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Summary

Artificial intelligence, and in particular machine learning, is concerned with teaching com-
puter systems to perform tasks. Tasks such as autonomous driving, recognizing tumors
in medical images, or detecting suspicious packages in airports. Such systems learn by
observing examples, i.e. data, and forming a mathematical description of what types of
variations occur, i.e. a statistical model. For new input, the system computes the most
likely output and makes a decision accordingly. As a scientific field, it is situated between
statistics and and algorithmics. As a technology, it has become a very powerful tool due to
the massive amounts of data being collected and the drop in the cost of computation.

However, obtaining enough data is still very difficult. There are often substantial finan-
cial, operational or ethical considerations in collecting data. The majority of research in
machine learning deals with constraints on the amount, the labeling and the types of data
that are available. One such constraint is that it is only possible to collect labeled data from
one population, or domain, but the goal is to make decisions for another domain. It is un-
clear under which conditions this will be possible, which inspires the research question of
this thesis: when and how can a classification algorithm generalize from a source domain
to a target domain?

My research has looked at different approaches to domain adaptation. Firstly, we have
asked some critical questions on whether the standard approaches to model validation
still hold in the context of different domains. As a result, we have proposed a means
to reduce uncertainty in the validation risk estimator, but that does not solve the prob-
lem completely. Secondly, we modeled the transfer from source to target domain using
parametric families of distributions, which works well in simple contexts such as feature
dropout at test time. Thirdly, we looked at a more practical problem: tissue classifiers
trained on data from one MRI scanner degrade when applied to data from another scan-
ner due to acquisition-based variations. We tackled this problem by learning a represen-
tation for which detrimental variations are minimized while maintaining tissue contrast.
Finally, considering that many approaches fail in practice because their assumptions are
not met, we designed a parameter estimator that never performs worse than the naive
non-adaptive classifier.

Overall, research into domain-adaptive machine learning is still in its infancy, with many

interesting challenges ahead. | hope that this work contributes to a better understanding
of the problem and will inspire more researchers to tackle it.

Xi






Samenvatting

Kunstmatige intelligentie, en in het bijzonder machinaal leren, draait om computersyste-
men die leren om taken uit te voeren. Taken zoals autonoom rijden, tumor herkenning in
medische beelden, of detectie van verdachte pakketten op vliegvelden. Zulke systemen
leren door het observeren van voorbeelden, i.e. data, en vormen een wiskundige beschrij-
ving van de variaties die voorkomen, i.e. een statistisch model. Voor nieuwe input berekent
het systeem de meest waarschijnlijke output en maakt op basis daarvan een beslissing. Als
wetenschappelijk veld staat machinaal leren tussen statistiek en algoritmiek. Als techno-
logie is het een krachtig stuk gereedschap vanwege de beschikbaarheid van grote hoeveel-
heden data en de lage kosten van berekeningen uitvoeren.

Maar genoeg data verzamelen is nog steeds erg moeilijk. Er zijn vaak lastige financiéle,
operationele of ethische overwegingen in data collectie. Onderzoek in machinaal leren
draait daarom vooral om het omgaan met beperkingen op de hoeveelheid, de annotatie
en de typen data die beschikbaar zijn. Eén zo’n beperking is dat het alleen mogelijk is om
data te krijgen van één populatie, oftewel domein, terwijl het doel is om beslissingen te
maken voor een andere populatie. Het is onduidelijk onder welke condities dit mogelijk is.
Dit leidt tot mijn onderzoeksvraag: wanneer en hoe kan een classificatie algoritme gene-
raliseren van een bron domein naar een doel domein?

Mijn onderzoek heeft gekeken naar verschillende manieren om domein adaptatie aan
te pakken. Ten eerste, hebben we kritische vragen gesteld over model validatie in de con-
text van verschillen in domeinen. Daaruit is een methode voortgekomen die de onzeker-
heid van een validatie schatter reduceert, maar daarmee lijkt nog niet alles gezegd te zijn.
Ten tweede, hebben we de overgang van bron naar doel domein gemodelleerd met uitval-
distributies, wat goed werkt wanneer informatie in het doel domein wegvalt. Ten derde,
hebben we gekeken naar een iets praktischer probleem: weefsel classificeerders getraind
op data van één MRI scanner presteren slecht op data van een andere scanner. Om dit op
te lossen hebben we een representatie geleerd waarin scanner-gerelateerde variatie mi-
nimaal word terwijl weefsel contrast bewaard blijft. Als laatste, omdat veel methoden in
de praktijk niet werken vanwege invalide assumpties, hebben we een parameter schatter
ontworpen die nooit slechter presteert dan de naieve non-adaptieve aanpak.

Tot slot, onderzoek naar domein-adaptief machinaal leren staat nog in de kinderschoe-

nen, met vele interessante open vragen. lk hoop dat dit werk andere onderzoekers aan-
spoort om deze uitdaging ook aan te gaan.

xiii






Introduction

In this chapter, | first introduce the concept of computer systems that learn to perform a
task. Branching out from the standard framework of supervised learning, | pose my re-
search questions on generalizing across domains. Following those, | discuss a number of
theoretical analyses that have proven to be very insightful and present a categorization of
approaches including important algorithms. Finally, | briefly discuss the contributions of
this thesis to domain-adaptive machine learning.



2 1. Introduction

Intelligent systems learn from data to recognize patterns, predict outcomes and make
decisions [1, 2]. In data-abundant problem settings, such as recognizing objects in images,
these systems achieve super-human levels of performance [3]. Their strength lies in their
ability to process huge amounts of examples and obtain a detailed estimate of what does
and does not constitute the object they are looking for. In recent years, the explosion in
data collection and open access has thrusted machine learning into the limelight. It is now
a key technology in self-driving cars [4], drone guidance [5], computer-assisted diagnosis
[6], online commerce [7], satellite cartography [8], exo-planet discovery [?], and machine
translation [10], with many more applications on the horizon.

Machine intelligence refers to a computer’s ability to learn to perform a task [11]. Super-
vised systems learn through training, where the system is rewarded or punished based on
whether it produces the right output for a given input [12, 13]. In order to train an intelli-
gent system, one requires a set of matching inputs and outputs. Most often, inputs consist
of complicated objects such as images while outputs consists of decisions such as 'yes’ or
'no’ or classes such as 'apple’, 'pear’, 'berry’, etc. The system will try out many classifica-
tion functions on the set of inputs and select the function that produced the least errors. If
the examples in the dataset are similar to new inputs, then the system will make accurate
decisions in the future as well. Classifying new inputs based on a finite set of examples, is
called generalization. For example, suppose patients are measured on various biometrics
such as blood pressure, and have been classified as 'healthy’ or 'ill. Then, a system can
be trained by finding the decision function that best diagnoses the patients. If they are an
accurate reflection of the population of all possible patients, then the trained system will
generalize to new patients as well.

However, if the collected data it is not an accurate reflection of the population, then
the system will not generalize well. Data is biased if certain events are observed more fre-
qguently than usual while others are observed less frequently. If data is biased, then the
system will think that certain outcomes are also more likely to occur. For example, data
collected from older patients is biased with respect to the total human population. Re-
searchers in statistics and social sciences have long studied problems with sample biases
and have developed a number of techniques to correct for biased data [14-16]. However,
there are still fundamental limitations on generalizing towards wider populations. Instead,
machine learning researchers are attempting to generalize towards specific target popu-
lations. For instance, can we use information from adult humans to train an intelligent
system for diagnosing infant heart disease?

In order to target specific populations, we need at least some idea of what it looks like.
Labeled data, i.e. input-output pairs, is often not available from the target population. But
usually there is some unlabeled data as well as some labeled data from another source.
Under certain conditions, relationships between populations can be found. Given such a
relationship, an intelligent system can now adapt, i.e. change its decisions from the source
population to generalize more towards the specific target population [17].



A more detailed example of adaptation is the following: in clinical imaging settings, ra-
diologists manually annotate tissues, abnormalities, and pathologies of sets of patients.
Biomedical engineers then use these annotations to train systems to perform automatic
tissue segmentation or pathology detection in medical images. Now suppose a hospital
installs a new MRI scanner. Unfortunately, due to the mechanical configuration, calibra-
tion, vendor and acquisition protocol of the scanner, the images it produces will differ from
images produced by other scanners [18-20]. Consequently, systems trained on data from
other scanners would fail to perform well on the new scanner. However, an adaptive sys-
tem would find correspondences in images between scanners, and change its decisions
accordingly. Thus it avoids the time, money and energy needed to annotate data for the
target population (in this case, images from the new scanner) [18, 19]. Chapter 5 of this
thesis describes a method that allows for targeted generalization towards a particular MRl
scanner.

Adaptation is making an impact in a number of other fields as well: in bioinformatics,
adaptive approaches have been successful in sequence classification [21, 22], gene expres-
sion analysis [23, 24], and biological network reconstruction [25, 26]. There, the types
of populations that are predominantly considered are different model organisms or dif-
ferent data-collecting research institutes [27]. In predictive maintenance, every time the
fault prognosis system raises an alarm and designates that a component has to replaced,
the machine changes its properties [28]. That means that the system will have to adapt
to the new setting, until another component is replaced and it will have to adapt again.
In search-and-rescue robotics, a system that needs to autonomously navigate wilderness
trails will have to adapt to detect concrete structures if it is to be deployed in an urban
environment [5, 8]. Computer vision systems that recognize activities have to adapt across
different surroundings as well as different groups of people [29-31]. In natural language
processing, texts from different publication platforms are tricky to analyze due to different
contexts and differences between how authors express themselves. For instance, financial
news articles use a vocabulary that differs from the one in biomedical research abstracts
[32]. Similarly, online movie reviews are linguistically different from tweets [33]. Senti-
ment classification relies heavily on context as well; people use different words to express
whether they like a book versus whether they like an electronic gadget [34]. Adapting for
the target population is very important to online retailers that use sentiment classifiers in
their recommender systems. When a new product category is introduced, there is no data
available to link users and items. In that case, there is an interest in using online reviews
from other product categories to aid in classifying sentiments in the new category [34, 35].

In some situations, the target population is a subpopulation. Personalization is an ex-
treme case of this. One of the first types of systems to target subpopulations are spam
filters: they are often initialized as general systems but adapt to specific users [36]. Male
users receive different kinds of spam than female users for instance, which the system can
detect and adapt to based purely on text statistics. Alternatively, in speaker recognition,
an initial speaker-independent system can adapt to new speakers [37]. Similarly, general
face recognition systems can be adapted to specific persons [38] and person-independent
activity recognition algorithms can be specialized to particular individuals [39].




4 1. Introduction

However, the analysis of adaptation is not complete, and it is not clear which conditions
have to be fulfilled in order for the system to perform well. It seems that in cases where it
is difficult to describe how two populations relate to each other, adaptive systems suffer
from high variability: they are highly uncertain about their decisions. In this thesis, sev-
eral approaches to the adaptation problem are explored. But in order to study it in greater
detail, it is necessary to delve into several core concepts from machine learning. The next
section gives a short explanation of how intelligent decision-making systems work. Follow-
ing that, various types and causes of biases are described. The last section of this chapter
presents an overview of approaches to adaptation.

1.1. Risk minimization

One of the most thoroughly researched frameworks for the design, construction and anal-
ysis of intelligent systems is risk minimization. It is part of statistical decision theory and is
based on the notion that objects vary [40, 41]. In order to represent an object digitally, we
measure one or more features. For example, an apple can be described in terms of its over-
all color. A feature captures information about the object; many apples are red, some are
green, but none are blue. These variations over color x can be described by a probability
distribution p(x). In order to decide between an apple and say, a berry, the system needs
to know which of the two is more probable for a given color, i.e. p(apple|x) > p(berry|x)
or p(apple | x) < p(berry | x) [42]. Figure 1.1a describes two probability distributions as a
function of color; the red distribution corresponds to apples and the blue to berries.

1 10

@ @

== apple
= berry

Probability
Probability

ﬂblue red glhe red
Color Color

(a) Probability distributions of apples and  (b) Error of the optimal classifier, consisting of
berries, as a function of color the gray area under the distributions

Figure 1.1: Example of a classification problem.

A decision-making problem can be abstractly described as a setting where a system has
to assign a class, from a finite set of possible classes, to every possible variation of an ob-
ject. Decision-making systems are therefore called statistical classifiers. In their most basic
form they consist purely of a function that takes as input an object, encoded by features,
and outputs one of the possible classes, e.g. h(x) = berry. Its output is also called its
prediction, as there are problem settings where classification errors are unavoidable. We
will refer to the classifier itself as h, while its prediction is denoted by its application to a
particular object h(x). Returning to the apple-berry problem, a classifier can be seen as a
threshold, illustrated in Figure 1.1b by a black vertical line. It designates everything to the
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left as a berry and everything to the right as an apple. Hence, all apples left of the line
and all berries to the right are misclassified. The classification error is visualized as the gray
region under the distributions and can be written mathematically as:

e(t) = [ 1) # apple] pCx | apple)p(apple)
+ j [h(x) # berry] p(x | berry)p(berry) dx, (1.1)
x

where h(x) refers to the decision made by the classifier. p(apple) and p(berry) refer to the
probability of encountering apples and berries in general, while p(x|apple) and p(x|berry)
refer to the probabilities of seeing an apple or berry of a given color x (also known as the
class-conditional distributions). The classifier should be able to make a decision over all
possible colors X . Since color is a continuous variable, the decision function is integrated
over all possible colors. If the objects were measured on a discrete variable, then the inte-
gration would be equivalent to a sum. Essentially, the first term describes how often the
classifier will make a mistake in the form of deciding that an actual apple is not an apple
and the second term describes how often it thinks that a berry is not a berry. Summing
these two terms constitutes the overall classification error e(h).

If apples and berries are encoded into a more general form, as a variable y, then the
classification error can be written as follows:

o) =) | 160 #¥1pCey) dx. (12

yey

where p(x,y) = p(x | y)p(¥). Y numerically represents the set of classes, in this case
Y = {apple = —1,berry = +1}. Objects are often not described by one feature but
by multiple measured properties. As such, x is a D-dimensional random vector, and can
be continuous, i.e. consisting of real values X € RP, can be discrete, i.e. consisting of
integers X € NP, or a mix of both.

1.1.1. Loss functions

The notion of disagreement between the predicted and the true class can be described
in a more general form by using a function that describes the numerical cost of correct
versus incorrect classification. This function is known as a loss function €, which takes as
input the classifier h along with the object x and the object’s true class y: £(h(x),y) =
0. The pure classification error is known as the 0/1 loss, denoted 1‘,’0/1, that has value 0
whenever the prediction is exactly equal to the true label and value 1 whenever they are
not equal; €91 (h(x),y) = [h(x) # y]. Other examples of loss functions are the quadratic
or squared loss, £qq(h(x),y) = (h(x) — ¥)?, the logistic loss tog(h(x),y) = yh(x) —
log Zy’EY exp(y'h(x)) or the hinge loss £hinge (h(x), y) = max(0,1— yh(x)). These are
called convex surrogate losses, as they approximate the 0/1 loss but use a formulation that
is easier to work with computationally. Overall, the choice of a loss function has a major
impact on the behaviour of the resulting classifier.
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Considering that we are integrating the loss function with respect to probabilities, we
are actually looking at the expected loss, also called the risk, of a particular classifier:

R(h) = Exy ¢(h(x),y), (1.3)

where E stands for the expectation. Its subscript denotes which variables are being inte-
grated over. Given a risk function, we can evaluate multiple possible classifiers and select
the one for which the risk is as small as possible:

h* = argmin Eyxy £(h(x),y). (1.4)
h

The asterisk superscript denotes optimality with respect to the chosen loss function. There
are many ways to perform this minimization step, with vastly different computational costs.
The main advantage of convex loss functions is that they do not contain local minima and
efficient optimization procedures such as gradient descent can be used [43].

1.1.2. Generalization

Up to this point, we have only considered the case where the probability distributions are
completely known. In practice, this is rarely the case: only a finite amount of data can
be collected. Measurements of objects can be described as a dataset D™ = {(x;, y;)}-,,
where each x; is an independent sample from the random variable X', and is labeled with
its corresponding class y;. The expected value with respect to the joint distribution of data
and labels can be approximated with the sample average:

\ 1%
R(EID™Y = = €(h(x). ). (15
i=1

R is called the empirical risk function. It evaluates classifiers given a particular dataset (the
symbol " | " denotes that a function is dependent on something). Note that the true risk
R from (1.3) does not depend on a dataset. Minimizing the empirical risk with respect to a
classifier for a particular dataset, is called training the classifier:

h = argmin R(h | D") (1.6)
hex

where H refers to the collection of all possible classifiers that we consider, also known as
the hypothesis space. A risk-minimization system is said to generalize if it uses information
on specific objects to make decisions for all possible objects.

Generally, more samples lead to better approximations of the risk, and the resulting
classifier will be closer to the optimal one. For n samples that are independently drawn
and identically distributed, due to the law of large numbers, the empirical risk converges
to the true risk [13]:

li Ly £(h =Eyy £(h
lim ;Zl (h(xD), ) = Exy 2(h(x), 7). (1.7)



1.1. Risk minimization 7

and it can be shown that the resulting classifier will converge to the optimal classifier

lim h - h* [13, 44]. The minimizer of the empirical risk deviates from the true risk due
n—-oo

to the estimation error, i.e. the difference between the sample average and the actual
expected value, as well as the optimization error, i.e. the difference between the true
minimizer and the one obtained through the optimization procedure [13, 45].

Ultimately, we are not interested in the error of the trained classifier on the given dataset,
but in the error on all possible future samples: e(h) = Exy [fl(x) # y]. Thiserror is known
as the generalization error [13, 46]. As mistakes are sometimes inevitable, we mostly fo-
cus on how much larger the generalization error of the trained classifier is compared to
the generalization error of the optimal classifier e(ﬁ) — e(h™). Ideally, we would like to
know if the generalization error will be small, i.e., less than some small value €. In other
words, that our classifier will be approximately correct. However, because classifiers are
functions of datasets, and datasets are random, we can only describe how probable it is
that any classifier is approximately correct. Hence, the Probably Approximately Correct
(PAC) bound:

Pron [e(h) —e(h) <e]=1-35, (1.8)

where § is a small number [47, 48]. Every dataset leads to a different h and we can there-
fore integrate over trained classifiers by integrating over the probability of drawing any
particular dataset (hence the subscript D™). Essentially, the PAC bound states that, with
probability at least 1 — §, the classifier is close to optimal. Specific values for § and € can
be found through plugging in a probability distribution and a function class.

PAC bounds do not study single datasets or choices of algorithms, but describe how
the generalization error depends on sample size, the joint distribution and classifier com-
plexity. They avoid the randomness inherent to evaluating specific classifiers on particu-
lar datasets, which makes them useful tools for comparisons and analysis. Many variants
of PAC bounds have been proposed, some using different measures of complexity, such
as Rademacher complexity [49] or Vapnik-Chervonenkis dimensions [50, 51], while others
use Bayesian inference [52-54]. Generalization error bounds, as well as learning bounds
- inequalities describing how many samples a particular algorithm requires to achieve a
specific generalization error - can incorporate assumptions or prior knowledge [13, 55-57].
Bounds with assumptions do not hold universally, but are restricted to the settings spec-
ified by the assumption. Due to these restrictions, these bounds are often tighter (there
is more certainty whether the classifier will be approximately correct). Such tighter gen-
eralization bounds often inspire new algorithms, such as Adaboost or the Support Vector
Machine [58, 59].

Learning bounds also tell us that the flexibility, or complexity, of a classifier has to be
traded off with the number of available training samples [44, 57, 60]. In particular, a very
flexible model can minimize the error on a given dataset completely, but will be too spe-
cific to generalize to new samples. This is known as overfitting. Figure 1.2c illustrates an
example of a classifier that has perfectly fitted to the training set. As can be imagined,
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it will not perform as well for new samples. In order to combat overfitting, an additional
term is introduced in the empirical risk estimator that punishes model flexibility. This reg-
ularization term is often a simple additive term in the form of the norm of the classifier’s
parameters [12, 61]. Figure 1.2b visualizes an example of a properly regularized classifier,
that will probably generalize well to new samples. Figure 1.2a shows an example of a too
heavily regularized classifier, also known as an "underfitted” classifier.

(a) Underfitted classifier. (b) Well-fitted classifier. (c) Overfitted classifier.

Figure 1.2: Examples of classifier complexities.
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1.2. Research question

Normally, samples from one distribution are used to generalize towards new samples from
the same distribution. However, in practice, new samples are often drawn from a dif-
ferent distribution: the training data might be drawn from a local population, such as a
social science experiment where only university students are measured, whereas the test
data might be drawn from the national population (an example of a biased sample). Or,
it could be that the object of interest (unknowingly) changes over time (an example of
a non-stationary data-generating process). Hence, there is a strong interest in develop-
ing machine learning methods that can generalize from data from one distribution to data
from another.

Such problem settings are known as domain adaptation or transfer learning settings
[17, 62, 63]. The distribution of interest is called the target domain, for which labels are
usually not available and training a classifier is not possible. However, if a similar domain
is available, it could be used as a source of additional information. Now the challenge is to
overcome the differences between the domains so that a classifier trained on the source
domain generalizes well to the target domain. Such a method is called a domain-adaptive
classifier. If successful, domain-adaptive classifiers can, for example, make accurate diag-
noses for rare forms of cancer based on knowledge from common forms of cancer [64],
detect real-world driving lanes from data of high-quality driving simulations [65], or parse
part-of-speech tags in literature based on data from news articles [66].

Generalizing across distributions is very difficult and it is not clear under which condi-
tions it is possible. My work therefore focuses on the question:

When and how can a statistical classifier generalize from a source to a target domain?

In the other chapters, | present two analyses (Chapters 2 and 3) and three methods
(Chapters 4,5 and 6). Each chapter studies the problem from a different perspective. The
discussion chapter reflects on my findings, lists some of the questions that have opened up
and presents ideas for future work. For the remainder of this introduction chapter, | will ex-
plain domains in greater detail, discuss types of domain shifts and present a categorization
of approaches to domain adaptation.
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1.3. Domain adaptation

Unfortunately, there exists quite a bit of confusion in the literature concerning definitions
that are important to the process of generalizing to a different distribution. A clarifica-
tion is therefore in order. To be precise, we define domains as the combination of an in-
put space X, an output space Y and an associated probability distribution p. Inputs are
subsets of the D-dimensional real space R”, while outputs are classes. Classes can be
binary, in which case Y corresponds to {—1, +1} or can be K-order multi-class, in which
case Y = {1, ...K}. Given two domains, we call them different if they are different in at
least one of their constituent components, i.e., the input space, the output space, or the
probability density function. For example, image caption generators from computer vision
generalize from the "image domain” to the "text domain”, which would be an example of
differences between the input spaces [67, 68]. This thesis is restricted to the case where
only the probability distributions differ. We denote the source domain as (X, Y, ps) and
will sometimes refer to it in shorthand as S. The target domain is denoted (X, Y, py) with
the shorthand T°. Domain-specific functions will be marked with the subscript § or T as
well. For example, the expected value with respect to the target domain will be written
as: ZyE'y fx fCe,y) pr(x,y) dx = Ez[f(x,y)]. With some abuse of notation for the
sake of clarity, we will mark marginal and conditional distributions with § and T as well;
pr(x,y) for the target joint distribution, ps(x) for the target data marginal distribution
and pr(x | ¥) for the target class-conditional distribution.

Samples from the source domain are denoted with (x;,y;), and the source dataset is
referred to as D = {(x;,;)}/=,. Note that x refers to an element of the input space
X while x; refers to a specific observation drawn from the source distribution, x; ~ ps.
Likewise, samples from the target domain are denoted with (zj, u]-), with its dataset DJ* =

{(Z'! u])};n=1

Generalizing across domains

The PAC bound from (1.8) describes how much a classifier trained on samples from a distri-
bution will generalize to new samples from that distribution. However, this result is based
on Hoeffding’s inequality, which only describes deviations of the empirical risk estimator
from its own true risk, not deviations from other risks [13, 69, 70]. Since Hoeffding’s in-
equality does not hold in a cross-domain setting, the standard generalization error bound
does not hold either.

However, it is possible to derive generalization error bounds if more is known on the
relationship between § and T [17, 54, 71-81]. For example, one of the first target general-
ization error bounds uses the condition that there exists a classification function that can
perform well on both domains [17, 72]. This low-joint-domain-error condition is expressed
as mingey [es(h) + er(h)] < A. As will be shown later, the deviation between the target
generalization error of a classifier trained in the source domain ey (hs) and the target gen-
eralization error of the optimal target classifier e; (h3) depends on this value 4. If 4 is too
large, then the source trained classifier can never be approximately correct in the target
domain.
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Additionally, we need some measure of how much two domains differ from each other.
For this bound, the symmetric difference hypothesis divergence (H AH -divergence) is used,
which takes two classifiers and looks at to what extent they disagree with each other on
both domains [17]:

dsease s, pr) = 2 sup |Prs[h#h'] =Pre[h = R']], (1.9)
hhEH

where the probability Pr can be computed through integration: Prg[h # h'] = fx [h(x) #
h'(x)]ps (x)dx. The sup stands for the supremum, which in this context finds the pair of
classifiers h, h' for which the difference in probability is largest and returns the value of
that difference [17, 72, 82].

Given the condition of low-joint-domain-error and the H AH -divergence, one can for-
mulate a domain adaptive PAC bound as:

A 1
Prop | er(hs) —er(hy) < A+ Sdyan(Ps.pr) + C(H)| 21 -46, (1.10)

where e is the true error on the target domain, h is the classifier trained on a sample from
the source domain, hy is the optimal classifier in the target domain, and 4 describes the
maximum joint-domain-error (Theorem 3, [17]). C(H) describes the complexity of the type
of classification functions H we are using, and comes up in standard generalization error
bounds that incorporate classifier complexity [83]. Overall, this bound states that, with
probability at least 1 — §, the generalization error of a classifier, with complexity C(H),
trained on source data, will be less than the maximum joint-domain-error and the domain
discrepancy. Or simpler said: the larger A and d4-54 are for a given domain adaptation
problem, the less a source classifier will generalize to the target domain.

In conclusion, in order to generalize from one domain to another, we need some knowl-
edge on how the two domains relate to each other. Sometimes, these relationships are
simple in the sense that only some variables have shifted while the remainder stay the same
across domains. The section on shifts below, section 1.3.1, elaborates on how this informa-
tion can be exploited. For more general domain discrepancies, there are more complicated
conditions that have to be fulfilled. These are shortly discussed in section 1.3.1. Section 1.4
describes proposed methods that make use of one or more of these conditions.

1.3.1. Shifts

We are ultimately interested in minimizing the target risk Ry, but we want to do this by
making use of the source domain. One of the most straightforward ways to incorporate
the source distribution in the target risk is as follows:

Re(t) =) | 4G 1) prey) dx

YEY

— pT(x; y)
=2 | 20 19) BT bty . (111

Z, 5@Y)
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One could now approximate this risk function by plugging in source samples and weighting
their loss by the ratio of distributions; n~! Z? L(h(xy), vipr (xi, vi)/ps(xi, v;i) (note that
pr(x;, ;) evaluates the probability of a source sample under the target distribution). How-
ever, in order to compute the ratio pr /ps, we would need labeled data from both domains,
which is often not available. Fortunately, if the domains are shifted versions of each other,
then we do not always need labeled target data. The following subsections discuss three
types of shifts: between prior distributions, between data / covariate distributions, and
between class-posteriors / concepts. Other types of shifts can occur, for instance mixture
component shifts [84], but those are outside the scope of this work.

Prior shift

First of all, there is the case where only the prior probabilities of the classes are different:
ps(¥) # pr(y). This can occur in for example fault detection settings, where a new main-
tenance policy might cause less faults [85], or in the detection of oil spills before versus
after an incident [86]. Since only the priors are different, the class-conditional distribu-

tions are still the same: pg |4 (x | ¥) = pr|y(x | ¥). We can exploit this information by
reducing the ratio of joint probability distributions [87]:

_ prety) pr(y)
Ry (h) = yzy fx 21, ) B T s ) dx

=Es [£(h(0), y) w1, (1.12)

where the weights w(y) = pr(y)/ps(y) represent the change in the balance between
classes. Using this approach, we require no unlabeled target samples, only a number of
target labels. Figure 1.3a illustrates an example of two class-conditional distributions with
imbalanced classes in the source domain (solid lines) and balanced classes in the target
domain (dotted lines). Figure 1.3b shows the opposite case; going from an imbalanced
class to an even more imbalanced class.

1r 1
—Siy=1 7N

=—=S|y=-1

—S|y=+1 'I \ —S|y=+1
0.8 —Tly=-1 0.8 - / \ —Tly=-1
—Tly=+1 ! Y —-Tly=+1
—~0.6 —~0.6 I' .
= = \
3 3 i/ \
=04 204 ;
0.2 0.2
(1] (1]
-5 5 -5 5
w w
(a) Imbalanced to balanced classes. (b) Imbalanced to more imbalanced classes.

Figure 1.3: Examples of types of class-prior shift.

Re-weighting each sample from a particular class is very similar to cost-sensitive learning,
where we are not correcting for inappropriate priors but are artificially assigning new priors
[88]. But prior shifts have also been extensively studied from a different perspective: when
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it is more difficult to collect data from one class than the other [89]. For example, in a few
countries, the government gives women above a certain age the opportunity to be tested
for breast cancer [90]. The vast majority that responds does not show signs of cancerous
tissue and only a small minority is tested positive. There is therefore a class imbalance in
the data. Furthermore, because the test voluntary, only certain groups of women respond.
The sample is therefore biased and there is no guarantee that the class proportions of the
sample also hold for the whole population. However, if the general prevalence of a disease
is known, then the prior shift can be corrected for [91, 92].

Covariate shift

Covariate shift is one of the most studied means of data shifts. For these cases, we know
that pr(y | x) = ps(y | x). This information can be exploited by rewriting the ratio of
joint distributions in (1.11) into a ratio of class-posterior times marginal data distributions
and canceling out the class-posteriors:

_ PrBHX) pr(x)
R(h) = yz || e BE P sy ax (113
= B5 [£(h(0),) w0 (114

where the weights w(x) = ps(x)/ps(x) indicate how the probability of a source sample
should be corrected to reflect the probability under the target distribution.

0.5 0.5 0.5
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0.4 = Tly=-1 0.4 —Tly=-1 0.4 ,’X\ —Tly=-1
—Tly=+1 —Tly=+1 \ —Tly=+1

(a) Wider target domain. (b) Limited support overlap. (c) Narrower target domain.

Figure 1.4: Examples of types of covariate shift.

There are many causes for covariate shifts, with sample selection bias being the most
known one [14, 16, 93]. Especially in the social sciences where survey sampling is done
locally, i.e. in universities, companies or city centers, the observed data reflects the local
population and not the global one [15, 94]. This is often modeled with an additional variable
s that denotes how probabile it is that x will be selected. For example, suppose we go to a
city that is populated according to a normal distribution, i.e., most people live in the center
and the habitation density decreases as a function of the distance from the center. Local
sampling, in the form of asking people on the main square to fill in a survey, corresponds
to setting p(s = 1 | x) very high in in the interval close to 0. Applying Bayes’ theory, i.e.,
px|s=1)=p(s=1|x)p(x)/p(s = 1), shows that the collected surveys p(x | s = 1)
only represent people from the main square instead of the whole city’s inhabitants p(x).
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From a domain adaptation perspective, the biased sampling defines the source domain
ps(x) = p(x | s = 1). As the goal is to correct for the selection bias, the target domain
consists of the selection variable being integrated out: pr(x) = ZSE{O,I} p(x|s).

Similar to sample selection bias, another cause for covariate shift is missing data [95, 96].
In practice, data can be missing as measurement devices fail or because a subject dropped
out of the experiment. When there is a consistent mechanism behind how the data went
missing, referred to as missing-not-at-random (MNAR), the missingness constitutes an ad-
ditional variable. This variable acts in the same way as the selection variable, as it decides
whether or not a sample will be included in the training set.

The last common cause for covariate shift, is the use of different measurement instru-
ments. For example, using different cameras to take photos of objects [62]. The object
itself and how often it occurs, remain constant, which means that the priors and class-
posteriors are equivalent in both domains. However, different camera settings lead to dif-
ferent photos, which means the marginal data distributions differ. Considering that these
settings are mechanical and have a physical origin, one could argue that there exists a trans-
formation from photos from one camera to photos from another [97, 98].

Concept shift

In the case of concept shifts, the definition of the class changes. For instance, [99] con-
sider a medical setting where the aim is to make a prognosis for a patient based on their
age, severity of their flu, general health and their socio-economic status. The classes are
originally defined as "remission” and "complications”, but at test time, other aspects are
counted as a form of "complication” and are thusly labeled. Therefore, the classifier trained
on the original labeling deteriorates in performance. Alternatively, in computer security,
what constitutes an "anomaly” can not only be different for different users but can also
change over time [100].

If only the concept has changed, then that means that the marginal data distributions
remain the same: ps(x) = pr(x). This knowledge can again be exploited through:

pr(y | x) prtxy
Re() = ) | 2(hG), T2 =ops(x,y) dx
g yny Ps(y 1) psbx)

However, unless there is some prior knowledge on the concept shift, adaptation in this set-
ting is impossible without labeled target data. Unlike the prior and covariate shift cases,
where only the data marginal or the class marginal distributions change, in this case a con-
ditional distribution changes. To estimate conditional distributions, one requires simulta-
neous observations of both variables. Figure 1.5a shows an example of a shift in the location
of the decision boundary, towards the right, but not in the conditional variance. Figure 1.5b
shows the opposite example of a shift in the conditional variance, but not in the position.
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Figure 1.5: Examples of types of concept shift.

Unfortunately, this remarkably difficult setting occurs quite frequently as classifiers are
deployed in non-stationary environments [101]. For smoothly varying non-stationarities
such as time-series, however, there is again additional information that can be exploited:
the shifts are ordered and are relatively small between neighboring time steps. Such a
time-dependent setting is often referred to separately as concept drift. In many dynami-
cal learning approaches, such as online learning or bandit settings, the classifier receives
feedback after every decision it makes [102]. This feedback allows it to detect whether a
concept drift has occurred and allows it to estimate how it should adapt accordingly [103-
105].

Domain discrepancies

In the most general case, more than one of the above shifts will have occurred. There are
many possible ways in which two datasets of the same objects may differ from one an-
other. For example, if one were to search online for images, then one encounters posed
objects on white backgrounds on commercial websites, natural photos with highly clut-
tered backgrounds on travel sites, indoor shots with widely varying lighting conditions on
social media, and many more [106]. As can be imagined, this is the most difficult setting and
learning will often not be possible at all [78, 107]. In order to generalize well, the domains
have to be related in some other exploitable way. Examples of exploitable relationships
include: the existence of a single good predictor for both domains [17, 72, 78, 108], con-
strained worst-case labellings [109, 110], low-data-divergence [17, 72, 78], the existence of
a domain manifold [62, 111, 112], conditional independence of class and target given source
data [113] and unconfoundedness [114]. This thesis does not explore the case of multiple
sources [115, 116], or the related problem settings of multi-task learning [71], online learning
[115, 117] or active learning [118, 119].

