࢢon task, i.e. clinically relevant variaࢢon. By re-
ducing undesired variaࢢon, this method has the potenࢢal to decrease the number of fully
labeled samples required for generalizaࢢon and enable broader use of voxel classificaࢢon
approaches.

Overcoming acquisiࢢon-variaࢢon is a relaࢢvely new challenge in medical imaging. One
parࢢcularly interesࢢng approach focuses on weighࢢng classifiers based on how well their
training data matches the test data [ƈƇ, ƈƋ, ƈƌ]. Examples of transfer classifiers include
weighted SVM’s [ƈƇ] and weighted ensembles [ƈƌ]. But these methods are very dataset-
dependent: the classifiers need to be retrained for every new test dataset. Ideally, we
would like to have a method that removes acquisiࢢon-variaࢢon or extracts acquisiࢢon-
invariant features. Domain adaptaࢢon researchers have proposed representaࢢon learning
methods that explicitly maximize ”domain confusion”: if a classifier cannot disࢢnguish be-
tween domains then the representaࢢon is domain-invariant [ƈҚ–ƈқ]. For MRI scans, differ-
ent scanners or acquisiࢢon protocols consࢢtute different data domains. These represen-
taࢢon learning methods are variants of deep neural networks, called domain-adversarial
networks. They have two layers in which a loss funcࢢon is computed: one layer for the
task-dependent loss, such as ssueࢢ or lesion classificaࢢon, and one that maximizes domain
confusion. The networks learn representaࢢons in which the data from each domain over-
laps while the different classes become separable [ƈҚ]. They are adversarial because the
loss layers operate with different objecࢢves, which can make them very difficult to train
[ƈƍ–ƈƎ]. A recent paper has applied domain-adversarial networks to segmenࢢng brain le-
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sions [ƉƇ]. They achieved excellent performance and provided an in-depth analysis of the
adversarial training procedure. However, their networks are sࢢll very task-dependent: the
learned representaࢢonworks well for brain lesion segmentaࢢon but cannot be used for tu-
mor detecࢢon for example. It is not a method for learning a general acquisiࢢon-invariant
representaࢢon.

We propose to learn a general representaࢢon by marking certain factors of variaࢢon as
desirable and others as undesired [Ɖƈ]. Learning a representaࢢon by explicitly minimizing
undesirable factors of variaࢢon while maintaining desirable factors will produce a task-
independent representaࢢon, which can be used for a variety of tasks later on. In order to
minimize certain factors of variaࢢon while maintaining others, we exploit a parࢢcular type
of neural network, referred to as a Siamese network [ƉƉ]. Our work was inspired by the
work of Hadsell [ƉƊ], who used Siamese neural networks to learn a lighࢢng-invariant repre-
sentaࢢon for airplane images in the NORB [ƉƋ] dataset. In this chapter, we aim to provide
a proof of principle for learning anMR-acquisiࢢon invariant (MRAI-NET) representaࢢon for
MR brain ssueࢢ segmentaࢢon.

To test MRAI-NET we simulated MRI data (SIMRI [Ɖƌ–Ɖƍ]) from a ƈ.ƌT scanner and ƊT
scanner based on acquisiࢢon protocols used to acquire real data (Secࢢon ƌ.Ƌ.Ɗ) and real
ssueࢢ segmentaࢢons from healthy adults (Brainweb). In addiࢢonwe used real paࢢent data
(ƊT) as provided byMRBrainS [Ɖқ]. We acknowledge that the simulated data is idealisࢢc as
compared to real paࢢent data. However, experiments in a controlled environment provide
a proof of principle to ensure that themethod is behaving appropriately. Translaࢢon to real
paࢢent data is provided by including theMRBrainS data. For the experiments with the sim-
ulated data (Secࢢon ƌ.Ƌ.Ƌ and ƌ.Ƌ.ƌ), the same subject acquired with different acquisiࢢon
protocols is used. This is however not a prerequisite to train MRAI-NET. For the experi-
ments that use real paࢢent data, different subjects are used. MRAI-NET is not trained by
using ssueࢢ labels, but with patches labeled as similar or dissimilar. Factors of variaࢢon
that should be preserved should be labeled as dissimilar, MRAI-NET will aim to reduce all
other factors of variaࢢon.

5.2.MR acquisiࢢon-invariant network
Neural networks transform data based on minimizing a loss funcࢢon. In supervised neu-
ral networks, labels are used to determine the loss (error between predicࢢon and label).
Many labels are required to learn a task. We aim to use as li�le labels as possible to learn
a representaࢢon in which the variaࢢon over different methods of acquisiࢢon is minimal,
without destroying the variaࢢon relevant to disࢢnguish between brain .ssuesࢢ

The proposed network works as follows. Suppose that we have scans that are acquired
in two different ways (A and B). Possible differences can be in field strength, scanner ven-
dor, acquisiࢢon protocol, and so on. A ssueࢢ patch, for example gray ma�er, is selected
from both scans A and B. The aim is to teach the network that both these patches are gray
ma�er regardless of their acquisiࢢon variaࢢon. Therefore, we use a loss funcࢢon that ex-
presses that in MRAI-NET’s representaࢢon, pairs of samples from the same ssueࢢ but from
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different scanners should be as similar as possible. However, that expression alone would
cause all samples to be mapped to a single point and would destroy variaࢢon between -sࢢ
sues. To balance out the acࢢon of pulling pairs marked as similar together, it is necessary
to push other pairs apart [ƉƊ]. Since we want to maintain the relevant variaࢢon between
,ssuesࢢ we addiࢢonally express that in MRAI-NET’s representaࢢon, pairs from different -sࢢ
sues should retain their dissimilarity. The loss funcࢢon is described in secࢢon ƌ.Ɖ.ƈ. Secࢢon
ƌ.Ɖ.Ɖ describes how pairs of samples are labeled as similar or dissimilar. The Siamese neu-
ral network that is used to learn the acquisiࢢon-invariant representaࢢon is described in
secࢢon ƌ.Ɖ.Ɗ. The network consists of two pipelines with shared weights and a Siamese
loss layer that acts on the output layer of the two pipelines.

5.2.1. Siamese loss
Neural networks transform data in each layer. We summarize the total transformaࢢon
from input to output with the symbol 𝑓, i.e. patch 𝑎 will be mapped to the new represen-
taࢢon with 𝑓(𝑎) and patch 𝑏will be mapped with 𝑓(𝑏). To find an opࢢmal transformaࢢon,
we employ a loss funcࢢon based on distances between pairs of patches in the output rep-
resentaࢢon, i.e. ‖𝑓(𝑎) − 𝑓(𝑏)‖. Pairwise distances are computed through an 𝐿ኻ-norm,
denoted by ‖ ⋅ ‖ኻ. We used an 𝐿ኻ-norm as opposed to for instance an 𝐿ኼ-norm, because
larger values of𝑝 in 𝐿፩-norms either result in problems in high-dimensional spaces or result
in problems with the gradient during opࢢmizaࢢon (see Appendix ƌ.қ).

The loss funcࢢon for the similar pairs consists of the squared distance, ℓsim(𝑓 | 𝑎, 𝑏) =
(‖𝑓(𝑎) − 𝑓(𝑏)‖ኻ)

ኼ. We chose this formulaࢢon in order to express that large distances are
less desirable. The loss funcࢢon for the dissimilar pairs consists of a hinge loss, where the
distance is subtracted from a margin parameter 𝑚 and the negaࢢve values are set to 0:
ℓdis(𝑓 | 𝑎, 𝑏) = max(0,𝑚 − ‖𝑓(𝑎) − 𝑓(𝑏)‖ኻ). Pairs that lie close together will suffer a
loss, while pairs that are pushed sufficiently apart, i.e. past the margin, will not suffer a
loss. We discuss the effect of the margin parameter in Secࢢon ƌ.Ƌ.ƍ.

Each pair of patches is marked with a similarity variable; 𝑦 = 1 for similar and 𝑦 = 0
for dissimilar. Using the similarity label we can combine the similar and dissimilar loss
funcࢢons into a single loss funcࢢon:

ℓ(𝑓 | 𝒟) =∑
።
𝑦። ℓsim (𝑓 | 𝑎። , 𝑏።) + (1 − 𝑦።) ℓdis (𝑓 | 𝑎። , 𝑏።))

=∑
።
𝑦።‖𝑓(𝑎።) − 𝑓(𝑏።)‖ኼኻ + (1 − 𝑦።)max (0,𝑚 − ‖𝑓(𝑎።) − 𝑓(𝑏።)‖ኻ) .

where 𝑖 iterates over pairs and 𝒟 refers to the whole dataset of pairs.
This type of loss funcࢢon is known as a Siamese loss [ƉƉ, ƉƊ]. Note that it is asymmetric:

it penalizes samples from one class differently than samples from another class.

5.2.2. Labeling pairs as similar or dissimilar
As described above, suppose we have two medical images from two different scanners;
A and B. Assume that we have sufficient manual segmentaࢢons (labeled voxels) on scans
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from scanner A, to train a supervised classifier, but a very limited amount of labels from
scanner B, for example 1 labeled voxel per ssueࢢ for 1 subject. The data from scanner Awill
be referred to as the source set, and the data from scanner B as the target set. Let𝐾 be the
set of ssueࢢ labels. The set of patches extracted from Scanner A is denoted {(𝑎፭፧}ፍ፧዆ኻ, and
the set from scanner B is denoted {𝑏፭፦}ፌ፦዆ኻ, with 𝑡 specifying the sample’s .ssueࢢ Given
these two sets of patches, we form sets of similar and dissimilar pairs, with a similarity
label 𝑦. The following pairs are labeled as similar (𝑦 = 1) and therefore will be pulled
closer together:

• Source patches from the same ssueࢢ 𝑘 ∈ 𝐾: {(𝑎፭዆፤ , 𝑎፭዆፤)},

• Source and target patches from the same ssueࢢ 𝑘 ∈ 𝐾: {(𝑎፭዆፤ , 𝑏፭዆፤)},

• Target patches from the same ssueࢢ 𝑘 ∈ 𝐾: {(𝑏፭዆፤ , 𝑏፭዆፤)}.

The subscript 𝑡 = 𝑘 selects all patches that belong to ssueࢢ 𝑘. The following pairs are
labeled as dissimilar (𝑦 = 0) and therefore will be pushed apart:

• Source patches from different ssuesࢢ 𝑘, 𝑙 ∈ 𝐾: {(𝑎፭዆፤ , 𝑎፭዆፥)},

• Source and target patches from different ssuesࢢ 𝑘, 𝑙 ∈ 𝐾: {(𝑎፭዆፤ , 𝑏፭዆፥)},

• Target patches from different ssuesࢢ 𝑘, 𝑙 ∈ 𝐾: {(𝑏፭዆፤ , 𝑏፭዆፥)}.

Figure ƌ.ƈ illustrates the process of selecࢢng pairs of patches from different scanners. Con-
sider a medical image from scanner A and scanner B, with Ɖ GM patches (green), ƈ WM
patch (yellow) and ƈ CSF patch (blue) for each image. Using these patches we can generate
the following pairs: a GM patch from A with another GM patch from A (𝑎፭዆፤ , 𝑎፭዆፤), a GM
patch from A with a GM patch from B (𝑎፭዆፤ , 𝑏፭዆፤), a GM patch from B with another GM
patch from B (𝑏፭዆፤ , 𝑏፭዆፤), a GM patch from A with a CSF patch from A (𝑎፭዆፤ , 𝑎፭዆፥), a GM
patch fromBwith aWMpatch fromB (𝑎፭዆፤ , 𝑏፭዆፥), and a GMpatch fromBwith a CSF patch
from B (𝑏፭዆፤ , 𝑏፭዆፥). The bo�om of the image shows examples of these Қ pairs of patches.

The pairs are concatenated into a dataset𝒟 = {(𝑎። , 𝑏። , 𝑦።)}ፂ።዆ኻ, where 𝑖 iterates over the
pairs. In total, the number of combinaࢢons is 𝐶 = ∑፤∈ፊ(𝑁፤ +𝑀፤)ኼ + ∑(፤,፥)∈(ፊኼ)

(𝑁፤𝑁፥ +
𝑁፤𝑀፥ + 𝑀፤𝑀፥), where 𝑁፤ refers to the number of source patches from the 𝑘-th ssueࢢ
and, likewise,𝑀፤ refers to the number of target patches from the 𝑘-th .ssueࢢ The number
of pairs that can be generated is very large, even when only a small number of patches is
available. For example, taking 10 patches of Ɗ ssuesࢢ from Ƌ source scans and ƈ patch of
Ɗ ssuesࢢ from ƈ target scan, results in 2784 pairs of patches that can be used for training
the deep neural network.
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Figure ƌ.ƈ: Illustraࢢon of extracࢢng pairs of patches from images from scanner A and B. (Top) Each image shows Ƌ
patches: Ɖ gray ma�er ones (green), ƈ cerebrospinal fluid (blue) and ƈ white ma�er (yellow). The lines mark the
Қ types of combinaࢢons from Secࢢon ƌ.Ɖ.Ɖ. Green lines indicate similar pairs and purple lines indicate dissimilar
pairs. (Bo�om) Enlarged patches belonging to the Қ pairs marked in the top images.

5.2.3. Network architecture
Figure ƌ.Ɖ shows a diagram of the network architecture. The network consists of two
pipelines and a Siamese loss layer that acts on the output layers (red nodes). Pairs of
patches enter the input layer (black squares) where they are convolved (blue squares) and
mapped to feature vectors (blue nodes). The final layer is a low-dimensional feature space
(red nodes). The Siamese loss layer (secࢢon ƌ.Ɖ.ƈ) calculates the distance betweeneach pair
in their new representaࢢon and computes the loss based on whether the pair is marked
as similar or dissimilar. The two pipelines share their weights, which means they are con-
strained to perform the same transformaࢢon. During training, the loss is propagated back
through the network, adjusࢢng the network weights.

Width anddepthof the networkmay vary. Wemade the following choices: input patches
are size [15×15] and scanner idenࢢficaࢢon is set to a single variable. The convoluࢢonblock
consists of 8 kernels of size [3 × 3] with a recࢢfying linear unit (ReLU) acࢢvaࢢon funcࢢon
and a max-pooling layer of size [2 × 2]. The output of these operaࢢons is fla�ened and
the scanner ID (0 for source, 1 for target) is appended. The scanner ID ensures that regions
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of different ssuesࢢ in different scanners do not overlap in the input space. The fla�ened
and pooled convoluࢢonal layer output, plus the scanner ID is then densely mapped to a
ƈҚ-dimensional representaࢢon. A dropout noise of size 0.2 is set for each edge. This 16-
dimensional representaࢢon is then densely mapped, again with a dropout of 0.2, to an
8-dimensional representaࢢon, which is finally mapped to a 2-dimensional representaࢢon.
We chose a final representaࢢon of Ɖ dimensions because this allows for sca�er plot visu-
alizaࢢons.

[15x15]+1 [3x3]x8 0.2 16 0.2 8 2

Figure ƌ.Ɖ: Schemaࢢc of MRAI-NET’s architecture. Pairs of patches are fed into two pipelines that share parame-
ters (i.e. produce the same mapping). The red nodes depict the representaࢢon in the final layer, while the green
node depicts the loss funcࢢon.

Our method is implemented in a combinaࢢon of Tensorflow¹ and Keras² [ƉƎ, ƊƇ]. This
proof of principle uses a Ƌ-layer hybrid convoluࢢonal-dense network for the pipeline. How-
ever, the network architecture can be changed. Variaࢢons involve, for example, more lay-
ers, wider layers, larger convoluࢢon kernels, and heavier max-pooling. See Secࢢon ƌ.Ƌ.Қ
for an experiment that varies the layer widths in the network.

Regularizaࢢon
During training, we apply an 𝑙ኼ-regularizaࢢon of 0.001 to every layer with weights. Regu-
larizaࢢon punishes the size of the weights, which prevents model over-complexity. In our
experiments, the regularizaࢢon parameter could be increased or decreased by two orders
of magnitude with li�le effect on the networks performance. It is however always neces-

¹https://www.tensorflow.org/
²https://keras.io/

https://www.tensorflow.org/
https://keras.io/
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sary to include some regularizaࢢon as there is not only the danger of overfiࢰng to training
data but also the danger of overfiࢰng to the specific target subject used for training.

Opࢢmizaࢢon
All experiments in this chapter are performed with the default backpropagaࢢon algorithm
”RMSprop”, which normalizes the gradient update with a running average of itself [Ɗƈ]. Its
default parameters are: a learning rate of Ƈ.ƇƇƈ, a 𝜌 of Ƈ.Ǝ, an 𝜖 of ƈe-Ƈқ, and a weight de-
cay factor of Ƈ.Ƈ (see [Ɗƈ] for more details on opࢢmizer parameters). RMSprop is based on
stochasࢢc gradient descent, which splits the dataset into batches andupdates the networks
parameters a[er processing each batch. An epoch is the number of mesࢢ the opࢢmizaࢢon
procedure splits the training set into batches. The number of epochs cannot be too large,
otherwise the network starts to overfit to the specific target subject from which the target
patches originated.

During experimentaࢢon we found that it is important that the batches are well-mixed
with respect to the Қ types of pairs outlined in Secࢢon ƌ.Ɖ.Ɖ. If this is not the case, such as
when one batch mostly consists of similar gray-ma�er patches and another batch consists
mostly of dissimilar gray-ma�er / white-ma�er patches, then the network tends to push
and pull in the same direcࢢon. These acࢢons cancel each other out. The overall effect of
having too many uniform batches is that the opࢢmizaࢢon procedure is slowed down.

5.3. Tissue segmentaࢢon
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(a) Representaࢢon before training.
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(b) Representaࢢon a[er training.

Figure ƌ.Ɗ: Conceptual visualizaࢢon of MRAI-NET’s training procedure: the network pulls the similar pairs (green
lines) closer together and pushes dissimilar pairs (purple lines) apart unࢢl it learns a representaࢢon in which the
variaࢢon between scanners is minimal while the variaࢢon between ssuesࢢ is maintained.

Figure ƌ.Ɗ illustrates the training procedure of MRAI-NET. Once it is trained and an MR
acquisiࢢon-invariant representaࢢon is learned, it can be used as a preprocessing step for
ssueࢢ segmentaࢢon (Figure ƌ.Ƌ). Because of the sharedweights, either one of the pipelines
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can be used to transform the input patches intoMRAI-NET’s representaࢢon. Input patches
from both the source and target scanner can be fed into the network, and any supervised
classificaࢢon model that uses feature vectors can subsequently be trained to disࢢnguish
ssuesࢢ in the acquisiࢢon-invariant representaࢢon. Once the supervised classifier is trained,
both the trained MRAI-NET and the trained supervised classifier are used to segment a
new image. This is done by feeding a new patch through MRAI-NET and leࢰng the ssueࢢ
classifier predict the label in the MR acquisiࢢon invariant space. In this way, MRAI-NET
acts as a preprocessing step to ensure that acquisiࢢon-based variaࢢon does not affect the
ssueࢢ classifier.

