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Εἴ τίς με ἐλέγξαι καὶ παραστῆσαί μοι, ὅτι οὐκ
ὀρθῶς ὑπολαμβάνω ἢ πράσσω, δύναται,

χαίρων μεταθήσομαι: ζητῶ γὰρ τὴν ἀλήθειαν,
ὑφ ἧς οὐδεὶς πώποτε ἐβλάβη, βλάπτεται

δὲ ὁ ἐπιμένων ἐπὶ τῆς ἑαυτοῦ ἀπάτης καὶ ἀγνοίας.

If someone can prove me wrong and
show me my mistake in any thought or ac on,

I shall gladly change. I seek the truth,
which never harmed anyone: the harm is to

persist in one’s own self-decep on and ignorance.

- Marcus Aurelius (Medita ons : )
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Summary

Ar ficial intelligence, and in par cularmachine learning, is concerned with teaching com-
puter systems to perform tasks. Tasks such as autonomous driving, recognizing tumors
in medical images, or detec ng suspicious packages in airports. Such systems learn by
observing examples, i.e. data, and forming a mathema cal descrip on of what types of
varia ons occur, i.e. a sta s cal model. For new input, the system computes the most
likely output and makes a decision accordingly. As a scien fic field, it is situated between
sta s cs and and algorithmics. As a technology, it has become a very powerful tool due to
the massive amounts of data being collected and the drop in the cost of computa on.

However, obtaining enough data is s ll very difficult. There are o en substan al finan-
cial, opera onal or ethical considera ons in collec ng data. The majority of research in
machine learning deals with constraints on the amount, the labeling and the types of data
that are available. One such constraint is that it is only possible to collect labeled data from
one popula on, or domain, but the goal is to make decisions for another domain. It is un-
clear under which condi ons this will be possible, which inspires the research ques on of
this thesis: when and how can a classifica on algorithm generalize from a source domain
to a target domain?

My research has looked at different approaches to domain adapta on. Firstly, we have
asked some cri cal ques ons on whether the standard approaches to model valida on
s ll hold in the context of different domains. As a result, we have proposed a means
to reduce uncertainty in the valida on risk es mator, but that does not solve the prob-
lem completely. Secondly, we modeled the transfer from source to target domain using
parametric families of distribu ons, which works well in simple contexts such as feature
dropout at test me. Thirdly, we looked at a more prac cal problem: ssue classifiers
trained on data from one MRI scanner degrade when applied to data from another scan-
ner due to acquisi on-based varia ons. We tackled this problem by learning a represen-
ta on for which detrimental varia ons are minimized while maintaining ssue contrast.
Finally, considering that many approaches fail in prac ce because their assump ons are
not met, we designed a parameter es mator that never performs worse than the naive
non-adap ve classifier.

Overall, research into domain-adap vemachine learning is s ll in its infancy, withmany
interes ng challenges ahead. I hope that this work contributes to a be er understanding
of the problem and will inspire more researchers to tackle it.

xi





Samenva ng

Kunstma ge intelligen e, en in het bijzonder machinaal leren, draait om computersyste-
men die leren om taken uit te voeren. Taken zoals autonoom rijden, tumor herkenning in
medische beelden, of detec e van verdachte pakke en op vliegvelden. Zulke systemen
leren door het observeren van voorbeelden, i.e. data, en vormen een wiskundige beschrij-
ving van de varia es die voorkomen, i.e. een sta s schmodel. Voor nieuwe input berekent
het systeem demeest waarschijnlijke output enmaakt op basis daarvan een beslissing. Als
wetenschappelijk veld staat machinaal leren tussen sta s ek en algoritmiek. Als techno-
logie is het een krach g stuk gereedschap vanwege de beschikbaarheid van grote hoeveel-
heden data en de lage kosten van berekeningen uitvoeren.

Maar genoeg data verzamelen is nog steeds erg moeilijk. Er zijn vaak las ge financiële,
opera onele of ethische overwegingen in data collec e. Onderzoek in machinaal leren
draait daarom vooral om het omgaan met beperkingen op de hoeveelheid, de annota e
en de typen data die beschikbaar zijn. Eén zo’n beperking is dat het alleen mogelijk is om
data te krijgen van één popula e, o ewel domein, terwijl het doel is om beslissingen te
maken voor een andere popula e. Het is onduidelijk onder welke condi es dit mogelijk is.
Dit leidt tot mijn onderzoeksvraag: wanneer en hoe kan een classifica e algoritme gene-
raliseren van een bron domein naar een doel domein?

Mijn onderzoek hee gekeken naar verschillende manieren om domein adapta e aan
te pakken. Ten eerste, hebben we kri sche vragen gesteld over model valida e in de con-
text van verschillen in domeinen. Daaruit is een methode voortgekomen die de onzeker-
heid van een valida e scha er reduceert, maar daarmee lijkt nog niet alles gezegd te zijn.
Ten tweede, hebben we de overgang van bron naar doel domein gemodelleerd met uitval-
distribu es, wat goed werkt wanneer informa e in het doel domein wegvalt. Ten derde,
hebben we gekeken naar een iets prak scher probleem: weefsel classificeerders getraind
op data van één MRI scanner presteren slecht op data van een andere scanner. Om dit op
te lossen hebben we een representa e geleerd waarin scanner-gerelateerde varia e mi-
nimaal word terwijl weefsel contrast bewaard blij . Als laatste, omdat veel methoden in
de prak jk niet werken vanwege invalide assump es, hebben we een parameter scha er
ontworpen die nooit slechter presteert dan de naïeve non-adap eve aanpak.

Tot slot, onderzoek naar domein-adap ef machinaal leren staat nog in de kinderschoe-
nen, met vele interessante open vragen. Ik hoop dat dit werk andere onderzoekers aan-
spoort om deze uitdaging ook aan te gaan.

xiii





1
Introduc on

In this chapter, I first introduce the concept of computer systems that learn to perform a
task. Branching out from the standard framework of supervised learning, I pose my re-
search ques ons on generalizing across domains. Following those, I discuss a number of
theore cal analyses that have proven to be very insigh ul and present a categoriza on of
approaches including important algorithms. Finally, I briefly discuss the contribu ons of
this thesis to domain-adap ve machine learning.

1
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2 1. Introduc on

Intelligent systems learn from data to recognize pa erns, predict outcomes and make
decisions [ , ]. In data-abundant problem se ngs, such as recognizing objects in images,
these systems achieve super-human levels of performance [ ]. Their strength lies in their
ability to process huge amounts of examples and obtain a detailed es mate of what does
and does not cons tute the object they are looking for. In recent years, the explosion in
data collec on and open access has thrusted machine learning into the limelight. It is now
a key technology in self-driving cars [ ], drone guidance [ ], computer-assisted diagnosis
[ ], online commerce [ ], satellite cartography [ ], exo-planet discovery [ ], and machine
transla on [ ], with many more applica ons on the horizon.

Machine intelligence refers to a computer’s ability to learn to perform a task [ ]. Super-
vised systems learn through training, where the system is rewarded or punished based on
whether it produces the right output for a given input [ , ]. In order to train an intelli-
gent system, one requires a set of matching inputs and outputs. Most o en, inputs consist
of complicated objects such as images while outputs consists of decisions such as ’yes’ or
’no’ or classes such as ’apple’, ’pear’, ’berry’, etc. The system will try out many classifica-
on func ons on the set of inputs and select the func on that produced the least errors. If
the examples in the dataset are similar to new inputs, then the system will make accurate
decisions in the future as well. Classifying new inputs based on a finite set of examples, is
called generaliza on. For example, suppose pa ents are measured on various biometrics
such as blood pressure, and have been classified as ’healthy’ or ’ill’. Then, a system can
be trained by finding the decision func on that best diagnoses the pa ents. If they are an
accurate reflec on of the popula on of all possible pa ents, then the trained system will
generalize to new pa ents as well.

However, if the collected data it is not an accurate reflec on of the popula on, then
the system will not generalize well. Data is biased if certain events are observed more fre-
quently than usual while others are observed less frequently. If data is biased, then the
system will think that certain outcomes are also more likely to occur. For example, data
collected from older pa ents is biased with respect to the total human popula on. Re-
searchers in sta s cs and social sciences have long studied problems with sample biases
and have developed a number of techniques to correct for biased data [ – ]. However,
there are s ll fundamental limita ons on generalizing towards wider popula ons. Instead,
machine learning researchers are a emp ng to generalize towards specific target popu-
la ons. For instance, can we use informa on from adult humans to train an intelligent
system for diagnosing infant heart disease?

In order to target specific popula ons, we need at least some idea of what it looks like.
Labeled data, i.e. input-output pairs, is o en not available from the target popula on. But
usually there is some unlabeled data as well as some labeled data from another source.
Under certain condi ons, rela onships between popula ons can be found. Given such a
rela onship, an intelligent system can now adapt, i.e. change its decisions from the source
popula on to generalize more towards the specific target popula on [ ].
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A more detailed example of adapta on is the following: in clinical imaging se ngs, ra-
diologists manually annotate ssues, abnormali es, and pathologies of sets of pa ents.
Biomedical engineers then use these annota ons to train systems to perform automa c
ssue segmenta on or pathology detec on in medical images. Now suppose a hospital
installs a new MRI scanner. Unfortunately, due to the mechanical configura on, calibra-
on, vendor and acquisi on protocol of the scanner, the images it produces will differ from
images produced by other scanners [ – ]. Consequently, systems trained on data from
other scanners would fail to perform well on the new scanner. However, an adap ve sys-
tem would find correspondences in images between scanners, and change its decisions
accordingly. Thus it avoids the me, money and energy needed to annotate data for the
target popula on (in this case, images from the new scanner) [ , ]. Chapter of this
thesis describes a method that allows for targeted generaliza on towards a par cular MRI
scanner.

Adapta on is making an impact in a number of other fields as well: in bioinforma cs,
adap ve approaches have been successful in sequence classifica on [ , ], gene expres-
sion analysis [ , ], and biological network reconstruc on [ , ]. There, the types
of popula ons that are predominantly considered are different model organisms or dif-
ferent data-collec ng research ins tutes [ ]. In predic ve maintenance, every me the
fault prognosis system raises an alarm and designates that a component has to replaced,
the machine changes its proper es [ ]. That means that the system will have to adapt
to the new se ng, un l another component is replaced and it will have to adapt again.
In search-and-rescue robo cs, a system that needs to autonomously navigate wilderness
trails will have to adapt to detect concrete structures if it is to be deployed in an urban
environment [ , ]. Computer vision systems that recognize ac vi es have to adapt across
different surroundings as well as different groups of people [ – ]. In natural language
processing, texts from different publica on pla orms are tricky to analyze due to different
contexts and differences between how authors express themselves. For instance, financial
news ar cles use a vocabulary that differs from the one in biomedical research abstracts
[ ]. Similarly, online movie reviews are linguis cally different from tweets [ ]. Sen -
ment classifica on relies heavily on context as well; people use different words to express
whether they like a book versus whether they like an electronic gadget [ ]. Adap ng for
the target popula on is very important to online retailers that use sen ment classifiers in
their recommender systems. When a new product category is introduced, there is no data
available to link users and items. In that case, there is an interest in using online reviews
from other product categories to aid in classifying sen ments in the new category [ , ].

In some situa ons, the target popula on is a subpopula on. Personaliza on is an ex-
treme case of this. One of the first types of systems to target subpopula ons are spam
filters: they are o en ini alized as general systems but adapt to specific users [ ]. Male
users receive different kinds of spam than female users for instance, which the system can
detect and adapt to based purely on text sta s cs. Alterna vely, in speaker recogni on,
an ini al speaker-independent system can adapt to new speakers [ ]. Similarly, general
face recogni on systems can be adapted to specific persons [ ] and person-independent
ac vity recogni on algorithms can be specialized to par cular individuals [ ].
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However, the analysis of adapta on is not complete, and it is not clear which condi ons
have to be fulfilled in order for the system to perform well. It seems that in cases where it
is difficult to describe how two popula ons relate to each other, adap ve systems suffer
from high variability: they are highly uncertain about their decisions. In this thesis, sev-
eral approaches to the adapta on problem are explored. But in order to study it in greater
detail, it is necessary to delve into several core concepts from machine learning. The next
sec on gives a short explana on of how intelligent decision-making systems work. Follow-
ing that, various types and causes of biases are described. The last sec on of this chapter
presents an overview of approaches to adapta on.

1.1. Risk minimiza on
One of the most thoroughly researched frameworks for the design, construc on and anal-
ysis of intelligent systems is risk minimiza on. It is part of sta s cal decision theory and is
based on the no on that objects vary [ , ]. In order to represent an object digitally, we
measure one ormore features. For example, an apple can be described in terms of its over-
all color. A feature captures informa on about the object; many apples are red, some are
green, but none are blue. These varia ons over color 𝑥 can be described by a probability
distribu on 𝑝(𝑥). In order to decide between an apple and say, a berry, the system needs
to knowwhich of the two is more probable for a given color, i.e. 𝑝(apple |𝑥) > 𝑝(berry |𝑥)
or 𝑝(apple | 𝑥) < 𝑝(berry | 𝑥) [ ]. Figure . a describes two probability distribu ons as a
func on of color; the red distribu on corresponds to apples and the blue to berries.

blue red
Color

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(a) Probability distribu ons of apples and
berries, as a func on of color

(b) Error of the op mal classifier, consis ng of
the gray area under the distribu ons

Figure . : Example of a classifica on problem.

A decision-making problem can be abstractly described as a se ng where a system has
to assign a class, from a finite set of possible classes, to every possible varia on of an ob-
ject. Decision-making systems are therefore called sta s cal classifiers. In their most basic
form they consist purely of a func on that takes as input an object, encoded by features,
and outputs one of the possible classes, e.g. ℎ(𝑥) = berry. Its output is also called its
predic on, as there are problem se ngs where classifica on errors are unavoidable. We
will refer to the classifier itself as ℎ, while its predic on is denoted by its applica on to a
par cular object ℎ(𝑥). Returning to the apple-berry problem, a classifier can be seen as a
threshold, illustrated in Figure . b by a black ver cal line. It designates everything to the
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le as a berry and everything to the right as an apple. Hence, all apples le of the line
and all berries to the right are misclassified. The classifica on error is visualized as the gray
region under the distribu ons and can be wri en mathema cally as:

𝑒(ℎ) = ∫
𝒳
[ℎ(𝑥) ≠ apple] 𝑝(𝑥 | apple)𝑝(apple) d𝑥

+ ∫
𝒳
[ℎ(𝑥) ≠ berry] 𝑝(𝑥 | berry)𝑝(berry) d𝑥 , ( . )

where ℎ(𝑥) refers to the decisionmade by the classifier. 𝑝(apple) and 𝑝(berry) refer to the
probability of encountering apples and berries in general, while𝑝(𝑥|apple) and𝑝(𝑥|berry)
refer to the probabili es of seeing an apple or berry of a given color 𝑥 (also known as the
class-condi onal distribu ons). The classifier should be able to make a decision over all
possible colors𝒳. Since color is a con nuous variable, the decision func on is integrated
over all possible colors. If the objects were measured on a discrete variable, then the inte-
gra on would be equivalent to a sum. Essen ally, the first term describes how o en the
classifier will make a mistake in the form of deciding that an actual apple is not an apple
and the second term describes how o en it thinks that a berry is not a berry. Summing
these two terms cons tutes the overall classifica on error 𝑒(ℎ).

If apples and berries are encoded into a more general form, as a variable 𝑦, then the
classifica on error can be wri en as follows:

𝑒(ℎ) = ∑
∈𝒴
∫
𝒳
[ℎ(𝑥) ≠ 𝑦] 𝑝(𝑥, 𝑦) d𝑥 . ( . )

where 𝑝(𝑥, 𝑦) = 𝑝(𝑥 | 𝑦)𝑝(𝑦). 𝒴 numerically represents the set of classes, in this case
𝒴 = {apple = −1, berry = +1}. Objects are o en not described by one feature but
by mul ple measured proper es. As such, 𝑥 is a 𝐷-dimensional random vector, and can
be con nuous, i.e. consis ng of real values 𝒳 ⊆ ℝ , can be discrete, i.e. consis ng of
integers𝒳 ⊆ ℕ , or a mix of both.

1.1.1. Loss func ons
The no on of disagreement between the predicted and the true class can be described
in a more general form by using a func on that describes the numerical cost of correct
versus incorrect classifica on. This func on is known as a loss func on ℓ, which takes as
input the classifier ℎ along with the object 𝑥 and the object’s true class 𝑦: ℓ(ℎ(𝑥), 𝑦) ≥
0. The pure classifica on error is known as the 0/1 loss, denoted ℓ / , that has value 0
whenever the predic on is exactly equal to the true label and value 1 whenever they are
not equal; ℓ / (ℎ(𝑥), 𝑦) = [ℎ(𝑥) ≠ 𝑦]. Other examples of loss func ons are the quadra c
or squared loss, ℓqd(ℎ(𝑥), 𝑦) = (ℎ(𝑥) − 𝑦) , the logis c loss ℓlog(ℎ(𝑥), 𝑦) = 𝑦ℎ(𝑥) −
log∑ ∈ exp(𝑦 ℎ(𝑥)) or the hinge loss ℓhinge(ℎ(𝑥), 𝑦) =max(0, 1−𝑦ℎ(𝑥)). These are
called convex surrogate losses, as they approximate the 0/1 loss but use a formula on that
is easier to work with computa onally. Overall, the choice of a loss func on has a major
impact on the behaviour of the resul ng classifier.



1

6 1. Introduc on

Considering that we are integra ng the loss func on with respect to probabili es, we
are actually looking at the expected loss, also called the risk, of a par cular classifier:

𝑅(ℎ) = 𝔼𝒳,𝒴 ℓ(ℎ(𝑥), 𝑦) , ( . )

where 𝔼 stands for the expecta on. Its subscript denotes which variables are being inte-
grated over. Given a risk func on, we can evaluate mul ple possible classifiers and select
the one for which the risk is as small as possible:

ℎ∗ = argmin 𝔼𝒳,𝒴 ℓ(ℎ(𝑥), 𝑦) . ( . )

The asterisk superscript denotes op mality with respect to the chosen loss func on. There
aremanyways to perform thisminimiza on step, with vastly different computa onal costs.
The main advantage of convex loss func ons is that they do not contain local minima and
efficient op miza on procedures such as gradient descent can be used [ ].

1.1.2. Generaliza on
Up to this point, we have only considered the case where the probability distribu ons are
completely known. In prac ce, this is rarely the case: only a finite amount of data can
be collected. Measurements of objects can be described as a dataset 𝒟 = {(𝑥 , 𝑦 )} ,
where each 𝑥 is an independent sample from the random variable𝒳, and is labeled with
its corresponding class 𝑦 . The expected value with respect to the joint distribu on of data
and labels can be approximated with the sample average:

�̂�(ℎ | 𝒟 ) = 1
𝑛 ∑ ℓ(ℎ(𝑥 ), 𝑦 ) . ( . )

�̂� is called the empirical risk func on. It evaluates classifiers given a par cular dataset (the
symbol ” | ” denotes that a func on is dependent on something). Note that the true risk
𝑅 from ( . ) does not depend on a dataset. Minimizing the empirical risk with respect to a
classifier for a par cular dataset, is called training the classifier:

ℎ̂ = argmin
∈ℋ

�̂�(ℎ | 𝒟 ) ( . )

whereℋ refers to the collec on of all possible classifiers that we consider, also known as
the hypothesis space. A risk-minimiza on system is said to generalize if it uses informa on
on specific objects to make decisions for all possible objects.

Generally, more samples lead to be er approxima ons of the risk, and the resul ng
classifier will be closer to the op mal one. For 𝑛 samples that are independently drawn
and iden cally distributed, due to the law of large numbers, the empirical risk converges
to the true risk [ ]:

lim
→

1
𝑛 ∑ℓ(ℎ(𝑥 ), 𝑦 ) = 𝔼𝒳,𝒴 ℓ(ℎ(𝑥), 𝑦) , ( . )
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and it can be shown that the resul ng classifier will converge to the op mal classifier
lim
→

ℎ̂ → ℎ∗ [ , ]. The minimizer of the empirical risk deviates from the true risk due

to the es ma on error, i.e. the difference between the sample average and the actual
expected value, as well as the op miza on error, i.e. the difference between the true
minimizer and the one obtained through the op miza on procedure [ , ].

Ul mately, we are not interested in the error of the trained classifier on the givendataset,
but in the error on all possible future samples: 𝑒(ℎ̂) = 𝔼𝒳,𝒴[ℎ̂(𝑥) ≠ 𝑦]. This error is known
as the generaliza on error [ , ]. As mistakes are some mes inevitable, we mostly fo-
cus on how much larger the generaliza on error of the trained classifier is compared to
the generaliza on error of the op mal classifier 𝑒(ℎ̂) − 𝑒(ℎ∗). Ideally, we would like to
know if the generaliza on error will be small, i.e., less than some small value 𝜖. In other
words, that our classifier will be approximately correct. However, because classifiers are
func ons of datasets, and datasets are random, we can only describe how probable it is
that any classifier is approximately correct. Hence, the Probably Approximately Correct
(PAC) bound:

Pr𝒟 [ 𝑒(ℎ̂) − 𝑒(ℎ∗) ≤ 𝜖 ] ≥ 1 − 𝛿 , ( . )

where 𝛿 is a small number [ , ]. Every dataset leads to a different ℎ̂ and we can there-
fore integrate over trained classifiers by integra ng over the probability of drawing any
par cular dataset (hence the subscript 𝒟 ). Essen ally, the PAC bound states that, with
probability at least 1 − 𝛿, the classifier is close to op mal. Specific values for 𝛿 and 𝜖 can
be found through plugging in a probability distribu on and a func on class.

PAC bounds do not study single datasets or choices of algorithms, but describe how
the generaliza on error depends on sample size, the joint distribu on and classifier com-
plexity. They avoid the randomness inherent to evalua ng specific classifiers on par cu-
lar datasets, which makes them useful tools for comparisons and analysis. Many variants
of PAC bounds have been proposed, some using different measures of complexity, such
as Rademacher complexity [ ] or Vapnik-Chervonenkis dimensions [ , ], while others
use Bayesian inference [ – ]. Generaliza on error bounds, as well as learning bounds
- inequali es describing how many samples a par cular algorithm requires to achieve a
specific generaliza on error - can incorporate assump ons or prior knowledge [ , – ].
Bounds with assump ons do not hold universally, but are restricted to the se ngs spec-
ified by the assump on. Due to these restric ons, these bounds are o en ghter (there
is more certainty whether the classifier will be approximately correct). Such ghter gen-
eraliza on bounds o en inspire new algorithms, such as Adaboost or the Support Vector
Machine [ , ].

Learning bounds also tell us that the flexibility, or complexity, of a classifier has to be
traded off with the number of available training samples [ , , ]. In par cular, a very
flexible model can minimize the error on a given dataset completely, but will be too spe-
cific to generalize to new samples. This is known as overfi ng. Figure . c illustrates an
example of a classifier that has perfectly fi ed to the training set. As can be imagined,
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it will not perform as well for new samples. In order to combat overfi ng, an addi onal
term is introduced in the empirical risk es mator that punishes model flexibility. This reg-
ulariza on term is o en a simple addi ve term in the form of the norm of the classifier’s
parameters [ , ]. Figure . b visualizes an example of a properly regularized classifier,
that will probably generalize well to new samples. Figure . a shows an example of a too
heavily regularized classifier, also known as an ”underfi ed” classifier.
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(a) Underfi ed classifier.
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(b) Well-fi ed classifier.
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(c) Overfi ed classifier.

Figure . : Examples of classifier complexi es.
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1.2. Research ques on
Normally, samples from one distribu on are used to generalize towards new samples from
the same distribu on. However, in prac ce, new samples are o en drawn from a dif-
ferent distribu on: the training data might be drawn from a local popula on, such as a
social science experiment where only university students are measured, whereas the test
data might be drawn from the na onal popula on (an example of a biased sample). Or,
it could be that the object of interest (unknowingly) changes over me (an example of
a non-sta onary data-genera ng process). Hence, there is a strong interest in develop-
ing machine learning methods that can generalize from data from one distribu on to data
from another.

Such problem se ngs are known as domain adapta on or transfer learning se ngs
[ , , ]. The distribu on of interest is called the target domain, for which labels are
usually not available and training a classifier is not possible. However, if a similar domain
is available, it could be used as a source of addi onal informa on. Now the challenge is to
overcome the differences between the domains so that a classifier trained on the source
domain generalizes well to the target domain. Such a method is called a domain-adap ve
classifier. If successful, domain-adap ve classifiers can, for example, make accurate diag-
noses for rare forms of cancer based on knowledge from common forms of cancer [ ],
detect real-world driving lanes from data of high-quality driving simula ons [ ], or parse
part-of-speech tags in literature based on data from news ar cles [ ].

Generalizing across distribu ons is very difficult and it is not clear under which condi-
ons it is possible. My work therefore focuses on the ques on:

When and how can a sta s cal classifier generalize from a source to a target domain?

In the other chapters, I present two analyses (Chapters and ) and three methods
(Chapters , and ). Each chapter studies the problem from a different perspec ve. The
discussion chapter reflects onmy findings, lists some of the ques ons that have opened up
and presents ideas for future work. For the remainder of this introduc on chapter, I will ex-
plain domains in greater detail, discuss types of domain shi s and present a categoriza on
of approaches to domain adapta on.
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1.3. Domain adapta on
Unfortunately, there exists quite a bit of confusion in the literature concerning defini ons
that are important to the process of generalizing to a different distribu on. A clarifica-
on is therefore in order. To be precise, we define domains as the combina on of an in-
put space 𝒳, an output space 𝒴 and an associated probability distribu on 𝑝. Inputs are
subsets of the 𝐷-dimensional real space ℝ , while outputs are classes. Classes can be
binary, in which case 𝒴 corresponds to {−1,+1} or can be 𝐾-order mul -class, in which
case 𝒴 = {1,…𝐾}. Given two domains, we call them different if they are different in at
least one of their cons tuent components, i.e., the input space, the output space, or the
probability density func on. For example, image cap on generators from computer vision
generalize from the ”image domain” to the ”text domain”, which would be an example of
differences between the input spaces [ , ]. This thesis is restricted to the case where
only the probability distribu ons differ. We denote the source domain as (𝒳,𝒴, 𝑝𝒮) and
will some mes refer to it in shorthand as 𝒮. The target domain is denoted (𝒳,𝒴, 𝑝𝒯)with
the shorthand 𝒯. Domain-specific func ons will be marked with the subscript 𝒮 or 𝒯 as
well. For example, the expected value with respect to the target domain will be wri en
as: ∑ ∈𝒴 ∫𝒳 𝑓(𝑥, 𝑦) 𝑝𝒯(𝑥, 𝑦) d𝑥 = 𝔼𝒯[𝑓(𝑥, 𝑦)]. With some abuse of nota on for the
sake of clarity, we will mark marginal and condi onal distribu ons with 𝒮 and 𝒯 as well;
𝑝𝒯(𝑥, 𝑦) for the target joint distribu on, 𝑝𝒯(𝑥) for the target data marginal distribu on
and 𝑝𝒯(𝑥 | 𝑦) for the target class-condi onal distribu on.

Samples from the source domain are denoted with (𝑥 , 𝑦 ), and the source dataset is
referred to as 𝒟𝒮 = {(𝑥 , 𝑦 )} . Note that 𝑥 refers to an element of the input space
𝒳 while 𝑥 refers to a specific observa on drawn from the source distribu on, 𝑥 ∼ 𝑝𝒮 .
Likewise, samples from the target domain are denotedwith (𝑧 , 𝑢 ), with its dataset𝒟𝒯 =
{(𝑧 , 𝑢 )} .

Generalizing across domains
The PAC bound from ( . ) describes howmuch a classifier trained on samples from a distri-
bu on will generalize to new samples from that distribu on. However, this result is based
on Hoeffding’s inequality, which only describes devia ons of the empirical risk es mator
from its own true risk, not devia ons from other risks [ , , ]. Since Hoeffding’s in-
equality does not hold in a cross-domain se ng, the standard generaliza on error bound
does not hold either.

However, it is possible to derive generaliza on error bounds if more is known on the
rela onship between 𝒮 and 𝒯 [ , , – ]. For example, one of the first target general-
iza on error bounds uses the condi on that there exists a classifica on func on that can
perform well on both domains [ , ]. This low-joint-domain-error condi on is expressed
asmin ∈ℋ [𝑒𝒮(ℎ)+𝑒𝒯(ℎ)] ≤ 𝜆. As will be shown later, the devia on between the target
generaliza on error of a classifier trained in the source domain 𝑒𝒯(ℎ̂𝒮) and the target gen-
eraliza on error of the op mal target classifier 𝑒𝒯(ℎ∗𝒯) depends on this value 𝜆. If 𝜆 is too
large, then the source trained classifier can never be approximately correct in the target
domain.
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Addi onally, we need some measure of how much two domains differ from each other.
For this bound, the symmetric difference hypothesis divergence (ℋΔℋ-divergence) is used,
which takes two classifiers and looks at to what extent they disagree with each other on
both domains [ ]:

𝑑ℋ ℋ(𝑝𝒮 , 𝑝𝒯) = 2 sup
, ∈ℋ

| Pr𝒮 [ℎ ≠ ℎ ] − Pr𝒯 [ℎ ≠ ℎ ] | , ( . )

where the probability Pr can be computed through integra on: Pr𝒮[ℎ ≠ ℎ ] = ∫𝒳[ℎ(𝑥) ≠
ℎ (𝑥)]𝑝𝒮(𝑥)d𝑥. The sup stands for the supremum, which in this context finds the pair of
classifiers ℎ, ℎ for which the difference in probability is largest and returns the value of
that difference [ , , ].

Given the condi on of low-joint-domain-error and the ℋΔℋ-divergence, one can for-
mulate a domain adap ve PAC bound as:

Pr𝒟𝒮 [ 𝑒𝒯(ℎ̂𝒮) − 𝑒𝒯(ℎ
∗
𝒯) ≤ 𝜆 +

1
2𝑑ℋ ℋ(𝑝𝒮 , 𝑝𝒯) + 𝒞(ℋ)] ≥ 1 − 𝛿 , ( . )

where 𝑒𝒯 is the true error on the target domain, ℎ̂𝒮 is the classifier trained on a sample from
the source domain, ℎ∗𝒯 is the op mal classifier in the target domain, and 𝜆 describes the
maximum joint-domain-error (Theorem , [ ]). 𝒞(ℋ) describes the complexity of the type
of classifica on func onsℋ we are using, and comes up in standard generaliza on error
bounds that incorporate classifier complexity [ ]. Overall, this bound states that, with
probability at least 1 − 𝛿, the generaliza on error of a classifier, with complexity 𝒞(ℋ),
trained on source data, will be less than the maximum joint-domain-error and the domain
discrepancy. Or simpler said: the larger 𝜆 and 𝑑ℋ ℋ are for a given domain adapta on
problem, the less a source classifier will generalize to the target domain.

In conclusion, in order to generalize from one domain to another, we need some knowl-
edge on how the two domains relate to each other. Some mes, these rela onships are
simple in the sense that only some variables have shi edwhile the remainder stay the same
across domains. The sec on on shi s below, sec on . . , elaborates on how this informa-
on can be exploited. Formore general domain discrepancies, there aremore complicated
condi ons that have to be fulfilled. These are shortly discussed in sec on . . . Sec on .
describes proposed methods that make use of one or more of these condi ons.

1.3.1. Shi s
We are ul mately interested in minimizing the target risk 𝑅𝒯 , but we want to do this by
making use of the source domain. One of the most straigh orward ways to incorporate
the source distribu on in the target risk is as follows:

𝑅𝒯(ℎ) =∑
∈
∫
𝒳
ℓ(ℎ(𝑥) | 𝑦) 𝑝𝒯(𝑥, 𝑦) d𝑥

=∑
∈
∫
𝒳
ℓ(ℎ(𝑥) | 𝑦) 𝑝𝒯(𝑥, 𝑦)𝑝𝒮(𝑥, 𝑦)

𝑝𝒮(𝑥, 𝑦) d𝑥 . ( . )
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One could now approximate this risk func on by plugging in source samples and weigh ng
their loss by the ra o of distribu ons; 𝑛 ∑ ℓ(ℎ(𝑥 ), 𝑦 )𝑝𝒯(𝑥 , 𝑦 )/𝑝𝒮(𝑥 , 𝑦 ) (note that
𝑝𝒯(𝑥 , 𝑦 ) evaluates the probability of a source sample under the target distribu on). How-
ever, in order to compute the ra o 𝑝𝒯/𝑝𝒮 , wewould need labeled data from both domains,
which is o en not available. Fortunately, if the domains are shi ed versions of each other,
then we do not always need labeled target data. The following subsec ons discuss three
types of shi s: between prior distribu ons, between data / covariate distribu ons, and
between class-posteriors / concepts. Other types of shi s can occur, for instance mixture
component shi s [ ], but those are outside the scope of this work.

Prior shi
First of all, there is the case where only the prior probabili es of the classes are different:
𝑝𝒮(𝑦) ≠ 𝑝𝒯(𝑦). This can occur in for example fault detec on se ngs, where a new main-
tenance policy might cause less faults [ ], or in the detec on of oil spills before versus
a er an incident [ ]. Since only the priors are different, the class-condi onal distribu-
ons are s ll the same: 𝑝𝒮 | 𝒴(𝑥 | 𝑦) = 𝑝𝒯 | 𝒴(𝑥 | 𝑦). We can exploit this informa on by
reducing the ra o of joint probability distribu ons [ ]:

𝑅𝒯(ℎ) =∑
∈
∫
𝒳
ℓ(ℎ(𝑥), 𝑦)�����𝑝𝒯(𝑥 | 𝑦) 𝑝𝒯(𝑦)

����𝑝𝒮(𝑥 | 𝑦) 𝑝𝒮(𝑦)
𝑝𝒮(𝑥, 𝑦) d𝑥

= 𝔼𝒮 [ℓ(ℎ(𝑥), 𝑦) 𝑤(𝑦)] , ( . )

where the weights 𝑤(𝑦) = 𝑝𝒯(𝑦)/𝑝𝒮(𝑦) represent the change in the balance between
classes. Using this approach, we require no unlabeled target samples, only a number of
target labels. Figure . a illustrates an example of two class-condi onal distribu ons with
imbalanced classes in the source domain (solid lines) and balanced classes in the target
domain (do ed lines). Figure . b shows the opposite case; going from an imbalanced
class to an even more imbalanced class.
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(a) Imbalanced to balanced classes.
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(b) Imbalanced to more imbalanced classes.

Figure . : Examples of types of class-prior shi .

Re-weigh ng each sample fromapar cular class is very similar to cost-sensi ve learning,
wherewe are not correc ng for inappropriate priors but are ar ficially assigning newpriors
[ ]. But prior shi s have also been extensively studied from a different perspec ve: when
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it is more difficult to collect data from one class than the other [ ]. For example, in a few
countries, the government gives women above a certain age the opportunity to be tested
for breast cancer [ ]. The vast majority that responds does not show signs of cancerous
ssue and only a small minority is tested posi ve. There is therefore a class imbalance in
the data. Furthermore, because the test voluntary, only certain groups of women respond.
The sample is therefore biased and there is no guarantee that the class propor ons of the
sample also hold for the whole popula on. However, if the general prevalence of a disease
is known, then the prior shi can be corrected for [ , ].

Covariate shi
Covariate shi is one of the most studied means of data shi s. For these cases, we know
that 𝑝𝒯(𝑦 | 𝑥) = 𝑝𝒮(𝑦 | 𝑥). This informa on can be exploited by rewri ng the ra o of
joint distribu ons in ( . ) into a ra o of class-posterior mes marginal data distribu ons
and canceling out the class-posteriors:

𝑅(ℎ) =∑
∈
∫
𝒳
ℓ(ℎ(𝑥), 𝑦)�����𝑝𝒯(𝑦 | 𝑥) 𝑝𝒯(𝑥)

����𝑝𝒮(𝑦 | 𝑥) 𝑝𝒮(𝑥)
𝑝𝒮(𝑥, 𝑦) d𝑥 ( . )

= 𝔼𝒮 [ℓ(ℎ(𝑥), 𝑦) 𝑤(𝑥)] , ( . )

where the weights 𝑤(𝑥) = 𝑝𝒯(𝑥)/𝑝𝒮(𝑥) indicate how the probability of a source sample
should be corrected to reflect the probability under the target distribu on.
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(a) Wider target domain.
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(b) Limited support overlap.
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(c) Narrower target domain.

Figure . : Examples of types of covariate shi .

There are many causes for covariate shi s, with sample selec on bias being the most
known one [ , , ]. Especially in the social sciences where survey sampling is done
locally, i.e. in universi es, companies or city centers, the observed data reflects the local
popula on and not the global one [ , ]. This is o enmodeledwith an addi onal variable
𝑠 that denotes how probable it is that 𝑥 will be selected. For example, suppose we go to a
city that is populated according to a normal distribu on, i.e., most people live in the center
and the habita on density decreases as a func on of the distance from the center. Local
sampling, in the form of asking people on the main square to fill in a survey, corresponds
to se ng 𝑝(𝑠 = 1 | 𝑥) very high in in the interval close to 0. Applying Bayes’ theory, i.e.,
𝑝(𝑥 | 𝑠 = 1) = 𝑝(𝑠 = 1 | 𝑥)𝑝(𝑥)/𝑝(𝑠 = 1), shows that the collected surveys 𝑝(𝑥 | 𝑠 = 1)
only represent people from the main square instead of the whole city’s inhabitants 𝑝(𝑥).
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From a domain adapta on perspec ve, the biased sampling defines the source domain
𝑝𝒮(𝑥) = 𝑝(𝑥 | 𝑠 = 1). As the goal is to correct for the selec on bias, the target domain
consists of the selec on variable being integrated out: 𝑝𝒯(𝑥) = ∑ ∈{ , } 𝑝(𝑥 | 𝑠).