1.4. Approaches

This section discusses a number of approaches to domain adaptation based on supposed
relationships between domains. In order to illustrate the ideas of some of the approaches,
we use an example setting. Figure 1.6 visualizes a 2-dimensional scatter plot of red versus
blue dots in the source domain (left) and the target domain (right). Training a classifier
on the source samples will result in the black line (left), which will probably generalize
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well to future source samples. However, applying it directly to the target samples without
adaptation, will lead to a number of misclassifications. As can be imagined, in cases where
the domains are very far apart, such an approach might lead to worse results than random
classification.

Target domain

10 - Source domain 10
8l 81
6f 61
41 4T
2t 27
< 0f < O0f
2+ 2+
4l 41
-6 -6 |
8r -8 r

-10 : -10
-10 10 -10
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Figure 1.6: Example of a 2D domain adaptation problem. (Left) Data from the source domain, with a classifier
(black line) trained to discriminate blue from red dots. (Right) Data from the target domain. Applying the classifier
trained on the source domain leads to suboptimal results as it is misclassifying the top red dots.

1.4.1. Importance-weighting

Most importance weighting techniques are designed for covariate shift and most estimate
the weights first, before training a weighted classifier. Figure 1.7 shows a scatterplot with
weighted source samples. The dotted black line is the adapted classifier, trained on the
importance-weighted source samples, and generalizes more to the target domain. De-
pending on the problem setting, some methods estimate the numerator and denominator
of the ratio of probabilities separately, and others estimate the ratio directly. In this sec-
tion, we discuss several of the most popular techniques.

In the sample selection bias setting, the target domain is the whole population, where
each sample has probability 1 of being selected. That means that the numerator in the
ratio of probability distributions is constant and it suffices to estimate the selection likeli-
hood for the source samples. There has been a tremendous amount of work from the 1970s
onwards in the statistics and social sciences communities that attempts to control for selec-
tion biases [14, 93]. Most of these approaches incorporated knowledge of the specific data
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Figure 1.7: Example of importance-weighting. (Left) The source samples from Figure 1.6 have been weighted
(larger dot size is larger weight) based on their relative importance to the target domain. The resulting
importance-weighted classifier (black dotted line) deviates from the source classifier (solid black line in Figure
1.6). (Right) Applying the adapted classifier to the target samples leads to less misclassifications as compared to
the original source classifier.

collection schemes, such as survey sampling , while others focused on estimating proba-
bilities non-parametrically [120]. Knowing exactly how the sample space was discretized,
for instance dividing up patients’ age into intervals, can directly aid the estimation of the
selection bias [121].

In settings with data missing-not-at-random (MNAR), some samples are more likely to
be observed than others [95, 96]. This is essentially equivalent to the sample selection bias
setting and in this case, one also aims to generalize to the case where all samples would
be observed. However, this time, there may be prior knowledge available on what causes
the missingness. This may be incorporated separately, with a model of how the data was
generated [122, 123]. Given knowledge of how likely a sample is of being observed, also
known as its propensity score e(x) = p(observed | x), one can correct for the MNAR bias
in the data [114, 124, 125]. Corrections are based on weighing each sample with its inverse
propensity score e(x)~1. These types of corrections are often employed in the causal in-
ference community, where missingness arises in observational experimental studies [126-
128]. From the causal inference community, they are now finding their way into machine
learning as counterfactual risk minimization [129-132].
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In general cases of covariate shift, the ratio of probability distributions are most often
estimated as Gaussian distributions [133]. Unfortunately, closer inspection of families of
probability distributions revealed that the use of exponential functions had a negative ef-
fect on the variance of the importance weights [74, 75, 134]. For example, if the source
distribution is a univariate Gaussian distribution with mean 0 and variance 1, and the tar-
get distribution is a univariate Gaussian with mean 0 and variance o#, then the weights
consist of pr(x) /ps(x) = N(x]0,62) / N(x]0,1) = o7t exp(x2(—1+ d#)/(202)).
For this example, if the target variance is larger than 2, then the variance of the weights,
Es[(w(x) —Eg[w(x)])?], diverges to infinity. Large weight variance means that it is highly
probable that one sample will receive a very large weight, while the rest will receive very
small weights. Consequently, at training time, the classifier will only pay attention to this
one important sample and will neglect everything else. The resulting classifier is often
pathological and will not generalize well. Alternatively, the distributions are often esti-
mated through kernel density estimation [112, 135, 136].

Methods that directly estimate importance weights w, instead of the source ps and tar-
get pr distributions separately, are usually based on minimizing some type of discrepancy
between the weighted source and the target distributions: D [w, ps, pr] [137]. However,
just minimizing this objective with respect to w might cause highly varying or unusually
scaled values, which would not be valid outcomes if we estimated the numerator and de-
nominator separately [138]. This unwanted behaviour can be combated through incorpo-
rating a property of the reweighed source distribution:

1= fx pr(x)dx

- f w(x)ps ()dx
X
1 n

~= > w(x) forx; ~ps, (115)
"2

where the symbol ~ refers to the fact that x; are drawn from ps. Restraining the weight
average to be close to 1, disfavors large values for weights. The approximate equality can
be enforced by constraining the absolute deviation of the weight average to 1 to be less
than some small value: | n™! Z? w(x;) — 1| < €. Note that in the sample selection bias
case, the inverse selection probability lies in the interval [1, c0), which will not average to
1. Incorporating the average weight constraint, along with the constraint that the weights
should all be non-negative, direct importance weight estimation can be formulated as the
following optimization problem:

minimize D[w, ps, pr ]

st. w(x;))=0

|n1 Z wix) —1] <e. (116)
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Depending on the choice of discrepancy measure, this optimization problem could be lin-
ear, quadratic or contain even more constraints.

One of the most common measures of distribution discrepancies is the Kullback-Leibler
Divergence [139-141]. Sugiyama et al. have developed a number of techniques based on
this formulation, among which the most famous is called the Kullback-Leibler Importance
Estimation Procedure (KLIEP) [142-144]. The KL-divergence between the true target distri-
bution and the importance-weighted source distribution can be simplified as:

pr(x)
ps(x)w(x)

pr(x)
s () dx fx pr(x) logw(x)dx. (117)

Dy [w, ps, pr] =-fx pr(x)log

=_f pr () log
X

Since the first term in the right-hand side of (1.17) is independent of w, only the second term
is used as in the optimization objective function. This second term is the expected value of
the logarithmic weights with respect to the target distribution, which can be approximated
with unlabeled target samples: Er[ logw(x)] ~ m™! Z;n logw(z;). They formulated w
as a functional model consisting of an inner product of weights @ and basis functions ¢,
i.e. w(x) = a’¢(x) [145]. This allows them to apply the importance-weight function to
both the test samples in the KLIEP objective from (1.17) and to the training samples for the
constraint in (1.15).

Additionally, the group of Sugiyama has also produced another approach to direct esti-
mation of the importance weights [146, 147]. They formulated the weights as a functional
model again and formed an objective function based on minimizing the squared error be-
tween the estimated weights and the actual ratio of distributions:

2
1
Diswpspr) =3 [ (w0~ 250 ) pstaraa
1
=—f W(x)zps(x)dx—f w(x)ps(x)dx + constant. (1.18)
2 )x x

As this squared error is used as an optimization objective function, the constant term drops
out. We are then left with the expected value of the squared weights with respect to the
source distribution, and the expected value of the weights with respect to the target distri-
bution. Expanding the weight model, w(x) = a"¢(x), gives 1/2 a"Es[¢p(x)p(x)T]a —
E7[¢(x)]. Replacing the expected values with sample averages allows for plugging in this
objective into the nonparametric weight estimator in (1.16). The authors have dubbed this
technique the Least-Squares Importance Fitting procedure.

Another very popular measure of domain discrepancy is the Maximum Mean Discrep-
ancy, which is based on the two-sample problem from statistics [148-150]. Fortet and
Mourier originally formulated a hypothesis test to see if two sets of samples came from
the same distribution. It measures the distance between the means after subjecting the
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samples to the continuous function that pulls them maximally apart (hence the name). In
order to actually compute the measure, functions from a Reproducing Kernel Hilbert Space
(RKHS) are used instead, which, under certain conditions, are able to approximate any con-
tinuous function arbitrary well [151-154]. Furthermore, for the subset of functions that are
bounded above, the maximization operation can be subsumed in the RKHS norm [150]. As
such, the discrepancy measure, including the reweighed source samples, can be expressed
as [155]:

Dump W, s, pr] = || Es [w(x)@ ()] — Eg [p ()] ll4, (1.19)

where || - ||3c denotes the norm in RKHS space [154]. Basis functions from RKHS can be
infinitely-dimensional, but by taking the square of the MMD one takes their inner prod-
ucts instead, which is again finite-dimensional. This is known as the kernel trick [156-
159]. Through kernels the squared empirical MMD can be computed as: f)f,IMD[w, X, Z] =
n72 B wa)e (e, x)w (xp) =2/ (mn) B X7 wx)k(xg, z)+m 2 X k(z),2;1) . Min-
imizing the empirical MMD with respect to the importance weights, is called Kernel Mean
Matching (KMM) [155, 160]. Depending on if, and how, the weights are upper bounded, al-
gorithmic computational complexities and convergence criteria for KMM can be computed
as well [136, 150, 155]

Taking a different direction, Bickel et al.’s work focuses on modeling the data generation
process and working with domain selection variables [135, 161]. They reformulated the ratio
of probability distributions as a selection likelihood ratio, p(s = 1) /p(s = 1| x), for which
no explicit modeling of the separate probability distributions is necessary. Modeling this
likelihood ratio with a kernel logistic model leads to a consistent estimator for the weights
[161]. Through their generative modeling, the authors are able to combine the weight esti-
mation and the weighted classifier training into a single optimization procedure [162]. For
some experiments, the integrated models outperformed the two-step approach of esti-
mating the selection likelihood ratio with a classifier and training an importance-weighted
classifier [135]. But for other experiments, there was no difference between simultaneous
and separate optimization. Their formulation also sheds new light on KMM, as it can also
be re-formulated as a selection likelihood ratio estimator [135].

Lastly, directly estimating importance weights can also be done through tessellating the
feature space into Voronoi cells [163]. Each cell is a polygon of variable size and denotes an
area of equal probability. The cells approximate a probability distribution function in the
same way that a multi-dimensional histogram does: with more Voronoi cells, one obtains
a more precise description of the change in probability between neighbouring samples.
Voronoi tesselations, and more general spacing estimators, have been used as empirical
multi-dimensional density and entropy estimators [164, 165]. However, [166] uses them for
estimating importance-weights. First, one forms the Voronoi cell V; of each source sample
x;, which consists of the part of feature space that lies closest to x;. The ratio of target over
source is then approximated by counting the number of target samples z; that lie within
each Voronoi cell: w(x;) = |V, N {zj}}":lL where U denotes the intersection between
the Voronoi cell and the set of target samples and | - | denotes the cardinality of this set.
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Voronoi cells can be obtained through a 1-nearest-neighbour classifier, which means it is
less computationally expensive than the discrepancy-based direct weight estimators. This
is also where it lends its name from: nearest neighbour weighting (NNeW) [166]. It does
not require hyperparameter optimization, but one still has the option to perform Laplace
smoothing, the simplest one of which adds a 1to each cell [167]. This counters the variance
of the weights and ensures that no source samples are given a weight of 0 and are thus
completely discarded.

1.4.2. Subspace mapping

In situations where the acquisition device noisily samples an object, domains may lie in dif-
ferent subspaces [98, 106]. In cases where cameras have the same resolution, and there-
fore measure the same feature space, there potentially exists a mapping from one domain
to the other [62, 68]. For example, the mapping may correspond to a rotation, an affine
transformation, or a more complicated nonlinear transformation [97, 98]. Figure 1.8 visual-
izes a translation and rotation from the source to the target domain, as well as the resulting
classifier. Sometimes, such as for online product images and natural images , the domains
look completely different from each other and the underlying mapping can be very compli-
cated. Using too flexible transformations can easily lead to overfitting which means these
methods will work well on the given target samples but fail for new target samples. Also,
any structural relationships between domains, such as equal class-posterior distributions
will most likely not be valid anymore after applying subspace mappings. Finally, the tech-
niques for finding these transformations are unsupervised and ignore class information.
That can be dangerous because it potentially introduces class overlap.

The simplest technique for finding a subspace mapping is to take the principal compo-
nents in each domain, Cs and Cr, and find the rotation from source to target CsCJ Cr [98].
However, it is likely that a portion of the components are purely based on noise. Includ-
ing these into the rotation estimation step might cause overfitting. Luckily, this Subspace
Alignment (SA) approach can also be used to find an subspace dimensionality parameter;
a lower dimension means less parameters which means less overfitting. Additionally, this
technique is attractive because its limited flexibility also means that it is quite robust to
unusual problem settings. It is computationally not very expensive, easily implemented
and intuitive to explain. Because of these attractive properties, it has been extended by
other researchers a couple of times. For instance, there is a landmark-based kernelized
alignment [168] and a subspace distribution alignment technique [169].

Before Subspace Alignment, there was another method based on principal components
[97,170]. First, the MMD measure is rewritten as a joint domainkernel, K = [ks s ks 7; K75
k7 7] [171]. From this kernel, components are extracted by minimizing the trace of the pro-
jection, under the constraint that the projection applied to the centered joint kernel is
equivalent to the identity matrix:

minicmize tr(CTKLKC)

st. CTKHKC =1, (1.20)
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Figure 1.8: Example of subspace mapping. (Left) The source samples from Figure 1.6 have been translated and
rotated to match the data from the target domain. Subsequently, a classifier is trained on the mapped source data
(black dotted line). (Right) Applying the adapted classifier to the target samples leads to less misclassifications as
compared to the original source classifier.

where tr(-) is shorthand for the trace of a matrix, C corresponds to the component ma-
trix, L the normalization matrix that divides each entry in the joint kernel by the sample
size of the domain from which it originated, and H is the matrix that centers the joint ker-
nel matrix K [97]. In the original formulation, a regularization term tr(C"C) along with a
trade-off parameter is included as well. Essentially, the projection error is minimized, un-
der the constraint that the projected joint kernel matrix is orthonormal. This formulation
resembles kernel PCA and, likewise, its optimization resembles an eigenvalue decomposi-
tion [172, 173].

The advantage of principal component based techniques is that it is possible to map
data to lower-dimensional representations. Lower dimensionalities mean that these al-
gorithms scale well to large datasets. Furthermore, several researchers have argued that
in computer-vision settings there exists a specific lower-dimensional subspace that allows
for maximally discriminating target samples based on source samples. The Transfer Sub-
space Learning approach aims to find the subspace with the minimal Bregman divergence
to both domains [174]. Their idea was later generalized by re-formulating the objective as
the subspace from which the reconstruction error was minimal [175]. First, the source data
is mapped to a lower-dimensional representation, and then mapped back to the original
dimensionality. The reconstruction error then consists of the mismatch between the re-
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constructed source samples and the target samples, measured through the squared error
or the Frobenius norm for instance. Interestingly, this objective is very similar to that of a
contractive autoencoder, where the inverse mapping is restricted to be the transpose of
the original mapping: ||¢ (¢ (xW)WT)—z|| [176]. Contractive and denoising autoencoders
are deep learning methods, that can stack multiple layers of projecting and reconstructing
samples on top of each other. Stacking allows them to achieve very flexible transforma-
tions [177]. [178] implemented a stacked autoencoder to find a mapping from source to
target domain. This approach works well when large amounts of source data are available,
as the overall transformation can be made more complex. It has not only been success-
ful for adaptive computer vision, but for adaptive natural language processing as well .
The computations for reconstructing in each layer were later simplified by through noise
marginalization [179].

Outside of principal components based techniques and methods for learning transfer
subspaces, there are also a number of methods that aim to find transformations that aid
specific subsequent classifiers [180-182]. First, we review Information-Theoretic Metric
Learning (ITML), where a Mahalanobis metric, i.e. dﬁ,(x, z) = (x — Z)TW(X — Z), is
learned for use in a later nearest-neighbour classifier [180, 183]. Metrics describe ways of
computing distances between points in vector spaces. If the standard Euclidean metric,
d%(x,z) = (x — z) T (x — z), states that the distance between points x and z is large, but
the Mahalanobis metric states that the distance is small, then one could say that the Maha-
lanobis metric transformed the space. In fact, first transforming the space and then mea-
suring distances with the Euclidean metric is equivalent to measuring distances with the
Mahalanobis metric: (W/2x —WY22)T(WY2x —W'2z) = (x —z) TW (x — 2). In order
to use the Mahalanobis metric for classification, it is necessary to include some constraints
[184]. If a small number of target labels is available, then these correspondence constraints
would consist of thresholding the pairwise distance between source and target samples of
the same label, dﬁ,(xk,zk) < u with u as an upper bound, as well as thresholding the
pairwise distance between source and target samples of different classes, d2, (xy, zi') = [
with [ as a lower bound. This ensures that the learned metric regards samples of the same
class but different domains as similar, while regarding samples of different classes as dis-
similar. If no target labels are available, then one is required to encode similarity in other
ways.

ITML s restricted to finding transformations between domains in the same feature space.
However, sometimes different descriptors are used for different image databases. One
descriptor might span a source feature space of dimensionality Dy while another spans
a feature space of dimensionality Dy. The symmetric ITML approach can be extended to
an asymmetric case, where dy, (x,z) # dy (z,x). Asymmetric Regularized Cross-domain
transfer (ARC-t) incorporates non-square metric matrices WPs%Pr to find general mappings
between feature spaces of different dimensionalities [181, 185].

Instead of finding a unsupervised metric and constraining it with respect to class similar-
ity, one could learn a superviseléj metric as well. The Fisher criterion consists of the ratio of
between-class scatter, Sg = ¥, 7 (ux — ) (e — 2) T with g the mean of the k-th class,
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[ the overall mean and m;, the class-prior, and average within-class scatter, Sy, = Zlk( T2
with Zg as the covariance matrix of the k-th class [186, 187]. The Fisher criterion can be
used to extract a set of basis vectors that maintain class separability, much like a super-
vised form of PCA [188]. It is often used in feature extraction, where the criterion is maxi-
mized with respect to a mapping to a lower-dimensional representation that maintains as
much class separability as possible. They have been adapted to account for domain shift
in the form of FIDOS, a Flsher based feature extraction method for DOmain Shift [189].
FIDOS incorporates multiple source domains and creates a between-class scatter matrix
of the weighted average of the between-class scatter matrices in each domain as well as
a within-class scatter matrix of the weighted average of each domains within-class scat-
ter. It aims to both maximize class-separability and minimize domain differences, with a
trade-off parameter to fine-tune the balance between these two objectives for particular
settings. Besides metrics for subsequent metric-using classifiers, there are also techniques
that align class margins for subsequent maximum-margin classifiers [190].

1.4.3. Domain manifolds

One can make stronger assumptions than the existence of a subspace mapping: that there
exists adomain manifold [112, 191-193]. A manifold is a curved lower-dimensional subspace
embedded in a larger vector space. Every point on a domain manifold generates a single
domain. For example, the domain manifold might consist of a set of camera optics param-
eters, where each setting would measure the data in one vector space basis [111, 112]. This
assumption is useful because it signifies that there exists a path along that manifold, going
from the source domain to the target domain [194, 195]. In turn, this implies that there ex-
ists an intermediate domain for every step along the path [196-198]. Figure 1.9 visualizes
what a classifier trained on interpolated domains might look like. Additional samples have
been drawn from the supposed intermediate domains.

One of the first approaches to incorporate manifolds looked at the idea of learning in-
cremental small subspace transformations instead of a single large transformation [111].
This idea of incremental learning was originally explored in situations with time-dependent
concept shifts [199]. In the domain adaptation context, the goal is to learn the most likely
intermediate subspaces between the source and target domain. The space of all possi-
ble D-dimensional subspaces in an n-dimensional real-valued vector space R™ can be de-
scribed by the Grassmann manifold [200-203]. Each point on the Grassmannian generates
a basis that forms a subspace [196, 197, 203]. One can move from one subspace to another
by following the geodesic path. Computing the direction and speed of geodesic flow is
performed based on the matrix exponential flow of the starting subspace [204]. Another
option would be to compute the sampling spline flow [195]. Given the geodesic flow, all
intermediate subspaces are computed and the source data is projected onto each of them
separately. A classifier then trains on labeled data from a starting subspace and predicts
labels for the next subspace, which are used as the labeled data in the next step. This pro-
cess of inferring labels for every following step resembles self-learning in semi-supervised
learning, where one iteratively labels unlabeled samples with the classifiers prediction and
incorporates them in the next training stage [205]. The iteration was later proven redun-
dant by a technique called Geodesic Flow Kernel (GFK), that incorporates the projections
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Figure 1.9: Example of interpolating along a domain manifold. (Left) Additional samples have been drawn from
distributions that are believed to be intermediate domains between the source and the target domain. A classifier
is now trained on both the source and the additional samples (black line). The resulting classifier (black dotted
line) does not deviate much from the original classifier in the part of feature space where the source domain
resides, but does deviate along the interpolated domains. (Right) Applying the adapted classifier to the target
samples leads to less misclassifications around the target domain, but results in a few misclassifications around
the source domain part of feature space.

on all subspaces into a single training stage [196, 197]. Naturally, it will be hard to recover
the true path, but having multiple source domains or a small number of target labels will
benefit geodesic flow estimation [193].

Working with Grassmann manifolds for subspace mappings is just one option. Alterna-
tively, one could look at statistical manifolds, where each point generates a probability dis-
tribution [112]. Especially for rich families of distributions, such as the exponential family,
a path on the statistical manifold may describe a complicated process of turning one distri-
butions into another. In this case, the length of the geodesic path along the statistical man-
ifold, called the Hellinger distance, is used as a measure of domain discrepancy [104, 206].
The Hellinger distance is closely related to the total variation distance between two distri-
butions, which is used in a number of other domain adaptation works without reference
to the statistical manifold [17, 72, 207]. Adaptation consists of either importance-weighting
samples or transforming parameters to minimize the Hellinger distance [112, 208].

1.4.4. Domain-invariance
The problem with transformations between domains or moving along a domain manifold
is that the classifier remains in a domain-specific representation. But variation due to do-
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mains is often more of a nuisance instead of an interesting factor. Ideally, we would like to
represent the data in a space which is invariant to specific domains. Figure 1.10 shows an
example of such a space: in this case the data can be mapped to a line (new 1-dimensional
representation) such that the source and target distributions vary only minimally, while the
variation between classes (red versus blue) is still the same. Note that a domain-invariant
representation need not be lower dimensional. The advantage of this approach is that clas-
sification is now the same as in standard supervised learning (training on source data and
applying to target data).

Most domain-invariant projection techniques stem from the computer vision and (biomed-
ical) image processing communities, where domains are often caused by different acqui-
sition methods. For instance, in computer vision, camera-specific variation between sets
of photos is an unwanted factor of variation [190, 194]. Furthermore, we could argue that
there exists a true representation of the object and that each camera is a different noisy
representation of it. Similarly, in medical imaging, there exists a true representation of a
patient and each MRI scanner is a different noisy representation [18, 20]. Since there is
extensive knowledge of the acquisition device, it is possible to design specific techniques
that work quite well.
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Figure 1.10: Example of a domain-invariant representation. (Left) The source data is mapped to a representation in
which the variation over domains is minimal; the source data and target lie on the same 1-dimensional (line). The
variation over classes is maintained; the red and blue dots are still as separable as before. The classifier trained
on the source data in the domain-invariant representation (dotted black line) can now directly be applied to the
target samples (right).
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Learning the projection to the domain-invariant can be done in a number of ways. The
Domain-Invariant Projection (DIP) approach from [194] , later renamed to Distribution-
Matching Embedding (DME) [208], aims to find a projection matrix that minimizes the
MMD:

Dome[W, ps, pr] = || Es[@(WTx)] = Ex[¢p(WTx)] |l2¢, (1.21)

where W is the projection matrix that is being minimized over, with the additional con-
straint that it remains orthonormal; WTW = I. This constraint is necessary to avoid patho-
logical solutions to the minimization problem. However, although the MMD encourages
moments of distributions to be similar, it does not encourage smoothness in the new space.
To this end, it is possible to add a regularization term that punishes the within-class vari-
ance in the domain-invariant space, to encourage class clustering. Alternatively, the same
authors have also proposed the same technique, but with the Hellinger distance instead
of the MMD [208]. This approach resembles Transfer Component Analysis, but minimizes
discrepancy instead of maximizing joint domain variance [97].

DME s still limited by its use of a linear projection matrix; unless the specific acqui-
sition device only causes linear noise, a linear projection matrix will not be able to find
the true underlying domain-invariant representation. A nonlinear projection is much more
flexible and much more likely to recover the true domain-invariant space. The Nonlin-
ear Distribution-Matching Embedding achieves this additional flexibility by performing the
linear projection in kernel space; W7 ¢(x) [208]. However, using a kernel-within-kernel
approach is expensive in terms of memory and computational resources.

Alternatively, [209] proposed to learn the kernel for MMD itself: instead of weighting or
projecting samples and then using a universal kernel to measure their discrepancy, it is also
possible to find a basis function for which the two sets of distributions are as similar as pos-
sible. The space spanned by this learned kernel then corresponds to the domain-invariant
space. Considering that different distributions generate different means in kernel space, it
is possible to describe a distribution of kernel means [154, 210]. The variance of this meta-
distribution, termed distributional variance, should then be minimized. This is achieved by
incorporating a lower-dimensional orthogonal transform into the inner product of the ba-
sis functions, also known as the Gram matrix, and minimizing the empirical distributional
variance with respect to this transform matrix [211]. However, this is fully unsupervised
and could introduce class overlap. The functional relationship between the input and the
classes can be preserved by incorporating a central subspace in which the input and the
classes are conditionally independent [212, 213]. Constraining the optimization objective
with maintaining this central subspace, ensures that classes remain separable in the new
domain-invariant space. Overall, as this approach is interpreted as finding kernel compo-
nents that minimize distributional-variance while maintaining the functional relationship,
it is coined Domain-Invariant Component Analysis (DICA) [209]. It has been expanded on
for the specific case of spectral kernels by [214].

Although the kernel approaches have the capacity to recover any nonlinear mapping,
they require multiple computations of n X n matrices and therefore do not scale well with




28 1. Introduction

respect to the number of samples. For larger datasets, one might employ neural networks
since they also have the capacity to recover any nonlinear mapping but scale much bet-
ter in terms of the number of samples [215, 216]. Neural networks are layered, and when
going from one layer to the next, the input representation is transformed using a linear
operation and pushed through a nonlinear activation function. By increasing the complex-
ity of a layer and stacking multiple layers on top of each other, under certain conditions,
any possible transformation can be achieved [55, 217-219]. Its optimization procedure,
known as backpropagation, pushes the network to find a transformation that maps the
data into a space in which it is maximally linearly separable. Fortunately, by using different
loss functions in the top layer, we can achieve different forms of transformations [220].
Domain-Adverserial Neural Networks (DANN) have one classification-error minimizing top
layer and one domain-error maximizing top layer [221]. Essentially, the network finds a
domain-invariant space when its domain classifier cannot recognize from which domain a
new sample has come, without introducing class overlap. The idea of maximizing domain-
confusion while minimizing classification error has been taken up and applied to various
settings by a number of approaches [222, 223].

Finally, if we were to have a small collection of target labels, then it might be possible
to compare the classifiers found in each domain and transform the space such that these
become as similar as possible [224]. The formulation here consists of encoding an addi-
tional variable denoting to which domain each sample belongs, along with its correspond-
ing modeled class-posterior distribution, and marginalizing this variable out. As more do-
mains imply more restrictions on the possible transformations, this method benefits from
incorporating multiple sources.

Mapping data to a domain-invariant space resembles the setting where we are correct-
ing for sample selection bias. Essentially, the domain-invariant space corresponds to the
super-population and our data mapped to the domain-invariant space corresponds to an
unbiased sampling from this super-population. They differ perhaps, in that, in the selection
bias setting, certain samples are very common in one dataset and rare in another, while, in
the domain-invariance setting, an object might be equally common in both datasets, but
look different in each of them.

1.4.5. Feature augmentation

In natural language processing (NLP), domains present themselves in the form of differ-
ences between word frequency statistics over text corpora. This happens mostly because
people express themselves differently in different contexts [225, 226]. For instance, the
word ‘useful’ occurs more often to denote positive sentiment in kitchen appliance reviews
than in book reviews [34]. It can even happen that certain words occur only in particular
contexts, such as 'opioid receptors’ in abstracts of biomedical papers but not in financial
news [108]. Hence, domains present a large problem for the field.

Fortunately, NLP systems can exploit the fact that words tend to signal each other; in
a bag-of-words (BoW) encoding each document is described by a vocabulary and a set of
word counts [227]. Words that signal each other, tend to occur together in documents.
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Co-occurring words lead to correlating features in a Bow encoding. Correlating features
can be exploited as follows: suppose a particular word is a strong indicator of positive or
negative sentiment and only occurs in the source domain. Then one could find a correlat-
ing "pivot” word that occurs frequently in both domains, and find the word in the target
domain that correlates most with the pivot word. This target domain word, is most likely
the corresponding word to the original source domain word and will be a good indicator
of positive versus negative sentiment as well [32]. Thus, by augmenting the bag-of-words
encoding with pivot words and learning correspondences, it is possible to overcome do-
main differences [32, 108, 228, 229]. Figure 1.11 shows an idealized example of augmenting
a feature space. x3 is added to both the source (left) and the target (right) domain. This
additional feature allows for training a classifier (grey plane) that will perform as well on
the source domain as on the target domain, regardless of the initial differences between
them.
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Figure 1.11: Example of an augmented feature space. (Left) The source domain is augmented with an additional
feature (x3) that does not vary over domains. (Right) The target domain is augmented with the same feature.
Now, regardless of the initial difficulty of adaptation, a classifier (grey plane) can be trained that generalizes well.

How to find corresponding features, or in general how to couple subspaces, is an open
question. Note that with more features, there is alarger chance to find a good pivot feature.
The earliest approaches have extracted pivot features through joint principal components
or maximizing cross-correlation [34, 108]. However, such techniques are linear and can
only model linear relationships between features. Later approaches are more nonlinear
through the use of kernelization or by employing "co-training” approaches [228, 229].
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Feature augmentation shares a lot of overlap with the approach of finding a domain-
invariant space, as the augmentation is essentially an artificially created invariant space.
The key difference lies in the fact that retaining the original features can be helpful when
there indeed exist correspondences between features. Additionally, feature augmentation
also shares overlap with the subspace mapping setting as the domain-specific features are
now different subspaces of the overall feature space. For example, in bag-of-word encod-
ings, target samples essentially have value 0 on words that only occur in the source domain.
If we were to encode all samples in the union of words, then the source domain could be
mapped to the target domain by a transformation through the domain-specific part of the
total feature space.

1.4.6. Robust adaptation

When any of the aforementioned approaches are applied to settings where their assumed
shift is actually not happening, then they tend to mis-estimate how to adapt and perform
terribly [230, 231]. In short, they are not robust to unexpected changes. Although some
methods are more robust to invalid assumptions, such as maximum-margin based clas-
sifiers, others can be made more robust [232]. To ensure a robust level of performance,
a few approaches assume worst-case settings. Worst-case settings are often formalized
as minimax optimization problems [40, 233]. However, as there are no target labels, the
worst-case is not unique and no optimization algorithm will converge. Considering that
there is additional information in the form of the source domain, it is possible to constrain
the worst-case setting. One of the most interesting approaches here is the use of worst-
case importance weights [109]:

n

. 1
(h,w) = argmin argmax — ) £(h(xy), y)w(x;). (1.22)
hex wew T =

By training a classifier under worst-case weights, it should be more robust against the ad-
verse effects of density ratio estimation errors.

Another minimax strategy, dubbed the robust bias-aware classifier [110], plays a game
between a risk minimizing target classifier and a risk maximizing target class-posterior dis-
tribution, where the adversary is constrained to pick posteriors that match the moments of
the source distribution statistics. The constraint is important, as the adversary would oth-
erwise be able to design posterior probabilities that result in degenerate classifiers (e.g.
assign all class-posterior probabilities to 1 for one class and 0 for the other). Effectively,
this means the minimax estimator returns high confidence predictions in regions with large
probability mass of the source density and uniform class predictions in regions with small
source probability mass. This behaviour nicely reflects the larger difficulty of an adaptation
problem with a larger domain dissimilarity, but restricts this approach to problems where
the probability masses of both domains overlap to some extent. However, it also means
that their approach loses predictive power in areas of feature space where the source dis-
tribution has limited support, and thus is not suited very well for problems where the do-
mains are very different.
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Conservatism can also be expressed through algorithmic robustness [234]. An algorithm
is deemed robust if it can separate a labeled feature space into disjoint sets such that the
variation of the classifier is bounded by a factor dependent on the training set. Intuitively,
a robust classification algorithm does not change its predictions much whenever a training
sample is changed. Separating the space with a robust algorithm implies that the loss is
bounded in each partition, regardless of the distribution of samples. [207] employs this
notion to construct a robust adaptive algorithm. They introduce A-shift, a measure of how
far the value of the target class posterior probability differs from the source class posterior
probability, which is used as a constraint on the loss on target samples in a support vector
machine formulation. The classifier finds a separating hyperplane such that the hinge loss
on the source set is similar to the loss of the target domain. The downside of this approach
is that if the class posterior distributions of both domains are very different (e.g. orthogonal
decision boundaries), it will not perform well on both sets.
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1.5. Contribution

Each chapter in this thesis builds upon different approaches to domain adaptation.

Chapters 2 and 3 are concerned with the popular importance-weighting technique and
address two open questions regarding cross-validation under covariate shift. Chapter 2
shows that importance weighting the source validation dataset is not sufficient to obtain
hyperparameters that are optimal in the target domain, while Chapter 3 extends this work
by hypothesizing that this insufficiency is due to problems with unbounded variance of the
importance weights. Experiments with reducing the sampling variance of the importance-
weighted risk estimator show that the estimator improves, but still does not find the opti-
mal regularization parameter.

Chapter 4 switches to the case of subspace mappings. We formulated a condition that,
when fulfilled, allows for recovering the optimal target classifier. The difficulty lies in finding
the correct parameterization of what we call a transfer model. Looking at a simple case of
transfer, namely dropout (prevalent in cases of missing data at test time and bag-of-word
encodings), we present an algorithm that estimates the transfer model’s parameters and
trains a classifier that ignores features that are not important in the target domain.

Chapter 5 combines machine learning with medical imaging. Tissue classifiers do not
generalize well across MRI-scanners due to unknown acquisition-related variations. We
tackle this problem by mapping images from different MRI-scanners to a domain-invariant
representation. We used an MR simulator that allows us to vary scan sequence parameters
on the same subjects, thereby isolating acquisition-related factors of variation. A Siamese
convolutional neural network is used to learn the acquisition-invariant representation. Us-
ing a measure of distance between datasets, the proxy A-distance, we are able to show
that, in some cases, it can be very beneficial to add data from another scanner, while, in
other cases, it can be very disruptive to training a tissue classifier.

Finally, Chapter 6 formulates a robust parameter estimator that is guaranteed to never
perform worse than the source classifier on the target domain. When applied to the dis-
criminant analysis framework, it even ensures that the resulting adaptive classifier will al-
ways perform better than the source classifier, in terms of model likelihood. No perfor-
mance guarantees of this kind have been proposed before.