Figure ƌ.Ƌ: A dataset of ssue-labeledࢢ single patches is fed throughMRAI-NET and represented in the acquisiࢢon-
invariant space. Subsequently, a classifier is trained to disࢢnguish .ssuesࢢ A new image is decomposed into
patches and fed through the network as well. The trained ssueࢢ classifier thenmakes a predicࢢon for each patch.
The predicࢢons are then reshaped back into an image, resulࢢng in the ssueࢢ segmentaࢢon.

5.4. Evaluaࢢng representaࢢons
Since the aim of MRAI-NET is to preserve variaࢢon between ssuesࢢ while reducing the MR
acquisiࢢon related variaࢢon, two different measures of performance are used to evaluate
MRAI-NET. MR acquisiࢢon invariance is measured with the proxy 𝒜-distance that mea-
sures the distance between the source and target scanner patches, as described in secࢢon
ƌ.Ƌ.ƈ. The preservaࢢon of ssueࢢ variaࢢon is measured using the ssueࢢ classificaࢢon perfor-
mance, and compared to supervised classificaࢢon with CNN (Secࢢon ƌ.Ƌ.Ɖ). Secࢢon ƌ.Ƌ.Ɗ
describes the simulated (Brainweb ƈ.ƌT, BrainwebƊ.ƇT) and real data (MRBrainS) used for
the experiments. For each experiment a source and target domain was specified. Four
source subjects (ƈƇƇ random patches per (ssueࢢ and ƈ target subject (ƈ-ƈƇƇƇ patches per
ssueࢢ depending on experiment) were used for training. Four independent target subjects
(ƈƇƇ random patches per (ssueࢢ were used for tesࢢng.

In total, we set up four experiments: ƈ) Only ƈ patch per ssueࢢ from the target domain
subject is used for training both the supervised CNNs (source, target) as well as MRAI-
NET followed by a linear classifier on the simulated data (Brainwebƈ.ƌT, BrainwebƊ.ƇT), Ɖ)
Mulࢢple target training samples per ssueࢢ (randomly selected with ƌƇ repeats) are used
for training the source, target, andMRAI-NET classifiers for both simulated (BrainwebƊ.ƇT)
and real paࢢent data (MRBrainS). The first experiment (Secࢢon ƌ.Ƌ.Ƌ) was set-up to test
if only ƈ target patch per ssueࢢ would be sufficient in order to learn an MR-acquisiࢢon
invariant representaࢢon. If so, then calibraࢢng a supervised segmentaࢢon algorithm for a
new scanner using MRAI-NET would require only three clicks in one scan acquired with a
new scanner. The second experiment (Secࢢon ƌ.Ƌ.ƌ) illustrates the performance of MRAI-
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NET compared to the target, and MRAI-NET classifiers when adding more target training
samples (Figure ƌ.ƍ). Results of using ƈ patch per ssueࢢ and ƈƇƇ patches per ssueࢢ from
the target subject for training are shown in Figures ƌ.қ-ƌ.ƈƇ. The third experiment (Secࢢon
ƌ.Ƌ.Қ) looks at the performanceof the network ifwe vary the number of convoluࢢon kernels
and the number of nodes in the dense layers. For the seࢰng where Brainwebƈ.ƌT is the
source scanner and BrainwebƊ.ƇT is the target scanner, the network will keep gaining in
performance at the cost of adding tens of thousands more parameters. Finally, the fourth
experiment (Secࢢon ƌ.Ƌ.ƍ) shows the influence of the margin parameter on the Siamese
loss funcࢢon. If the margin parameter is set too low, ssueࢢ variaࢢon will not be preserved.
On the other hand, if the margin parameter is set too high the acquisiࢢon variaࢢon will not
be reduced. The next two secࢢons describe how these two types of variaࢢon aremeasured.

5.4.1.MR acquisiࢢon invariance measure
Theℋ-divergence can be used as a measure of the discrepancy between the source and
target scanner data sets [ƊƉ–ƊƋ]. This divergence relies on the ability of a classifier to disࢢn-
guish between domains. If a classifier is not able to disࢢnguish source from target, i.e. has
a test error of 1/2, then invariance is achieved. Unfortunately, the originalℋ-divergence
is a measure between distribuࢢons and not samples. Since we only have samples, we use
its proxy instead: the𝒜-distance [ƊƊ, ƊƋ], as used in [ƈқ]. The proxy𝒜-distance, denoted
by 𝑑𝒜 , is defined as follows:

𝑑𝒜(𝑥, 𝑧) = 2(1 − 2𝑒(𝑥, 𝑧)) , (ƌ.ƈ)

where 𝑒 represents the test error of a classifier trained to discriminate source samples 𝑥
from target samples 𝑧. If the source and target data lie far apart, the error will be close
to 0, i.e. perfect separability, and the proxy 𝒜-distance will be close to 2. If the source
and target data overlap, the error will be around 0.5, i.e. no separability (invariance), and
the proxy𝒜-distance will approach 0. We use a linear support vector machine (SVM) as
domain classifier.

5.4.2.Measure of preserving ssueࢢ variaࢢon
The ssueࢢ classificaࢢon error is used as ameasure of ssueࢢ variaࢢon preservaࢢon. The aim
is to learn a linearly separable representaࢢon with MRAI-NET, to aid the number of meth-
ods that can be used for classificaࢢon. Therefore, we evaluate the ssueࢢ classificaࢢon er-
ror of the samples in the acquisiࢢon-invariant representaࢢon with a logisࢢc regressor. The
classifier is ℓኼ-regularized and cross-validated for opࢢmal regularizaࢢon parameters. This
classifier MRAI-NET, based on MRAI-NET, is compared to two other supervised classifiers:
ƈ) source classifier: a convoluࢢonal-dense neural network (CNN) trained on samples from
the source (Ƌ subjects) and target data (ƈ subject), and Ɖ) target classifier: a CNN trained on
samples from the target data (ƈ subject). In order to ensure that differences in performance
between source, MRAI-NET and target are not due to differences between classifiers, the
network architecture from MRAI-NET (Figure ƌ.Ɖ) was used for the source and target clas-
sifiers as well.
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5.4.3.MRI-scan data sets
To be able to provide a proof of principle, we simulated different MR acquisiࢢons from
various anatomical models of the human brain [Ɖƍ, Ɗƌ], using an MRI simulator (SIMRI
[Ɖƌ–Ɖƍ]). The anatomical models consist of transverse slices of ƉƇ normal brains and are
publicly available through Brainweb³. Thesemodels were used as input for theMRI simula-
tor. For the experiments, we simulated two acquisiࢢon types: 1) Brainwebƈ.ƌT, a standard
gradient-echo acquisiࢢon protocol for a ƈ.ƌ Tesla scanner (c.f. [ƊҚ]), and 2) BrainwebƊ.ƇT,
a standard gradient-echo protocol for a Ɗ.Ƈ Tesla scanner (c.f. [Ɖқ]). Table ƌ.ƈ describes the
parameters used for the simulaࢢon: magneࢢc field strength (BƇ), flip angle (𝜃), repeࢢࢢon
meࢢ (TR), echo meࢢ (TE).Magneࢢc field inhomogeneiࢢes and voxel inhomogeneity (parࢢal
volume effects) were not included in the simulaࢢon.

Table ƌ.ƈ: SIMRI Acquisiࢢon parameters for the simulaࢢon of the Brainwebƈ.ƌT and BrainwebƊ.ƇT data sets.

BƇ 𝜃 TR TE
Brainwebƈ.ƌT ƈ.ƌ Tesla 20∘ ƈƊ.қ ms Ɖ.қ ms
BrainwebƊ.ƇT Ɗ.Ƈ Tesla 90∘ ƍ.Ǝ ms Ƌ.ƌ ms

Appendix ƌ.ƍ describes the nuclear magneࢢc resonance (NMR) relaxaࢢon mesࢢ for the
ssuesࢢ in the Brainweb anatomical models, for ƈ.ƌ and Ɗ.Ƈ Tesla field strengths. The ssuesࢢ
in the anatomicalmodels are grouped into ”background” (BKG), ”cerebrospinal fluid” (CSF),
”gray ma�er” (GM), and ”white ma�er” (WM) to compose the ground truth segmentaࢢon
labels for the simulated scans. The simulaࢢons result in images of ƉƌҚ by ƉƌҚ pixels, with
a ƈ.Ƈxƈ.Ƈmm resoluࢢon. Figures ƌ.ƌa and ƌ.ƌb show examples of the Brainwebƈ.ƌT and
BrainwebƊ.ƇT scan of the same subject. For all scans, we used a brain mask to strip the
skull.

(a) Brainwebƈ.ƌT (b) BrainwebƊ.ƇT (c) MRBrains

Figure ƌ.ƌ: Example of an MRI scan of a Brainweb anatomical model simulated with SIMRI with a ƈ.ƌT protocol (a)
and a Ɗ.ƇT protocol (b), and a real paࢢent scan (MRBrainS) acquired with a Ɗ.ƇT protocol (c).

In order to test the proposed method on real data, we use the publicly available training
data (ƌ subjects) from the MRBrainS challenge⁴. The acquisiࢢon parameters used for sim-
ulaࢢng the BrainwebƊ.ƇT are based on the MRBrainS acquisiࢢon protocol (Ɗ.ƇT scanner,
³http://www.bic.mni.mcgill.ca/brainweb/
⁴http://mrbrains13.isi.uu.nl/Figure

http://www.bic.mni.mcgill.ca/brainweb/
http://mrbrains13.isi.uu.nl/Figure
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gradient-echo, BƇ = Ɗ.ƇT, 𝜃 = 90∘ flip angle, TE = Ƌ.ƌms, and TR = ƍ.Ǝms). Figure ƌ.ƌc shows
an example of an MRBrainS scan. Again, a brain mask is used to strip the skull.

5.4.4. One target label per ssueࢢ
The first experiment with the simulated data tests the scenario described at the beginning
of this secࢢon: suppose a supervised classificaࢢon algorithm trained on one scanner needs
to be calibrated for a new scanner, would this be possible with three clicks (ƈ for each
ssueࢢ type) using MRAI-NET? To study this, we manually selected ƈ patch for each ssueࢢ
in the target scan (ƈ subject) and used this data to train MRAI-NET. Once MRAI-NET has
been trained and an acquisiࢢon-invariant representaࢢon has been learned, we compute
the proxy𝒜-distance and perform a ssueࢢ classificaࢢon experiment.

For compuࢢng the proxy 𝒜-distance, we used scans from ƈƇ source subjects and ƈƇ
target subjects that had been held back (i.e. we did not draw samples from them to either
train MRAI-NET or train any of the ssueࢢ classifiers). We randomly drew ƌƇ patches per
ssueࢢ from each subject, resulࢢng in two sets of ƈƌƇƇ patches. These patches were fed
into MRAI-NET which mapped them to the new acquisiࢢon-invariant representaࢢon. The
datasets were labeled 0 and 1 for source and target. Next, we trained a linear classifier
with ƌ-fold cross-validaࢢon to obtain a test error on data set discriminaࢢon. Finally, using
this test error and Equaࢢon ƌ.ƈ, we computed the proxy𝒜-distance.

For evaluaࢢng the ssueࢢ classificaࢢon performance, we used scans from ƈƇ target sub-
jects that had been held back. From these ƈƇ scans, we drew ƌƇ patches per ssueࢢ at
random, for a total of ƈƌƇƇ patches. We computed the error rate by compuࢢng the pro-
porࢢon of wrong predicࢢons on this test set. We trained the following three classifiers
(described in Secࢢon ƌ.Ƌ.Ɖ): firstly, the source classifier (CNN) was trained on images from
the source dataset, and applied to the test set to make predicࢢons. Secondly, we trained a
linear classifier on the source datamapped toMRAI-NET’s representaࢢon. Wemapped the
test data to MRAI-NET’s representaࢢon as well and applied the trained linear classifier to
make predicࢢons. Its performance on the test set is indicated with MRAI-NET in Table ƌ.Ɖ.
The target classifier (CNN) was applied to the available target patches. In this experiment,
there were Ɗ target patches in total, which is far too li�le data to train such a large convo-
luࢢonal network. We included its performance to indicate that using the target classifier
in this kind of situaࢢon is not a sensible opࢢon.

For comparison, we performed the same experiment but with randomly selected tar-
get patches. Table ƌ.Ɖ lists the ssueࢢ classificaࢢon errors of the three classifiers and the
proxy𝒜-distance between the source and target patches before (raw) and a[er (rep) ap-
plying MRAI-NET. The whole experiment was repeated ƈƇ mesࢢ and the average error rate
is reported with the standard error of the mean between brackets.

Figure ƌ.Қ displays the manually selected patches and their posiࢢon within the image.
For both the source and target classifier, one target patch per ssueࢢ is insufficient to achieve
good ssueࢢ classificaࢢon performance (ƌ.Ɖ (top row): Ƈ.ҚƊƈ and Ƈ.ҚƈƊ). However, the
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Table ƌ.Ɖ: Manually versus randomly selecࢢng ƈ target patch per ssueࢢ from ƈ subject. (Le[) Tissue classifica-
onࢢ error is reported for MRAI-NET (linear classifier a[er MRAI-NET), source (supervised CNN trained on source
patches and ƈ target patch per ,(ssueࢢ and target (supervised CNN trained on ƈ target patch per (ssueࢢ tested
on the target test data. (Right) Proxy𝒜-distance between the original source and target patches (raw) and the
source and target patches a[er applying MRAI-NET (rep).

source MRAI-NET target
manual Ƈ.ҚƊƈ (.ƇƉ) Ƈ.ƉƉƊ (.Ƈƈ) Ƈ.ҚƈƊ (.Ƈƈ)
random Ƈ.ҚҚƍ (.ƇƉ) Ƈ.ƉƌƇ (.ƇƉ) Ƈ.ҚƈƇ (.ƇҚ)

raw rep
ƈ.ққ (.Ƈƈ) Ƈ.ƉҚ (.Ƈƌ)
ƈ.Ǝƈ (.Ƈƈ) Ƈ.Ƌƈ (.ƇҚ)

MRAI-NET classifier shows considerably be�er performance (Ƈ.ƉƉƊ), using only one tar-
get patch per .ssueࢢ The proxy𝒜-distance also drops from near perfect separability (ƈ.ққ)
to near invariance (Ƈ.ƉҚ). Randomly selecࢢng (ƈƇ repeats) ƈ target patch per ssueࢢ (Ta-
ble ƌ.Ɖ (bo�om row)), shows worse performance of the MRAI-NET classifier, for both the
classificaࢢon error (Ƈ.ƉƌƇ) as well as the𝒜-distance (Ƈ.Ƌƈ). Suggesࢢng that purposive (in-
formaࢢon rich) sampling beats random sampling in this case.

Figure ƌ.Қ: Locaࢢons of the manually selected target patches (red squares): Blue = cerebrospinal fluid, green =
gray ma�er, yellow = white ma�er.

5.4.5.Mulࢢple target labels per ssueࢢ
The second experiment tests the performance when adding more target training samples,
for both simulated (BrainwebƊ.ƇT) and real paࢢent data (MRBrainS). We set-up the follow-
ing sub-experiments:

Ɖ.ƈ) Experiment on simulated data with two different acquisiࢢon protocols (Source:
Brainwebƈ.ƌT, Target: BrainwebƊ.ƇT).

Ɖ.Ɖ) Experiment on ƈ.ƌT simulated data and Ɗ.ƇT real data (Source: Brainwebƈ.ƌT,
Target: MRBrainS).

Ɖ.Ɗ) Experiment on Ɗ.ƇT simulated data and Ɗ.ƇT real data (Source: BrainwebƊ.ƇT,
Target: MRBrainS).

Each of these experiments is repeated ƌƇ .mesࢢ Figure ƌ.ƍ shows the performance (both
ssueࢢ classificaࢢon error as well as proxy𝒜-distance) as a funcࢢon of the number of used
target training samples. The average error (solid line) and the standard error of the mean
(line thickness) is shown, ranging from using ƈ target patch up to more than ƈƇƇƇ target
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patches per ssueࢢ for training both the supervised CNNs (source, target) as well as the
MRAI-NET followed by a linear classifier (MRAI-NET).

Figure ƌ.ƍ: Graphs showing the effect of adding labeled samples from the target scanner for training the networks.
(Le[) Proxy A-distance between source and target scanner patches before (red) and a[er (blue) learning the mrai
representaࢢon (smaller distance is more acquisiࢢon-invariance). (Right) Tissue classificaࢢon error for the three
classifiers source (supervised CNN trained on patches from source and target), MRAI-NET (supervised SVM trained
on the source and target data mapped to MRAI-NET’s representaࢢon) and target (supervised CNN trained on
target patches). Note that when the proxy𝒜-distance between the source and target data before MRAI-NET is
small (red line exp Ɖ.Ɗ), the source data is representaࢢve of the target data (both ƊT data), and the source ssueࢢ
classifier (purple) shows be�er performance than using the target ssueࢢ classifier (cyan) with a small amount of
target samples. However, if the proxy𝒜-distance is large (exp Ɖ.ƈ and Ɖ.Ɖ) before MRAI-NET (red line), the source
ssueࢢ classifier (purple) shows worse performance than the target ssueࢢ classifier (cyan) with a small amount of
target samples, since the source data (ƈ.ƌT) is not representaࢢve of the target data (ƊT).

Figure ƌ.ƍ (le[) shows the proxy𝒜-distance between the source and target samples for
all three experiments. The proxy 𝒜-distance for experiments Ɖ.ƈ and Ɖ.Ɖ shows that in
the original representaࢢon (raw; red line), the source and target distribuࢢons lie far apart
(proxy 𝒜-distance approaches 2). This illustrates the difference in acquisiࢢon protocol
(ƈ.ƌT versus Ɗ.ƇT). A[er applying MRAI-NET (rep; blue line) the proxy 𝒜-distance drops
drasࢢcally (approaches 0) showing that the network managed to learn an MR-acquisiࢢon
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invariant representaࢢon. Adding more target training samples improves the invariance up
to about ƈƇƇ samples, but the proxy𝒜-distance is already quite low a[er only using ƈ target
sample per ssueࢢ type for training. In experiment Ɖ.Ɗ the proxy𝒜-distance before applying
MRAI-NET (raw) is already much lower than in the previous two experiments (around 0.5),
this illustrates that the acquisiࢢon protocols are more similar to begin with (both Ɗ.ƇT).
The main difference between the distribuࢢons presumably results from simulated versus
real data, since not all factors of acquisiࢢon variaࢢon are included in the simulaࢢons, most
notably parࢢal volume (Ƈ.ƎҚxƇ.ƎҚxƊmm voxels in MRBrainS versus no parࢢal volume in
Brainweb). However, a[er applying MRAI-NET the proxy 𝒜-distance is reduced further
(approaches 0), again showing that MRAI-NET is able to learn an MR-acquisiࢢon invariant
representaࢢon (rep) on this data, even for simulated and real data. Note that theMRBrainS
data adds other modes of variaࢢon in terms of pathology and age in comparison to the
Brainweb healthy adults, which could influence the ssueࢢ classificaࢢon performance.