Similar to sample selec on bias, another cause for covariate shi ismissing data [ , ].
In prac ce, data can be missing as measurement devices fail or because a subject dropped
out of the experiment. When there is a consistent mechanism behind how the data went
missing, referred to as missing-not-at-random (MNAR), the missingness cons tutes an ad-
di onal variable. This variable acts in the same way as the selec on variable, as it decides
whether or not a sample will be included in the training set.

The last common cause for covariate shi , is the use of different measurement instru-
ments. For example, using different cameras to take photos of objects [ ]. The object
itself and how o en it occurs, remain constant, which means that the priors and class-
posteriors are equivalent in both domains. However, different camera se ngs lead to dif-
ferent photos, which means the marginal data distribu ons differ. Considering that these
se ngs aremechanical and have a physical origin, one could argue that there exists a trans-
forma on from photos from one camera to photos from another [ , ].

Concept shi
In the case of concept shi s, the defini on of the class changes. For instance, [ ] con-
sider a medical se ng where the aim is to make a prognosis for a pa ent based on their
age, severity of their flu, general health and their socio-economic status. The classes are
originally defined as ”remission” and ”complica ons”, but at test me, other aspects are
counted as a formof ”complica on” and are thusly labeled. Therefore, the classifier trained
on the original labeling deteriorates in performance. Alterna vely, in computer security,
what cons tutes an ”anomaly” can not only be different for different users but can also
change over me [ ].

If only the concept has changed, then that means that the marginal data distribu ons
remain the same: 𝑝𝒮(𝑥) = 𝑝𝒯(𝑥). This knowledge can again be exploited through:

𝑅𝒯(ℎ) =∑
∈
∫
𝒳
ℓ(ℎ(𝑥), 𝑦)𝑝𝒯(𝑦 | 𝑥)�

��𝑝𝒯(𝑥)
𝑝𝒮(𝑦 | 𝑥)���𝑝𝒮(𝑥)

𝑝𝒮(𝑥, 𝑦) d𝑥

However, unless there is some prior knowledge on the concept shi , adapta on in this set-
ng is impossible without labeled target data. Unlike the prior and covariate shi cases,
where only the data marginal or the class marginal distribu ons change, in this case a con-
di onal distribu on changes. To es mate condi onal distribu ons, one requires simulta-
neous observa ons of both variables. Figure . a shows an example of a shi in the loca on
of the decision boundary, towards the right, but not in the condi onal variance. Figure . b
shows the opposite example of a shi in the condi onal variance, but not in the posi on.
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(a) Change in posi on.
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(b) Change in variance.

Figure . : Examples of types of concept shi .

Unfortunately, this remarkably difficult se ng occurs quite frequently as classifiers are
deployed in non-sta onary environments [ ]. For smoothly varying non-sta onari es
such as me-series, however, there is again addi onal informa on that can be exploited:
the shi s are ordered and are rela vely small between neighboring me steps. Such a
me-dependent se ng is o en referred to separately as concept dri . In many dynami-
cal learning approaches, such as online learning or bandit se ngs, the classifier receives
feedback a er every decision it makes [ ]. This feedback allows it to detect whether a
concept dri has occurred and allows it to es mate how it should adapt accordingly [ –

].

Domain discrepancies
In the most general case, more than one of the above shi s will have occurred. There are
many possible ways in which two datasets of the same objects may differ from one an-
other. For example, if one were to search online for images, then one encounters posed
objects on white backgrounds on commercial websites, natural photos with highly clut-
tered backgrounds on travel sites, indoor shots with widely varying ligh ng condi ons on
socialmedia, andmanymore [ ]. As can be imagined, this is themost difficult se ng and
learning will o en not be possible at all [ , ]. In order to generalize well, the domains
have to be related in some other exploitable way. Examples of exploitable rela onships
include: the existence of a single good predictor for both domains [ , , , ], con-
strained worst-case labellings [ , ], low-data-divergence [ , , ], the existence of
a domain manifold [ , , ], condi onal independence of class and target given source
data [ ] and unconfoundedness [ ]. This thesis does not explore the case of mul ple
sources [ , ], or the related problem se ngs ofmul -task learning [ ], online learning
[ , ] or ac ve learning [ , ].

1.4. Approaches
This sec on discusses a number of approaches to domain adapta on based on supposed
rela onships between domains. In order to illustrate the ideas of some of the approaches,
we use an example se ng. Figure . visualizes a 2-dimensional sca er plot of red versus
blue dots in the source domain (le ) and the target domain (right). Training a classifier
on the source samples will result in the black line (le ), which will probably generalize
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well to future source samples. However, applying it directly to the target samples without
adapta on, will lead to a number of misclassifica ons. As can be imagined, in cases where
the domains are very far apart, such an approach might lead to worse results than random
classifica on.
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Figure . : Example of a D domain adapta on problem. (Le ) Data from the source domain, with a classifier
(black line) trained to discriminate blue from red dots. (Right) Data from the target domain. Applying the classifier
trained on the source domain leads to subop mal results as it is misclassifying the top red dots.

1.4.1. Importance-weigh ng
Most importance weigh ng techniques are designed for covariate shi and most es mate
the weights first, before training a weighted classifier. Figure . shows a sca erplot with
weighted source samples. The do ed black line is the adapted classifier, trained on the
importance-weighted source samples, and generalizes more to the target domain. De-
pending on the problem se ng, some methods es mate the numerator and denominator
of the ra o of probabili es separately, and others es mate the ra o directly. In this sec-
on, we discuss several of the most popular techniques.

In the sample selec on bias se ng, the target domain is the whole popula on, where
each sample has probability 1 of being selected. That means that the numerator in the
ra o of probability distribu ons is constant and it suffices to es mate the selec on likeli-
hood for the source samples. There has been a tremendous amount ofwork from the s
onwards in the sta s cs and social sciences communi es that a empts to control for selec-
on biases [ , ]. Most of these approaches incorporated knowledge of the specific data
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Figure . : Example of importance-weigh ng. (Le ) The source samples from Figure . have been weighted
(larger dot size is larger weight) based on their rela ve importance to the target domain. The resul ng
importance-weighted classifier (black do ed line) deviates from the source classifier (solid black line in Figure
. ). (Right) Applying the adapted classifier to the target samples leads to less misclassifica ons as compared to
the original source classifier.

collec on schemes, such as survey sampling , while others focused on es ma ng proba-
bili es non-parametrically [ ]. Knowing exactly how the sample space was discre zed,
for instance dividing up pa ents’ age into intervals, can directly aid the es ma on of the
selec on bias [ ].

In se ngs with data missing-not-at-random (MNAR), some samples are more likely to
be observed than others [ , ]. This is essen ally equivalent to the sample selec on bias
se ng and in this case, one also aims to generalize to the case where all samples would
be observed. However, this me, there may be prior knowledge available on what causes
the missingness. This may be incorporated separately, with a model of how the data was
generated [ , ]. Given knowledge of how likely a sample is of being observed, also
known as its propensity score 𝑒(𝑥) = 𝑝(observed | 𝑥), one can correct for the MNAR bias
in the data [ , , ]. Correc ons are based on weighing each sample with its inverse
propensity score 𝑒(𝑥) . These types of correc ons are o en employed in the causal in-
ference community, where missingness arises in observa onal experimental studies [ –

]. From the causal inference community, they are now finding their way into machine
learning as counterfactual risk minimiza on [ – ].
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In general cases of covariate shi , the ra o of probability distribu ons are most o en
es mated as Gaussian distribu ons [ ]. Unfortunately, closer inspec on of families of
probability distribu ons revealed that the use of exponen al func ons had a nega ve ef-
fect on the variance of the importance weights [ , , ]. For example, if the source
distribu on is a univariate Gaussian distribu on with mean 0 and variance 1, and the tar-
get distribu on is a univariate Gaussian with mean 0 and variance 𝜎𝒯 , then the weights
consist of 𝑝𝒯(𝑥)/𝑝𝒮(𝑥) = 𝒩(𝑥 | 0, 𝜎𝒯) / 𝒩(𝑥 | 0, 1) = 𝜎𝒯 exp(𝑥 (−1 + 𝜎𝒯)/(2𝜎𝒯)).
For this example, if the target variance is larger than 2, then the variance of the weights,
𝔼𝒮[(𝑤(𝑥)−𝔼𝒮[𝑤(𝑥)]) ], diverges to infinity. Large weight variancemeans that it is highly
probable that one sample will receive a very large weight, while the rest will receive very
small weights. Consequently, at training me, the classifier will only pay a en on to this
one important sample and will neglect everything else. The resul ng classifier is o en
pathological and will not generalize well. Alterna vely, the distribu ons are o en es -
mated through kernel density es ma on [ , , ].

Methods that directly es mate importance weights𝑤, instead of the source 𝑝𝒮 and tar-
get 𝑝𝒯 distribu ons separately, are usually based on minimizing some type of discrepancy
between the weighted source and the target distribu ons: D [𝑤, 𝑝𝒮 , 𝑝𝒯] [ ]. However,
just minimizing this objec ve with respect to 𝑤 might cause highly varying or unusually
scaled values, which would not be valid outcomes if we es mated the numerator and de-
nominator separately [ ]. This unwanted behaviour can be combated through incorpo-
ra ng a property of the reweighed source distribu on:

1 = ∫
𝒳
𝑝𝒯(𝑥)d𝑥

= ∫
𝒳
𝑤(𝑥)𝑝𝒮(𝑥)d𝑥

≈ 1𝑛 ∑𝑤(𝑥 ) for 𝑥 ∼ 𝑝𝒮 , ( . )

where the symbol ∼ refers to the fact that 𝑥 are drawn from 𝑝𝒮 . Restraining the weight
average to be close to 1, disfavors large values for weights. The approximate equality can
be enforced by constraining the absolute devia on of the weight average to 1 to be less
than some small value: | 𝑛 ∑ 𝑤(𝑥 ) − 1 | ≤ 𝜖. Note that in the sample selec on bias
case, the inverse selec on probability lies in the interval [1,∞), which will not average to
1. Incorpora ng the average weight constraint, along with the constraint that the weights
should all be non-nega ve, direct importance weight es ma on can be formulated as the
following op miza on problem:

minimize
∈

D [ 𝑤, 𝑝𝒮 , 𝑝𝒯 ]

s.t. 𝑤(𝑥 ) ≥ 0

| 𝑛 ∑𝑤(𝑥 ) − 1 | ≤ 𝜖 . ( . )
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Depending on the choice of discrepancy measure, this op miza on problem could be lin-
ear, quadra c or contain even more constraints.

One of the most common measures of distribu on discrepancies is the Kullback-Leibler
Divergence [ – ]. Sugiyama et al. have developed a number of techniques based on
this formula on, among which the most famous is called the Kullback-Leibler Importance
Es ma on Procedure (KLIEP) [ – ]. The KL-divergence between the true target distri-
bu on and the importance-weighted source distribu on can be simplified as:

DKL [𝑤, 𝑝𝒮 , 𝑝𝒯] =∫
𝒳
𝑝𝒯(𝑥) log

𝑝𝒯(𝑥)
𝑝𝒮(𝑥)𝑤(𝑥)

d𝑥

=∫
𝒳
𝑝𝒯(𝑥) log

𝑝𝒯(𝑥)
𝑝𝒮(𝑥)

d𝑥 − ∫
𝒳
𝑝𝒯(𝑥) log𝑤(𝑥)d𝑥 . ( . )

Since the first term in the right-hand side of ( . ) is independent of𝑤, only the second term
is used as in the op miza on objec ve func on. This second term is the expected value of
the logarithmic weights with respect to the target distribu on, which can be approximated
with unlabeled target samples: 𝔼𝒯[ log𝑤(𝑥)] ≈ 𝑚 ∑ log𝑤(𝑧 ). They formulated 𝑤
as a func onal model consis ng of an inner product of weights 𝛼 and basis func ons 𝜙,
i.e. 𝑤(𝑥) = 𝛼 𝜙(𝑥) [ ]. This allows them to apply the importance-weight func on to
both the test samples in the KLIEP objec ve from ( . ) and to the training samples for the
constraint in ( . ).

Addi onally, the group of Sugiyama has also produced another approach to direct es -
ma on of the importance weights [ , ]. They formulated the weights as a func onal
model again and formed an objec ve func on based on minimizing the squared error be-
tween the es mated weights and the actual ra o of distribu ons:

DLS[𝑤, 𝑝𝒮 , 𝑝𝒯] =
1
2 ∫𝒳

(𝑤(𝑥) − 𝑝𝒯(𝑥)𝑝𝒮(𝑥)
) 𝑝𝒮(𝑥)d𝑥

=12 ∫𝒳
𝑤(𝑥) 𝑝𝒮(𝑥)d𝑥 − ∫

𝒳
𝑤(𝑥)𝑝𝒯(𝑥)d𝑥 + constant . ( . )

As this squared error is used as an op miza on objec ve func on, the constant term drops
out. We are then le with the expected value of the squared weights with respect to the
source distribu on, and the expected value of the weights with respect to the target distri-
bu on. Expanding the weight model, 𝑤(𝑥) = 𝛼 𝜙(𝑥), gives 1/2 𝛼 𝔼𝒮[𝜙(𝑥)𝜙(𝑥) ]𝛼 −
𝔼𝒯[𝜙(𝑥)]. Replacing the expected values with sample averages allows for plugging in this
objec ve into the nonparametric weight es mator in ( . ). The authors have dubbed this
technique the Least-Squares Importance Fi ng procedure.

Another very popular measure of domain discrepancy is the Maximum Mean Discrep-
ancy, which is based on the two-sample problem from sta s cs [ – ]. Fortet and
Mourier originally formulated a hypothesis test to see if two sets of samples came from
the same distribu on. It measures the distance between the means a er subjec ng the
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samples to the con nuous func on that pulls them maximally apart (hence the name). In
order to actually compute themeasure, func ons from a Reproducing Kernel Hilbert Space
(RKHS) are used instead, which, under certain condi ons, are able to approximate any con-
nuous func on arbitrary well [ – ]. Furthermore, for the subset of func ons that are
bounded above, the maximiza on opera on can be subsumed in the RKHS norm [ ]. As
such, the discrepancy measure, including the reweighed source samples, can be expressed
as [ ]:

DMMD [𝑤, 𝑝𝒮 , 𝑝𝒯] = ‖ 𝔼𝒮 [𝑤(𝑥)𝜙(𝑥)] − 𝔼𝒯 [𝜙(𝑥)] ‖ℋ , ( . )

where ‖ ⋅ ‖ℋ denotes the norm in RKHS space [ ]. Basis func ons from RKHS can be
infinitely-dimensional, but by taking the square of the MMD one takes their inner prod-
ucts instead, which is again finite-dimensional. This is known as the kernel trick [ –

]. Through kernels the squared empirical MMD can be computed as: D̂MMD[𝑤, 𝑋, 𝑍] =
𝑛 ∑ , 𝑤(𝑥 )𝜅(𝑥 , 𝑥 )𝑤(𝑥 )−2/(𝑚𝑛)∑ ∑ 𝑤(𝑥 )𝜅(𝑥 , 𝑧 )+𝑚 ∑ 𝜅(𝑧 , 𝑧 ) . Min-
imizing the empirical MMD with respect to the importance weights, is called Kernel Mean
Matching (KMM) [ , ]. Depending on if, and how, the weights are upper bounded, al-
gorithmic computa onal complexi es and convergence criteria for KMM can be computed
as well [ , , ]

Taking a different direc on, Bickel et al.’s work focuses on modeling the data genera on
process andworkingwith domain selec on variables [ , ]. They reformulated the ra o
of probability distribu ons as a selec on likelihood ra o, 𝑝(𝑠 = 1)/𝑝(𝑠 = 1|𝑥), for which
no explicit modeling of the separate probability distribu ons is necessary. Modeling this
likelihood ra o with a kernel logis c model leads to a consistent es mator for the weights
[ ]. Through their genera ve modeling, the authors are able to combine the weight es -
ma on and the weighted classifier training into a single op miza on procedure [ ]. For
some experiments, the integrated models outperformed the two-step approach of es -
ma ng the selec on likelihood ra o with a classifier and training an importance-weighted
classifier [ ]. But for other experiments, there was no difference between simultaneous
and separate op miza on. Their formula on also sheds new light on KMM, as it can also
be re-formulated as a selec on likelihood ra o es mator [ ].

Lastly, directly es ma ng importance weights can also be done through tessella ng the
feature space into Voronoi cells [ ]. Each cell is a polygon of variable size and denotes an
area of equal probability. The cells approximate a probability distribu on func on in the
same way that a mul -dimensional histogram does: with more Voronoi cells, one obtains
a more precise descrip on of the change in probability between neighbouring samples.
Voronoi tessela ons, and more general spacing es mators, have been used as empirical
mul -dimensional density and entropy es mators [ , ]. However, [ ] uses them for
es ma ng importance-weights. First, one forms the Voronoi cell 𝑉 of each source sample
𝑥 , which consists of the part of feature space that lies closest to 𝑥 . The ra o of target over
source is then approximated by coun ng the number of target samples 𝑧 that lie within
each Voronoi cell: 𝑤(𝑥 ) = |𝑉 ∩ {𝑧 } |, where ∪ denotes the intersec on between
the Voronoi cell and the set of target samples and | ⋅ | denotes the cardinality of this set.
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Voronoi cells can be obtained through a -nearest-neighbour classifier, which means it is
less computa onally expensive than the discrepancy-based direct weight es mators. This
is also where it lends its name from: nearest neighbour weigh ng (NNeW) [ ]. It does
not require hyperparameter op miza on, but one s ll has the op on to perform Laplace
smoothing, the simplest one of which adds a to each cell [ ]. This counters the variance
of the weights and ensures that no source samples are given a weight of 0 and are thus
completely discarded.

1.4.2. Subspace mapping
In situa ons where the acquisi on device noisily samples an object, domains may lie in dif-
ferent subspaces [ , ]. In cases where cameras have the same resolu on, and there-
fore measure the same feature space, there poten ally exists a mapping from one domain
to the other [ , ]. For example, the mapping may correspond to a rota on, an affine
transforma on, or amore complicated nonlinear transforma on [ , ]. Figure . visual-
izes a transla on and rota on from the source to the target domain, as well as the resul ng
classifier. Some mes, such as for online product images and natural images , the domains
look completely different from each other and the underlying mapping can be very compli-
cated. Using too flexible transforma ons can easily lead to overfi ng which means these
methods will work well on the given target samples but fail for new target samples. Also,
any structural rela onships between domains, such as equal class-posterior distribu ons
will most likely not be valid anymore a er applying subspace mappings. Finally, the tech-
niques for finding these transforma ons are unsupervised and ignore class informa on.
That can be dangerous because it poten ally introduces class overlap.

The simplest technique for finding a subspace mapping is to take the principal compo-
nents in each domain, 𝐶𝒮 and 𝐶𝒯 , and find the rota on from source to target 𝐶𝒮𝐶𝒮 𝐶𝒯 [ ].
However, it is likely that a por on of the components are purely based on noise. Includ-
ing these into the rota on es ma on step might cause overfi ng. Luckily, this Subspace
Alignment (SA) approach can also be used to find an subspace dimensionality parameter;
a lower dimension means less parameters which means less overfi ng. Addi onally, this
technique is a rac ve because its limited flexibility also means that it is quite robust to
unusual problem se ngs. It is computa onally not very expensive, easily implemented
and intui ve to explain. Because of these a rac ve proper es, it has been extended by
other researchers a couple of mes. For instance, there is a landmark-based kernelized
alignment [ ] and a subspace distribu on alignment technique [ ].

Before Subspace Alignment, there was another method based on principal components
[ , ]. First, theMMDmeasure is rewri en as a joint domain kernel,K = [𝜅𝒮,𝒮 𝜅𝒮,𝒯; 𝜅𝒯,𝒮
𝜅𝒯,𝒯] [ ]. From this kernel, components are extracted by minimizing the trace of the pro-
jec on, under the constraint that the projec on applied to the centered joint kernel is
equivalent to the iden ty matrix:

minimize 𝑡𝑟(𝐶 KLK𝐶)

s.t. 𝐶 KHK𝐶 = 𝐼 , ( . )
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Figure . : Example of subspace mapping. (Le ) The source samples from Figure . have been translated and
rotated tomatch the data from the target domain. Subsequently, a classifier is trained on themapped source data
(black do ed line). (Right) Applying the adapted classifier to the target samples leads to less misclassifica ons as
compared to the original source classifier.

where 𝑡𝑟(⋅) is shorthand for the trace of a matrix, 𝐶 corresponds to the component ma-
trix, L the normaliza on matrix that divides each entry in the joint kernel by the sample
size of the domain from which it originated, andH is the matrix that centers the joint ker-
nel matrix K [ ]. In the original formula on, a regulariza on term 𝑡𝑟(𝐶 𝐶) along with a
trade-off parameter is included as well. Essen ally, the projec on error is minimized, un-
der the constraint that the projected joint kernel matrix is orthonormal. This formula on
resembles kernel PCA and, likewise, its op miza on resembles an eigenvalue decomposi-
on [ , ].

The advantage of principal component based techniques is that it is possible to map
data to lower-dimensional representa ons. Lower dimensionali es mean that these al-
gorithms scale well to large datasets. Furthermore, several researchers have argued that
in computer-vision se ngs there exists a specific lower-dimensional subspace that allows
for maximally discrimina ng target samples based on source samples. The Transfer Sub-
space Learning approach aims to find the subspace with the minimal Bregman divergence
to both domains [ ]. Their idea was later generalized by re-formula ng the objec ve as
the subspace fromwhich the reconstruc on error was minimal [ ]. First, the source data
is mapped to a lower-dimensional representa on, and then mapped back to the original
dimensionality. The reconstruc on error then consists of the mismatch between the re-
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constructed source samples and the target samples, measured through the squared error
or the Frobenius norm for instance. Interes ngly, this objec ve is very similar to that of a
contrac ve autoencoder, where the inverse mapping is restricted to be the transpose of
the original mapping: ‖𝜙(𝜙(𝑥𝑊)𝑊 )−𝑧‖ [ ]. Contrac ve and denoising autoencoders
are deep learning methods, that can stack mul ple layers of projec ng and reconstruc ng
samples on top of each other. Stacking allows them to achieve very flexible transforma-
ons [ ]. [ ] implemented a stacked autoencoder to find a mapping from source to
target domain. This approach works well when large amounts of source data are available,
as the overall transforma on can be made more complex. It has not only been success-
ful for adap ve computer vision, but for adap ve natural language processing as well .
The computa ons for reconstruc ng in each layer were later simplified by through noise
marginaliza on [ ].

Outside of principal components based techniques and methods for learning transfer
subspaces, there are also a number of methods that aim to find transforma ons that aid
specific subsequent classifiers [ – ]. First, we review Informa on-Theore c Metric
Learning (ITML), where a Mahalanobis metric, i.e. 𝑑 (𝑥, 𝑧) = (𝑥 − 𝑧) 𝑊(𝑥 − 𝑧), is
learned for use in a later nearest-neighbour classifier [ , ]. Metrics describe ways of
compu ng distances between points in vector spaces. If the standard Euclidean metric,
𝑑 (𝑥, 𝑧) = (𝑥 − 𝑧) (𝑥 − 𝑧), states that the distance between points 𝑥 and 𝑧 is large, but
theMahalanobismetric states that the distance is small, then one could say that theMaha-
lanobis metric transformed the space. In fact, first transforming the space and then mea-
suring distances with the Euclidean metric is equivalent to measuring distances with the
Mahalanobis metric: (𝑊 / 𝑥−𝑊 / 𝑧) (𝑊 / 𝑥−𝑊 / 𝑧) = (𝑥−𝑧) 𝑊(𝑥−𝑧). In order
to use theMahalanobis metric for classifica on, it is necessary to include some constraints
[ ]. If a small number of target labels is available, then these correspondence constraints
would consist of thresholding the pairwise distance between source and target samples of
the same label, 𝑑 (𝑥 , 𝑧 ) ≤ 𝑢 with 𝑢 as an upper bound, as well as thresholding the
pairwise distance between source and target samples of different classes, 𝑑 (𝑥 , 𝑧 ) ≥ 𝑙
with 𝑙 as a lower bound. This ensures that the learned metric regards samples of the same
class but different domains as similar, while regarding samples of different classes as dis-
similar. If no target labels are available, then one is required to encode similarity in other
ways.

ITML is restricted tofinding transforma ons betweendomains in the same feature space.
However, some mes different descriptors are used for different image databases. One
descriptor might span a source feature space of dimensionality 𝐷𝒮 while another spans
a feature space of dimensionality 𝐷𝒯 . The symmetric ITML approach can be extended to
an asymmetric case, where 𝑑 (𝑥, 𝑧) ≠ 𝑑 (𝑧, 𝑥). Asymmetric Regularized Cross-domain
transfer (ARC-t) incorporates non-squaremetricmatrices𝑊 𝒮× 𝒯 to find generalmappings
between feature spaces of different dimensionali es [ , ].

Instead of finding a unsupervisedmetric and constraining it with respect to class similar-
ity, one could learn a supervised metric as well. The Fisher criterion consists of the ra o of
between-class sca er, 𝑆 = ∑ 𝜋 (𝜇 − �̄�)(𝜇 − �̄�) with 𝜇 the mean of the 𝑘-th class,
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�̄� the overall mean and 𝜋 the class-prior, and average within-class sca er, 𝑆 = ∑ 𝜋 Σ
with Σ as the covariance matrix of the 𝑘-th class [ , ]. The Fisher criterion can be
used to extract a set of basis vectors that maintain class separability, much like a super-
vised form of PCA [ ]. It is o en used in feature extrac on, where the criterion is maxi-
mized with respect to a mapping to a lower-dimensional representa on that maintains as
much class separability as possible. They have been adapted to account for domain shi
in the form of FIDOS, a FIsher based feature extrac on method for DOmain Shi [ ].
FIDOS incorporates mul ple source domains and creates a between-class sca er matrix
of the weighted average of the between-class sca er matrices in each domain as well as
a within-class sca er matrix of the weighted average of each domains within-class scat-
ter. It aims to both maximize class-separability and minimize domain differences, with a
trade-off parameter to fine-tune the balance between these two objec ves for par cular
se ngs. Besides metrics for subsequent metric-using classifiers, there are also techniques
that align class margins for subsequent maximum-margin classifiers [ ].

1.4.3. Domain manifolds
One can make stronger assump ons than the existence of a subspace mapping: that there
exists a domainmanifold [ , – ]. Amanifold is a curved lower-dimensional subspace
embedded in a larger vector space. Every point on a domain manifold generates a single
domain. For example, the domain manifold might consist of a set of camera op cs param-
eters, where each se ng would measure the data in one vector space basis [ , ]. This
assump on is useful because it signifies that there exists a path along that manifold, going
from the source domain to the target domain [ , ]. In turn, this implies that there ex-
ists an intermediate domain for every step along the path [ – ]. Figure . visualizes
what a classifier trained on interpolated domains might look like. Addi onal samples have
been drawn from the supposed intermediate domains.

One of the first approaches to incorporate manifolds looked at the idea of learning in-
cremental small subspace transforma ons instead of a single large transforma on [ ].
This idea of incremental learningwas originally explored in situa ons with me-dependent
concept shi s [ ]. In the domain adapta on context, the goal is to learn the most likely
intermediate subspaces between the source and target domain. The space of all possi-
ble 𝐷-dimensional subspaces in an 𝑛-dimensional real-valued vector space ℝ can be de-
scribed by theGrassmannmanifold [ – ]. Each point on the Grassmannian generates
a basis that forms a subspace [ , , ]. One canmove from one subspace to another
by following the geodesic path. Compu ng the direc on and speed of geodesic flow is
performed based on the matrix exponen al flow of the star ng subspace [ ]. Another
op on would be to compute the sampling spline flow [ ]. Given the geodesic flow, all
intermediate subspaces are computed and the source data is projected onto each of them
separately. A classifier then trains on labeled data from a star ng subspace and predicts
labels for the next subspace, which are used as the labeled data in the next step. This pro-
cess of inferring labels for every following step resembles self-learning in semi-supervised
learning, where one itera vely labels unlabeled samples with the classifiers predic on and
incorporates them in the next training stage [ ]. The itera on was later proven redun-
dant by a technique called Geodesic Flow Kernel (GFK), that incorporates the projec ons
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Figure . : Example of interpola ng along a domain manifold. (Le ) Addi onal samples have been drawn from
distribu ons that are believed to be intermediate domains between the source and the target domain. A classifier
is now trained on both the source and the addi onal samples (black line). The resul ng classifier (black do ed
line) does not deviate much from the original classifier in the part of feature space where the source domain
resides, but does deviate along the interpolated domains. (Right) Applying the adapted classifier to the target
samples leads to less misclassifica ons around the target domain, but results in a few misclassifica ons around
the source domain part of feature space.

on all subspaces into a single training stage [ , ]. Naturally, it will be hard to recover
the true path, but having mul ple source domains or a small number of target labels will
benefit geodesic flow es ma on [ ].

Working with Grassmann manifolds for subspace mappings is just one op on. Alterna-
vely, one could look at sta s cal manifolds, where each point generates a probability dis-
tribu on [ ]. Especially for rich families of distribu ons, such as the exponen al family,
a path on the sta s cal manifold may describe a complicated process of turning one distri-
bu ons into another. In this case, the length of the geodesic path along the sta s cal man-
ifold, called the Hellinger distance, is used as a measure of domain discrepancy [ , ].
The Hellinger distance is closely related to the total varia on distance between two distri-
bu ons, which is used in a number of other domain adapta on works without reference
to the sta s cal manifold [ , , ]. Adapta on consists of either importance-weigh ng
samples or transforming parameters to minimize the Hellinger distance [ , ].

1.4.4. Domain-invariance
The problem with transforma ons between domains or moving along a domain manifold
is that the classifier remains in a domain-specific representa on. But varia on due to do-
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mains is o en more of a nuisance instead of an interes ng factor. Ideally, we would like to
represent the data in a space which is invariant to specific domains. Figure . shows an
example of such a space: in this case the data can be mapped to a line (new 1-dimensional
representa on) such that the source and target distribu ons vary onlyminimally, while the
varia on between classes (red versus blue) is s ll the same. Note that a domain-invariant
representa on need not be lower dimensional. The advantage of this approach is that clas-
sifica on is now the same as in standard supervised learning (training on source data and
applying to target data).

Most domain-invariant projec on techniques stem from the computer vision and (biomed-
ical) image processing communi es, where domains are o en caused by different acqui-
si on methods. For instance, in computer vision, camera-specific varia on between sets
of photos is an unwanted factor of varia on [ , ]. Furthermore, we could argue that
there exists a true representa on of the object and that each camera is a different noisy
representa on of it. Similarly, in medical imaging, there exists a true representa on of a
pa ent and each MRI scanner is a different noisy representa on [ , ]. Since there is
extensive knowledge of the acquisi on device, it is possible to design specific techniques
that work quite well.
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Figure . : Example of a domain-invariant representa on. (Le ) The source data ismapped to a representa on in
which the varia on over domains is minimal; the source data and target lie on the same -dimensional (line). The
varia on over classes is maintained; the red and blue dots are s ll as separable as before. The classifier trained
on the source data in the domain-invariant representa on (do ed black line) can now directly be applied to the
target samples (right).
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Learning the projec on to the domain-invariant can be done in a number of ways. The
Domain-Invariant Projec on (DIP) approach from [ ] , later renamed to Distribu on-
Matching Embedding (DME) [ ], aims to find a projec on matrix that minimizes the
MMD:

DDME[𝑊, 𝑝𝒮 , 𝑝𝒯] = ‖ 𝔼𝒮[𝜙(𝑊 𝑥)] − 𝔼𝒯[𝜙(𝑊 𝑥)] ‖ℋ , ( . )

where 𝑊 is the projec on matrix that is being minimized over, with the addi onal con-
straint that it remains orthonormal;𝑊 𝑊 = 𝐼. This constraint is necessary to avoid patho-
logical solu ons to the minimiza on problem. However, although the MMD encourages
moments of distribu ons to be similar, it does not encourage smoothness in the new space.
To this end, it is possible to add a regulariza on term that punishes the within-class vari-
ance in the domain-invariant space, to encourage class clustering. Alterna vely, the same
authors have also proposed the same technique, but with the Hellinger distance instead
of the MMD [ ]. This approach resembles Transfer Component Analysis, but minimizes
discrepancy instead of maximizing joint domain variance [ ].

DME is s ll limited by its use of a linear projec on matrix; unless the specific acqui-
si on device only causes linear noise, a linear projec on matrix will not be able to find
the true underlying domain-invariant representa on. A nonlinear projec on is muchmore
flexible and much more likely to recover the true domain-invariant space. The Nonlin-
ear Distribu on-Matching Embedding achieves this addi onal flexibility by performing the
linear projec on in kernel space; 𝑊 𝜙(𝑥) [ ]. However, using a kernel-within-kernel
approach is expensive in terms of memory and computa onal resources.

Alterna vely, [ ] proposed to learn the kernel for MMD itself: instead of weigh ng or
projec ng samples and then using a universal kernel tomeasure their discrepancy, it is also
possible to find a basis func on for which the two sets of distribu ons are as similar as pos-
sible. The space spanned by this learned kernel then corresponds to the domain-invariant
space. Considering that different distribu ons generate different means in kernel space, it
is possible to describe a distribu on of kernel means [ , ]. The variance of this meta-
distribu on, termed distribu onal variance, should then be minimized. This is achieved by
incorpora ng a lower-dimensional orthogonal transform into the inner product of the ba-
sis func ons, also known as the Gram matrix, and minimizing the empirical distribu onal
variance with respect to this transform matrix [ ]. However, this is fully unsupervised
and could introduce class overlap. The func onal rela onship between the input and the
classes can be preserved by incorpora ng a central subspace in which the input and the
classes are condi onally independent [ , ]. Constraining the op miza on objec ve
with maintaining this central subspace, ensures that classes remain separable in the new
domain-invariant space. Overall, as this approach is interpreted as finding kernel compo-
nents that minimize distribu onal-variance while maintaining the func onal rela onship,
it is coined Domain-Invariant Component Analysis (DICA) [ ]. It has been expanded on
for the specific case of spectral kernels by [ ].

Although the kernel approaches have the capacity to recover any nonlinear mapping,
they require mul ple computa ons of 𝑛×𝑛matrices and therefore do not scale well with
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respect to the number of samples. For larger datasets, one might employ neural networks
since they also have the capacity to recover any nonlinear mapping but scale much bet-
ter in terms of the number of samples [ , ]. Neural networks are layered, and when
going from one layer to the next, the input representa on is transformed using a linear
opera on and pushed through a nonlinear ac va on func on. By increasing the complex-
ity of a layer and stacking mul ple layers on top of each other, under certain condi ons,
any possible transforma on can be achieved [ , – ]. Its op miza on procedure,
known as backpropaga on, pushes the network to find a transforma on that maps the
data into a space in which it is maximally linearly separable. Fortunately, by using different
loss func ons in the top layer, we can achieve different forms of transforma ons [ ].
Domain-Adverserial Neural Networks (DANN) have one classifica on-error minimizing top
layer and one domain-error maximizing top layer [ ]. Essen ally, the network finds a
domain-invariant space when its domain classifier cannot recognize from which domain a
new sample has come, without introducing class overlap. The idea of maximizing domain-
confusion while minimizing classifica on error has been taken up and applied to various
se ngs by a number of approaches [ , ].

Finally, if we were to have a small collec on of target labels, then it might be possible
to compare the classifiers found in each domain and transform the space such that these
become as similar as possible [ ]. The formula on here consists of encoding an addi-
onal variable deno ng to which domain each sample belongs, along with its correspond-
ing modeled class-posterior distribu on, and marginalizing this variable out. As more do-
mains imply more restric ons on the possible transforma ons, this method benefits from
incorpora ng mul ple sources.

Mapping data to a domain-invariant space resembles the se ng where we are correct-
ing for sample selec on bias. Essen ally, the domain-invariant space corresponds to the
super-popula on and our data mapped to the domain-invariant space corresponds to an
unbiased sampling from this super-popula on. They differ perhaps, in that, in the selec on
bias se ng, certain samples are very common in one dataset and rare in another, while, in
the domain-invariance se ng, an object might be equally common in both datasets, but
look different in each of them.

1.4.5. Feature augmenta on
In natural language processing (NLP), domains present themselves in the form of differ-
ences between word frequency sta s cs over text corpora. This happens mostly because
people express themselves differently in different contexts [ , ]. For instance, the
word ‘useful’ occurs more o en to denote posi ve sen ment in kitchen appliance reviews
than in book reviews [ ]. It can even happen that certain words occur only in par cular
contexts, such as ’opioid receptors’ in abstracts of biomedical papers but not in financial
news [ ]. Hence, domains present a large problem for the field.

Fortunately, NLP systems can exploit the fact that words tend to signal each other; in
a bag-of-words (BoW) encoding each document is described by a vocabulary and a set of
word counts [ ]. Words that signal each other, tend to occur together in documents.
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Co-occurring words lead to correla ng features in a BoW encoding. Correla ng features
can be exploited as follows: suppose a par cular word is a strong indicator of posi ve or
nega ve sen ment and only occurs in the source domain. Then one could find a correlat-
ing ”pivot” word that occurs frequently in both domains, and find the word in the target
domain that correlates most with the pivot word. This target domain word, is most likely
the corresponding word to the original source domain word and will be a good indicator
of posi ve versus nega ve sen ment as well [ ]. Thus, by augmen ng the bag-of-words
encoding with pivot words and learning correspondences, it is possible to overcome do-
main differences [ , , , ]. Figure . shows an idealized example of augmen ng
a feature space. 𝑥 is added to both the source (le ) and the target (right) domain. This
addi onal feature allows for training a classifier (grey plane) that will perform as well on
the source domain as on the target domain, regardless of the ini al differences between
them.