In closing, Chapter 7 reflects on some of the most important findings and discusses
promising avenues for further research.
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Cross-validation under covariate
shift

This chapter identifies a problem with the usual procedure for L?-regularization parameter
estimation in a domain adaptation setting. In such a setting, there are differences between
the distributions generating the training data (source domain) and the test data (target
domain). The usual cross-validation procedure requires validation data, which can not be
obtained from the unlabeled target data. The problem is that if one decides to use source
validation data, the regularization parameter is underestimated. One possible solution is
to scale the source validation data through importance weighting, but we show that this
correction is not sufficient. The chapter is concluded with an empirical analysis of the effect
of several importance weight estimators on the estimation of the regularization parameter.

This chapter is based on the paper "On regularization parameter estimation under covariate shift”.
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2.1. Introduction

In supervised learning, there is a (mostly implicit) assumption that the training data is an
unbiased sampling of the underlying distribution of interest. However, that may not be
the case. In a variety of problems there is often an unknown bias in the sampling proce-
dure. These arise due to environmental effects, such as temperature in different genome
sequencing centers [1-3], or due to the use of particular measuring instruments, such as
types of cameras in computer vision [4, 5]. This means the training dataset (source do-
main) and the test dataset (target domain) are technically generated by different distri-
butions and generalization might no longer be possible. The challenge lies in using the
labeled source data and the unlabeled target data to classify new target data; a problem
setting often referred to as domain adaptation, transfer learning or sample selection bias
[6-11]. Most research focuses on classifiers that incorporate information on the difference
between the data in both domains, but unfortunately most of these approaches overlook
the role of the regularization parameter.

Regularization is used to combat overfitting of complex models and is a vital component
in most classifiers to ensure they generalize to unseen data. It consists of a trade-off be-
tween how well the classifier can discriminate training samples and how complex it must
become to do so. This balance is described by the regularization parameter which is usually
estimated by holding out a small subset of unseen labeled data and evaluating the trained
classifier (cross-validation). However, since there are no labeled target samples available,
it is not possible to construct a target validation set. If one were to alternatively construct
a validation set from source data, the estimator converges in distribution to the source risk
and not the target risk [12].

We study how the generalization performance of a classifier behaves as a function of the
regularization parameter and the domain dissimilarity. There are many factors that influ-
ence the value of the optimal regularization parameter, such as the moments of the class-
conditional distributions in each domain (differences in variance, skewness, etc.), concept
drift (different class priors in each domain), types of adapting classifiers (some require less
regularization than others) and high-dimensional distribution estimation errors, but we fo-
cus on differences in variance between domains. The first correction that comes to mind
consists of scaling the source validation risk with importance weights and although this
remedies the problem somewhat, we show that the optimal regularization parameter for
the target domain remains underestimated.

2.2. Estimation problem

Domains are different biased samplings, which correspond to different joint probability
distributions over the same input space X and output space Y = {—1, +1}. We will refer
to the source domain with S and the target domain with I'. Source data X with labels y
consists of n samples from ps(x,y), denoted as a data set {(x;, y;)}[=;, and target data
Z with labels u consists of m samples from ps(x,y), denoted as a data set {(zj,uj)}}”:r
The input space is a D-dimensional feature space, which means that x; and z; are vectors:
x; = (Xi1, -, Xip) and zj = (2j4, ..., Zjp)- A classifier is a function that takes as input data



2.2. Estimation problem 53

and outputs a class prediction, h : X - Y.

2.2.1. Regularized risk

The risk minimization framework allows one to construct classifiers through searching a
class of hypothetical functions H (e.g., linear) and selecting the one that minimizes the
expected loss £ : R X Y — R*. The source and target risk are defined respectively as:

R = | D €3 pstey) dx @)
yey

Re) = [ D € prey) dx, 22)
Y€Y

Note that for any h, the source and target risks differ only through the joint probabilities
ps(x,y) and pr(x,y). The goal is to find the classification function h that will minimize
the target risk, based on source data.

Unfortunately, minimizing the empirical source risk with respect to h directly, often leads
to a solution that does not generalize well to other samples (overfitting), let alone samples
from another distribution. In order to prevent the classifier from becoming too specific for
the training data set, a complexity term is added to the empirical risk during training. Most
often, the L?-norm of the classifier’s parameters 8 is chosen as the complexity term. The
regularized empirical risk can be written as:

R 1
Rr(62) =1 Zi’(h(xt 16),ye) + All6lI3 (2.3)

teT

where the subscript T denotes the set of indices indicating which source samples are used
for training T c {1, ...,n} (not the target samples), | - | denotes the cardinality and ||.||,
denotes the L?-norm. Note that the empirical risk is now a function of the classifier’s pa-
rameters 6, instead of h, and that it has received the subscript T to indicate that it is the
empirical risk with respect to the source training samples. In the following, we will use
other subscripts to indicate empirical risks with respect to other data sets.

The regularization parameter A trades off the empirical risk and the L?-norm. Itis usually
estimated by defining a set of values A, training a classifier for each and selecting 1 € A
with the minimal risk according to an evaluation on a disjoint validation dataset. The set
of regularized classifiers can be denoted as:

0, = {0, = argmin R;(8,) | A € A}. (2.4)
6eB

where 8, refers to the classifier that is trained using 4. 0 is the classifier parameter space,
which for linear classifiers is, for instance, the set of D + 1-dimensional real vectors RP*1.
The regularization parameter space A is often taken to be an exponentially increasing set
of nonnegative values; for example {0,0.01,0.1,1, 10,100, 1000}.
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If we choose a quadratic loss function, £(h(x | 8),y) = (h(x | 8) — y)?, with a linear
hypothesis class, then the solution to minimizing equation 2.3 with respect to the classifier
parametersis 8, = (X7 X7 + A1) ™1 (X{ yr), where X refers to the n X D data matrix. Note
that for the same training data X, 8, varies due to different choices of 1.

2.2.2. Evaluation measure

Evaluating a classifier consists of computing its empirical risk on a novel dataset. We will
be studying two validation sets, the first being held-out source data, and the second being
target data. We will incorporate the quadratic loss in the risk function for validation as well.
The held-out source validation data will be marked with the subscript V, which indicates
the set of indices that are disjoint from the training set V. N T = @). Plugging in source
validation {(Xy, y/)} and target validation data {(Z, u)}, the empirical risks are:

5 2 T 1 TyT

RV(G/l) =1- myv XVGA + |7|9/-{ XVXVGA (25)
. 2 . T

R;(8;) = 1—mu 29,1+m0/12 Z0;. (2.6)

Cross-validation consists of holding out each source sample at least once, training a clas-
sifier on the remainder and evaluating on the held out validation set. One round of cross-
validation is performed for each 8, € 6, and the minimizer of the set with respect to the
empirical risk corresponds to the estimated regularization parameter.

2.2.3. Problem setting

For any h, the empirical source validation risk f?V converges to the true source risk Rg
by independently sampling validation data sets infinitely many times [13]. Unfortunately,
this is not equal to the target risk Rr. Hence, selecting a regularization parameter based
on source validation data will not be equivalent to selecting a regularization parameter
based on target validation data. Furthermore, the larger the difference between ps(x, y)
and p7(x,y), the larger the difference between the selected regularization parameters.
In order to obtain a regularization parameter estimate that is closer to the one found by
validating on the target risk, we need a way to match the validation empirical risks.

2.3. Covariate Shift

A natural approach to designing a corrected validation procedure, would be to employ
some functional relation between the source and target risks. Fortunately, such a relation
exists for a subset of the class of domain adaptation problems: if one makes the covari-
ate shift assumption that the class posterior distributions are equivalent in both domains,
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pr(y | x) = ps(y | x), then the target risk can be rewritten into a weighted source risk:

R = [ e(h009) 2 sy ax

yey

pr(y | x) pr(x)
fyzy“h” M s 10 s P

= [ ¥ e Bty ax.
Y€Y

ps(x,y) dx

The functional relation thus consists of weighting the source samples appropriately. It can
be shown that under the additional assumption of a small domain discrepancy, this prob-
lem setting is learnable [14].

2.3.1. Generating a covariate shift setting

Since we are restricting the analysis to covariate shift settings, we need to generate such a
problem. First, we choose a set of source class-conditional distributions ps(x | ¥), a set of
priors ps(y) and compute the class posterior distributions ps(y | x) through Bayes' rule.
Then, by choosing a different target distribution ps(x), multiplying by the derived class-
posterior distributions pr (y|x) = ps(y|x) and inverting Bayes' rule, the class-conditional
target distributions p+(x | y) are obtained. Note that this also implies that the priors are
equal in both domains: ps(y) = p7(y). Figure 2.1 (left) visualizes an example of this prob-
lem for Gaussian class-conditional distributions. We plotted the labeled source distribu-
tions in red and blue with the unlabeled target distributions in black. The class posteriors
of this problem are plotted in Figure 2.1 (right), and are equivalent. An artificial dataset
can be generated by sampling from these distributions, either through inverse transform
sampling or rejection sampling.

—p(Xly=+1)
—p,(xly=-1) 0.8
—p, (xly=+1)
—py(xly=-1)

—ply=-1x) 0.8 — ply=-1]2)

-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

X

(a) Class-conditional distributions of each
domain.

x z

(b) Class-posterior distributions of the source (left) and
the target domain (right).

Figure 2.1: An artificially generated 1-dimensional covariate shift problem.

If we fix the source class-conditional distributions to be Gaussian distributions, with the

blue class as V' (x |

—1,1) and thered class as V(x| 1, 1), then we can generate 5 problem

settings by choosing 5 different target distributions. Figure 2.2 (left) shows 5 Gaussian tar-
get distributions with equal means as the source distributions but with different variances
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d% € {0.5,1,2,3,4}. If we train a classifier based on the source class-conditional distri-
butions and evaluate it using the target empirical risk, then it becomes apparent that the
difference between the minimizer of the source risk and the target risk starts to increase
as the difference between the distributions start to increase. Figure 2.2 (right) plots the
empirical risk as a function of 8, for the 5 covariate shift problems, with the minimum for
each marked with a black square. Note that for 02 = 1 the distributions are equivalent and
its minimizer is equivalent to the minimizer of the source risk. The curves show a gradual
increase in the minimizers as the variance increases.
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Figure 2.2: (Left) 5 covariate shift problems, with the target variance cf} € {0.5,1,2,3,4}. (Right) The corre-
sponding target empirical risk curves. The black squares denote the minima of these curves.

2.3.2. Difference in error curves
If we minimize the empirical risk curves of the source validation data (2.5) with respect to
the trained regularized classifier 8,, we obtain:

6;11, = argmin Ry (6,)
01
= Xy X)Xy w) -

The subscript iV is used to signify that this is the regularization parameter chosen by vali-
dating on the held-out source data; since the same training data X is used, 8, only differs
through the choice of A. Similarly, minimizing the empirical risk on the target validation
data produces:

9;12 = argmin R;(6,)
02

=(Z"2)"Y(ZTw)

where iZ denotes the optimal regularization parameter we would have chosen, had we
been able to validate on labeled target data.

Studying these two forms, we see that these estimates of A differ mainly through the
data inner products (i.e., the uncentered, unnormalized covariance matrices). To illustrate
this point, we can decompose the data through a singular value decomposition, allowing
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us to express the minimizers as:
)
)

WDy UII)}’V
(VzDzUz)u

14

4

where the diagonal matrices Dy, and D; consist of the normalized singular values Dy ;; =
aV,i/aﬁ_i and Dz;; = aZ,i/“%,i' Apart from a change of basis from V;; to V/; and Uy, to Uy,
the difference lies mainly in the scale of the eigenvalues.

If we were to apply a scaling operation to the validation risk, then the difference be-
tween these curves can be minimized. Finding the optimal regularization parameter for
the target domain will then be equivalent to finding the optimal regularization parameter
for the scaled validation risk.

2.3.3. Importance-weighted validation

Sugiyama et al. (2007) employ just such a scaling transformation in the form of importance
weighting the validation risk, with weights w as estimates of the ratio of data marginals
p7r(x)/ps(x) [12]. These weights scale the risk of each individual validation sample sepa-
rately. This leads to an importance weighted source validation risk as follows:

1

, 2
Rw(6) =1 — —y WX,6; + V]

i 0] XT WXy 6,

where W is a matrix with the importance weights for the validation samples on its diago-
nals. This formulation has the following minimizer:

05, = Xy WXy) 1 Xy Wyy).

The ratio of probabilities can have a very large variance, depending on how likely it is
to encounter either extremely large target probabilities or extremely small source prob-
abilities. Furthermore, in the small sample size setting, estimation errors increase the
possibility of a numerical explosion, such as when 2 samples are drawn that lie so close
together that the estimated target distribution resembles a Dirac distribution. Lastly, the
cross-validation estimator has its own variance [15] which is now directly affected by the
variance of the importance weight estimator. For a better understanding of the behavior
of an importance weighted cross-validation estimator, we performed a number of experi-
ments with a large diversity of weight estimators in the following section.

2.4. Experiments

We conducted an experiment on an artificial problem setting and one on a typical real-
world domain adaption problem where there is no knowledge on whether the covariate
shift assumption holds. Our goal is to evaluate the ability of a number of both parametric
and nonparametric importance weight estimators to correctly estimate the optimal regu-
larization parameter in the target domain. These experiments illustrate that a large diver-
sity of existing estimators tends to underestimate the optimal target parameter.
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2.4.1. Importance weight estimators
We selected four importance weight estimators with a diverse set of behaviors.

Ratio of Gaussians
A baseline method of estimating the marginal data ratio through modeling each sample set
with a separate Gaussian distribution [16]:

o Nl iy, 67)
"© T N(x | fis, 62

where V' denotes the Gaussian distribution function, fis denotes the estimated mean of
the source data set, fi; the estimated mean of the target data set, 42 denotes the es-
timated variance of the source set and 6% the estimated variance of the target set. Note
that the data marginals in our problem are actually Gaussian and that this is thus a correctly
specified model.

Kullback-Leibler importance estimation procedure
This popular method is based on minimizing the Kullback-Leibler divergence between the
re-weighted source samples and the target samples [17]:

WiLgp = arg max 10% Z wik(x;, 2;),

s.t. Z WiK(xi,Zj) =n,
i

where K is a kernel function, in this case between the source samples x and the target
samples z. We chose a Gaussian kernel, with the kernel width estimated through a separate
3-fold cross-validation procedure [17].

Kernel Mean Matching

Another popular weight estimator that is motivated by assigning weights that minimize
the Maximum Mean Discrepancy (MMD) between the re-weighted source and the target
samples [18]. The MMD is the distance between the means of two sets of samples under
a worst-case transformation (one that pushes them as far away as possible):

m
1 n
Wium = argmin —w k(x, x )w — — Z k(zj, x)w,
wew 2 m 4
j=1
st. w; € [0, B]
n
DXRE
— > w—1|<e
w1l
i=1

where the constraints ensure that the weights are non-negative, bounded above and roughly
average to 1. For the kernel function k, we selected a radial basis function with Silverman’s
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rule of thumb for bandwidth selection. Huang et al. recommend setting epsilon to B/y/n,
which ensures that the allowed deviation from the sample size depends on both the upper
bound for each weight and the sample size itself.

Nearest Neighbour

Lastly, we have a nonparametric estimator based on a Voronoi tessellation of the space
[19]. The procedure consists of assigning a weight to each source sample based on the
number of target samples that are nearest neighbors of it. It is proportional, up to the
ratio of sample sizes, to the ratio of marginal distributions [20, 21]. It is expressed as:

W =[G Nz} + 1,

where C; refers to the Voronoi cell of sample x;. The tessellation can be smoothed by
adding a value of 1to each cell, a technique also known as Laplace smoothing.

2.4.2. Artificial data

Our first experiment consists of an evaluation of different importance weight estimators
and their resulting minimizers of 8;. The set 8, was constructed with a least-squares clas-
sifier 8, = (X7 Xp+AD) ™1 (X7 yr). Awas taken from-100 to 500 in 101 steps. For the source
data, we drew 100 samples from two Gaussian class-conditional distribution with means
s € {—1,1} and unit variances 62 = 1. The target class-conditional distributions have the
same mean ur € {—1,1}, but with a different set of variances a% € {0.1,0.5,1,2,3,4}.
The ratio of the marginal distributions is sensitive in regions of low probability of the source
distribution: really small probabilities in the denominator explode the weight value. There-
fore, we expect the minimizers of the importance weight estimators to be close to the tar-
get minimizer for smaller target variances 6% < a§. Consequently, we expect erratic be-
havior for target variance larger than the source variance 02 > 2. Table 2.1 displays the
estimated regularization parameters for the source validation risk, the importance-weight
estimators, the actual ratio of marginals p(x)/ps(x), and for the empirical target risk.
Shown are the means and standard errors over 100 repetitions.

Table 2.1: The mean and standard error of the estimated regularization parameter A for different importance
weight estimators and an increasingly larger target variance in a covariate shift problem.

of | 01 05 10 2.0 3.0 4.0
hy, | 409 3(20) 5(20) 3(20) 4(20) 4(19)

Wig -15(20) -10(19) 6(17) 30(24) 55(41) 58 (36)
Wiuer | -23(33) -2(20) 3(20) ) 4(24) 17(25)
W | 22 (24) 17 (26) 11(25) ) -15(21) -14 (19)
Wy | 181(28) 43 (21) 4(23) 33(24) 53(24) 64 (26)
) )
) )

pr/ps | -46(47) -33(21) 3(18 72 (50) 77 (50)
hy, 179 (137) 24 (21) 5(21 207 (38) 296 (45)
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It seems that all importance weight estimators as well as the true ratio of marginals un-
derestimate the target risk minimizer. Furthermore, it seems that Wy leads to increas-
ingly smaller minimizers for an increasing target variance. Even though Wy, ep is increasing,
it still underestimates the true value the most. W, is the most accurate one, but that will
probably not be the case if the marginal distributions are not Gaussian anymore (i.e., model
misspecification). Wyy is the other most accurate one and lies closest to true importance
weights. Considering that it does not rely on an assumption of normality, it might be the
preferred estimator in a more general setting.

2.4.3. Heart disease

The artificial data represents a case where we know exactly what the dissimilarity is be-
tween domains and whether assumptions are valid. However, it is also interesting to eval-
uate on data where we do not have this knowledge. For this we have selected a UCI dataset
[22] on medical data where the domain dissimilarity is caused by a geographically biased
sampling of patients. The goal is to classify the presence of a heart disease based on symp-
toms. The four domains correspond to hospitals in ‘Cleveland’, ‘Virginia’, ‘Hungary’ and
‘Switzerland’, containing 303, 200, 294 and 123 samples each respectively. There are a
total of 14 symptoms, but 2 contained so much missing data (> 99%) that these were re-
moved from the set. All other missing data was imputed with 0 values after z-scoring, i.e.
subtracting the mean of each feature and normalizing by its standard deviation. Table 2.2
displays the minimizers found by the importance weight estimators compared with those
found by the unweighted source validation risk hiv and the target validation risk h;lz, for
all combinations of treating one hospital as the source domain and another as the target.
Shown are the means and standard errors over 10 repetitions.

Table 2.2: Heart disease dataset. Mean and standard error of the estimated regularization parameter A for dif-
ferent importance weight estimators. The letters are abbreviations of the 4 hospitals: C="Cleveland’, V="Virginia’,
H="Hungary’ and S="Switzerland.

s T ‘ hﬁv Wic Wiuep  Wkmm Wi h,iz
C Vv |15 -1(8) 1(5 9013 2(5 | 500(0)
C H| 1(4) 4(6) 1(6) 2(14) 4(5) 500 (0)
C S |4(6) 7(9) 0(5) 9(12) -1(9) 500 (0)
V. H| 5(5 9(13) 3(6) 2(5) 7(9)| 417(66)
V S |3(4) -1(12) 3(6) 2(3) 7(8) | -60(284)
H S |3(6) 34(48) 3(8) 44(40) 4(6) | 500(0)
V C | 4(5 1(9)  2(4) 2(3) 4(4) 500 (0)
H C | 1(5 0(7) 2(7) 31(29) 0(6) 500 (0)
S C|2(4) -1(4)  2(4) 1(3) 2(4) | 488(30)
H V |[4(4) -15(14) 4(7) 25(43) 4(9) 500 (0)
S V. |2(4 -1(4)  1(7) 1(3) 4(4) | -95(253)
S H|0(4) 4(8) 2(6) 0(5) 4(4)| 289(89)
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The results show that also for real datasets all importance weight estimators underes-
timate the optimal target regularization parameter. Note that the standard errors are O
for all h;lz with value 500, because 500 is the right boundary of the set A. Extending the
boundary would produce even larger values for the optimal target regularization parame-
ter. It seems that Wyun is the best performing estimator here. W, also produces reason-
able results, but that would probably not be the case if we had not z-scored each feature
first. That ensures an overlap of the regions with high probability mass in each domain.
The other estimators seem to find weight values close to 1, as they are not very different
from the unweighted source validation risk.

2.5. Discussion

Considering the significance of regularization to generalization, it would be interesting to
further study factors that influence the difference between the risk minimizers in each do-
main. At the moment we assume that no concept drift has occurred (a difference between
class priors in each domain), but if this assumption is violated then the difference in scale
depends on the two dominant classes in each domain. The minimizers of the empirical
risk would be dominated by the proportions of samples that belong to one class, which
can get very complicated in the multi-class setting. Furthermore, it would be interesting to
describe the minimizers in terms of general measures of domain dissimilarity, such as the
discrepancy distance [23] or the H -divergence [8].

The main difficulty in estimating the appropriate weights lies in the fact that it is hard to
estimate exactly how the two domains differ from each other. Most adaptation approaches
are sensitive to only a particular type of relation between domains or rely on assumptions
that can not be checked in advance. Furthermore, estimation errors tend to propagate.
For instance, if the distributions of each domain’s data marginals are poorly estimated,
then the importance weights explode, leading to a more erroneous estimate of the optimal
target regularization parameter. In domain adaptation settings with so many sources of
uncertainty, it seems that simple methods work best.

2.6. Conclusion

We have shown an empirical analysis of regularization parameter estimation in the context
of differing variances in covariate shift problems. It seems that the generalization perfor-
mance of an unadapted source classifier can be improved by importance weighting the
source validation risk. However, most popular weight estimators underestimate the opti-
mal target regularization parameter.
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Sampling variance of
importance-weighted risks

Covariate shift classification problems can in principle be tackled by importance-weighting
training samples. However, the sampling variance of the risk estimator is often scaled up
dramatically by the weights. This means that during cross-validation - when the importance-
weightedrisk is repeatedly evaluated - suboptimal hyperparameter estimates are produced.
We study the sampling variances of the importance-weighted versus the oracle estimator
as a function of the relative scale of the training data. We show that introducing a control
variate can reduce the variance of the importance-weighted risk estimator, which leads
to superior regularization parameter estimates when the training data is much smaller in
scale than the test data.

This chapter is based on the paper "Reducing sampling variance in covariate shift using control variates”.
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3.1. Introduction

In many real-world classification problems, training data is not gathered in a completely un-
biased manner. An unbiased sample refers to events that were observed according to their
true probabilities, whereas a biased sample refers to events that were observed more/less
frequently [1-3]. For example, clinical data collected from a single hospital will be biased
because the local patient population deviates from the global patient population. Con-
sequently, a computer-aided diagnosis system trained on data from that hospital will not
generalize well to hospitals in other countries. Unfortunately, collecting completely unbi-
ased data can be extremely difficult. Instead, we are interested in statistical models that
correct for biased samplings and generalize to target populations [4-8]. In particular, we
propose an adjusted correction procedure that will aid hyperparameter optimization.

In classification settings, bias corrections are often performed based on individual sam-
ple probabilities: each sample is weighed by a factor that matches its current probability
to the probability of encountering it in the target population. For example, if a particular
event occurs very frequently in the training set but rarely in the target population, then it
is not deemed important. Vice versa, if it occurs very rarely in the training set but often
in the target population, then it is deemed important. As such, this correction is known
as importance weighting [9]. Sample importance originates from Monte Carlo (MC) simu-
lation, where it is used to draw samples from rare yet interesting regions of a distribution
[10, 11]. The main difference between importance sampling in Monte Carlo simulation and
importance weighing in a classification setting is that in the former case the importance
sampling distribution is designed, whereas, in the latter case, it is fixed; it consists of the
already collected biased training data. Although importance weighting can be very useful
in controlling for biases in data, there are also a number of practical problems. The pre-
dominant one is weight bimodality: a small number of samples are assigned a very large
weight while the remainder is assigned a near-zero weight. Essentially, only a handful of
samples are deemed important, which greatly reduces effective sample size [12].

We focus on cross-validation in the face of biased data. More specifically, we consider
the example of selecting a regularization parameter for a least-squares classifier [13]. If the
collected training data were unbiased, a classifier can be evaluated by holding out a portion
of the training data, training on the remainder and validating on the held-out set. Split-
ting the dataset into k parts where each is hold out once, is called k-fold cross-validation
[14, 15]. By repeating this procedure for different values of hyperparameters, such as regu-
larization parameters, the parameter can be selected that generalizes best to unseen data.
However, since the training data is biased, the hyperparameter estimate that is obtained
through cross-validation will not be optimal with respect to the whole population [16, 17].
It is essentially over-fitted to the biased training data [18]. One could correct for the dis-
crepancy caused by the biased data by assigning importance-weights to the validation set
[9]. However, the weight variance scales the sampling variance of the cross-validation es-
timator, which affects its ability to select the optimal hyperparameter [19]. This chapter
proposes an adjustment to the importance-weighted cross-validation estimator that coun-
teracts the increase in sampling variance due to the importance weights.
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The sampling variance of an estimator describes the variation in its estimates for differ-
ent datasets. This sampling variance depends on the size of the sample: as the estimator
gets more samples, it will return more accurate estimates. However, the size of a given
dataset is often fixed. Instead of increasing the number of samples in order to obtain a
more accurate estimate, it is possible to directly reduce the sampling variance of the esti-
mator [20]. In fact, there are many variance reduction techniques that were designed to
make MC simulation more efficient and practical [11, 12]. These techniques incorporate ad-
ditional information on the data distribution. For example, with antithetic variates one has
the knowledge that the data-generating distribution is symmetric around some point. This
knowledge can be exploited by mirroring the existing samples and augmenting the dataset
[21]. Alternatively, a control variate consists of a function that is known to correlate strongly
with the estimand. By subtracting a value from the estimand when the control variate rises
and adding a value when the control variate shrinks, one reduces the estimator’s deviation
from its mean. It essentially returns more accurate estimates using the same dataset [22].

We show how we can use control variates to reduce the sampling variance of importance-
weighted cross-validation (see Section 3.4). For the correlating function, we chose the im-
portance weights themselves. Instead of scaling up the sampling variance of the estimator
whenever the weight variance increases, it now helps us to perform more accurate esti-
mations. Furthermore, we show that this improved risk estimator can be used to evaluate
classifiers and leads to better hyperparameters when employed in cross-validation (see
Section 3.5). In the next section we first introduce the problem setting, known as covariate
shift [3], in more detail (see Section 3.2).

3.2. Covariate shift

In this section, we introduce some concepts and notation, followed by an explanation of
covariate shift along with an example that will be used throughout this chapter.

3.2.1. Notation

Biased training data that stems from local sampling and unbiased test data that stems from
global sampling can be described as different domains. A domain in this context is defined
as the combination of an input space X', an output space Y and an associated probability
distribution p. Given two domains, we call them different if they are different in at least one
of their constituent components, i.e., the input space, the output space, or the probability
density function.

We focus on the case where only the probability distributions differ. Inputs remain the
same, namely the D-dimensional real space RP and outputs stay the same as well, namely
the classes Y = {—1, +1}. We denote the source domain as (X, Y, ps) and will refer to it
as 8. The target domain is denoted (X, Y, pr) with the shorthand 7. The challenge is to
use information from the source domain to generalize to the target domain.

Domain-specific functions will be marked with the subscript § or T as well, for example
E+. With some abuse of notation for the sake of clarity, we will mark marginal and condi-
tional distributions with § and 7" as well: py(x,y) for the target joint distribution, ps(x)
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for the target data marginal distribution and pr (x| ¥) for the target class-conditional distri-
bution. The source data is denoted as the set {(x;, ¥;)}{=,. Note that x refers to an element
of the input space X, while x; refers to a specific observation drawn from the source dis-
tribution, x; ~ ps. Likewise, the target domain data consists of the set {(z;, uj)}ﬁl.

3.2.2. Specifics of covariate shift

Covariate shift refers to the case where the class-posterior distributions remain equal,
ps(y | x) = pr(y | x). Furthermore, it is assumed that the class-priors are equal in both
domains as well, ps(y) = pr(y). It is therefore called covariate shift because only the
covariates - the marginal data distributions - have shifted; ps(x) # pr(x).

Throughout the chapter, we will use a running example of a basic covariate shift setting
to illustrate several concepts: the target data distribution is set to be a normal distribu-
tion with mean 0 and standard deviation 1, py(x) = N'(x | 0, 1), its priors are set equal
pr(y) = 1/2, and its class-posterior distribution is set to a cumulative normal distribution
with mean 0 and standard deviation 1, ps(y|x) = ®(yx). As the goal is to create a covari-
ate shift setting, the target’s class-posterior distribution is set to be equal to the source’s:
pr(v | x) = ps(y | x). The source’s priors are set to be equal as well, ps(y) = 1/2, but
its data marginal distribution is set to be a normal distribution with mean 0 and standard
deviation y, ps(x) = N (x| 0,y). y controls the scale of the source domain. The further y
deviates away from 1 (the target domain’s scale in this example setting) in either direction,
the further the domain dissimilarity increases.

Figure 3.1 plots the distributions of the example; the left column corresponds to the
source domain and the right column to the target domain. The top row corresponds to the
data distributions p(x), the middle row to the class-posteriors p(y | x) and the bottom row
to the class-conditional distributions p(x | y). Red lines represent the negative class, while
blue lines represent the positive class. For this figure, we visualized the case of y = 2.
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Figure 3.1: Example of a covariate shift setting: the left column shows the source domain and the right column the
target domain. The top row plots the data distributions p(x), the middle row the class-posterior distributions
p(¥ | x) and the right column the class-conditional distributions p(x | ). The only difference between the
domains is their standard deviation, which is set to 1 in the target domain and 2 in the source domain.

3.3. Importance-weighting

The empirical risk minimization framework describes a classifiers performance by its ex-
pected loss. The risk function integrates the loss € of the classifiers parameters 6 over the
joint distribution p and is hence domain-specific. We are interested in generalizing to the
target domain, which is another way of saying that we are interested in the classifier that
minimizes the target risk Ry:

Ry (6) =foe(h(x 16),9)pr (x,y) dx.
yEY

This integral is an expected value, Ry(60) = Egs [€ (h (x| 8),y)], which can be esti-
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mated through the sample average of data drawn from the target domain:

. 1%
Rr(@) = = > £(h(z10).)) (3.)
=1

We will refer to estimators with a ~ symbol. By the law of large numbers, the estimated
value will converge to the true target risk: lim Ry (6) = Ry () for all 8 [23].
m—oo

Note that target labels {uj}’j”=1 are required for this risk estimator. Unfortunately, these
are not available in a covariate shift problem setting. Consequently, we are interested in
estimators of the target risk that do not depend on the target labels. One of the most pop-
ular ones is the importance-weighted risk estimator. It starts by multiplying and dividing
the target distribution with the source distribution as follows:

Rw@ = [ > 20160, D i) .

Y€Y

Under the assumption that the class-posterior distributions are equivalent, pr(y | x) =
ps (¥ | x), the importance-weighted risk simplifies to [24]:

pr(x)
ps(x)

Rw®) = [ D e 1),3) s () ax.

yeyY

For this risk we can again formulate an estimator based on the sample average. Except this
time, data from the source domain is used:

pr(x;)
ps(x;)

. 1%
Rur(0) = — > #(h(x; 1 6), ) (32
i=1

Note that this estimator does not depend on target labels u.

We will abbreviate the ratio of probability distributions through ps(x) /ps(x) = w(x).
Equation 3.2 already shows why importance-weighting can be problematic: 1 over a small
probability equals a very large weight. In the example setting laid out in Section 3.2.2, the
weight function can be derived: w(x) = y exp (—x?(y? — 1)/(2¥?)). In this case, the
importance weights are an exponential function of the domain dissimilarity (y? — 1) and
can become very large, very quickly. In particular, if we take the variance of the weights with
respect to the source distribution, Vg[w(x)] = —1 + y?/4/2y2 — 1, then we can identify
two scenario’s: for y > 1 the variance rises slowly, while for y < 1 the variance diverges
to infinity as y approaches 1/+/2 (see Figure 3.2). The former scenario corresponds to the
case where the source domain is larger in scale and the goals is to generalize to a particular
subset. The latter scenario corresponds to the case where the source domain is smaller in
scale and the goal is to generalize to a larger population. Based on the weight variance, it
seems that the latter case is far less feasible than the former.
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Figure 3.2: Variance of the importance weights as a function of domain dissimilarity, for the example problem
setting described in Section 3.2.2.

3.3.1. Sampling variances

Although the expected values of Ry and Ry, are the same, they behave differently for
finite sample sizes. It is much more difficult to estimate the target risk using samples from
another domain; Ry, estimates tend to vary much more than R7’s ones for a fixed sample
size. The variance of an estimator with respect to its samples is known as the sampling
variance (not to be confused with sample variance, which is the variance between samples
in a set). In the following, we will compare the sampling variance of RT versus that of ﬁw.
The sampling variance with respect to a set of samples consists of the average squared
deviation of the estimator from its true risk:

Vr[Rs] = Er[ (Rr = Rs)" |. (3.3)

Using the fact that samples are drawn independently and are identically distributed (iid),
(3.3) can be simplified by pulling the sum over samples outside of the expectation:

, 1<
Er| (R = Re)” | = Erl(- > 2Ch(z; 10),up) = R)?)
=1

1 m
= — > Erl(h(z; 1 0),u)) ~ R)?]
j=1
1
= —Er[(£(h(x ] 0),) = Ry)?]. (3.4

The sampling variance with respect to a single sample, E;-[(£(h(x | 8),y) — Ry)?], will be
referred to as 02.
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The source data is drawn iid as well. That means that the same simplification holds for
the importance-weighted risk estimator:

Vs[Rw] = 155[ (Rw — Rw)” ]

1
= CEs[(¢(h(x | 0), yIw(x) — Rw)?]. (3.5)

Similar to before, the sampling variance with respect to a single sample will be referred to
2
as oyp-

Expanding the squares in (3.4) leads to Er[£(h(x | 8),¥)?] — RZ and expanding (3.5)
leads to E[£(h(x | 8),y)?w(x)] — R%,. Note that Ry, = Ry and that the only difference
between ag% and 0'1%; is the addition of the importance weights. Thus, the weights directly
scale the sampling variance of the estimator. So, even though Ry, and Ry are estimators
of the same risk, the fact that Ry is based on data from another distribution makes it a
less accurate estimator.