(a) Scan (b) source (ƈ TP) (c) MRAI-NET (ƈ TP) (d) target (ƈ TP)

(e) Ground truth (f) source (ƈƇƇ TPs) (g) MRAI-NET (ƈƇƇ TPs) (h) target (ƈƇƇ TPs)

Figure ƌ.қ: Example brain ssueࢢ segmentaࢢons into white ma�er (yellow), gray ma�er (green) and cerebrospinal
fluid (blue) for experiment Ɖ.ƈ (Source: Brainwebƈ.ƌT, Target: BrainwebƊ.ƇT). A simulated MRI scan of a test sub-
ject from BrainwebƊ.ƇT (a) is shown, with corresponding ground truth segmentaࢢon (e), and the results of apply-
ing the source (b,f), target (d,h) and proposed MRAI-NET (c,g) classifiers, with either ƈ or ƈƇƇ target patches per
ssueࢢ type used for training the classifiers (Figure ƌ.ƍ).

Figure ƌ.ƍ (right) shows the ssueࢢ classificaࢢon error for all three experiments. If the
proxy𝒜-distance between the source and target distribuࢢon is high (experiment Ɖ.ƈ and
Ɖ.Ɖ), and when using only one target sample per ,ssueࢢ the source classifier that uses both
the source data and target data for training shows worse performance than the one that
uses only the target data (target); an error of Ƈ.ҚҚƍ versus Ƈ.ƌƎƈ, respecࢢvely. Even when
adding more target samples for training, the results show that it is more beneficial to train
a supervised classifier on the target data alone, instead of on both the source and target
data; using ƈƇ target samples for training, source achieves an error of Ƈ.ҚҚƉ versus an error
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of Ƈ.ƋƇƊ for target. The source classifier is focused on its source samples, which in this case
are not informaࢢve of the target data. Given enough target samples, however, source starts
to shi[ focus towards its target data and starts tomatch the performance of target: for ƈƇƇ
target samples, errors of Ƈ.ƉƈƊ versus Ƈ.ƉƇƌ respecࢢvely. If the proxy𝒜-distance between
the source and target distribuࢢons is low (distribuࢢons are more similar; experiment Ɖ.Ɗ),
using the source data for training is beneficial; for ƈ target sample per ssueࢢ source achieves
an error of Ƈ.ƋƊƌ and target an error of Ƈ.ƌƎҚ. In this case, the source samples are more
representaࢢve of the target data and are aiding the classifier. In general, the MRAI-NET
classifier outperforms both the source and target classifiers: an error of Ƈ.ƉҚƎ for ƈ sample,
Ƈ.ƈƍƌ for ƈƇ samples and Ƈ.ƈƈƈ for ƈƇƇ samples. MRAI-NET’s representaࢢon ensures that the
source and target samples are more similar and that the source samples can be effecࢢvely
used for training.

(a) Scan (b) source (ƈ TP) (c) MRAI-NET (ƈ TP) (d) target (ƈ TP)

(e) Ground truth (f) source (ƈƇƇ TPs) (g) MRAI-NET (ƈƇƇ TPs) (h) target (ƈƇƇ TPs)

Figure ƌ.Ǝ: Example brain ssueࢢ segmentaࢢons into white ma�er (yellow), gray ma�er (green) and cerebrospinal
fluid (blue) for experiment Ɖ.Ɖ (Source: Brainwebƈ.ƌT, Target: MRBrainS). A simulated MRI scan of a test subject
from MRBrainS (a) is shown, with corresponding ground truth segmentaࢢon (e), and the results of applying the
source (b,f), target (d,h) and proposed MRAI-NET (c,g) classifiers, with either ƈ or ƈƇƇ target patches per ssueࢢ
type used for training the classifiers (Figure ƌ.ƍ).

Examples of the segmentaࢢon results on one of the target test images are shown in Fig-
ure ƌ.қ for experiment Ɖ.ƈ, Figure ƌ.Ǝ for experiment Ɖ.Ɖ, and Figure ƌ.ƈƇ for experiment Ɖ.Ɗ.
Examples are shown a[er using ƈ target patch per ssueࢢ for training, and a[er using ƈƇƇ
target patches per ssueࢢ for training. The results show that only the MRAI-NET classifier is
able to predict a segmentaࢢon that approaches the ground truth with only ƈ target patch
per ssueࢢ for training (error for experiment Ɖ.ƈ = Ƈ.ƉҚƎ, experiment Ɖ.Ɖ = Ƈ.ƋƇƊ, experiment
Ɖ.Ɗ = Ƈ.ƊƉƇ), while the source and target classifiers cannot (source error for experiment Ɖ.ƈ
= Ƈ.ҚҚƍ, experiment Ɖ.Ɖ = Ƈ.ҚƌƊ, experiment Ɖ.Ɗ = Ƈ.ƋƊƌ; target error for experiment Ɖ.ƈ:
Ƈ.ƌƎƈ, experiment Ɖ.Ɖ: Ƈ.ҚƈƋ, experiment Ɖ.Ɗ = Ƈ.ƌƎҚ). A[er using ƈƇƇ patches the source
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and target classifiers can predict a gross segmentaࢢon of WM, GM and CSF (source error
for experiment Ɖ.ƈ = Ƈ.ƉƈƊ, experiment Ɖ.Ɖ = Ƈ.ƊқƋ, experiment Ɖ.Ɗ = Ƈ.ƊҚƊ; target error
for experiment Ɖ.ƈ: Ƈ.ƉƇƌ, experiment Ɖ.Ɖ: Ƈ.ƊҚқ, experiment Ɖ.Ɗ = Ƈ.ƊҚқ), but the MRAI-
NET classifier predicࢢon shows more details and a lower ssueࢢ classificaࢢon error (error
for experiment Ɖ.ƈ = Ƈ.ƈƈƈ, experiment Ɖ.Ɖ = Ƈ.ƉƍҚ, experiment Ɖ.Ɗ = Ƈ.ƉқƋ).

(a) Scan (b) source (ƈ TP) (c) MRAI-NET (ƈ TP) (d) target (ƈ TP)

(e) Ground truth (f) source (ƈƇƇ TPs) (g) MRAI-NET (ƈƇƇ TPs) (h) target (ƈƇƇ TPs)

Figure ƌ.ƈƇ: Example brain ssueࢢ segmentaࢢons intowhitema�er (yellow), grayma�er (green) and cerebrospinal
fluid (blue) for experiment Ɖ.Ɗ (Source: BrainwebƊ.ƇT, Target: MRBrainS). A simulated MRI scan of a test subject
from MRBrainS (a) is shown, with corresponding ground truth segmentaࢢon (e), and the results of applying the
source (b,f), target (d,h) and proposed MRAI-NET (c,g) classifiers, with either ƈ or ƈƇƇ target patches per ssueࢢ
type used for training the classifiers (Figure ƌ.ƍ.

5.4.6. Number of network parameters
Seࢰngneural network hyperparameters, such as the number of convoluࢢon kernels to use,
is always a tricky issue. The opࢢmal parameter is different for each dataset, which means
there are no easy defaults. In order to get some insight into the behavior of the network for
different choices of hyperparameters, we performed an addiࢢonal experiment. We used
experiment Ɖ.ƈ’s seࢰng: Brainwebƈ.ƌT as source and BrainwebƊ.ƇT as target.

MRAI-NET has three layers with parameters: a convoluࢢon layer and two dense layers.
We varied the number of kernels in the convoluࢢon layer and the number of nodes in
the dense layers. We use the following sets of hyperparameters: [Ɖ kernels, Ƌ nodes, Ƌ
nodes], [Ƌ kernels, қ nodes, Ƌ nodes], [қ kernels, ƈҚ nodes, қ nodes], [ƈҚ kernels, ƊƉ nodes,
ƈҚ nodes], [ƊƉ kernels, ҚƋ nodes, ƊƉ nodes] and [ҚƋ kernels, ƈƉқ nodes, ҚƋ nodes] (i.e.
the layer widths double each .(meࢢ The total number of parameters are ƊƉƉ, ƈƉƌƋ, ƋқƍƋ,
ƈƎƉƈқ, ƍҚƊƉƉ, and ƊƇƋƈƎƋ, respecࢢvely. We used ƈƇ labeled target patches per classes,
fromwhich we generated ƈқƇƇƇ pairs of patches. The network was trained for ƊƉƇ epochs
and the experiment was repeated ƉƇ mesࢢ to obtain standard errors of the means. Figure



5

136 5. Acquisiࢢon-invariant representaࢢons

ƌ.ƈƈ shows the results: the le[ figure looks at the proxy 𝒜-distance as a funcࢢon of the
number of parameters and the right figure looks at the ssueࢢ classificaࢢon error of a linear
classifier trained on the resulࢢng representaࢢon. For the proxy 𝒜-distance, the graphs
show a steady decrease in distance and then roughly levels off a[er [қ, ƈҚ, қ]. This result
indicates that an extremely wide MRAI-NET (i.e. [ҚƋ, ƈƉқ, ҚƋ]) will sࢢll be able to reduce
acquisiࢢon variaࢢon. As for the ssueࢢ classificaࢢon error, the thin network (i.e. [Ɖ, Ƌ, Ɖ])
starts out with a average error rate of Ƈ.Ɖқ (underfiࢰng) and drops immediately to Ƈ.ƈқ
for [Ƌ, қ, Ƌ]. A[erwards, it slowly increases to Ƈ.ƈƎ. This indicates that the network is
not overfiࢰng too drasࢢcally yet, which is probably due to the regularizaࢢon (see Secࢢon
ƌ.Ɖ.Ɗ). However, the graph does indicate that its error rate will go up if the number of
parameters is increased further.

Figure ƌ.ƈƈ: MRAI-NET’s performance as a funcࢢon of layer widths. (Le[) The proxy𝒜-distance. (Right) The ssueࢢ
classificaࢢon error obtained through a linear classifier trained on data inMRAI-NET’s representaࢢon. Both graphs
show a slow gain in performance as the number of parameters grows.

5.4.7. Effect of the margin parameter
Themargin parameter𝑚 in the dissimilar loss funcࢢon, ℓdis(𝑓|𝑎, 𝑏) =max(0,𝑚−‖𝑓(𝑎)−
𝑓(𝑏)‖፩), is important as it balances the acࢢons of pushing and pulling between pairs. For
small values, ℓdis will be much smaller than ℓsim and the network will focus on pulling pairs
together. For large values, ℓdis will always be much larger than ℓsim and network will focus
on pushing pairs apart. Figure ƌ.ƈƉ plots a syntheࢢc data seࢰng with the outcome of using
three different values for the margin parameter. The le[ figure shows two syntheࢢc Ɖ-
dimensional data sets, one with red versus blue crosses and the other with red versus
blue squares. The right figures show validaࢢon samples fed through three networks with
different values for the margin parameter. Firstly, the right top figure displays the result
of using a margin parameter of 0: the network does not suffer any loss by making pairs
of samples of different ssuesࢢ too similar and consequently maps everything to a single
point. Secondly, the right middle figure shows an appropriate choice for themargin, where
the two data sets overlap and where red and blue points are separated. Lastly, the right
bo�om figure shows what happens when a large margin parameter is used: it focuses
almost enࢢrely on separaࢢng red versus blue and is not making the data sets more similar.
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Figure ƌ.ƈƉ: Effect of the margin hyperparameter. (Le[) Two syntheࢢc binary data sets, with markers indicaࢢng
scanners and colors .ssuesࢢ (Right) Representaࢢon found by a network with a margin of Ƈ (top), a margin of ƈ
(middle) and a margin of ƈƇ (bo�om).

Addiࢢonally, the opࢢmal value for the margin parameter is affected by the number of
similar versus dissimilar pairs. If there are twice as many similar pairs, then their loss will
be twice as large as well and the network will focus more on pulling pairs together. Overall,
the more similar pairs there are, the larger the margin parameter will need to be.

5.5. Discussion
We proposed a method to learn an MRI scanner acquisiࢢon-invariant representaࢢon that
preserves the variaࢢon between brain ssuesࢢ for segmentaࢢon. Once the representaࢢon
is learned using MRAI-NET, any supervised classificaࢢon model that uses feature vectors
can be used to classify the brain .ssuesࢢ The proposed method addresses the problem
that the difference between scans acquired with two different MRI scanners or protocols
can be so large that scans from one scanner are not representaࢢve of scans from another
scanner. This difference does not affect assessment by human vision (e.g. radiologists can
perform diagnosࢢc work-up on both), but it does affect computer vision. To get insight into
the difference between scans and to assess the performance of MRAI-NET to reduce this
difference (achieve invariance), the proxy𝒜-distance measure between source and target
patches was used. The experiments (Figure ƌ.ƍ) show that this is a good measure to deter-
mine the difference between source and target acquisiࢢon, and might be used to predict
classifier performance of a source classifier. Note that this measure does not require any
ssueࢢ labels, and can thus be used as a general measure of distance between scanners. It
merely requires source patches to be labeled as source, and target patches to be labeled
as target. When the proxy𝒜-distance is low (Figure ƌ.ƍ bo�om row) the source (source)
classifier outperforms the target (target) classifier when a small number of target training
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patches are used. When the proxy𝒜-distance is large the target classifier outperforms the
source classifier, even when one target training patch per ssueࢢ is used. This suggests that
if the proxy𝒜-distance is large (source data is not representaࢢve of target data), a source
classifier trained on the source data should not be applied to the target data. Ground truth
labels on the source data that are labor-intensive to acquire can in this case not be used
for the target data. However, since MRAI-NET learns a representaࢢon that reduces the
acquisiࢢon difference between source and target scanner the proxy 𝒜-distance is drasࢢ-
cally reduced. Therefore the MRAI-NET classifier outperforms both the source and target
classifiers, when a small number of target training samples is available, and leverages the
source ground truth labels.

Due to the complexity of the problem addressed, simulated data was used to provide a
proof of principle. Ideal real datawould require the same subject to be scannedondifferent
scanners with different protocols, a[er which the scans should be manually segmented to
obtain the ground truth for both scans. However, inter-observer variability would add an
extra layer of variaࢢon. To test MRAI-NET on real data, the MRBrainS challenge data was
used. Although, addiࢢonal layers of variaࢢon include resoluࢢon, populaࢢon and manual
segmentaࢢon protocol, the experiments (Figure ƌ.ƍ) show that MRAI-NET’s performance
on real data follows the same pa�ern as its performance on simulated data, be it with a
higher classificaࢢon error due to addiࢢonal factors of variaࢢon.

A limitaࢢon of the proposedmethod is that learning an acquisiࢢon-invariant representa-
,onwithMRAI-NETࢢ will not necessarily work well on data sets with poor contrast between
.ssuesࢢ In that case, the network will both push and pull points in the overlap. Since
these acࢢons will mostly cancel each other out, the network will not be able to reduce
acquisiࢢon-variaࢢon without sacrificing ssueࢢ variaࢢon, and vice versa.

Another limitaࢢon is that the proposed MRAI-NET requires at least ƈ sample per ssueࢢ
from the target scanner. This is not an unreasonable request, as it is not hard to find at least
ƈ patch per ssueࢢ (Secࢢon ƌ.Ƌ.Ƌ) in only one subject scanned with the target scanner. How-
ever, it may be possible to perform the similar/dissimilar labeling based on assumpࢢons
instead. For instance, if one assumes that the registraࢢon between two scans is accurate
and that the subject-variaࢢon is not too large, then one could assume that target patches
at certain locaࢢons are the same ssueࢢ as the source patches at these locaࢢons. Hence,
those voxels could be used for the similarity-labeling process.
The proposed representaࢢon learning method could be used to reduce any type of varia-
,onࢢ by adjusࢢng the way that the similar and dissimilar pairs are defined. For example,
registraࢢon, which can be viewed as variaࢢon in posiࢢon, might be approached in a similar
manner [Ɗƍ]. Key is to idenࢢfy the forms of variaࢢon, determine which variaࢢon should
be preserved and which should be reduced, and to find a way to label them as similar or
dissimilar accordingly.
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5.6. Conclusion
We addressed one of the major challenges of supervised voxel classificaࢢon, i.e. gener-
alizaࢢon to data that is not representaࢢve of the training data. We provided a proof of
principle for learning an MR acquisiࢢon invariant representaࢢon that reduces the varia-
onࢢ between MRI scans acquired with different scanners or acquisiࢢon protocols, while
preserving the variaࢢon between brain .ssuesࢢ We showed that the proposed MRAI-NET
is able to learn an MR acquisiࢢon invariant representaࢢon (low proxy 𝒜-distance), and
outperform supervised convoluࢢon neural networks trained on patches from the source
or target scanners for ssueࢢ classificaࢢon, when li�le target training patches are available.
By reducing the acquisiࢢon related variaࢢon using MRAI-NET, the ground truth labels from
the source data can be reused for the target data, since the source and target data are
mapped to the same representaࢢon achieving generalizaࢢon.
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5.7. Appendix A
SIMRI requires NMR relaxaࢢon mesࢢ for ssuesࢢ based on parࢢcular magneࢢc staࢢc field
strengths [Ɖƌ]. We performed a literature study for the Tƈ and TƉ relaxaࢢon ,mesࢢ the
results of which are listed in Table ƌ.Ɗ. The proton density values 𝜌 stem from [Ɗқ]. The
Ɗ.ƇT CSF parameters were interpolated using an exponenࢢal funcࢢon fit ([ƊƎ] jusࢢfies an
exponenࢢal funcࢢon based on physical properࢢes). We equate connecࢢve ssueࢢ to glial
ma�er (ƎƇ% of the brain’s connecࢢve ssueࢢ system is glial ma�er⁵).

Table ƌ.Ɗ: NMR relaxaࢢon mesࢢ for brain ssueࢢ (IT’IS database).
� Glial ma�er values are unknown and are imputed with gray ma�er values.
� TƉ values for corࢢcal bone are actually TƉ* values (UTE seq).
� Equated to glial ma�er (see text).
� Ɗ.ƇT TƉ relaxaࢢon meࢢ is from dermis, other values are from hypodermis.