Figure . : Example of an augmented feature space. (Le ) The source domain is augmented with an addi onal
feature ( ) that does not vary over domains. (Right) The target domain is augmented with the same feature.
Now, regardless of the ini al difficulty of adapta on, a classifier (grey plane) can be trained that generalizes well.

How to find corresponding features, or in general how to couple subspaces, is an open
ques on. Note thatwithmore features, there is a larger chance to find a goodpivot feature.
The earliest approaches have extracted pivot features through joint principal components
or maximizing cross-correla on [ , ]. However, such techniques are linear and can
only model linear rela onships between features. Later approaches are more nonlinear
through the use of kerneliza on or by employing ”co-training” approaches [ , ].
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Feature augmenta on shares a lot of overlap with the approach of finding a domain-
invariant space, as the augmenta on is essen ally an ar ficially created invariant space.
The key difference lies in the fact that retaining the original features can be helpful when
there indeed exist correspondences between features. Addi onally, feature augmenta on
also shares overlap with the subspace mapping se ng as the domain-specific features are
now different subspaces of the overall feature space. For example, in bag-of-word encod-
ings, target samples essen ally have value0 onwords that only occur in the source domain.
If we were to encode all samples in the union of words, then the source domain could be
mapped to the target domain by a transforma on through the domain-specific part of the
total feature space.

1.4.6. Robust adapta on
When any of the aforemen oned approaches are applied to se ngs where their assumed
shi is actually not happening, then they tend to mis-es mate how to adapt and perform
terribly [ , ]. In short, they are not robust to unexpected changes. Although some
methods are more robust to invalid assump ons, such as maximum-margin based clas-
sifiers, others can be made more robust [ ]. To ensure a robust level of performance,
a few approaches assume worst-case se ngs. Worst-case se ngs are o en formalized
as minimax op miza on problems [ , ]. However, as there are no target labels, the
worst-case is not unique and no op miza on algorithm will converge. Considering that
there is addi onal informa on in the form of the source domain, it is possible to constrain
the worst-case se ng. One of the most interes ng approaches here is the use of worst-
case importance weights [ ]:

(ℎ̂, �̂�) = argmin
∈ℋ

argmax
∈

1
𝑛 ∑ℓ(ℎ(𝑥 ), 𝑦 )𝑤(𝑥 ) . ( . )

By training a classifier under worst-case weights, it should be more robust against the ad-
verse effects of density ra o es ma on errors.

Another minimax strategy, dubbed the robust bias-aware classifier [ ], plays a game
between a risk minimizing target classifier and a risk maximizing target class-posterior dis-
tribu on, where the adversary is constrained to pick posteriors that match themoments of
the source distribu on sta s cs. The constraint is important, as the adversary would oth-
erwise be able to design posterior probabili es that result in degenerate classifiers (e.g.
assign all class-posterior probabili es to 1 for one class and 0 for the other). Effec vely,
this means theminimax es mator returns high confidence predic ons in regions with large
probability mass of the source density and uniform class predic ons in regions with small
source probability mass. This behaviour nicely reflects the larger difficulty of an adapta on
problem with a larger domain dissimilarity, but restricts this approach to problems where
the probability masses of both domains overlap to some extent. However, it also means
that their approach loses predic ve power in areas of feature space where the source dis-
tribu on has limited support, and thus is not suited very well for problems where the do-
mains are very different.
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Conserva sm can also be expressed through algorithmic robustness [ ]. An algorithm
is deemed robust if it can separate a labeled feature space into disjoint sets such that the
varia on of the classifier is bounded by a factor dependent on the training set. Intui vely,
a robust classifica on algorithm does not change its predic ons much whenever a training
sample is changed. Separa ng the space with a robust algorithm implies that the loss is
bounded in each par on, regardless of the distribu on of samples. [ ] employs this
no on to construct a robust adap ve algorithm. They introduce 𝜆-shi , a measure of how
far the value of the target class posterior probability differs from the source class posterior
probability, which is used as a constraint on the loss on target samples in a support vector
machine formula on. The classifier finds a separa ng hyperplane such that the hinge loss
on the source set is similar to the loss of the target domain. The downside of this approach
is that if the class posterior distribu ons of both domains are very different (e.g. orthogonal
decision boundaries), it will not perform well on both sets.
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1.5. Contribu on
Each chapter in this thesis builds upon different approaches to domain adapta on.

Chapters and are concerned with the popular importance-weigh ng technique and
address two open ques ons regarding cross-valida on under covariate shi . Chapter
shows that importance weigh ng the source valida on dataset is not sufficient to obtain
hyperparameters that are op mal in the target domain, while Chapter extends this work
by hypothesizing that this insufficiency is due to problems with unbounded variance of the
importance weights. Experiments with reducing the sampling variance of the importance-
weighted risk es mator show that the es mator improves, but s ll does not find the op -
mal regulariza on parameter.

Chapter switches to the case of subspace mappings. We formulated a condi on that,
when fulfilled, allows for recovering the op mal target classifier. The difficulty lies in finding
the correct parameteriza on of what we call a transfer model. Looking at a simple case of
transfer, namely dropout (prevalent in cases of missing data at test me and bag-of-word
encodings), we present an algorithm that es mates the transfer model’s parameters and
trains a classifier that ignores features that are not important in the target domain.

Chapter combines machine learning with medical imaging. Tissue classifiers do not
generalize well across MRI-scanners due to unknown acquisi on-related varia ons. We
tackle this problem by mapping images from different MRI-scanners to a domain-invariant
representa on. We used anMR simulator that allows us to vary scan sequence parameters
on the same subjects, thereby isola ng acquisi on-related factors of varia on. A Siamese
convolu onal neural network is used to learn the acquisi on-invariant representa on. Us-
ing a measure of distance between datasets, the proxy 𝒜-distance, we are able to show
that, in some cases, it can be very beneficial to add data from another scanner, while, in
other cases, it can be very disrup ve to training a ssue classifier.

Finally, Chapter formulates a robust parameter es mator that is guaranteed to never
perform worse than the source classifier on the target domain. When applied to the dis-
criminant analysis framework, it even ensures that the resul ng adap ve classifier will al-
ways perform be er than the source classifier, in terms of model likelihood. No perfor-
mance guarantees of this kind have been proposed before.

In closing, Chapter reflects on some of the most important findings and discusses
promising avenues for further research.
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2
Cross-valida on under covariate

shi

This chapter iden fies a problem with the usual procedure for 𝐿 -regulariza on parameter
es ma on in a domain adapta on se ng. In such a se ng, there are differences between
the distribu ons genera ng the training data (source domain) and the test data (target
domain). The usual cross-valida on procedure requires valida on data, which can not be
obtained from the unlabeled target data. The problem is that if one decides to use source
valida on data, the regulariza on parameter is underes mated. One possible solu on is
to scale the source valida on data through importance weigh ng, but we show that this
correc on is not sufficient. The chapter is concluded with an empirical analysis of the effect
of several importance weight es mators on the es ma on of the regulariza on parameter.

This chapter is based on the paper ”On regulariza on parameter es ma on under covariate shi ”.
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2.1. Introduc on
In supervised learning, there is a (mostly implicit) assump on that the training data is an
unbiased sampling of the underlying distribu on of interest. However, that may not be
the case. In a variety of problems there is o en an unknown bias in the sampling proce-
dure. These arise due to environmental effects, such as temperature in different genome
sequencing centers [ – ], or due to the use of par cular measuring instruments, such as
types of cameras in computer vision [ , ]. This means the training dataset (source do-
main) and the test dataset (target domain) are technically generated by different distri-
bu ons and generaliza on might no longer be possible. The challenge lies in using the
labeled source data and the unlabeled target data to classify new target data; a problem
se ng o en referred to as domain adapta on, transfer learning or sample selec on bias
[ – ]. Most research focuses on classifiers that incorporate informa on on the difference
between the data in both domains, but unfortunately most of these approaches overlook
the role of the regulariza on parameter.

Regulariza on is used to combat overfi ng of complex models and is a vital component
in most classifiers to ensure they generalize to unseen data. It consists of a trade-off be-
tween how well the classifier can discriminate training samples and how complex it must
become to do so. This balance is described by the regulariza on parameter which is usually
es mated by holding out a small subset of unseen labeled data and evalua ng the trained
classifier (cross-valida on). However, since there are no labeled target samples available,
it is not possible to construct a target valida on set. If one were to alterna vely construct
a valida on set from source data, the es mator converges in distribu on to the source risk
and not the target risk [ ].

We study how the generaliza on performance of a classifier behaves as a func on of the
regulariza on parameter and the domain dissimilarity. There are many factors that influ-
ence the value of the op mal regulariza on parameter, such as the moments of the class-
condi onal distribu ons in each domain (differences in variance, skewness, etc.), concept
dri (different class priors in each domain), types of adap ng classifiers (some require less
regulariza on than others) and high-dimensional distribu on es ma on errors, but we fo-
cus on differences in variance between domains. The first correc on that comes to mind
consists of scaling the source valida on risk with importance weights and although this
remedies the problem somewhat, we show that the op mal regulariza on parameter for
the target domain remains underes mated.

2.2. Es ma on problem
Domains are different biased samplings, which correspond to different joint probability
distribu ons over the same input space𝒳 and output space 𝒴 = {−1,+1}. We will refer
to the source domain with 𝒮 and the target domain with 𝒯. Source data 𝑋 with labels 𝑦
consists of 𝑛 samples from 𝑝𝒮(𝑥, 𝑦), denoted as a data set {(𝑥 , 𝑦 )} , and target data
𝑍 with labels 𝑢 consists of 𝑚 samples from 𝑝𝒯(𝑥, 𝑦), denoted as a data set {(𝑧 , 𝑢 )} .
The input space is a 𝐷-dimensional feature space, which means that 𝑥 and 𝑧 are vectors:
𝑥 = (𝑥 ,… , 𝑥 ) and 𝑧 = (𝑧 , … , 𝑧 ). A classifier is a func on that takes as input data
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and outputs a class predic on, ℎ ∶ 𝒳 → 𝒴.

2.2.1. Regularized risk
The risk minimiza on framework allows one to construct classifiers through searching a
class of hypothe cal func ons ℋ (e.g., linear) and selec ng the one that minimizes the
expected loss ℓ ∶ ℝ × 𝒴 → ℝ . The source and target risk are defined respec vely as:

𝑅𝒮(ℎ) =∫
𝒳
∑
∈𝒴
ℓ(ℎ(𝑥), 𝑦) 𝑝𝒮(𝑥, 𝑦) d𝑥 ( . )

𝑅𝒯(ℎ) =∫
𝒳
∑
∈𝒴
ℓ(ℎ(𝑥), 𝑦) 𝑝𝒯(𝑥, 𝑦) d𝑥 . ( . )

Note that for any ℎ, the source and target risks differ only through the joint probabili es
𝑝𝒮(𝑥, 𝑦) and 𝑝𝒯(𝑥, 𝑦). The goal is to find the classifica on func on ℎ that will minimize
the target risk, based on source data.

Unfortunately, minimizing the empirical source riskwith respect to ℎ directly, o en leads
to a solu on that does not generalize well to other samples (overfi ng), let alone samples
from another distribu on. In order to prevent the classifier from becoming too specific for
the training data set, a complexity term is added to the empirical risk during training. Most
o en, the 𝐿 -norm of the classifier’s parameters 𝜃 is chosen as the complexity term. The
regularized empirical risk can be wri en as:

�̂� (𝜃 ) = 1
|𝑇| ∑

∈
ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦 ) + 𝜆‖𝜃‖ ( . )

where the subscript 𝑇 denotes the set of indices indica ng which source samples are used
for training 𝑇 ⊂ {1,… , 𝑛} (not the target samples), | ⋅ | denotes the cardinality and ‖.‖
denotes the 𝐿 -norm. Note that the empirical risk is now a func on of the classifier’s pa-
rameters 𝜃, instead of ℎ, and that it has received the subscript 𝑇 to indicate that it is the
empirical risk with respect to the source training samples. In the following, we will use
other subscripts to indicate empirical risks with respect to other data sets.

The regulariza on parameter 𝜆 trades off the empirical risk and the 𝐿 -norm. It is usually
es mated by defining a set of values Λ, training a classifier for each and selec ng 𝜆 ∈ Λ
with the minimal risk according to an evalua on on a disjoint valida on dataset. The set
of regularized classifiers can be denoted as:

𝜃 = {𝜃 = argmin
∈

�̂� (𝜃 ) | 𝜆 ∈ Λ} . ( . )

where 𝜃 refers to the classifier that is trained using 𝜆. Θ is the classifier parameter space,
which for linear classifiers is, for instance, the set of 𝐷+1-dimensional real vectorsℝ .
The regulariza on parameter space Λ is o en taken to be an exponen ally increasing set
of nonnega ve values; for example {0, 0.01, 0.1, 1, 10, 100, 1000}.
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If we choose a quadra c loss func on, ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦) = (ℎ(𝑥 ∣ 𝜃) − 𝑦) , with a linear
hypothesis class, then the solu on to minimizing equa on . with respect to the classifier
parameters is 𝜃 = (𝑋 𝑋 +𝜆𝐼) (𝑋 𝑦 ), where 𝑋 refers to the 𝑛 ×𝐷 data matrix. Note
that for the same training data 𝑋 , 𝜃 varies due to different choices of 𝜆.

2.2.2. Evalua on measure

Evalua ng a classifier consists of compu ng its empirical risk on a novel dataset. We will
be studying two valida on sets, the first being held-out source data, and the second being
target data. Wewill incorporate the quadra c loss in the risk func on for valida on as well.
The held-out source valida on data will be marked with the subscript 𝑉, which indicates
the set of indices that are disjoint from the training set 𝑉 ∩ 𝑇 = ∅). Plugging in source
valida on {(𝑋 , 𝑦 )} and target valida on data {(𝑍, 𝑢)}, the empirical risks are:

�̂� (𝜃 ) = 1 − 2
|𝑉|𝑦 𝑋 𝜃 + 1

|𝑉|𝜃 𝑋 𝑋 𝜃 ( . )

�̂� (𝜃 ) = 1 − 2
|𝑍|𝑢 𝑍𝜃 + 1

|𝑍|𝜃 𝑍 𝑍𝜃 . ( . )

Cross-valida on consists of holding out each source sample at least once, training a clas-
sifier on the remainder and evalua ng on the held out valida on set. One round of cross-
valida on is performed for each 𝜃 ∈ 𝜃 and the minimizer of the set with respect to the
empirical risk corresponds to the es mated regulariza on parameter.

2.2.3. Problem se ng

For any ℎ, the empirical source valida on risk �̂� converges to the true source risk 𝑅𝒮
by independently sampling valida on data sets infinitely many mes [ ]. Unfortunately,
this is not equal to the target risk 𝑅𝒯 . Hence, selec ng a regulariza on parameter based
on source valida on data will not be equivalent to selec ng a regulariza on parameter
based on target valida on data. Furthermore, the larger the difference between 𝑝𝒮(𝑥, 𝑦)
and 𝑝𝒯(𝑥, 𝑦), the larger the difference between the selected regulariza on parameters.
In order to obtain a regulariza on parameter es mate that is closer to the one found by
valida ng on the target risk, we need a way to match the valida on empirical risks.

2.3. Covariate Shi
A natural approach to designing a corrected valida on procedure, would be to employ
some func onal rela on between the source and target risks. Fortunately, such a rela on
exists for a subset of the class of domain adapta on problems: if one makes the covari-
ate shi assump on that the class posterior distribu ons are equivalent in both domains,
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𝑝𝒯(𝑦 | 𝑥) = 𝑝𝒮(𝑦 | 𝑥), then the target risk can be rewri en into a weighted source risk:

𝑅𝒲(ℎ) =∫
𝒳
∑
∈𝒴
ℓ(ℎ(𝑥), 𝑦) 𝑝𝒯(𝑦, 𝑥)𝑝𝒮(𝑦, 𝑥)

𝑝𝒮(𝑥, 𝑦) d𝑥

=∫
𝒳
∑
∈𝒴
ℓ(ℎ(𝑥), 𝑦) 𝑝𝒯(𝑦 | 𝑥) 𝑝𝒯(𝑥)𝑝𝒮(𝑦 | 𝑥) 𝑝𝒮(𝑥)

𝑝𝒮(𝑥, 𝑦) d𝑥

=∫
𝒳
∑
∈𝒴
ℓ(ℎ(𝑥), 𝑦) 𝑝𝒯(𝑥)𝑝𝒮(𝑥)

𝑝𝒮(𝑥, 𝑦) d𝑥 .

The func onal rela on thus consists of weigh ng the source samples appropriately. It can
be shown that under the addi onal assump on of a small domain discrepancy, this prob-
lem se ng is learnable [ ].

2.3.1. Genera ng a covariate shi se ng
Since we are restric ng the analysis to covariate shi se ngs, we need to generate such a
problem. First, we choose a set of source class-condi onal distribu ons 𝑝𝒮(𝑥 | 𝑦), a set of
priors 𝑝 (𝑦) and compute the class posterior distribu ons 𝑝𝒮(𝑦 | 𝑥) through Bayes’ rule.
Then, by choosing a different target distribu on 𝑝𝒯(𝑥), mul plying by the derived class-
posterior distribu ons 𝑝𝒯(𝑦|𝑥) = 𝑝𝒮(𝑦|𝑥) and inver ng Bayes’ rule, the class-condi onal
target distribu ons 𝑝𝒯(𝑥 | 𝑦) are obtained. Note that this also implies that the priors are
equal in both domains: 𝑝𝒮(𝑦) = 𝑝𝒯(𝑦). Figure . (le ) visualizes an example of this prob-
lem for Gaussian class-condi onal distribu ons. We plo ed the labeled source distribu-
ons in red and blue with the unlabeled target distribu ons in black. The class posteriors
of this problem are plo ed in Figure . (right), and are equivalent. An ar ficial dataset
can be generated by sampling from these distribu ons, either through inverse transform
sampling or rejec on sampling.

(a) Class-condi onal distribu ons of each
domain.

(b) Class-posterior distribu ons of the source (le ) and
the target domain (right).

Figure . : An ar ficially generated -dimensional covariate shi problem.

If we fix the source class-condi onal distribu ons to be Gaussian distribu ons, with the
blue class as𝒩(𝑥|−1, 1) and the red class as𝒩(𝑥|1, 1), then we can generate problem
se ngs by choosing different target distribu ons. Figure . (le ) shows Gaussian tar-
get distribu ons with equal means as the source distribu ons but with different variances
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𝜎𝒯 ∈ {0.5, 1, 2, 3, 4}. If we train a classifier based on the source class-condi onal distri-
bu ons and evaluate it using the target empirical risk, then it becomes apparent that the
difference between the minimizer of the source risk and the target risk starts to increase
as the difference between the distribu ons start to increase. Figure . (right) plots the
empirical risk as a func on of 𝜃 for the covariate shi problems, with the minimum for
eachmarkedwith a black square. Note that for𝜎𝒯 = 1 the distribu ons are equivalent and
its minimizer is equivalent to the minimizer of the source risk. The curves show a gradual
increase in the minimizers as the variance increases.

Figure . : (Le ) covariate shi problems, with the target variance 𝒯 ∈ { . , , , , }. (Right) The corre-
sponding target empirical risk curves. The black squares denote the minima of these curves.

2.3.2. Difference in error curves
If we minimize the empirical risk curves of the source valida on data ( . ) with respect to
the trained regularized classifier 𝜃 , we obtain:

𝜃 ̂ = argmin �̂� (𝜃 )

= (𝑋 𝑋 ) (𝑋 𝑦 ) .

The subscript �̂� is used to signify that this is the regulariza on parameter chosen by vali-
da ng on the held-out source data; since the same training data 𝑋 is used, 𝜃 only differs
through the choice of 𝜆. Similarly, minimizing the empirical risk on the target valida on
data produces:

𝜃 ̂ = argmin �̂� (𝜃 )

= (𝑍 𝑍) (𝑍 𝑢)

where �̂� denotes the op mal regulariza on parameter we would have chosen, had we
been able to validate on labeled target data.

Studying these two forms, we see that these es mates of 𝜆 differ mainly through the
data inner products (i.e., the uncentered, unnormalized covariance matrices). To illustrate
this point, we can decompose the data through a singular value decomposi on, allowing



2.4. Experiments

2

57

us to express the minimizers as:

𝜃 ̂ = (𝑉 𝐷 𝑈 )𝑦
𝜃 ̂ = (𝑉 𝐷 𝑈 )𝑢

where the diagonal matrices 𝐷 and 𝐷 consist of the normalized singular values 𝐷 , =
𝛼 , /𝛼 , and 𝐷 , = 𝛼 , /𝛼 , . Apart from a change of basis from 𝑉 to 𝑉 and 𝑈 to 𝑈 ,
the difference lies mainly in the scale of the eigenvalues.

If we were to apply a scaling opera on to the valida on risk, then the difference be-
tween these curves can be minimized. Finding the op mal regulariza on parameter for
the target domain will then be equivalent to finding the op mal regulariza on parameter
for the scaled valida on risk.

2.3.3. Importance-weighted valida on
Sugiyama et al. ( ) employ just such a scaling transforma on in the form of importance
weigh ng the valida on risk, with weights 𝑤 as es mates of the ra o of data marginals
𝑝𝒯(𝑥)/𝑝𝒮(𝑥) [ ]. These weights scale the risk of each individual valida on sample sepa-
rately. This leads to an importance weighted source valida on risk as follows:

�̂� (𝜃 ) = 1 − 2
|𝑉|𝑦 𝑊𝑋 𝜃 + 1

|𝑉|𝜃 𝑋 𝑊𝑋 𝜃

where𝑊 is a matrix with the importance weights for the valida on samples on its diago-
nals. This formula on has the following minimizer:

𝜃 ̂ = (𝑋 𝑊𝑋 ) (𝑋 𝑊𝑦 ) .

The ra o of probabili es can have a very large variance, depending on how likely it is
to encounter either extremely large target probabili es or extremely small source prob-
abili es. Furthermore, in the small sample size se ng, es ma on errors increase the
possibility of a numerical explosion, such as when samples are drawn that lie so close
together that the es mated target distribu on resembles a Dirac distribu on. Lastly, the
cross-valida on es mator has its own variance [ ] which is now directly affected by the
variance of the importance weight es mator. For a be er understanding of the behavior
of an importance weighted cross-valida on es mator, we performed a number of experi-
ments with a large diversity of weight es mators in the following sec on.

2.4. Experiments
We conducted an experiment on an ar ficial problem se ng and one on a typical real-
world domain adap on problem where there is no knowledge on whether the covariate
shi assump on holds. Our goal is to evaluate the ability of a number of both parametric
and nonparametric importance weight es mators to correctly es mate the op mal regu-
lariza on parameter in the target domain. These experiments illustrate that a large diver-
sity of exis ng es mators tends to underes mate the op mal target parameter.
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2.4.1. Importance weight es mators
We selected four importance weight es mators with a diverse set of behaviors.

Ra o of Gaussians
A baselinemethod of es ma ng themarginal data ra o throughmodeling each sample set
with a separate Gaussian distribu on [ ]:

�̂�rG =
𝒩(𝑥 | �̂�𝒯 , �̂�𝒯)
𝒩(𝑥 | �̂�𝒮 , �̂�𝒮 )

,

where𝒩 denotes the Gaussian distribu on func on, �̂�𝒮 denotes the es mated mean of
the source data set, �̂�𝒯 the es mated mean of the target data set, �̂�𝒮 denotes the es-
mated variance of the source set and �̂�𝒯 the es mated variance of the target set. Note
that the datamarginals in our problem are actually Gaussian and that this is thus a correctly
specified model.

Kullback-Leibler importance es ma on procedure
This popular method is based on minimizing the Kullback-Leibler divergence between the
re-weighted source samples and the target samples [ ]:

�̂�KLIEP = argmax
∈

∑ log ∑𝑤 𝜅(𝑥 , 𝑧 ) ,

s.t. ∑𝑤 𝜅(𝑥 , 𝑧 ) = 𝑛 ,

where 𝜅 is a kernel func on, in this case between the source samples 𝑥 and the target
samples 𝑧. We chose aGaussian kernel, with the kernelwidth es mated through a separate
-fold cross-valida on procedure [ ].

Kernel Mean Matching
Another popular weight es mator that is mo vated by assigning weights that minimize
the Maximum Mean Discrepancy (MMD) between the re-weighted source and the target
samples [ ]. The MMD is the distance between the means of two sets of samples under
a worst-case transforma on (one that pushes them as far away as possible):

�̂�KMM = argmin
∈

1
2𝑤 𝜅(𝑥, 𝑥 )𝑤 − 𝑛

𝑚∑𝜅(𝑧 , 𝑥)𝑤 ,

s.t. 𝑤 ∈ [0, 𝐵]

|1𝑛 ∑𝑤 − 1| ≤ 𝜖

where the constraints ensure that theweights are non-nega ve, bounded above and roughly
average to 1. For the kernel func on 𝜅, we selected a radial basis func on with Silverman’s
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rule of thumb for bandwidth selec on. Huang et al. recommend se ng epsilon to 𝐵/√𝑛,
which ensures that the allowed devia on from the sample size depends on both the upper
bound for each weight and the sample size itself.

Nearest Neighbour
Lastly, we have a nonparametric es mator based on a Voronoi tessella on of the space
[ ]. The procedure consists of assigning a weight to each source sample based on the
number of target samples that are nearest neighbors of it. It is propor onal, up to the
ra o of sample sizes, to the ra o of marginal distribu ons [ , ]. It is expressed as:

�̂�NN = |𝐶 ∩ {𝑧 } | + 1 ,

where 𝐶 refers to the Voronoi cell of sample 𝑥 . The tessella on can be smoothed by
adding a value of to each cell, a technique also known as Laplace smoothing.

2.4.2. Ar ficial data
Our first experiment consists of an evalua on of different importance weight es mators
and their resul ng minimizers of 𝜃 . The set 𝜃 was constructed with a least-squares clas-
sifier𝜃 = (𝑋 𝑋 +𝜆𝐼) (𝑋 𝑦 ). Λwas taken from - to in steps. For the source
data, we drew samples from two Gaussian class-condi onal distribu on with means
𝜇𝒮 ∈ {−1, 1} and unit variances𝜎𝒮 = 1. The target class-condi onal distribu ons have the
same mean 𝜇𝒯 ∈ {−1, 1}, but with a different set of variances 𝜎𝒯 ∈ {0.1, 0.5, 1, 2, 3, 4}.
The ra o of themarginal distribu ons is sensi ve in regions of low probability of the source
distribu on: really small probabili es in the denominator explode theweight value. There-
fore, we expect the minimizers of the importance weight es mators to be close to the tar-
get minimizer for smaller target variances 𝜎𝒯 < 𝜎𝒮 . Consequently, we expect erra c be-
havior for target variance larger than the source variance 𝜎𝒯 > 𝜎𝒮 . Table . displays the
es mated regulariza on parameters for the source valida on risk, the importance-weight
es mators, the actual ra o of marginals 𝑝𝒯(𝑥)/𝑝𝒮(𝑥), and for the empirical target risk.
Shown are the means and standard errors over repe ons.

Table . : The mean and standard error of the es mated regulariza on parameter ̂ for different importance
weight es mators and an increasingly larger target variance in a covariate shi problem.

𝜎𝒯 . . . . . .

ℎ ̂ ( ) ( ) ( ) ( ) ( ) ( )

�̂�rG - ( ) - ( ) ( ) ( ) ( ) ( )
�̂�KLIEP - ( ) - ( ) ( ) ( ) ( ) ( )
�̂�KMM ( ) ( ) ( ) - ( ) - ( ) - ( )
�̂�NN - ( ) - ( ) ( ) ( ) ( ) ( )

𝑝𝒯/𝑝𝒮 - ( ) - ( ) ( ) ( ) ( ) ( )

ℎ ̂ ( ) - ( ) ( ) ( ) ( ) ( )
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It seems that all importance weight es mators as well as the true ra o of marginals un-
deres mate the target risk minimizer. Furthermore, it seems that �̂�KMM leads to increas-
ingly smaller minimizers for an increasing target variance. Even though �̂�KLIEP is increasing,
it s ll underes mates the true value the most. �̂�rG is the most accurate one, but that will
probably not be the case if themarginal distribu ons are not Gaussian anymore (i.e., model
misspecifica on). �̂�NN is the other most accurate one and lies closest to true importance
weights. Considering that it does not rely on an assump on of normality, it might be the
preferred es mator in a more general se ng.

2.4.3. Heart disease
The ar ficial data represents a case where we know exactly what the dissimilarity is be-
tween domains and whether assump ons are valid. However, it is also interes ng to eval-
uate on datawherewe do not have this knowledge. For this we have selected a UCI dataset
[ ] on medical data where the domain dissimilarity is caused by a geographically biased
sampling of pa ents. The goal is to classify the presence of a heart disease based on symp-
toms. The four domains correspond to hospitals in ‘Cleveland’, ‘Virginia’, ‘Hungary’ and
‘Switzerland’, containing , , and samples each respec vely. There are a
total of symptoms, but contained so much missing data (> 99%) that these were re-
moved from the set. All other missing data was imputed with 0 values a er z-scoring, i.e.
subtrac ng the mean of each feature and normalizing by its standard devia on. Table .
displays the minimizers found by the importance weight es mators compared with those
found by the unweighted source valida on risk ℎ ̂ and the target valida on risk ℎ ̂ , for
all combina ons of trea ng one hospital as the source domain and another as the target.
Shown are the means and standard errors over repe ons.

Table . : Heart disease dataset. Mean and standard error of the es mated regulariza on parameter ̂ for dif-
ferent importance weight es mators. The le ers are abbrevia ons of the hospitals: C=’Cleveland’, V=‘Virginia’,
H=’Hungary’ and S=’Switzerland.

𝒮 𝒯 ℎ ̂ �̂�rG �̂�KLIEP �̂�KMM �̂�NN ℎ ̂

C V ( ) - ( ) ( ) ( ) ( ) ( )
C H ( ) ( ) ( ) ( ) ( ) ( )
C S ( ) ( ) ( ) ( ) - ( ) ( )
V H ( ) ( ) ( ) ( ) ( ) ( )
V S ( ) - ( ) ( ) ( ) ( ) - ( )
H S ( ) ( ) ( ) ( ) ( ) ( )
V C ( ) - ( ) ( ) ( ) ( ) ( )
H C ( ) ( ) ( ) ( ) ( ) ( )
S C ( ) - ( ) ( ) ( ) ( ) ( )
H V ( ) - ( ) ( ) ( ) ( ) ( )
S V ( ) - ( ) ( ) ( ) ( ) - ( )
S H ( ) ( ) ( ) ( ) ( ) ( )
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The results show that also for real datasets all importance weight es mators underes-
mate the op mal target regulariza on parameter. Note that the standard errors are
for all ℎ ̂ with value , because is the right boundary of the set Λ. Extending the
boundary would produce even larger values for the op mal target regulariza on parame-
ter. It seems that �̂�KMM is the best performing es mator here. �̂�rG also produces reason-
able results, but that would probably not be the case if we had not z-scored each feature
first. That ensures an overlap of the regions with high probability mass in each domain.
The other es mators seem to find weight values close to , as they are not very different
from the unweighted source valida on risk.

2.5. Discussion
Considering the significance of regulariza on to generaliza on, it would be interes ng to
further study factors that influence the difference between the risk minimizers in each do-
main. At the moment we assume that no concept dri has occurred (a difference between
class priors in each domain), but if this assump on is violated then the difference in scale
depends on the two dominant classes in each domain. The minimizers of the empirical
risk would be dominated by the propor ons of samples that belong to one class, which
can get very complicated in the mul -class se ng. Furthermore, it would be interes ng to
describe the minimizers in terms of general measures of domain dissimilarity, such as the
discrepancy distance [ ] or theℋ-divergence [ ].

The main difficulty in es ma ng the appropriate weights lies in the fact that it is hard to
es mate exactly how the two domains differ fromeach other. Most adapta on approaches
are sensi ve to only a par cular type of rela on between domains or rely on assump ons
that can not be checked in advance. Furthermore, es ma on errors tend to propagate.
For instance, if the distribu ons of each domain’s data marginals are poorly es mated,
then the importanceweights explode, leading to amore erroneous es mate of the op mal
target regulariza on parameter. In domain adapta on se ngs with so many sources of
uncertainty, it seems that simple methods work best.

2.6. Conclusion
We have shown an empirical analysis of regulariza on parameter es ma on in the context
of differing variances in covariate shi problems. It seems that the generaliza on perfor-
mance of an unadapted source classifier can be improved by importance weigh ng the
source valida on risk. However, most popular weight es mators underes mate the op -
mal target regulariza on parameter.
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3
Sampling variance of

importance-weighted risks

Covariate shi classifica on problems can in principle be tackled by importance-weigh ng
training samples. However, the sampling variance of the risk es mator is o en scaled up
drama cally by theweights. Thismeans that during cross-valida on -when the importance-
weighted risk is repeatedly evaluated - subop mal hyperparameter es mates are produced.
We study the sampling variances of the importance-weighted versus the oracle es mator
as a func on of the rela ve scale of the training data. We show that introducing a control
variate can reduce the variance of the importance-weighted risk es mator, which leads
to superior regulariza on parameter es mates when the training data is much smaller in
scale than the test data.

This chapter is based on the paper ”Reducing sampling variance in covariate shi using control variates”.
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3.1. Introduc on
Inmany real-world classifica on problems, training data is not gathered in a completely un-
biasedmanner. An unbiased sample refers to events that were observed according to their
true probabili es, whereas a biased sample refers to events that were observed more/less
frequently [ – ]. For example, clinical data collected from a single hospital will be biased
because the local pa ent popula on deviates from the global pa ent popula on. Con-
sequently, a computer-aided diagnosis system trained on data from that hospital will not
generalize well to hospitals in other countries. Unfortunately, collec ng completely unbi-
ased data can be extremely difficult. Instead, we are interested in sta s cal models that
correct for biased samplings and generalize to target popula ons [ – ]. In par cular, we
propose an adjusted correc on procedure that will aid hyperparameter op miza on.

In classifica on se ngs, bias correc ons are o en performed based on individual sam-
ple probabili es: each sample is weighed by a factor that matches its current probability
to the probability of encountering it in the target popula on. For example, if a par cular
event occurs very frequently in the training set but rarely in the target popula on, then it
is not deemed important. Vice versa, if it occurs very rarely in the training set but o en
in the target popula on, then it is deemed important. As such, this correc on is known
as importance weigh ng [ ]. Sample importance originates from Monte Carlo (MC) simu-
la on, where it is used to draw samples from rare yet interes ng regions of a distribu on
[ , ]. The main difference between importance sampling in Monte Carlo simula on and
importance weighing in a classifica on se ng is that in the former case the importance
sampling distribu on is designed, whereas, in the la er case, it is fixed; it consists of the
already collected biased training data. Although importance weigh ng can be very useful
in controlling for biases in data, there are also a number of prac cal problems. The pre-
dominant one is weight bimodality: a small number of samples are assigned a very large
weight while the remainder is assigned a near-zero weight. Essen ally, only a handful of
samples are deemed important, which greatly reduces effec ve sample size [ ].

We focus on cross-valida on in the face of biased data. More specifically, we consider
the example of selec ng a regulariza on parameter for a least-squares classifier [ ]. If the
collected training datawere unbiased, a classifier can be evaluated by holding out a por on
of the training data, training on the remainder and valida ng on the held-out set. Split-
ng the dataset into 𝑘 parts where each is hold out once, is called 𝑘-fold cross-valida on
[ , ]. By repea ng this procedure for different values of hyperparameters, such as regu-
lariza on parameters, the parameter can be selected that generalizes best to unseen data.
However, since the training data is biased, the hyperparameter es mate that is obtained
through cross-valida on will not be op mal with respect to the whole popula on [ , ].
It is essen ally over-fi ed to the biased training data [ ]. One could correct for the dis-
crepancy caused by the biased data by assigning importance-weights to the valida on set
[ ]. However, the weight variance scales the sampling variance of the cross-valida on es-
mator, which affects its ability to select the op mal hyperparameter [ ]. This chapter
proposes an adjustment to the importance-weighted cross-valida on es mator that coun-
teracts the increase in sampling variance due to the importance weights.
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The sampling variance of an es mator describes the varia on in its es mates for differ-
ent datasets. This sampling variance depends on the size of the sample: as the es mator
gets more samples, it will return more accurate es mates. However, the size of a given
dataset is o en fixed. Instead of increasing the number of samples in order to obtain a
more accurate es mate, it is possible to directly reduce the sampling variance of the es -
mator [ ]. In fact, there are many variance reduc on techniques that were designed to
makeMC simula on more efficient and prac cal [ , ]. These techniques incorporate ad-
di onal informa on on the data distribu on. For example, with an the c variates one has
the knowledge that the data-genera ng distribu on is symmetric around some point. This
knowledge can be exploited by mirroring the exis ng samples and augmen ng the dataset
[ ]. Alterna vely, a control variate consists of a func on that is known to correlate strongly
with the es mand. By subtrac ng a value from the es mandwhen the control variate rises
and adding a value when the control variate shrinks, one reduces the es mator’s devia on
from its mean. It essen ally returns more accurate es mates using the same dataset [ ].

We showhowwecanuse control variates to reduce the sampling varianceof importance-
weighted cross-valida on (see Sec on . ). For the correla ng func on, we chose the im-
portance weights themselves. Instead of scaling up the sampling variance of the es mator
whenever the weight variance increases, it now helps us to perform more accurate es -
ma ons. Furthermore, we show that this improved risk es mator can be used to evaluate
classifiers and leads to be er hyperparameters when employed in cross-valida on (see
Sec on . ). In the next sec on we first introduce the problem se ng, known as covariate
shi [ ], in more detail (see Sec on . ).

3.2. Covariate shi
In this sec on, we introduce some concepts and nota on, followed by an explana on of
covariate shi along with an example that will be used throughout this chapter.