Figure 3.3a computes the estimators for the running example using a least-squares clas-
sifier: £(h(x | 0),y) = (x67 — y)2 with 6 = [6;,6,] [25]. Since the probability dis-
tributions are known, the Bayes optimal classifier for the source domain can be derived:
6" = [\/m/,/ 1+ y2, 0]. This 8* was used to compute the risk estimates. The figure
shows a learning curve of 10° repetitions of the estimated risk as a function of the size
of the validation set (m and n for the target and the importance-weighted risk estimators
respectively). A source standard deviation of y = 2 was chosen for this visualization. Note
that the importance-weighted risk varies much more than the target risk.

Figure 3.3b displays the sampling variance of I?T and I?W as a function of the domain
dissimilarity. For y = 1, the domains are the same and the sampling variances are equal.
Fory > 1, the sampling variance of IA?T drops off, while the sampling variance of IA?w slowly
increases. Fory < 1, the 1?7 's variance remains relatively steady, while the }?W 's variance
diverges to infinity at y = 1/v/2. The shape of this curve reflects the influence of the
variance of the importance weights, as shown in Figure 3.2.
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(a) Estimated risk of the target (yellow) versus the importance-weighted (blue)
estimator as a function of the number of validation set samples, for the example
setting withy = 2.
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risk estimators as a function of the source domain standard deviation y.

Figure 3.3: Comparison of the importance-weighted source versus the target risk estimator.

3.4. Reducing sampling variance

The increased sampling variance of the importance-weighted risk estimator is problematic
for procedures that rely on accurate estimates of the target risk. One such procedure is
cross-validation, which we discuss in Section 3.5. Our goal is to reduce the sampling vari-
ance of }?W. To that end, we will introduce a control variate [12, 22]. A control variate is a
function that correlates with the estimator and whose expected value is known: (¢—E[&]).
These two properties mean that it essentially contains additional information on the func-
tion of interest, which can be used to reduce sampling variance. Whenever the correlating
function’s value rises above its expected value, (@ —E[&]) > 0, so does the risk estimator’s
value rise above its expected value (the true risk), (}? — R) > 0. By subtracting the control
variate from the risk estimate, R — (& — E[@]), the estimator’s deviation from the true risk
is reduced. Hence, its variance is reduced. It is however important that the control variate
is appropriately scaled, as subtracting a too large value can increase the sampling variance
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as well. A parameter g is used to control the scaling: R — B(@ — E[&]).

We chose the importance-weights w(x) themselves as the control variate, since their
expected value is known: Es[w(x)] = [, w(x)ps(x)dx = [, pr(x)dx = 1. Adding the
weight-based control variate to the importance-weighted risk, forms the following estima-
tor:

1 n
—Z £(h(x; 1 6),y) w(x) — B(w(x) — 1).

:

Note that the added term does not bias the overall estimator: the expected value of the
control variate Es[f(w(x;) — 1)] = B(Es[w(x;)] — 1) = 0 for all values of 5. This means
that the expected value of the controlled estimator is the same as that of the importance-
weighted estimator: Es[Rg] = R

3.4.1. Sampling variance of the controlled estimator
The effect of the control variate on the sampling variance of the importance-weighted risk
estimator can be described exactly [22]:

VslRgl = Es| (Rp — Rg)’]
= Es[(% Y ehe19), 70w ~ BOw) — 1)~ R) |
i=1

1 2

= ~Es[(£(h(x 1 6),)w(®) — £(h(x 16),WEBW(E) ~ 1)
— £(h(x 1 6),y)W()Ry — B(w(x) — DE(h(x | 6), y)w(x)
+ B2 (w(x) = 1)2 + BW(x) — 1Ry — Ri2(h(x | 6),y)w(x)
+ Ry BwW(x) — 1) + Ry |

1 2
= K| ({’(h(x 16),y)w(x) — RW)

= 28(w() — 1)(2(h(x 1 6),y)w(x) - Ry)
+ B2 (w(x) — 1)?]

1
= ~o% — 28 5[ e(hx | 0), w0, w@)| + B2 VsIw()]|. (3.6)

The Cg stands for the covariance, in this case between the weighted loss and the weights
themselves. The scale parameter 8 of the control variate can be optimized to minimize the
overall sampling variance of the estimator:

2
0 1oy

% _ _cs[f(h(x 16), y)w(x), W(x)] =0

2 e [echte 10),ywe), we)| + ;ﬁ* Vsiw(x)] =0
Cs [£(h(x | ), W, w(@)] / Vs W] = B
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where $* is the minimizer. Plugging 8 back in to (3.6) simplifies the sampling variance to:

of = ofy — 2. Cs[£(h(x | 8),y)w(@), w)| / Vs[w()] €5 £hix | 0), yIw (), w0
+ (Cs[ecace 1), ywe0we)| / Vsw)] ) Vsiweo)

= o}, — Cs|e(a(x | 6), y)w(x),w(x)]2 / Vs|w@)]. (3.7)

Considering that both the squared covariance term and the variance term are non-negative,
the sampling variance of a controlled estimator is never larger than that of the standard
estimator [26]. In particular, multiplying Cs[£(h(x | 8), y)w(x), w(x)]?

/ Vs[w(x)] with o3, /03,, allows (3.7) to be written as:

O'E =04,(1 - p?),

where p denotes the correlation between the weighted loss (the estimand), and the weights
(the control variate). Essentially, the more the weights correlate - positively or negatively
- with the weighted loss, the larger the reduction in variance.

Computing 8* is not possible without knowledge of the probability distributions, but it
can be estimated from data:

p= Zi(f(h(xi 16),yowx) — ) (wx) — D] /[ - Z W) —1).

Figure 3.4a provides an illustration similar to the one of Figure 3.32), but adds the esti-
mated risk of the controlled importance-weighted estimator. This is still the case of y = 2,
for which }?ﬁ’s sampling variance is much smaller than that of IA?W. Similarly, Figure 3.4b
is the equivalent of Figure 3.3b, which plots the sampling variance for the three estima-
tors I?B, I?W, and Ii’T. For y > 1, the sampling variance of the controlled estimator aé

reduces to roughly the same level as the original target risk estimator cr:%. Fory <1, 0g
also diverges at 1/\/5, but rises much more slowly.
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(a) Estimated risk of the target (yellow), the importance-weighted (blue) and the
controlled importance-weighted (green) estimator estimator as a function of the
number of validation set samples, for the example setting with y = 2.
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(b) Sampling variance of the target (yellow), the importance-weighted (blue) and
the controlled importance-weighted (green) risk estimators as a function of the
source domain standard deviation y.

Figure 3.4: The effect of the addition of the control variate.

3.5. Cross-validation

Accurate estimation of the target risk is important for cross-validation, which is, in turn,
important for hyperparameter optimization. In this case, it is used to find an optimal reg-
ularization parameter. In order to account for the covariate shift, the validation data is
importance-weighted [9]. However, as Section 3.3.1 has shown, weighting can increase the
sampling variance, making the cross-validation estimator less accurate. Fortunately, the
control variate can counteract this negative influence. The following subsections describe
an experiment that compares the importance-weighted versus the controlled importance-
weighted risk estimators in a cross-validation context.
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3.5.1. Experimental setup

In the following experiments, the source set is split up into 10 folds, each of which is held
out once for validation. Training samples are marked as {(x;, y;)}ter and validation sam-
ples are marked as {(x,, ¥,,) }yev, Where the sets T and V together make up the total index
set of the source samples T UV = {1,...,n}. For the classifier, we employ a kernelized
version of a regularized least-squares classifier [13]. So for risk evaluation, we evaluate the
mean squared error (MSE): £(h(x | 8),y) = (h(x | 8) — y)?. In particular, a quadratic
polynomial kernel is taken: 6, = Y,cr(k(xy, x¢) + AD) ™y, with k(x', x) = (x'xT + 1)2.
Note that the classifier’s parameters 8, are dependent on the regularization parameter A.
Predictions are made by applying the kernel to new samples and taking the inner product
with the classifier parameters: h(- | 8;) = k(-, x¢)0;.

The true data marginal distributions are not known in practice. In most cases it is also
not known to which family of distributions the data marginals belong to. As such, we opt
for a nonparametric approach. Both the source and target distributions are estimated with
a kernel density estimator [27]. A normal kernel was used, with its bandwidth set through
Silverman'’s rule of thumb [28]. After estimation, the ratio of distributions is taken to com-
pute the importance weights: w(-) = (m™? Z;-n K(zj,))/ (7L K (x,).

We compare the following 4 risk estimators:

Rs(0) = T ) (x) 0= %)’

vev

R0 = 7 D (ki) 63 = 30" (2)

veV

R0 = i > (kGaxe) 03 =) W) = B () = D)

vEV

N 1
Ry (6y) = ooy Z (K(Z'» x¢) 61 — uj)z
j=1

RS corresponds to validating on source data without compensating for the covariate shift,
Ry compensates with the importance weights, Rﬁ uses the control variate, and Ry cor-
responds to the oracle case, i.e., validating on labeled target samples. |V| refers to the
cardinality of the validation set. We start with a set of 100 regularization parameter val-
ues, ranging from 0 to n. The 4 risk estimators are used to select the A for which the risk
is minimal. This selected parameter is then used to train a classifier on all the source data
and is evaluated using the target risk estimator.

3.5.2. Data
The ionosphere dataset from the UCI machine learning repository was used. To allow for
visualization, the dimensionality of the data was reduced to 2 using principal components
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analysis. To simulate a covariate shift setting, we perform a biased sampling: a normal dis-
tribution is placed at the center with a standard deviation of y times the covariance matrix
of the whole set. Each sample from the ionosphere dataset is evaluated under this distri-
bution and the resulting probabilities are used to draw - without replacement - a subset of
50 samples. y is chosen from a logarithmic range between 272 and 2*, which represents a
very local, biased sampling to a nearly uniform, unbiased sampling. Figure 3.5 shows scat-
terplots of samples selected as part of the source domain (top) and the remainder as part
of the target domain (bottom), for y = 0.5.

€1

(a) Source domain. Red markers denote the positive class, blue the
negative one and black the unselected samples. The black ellipses de-
note the source domain sampling distribution, for y = 0.5.
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(b) Target domain. Magenta markers denote the positive class, cyan
mark the negative one and black mark the previously selected source
samples.

Figure 3.5: Example of the biased sampling for the ionosphere dataset.
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3.5.3. Results

Figure 3.6a plots the estimated regularization parameters as a function of the scale of the
source domain’s sampling distribution. The value of the optimal regularization parameter
tends to be quite large, but decreases fromy > 0.5 onwards. Ry, and Rﬁ differ much more
inthe regime 0.5 < y < 2. Fromy > 2 onwards, the source domain covers the dataset so
well, that all samples evaluate to nearly the same probability under the source domain’s
sampling distribution. Hence, the selected data is an unbiased sample and there is no
covariate shift. Figure 3.6b shows the risk of the estimated regularization parameter and
indicates that the large differences between estimated regularization parameters cause
large differences in the resulting risks. Conversely, no difference in 1 causes no difference
in risks, from y > 2 onwards. The improvement from Ry;, over R is largest where the
domains are the most different, as is the improvement of R over Ryy. Overall, R always
leads to superior or equal estimates compared to Ii’w.

o

=200

5 —fv
2150 3
<

] T
=] 100’

2

g

-% 50

3

g

oo

Source standard deviation (7)

(a) Regularization parameter 1 estimated by Ry (dark blue), Ry, (light blue), R,
(green) and f(’T (yellow), as a function of domain dissimilarity.
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(b) Target risk resulting from training with the selected regularization parameter
estimated by ﬁg (dark blue), ﬁw (light blue), I?ﬁ (green) and 1?7 (yellow), as a
function of domain dissimilarity.

Figure 3.6: Results for the experiment on the ionosphere dataset.
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3.6. Conclusion

We presented a study of the sampling variance of the importance-weighted risk estimator
as compared to the target risk estimator in the context of covariate shift. We showed that
the sampling variance can increase substantially as a function of the scale of the source
domain, leading to a far less accurate estimator for a given sample size. Furthermore, we
introduced a control variate to reduce the sampling variance of the importance-weighted
risk estimator. This reduction is beneficial for hyperparameter optimization in cases where
the sampling variance becomes problematic. As it is never detrimental, the controlled
importance-weighted risk estimator is the preferred choice.

In this work, only the additive control variate has been studied. Multiplicative control
variates or more complex functions applied to the additive control variate have the poten-
tial to increase its correlation with the estimand, thus decreasing the sampling variance of
the estimator even further. However, it is hard to predict whether a more complex control
variate will be useful.
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Modeling feature-level transfer

Domain adaptation is the supervised learning setting in which the training and test data
are sampled from different distributions: training data is sampled from a source domain,
whilst test data is sampled from a target domain. We propose and study an approach,
called feature-level domain adaptation (FLDA), that models the dependence between the
two domains by means of a feature-level transfer model that is trained to describe the trans-
fer from source to target domain. Subsequently, we train a domain-adapted classifier by
minimizing the expected loss under the resulting transfer model. For linear classifiers and
a large family of loss functions and transfer models, this expected loss can be computed or
approximated analytically, and minimized efficiently. Our empirical evaluation of FLDA fo-
cuses on problems comprising binary and count data in which the transfer can be naturally
modeled via a dropout distribution, which allows the classifier to adapt to differences in the
marginal probability of features in the source and the target domain. Our experiments on
several real-world problems show that FLDA performs on par with state-of-the-art domain-
adaptation techniques.

This chapter is based on the paper "Feature-level domain adaptation”.

85
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4.1. Introduction

Domain adaptation is an important research topic in machine learning and pattern recog-
nition that has applications in, among others, speech recognition [1], medical image pro-
cessing [2], computer vision [3], social signal processing [4], natural language processing
[5], and bioinformatics [6]. Domain adaptation deals with supervised-learning settings in
which the common assumption that the training and the test observations stem from the
same distribution is dropped. This learning setting may arise, for instance, when the train-
ing data is collected with a different measurement device than the test data, or when a
model that is trained on one data source is deployed on data that comes from another
data source. This creates a learning setting in which the training set contains samples from
one distribution (the so-called source domain), whilst the test set constitutes samples from
another distribution (the target domain). In domain adaptation, one generally assumes a
transductive learning setting: that is, it is assumed that the unlabeled test data are available
to us at training time and that the main goal is to predict their labels as well as possible.

The goal of domain-adaptation approaches is to exploit information on the dissimilarity
between the source and target domains that can be extracted from the available data in
order to make more accurate predictions on samples from the target domain. To this end,
many domain adaptation approaches construct a sample-level transfer model that assigns
importance weights to observations from the source domain in order the make the source
distribution more similar to the target distribution [7-11]. In contrast to such sample-level
reweighing approaches, in this work, we develop a feature-level transfer model that de-
scribes the shift between the target and the source domain for each feature individually.
Such a feature-level approach may have advantages in certain problems: for instance, when
one trains a natural language processing model on news articles (the source domain) and
applies it to Twitter data (the target domain), the marginal distribution of some of the
words or n-grams (the features) is likely to vary between target and source domain. This
shift in the marginal distribution of the features cannot be modeled well by sample-level
transfer models, but it can be modeled very naturally by a feature-level transfer model.

Our feature-level transfer model takes the form of a conditional distribution that, condi-
tioned on the training data, produces a probability density of the target data. In other
words, our model of the target domain thus comprises a convolution of the empirical
source distribution and the transfer model. The parameters of the transfer model are
estimated by maximizing the likelihood of the target data under the model of the target
domain. Subsequently, our classifier is trained as to minimize the expected value of the
classification loss under the target-domain model. We show empirically that when the
true domain shift can be modeled by the transfer model, under certain assumptions, our
domain-adapted classifier converges to a classifier trained on the true target distribution.
Our feature-level approach to domain adaptation is general in that it allows the user to
choose a transfer model from a relatively large family of probability distributions. This al-
lows practitioners to incorporate domain knowledge on the type of domain shift in their
models. In the experimental section, we focus on a particular type of transfer distribution
that is well-suited for problems in which the features are binary or count data (as often en-
countered in natural language processing), but the approach we describe is more generally
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applicable. In addition to experiments on artificial data, we present experiments on sev-
eral real-world domain adaptation problems, which show that our feature-level approach
performs on par with the current state-of-the-art in domain adaptation.

The outline of the remainder of this chapter is as follows. In Section 2, we give an
overview of related prior work on domain adaptation. Section 3 presents our feature-level
domain adaptation (FLDA) approach. In Section 4, we present our empirical evaluation of
feature-level domain adaptation and Section 5 concludes the chapter with a discussion of
our results.

4.2, Related Work

Current approaches to domain adaptation can be divided into one of three main types.
The first type constitutes importance weighting approaches that aim to reweigh samples
from the source distribution in an attempt to match the target distribution as well as possi-
ble. The second type are sample transformation approaches that aim to transform samples
from the source distribution in order to make them more similar to samples from the tar-
get distribution. The third type are feature augmentation approaches that aim to extract
features that are shared across domains. Our feature-level domain adaptation (FLDA) ap-
proach is an example of a sample-transformation approach.

4.2.1. Importance-weighting

Importance-weighting approaches assign a weight to each source sample in such a way as
to make the reweighed version of the source distribution as similar to the target distribu-
tion as possible [7-13]. If the class posteriors are identical in both domains (that is, the
covariate-shift assumption holds) and the importance weights are unbiased estimates of
the ratio of the target density to the source density, then the importance-weighted clas-
sifier converges to the classifier that would have been learned on the target data if labels
for that data were available [7].

Despite their theoretic appeal, importance-weighting approaches generally do not to
perform very well when the data set is small, or when there is little "overlap” between the
source and target domain. In such scenarios, only a very small set of samples from the
source domain is assigned a large weight. As a result, the effective size of the training set
on which the classifier is trained is very small, which leads to a poor classification model.
In contrast to importance-weighting approaches, our approach performs a feature-level
reweighing. Specifically, FLDA assigns a data-dependent weight to each of the features that
represents how informative this feature is in the target domain. This approach effectively
uses all the data in the source domain and therefore suffers less from the small sample size
problem.

4.2.2. Sample transformation

Sample-transformation approaches learn functions that make the source distribution more
similar to the target distribution [14-22]. Most sample-transformation approaches learn
global (non)linear transformations that map source and target data points into the same,
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shared feature space in such a way as to maximize the overlap between the transformed
source data and the transformed target data [16-19, 21].

Approaches that learn a shared subspace in which both the source and the target data
are embedded often minimize the maximum mean discrepancy (MMD) between the trans-
formed source data and the transformed target data [16, 19]. If used in combination with
a universal kernel, the MMD criterion is zero when all the moments of the (transformed)
source and target distribution are identical. Most methods minimize the MMD subject to
constraints that help to avoid trivial solutions (such as collapsing all data onto the same
point) via some kind of spectral analysis. An alternative to the MMD is the subspace dis-
agreement measure (SDM) of [18], which measures the discrepancy of the angles between
the principal components of the transformed source data and the transformed target data.

Most current sample-transformation approaches work well for "global” domain shifts
such as translations or rotations in the feature space, but are less effective when the do-
main shift is "local” in the sense that it strongly nonlinear. Similar limitations apply to the
FLDA approach we explore, but it differs in that (1) our transfer model does not learn a sub-
space but operates in the original feature space and (2) the measure it minimizes to model
the transfer is different, namely, the negative log-likelihood of the target data under the
transferred source distribution.

4.2.3. Feature augmentation

Several domain-adaptation approaches extend the source data and the target data with
additional features that are similar in both domains [14, 23]. Specifically, the approach by
[14] tries to induce correspondences between the features in both domains by identifying
so-called pivot features that appear frequently in both domains but that behave differently
in each domain; singular value decomposition is applied on the resulting pivot features to
obtain a low-dimensional, real-valued feature representation that is used to augment the
original features. This approach works well for natural language processing problems due
to the natural presence of correspondences between features, e.g. words that signal each
other.

The approach of [14] is related to many of the instantiations of FLDA that we consider, but
it is different in the sense that we only use information on differences in feature presence
between the source and the target domain to reweigh those features (that is, we do not
explicitly augment the feature representation). Moreover, the formulation of FLDA is more
general, and can be extended through a relatively large family of transfer models.

4.3. Feature-level domain adaptation

Suppose we wish to train a sentiment classifier for reviews, and we have a data set with
book reviews and associated sentiment labels (positive or negative review) available. Af-
ter having trained a linear classifier on word-count representations of the book reviews,
we wish to deploy it to predict the sentiment of kitchen appliance reviews. This leaves
us with a domain-adaptation problem on which the classifier trained on book reviews will
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likely not work very well: the classifier’s parameters will be very large for, for instance,
words such as "interesting” and "insightful”, because these suggest positive book reviews.
But these words hardly ever appear in reviews of kitchen appliances. As a result, a classi-
fier trained naively on the book reviews may perform poorly on kitchen appliance reviews.
Since the target domain data (the kitchen appliance reviews) are available at training time,
a natural approach to resolving this problem may be to down-weigh features correspond-
ing to words that do not appear in the target reviews, for instance, by applying a high level
of dropout [24] to the corresponding features in the source data when training the clas-
sifier. The use of dropout mimics the target domain scenario in which the "interesting”
and "insightful” features are hardly ever observed during the training of the classifier, and
prevents that these features are assigned large parameter values. Feature-level domain
adaptation FLDA aims to formalize this idea in a two-stage approach that (1) fits a proba-
bilistic sample transformation model that aims to model the transfer between source and
target domain and (2) trains a classifier by minimizing the risk of the source data under the
transfer model.

In the first stage, FLDA models the transfer between the source and the target domain:
the transfer model is a data-dependent distribution that models the likelihood of target
data conditioned on observed source data. Examples of such transfer models may be a
dropout distribution that assigns a likelihood of 1 — { to the observed feature value in the
source data and a likelihood of { to a feature value of 0, or a Parzen density estimator in
which the mean of each kernel is shifted by a particular value. The parameters of the trans-
fer distribution are learned by maximizing the likelihood of target data under the transfer
distribution (conditioned on the source data). In the second stage, we train a linear classi-
fier to minimize the expected value of a classification loss under the transfer distribution.
For quadratic and exponential loss functions, this expected value and its gradient can be
analytically derived whenever the transfer distribution factorizes over features and is in
the natural exponential family; for logistic and hinge losses, practical upper bounds and
approximations can be derived [25-27].

In the experimental evaluation of FLDA, we focus on applying dropout transfer models
to domain-adaptation problems involving binary and count features. These features fre-
quently appear in, for instance, bag-of-words features in natural language processing [28]
or bag-of-visual-words features in computer vision [29]. However, we note that FLDA can
be used in combination with a larger family of transfer models; in particular, the expected
loss that is minimized in the second stage of FLDA can be computed or approximated effi-
ciently for any transfer model that factorizes over variables and that is in the natural expo-
nential family.

4.3.1. Notation

Consider an input space X, part of a D-dimensional vector space, and a set of classes Y =
{—1,+1}. A source domain is a joint distribution defined over these spaces, (X, Y, psy),
marked with the subscript § and a target domain is another (X, Y, pr ), marked with 7.
Samples from the source domain are denoted as the pair (x,y), with n samples forming
the source dataset D¢ = {(x;, y;)}- . Similarly, target samples are denoted as (z, u) with
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m samples forming the target dataset D' = {(z;, u]-)}}f’lzl.

4.3.2. Target risk

We adopt the empirical risk minimization (ERM) framework for constructing our domain-
adapted classifier. The ERM framework proposes a classification function h : R®? — R and
assesses the quality of the hypothesis by comparing its predictions with the true labels on
the empirical data using a loss function £ : R X Y — R*. The empirical loss is an estimate
of the risk, which is defined as the expected value of the loss function under the data distri-
bution. Below, we show that if the target domain carries no additional information about
the label distribution, the risk of a model on the target domain is equivalent to the risk on
the source domain under a particular transfer distribution.

We first note that the joint source data, target data and label distribution can be decom-
posed into two conditional distributions and one marginal source distribution; py rs =
Pyi7.s Pris Ps- The first conditional py7 s describes the full class-posterior distribution
given both source and target distribution. Next, we introduce our main assumption: the
labels are conditionally independent of the target domain given the source domain (Y L
T 1 8), which implies: py;r s = py;s- In other words, we assume that we can construct an
optimal target classifier if (1) we have access to infinitely many labeled source samples—
we know pys ps—and (2) we know the true domain transfer distribution py|s. In this
scenario, observing target labels does not provide new information.

To illustrate our assumption, imagine a sentiment classification problem. If people fre-
guently use the word "nice” in positive reviews about electronics products (the source do-
main) and we know that electronics and kitchen products (the target domain) are very sim-
ilar, then we assume that the word "nice” is not predictive of negative reviews of kitchen
appliances. In other words, knowing that "nice” is predictive of a positive review and know-
ing that the domains are similar, it cannot be the case that "nice” is suddenly predictive
of a negative review. Under this assumption, learning a good model for the target do-
main amounts to transferring the source domain to the target domain (that is, altering the
marginal probability of observing the word "nice”) and learning a good predictive model
on the resulting transferred source domain.

Admittedly, there are scenarios in which our assumption is invalid: if people like "small”
electronics but dislike "small” cars, the assumption is violated and our domain-adaptation
approach will likely not work well. We do note, however, that our assumption is less strin-
gent than the covariate-shift assumption, which assumes that the posterior distribution
over classes is identical in the source and the target domain (i.e. that py;s = pyr). The
covariate-shift assumption does not facilitate the use of a transfer distribution pys.
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We start by rewriting the risk of the target domain Ry as follows:

Re(t) = [ D 6@, 3) pyr(v.2) iz
yeyY

:J Z J t(h(2),y) by7,s(y,2,x) dx dz
X yey X

=f Z f t(h(2),y) Pyir.s V1 2,X) Pris(2 | X) ps(x) dx dz.
X yey x

Using the assumption py,r s = py;s (or equivalently, Y L T | §) as introduced above, we

can rewrite this expression as: u

Rew) = [ D | @9 pys /19 pristz 1) ps(e) e dz

x
YeY

- jx Eqs[£(h), ) prys (2 | )] dz.

Next, we replace the target risk with its empirical estimate by plugging in source data Dg
for the source joint distribution py s:

. 1%
Rr(h1 D) = - | " 20030 pris( 1 x = x)
i=1

1 n
== Z Epis=s, [R2),3)]. (@)

Feature-level domain adaptation (FLDA) trains classifiers by constructing a parametric
model of the transfer distribution ps|s and, subsequently, minimizing the expected loss in
Equation 4.1 on the source data with respect to the parameters of the classifier. For lin-
ear classifiers, the expected loss in Equation 4.1 can be computed analytically for quadratic
and exponential losses if the transfer distribution factorizes over dimensions and is in the
natural exponential family; for the logistic and hinge losses, it can be upper-bounded or ap-
proximated efficiently under the same assumptions [25-27]. Note that no observed target
samples z; are involved Equation 4.1; the expectation is over the transfer model pys, con-
ditioned on a particular sample x;. The target data is only used to estimate the parameters

of the transfer model.

4.3.3. Transfer model

The transfer distribution pr,s describes the relation between the source and the target do-
main: given a particular source sample, it produces a distribution of which target samples
are likely to be observed (with the same label). The transfer distribution is modeled by se-
lecting a parametric distribution and learning the parameters of this distribution from the
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source and target data (without looking at the source labels). Prior knowledge on the rela-
tion between source and target domain may be incorporated in the model via the choice
for a particular family of distributions. For instance, if we know that the main variation
between two domains consists of particular words that are frequently used in one domain
(say, news articles) but infrequently in another domain (say, tweets), then we choose a
distribution that alters the relative frequency of words.

Given a model of the transfer distribution pss and a model of the source distribution
ps, we can work out the marginal distribution over the target domain as

qr(z1¢,m) = fx pris(z 1 x,{) ps(x I ) dx, (4.2)

where { represents the parameters of the transfer model, and n the parameters of the
source model. We learn these parameters separately: first, we learn n by maximizing the
likelihood of the source data under the model ps(x | 1) and, subsequently, we learn ¢
by maximizing the likelihood of the target data under the compound model qr(z | {, 7).
Hence, we first estimate the value of 1 by solving:

n
= argmaleogps(xz In).
n 4

=1

Subsequently, we estimate the value of { by solving:
m
{= arg?laxz logqr(z; 1¢,7). (4.3)
=1

For the moment, we focus on domain-adaptation problems involving binary and count
features. In such problems, we wish to encode changes in the marginal likelihood of observ-
ing non-zero values in the transfer model. To this end, we employ a dropout distribution
as transfer model that can model domain-shifts in which a feature occurs less often in the
target domain than in the source domain. Learning a FLDA model with a dropout transfer
model has the effect of strongly regularizing classifier parameters for features that occur
infrequently in the target domain.

Dropout transfer

To define our transfer model for binary or count features, we first set up a model that
describes the likelihood of observing non-zero features in the source data. This model
comprises a product of independent Bernoulli distributions:

D
ps(x; 1) = 1_[ (1 = 1g)*ia=0 y5ia*?, (4.4)
d=1

where d indicates the d-th feature. In this case, n,; corresponds to the probability of a
non-zero value for the d-th feature; x; # 0. For a Bernoulli distribution, the maximum
likelihood estimate of 1, is the sample average: j; = 1/n Z’;l[xid * 0].
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Next, we define a transfer model that describes how often a feature has a value of zero
in the target domain when it has a non-zero value in the source domain. We assume an
unbiased dropout distribution [26, 30] that sets an observed feature in the source domain
to zero in the target domain with probability {;:

(d ideZO
1-44 ifzg = xiqg /(1 —{a)

where Vd : 0 < {; < 1. The outcome of not dropping out is modeled as x;4/(1 — {z) in
order to ensure that the transfer model centers on the particular source sample:

pris(Za | x = xq,4a) = , (4.5)

xl-d
Ca

Eris[zal =0+ (1 = {a) 7=

= Xid -

We assume that features are independent, which means that the joint transfer distribution
consists of the product of univariate transfer distributions: pyrs(z | x;,{) = HZ pris(Zg |
Xi4,Cq)- Equation 4.5 defines a transfer distribution for a single source sample. We apply
this model to each source sample and share the parameters. That ensures that we can
average over all source samples x; to estimate .

To compute the maximum likelihood estimate of {, the dropout transfer model from
Equation 4.5 and the source model from Equation 4.4 are plugged into Equation 4.2 to
obtain (see Appendix A for details):

D
qr(z 1 ¢,n) = 1_[ fx Pris(Za | x4, Cq) ps(xq | na) dxq
d=1 d
b = VA
= 1_[ (1 -(1-3) Ud)Zd_O ((1 =) Ud) O- (4.6)
d=1

Plugging this expression into Equation 4.3 and maximizing with respect to {, we obtain:
m

1/m Z,‘=1[Zjd # 0]

1/n¥i [xiq #0]

We note that our particular choice for the transfer model cannot represent rate changes,

such as whether a word is used on average 10 times in a document versus on average only
3 times. The dropout distribution only captures whether a feature is present or not.

{; =max{0,1 —

Because our dropout transfer model factorizes over features and is in the natural expo-
nential family, the expectation in Equation 4.1 can be analytically computed. In particular,
for a transfer distribution conditioned on source sample x;, its mean and variance are:

IETIxi [Z] =X

VTlxi [Z] =X dlag(l i {) x;r .
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V7 x,; [2] is a diagonal matrix because we assumed that features are independently trans-
ferred, i.e., the joint transfer model consists of the product of D univariate transfer distri-
butions.

4.3.4. Classification

In order to perform classification with the risk formulation in Equation 4.1, we first need
to select a loss function €. Popular choices for the loss function include the quadratic loss
(used in least-squares classification), the exponential loss (used in boosting), the hinge loss
(used in support vector machines) and the logistic loss (used in logistic regression). Equa-
tion 4.1 has been studied before in the context of dropout training for the quadratic, expo-
nential, and logistic loss by [25, 26], and for hinge loss by [27]. For the moment, we use
only the quadratic and logistic loss functions, but we note that FLDA can also be used in
combination with exponential and hinge losses.

Secondly, we have to select an hypothesis class of classifier functions. We focus on linear
classifiers in this paper, but nonlinear extensions using basis functions are possible as well.
Linear classifiers project a sample onto a parameter vector, 8 = (6, ..., 0p, 6;), and make
decisions based on which side of its decision boundary it ends up. The classifier function
is: h(z) = 23:1 2464 + 6,. However, with some abuse of notation, it will be written as
h(z) = z0, with the implicit requirement that z is augmented to [z 1].

Quadratic loss

The quadratic loss function punishes the squared deviation between the classifier’s pre-
diction and the true label: £(h(z),y) = (h(z) — y)?. Using this loss, the expectation in
Equation 4.1 can be expressed as:

1 n
Ry (h | Dy) ZZZ Eqx, [ — 2;0)?]
=

1% 2 T
= Z V? = 2 y;Eqx,[210 + 6 (Egyy, [2] gy, [2] + Vi, [2]) 6,

i=1

Minimizing the risk with respect to the classifier’'s parameters yields the optimal ones. For
the quadratic loss, the result is called the least-squares classifier. Taking the gradient and
setting it to zero yields the following closed-form solution:

i =( Z IE:Tlxi [Z]TET|xi [Z] + VTlxi [Z])_l( Z IETIXi [z]_’yl-) . (4.7)
i=1 i=1

For multi-class problems (Y = {1, ..., K}), multiple predictors can be built in an one-vs-all
fashion or in an one-vs-one fashion.

The solution in Equation 4.7 is very similar to the solution of a standard ridge regres-
sion model. The main difference is that, in a standard ridge regressor, the regularization
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is independent of the data. By contrast, the regularization of FLDA is determined by the
variance of the transfer model: hence, it is different for each dimension and it depends on
the transfer from source to target domain. Algorithm 1 summarizes the training of a binary
quadratic-loss FLDA classifier with dropout transfer.

Algorithm 1 FLDA-q
for d=1to D do

(o =max{ 0,1~ (1/m ¥} [zjq # O] / (1/n 3} [xiq # OD)}
end for
b= (S"aTx; + 2T diag(C/(1— O)x;) (X7 xiy)

A

return zJ-H forj=1,..,m

Logistic loss

The logistic loss function punishes incorrect predictions heavily but drops off as the pre-
diction improves; £(h(z),y) = —log[exp(yh(z))/(zyrey exp(y'h(z)))]. The logistic
version of FLDA can be expressed as:

n
. 1 ’
RT(h | DS) = 1_1 Z IETIxi[_ inB + log Z eXp(y Z@)]
i=1 5
1 n
= Z —YiEgix,[2]60 + Egyy, [ log Z exp(y'z0)]. (4.8)
=1 y'eyY

The expectation is a linear operation and can therefore be applied to both terms of the
sum separately. As the expectation does not depend on the classifier parameters, they can
be pulled out: Eyy, [20] = Egy,[2]6.