Tissue 𝜌 Tƈ(ƈ.ƌT) TƉ(ƈ.ƌT) Tƈ(Ɗ.ƇT) TƉ(Ɗ.ƇT) Ref

CSF ƈƇƇ (Ƈ) ƋƊƉҚ (Ƈ) ƍƎƈ (ƈƉƍ) ƋƊƈƊ (Ƈ) ƌƇƊ (ҚƋ) [ƊƎ–ƋƉ]
GM қҚ (.Ƌ) ƈƈƉƋ (ƉƋ) Ǝƌ (қ) ƈқƉƇ (ƈƈƋ) ƎƎ (ƍ) [ƋƊ]
WM ƍƍ (Ɗ) ққƋ (ƌƇ) ƍƉ (Ƌ) ƈƇқƋ (Ƌƌ) ҚƎ (Ɗ) [ƋƊ]
Fat ƈƇƇ (Ƈ) ƊƋƊ (Ɗƍ) ƌқ (Ƌ) ƊқƉ (ƈƊ) Ққ (Ƌ) [ƋƋ]
Muscle ƈƇƇ (Ƈ) ҚƉƎ (ƌƇ) ƋƋ (Қ) қƊƉ (ҚƉ) ƌƇ (Ƌ) [ƋƊ, Ƌƌ]
Skin� ƈƇƇ (Ƈ) ƉƊƇ (қ) Ɗƌ (Ƌ) ƊƇҚ (ƈқ) ƉƉ (Ƈ) [Ƌƌ–Ƌƍ]
Skull� Ƈ (Ƈ) ƉƇƇ (Ƈ) .ƋҚ (Ƈ) ƉƉƊ (ƈƈ) .ƊƎ (.ƇƉ) [Ƌқ, ƋƎ]
Glial� қҚ (Ƈ) ƈƈƉƋ (ƉƋ) Ǝƌ (қ) ƈқƉƇ (ƈƈƋ) ƎƎ (ƍ) [ƋƇ, ƋƊ]
Conn. � ƍƍ (Ƈ) ƈƈƉƋ (ƉƋ) Ǝƌ (қ) ƈқƉƇ (ƈƈƋ) ƎƎ (ƍ) [ƋƊ]

⁵http://www.neuroplastix.com/styled-2/page139/styled-42/
brainsconnectivetissue.html

http://www.neuroplastix.com/styled-2/page139/styled-42/brainsconnectivetissue.html
http://www.neuroplastix.com/styled-2/page139/styled-42/brainsconnectivetissue.html
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5.8. Appendix B
In Secࢢon ƌ.Ɖ.ƈ we specified the Siamese loss as the networks objecࢢve funcࢢon. The in-
put of this loss consists of a pairwise distance, for which we chose an 𝐿ኻ-norm. There are
Ɖ reasons for this: the first is that 𝐿፩-norms with larger values for 𝑝 concentrate densely
in high-dimensional spaces [ƌƇ]. Concentraࢢon means that the differences between pair-
wise distances of a set of points become smaller as the number of dimensions increases.
This is a problem because the acࢢons of pulling and pushing will not sufficiently decrease
the distance between similar pairs or sufficiently increase the distance between dissimilar
pairs. The second reason is that the gradient of the 𝐿ኻ-norm is constant, while the gradi-
ent of an 𝐿፩-norms with 𝑝 > 1 are funcࢢons of the distance [ƌƈ]. Gradients of norms with
large 𝑝’s become smaller as the distance between pairs becomes smaller, which means the
incenࢢve for the network to pull pairs closer decreases. A constant gradient ensures that
there will also be a constant incenࢢve to pull similar pairs closer together. Considering that
we want our representaࢢon to be truly invariant, we want the network to conࢢnue to pull
similar pairs together unࢢl they are as close as possible.
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6
Robust adaptaࢢon

In domain adaptaࢡon, classifiers with informaࢡon from a source domain adapt to gener-
alize to a target domain. However, an adapࢡve classifier can perform worse than a non-
adapࢡve classifier due to invalid assumpࢡons, increased sensiࢡvity to esࢡmaࢡon errors or
model misspecificaࢡon. Our goal is to develop a domain-adapࢡve classifier that is robust
in the sense that it does not rely on restricࢡve assumpࢡons on how the source and target
domains relate to each other and that it does not performworse than the non-adapࢡve clas-
sifier. We formulate a conservaࢡve parameter esࢡmator that only deviates from the source
classifier when a lower risk is guaranteed for all possible labellings of the given target sam-
ples. We derive the classical least-squares and discriminant analysis cases and show that
these perform on par with state-of-the-art domain adapࢡve classifiers in sample selecࢡon
bias seࢯngs, while outperforming them in more general domain adaptaࢡon seࢯngs.

This chapter is based on the paper ”Target contrasࢢve pessimisࢢc risk for robust domain adaptaࢢon”.
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6.1. Introducࢢon
Generalizaࢢon in supervised learning relies on the fact that future samples should originate
from the same underlying distribuࢢon as the ones used for training. However, this is not
the case in seࢰngswhere data is collected fromdifferent locaࢢons, differentmeasurement
instruments are used or there is only access to biased data. In these situaࢢons the labeled
data does not represent the distribuࢢon of interest. This problem seࢰng is referred to as a
domain adaptaࢡon seࢰng, where the distribuࢢon of the labeled data is called the source
domain and the distribuࢢon that one is actually interested in is called the target domain.
Most o[en, data in the target domain is not labeled and adapࢢng a source domain classifier,
i.e. changing its predicࢢons to be more suited to the target domain, is the only means by
which one can make predicࢢons for the target domain. Unfortunately, depending on the
domain dissimilarity, adapࢢve classifiers can perform worse than non-adapࢢve ones. In
this work, we formulate a conservaࢢve adapࢢve classifier that always performs at least as
well as the non-adapࢢve one.

Biased samplings tend to occur when one samples locally from amuch larger populaࢢon
[ƈ, Ɖ]. For instance, in computer-assisted diagnosis, biometrics collected from two differ-
ent hospitals will be different due to differences between the paࢢent populaࢢons: ones
diet might not be the same as the others. Nonetheless, both paࢢent populaࢢons are sub-
samples of the human populaࢢon as a whole. Adaptaࢢon in this example corresponds to
accounࢢng for the differences between paࢢent populaࢢons, training a classifier on the cor-
rected labeled data from one hospital, and applying the adapted classifier to the other hos-
pital. Addiࢢonally, different measurement instruments cause different biased samplings:
photos of the same object taken with different cameras lead to different distribuࢢons over
images [Ɗ]. Lastly, biases arise when one only has access to parࢢcular subsets, such as data
from individual humans in a acࢢvity recogniࢢon task [Ƌ].

In the general seࢰng, domains can be arbitrarily different and contain almost no mu-
tual informaࢢon, which means generalizaࢢon will be extremely difficult. However, there
are cases where the problem seࢰng is more structured: in the covariate shi[ seࢰng, the
marginal data distribuࢢons differ but the class-posterior distribuࢢons are equal [ƌ–ƍ]. This
means that the underlying true classificaࢢon funcࢢon is the same in both domains, im-
plying that a correctly specified adapࢢve classifier converges to the same soluࢢon as the
target classifier. Adaptaࢢon occurs by weighing each source sample by how important it is
under the target distribuࢢon and training on the importance-weighed labeled source data.
A model that relies on equal class-posterior distribuࢢons can perform very well when its
assumpࢢon is true, but it can deviate in detrimental ways when its assumpࢢon is false.

Considering their potenࢢal, a number of papers have looked at condiࢢons and assump-
onsࢢ that allow for successful adaptaࢢon. A parࢢcular robust one specifies the existence of
a common latent embedding, represented by a set of transfer components [қ]. A[er map-
ping data onto these components, one can train and test standard classifiers again. Other
possible assumpࢢons include low-data-divergence [Ǝ–ƈƈ], low-error joint predicࢢon [ƈƇ, ƈƈ],
the existence of a domain manifold [ƈƉ–ƈƋ], restricࢢons to subspace transformaࢢons [ƈƌ],
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condiࢢonal independence of class and target given source data [ƈҚ] and unconfoundedness
[ƈƍ]. The more restricࢢve an assumpࢢon is, the worse the classifier tends to perform when
it is invalid. One of the strengths of the esࢢmator that we develop here is that it does not
require making any assumpࢢons on the relaࢢonship between the domains.

The domain adaptaࢢon and covariate shi[ seࢰngs are very similar to the sample selec-
onࢢ bias seࢰng in the staࢢsࢢcs and econometrics communiࢢes [ƍ, ƈқ, ƈƎ]. There, the bias
is explicitly modeled as a variable that denotes how likely it is for a parࢢcular sample to
be selected for the training set. One hopes to generalize to an unbiased sample, i.e., the
case where each sample is equally likely to be selected. As such, this seࢰng can also be
viewed as a case of domain adaptaࢢon, with the biased sample set as the source domain
and the unbiased sample set as the target domain. In this case, there is even addiࢢonal
informaࢢon: the support of the source domain will be contained in the support of the tar-
get domain. This informaࢢon can be exploited, as some methods rely on a non-zero target
probability for every source sample [Қ, ƉƇ]. Lastly, the causal inference community has also
considered causes for differing training and tesࢢng distribuࢢons, including how to esࢢmate
and control for these differences [Ɖ, Ɖƈ, ƉƉ].

Although not o[en discussed, a variety of papers have reported adapࢢve classifiers that,
at ,mesࢢ performworse than the non-adapࢢve source classifier [Қ, ƈƊ, ƈҚ, ƉƊ–Ɖƌ]. On closer
inspecࢢon, this tends to happen when a classifier with a parࢢcular assumpࢢon is deployed
in a problem seࢰng for which this assumpࢢon is not valid. For example, if the assumpࢢon
of a common latent representaࢢon does not hold or when the domains are too dissimilar
to recover the transfer components, then mapping both source and target data onto the
found transfer components will result in mixing of the class-condiࢢonal distribuࢢons [қ].
Addiࢢonally, one of the most popular covariate shi[ approaches, kernel mean matching
(KMM), assumes that the support of the target distribuࢢon is contained in the support of
the source distribuࢢon [ƉƇ, ƉҚ]. When this is not the case, the resulࢢng esࢢmated weights
can become very bimodal: a few samples are given very large weights and all other sam-
ples are given near-zero weights. This greatly reduces the effecࢢve sample size for the
subsequent classifier [Ɖƍ].

Since the validity of the aforemenࢢoned assumpࢢons are difficult, if not impossible, to
check, it is of interest to design an adapࢢve classifier that is at least guaranteed to perform
aswell as the non-adapࢢve one. Such a property is o[en framed as aminimax opࢢmizaࢢon
problem in staࢢsࢢcs, econometrics and game theory [Ɖқ]. Wen et al. constructed a min-
imax esࢢmator for the covariate shi[ seࢰng: Robust Covariate Shi[ Adjustment (RCSA)
[ƉƎ] accounts for esࢢmaࢢon errors in the importance weights by considering their worst-
case configuraࢢon. However, this can someࢢmes be too conservaࢢve, as the worst-case
weights can be very disrupࢢve to the subsequent classifier opࢢmizaࢢon. Another minimax
strategy, dubbed the Robust Bias-Aware (RBA) classifier [Ɖƌ], plays a game between a risk
minimizing target classifier and a risk maximizing target class-posterior distribuࢢon, where
the adversary is constrained to pick posteriors that match the moments of the source dis-
tribuࢢon staࢢsࢢcs. This constraint is important, as the adversary would otherwise be able
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to design posterior probabiliࢢes that result in degenerate classifiers (e.g. assign all class-
posterior probabiliࢢes to 1 for one class and 0 for the other). However, it also means that
their approach loses predicࢢve power in areas of feature space where the source distribu-
onࢢ has limited support, and thus is not suited very well for problems where the domains
are very different.

The main contribuࢢon of this chapter is that we provide an empirical risk minimiza-
onࢢ framework to train a classifier that will always perform at least as well as the naive
source classifier. Furthermore, we show that a discriminant analysis model derived from
our frameworkwill always be likelier than the naive sourcemodel. To the best of our knowl-
edge, strict improvements have not been shown before.

The chapter conࢢnues as follows: secࢢon Қ.Ɖ presents the moࢢvaࢢon and general for-
mulaࢢon of our method, with the specific case of a least-squares classifier in secࢢon Қ.Ɗ
and the specific case of a discriminant analysis classifier in secࢢon Қ.Ƌ. Secࢢons Қ.ƌ.Ɖ and
Қ.ƌ.Ɗ show experiments on sample selecࢢon bias problems and general domain adaptaࢢon
problems, respecࢢvely, and we conclude with discussing some limitaࢢons and implicaࢢons
in secࢢon Қ.Қ.

6.2. Target contrasࢢve pessimisࢢc risk
This secࢢon starts with the problem definiࢢon, followed by our risk formulaࢢon.

6.2.1. Problem definiࢢon
Given a𝐷-dimensional input space𝒳 ⊆ ℝፃ and a class space𝒴 = {1,… , 𝐾}with𝐾 as the
number of classes, a domain refers to a parࢢcular joint probability distribuࢢonover this pair
of spaces. One is called the source domain, for which labels are available, and the other is
called the target domain, for which no labels are available. Let 𝒮 mark the source domain,
with 𝑛 samples drawn from the source domain’s joint distribuࢢon, 𝑝𝒮(𝑥, 𝑦), referred to
as {(𝑥። , 𝑦።)}፧።዆ኻ. Similarly, let 𝒯 mark the target domain, with 𝑚 samples drawn from the
target domain’s joint distribuࢢon, 𝑝𝒯(𝑥, 𝑦), referred to as {(𝑧፣ , 𝑢፣)}፦፣዆ኻ. Note that both
domains are defined over the same input space, which implies that 𝑥 and 𝑧 are represented
in the same𝐷-dimensional feature space. The target labels 𝑢 are unknown at training meࢢ
and the goal is to predict them, using only the given unlabeled target samples {𝑧፣}፦፣ and
the given labeled source samples {(𝑥። , 𝑦።)}፧። .

6.2.2. Target risk
The risk minimizaࢢon framework formalizes risk, or the expected loss ℓ incurred by clas-
sificaࢢon funcࢢon ℎ, mapping input to classes ℎ ∶ 𝒳 → 𝒴, with respect to a parࢢcular
joint labeled data distribuࢢon; 𝑅(ℎ) = 𝔼[ℓ (ℎ | 𝑥, 𝑦)]. By minimizing empirical risk, i.e.
the approximaࢢon using the sample average, with respect to classifiers from a space of hy-
potheࢢcal classificaࢢon funcࢢonsℋ, one hopes to find the funcࢢon that generalizes most
to novel samples. Addiࢢonally, a regularizaࢢon term that punishes classifier complexity
is o[en incorporated to avoid finding classifiers that are too specific to the given labeled
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data. For a given joint distribuࢢon, the choice of loss funcࢢon, the hypothesis space and
amount of regularizaࢢon largely determine the behavior of the resulࢢng classifier.

The empirical risk in the source domain can be computed as follows:

�̂� (ℎ | 𝑥, 𝑦) = 1
𝑛

፧

∑
።዆ኻ
ℓ (ℎ | 𝑥። , 𝑦።) ,

with the source classifier being the classifier that is found by minimizing this risk:

ℎ̂𝒮 = argmin
፡∈ℋ

�̂� (ℎ | 𝑥, 𝑦) . (Қ.ƈ)

Since the source classifier does not incorporate any part of the target domain, it is essen-
allyࢢ enࢢrely naive of it. But, if we assume that the domains are related in some way, then
it makes sense to apply the source classifier on the target data. To evaluate ℎ̂𝒮 in the tar-
get domain, the empirical target risk, i.e. the risk of the classifier with respect to target
samples, is computed:

�̂�(ℎ̂𝒮 | 𝑧, 𝑢) = 1
𝑚

፦

∑
፣዆ኻ

ℓ(ℎ̂𝒮 | 𝑧፣ , 𝑢፣) . (Қ.Ɖ)

Training on the source domain and tesࢢng on the target domain is our baseline, non-
adapࢢve approach.

Although the source classifier does not incorporate informaࢢon from the target domain
nor any knowledge on the relaࢢon between the domains, it is o[en not the worst classifier
(especially in cases where the domains are very similar). In cases where approaches rely
heavily on assumpࢢons, the adapࢢve classifiers can deviate from the source classifier in
ways that lead to even larger target risks. Considering that these assumpࢢons cannot be
checked for validity, there are no guarantees that these adapࢢve classifiers outperform the
source classifier. Essenࢢally, they are not safe to use.

6.2.3. Contrast
We are interested in finding a classifier that is never worse than the source classifier. We
formalize this desire by subtracࢢng the source classifiers target risk in (Қ.Ɖ) from the target
risk of a different classifier ℎ:

�̂�(ℎ | 𝑧, 𝑢) − �̂�(ℎ̂𝒮 | 𝑧, 𝑢) (Қ.Ɗ)

If such a contrast is used as a riskminimizaࢢon objecࢢve, i.e. min
፡∈ℋ

�̂�(ℎ|𝑧, 𝑢) − �̂�(ℎ̂𝒮 |𝑧, 𝑢),
then the risk of the resulࢢng classifier is bounded above by the risk of the source classifier:
the maximal value of the contrast is 0, which occurs when the same classifier is found,
ℎ = ℎ̂𝒮 . Classifiers that lead to larger target risks are not valid soluࢢons to theminimizaࢢon
problem, which implies that certain parts of the hypothesis spaceℋ will never be reached.
As such, the contrast implicitly constrainsℋ in a similar way as projecࢢon esࢢmators [ƊƇ].



6

152 6. Robust adaptaࢢon

6.2.4. Pessimism
However, (Қ.Ɗ) sࢢll incorporates the target labels 𝑢, which are unknown. Taking a conser-
vaࢢve approach, we use a worst-case labeling instead, achieved by maximizing risk with
respect to a hypotheࢢcal labeling 𝑞. For any classifier ℎ, the risk with respect to this worst-
case labeling will always be larger than the risk with respect to the true target labeling:

�̂� (ℎ | 𝑧, 𝑢) ≤max
፪

�̂� (ℎ | 𝑧, 𝑞) . (Қ.Ƌ)

Unfortunately, maximizing over a set of discrete labels is a combinatorial problem and is
computaࢢonally very expensive. To avoid this expense, we represent the hypotheࢢcal la-
beling probabilisࢢcally, 𝑞፣፤ ∶= 𝑝(𝑢፣ = 𝑘 | 𝑧፣), someࢢmes also referred to as a so[ label
[Ɗƈ]. This means that 𝑞፣ is means that 𝑞፣ is a vector of 𝐾 elements that sum to 1, repre-
sented as an element of a 𝐾 − 1 simplex, Δፊዅኻ. For𝑚 samples, an𝑚-dimensional 𝐾 − 1
simplex Δ፦ፊዅኻ is taken. Note that known labels can also be represented probabilisࢢcally,
for example 𝑦። = 1 ⇔ 𝑝(𝑦። = 1 | 𝑥።) = 1, 𝑝(𝑦። ≠ 1 | 𝑥።) = 0. Hence, in pracࢢce, both
𝑦። and 𝑢፣ are represented as 1 by𝐾 vectors with the 𝑘-th element marking the probability
that sample 𝑖 or 𝑗 belongs to class 𝑘.