3.2.1. Nota on
Biased training data that stems from local sampling and unbiased test data that stems from
global sampling can be described as different domains. A domain in this context is defined
as the combina on of an input space𝒳, an output space 𝒴 and an associated probability
distribu on𝑝. Given two domains, we call themdifferent if they are different in at least one
of their cons tuent components, i.e., the input space, the output space, or the probability
density func on.

We focus on the case where only the probability distribu ons differ. Inputs remain the
same, namely the𝐷-dimensional real spaceℝ and outputs stay the same as well, namely
the classes 𝒴 = {−1,+1}. We denote the source domain as (𝒳,𝒴, 𝑝𝒮) and will refer to it
as 𝒮. The target domain is denoted (𝒳,𝒴, 𝑝𝒯) with the shorthand 𝒯. The challenge is to
use informa on from the source domain to generalize to the target domain.

Domain-specific func ons will be marked with the subscript 𝒮 or 𝒯 as well, for example
𝔼𝒯 . With some abuse of nota on for the sake of clarity, we will mark marginal and condi-
onal distribu ons with 𝒮 and 𝒯 as well: 𝑝𝒯(𝑥, 𝑦) for the target joint distribu on, 𝑝𝒯(𝑥)
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for the target datamarginal distribu on and 𝑝𝒯(𝑥|𝑦) for the target class-condi onal distri-
bu on. The source data is denoted as the set {(𝑥 , 𝑦 )} . Note that 𝑥 refers to an element
of the input space 𝒳, while 𝑥 refers to a specific observa on drawn from the source dis-
tribu on, 𝑥 ∼ 𝑝𝒮 . Likewise, the target domain data consists of the set {(𝑧 , 𝑢 )} .

3.2.2. Specifics of covariate shi

Covariate shi refers to the case where the class-posterior distribu ons remain equal,
𝑝𝒮(𝑦 | 𝑥) = 𝑝𝒯(𝑦 | 𝑥). Furthermore, it is assumed that the class-priors are equal in both
domains as well, 𝑝𝒮(𝑦) = 𝑝𝒯(𝑦). It is therefore called covariate shi because only the
covariates - the marginal data distribu ons - have shi ed; 𝑝𝒮(𝑥) ≠ 𝑝𝒯(𝑥).

Throughout the chapter, we will use a running example of a basic covariate shi se ng
to illustrate several concepts: the target data distribu on is set to be a normal distribu-
on with mean 0 and standard devia on 1, 𝑝𝒯(𝑥) = 𝒩(𝑥 | 0, 1), its priors are set equal
𝑝𝒯(𝑦) = 1/2, and its class-posterior distribu on is set to a cumula ve normal distribu on
withmean 0 and standard devia on 1, 𝑝𝒯(𝑦|𝑥) = Φ(𝑦𝑥). As the goal is to create a covari-
ate shi se ng, the target’s class-posterior distribu on is set to be equal to the source’s:
𝑝𝒯(𝑦 | 𝑥) = 𝑝𝒮(𝑦 | 𝑥). The source’s priors are set to be equal as well, 𝑝𝒮(𝑦) = 1/2, but
its data marginal distribu on is set to be a normal distribu on with mean 0 and standard
devia on 𝛾, 𝑝𝒮(𝑥) = 𝒩(𝑥 | 0, 𝛾). 𝛾 controls the scale of the source domain. The further 𝛾
deviates away from 1 (the target domain’s scale in this example se ng) in either direc on,
the further the domain dissimilarity increases.

Figure . plots the distribu ons of the example; the le column corresponds to the
source domain and the right column to the target domain. The top row corresponds to the
data distribu ons 𝑝(𝑥), themiddle row to the class-posteriors 𝑝(𝑦|𝑥) and the bo om row
to the class-condi onal distribu ons 𝑝(𝑥 |𝑦). Red lines represent the nega ve class, while
blue lines represent the posi ve class. For this figure, we visualized the case of 𝛾 = 2.
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Figure . : Example of a covariate shi se ng: the le column shows the source domain and the right column the
target domain. The top row plots the data distribu ons ( ), the middle row the class-posterior distribu ons
( | ) and the right column the class-condi onal distribu ons ( | ). The only difference between the
domains is their standard devia on, which is set to in the target domain and in the source domain.

3.3. Importance-weigh ng
The empirical risk minimiza on framework describes a classifiers performance by its ex-
pected loss. The risk func on integrates the loss ℓ of the classifiers parameters 𝜃 over the
joint distribu on 𝑝 and is hence domain-specific. We are interested in generalizing to the
target domain, which is another way of saying that we are interested in the classifier that
minimizes the target risk 𝑅𝒯:

𝑅𝒯(𝜃) =∫
𝒳
∑
∈𝒴
ℓ (ℎ (𝑥 | 𝜃) , 𝑦) 𝑝𝒯 (𝑥, 𝑦) d𝑥 .

This integral is an expected value, 𝑅𝒯(𝜃) = 𝔼𝒮 [ℓ (ℎ (𝑥 | 𝜃) , 𝑦)], which can be es -
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mated through the sample average of data drawn from the target domain:

�̂�𝒯(𝜃) =
1
𝑚∑ℓ(ℎ(𝑧 | 𝜃), 𝑢 ) . ( . )

We will refer to es mators with a ̂ symbol. By the law of large numbers, the es mated
value will converge to the true target risk: lim

→
�̂�𝒯(𝜃) = 𝑅𝒯(𝜃) for all 𝜃 [ ].

Note that target labels {𝑢 } are required for this risk es mator. Unfortunately, these
are not available in a covariate shi problem se ng. Consequently, we are interested in
es mators of the target risk that do not depend on the target labels. One of the most pop-
ular ones is the importance-weighted risk es mator. It starts by mul plying and dividing
the target distribu on with the source distribu on as follows:

𝑅𝒲(𝜃) =∫
𝒳
∑
∈𝒴
ℓ (ℎ (𝑥 | 𝜃) , 𝑦) 𝑝𝒯(𝑥, 𝑦)𝑝𝒮(𝑥, 𝑦)

𝑝𝒮(𝑥, 𝑦) d𝑥 .

Under the assump on that the class-posterior distribu ons are equivalent, 𝑝𝒯(𝑦 | 𝑥) =
𝑝𝒮(𝑦 | 𝑥), the importance-weighted risk simplifies to [ ]:

𝑅𝒲(𝜃) =∫
𝒳
∑
∈𝒴
ℓ (ℎ (𝑥 | 𝜃) , 𝑦) 𝑝𝒯(𝑥)𝑝𝒮(𝑥)

𝑝𝒮 (𝑥, 𝑦) d𝑥 .

For this risk we can again formulate an es mator based on the sample average. Except this
me, data from the source domain is used:

�̂�𝒲(𝜃) =
1
𝑛 ∑ℓ(ℎ(𝑥 | 𝜃), 𝑦 ) 𝑝𝒯(𝑥 )𝑝𝒮(𝑥 )

. ( . )

Note that this es mator does not depend on target labels 𝑢.

We will abbreviate the ra o of probability distribu ons through 𝑝𝒯(𝑥)/𝑝𝒮(𝑥) = 𝑤(𝑥).
Equa on . already shows why importance-weigh ng can be problema c: 1 over a small
probability equals a very large weight. In the example se ng laid out in Sec on . . , the
weight func on can be derived: 𝑤(𝑥) = 𝛾 exp (−𝑥 (𝛾 − 1)/(2𝛾 )). In this case, the
importance weights are an exponen al func on of the domain dissimilarity (𝛾 − 1) and
canbecomevery large, very quickly. In par cular, if we take the variance of theweightswith
respect to the source distribu on, 𝕍𝒮[𝑤(𝑥)] = −1 + 𝛾 /√2𝛾 − 1, then we can iden fy
two scenario’s: for 𝛾 > 1 the variance rises slowly, while for 𝛾 < 1 the variance diverges
to infinity as 𝛾 approaches 1/√2 (see Figure . ). The former scenario corresponds to the
case where the source domain is larger in scale and the goals is to generalize to a par cular
subset. The la er scenario corresponds to the case where the source domain is smaller in
scale and the goal is to generalize to a larger popula on. Based on the weight variance, it
seems that the la er case is far less feasible than the former.
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Figure . : Variance of the importance weights as a func on of domain dissimilarity, for the example problem
se ng described in Sec on . . .

3.3.1. Sampling variances
Although the expected values of �̂�𝒯 and �̂�𝒲 are the same, they behave differently for
finite sample sizes. It is much more difficult to es mate the target risk using samples from
another domain; �̂�𝒲 es mates tend to vary much more than �̂�𝒯 ’s ones for a fixed sample
size. The variance of an es mator with respect to its samples is known as the sampling
variance (not to be confused with sample variance, which is the variance between samples
in a set). In the following, we will compare the sampling variance of �̂�𝒯 versus that of �̂�𝒲.
The sampling variance with respect to a set of samples consists of the average squared
devia on of the es mator from its true risk:

𝕍𝒯[�̂�𝒯] = 𝔼𝒯[ (�̂�𝒯 − 𝑅𝒯) ] . ( . )

Using the fact that samples are drawn independently and are iden cally distributed (iid),
( . ) can be simplified by pulling the sum over samples outside of the expecta on:

𝔼𝒯[ (�̂�𝒯 − 𝑅𝒯) ] = 𝔼𝒯[(
1
𝑚 ∑ℓ(ℎ(𝑧 | 𝜃), 𝑢 ) − 𝑅𝒯) ]

= 1
𝑚 ∑𝔼𝒯[(ℓ(ℎ(𝑧 | 𝜃), 𝑢 ) − 𝑅𝒯) ]

= 1
𝑚𝔼𝒯[(ℓ(ℎ(𝑥 | 𝜃), 𝑦) − 𝑅𝒯) ] . ( . )

The sampling variance with respect to a single sample, 𝔼𝒯[(ℓ(ℎ(𝑥 | 𝜃), 𝑦) −𝑅𝒯) ], will be
referred to as 𝜎𝒯 .
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The source data is drawn iid as well. That means that the same simplifica on holds for
the importance-weighted risk es mator:

𝕍𝒮[�̂�𝒲] = 𝔼𝒮[ (�̂�𝒲 − 𝑅𝒲) ]

= 1𝑛𝔼𝒮[(ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥) − 𝑅𝒲) ] . ( . )

Similar to before, the sampling variance with respect to a single sample will be referred to
as 𝜎𝒲.

Expanding the squares in ( . ) leads to 𝔼𝒯[ℓ(ℎ(𝑥 | 𝜃), 𝑦) ] − 𝑅𝒯 and expanding ( . )
leads to 𝔼𝒯[ℓ(ℎ(𝑥 | 𝜃), 𝑦) 𝑤(𝑥)] − 𝑅𝒲. Note that 𝑅𝒲 = 𝑅𝒯 and that the only difference
between 𝜎𝒯 and 𝜎𝒲 is the addi on of the importance weights. Thus, the weights directly
scale the sampling variance of the es mator. So, even though �̂�𝒲 and �̂�𝒯 are es mators
of the same risk, the fact that �̂�𝒲 is based on data from another distribu on makes it a
less accurate es mator.

Figure . a computes the es mators for the running example using a least-squares clas-
sifier: ℓ(ℎ(𝑥 | 𝜃), 𝑦) = (𝑥𝜃 − 𝑦) with 𝜃 = [𝜃 , 𝜃 ] [ ]. Since the probability dis-
tribu ons are known, the Bayes op mal classifier for the source domain can be derived:
𝜃∗ = [√2/𝜋/√1 + 𝛾 , 0]. This 𝜃∗ was used to compute the risk es mates. The figure
shows a learning curve of 10 repe ons of the es mated risk as a func on of the size
of the valida on set (𝑚 and 𝑛 for the target and the importance-weighted risk es mators
respec vely). A source standard devia on of 𝛾 = 2was chosen for this visualiza on. Note
that the importance-weighted risk varies much more than the target risk.

Figure . b displays the sampling variance of �̂�𝒯 and �̂�𝒲 as a func on of the domain
dissimilarity. For 𝛾 = 1, the domains are the same and the sampling variances are equal.
For 𝛾 > 1, the sampling variance of �̂�𝒯 drops off, while the sampling variance of �̂�𝒲 slowly
increases. For 𝛾 < 1, the �̂�𝒯 ’s variance remains rela vely steady, while the �̂�𝒲’s variance
diverges to infinity at 𝛾 = 1/√2. The shape of this curve reflects the influence of the
variance of the importance weights, as shown in Figure . .
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(a) Es mated risk of the target (yellow) versus the importance-weighted (blue)
es mator as a func on of the number of valida on set samples, for the example
se ng with 𝛾 = 2.
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(b) Sampling variance of the target (yellow) versus importance-weighted (blue)
risk es mators as a func on of the source domain standard devia on 𝛾.

Figure . : Comparison of the importance-weighted source versus the target risk es mator.

3.4. Reducing sampling variance
The increased sampling variance of the importance-weighted risk es mator is problema c
for procedures that rely on accurate es mates of the target risk. One such procedure is
cross-valida on, which we discuss in Sec on . . Our goal is to reduce the sampling vari-
ance of �̂�𝒲. To that end, we will introduce a control variate [ , ]. A control variate is a
func on that correlateswith the es mator andwhose expected value is known: (�̂�−𝔼[�̂�]).
These two proper es mean that it essen ally contains addi onal informa on on the func-
on of interest, which can be used to reduce sampling variance. Whenever the correla ng
func on’s value rises above its expected value, (�̂�−𝔼[�̂�]) > 0, so does the risk es mator’s
value rise above its expected value (the true risk), (�̂� −𝑅) > 0. By subtrac ng the control
variate from the risk es mate, �̂� − (�̂� −𝔼[�̂�]), the es mator’s devia on from the true risk
is reduced. Hence, its variance is reduced. It is however important that the control variate
is appropriately scaled, as subtrac ng a too large value can increase the sampling variance
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as well. A parameter 𝛽 is used to control the scaling: �̂� − 𝛽(�̂� − 𝔼[�̂�]).

We chose the importance-weights 𝑤(𝑥) themselves as the control variate, since their
expected value is known: 𝔼𝒮[𝑤(𝑥)] = ∫𝒳 𝑤(𝑥)𝑝𝒮(𝑥)d𝑥 = ∫𝒳 𝑝𝒯(𝑥)d𝑥 = 1. Adding the
weight-based control variate to the importance-weighted risk, forms the following es ma-
tor:

�̂� = 1
𝑛 ∑ℓ(ℎ(𝑥 | 𝜃), 𝑦 ) 𝑤(𝑥 ) − 𝛽(𝑤(𝑥 ) − 1) .

Note that the added term does not bias the overall es mator: the expected value of the
control variate 𝔼𝒮[𝛽(𝑤(𝑥 )−1)] = 𝛽(𝔼𝒮[𝑤(𝑥 )]− 1) = 0 for all values of 𝛽. This means
that the expected value of the controlled es mator is the same as that of the importance-
weighted es mator: 𝔼𝒮[�̂� ] = 𝑅𝒲.

3.4.1. Sampling variance of the controlled es mator
The effect of the control variate on the sampling variance of the importance-weighted risk
es mator can be described exactly [ ]:

𝕍𝒮[�̂� ] = 𝔼𝒮[ (�̂� − 𝑅 ) ]

= 𝔼𝒮[(
1
𝑛 ∑ℓ(ℎ(𝑥 | 𝜃), 𝑦 )𝑤(𝑥 ) − 𝛽(𝑤(𝑥 ) − 1) − 𝑅𝒲) ]

= 1𝑛𝔼𝒮[(ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥)) − ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥)𝛽(𝑤(𝑥) − 1)
− ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥)𝑅𝒲 − 𝛽(𝑤(𝑥) − 1)ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥)
+ 𝛽 (𝑤(𝑥) − 1) + 𝛽(𝑤(𝑥) − 1)𝑅𝒲 − 𝑅𝒲ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥)
+ 𝑅𝒲 𝛽(𝑤(𝑥) − 1) + 𝑅𝒲]

= 1𝑛𝔼𝒮[ (ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥) − 𝑅𝒲)

− 2𝛽(𝑤(𝑥) − 1)(ℓ(ℎ(𝑥 ∣ 𝜃), 𝑦)𝑤(𝑥) − 𝑅𝒲)
+ 𝛽 (𝑤(𝑥) − 1) ]

= 1𝑛[𝜎𝒲 − 2𝛽 ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] + 𝛽 𝕍𝒮[𝑤(𝑥)]] . ( . )

The ℂ𝒮 stands for the covariance, in this case between the weighted loss and the weights
themselves. The scale parameter 𝛽 of the control variate can be op mized tominimize the
overall sampling variance of the es mator:

𝜕
𝜕𝛽∗ [

𝜎𝒲
𝑛 − 2𝛽

∗

𝑛 ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] +
𝛽∗
𝑛 𝕍𝒮[𝑤(𝑥)]] = 0

−2𝑛 ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] +
2
𝑛𝛽

∗ 𝕍𝒮[𝑤(𝑥)] = 0
ℂ𝒮 [ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] / 𝕍𝒮 [𝑤(𝑥)] = 𝛽∗
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where 𝛽∗ is the minimizer. Plugging 𝛽∗ back in to ( . ) simplifies the sampling variance to:

𝜎 = 𝜎𝒲 − 2 ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] / 𝕍𝒮[𝑤(𝑥)] ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)]

+ ( ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] / 𝕍𝒮[𝑤(𝑥)] ) 𝕍𝒮[𝑤(𝑥)]

= 𝜎𝒲 − ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)] / 𝕍𝒮[𝑤(𝑥)] . ( . )

Considering that both the squared covariance termand the variance termare non-nega ve,
the sampling variance of a controlled es mator is never larger than that of the standard
es mator [ ]. In par cular, mul plying ℂ𝒮[ℓ(ℎ(𝑥 | 𝜃), 𝑦)𝑤(𝑥), 𝑤(𝑥)]
/ 𝕍𝒮[𝑤(𝑥)] with 𝜎𝒲/𝜎𝒲, allows ( . ) to be wri en as:

𝜎 = 𝜎𝒲(1 − 𝜌 ) ,

where𝜌 denotes the correla onbetween theweighted loss (the es mand), and theweights
(the control variate). Essen ally, the more the weights correlate - posi vely or nega vely
- with the weighted loss, the larger the reduc on in variance.

Compu ng 𝛽∗ is not possible without knowledge of the probability distribu ons, but it
can be es mated from data:

�̂� = [1𝑛 ∑(ℓ(ℎ(𝑥 | 𝜃), 𝑦 )𝑤(𝑥 ) − �̂�𝒲)(𝑤(𝑥 ) − 1)] /[
1
𝑛 ∑(𝑤(𝑥 ) − 1) ] .

Figure . a provides an illustra on similar to the one of Figure . a), but adds the es -
mated risk of the controlled importance-weighted es mator. This is s ll the case of 𝛾 = 2,
for which �̂� ’s sampling variance is much smaller than that of �̂�𝒲. Similarly, Figure . b
is the equivalent of Figure . b, which plots the sampling variance for the three es ma-
tors �̂� , �̂�𝒲, and �̂�𝒯 . For 𝛾 > 1, the sampling variance of the controlled es mator 𝜎
reduces to roughly the same level as the original target risk es mator 𝜎𝒯 . For 𝛾 < 1, 𝜎
also diverges at 1/√2, but rises much more slowly.
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(a) Es mated risk of the target (yellow), the importance-weighted (blue) and the
controlled importance-weighted (green) es mator es mator as a func on of the
number of valida on set samples, for the example se ng with 𝛾 = 2.
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(b) Sampling variance of the target (yellow), the importance-weighted (blue) and
the controlled importance-weighted (green) risk es mators as a func on of the
source domain standard devia on 𝛾.

Figure . : The effect of the addi on of the control variate.

3.5. Cross-valida on

Accurate es ma on of the target risk is important for cross-valida on, which is, in turn,
important for hyperparameter op miza on. In this case, it is used to find an op mal reg-
ulariza on parameter. In order to account for the covariate shi , the valida on data is
importance-weighted [ ]. However, as Sec on . . has shown, weigh ng can increase the
sampling variance, making the cross-valida on es mator less accurate. Fortunately, the
control variate can counteract this nega ve influence. The following subsec ons describe
an experiment that compares the importance-weighted versus the controlled importance-
weighted risk es mators in a cross-valida on context.
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3.5.1. Experimental setup
In the following experiments, the source set is split up into 10 folds, each of which is held
out once for valida on. Training samples are marked as {(𝑥 , 𝑦 )} ∈ and valida on sam-
ples are marked as {(𝑥 , 𝑦 )} ∈ , where the sets 𝑇 and 𝑉 together make up the total index
set of the source samples 𝑇 ∪ 𝑉 = {1,… , 𝑛}. For the classifier, we employ a kernelized
version of a regularized least-squares classifier [ ]. So for risk evalua on, we evaluate the
mean squared error (MSE): ℓ(ℎ(𝑥 | 𝜃), 𝑦) = (ℎ(𝑥 | 𝜃) − 𝑦) . In par cular, a quadra c
polynomial kernel is taken: 𝜃 = ∑ ∈ (𝜅(𝑥 , 𝑥 ) + 𝜆𝐼) 𝑦 , with 𝜅(𝑥 , 𝑥) = (𝑥 𝑥 +1) .
Note that the classifier’s parameters 𝜃 are dependent on the regulariza on parameter 𝜆.
Predic ons are made by applying the kernel to new samples and taking the inner product
with the classifier parameters: ℎ(⋅ | 𝜃 ) = 𝜅(⋅, 𝑥 )𝜃 .

The true data marginal distribu ons are not known in prac ce. In most cases it is also
not known to which family of distribu ons the data marginals belong to. As such, we opt
for a nonparametric approach. Both the source and target distribu ons are es mated with
a kernel density es mator [ ]. A normal kernel was used, with its bandwidth set through
Silverman’s rule of thumb [ ]. A er es ma on, the ra o of distribu ons is taken to com-
pute the importance weights: �̂�(⋅) = (𝑚 ∑ 𝜅(𝑧 , ⋅))/(𝑛 ∑ 𝜅(𝑥 , ⋅)).

We compare the following 4 risk es mators:

�̂�𝒮(𝜃 ) =
1
|𝑉| ∑

∈
(𝜅(𝑥 , 𝑥 ) 𝜃 − 𝑦 )

�̂�𝒲(𝜃 ) =
1
|𝑉| ∑

∈
(𝜅(𝑥 , 𝑥 ) 𝜃 − 𝑦 ) �̂�(𝑥 )

�̂� (𝜃 ) = 1
|𝑉| ∑

∈
(𝜅(𝑥 , 𝑥 ) 𝜃 − 𝑦 ) �̂�(𝑥 ) − �̂� (�̂�(𝑥 ) − 1)

�̂�𝒯(𝜃 ) =
1
𝑚∑(𝜅(𝑧 , 𝑥 ) 𝜃 − 𝑢 ) .

�̂�𝒮 corresponds to valida ng on source data without compensa ng for the covariate shi ,
�̂�𝒲 compensates with the importance weights, �̂� uses the control variate, and �̂�𝒯 cor-
responds to the oracle case, i.e., valida ng on labeled target samples. |𝑉| refers to the
cardinality of the valida on set. We start with a set of 100 regulariza on parameter val-
ues, ranging from 0 to 𝑛. The 4 risk es mators are used to select the �̂� for which the risk
is minimal. This selected parameter is then used to train a classifier on all the source data
and is evaluated using the target risk es mator.

3.5.2. Data
The ionosphere dataset from the UCI machine learning repository was used. To allow for
visualiza on, the dimensionality of the data was reduced to 2 using principal components
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analysis. To simulate a covariate shi se ng, we perform a biased sampling: a normal dis-
tribu on is placed at the center with a standard devia on of 𝛾 mes the covariance matrix
of the whole set. Each sample from the ionosphere dataset is evaluated under this distri-
bu on and the resul ng probabili es are used to draw - without replacement - a subset of
50 samples. 𝛾 is chosen from a logarithmic range between 2 and 2 , which represents a
very local, biased sampling to a nearly uniform, unbiased sampling. Figure . shows scat-
terplots of samples selected as part of the source domain (top) and the remainder as part
of the target domain (bo om), for 𝛾 = 0.5.
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(a) Source domain. Red markers denote the posi ve class, blue the
nega ve one and black the unselected samples. The black ellipses de-
note the source domain sampling distribu on, for 𝛾 = 0.5.
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(b) Target domain. Magenta markers denote the posi ve class, cyan
mark the nega ve one and black mark the previously selected source
samples.

Figure . : Example of the biased sampling for the ionosphere dataset.
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3.5.3. Results

Figure . a plots the es mated regulariza on parameters as a func on of the scale of the
source domain’s sampling distribu on. The value of the op mal regulariza on parameter
tends to be quite large, but decreases from 𝛾 > 0.5 onwards. �̂�𝒲 and �̂� differmuchmore
in the regime 0.5 < 𝛾 < 2. From 𝛾 > 2 onwards, the source domain covers the dataset so
well, that all samples evaluate to nearly the same probability under the source domain’s
sampling distribu on. Hence, the selected data is an unbiased sample and there is no
covariate shi . Figure . b shows the risk of the es mated regulariza on parameter and
indicates that the large differences between es mated regulariza on parameters cause
large differences in the resul ng risks. Conversely, no difference in �̂� causes no difference
in risks, from 𝛾 > 2 onwards. The improvement from �̂�𝒲 over �̂�𝒮 is largest where the
domains are the most different, as is the improvement of �̂� over �̂�𝒲. Overall, �̂� always
leads to superior or equal es mates compared to �̂�𝒲.
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0

50

100

150

200

(a) Regulariza on parameter 𝜆 es mated by �̂�𝒮 (dark blue), �̂�𝒲 (light blue), �̂�
(green) and �̂�𝒯 (yellow), as a func on of domain dissimilarity.
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(b) Target risk resul ng from training with the selected regulariza on parameter
es mated by �̂�𝒮 (dark blue), �̂�𝒲 (light blue), �̂� (green) and �̂�𝒯 (yellow), as a
func on of domain dissimilarity.

Figure . : Results for the experiment on the ionosphere dataset.
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3.6. Conclusion
We presented a study of the sampling variance of the importance-weighted risk es mator
as compared to the target risk es mator in the context of covariate shi . We showed that
the sampling variance can increase substan ally as a func on of the scale of the source
domain, leading to a far less accurate es mator for a given sample size. Furthermore, we
introduced a control variate to reduce the sampling variance of the importance-weighted
risk es mator. This reduc on is beneficial for hyperparameter op miza on in cases where
the sampling variance becomes problema c. As it is never detrimental, the controlled
importance-weighted risk es mator is the preferred choice.

In this work, only the addi ve control variate has been studied. Mul plica ve control
variates or more complex func ons applied to the addi ve control variate have the poten-
al to increase its correla on with the es mand, thus decreasing the sampling variance of
the es mator even further. However, it is hard to predict whether a more complex control
variate will be useful.
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4
Modeling feature-level transfer

Domain adapta on is the supervised learning se ng in which the training and test data
are sampled from different distribu ons: training data is sampled from a source domain,
whilst test data is sampled from a target domain. We propose and study an approach,
called feature-level domain adapta on (FLDA), that models the dependence between the
twodomains bymeans of a feature-level transfermodel that is trained to describe the trans-
fer from source to target domain. Subsequently, we train a domain-adapted classifier by
minimizing the expected loss under the resul ng transfer model. For linear classifiers and
a large family of loss func ons and transfer models, this expected loss can be computed or
approximated analy cally, and minimized efficiently. Our empirical evalua on of FLDA fo-
cuses on problems comprising binary and count data in which the transfer can be naturally
modeled via a dropout distribu on, which allows the classifier to adapt to differences in the
marginal probability of features in the source and the target domain. Our experiments on
several real-world problems show that FLDA performs on par with state-of-the-art domain-
adapta on techniques.

This chapter is based on the paper ”Feature-level domain adapta on”.
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4.1. Introduc on
Domain adapta on is an important research topic in machine learning and pa ern recog-
ni on that has applica ons in, among others, speech recogni on [ ], medical image pro-
cessing [ ], computer vision [ ], social signal processing [ ], natural language processing
[ ], and bioinforma cs [ ]. Domain adapta on deals with supervised-learning se ngs in
which the common assump on that the training and the test observa ons stem from the
same distribu on is dropped. This learning se ng may arise, for instance, when the train-
ing data is collected with a different measurement device than the test data, or when a
model that is trained on one data source is deployed on data that comes from another
data source. This creates a learning se ng in which the training set contains samples from
one distribu on (the so-called source domain), whilst the test set cons tutes samples from
another distribu on (the target domain). In domain adapta on, one generally assumes a
transduc ve learning se ng: that is, it is assumed that the unlabeled test data are available
to us at training me and that the main goal is to predict their labels as well as possible.

The goal of domain-adapta on approaches is to exploit informa on on the dissimilarity
between the source and target domains that can be extracted from the available data in
order to make more accurate predic ons on samples from the target domain. To this end,
many domain adapta on approaches construct a sample-level transfer model that assigns
importance weights to observa ons from the source domain in order the make the source
distribu on more similar to the target distribu on [ – ]. In contrast to such sample-level
reweighing approaches, in this work, we develop a feature-level transfer model that de-
scribes the shi between the target and the source domain for each feature individually.
Such a feature-level approachmayhave advantages in certain problems: for instance, when
one trains a natural language processing model on news ar cles (the source domain) and
applies it to Twi er data (the target domain), the marginal distribu on of some of the
words or n-grams (the features) is likely to vary between target and source domain. This
shi in the marginal distribu on of the features cannot be modeled well by sample-level
transfer models, but it can be modeled very naturally by a feature-level transfer model.

Our feature-level transfer model takes the form of a condi onal distribu on that, condi-
oned on the training data, produces a probability density of the target data. In other
words, our model of the target domain thus comprises a convolu on of the empirical
source distribu on and the transfer model. The parameters of the transfer model are
es mated by maximizing the likelihood of the target data under the model of the target
domain. Subsequently, our classifier is trained as to minimize the expected value of the
classifica on loss under the target-domain model. We show empirically that when the
true domain shi can be modeled by the transfer model, under certain assump ons, our
domain-adapted classifier converges to a classifier trained on the true target distribu on.
Our feature-level approach to domain adapta on is general in that it allows the user to
choose a transfer model from a rela vely large family of probability distribu ons. This al-
lows prac oners to incorporate domain knowledge on the type of domain shi in their
models. In the experimental sec on, we focus on a par cular type of transfer distribu on
that is well-suited for problems in which the features are binary or count data (as o en en-
countered in natural language processing), but the approach we describe is more generally
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applicable. In addi on to experiments on ar ficial data, we present experiments on sev-
eral real-world domain adapta on problems, which show that our feature-level approach
performs on par with the current state-of-the-art in domain adapta on.

The outline of the remainder of this chapter is as follows. In Sec on , we give an
overview of related prior work on domain adapta on. Sec on presents our feature-level
domain adapta on (FLDA) approach. In Sec on , we present our empirical evalua on of
feature-level domain adapta on and Sec on concludes the chapter with a discussion of
our results.

4.2. Related Work
Current approaches to domain adapta on can be divided into one of three main types.
The first type cons tutes importance weigh ng approaches that aim to reweigh samples
from the source distribu on in an a empt to match the target distribu on as well as possi-
ble. The second type are sample transforma on approaches that aim to transform samples
from the source distribu on in order to make them more similar to samples from the tar-
get distribu on. The third type are feature augmenta on approaches that aim to extract
features that are shared across domains. Our feature-level domain adapta on (FLDA) ap-
proach is an example of a sample-transforma on approach.

4.2.1. Importance-weigh ng
Importance-weigh ng approaches assign a weight to each source sample in such a way as
to make the reweighed version of the source distribu on as similar to the target distribu-
on as possible [ – ]. If the class posteriors are iden cal in both domains (that is, the
covariate-shi assump on holds) and the importance weights are unbiased es mates of
the ra o of the target density to the source density, then the importance-weighted clas-
sifier converges to the classifier that would have been learned on the target data if labels
for that data were available [ ].

Despite their theore c appeal, importance-weigh ng approaches generally do not to
perform very well when the data set is small, or when there is li le ”overlap” between the
source and target domain. In such scenarios, only a very small set of samples from the
source domain is assigned a large weight. As a result, the effec ve size of the training set
on which the classifier is trained is very small, which leads to a poor classifica on model.
In contrast to importance-weigh ng approaches, our approach performs a feature-level
reweighing. Specifically, FLDA assigns a data-dependent weight to each of the features that
represents how informa ve this feature is in the target domain. This approach effec vely
uses all the data in the source domain and therefore suffers less from the small sample size
problem.

4.2.2. Sample transforma on
Sample-transforma on approaches learn func ons thatmake the source distribu onmore
similar to the target distribu on [ – ]. Most sample-transforma on approaches learn
global (non)linear transforma ons that map source and target data points into the same,
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shared feature space in such a way as to maximize the overlap between the transformed
source data and the transformed target data [ – , ].

Approaches that learn a shared subspace in which both the source and the target data
are embedded o enminimize themaximummean discrepancy (MMD) between the trans-
formed source data and the transformed target data [ , ]. If used in combina on with
a universal kernel, the MMD criterion is zero when all the moments of the (transformed)
source and target distribu on are iden cal. Most methods minimize the MMD subject to
constraints that help to avoid trivial solu ons (such as collapsing all data onto the same
point) via some kind of spectral analysis. An alterna ve to the MMD is the subspace dis-
agreement measure (SDM) of [ ], which measures the discrepancy of the angles between
the principal components of the transformed source data and the transformed target data.

Most current sample-transforma on approaches work well for ”global” domain shi s
such as transla ons or rota ons in the feature space, but are less effec ve when the do-
main shi is ”local” in the sense that it strongly nonlinear. Similar limita ons apply to the
FLDA approach we explore, but it differs in that ( ) our transfer model does not learn a sub-
space but operates in the original feature space and ( ) the measure it minimizes to model
the transfer is different, namely, the nega ve log-likelihood of the target data under the
transferred source distribu on.

4.2.3. Feature augmenta on
Several domain-adapta on approaches extend the source data and the target data with
addi onal features that are similar in both domains [ , ]. Specifically, the approach by
[ ] tries to induce correspondences between the features in both domains by iden fying
so-called pivot features that appear frequently in both domains but that behave differently
in each domain; singular value decomposi on is applied on the resul ng pivot features to
obtain a low-dimensional, real-valued feature representa on that is used to augment the
original features. This approach works well for natural language processing problems due
to the natural presence of correspondences between features, e.g. words that signal each
other.

The approach of [ ] is related tomany of the instan a ons of FLDA thatwe consider, but
it is different in the sense that we only use informa on on differences in feature presence
between the source and the target domain to reweigh those features (that is, we do not
explicitly augment the feature representa on). Moreover, the formula on of FLDA is more
general, and can be extended through a rela vely large family of transfer models.

4.3. Feature-level domain adapta on
Suppose we wish to train a sen ment classifier for reviews, and we have a data set with
book reviews and associated sen ment labels (posi ve or nega ve review) available. Af-
ter having trained a linear classifier on word-count representa ons of the book reviews,
we wish to deploy it to predict the sen ment of kitchen appliance reviews. This leaves
us with a domain-adapta on problem on which the classifier trained on book reviews will
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likely not work very well: the classifier’s parameters will be very large for, for instance,
words such as ”interes ng” and ”insigh ul”, because these suggest posi ve book reviews.
But these words hardly ever appear in reviews of kitchen appliances. As a result, a classi-
fier trained naively on the book reviews may perform poorly on kitchen appliance reviews.
Since the target domain data (the kitchen appliance reviews) are available at training me,
a natural approach to resolving this problem may be to down-weigh features correspond-
ing to words that do not appear in the target reviews, for instance, by applying a high level
of dropout [ ] to the corresponding features in the source data when training the clas-
sifier. The use of dropout mimics the target domain scenario in which the ”interes ng”
and ”insigh ul” features are hardly ever observed during the training of the classifier, and
prevents that these features are assigned large parameter values. Feature-level domain
adapta on FLDA aims to formalize this idea in a two-stage approach that ( ) fits a proba-
bilis c sample transforma on model that aims to model the transfer between source and
target domain and ( ) trains a classifier by minimizing the risk of the source data under the
transfer model.

In the first stage, FLDA models the transfer between the source and the target domain:
the transfer model is a data-dependent distribu on that models the likelihood of target
data condi oned on observed source data. Examples of such transfer models may be a
dropout distribu on that assigns a likelihood of 1 − 𝜁 to the observed feature value in the
source data and a likelihood of 𝜁 to a feature value of 0, or a Parzen density es mator in
which themean of each kernel is shi ed by a par cular value. The parameters of the trans-
fer distribu on are learned by maximizing the likelihood of target data under the transfer
distribu on (condi oned on the source data). In the second stage, we train a linear classi-
fier to minimize the expected value of a classifica on loss under the transfer distribu on.
For quadra c and exponen al loss func ons, this expected value and its gradient can be
analy cally derived whenever the transfer distribu on factorizes over features and is in
the natural exponen al family; for logis c and hinge losses, prac cal upper bounds and
approxima ons can be derived [ – ].

In the experimental evalua on of FLDA, we focus on applying dropout transfer models
to domain-adapta on problems involving binary and count features. These features fre-
quently appear in, for instance, bag-of-words features in natural language processing [ ]
or bag-of-visual-words features in computer vision [ ]. However, we note that FLDA can
be used in combina on with a larger family of transfer models; in par cular, the expected
loss that is minimized in the second stage of FLDA can be computed or approximated effi-
ciently for any transfer model that factorizes over variables and that is in the natural expo-
nen al family.