Equation 4.8 is a convex function in 8 because the original logistic loss function is con-
vex and the expectation operation is convexity-preserving. Hence, the risk function has
a global optimum. However, the expectation cannot be computed analytically. Following
[26], we approximate the expectation of the log-partition function using a Taylor expansion.
To avoid notational overload, we first introduce A(:) = logZyrey exp(y'-) as shorthand

notation for the log-partition function. Now, Ery, [A(ZB)] is approximated around the
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point x;0:

Erix, [A(20)] = Eryy, [A(x:0)] +

9A(x;6
- [%(29 —x0)] +
1024(x;6)
IETIxi [Ew(zg — xie)z]
= A(xle) +
9A(x;0)
WUETIM [26] - xiG) +
! aZA(xie)]E 0 — x;0)? 4.9
2 90" 71x; [(20 — x;0)7] (4.9)
= A(xLH) +
dA(x;0)
W(Eﬂxi [z] — x;)0 +
1024(x,6)
EWHT[ETIxi [(Z - xi)Z]H (4.10)
= log ) exp(y'x0) + 1/2(1 = f/a?)6 Vry,[210,
y'ey

where a; = ¥y exp(y'x;0) and f; = Xyey ¥’ €xp(y'x;0). As thereis no z in A(x;0),
the expectation disappears in the first term on the right-hand side of Equation 4.9. For that
same reason, the derivatives dA(x;0)/0x;6 and 9?A(x;0)/3(x;0)? can be pulled out of
the expectation. In Equation 4.10, 8 is pulled out of the quadratic term: (z6 — xé’)2 =
((z = x)0)* = 07(z — x)*0. As Ery,[z] = x;, Erpx,[(z — x;)?] corresponds to the
variance of the transfer model V., [z]. Furthermore, note that the whole first-order term
of the approximation disappears if an unbiased transfer model is used, Er, [2z] = x;,
which makes (Egy, [2] — x;) equal to 0.

Unfortunately, there is no closed-form solution to the minimization of the risk approxi-
mation with respect to the classifiers parameters. In order to find them, we perform gra-
dient descent. The derivation of the gradient can be found in Appendix B. Algorithm 2
presents pseudocode for FLDA with the logistic loss and a dropout transfer distribution.

4.4. Experiments

In our experiments, we first study the empirical behavior of FLDA on artificial data for which
we know the true transfer distribution. Following that, we measure the performance of
our method in a "missing data at test time” scenario, as well as on two image data sets and
three text data sets with varying amounts of domain transfer.
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Algorithm 2 FLDA-I
for d=1to D do

Ca=max{0,1-(1/m¥]'[zja # O / (1/n T} [xia # O

end for

6 = argmingeg 1/n Z? [ - yixi0 + log¥, ey exp(y'x;0) +

’ X0 2 .
1/2(1-[2)ey %] ) HT(xidlag(li_g_)x;r)H]

return zj0 forj=1,..,m

4.4.1. Artificial data

We first investigate the behavior of FLDA on a problem in which the model assumptions are
satisfied. We create such a problem setting by first sampling a source domain data set from
known class-conditional distributions. Subsequently, we construct a target domain data
set by sampling additional source data and transforming it using a pre-defined (dropout)
transfer model.

Adaptation under correct model assumptions

We perform experiments in which the domain-adapted classifier estimates the transfer
model and trains on the source data; we evaluate the quality of the resulting classifier by
comparing it to an oracle classifier that was trained on the target data (that is, the classifier
one would train if labels for the target data were available at training time).

In the first experiment, we generate binary features by drawing 100, 000 samples from
two bivariate Bernoulli distributions. The marginal distributions are [0.7, 0.7] for class
one and [0.3 0.3] for class two. The source data is transformed to the target data using a
dropout transfer model with parameters { = [0.5, 0]. This means that 50% of the values
for feature 1are set to O and the other values are scaled by 1/(1 —0.5). For reference, two
naive least-squares classifiers are trained, one on the labeled source data (s-Is) and one
on the labeled target data (t-Is), and compared to FLDA-q. s-Is achieves a misclassification
error of 0.40 while t-Is and FLDA-qg achieve an error of 0.30. This experiment is repeated
for the same classifiers but with logistic losses: a source logistic classifier (S-LR), a target
logistic classifier (T-LR) and FLDA-I. In this experiment, S-LR again achieves an error of 0.40
and T-LR and FLDA-I an error of 0.30. Figure 4.1 shows the decision boundaries for the
quadratic loss classifiers on the left and the logistic loss classifiers on the right. The figure
shows that for both loss functions, FLDA has completely adapted to be equivalent to the
target classifier in this artificial problem.




98 4. Modeling feature-level transfer

Quadratic loss

Logistic loss
--flda-q +-fida-l
‘ tls ’ tir
[—sls —slr
N [
9 ()
2 S
© .. © S
£ .u.._....' . L?_) %........"
-...... ", e,
e, e,
'~....... Tee,
& “tyans & B
2 3 2 3
Feature 1 Feature 1

Figure 4.1: Scatter plots of the target domain. The data was generated by sampling from bivariate Bernoulli class-
conditional distributions and transformed using a dropout transfer. Red and blue dots show different classes. The
lines are the decision boundaries found by the source classifier (s-Is/S-LR), the target classifier (t-Is/T-LR) and the
adapted classifier (left FLDA-q, right FLDA-I). Note that the decision boundary of FLDA lies on top of the decision
boundary of t-Is/T-LR.

In the second experiment, we generate count features by sampling from bivariate Pois-
son distributions. Herein, we used rate parameters [2, 2] for the first class and [6, 6] for
the second class. Again, we construct the target domain data by generating new samples
and dropping out the values of feature 1 with a probability of 0.5. In this experiment s-Is
achieves an error of 0.181 and t-Is / FLDA-q achieve an error of 0.099, while S-LR achieves
an error of 0.170 and T-LR / FLDA-| achieve an error of 0.084. Figure 4.2 shows the decision
boundaries of each of these classifiers and that FLDA has fully adapted to the domain shift.
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Figure 4.2: Scatter plots of the target domain with decision boundaries of classifiers. The data was generated
by sampling from bivariate Poisson class-conditional distributions and the decision boundaries were constructed
using the source classifier (s-Is/S-LR), the target classifier (t-Is/T-LR), and the adapted classifiers (left FLDA-q, right
FLDA-I). Note that the decision boundary of FLDA lies on top of the decision boundary of t-Is / T-LR.

Learning curves

One question that arises from the previous experiments is how many samples FLDA needs
to estimate the transfer parameters and adapt to be (nearly) identical to the target classi-
fier. To answer it, we performed an experiment in which we computed the classification
error rate as a function of the number of training samples. The source training and vali-
dation data was generated from the same bivariate Poisson distributions as in Figure 4.2.
The target data was constructed by generating additional source data and dropping out the
first feature with a probability of 0.5. Each of the four data sets contained 10, 000 samples.
First, we trained a naive least-squares classifier on the source data (s-Is) and tested its per-
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formance on both the source validation and the target sets as a function of the number of
source training samples. Second, we trained a naive least-squares classifier on the labeled
target data (t-Is) and tested it on the source validation and another target validation set as
a function of the number target training samples. Third, we trained an adapted classifier
(FLDA-q) on equal amounts of labeled source training data and unlabeled target training
data and tested it on both the source validation and target validation sets. The experiment
was repeated 50 times for every sample size to calculate the standard error of the mean.

The learning curves are plotted in Figure 4.3, which shows the classification error on the
source validation set (top) and the classification error on the target validation (bottom).
As expected, the source classifier (s-Is) outperforms the target (t-Is) and adapted (FLDA-q)
classifiers on the source domain (dotted lines), while FLDA-q and t-Is outperform s-Is on
the target domain (solid lines). In this problem, it appears that roughly 20 labeled source
samples and 20 unlabeled target samples are sufficient for FLDA to adapt to the domain
shift. Interestingly, FLDA-q is outperforming s-Is and t-Is for small sample sizes. This is
most likely due to the fact that the application of the transfer model is acting as a kind of
regularization. In particular, when the learning curves are computed with L?-regularized
classifiers, then the difference in performance disappears.
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Figure 4.3: Learning curves of the source classifier (s-Is), the target classifier (t-Is), and adapted classifier (FLDA-q).
The top figure shows the error on a validation set generated from two bivariate Poisson distributions. The bottom
figure shows the error on a validation set generated from two bivariate Poisson distributions with the first feature
dropped out with a probability of 0.5.

Robustness to transfer model parameter estimation errors

Another question that arises is how sensitive the approach is to estimation errors in the
transfer parameters. To answer this question, we performed an experiment in which we
artificially introduce an error in the transfer parameters by perturbing them. As before,
we generate 100, 000 samples for both domains by sampling from bivariate Poisson dis-
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tributions with rates [2, 2] for class 1 and [6, 6] for class 2. Again, the target domain is
constructed by dropping out feature 1 with a probability of 0.5. We trained a naive clas-
sifier on the source data (s-Is), a naive classifier on the target data (t-Is), and an adapted
classifier FLDA-g with four different sets of parameters: the maximum likelihood estimate
of the first transfer parameter fl with an addition of 0, 0.1, 0.2, and 0.3. Table 4.1 shows
the resulting classification errors, which reveal a relatively small effect of perturbing the es-
timated transfer parameters: the errors only increase by a few percent in this experiment.

Table 4.1: Classification errors for a naive source classifier, a naive target classifier, and the adapted classifier with
avalue of 0, 0.1, 0.2, and 0.3 added to the estimate of the first transfer parameter ;.

| sl tt &+0 {401 & +02 ¢ +03

Quadratic | 0.245 0.137 0.138 0.145 0.149 0.150
Logistic 0.264 0.139 0.139 0.140 0.142 0.146

To further illustrate the effect of the transfer parameters, Figure 4.4 shows the decision
boundaries for the perturbed adapted classifiers. The figures show that the linear bound-
aries start to angle upwards when the error in the transfer parameter estimate increases.
Overall, one could describe the effect of a dropout transfer model as steering the direction
of the linear classifier. This experiment shows the importance of an accurate estimation
of the transfer parameters to obtain high-quality adaptation. Nonetheless, our results do
suggest that FLDA is robust to relatively small perturbations.

Quadratic loss Logistic loss
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Figure 4.4: Scatter plots of the target data and decision boundaries of two naive and four adapted classifiers with
transfer parameter estimate errors of O, 0.1, 0.2, and 0.3. Results are show for both the quadratic loss classifier
(FLDA-q; left) and the logistic loss classifier (FLDA-I; right).

4.4.2. Natural data

In a second set of experiments, we evaluate FLDA on a series of real-world data sets and
compare it with several state-of-the-art methods. The evaluations are performed in the
transductive learning setting: we measure the performance of the classifier on the already
given, but unlabeled target samples.

As baselines, we consider eight alternative methods for domain adaptation. All of these
employ a two-stage procedure. In the first step, importance weights, domain-invariant fea-
tures, or a transformation of the feature space is estimated. In the second step, a classifier
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is trained using the results of the first stage. In all experiments, we estimate the hyper-
parameters, such as L?-regularization parameters, via cross-validation on held-out source
data. It should be noted that these values are optimal for generalizing to new source data
but not necessarily for generalizing to the target domain [31]. Each of the eight baseline
methods is described briefly below.

Naive support vector machine (S-SVM)

Our first baseline method is a support vector machine trained on only the source samples
and applied on the target samples. We made use of the libsvm package by [32] with a ra-
dial basis function kernel and we performed cross-validation to estimate the kernel band-
width and the L?-regularization parameter. All multi-class classification is done through
an one-vs-one scheme. This method can be readily compared to subspace alignment (SA)
and transfer component analysis (TCA) to evaluate the effects of the respective adaptation
approaches.

Naive logistic regression (S-LR)

Our second baseline method is an L?-regularized logistic regressor trained on only the
source samples. Its main difference with the support vector machine is that it uses a linear
model, a logistic loss instead of a hinge loss, and that it has a natural extension to multi-
class as opposed to one-vs-one. The value of the regularization parameter was set via
cross-validation. This method can be readily compared to kernel mean matching (KMM),
structural correspondence learning (SCL), as well as to the logistic loss version of feature-
level domain adaptation (FLDA-I).

Kernel mean matching (KMM)

Kernel mean matching [8, 10] finds importance weights by minimizing the maximum mean
discrepancy (MMD) between the reweighed source samples and the target samples. To
evaluate the empirical MMD, we used the radial basis function kernel. The weights are
then incorporated in an importance-weighted L?-regularized logistic regressor.

Structural correspondence learning (SCL)

In order to build the domain-invariant subspace [14], the 20 features with the largest pro-
portion of non-zero values in both domains are selected as the pivot features. Their values
were dichotomized (1if x # 0, 0 if x = 0) and predicted using a modified Huber loss [33].
The resulting classifier weight matrix was subjected to an eigenvalue decomposition and
the eigenvectors with the 15 largest eigenvalues are retained. The source and target sam-
ples are both projected onto this basis and the resulting subspaces are added as features
to the original source and target feature spaces, respectively. Consequently, classification
is done by training an L2-regularized logistic regressor on the augmented source samples
and testing on the augmented target samples.

Transfer component analysis (TCA)

For transfer component analysis, the closed-form solution to the parametric kernel map
described in [16] is computed using a radial basis function kernel. Its hyperparameters
(kernel bandwidth, number of retained components and trade-off parameter u) are esti-
mated through cross-validation. After mapping the data onto the transfer components, we
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trained a support vector machine with a radial basis function kernel, cross-validating over
its kernel bandwidth and the regularization parameter.

Geodesic flow kernel (GFK)

The geodesic flow kernel is extracted based on the difference in angles between the prin-
cipal components of the source and target samples [18]. The basis functions of this kernel
implicitly map the data onto all possible subspaces on the geodesic path between domains.
Classification is performed using a kernel 1-nearest neighbor classifier. We used the sub-
space disagreement measure (SDM) to select an optimal value for the subspace dimen-
sionality.

Subspace alignment (SA)

For subspace alignment [21], all samples are normalized by their sum and all features are
z-scored before extracting principal components. Subsequently, the Frobenius norm be-
tween the transformed source components and target components is minimized with re-
spect to an affine transformation matrix. After projecting the source samples onto the
transformed source components, a support vector machine with a radial basis function
kernel is trained with cross-validated hyperparameters and tested on the target samples
mapped onto the target components.

Target logistic regression (T-LR)
Finally, we trained a L?-regularized logistic regressor using the normally unknown target
labels as the oracle solution. This classifier is included to obtain an upper bound on the
performance of our classifiers.

Missing data at test time

In this set of experiments, we study "missing data at test time” problems in which we argue
that dropout transfer occurs naturally. Suppose that for the purposes of building a classi-
fier, a data set is neatly collected with all features measured for all samples. At test time,
however, some features could not be measured, due to for instance sensor failure, and the
missing values are replaced by 0. This setting can be interpreted as two distributions over
the same space with their transfer characterized by a relative increase in the number of
0 values, which our FLDA with dropout transfer is perfectly suited for. We have collected
six data sets from the UCI machine learning repository [34] with missing data: Hepatitis
(hepat.), Ozone (ozone; [35]), Heart Disease (heart; [36]), Mammographic masses (mam.;
[37]), Automobile (auto), and Arrhythmia (arrhy.; [38]). Table 4.2 shows summary statis-
tics for these sets. In the experiments, we construct the training set (source domain) by
selecting all samples with no missing data, with the remainder as the test set (target do-
main). We note that instead of doing 0-imputation, we also could have used methods such
as mean-imputation [39, 40]. It is worth noting that the FLDA framework can adapt to such
a setting by simply defining a different transfer model (one that replaces a feature value
by its mean instead of a 0).

Table 4.3 reports the classification error rate of all domain-adaptation methods on the
before-mentioned data sets. The lowest error rates for a particular data set are bold-faced.
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Table 4.2: Summary statistics of the UCI repository data sets with missing data.

hepat. ozone heart mam. auto. arrhy.

Features 19 72 13 4 24 279
Samples 155 2534 704 961 205 452
Classes 2 2 2 2 6 13
Missing 75 685 615 130 72 384

Table 4.3: Classification error rates on 6 UCI data sets with missing data. The data sets were partitioned into
a training set (source domain), containing all samples with no missing features, and a test set (target domain),
containing all samples with missing features.

S-SVM S-LIR KMM SCL SA GFK TCA FLDA-q FLDA-l| T-LR

hepat.| .213 .493 .347 .480 .253 .227 .213 .227 .200 | .150
ozone | .060 .124 126 136 .047 .093 140 .047 .079 |.069
heart | .409 .338 .390 .319 .596 .362 .391 .203 .203 | .177
mam. | .331 .462 .446 .462 .323 .423 .323 462 431 | 194
auto. | .848 .935 .913 .935 .587 .565 .848 .848 .848 | .371
arrhy. | .930 .854 .620 .818 .414 .651 .930 .456 .889 |.353

From the results presented in the table, we observe that whilst there appears to be little
difference between the domains in the Hepatitis and Ozone data sets, there is substantial
domain shift in the other data sets: the naive classifiers even perform at chance level on
the Arrhythmia and Automobile data sets. On almost all data sets, both FLDA-q and FLDA-I
improve substantially over the S-LR, which suggests that they are successfully adapting to
the missing data at test time. By contrast, most of the other domain-adaptation techniques
do not consistently improve although, admittedly, sample transformation methods appear
to work reasonable well on the Ozone, Mammography, and Arrhythmia data sets.

Handwritten digits

Handwritten digit data sets have been popular in machine learning due to the large sample
size and the interpretability of the images. Generally, the data is acquired by assigning an
integer value between 0 and 255 proportional to the amount of pressure that is applied
at a particular spatial location on an electronic writing pad. Therefore, the probability of
a non-zero value of a pixel informs us how often a pixel is part of a particular digit. For
instance, the middle pixel in the digit 8 is a very important part of the digit because it
nearly always corresponds to a high-pressure location, but the upper-left corner pixel is
not used that often and is less important. Domain shift may be present between digit data
sets due to differences in recording conditions. As a result, we may observe pixels that
are discriminative in one data set (the source domain) that are hardly ever observed in
another data set (the target domain). These pixels cannot be used to classify digits in the
target domain, and we would like to inform the classifier that it should not assign a large
weight to such pixels.
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We created a domain adaptation setting by considering two handwritten digit sets, namely
MNIST [41] and USPS [42]. In order to create a common feature space, images from both
data sets are resized to 16 by 16 pixels. To reduce the discrepancy between the size of
MNIST data set (which contains 70,000 examples) and the USPS data set (which contains
9,298 examples), we only use 14,000 samples from the MNIST data set. The classes are
balanced in both data sets.

- Ol

Figure 4.5: Visualization of the probability of non-zero values for each pixel on the MNIST data set (left) and the
USPS data set (right).

-17 0 -4
Figure 4.6: Classifier parameter values assigned by the naive source classifier to the 0-digit predictor (left), the

transfer model parameters of the dropout transfer model (middle), and the classifier parameter values assigned
by the adapted classifier to the 0-digit predictor for training on USPS images and testing on MNIST (right; U —» M).

Figure 4.5 shows a visualization of the probability that each pixel is non-zero for both
data sets. The visualization shows that while the digits in the MNIST data set occupy mostly
the center region, the USPS digits tend to occupy a substantially larger part of the im-
age, specifically a center column. Figure 4.6 (left) visualizes the classifier parameter val-
ues of the naive linear classifier (S-LR), (middle) the dropout probabilities {, and (right) the
adapted classifier’s parameter values (FLDA-I). The middle image shows that dropout prob-
abilities are large in regions where USPS pixels are frequent (the white pixels in Figure 4.5
right) but MNIST pixels are infrequent (the black pixels in Figure 4.5, left). The parameter
values of the naive classifier appear to be shaped in a somewhat noisy circular pattern in
the periphery, with the center containing negative values (if these center pixels have a low
intensity in a new sample, then the image is more likely to be a 0 digit). By contrast, the
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parameter values of the FLDA classifier are smoothed in the periphery, which indicates that
the classifier is placing more value on the center pixels and is ignoring the peripheral ones.

Table 4.4 shows the classification error rates where the rows correspond to the com-
binations of treating one data set as the source domain and the other as the target. The
results show that there is a large difference between the domain-specific classifiers (S-LR
and T-LR), which indicates that the domains are highly dissimilar. We note that the error
rates of the target classifier on the MNIST data set are higher than usual for this data set
(T-LR has an error rate of 0.234), which is because of the down-sampling of the images to
16 X 16 pixels and the smaller sample size. The results presented in the table highlight an
interesting property of FLDA with dropout transfer: while FLDA performs well in settings
in which the domain transfer can be appropriately modeled by the transfer distribution
(U—M setting where pixels that appear in the USPS do not appear in MNIST), it does not
perform well the other way around. The dropout transfer model does not capture pix-
els appearing more often instead of less often in the target domain. To work well in that
setting, it is presumably necessary to use a richer transfer model.

Table 4.4: Classification error rates obtained on both combinations of treating one domain as the source and the
other as the target. M="MNIST’ and U="USPS".

S-SVM S-IR KMM SCL  SA  GFK TCA FLDA-q FLDA-l|T-LR

M-U| .522 747 .748 747 .890 .497 808 .81 .678 |.055
U-M| .766 .770 769 .808 .757 .660 .857 .640 .684 |.234

Office-Caltech

The Office-Caltech data set [43] consists of images of objects gathered using four differ-
ent methods: one from images found through a web image search (referred to as 'C’),
one from images of products on Amazon (A), one taken with a digital SLR camera (D) and
one taken with a webcam (W). Overall, the set contains 10 classes, with 1123 samples from
Caltech, 958 samples from Amazon, 157 samples from the DSLR camera, and 295 samples
from the webcam. Our first experiment with the Office-Caltech data set is based on fea-
tures extracted through SURF features [44]. These descriptors determine a set of interest
points by finding local maxima in the determinant of the image Hessian. Weighted sums
of Haar features are computed in multiple sub-windows at various scales around each of
the interest points. The resulting descriptors are vector-quantized to produce a bag-of-
visual-words histogram of the image that is both scale and rotation-invariant. We perform
domain-adaptation experiments by training on one domain and testing on another.

Table 4.5 shows the results of the classification experiments, where compared to com-
peting methods, SA is performing well for a number of domain pairs, which may indicate
that the SURF descriptor representation leads to domain dissimilarities that can be accu-
rately captured by subspace transformations. This result is further supported by the fact
that the transformations found by GFK and TCA are also outperforming S-SVM. FLDA-q and
FLDA-| are among the best performers on certain domain pairs. In general, FLDA does ap-
pear to perform at least as good or better than a naive S-LR classifier.The results on the
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Table 4.5: Classification error rates obtained by ten (domain-adapted) classifiers for all pairwise combinations of
domains on the Office-Caltech data set with SURF features (A="Amazon’, D="DSLR’, W="Webcam’, and C="Caltech’).

S-SVM S-IR KMM SCL  SA  GFK TCA FLDA-q FLDA-I|T-LR

A-D | .599 .618 .616 .621 .627 .624 .624 .599  .624 |.303
A->W | 688 .675 .668 .686 .606 .631 .712 .648  .678 | .181
A-C | 557 .553 .563 .555 .594 .614 .579 .565 .550 |.427
D-»W| .312 312 .346 .317 167 153 .295 .322  .312 | .181
D—C | .744 712 734 .712 .655 .706 .680 .712 710 | .427
W-C| .721 .698 .709 .705 .677 .697 .688 .675 .701 |.427
D—>A | 876 719 727 .724 .616 .680 .650 .700 .722 |.258
W-A| 676 .695 .706 .707 .631 .665 .668 .671 .691 |.258
C—>A | 493 .523 .515 .496 .538 .592 .504 .490 .475 |.258
W-D| 198 191 178 198 214 121 166 .19 185 |.303
C-D | .612 .616 .631 .583 .575 .599 .612 .510 .599 |.303
C-oW | 712 725 729 .724 .600 .603 .695 .654 .702 | .181

Office-Caltech data set depend on the type of information the SURF descriptors are ex-
tracting from the images. We also studied the performance of domain-adaptation meth-
ods on a richer visual representation, produced by a pre-trained convolutional neural net-
work. Specifically, we used a data set provided by [45], who extracted 1000-dimensional
feature-layer activations (so-called DeCAFg features) in the upper layers of the a convolu-
tional network that was pre-trained on the Imagenet data set. Donahue et al. [45] used a
larger superset of the Office-Caltech data set that contains 31 classes with 2817 images from
Amazon, 498 from the DSLR camera, and 795 from the webcam. The results of our experi-
ments with the DeCAFg features are presented in Table 4.6. The results show substantially
lower error rates overall, but they also show that domain transfer in the the DeCAFg fea-
ture representation is not amenable to effective modeling by subspace transformations.
KMM and SCL obtain performances that are similar to the of the naive S-LR classifier but in
one experiment, the naive classifier is actually the best-performing model. Whilst achiev-
ing the best performance on 2 out of 6 domain pairs, the FLDA-q and FLDA-I models are
not as effective as on other data sets, presumably, because dropout is not a good model
for the transfer in a continuous feature space such as the DeCAFg feature space.

Table 4.6: Classification error rates obtained by ten (domain-adapted) classifiers for all pairwise combinations of
domains on the Office data set with DeCAFg features (A=’Amazon’, D="DSLR’, and W="Webcam’).

S-SVM S-LIR KMM SCL  SA GFK TCA FLDA-q FLDA-l| T-LR

A-D | .406 .388 .402 .422 460 .424 .351 .428 .388 |.104
A-W | 434 468 455 .474 499 477 426 491 468 |.064
D—>W/| .086 .079 .083 .074 .103 .073 .087 .088 .079 |.064
D—A | 516 .496 .502 .497 .520 .569 .489 .589  .487 | .216
W-A| 520 .496 .514 .506 .541 .584 .510 .645 .501 | .216
W-D| .034 .030 .032 .034 .062 .052 .042 .024 .044 |.104
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IMDb

The Internet Movie Database (IMDb) [46] contains written reviews of movies labeled with
a 1-10 star rating, which we dichotomize by setting values > 5 as +1 and values < 5 as
—1. Using this dichotomy, both classes are roughly balanced. From the original bag-of-
words representation, we selected only the features with more than 100 non-zero values
in the entire data set, resulting in 4180 features. To obtain the domains, we split the data
set by genre and obtained 3402 reviews of action movies, 1249 reviews of family movies,
and 3697 reviews of war movies. We assume that people tend to use different words to
review different genres of movies, and we are interested in predicting viewer sentiment
after adapting to changes in the word frequencies. To visualize whether this assumption is
valid, we plot the proportion of non-zero values of 10 randomly chosen words per domain
inFigure 4.7. The figure suggests that action movie and war movie reviews are quite similar,
but the word use in family movie reviews does appear to be different.

Table 4.7 reports the results of the classification experiments on the IMDb database.
The first thing to note is that the performances of S-LR and T-LR are quite similar, which
suggests that the frequencies of discriminative words do not vary too much between gen-
res. The results also show that GFK and TCA are not as effective on this data set as they
were on the handwritten digits and Office-Caltech data sets, which suggests that finding a
joint subspace that is still discriminative is hard, presumably, because only a small number
of the 4180 words actually carry discriminative information. FLDA-q and FLDA-| are bet-
ter suited for such a scenario, which is reflected by their competitive performance on all
domain pairs.
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Figure 4.7: Proportion of non-zero values for a subset of words per domain on the IMDDb data set.

Spam

Domain adaptation settings also arise in spam detection systems. For this experiment, we
concatenated two data sets from the UCI machine learning repository: one containing 4205
emails from the Enron spam database [47] and one containing 5338 text messages from
the SMS-spam data set [48]. Both were represented using bag-of-words vectors over 4272
words that occurred in both data sets. Figure 4.8 shows the proportions of non-zero values
for some example words, and shows that there exist large differences in word frequencies
between the two domains. In particular, much of the domain differences are due to text
messages using shortened words, whereas email messages tend to be more formal.
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Table 4.7: Classification error rates obtained by ten (domain-adapted) classifiers for all pairwise combinations of
domains on the IMDb data set. (A="Action’, F="Family’, and W="War’).

T-LR

S-SVM S-IR KMM SCL  SA GFK TCA FLDA-q FLDA-I

A-F | 145 136 133 133 .184 .276 .230 135 136 | .196
A-W| 158 155 155 165 .163 .249 266 158 154 | 163
F->W | .256 .206 .208 .206 .182 .289 .355 .205 .202 |.163
F—>A | 201 195 .93 .198 .193 .296 .363 .194 194 1169
W-A| 168 160 .159 159 167 .238 .222 155 157 | 169
W-F | .340 .67 .163 .63 .232 .292 .203 172 A59 | 196
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Figure 4.8: Proportion of non-zero values for a subset of words per domain on the spam data set.

Table 4.8 shows results from our classification experiments on the spam data set. As
can be seen from the results of T-LR, fairly good accuracies can be obtained on the spam
detection task. However, the domains are so different that the naive classifiers 5S-SVM and
S-LR are performing according to chance or worse. Most of the domain-adaptation mod-
els do not appear to improve much over the naive models. For KMM this makes sense,
as the importance weight estimator will assign equal values to each sample when the em-
pirical supports of the two domains are disjoint. There might be some features that are
shared between domains, i.e., words that are spam in both emails and text messages, but
considering the performance of SCL these might not be corresponding well with the other
features. FLDA-q and FLDA-I| are showing slight improvements over the naive classifiers, but
the transfer model we used is too poor as the domains contain a large amount of increased
word frequencies.

Table 4.8: Classification error rates obtained by ten (domain-adapted) classifiers for both domain pairs on the
spam data set. (5='SMS’ and M="E-Mail’).

T-LR

S-SVM S-IR KMM SCL  SA GFK TCA FLDA-q FLDA-I

S—>M| .460 .522 .521 .524 .445 .491 .508 .5M .521 |.073
M-S | .830 .804 .799 .804 .408 .696 .863 .636 .727 | 133

Amazon
We performed a similar experiment on the Amazon sentiment analysis data set of product
reviews [49]. The data consists of a 30, 000 dimensional bag-of-words representations of
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27,677 reviews with the labels derived from the dichotomized 5-star rating (ratings > 3 are
+1andratings < 3 as-1). Each review describes a product from one of four categories: books
(6465 reviews), DVDs (5586 reviews), electronics (7681 reviews) and kitchen appliances
(7945 reviews). Figure 4.9 shows the probability of a non-zero value for some example
words in each category. Some words, such as 'portrayed’ or 'barbaric’, are very specific to
one or two domains, but the frequencies of many other words do not vary much between
domains. We performed experiments on the Amazon data set using the same experimental
setup as before.
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Figure 4.9: Proportion of non-zero values for a subset of words per domain on the Amazon data set.

In Table 4.9, we report the classification error rates on all pairwise combinations of do-
mains. The difference in classification errors between S-LR and T-LR is up to 10%, which sug-
gests there is potential for success with domain adaptation. However, the domain transfer
is not captured well by SA, GFK, TCA: on average, these methods are performing worse than
the naive classifiers. We presume this happens because only a small number of words are
actually discriminative, and these words carry little weight in the sample transformation
measures used. Furthermore, there are significantly less samples than features in each
domain which means models with large amounts of parameters are likely to experience
estimation errors. By contrast, FLDA-| performs strongly on the Amazon data set, achiev-
ing the best performance on many of the domain pairs. FLDA-q performs substantially
worse than FLDA-I, presumably, because of the singular covariance matrix and the fact
that least-squares classifiers are very sensitive to outliers.

4.5. Discussion and conclusions

We have presented an approach to domain adaptation, called FLDA, that fits a probabilistic
model to capture the transfer between the source and the target data and, subsequently,
trains a classifier by minimizing the expected loss on the source data under this transfer
model. Whilst the FLDA approach is very general, in this chapter, we have focused on one
particular transfer model, namely, a dropout model. Our extensive experimental evalua-
tion with this transfer model shows that FLDA performs on par with the current state-of-
the-art methods for domain adaptation.

An interesting interpretation of our formulation is that the expected loss under the
transfer model performs a kind of data-dependent regularization [26]. For instance, if a
quadratic loss function is employed in combination with a Gaussian transfer model, FLDA
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Table 4.9: Classification error rates obtained by ten (domain-adapted) classifiers for all pairwise combinations of
domains on the Amazon data set. (B="Books’, D="DVD’, E="Electronics’, and K="Kitchen’).

S-SVM S-IR KMM SCL  SA GFK TCA FLDA-q FLDA-l|T-LR

B—D| 180 .168 .66 .167 .414 .392 .413 .303 .66 | .153
B—E | .217 .221 .222 220 .372 .429 .369 .343 .210 | .16
B—K| 188 .188 .89 .84 .371 .443 .338 .384 185 |.095
D—E| .201 .202 .205 .207 .403 .480 .385 .369 .196 | .116
D—K| 182 .182 .85 .90 .330 .494 .360 .379 185 |.095
E-K| 108 .10 106 M2 .311 416 .261 .308 .104 |.095
D—-B| .192 190 .91 .202 .351 .388 .420 .368 .186 | .145
E-B | .257 .262 .253 .260 .372 .445 .481 .406  .261 | 145
K-B| .261 .277 .268 .273 .414 .418 .426 399 271 | 145
E-D| .245 .240 .238 .242 .398 .441 427 .384 .238 | .153
K-D| .230 .230 .230 .231 .383 .410 .400 .370 .228 | .153
K—E| 123 131 126 126 .290 .353 .296 .292 119 | 16

reduces to a transfer-dependent variant of ridge regression [50]. This transfer-dependent
regularizer increases the amount of regularization on features when it is undesired for the
classifier to assign a large weight to that feature. In other words, the regularizer forces
the classifier to ignore features that are frequently present in the source domain but very
infrequently present in the target domain.

In some of our experiments, the adaptation strategies are producing classifiers that per-
form worse than a naive classifier trained on the source data. A potential reason for this
is that many domain-adaptation models make strong assumptions on the data that are in-
valid in many real-world scenarios. In particular, it is unclear to what extent the relation
between source data and classes truly is informative about the target labels. This issue
arises in every domain-adaptation problem: without target labels, there is no way of know-
ing whether matching the source distribution pg to the target distribution ps will improve
the match between py,s and py7.
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4.6. Appendix A

For some combinations of source and target models, the source domain can be integrated
out. For others, we would have to resort to Markov Chain Monte Carlo sampling and sub-
sequently averaging the samples drawn from the transferred source distribution g+. For
the Bernoulli and dropout model defined in Equations 4.4 and 4.5 respectively, the inte-
gration as in Equation 4.6 can be performed by plugging in the specified probabilities and
performing the summation:

D

qr(z1n,{) = 1—[ fx pris(Za | x4, $q) ps(xq | ng) dxg
d=1 "7d

D
= 1_[ pris(Za | [xq = 0],{q) ps([xq = 0];mq) +
d=1

pris(Za | [xq # 0],{q) ps([xq # 0];m4q)

_ = Pris(Za =01 [xg = 0],{a)(1 = ng) + pris(za = 01 [xq4 # 0], {a)na
A 1 (Pris(Za # 01 [xq = 0],{a)(1 —7na) +Pris(za # 0| [xa # 0], {a)na
_ = 1(1 —ng) + {ana ifzg =0
2 1300 -m)+ @A —Cana ifzqg#0
,E z7=0 zg#0
=1 (1 -(1-4) Tld) ((1 —4a) Tld) ‘
d=1

Note that we chose our transfer model such that the probability is O for a non-zero target
sample value given a zero source sample value; pris(z4 # 0 | [x4 = 0],{3) = 0. In other
words, if a word is not used in the source domain, then we expect that it is also not used
in the target domain. By setting different values for these probabilities, a different type of
transfer is modeled.
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4.7. Appendix B

This appendix lists the second-order Taylor approximation of the logistic loss version of
FLDA with a general transfer model and presents its gradient with respect to the classifier
parameters. To keep the derivations manageable, we use the following shorthands:

a; = Z exp(y'x;6)
y'ey

fi= ) ¥ exp(y'x0)
y'ey

Y = Z exp(y'x;0)x;]
y'ey

6; = Z y' exp(y'x;0)x] .
y'ey

The risk function of FLDA with a logistic loss and a general transfer model is:

n
R 1
Ry(h1Ds) =~ Z —i By, [216 + A(x0)+
=1
dA(x,0) 1024(x,0)
ﬁ(mﬂxi [z] —x)0 + EW 6" Vry, [2]6
L 13

1
== ) ~WiEry 216 + log(ap+

i=1

ﬁl 1 ﬁl

_(ETIx [z] = x)0 + 5 (1 - ) 0TVry,[2]6.