6.2.5. Contrasࢢve pessimisࢢc risk
Joining the contrasࢢve target risk from (Қ.Ɗ) with the pessimisࢢc labeling 𝑞 from (Қ.Ƌ) forms
the following risk funcࢢon:

�̂�TCP(ℎ | ℎ̂𝒮 , 𝑧, 𝑞) = 1
𝑚

፦

∑
፣዆ኻ
ℓ(ℎ | 𝑧፣ , 𝑞፣) − ℓ(ℎ̂𝒮 | 𝑧፣ , 𝑞፣) . (Қ.ƌ)

We refer to the risk in equaࢢon Қ.ƌ as the Target Contrasࢢve Pessimisࢢc risk (TCP). Mini-
mizing it with respect to a classifier ℎ and maximizing it with respect to the hypotheࢢcal
labeling 𝑞, leads to the new TCP target classifier:

ℎ̂𝒯 = argmin
፡∈ℋ

max
፪∈ጂ፦ፊዅኻ

�̂�TCP(ℎ | ℎ̂𝒮 , 𝑧, 𝑞) . (Қ.Қ)

Note that the TCP risk only considers the performance on the target domain. It is differ-
ent from the risk formulaࢢons in [Ɖƌ] and [ƉƎ], because those incorporate the classifiers
performance on the source domain as well. Our formulaࢢon contains no evaluaࢢon on the
source domain, and focuses solely on the performance gain we can achieve in the target
domain with respect to the source classifier.

6.2.6. Opࢢmizaࢢon
If the loss funcࢢon ℓ is restricted to be globally convex and the hypothesis space ℋ is a
convex set, then the TCP risk with respect to ℎ will be globally convex and there will be a
unique opࢢmum with respect to ℎ. The TCP risk with respect to 𝑞 is linear and bounded
due to the simplex, which means that it is possible that the opࢢmum is not unique. How-
ever, the combined minimax objecࢢve funcࢢon is globally convex-linear. This is important,
because it guarantees the existence of a saddle point, i.e. an opࢢmumwith respect to both
ℎ and 𝑞 [ƊƉ].
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Finding the saddle point can be done through first performing a gradient descent step
according to the parࢢal derivaࢢve with respect to ℎ, followed by a gradient ascent step
according to the parࢢal derivaࢢve with respect to 𝑞. However, this last step causes the
updated 𝑞 to leave the simplex. In order to enact the constraint, it is projected back onto
the simplex a[er performing the gradient step. This projecࢢon, 𝒫, maps the point out-
side the simplex, 𝑎, to the point, 𝑏, that is the closes point on the simplex in terms of
Euclidean distance: 𝒫(𝑎) = argmin፛∈ጂ ‖𝑎 − 𝑏‖ኼ [ƊƊ, ƊƋ]. Unfortunately, the projecࢢon
step complicates the computaࢢon of the step size, which we replace by a learning rate 𝛼፭,
decreasing over iteraࢢons 𝑡. This results in the overall update: 𝑞፭ዄኻ ← 𝒫(𝑞፭ + 𝛼፭∇𝑞፭).
Note that the projecࢢon step is linear, whichmeans the overall update for 𝑞 remains linear.

A gradient descent - gradient ascent procedure for globally convex-linear objecࢢves is
guaranteed to converge to the saddle point (c.f. proposiࢢon Ƌ.Ƌ and corollary Ƌ.ƌ of [ƊƉ]).

6.3. Least-squares
Discriminaࢢve classificaࢢonmodels make no assumpࢢons on the data distribuࢢons and di-
rectly opࢢmize predicࢢons. We incorporate a discriminaࢢve model in the TCP risk through
the least-squares classifier, which is defined by a quadraࢢc loss funcࢢon ℓLፒ(ℎ | 𝑥። , 𝑦።) =
(ℎ(𝑥።) − 𝑦።)ኼ [Ɗƌ]. For mulࢢ-class classificaࢢon, we employ a one-vs-all scheme [ƊҚ].

Furthermore, we chose a linear hypothesis space, ℎ(𝑧) = argmax፤∈𝒴 ∑
ፃ
፝ 𝑧፝𝜃፝፤+𝜃ኺ፤,

which we will denote as the inner product 𝑧𝜃፤ between the data row vector, implicitly
augmented with a constant 1, and the classifier parameter vector. 𝜃 is an element of a
(𝐷 + 1) × 𝐾-dimensional parameter space Θ and in the following, we will refer to the
classifier opࢢmizaࢢon step, i.e. minimizaࢢon over ℎ ∈ ℋ, as a parameter esࢢmaࢢon step,
i.e. a minimizaࢢon over 𝜃 ∈ Θ. In summary, the least-squares loss of a sample is:

ℓLS(𝜃 | 𝑧፣ , 𝑞፣) =
ፊ

∑
፤዆ኻ

(𝑧፣𝜃፤ − 𝑞፣፤)
ኼ . (Қ.ƍ)

Plugging (Қ.ƍ) into (Қ.ƌ), the TCP-LS risk is defined as:

�̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞) =
1
𝑚

፦

∑
፣዆ኻ
ℓLS(𝜃 | 𝑧፣ , 𝑞፣) − ℓLS(�̂�𝒮 | 𝑧፣ , 𝑞፣)

= 1
𝑚

፦

∑
፣዆ኻ

ፊ

∑
፤዆ኻ

(𝑧፣𝜃፤ − 𝑞፣፤)ኼ − (𝑧፣�̂�𝒮፤ − 𝑞፣፤)ኼ ,

with the resulࢢng esࢢmate:

�̂�𝒯LS = argmin
᎕∈ጆ

max
፪∈ጂ፦ፊዅኻ

�̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞) . (Қ.қ)
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For fixed 𝑞, the minimizaࢢon over 𝜃 has a closed form soluࢢon. For each class, the
parameter vector is:

𝜕
𝜕𝜃፤

�̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞) = 0

1
𝑚

፦

∑
፣዆ኻ
2 𝑧ዉ፣ (𝑧፣𝜃፤ − 𝑞፣፤) = 0

𝜃፤ = (
፦

∑
፣዆ኻ
𝑧ዉ፣ 𝑧፣)

ዅኻ
(
፦

∑
፣዆ኻ
𝑧ዉ፣ 𝑞፣፤) .

Keeping 𝜃 fixed, the gradient with respect to 𝑞፣፤ is linear:

𝜕
𝜕𝑞፣፤

�̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞) =
−2
𝑚 (𝑧፣𝜃፤ − 𝑞፣፤) −

−2
𝑚 (𝑧፣�̂�𝒮፤ − 𝑞፣፤)

= −2𝑚 𝑧፣(𝜃፤ − �̂�𝒮፤ ) .

Note that the maximizaࢢon over 𝑞 is essenࢢally driving the two sets of parameters apart.
See Algorithm Ɗ for pseudo-code for TCP-LS.

Algorithm Ɗ TCP-LS
Input: source data 𝑥 (size 𝑛×𝐷), labels 𝑦 (size 𝑛×𝐾), target data 𝑧 (size𝑚×𝐷), learning
rate 𝛼, convergence criterion 𝜖.
Output: �̂�𝒯LS = (𝜃ኻ, … , 𝜃ፊ)
for all classes do
�̂�𝒮፤ = (∑

፧
። 𝑥ዉ። 𝑥።)

ዅኻ
(∑፧። 𝑥ዉ። 𝑦።፤)

end for
𝑡 = 0
𝜃፭፤ = �̂�𝒮፤ ∀𝑘
𝑞፭፣፤ ← 1/𝐾 ∀𝑗, 𝑘
repeat

for all classes do
𝜃፭ዄኻ፤ = (∑፦፣ 𝑧ዉ፣ 𝑧፣)

ዅኻ(∑፦፣ 𝑧ዉ፣ 𝑞፭፣፤)
for all samples do
∇𝑞፣፤ = −2𝑧፣(𝜃፭ዄኻ፤ − �̂�𝒮፤ )/𝑚

end for
end for
𝑞፭ዄኻ ← 𝒫(𝑞፭ − 𝛼፭∇𝑞)
𝛼፭ዄኻ ← 𝛼/𝑡
𝑡 ← 𝑡 + 1

unࢢl ‖ �̂�TCPLS (𝜃፭ዄኻ | �̂�𝒮 , 𝑧, 𝑞፭ዄኻ) − �̂�TCPLS (𝜃፭ | �̂�𝒮 , 𝑧, 𝑞፭) ‖ ≤ 𝜖
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6.4. Discriminant analysis
As a generaࢢve classificaࢢon model for the TCP risk, we chose the discriminant analysis
model (DA). It fits a Gaussian distribuࢢon to each class, proporࢢonal to the class prior:

𝒩(𝑥 | 𝜃፤) = 𝜋፤
1

√(2Π)ፃ|Σ፤|
exp(−12(𝑥 − 𝜇፤)Σ

ዅኻ
፤ (𝑥 − 𝜇፤)ዉ) ,

where𝜃፤ consists of the prior, mean and covariancematrix for the𝑘-th class; 𝜃፤ = (𝜋፤ , 𝜇፤ ,
Σ፤), | ⋅ | marks the determinant and the capital Π refers to the number. New samples 𝑥∗
are classified according to maximum probability: ℎ(𝑥∗) = argmax፤∈𝒴 𝒩(𝑥∗ | 𝜃፤). Each
label is encoded as a vector, e.g. for 𝒴 = {1, 2, 3}, 𝑦። = 2 ⇔ 𝑦። = [0, 1, 0]. The model
is incorporated in the empirical risk minimizaࢢon formulaࢢon by taking the negaࢢve log-
likelihoods as the loss funcࢢon:

ℓ(𝜃 | 𝑥, 𝑦) =
ፊ

∑
፤
−𝑦፤ log𝒩(𝑥 | 𝜃፤) .

6.4.1. Quadraࢢc discriminant analysis
If one Gaussian distribuࢢon is fi�ed to each class separately, the resulࢢng classifier is a
quadraࢢc funcࢢonof the difference inmeans and covariances, and is hence called quadraࢡc
discriminant analysis (QDA). For target data 𝑧 and so[ labels 𝑞, the loss is formulated as:

ℓQDA(𝜃 | 𝑧፣ , 𝑞፣) =
ፊ

∑
፤዆ኻ

−𝑞፣፤ log𝒩(𝑧፣ | 𝜃፤) . (Қ.Ǝ)

Plugging the loss from (Қ.Ǝ) into (Қ.ƌ), the TCP-QDA risk becomes:

�̂�TCPQDA(𝜃 | �̂�𝒮 , 𝑧, 𝑞) =
1
𝑚

፦

∑
፣዆ኻ

ℓQDA(𝜃 | 𝑧፣ , 𝑞፣) − ℓQDA(�̂�𝒮 | 𝑧፣ , 𝑞፣)

= 1
𝑚

፦

∑
፣዆ኻ

ፊ

∑
፤዆ኻ

−𝑞፣፤ log
𝒩(𝑧፣ | 𝜃፤)
𝒩(𝑧፣ | �̂�𝒮፤ )

, (Қ.ƈƇ)

where the esࢢmate itself is:

�̂�𝒯QDA = argmin
᎕∈ጆ

max
፪∈ጂ፦ፊዅኻ

�̂�TCPQDA(𝜃 | �̂�𝒮 , 𝑧, 𝑞) .
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Minimizaࢢon with respect to 𝜃 also has a closed-form soluࢢon for discriminant analysis
models. For each class, the parameter esࢢmates are:

𝜋፤ =
1
𝑚

፦

∑
፣዆ኻ
𝑞፣፤ ,

𝜇፤ = (
፦

∑
፣዆ኻ
𝑞፣፤)

ዅኻ
፦

∑
፣዆ኻ
𝑞፣፤𝑧፣ ,

Σ፤ = (
፦

∑
፣዆ኻ
𝑞፣፤)

ዅኻ
፦

∑
፣዆ኻ
𝑞፣፤(𝑧፣ − 𝜇፤)ዉ(𝑧፣ − 𝜇፤) .

One of the properࢢes of a discriminant analysis model is that it requires the esࢢmated
covariance matrix Σ፤ to be non-singular. It is possible for the maximizer over 𝑞 in TCP-QDA
to assign less samples than dimensions to one of the classes, causing the covariancematrix
for that class to be singular. To prevent this, we regularize its esࢢmaࢢon by first restricࢢng
Σ፤ to minimal eigenvalues of 0 and then adding a scalar mulࢢple of the idenࢢty matrix
𝜆𝐼. Essenࢢally, this constrains the esࢢmated covariance matrix to a minimum size in each
direcࢢon.

Keeping 𝜃 fixed, the gradient with respect to 𝑞፣፤ is linear:

𝜕
𝜕𝑞፣፤

�̂�TCPQDA(𝜃 | �̂�𝒮 , 𝑧, 𝑞) = − 1𝑚 log
𝒩(𝑧፣ | 𝜃፤)
𝒩(𝑧፣ | �̂�𝒮፤ )

.

Algorithm Ƌ lists pseudo-code for TCP-QDA.

6.4.2. Linear discriminant analysis
If the model is constrained to share a single covariance matrix for each class, the resulࢢng
classifier is a linear funcࢢon of the difference in means and is hence termed linear dis-
criminant analysis (LDA). This constraint is imposed through the weighted sum over class
covariance matrices Σ = ∑ፊ፤ 𝜋፤Σ፤.

6.4.3. Performance guarantee
The discriminant analysis model has a very surprising property: it obtains a strictly smaller
risk than the source classifier. To our knowledge, this is the first meࢢ that such a perfor-
mance guarantee can be given in the context of domain adaptaࢢon.

Theorem ƈ. For a conࢡnuous target distribuࢡon, with more unique samples than features
for every class, 𝑚፤ > 𝐷, the empirical target risk of a discriminant analysis model �̂�DA
with TCP esࢡmated parameters �̂�𝒯 is strictly smaller than the empirical target risk of a
discriminant analysis model with parameters �̂�𝒮 esࢡmated on the source domain:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) < �̂�DA(�̂�𝒮 | 𝑧, 𝑢)
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Algorithm Ƌ TCP-QDA
Input: source data 𝑥 (size 𝑛×𝐷), labels 𝑦 (size 𝑛×𝐾), target data 𝑧 (size𝑚×𝐷), learning
rate 𝛼, convergence criterion 𝜖.
Output: �̂�𝒯QDA = (𝜋ኻ, … , 𝜋ፊ , 𝜇ኻ, … , 𝜇ፊ , Σኻ, … , Σፊ)
for all classes do
�̂�𝒮፤ = 𝑛ዅኻ ∑

፧
። 𝑦።፤

�̂�𝒮፤ = (∑
፧
። 𝑦።፤)

ዅኻ ∑፧። 𝑦።፤𝑥።
Σ̂𝒮፤ = (∑

፧
። 𝑦።፤)

ዅኻ ∑፧። 𝑦።፤(𝑥። − �̂�𝒮፤)ዉ(𝑥። − �̂�𝒮፤)
end for
𝑡 = 0
𝜃፭፤ = (�̂�𝒮፤ , �̂�𝒮፤ , Σ̂𝒮፤) ∀𝑘
𝑞፭፣፤ ← 1/𝐾 ∀𝑗, 𝑘
repeat

for all classes do
𝜋፤ = 𝑚ዅኻ ∑

፦
፣ 𝑞፭፣፤

𝜇፤ = (∑
፦
፣ 𝑞፭፣፤)

ዅኻ ∑፦፣ 𝑞፭፣፤𝑧፣
Σ፤ = (∑

፦
፣ 𝑞፭፣፤)

ዅኻ ∑፦፣ 𝑞፭፣፤(𝑧፣ − 𝜇፤)ዉ(𝑧፣ − 𝜇፤)
𝜃፭ዄኻ፤ = (𝜋፤ , 𝜇፤ , Σ፤)
for all samples do
∇𝑞፣፤ = − log [𝒩(𝑧፣ | 𝜃፭ዄኻ፤ )/𝒩(𝑧፣ | �̂�𝒮፤ )]

end for
end for
𝑞፭ዄኻ ← 𝒫(𝑞፭ − 𝛼፭∇𝑞)
𝛼፭ዄኻ ← 𝛼/𝑡
𝑡 ← 𝑡 + 1

unࢢl ‖ �̂�TCPQDA(𝜃፭ዄኻ | �̂�𝒮 , 𝑧, 𝑞፭ዄኻ) − �̂�TCPQDA(𝜃፭ | �̂�𝒮 , 𝑧, 𝑞፭) ‖ ≤ 𝜖

The reader is referred to Appendix A for the proof. It follows similar steps as a robust
guarantee for discriminant analysis in semi-supervised learning [Ɗƍ]. Note that as long as
the same amount of regularizaࢢon 𝜆 is added to both the source �̂�𝒮 and the TCP classifier
�̂�𝒯 , the guarantee also holds for a regularized model.

It should also be noted that the risks of TCP-LDA and TCP-QDA are always strictly smaller
with respect to the given target samples, but not necessarily strictly smaller with respect to
new target samples. Although, when the given target samples are a good representaࢢon
of the target distribuࢢon, one does expect the adapted model to generalize well to new
target samples.

6.5. Experiments
Our experiments compare the risks of the TCP classifiers with that of the source clas-
sifier and the corresponding oracle target classifier, as well as their performance with
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respect to various state-of-the-art domain adapࢢve classifiers through their areas under
the ROC-curve. In all experiments, all target samples are given, unlabeled, to the adap-
veࢢ classifiers. They make predicࢢons for those given target samples and their perfor-
mance is evaluated with respect to those target samples’ true labels. Cross-validaࢢon
for regularizaࢢon parameters was done by holding out source data, as that is the only
data for which labels are available at training .meࢢ The range of values we tested was
[0 10ዅዀ 10ዅ኿ 10ዅኾ 10ዅኽ 10ዅኼ 10ዅኻ 10ኺ 10ኻ 10ኼ 10ኽ].