4.3.1. Nota on
Consider an input space𝒳, part of a 𝐷-dimensional vector space, and a set of classes𝒴 =
{−1,+1}. A source domain is a joint distribu on defined over these spaces, (𝒳,𝒴, 𝑝𝒮,𝒴),
marked with the subscript 𝒮 and a target domain is another (𝒳,𝒴, 𝑝𝒯,𝒴), marked with 𝒯.
Samples from the source domain are denoted as the pair (𝑥, 𝑦), with 𝑛 samples forming
the source dataset𝒟𝒮 = {(𝑥 , 𝑦 )} . Similarly, target samples are denoted as (𝑧, 𝑢)with



4

90 4. Modeling feature-level transfer

𝑚 samples forming the target dataset 𝒟𝒯 = {(𝑧 , 𝑢 )} .

4.3.2. Target risk
We adopt the empirical risk minimiza on (ERM) framework for construc ng our domain-
adapted classifier. The ERM framework proposes a classifica on func on ℎ ∶ ℝ → ℝ and
assesses the quality of the hypothesis by comparing its predic ons with the true labels on
the empirical data using a loss func on ℓ ∶ ℝ ×𝒴 → ℝ . The empirical loss is an es mate
of the risk, which is defined as the expected value of the loss func on under the data distri-
bu on. Below, we show that if the target domain carries no addi onal informa on about
the label distribu on, the risk of a model on the target domain is equivalent to the risk on
the source domain under a par cular transfer distribu on.

We first note that the joint source data, target data and label distribu on can be decom-
posed into two condi onal distribu ons and one marginal source distribu on; 𝑝𝒴,𝒯,𝒮 =
𝑝𝒴∣𝒯,𝒮 𝑝𝒯∣𝒮 𝑝𝒮 . The first condi onal 𝑝𝒴∣𝒯,𝒮 describes the full class-posterior distribu on
given both source and target distribu on. Next, we introduce our main assump on: the
labels are condi onally independent of the target domain given the source domain (𝒴 ⊥⊥
𝒯 ∣ 𝒮), which implies: 𝑝𝒴∣𝒯,𝒮 = 𝑝𝒴∣𝒮 . In other words, we assume that we can construct an
op mal target classifier if ( ) we have access to infinitely many labeled source samples—
we know 𝑝𝒴∣𝒮 𝑝𝒮—and ( ) we know the true domain transfer distribu on 𝑝𝒯∣𝒮 . In this
scenario, observing target labels does not provide new informa on.

To illustrate our assump on, imagine a sen ment classifica on problem. If people fre-
quently use the word ”nice” in posi ve reviews about electronics products (the source do-
main) and we know that electronics and kitchen products (the target domain) are very sim-
ilar, then we assume that the word ”nice” is not predic ve of nega ve reviews of kitchen
appliances. In otherwords, knowing that ”nice” is predic ve of a posi ve review and know-
ing that the domains are similar, it cannot be the case that ”nice” is suddenly predic ve
of a nega ve review. Under this assump on, learning a good model for the target do-
main amounts to transferring the source domain to the target domain (that is, altering the
marginal probability of observing the word ”nice”) and learning a good predic ve model
on the resul ng transferred source domain.

Admi edly, there are scenarios in which our assump on is invalid: if people like ”small”
electronics but dislike ”small” cars, the assump on is violated and our domain-adapta on
approach will likely not work well. We do note, however, that our assump on is less strin-
gent than the covariate-shi assump on, which assumes that the posterior distribu on
over classes is iden cal in the source and the target domain (i.e. that 𝑝𝒴∣𝒮 = 𝑝𝒴∣𝒯). The
covariate-shi assump on does not facilitate the use of a transfer distribu on 𝑝𝒯∣𝒮 .
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We start by rewri ng the risk of the target domain 𝑅𝒯 as follows:

𝑅𝒯(ℎ) =∫
𝒳
∑
∈𝒴
ℓ(ℎ(𝑧), 𝑦) 𝑝𝒴,𝒯(𝑦, 𝑧) d𝑧

=∫
𝒳
∑
∈𝒴
∫
𝒳
ℓ(ℎ(𝑧), 𝑦) 𝑝𝒴,𝒯,𝒮(𝑦, 𝑧, 𝑥) d𝑥 d𝑧

=∫
𝒳
∑
∈𝒴
∫
𝒳
ℓ(ℎ(𝑧), 𝑦) 𝑝𝒴∣𝒯,𝒮(𝑦 ∣ 𝑧, 𝑥) 𝑝𝒯∣𝒮(𝑧 ∣ 𝑥) 𝑝𝒮(𝑥) d𝑥 d𝑧 .

Using the assump on 𝑝𝒴∣𝒯,𝒮 = 𝑝𝒴∣𝒮 (or equivalently, 𝒴 ⊥⊥ 𝒯 ∣ 𝒮) as introduced above, we
can rewrite this expression as:

𝑅𝒯(ℎ) =∫
𝒳
∑
∈𝒴
∫
𝒳
ℓ(ℎ(𝑧), 𝑦) 𝑝𝒴∣𝒮(𝑦 ∣ 𝑥) 𝑝𝒯∣𝒮(𝑧 ∣ 𝑥) 𝑝𝒮(𝑥) d𝑥 d𝑧

=∫
𝒳
𝔼𝒴,𝒮[ℓ(ℎ(𝑧), 𝑦) 𝑝𝒯|𝒮(𝑧 ∣ 𝑥)] d𝑧 .

Next, we replace the target risk with its empirical es mate by plugging in source data 𝒟𝒮
for the source joint distribu on 𝑝𝒴,𝒮:

�̂�𝒯(ℎ ∣ 𝒟𝒮) =
1
𝑛 ∫𝒳

∑ℓ(ℎ(𝑧), 𝑦 ) 𝑝𝒯∣𝒮(𝑧 ∣ 𝑥 = 𝑥 ) d𝑧

= 1𝑛 ∑𝔼𝒯∣𝒮 [ ℓ(ℎ(𝑧), 𝑦 ) ] . ( . )

Feature-level domain adapta on (FLDA) trains classifiers by construc ng a parametric
model of the transfer distribu on 𝑝𝒯∣𝒮 and, subsequently, minimizing the expected loss in
Equa on . on the source data with respect to the parameters of the classifier. For lin-
ear classifiers, the expected loss in Equa on . can be computed analy cally for quadra c
and exponen al losses if the transfer distribu on factorizes over dimensions and is in the
natural exponen al family; for the logis c and hinge losses, it can be upper-bounded or ap-
proximated efficiently under the same assump ons [ – ]. Note that no observed target
samples 𝑧 are involved Equa on . ; the expecta on is over the transfer model 𝑝𝒯∣𝒮 , con-
di oned on a par cular sample 𝑥 . The target data is only used to es mate the parameters
of the transfer model.

4.3.3. Transfer model
The transfer distribu on 𝑝𝒯∣𝒮 describes the rela on between the source and the target do-
main: given a par cular source sample, it produces a distribu on of which target samples
are likely to be observed (with the same label). The transfer distribu on is modeled by se-
lec ng a parametric distribu on and learning the parameters of this distribu on from the
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source and target data (without looking at the source labels). Prior knowledge on the rela-
on between source and target domain may be incorporated in the model via the choice
for a par cular family of distribu ons. For instance, if we know that the main varia on
between two domains consists of par cular words that are frequently used in one domain
(say, news ar cles) but infrequently in another domain (say, tweets), then we choose a
distribu on that alters the rela ve frequency of words.

Given a model of the transfer distribu on 𝑝𝒯∣𝒮 and a model of the source distribu on
𝑝𝒮 , we can work out the marginal distribu on over the target domain as

𝑞𝒯(𝑧 ∣ 𝜁, 𝜂) = ∫
𝒳
𝑝𝒯∣𝒮(𝑧 ∣ 𝑥, 𝜁) 𝑝𝒮(𝑥 ∣ 𝜂) d𝑥 , ( . )

where 𝜁 represents the parameters of the transfer model, and 𝜂 the parameters of the
source model. We learn these parameters separately: first, we learn 𝜂 by maximizing the
likelihood of the source data under the model 𝑝𝒮(𝑥 ∣ 𝜂) and, subsequently, we learn 𝜁
by maximizing the likelihood of the target data under the compound model 𝑞𝒯(𝑧 ∣ 𝜁, 𝜂).
Hence, we first es mate the value of 𝜂 by solving:

�̂� = argmax∑ log𝑝𝒮(𝑥 ∣ 𝜂) .

Subsequently, we es mate the value of 𝜁 by solving:

̂𝜁 = argmax∑ log 𝑞𝒯(𝑧 ∣ 𝜁, �̂�) . ( . )

For the moment, we focus on domain-adapta on problems involving binary and count
features. In such problems, wewish to encode changes in themarginal likelihoodof observ-
ing non-zero values in the transfer model. To this end, we employ a dropout distribu on
as transfer model that can model domain-shi s in which a feature occurs less o en in the
target domain than in the source domain. Learning a FLDA model with a dropout transfer
model has the effect of strongly regularizing classifier parameters for features that occur
infrequently in the target domain.

Dropout transfer
To define our transfer model for binary or count features, we first set up a model that
describes the likelihood of observing non-zero features in the source data. This model
comprises a product of independent Bernoulli distribu ons:

𝑝𝒮(𝑥 ∣ 𝜂) = ∏ (1 − 𝜂 ) 𝜂 , ( . )

where 𝑑 indicates the 𝑑-th feature. In this case, 𝜂 corresponds to the probability of a
non-zero value for the 𝑑-th feature; 𝑥 ≠ 0. For a Bernoulli distribu on, the maximum
likelihood es mate of 𝜂 is the sample average: �̂� = 1/𝑛∑ [𝑥 ≠ 0].
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Next, we define a transfer model that describes how o en a feature has a value of zero
in the target domain when it has a non-zero value in the source domain. We assume an
unbiased dropout distribu on [ , ] that sets an observed feature in the source domain
to zero in the target domain with probability 𝜁 :

𝑝𝒯∣𝒮(𝑧 ∣ 𝑥 = 𝑥 , 𝜁 ) = { 𝜁 if 𝑧 = 0
1 − 𝜁 if 𝑧 = 𝑥 /(1 − 𝜁 ) , ( . )

where ∀𝑑 ∶ 0 ≤ 𝜁 ≤ 1. The outcome of not dropping out is modeled as 𝑥 /(1 − 𝜁 ) in
order to ensure that the transfer model centers on the par cular source sample:

𝔼𝒯∣𝒮[𝑧 ] = 𝜁 0 + (1 − 𝜁 )
𝑥 𝑑
1 − 𝜁

= 𝑥 .
We assume that features are independent, whichmeans that the joint transfer distribu on
consists of the product of univariate transfer distribu ons: 𝑝𝒯∣𝒮(𝑧 ∣ 𝑥 , 𝜁) = ∏ 𝑝𝒯∣𝒮(𝑧 ∣
𝑥 , 𝜁 ). Equa on . defines a transfer distribu on for a single source sample. We apply
this model to each source sample and share the parameters. That ensures that we can
average over all source samples 𝑥 to es mate 𝜁.

To compute the maximum likelihood es mate of 𝜁, the dropout transfer model from
Equa on . and the source model from Equa on . are plugged into Equa on . to
obtain (see Appendix A for details):

𝑞𝒯(𝑧 ∣ 𝜁, 𝜂) = ∏ ∫
𝒳
𝑝𝒯∣𝒮(𝑧 ∣ 𝑥 , 𝜁 ) 𝑝𝒮(𝑥 ∣ 𝜂 ) d𝑥

= ∏ (1 − (1 − 𝜁 ) 𝜂 ) ((1 − 𝜁 ) 𝜂 ) . ( . )

Plugging this expression into Equa on . and maximizing with respect to 𝜁, we obtain:

̂𝜁 =max{ 0, 1 −
1/𝑚∑ [𝑧 ≠ 0]
1/𝑛∑ [𝑥 ≠ 0]

} ,

We note that our par cular choice for the transfer model cannot represent rate changes,
such as whether a word is used on average mes in a document versus on average only
mes. The dropout distribu on only captures whether a feature is present or not.

Because our dropout transfer model factorizes over features and is in the natural expo-
nen al family, the expecta on in Equa on . can be analy cally computed. In par cular,
for a transfer distribu on condi oned on source sample 𝑥 , its mean and variance are:

𝔼𝒯∣ [𝑧] = 𝑥

𝕍𝒯∣ [𝑧] = 𝑥 diag( 𝜁
1 − 𝜁 ) 𝑥 .
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𝕍𝒯∣ [𝑧] is a diagonal matrix because we assumed that features are independently trans-
ferred, i.e., the joint transfer model consists of the product of 𝐷 univariate transfer distri-
bu ons.

4.3.4. Classifica on
In order to perform classifica on with the risk formula on in Equa on . , we first need
to select a loss func on ℓ. Popular choices for the loss func on include the quadra c loss
(used in least-squares classifica on), the exponen al loss (used in boos ng), the hinge loss
(used in support vector machines) and the logis c loss (used in logis c regression). Equa-
on . has been studied before in the context of dropout training for the quadra c, expo-
nen al, and logis c loss by [ , ], and for hinge loss by [ ]. For the moment, we use
only the quadra c and logis c loss func ons, but we note that FLDA can also be used in
combina on with exponen al and hinge losses.

Secondly, we have to select an hypothesis class of classifier func ons. We focus on linear
classifiers in this paper, but nonlinear extensions using basis func ons are possible as well.
Linear classifiers project a sample onto a parameter vector, 𝜃 = (𝜃 ,… , 𝜃 , 𝜃 ), and make
decisions based on which side of its decision boundary it ends up. The classifier func on
is: ℎ(𝑧) = ∑ 𝑧 𝜃 + 𝜃 . However, with some abuse of nota on, it will be wri en as
ℎ(𝑧) = 𝑧𝜃, with the implicit requirement that 𝑧 is augmented to [𝑧 1].

Quadra c loss
The quadra c loss func on punishes the squared devia on between the classifier’s pre-
dic on and the true label: ℓ(ℎ(𝑧), 𝑦) = (ℎ(𝑧) − 𝑦) . Using this loss, the expecta on in
Equa on . can be expressed as:

�̂�𝒯(ℎ ∣ 𝒟𝒮) =
1
𝑛 ∑𝔼𝒯∣ [(𝑦 − 𝑧 𝜃) ]

= 1𝑛 ∑𝑦 − 2 𝑦 𝔼𝒯∣ [𝑧]𝜃 + 𝜃 (𝔼𝒯∣ [𝑧] 𝔼𝒯∣ [𝑧] + 𝕍𝒯∣ [𝑧]) 𝜃 ,

Minimizing the risk with respect to the classifier’s parameters yields the op mal ones. For
the quadra c loss, the result is called the least-squares classifier. Taking the gradient and
se ng it to zero yields the following closed-form solu on:

�̂� =( ∑𝔼𝒯∣ [𝑧] 𝔼𝒯∣ [𝑧] + 𝕍𝒯∣ [𝑧]) ( ∑𝔼𝒯∣ [𝑧]𝑦 ) . ( . )

For mul -class problems (𝒴 = {1,… , 𝐾}), mul ple predictors can be built in an one-vs-all
fashion or in an one-vs-one fashion.

The solu on in Equa on . is very similar to the solu on of a standard ridge regres-
sion model. The main difference is that, in a standard ridge regressor, the regulariza on
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is independent of the data. By contrast, the regulariza on of FLDA is determined by the
variance of the transfer model: hence, it is different for each dimension and it depends on
the transfer from source to target domain. Algorithm summarizes the training of a binary
quadra c-loss FLDA classifier with dropout transfer.

Algorithm FLDA-q
for d= to D do

𝜁 =max { 0, 1 − (1/𝑚∑ [𝑧 ≠ 0]) / (1/𝑛∑ [𝑥 ≠ 0])}
end for

�̂� = (∑ 𝑥 𝑥 + 𝑥 diag(𝜁/(1 − 𝜁))𝑥 ) ( ∑ 𝑥 𝑦 )
return 𝑧 �̂� for 𝑗 = 1,… ,𝑚

Logis c loss

The logis c loss func on punishes incorrect predic ons heavily but drops off as the pre-
dic on improves; ℓ(ℎ(𝑧), 𝑦) = − log[exp(𝑦ℎ(𝑧))/(∑ ∈𝒴 exp(𝑦 ℎ(𝑧)))]. The logis c
version of FLDA can be expressed as:

�̂�𝒯(ℎ ∣ 𝒟𝒮) =
1
𝑛 ∑𝔼𝒯∣ [ − 𝑦 𝑧𝜃 + log ∑

∈𝒴
exp(𝑦 𝑧𝜃)]

= 1𝑛 ∑−𝑦 𝔼𝒯∣ [𝑧]𝜃 + 𝔼𝒯∣ [ log ∑
∈𝒴
exp(𝑦 𝑧𝜃)] . ( . )

The expecta on is a linear opera on and can therefore be applied to both terms of the
sum separately. As the expecta on does not depend on the classifier parameters, they can
be pulled out: 𝔼𝒯∣ [𝑧𝜃] = 𝔼𝒯∣ [𝑧]𝜃.

Equa on . is a convex func on in 𝜃 because the original logis c loss func on is con-
vex and the expecta on opera on is convexity-preserving. Hence, the risk func on has
a global op mum. However, the expecta on cannot be computed analy cally. Following
[ ], we approximate the expecta on of the log-par on func on using a Taylor expansion.
To avoid nota onal overload, we first introduce 𝐴(⋅) = log∑ ∈𝒴 exp(𝑦 ⋅) as shorthand
nota on for the log-par on func on. Now, 𝔼𝒯∣ [𝐴(𝑧𝜃)] is approximated around the
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point 𝑥 𝜃:

𝔼𝒯∣ [𝐴(𝑧𝜃)] ≈ 𝔼𝒯∣ [𝐴(𝑥 𝜃)] +

𝔼𝒯∣ [
𝜕𝐴(𝑥 𝜃)
𝜕𝑥 𝜃 (𝑧𝜃 − 𝑥 𝜃)] +

𝔼𝒯∣ [
1
2
𝜕 𝐴(𝑥 𝜃)
𝜕(𝑥 𝜃) (𝑧𝜃 − 𝑥 𝜃) ]

= 𝐴(𝑥 𝜃) +
𝜕𝐴(𝑥 𝜃)
𝜕𝑥 𝜃 (𝔼𝒯∣ [𝑧𝜃] − 𝑥 𝜃) +

1
2
𝜕 𝐴(𝑥 𝜃)
𝜕(𝑥 𝜃) 𝔼𝒯∣ [(𝑧𝜃 − 𝑥 𝜃) ] ( . )

= 𝐴(𝑥 𝜃) +
𝜕𝐴(𝑥 𝜃)
𝜕𝑥 𝜃 (𝔼𝒯∣ [𝑧] − 𝑥 )𝜃 +

1
2
𝜕 𝐴(𝑥 𝜃)
𝜕(𝑥 𝜃) 𝜃 𝔼𝒯∣ [(𝑧 − 𝑥 ) ]𝜃 ( . )

= log ∑
∈𝒴
exp(𝑦 𝑥 𝜃) + 1/2(1 − 𝛽 /𝛼 )𝜃 𝕍𝒯∣ [𝑧]𝜃 ,

where 𝛼 = ∑ ∈𝒴 exp(𝑦 𝑥 𝜃) and 𝛽 = ∑ ∈𝒴 𝑦 exp(𝑦 𝑥 𝜃). As there is no 𝑧 in 𝐴(𝑥 𝜃),
the expecta on disappears in the first term on the right-hand side of Equa on . . For that
same reason, the deriva ves 𝜕𝐴(𝑥 𝜃)/𝜕𝑥 𝜃 and 𝜕 𝐴(𝑥 𝜃)/𝜕(𝑥 𝜃) can be pulled out of
the expecta on. In Equa on . , 𝜃 is pulled out of the quadra c term: (𝑧𝜃 − 𝑥𝜃) =
((𝑧 − 𝑥)𝜃) = 𝜃 (𝑧 − 𝑥) 𝜃. As 𝔼𝒯∣ [𝑧] = 𝑥 , 𝔼𝒯∣ [(𝑧 − 𝑥 ) ] corresponds to the
variance of the transfer model𝕍𝒯∣ [𝑧]. Furthermore, note that the whole first-order term
of the approxima on disappears if an unbiased transfer model is used, 𝔼𝒯∣ [𝑧] = 𝑥 ,
which makes (𝔼𝒯∣ [𝑧] − 𝑥 ) equal to 0.

Unfortunately, there is no closed-form solu on to the minimiza on of the risk approxi-
ma on with respect to the classifiers parameters. In order to find them, we perform gra-
dient descent. The deriva on of the gradient can be found in Appendix B. Algorithm
presents pseudocode for FLDA with the logis c loss and a dropout transfer distribu on.

4.4. Experiments
In our experiments, we first study the empirical behavior of FLDA on ar ficial data forwhich
we know the true transfer distribu on. Following that, we measure the performance of
our method in a ”missing data at test me” scenario, as well as on two image data sets and
three text data sets with varying amounts of domain transfer.
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Algorithm FLDA-l
for d= to D do

𝜁 =max { 0, 1 − (1/𝑚∑ [𝑧 ≠ 0]) / (1/𝑛∑ [𝑥 ≠ 0])}

end for

�̂� = argmin ∈ 1/𝑛∑ [ − 𝑦 𝑥 𝜃 + log∑ ∈𝒴 exp(𝑦 𝑥 𝜃) +

1/2(1 − [∑ ∈𝒴
exp( )

∑ ∈𝒴 exp( ) ] ) 𝜃 (𝑥 diag( )𝑥 )𝜃]

return 𝑧 �̂� for 𝑗 = 1,… ,𝑚

4.4.1. Ar ficial data
Wefirst inves gate the behavior of FLDA on a problem in which themodel assump ons are
sa sfied. We create such a problem se ng by first sampling a source domain data set from
known class-condi onal distribu ons. Subsequently, we construct a target domain data
set by sampling addi onal source data and transforming it using a pre-defined (dropout)
transfer model.

Adapta on under correct model assump ons
We perform experiments in which the domain-adapted classifier es mates the transfer
model and trains on the source data; we evaluate the quality of the resul ng classifier by
comparing it to an oracle classifier that was trained on the target data (that is, the classifier
one would train if labels for the target data were available at training me).

In the first experiment, we generate binary features by drawing 100, 000 samples from
two bivariate Bernoulli distribu ons. The marginal distribu ons are [0.7, 0.7] for class
one and [0.3 0.3] for class two. The source data is transformed to the target data using a
dropout transfer model with parameters 𝜁 = [0.5, 0]. This means that % of the values
for feature are set to and the other values are scaled by 1/(1−0.5). For reference, two
naive least-squares classifiers are trained, one on the labeled source data (s-ls) and one
on the labeled target data (t-ls), and compared to FLDA-q. s-ls achieves a misclassifica on
error of 0.40 while t-ls and FLDA-q achieve an error of 0.30. This experiment is repeated
for the same classifiers but with logis c losses: a source logis c classifier (S-LR), a target
logis c classifier (T-LR) and FLDA-l. In this experiment, S-LR again achieves an error of 0.40
and T-LR and FLDA-l an error of 0.30. Figure . shows the decision boundaries for the
quadra c loss classifiers on the le and the logis c loss classifiers on the right. The figure
shows that for both loss func ons, FLDA has completely adapted to be equivalent to the
target classifier in this ar ficial problem.
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Figure . : Sca er plots of the target domain. The data was generated by sampling from bivariate Bernoulli class-
condi onal distribu ons and transformed using a dropout transfer. Red and blue dots show different classes. The
lines are the decision boundaries found by the source classifier (s-ls/S-LR), the target classifier (t-ls/T-LR) and the
adapted classifier (le FLDA-q, right FLDA-l). Note that the decision boundary of FLDA lies on top of the decision
boundary of t-ls/T-LR.

In the second experiment, we generate count features by sampling from bivariate Pois-
son distribu ons. Herein, we used rate parameters [2, 2] for the first class and [6, 6] for
the second class. Again, we construct the target domain data by genera ng new samples
and dropping out the values of feature with a probability of 0.5. In this experiment s-ls
achieves an error of 0.181 and t-ls / FLDA-q achieve an error of 0.099, while S-LR achieves
an error of 0.170 and T-LR / FLDA-l achieve an error of 0.084. Figure . shows the decision
boundaries of each of these classifiers and that FLDA has fully adapted to the domain shi .
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Figure . : Sca er plots of the target domain with decision boundaries of classifiers. The data was generated
by sampling from bivariate Poisson class-condi onal distribu ons and the decision boundaries were constructed
using the source classifier (s-ls/S-LR), the target classifier (t-ls/T-LR), and the adapted classifiers (le FLDA-q, right
FLDA-l). Note that the decision boundary of FLDA lies on top of the decision boundary of t-ls / T-LR.

Learning curves
One ques on that arises from the previous experiments is how many samples FLDA needs
to es mate the transfer parameters and adapt to be (nearly) iden cal to the target classi-
fier. To answer it, we performed an experiment in which we computed the classifica on
error rate as a func on of the number of training samples. The source training and vali-
da on data was generated from the same bivariate Poisson distribu ons as in Figure . .
The target data was constructed by genera ng addi onal source data and dropping out the
first feature with a probability of 0.5. Each of the four data sets contained 10, 000 samples.
First, we trained a naive least-squares classifier on the source data (s-ls) and tested its per-
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formance on both the source valida on and the target sets as a func on of the number of
source training samples. Second, we trained a naive least-squares classifier on the labeled
target data (t-ls) and tested it on the source valida on and another target valida on set as
a func on of the number target training samples. Third, we trained an adapted classifier
(FLDA-q) on equal amounts of labeled source training data and unlabeled target training
data and tested it on both the source valida on and target valida on sets. The experiment
was repeated 50 mes for every sample size to calculate the standard error of the mean.

The learning curves are plo ed in Figure . , which shows the classifica on error on the
source valida on set (top) and the classifica on error on the target valida on (bo om).
As expected, the source classifier (s-ls) outperforms the target (t-ls) and adapted (FLDA-q)
classifiers on the source domain (do ed lines), while FLDA-q and t-ls outperform s-ls on
the target domain (solid lines). In this problem, it appears that roughly labeled source
samples and unlabeled target samples are sufficient for FLDA to adapt to the domain
shi . Interes ngly, FLDA-q is outperforming s-ls and t-ls for small sample sizes. This is
most likely due to the fact that the applica on of the transfer model is ac ng as a kind of
regulariza on. In par cular, when the learning curves are computed with 𝐿 -regularized
classifiers, then the difference in performance disappears.

Figure . : Learning curves of the source classifier (s-ls), the target classifier (t-ls), and adapted classifier (FLDA-q).
The top figure shows the error on a valida on set generated from two bivariate Poisson distribu ons. The bo om
figure shows the error on a valida on set generated from two bivariate Poisson distribu ons with the first feature
dropped out with a probability of . .

Robustness to transfer model parameter es ma on errors
Another ques on that arises is how sensi ve the approach is to es ma on errors in the
transfer parameters. To answer this ques on, we performed an experiment in which we
ar ficially introduce an error in the transfer parameters by perturbing them. As before,
we generate 100, 000 samples for both domains by sampling from bivariate Poisson dis-
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tribu ons with rates [2, 2] for class and [6, 6] for class . Again, the target domain is
constructed by dropping out feature with a probability of . . We trained a naive clas-
sifier on the source data (s-ls), a naive classifier on the target data (t-ls), and an adapted
classifier FLDA-q with four different sets of parameters: the maximum likelihood es mate
of the first transfer parameter ̂𝜁 with an addi on of 0, 0.1, 0.2, and 0.3. Table . shows
the resul ng classifica on errors, which reveal a rela vely small effect of perturbing the es-
mated transfer parameters: the errors only increase by a few percent in this experiment.

Table . : Classifica on errors for a naive source classifier, a naive target classifier, and the adapted classifier with
a value of , . , . , and . added to the es mate of the first transfer parameter ̂ .

sl tl ̂𝜁 + 0 ̂𝜁 + 0.1 ̂𝜁 + 0.2 ̂𝜁 + 0.3

Quadra c . . . . . .
Logis c . . . . . .

To further illustrate the effect of the transfer parameters, Figure . shows the decision
boundaries for the perturbed adapted classifiers. The figures show that the linear bound-
aries start to angle upwards when the error in the transfer parameter es mate increases.
Overall, one could describe the effect of a dropout transfer model as steering the direc on
of the linear classifier. This experiment shows the importance of an accurate es ma on
of the transfer parameters to obtain high-quality adapta on. Nonetheless, our results do
suggest that FLDA is robust to rela vely small perturba ons.
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Figure . : Sca er plots of the target data and decision boundaries of two naive and four adapted classifiers with
transfer parameter es mate errors of , . , . , and . . Results are show for both the quadra c loss classifier
(FLDA-q; le ) and the logis c loss classifier (FLDA-l; right).

4.4.2. Natural data
In a second set of experiments, we evaluate FLDA on a series of real-world data sets and
compare it with several state-of-the-art methods. The evalua ons are performed in the
transduc ve learning se ng: wemeasure the performance of the classifier on the already
given, but unlabeled target samples.

As baselines, we consider eight alterna ve methods for domain adapta on. All of these
employ a two-stage procedure. In the first step, importanceweights, domain-invariant fea-
tures, or a transforma on of the feature space is es mated. In the second step, a classifier
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is trained using the results of the first stage. In all experiments, we es mate the hyper-
parameters, such as 𝐿 -regulariza on parameters, via cross-valida on on held-out source
data. It should be noted that these values are op mal for generalizing to new source data
but not necessarily for generalizing to the target domain [ ]. Each of the eight baseline
methods is described briefly below.

Naive support vector machine (S-SVM)
Our first baseline method is a support vector machine trained on only the source samples
and applied on the target samples. We made use of the libsvm package by [ ] with a ra-
dial basis func on kernel and we performed cross-valida on to es mate the kernel band-
width and the 𝐿 -regulariza on parameter. All mul -class classifica on is done through
an one-vs-one scheme. This method can be readily compared to subspace alignment (SA)
and transfer component analysis (TCA) to evaluate the effects of the respec ve adapta on
approaches.

Naive logis c regression (S-LR)
Our second baseline method is an 𝐿 -regularized logis c regressor trained on only the
source samples. Its main difference with the support vector machine is that it uses a linear
model, a logis c loss instead of a hinge loss, and that it has a natural extension to mul -
class as opposed to one-vs-one. The value of the regulariza on parameter was set via
cross-valida on. This method can be readily compared to kernel mean matching (KMM),
structural correspondence learning (SCL), as well as to the logis c loss version of feature-
level domain adapta on (FLDA-l).

Kernel mean matching (KMM)
Kernel mean matching [ , ] finds importance weights by minimizing the maximummean
discrepancy (MMD) between the reweighed source samples and the target samples. To
evaluate the empirical MMD, we used the radial basis func on kernel. The weights are
then incorporated in an importance-weighted 𝐿 -regularized logis c regressor.

Structural correspondence learning (SCL)
In order to build the domain-invariant subspace [ ], the features with the largest pro-
por on of non-zero values in both domains are selected as the pivot features. Their values
were dichotomized ( if 𝑥 ≠ 0, if 𝑥 = 0) and predicted using a modified Huber loss [ ].
The resul ng classifier weight matrix was subjected to an eigenvalue decomposi on and
the eigenvectors with the largest eigenvalues are retained. The source and target sam-
ples are both projected onto this basis and the resul ng subspaces are added as features
to the original source and target feature spaces, respec vely. Consequently, classifica on
is done by training an 𝐿 -regularized logis c regressor on the augmented source samples
and tes ng on the augmented target samples.

Transfer component analysis (TCA)
For transfer component analysis, the closed-form solu on to the parametric kernel map
described in [ ] is computed using a radial basis func on kernel. Its hyperparameters
(kernel bandwidth, number of retained components and trade-off parameter 𝜇) are es -
mated through cross-valida on. A er mapping the data onto the transfer components, we
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trained a support vector machine with a radial basis func on kernel, cross-valida ng over
its kernel bandwidth and the regulariza on parameter.

Geodesic flow kernel (GFK)
The geodesic flow kernel is extracted based on the difference in angles between the prin-
cipal components of the source and target samples [ ]. The basis func ons of this kernel
implicitlymap the data onto all possible subspaces on the geodesic path between domains.
Classifica on is performed using a kernel -nearest neighbor classifier. We used the sub-
space disagreement measure (SDM) to select an op mal value for the subspace dimen-
sionality.

Subspace alignment (SA)
For subspace alignment [ ], all samples are normalized by their sum and all features are
z-scored before extrac ng principal components. Subsequently, the Frobenius norm be-
tween the transformed source components and target components is minimized with re-
spect to an affine transforma on matrix. A er projec ng the source samples onto the
transformed source components, a support vector machine with a radial basis func on
kernel is trained with cross-validated hyperparameters and tested on the target samples
mapped onto the target components.

Target logis c regression (T-LR)
Finally, we trained a 𝐿 -regularized logis c regressor using the normally unknown target
labels as the oracle solu on. This classifier is included to obtain an upper bound on the
performance of our classifiers.

Missing data at test me
In this set of experiments, we study ”missing data at test me” problems in which we argue
that dropout transfer occurs naturally. Suppose that for the purposes of building a classi-
fier, a data set is neatly collected with all features measured for all samples. At test me,
however, some features could not be measured, due to for instance sensor failure, and the
missing values are replaced by 0. This se ng can be interpreted as two distribu ons over
the same space with their transfer characterized by a rela ve increase in the number of
0 values, which our FLDA with dropout transfer is perfectly suited for. We have collected
six data sets from the UCI machine learning repository [ ] with missing data: Hepa s
(hepat.), Ozone (ozone; [ ]), Heart Disease (heart; [ ]), Mammographic masses (mam.;
[ ]), Automobile (auto), and Arrhythmia (arrhy.; [ ]). Table . shows summary sta s-
cs for these sets. In the experiments, we construct the training set (source domain) by
selec ng all samples with no missing data, with the remainder as the test set (target do-
main). We note that instead of doing 0-imputa on, we also could have usedmethods such
asmean-imputa on [ , ]. It is worth no ng that the FLDA framework can adapt to such
a se ng by simply defining a different transfer model (one that replaces a feature value
by its mean instead of a 0).

Table . reports the classifica on error rate of all domain-adapta on methods on the
before-men oned data sets. The lowest error rates for a par cular data set are bold-faced.
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Table . : Summary sta s cs of the UCI repository data sets with missing data.

hepat. ozone heart mam. auto. arrhy.

Features
Samples
Classes
Missing

Table . : Classifica on error rates on UCI data sets with missing data. The data sets were par oned into
a training set (source domain), containing all samples with no missing features, and a test set (target domain),
containing all samples with missing features.

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

hepat. . . . . . . . . . .
ozone . . . . . . . . . .
heart . . . . . . . . . .
mam. . . . . . . . . . .
auto. . . . . . . . . . .
arrhy. . . . . . . . . . .

From the results presented in the table, we observe that whilst there appears to be li le
difference between the domains in the Hepa s and Ozone data sets, there is substan al
domain shi in the other data sets: the naive classifiers even perform at chance level on
the Arrhythmia and Automobile data sets. On almost all data sets, both FLDA-q and FLDA-l
improve substan ally over the S-LR, which suggests that they are successfully adap ng to
themissing data at test me. By contrast, most of the other domain-adapta on techniques
do not consistently improve although, admi edly, sample transforma onmethods appear
to work reasonable well on the Ozone, Mammography, and Arrhythmia data sets.

Handwri en digits
Handwri en digit data sets have been popular in machine learning due to the large sample
size and the interpretability of the images. Generally, the data is acquired by assigning an
integer value between and propor onal to the amount of pressure that is applied
at a par cular spa al loca on on an electronic wri ng pad. Therefore, the probability of
a non-zero value of a pixel informs us how o en a pixel is part of a par cular digit. For
instance, the middle pixel in the digit 8 is a very important part of the digit because it
nearly always corresponds to a high-pressure loca on, but the upper-le corner pixel is
not used that o en and is less important. Domain shi may be present between digit data
sets due to differences in recording condi ons. As a result, we may observe pixels that
are discrimina ve in one data set (the source domain) that are hardly ever observed in
another data set (the target domain). These pixels cannot be used to classify digits in the
target domain, and we would like to inform the classifier that it should not assign a large
weight to such pixels.
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Wecreated adomain adapta on se ngby considering twohandwri endigit sets, namely
MNIST [ ] and USPS [ ]. In order to create a common feature space, images from both
data sets are resized to by pixels. To reduce the discrepancy between the size of
MNIST data set (which contains 70, 000 examples) and the USPS data set (which contains
9, 298 examples), we only use 14, 000 samples from the MNIST data set. The classes are
balanced in both data sets.

Figure . : Visualiza on of the probability of non-zero values for each pixel on the MNIST data set (le ) and the
USPS data set (right).

Figure . : Classifier parameter values assigned by the naive source classifier to the -digit predictor (le ), the
transfer model parameters of the dropout transfer model (middle), and the classifier parameter values assigned
by the adapted classifier to the -digit predictor for training on USPS images and tes ng onMNIST (right; → ).

Figure . shows a visualiza on of the probability that each pixel is non-zero for both
data sets. The visualiza on shows that while the digits in theMNIST data set occupymostly
the center region, the USPS digits tend to occupy a substan ally larger part of the im-
age, specifically a center column. Figure . (le ) visualizes the classifier parameter val-
ues of the naive linear classifier (S-LR), (middle) the dropout probabili es 𝜁, and (right) the
adapted classifier’s parameter values (FLDA-l). Themiddle image shows that dropout prob-
abili es are large in regions where USPS pixels are frequent (the white pixels in Figure .
right) but MNIST pixels are infrequent (the black pixels in Figure . , le ). The parameter
values of the naive classifier appear to be shaped in a somewhat noisy circular pa ern in
the periphery, with the center containing nega ve values (if these center pixels have a low
intensity in a new sample, then the image is more likely to be a 0 digit). By contrast, the
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parameter values of the FLDA classifier are smoothed in the periphery, which indicates that
the classifier is placing more value on the center pixels and is ignoring the peripheral ones.