The gradient of the risk is:

n

d . 1 ;
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Acquisition-invariant
representations

Voxelwise classification approaches are popular and effective methods for tissue quantifi-
cation in brain magnetic resonance imaging (MRI) scans. However, generalization of these
approaches is hampered by large differences between sets of MRI scans such as differences
in field strength, vendor or acquisition protocols. Due to this acquisition related variation,
classifiers trained on data from a specific scanner fail or under-perform when applied to
data that was acquired differently. In order to address this lack of generalization, we pro-
pose a Siamese neural network (MRAI-NET) to learn a representation that minimizes the
between-scanner variation, while maintaining the contrast between brain tissues neces-
sary for brain tissue quantification. The proposed MRAI-NET was evaluated on both sim-
ulated and real MRI data. After learning the MR acquisition invariant representation, any
supervised classification model that uses feature vectors can be applied. In this chapter,
we provide a proof of principle, which shows that a linear classifier applied on the mrai rep-
resentation is able to outperform supervised convolutional neural network classifiers for
tissue classification when little target training data is available.

This chapter is based on the paper "MR acquisition-invariant representation learning”.
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5.1. Introduction

Very few of the many medical image analysis algorithms that were proposed in the litera-
ture are applicable in clinical practice. One of the reasons for this is the complexity of the
medical image data, i.e. the vast amount of variation that is present in this data. A more
specific example of this, is brain tissue segmentation in MRI scans. Many automatic meth-
ods have been proposed [1-8], but due to a lack of generalization, large scale use in clinical
practice remains a challenge [9]. In order to test the capacity of algorithms to general-
ize to new data, a representative sample (dataset) is required. This entails identifying all
factors of variation in the data that would influence algorithm performance with respect
to the medical image analysis task at hand. For brain tissue segmentation in MRI scans,
we identify for example subject related variation (i.e. pathology, age, ethnicity, gender)
and acquisition related variation (i.e. MR field strength, protocol settings, scanner vendor,
artefacts).

Supervised voxel classification approaches have been shown to perform well on small
data sets [10-12]. However, in order to ensure generalization, these algorithms should
be trained and tested on a sufficiently large representative dataset that covers all possi-
ble types of variation. This is practically infeasible since training and testing require not
only the MRI scans, but also manual labels as ground truth. The manual segmentation
process is labor intensive and time consuming, and adds another layer of variation due to
non-standardized manual segmentation protocols and inter- and intra-observer variability.
To address this problem, we propose an alternative approach, by learning a representa-
tion of the data [13] that is invariant to disturbing types of variation, while preserving the
variation relevant for the selected classification task, i.e. clinically relevant variation. By re-
ducing undesired variation, this method has the potential to decrease the number of fully
labeled samples required for generalization and enable broader use of voxel classification
approaches.

Overcoming acquisition-variation is a relatively new challenge in medical imaging. One
particularly interesting approach focuses on weighting classifiers based on how well their
training data matches the test data [10, 14, 15]. Examples of transfer classifiers include
weighted SVM’s [10] and weighted ensembles [15]. But these methods are very dataset-
dependent: the classifiers need to be retrained for every new test dataset. Ideally, we
would like to have a method that removes acquisition-variation or extracts acquisition-
invariant features. Domain adaptation researchers have proposed representation learning
methods that explicitly maximize "domain confusion”: if a classifier cannot distinguish be-
tween domains then the representation is domain-invariant [16-18]. For MRI scans, differ-
ent scanners or acquisition protocols constitute different data domains. These represen-
tation learning methods are variants of deep neural networks, called domain-adversarial
networks. They have two layers in which a loss function is computed: one layer for the
task-dependent loss, such as tissue or lesion classification, and one that maximizes domain
confusion. The networks learn representations in which the data from each domain over-
laps while the different classes become separable [16]. They are adversarial because the
loss layers operate with different objectives, which can make them very difficult to train
[17-19]. A recent paper has applied domain-adversarial networks to segmenting brain le-
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sions [20]. They achieved excellent performance and provided an in-depth analysis of the
adversarial training procedure. However, their networks are still very task-dependent: the
learned representation works well for brain lesion segmentation but cannot be used for tu-
mor detection for example. It is not a method for learning a general acquisition-invariant
representation.

We propose to learn a general representation by marking certain factors of variation as
desirable and others as undesired [21]. Learning a representation by explicitly minimizing
undesirable factors of variation while maintaining desirable factors will produce a task-
independent representation, which can be used for a variety of tasks later on. In order to
minimize certain factors of variation while maintaining others, we exploit a particular type
of neural network, referred to as a Siamese network [22]. Our work was inspired by the
work of Hadsell [23], who used Siamese neural networks to learn a lighting-invariant repre-
sentation for airplane images in the NORB [24] dataset. In this chapter, we aim to provide
a proof of principle for learning an MR-acquisition invariant (MRAI-NET) representation for
MR brain tissue segmentation.

To test MRAI-NET we simulated MRI data (SIMRI [25-27]) from a 1.5T scanner and 3T
scanner based on acquisition protocols used to acquire real data (Section 5.4.3) and real
tissue segmentations from healthy adults (Brainweb). In addition we used real patient data
(3T) as provided by MRBrain$S [28]. We acknowledge that the simulated data is idealistic as
compared to real patient data. However, experiments in a controlled environment provide
a proof of principle to ensure that the method is behaving appropriately. Translation to real
patient data is provided by including the MRBrain$S data. For the experiments with the sim-
ulated data (Section 5.4.4 and 5.4.5), the same subject acquired with different acquisition
protocols is used. This is however not a prerequisite to train MRAI-NET. For the experi-
ments that use real patient data, different subjects are used. MRAI-NET is not trained by
using tissue labels, but with patches labeled as similar or dissimilar. Factors of variation
that should be preserved should be labeled as dissimilar, MRAI-NET will aim to reduce all
other factors of variation.

5.2. MR acquisition-invariant network

Neural networks transform data based on minimizing a loss function. In supervised neu-
ral networks, labels are used to determine the loss (error between prediction and label).
Many labels are required to learn a task. We aim to use as little labels as possible to learn
a representation in which the variation over different methods of acquisition is minimal,
without destroying the variation relevant to distinguish between brain tissues.

The proposed network works as follows. Suppose that we have scans that are acquired
in two different ways (A and B). Possible differences can be in field strength, scanner ven-
dor, acquisition protocol, and so on. A tissue patch, for example gray matter, is selected
from both scans A and B. The aim is to teach the network that both these patches are gray
matter regardless of their acquisition variation. Therefore, we use a loss function that ex-
presses that in MRAI-NET’s representation, pairs of samples from the same tissue but from
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different scanners should be as similar as possible. However, that expression alone would
cause all samples to be mapped to a single point and would destroy variation between tis-
sues. To balance out the action of pulling pairs marked as similar together, it is necessary
to push other pairs apart [23]. Since we want to maintain the relevant variation between
tissues, we additionally express that in MRAI-NET’s representation, pairs from different tis-
sues should retain their dissimilarity. The loss function is described in section 5.2.1. Section
5.2.2 describes how pairs of samples are labeled as similar or dissimilar. The Siamese neu-
ral network that is used to learn the acquisition-invariant representation is described in
section 5.2.3. The network consists of two pipelines with shared weights and a Siamese
loss layer that acts on the output layer of the two pipelines.

5.2.1. Siamese loss

Neural networks transform data in each layer. We summarize the total transformation
from input to output with the symbol f, i.e. patch a will be mapped to the new represen-
tation with f(a) and patch b will be mapped with f(b). To find an optimal transformation,
we employ a loss function based on distances between pairs of patches in the output rep-
resentation, i.e. ||f(a) — f(b)||. Pairwise distances are computed through an L!-norm,
denoted by || - ||;. We used an L'-norm as opposed to for instance an L?-norm, because
larger values of p in LP-norms either result in problems in high-dimensional spaces or result
in problems with the gradient during optimization (see Appendix 5.8).

The loss function for the similar pairs consists of the squared distance, £4,(f | a,b) =
(If (@) = FDI 1)2. We chose this formulation in order to express that large distances are
less desirable. The loss function for the dissimilar pairs consists of a hinge loss, where the
distance is subtracted from a margin parameter m and the negative values are set to 0:
L4is(f | a,b) = max(0,m — ||f(a) — f(b)||1)- Pairs that lie close together will suffer a
loss, while pairs that are pushed sufficiently apart, i.e. past the margin, will not suffer a
loss. We discuss the effect of the margin parameter in Section 5.4.7.

Each pair of patches is marked with a similarity variable; y = 1 for similarand y = 0
for dissimilar. Using the similarity label we can combine the similar and dissimilar loss
functions into a single loss function:

¢(f | D) =Z Vi £sim (f | @i, b)) + (1 = y;) Lais (f | @i, by))
=Z yillf (@) = fF(B)IIZ + (1 — y) max (0,m — ||f (a;) — F(b)l1) -

where i iterates over pairs and D refers to the whole dataset of pairs.
This type of loss function is known as a Siamese loss [22, 23]. Note that it is asymmetric:
it penalizes samples from one class differently than samples from another class.

5.2.2. Labeling pairs as similar or dissimilar
As described above, suppose we have two medical images from two different scanners;
A and B. Assume that we have sufficient manual segmentations (labeled voxels) on scans
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from scanner A, to train a supervised classifier, but a very limited amount of labels from
scanner B, for example 1 labeled voxel per tissue for 1 subject. The data from scanner A will
be referred to as the source set, and the data from scanner B as the target set. Let K be the
set of tissue labels. The set of patches extracted from Scanner A is denoted {(a;,}Y-,, and
the set from scanner B is denoted {b.,,}} _,, with t specifying the sample’s tissue. Given
these two sets of patches, we form sets of similar and dissimilar pairs, with a similarity
label y. The following pairs are labeled as similar (y = 1) and therefore will be pulled
closer together:

e Source patches from the same tissue k € K: {(a;=y, ar=)},
e Source and target patches from the same tissue k € K: {(a¢=g, br=x)}

o Target patches from the same tissue k € K: {(by—y, by=x )}

The subscript t = k selects all patches that belong to tissue k. The following pairs are
labeled as dissimilar (y = 0) and therefore will be pushed apart:

e Source patches from different tissues k,l € K: {(a;=y, ar=1)},
e Source and target patches from different tissues k,l € K: {(a;=x, b¢=1)},

o Target patches from different tissues k, ! € K: {(by=k, bs=;)}.

Figure 5.1illustrates the process of selecting pairs of patches from different scanners. Con-
sider a medical image from scanner A and scanner B, with 2 GM patches (green), 1 WM
patch (yellow) and 1 CSF patch (blue) for each image. Using these patches we can generate
the following pairs: a GM patch from A with another GM patch from A (a;—k, a;=), a GM
patch from A with a GM patch from B (a;—, bt ), @ GM patch from B with another GM
patch from B (by—, by ), a GM patch from A with a CSF patch from A (a;=k, a;=;), a GM
patch from B with a WM patch from B (a;—x, b¢=;), and a GM patch from B with a CSF patch
from B (b=, br=;). The bottom of the image shows examples of these 6 pairs of patches.

The pairs are concatenated into a dataset D = {(a;, b;, ¥;)}¢_,, where i iterates over the
pairs. In total, the number of combinations is C = ¥, cx (Ni + My)? + Z(k l)E(K)(NkNl +
! 2

NiM; + M;:M;), where N, refers to the number of source patches from the k-th tissue
and, likewise, M, refers to the number of target patches from the k-th tissue. The number
of pairs that can be generated is very large, even when only a small number of patches is
available. For example, taking 10 patches of 3 tissues from 4 source scans and 1 patch of
3 tissues from 1 target scan, results in 2784 pairs of patches that can be used for training
the deep neural network.
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Figure 5.1: lllustration of extracting pairs of patches from images from scanner A and B. (Top) Each image shows 4
patches: 2 gray matter ones (green), 1 cerebrospinal fluid (blue) and 1 white matter (yellow). The lines mark the
6 types of combinations from Section 5.2.2. Green lines indicate similar pairs and purple lines indicate dissimilar
pairs. (Bottom) Enlarged patches belonging to the 6 pairs marked in the top images.

5.2.3. Network architecture

Figure 5.2 shows a diagram of the network architecture. The network consists of two
pipelines and a Siamese loss layer that acts on the output layers (red nodes). Pairs of
patches enter the input layer (black squares) where they are convolved (blue squares) and
mapped to feature vectors (blue nodes). The final layer is a low-dimensional feature space
(red nodes). The Siamese loss layer (section 5.2.1) calculates the distance between each pair
in their new representation and computes the loss based on whether the pair is marked
as similar or dissimilar. The two pipelines share their weights, which means they are con-
strained to perform the same transformation. During training, the loss is propagated back
through the network, adjusting the network weights.

Width and depth of the network may vary. We made the following choices: input patches
are size [15%15] and scanner identification is set to a single variable. The convolution block
consists of 8 kernels of size [3 X 3] with a rectifying linear unit (ReLU) activation function
and a max-pooling layer of size [2 X 2]. The output of these operations is flattened and
the scanner ID (0 for source, 1 for target) is appended. The scanner ID ensures that regions
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of different tissues in different scanners do not overlap in the input space. The flattened
and pooled convolutional layer output, plus the scanner ID is then densely mapped to a
16-dimensional representation. A dropout noise of size 0.2 is set for each edge. This 16-
dimensional representation is then densely mapped, again with a dropout of 0.2, to an
8-dimensional representation, which is finally mapped to a 2-dimensional representation.
We chose a final representation of 2 dimensions because this allows for scatter plot visu-
alizations.
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Figure 5.2: Schematic of MRAI-NET’s architecture. Pairs of patches are fed into two pipelines that share parame-
ters (i.e. produce the same mapping). The red nodes depict the representation in the final layer, while the green
node depicts the loss function.

Our method is implemented in a combination of Tensorflow" and Keras® [29, 30]. This
proof of principle uses a 4-layer hybrid convolutional-dense network for the pipeline. How-
ever, the network architecture can be changed. Variations involve, for example, more lay-
ers, wider layers, larger convolution kernels, and heavier max-pooling. See Section 5.4.6
for an experiment that varies the layer widths in the network.

Regularization

During training, we apply an [,-regularization of 0.001 to every layer with weights. Regu-
larization punishes the size of the weights, which prevents model over-complexity. In our
experiments, the regularization parameter could be increased or decreased by two orders
of magnitude with little effect on the networks performance. It is however always neces-
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sary to include some regularization as there is not only the danger of overfitting to training
data but also the danger of overfitting to the specific target subject used for training.

Optimization

All experiments in this chapter are performed with the default backpropagation algorithm
"RMSprop”, which normalizes the gradient update with a running average of itself [31]. Its
default parameters are: a learning rate of 0.001, a p of 0.9, an € of 1e-08, and a weight de-
cay factor of 0.0 (see [31] for more details on optimizer parameters). RMSprop is based on
stochastic gradient descent, which splits the dataset into batches and updates the networks
parameters after processing each batch. An epoch is the number of times the optimization
procedure splits the training set into batches. The number of epochs cannot be too large,
otherwise the network starts to overfit to the specific target subject from which the target
patches originated.

During experimentation we found that it is important that the batches are well-mixed
with respect to the 6 types of pairs outlined in Section 5.2.2. If this is not the case, such as
when one batch mostly consists of similar gray-matter patches and another batch consists
mostly of dissimilar gray-matter / white-matter patches, then the network tends to push
and pull in the same direction. These actions cancel each other out. The overall effect of
having too many uniform batches is that the optimization procedure is slowed down.

5.3. Tissue segmentation

. "
"%,
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(a) Representation before training. (b) Representation after training.

Figure 5.3: Conceptual visualization of MRAI-NET’s training procedure: the network pulls the similar pairs (green
lines) closer together and pushes dissimilar pairs (purple lines) apart until it learns a representation in which the
variation between scanners is minimal while the variation between tissues is maintained.

Figure 5.3 illustrates the training procedure of MRAI-NET. Once it is trained and an MR
acquisition-invariant representation is learned, it can be used as a preprocessing step for
tissue segmentation (Figure 5.4). Because of the shared weights, either one of the pipelines
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can be used to transform the input patches into MRAI-NET's representation. Input patches
from both the source and target scanner can be fed into the network, and any supervised
classification model that uses feature vectors can subsequently be trained to distinguish
tissues in the acquisition-invariant representation. Once the supervised classifier is trained,
both the trained MRAI-NET and the trained supervised classifier are used to segment a
new image. This is done by feeding a new patch through MRAI-NET and letting the tissue
classifier predict the label in the MR acquisition invariant space. In this way, MRAI-NET
acts as a preprocessing step to ensure that acquisition-based variation does not affect the
tissue classifier.

r |
- o I

Figure 5.4: A dataset of tissue-labeled single patches is fed through MRAI-NET and represented in the acquisition-
invariant space. Subsequently, a classifier is trained to distinguish tissues. A new image is decomposed into
patches and fed through the network as well. The trained tissue classifier then makes a prediction for each patch.
The predictions are then reshaped back into an image, resulting in the tissue segmentation.
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5.4. Evaluating representations

Since the aim of MRAI-NET is to preserve variation between tissues while reducing the MR
acquisition related variation, two different measures of performance are used to evaluate
MRAI-NET. MR acquisition invariance is measured with the proxy A-distance that mea-
sures the distance between the source and target scanner patches, as described in section
5.4.1. The preservation of tissue variation is measured using the tissue classification perfor-
mance, and compared to supervised classification with CNN (Section 5.4.2). Section 5.4.3
describes the simulated (Brainweb 1.5T, Brainweb3.0T) and real data (MRBrainS) used for
the experiments. For each experiment a source and target domain was specified. Four
source subjects (100 random patches per tissue) and 1 target subject (1-1000 patches per
tissue depending on experiment) were used for training. Four independent target subjects
(100 random patches per tissue) were used for testing.

In total, we set up four experiments: 1) Only 1 patch per tissue from the target domain
subject is used for training both the supervised CNNs (source, target) as well as MRAI-
NET followed by a linear classifier on the simulated data (Brainweb1.5T, Brainweb3.0T), 2)
Multiple target training samples per tissue (randomly selected with 50 repeats) are used
for training the source, target, and MRAI-NET classifiers for both simulated (Brainweb3.0T)
and real patient data (MRBrainS). The first experiment (Section 5.4.4) was set-up to test
if only 1 target patch per tissue would be sufficient in order to learn an MR-acquisition
invariant representation. If so, then calibrating a supervised segmentation algorithm for a
new scanner using MRAI-NET would require only three clicks in one scan acquired with a
new scanner. The second experiment (Section 5.4.5) illustrates the performance of MRAI-
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NET compared to the target, and MRAI-NET classifiers when adding more target training
samples (Figure 5.7). Results of using 1 patch per tissue and 100 patches per tissue from
the target subject for training are shown in Figures 5.8-5.10. The third experiment (Section
5.4.6) looks at the performance of the network if we vary the number of convolution kernels
and the number of nodes in the dense layers. For the setting where Brainweb1.5T is the
source scanner and Brainweb3.0T is the target scanner, the network will keep gaining in
performance at the cost of adding tens of thousands more parameters. Finally, the fourth
experiment (Section 5.4.7) shows the influence of the margin parameter on the Siamese
loss function. If the margin parameter is set too low, tissue variation will not be preserved.
On the other hand, if the margin parameter is set too high the acquisition variation will not
be reduced. The next two sections describe how these two types of variation are measured.

5.4.1. MR acquisition invariance measure

The H -divergence can be used as a measure of the discrepancy between the source and
target scanner data sets [32-34]. This divergence relies on the ability of a classifier to distin-
guish between domains. If a classifier is not able to distinguish source from target, i.e. has
a test error of 1/2, then invariance is achieved. Unfortunately, the original H -divergence
is a measure between distributions and not samples. Since we only have samples, we use
its proxy instead: the A-distance [33, 34], as used in [18]. The proxy A-distance, denoted
by d 4, is defined as follows:

dy(x,z) =2(1—-2e(x,2)), (5.1)

where e represents the test error of a classifier trained to discriminate source samples x
from target samples z. If the source and target data lie far apart, the error will be close
to 0, i.e. perfect separability, and the proxy A-distance will be close to 2. If the source
and target data overlap, the error will be around 0.5, i.e. no separability (invariance), and
the proxy A-distance will approach 0. We use a linear support vector machine (SVM) as
domain classifier.

5.4.2. Measure of preserving tissue variation

The tissue classification error is used as a measure of tissue variation preservation. The aim
is to learn a linearly separable representation with MRAI-NET, to aid the number of meth-
ods that can be used for classification. Therefore, we evaluate the tissue classification er-
ror of the samples in the acquisition-invariant representation with a logistic regressor. The
classifier is £,-regularized and cross-validated for optimal regularization parameters. This
classifier MRAI-NET, based on MRAI-NET, is compared to two other supervised classifiers:
1) source classifier: a convolutional-dense neural network (CNN) trained on samples from
the source (4 subjects) and target data (1subject), and 2) target classifier: a CNN trained on
samples from the target data (1subject). In order to ensure that differences in performance
between source, MRAI-NET and target are not due to differences between classifiers, the
network architecture from MRAI-NET (Figure 5.2) was used for the source and target clas-
sifiers as well.
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5.4.3. MRI-scan data sets

To be able to provide a proof of principle, we simulated different MR acquisitions from
various anatomical models of the human brain [27, 35], using an MRI simulator (SIMRI
[25-27]). The anatomical models consist of transverse slices of 20 normal brains and are
publicly available through Brainweb®. These models were used as input for the MRI simula-
tor. For the experiments, we simulated two acquisition types: 1) Brainweb1.5T, a standard
gradient-echo acquisition protocol for a 1.5 Tesla scanner (c.f. [36]), and 2) Brainweb3.0T,
a standard gradient-echo protocol for a 3.0 Tesla scanner (c.f. [28]). Table 5.1 describes the
parameters used for the simulation: magnetic field strength (BO), flip angle (8), repetition
time (TR), echo time (TE). Magnetic field inhomogeneities and voxel inhomogeneity (partial
volume effects) were not included in the simulation.

Table 5.1: SIMRI Acquisition parameters for the simulation of the Brainweb1.5T and Brainweb3.0T data sets.

| BO 6 TR TE
Brainweb1.5T 1.5 Tesla 20° 13.8 ms 2.8 ms
Brainweb3.0T 3.0 Tesla 90° 7.9 ms 4.5ms

Appendix 5.7 describes the nuclear magnetic resonance (NMR) relaxation times for the
tissues in the Brainweb anatomical models, for 1.5 and 3.0 Tesla field strengths. The tissues
in the anatomical models are grouped into "background” (BKG), "cerebrospinal fluid” (CSF),
"gray matter” (GM), and "white matter” (WM) to compose the ground truth segmentation
labels for the simulated scans. The simulations result in images of 256 by 256 pixels, with
a 1.0x1.0mm resolution. Figures 5.5a and 5.5b show examples of the Brainweb1.5T and
Brainweb3.0T scan of the same subject. For all scans, we used a brain mask to strip the
skull.

(a) Brainweb1.5T (b) Brainweb3.0T (c) MRBrains

Figure 5.5: Example of an MRI scan of a Brainweb anatomical model simulated with SIMRI with a 1.5T protocol (a)
and a 3.0T protocol (b), and a real patient scan (MRBrainS) acquired with a 3.0T protocol (c).

In order to test the proposed method on real data, we use the publicly available training
data (5 subjects) from the MRBrain$S challenge®. The acquisition parameters used for sim-
ulating the Brainweb3.0T are based on the MRBrain$S acquisition protocol (3.0T scanner,

*http:
4‘,

yw.bic.mni.mcgill.ca/brainweb/
tp://mrbrainsl3.isi.uu.nl/Figure
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gradient-echo, BO = 3.0T, 8 = 90° flip angle, TE = 4.5ms, and TR = 7.9ms). Figure 5.5c shows
an example of an MRBrainS scan. Again, a brain mask is used to strip the skull.

5.4.4. One target label per tissue

The first experiment with the simulated data tests the scenario described at the beginning
of this section: suppose a supervised classification algorithm trained on one scanner needs
to be calibrated for a new scanner, would this be possible with three clicks (1 for each
tissue type) using MRAI-NET? To study this, we manually selected 1 patch for each tissue
in the target scan (1 subject) and used this data to train MRAI-NET. Once MRAI-NET has
been trained and an acquisition-invariant representation has been learned, we compute
the proxy A-distance and perform a tissue classification experiment.

For computing the proxy A-distance, we used scans from 10 source subjects and 10
target subjects that had been held back (i.e. we did not draw samples from them to either
train MRAI-NET or train any of the tissue classifiers). We randomly drew 50 patches per
tissue from each subject, resulting in two sets of 1500 patches. These patches were fed
into MRAI-NET which mapped them to the new acquisition-invariant representation. The
datasets were labeled 0 and 1 for source and target. Next, we trained a linear classifier
with 5-fold cross-validation to obtain a test error on data set discrimination. Finally, using
this test error and Equation 5.1, we computed the proxy A-distance.

For evaluating the tissue classification performance, we used scans from 10 target sub-
jects that had been held back. From these 10 scans, we drew 50 patches per tissue at
random, for a total of 1500 patches. We computed the error rate by computing the pro-
portion of wrong predictions on this test set. We trained the following three classifiers
(described in Section 5.4.2): firstly, the source classifier (CNN) was trained on images from
the source dataset, and applied to the test set to make predictions. Secondly, we trained a
linear classifier on the source data mapped to MRAI-NET's representation. We mapped the
test data to MRAI-NET’s representation as well and applied the trained linear classifier to
make predictions. Its performance on the test set is indicated with MRAI-NET in Table 5.2.
The target classifier (CNN) was applied to the available target patches. In this experiment,
there were 3 target patches in total, which is far too little data to train such a large convo-
lutional network. We included its performance to indicate that using the target classifier
in this kind of situation is not a sensible option.

For comparison, we performed the same experiment but with randomly selected tar-
get patches. Table 5.2 lists the tissue classification errors of the three classifiers and the
proxy A-distance between the source and target patches before (raw) and after (rep) ap-
plying MRAI-NET. The whole experiment was repeated 10 times and the average error rate
is reported with the standard error of the mean between brackets.

Figure 5.6 displays the manually selected patches and their position within the image.
For both the source and target classifier, one target patch per tissue is insufficient to achieve
good tissue classification performance (5.2 (top row): 0.631 and 0.613). However, the
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Table 5.2: Manually versus randomly selecting 1 target patch per tissue from 1 subject. (Left) Tissue classifica-
tion error is reported for MRAI-NET (linear classifier after MRAI-NET), source (supervised CNN trained on source
patches and 1 target patch per tissue), and target (supervised CNN trained on 1 target patch per tissue) tested
on the target test data. (Right) Proxy A-distance between the original source and target patches (raw) and the
source and target patches after applying MRAI-NET (rep).

source MRAI-NET target | raw rep
manual 0.631(.02) 0.223(.01) 0.613 (.01) 1.88 (.01) 0.26 (.05)
random | 0.667 (.02) 0.250 (.02) 0.610 (.06) 1.91(.01) 0.41(.06)

MRAI-NET classifier shows considerably better performance (0.223), using only one tar-
get patch per tissue. The proxy A-distance also drops from near perfect separability (1.88)
to near invariance (0.26). Randomly selecting (10 repeats) 1 target patch per tissue (Ta-
ble 5.2 (bottom row)), shows worse performance of the MRAI-NET classifier, for both the
classification error (0.250) as well as the A-distance (0.41). Suggesting that purposive (in-
formation rich) sampling beats random sampling in this case.

Figure 5.6: Locations of the manually selected target patches (red squares): Blue = cerebrospinal fluid, green =
gray matter, yellow = white matter.

5.4.5. Multiple target labels per tissue

The second experiment tests the performance when adding more target training samples,
for both simulated (Brainweb3.0T) and real patient data (MRBrainS). We set-up the follow-
ing sub-experiments:

2.1) Experiment on simulated data with two different acquisition protocols (Source:
Brainweb1.5T, Target: Brainweb3.0T).

2.2) Experiment on 1.5T simulated data and 3.0T real data (Source: Brainweb1.5T,
Target: MRBrain$).

2.3) Experiment on 3.0T simulated data and 3.0T real data (Source: Brainweb3.0T,
Target: MRBrainS).

Each of these experiments is repeated 50 times. Figure 5.7 shows the performance (both
tissue classification error as well as proxy A-distance) as a function of the number of used
target training samples. The average error (solid line) and the standard error of the mean
(line thickness) is shown, ranging from using 1 target patch up to more than 1000 target
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patches per tissue for training both the supervised CNNs (source, target) as well as the
MRAI-NET followed by a linear classifier (MRAI-NET).

Experiment 2.1) Source: Brainweb1.5T, Target: Brainweb3.0T
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Figure 5.7: Graphs showing the effect of adding labeled samples from the target scanner for training the networks.
(Left) Proxy A-distance between source and target scanner patches before (red) and after (blue) learning the mrai
representation (smaller distance is more acquisition-invariance). (Right) Tissue classification error for the three
classifiers source (supervised CNN trained on patches from source and target), MRAI-NET (supervised SVM trained
on the source and target data mapped to MRAI-NET’s representation) and target (supervised CNN trained on
target patches). Note that when the proxy A-distance between the source and target data before MRAI-NET is
small (red line exp 2.3), the source data is representative of the target data (both 3T data), and the source tissue
classifier (purple) shows better performance than using the target tissue classifier (cyan) with a small amount of
target samples. However, if the proxy A-distance is large (exp 2.1 and 2.2) before MRAI-NET (red line), the source
tissue classifier (purple) shows worse performance than the target tissue classifier (cyan) with a small amount of
target samples, since the source data (1.5T) is not representative of the target data (3T).

Figure 5.7 (left) shows the proxy A-distance between the source and target samples for
all three experiments. The proxy A-distance for experiments 2.1 and 2.2 shows that in
the original representation (raw; red line), the source and target distributions lie far apart
(proxy A-distance approaches 2). This illustrates the difference in acquisition protocol
(1.5T versus 3.0T). After applying MRAI-NET (rep; blue line) the proxy A-distance drops
drastically (approaches 0) showing that the network managed to learn an MR-acquisition
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invariant representation. Adding more target training samples improves the invariance up
to about 100 samples, but the proxy A-distance is already quite low after only using 1target
sample per tissue type for training. In experiment 2.3 the proxy A-distance before applying
MRAI-NET (raw) is already much lower than in the previous two experiments (around 0.5),
this illustrates that the acquisition protocols are more similar to begin with (both 3.0T).
The main difference between the distributions presumably results from simulated versus
real data, since not all factors of acquisition variation are included in the simulations, most
notably partial volume (0.96x0.96x3mm voxels in MRBrain$ versus no partial volume in
Brainweb). However, after applying MRAI-NET the proxy A-distance is reduced further
(approaches 0), again showing that MRAI-NET is able to learn an MR-acquisition invariant
representation (rep) on this data, even for simulated and real data. Note that the MRBrainS
data adds other modes of variation in terms of pathology and age in comparison to the
Brainweb healthy adults, which could influence the tissue classification performance.

I[]

a) Scan (b) source (1TP) (c) MRAI-NET (1TP) (d) target (1TP)

(e) Ground truth (f) source (100 TPs) (g) MRAI-NET (100 TPs) (h) target (100 TPs)

Figure 5.8: Example brain tissue segmentations into white matter (yellow), gray matter (green) and cerebrospinal
fluid (blue) for experiment 2.1 (Source: Brainweb1.5T, Target: Brainweb3.0T). A simulated MRI scan of a test sub-
ject from Brainweb3.0T (a) is shown, with corresponding ground truth segmentation (e), and the results of apply-
ing the source (b,f), target (d,h) and proposed MRAI-NET (c,g) classifiers, with either 1 or 100 target patches per
tissue type used for training the classifiers (Figure 5.7).

Figure 5.7 (right) shows the tissue classification error for all three experiments. If the
proxy A-distance between the source and target distribution is high (experiment 2.1 and
2.2), and when using only one target sample per tissue, the source classifier that uses both
the source data and target data for training shows worse performance than the one that
uses only the target data (target); an error of 0.667 versus 0.591, respectively. Even when
adding more target samples for training, the results show that it is more beneficial to train
a supervised classifier on the target data alone, instead of on both the source and target
data; using 10 target samples for training, source achieves an error of 0.662 versus an error
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of 0.403 for target. The source classifier is focused on its source samples, which in this case
are not informative of the target data. Given enough target samples, however, source starts
to shift focus towards its target data and starts to match the performance of target: for 100
target samples, errors of 0.213 versus 0.205 respectively. If the proxy A-distance between
the source and target distributions is low (distributions are more similar; experiment 2.3),
using the source data for training is beneficial; for 1target sample per tissue source achieves
an error of 0.435 and target an error of 0.596. In this case, the source samples are more
representative of the target data and are aiding the classifier. In general, the MRAI-NET
classifier outperforms both the source and target classifiers: an error of 0.269 for 1sample,
0.175 for 10 samples and 0.111 for 100 samples. MRAI-NET’s representation ensures that the
source and target samples are more similar and that the source samples can be effectively
used for training.

(a) Scan (d) target (1TP)

(e) Ground truth (f) source (100 TPs) (g) MRAI-NET (100 TPs) (h) target (100 TPs)

Figure 5.9: Example brain tissue segmentations into white matter (yellow), gray matter (green) and cerebrospinal
fluid (blue) for experiment 2.2 (Source: Brainweb1.5T, Target: MRBrainS). A simulated MRI scan of a test subject
from MRBrainS (a) is shown, with corresponding ground truth segmentation (e), and the results of applying the
source (b,f), target (d,h) and proposed MRAI-NET (c,g) classifiers, with either 1 or 100 target patches per tissue
type used for training the classifiers (Figure 5.7).

Examples of the segmentation results on one of the target test images are shown in Fig-
ure 5.8 for experiment 2.1, Figure 5.9 for experiment 2.2, and Figure 5.10 for experiment 2.3.
Examples are shown after using 1 target patch per tissue for training, and after using 100
target patches per tissue for training. The results show that only the MRAI-NET classifier is
able to predict a segmentation that approaches the ground truth with only 1 target patch
per tissue for training (error for experiment 2.1=0.269, experiment 2.2 = 0.403, experiment
2.3 =0.320), while the source and target classifiers cannot (source error for experiment 2.1
= 0.667, experiment 2.2 = 0.653, experiment 2.3 = 0.435; target error for experiment 2.1:
0.591, experiment 2.2: 0.614, experiment 2.3 = 0.596). After using 100 patches the source



5.4. Evaluating representations 135

and target classifiers can predict a gross segmentation of WM, GM and CSF (source error
for experiment 2.1 = 0.213, experiment 2.2 = 0.384, experiment 2.3 = 0.363; target error
for experiment 2.1: 0.205, experiment 2.2: 0.368, experiment 2.3 = 0.368), but the MRAI-
NET classifier prediction shows more details and a lower tissue classification error (error
for experiment 2.1 = 0.111, experiment 2.2 = 0.276, experiment 2.3 = 0.284).