6.5.1. Compared methods
We implemented transfer component analysis (TCA) [қ], kernel mean matching (KMM)
[ƉҚ], robust covariate shi[ adjustment (RCSA) [ƉƎ] and the robust bias-aware (RBA) clas-
sifier [Ɖƌ] for the comparison (see cited papers for more informaࢢon). TCA and KMM are
chosen because they are popular classifiers with clear assumpࢢons. RCSA and RBA are cho-
sen because they also employ minimax formulaࢢons but from different perspecࢢves; RCSA
as a worst-case and RBA as a moment-matching importance weighing. Their implementa-
onsࢢ details are discussed shortly below.

Transfer component analysis TCA assumes that there exists a common latent represen-
taࢢon for both domains and aims to find this representaࢢon by means of a cross-domain
nonlinear component analysis [қ]. In our implementaࢢon, we employ a radial basis func-
onࢢ kernel with a bandwidth of 1 and set the trade-off parameter 𝜇 to 1/2. A[er mapping
the data onto their transfer components, we train a logisࢢc regressor on themapped source
data and apply it to the mapped target data.

Kernel mean matching KMM assumes that the class-posterior distribuࢢons are equal in
both domains and that the support of the target distribuࢢon is contained within the source
distribuࢢon [ƉƇ, ƉҚ]. When the first assumpࢢon fails, KMM will have deviated from the
source classifier in amanner thatwill not lead to be�er results on the target domain. When
the second assumpࢢons fails, the variance of the importance-weights increases to the point
where a few samples receive largeweights and all other samples receive very smallweights,
reducing the effecࢢve training sample size and leading to pathological classifiers. We use
a radial basis funcࢢon kernel with a bandwidth of 1, kernel regularizaࢢon of 0.001 to favor
esࢢmates with lower variaࢢon over weights and upper bound theweights by 10 000. A[er
esࢢmaࢢng importance weights, we train a weighed least-squares classifier on the source
samples.

Robust covariate shi[ adjustment RCSA also assumes equal class-posterior distribuࢢons
and containment of the support of the target distribuࢢon within the source distribuࢢon,
but addiࢢonally incorporates a worst-case labeling [ƉƎ]. To be precise, it maximizes risk
with respect to the importance weights. We used the author’s publicly available code with
ƌ-fold cross-validaࢢon for its hyperparameters. Interesࢢngly, the authors also discuss a
relaࢢon between covariate shi[ and model misspecificaࢢon, as described by [Ɗқ]. They
argue for a two-step (esࢢmate weights - train classifier) approach in a game-theoreࢢcal
form [ƉƎ, ƊƎ, ƋƇ], which is done by all importance-weighted classifiers here.
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Robust bias-aware RBA assumes that the moments of the feature staࢢsࢢcs are approx-
imately equal up to a parࢢcular order [Ɖƌ]. In their formulaࢢon, the adversary plays a
classifier whose class-posterior probabiliࢢes are used as a labeling of the target samples,
but who is also constrained to match the moments with the source domain’s staࢢsࢢcs.
The player then proposes an importance-weighted classifier that aims to perform well on
both domains. Note that the constraints on the adversary are, among others, necessary to
avoid the players switching strategies constantly. We implement RBA using first-order fea-
ture staࢢsࢢcs for the moment-matching constraints, which was also done by the authors
in their paper. Furthermore, we use a raࢢo of normal distribuࢢons for the weights and
bound them above by 1000.

6.5.2. Sample selecࢢon bias seࢰng
Sample selecࢢon bias seࢰngs occur when data is collected locally from a larger populaࢢon.
For regression problems, these seࢰngs are usually created through a parametric sampling
of the feature space [ƌ, ƉҚ]. We created something similar but for classificaࢢon problems:
samples are concentrated around a certain subset of the feature space, butwith equal class
priors as the whole set. For each class:

ƈ. Find the sample closest to the origin; 𝑥ኺ.

Ɖ. Compute distance 𝑑(𝑥ኺ, 𝑥፤) to all other samples of the same class.

Ɗ. Draw without replacement 𝜋፤𝑛𝒮 samples proporࢢonal to exp(−𝑑(𝑥ኺ, 𝑥፤)).

where 𝑛𝒮 denotes the total number of samples to draw and 𝜋፤ refers to the class-prior
distribuࢢons of the whole set. Note that drawing 𝜋፤𝑛 samples from each class leads to ap-
proximately the same class prior distribuࢢons in the source domain as the target domain.
We chose the squared Mahalanobis distance: 𝑑(𝑥ኺ, 𝑥፤) ∶= (𝑥ኺ−𝑥፤)Σዅኻ(𝑥ኺ−𝑥፤)ዉ, with
the covariance matrix esࢢmated on all data, since that takes scale differences between
features into account. Figure Қ.ƈ presents an example, showing the first two principal com-
ponents of the pima diabetes dataset. Red/blue squares denote the selected source sam-
ples, black circles denote all samples and the green stars denote the seed points (𝑥ኺ for
each class).

Data sets
We collected the following datasets from the UCI machine learning repository: cylinder
bands prinࢢng (bands), car evaluaࢢon (car), credit approval (credit), ionosphere (iono),
mammographicmasses (mamm), pima diabetes (pima) and c-tac-toeࢢ endgame (tƊ). Table
Қ.ƈ lists their characterisࢢcs. All missing values have been imputed to 0. For each dataset,
we draw 𝑛𝒮 = 50 samples as the source domain while treaࢢng all samples as the target
domain.

Results
The risks (average negaࢢve log-likelihoods for the discriminant analysis models and mean
squared errors for the least-squares classifiers) in Table Қ.Ɖ belong to the source classifiers,
the TCP classifiers and the oracle target classifiers. The oracles represent the best possible
result, as they comprise the risk of a classifier trained on all target samples with their true
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Figure Қ.ƈ: Example of a biased sampling. Shown are the first two principal components of the pima diabetes
dataset, with all target samples in black, the selected source samples in red/blue and the samples closest to ኺ of
each class in green (seeds).

Table Қ.ƈ: Sample selecࢢon bias datasets characterisࢢcs.

bands
car
credit
iono
mamm
pima
tƊ

#Samples #Features #Missing Class (-ƈ|+ƈ)
ƌƊƎ ƊƎ ƌҚƎ ƊƈƉ | ƉƉƍ
ƈƍƉқ Қ Ƈ ƈƉƈƇ | ƌƈқ
ҚƎƇ ƈƌ Қƍ ƊƇƍ | ƊқƊ
Ɗƌƈ ƊƋ Ƈ ƈƉҚ | ƉƉƌ
ƎҚƈ ƌ ƈҚƉ ƌƈҚ | ƋƋƌ
ƍҚқ қ Ƈ ƌƇƇ | ƉҚқ
Ǝƌқ Ǝ Ƈ ƊƊƉ | ҚƉҚ

labels. The results show varying degrees of improvement for the TCP classifiers. TCP-LDA
approaches T-LDA more closely than the other two versions, with TCP-LS being the most
conservaࢢve one. For the ionosphere and c-tac-toeࢢ datasets, the improvement is quite
dramaࢢc, indicaࢢng that the source classifier is a poor model for the target domain. Note
also that some overfiࢰng might be occurring as TCP-QDA does not always have a lower
risk than TCP-LDA, even though T-QDA does always have a lower risk than T-LDA.

Table Қ.Ɗ compares the performances of the adapࢢve classifiers on all datasets through
their area under the ROC-curves (AUC). Although there is quite a variety between datasets,
the variaࢢon between classifiers within a dataset is relaࢢvely small; all approaches perform
similarly well. However, with our selecࢢon bias procedure, the moments of the target
staࢢsࢢcs do not match the source staࢢsࢢcs (e.g. the target’s variance is by construcࢢon
always larger) which affect RBA’s performance negaࢢvely. Interesࢢngly, the TCP discrim-
inant analysis models are quite compeࢢࢢve in cases where their improvement over the
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Table Қ.Ɖ: Risks (average negaࢢve log-likelihoods and mean squared errors) of the naive source classifiers (S-LDA,
S-QDA, S-LS), the TCP classifiers (TCP-LDA, TCP-QDA, TCP-LS) and the oracle target classifiers (T-LDA, T-QDA, T-LS)
on the sample selecࢢon bias datasets.

bands
car
credit
iono
mamm
pima
tƊ

S-LDA TCP-LDA T-LDA

-ƉƈҚ.Ɗ -Ɖƈқ.Ƌ -Ɖƈқ.қ
ƈƍ.ƈҚ Ɖ.қƌƇ Ɖ.ƈƋқ
-қƇ.ƇƋ -қƊ.ҚƋ -қƊ.Қƌ
ƈƎƎ.ƌ -қ.ƋқƇ -қ.ƍқƉ
қ.ƈƊƊ -ƈƇ.ƋƇ -ƈƈ.ƉƉ
-ƈƌ.ƎƉ -ƉƊ.ƋƋ -ƉƋ.ƈƌ
ƈқ.ƍƍ Қ.ƈƊҚ Ƌ.ƍƊƋ

S-QDA TCP-QDA T-QDA

-Ɖƈƌ.Ɗ -Ɖƈƍ.қ -ƉƈƎ.ƈ
ƌƍ.ƊƎ ƈқ.ƍƍ Ɖ.ƇƋƎ
-ƍқ.ƎƎ -қƊ.ƍƊ -қƋ.Қƈ
ƉҚ.ƊƇ -Ǝ.ƊƉƌ -ƈқ.ƍқ
Ɗƈ.ҚҚ -ƈƇ.Ƈқ -ƈƈ.Ққ
-ƍ.ƋқҚ -ƉƊ.ƇƎ -ƉƋ.ƊƇ
ƈƈƍ.Ɗ ƊƎ.ƈƊ Ƌ.Қƈƈ

S-LS TCP-LS T-LS

ƈ.ƈƍƇ ƈ.ƈƇƎ Ƈ.қƉƍ
ƈ.ƎҚқ ƈ.ƉƇƌ Ƈ.ҚƍƉ
Ɖ.ƋƊƇ Ƈ.ƎƍƊ Ƈ.ƍƌƍ
ƈƍ.ƇҚ Ƈ.қƈƌ Ƈ.ƊƌƇ
Ƈ.қƈқ Ƈ.ҚҚқ Ƈ.ƌқƇ
ƈ.ƇқƊ ƈ.ƇƈƉ Ƈ.ҚƊƊ
ƈ.ƋƇƈ ƈ.ƋƇƈ Ƈ.қƋƎ

source classifier was larger. Unfortunately, like RBA, the more conservaࢢve TCP-LS never
outperforms all other methods simultaneously on any of the datasets. Sࢢll, in the average
it reaches compeࢢࢢve performance overall. In summary, the TCP classifiers perform on
par with the other adapࢢve classifiers.

Table Қ.Ɗ: Sample selecࢢon bias datasets. Areas under the ROC-curves for a range of domain adapࢢve classifiers.

bands
car
credit
iono
mamm
pima
tƊ

mean

TCA KMM RCSA RBA TCP-LS TCP-LDA TCP-QDA

.ƌƍқ .ҚƉƇ .ƌҚƉ .ƌƇƋ .ƌққ .ƌƋқ .ƌқƎ

.ƍƊҚ .ƍƍҚ .ƍƋƉ .ҚқƋ .ƍƊƋ .ƍƌқ .ҚƎƎ

.ƍƈҚ .ҚƎƋ .Қƌƌ .ƍƇƉ .ҚҚƉ .ҚƋҚ .ҚҚƊ

.ƍƋƈ .қƈƍ .қƊƌ .Ққƍ .ƍƊƈ .қƎƋ .қƉҚ
.ҚƌҚ .қƇƋ .ƍƋƎ .ƍҚƉ .қƊҚ .қƉƋ .қƋƍ
.ҚƎƈ .ҚƊƇ .ƍҚƇ .Ɖƍƈ .ҚƎƉ .ҚқƋ .ҚƊƍ
.ҚƇқ .ƌƊƉ .ƋƊƎ .ƋƋҚ .ƌƉƇ .ƌƉƎ .ҚƇҚ

.Қƍƌ .ҚƎҚ .Қƍƍ .ƌƍƎ .ҚқƇ .ҚƎқ .ҚƎƌ

6.5.3. Domain adaptaࢢon seࢰng
We performed a set of experiments on a dataset that is naturally split into mulࢢple do-
mains: predicࢢng heart disease in paࢢents from hospitals in Ƌ different locaࢢons. It is a
much more realisࢢc seࢰng because problem variables such as prior shi[, class imbalance
and proporࢢon of imputed features are not controlled. As such, it is a harder problem than
the sample selecࢢon bias seࢰng. In this seࢰng, the target domains o[en only have lim-
ited overlap with the source domain and can be very dissimilar. As the results will show,
many of the assumpࢢons that the state-of-the-art domain adapࢢve classifiers rely upon,
do not hold and their performance degrades drasࢢcally.

Data set
The hospitals are the Hungarian Insࢢtute of Cardiology in Budapest (data collected by An-
dras Janosi), the University Hospital Zurich (collected by William Steinbrunn), the Univer-
sity Hospital Basel (courtesy of Ma�hias Pfisterer), the Veterans Affairs Medical Center in
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Long Beach, California, USA, and the Cleveland Clinic Foundaࢢon in Cleveland, Ohio, USA
(both courtesy of Robert Detrano), which will be referred to as Hungary, Switzerland, Cal-
ifornia and Ohio herea[er. The data from these hospitals can be considered domains as
the paࢢents are all measured on the same biometrics but show different distribuࢢons. For
example, paࢢents in Hungary are on average younger than paࢢents from Switzerland (Ƌқ
versus ƌƌ years). Each paࢢent is described by ƈƊ features: age, sex, chest pain type, rest-
ing blood pressure, cholesterol level, high fasࢢng blood sugar, resࢢng electrocardiography,
maximum heart rate, exercise-induced angina, exercise-induced ST depression, slope of
peak exercise ST, number of major vessels in fluoroscopy, and normal/defecࢢve/reversible
heart rate.

Table Қ.Ƌ describes the number of samples (𝑛, 𝑚), total number of missing measure-
ments that have been imputed (𝑚𝑖𝑠𝒮 , 𝑚𝑖𝑠𝒯) the class balance (𝑐𝒮 , 𝑐𝒯) and the empirical
Maximum Mean Discrepancy (MMD) for all pairwise combinaࢢons of designaࢢng one do-
main as the source and another as the target. To elaborate: the empirical MMDmeasures
how far apart two sets of samples are [ƉҚ]:

̂MMD =‖𝑛ዅኻ
፧

∑
።
𝜙(𝑥።) − 𝑚ዅኻ

፦

∑
፣
𝜙(𝑧፣)‖ኼ

= 𝑛ዅኼ
፧

∑
።,።ᖣ
𝐾(𝑥። , 𝑥።ᖣ) − 2(𝑛𝑚)ዅኻ∑

።,፣
𝐾(𝑥። , 𝑧፣) + 𝑚ዅኼ

፦

∑
፣,፣ᖣ
𝐾(𝑧፣ , 𝑧፣ᖣ) .

In order to compute it, we used a radial-basis funcࢢon with a bandwidth of ƈ. An MMD of
0 means that the two sets are idenࢢcal, while larger values indicate larger discrepancies
between the two sets.

First of all, the sample size imbalance is not really a problem, as the largest difference
occurs in the Ohio - Switzerland combinaࢢon with ƊƇƊ and ƈƉƊ samples respecࢢvely. How-
ever, the fact that the classes are severely imbalanced in different proporࢢons, for example
going from ƌƋ% : ƋҚ% to ƍ% : ƎƊ% in Ohio - Switzerland, creates a very difficult seࢰng.
A shi[ in the prior distribuࢢons can be disastrous for some classifiers, such as RBA which
relies onmatching the source and target feature staࢢsࢢcs. Furthermore, a sudden increase
in the amount of missing values (unmeasured paࢢent biometrics), such as in Ohio - Califor-
nia, means that a classifier relying on a certain feature for discriminaࢢon degrades when
this feature is missing in the target domain. Addiࢢonally, the combinaࢢons Ohio - Switzer-
land and Switzerland - Hungary have an MMD that is two orders of magnitude larger than
other combinaࢢons. Overall, looking at all three sets of descripࢢve staࢢsࢢcs, the combina-
onsࢢ Ohio - Switzerland and Switzerland - Hungary should pose the most difficulty for the
adapࢢve classifiers.

Lastly, to further illustrate how the domains differ, we plo�ed histograms of the age and
resࢢng blood pressure of all paࢢents, split by domain (see Figure Қ.Ɖ). Not only are they
different on average, they tend to differ in variance and skewness as well.
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Table Қ.Ƌ: Heart disease dataset properࢢes, for all pairwise domain combinaࢢons (O=’Ohio’, C=’California’,
H=’Hungary’ and S=’Switzerland’). 𝒮 denotes the source and 𝒯 the target domain, ፧ the amount of source and
፦ the amount of target samples, ፜𝒮 the class balance (-ƈ,+ƈ) in the source domain and ፜𝒯 the class balance in the
target domain. MMD denotes the empirical MaximumMean Discrepancy between the source and target data.

𝒮 𝒯
O H
O S
O C
H S
H C
S C
H O
S O
C O
S H
C H
C S

n m 𝑚𝑖𝑠𝒮 𝑚𝑖𝑠𝒯 𝑐𝒮 𝑐𝒯 MMD

ƊƇƊ ƉƎƋ Қ ƍқƉ ƈҚƋ:ƈƊƎ ƈққ:ƈƇҚ Ƈ.ƇƇƈƉ
ƊƇƊ ƈƉƊ Қ ƉƍƊ ƈҚƋ:ƈƊƎ қ:ƈƈƌ Ƈ.ƈҚƇƉ
ƊƇƊ ƉƇƇ Қ ҚƎқ ƈҚƋ:ƈƊƎ ƌƈ:ƈƋƎ Ƈ.ƇƉƉƍ
ƉƎƋ ƈƉƊ ƍқƉ ƉƍƊ ƈққ:ƈƇҚ қ:ƈƈƌ Ƈ.ƈƊқƋ
ƉƎƋ ƉƇƇ ƍқƉ ҚƎқ ƈққ:ƈƇҚ ƌƈ:ƈƋƎ Ƈ.Ƈƈƌƈ
ƈƉƊ ƉƇƇ ƉƍƊ ҚƎқ қ:ƈƈƌ ƌƈ:ƈƋƎ Ƈ.ƇқƇƋ
ƉƎƋ ƊƇƊ ƍқƉ Қ ƈққ:ƈƇҚ ƈҚƋ:ƈƊƎ Ƈ.ƇƇƈƉ
ƈƉƊ ƊƇƊ ƉƍƊ Қ қ:ƈƈƌ ƈҚƋ:ƈƊƎ Ƈ.ƈҚƇƉ
ƉƇƇ ƊƇƊ ҚƎқ Қ ƌƈ:ƈƋƎ ƈҚƋ:ƈƊƎ Ƈ.ƇƉƉƍ
ƈƉƊ ƉƎƋ ƉƍƊ ƍқƉ қ:ƈƈƌ ƈққ:ƈƇҚ Ƈ.ƈƊқƋ
ƉƇƇ ƉƎƋ ҚƎқ ƍқƉ ƌƈ:ƈƋƎ ƈққ:ƈƇҚ Ƈ.Ƈƈƌƈ
ƉƇƇ ƈƉƊ ҚƎқ ƉƍƊ ƌƈ:ƈƋƎ қ:ƈƈƌ Ƈ.ƇқƇƋ
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Figure Қ.Ɖ: (Le[ top) Histogram of the age of paࢢents in each domain, (right) histogram of the resࢢng blood
pressure of paࢢents in each domain.