Table . shows the classifica on error rates where the rows correspond to the com-
bina ons of trea ng one data set as the source domain and the other as the target. The
results show that there is a large difference between the domain-specific classifiers (S-LR
and T-LR), which indicates that the domains are highly dissimilar. We note that the error
rates of the target classifier on the MNIST data set are higher than usual for this data set
(T-LR has an error rate of . ), which is because of the down-sampling of the images to
16 × 16 pixels and the smaller sample size. The results presented in the table highlight an
interes ng property of FLDA with dropout transfer: while FLDA performs well in se ngs
in which the domain transfer can be appropriately modeled by the transfer distribu on
(U→M se ng where pixels that appear in the USPS do not appear in MNIST), it does not
perform well the other way around. The dropout transfer model does not capture pix-
els appearing more o en instead of less o en in the target domain. To work well in that
se ng, it is presumably necessary to use a richer transfer model.

Table . : Classifica on error rates obtained on both combina ons of trea ng one domain as the source and the
other as the target. M=’MNIST’ and U=’USPS’.

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

M→U . . . . . . . . . .
U→M . . . . . . . . .

Office-Caltech
The Office-Caltech data set [ ] consists of images of objects gathered using four differ-
ent methods: one from images found through a web image search (referred to as ’C’),
one from images of products on Amazon (A), one taken with a digital SLR camera (D) and
one taken with a webcam (W). Overall, the set contains classes, with samples from
Caltech, samples from Amazon, samples from the DSLR camera, and samples
from the webcam. Our first experiment with the Office-Caltech data set is based on fea-
tures extracted through SURF features [ ]. These descriptors determine a set of interest
points by finding local maxima in the determinant of the image Hessian. Weighted sums
of Haar features are computed in mul ple sub-windows at various scales around each of
the interest points. The resul ng descriptors are vector-quan zed to produce a bag-of-
visual-words histogram of the image that is both scale and rota on-invariant. We perform
domain-adapta on experiments by training on one domain and tes ng on another.

Table . shows the results of the classifica on experiments, where compared to com-
pe ng methods, SA is performing well for a number of domain pairs, which may indicate
that the SURF descriptor representa on leads to domain dissimilari es that can be accu-
rately captured by subspace transforma ons. This result is further supported by the fact
that the transforma ons found by GFK and TCA are also outperforming S-SVM. FLDA-q and
FLDA-l are among the best performers on certain domain pairs. In general, FLDA does ap-
pear to perform at least as good or be er than a naive S-LR classifier.The results on the
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Table . : Classifica on error rates obtained by ten (domain-adapted) classifiers for all pairwise combina ons of
domains on the Office-Caltech data set with SURF features (A=’Amazon’, D=’DSLR’,W=’Webcam’, and C=’Caltech’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

A→D . . . . . . . . . .
A→W . . . . . . . . . .
A→C . . . . . . . . . .
D→W . . . . . . . . . .
D→C . . . . . . . . . .
W→C . . . . . . . . . .
D→A . . . . . . . . . .
W→A . . . . . . . . . .
C→A . . . . . . . . . .
W→D . . . . . . . . . .
C→D . . . . . . . . . .
C→W . . . . . . . . . .

Office-Caltech data set depend on the type of informa on the SURF descriptors are ex-
trac ng from the images. We also studied the performance of domain-adapta on meth-
ods on a richer visual representa on, produced by a pre-trained convolu onal neural net-
work. Specifically, we used a data set provided by [ ], who extracted -dimensional
feature-layer ac va ons (so-called DeCAF features) in the upper layers of the a convolu-
onal network that was pre-trained on the Imagenet data set. Donahue et al. [ ] used a
larger superset of theOffice-Caltech data set that contains classeswith images from
Amazon, from the DSLR camera, and from the webcam. The results of our experi-
ments with the DeCAF features are presented in Table . . The results show substan ally
lower error rates overall, but they also show that domain transfer in the the DeCAF fea-
ture representa on is not amenable to effec ve modeling by subspace transforma ons.
KMM and SCL obtain performances that are similar to the of the naive S-LR classifier but in
one experiment, the naive classifier is actually the best-performing model. Whilst achiev-
ing the best performance on out of domain pairs, the FLDA-q and FLDA-l models are
not as effec ve as on other data sets, presumably, because dropout is not a good model
for the transfer in a con nuous feature space such as the DeCAF feature space.

Table . : Classifica on error rates obtained by ten (domain-adapted) classifiers for all pairwise combina ons of
domains on the Office data set with DeCAF features (A=’Amazon’, D=’DSLR’, and W=’Webcam’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

A→D . . . . . . . . . .
A→W . . . . . . . . . .
D→W . . . . . . . . . .
D→A . . . . . . . . . .
W→A . . . . . . . . . .
W→D . . . . . . . . . .
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IMDb
The Internet Movie Database (IMDb) [ ] contains wri en reviews of movies labeled with
a - star ra ng, which we dichotomize by se ng values > 5 as +1 and values ≤ 5 as
−1. Using this dichotomy, both classes are roughly balanced. From the original bag-of-
words representa on, we selected only the features with more than non-zero values
in the en re data set, resul ng in features. To obtain the domains, we split the data
set by genre and obtained reviews of ac on movies, reviews of family movies,
and reviews of war movies. We assume that people tend to use different words to
review different genres of movies, and we are interested in predic ng viewer sen ment
a er adap ng to changes in the word frequencies. To visualize whether this assump on is
valid, we plot the propor on of non-zero values of randomly chosen words per domain
in Figure . . The figure suggests that ac onmovie andwarmovie reviews are quite similar,
but the word use in family movie reviews does appear to be different.

Table . reports the results of the classifica on experiments on the IMDb database.
The first thing to note is that the performances of S-LR and T-LR are quite similar, which
suggests that the frequencies of discrimina ve words do not vary too much between gen-
res. The results also show that GFK and TCA are not as effec ve on this data set as they
were on the handwri en digits and Office-Caltech data sets, which suggests that finding a
joint subspace that is s ll discrimina ve is hard, presumably, because only a small number
of the words actually carry discrimina ve informa on. FLDA-q and FLDA-l are bet-
ter suited for such a scenario, which is reflected by their compe ve performance on all
domain pairs.
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Figure . : Propor on of non-zero values for a subset of words per domain on the IMDb data set.

Spam
Domain adapta on se ngs also arise in spam detec on systems. For this experiment, we
concatenated twodata sets from theUCImachine learning repository: one containing
emails from the Enron spam database [ ] and one containing text messages from
the SMS-spam data set [ ]. Both were represented using bag-of-words vectors over
words that occurred in both data sets. Figure . shows the propor ons of non-zero values
for some example words, and shows that there exist large differences in word frequencies
between the two domains. In par cular, much of the domain differences are due to text
messages using shortened words, whereas email messages tend to be more formal.
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Table . : Classifica on error rates obtained by ten (domain-adapted) classifiers for all pairwise combina ons of
domains on the IMDb data set. (A=’Ac on’, F=’Family’, and W=’War’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

A→F . . . . . . . . . .
A→W . . . . . . . . . .
F→W . . . . . . . . . .
F→A . . . . . . . . . .
W→A . . . . . . . . . .
W→F . . . . . . . . . .
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Figure . : Propor on of non-zero values for a subset of words per domain on the spam data set.

Table . shows results from our classifica on experiments on the spam data set. As
can be seen from the results of T-LR, fairly good accuracies can be obtained on the spam
detec on task. However, the domains are so different that the naive classifiers S-SVM and
S-LR are performing according to chance or worse. Most of the domain-adapta on mod-
els do not appear to improve much over the naive models. For KMM this makes sense,
as the importance weight es mator will assign equal values to each sample when the em-
pirical supports of the two domains are disjoint. There might be some features that are
shared between domains, i.e., words that are spam in both emails and text messages, but
considering the performance of SCL these might not be corresponding well with the other
features. FLDA-q and FLDA-l are showing slight improvements over the naive classifiers, but
the transfer model we used is too poor as the domains contain a large amount of increased
word frequencies.

Table . : Classifica on error rates obtained by ten (domain-adapted) classifiers for both domain pairs on the
spam data set. (S=’SMS’ and M=’E-Mail’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

S→M . . . . . . . . . .
M→S . . . . . . . . . .

Amazon
We performed a similar experiment on the Amazon sen ment analysis data set of product
reviews [ ]. The data consists of a 30, 000 dimensional bag-of-words representa ons of
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27, 677 reviewswith the labels derived from the dichotomized -star ra ng (ra ngs> are
+ and ra ngs≤ as - ). Each reviewdescribes a product fromoneof four categories: books
( reviews), DVDs ( reviews), electronics ( reviews) and kitchen appliances
( reviews). Figure . shows the probability of a non-zero value for some example
words in each category. Some words, such as ’portrayed’ or ’barbaric’, are very specific to
one or two domains, but the frequencies of many other words do not vary much between
domains. Weperformed experiments on the Amazon data set using the same experimental
setup as before.
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Figure . : Propor on of non-zero values for a subset of words per domain on the Amazon data set.

In Table . , we report the classifica on error rates on all pairwise combina ons of do-
mains. The difference in classifica on errors between S-LR and T-LR is up to %, which sug-
gests there is poten al for success with domain adapta on. However, the domain transfer
is not capturedwell by SA, GFK, TCA: on average, thesemethods are performingworse than
the naive classifiers. We presume this happens because only a small number of words are
actually discrimina ve, and these words carry li le weight in the sample transforma on
measures used. Furthermore, there are significantly less samples than features in each
domain which means models with large amounts of parameters are likely to experience
es ma on errors. By contrast, FLDA-l performs strongly on the Amazon data set, achiev-
ing the best performance on many of the domain pairs. FLDA-q performs substan ally
worse than FLDA-l, presumably, because of the singular covariance matrix and the fact
that least-squares classifiers are very sensi ve to outliers.

4.5. Discussion and conclusions
We have presented an approach to domain adapta on, called FLDA, that fits a probabilis c
model to capture the transfer between the source and the target data and, subsequently,
trains a classifier by minimizing the expected loss on the source data under this transfer
model. Whilst the FLDA approach is very general, in this chapter, we have focused on one
par cular transfer model, namely, a dropout model. Our extensive experimental evalua-
on with this transfer model shows that FLDA performs on par with the current state-of-
the-art methods for domain adapta on.

An interes ng interpreta on of our formula on is that the expected loss under the
transfer model performs a kind of data-dependent regulariza on [ ]. For instance, if a
quadra c loss func on is employed in combina on with a Gaussian transfer model, FLDA
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Table . : Classifica on error rates obtained by ten (domain-adapted) classifiers for all pairwise combina ons of
domains on the Amazon data set. (B=’Books’, D=’DVD’, E=’Electronics’, and K=’Kitchen’).

S-SVM S-LR KMM SCL SA GFK TCA FLDA-q FLDA-l T-LR

B→D . . . . . . . . . .
B→E . . . . . . . . . .
B→K . . . . . . . . . .
D→E . . . . . . . . . .
D→K . . . . . . . . . .
E→K . . . . . . . . . .
D→B . . . . . . . . . .
E→B . . . . . . . . . .
K→B . . . . . . . . . .
E→D . . . . . . . . . .
K→D . . . . . . . . . .
K→E . . . . . . . . . .

reduces to a transfer-dependent variant of ridge regression [ ]. This transfer-dependent
regularizer increases the amount of regulariza on on features when it is undesired for the
classifier to assign a large weight to that feature. In other words, the regularizer forces
the classifier to ignore features that are frequently present in the source domain but very
infrequently present in the target domain.

In some of our experiments, the adapta on strategies are producing classifiers that per-
form worse than a naive classifier trained on the source data. A poten al reason for this
is that many domain-adapta on models make strong assump ons on the data that are in-
valid in many real-world scenarios. In par cular, it is unclear to what extent the rela on
between source data and classes truly is informa ve about the target labels. This issue
arises in every domain-adapta on problem: without target labels, there is noway of know-
ing whether matching the source distribu on 𝑝𝒮 to the target distribu on 𝑝𝒯 will improve
the match between 𝑝𝒴∣𝒮 and 𝑝𝒴∣𝒯 .
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For some combina ons of source and target models, the source domain can be integrated
out. For others, we would have to resort to Markov Chain Monte Carlo sampling and sub-
sequently averaging the samples drawn from the transferred source distribu on 𝑞𝒯 . For
the Bernoulli and dropout model defined in Equa ons . and . respec vely, the inte-
gra on as in Equa on . can be performed by plugging in the specified probabili es and
performing the summa on:

𝑞𝒯(𝑧 ∣ 𝜂, 𝜁) = ∏ ∫
𝒳
𝑝𝒯∣𝒮(𝑧 ∣ 𝑥 , 𝜁 ) 𝑝𝒮(𝑥 ∣ 𝜂 ) d𝑥

= ∏ 𝑝𝒯∣𝒮(𝑧 ∣ [𝑥 = 0], 𝜁 ) 𝑝𝒮([𝑥 = 0]; 𝜂 ) +

𝑝𝒯∣𝒮(𝑧 ∣ [𝑥 ≠ 0], 𝜁 ) 𝑝𝒮([𝑥 ≠ 0]; 𝜂 )

= ∏ {𝑝𝒯∣𝒮(𝑧 = 0 ∣ [𝑥 = 0], 𝜁 )(1 − 𝜂 ) + 𝑝𝒯∣𝒮(𝑧 = 0 ∣ [𝑥 ≠ 0], 𝜁 )𝜂
𝑝𝒯∣𝒮(𝑧 ≠ 0 ∣ [𝑥 = 0], 𝜁 )(1 − 𝜂 ) + 𝑝𝒯∣𝒮(𝑧 ≠ 0 ∣ [𝑥 ≠ 0], 𝜁 )𝜂

= ∏ {1(1 − 𝜂 ) + 𝜁 𝜂 if 𝑧 = 0
0(1 − 𝜂 ) + (1 − 𝜁 )𝜂 if 𝑧 ≠ 0

= ∏ (1 − (1 − 𝜁 ) 𝜂 ) ((1 − 𝜁 ) 𝜂 ) .

Note that we chose our transfer model such that the probability is for a non-zero target
sample value given a zero source sample value; 𝑝𝒯∣𝒮(𝑧 ≠ 0 ∣ [𝑥 = 0], 𝜁 ) = 0. In other
words, if a word is not used in the source domain, then we expect that it is also not used
in the target domain. By se ng different values for these probabili es, a different type of
transfer is modeled.
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4.7. Appendix B
This appendix lists the second-order Taylor approxima on of the logis c loss version of
FLDA with a general transfer model and presents its gradient with respect to the classifier
parameters. To keep the deriva ons manageable, we use the following shorthands:

𝛼 = ∑
∈𝒴
exp(𝑦 𝑥 𝜃)

𝛽 = ∑
∈𝒴
𝑦 exp(𝑦 𝑥 𝜃)

𝛾 = ∑
∈𝒴
exp(𝑦 𝑥 𝜃)𝑥

𝛿 = ∑
∈𝒴
𝑦 exp(𝑦 𝑥 𝜃)𝑥 .

The risk func on of FLDA with a logis c loss and a general transfer model is:

�̂�𝒯(ℎ ∣ 𝒟𝒮) =
1
𝑛 ∑−𝑦 𝔼𝒯∣ [𝑧]𝜃 + 𝐴(𝑥 𝜃)+

𝜕𝐴(𝑥 𝜃)
𝜕𝑥 𝜃 (𝔼𝒯∣ [𝑧] − 𝑥 )𝜃 +

1
2
𝜕 𝐴(𝑥 𝜃)
𝜕(𝑥 𝜃) 𝜃 𝕍𝒯∣ [𝑧]𝜃

=1𝑛 ∑−𝑦 𝔼𝒯∣ [𝑧]𝜃 + log(𝛼 )+

𝛽
𝛼 (𝔼𝒯∣ [𝑧] − 𝑥 )𝜃 +

1
2(1 −

𝛽
𝛼 ) 𝜃 𝕍𝒯∣ [𝑧]𝜃 .

The gradient of the risk is:

𝜕
𝜕𝜃 �̂�𝒯(ℎ ∣ 𝒟𝒮) =

1
𝑛 ∑−𝑦 𝔼𝒯∣ [𝑧] + 𝛽

𝛼 𝑥 +

( 𝛾𝛼 − 𝛽 𝛿𝛼 )(𝔼𝒯∣ [𝑧] − 𝑥 )𝜃 +
𝛽
𝛼 (𝔼𝒯∣ [𝑧] − 𝑥 )

1
2(1 −

𝛽
𝛼 )(𝕍𝒯∣ [𝑧] + 𝕍𝒯∣ [𝑧] )𝜃 − (

𝛽 𝛿
𝛼 − 𝛽 𝛾𝛼 )𝜃 𝕍𝒯∣ [𝑧]𝜃 .
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5
Acquisi on-invariant

representa ons

Voxelwise classifica on approaches are popular and effec ve methods for ssue quan fi-
ca on in brain magne c resonance imaging (MRI) scans. However, generaliza on of these
approaches is hampered by large differences between sets of MRI scans such as differences
in field strength, vendor or acquisi on protocols. Due to this acquisi on related varia on,
classifiers trained on data from a specific scanner fail or under-perform when applied to
data that was acquired differently. In order to address this lack of generaliza on, we pro-
pose a Siamese neural network (MRAI-NET) to learn a representa on that minimizes the
between-scanner varia on, while maintaining the contrast between brain ssues neces-
sary for brain ssue quan fica on. The proposed MRAI-NET was evaluated on both sim-
ulated and real MRI data. A er learning the MR acquisi on invariant representa on, any
supervised classifica on model that uses feature vectors can be applied. In this chapter,
we provide a proof of principle, which shows that a linear classifier applied on themrai rep-
resenta on is able to outperform supervised convolu onal neural network classifiers for
ssue classifica on when li le target training data is available.

This chapter is based on the paper ”MR acquisi on-invariant representa on learning”.
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5.1. Introduc on
Very few of the many medical image analysis algorithms that were proposed in the litera-
ture are applicable in clinical prac ce. One of the reasons for this is the complexity of the
medical image data, i.e. the vast amount of varia on that is present in this data. A more
specific example of this, is brain ssue segmenta on in MRI scans. Many automa c meth-
ods have been proposed [ – ], but due to a lack of generaliza on, large scale use in clinical
prac ce remains a challenge [ ]. In order to test the capacity of algorithms to general-
ize to new data, a representa ve sample (dataset) is required. This entails iden fying all
factors of varia on in the data that would influence algorithm performance with respect
to the medical image analysis task at hand. For brain ssue segmenta on in MRI scans,
we iden fy for example subject related varia on (i.e. pathology, age, ethnicity, gender)
and acquisi on related varia on (i.e. MR field strength, protocol se ngs, scanner vendor,
artefacts).

Supervised voxel classifica on approaches have been shown to perform well on small
data sets [ – ]. However, in order to ensure generaliza on, these algorithms should
be trained and tested on a sufficiently large representa ve dataset that covers all possi-
ble types of varia on. This is prac cally infeasible since training and tes ng require not
only the MRI scans, but also manual labels as ground truth. The manual segmenta on
process is labor intensive and me consuming, and adds another layer of varia on due to
non-standardized manual segmenta on protocols and inter- and intra-observer variability.
To address this problem, we propose an alterna ve approach, by learning a representa-
on of the data [ ] that is invariant to disturbing types of varia on, while preserving the
varia on relevant for the selected classifica on task, i.e. clinically relevant varia on. By re-
ducing undesired varia on, this method has the poten al to decrease the number of fully
labeled samples required for generaliza on and enable broader use of voxel classifica on
approaches.

Overcoming acquisi on-varia on is a rela vely new challenge in medical imaging. One
par cularly interes ng approach focuses on weigh ng classifiers based on how well their
training data matches the test data [ , , ]. Examples of transfer classifiers include
weighted SVM’s [ ] and weighted ensembles [ ]. But these methods are very dataset-
dependent: the classifiers need to be retrained for every new test dataset. Ideally, we
would like to have a method that removes acquisi on-varia on or extracts acquisi on-
invariant features. Domain adapta on researchers have proposed representa on learning
methods that explicitly maximize ”domain confusion”: if a classifier cannot dis nguish be-
tween domains then the representa on is domain-invariant [ – ]. For MRI scans, differ-
ent scanners or acquisi on protocols cons tute different data domains. These represen-
ta on learning methods are variants of deep neural networks, called domain-adversarial
networks. They have two layers in which a loss func on is computed: one layer for the
task-dependent loss, such as ssue or lesion classifica on, and one that maximizes domain
confusion. The networks learn representa ons in which the data from each domain over-
laps while the different classes become separable [ ]. They are adversarial because the
loss layers operate with different objec ves, which can make them very difficult to train
[ – ]. A recent paper has applied domain-adversarial networks to segmen ng brain le-
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sions [ ]. They achieved excellent performance and provided an in-depth analysis of the
adversarial training procedure. However, their networks are s ll very task-dependent: the
learned representa onworks well for brain lesion segmenta on but cannot be used for tu-
mor detec on for example. It is not a method for learning a general acquisi on-invariant
representa on.

We propose to learn a general representa on by marking certain factors of varia on as
desirable and others as undesired [ ]. Learning a representa on by explicitly minimizing
undesirable factors of varia on while maintaining desirable factors will produce a task-
independent representa on, which can be used for a variety of tasks later on. In order to
minimize certain factors of varia on while maintaining others, we exploit a par cular type
of neural network, referred to as a Siamese network [ ]. Our work was inspired by the
work of Hadsell [ ], who used Siamese neural networks to learn a ligh ng-invariant repre-
senta on for airplane images in the NORB [ ] dataset. In this chapter, we aim to provide
a proof of principle for learning anMR-acquisi on invariant (MRAI-NET) representa on for
MR brain ssue segmenta on.

To test MRAI-NET we simulated MRI data (SIMRI [ – ]) from a . T scanner and T
scanner based on acquisi on protocols used to acquire real data (Sec on . . ) and real
ssue segmenta ons from healthy adults (Brainweb). In addi onwe used real pa ent data
( T) as provided byMRBrainS [ ]. We acknowledge that the simulated data is idealis c as
compared to real pa ent data. However, experiments in a controlled environment provide
a proof of principle to ensure that themethod is behaving appropriately. Transla on to real
pa ent data is provided by including theMRBrainS data. For the experiments with the sim-
ulated data (Sec on . . and . . ), the same subject acquired with different acquisi on
protocols is used. This is however not a prerequisite to train MRAI-NET. For the experi-
ments that use real pa ent data, different subjects are used. MRAI-NET is not trained by
using ssue labels, but with patches labeled as similar or dissimilar. Factors of varia on
that should be preserved should be labeled as dissimilar, MRAI-NET will aim to reduce all
other factors of varia on.

5.2.MR acquisi on-invariant network
Neural networks transform data based on minimizing a loss func on. In supervised neu-
ral networks, labels are used to determine the loss (error between predic on and label).
Many labels are required to learn a task. We aim to use as li le labels as possible to learn
a representa on in which the varia on over different methods of acquisi on is minimal,
without destroying the varia on relevant to dis nguish between brain ssues.

The proposed network works as follows. Suppose that we have scans that are acquired
in two different ways (A and B). Possible differences can be in field strength, scanner ven-
dor, acquisi on protocol, and so on. A ssue patch, for example gray ma er, is selected
from both scans A and B. The aim is to teach the network that both these patches are gray
ma er regardless of their acquisi on varia on. Therefore, we use a loss func on that ex-
presses that in MRAI-NET’s representa on, pairs of samples from the same ssue but from
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different scanners should be as similar as possible. However, that expression alone would
cause all samples to be mapped to a single point and would destroy varia on between s-
sues. To balance out the ac on of pulling pairs marked as similar together, it is necessary
to push other pairs apart [ ]. Since we want to maintain the relevant varia on between
ssues, we addi onally express that in MRAI-NET’s representa on, pairs from different s-
sues should retain their dissimilarity. The loss func on is described in sec on . . . Sec on
. . describes how pairs of samples are labeled as similar or dissimilar. The Siamese neu-
ral network that is used to learn the acquisi on-invariant representa on is described in
sec on . . . The network consists of two pipelines with shared weights and a Siamese
loss layer that acts on the output layer of the two pipelines.

5.2.1. Siamese loss
Neural networks transform data in each layer. We summarize the total transforma on
from input to output with the symbol 𝑓, i.e. patch 𝑎 will be mapped to the new represen-
ta on with 𝑓(𝑎) and patch 𝑏will be mapped with 𝑓(𝑏). To find an op mal transforma on,
we employ a loss func on based on distances between pairs of patches in the output rep-
resenta on, i.e. ‖𝑓(𝑎) − 𝑓(𝑏)‖. Pairwise distances are computed through an 𝐿 -norm,
denoted by ‖ ⋅ ‖ . We used an 𝐿 -norm as opposed to for instance an 𝐿 -norm, because
larger values of𝑝 in 𝐿 -norms either result in problems in high-dimensional spaces or result
in problems with the gradient during op miza on (see Appendix . ).

The loss func on for the similar pairs consists of the squared distance, ℓsim(𝑓 | 𝑎, 𝑏) =
(‖𝑓(𝑎) − 𝑓(𝑏)‖ ) . We chose this formula on in order to express that large distances are
less desirable. The loss func on for the dissimilar pairs consists of a hinge loss, where the
distance is subtracted from a margin parameter 𝑚 and the nega ve values are set to 0:
ℓdis(𝑓 | 𝑎, 𝑏) = max(0,𝑚 − ‖𝑓(𝑎) − 𝑓(𝑏)‖ ). Pairs that lie close together will suffer a
loss, while pairs that are pushed sufficiently apart, i.e. past the margin, will not suffer a
loss. We discuss the effect of the margin parameter in Sec on . . .

Each pair of patches is marked with a similarity variable; 𝑦 = 1 for similar and 𝑦 = 0
for dissimilar. Using the similarity label we can combine the similar and dissimilar loss
func ons into a single loss func on:

ℓ(𝑓 | 𝒟) =∑ 𝑦 ℓsim (𝑓 | 𝑎 , 𝑏 ) + (1 − 𝑦 ) ℓdis (𝑓 | 𝑎 , 𝑏 ))

=∑ 𝑦 ‖𝑓(𝑎 ) − 𝑓(𝑏 )‖ + (1 − 𝑦 )max (0,𝑚 − ‖𝑓(𝑎 ) − 𝑓(𝑏 )‖ ) .

where 𝑖 iterates over pairs and 𝒟 refers to the whole dataset of pairs.
This type of loss func on is known as a Siamese loss [ , ]. Note that it is asymmetric:

it penalizes samples from one class differently than samples from another class.

5.2.2. Labeling pairs as similar or dissimilar
As described above, suppose we have two medical images from two different scanners;
A and B. Assume that we have sufficient manual segmenta ons (labeled voxels) on scans
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from scanner A, to train a supervised classifier, but a very limited amount of labels from
scanner B, for example 1 labeled voxel per ssue for 1 subject. The data from scanner Awill
be referred to as the source set, and the data from scanner B as the target set. Let𝐾 be the
set of ssue labels. The set of patches extracted from Scanner A is denoted {(𝑎 } , and
the set from scanner B is denoted {𝑏 } , with 𝑡 specifying the sample’s ssue. Given
these two sets of patches, we form sets of similar and dissimilar pairs, with a similarity
label 𝑦. The following pairs are labeled as similar (𝑦 = 1) and therefore will be pulled
closer together:

• Source patches from the same ssue 𝑘 ∈ 𝐾: {(𝑎 , 𝑎 )},

• Source and target patches from the same ssue 𝑘 ∈ 𝐾: {(𝑎 , 𝑏 )},

• Target patches from the same ssue 𝑘 ∈ 𝐾: {(𝑏 , 𝑏 )}.

The subscript 𝑡 = 𝑘 selects all patches that belong to ssue 𝑘. The following pairs are
labeled as dissimilar (𝑦 = 0) and therefore will be pushed apart:

• Source patches from different ssues 𝑘, 𝑙 ∈ 𝐾: {(𝑎 , 𝑎 )},

• Source and target patches from different ssues 𝑘, 𝑙 ∈ 𝐾: {(𝑎 , 𝑏 )},

• Target patches from different ssues 𝑘, 𝑙 ∈ 𝐾: {(𝑏 , 𝑏 )}.

Figure . illustrates the process of selec ng pairs of patches from different scanners. Con-
sider a medical image from scanner A and scanner B, with GM patches (green), WM
patch (yellow) and CSF patch (blue) for each image. Using these patches we can generate
the following pairs: a GM patch from A with another GM patch from A (𝑎 , 𝑎 ), a GM
patch from A with a GM patch from B (𝑎 , 𝑏 ), a GM patch from B with another GM
patch from B (𝑏 , 𝑏 ), a GM patch from A with a CSF patch from A (𝑎 , 𝑎 ), a GM
patch fromBwith aWMpatch fromB (𝑎 , 𝑏 ), and a GMpatch fromBwith a CSF patch
from B (𝑏 , 𝑏 ). The bo om of the image shows examples of these pairs of patches.

The pairs are concatenated into a dataset𝒟 = {(𝑎 , 𝑏 , 𝑦 )} , where 𝑖 iterates over the
pairs. In total, the number of combina ons is 𝐶 = ∑ ∈ (𝑁 +𝑀 ) + ∑( , )∈( )(𝑁 𝑁 +
𝑁 𝑀 + 𝑀 𝑀 ), where 𝑁 refers to the number of source patches from the 𝑘-th ssue
and, likewise,𝑀 refers to the number of target patches from the 𝑘-th ssue. The number
of pairs that can be generated is very large, even when only a small number of patches is
available. For example, taking 10 patches of ssues from source scans and patch of
ssues from target scan, results in 2784 pairs of patches that can be used for training

the deep neural network.
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Figure . : Illustra on of extrac ng pairs of patches from images from scanner A and B. (Top) Each image shows
patches: gray ma er ones (green), cerebrospinal fluid (blue) and white ma er (yellow). The lines mark the
types of combina ons from Sec on . . . Green lines indicate similar pairs and purple lines indicate dissimilar

pairs. (Bo om) Enlarged patches belonging to the pairs marked in the top images.

5.2.3. Network architecture
Figure . shows a diagram of the network architecture. The network consists of two
pipelines and a Siamese loss layer that acts on the output layers (red nodes). Pairs of
patches enter the input layer (black squares) where they are convolved (blue squares) and
mapped to feature vectors (blue nodes). The final layer is a low-dimensional feature space
(red nodes). The Siamese loss layer (sec on . . ) calculates the distance betweeneach pair
in their new representa on and computes the loss based on whether the pair is marked
as similar or dissimilar. The two pipelines share their weights, which means they are con-
strained to perform the same transforma on. During training, the loss is propagated back
through the network, adjus ng the network weights.

Width anddepthof the networkmay vary. Wemade the following choices: input patches
are size [15×15] and scanner iden fica on is set to a single variable. The convolu on block
consists of 8 kernels of size [3 × 3] with a rec fying linear unit (ReLU) ac va on func on
and a max-pooling layer of size [2 × 2]. The output of these opera ons is fla ened and
the scanner ID (0 for source, 1 for target) is appended. The scanner ID ensures that regions
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of different ssues in different scanners do not overlap in the input space. The fla ened
and pooled convolu onal layer output, plus the scanner ID is then densely mapped to a
-dimensional representa on. A dropout noise of size 0.2 is set for each edge. This 16-

dimensional representa on is then densely mapped, again with a dropout of 0.2, to an
8-dimensional representa on, which is finally mapped to a 2-dimensional representa on.
We chose a final representa on of dimensions because this allows for sca er plot visu-
aliza ons.

[15x15]+1 [3x3]x8 0.2 16 0.2 8 2

Figure . : Schema c of MRAI-NET’s architecture. Pairs of patches are fed into two pipelines that share parame-
ters (i.e. produce the same mapping). The red nodes depict the representa on in the final layer, while the green
node depicts the loss func on.

Our method is implemented in a combina on of Tensorflow¹ and Keras² [ , ]. This
proof of principle uses a -layer hybrid convolu onal-dense network for the pipeline. How-
ever, the network architecture can be changed. Varia ons involve, for example, more lay-
ers, wider layers, larger convolu on kernels, and heavier max-pooling. See Sec on . .
for an experiment that varies the layer widths in the network.

Regulariza on
During training, we apply an 𝑙 -regulariza on of 0.001 to every layer with weights. Regu-
lariza on punishes the size of the weights, which prevents model over-complexity. In our
experiments, the regulariza on parameter could be increased or decreased by two orders
of magnitude with li le effect on the networks performance. It is however always neces-

¹https://www.tensorflow.org/
²https://keras.io/

https://www.tensorflow.org/
https://keras.io/
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sary to include some regulariza on as there is not only the danger of overfi ng to training
data but also the danger of overfi ng to the specific target subject used for training.

Op miza on
All experiments in this chapter are performed with the default backpropaga on algorithm
”RMSprop”, which normalizes the gradient update with a running average of itself [ ]. Its
default parameters are: a learning rate of . , a 𝜌 of . , an 𝜖 of e- , and a weight de-
cay factor of . (see [ ] for more details on op mizer parameters). RMSprop is based on
stochas c gradient descent, which splits the dataset into batches andupdates the networks
parameters a er processing each batch. An epoch is the number of mes the op miza on
procedure splits the training set into batches. The number of epochs cannot be too large,
otherwise the network starts to overfit to the specific target subject from which the target
patches originated.

During experimenta on we found that it is important that the batches are well-mixed
with respect to the types of pairs outlined in Sec on . . . If this is not the case, such as
when one batch mostly consists of similar gray-ma er patches and another batch consists
mostly of dissimilar gray-ma er / white-ma er patches, then the network tends to push
and pull in the same direc on. These ac ons cancel each other out. The overall effect of
having too many uniform batches is that the op miza on procedure is slowed down.

5.3. Tissue segmenta on
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(a) Representa on before training.
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(b) Representa on a er training.

Figure . : Conceptual visualiza on of MRAI-NET’s training procedure: the network pulls the similar pairs (green
lines) closer together and pushes dissimilar pairs (purple lines) apart un l it learns a representa on in which the
varia on between scanners is minimal while the varia on between ssues is maintained.

Figure . illustrates the training procedure of MRAI-NET. Once it is trained and an MR
acquisi on-invariant representa on is learned, it can be used as a preprocessing step for
ssue segmenta on (Figure . ). Because of the sharedweights, either one of the pipelines
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can be used to transform the input patches intoMRAI-NET’s representa on. Input patches
from both the source and target scanner can be fed into the network, and any supervised
classifica on model that uses feature vectors can subsequently be trained to dis nguish
ssues in the acquisi on-invariant representa on. Once the supervised classifier is trained,
both the trained MRAI-NET and the trained supervised classifier are used to segment a
new image. This is done by feeding a new patch through MRAI-NET and le ng the ssue
classifier predict the label in the MR acquisi on invariant space. In this way, MRAI-NET
acts as a preprocessing step to ensure that acquisi on-based varia on does not affect the
ssue classifier.

Figure . : A dataset of ssue-labeled single patches is fed throughMRAI-NET and represented in the acquisi on-
invariant space. Subsequently, a classifier is trained to dis nguish ssues. A new image is decomposed into
patches and fed through the network as well. The trained ssue classifier thenmakes a predic on for each patch.
The predic ons are then reshaped back into an image, resul ng in the ssue segmenta on.

5.4. Evalua ng representa ons
Since the aim of MRAI-NET is to preserve varia on between ssues while reducing the MR
acquisi on related varia on, two different measures of performance are used to evaluate
MRAI-NET. MR acquisi on invariance is measured with the proxy 𝒜-distance that mea-
sures the distance between the source and target scanner patches, as described in sec on
. . . The preserva on of ssue varia on is measured using the ssue classifica on perfor-
mance, and compared to supervised classifica on with CNN (Sec on . . ). Sec on . .
describes the simulated (Brainweb . T, Brainweb . T) and real data (MRBrainS) used for
the experiments. For each experiment a source and target domain was specified. Four
source subjects ( random patches per ssue) and target subject ( - patches per
ssue depending on experiment) were used for training. Four independent target subjects
( random patches per ssue) were used for tes ng.

In total, we set up four experiments: ) Only patch per ssue from the target domain
subject is used for training both the supervised CNNs (source, target) as well as MRAI-
NET followed by a linear classifier on the simulated data (Brainweb . T, Brainweb . T), )
Mul ple target training samples per ssue (randomly selected with repeats) are used
for training the source, target, andMRAI-NET classifiers for both simulated (Brainweb . T)
and real pa ent data (MRBrainS). The first experiment (Sec on . . ) was set-up to test
if only target patch per ssue would be sufficient in order to learn an MR-acquisi on
invariant representa on. If so, then calibra ng a supervised segmenta on algorithm for a
new scanner using MRAI-NET would require only three clicks in one scan acquired with a
new scanner. The second experiment (Sec on . . ) illustrates the performance of MRAI-
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NET compared to the target, and MRAI-NET classifiers when adding more target training
samples (Figure . ). Results of using patch per ssue and patches per ssue from
the target subject for training are shown in Figures . - . . The third experiment (Sec on
. . ) looks at the performanceof the network ifwe vary the number of convolu on kernels
and the number of nodes in the dense layers. For the se ng where Brainweb . T is the
source scanner and Brainweb . T is the target scanner, the network will keep gaining in
performance at the cost of adding tens of thousands more parameters. Finally, the fourth
experiment (Sec on . . ) shows the influence of the margin parameter on the Siamese
loss func on. If the margin parameter is set too low, ssue varia on will not be preserved.
On the other hand, if the margin parameter is set too high the acquisi on varia on will not
be reduced. The next two sec ons describe how these two types of varia on aremeasured.