(a) Scan (b) source (1TP) (c) MRAI-NET (1TP) (d) target (1TP)

(e) Ground truth (f) source (100 TPs) (g) MRAI-NET (100 TPs) (h) target (100 TPs)

Figure 5.10: Example brain tissue segmentations into white matter (yellow), gray matter (green) and cerebrospinal
fluid (blue) for experiment 2.3 (Source: Brainweb3.0T, Target: MRBrainS). A simulated MRI scan of a test subject
from MRBrain$ (a) is shown, with corresponding ground truth segmentation (e), and the results of applying the
source (b,f), target (d,h) and proposed MRAI-NET (c,g) classifiers, with either 1 or 100 target patches per tissue
type used for training the classifiers (Figure 5.7.

5.4.6. Number of network parameters

Setting neural network hyperparameters, such as the number of convolution kernels to use,
is always a tricky issue. The optimal parameter is different for each dataset, which means
there are no easy defaults. In order to get some insight into the behavior of the network for
different choices of hyperparameters, we performed an additional experiment. We used
experiment 2.1's setting: Brainweb1.5T as source and Brainweb3.0T as target.

MRAI-NET has three layers with parameters: a convolution layer and two dense layers.
We varied the number of kernels in the convolution layer and the number of nodes in
the dense layers. We use the following sets of hyperparameters: [2 kernels, 4 nodes, 4
nodes], [4 kernels, 8 nodes, 4 nodes], [8 kernels, 16 nodes, 8 nodes], [16 kernels, 32 nodes,
16 nodes], [32 kernels, 64 nodes, 32 nodes] and [64 kernels, 128 nodes, 64 nodes] (i.e.
the layer widths double each time). The total number of parameters are 322, 1254, 4874,
19218, 76322, and 304194, respectively. We used 10 labeled target patches per classes,
from which we generated 18000 pairs of patches. The network was trained for 320 epochs
and the experiment was repeated 20 times to obtain standard errors of the means. Figure
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5.11 shows the results: the left figure looks at the proxy A-distance as a function of the
number of parameters and the right figure looks at the tissue classification error of a linear
classifier trained on the resulting representation. For the proxy A-distance, the graphs
show a steady decrease in distance and then roughly levels off after [8, 16, 8]. This result
indicates that an extremely wide MRAI-NET (i.e. [64, 128, 64]) will still be able to reduce
acquisition variation. As for the tissue classification error, the thin network (i.e. [2, 4, 2])
starts out with a average error rate of 0.28 (underfitting) and drops immediately to 0.18
for [4, 8, 4]. Afterwards, it slowly increases to 0.19. This indicates that the network is
not overfitting too drastically yet, which is probably due to the regularization (see Section
5.2.3). However, the graph does indicate that its error rate will go up if the number of
parameters is increased further.
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Figure 5.11: MRAI-NET’s performance as a function of layer widths. (Left) The proxy A-distance. (Right) The tissue
classification error obtained through a linear classifier trained on data in MRAI-NET’s representation. Both graphs
show a slow gain in performance as the number of parameters grows.

5.4.7. Effect of the margin parameter

The margin parameter m in the dissimilar loss function, €4 (f|a, b) = max(0, m—||f (a)—
f(D)llp), is important as it balances the actions of pushing and pulling between pairs. For
small values, £ 4;s will be much smaller than £, and the network will focus on pulling pairs
together. For large values, €4 will always be much larger than £, and network will focus
on pushing pairs apart. Figure 5.12 plots a synthetic data setting with the outcome of using
three different values for the margin parameter. The left figure shows two synthetic 2-
dimensional data sets, one with red versus blue crosses and the other with red versus
blue squares. The right figures show validation samples fed through three networks with
different values for the margin parameter. Firstly, the right top figure displays the result
of using a margin parameter of 0: the network does not suffer any loss by making pairs
of samples of different tissues too similar and consequently maps everything to a single
point. Secondly, the right middle figure shows an appropriate choice for the margin, where
the two data sets overlap and where red and blue points are separated. Lastly, the right
bottom figure shows what happens when a large margin parameter is used: it focuses
almost entirely on separating red versus blue and is not making the data sets more similar.
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Figure 5.12: Effect of the margin hyperparameter. (Left) Two synthetic binary data sets, with markers indicating
scanners and colors tissues. (Right) Representation found by a network with a margin of O (top), a margin of 1
(middle) and a margin of 10 (bottom).

Additionally, the optimal value for the margin parameter is affected by the number of
similar versus dissimilar pairs. If there are twice as many similar pairs, then their loss will
be twice as large as well and the network will focus more on pulling pairs together. Overall,
the more similar pairs there are, the larger the margin parameter will need to be.

5.5. Discussion

We proposed a method to learn an MRI scanner acquisition-invariant representation that
preserves the variation between brain tissues for segmentation. Once the representation
is learned using MRAI-NET, any supervised classification model that uses feature vectors
can be used to classify the brain tissues. The proposed method addresses the problem
that the difference between scans acquired with two different MRI scanners or protocols
can be so large that scans from one scanner are not representative of scans from another
scanner. This difference does not affect assessment by human vision (e.g. radiologists can
perform diagnostic work-up on both), but it does affect computer vision. To get insight into
the difference between scans and to assess the performance of MRAI-NET to reduce this
difference (achieve invariance), the proxy A-distance measure between source and target
patches was used. The experiments (Figure 5.7) show that this is a good measure to deter-
mine the difference between source and target acquisition, and might be used to predict
classifier performance of a source classifier. Note that this measure does not require any
tissue labels, and can thus be used as a general measure of distance between scanners. It
merely requires source patches to be labeled as source, and target patches to be labeled
as target. When the proxy A-distance is low (Figure 5.7 bottom row) the source (source)
classifier outperforms the target (target) classifier when a small number of target training
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patches are used. When the proxy A-distance is large the target classifier outperforms the
source classifier, even when one target training patch per tissue is used. This suggests that
if the proxy A-distance is large (source data is not representative of target data), a source
classifier trained on the source data should not be applied to the target data. Ground truth
labels on the source data that are labor-intensive to acquire can in this case not be used
for the target data. However, since MRAI-NET learns a representation that reduces the
acquisition difference between source and target scanner the proxy A-distance is drasti-
cally reduced. Therefore the MRAI-NET classifier outperforms both the source and target
classifiers, when a small number of target training samples is available, and leverages the
source ground truth labels.

Due to the complexity of the problem addressed, simulated data was used to provide a
proof of principle. Ideal real data would require the same subject to be scanned on different
scanners with different protocols, after which the scans should be manually segmented to
obtain the ground truth for both scans. However, inter-observer variability would add an
extra layer of variation. To test MRAI-NET on real data, the MRBrainS challenge data was
used. Although, additional layers of variation include resolution, population and manual
segmentation protocol, the experiments (Figure 5.7) show that MRAI-NET’s performance
on real data follows the same pattern as its performance on simulated data, be it with a
higher classification error due to additional factors of variation.

A limitation of the proposed method is that learning an acquisition-invariant representa-
tion with MRAI-NET, will not necessarily work well on data sets with poor contrast between
tissues. In that case, the network will both push and pull points in the overlap. Since
these actions will mostly cancel each other out, the network will not be able to reduce
acquisition-variation without sacrificing tissue variation, and vice versa.

Another limitation is that the proposed MRAI-NET requires at least 1 sample per tissue

from the target scanner. This is not an unreasonable request, as it is not hard to find at least
1 patch per tissue (Section 5.4.4) in only one subject scanned with the target scanner. How-
ever, it may be possible to perform the similar/dissimilar labeling based on assumptions
instead. For instance, if one assumes that the registration between two scans is accurate
and that the subject-variation is not too large, then one could assume that target patches
at certain locations are the same tissue as the source patches at these locations. Hence,
those voxels could be used for the similarity-labeling process.
The proposed representation learning method could be used to reduce any type of varia-
tion, by adjusting the way that the similar and dissimilar pairs are defined. For example,
registration, which can be viewed as variation in position, might be approached in a similar
manner [37]. Key is to identify the forms of variation, determine which variation should
be preserved and which should be reduced, and to find a way to label them as similar or
dissimilar accordingly.
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5.6. Conclusion

We addressed one of the major challenges of supervised voxel classification, i.e. gener-
alization to data that is not representative of the training data. We provided a proof of
principle for learning an MR acquisition invariant representation that reduces the varia-
tion between MRI scans acquired with different scanners or acquisition protocols, while
preserving the variation between brain tissues. We showed that the proposed MRAI-NET
is able to learn an MR acquisition invariant representation (low proxy A-distance), and
outperform supervised convolution neural networks trained on patches from the source
or target scanners for tissue classification, when little target training patches are available.
By reducing the acquisition related variation using MRAI-NET, the ground truth labels from
the source data can be reused for the target data, since the source and target data are
mapped to the same representation achieving generalization.
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5.7. Appendix A

SIMRI requires NMR relaxation times for tissues based on particular magnetic static field
strengths [25]. We performed a literature study for the T1 and T2 relaxation times, the
results of which are listed in Table 5.3. The proton density values p stem from [38]. The
3.0T CSF parameters were interpolated using an exponential function fit ([39] justifies an
exponential function based on physical properties). We equate connective tissue to glial

matter (90% of the brain’s connective tissue system is glial matter®).

Table 5.3: NMR relaxation times for brain tissue (IT’IS database).

? Glial matter values are unknown and are imputed with gray matter values.
® T2 values for cortical bone are actually T2* values (UTE seq).

¢ Equated to glial matter (see text).
4 3.0T T2 relaxation time is from dermis, other values are from hypodermis.

Tissue ‘ p TI(1.5T) T2(1.5T) T1(3.0T) T2(3.0T) Ref
CSF 100 (0) 4326 (0) 791(127) 4313(0) 503 (64) [39-42]
GM 86 (.4) 1124 (24) 95 (8) 1820 (114) 9(7) [43]
WM 77 (3) 884 (50) 72 (4) 1084 (45) 69 (3) [43]
Fat 100 (0) 343(37) 58 (4) 382(13) 68 (4) [44]
Muscle | 100 (0) 629 (50) 44 (6) 832(62) 50 (4) [43, 45]
Skin® 100 (0) 230 (8) 35(4) 306 (18) 22 (0) [45-47]
Skull® 0(0) 200(0) .46(0) 223 (1) .39 (.02) [48, 49]
Glial® 6 (0) 1124 (24) 95 (8) 1820 (114) 9 (7) [40,43]
Conn. ¢ ( ) 1124 (24) 95(8) 1820 (114) 99 (7) [43]
/pagel39/styled-42/



http://www.neuroplastix.com/styled-2/page139/styled-42/brainsconnectivetissue.html
http://www.neuroplastix.com/styled-2/page139/styled-42/brainsconnectivetissue.html
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5.8. Appendix B

In Section 5.2.1 we specified the Siamese loss as the networks objective function. The in-
put of this loss consists of a pairwise distance, for which we chose an L'-norm. There are
2 reasons for this: the first is that LP-norms with larger values for p concentrate densely
in high-dimensional spaces [50]. Concentration means that the differences between pair-
wise distances of a set of points become smaller as the number of dimensions increases.
This is a problem because the actions of pulling and pushing will not sufficiently decrease
the distance between similar pairs or sufficiently increase the distance between dissimilar
pairs. The second reason is that the gradient of the L*-norm is constant, while the gradi-
ent of an LP-norms with p > 1 are functions of the distance [51]. Gradients of norms with
large p’s become smaller as the distance between pairs becomes smaller, which means the
incentive for the network to pull pairs closer decreases. A constant gradient ensures that
there will also be a constant incentive to pull similar pairs closer together. Considering that
we want our representation to be truly invariant, we want the network to continue to pull
similar pairs together until they are as close as possible.
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Robust adaptation

In domain adaptation, classifiers with information from a source domain adapt to gener-
alize to a target domain. However, an adaptive classifier can perform worse than a non-
adaptive classifier due to invalid assumptions, increased sensitivity to estimation errors or
model misspecification. Our goal is to develop a domain-adaptive classifier that is robust
in the sense that it does not rely on restrictive assumptions on how the source and target
domains relate to each other and that it does not perform worse than the non-adaptive clas-
sifier. We formulate a conservative parameter estimator that only deviates from the source
classifier when a lower risk is guaranteed for all possible labellings of the given target sam-
ples. We derive the classical least-squares and discriminant analysis cases and show that
these perform on par with state-of-the-art domain adaptive classifiers in sample selection
bias settings, while outperforming them in more general domain adaptation settings.

This chapter is based on the paper "Target contrastive pessimistic risk for robust domain adaptation”.
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6.1. Introduction

Generalization in supervised learning relies on the fact that future samples should originate
from the same underlying distribution as the ones used for training. However, this is not
the case in settings where data is collected from different locations, different measurement
instruments are used or there is only access to biased data. In these situations the labeled
data does not represent the distribution of interest. This problem setting is referred to as a
domain adaptation setting, where the distribution of the labeled data is called the source
domain and the distribution that one is actually interested in is called the target domain.
Most often, datain the target domain is not labeled and adapting a source domain classifier,
i.e. changing its predictions to be more suited to the target domain, is the only means by
which one can make predictions for the target domain. Unfortunately, depending on the
domain dissimilarity, adaptive classifiers can perform worse than non-adaptive ones. In
this work, we formulate a conservative adaptive classifier that always performs at least as
well as the non-adaptive one.

Biased samplings tend to occur when one samples locally from a much larger population
[1, 2]. For instance, in computer-assisted diagnosis, biometrics collected from two differ-
ent hospitals will be different due to differences between the patient populations: ones
diet might not be the same as the others. Nonetheless, both patient populations are sub-
samples of the human population as a whole. Adaptation in this example corresponds to
accounting for the differences between patient populations, training a classifier on the cor-
rected labeled data from one hospital, and applying the adapted classifier to the other hos-
pital. Additionally, different measurement instruments cause different biased samplings:
photos of the same object taken with different cameras lead to different distributions over
images [3]. Lastly, biases arise when one only has access to particular subsets, such as data
from individual humans in a activity recognition task [4].

In the general setting, domains can be arbitrarily different and contain almost no mu-
tual information, which means generalization will be extremely difficult. However, there
are cases where the problem setting is more structured: in the covariate shift setting, the
marginal data distributions differ but the class-posterior distributions are equal [5-7]. This
means that the underlying true classification function is the same in both domains, im-
plying that a correctly specified adaptive classifier converges to the same solution as the
target classifier. Adaptation occurs by weighing each source sample by how important it is
under the target distribution and training on the importance-weighed labeled source data.
A model that relies on equal class-posterior distributions can perform very well when its
assumption is true, but it can deviate in detrimental ways when its assumption is false.

Considering their potential, a number of papers have looked at conditions and assump-
tions that allow for successful adaptation. A particular robust one specifies the existence of
a common latent embedding, represented by a set of transfer components [8]. After map-
ping data onto these components, one can train and test standard classifiers again. Other
possible assumptions include low-data-divergence [9-11], low-error joint prediction [10, 11],
the existence of a domain manifold [12-14], restrictions to subspace transformations [15],
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conditional independence of class and target given source data [16] and unconfoundedness
[17]. The more restrictive an assumption is, the worse the classifier tends to perform when
it is invalid. One of the strengths of the estimator that we develop here is that it does not
require making any assumptions on the relationship between the domains.

The domain adaptation and covariate shift settings are very similar to the sample selec-
tion bias setting in the statistics and econometrics communities [7, 18, 19]. There, the bias
is explicitly modeled as a variable that denotes how likely it is for a particular sample to
be selected for the training set. One hopes to generalize to an unbiased sample, i.e., the
case where each sample is equally likely to be selected. As such, this setting can also be
viewed as a case of domain adaptation, with the biased sample set as the source domain
and the unbiased sample set as the target domain. In this case, there is even additional
information: the support of the source domain will be contained in the support of the tar-
get domain. This information can be exploited, as some methods rely on a non-zero target
probability for every source sample [6, 20]. Lastly, the causal inference community has also
considered causes for differing training and testing distributions, including how to estimate
and control for these differences [2, 21, 22].

Although not often discussed, a variety of papers have reported adaptive classifiers that,
at times, perform worse than the non-adaptive source classifier [6, 13, 16, 23-25]. On closer
inspection, this tends to happen when a classifier with a particular assumption is deployed
in a problem setting for which this assumption is not valid. For example, if the assumption
of a common latent representation does not hold or when the domains are too dissimilar
to recover the transfer components, then mapping both source and target data onto the
found transfer components will result in mixing of the class-conditional distributions [8].
Additionally, one of the most popular covariate shift approaches, kernel mean matching
(KMM), assumes that the support of the target distribution is contained in the support of
the source distribution [20, 26]. When this is not the case, the resulting estimated weights
can become very bimodal: a few samples are given very large weights and all other sam-
ples are given near-zero weights. This greatly reduces the effective sample size for the
subsequent classifier [27].

Since the validity of the aforementioned assumptions are difficult, if not impossible, to
check, it is of interest to design an adaptive classifier that is at least guaranteed to perform
as well as the non-adaptive one. Such a property is often framed as a minimax optimization
problem in statistics, econometrics and game theory [28]. Wen et al. constructed a min-
imax estimator for the covariate shift setting: Robust Covariate Shift Adjustment (RCSA)
[29] accounts for estimation errors in the importance weights by considering their worst-
case configuration. However, this can sometimes be too conservative, as the worst-case
weights can be very disruptive to the subsequent classifier optimization. Another minimax
strategy, dubbed the Robust Bias-Aware (RBA) classifier [25], plays a game between a risk
minimizing target classifier and a risk maximizing target class-posterior distribution, where
the adversary is constrained to pick posteriors that match the moments of the source dis-
tribution statistics. This constraint is important, as the adversary would otherwise be able
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to design posterior probabilities that result in degenerate classifiers (e.g. assign all class-
posterior probabilities to 1 for one class and 0 for the other). However, it also means that
their approach loses predictive power in areas of feature space where the source distribu-
tion has limited support, and thus is not suited very well for problems where the domains
are very different.

The main contribution of this chapter is that we provide an empirical risk minimiza-
tion framework to train a classifier that will always perform at least as well as the naive
source classifier. Furthermore, we show that a discriminant analysis model derived from
our framework will always be likelier than the naive source model. To the best of our knowl-
edge, strict improvements have not been shown before.

The chapter continues as follows: section 6.2 presents the motivation and general for-
mulation of our method, with the specific case of a least-squares classifier in section 6.3
and the specific case of a discriminant analysis classifier in section 6.4. Sections 6.5.2 and
6.5.3 show experiments on sample selection bias problems and general domain adaptation
problems, respectively, and we conclude with discussing some limitations and implications
in section 6.6.

6.2. Target contrastive pessimistic risk
This section starts with the problem definition, followed by our risk formulation.

6.2.1. Problem definition

Given a D-dimensional input space X € RP and a class space Y = {1, ..., K} with K as the
number of classes, a domain refers to a particular joint probability distribution over this pair
of spaces. One is called the source domain, for which labels are available, and the other is
called the target domain, for which no labels are available. Let S mark the source domain,
with n samples drawn from the source domain’s joint distribution, ps(x,y), referred to
as {(x;,¥;)}{=,. Similarly, let T mark the target domain, with m samples drawn from the
target domain’s joint distribution, ps(x,y), referred to as {(zj,uj)}?l:l. Note that both
domains are defined over the same input space, which implies that x and z are represented
in the same D-dimensional feature space. The target labels u are unknown at training time
and the goal is to predict them, using only the given unlabeled target samples {zj};-” and
the given labeled source samples {(x;, y;)}}.

6.2.2. Target risk

The risk minimization framework formalizes risk, or the expected loss £ incurred by clas-
sification function h, mapping input to classes h : X — U, with respect to a particular
joint labeled data distribution; R(h) = E[£ (h | x,y)]. By minimizing empirical risk, i.e.
the approximation using the sample average, with respect to classifiers from a space of hy-
pothetical classification functions H, one hopes to find the function that generalizes most
to novel samples. Additionally, a regularization term that punishes classifier complexity
is often incorporated to avoid finding classifiers that are too specific to the given labeled
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data. For a given joint distribution, the choice of loss function, the hypothesis space and
amount of regularization largely determine the behavior of the resulting classifier.

The empirical risk in the source domain can be computed as follows:

n

N 1

RGxy) == ehlxy),
i=1

with the source classifier being the classifier that is found by minimizing this risk:

h$ =argminR (h|x,y) . (6.1)
heH

Since the source classifier does not incorporate any part of the target domain, it is essen-
tially entirely naive of it. But, if we assume that the domains are related in some way, then
it makes sense to apply the source classifier on the target data. To evaluate A° in the tar-
get domain, the empirical target risk, i.e. the risk of the classifier with respect to target
samples, is computed:

m

L 1 .
R(RS 1 2u) = — > 6(R 70;). (6.2)

j=1

Training on the source domain and testing on the target domain is our baseline, non-
adaptive approach.

Although the source classifier does not incorporate information from the target domain
nor any knowledge on the relation between the domains, it is often not the worst classifier
(especially in cases where the domains are very similar). In cases where approaches rely
heavily on assumptions, the adaptive classifiers can deviate from the source classifier in
ways that lead to even larger target risks. Considering that these assumptions cannot be
checked for validity, there are no guarantees that these adaptive classifiers outperform the
source classifier. Essentially, they are not safe to use.

6.2.3. Contrast

We are interested in finding a classifier that is never worse than the source classifier. We
formalize this desire by subtracting the source classifiers target risk in (6.2) from the target
risk of a different classifier h:

R(h|zu) — R(RS | zu) (6.3)

If such a contrast is used as a risk minimization objective, i.e. rhrg?l? R(h|z,u) — ﬁ(ﬁs |z, u),

then the risk of the resulting classifier is bounded above by the risk of the source classifier:
the maximal value of the contrast is 0, which occurs when the same classifier is found,
h = hS. Classifiers that lead to larger target risks are not valid solutions to the minimization
problem, which implies that certain parts of the hypothesis space H will never be reached.
As such, the contrast implicitly constrains H in a similar way as projection estimators [30].
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6.2.4. Pessimism

However, (6.3) still incorporates the target labels u, which are unknown. Taking a conser-
vative approach, we use a worst-case labeling instead, achieved by maximizing risk with
respect to a hypothetical labeling g. For any classifier h, the risk with respect to this worst-
case labeling will always be larger than the risk with respect to the true target labeling:

R(h|zu) <maxR(h|zq) . (6.4)
q

Unfortunately, maximizing over a set of discrete labels is a combinatorial problem and is
computationally very expensive. To avoid this expense, we represent the hypothetical la-
beling probabilistically, g;; := p(u; = k| z;), sometimes also referred to as a soft label
[31]. This means that q; is means that g; is a vector of K elements that sum to 1, repre-
sented as an element of a K — 1 simplex, Ax_;. For m samples, an m-dimensional K — 1
simplex A}_; is taken. Note that known labels can also be represented probabilistically,
forexampley;, =1 © p(y; =1|x;) =1, p(y; # 1| x;) = 0. Hence, in practice, both
y; and u; are represented as 1 by K vectors with the k-th element marking the probability
that sample i or j belongs to class k.

6.2.5. Contrastive pessimistic risk
Joining the contrastive target risk from (6.3) with the pessimistic labeling g from (6.4) forms
the following risk function:

m

R A 1 .

R(h|1%,2,q) = — > e(h]2j,05) = €(h° | 23,0).. (6.5)
=1

We refer to the risk in equation 6.5 as the Target Contrastive Pessimistic risk (TCP). Mini-

mizing it with respect to a classifier h and maximizing it with respect to the hypothetical

labeling g, leads to the new TCP target classifier:

h7 = argmin max R™(h| hS, z, q). (6.6)
hex qEAR

Note that the TCP risk only considers the performance on the target domain. It is differ-
ent from the risk formulations in [25] and [29], because those incorporate the classifiers
performance on the source domain as well. Our formulation contains no evaluation on the
source domain, and focuses solely on the performance gain we can achieve in the target
domain with respect to the source classifier.

6.2.6. Optimization

If the loss function ¥ is restricted to be globally convex and the hypothesis space H is a
convex set, then the TCP risk with respect to h will be globally convex and there will be a
unique optimum with respect to h. The TCP risk with respect to q is linear and bounded
due to the simplex, which means that it is possible that the optimum is not unique. How-
ever, the combined minimax objective function is globally convex-linear. This is important,
because it guarantees the existence of a saddle point, i.e. an optimum with respect to both
hand q [32].
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Finding the saddle point can be done through first performing a gradient descent step
according to the partial derivative with respect to h, followed by a gradient ascent step
according to the partial derivative with respect to q. However, this last step causes the
updated q to leave the simplex. In order to enact the constraint, it is projected back onto
the simplex after performing the gradient step. This projection, P, maps the point out-
side the simplex, a, to the point, b, that is the closes point on the simplex in terms of
Euclidean distance: P(a) = argminye, |[a — b||, [33, 34]. Unfortunately, the projection
step complicates the computation of the step size, which we replace by a learning rate !,
decreasing over iterations t. This results in the overall update: ¢t « P(gt + atVq?).
Note that the projection step is linear, which means the overall update for q remains linear.

A gradient descent - gradient ascent procedure for globally convex-linear objectives is
guaranteed to converge to the saddle point (c.f. proposition 4.4 and corollary 4.5 of [32]).

6.3. Least-squares

Discriminative classification models make no assumptions on the data distributions and di-
rectly optimize predictions. We incorporate a discriminative model in the TCP risk through
the least-squares classifier, which is defined by a quadratic loss function €, s(h | x;, ;) =
(h(x;) — y;)? [35]. For multi-class classification, we employ a one-vs-all scheme [36].

Furthermore, we chose a linear hypothesis space, h(z) = argmaxyey ZZ Z364x + 6ok
which we will denote as the inner product z8, between the data row vector, implicitly
augmented with a constant 1, and the classifier parameter vector. 6 is an element of a
(D + 1) x K-dimensional parameter space ® and in the following, we will refer to the
classifier optimization step, i.e. minimization over h € H, as a parameter estimation step,
i.e. a minimization over 8 € 0. In summary, the least-squares loss of a sample is:

K
2
fLs(9|Z',Qj)=Z(Zj9k—CIjk) : (6.7)
k=1
Plugging (6.7) into (6.5), the TCP-LS risk is defined as:

m

. A 1 A

RESCP(H 16°,2,q) = EZ{’LS(H | zj,q;) — 1{)LS(GS | zj,q;)
=1

m K
> (@~ a0 = (508 — a0,

j=1k=1

Se

with the resulting estimate:

6% = argmin max R[$P(6 | 6%,2,q). (6.8)
9co qEAR,




154 6. Robust adaptation

For fixed q, the minimization over 6 has a closed form solution. For each class, the
parameter vector is:

TCP AS —
3o; REP018°,2.9) =0

1 m
EZ 2 z]T(Zij —qjx) =0
j=1
m m
= (Zz}- ZZ q]k
j=1 j=1
Keeping 8 fixed, the gradient with respect to g}y, is linear:
0 R -2 -2 .
ATCP S _ S
mRLS ©10°,2,q) = E(Zjek —qjk) — ?(Zjek = qjk)
-2 R
=—z;(6,—-63).
m zj(6r — 03)

Note that the maximization over q is essentially driving the two sets of parameters apart.
See Algorithm 3 for pseudo-code for TCP-LS.

Algorithm 3 TCP-LS
Input: source data x (size n X D), labels y (size n X K), target data z (size m X D), learning
rate a, convergence criterion €.
Output: 6% = (64, ..., Ox)
for all classes do

65 = (20 aTx) (20 %7 vie)

end for

t=0

0t = 6 vk
q]t.k «1/K Vi, k
repeat

for all classes do
05 = (3] 2] 2) (3] 2] al)
for all samples do
Vaj = —2z; (65 — 63)/m

end for
end for
qt+1 - :P(qt _ atvq)
at+1 — (Z/t
t—t+1

until || RISP (6141 | 65, 2,qt*1) — RISP(6% 1 6%,2,q%) || < €
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6.4. Discriminant analysis

As a generative classification model for the TCP risk, we chose the discriminant analysis
model (DA). It fits a Gaussian distribution to each class, proportional to the class prior:

1
N(x|6) = exp(—5(x — )T (¥ = )1,

1
N

where 6}, consists of the prior, mean and covariance matrix for the k-th class; 6, = (my, t,
%), | - | marks the determinant and the capital IT refers to the number. New samples x*
are classified according to maximum probability: h(x™) = argmaxyey N (x* | ;). Each
label is encoded as a vector, e.g. for Y = {1,2,3},y; = 2 & y; = [0,1,0]. The model
is incorporated in the empirical risk minimization formulation by taking the negative log-
likelihoods as the loss function:

£ 1%) = ) =y log N (x | 6,).
k

6.4.1. Quadratic discriminant analysis

If one Gaussian distribution is fitted to each class separately, the resulting classifier is a
quadratic function of the difference in means and covariances, and is hence called quadratic
discriminant analysis (QDA). For target data z and soft labels g, the loss is formulated as:

Laon(® 12;,4)) = ) ;i log N (2 1 6, (6.9)
k=1

Plugging the loss from (6.9) into (6.5), the TCP-QDA risk becomes:

RGN0 16%,2,q) = t”QDA(GIZ,,q,) Laon(8° 125, 4))
J=1
m K
1 N(ZJ | 6;)
— —qjk — s (6.10)
m j=1k=1 | Hk)

where the estimate itself is:

AT : ATCP 4S
Oapa = ar%ggmqrenﬁ(nleQDA(H |6°,2,q).
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Minimization with respect to 8 also has a closed-form solution for discriminant analysis
models. For each class, the parameter estimates are:

NgE:

djk»

-1
]k) Z qjkZj,

L = (Z ]k) quk(z — ) (zj — i) -

j=1

1
Ty = —
KT m

[y

Mk=

3 "MS -

One of the properties of a discriminant analysis model is that it requires the estimated
covariance matrix £ to be non-singular. It is possible for the maximizer over g in TCP-QDA
to assign less samples than dimensions to one of the classes, causing the covariance matrix
for that class to be singular. To prevent this, we regularize its estimation by first restricting
X, to minimal eigenvalues of 0 and then adding a scalar multiple of the identity matrix
Al. Essentially, this constrains the estimated covariance matrix to a minimum size in each
direction.

Keeping 6 fixed, the gradient with respect to gy, is linear:

—a 5 A 1 N 7 9
RIE(6165,2,q) = —— log LI 1%
6ij m N(Zj | ek)

Algorithm 4 lists pseudo-code for TCP-QDA.

6.4.2. Linear discriminant analysis

If the model is constrained to share a single covariance matrix for each class, the resulting
classifier is a linear function of the difference in means and is hence termed linear dis-
criminant analysis (LDA). This constraint is imposed through the weighted sum over class
covariance matrices L = Z’,f T2

6.4.3. Performance guarantee

The discriminant analysis model has a very surprising property: it obtains a strictly smaller
risk than the source classifier. To our knowledge, this is the first time that such a perfor-
mance guarantee can be given in the context of domain adaptation.

Theorem 1. For a continuous target distribution, with more unique samples than features
for every class, m;, > D, the empirical target risk of a discriminant analysis model I?DA
with TCP estimated parameters 67 is strictly smaller than the empirical target risk of a
discriminant analysis model with parameters S estimated on the source domain:

Roa(87 | z,u) < Rpa(8° | z,u)
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Algorithm 4 TCP-QDA
Input: source data x (size n X D), labels y (size n X K), target data z (size m X D), learning
rate a, convergence criterion €.

output: 60pn = (T, oo, Tk, g s Bic 210 v Zic)
for all classes do

g =n"ty; J’ikl
iy = (27 vir) . Y7 Vikxi
55 = (Z? )’ik) Z? Vi (x; — ﬁi)T(xi - ﬁi)

end for

t=0

O = (e, AL 2R Vk
G < 1/K Vi, k
repeat

for all classes do
me =m™ Z}n T
we= (5] ah) " X alz
I = (Z;n Q§k)_1 Z;-n Qe (zj — )T (Z; — )
0L = (mx, iy, i)
for all samples do

Vg = —log [N (z; | 657/ (z; | 67)]

end for

end for

qt+1 - :P(qt _ atvq)

at+1 — a/t

t—t+1

until || RIS, (661 | 65,2,q"+1) — RIS, (651 85,2,q") || <€

The reader is referred to Appendix A for the proof. It follows similar steps as a robust
guarantee for discriminant analysis in semi-supervised learning [37]. Note that as long as
the same amount of regularization 1 is added to both the source §° and the TCP classifier
67 , the guarantee also holds for a regularized model.

It should also be noted that the risks of TCP-LDA and TCP-QDA are always strictly smaller
with respect to the given target samples, but not necessarily strictly smaller with respect to
new target samples. Although, when the given target samples are a good representation
of the target distribution, one does expect the adapted model to generalize well to new
target samples.

6.5. Experiments

Our experiments compare the risks of the TCP classifiers with that of the source clas-
sifier and the corresponding oracle target classifier, as well as their performance with
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respect to various state-of-the-art domain adaptive classifiers through their areas under
the ROC-curve. In all experiments, all target samples are given, unlabeled, to the adap-
tive classifiers. They make predictions for those given target samples and their perfor-
mance is evaluated with respect to those target samples’ true labels. Cross-validation
for regularization parameters was done by holding out source data, as that is the only
data for which labels are available at training time. The range of values we tested was
[0 10710751074 10721072 10* 10° 10 10? 103].

6.5.1. Compared methods

We implemented transfer component analysis (TCA) [8], kernel mean matching (KMM)
[26], robust covariate shift adjustment (RCSA) [29] and the robust bias-aware (RBA) clas-
sifier [25] for the comparison (see cited papers for more information). TCA and KMM are
chosen because they are popular classifiers with clear assumptions. RCSA and RBA are cho-
sen because they also employ minimax formulations but from different perspectives; RCSA
as a worst-case and RBA as a moment-matching importance weighing. Their implementa-
tions details are discussed shortly below.

Transfer component analysis TCA assumes that there exists a common latent represen-
tation for both domains and aims to find this representation by means of a cross-domain
nonlinear component analysis [8]. In our implementation, we employ a radial basis func-
tion kernel with a bandwidth of 1 and set the trade-off parameter y to 1/2. After mapping
the data onto their transfer components, we train a logistic regressor on the mapped source
data and apply it to the mapped target data.

Kernel mean matching KMM assumes that the class-posterior distributions are equal in
both domains and that the support of the target distribution is contained within the source
distribution [20, 26]. When the first assumption fails, KMM will have deviated from the
source classifier in a manner that will not lead to better results on the target domain. When
the second assumptions fails, the variance of the importance-weights increases to the point
where afew samples receive large weights and all other samples receive very small weights,
reducing the effective training sample size and leading to pathological classifiers. We use
a radial basis function kernel with a bandwidth of 1, kernel regularization of 0.001 to favor
estimates with lower variation over weights and upper bound the weights by 10 000. After
estimating importance weights, we train a weighed least-squares classifier on the source
samples.