Results
Table Қ.ƌ lists the target risks (average negaࢢve log-likelihoods for the discriminant analysis
models and mean squared errors for the least-squares classifiers) with the given target
samples’ true labels for all source, TCP and oracle target classifiers. Note that the TCP
risks range between the source and the oracle target risk. For some combinaࢢons TCP is
extremely conservaࢢve, e.g. Switzerland -Ohio, Switzerland - Hungary for the least-squares
case, and for others, it is much more liberal, e.g. Hungary - Switzerland, Hungary - Ohio,
Hungary - California for the discriminant analysis models. In general, the discriminaࢢve
model (TCP-LS) deviates much less and is much more conservaࢢve than the generaࢢve
models (TCP-LDA and TCP-QDA). Note that the order of magnitude of the improvement
with TCP-DA in the Hungary - Switzerland, Hungary - Ohio and Hungary - California seࢰngs
is due to the fact that the two domains lie far apart; the target samples lie very far in the
tails of the source models’ Gaussian distribuࢢon and evaluate to very small likelihoods,
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which become very large negaࢢve log-likelihoods.

Table Қ.ƌ: Heart disease dataset. Target risks (average negaࢢve log-likelihoods (le[, middle) and mean squared
errors (right)) for all pairwise combinaࢢons of domains (O=’Ohio’, C=’California’, H=’Hungary’ and S=’Switzerland’;
smaller values are be�er).

𝒮 𝒯
O H
O S
O C
H S
H C
S C
H O
S O
C O
S H
C H
C S

S-LDA TCP-LDA T-LDA

-ƌƊ.ƌƌ -ƌƍ.ƈқ -ƌƍ.Ɗƌ
-қ.ƉƎƊ -ƈҚ.ƍҚ -ƈƍ.ƌƋ
-Ɗƍ.қƋ -ƌƊ.ққ -ƌƋ.ҚƎ
-ƈƉ.ƌƇ -ƈҚ.Ƈқ -ƈƍ.ƌƋ
-Ƌƈ.ƍƇ -ƌƊ.Ǝƈ -ƌƋ.ҚƎ
ƋƎƋ.Ǝ -ƌƋ.ƋƎ -ƌƋ.ҚƎ
-Ƌқ.Ǝƈ -ƌƌ.Ƈқ -ƌƌ.ƉƊ
ƍƇƎ.Ǝ -ƌƋ.Ƈƍ -ƌƌ.ƉƊ
-ƋƎ.Ɖƈ -ƌƌ.ƇƇ -ƌƌ.ƉƊ
ҚƋƎ.Ǝ -ƌҚ.ƇƎ -ƌƍ.Ɗƌ
-ƌƊ.Ƈƌ -ƌƍ.ƈƎ -ƌƍ.Ɗƌ
-ƈƌ.Ƌƌ -ƈƍ.ƋƊ -ƈƍ.ƌƋ

S-QDA TCP-QDA T-QDA

-ƌƊ.ƌƌ -ƌƍ.ƉƇ -ƌƍ.ҚƉ
-қ.ƉƎƊ -ƈҚ.ƍҚ -ƈƍ.ƌƋ
-Ɗƍ.қƊ -ƌƊ.ƍƊ -ƌƋ.қƎ
-ƈƉ.қƇ -ƈҚ.ƋƋ -ƈƍ.ƌƋ
-ƋƇ.Ƈқ -ƌƋ.Ƌƌ -ƌƋ.қƎ
ƋƎқ.Ǝ -ƌƋ.ƋƋ -ƌƋ.қƎ
-ƋƎ.ƉƇ -ƌƋ.қƋ -ƌƌ.ƌƊ
ƍƇƎ.Ǝ -ƌƋ.ƈƇ -ƌƌ.ƌƊ
-ƋƎ.ƈƍ -ƌƌ.Ƈƌ -ƌƌ.ƌƊ
ҚƌƇ.Ɗ -ƌҚ.ƈƎ -ƌƍ.ҚƉ
-ƌƊ.ƈƌ -ƌƍ.ƈƍ -ƌƍ.ҚƉ
-ƈƌ.Ƌƍ -ƈƍ.ƋƋ -ƈƍ.ƌƋ‘

S-LS TCP-LS T-LS

Ƈ.ƌқƇ Ƈ.ƌƍƎ Ƈ.ƋƋƋ
ƈ.ƋƋƎ ƈ.ƋƋƎ Ƈ.ƉƈƊ
ƈ.ƋƋƈ ƈ.ƋƋƈ Ƈ.ҚƈƊ
ƈ.ƇҚқ ƈ.ƇҚқ Ƈ.ƉƈƊ
ƈ.ƈƉƇ ƈ.ƈƇƋ Ƈ.ҚƈƊ
Ƈ.ƎƇƋ Ƈ.ƎƇƋ Ƈ.Қƍƈ
Ƈ.ҚƋƉ Ƈ.ҚƊқ Ƈ.ƋҚƊ
ƈ.ƍƇƇ ƈ.ƍƇƇ Ƈ.ҚƎҚ
ƈ.қƊƊ ƈ.қƊƊ Ƈ.ƋƍƇ
Ɖ.ƈƇƉ Ɖ.ƈƇƉ Ƈ.ƍƋƇ
Ƈ.ƌқƉ Ƈ.ƌқƉ Ƈ.ƋƋƋ
Ƈ.Ƌƈƌ Ƈ.Ƌƈƌ Ƈ.ƉƊҚ

Looking at the areas under the ROC-curves in Figure Қ.Қ, one observes a different pa�ern
in the classifier performances. TCA, KMM, RCSA andRBAperformmuchworse, o[en below
chance level. It can be seen that, in some cases, the assumpࢢon of equal class-posterior
distribuࢢons sࢢll holds approximately, as KMM and RCSA someࢢmes perform quite well,
e.g. in Hungary - Ohio. TCA’s performance varies around chance level, indicaࢢng that it is
difficult to recover a common latent representaࢢon in these seࢰngs. That makes sense,
as the domains lie further apart this .meࢢ RBA’s performance drops most in cases where
the differences in priors and proporࢢons of missing values are largest, e.g. Hungary - Cali-
fornia, which also makes sense as it is expecࢢng similar feature staࢢsࢢcs in both domains.
TCP-LS performs very well in almost all cases; the conservaࢢve strategy is paying off. TCP-
LDA is also performing very well, even outperforming TCP-QDA in all cases. The added
flexibility of a covariance matrix per class is not beneficial because it is much more diffi-
cult to fit correctly. Note that the domain combinaࢢons are asymmetrical; for example,
RCSA’s performance is quite strong when Switzerland is the source domain and Ohio the
target domain, but it’s performance is much weaker when Ohio is the source domain and
Switzerland the target domain. In some combinaࢢons, assumpࢢons on how two domains
are related to each other might be valid that are not valid in their reverse combinaࢢons.
Overall, in this more general domain adaptaࢢon seࢰng, our more conservaࢢve approach
works best, as shown by the mean performances.

Visualizaࢢon of the worst-case labeling
The adversary in TCP’s minimax formulaࢢon maximizes the objecࢢve with respect to the
probability 𝑞፣፤ that a sample 𝑗 belongs to class 𝑘. However, note that the worst-case la-
beling corresponds to the labeling that maximizes the contrast: it looks for the labeling for
which the difference between the source parameters and the current parameters is largest.
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Table Қ.Қ: Heart disease dataset. Area under the ROC-curve for all pairwise combinaࢢons of domains (O=’Ohio’,
C=’California’, H=’Hungary’ and S=’Switzerland’; larger values are be�er.

𝒮 𝒯
O H
O S
O C
H S
H C
S C
H O
S O
C O
S H
C H
C S

mean

TCA KMM RCSA RBA TCP-LS TCP-LDA TCP-QDA

.ҚƎƎ .ƍƈƇ .ƊƍƉ .Ƌқƈ .ққƈ .ққƉ .қƈƍ

.ƌƎƇ .ƌƌƈ .ҚƊƋ .ҚƍƇ .ƍƈƋ .Қƍƈ .Қƍƈ

.ƋƎҚ .ƋƍҚ .ƌҚƇ .ƋƌƇ .Қƍƈ .ҚҚқ .ƋƍҚ

.Ƌƌƌ .ƌƇƈ .ҚƋҚ .ҚƇƉ .ҚҚқ .ҚҚƌ .ҚҚҚ

.ƌƉқ .ƌƊƊ .ƌқƌ .ƋƊƋ .ƍƉƍ .ƍƇƎ .ҚҚƉ

.Ƌƍƌ .ƌƍƊ .ƋҚƋ .ҚƇƊ .ҚƇƌ .ƌƋҚ .ƋқƇ

.ҚƈҚ .ƍƋƉ .ƍƌƈ .ƌƈƇ .қҚƋ .қƍҚ .қҚƊ

.ƌқƉ .ƊƌƊ .ƍƌƇ .ƋƋƎ .ƍƌƊ .ƌқƎ .ƋƉҚ

.ƋқƋ .ƊƊƍ .ƌƌƈ .ƌƌƍ .Қƍƈ .қƊƈ .қƉқ

.ƋƇƍ .ƊƍƇ .ҚƉƎ .ƋқƋ .ҚƎƍ ƍƉƋ .ҚƇƋ

.ƋƍƉ .ƋƉƍ .ƌƊқ .ҚƈҚ .қƇƌ .қƍқ .қƉƋ
.ƌƈƈ .ƌƎƊ .ƋҚƉ .ƋƍƋ .ƍƇƎ .ƌƇƊ .ƌƊƌ

.ƌƉҚ .ƌƈƋ .ƌƍқ .ƌƉқ .ƍƊƇ .ƍƈƉ .ҚƌƋ

It would be interesࢢng to visualize this labeling at the saddle point. Figure Қ.Ɗ shows the
first two principal components of Hungary, with the probabiliࢢes of belonging to class 1,
i.e. 𝑞፣፤዆ኻ. The top le[ figure shows the true labeling, the top right the probabiliࢢes for
TCP-LS, the bo�om le[ for TCP-LDA and the bo�om right for TCP-QDA. In all three TCP cases
the labeling is quite smooth and does not vary toomuch between neighboring points. One
would expect a rough labeling, but note that labellings that are bad for the source classifier
will most likely also be bad for the TCP classifier, and the resulࢢng contrast will be small
instead of maximal. The probabiliࢢes for TCP-LS lie closer to 0 and 1 than for TCP-LDA and
TCP-QDA.

6.6. Discussion
Although the TCP classifiers are neverworse than the source classifier by construcࢢon, they
will not automaࢢcally lead to improvements in the error rate. This is due to the difference
between opࢢmizing a surrogate loss and evaluaࢢng the 0/1-loss [Ɗƍ, Ƌƈ, ƋƉ]. There is no
one-to-onemapping between theminimizer of the surrogate loss and theminimizer of the
0/1-loss.

One peculiar advantage of our TCP model is that we do not explicitly require source
samples at training .meࢢ They are not incorporated in the risk formulaࢢon, which means
that they do not have to be retained in memory. It is sufficient to receive the parameters
of a trained classifier that can serve as a baseline. Our approach is therefore more effi-
cient than for example importance-weighing techniques which require source samples for
importance-weight esࢢmaࢢon and subsequent training. Addiࢢonally, it would be interest-
ing to construct a contrast with mulࢢple source domains. The union of source classifiers
might serve as a very good starࢢng point for the TCP model.
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Figure Қ.Ɗ: Sca�er plots of the first two principal components of Hungary in the heart disease dataset. (Top le[)
True labeling, (top right) ፪፤዆ኻ for TCP-LS, (bo�om le[) ፪፤዆ኻ for TCP-LDA, (bo�om right) ፪፤዆ኻ for TCP-QDA.

For each adapࢢve classifier, regularizaࢢonparameters are esࢢmated through cross-validaࢢon
on held-out source samples. However, this procedure is known to be biased as it does not
account for domain dissimilarity [ƋƊ, ƋƋ]. What is opࢢmal with respect to held-out source
samples, need not be opࢢmal with respect to target samples. Performance of many adap-
veࢢ models might be improved with appropriate adapࢢve validaࢢon techniques.

6.7. Conclusion
We have designed a risk minimizaࢢon formulaࢢon for a domain-adapࢢve classifier whose
performance, in terms of risk, is always at least as good as that of the non-adapࢢve source
classifier. Furthermore, for the discriminant analysis case, its performance is always strictly
be�er. Our target contrasࢢve pessimisࢢc model performs on par with state-of-the-art do-
main adapࢢve classifier on sample selecࢢon bias seࢰngs and outperforms them on more
realisࢢc domain adaptaࢢon problem seࢰngs.
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6.8. Appendix A
Proof of Theorem Ƈ. Let {(𝑥። , 𝑦።)}፧።዆ኻ be a sample set of size 𝑛 drawn iid from conࢢnuous
distribuࢢon 𝑝𝒮 , defined over 𝐷-dimensional real-valued input space 𝒳 ⊆ ℝፃ and output
space 𝒴 = {1,… , 𝐾} with 𝐾 as the number of classes. Similarly, let {(𝑧፣ , 𝑢፣)}፦፣዆ኻ be a
sample set, of size 𝑚, drawn iid from conࢢnuous distribuࢢon 𝑝𝒯 , defined over the same
spaces. For the purposes of the following risk funcࢢon, the labels of single samples, 𝑦።
and 𝑢፣, are encoded as 1 by 𝐾 vectors, with the 𝑘-th element being the probability of
belonging to the 𝑘-th class. Consider a discriminant analysis model parameterized either
as 𝜃 = (𝜋ኻ, … , 𝜋ፊ , 𝜇ኻ, … , 𝜇ፊ , Σኻ, … Σፊ) for QDA or 𝜃 = (𝜋ኻ, … , 𝜋ፊ , 𝜇ኻ, … , 𝜇ፊ , Σ) for LDA.
�̂�DA denotes empirical risk consisࢢng of average negaࢢveGaussian log-likelihoodsweighted
by labels:

�̂�DA(𝜃 | 𝑥, 𝑦) =
1
𝑚

፦

∑
፣዆ኻ

ፊ

∑
፤዆ኻ

−𝑦።፤ log𝒩(𝑥። | 𝜃፤) .

Note that 𝜃፤ refers to (𝜋፤ , 𝜇፤ , Σ፤) in the case of QDA and to (𝜋፤ , 𝜇፤ , Σ) in the case of LDA.
The sample covariance matrix, Σ፤ for QDA and Σ for LDA, is required to be non-singular,
which is guaranteed when there are more unique samples than features for every class,
𝑚፤ > 𝐷. In the LDA case, 𝐷 + 𝐾 unique samples are sufficient. Let �̂�𝒮 be the parameters
esࢢmated on labeled source data; �̂�𝒮 = argmin

᎕∈ጆ
�̂�DA(𝜃 | 𝑥, 𝑦).

Firstly, for fixed 𝑞, the minimized contrast between the target risk of any parameter 𝜃
and the source parameters �̂�𝒮 is non-posiࢢve, because both parameters sets are elements
of the same parameter space, 𝜃, �̂�𝒮 ∈ Θ:

min
᎕∈ጆ

�̂�DA(𝜃 | 𝑧, 𝑞) − �̂�DA(�̂�𝒮 | 𝑧, 𝑞) ≤ 0 .

𝜃’s that result in a larger target risk than that of �̂�𝒮 are not minimizers of the contrast.
The maximum value it can a�ain is 0, which occurs when exactly the same parameters are
found; 𝜃 = �̂�𝒮 . Considering that the contrast is non-posiࢢve for any labeling 𝑞, it is also
non-posiࢢve with respect to the worst-case labeling:

min
᎕∈ጆ

max
፪∈ጂ፦ፊዅኻ

�̂�DA(𝜃 | 𝑧, 𝑞) − �̂�DA(�̂�𝒮 | 𝑧, 𝑞) ≤ 0 . (Қ.ƈƈ)

Secondly, given that the empirical riskwith respect to the true labeling is always less than
or equal to the empirical risk with the worst-case labeling, �̂�(𝜃 | 𝑧, 𝑢) ≤max፪ �̂�(𝜃 | 𝑧, 𝑞),
the target contrasࢢve risk (Қ.Ɗ) with the true labeling 𝑢 is always less than or equal to the
target contrasࢢve pessimisࢢc risk (Қ.ƌ):

min
᎕∈ጆ

�̂�DA(𝜃 | 𝑧, 𝑢) − �̂�DA(�̂�𝒮 | 𝑧, 𝑢) ≤

min
᎕∈ጆ

max
፪∈ጂ፦ፊዅኻ

�̂�DA(𝜃 | 𝑧, 𝑞) − �̂�DA(�̂�𝒮 | 𝑧, 𝑞) . (Қ.ƈƉ)
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Let (�̂�𝒯 , 𝑞∗) be the minimaximizer of the target contrasࢢve pessimisࢢc risk on the right-
handside of (Қ.ƈƉ). Plugging these esࢢmates in into (Қ.ƈƉ) produces:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) − �̂�DA(�̂�𝒮 | 𝑧, 𝑢) ≤ �̂�DA(�̂�𝒯 | 𝑧, 𝑞∗) − �̂�DA(�̂�𝒮 | 𝑧, 𝑞∗) . (Қ.ƈƊ)

Combining inequaliࢢes Қ.ƈƈ and Қ.ƈƊ gives:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) − �̂�DA(�̂�𝒮 | 𝑧, 𝑢) ≤ 0 .

Bringing the second term on the le[-handside to the right-handside shows that the tar-
get risk of the TCP esࢢmate is always less than or equal to the target risk of the source
classifier’s:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) ≤ �̂�DA(�̂�𝒮 | 𝑧, 𝑢) . (Қ.ƈƋ)

However, equality of the two risks in Қ.ƈƋ occurs with probability 0, which we will show in
the following.