5.4.1.MR acquisi on invariance measure
Theℋ-divergence can be used as a measure of the discrepancy between the source and
target scanner data sets [ – ]. This divergence relies on the ability of a classifier to dis n-
guish between domains. If a classifier is not able to dis nguish source from target, i.e. has
a test error of 1/2, then invariance is achieved. Unfortunately, the originalℋ-divergence
is a measure between distribu ons and not samples. Since we only have samples, we use
its proxy instead: the𝒜-distance [ , ], as used in [ ]. The proxy𝒜-distance, denoted
by 𝑑𝒜 , is defined as follows:

𝑑𝒜(𝑥, 𝑧) = 2(1 − 2𝑒(𝑥, 𝑧)) , ( . )

where 𝑒 represents the test error of a classifier trained to discriminate source samples 𝑥
from target samples 𝑧. If the source and target data lie far apart, the error will be close
to 0, i.e. perfect separability, and the proxy 𝒜-distance will be close to 2. If the source
and target data overlap, the error will be around 0.5, i.e. no separability (invariance), and
the proxy𝒜-distance will approach 0. We use a linear support vector machine (SVM) as
domain classifier.

5.4.2.Measure of preserving ssue varia on
The ssue classifica on error is used as ameasure of ssue varia on preserva on. The aim
is to learn a linearly separable representa on with MRAI-NET, to aid the number of meth-
ods that can be used for classifica on. Therefore, we evaluate the ssue classifica on er-
ror of the samples in the acquisi on-invariant representa on with a logis c regressor. The
classifier is ℓ -regularized and cross-validated for op mal regulariza on parameters. This
classifier MRAI-NET, based on MRAI-NET, is compared to two other supervised classifiers:
) source classifier: a convolu onal-dense neural network (CNN) trained on samples from
the source ( subjects) and target data ( subject), and ) target classifier: a CNN trained on
samples from the target data ( subject). In order to ensure that differences in performance
between source, MRAI-NET and target are not due to differences between classifiers, the
network architecture from MRAI-NET (Figure . ) was used for the source and target clas-
sifiers as well.
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5.4.3.MRI-scan data sets
To be able to provide a proof of principle, we simulated different MR acquisi ons from
various anatomical models of the human brain [ , ], using an MRI simulator (SIMRI
[ – ]). The anatomical models consist of transverse slices of normal brains and are
publicly available through Brainweb³. Thesemodels were used as input for theMRI simula-
tor. For the experiments, we simulated two acquisi on types: 1) Brainweb . T, a standard
gradient-echo acquisi on protocol for a . Tesla scanner (c.f. [ ]), and 2) Brainweb . T,
a standard gradient-echo protocol for a . Tesla scanner (c.f. [ ]). Table . describes the
parameters used for the simula on: magne c field strength (B ), flip angle (𝜃), repe on
me (TR), echo me (TE).Magne c field inhomogenei es and voxel inhomogeneity (par al
volume effects) were not included in the simula on.

Table . : SIMRI Acquisi on parameters for the simula on of the Brainweb . T and Brainweb . T data sets.

B 𝜃 TR TE
Brainweb . T . Tesla 20∘ . ms . ms
Brainweb . T . Tesla 90∘ . ms . ms

Appendix . describes the nuclear magne c resonance (NMR) relaxa on mes for the
ssues in the Brainweb anatomical models, for . and . Tesla field strengths. The ssues
in the anatomicalmodels are grouped into ”background” (BKG), ”cerebrospinal fluid” (CSF),
”gray ma er” (GM), and ”white ma er” (WM) to compose the ground truth segmenta on
labels for the simulated scans. The simula ons result in images of by pixels, with
a . x . mm resolu on. Figures . a and . b show examples of the Brainweb . T and
Brainweb . T scan of the same subject. For all scans, we used a brain mask to strip the
skull.

(a) Brainweb . T (b) Brainweb . T (c) MRBrains

Figure . : Example of an MRI scan of a Brainweb anatomical model simulated with SIMRI with a . T protocol (a)
and a . T protocol (b), and a real pa ent scan (MRBrainS) acquired with a . T protocol (c).

In order to test the proposed method on real data, we use the publicly available training
data ( subjects) from the MRBrainS challenge⁴. The acquisi on parameters used for sim-
ula ng the Brainweb . T are based on the MRBrainS acquisi on protocol ( . T scanner,
³http://www.bic.mni.mcgill.ca/brainweb/
⁴http://mrbrains13.isi.uu.nl/Figure

http://www.bic.mni.mcgill.ca/brainweb/
http://mrbrains13.isi.uu.nl/Figure
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gradient-echo, B = . T, 𝜃 = 90∘ flip angle, TE = . ms, and TR = . ms). Figure . c shows
an example of an MRBrainS scan. Again, a brain mask is used to strip the skull.

5.4.4. One target label per ssue
The first experiment with the simulated data tests the scenario described at the beginning
of this sec on: suppose a supervised classifica on algorithm trained on one scanner needs
to be calibrated for a new scanner, would this be possible with three clicks ( for each
ssue type) using MRAI-NET? To study this, we manually selected patch for each ssue
in the target scan ( subject) and used this data to train MRAI-NET. Once MRAI-NET has
been trained and an acquisi on-invariant representa on has been learned, we compute
the proxy𝒜-distance and perform a ssue classifica on experiment.

For compu ng the proxy 𝒜-distance, we used scans from source subjects and
target subjects that had been held back (i.e. we did not draw samples from them to either
train MRAI-NET or train any of the ssue classifiers). We randomly drew patches per
ssue from each subject, resul ng in two sets of patches. These patches were fed
into MRAI-NET which mapped them to the new acquisi on-invariant representa on. The
datasets were labeled 0 and 1 for source and target. Next, we trained a linear classifier
with -fold cross-valida on to obtain a test error on data set discrimina on. Finally, using
this test error and Equa on . , we computed the proxy𝒜-distance.

For evalua ng the ssue classifica on performance, we used scans from target sub-
jects that had been held back. From these scans, we drew patches per ssue at
random, for a total of patches. We computed the error rate by compu ng the pro-
por on of wrong predic ons on this test set. We trained the following three classifiers
(described in Sec on . . ): firstly, the source classifier (CNN) was trained on images from
the source dataset, and applied to the test set to make predic ons. Secondly, we trained a
linear classifier on the source datamapped toMRAI-NET’s representa on. Wemapped the
test data to MRAI-NET’s representa on as well and applied the trained linear classifier to
make predic ons. Its performance on the test set is indicated with MRAI-NET in Table . .
The target classifier (CNN) was applied to the available target patches. In this experiment,
there were target patches in total, which is far too li le data to train such a large convo-
lu onal network. We included its performance to indicate that using the target classifier
in this kind of situa on is not a sensible op on.

For comparison, we performed the same experiment but with randomly selected tar-
get patches. Table . lists the ssue classifica on errors of the three classifiers and the
proxy𝒜-distance between the source and target patches before (raw) and a er (rep) ap-
plying MRAI-NET. The whole experiment was repeated mes and the average error rate
is reported with the standard error of the mean between brackets.

Figure . displays the manually selected patches and their posi on within the image.
For both the source and target classifier, one target patch per ssue is insufficient to achieve
good ssue classifica on performance ( . (top row): . and . ). However, the
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Table . : Manually versus randomly selec ng target patch per ssue from subject. (Le ) Tissue classifica-
on error is reported for MRAI-NET (linear classifier a er MRAI-NET), source (supervised CNN trained on source
patches and target patch per ssue), and target (supervised CNN trained on target patch per ssue) tested
on the target test data. (Right) Proxy𝒜-distance between the original source and target patches (raw) and the
source and target patches a er applying MRAI-NET (rep).

source MRAI-NET target
manual . (. ) . (. ) . (. )
random . (. ) . (. ) . (. )

raw rep
. (. ) . (. )
. (. ) . (. )

MRAI-NET classifier shows considerably be er performance ( . ), using only one tar-
get patch per ssue. The proxy𝒜-distance also drops from near perfect separability ( . )
to near invariance ( . ). Randomly selec ng ( repeats) target patch per ssue (Ta-
ble . (bo om row)), shows worse performance of the MRAI-NET classifier, for both the
classifica on error ( . ) as well as the𝒜-distance ( . ). Sugges ng that purposive (in-
forma on rich) sampling beats random sampling in this case.

Figure . : Loca ons of the manually selected target patches (red squares): Blue = cerebrospinal fluid, green =
gray ma er, yellow = white ma er.

5.4.5.Mul ple target labels per ssue
The second experiment tests the performance when adding more target training samples,
for both simulated (Brainweb . T) and real pa ent data (MRBrainS). We set-up the follow-
ing sub-experiments:

. ) Experiment on simulated data with two different acquisi on protocols (Source:
Brainweb . T, Target: Brainweb . T).

. ) Experiment on . T simulated data and . T real data (Source: Brainweb . T,
Target: MRBrainS).

. ) Experiment on . T simulated data and . T real data (Source: Brainweb . T,
Target: MRBrainS).

Each of these experiments is repeated mes. Figure . shows the performance (both
ssue classifica on error as well as proxy𝒜-distance) as a func on of the number of used
target training samples. The average error (solid line) and the standard error of the mean
(line thickness) is shown, ranging from using target patch up to more than target
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patches per ssue for training both the supervised CNNs (source, target) as well as the
MRAI-NET followed by a linear classifier (MRAI-NET).

Figure . : Graphs showing the effect of adding labeled samples from the target scanner for training the networks.
(Le ) Proxy A-distance between source and target scanner patches before (red) and a er (blue) learning the mrai
representa on (smaller distance is more acquisi on-invariance). (Right) Tissue classifica on error for the three
classifiers source (supervised CNN trained on patches from source and target), MRAI-NET (supervised SVM trained
on the source and target data mapped to MRAI-NET’s representa on) and target (supervised CNN trained on
target patches). Note that when the proxy𝒜-distance between the source and target data before MRAI-NET is
small (red line exp . ), the source data is representa ve of the target data (both T data), and the source ssue
classifier (purple) shows be er performance than using the target ssue classifier (cyan) with a small amount of
target samples. However, if the proxy𝒜-distance is large (exp . and . ) before MRAI-NET (red line), the source
ssue classifier (purple) shows worse performance than the target ssue classifier (cyan) with a small amount of
target samples, since the source data ( . T) is not representa ve of the target data ( T).

Figure . (le ) shows the proxy𝒜-distance between the source and target samples for
all three experiments. The proxy 𝒜-distance for experiments . and . shows that in
the original representa on (raw; red line), the source and target distribu ons lie far apart
(proxy 𝒜-distance approaches 2). This illustrates the difference in acquisi on protocol
( . T versus . T). A er applying MRAI-NET (rep; blue line) the proxy 𝒜-distance drops
dras cally (approaches 0) showing that the network managed to learn an MR-acquisi on
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invariant representa on. Adding more target training samples improves the invariance up
to about samples, but the proxy𝒜-distance is already quite low a er only using target
sample per ssue type for training. In experiment . the proxy𝒜-distance before applying
MRAI-NET (raw) is already much lower than in the previous two experiments (around 0.5),
this illustrates that the acquisi on protocols are more similar to begin with (both . T).
The main difference between the distribu ons presumably results from simulated versus
real data, since not all factors of acquisi on varia on are included in the simula ons, most
notably par al volume ( . x . x mm voxels in MRBrainS versus no par al volume in
Brainweb). However, a er applying MRAI-NET the proxy 𝒜-distance is reduced further
(approaches 0), again showing that MRAI-NET is able to learn an MR-acquisi on invariant
representa on (rep) on this data, even for simulated and real data. Note that theMRBrainS
data adds other modes of varia on in terms of pathology and age in comparison to the
Brainweb healthy adults, which could influence the ssue classifica on performance.

(a) Scan (b) source ( TP) (c) MRAI-NET ( TP) (d) target ( TP)

(e) Ground truth (f) source ( TPs) (g) MRAI-NET ( TPs) (h) target ( TPs)

Figure . : Example brain ssue segmenta ons into white ma er (yellow), gray ma er (green) and cerebrospinal
fluid (blue) for experiment . (Source: Brainweb . T, Target: Brainweb . T). A simulated MRI scan of a test sub-
ject from Brainweb . T (a) is shown, with corresponding ground truth segmenta on (e), and the results of apply-
ing the source (b,f), target (d,h) and proposed MRAI-NET (c,g) classifiers, with either or target patches per
ssue type used for training the classifiers (Figure . ).

Figure . (right) shows the ssue classifica on error for all three experiments. If the
proxy𝒜-distance between the source and target distribu on is high (experiment . and
. ), and when using only one target sample per ssue, the source classifier that uses both
the source data and target data for training shows worse performance than the one that
uses only the target data (target); an error of . versus . , respec vely. Even when
adding more target samples for training, the results show that it is more beneficial to train
a supervised classifier on the target data alone, instead of on both the source and target
data; using target samples for training, source achieves an error of . versus an error
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of . for target. The source classifier is focused on its source samples, which in this case
are not informa ve of the target data. Given enough target samples, however, source starts
to shi focus towards its target data and starts tomatch the performance of target: for
target samples, errors of . versus . respec vely. If the proxy𝒜-distance between
the source and target distribu ons is low (distribu ons are more similar; experiment . ),
using the source data for training is beneficial; for target sample per ssue source achieves
an error of . and target an error of . . In this case, the source samples are more
representa ve of the target data and are aiding the classifier. In general, the MRAI-NET
classifier outperforms both the source and target classifiers: an error of . for sample,
. for samples and . for samples. MRAI-NET’s representa on ensures that the
source and target samples are more similar and that the source samples can be effec vely
used for training.

(a) Scan (b) source ( TP) (c) MRAI-NET ( TP) (d) target ( TP)

(e) Ground truth (f) source ( TPs) (g) MRAI-NET ( TPs) (h) target ( TPs)

Figure . : Example brain ssue segmenta ons into white ma er (yellow), gray ma er (green) and cerebrospinal
fluid (blue) for experiment . (Source: Brainweb . T, Target: MRBrainS). A simulated MRI scan of a test subject
from MRBrainS (a) is shown, with corresponding ground truth segmenta on (e), and the results of applying the
source (b,f), target (d,h) and proposed MRAI-NET (c,g) classifiers, with either or target patches per ssue
type used for training the classifiers (Figure . ).

Examples of the segmenta on results on one of the target test images are shown in Fig-
ure . for experiment . , Figure . for experiment . , and Figure . for experiment . .
Examples are shown a er using target patch per ssue for training, and a er using
target patches per ssue for training. The results show that only the MRAI-NET classifier is
able to predict a segmenta on that approaches the ground truth with only target patch
per ssue for training (error for experiment . = . , experiment . = . , experiment
. = . ), while the source and target classifiers cannot (source error for experiment .
= . , experiment . = . , experiment . = . ; target error for experiment . :
. , experiment . : . , experiment . = . ). A er using patches the source



5.4. Evalua ng representa ons

5

135

and target classifiers can predict a gross segmenta on of WM, GM and CSF (source error
for experiment . = . , experiment . = . , experiment . = . ; target error
for experiment . : . , experiment . : . , experiment . = . ), but the MRAI-
NET classifier predic on shows more details and a lower ssue classifica on error (error
for experiment . = . , experiment . = . , experiment . = . ).

(a) Scan (b) source ( TP) (c) MRAI-NET ( TP) (d) target ( TP)

(e) Ground truth (f) source ( TPs) (g) MRAI-NET ( TPs) (h) target ( TPs)

Figure . : Example brain ssue segmenta ons intowhitema er (yellow), grayma er (green) and cerebrospinal
fluid (blue) for experiment . (Source: Brainweb . T, Target: MRBrainS). A simulated MRI scan of a test subject
from MRBrainS (a) is shown, with corresponding ground truth segmenta on (e), and the results of applying the
source (b,f), target (d,h) and proposed MRAI-NET (c,g) classifiers, with either or target patches per ssue
type used for training the classifiers (Figure . .

5.4.6. Number of network parameters
Se ng neural network hyperparameters, such as the number of convolu on kernels to use,
is always a tricky issue. The op mal parameter is different for each dataset, which means
there are no easy defaults. In order to get some insight into the behavior of the network for
different choices of hyperparameters, we performed an addi onal experiment. We used
experiment . ’s se ng: Brainweb . T as source and Brainweb . T as target.

MRAI-NET has three layers with parameters: a convolu on layer and two dense layers.
We varied the number of kernels in the convolu on layer and the number of nodes in
the dense layers. We use the following sets of hyperparameters: [ kernels, nodes,
nodes], [ kernels, nodes, nodes], [ kernels, nodes, nodes], [ kernels, nodes,
nodes], [ kernels, nodes, nodes] and [ kernels, nodes, nodes] (i.e.

the layer widths double each me). The total number of parameters are , , ,
, , and , respec vely. We used labeled target patches per classes,

fromwhich we generated pairs of patches. The network was trained for epochs
and the experiment was repeated mes to obtain standard errors of the means. Figure
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. shows the results: the le figure looks at the proxy 𝒜-distance as a func on of the
number of parameters and the right figure looks at the ssue classifica on error of a linear
classifier trained on the resul ng representa on. For the proxy 𝒜-distance, the graphs
show a steady decrease in distance and then roughly levels off a er [ , , ]. This result
indicates that an extremely wide MRAI-NET (i.e. [ , , ]) will s ll be able to reduce
acquisi on varia on. As for the ssue classifica on error, the thin network (i.e. [ , , ])
starts out with a average error rate of . (underfi ng) and drops immediately to .
for [ , , ]. A erwards, it slowly increases to . . This indicates that the network is
not overfi ng too dras cally yet, which is probably due to the regulariza on (see Sec on
. . ). However, the graph does indicate that its error rate will go up if the number of
parameters is increased further.

Figure . : MRAI-NET’s performance as a func on of layer widths. (Le ) The proxy𝒜-distance. (Right) The ssue
classifica on error obtained through a linear classifier trained on data inMRAI-NET’s representa on. Both graphs
show a slow gain in performance as the number of parameters grows.

5.4.7. Effect of the margin parameter
Themargin parameter𝑚 in the dissimilar loss func on, ℓdis(𝑓|𝑎, 𝑏) =max(0,𝑚−‖𝑓(𝑎)−
𝑓(𝑏)‖ ), is important as it balances the ac ons of pushing and pulling between pairs. For
small values, ℓdis will be much smaller than ℓsim and the network will focus on pulling pairs
together. For large values, ℓdis will always be much larger than ℓsim and network will focus
on pushing pairs apart. Figure . plots a synthe c data se ng with the outcome of using
three different values for the margin parameter. The le figure shows two synthe c -
dimensional data sets, one with red versus blue crosses and the other with red versus
blue squares. The right figures show valida on samples fed through three networks with
different values for the margin parameter. Firstly, the right top figure displays the result
of using a margin parameter of 0: the network does not suffer any loss by making pairs
of samples of different ssues too similar and consequently maps everything to a single
point. Secondly, the right middle figure shows an appropriate choice for themargin, where
the two data sets overlap and where red and blue points are separated. Lastly, the right
bo om figure shows what happens when a large margin parameter is used: it focuses
almost en rely on separa ng red versus blue and is not making the data sets more similar.
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Figure . : Effect of the margin hyperparameter. (Le ) Two synthe c binary data sets, with markers indica ng
scanners and colors ssues. (Right) Representa on found by a network with a margin of (top), a margin of
(middle) and a margin of (bo om).

Addi onally, the op mal value for the margin parameter is affected by the number of
similar versus dissimilar pairs. If there are twice as many similar pairs, then their loss will
be twice as large as well and the network will focus more on pulling pairs together. Overall,
the more similar pairs there are, the larger the margin parameter will need to be.

5.5. Discussion
We proposed a method to learn an MRI scanner acquisi on-invariant representa on that
preserves the varia on between brain ssues for segmenta on. Once the representa on
is learned using MRAI-NET, any supervised classifica on model that uses feature vectors
can be used to classify the brain ssues. The proposed method addresses the problem
that the difference between scans acquired with two different MRI scanners or protocols
can be so large that scans from one scanner are not representa ve of scans from another
scanner. This difference does not affect assessment by human vision (e.g. radiologists can
perform diagnos c work-up on both), but it does affect computer vision. To get insight into
the difference between scans and to assess the performance of MRAI-NET to reduce this
difference (achieve invariance), the proxy𝒜-distance measure between source and target
patches was used. The experiments (Figure . ) show that this is a good measure to deter-
mine the difference between source and target acquisi on, and might be used to predict
classifier performance of a source classifier. Note that this measure does not require any
ssue labels, and can thus be used as a general measure of distance between scanners. It
merely requires source patches to be labeled as source, and target patches to be labeled
as target. When the proxy𝒜-distance is low (Figure . bo om row) the source (source)
classifier outperforms the target (target) classifier when a small number of target training
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patches are used. When the proxy𝒜-distance is large the target classifier outperforms the
source classifier, even when one target training patch per ssue is used. This suggests that
if the proxy𝒜-distance is large (source data is not representa ve of target data), a source
classifier trained on the source data should not be applied to the target data. Ground truth
labels on the source data that are labor-intensive to acquire can in this case not be used
for the target data. However, since MRAI-NET learns a representa on that reduces the
acquisi on difference between source and target scanner the proxy 𝒜-distance is dras -
cally reduced. Therefore the MRAI-NET classifier outperforms both the source and target
classifiers, when a small number of target training samples is available, and leverages the
source ground truth labels.

Due to the complexity of the problem addressed, simulated data was used to provide a
proof of principle. Ideal real datawould require the same subject to be scannedondifferent
scanners with different protocols, a er which the scans should be manually segmented to
obtain the ground truth for both scans. However, inter-observer variability would add an
extra layer of varia on. To test MRAI-NET on real data, the MRBrainS challenge data was
used. Although, addi onal layers of varia on include resolu on, popula on and manual
segmenta on protocol, the experiments (Figure . ) show that MRAI-NET’s performance
on real data follows the same pa ern as its performance on simulated data, be it with a
higher classifica on error due to addi onal factors of varia on.

A limita on of the proposedmethod is that learning an acquisi on-invariant representa-
onwithMRAI-NET, will not necessarily work well on data sets with poor contrast between
ssues. In that case, the network will both push and pull points in the overlap. Since
these ac ons will mostly cancel each other out, the network will not be able to reduce
acquisi on-varia on without sacrificing ssue varia on, and vice versa.

Another limita on is that the proposed MRAI-NET requires at least sample per ssue
from the target scanner. This is not an unreasonable request, as it is not hard to find at least
patch per ssue (Sec on . . ) in only one subject scanned with the target scanner. How-
ever, it may be possible to perform the similar/dissimilar labeling based on assump ons
instead. For instance, if one assumes that the registra on between two scans is accurate
and that the subject-varia on is not too large, then one could assume that target patches
at certain loca ons are the same ssue as the source patches at these loca ons. Hence,
those voxels could be used for the similarity-labeling process.
The proposed representa on learning method could be used to reduce any type of varia-
on, by adjus ng the way that the similar and dissimilar pairs are defined. For example,
registra on, which can be viewed as varia on in posi on, might be approached in a similar
manner [ ]. Key is to iden fy the forms of varia on, determine which varia on should
be preserved and which should be reduced, and to find a way to label them as similar or
dissimilar accordingly.
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5.6. Conclusion
We addressed one of the major challenges of supervised voxel classifica on, i.e. gener-
aliza on to data that is not representa ve of the training data. We provided a proof of
principle for learning an MR acquisi on invariant representa on that reduces the varia-
on between MRI scans acquired with different scanners or acquisi on protocols, while
preserving the varia on between brain ssues. We showed that the proposed MRAI-NET
is able to learn an MR acquisi on invariant representa on (low proxy 𝒜-distance), and
outperform supervised convolu on neural networks trained on patches from the source
or target scanners for ssue classifica on, when li le target training patches are available.
By reducing the acquisi on related varia on using MRAI-NET, the ground truth labels from
the source data can be reused for the target data, since the source and target data are
mapped to the same representa on achieving generaliza on.
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5.7. Appendix A
SIMRI requires NMR relaxa on mes for ssues based on par cular magne c sta c field
strengths [ ]. We performed a literature study for the T and T relaxa on mes, the
results of which are listed in Table . . The proton density values 𝜌 stem from [ ]. The
. T CSF parameters were interpolated using an exponen al func on fit ([ ] jus fies an
exponen al func on based on physical proper es). We equate connec ve ssue to glial
ma er ( % of the brain’s connec ve ssue system is glial ma er⁵).

Table . : NMR relaxa on mes for brain ssue (IT’IS database).
Glial ma er values are unknown and are imputed with gray ma er values.
T values for cor cal bone are actually T * values (UTE seq).
Equated to glial ma er (see text).
. T T relaxa on me is from dermis, other values are from hypodermis.

Tissue 𝜌 T ( . T) T ( . T) T ( . T) T ( . T) Ref

CSF ( ) ( ) ( ) ( ) ( ) [ – ]
GM (. ) ( ) ( ) ( ) ( ) [ ]
WM ( ) ( ) ( ) ( ) ( ) [ ]
Fat ( ) ( ) ( ) ( ) ( ) [ ]
Muscle ( ) ( ) ( ) ( ) ( ) [ , ]
Skin ( ) ( ) ( ) ( ) ( ) [ – ]
Skull ( ) ( ) . ( ) ( ) . (. ) [ , ]
Glial ( ) ( ) ( ) ( ) ( ) [ , ]
Conn. ( ) ( ) ( ) ( ) ( ) [ ]

⁵http://www.neuroplastix.com/styled-2/page139/styled-42/
brainsconnectivetissue.html

http://www.neuroplastix.com/styled-2/page139/styled-42/brainsconnectivetissue.html
http://www.neuroplastix.com/styled-2/page139/styled-42/brainsconnectivetissue.html
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5.8. Appendix B
In Sec on . . we specified the Siamese loss as the networks objec ve func on. The in-
put of this loss consists of a pairwise distance, for which we chose an 𝐿 -norm. There are
reasons for this: the first is that 𝐿 -norms with larger values for 𝑝 concentrate densely

in high-dimensional spaces [ ]. Concentra on means that the differences between pair-
wise distances of a set of points become smaller as the number of dimensions increases.
This is a problem because the ac ons of pulling and pushing will not sufficiently decrease
the distance between similar pairs or sufficiently increase the distance between dissimilar
pairs. The second reason is that the gradient of the 𝐿 -norm is constant, while the gradi-
ent of an 𝐿 -norms with 𝑝 > 1 are func ons of the distance [ ]. Gradients of norms with
large 𝑝’s become smaller as the distance between pairs becomes smaller, which means the
incen ve for the network to pull pairs closer decreases. A constant gradient ensures that
there will also be a constant incen ve to pull similar pairs closer together. Considering that
we want our representa on to be truly invariant, we want the network to con nue to pull
similar pairs together un l they are as close as possible.
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6
Robust adapta on

In domain adapta on, classifiers with informa on from a source domain adapt to gener-
alize to a target domain. However, an adap ve classifier can perform worse than a non-
adap ve classifier due to invalid assump ons, increased sensi vity to es ma on errors or
model misspecifica on. Our goal is to develop a domain-adap ve classifier that is robust
in the sense that it does not rely on restric ve assump ons on how the source and target
domains relate to each other and that it does not performworse than the non-adap ve clas-
sifier. We formulate a conserva ve parameter es mator that only deviates from the source
classifier when a lower risk is guaranteed for all possible labellings of the given target sam-
ples. We derive the classical least-squares and discriminant analysis cases and show that
these perform on par with state-of-the-art domain adap ve classifiers in sample selec on
bias se ngs, while outperforming them in more general domain adapta on se ngs.

This chapter is based on the paper ”Target contras ve pessimis c risk for robust domain adapta on”.
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6.1. Introduc on
Generaliza on in supervised learning relies on the fact that future samples should originate
from the same underlying distribu on as the ones used for training. However, this is not
the case in se ngswhere data is collected fromdifferent loca ons, differentmeasurement
instruments are used or there is only access to biased data. In these situa ons the labeled
data does not represent the distribu on of interest. This problem se ng is referred to as a
domain adapta on se ng, where the distribu on of the labeled data is called the source
domain and the distribu on that one is actually interested in is called the target domain.
Most o en, data in the target domain is not labeled and adap ng a source domain classifier,
i.e. changing its predic ons to be more suited to the target domain, is the only means by
which one can make predic ons for the target domain. Unfortunately, depending on the
domain dissimilarity, adap ve classifiers can perform worse than non-adap ve ones. In
this work, we formulate a conserva ve adap ve classifier that always performs at least as
well as the non-adap ve one.

Biased samplings tend to occur when one samples locally from amuch larger popula on
[ , ]. For instance, in computer-assisted diagnosis, biometrics collected from two differ-
ent hospitals will be different due to differences between the pa ent popula ons: ones
diet might not be the same as the others. Nonetheless, both pa ent popula ons are sub-
samples of the human popula on as a whole. Adapta on in this example corresponds to
accoun ng for the differences between pa ent popula ons, training a classifier on the cor-
rected labeled data from one hospital, and applying the adapted classifier to the other hos-
pital. Addi onally, different measurement instruments cause different biased samplings:
photos of the same object taken with different cameras lead to different distribu ons over
images [ ]. Lastly, biases arise when one only has access to par cular subsets, such as data
from individual humans in a ac vity recogni on task [ ].

In the general se ng, domains can be arbitrarily different and contain almost no mu-
tual informa on, which means generaliza on will be extremely difficult. However, there
are cases where the problem se ng is more structured: in the covariate shi se ng, the
marginal data distribu ons differ but the class-posterior distribu ons are equal [ – ]. This
means that the underlying true classifica on func on is the same in both domains, im-
plying that a correctly specified adap ve classifier converges to the same solu on as the
target classifier. Adapta on occurs by weighing each source sample by how important it is
under the target distribu on and training on the importance-weighed labeled source data.
A model that relies on equal class-posterior distribu ons can perform very well when its
assump on is true, but it can deviate in detrimental ways when its assump on is false.

Considering their poten al, a number of papers have looked at condi ons and assump-
ons that allow for successful adapta on. A par cular robust one specifies the existence of
a common latent embedding, represented by a set of transfer components [ ]. A er map-
ping data onto these components, one can train and test standard classifiers again. Other
possible assump ons include low-data-divergence [ – ], low-error joint predic on [ , ],
the existence of a domain manifold [ – ], restric ons to subspace transforma ons [ ],
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condi onal independence of class and target given source data [ ] and unconfoundedness
[ ]. The more restric ve an assump on is, the worse the classifier tends to perform when
it is invalid. One of the strengths of the es mator that we develop here is that it does not
require making any assump ons on the rela onship between the domains.

The domain adapta on and covariate shi se ngs are very similar to the sample selec-
on bias se ng in the sta s cs and econometrics communi es [ , , ]. There, the bias
is explicitly modeled as a variable that denotes how likely it is for a par cular sample to
be selected for the training set. One hopes to generalize to an unbiased sample, i.e., the
case where each sample is equally likely to be selected. As such, this se ng can also be
viewed as a case of domain adapta on, with the biased sample set as the source domain
and the unbiased sample set as the target domain. In this case, there is even addi onal
informa on: the support of the source domain will be contained in the support of the tar-
get domain. This informa on can be exploited, as some methods rely on a non-zero target
probability for every source sample [ , ]. Lastly, the causal inference community has also
considered causes for differing training and tes ng distribu ons, including how to es mate
and control for these differences [ , , ].

Although not o en discussed, a variety of papers have reported adap ve classifiers that,
at mes, performworse than the non-adap ve source classifier [ , , , – ]. On closer
inspec on, this tends to happen when a classifier with a par cular assump on is deployed
in a problem se ng for which this assump on is not valid. For example, if the assump on
of a common latent representa on does not hold or when the domains are too dissimilar
to recover the transfer components, then mapping both source and target data onto the
found transfer components will result in mixing of the class-condi onal distribu ons [ ].
Addi onally, one of the most popular covariate shi approaches, kernel mean matching
(KMM), assumes that the support of the target distribu on is contained in the support of
the source distribu on [ , ]. When this is not the case, the resul ng es mated weights
can become very bimodal: a few samples are given very large weights and all other sam-
ples are given near-zero weights. This greatly reduces the effec ve sample size for the
subsequent classifier [ ].

Since the validity of the aforemen oned assump ons are difficult, if not impossible, to
check, it is of interest to design an adap ve classifier that is at least guaranteed to perform
aswell as the non-adap ve one. Such a property is o en framed as aminimax op miza on
problem in sta s cs, econometrics and game theory [ ]. Wen et al. constructed a min-
imax es mator for the covariate shi se ng: Robust Covariate Shi Adjustment (RCSA)
[ ] accounts for es ma on errors in the importance weights by considering their worst-
case configura on. However, this can some mes be too conserva ve, as the worst-case
weights can be very disrup ve to the subsequent classifier op miza on. Another minimax
strategy, dubbed the Robust Bias-Aware (RBA) classifier [ ], plays a game between a risk
minimizing target classifier and a risk maximizing target class-posterior distribu on, where
the adversary is constrained to pick posteriors that match the moments of the source dis-
tribu on sta s cs. This constraint is important, as the adversary would otherwise be able
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to design posterior probabili es that result in degenerate classifiers (e.g. assign all class-
posterior probabili es to 1 for one class and 0 for the other). However, it also means that
their approach loses predic ve power in areas of feature space where the source distribu-
on has limited support, and thus is not suited very well for problems where the domains
are very different.

The main contribu on of this chapter is that we provide an empirical risk minimiza-
on framework to train a classifier that will always perform at least as well as the naive
source classifier. Furthermore, we show that a discriminant analysis model derived from
our frameworkwill always be likelier than the naive sourcemodel. To the best of our knowl-
edge, strict improvements have not been shown before.

The chapter con nues as follows: sec on . presents the mo va on and general for-
mula on of our method, with the specific case of a least-squares classifier in sec on .
and the specific case of a discriminant analysis classifier in sec on . . Sec ons . . and
. . show experiments on sample selec on bias problems and general domain adapta on
problems, respec vely, and we conclude with discussing some limita ons and implica ons
in sec on . .

6.2. Target contras ve pessimis c risk
This sec on starts with the problem defini on, followed by our risk formula on.

6.2.1. Problem defini on
Given a𝐷-dimensional input space𝒳 ⊆ ℝ and a class space𝒴 = {1,… , 𝐾}with𝐾 as the
number of classes, a domain refers to a par cular joint probability distribu on over this pair
of spaces. One is called the source domain, for which labels are available, and the other is
called the target domain, for which no labels are available. Let 𝒮 mark the source domain,
with 𝑛 samples drawn from the source domain’s joint distribu on, 𝑝𝒮(𝑥, 𝑦), referred to
as {(𝑥 , 𝑦 )} . Similarly, let 𝒯 mark the target domain, with 𝑚 samples drawn from the
target domain’s joint distribu on, 𝑝𝒯(𝑥, 𝑦), referred to as {(𝑧 , 𝑢 )} . Note that both
domains are defined over the same input space, which implies that 𝑥 and 𝑧 are represented
in the same𝐷-dimensional feature space. The target labels 𝑢 are unknown at training me
and the goal is to predict them, using only the given unlabeled target samples {𝑧 } and
the given labeled source samples {(𝑥 , 𝑦 )} .

6.2.2. Target risk
The risk minimiza on framework formalizes risk, or the expected loss ℓ incurred by clas-
sifica on func on ℎ, mapping input to classes ℎ ∶ 𝒳 → 𝒴, with respect to a par cular
joint labeled data distribu on; 𝑅(ℎ) = 𝔼[ℓ (ℎ | 𝑥, 𝑦)]. By minimizing empirical risk, i.e.
the approxima on using the sample average, with respect to classifiers from a space of hy-
pothe cal classifica on func onsℋ, one hopes to find the func on that generalizes most
to novel samples. Addi onally, a regulariza on term that punishes classifier complexity
is o en incorporated to avoid finding classifiers that are too specific to the given labeled
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data. For a given joint distribu on, the choice of loss func on, the hypothesis space and
amount of regulariza on largely determine the behavior of the resul ng classifier.

The empirical risk in the source domain can be computed as follows:

�̂� (ℎ | 𝑥, 𝑦) = 1
𝑛 ∑ℓ(ℎ | 𝑥 , 𝑦 ) ,

with the source classifier being the classifier that is found by minimizing this risk:

ℎ̂𝒮 = argmin
∈ℋ

�̂� (ℎ | 𝑥, 𝑦) . ( . )

Since the source classifier does not incorporate any part of the target domain, it is essen-
ally en rely naive of it. But, if we assume that the domains are related in some way, then
it makes sense to apply the source classifier on the target data. To evaluate ℎ̂𝒮 in the tar-
get domain, the empirical target risk, i.e. the risk of the classifier with respect to target
samples, is computed:

�̂�(ℎ̂𝒮 | 𝑧, 𝑢) = 1
𝑚∑ ℓ(ℎ̂𝒮 | 𝑧 , 𝑢 ) . ( . )

Training on the source domain and tes ng on the target domain is our baseline, non-
adap ve approach.

Although the source classifier does not incorporate informa on from the target domain
nor any knowledge on the rela on between the domains, it is o en not the worst classifier
(especially in cases where the domains are very similar). In cases where approaches rely
heavily on assump ons, the adap ve classifiers can deviate from the source classifier in
ways that lead to even larger target risks. Considering that these assump ons cannot be
checked for validity, there are no guarantees that these adap ve classifiers outperform the
source classifier. Essen ally, they are not safe to use.