Robust covariate shift adjustment RCSA also assumes equal class-posterior distributions
and containment of the support of the target distribution within the source distribution,
but additionally incorporates a worst-case labeling [29]. To be precise, it maximizes risk
with respect to the importance weights. We used the author’s publicly available code with
5-fold cross-validation for its hyperparameters. Interestingly, the authors also discuss a
relation between covariate shift and model misspecification, as described by [38]. They
argue for a two-step (estimate weights - train classifier) approach in a game-theoretical
form [29, 39, 40], which is done by all importance-weighted classifiers here.
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Robust bias-aware RBA assumes that the moments of the feature statistics are approx-
imately equal up to a particular order [25]. In their formulation, the adversary plays a
classifier whose class-posterior probabilities are used as a labeling of the target samples,
but who is also constrained to match the moments with the source domain’s statistics.
The player then proposes an importance-weighted classifier that aims to perform well on
both domains. Note that the constraints on the adversary are, among others, necessary to
avoid the players switching strategies constantly. We implement RBA using first-order fea-
ture statistics for the moment-matching constraints, which was also done by the authors
in their paper. Furthermore, we use a ratio of normal distributions for the weights and
bound them above by 1000.

6.5.2. Sample selection bias setting

Sample selection bias settings occur when data is collected locally from a larger population.
For regression problems, these settings are usually created through a parametric sampling
of the feature space [5, 26]. We created something similar but for classification problems:
samples are concentrated around a certain subset of the feature space, but with equal class
priors as the whole set. For each class:

1. Find the sample closest to the origin; x,.
2. Compute distance d(x,, x;) to all other samples of the same class.
3. Draw without replacement m;n® samples proportional to exp(—d (x,, xx)).

where n° denotes the total number of samples to draw and ;. refers to the class-prior
distributions of the whole set. Note that drawing m;n samples from each class leads to ap-
proximately the same class prior distributions in the source domain as the target domain.
We chose the squared Mahalanobis distance: d(xg, xx) := (xg — xx)Z "1 (xg — xx) T, with
the covariance matrix estimated on all data, since that takes scale differences between
features into account. Figure 6.1 presents an example, showing the first two principal com-
ponents of the pima diabetes dataset. Red/blue squares denote the selected source sam-
ples, black circles denote all samples and the green stars denote the seed points (x, for
each class).

Data sets

We collected the following datasets from the UCI machine learning repository: cylinder
bands printing (bands), car evaluation (car), credit approval (credit), ionosphere (iono),
mammographic masses (mamm), pima diabetes (pima) and tic-tac-toe endgame (t3). Table
6.1 lists their characteristics. All missing values have been imputed to 0. For each dataset,
we draw n® = 50 samples as the source domain while treating all samples as the target
domain.

Results

The risks (average negative log-likelihoods for the discriminant analysis models and mean
squared errors for the least-squares classifiers) in Table 6.2 belong to the source classifiers,
the TCP classifiers and the oracle target classifiers. The oracles represent the best possible
result, as they comprise the risk of a classifier trained on all target samples with their true




160 6. Robust adaptation

6 ‘
. z
3 .o... L u X|y='1
4+ . B X|y=+1
seed
N
O 2+ n .
o
[J“ n L
0 .. 1
_2 | | | | |
0 2 4 6 8 10 12

Figure 6.1: Example of a biased sampling. Shown are the first two principal components of the pima diabetes
dataset, with all target samples in black, the selected source samples in red/blue and the samples closest to 0 of
each class in green (seeds).

Table 6.1: Sample selection bias datasets characteristics.

#Samples #Features #Missing Class (-1]+1)

bands 539 39 569 312 | 227
car 1728 6 0 1210 | 518
credit 690 15 67 307|383
iono 351 34 0 126 | 225
mamm 961 5 162 516 | 445
pima 768 8 0] 500 | 268
t3 958 9 0 332|626

labels. The results show varying degrees of improvement for the TCP classifiers. TCP-LDA
approaches T-LDA more closely than the other two versions, with TCP-LS being the most
conservative one. For the ionosphere and tic-tac-toe datasets, the improvement is quite
dramatic, indicating that the source classifier is a poor model for the target domain. Note
also that some overfitting might be occurring as TCP-QDA does not always have a lower
risk than TCP-LDA, even though T-QDA does always have a lower risk than T-LDA.

Table 6.3 compares the performances of the adaptive classifiers on all datasets through
their area under the ROC-curves (AUC). Although there is quite a variety between datasets,
the variation between classifiers within a dataset is relatively small; all approaches perform
similarly well. However, with our selection bias procedure, the moments of the target
statistics do not match the source statistics (e.g. the target’s variance is by construction
always larger) which affect RBA’s performance negatively. Interestingly, the TCP discrim-
inant analysis models are quite competitive in cases where their improvement over the
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Table 6.2: Risks (average negative log-likelihoods and mean squared errors) of the naive source classifiers (S-LDA,
S-QDA, S-LS), the TCP classifiers (TCP-LDA, TCP-QDA, TCP-LS) and the oracle target classifiers (T-LDA, T-QDA, T-LS)
on the sample selection bias datasets.

S-LDA TCP-LDA T-LDA S-QDA TCP-QDA T-QDA S-LS TCP-LS T-LS
bands -216.3 -218.4 -218.8 -215.3 -217.8 -21941 1170 1109 0.827
car 1716  2.850 2.148 57.39 18.77 2.049 1.968 1.205 0.672
credit -80.04 -83.64 -83.65 -78.99 -83.73 -84.61 2.430 0.973 0.757
iono 199.5 -8.480 -8.782 26.30 -9.325 -18.78 17.06 0.815 0.350
mamm 8.133 -10.40 -11.22 31.66 -10.08 -11.68 0.818 0.668 0.580
pima  -15.92 -23.44 -24.15 -7.486 -23.09 -24.30 1.083 1.012 0.633
t3 18.77 6136 4.734 173 3913 4.6M 1.401 1.401 0.849

source classifier was larger. Unfortunately, like RBA, the more conservative TCP-LS never
outperforms all other methods simultaneously on any of the datasets. Still, in the average
it reaches competitive performance overall. In summary, the TCP classifiers perform on
par with the other adaptive classifiers.

Table 6.3: Sample selection bias datasets. Areas under the ROC-curves for a range of domain adaptive classifiers.

TCA  KMM RCSA RBA TCP-LS TCP-LDA TCP-QDA

bands .578 .620 562 .504  .588 .548 .589
car 736 776 742 684 734 .758 .699
credit 716 694 655 702 .662 .646 .663
iono T4 817 .835 .687 731 .894 .826
mamm 656 .804 749 762 .836 .824 .847
pima 691 630 760 .271 .692 .684 .637
t3 .608 532 439 446 520 .529 .606
mean 675 696  .677 .579 .680 .698 .695

6.5.3. Domain adaptation setting

We performed a set of experiments on a dataset that is naturally split into multiple do-
mains: predicting heart disease in patients from hospitals in 4 different locations. It is a
much more realistic setting because problem variables such as prior shift, class imbalance
and proportion of imputed features are not controlled. As such, it is a harder problem than
the sample selection bias setting. In this setting, the target domains often only have lim-
ited overlap with the source domain and can be very dissimilar. As the results will show,
many of the assumptions that the state-of-the-art domain adaptive classifiers rely upon,
do not hold and their performance degrades drastically.

Data set

The hospitals are the Hungarian Institute of Cardiology in Budapest (data collected by An-
dras Janosi), the University Hospital Zurich (collected by William Steinbrunn), the Univer-
sity Hospital Basel (courtesy of Matthias Pfisterer), the Veterans Affairs Medical Center in
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Long Beach, California, USA, and the Cleveland Clinic Foundation in Cleveland, Ohio, USA
(both courtesy of Robert Detrano), which will be referred to as Hungary, Switzerland, Cal-
ifornia and Ohio hereafter. The data from these hospitals can be considered domains as
the patients are all measured on the same biometrics but show different distributions. For
example, patients in Hungary are on average younger than patients from Switzerland (48
versus 55 years). Each patient is described by 13 features: age, sex, chest pain type, rest-
ing blood pressure, cholesterol level, high fasting blood sugar, resting electrocardiography,
maximum heart rate, exercise-induced angina, exercise-induced ST depression, slope of
peak exercise ST, number of major vessels in fluoroscopy, and normal/defective/reversible
heart rate.

Table 6.4 describes the number of samples (n, m), total number of missing measure-
ments that have been imputed (miss, misy) the class balance (cs, ¢r) and the empirical
Maximum Mean Discrepancy (MMD) for all pairwise combinations of designating one do-
main as the source and another as the target. To elaborate: the empirical MMD measures
how far apart two sets of samples are [26]:

MMD =||n~1 Z d(x)—m! Z d(z)|I?
i j

n m
= n-2 Z K(xp, %) — 2(nm)~1 Z K(x, z)) +m~? Z K(z,2)).
ii’ ij JJ’

In order to compute it, we used a radial-basis function with a bandwidth of 1. An MMD of
0 means that the two sets are identical, while larger values indicate larger discrepancies
between the two sets.

First of all, the sample size imbalance is not really a problem, as the largest difference
occurs in the Ohio - Switzerland combination with 303 and 123 samples respectively. How-
ever, the fact that the classes are severely imbalanced in different proportions, for example
going from 54% : 46% to 7% : 93% in Ohio - Switzerland, creates a very difficult setting.
A shift in the prior distributions can be disastrous for some classifiers, such as RBA which
relies on matching the source and target feature statistics. Furthermore, a sudden increase
in the amount of missing values (unmeasured patient biometrics), such as in Ohio - Califor-
nia, means that a classifier relying on a certain feature for discrimination degrades when
this feature is missing in the target domain. Additionally, the combinations Ohio - Switzer-
land and Switzerland - Hungary have an MMD that is two orders of magnitude larger than
other combinations. Overall, looking at all three sets of descriptive statistics, the combina-
tions Ohio - Switzerland and Switzerland - Hungary should pose the most difficulty for the
adaptive classifiers.

Lastly, to further illustrate how the domains differ, we plotted histograms of the age and
resting blood pressure of all patients, split by domain (see Figure 6.2). Not only are they
different on average, they tend to differ in variance and skewness as well.
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Table 6.4: Heart disease dataset properties, for all pairwise domain combinations (O='Ohio’, C="California’,
H="Hungary’ and S='Switzerland’). § denotes the source and T the target domain, n the amount of source and
m the amount of target samples, cs the class balance (-1,+1) in the source domain and ¢y the class balance in the
target domain. MMD denotes the empirical Maximum Mean Discrepancy between the source and target data.

S T n m  miss miSy Cs Cr MMD
O H 303 294 6 782  164:139 188:106 0.0012
O S 303 123 6 273  164:139 8:115 0.1602
O C 303 200 6 698  164:139  51:149  0.0227
H S 294 123 782 273  188:106 8:115 0.1384
H C 294 200 782 698  188:106  51:149 0.0151
S C 123 200 273 698 8:115 51:149  0.0804
H O 294 303 782 6 188:106 164:139  0.0012
S O 123 303 273 6 8:115 164:139  0.1602
cC O 200 303 698 6 51:149  164:139 0.0227
S H 123 294 273 782 8:115 188:106 0.1384
C H 200 294 698 782 51:149  188:106  0.0151
c S 200 123 698 273 51:149 8:115 0.0804
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Figure 6.2: (Left top) Histogram of the age of patients in each domain, (right) histogram of the resting blood
pressure of patients in each domain.

Results

Table 6.5 lists the target risks (average negative log-likelihoods for the discriminant analysis
models and mean squared errors for the least-squares classifiers) with the given target
samples’ true labels for all source, TCP and oracle target classifiers. Note that the TCP
risks range between the source and the oracle target risk. For some combinations TCP is
extremely conservative, e.g. Switzerland - Ohio, Switzerland - Hungary for the least-squares
case, and for others, it is much more liberal, e.g. Hungary - Switzerland, Hungary - Ohio,
Hungary - California for the discriminant analysis models. In general, the discriminative
model (TCP-LS) deviates much less and is much more conservative than the generative
models (TCP-LDA and TCP-QDA). Note that the order of magnitude of the improvement
with TCP-DA in the Hungary - Switzerland, Hungary - Ohio and Hungary - California settings
is due to the fact that the two domains lie far apart; the target samples lie very far in the
tails of the source models’ Gaussian distribution and evaluate to very small likelihoods,
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which become very large negative log-likelihoods.

Table 6.5: Heart disease dataset. Target risks (average negative log-likelihoods (left, middle) and mean squared
errors (right)) for all pairwise combinations of domains (O="Ohio’, C="California’, H="Hungary’ and S='Switzerland’;
smaller values are better).

ST S-LDA TCP-LDA T-LDA S-QDA TCP-QDA T-QDA S-LS TCP-LS T-LS
OH -53.55 -5718 -57.35 -53.55 -57.20 -57.62 0.580 0.579 0.444
OS -8.293 -16.76 -17.54 -8.293 -16.76 -17.54 1.449 1.449 0.213
ocC -37.84 -53.88 -54.69 -37.83 -53.73 -54.89 1.441 1.441 0.613
HS -12.50 -16.08 -17.54 -12.80 -16.44 -17.54 1.068 1.068 0.213
HC -41.70 -53.91 -54.69 -40.08 -54.45 -54.89 1120 1104 0.613
SC 494.9 -54.49 -54.69 498.9 -54.44 -54.89 0.904 0.904 0.671
HO -48.91 -55.08 -55.23 -49.20 -54.84 -55.53 0.642 0.638 0.463
SO 709.9 -54.07 -55.23 709.9 -54.10 -55.53 1.700 1.700 0.696
co -49.21 -55.00 -55.23 -49.17 -55.05 -55.53 1.833 1.833 0.470
SH 649.9 -56.09 -57.35 650.3 -56.19 -57.62 2102 2102 0.740
CH -53.05 -5719 -57.35 -5315 -5717 -57.62 0.582 0.582 0.444
CS -15.45 -17.43 -17.54 -15.47 -17.44 -17.54' 0.415 0.415 0.236

Looking at the areas under the ROC-curves in Figure 6.6, one observes a different pattern
in the classifier performances. TCA, KMM, RCSA and RBA perform much worse, often below
chance level. It can be seen that, in some cases, the assumption of equal class-posterior
distributions still holds approximately, as KMM and RCSA sometimes perform quite well,
e.g. in Hungary - Ohio. TCA’s performance varies around chance level, indicating that it is
difficult to recover a common latent representation in these settings. That makes sense,
as the domains lie further apart this time. RBA’s performance drops most in cases where
the differences in priors and proportions of missing values are largest, e.g. Hungary - Cali-
fornia, which also makes sense as it is expecting similar feature statistics in both domains.
TCP-LS performs very well in almost all cases; the conservative strategy is paying off. TCP-
LDA is also performing very well, even outperforming TCP-QDA in all cases. The added
flexibility of a covariance matrix per class is not beneficial because it is much more diffi-
cult to fit correctly. Note that the domain combinations are asymmetrical; for example,
RCSA’s performance is quite strong when Switzerland is the source domain and Ohio the
target domain, but it’s performance is much weaker when Ohio is the source domain and
Switzerland the target domain. In some combinations, assumptions on how two domains
are related to each other might be valid that are not valid in their reverse combinations.
Overall, in this more general domain adaptation setting, our more conservative approach
works best, as shown by the mean performances.

Visualization of the worst-case labeling

The adversary in TCP's minimax formulation maximizes the objective with respect to the
probability g that a sample j belongs to class k. However, note that the worst-case la-
beling corresponds to the labeling that maximizes the contrast: it looks for the labeling for
which the difference between the source parameters and the current parametersis largest.
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Table 6.6: Heart disease dataset. Area under the ROC-curve for all pairwise combinations of domains (O="Ohio’,
C='California’, H="Hungary’ and S='Switzerland’; larger values are better.

S T TCA KMM RCSA RBA TCP-LS TCP-LDA TCP-QDA
O H .699 710 .372 .481  .881 .882 .817
O S 590 551 634 670 714 .671 .671
O C 496 476 560 450  .671 .668 476
H S 455 501  .646 602 .668 .665 .666
H C .528 533 .585 434 727 .709 .662
S C 475 573 464 603 .605 .546 .480
H O 616 742 751 510 .864 .876 .863
S O .582 .353 .750 .449 .753 .589 426
c O 484 337 551 557  .671 .831 .828
S H 407  .370  .629 .484  .697 724 .604
C H 472 427 538 616 .805 .878 .824
c S 511 593 462 474 709 .503 .535
mean 526 514 578 528 730 712 .654

It would be interesting to visualize this labeling at the saddle point. Figure 6.3 shows the
first two principal components of Hungary, with the probabilities of belonging to class 1,
i.e. qjr=1- The top left figure shows the true labeling, the top right the probabilities for
TCP-LS, the bottom left for TCP-LDA and the bottom right for TCP-QDA. In all three TCP cases
the labeling is quite smooth and does not vary too much between neighboring points. One
would expect a rough labeling, but note that labellings that are bad for the source classifier
will most likely also be bad for the TCP classifier, and the resulting contrast will be small
instead of maximal. The probabilities for TCP-LS lie closer to 0 and 1 than for TCP-LDA and
TCP-QDA.

6.6. Discussion

Although the TCP classifiers are never worse than the source classifier by construction, they
will not automatically lead to improvements in the error rate. This is due to the difference
between optimizing a surrogate loss and evaluating the 0/1-loss [37, 41, 42]. There is no
one-to-one mapping between the minimizer of the surrogate loss and the minimizer of the
0/1-loss.

One peculiar advantage of our TCP model is that we do not explicitly require source
samples at training time. They are not incorporated in the risk formulation, which means
that they do not have to be retained in memory. It is sufficient to receive the parameters
of a trained classifier that can serve as a baseline. Our approach is therefore more effi-
cient than for example importance-weighing techniques which require source samples for
importance-weight estimation and subsequent training. Additionally, it would be interest-
ing to construct a contrast with multiple source domains. The union of source classifiers
might serve as a very good starting point for the TCP model.
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Figure 6.3: Scatter plots of the first two principal components of Hungary in the heart disease dataset. (Top left)
True labeling, (top right) qj—4 for TCP-LS, (bottom left) q—4 for TCP-LDA, (bottom right) qj—4 for TCP-QDA.

For each adaptive classifier, regularization parameters are estimated through cross-validation
on held-out source samples. However, this procedure is known to be biased as it does not
account for domain dissimilarity [43, 44]. What is optimal with respect to held-out source
samples, need not be optimal with respect to target samples. Performance of many adap-
tive models might be improved with appropriate adaptive validation techniques.

6.7. Conclusion

We have designed a risk minimization formulation for a domain-adaptive classifier whose
performance, in terms of risk, is always at least as good as that of the non-adaptive source
classifier. Furthermore, for the discriminant analysis case, its performance is always strictly
better. Our target contrastive pessimistic model performs on par with state-of-the-art do-
main adaptive classifier on sample selection bias settings and outperforms them on more
realistic domain adaptation problem settings.
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6.8. Appendix A

Proof of Theorem 1. Let {(x;, ;)}=, be a sample set of size n drawn iid from continuous
distribution ps, defined over D-dimensional real-valued input space X € RP and output
space Y = {1,..,K} with K as the number of classes. Similarly, let {(z;,u;)}j; be a
sample set, of size m, drawn iid from continuous distribution ps, defined over the same
spaces. For the purposes of the following risk function, the labels of single samples, y;
and u;, are encoded as 1 by K vectors, with the k-th element being the probability of
belonging to the k-th class. Consider a discriminant analysis model parameterized either
as 0 = (mq, .., g, U1, » Uk, 21, - 2g) fOr QDA Or 6 = (74, ..., Tk, U1, ---, Ug, 2) fOr LDA.
Rpa denotes empirical risk consisting of average negative Gaussian log-likelihoods weighted
by labels:

3=

f?DA(‘9 | x,y) =

m K
D) v log N 16,).
j=1k=1

Note that 8, refers to (my, Uy, L) in the case of QDA and to (my, iy, ) in the case of LDA.
The sample covariance matrix, X; for QDA and X for LDA, is required to be non-singular,
which is guaranteed when there are more unique samples than features for every class,
my, > D. In the LDA case, D + K unique samples are sufficient. Let 5 be the parameters
estimated on labeled source data; 85 = argmin IA?DA(H | x, y).

6ed

Firstly, for fixed q, the minimized contrast between the target risk of any parameter 6
and the source parameters 6% is non-positive, because both parameters sets are elements
of the same parameter space, 8, 6° € ©:

lglelél RDA(Q I Z, q) - RDA(HAS | Z, q) S 0

6’s that result in a larger target risk than that of 8 are not minimizers of the contrast.
The maximum value it can attain is 0, which occurs when exactly the same parameters are
found; 8 = §5. Considering that the contrast is non-positive for any labeling q, it is also
non-positive with respect to the worst-case labeling:

min gx Roa(012,9) — Ron(6° 12,9) < 0. (6.1)

Secondly, given that the empirical risk with respect to the true labeling is always less than
or equal to the empirical risk with the worst-case labeling, R(8 | z,u) < max, ROz q),
the target contrastive risk (6.3) with the true labeling u is always less than or equal to the
target contrastive pessimistic risk (6.5):

Iglelél I?DA(Q IZ,U.) - }’éDA(és IZ,U.) <

min qr&%iﬁm(ﬁ |2,q) — Roa(6° 1 2,q). (6.12)
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Let (87, g*) be the minimaximizer of the target contrastive pessimistic risk on the right-
handside of (6.12). Plugging these estimates in into (6.12) produces:

Roa(87 | zw) — Roa(8° | z,u) < Roa(87 1 2,94") — Roa(8° 1 2,.q7). (6.13)
Combining inequalities 6.11 and 6.13 gives:
I%DA(éT | Z,u) - RDA(éS | Z,u) S 0 .

Bringing the second term on the left-handside to the right-handside shows that the tar-
get risk of the TCP estimate is always less than or equal to the target risk of the source
classifier’s:

Roa(87 | z,u) < Rpa(8° | zu). (6.14)

However, equality of the two risks in 6.14 occurs with probability 0, which we will show in
the following.

The total mean for the source classifier consists of the weighted combination of the class
means, resulting in the overall source sample average:

s

T e
n n
i Yik 1

K
k=1
K
z n —Zn VikXi
k=1 i Yik i3

n

=% Z % (6.15)

The total mean for the TCP-DA estimator is similarly defined, resulting in the overall tar-
get sample average:

k=1
K m
_Z Z] q}k 1 Zq Z
- m jk4j
=R DY j=1
K m
_\'1 616
—Z o 2, Uz (6.16)
k=1 j=1

1 m
- Z z. (6.17)
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Note that since g consists of probabilities, the sum over classes Zf qjk in (6.16) is 1, for
every sample j. Equal risks for these parameter sets, ﬁDA(QT [ z,u) = Rpa(6° | z,u),
implies equality of the total means, u” = u®. By Equations 6.15 and 6.17, equal total means
imply equal sample averages: m™?! Z;-n zj = nt Z? x;. Given a set of source samples,
drawing a set of target samples such that their averages are exactly equal, constitutes a

single event under a probability density function:
m n
pT(Xl =710 Xm = Zpm | l zZ; = xl)
m

j=1 i=1

=|»—x

By definition, single events under continuous distributions have probability 0. Therefore,
a strictly smaller risk occurs almost surely:

Roa(87 | zu) < Rpa(8° | z,u).
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Discussion

This chapter reflects on the work presented in this thesis as well. Several findings are dis-
cussed and a series of open questions is presented. Additionally, the benefit of domain
adaptation to open science is considered and a future step towards dynamical domain
adaptation is explored.
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In Chapter 1, | outlined my research question: when and how can a statistical classifier
generalize from a source to a target domain? This question is very general and the work
presented in this thesis is insufficient to fully answer it. For the broadest case of domain
shift, the answer is simple: it is impossible for a classifier to generalize from a source do-
main to all possible target domains. For particular cases, it depends on the relationship
between the domains. There are many ways in which two domains can be related to each
other, each with many possible of ways of exploiting that information for designing a clas-
sifier. These ways have not all been found. But, on reflection, some observations can be
made and some new questions can be asked, which are presented in the following subsec-
tions.

With complexity of domain relationships, | mean how many variables change and how
much they change. In this regard, the simplest change is the case of prior shift: only one dis-
crete variable changes. However, even this case can be complicated to deal with. The rarer
a class, the more difficult it is to estimate it. Furthermore, it is not entirely clear whether
source samples should be reweighted to match the class proportions of the target domain
or whether they should be balanced in order to facilitate training the classifier. Moreover,
it is not entirely clear how they should be up- or downweighted: although theoretically
a sample should be assigned a different loss, performance improvements have been re-
ported for methods that upsample and interpolate between source samples. That implies
an assumption of smooth variation in feature space and raises the question of whether this
can always be assumed.

After prior shift, covariate shift is the most constrained case. In its simplest form, only
one covariate (i.e. feature) changes. This has been extensively studied and many open
questions such as how far the variable can shift, how many samples are required to esti-
mate the importance-weight and how the classifier behaves under importance-weight esti-
mation errors, have been addressed already [1, 2]. It seems that the most important things
to check before attempting a method is: does the assumption of equal class-posterior dis-
tributions hold and if not, how strongly is it violated? Are the domains so far apart that the
weights will become bimodal? Do you have enough source and target samples to estimate
importance-weights? If weight estimation is done parametrically, do you have enough
samples to prevent low probabilities in the denominator and if done non-parametrically,
do you have enough samples to perform hyperparameter estimation (e.g. kernel band-
width selection for kernel density estimators)? Is the sample selection variable smooth? Is
there model misspecification (for weight or selection variable estimation and for training
the classifier)?

Further open questionsinclude: how does data preprocessing affect importance weight
estimation versus classifier training? Should each domain be normalized separately to
bring the domains closer together thereby avoiding weight bimodality or should this be
avoided because it induces a violation of the covariate shift assumption? Is it ok to trans-
form only the features that have not shifted between domains? Does the assumption of
equal class-posterior distributions hold for a part of feature space? Can multiple source
domains aid in weight estimation? Are hybrid distributions (joint distributions made up of
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the product of discrete distributions for discrete features and continuous distributions for
continuous features) necessary or useful for weight estimation?

The simplest version of concept shift, is where only one of the conditional distributions
Pk | x4) changes. However, even such a situation is impossible to estimate from data
without observation of at least one labeled sample in each domain, for each class. My
advice would be to estimate it from meta-data: if the experimenter recorded how data
in each domain is annotated, for instance when crowd-sourced annotators have to explain
why they assigned a sample to a particular class, then it is possible to find discrepancies and
correspondences between annotation strategies. This additional information might allow
for correcting sets of labels and reduce the shift in concept. However, concrete methods
for doing so are very application-specific.

The rest of the types of relationships are much more complicated, because multiple
changes occur at the same time. For example, for subspace mappings, there are both
changes in the data distributions and changes in the class-posterior distributions, and pos-
sible changes in class proportions as well. Since these are less constrained, they are harder
to study. This makes it harder to predict whether a specific adaptive method will be suc-
cessful for a given a domain shift problem. Furthermore, it is still unclear what the effects of
sample sizes or estimation errors are for methods based on subspace mappings, domain-
invariant spaces, domain manifolds, low-joint-error, etc. It would be very informative to
study these factors.

In conclusion, | would argue that there is still a lot to be done before domain-adaptive
classifiers become practical, everyday tools. At the moment, there are too many researchers
proposing methods to address very specific cases (sometimes even just between two datasets)

and only a handful of researchers working on answering theoretical questions. This is a

shame, as advances in theory often shape successful methods. With this in mind, the next

two subsections present some open questions that | find interesting.

7.1. Validity of the covariate shift assumption

The current assumption in covariate shift, namely pr(y | x) = ps(y | x), might be too
restrictive to ever be valid in nature. The assumption is often interpreted as the decision
boundary being in the same location in both domains, but considering that they are dis-
tributions, the functions need to be equal for the whole sample space. Both Figure 2.1 in
Chapter 2 and Figure 3.1 from Chapter 3 show examples of the shape of the posterior dis-
tributions. Equal class-posterior distributions is a much more difficult condition to satisfy
than equal decision boundaries. As such, there are many occasions where the assump-
tion is made but is not actually valid, leading to detrimental performances of importance-
weighted classifiers (c.f. Chapter 6).

Fortunately, some experiments have indicated that there is some robustness to a viola-
tion of the covariate shift assumption. It would be very interesting to perform a perturba-
tion analysis and see if a less restrictive assumption can be found. This might take the form
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of decision boundaries lying within a specified € distance from each other. Or it might be
possible to incorporate the distance between decision boundaries as a slack variable, which
would influence importance-weight estimation directly. Since a less restrictive condition
would be easier to satisfy, methods relying on it would be more robust in practice.

7.2. More specific domain discrepancy metrics

Most measures that describe discrepancies between domains are very general; they are
either distribution-free or classifier-agnostic. General measures produce looser general-
ization bounds than more specific measures. As new insights are gained into causes of
domain shift, new, more precise metrics should be developed. These can contain prior
knowledge on the problem at hand: for example, in natural language processing, one of-
ten encodes text documents in bag-of-word or n-gram features. General measures such as
the Maximum Mean Discrepancy might show small values for essentially entirely different
contexts. A more specific measure, such as the total variation distance between Poisson
distributions, would take the discreteness and sparseness of the feature space into ac-
count. Consequently, it would be more descriptive and it would be preferable for natural
language processing domains. Such specific forms of domain discrepancy metrics would
lead to tighter generalization bounds, stronger guarantees on classifier performance and
more practical adaptive classifiers.

Finding domain discrepancies specific to a task or type of data is not a trivial task. A good
place to start is to look at methods that incorporate explicit descriptions of their adapta-
tions. For instance, a subspace mapping method explicitly describes what makes the two
domains different (e.g. lighting or background). Looking at the types of adaptations they
recover would be informative as to what types of discrepancies are useful for specific ap-
plications. | think therefore that methods with explicit descriptions of "transfer” could be
exploited for finding more specific domain discrepancy metrics.

7.3. Open access and institution-variation

Being able to classify a dataset by downloading a source domain and training a domain-
adaptive classifier instead of annotating samples, can save a tremendous amount of time,
money and effort. It increases the value of existing datasets. Not only does it save anno-
tation costs, but it can also increase statistical power by providing more data. | believe the
development of domain-adaptive or transfer learning methods, creates a larger incentive
for researchers to make their data publicly available.

It is not uncommon to hear that different research groups working in the same field
do not use each other’s data. The argument is that the other group is located in a differ-
ent environment, experiments differently or uses a different measuring device, and that
their data is therefore not "suitable” [3]. For example, in biostatistics, gene expression
micro-array data can exhibit "batch effects” [4]. These can be caused by the amplification
reagent, time of day, or even atmospheric ozone level [5]. In some datasets, batch effects
are the most dominant source of variation and are easily identified by clustering algorithms
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[4]. However, additional information such as local weather, laboratory conditions, or ex-
perimental protocol, should be available. That information could be exploited to correct
for the batch effect. The more knowledge we have of possible confounding variables, the
better we would be able to model the transfer from one batch to the other. Consider-
ing the financial costs of genome sequencing experiments, the ability to combine datasets
from multiple research centers without batch effects is very desirable. Larger benefits from
open access further encourage data sharing.

7.4. Sequential adaptation

Successful adaptation is defined as an improvement over the performance of the origi-
nal system. As may be understood from this thesis, it is not clear which conditions have
to be fulfilled in order for the system to perform well. It seems that in cases where it is
difficult to describe how two populations relate to each other, adaptive systems become
highly uncertain. Conversely, the more similar the populations are, the likelier it is that the
system adapts well. It would, for example, be easier to adapt to predict heart disease in
adolescents based on adults, then it would be to adapt to infants. But that raises the ques-
tion: can we design a system that first adapts to an intermediate population and only then
adapts to the final target population? In other words, a system that sequentially adapts?

Intermediate domains are often available, but overlooked. When incorporated, these
would present a series of changes instead of one large jump. For example, adapting from
European hospitals to predicting ilinesses in Asian hospitals is difficult. But a sequential
adaptive system starting in western Europe would first adapt to eastern Europe, followed
by the Middle-East, then to west Asia and finally reaching a population of eastern Asian
patients. If the domain shifts are not too dissimilar in each transition, then adaptation
should be easier.

Of course, the sequential strategy also raises a number of extra questions: will adapta-
tion errors accumulate? How should the possible performance gain be traded off against
the additional computational cost? Will performance feedback be necessary? Some of
these questions have been addressed in dynamical learning settings, such as reinforce-
ment learning or multi-armed bandits [6, 7]. The analysis of sequential adaptive systems
could build upon their findings.

The sequential adaptation setting also shares some overlap with sequential Monte Carlo
sampling, for time series prediction and state-space models [8]. In that setting, a contin-
uous signal that changes its characteristics over time is modeled and extrapolated. One
method, called particle filtering, actually employs importance-weighting over time [9, 10].
Each sample is weighted with its importance with respect to the signal in the next time-
step. However, sudden large changes would cause the same sampling variance problems
as discussed in Chapter 3. Considering the similarity to importance-weighing in covariate
shift, developments in particle filtering could be very useful to sequential domain adapta-
tion. In summary, a lot is known about dynamical learning, which should not be neglected
in designing a sequential domain-adaptive classifier.
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7.5. Conclusion

I hope to have convinced the reader that domain adaptation is an interesting topic of re-
search within machine learning and artificial intelligence. Progress in the design and anal-
ysis of classifiers that generalize to target domains would be beneficial to all areas where
supervised learning is already being used, especially in areas where annotation is expen-
sive and similar datasets are available. There is still a lot of work to be done before these
methods become practical, but with it come many exciting challenges as well.
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Notation

Please refer to this list for a description of the mathematical notation in this thesis. Note
that individual chapters may deviate when necessary.
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Input space, for example RP.

Output space, for example {—1,+1} or {1, ..., K}.
Dimensionality of input space.

Number of classes, i.e. |Y].

Source probability distribution function.

Target probability distribution function.

Source domain: (X, Y, ps).

Target domain: (X, Y, pr).

Source data, indexed by i for samples, d for features and k for classes.
Source data sample, indexed by d for features.

Target data, indexed by j for samples, d for features and k for classes.
Target data sample, indexed by d for features.

Source labels y € Y, indexed by i for samples and k for classes.
Target labels u € Y, indexed by j for samples and k for classes.
Dataset of labeled source samples: D¢ = {(x;, y;)}i=;.

Dataset of labeled target samples: Dft = {(z;,u;)}jL;-
Expectation, or expected value, of a distribution.

Variance of a distribution.

Covariance between two variables.

Hypothesis space of classification functions.

Classification function; h : X — Y.

Classification function parameters.

Loss function, which compares a prediction h(x;) to a true label y;.
Risk function, i.e. the expected loss: R(h) = E4(h).

Empirical risk, i.e. the average loss: IQ(hl.‘Dc?).

Importance weights; w(x;) or w;, indexed by i for samples.
Order of regularization, e.g. L?-regularization.

Regularization parameter.

Divergence between two distributions: D(pg, pr).-

Empirical divergence between two datasets: D(X, Z).

Distance between two samples; d(x, z).

Basis function; ¢ (x).

Kernel function; k(x, x") = ¢(x)p(x)T.

Normal distribution, i.e. V' (x | 1, X).
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