The total mean for the source classifier consists of the weighted combinaࢢon of the class
means, resulࢢng in the overall source sample average:

𝜇𝒮 =
ፊ

∑
፤዆ኻ

𝜋𝒮፤ 𝜇𝒮፤

=
ፊ

∑
፤዆ኻ

∑፧። 𝑦።፤
𝑛 [ 1

∑፧። 𝑦።፤

፧

∑
።዆ኻ
𝑦።፤𝑥።]

=1𝑛

፧

∑
።዆ኻ
𝑥። . (Қ.ƈƌ)

The total mean for the TCP-DA esࢢmator is similarly defined, resulࢢng in the overall tar-
get sample average:

𝜇𝒯 =
ፊ

∑
፤዆ኻ

𝜋𝒯፤ 𝜇𝒯፤

=
ፊ

∑
፤዆ኻ

∑፦፣ 𝑞፣፤
𝑚 [ 1

∑፦፣ 𝑞፣፤

፦

∑
፣዆ኻ
𝑞፣፤𝑧፣]

=
ፊ

∑
፤዆ኻ

1
𝑚

፦

∑
፣዆ኻ
𝑞፣፤𝑧፣ (Қ.ƈҚ)

= 1𝑚

፦

∑
፣዆ኻ
𝑧፣ . (Қ.ƈƍ)



6.8. Appendix A

6

169

Note that since 𝑞 consists of probabiliࢢes, the sum over classes ∑ፊ፤ 𝑞፣፤ in (Қ.ƈҚ) is 1, for
every sample 𝑗. Equal risks for these parameter sets, �̂�DA(𝜃𝒯 | 𝑧, 𝑢) = �̂�DA(�̂�𝒮 | 𝑧, 𝑢),
implies equality of the total means, 𝜇𝒯 = 𝜇𝒮 . By Equaࢢons Қ.ƈƌ and Қ.ƈƍ, equal total means
imply equal sample averages: 𝑚ዅኻ ∑፦፣ 𝑧፣ = 𝑛ዅኻ ∑፧። 𝑥።. Given a set of source samples,
drawing a set of target samples such that their averages are exactly equal, consࢢtutes a
single event under a probability density funcࢢon:

𝑝𝒯( 𝒳ኻ = 𝑧ኻ, … ,𝒳፦ = 𝑧፦ |
1
𝑚

፦

∑
፣዆ኻ
𝑧፣ =

1
𝑛

፧

∑
።዆ኻ
𝑥። ) .

By definiࢢon, single events under conࢢnuous distribuࢢons have probability 0. Therefore,
a strictly smaller risk occurs almost surely:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) < �̂�DA(�̂�𝒮 | 𝑧, 𝑢) .
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7
Discussion

This chapter reflects on the work presented in this thesis as well. Several findings are dis-
cussed and a series of open quesࢡons is presented. Addiࢡonally, the benefit of domain
adaptaࢡon to open science is considered and a future step towards dynamical domain
adaptaࢡon is explored.
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In Chapter ƈ, I outlined my research quesࢢon: when and how can a staࢢsࢢcal classifier
generalize from a source to a target domain? This quesࢢon is very general and the work
presented in this thesis is insufficient to fully answer it. For the broadest case of domain
shi[, the answer is simple: it is impossible for a classifier to generalize from a source do-
main to all possible target domains. For parࢢcular cases, it depends on the relaࢢonship
between the domains. There are many ways in which two domains can be related to each
other, each with many possible of ways of exploiࢢng that informaࢢon for designing a clas-
sifier. These ways have not all been found. But, on reflecࢢon, some observaࢢons can be
made and some new quesࢢons can be asked, which are presented in the following subsec-
.onsࢢ

With complexity of domain relaࢢonships, I mean how many variables change and how
much they change. In this regard, the simplest change is the case of prior shi[: only one dis-
crete variable changes. However, even this case can be complicated to deal with. The rarer
a class, the more difficult it is to esࢢmate it. Furthermore, it is not enࢢrely clear whether
source samples should be reweighted to match the class proporࢢons of the target domain
or whether they should be balanced in order to facilitate training the classifier. Moreover,
it is not enࢢrely clear how they should be up- or downweighted: although theoreࢢcally
a sample should be assigned a different loss, performance improvements have been re-
ported for methods that upsample and interpolate between source samples. That implies
an assumpࢢon of smooth variaࢢon in feature space and raises the quesࢢon of whether this
can always be assumed.

A[er prior shi[, covariate shi[ is the most constrained case. In its simplest form, only
one covariate (i.e. feature) changes. This has been extensively studied and many open
quesࢢons such as how far the variable can shi[, how many samples are required to esࢢ-
mate the importance-weight and how the classifier behaves under importance-weight esࢢ-
maࢢon errors, have been addressed already [ƈ, Ɖ]. It seems that the most important things
to check before a�empࢢng a method is: does the assumpࢢon of equal class-posterior dis-
tribuࢢons hold and if not, how strongly is it violated? Are the domains so far apart that the
weights will become bimodal? Do you have enough source and target samples to esࢢmate
importance-weights? If weight esࢢmaࢢon is done parametrically, do you have enough
samples to prevent low probabiliࢢes in the denominator and if done non-parametrically,
do you have enough samples to perform hyperparameter esࢢmaࢢon (e.g. kernel band-
width selecࢢon for kernel density esࢢmators)? Is the sample selecࢢon variable smooth? Is
there model misspecificaࢢon (for weight or selecࢢon variable esࢢmaࢢon and for training
the classifier)?

Further openquesࢢons include: howdoes data preprocessing affect importanceweight
esࢢmaࢢon versus classifier training? Should each domain be normalized separately to
bring the domains closer together thereby avoiding weight bimodality or should this be
avoided because it induces a violaࢢon of the covariate shi[ assumpࢢon? Is it ok to trans-
form only the features that have not shi[ed between domains? Does the assumpࢢon of
equal class-posterior distribuࢢons hold for a part of feature space? Can mulࢢple source
domains aid in weight esࢢmaࢢon? Are hybrid distribuࢢons (joint distribuࢢons made up of
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the product of discrete distribuࢢons for discrete features and conࢢnuous distribuࢢons for
conࢢnuous features) necessary or useful for weight esࢢmaࢢon?

The simplest version of concept shi[, is where only one of the condiࢢonal distribuࢢons
𝑝(𝑦፤ | 𝑥፝) changes. However, even such a situaࢢon is impossible to esࢢmate from data
without observaࢢon of at least one labeled sample in each domain, for each class. My
advice would be to esࢢmate it from meta-data: if the experimenter recorded how data
in each domain is annotated, for instance when crowd-sourced annotators have to explain
why they assigned a sample to a parࢢcular class, then it is possible to find discrepancies and
correspondences between annotaࢢon strategies. This addiࢢonal informaࢢon might allow
for correcࢢng sets of labels and reduce the shi[ in concept. However, concrete methods
for doing so are very applicaࢢon-specific.

The rest of the types of relaࢢonships are much more complicated, because mulࢢple
changes occur at the same .meࢢ For example, for subspace mappings, there are both
changes in the data distribuࢢons and changes in the class-posterior distribuࢢons, and pos-
sible changes in class proporࢢons as well. Since these are less constrained, they are harder
to study. This makes it harder to predict whether a specific adapࢢve method will be suc-
cessful for a given a domain shi[ problem. Furthermore, it is sࢢll unclearwhat the effects of
sample sizes or esࢢmaࢢon errors are for methods based on subspace mappings, domain-
invariant spaces, domain manifolds, low-joint-error, etc. It would be very informaࢢve to
study these factors.

In conclusion, I would argue that there is sࢢll a lot to be done before domain-adapࢢve
classifiers becomepracࢢcal, everyday tools. At themoment, there are toomany researchers
proposingmethods to address very specific cases (someࢢmes even just between twodatasets)
and only a handful of researchers working on answering theoreࢢcal quesࢢons. This is a
shame, as advances in theory o[en shape successful methods. With this in mind, the next
two subsecࢢons present some open quesࢢons that I find interesࢢng.

7.1. Validity of the covariate shi[ assumpࢢon
The current assumpࢢon in covariate shi[, namely 𝑝𝒯(𝑦 | 𝑥) = 𝑝𝒮(𝑦 | 𝑥), might be too
restricࢢve to ever be valid in nature. The assumpࢢon is o[en interpreted as the decision
boundary being in the same locaࢢon in both domains, but considering that they are dis-
tribuࢢons, the funcࢢons need to be equal for the whole sample space. Both Figure Ɖ.ƈ in
Chapter Ɖ and Figure Ɗ.ƈ from Chapter Ɗ show examples of the shape of the posterior dis-
tribuࢢons. Equal class-posterior distribuࢢons is a much more difficult condiࢢon to saࢢsfy
than equal decision boundaries. As such, there are many occasions where the assump-
onࢢ is made but is not actually valid, leading to detrimental performances of importance-
weighted classifiers (c.f. Chapter Қ).

Fortunately, some experiments have indicated that there is some robustness to a viola-
onࢢ of the covariate shi[ assumpࢢon. It would be very interesࢢng to perform a perturba-
onࢢ analysis and see if a less restricࢢve assumpࢢon can be found. This might take the form
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of decision boundaries lying within a specified 𝜖 distance from each other. Or it might be
possible to incorporate the distance between decision boundaries as a slack variable, which
would influence importance-weight esࢢmaࢢon directly. Since a less restricࢢve condiࢢon
would be easier to saࢢsfy, methods relying on it would be more robust in pracࢢce.

7.2.More specific domain discrepancy metrics
Most measures that describe discrepancies between domains are very general; they are
either distribuࢢon-free or classifier-agnosࢢc. General measures produce looser general-
izaࢢon bounds than more specific measures. As new insights are gained into causes of
domain shi[, new, more precise metrics should be developed. These can contain prior
knowledge on the problem at hand: for example, in natural language processing, one of-
ten encodes text documents in bag-of-word or n-gram features. General measures such as
the MaximumMean Discrepancy might show small values for essenࢢally enࢢrely different
contexts. A more specific measure, such as the total variaࢢon distance between Poisson
distribuࢢons, would take the discreteness and sparseness of the feature space into ac-
count. Consequently, it would be more descripࢢve and it would be preferable for natural
language processing domains. Such specific forms of domain discrepancy metrics would
lead to ghterࢢ generalizaࢢon bounds, stronger guarantees on classifier performance and
more pracࢢcal adapࢢve classifiers.

Finding domain discrepancies specific to a task or type of data is not a trivial task. A good
place to start is to look at methods that incorporate explicit descripࢢons of their adapta-
.onsࢢ For instance, a subspace mapping method explicitly describes what makes the two
domains different (e.g. lighࢢng or background). Looking at the types of adaptaࢢons they
recover would be informaࢢve as to what types of discrepancies are useful for specific ap-
plicaࢢons. I think therefore that methods with explicit descripࢢons of ”transfer” could be
exploited for finding more specific domain discrepancy metrics.

7.3. Open access and insࢢtuࢢon-variaࢢon
Being able to classify a dataset by downloading a source domain and training a domain-
adapࢢve classifier instead of annotaࢢng samples, can save a tremendous amount of ,meࢢ
money and effort. It increases the value of exisࢢng datasets. Not only does it save anno-
taࢢon costs, but it can also increase staࢢsࢢcal power by providing more data. I believe the
development of domain-adapࢢve or transfer learning methods, creates a larger incenࢢve
for researchers to make their data publicly available.

It is not uncommon to hear that different research groups working in the same field
do not use each other’s data. The argument is that the other group is located in a differ-
ent environment, experiments differently or uses a different measuring device, and that
their data is therefore not ”suitable” [Ɗ]. For example, in biostaࢢsࢢcs, gene expression
micro-array data can exhibit ”batch effects” [Ƌ]. These can be caused by the amplificaࢢon
reagent, meࢢ of day, or even atmospheric ozone level [ƌ]. In some datasets, batch effects
are themost dominant source of variaࢢon and are easily idenࢢfied by clustering algorithms
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[Ƌ]. However, addiࢢonal informaࢢon such as local weather, laboratory condiࢢons, or ex-
perimental protocol, should be available. That informaࢢon could be exploited to correct
for the batch effect. The more knowledge we have of possible confounding variables, the
be�er we would be able to model the transfer from one batch to the other. Consider-
ing the financial costs of genome sequencing experiments, the ability to combine datasets
frommulࢢple research centers without batch effects is very desirable. Larger benefits from
open access further encourage data sharing.

7.4. Sequenࢢal adaptaࢢon
Successful adaptaࢢon is defined as an improvement over the performance of the origi-
nal system. As may be understood from this thesis, it is not clear which condiࢢons have
to be fulfilled in order for the system to perform well. It seems that in cases where it is
difficult to describe how two populaࢢons relate to each other, adapࢢve systems become
highly uncertain. Conversely, the more similar the populaࢢons are, the likelier it is that the
system adapts well. It would, for example, be easier to adapt to predict heart disease in
adolescents based on adults, then it would be to adapt to infants. But that raises the ques-
:onࢢ can we design a system that first adapts to an intermediate populaࢢon and only then
adapts to the final target populaࢢon? In other words, a system that sequenࢡally adapts?

Intermediate domains are o[en available, but overlooked. When incorporated, these
would present a series of changes instead of one large jump. For example, adapࢢng from
European hospitals to predicࢢng illnesses in Asian hospitals is difficult. But a sequenࢢal
adapࢢve system starࢢng in western Europe would first adapt to eastern Europe, followed
by the Middle-East, then to west Asia and finally reaching a populaࢢon of eastern Asian
paࢢents. If the domain shi[s are not too dissimilar in each transiࢢon, then adaptaࢢon
should be easier.

Of course, the sequenࢢal strategy also raises a number of extra quesࢢons: will adapta-
onࢢ errors accumulate? How should the possible performance gain be traded off against
the addiࢢonal computaࢢonal cost? Will performance feedback be necessary? Some of
these quesࢢons have been addressed in dynamical learning seࢰngs, such as reinforce-
ment learning or mulࢢ-armed bandits [Қ, ƍ]. The analysis of sequenࢢal adapࢢve systems
could build upon their findings.

The sequenࢢal adaptaࢢon seࢰng also shares some overlap with sequenࢢal Monte Carlo
sampling, for meࢢ series predicࢢon and state-space models [қ]. In that seࢰng, a conࢢn-
uous signal that changes its characterisࢢcs over meࢢ is modeled and extrapolated. One
method, called parࢡcle filtering, actually employs importance-weighࢢng over meࢢ [Ǝ, ƈƇ].
Each sample is weighted with its importance with respect to the signal in the next -meࢢ
step. However, sudden large changes would cause the same sampling variance problems
as discussed in Chapter Ɗ. Considering the similarity to importance-weighing in covariate
shi[, developments in parࢢcle filtering could be very useful to sequenࢢal domain adapta-
.onࢢ In summary, a lot is known about dynamical learning, which should not be neglected
in designing a sequenࢢal domain-adapࢢve classifier.
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7.5. Conclusion
I hope to have convinced the reader that domain adaptaࢢon is an interesࢢng topic of re-
search within machine learning and arࢢficial intelligence. Progress in the design and anal-
ysis of classifiers that generalize to target domains would be beneficial to all areas where
supervised learning is already being used, especially in areas where annotaࢢon is expen-
sive and similar datasets are available. There is sࢢll a lot of work to be done before these
methods become pracࢢcal, but with it come many exciࢢng challenges as well.
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Notaࢢon

Please refer to this list for a descripࢢon of the mathemaࢢcal notaࢢon in this thesis. Note
that individual chapters may deviate when necessary.

𝒳 Input space, for example ℝፃ.
𝒴 Output space, for example {−1,+1} or {1, … , 𝐾}.
𝐷 Dimensionality of input space.
𝐾 Number of classes, i.e. |𝒴|.
𝑝𝒮 Source probability distribuࢢon funcࢢon.
𝑝𝒯 Target probability distribuࢢon funcࢢon.
𝒮 Source domain: (𝒳,𝒴, 𝑝𝒮).
𝒯 Target domain: (𝒳,𝒴, 𝑝𝒯).
𝑋 Source data, indexed by 𝑖 for samples, 𝑑 for features and 𝑘 for classes.
𝑥 Source data sample, indexed by 𝑑 for features.
𝑍 Target data, indexed by 𝑗 for samples, 𝑑 for features and 𝑘 for classes.
𝑧 Target data sample, indexed by 𝑑 for features.
𝑦 Source labels 𝑦 ∈ 𝒴, indexed by 𝑖 for samples and 𝑘 for classes.
𝑢 Target labels 𝑢 ∈ 𝒴, indexed by 𝑗 for samples and 𝑘 for classes.
𝒟𝒮 Dataset of labeled source samples: 𝒟፧𝒮 = {(𝑥። , 𝑦።)}፧።዆ኻ.
𝒟𝒯 Dataset of labeled target samples: 𝒟፧𝒯 = {(𝑧፣ , 𝑢፣)}፦፣዆ኻ.
𝔼 Expectaࢢon, or expected value, of a distribuࢢon.
𝕍 Variance of a distribuࢢon.
ℂ Covariance between two variables.
ℋ Hypothesis space of classificaࢢon funcࢢons.
ℎ Classificaࢢon funcࢢon; ℎ ∶ 𝒳 → 𝒴.
𝜃 Classificaࢢon funcࢢon parameters.
ℓ Loss funcࢢon, which compares a predicࢢon ℎ(𝑥።) to a true label 𝑦።.
𝑅 Risk funcࢢon, i.e. the expected loss: 𝑅(ℎ) = 𝔼ℓ(ℎ).
�̂� Empirical risk, i.e. the average loss: �̂�(ℎ|𝒟፧𝒮 ).
𝑤 Importance weights; 𝑤(𝑥።) or 𝑤።, indexed by 𝑖 for samples.
𝐿፩ Order of regularizaࢢon, e.g. 𝐿ኼ-regularizaࢢon.
𝜆 Regularizaࢢon parameter.
D Divergence between two distribuࢢons: D(𝑝𝒮 , 𝑝𝒯).
D̂ Empirical divergence between two datasets: D̂(𝑋, 𝑍).
𝑑 Distance between two samples; 𝑑(𝑥, 𝑧).
𝜙 Basis funcࢢon; 𝜙(𝑥).
𝜅 Kernel funcࢢon; 𝜅(𝑥, 𝑥ᖣ) = 𝜙(𝑥)𝜙(𝑥ᖣ)ዉ.
𝒩 Normal distribuࢢon, i.e. 𝒩(𝑥 | 𝜇, Σ).
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