6.2.3. Contrast
We are interested in finding a classifier that is never worse than the source classifier. We
formalize this desire by subtrac ng the source classifiers target risk in ( . ) from the target
risk of a different classifier ℎ:

�̂�(ℎ | 𝑧, 𝑢) − �̂�(ℎ̂𝒮 | 𝑧, 𝑢) ( . )

If such a contrast is used as a riskminimiza on objec ve, i.e. min
∈ℋ
�̂�(ℎ|𝑧, 𝑢) − �̂�(ℎ̂𝒮 |𝑧, 𝑢),

then the risk of the resul ng classifier is bounded above by the risk of the source classifier:
the maximal value of the contrast is 0, which occurs when the same classifier is found,
ℎ = ℎ̂𝒮 . Classifiers that lead to larger target risks are not valid solu ons to theminimiza on
problem, which implies that certain parts of the hypothesis spaceℋ will never be reached.
As such, the contrast implicitly constrainsℋ in a similar way as projec on es mators [ ].
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6.2.4. Pessimism
However, ( . ) s ll incorporates the target labels 𝑢, which are unknown. Taking a conser-
va ve approach, we use a worst-case labeling instead, achieved by maximizing risk with
respect to a hypothe cal labeling 𝑞. For any classifier ℎ, the risk with respect to this worst-
case labeling will always be larger than the risk with respect to the true target labeling:

�̂� (ℎ | 𝑧, 𝑢) ≤max �̂� (ℎ | 𝑧, 𝑞) . ( . )

Unfortunately, maximizing over a set of discrete labels is a combinatorial problem and is
computa onally very expensive. To avoid this expense, we represent the hypothe cal la-
beling probabilis cally, 𝑞 ∶= 𝑝(𝑢 = 𝑘 | 𝑧 ), some mes also referred to as a so label
[ ]. This means that 𝑞 is means that 𝑞 is a vector of 𝐾 elements that sum to 1, repre-
sented as an element of a 𝐾 − 1 simplex, Δ . For𝑚 samples, an𝑚-dimensional 𝐾 − 1
simplex Δ is taken. Note that known labels can also be represented probabilis cally,
for example 𝑦 = 1 ⇔ 𝑝(𝑦 = 1 | 𝑥 ) = 1, 𝑝(𝑦 ≠ 1 | 𝑥 ) = 0. Hence, in prac ce, both
𝑦 and 𝑢 are represented as 1 by𝐾 vectors with the 𝑘-th element marking the probability
that sample 𝑖 or 𝑗 belongs to class 𝑘.

6.2.5. Contras ve pessimis c risk
Joining the contras ve target risk from ( . ) with the pessimis c labeling 𝑞 from ( . ) forms
the following risk func on:

�̂�TCP(ℎ | ℎ̂𝒮 , 𝑧, 𝑞) = 1
𝑚∑ℓ(ℎ | 𝑧 , 𝑞 ) − ℓ(ℎ̂𝒮 | 𝑧 , 𝑞 ) . ( . )

We refer to the risk in equa on . as the Target Contras ve Pessimis c risk (TCP). Mini-
mizing it with respect to a classifier ℎ and maximizing it with respect to the hypothe cal
labeling 𝑞, leads to the new TCP target classifier:

ℎ̂𝒯 = argmin
∈ℋ

max
∈

�̂�TCP(ℎ | ℎ̂𝒮 , 𝑧, 𝑞) . ( . )

Note that the TCP risk only considers the performance on the target domain. It is differ-
ent from the risk formula ons in [ ] and [ ], because those incorporate the classifiers
performance on the source domain as well. Our formula on contains no evalua on on the
source domain, and focuses solely on the performance gain we can achieve in the target
domain with respect to the source classifier.

6.2.6. Op miza on
If the loss func on ℓ is restricted to be globally convex and the hypothesis space ℋ is a
convex set, then the TCP risk with respect to ℎ will be globally convex and there will be a
unique op mum with respect to ℎ. The TCP risk with respect to 𝑞 is linear and bounded
due to the simplex, which means that it is possible that the op mum is not unique. How-
ever, the combined minimax objec ve func on is globally convex-linear. This is important,
because it guarantees the existence of a saddle point, i.e. an op mumwith respect to both
ℎ and 𝑞 [ ].
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Finding the saddle point can be done through first performing a gradient descent step
according to the par al deriva ve with respect to ℎ, followed by a gradient ascent step
according to the par al deriva ve with respect to 𝑞. However, this last step causes the
updated 𝑞 to leave the simplex. In order to enact the constraint, it is projected back onto
the simplex a er performing the gradient step. This projec on, 𝒫, maps the point out-
side the simplex, 𝑎, to the point, 𝑏, that is the closes point on the simplex in terms of
Euclidean distance: 𝒫(𝑎) = argmin ∈ ‖𝑎 − 𝑏‖ [ , ]. Unfortunately, the projec on
step complicates the computa on of the step size, which we replace by a learning rate 𝛼 ,
decreasing over itera ons 𝑡. This results in the overall update: 𝑞 ← 𝒫(𝑞 + 𝛼 ∇𝑞 ).
Note that the projec on step is linear, whichmeans the overall update for 𝑞 remains linear.

A gradient descent - gradient ascent procedure for globally convex-linear objec ves is
guaranteed to converge to the saddle point (c.f. proposi on . and corollary . of [ ]).

6.3. Least-squares
Discrimina ve classifica onmodels make no assump ons on the data distribu ons and di-
rectly op mize predic ons. We incorporate a discrimina ve model in the TCP risk through
the least-squares classifier, which is defined by a quadra c loss func on ℓL (ℎ | 𝑥 , 𝑦 ) =
(ℎ(𝑥 ) − 𝑦 ) [ ]. For mul -class classifica on, we employ a one-vs-all scheme [ ].

Furthermore, we chose a linear hypothesis space, ℎ(𝑧) = argmax ∈𝒴 ∑ 𝑧 𝜃 +𝜃 ,
which we will denote as the inner product 𝑧𝜃 between the data row vector, implicitly
augmented with a constant 1, and the classifier parameter vector. 𝜃 is an element of a
(𝐷 + 1) × 𝐾-dimensional parameter space Θ and in the following, we will refer to the
classifier op miza on step, i.e. minimiza on over ℎ ∈ ℋ, as a parameter es ma on step,
i.e. a minimiza on over 𝜃 ∈ Θ. In summary, the least-squares loss of a sample is:

ℓLS(𝜃 | 𝑧 , 𝑞 ) =∑(𝑧 𝜃 − 𝑞 ) . ( . )

Plugging ( . ) into ( . ), the TCP-LS risk is defined as:

�̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞) =
1
𝑚∑ℓLS(𝜃 | 𝑧 , 𝑞 ) − ℓLS(�̂�𝒮 | 𝑧 , 𝑞 )

= 1
𝑚∑∑(𝑧 𝜃 − 𝑞 ) − (𝑧 �̂�𝒮 − 𝑞 ) ,

with the resul ng es mate:

�̂�𝒯LS = argmin
∈

max
∈

�̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞) . ( . )
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For fixed 𝑞, the minimiza on over 𝜃 has a closed form solu on. For each class, the
parameter vector is:

𝜕
𝜕𝜃 �̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞) = 0

1
𝑚 ∑2 𝑧 (𝑧 𝜃 − 𝑞 ) = 0

𝜃 = (∑𝑧 𝑧 ) (∑𝑧 𝑞 ) .

Keeping 𝜃 fixed, the gradient with respect to 𝑞 is linear:

𝜕
𝜕𝑞 �̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞) =

−2
𝑚 (𝑧 𝜃 − 𝑞 ) − −2𝑚 (𝑧 �̂�𝒮 − 𝑞 )

= −2𝑚 𝑧 (𝜃 − �̂�𝒮) .

Note that the maximiza on over 𝑞 is essen ally driving the two sets of parameters apart.
See Algorithm for pseudo-code for TCP-LS.

Algorithm TCP-LS
Input: source data 𝑥 (size 𝑛×𝐷), labels 𝑦 (size 𝑛×𝐾), target data 𝑧 (size𝑚×𝐷), learning
rate 𝛼, convergence criterion 𝜖.
Output: �̂�𝒯LS = (𝜃 ,… , 𝜃 )
for all classes do
�̂�𝒮 = (∑ 𝑥 𝑥 ) (∑ 𝑥 𝑦 )

end for
𝑡 = 0
𝜃 = �̂�𝒮 ∀𝑘
𝑞 ← 1/𝐾 ∀𝑗, 𝑘
repeat

for all classes do
𝜃 = (∑ 𝑧 𝑧 ) (∑ 𝑧 𝑞 )
for all samples do
∇𝑞 = −2𝑧 (𝜃 − �̂�𝒮)/𝑚

end for
end for
𝑞 ← 𝒫(𝑞 − 𝛼 ∇𝑞)
𝛼 ← 𝛼/𝑡
𝑡 ← 𝑡 + 1

un l ‖ �̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞 ) − �̂�TCPLS (𝜃 | �̂�𝒮 , 𝑧, 𝑞 ) ‖ ≤ 𝜖
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6.4. Discriminant analysis
As a genera ve classifica on model for the TCP risk, we chose the discriminant analysis
model (DA). It fits a Gaussian distribu on to each class, propor onal to the class prior:

𝒩(𝑥 | 𝜃 ) = 𝜋 1
√(2Π) |Σ |

exp(−12(𝑥 − 𝜇 )Σ (𝑥 − 𝜇 ) ) ,

where𝜃 consists of the prior, mean and covariancematrix for the𝑘-th class; 𝜃 = (𝜋 , 𝜇 ,
Σ ), | ⋅ | marks the determinant and the capital Π refers to the number. New samples 𝑥∗
are classified according to maximum probability: ℎ(𝑥∗) = argmax ∈𝒴 𝒩(𝑥∗ | 𝜃 ). Each
label is encoded as a vector, e.g. for 𝒴 = {1, 2, 3}, 𝑦 = 2 ⇔ 𝑦 = [0, 1, 0]. The model
is incorporated in the empirical risk minimiza on formula on by taking the nega ve log-
likelihoods as the loss func on:

ℓ(𝜃 | 𝑥, 𝑦) =∑−𝑦 log𝒩(𝑥 | 𝜃 ) .

6.4.1. Quadra c discriminant analysis
If one Gaussian distribu on is fi ed to each class separately, the resul ng classifier is a
quadra c func onof the difference inmeans and covariances, and is hence called quadra c
discriminant analysis (QDA). For target data 𝑧 and so labels 𝑞, the loss is formulated as:

ℓQDA(𝜃 | 𝑧 , 𝑞 ) = ∑−𝑞 log𝒩(𝑧 | 𝜃 ) . ( . )

Plugging the loss from ( . ) into ( . ), the TCP-QDA risk becomes:

�̂�TCPQDA(𝜃 | �̂�𝒮 , 𝑧, 𝑞) =
1
𝑚∑ ℓQDA(𝜃 | 𝑧 , 𝑞 ) − ℓQDA(�̂�𝒮 | 𝑧 , 𝑞 )

= 1
𝑚∑∑−𝑞 log

𝒩(𝑧 | 𝜃 )
𝒩(𝑧 | �̂�𝒮)

, ( . )

where the es mate itself is:

�̂�𝒯QDA = argmin
∈

max
∈

�̂�TCPQDA(𝜃 | �̂�𝒮 , 𝑧, 𝑞) .
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Minimiza on with respect to 𝜃 also has a closed-form solu on for discriminant analysis
models. For each class, the parameter es mates are:

𝜋 = 1
𝑚∑𝑞 ,

𝜇 = (∑𝑞 ) ∑𝑞 𝑧 ,

Σ = (∑𝑞 ) ∑𝑞 (𝑧 − 𝜇 ) (𝑧 − 𝜇 ) .

One of the proper es of a discriminant analysis model is that it requires the es mated
covariance matrix Σ to be non-singular. It is possible for the maximizer over 𝑞 in TCP-QDA
to assign less samples than dimensions to one of the classes, causing the covariancematrix
for that class to be singular. To prevent this, we regularize its es ma on by first restric ng
Σ to minimal eigenvalues of 0 and then adding a scalar mul ple of the iden ty matrix
𝜆𝐼. Essen ally, this constrains the es mated covariance matrix to a minimum size in each
direc on.

Keeping 𝜃 fixed, the gradient with respect to 𝑞 is linear:

𝜕
𝜕𝑞 �̂�TCPQDA(𝜃 | �̂�𝒮 , 𝑧, 𝑞) = − 1𝑚 log

𝒩(𝑧 | 𝜃 )
𝒩(𝑧 | �̂�𝒮)

.

Algorithm lists pseudo-code for TCP-QDA.

6.4.2. Linear discriminant analysis
If the model is constrained to share a single covariance matrix for each class, the resul ng
classifier is a linear func on of the difference in means and is hence termed linear dis-
criminant analysis (LDA). This constraint is imposed through the weighted sum over class
covariance matrices Σ = ∑ 𝜋 Σ .

6.4.3. Performance guarantee
The discriminant analysis model has a very surprising property: it obtains a strictly smaller
risk than the source classifier. To our knowledge, this is the first me that such a perfor-
mance guarantee can be given in the context of domain adapta on.

Theorem . For a con nuous target distribu on, with more unique samples than features
for every class, 𝑚 > 𝐷, the empirical target risk of a discriminant analysis model �̂�DA
with TCP es mated parameters �̂�𝒯 is strictly smaller than the empirical target risk of a
discriminant analysis model with parameters �̂�𝒮 es mated on the source domain:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) < �̂�DA(�̂�𝒮 | 𝑧, 𝑢)
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Algorithm TCP-QDA
Input: source data 𝑥 (size 𝑛×𝐷), labels 𝑦 (size 𝑛×𝐾), target data 𝑧 (size𝑚×𝐷), learning
rate 𝛼, convergence criterion 𝜖.
Output: �̂�𝒯QDA = (𝜋 ,… , 𝜋 , 𝜇 , … , 𝜇 , Σ , … , Σ )
for all classes do
�̂�𝒮 = 𝑛 ∑ 𝑦
�̂�𝒮 = (∑ 𝑦 ) ∑ 𝑦 𝑥
Σ̂𝒮 = (∑ 𝑦 ) ∑ 𝑦 (𝑥 − �̂�𝒮) (𝑥 − �̂�𝒮)

end for
𝑡 = 0
𝜃 = (�̂�𝒮 , �̂�𝒮 , Σ̂𝒮) ∀𝑘
𝑞 ← 1/𝐾 ∀𝑗, 𝑘
repeat

for all classes do
𝜋 = 𝑚 ∑ 𝑞
𝜇 = (∑ 𝑞 ) ∑ 𝑞 𝑧
Σ = (∑ 𝑞 ) ∑ 𝑞 (𝑧 − 𝜇 ) (𝑧 − 𝜇 )
𝜃 = (𝜋 , 𝜇 , Σ )
for all samples do
∇𝑞 = − log [𝒩(𝑧 | 𝜃 )/𝒩(𝑧 | �̂�𝒮)]

end for
end for
𝑞 ← 𝒫(𝑞 − 𝛼 ∇𝑞)
𝛼 ← 𝛼/𝑡
𝑡 ← 𝑡 + 1

un l ‖ �̂�TCPQDA(𝜃 | �̂�𝒮 , 𝑧, 𝑞 ) − �̂�TCPQDA(𝜃 | �̂�𝒮 , 𝑧, 𝑞 ) ‖ ≤ 𝜖

The reader is referred to Appendix A for the proof. It follows similar steps as a robust
guarantee for discriminant analysis in semi-supervised learning [ ]. Note that as long as
the same amount of regulariza on 𝜆 is added to both the source �̂�𝒮 and the TCP classifier
�̂�𝒯 , the guarantee also holds for a regularized model.

It should also be noted that the risks of TCP-LDA and TCP-QDA are always strictly smaller
with respect to the given target samples, but not necessarily strictly smaller with respect to
new target samples. Although, when the given target samples are a good representa on
of the target distribu on, one does expect the adapted model to generalize well to new
target samples.

6.5. Experiments
Our experiments compare the risks of the TCP classifiers with that of the source clas-
sifier and the corresponding oracle target classifier, as well as their performance with
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respect to various state-of-the-art domain adap ve classifiers through their areas under
the ROC-curve. In all experiments, all target samples are given, unlabeled, to the adap-
ve classifiers. They make predic ons for those given target samples and their perfor-
mance is evaluated with respect to those target samples’ true labels. Cross-valida on
for regulariza on parameters was done by holding out source data, as that is the only
data for which labels are available at training me. The range of values we tested was
[0 10 10 10 10 10 10 10 10 10 10 ].

6.5.1. Compared methods
We implemented transfer component analysis (TCA) [ ], kernel mean matching (KMM)
[ ], robust covariate shi adjustment (RCSA) [ ] and the robust bias-aware (RBA) clas-
sifier [ ] for the comparison (see cited papers for more informa on). TCA and KMM are
chosen because they are popular classifiers with clear assump ons. RCSA and RBA are cho-
sen because they also employ minimax formula ons but from different perspec ves; RCSA
as a worst-case and RBA as a moment-matching importance weighing. Their implementa-
ons details are discussed shortly below.

Transfer component analysis TCA assumes that there exists a common latent represen-
ta on for both domains and aims to find this representa on by means of a cross-domain
nonlinear component analysis [ ]. In our implementa on, we employ a radial basis func-
on kernel with a bandwidth of 1 and set the trade-off parameter 𝜇 to 1/2. A er mapping
the data onto their transfer components, we train a logis c regressor on themapped source
data and apply it to the mapped target data.

Kernel mean matching KMM assumes that the class-posterior distribu ons are equal in
both domains and that the support of the target distribu on is contained within the source
distribu on [ , ]. When the first assump on fails, KMM will have deviated from the
source classifier in amanner thatwill not lead to be er results on the target domain. When
the second assump ons fails, the variance of the importance-weights increases to the point
where a few samples receive largeweights and all other samples receive very smallweights,
reducing the effec ve training sample size and leading to pathological classifiers. We use
a radial basis func on kernel with a bandwidth of 1, kernel regulariza on of 0.001 to favor
es mates with lower varia on over weights and upper bound theweights by 10 000. A er
es ma ng importance weights, we train a weighed least-squares classifier on the source
samples.

Robust covariate shi adjustment RCSA also assumes equal class-posterior distribu ons
and containment of the support of the target distribu on within the source distribu on,
but addi onally incorporates a worst-case labeling [ ]. To be precise, it maximizes risk
with respect to the importance weights. We used the author’s publicly available code with
-fold cross-valida on for its hyperparameters. Interes ngly, the authors also discuss a
rela on between covariate shi and model misspecifica on, as described by [ ]. They
argue for a two-step (es mate weights - train classifier) approach in a game-theore cal
form [ , , ], which is done by all importance-weighted classifiers here.
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Robust bias-aware RBA assumes that the moments of the feature sta s cs are approx-
imately equal up to a par cular order [ ]. In their formula on, the adversary plays a
classifier whose class-posterior probabili es are used as a labeling of the target samples,
but who is also constrained to match the moments with the source domain’s sta s cs.
The player then proposes an importance-weighted classifier that aims to perform well on
both domains. Note that the constraints on the adversary are, among others, necessary to
avoid the players switching strategies constantly. We implement RBA using first-order fea-
ture sta s cs for the moment-matching constraints, which was also done by the authors
in their paper. Furthermore, we use a ra o of normal distribu ons for the weights and
bound them above by 1000.

6.5.2. Sample selec on bias se ng
Sample selec on bias se ngs occur when data is collected locally from a larger popula on.
For regression problems, these se ngs are usually created through a parametric sampling
of the feature space [ , ]. We created something similar but for classifica on problems:
samples are concentrated around a certain subset of the feature space, butwith equal class
priors as the whole set. For each class:

. Find the sample closest to the origin; 𝑥 .

. Compute distance 𝑑(𝑥 , 𝑥 ) to all other samples of the same class.

. Draw without replacement 𝜋 𝑛𝒮 samples propor onal to exp(−𝑑(𝑥 , 𝑥 )).

where 𝑛𝒮 denotes the total number of samples to draw and 𝜋 refers to the class-prior
distribu ons of the whole set. Note that drawing 𝜋 𝑛 samples from each class leads to ap-
proximately the same class prior distribu ons in the source domain as the target domain.
We chose the squared Mahalanobis distance: 𝑑(𝑥 , 𝑥 ) ∶= (𝑥 −𝑥 )Σ (𝑥 −𝑥 ) , with
the covariance matrix es mated on all data, since that takes scale differences between
features into account. Figure . presents an example, showing the first two principal com-
ponents of the pima diabetes dataset. Red/blue squares denote the selected source sam-
ples, black circles denote all samples and the green stars denote the seed points (𝑥 for
each class).

Data sets
We collected the following datasets from the UCI machine learning repository: cylinder
bands prin ng (bands), car evalua on (car), credit approval (credit), ionosphere (iono),
mammographicmasses (mamm), pima diabetes (pima) and c-tac-toe endgame (t ). Table
. lists their characteris cs. All missing values have been imputed to 0. For each dataset,
we draw 𝑛𝒮 = 50 samples as the source domain while trea ng all samples as the target
domain.

Results
The risks (average nega ve log-likelihoods for the discriminant analysis models and mean
squared errors for the least-squares classifiers) in Table . belong to the source classifiers,
the TCP classifiers and the oracle target classifiers. The oracles represent the best possible
result, as they comprise the risk of a classifier trained on all target samples with their true
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Figure . : Example of a biased sampling. Shown are the first two principal components of the pima diabetes
dataset, with all target samples in black, the selected source samples in red/blue and the samples closest to of
each class in green (seeds).

Table . : Sample selec on bias datasets characteris cs.

bands
car
credit
iono
mamm
pima
t

#Samples #Features #Missing Class (- |+ )
|
|
|
|
|
|
|

labels. The results show varying degrees of improvement for the TCP classifiers. TCP-LDA
approaches T-LDA more closely than the other two versions, with TCP-LS being the most
conserva ve one. For the ionosphere and c-tac-toe datasets, the improvement is quite
drama c, indica ng that the source classifier is a poor model for the target domain. Note
also that some overfi ng might be occurring as TCP-QDA does not always have a lower
risk than TCP-LDA, even though T-QDA does always have a lower risk than T-LDA.

Table . compares the performances of the adap ve classifiers on all datasets through
their area under the ROC-curves (AUC). Although there is quite a variety between datasets,
the varia on between classifiers within a dataset is rela vely small; all approaches perform
similarly well. However, with our selec on bias procedure, the moments of the target
sta s cs do not match the source sta s cs (e.g. the target’s variance is by construc on
always larger) which affect RBA’s performance nega vely. Interes ngly, the TCP discrim-
inant analysis models are quite compe ve in cases where their improvement over the
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Table . : Risks (average nega ve log-likelihoods and mean squared errors) of the naive source classifiers (S-LDA,
S-QDA, S-LS), the TCP classifiers (TCP-LDA, TCP-QDA, TCP-LS) and the oracle target classifiers (T-LDA, T-QDA, T-LS)
on the sample selec on bias datasets.

bands
car
credit
iono
mamm
pima
t

S-LDA TCP-LDA T-LDA

- . - . - .
. . .

- . - . - .
. - . - .

. - . - .
- . - . - .
. . .

S-QDA TCP-QDA T-QDA

- . - . - .
. . .

- . - . - .
. - . - .
. - . - .

- . - . - .
. . .

S-LS TCP-LS T-LS

. . .
. . .
. . .
. . .
. . .
. . .
. . .

source classifier was larger. Unfortunately, like RBA, the more conserva ve TCP-LS never
outperforms all other methods simultaneously on any of the datasets. S ll, in the average
it reaches compe ve performance overall. In summary, the TCP classifiers perform on
par with the other adap ve classifiers.

Table . : Sample selec on bias datasets. Areas under the ROC-curves for a range of domain adap ve classifiers.

bands
car
credit
iono
mamm
pima
t

mean

TCA KMM RCSA RBA TCP-LS TCP-LDA TCP-QDA

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

. . . . . . .

6.5.3. Domain adapta on se ng
We performed a set of experiments on a dataset that is naturally split into mul ple do-
mains: predic ng heart disease in pa ents from hospitals in different loca ons. It is a
much more realis c se ng because problem variables such as prior shi , class imbalance
and propor on of imputed features are not controlled. As such, it is a harder problem than
the sample selec on bias se ng. In this se ng, the target domains o en only have lim-
ited overlap with the source domain and can be very dissimilar. As the results will show,
many of the assump ons that the state-of-the-art domain adap ve classifiers rely upon,
do not hold and their performance degrades dras cally.

Data set
The hospitals are the Hungarian Ins tute of Cardiology in Budapest (data collected by An-
dras Janosi), the University Hospital Zurich (collected by William Steinbrunn), the Univer-
sity Hospital Basel (courtesy of Ma hias Pfisterer), the Veterans Affairs Medical Center in
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Long Beach, California, USA, and the Cleveland Clinic Founda on in Cleveland, Ohio, USA
(both courtesy of Robert Detrano), which will be referred to as Hungary, Switzerland, Cal-
ifornia and Ohio herea er. The data from these hospitals can be considered domains as
the pa ents are all measured on the same biometrics but show different distribu ons. For
example, pa ents in Hungary are on average younger than pa ents from Switzerland (
versus years). Each pa ent is described by features: age, sex, chest pain type, rest-
ing blood pressure, cholesterol level, high fas ng blood sugar, res ng electrocardiography,
maximum heart rate, exercise-induced angina, exercise-induced ST depression, slope of
peak exercise ST, number of major vessels in fluoroscopy, and normal/defec ve/reversible
heart rate.

Table . describes the number of samples (𝑛, 𝑚), total number of missing measure-
ments that have been imputed (𝑚𝑖𝑠𝒮 , 𝑚𝑖𝑠𝒯) the class balance (𝑐𝒮 , 𝑐𝒯) and the empirical
Maximum Mean Discrepancy (MMD) for all pairwise combina ons of designa ng one do-
main as the source and another as the target. To elaborate: the empirical MMDmeasures
how far apart two sets of samples are [ ]:

̂MMD =‖𝑛 ∑𝜙(𝑥 ) − 𝑚 ∑𝜙(𝑧 )‖

= 𝑛 ∑
,
𝐾(𝑥 , 𝑥 ) − 2(𝑛𝑚) ∑

,
𝐾(𝑥 , 𝑧 ) + 𝑚 ∑

,
𝐾(𝑧 , 𝑧 ) .

In order to compute it, we used a radial-basis func on with a bandwidth of . An MMD of
0 means that the two sets are iden cal, while larger values indicate larger discrepancies
between the two sets.

First of all, the sample size imbalance is not really a problem, as the largest difference
occurs in the Ohio - Switzerland combina on with and samples respec vely. How-
ever, the fact that the classes are severely imbalanced in different propor ons, for example
going from % : % to % : % in Ohio - Switzerland, creates a very difficult se ng.
A shi in the prior distribu ons can be disastrous for some classifiers, such as RBA which
relies onmatching the source and target feature sta s cs. Furthermore, a sudden increase
in the amount of missing values (unmeasured pa ent biometrics), such as in Ohio - Califor-
nia, means that a classifier relying on a certain feature for discrimina on degrades when
this feature is missing in the target domain. Addi onally, the combina ons Ohio - Switzer-
land and Switzerland - Hungary have an MMD that is two orders of magnitude larger than
other combina ons. Overall, looking at all three sets of descrip ve sta s cs, the combina-
ons Ohio - Switzerland and Switzerland - Hungary should pose the most difficulty for the
adap ve classifiers.

Lastly, to further illustrate how the domains differ, we plo ed histograms of the age and
res ng blood pressure of all pa ents, split by domain (see Figure . ). Not only are they
different on average, they tend to differ in variance and skewness as well.
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Table . : Heart disease dataset proper es, for all pairwise domain combina ons (O=’Ohio’, C=’California’,
H=’Hungary’ and S=’Switzerland’). 𝒮 denotes the source and 𝒯 the target domain, the amount of source and
the amount of target samples, 𝒮 the class balance (- ,+ ) in the source domain and 𝒯 the class balance in the

target domain. MMD denotes the empirical MaximumMean Discrepancy between the source and target data.

𝒮 𝒯
O H
O S
O C
H S
H C
S C
H O
S O
C O
S H
C H
C S

n m 𝑚𝑖𝑠𝒮 𝑚𝑖𝑠𝒯 𝑐𝒮 𝑐𝒯 MMD

: : .
: : .
: : .
: : .
: : .
: : .
: : .
: : .
: : .
: : .
: : .
: : .
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Figure . : (Le top) Histogram of the age of pa ents in each domain, (right) histogram of the res ng blood
pressure of pa ents in each domain.

Results
Table . lists the target risks (average nega ve log-likelihoods for the discriminant analysis
models and mean squared errors for the least-squares classifiers) with the given target
samples’ true labels for all source, TCP and oracle target classifiers. Note that the TCP
risks range between the source and the oracle target risk. For some combina ons TCP is
extremely conserva ve, e.g. Switzerland -Ohio, Switzerland - Hungary for the least-squares
case, and for others, it is much more liberal, e.g. Hungary - Switzerland, Hungary - Ohio,
Hungary - California for the discriminant analysis models. In general, the discrimina ve
model (TCP-LS) deviates much less and is much more conserva ve than the genera ve
models (TCP-LDA and TCP-QDA). Note that the order of magnitude of the improvement
with TCP-DA in the Hungary - Switzerland, Hungary - Ohio and Hungary - California se ngs
is due to the fact that the two domains lie far apart; the target samples lie very far in the
tails of the source models’ Gaussian distribu on and evaluate to very small likelihoods,
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which become very large nega ve log-likelihoods.

Table . : Heart disease dataset. Target risks (average nega ve log-likelihoods (le , middle) and mean squared
errors (right)) for all pairwise combina ons of domains (O=’Ohio’, C=’California’, H=’Hungary’ and S=’Switzerland’;
smaller values are be er).

𝒮 𝒯
O H
O S
O C
H S
H C
S C
H O
S O
C O
S H
C H
C S

S-LDA TCP-LDA T-LDA

- . - . - .
- . - . - .
- . - . - .
- . - . - .
- . - . - .

. - . - .
- . - . - .

. - . - .
- . - . - .

. - . - .
- . - . - .
- . - . - .

S-QDA TCP-QDA T-QDA

- . - . - .
- . - . - .
- . - . - .
- . - . - .
- . - . - .

. - . - .
- . - . - .

. - . - .
- . - . - .

. - . - .
- . - . - .
- . - . - . ‘

S-LS TCP-LS T-LS

. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

Looking at the areas under the ROC-curves in Figure . , one observes a different pa ern
in the classifier performances. TCA, KMM, RCSA andRBAperformmuchworse, o en below
chance level. It can be seen that, in some cases, the assump on of equal class-posterior
distribu ons s ll holds approximately, as KMM and RCSA some mes perform quite well,
e.g. in Hungary - Ohio. TCA’s performance varies around chance level, indica ng that it is
difficult to recover a common latent representa on in these se ngs. That makes sense,
as the domains lie further apart this me. RBA’s performance drops most in cases where
the differences in priors and propor ons of missing values are largest, e.g. Hungary - Cali-
fornia, which also makes sense as it is expec ng similar feature sta s cs in both domains.
TCP-LS performs very well in almost all cases; the conserva ve strategy is paying off. TCP-
LDA is also performing very well, even outperforming TCP-QDA in all cases. The added
flexibility of a covariance matrix per class is not beneficial because it is much more diffi-
cult to fit correctly. Note that the domain combina ons are asymmetrical; for example,
RCSA’s performance is quite strong when Switzerland is the source domain and Ohio the
target domain, but it’s performance is much weaker when Ohio is the source domain and
Switzerland the target domain. In some combina ons, assump ons on how two domains
are related to each other might be valid that are not valid in their reverse combina ons.
Overall, in this more general domain adapta on se ng, our more conserva ve approach
works best, as shown by the mean performances.

Visualiza on of the worst-case labeling
The adversary in TCP’s minimax formula on maximizes the objec ve with respect to the
probability 𝑞 that a sample 𝑗 belongs to class 𝑘. However, note that the worst-case la-
beling corresponds to the labeling that maximizes the contrast: it looks for the labeling for
which the difference between the source parameters and the current parameters is largest.
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Table . : Heart disease dataset. Area under the ROC-curve for all pairwise combina ons of domains (O=’Ohio’,
C=’California’, H=’Hungary’ and S=’Switzerland’; larger values are be er.

𝒮 𝒯
O H
O S
O C
H S
H C
S C
H O
S O
C O
S H
C H
C S

mean

TCA KMM RCSA RBA TCP-LS TCP-LDA TCP-QDA

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . .

. . . . . . .
. . . . . . .

. . . . . . .

It would be interes ng to visualize this labeling at the saddle point. Figure . shows the
first two principal components of Hungary, with the probabili es of belonging to class 1,
i.e. 𝑞 . The top le figure shows the true labeling, the top right the probabili es for
TCP-LS, the bo om le for TCP-LDA and the bo om right for TCP-QDA. In all three TCP cases
the labeling is quite smooth and does not vary toomuch between neighboring points. One
would expect a rough labeling, but note that labellings that are bad for the source classifier
will most likely also be bad for the TCP classifier, and the resul ng contrast will be small
instead of maximal. The probabili es for TCP-LS lie closer to 0 and 1 than for TCP-LDA and
TCP-QDA.

6.6. Discussion
Although the TCP classifiers are neverworse than the source classifier by construc on, they
will not automa cally lead to improvements in the error rate. This is due to the difference
between op mizing a surrogate loss and evalua ng the 0/1-loss [ , , ]. There is no
one-to-onemapping between theminimizer of the surrogate loss and theminimizer of the
0/1-loss.

One peculiar advantage of our TCP model is that we do not explicitly require source
samples at training me. They are not incorporated in the risk formula on, which means
that they do not have to be retained in memory. It is sufficient to receive the parameters
of a trained classifier that can serve as a baseline. Our approach is therefore more effi-
cient than for example importance-weighing techniques which require source samples for
importance-weight es ma on and subsequent training. Addi onally, it would be interest-
ing to construct a contrast with mul ple source domains. The union of source classifiers
might serve as a very good star ng point for the TCP model.
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Figure . : Sca er plots of the first two principal components of Hungary in the heart disease dataset. (Top le )
True labeling, (top right) for TCP-LS, (bo om le ) for TCP-LDA, (bo om right) for TCP-QDA.

For each adap ve classifier, regulariza onparameters are es mated through cross-valida on
on held-out source samples. However, this procedure is known to be biased as it does not
account for domain dissimilarity [ , ]. What is op mal with respect to held-out source
samples, need not be op mal with respect to target samples. Performance of many adap-
ve models might be improved with appropriate adap ve valida on techniques.

6.7. Conclusion
We have designed a risk minimiza on formula on for a domain-adap ve classifier whose
performance, in terms of risk, is always at least as good as that of the non-adap ve source
classifier. Furthermore, for the discriminant analysis case, its performance is always strictly
be er. Our target contras ve pessimis c model performs on par with state-of-the-art do-
main adap ve classifier on sample selec on bias se ngs and outperforms them on more
realis c domain adapta on problem se ngs.
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6.8. Appendix A
Proof of Theorem . Let {(𝑥 , 𝑦 )} be a sample set of size 𝑛 drawn iid from con nuous
distribu on 𝑝𝒮 , defined over 𝐷-dimensional real-valued input space 𝒳 ⊆ ℝ and output
space 𝒴 = {1,… , 𝐾} with 𝐾 as the number of classes. Similarly, let {(𝑧 , 𝑢 )} be a
sample set, of size 𝑚, drawn iid from con nuous distribu on 𝑝𝒯 , defined over the same
spaces. For the purposes of the following risk func on, the labels of single samples, 𝑦
and 𝑢 , are encoded as 1 by 𝐾 vectors, with the 𝑘-th element being the probability of
belonging to the 𝑘-th class. Consider a discriminant analysis model parameterized either
as 𝜃 = (𝜋 ,… , 𝜋 , 𝜇 , … , 𝜇 , Σ , … Σ ) for QDA or 𝜃 = (𝜋 ,… , 𝜋 , 𝜇 , … , 𝜇 , Σ) for LDA.
�̂�DA denotes empirical risk consis ng of average nega veGaussian log-likelihoodsweighted
by labels:

�̂�DA(𝜃 | 𝑥, 𝑦) =
1
𝑚∑∑−𝑦 log𝒩(𝑥 | 𝜃 ) .

Note that 𝜃 refers to (𝜋 , 𝜇 , Σ ) in the case of QDA and to (𝜋 , 𝜇 , Σ) in the case of LDA.
The sample covariance matrix, Σ for QDA and Σ for LDA, is required to be non-singular,
which is guaranteed when there are more unique samples than features for every class,
𝑚 > 𝐷. In the LDA case, 𝐷 + 𝐾 unique samples are sufficient. Let �̂�𝒮 be the parameters
es mated on labeled source data; �̂�𝒮 = argmin

∈
�̂�DA(𝜃 | 𝑥, 𝑦).

Firstly, for fixed 𝑞, the minimized contrast between the target risk of any parameter 𝜃
and the source parameters �̂�𝒮 is non-posi ve, because both parameters sets are elements
of the same parameter space, 𝜃, �̂�𝒮 ∈ Θ:

min
∈
�̂�DA(𝜃 | 𝑧, 𝑞) − �̂�DA(�̂�𝒮 | 𝑧, 𝑞) ≤ 0 .

𝜃’s that result in a larger target risk than that of �̂�𝒮 are not minimizers of the contrast.
The maximum value it can a ain is 0, which occurs when exactly the same parameters are
found; 𝜃 = �̂�𝒮 . Considering that the contrast is non-posi ve for any labeling 𝑞, it is also
non-posi ve with respect to the worst-case labeling:

min
∈

max
∈

�̂�DA(𝜃 | 𝑧, 𝑞) − �̂�DA(�̂�𝒮 | 𝑧, 𝑞) ≤ 0 . ( . )

Secondly, given that the empirical riskwith respect to the true labeling is always less than
or equal to the empirical risk with the worst-case labeling, �̂�(𝜃 | 𝑧, 𝑢) ≤max �̂�(𝜃 | 𝑧, 𝑞),
the target contras ve risk ( . ) with the true labeling 𝑢 is always less than or equal to the
target contras ve pessimis c risk ( . ):

min
∈
�̂�DA(𝜃 | 𝑧, 𝑢) − �̂�DA(�̂�𝒮 | 𝑧, 𝑢) ≤

min
∈

max
∈

�̂�DA(𝜃 | 𝑧, 𝑞) − �̂�DA(�̂�𝒮 | 𝑧, 𝑞) . ( . )



6

168 6. Robust adapta on

Let (�̂�𝒯 , 𝑞∗) be the minimaximizer of the target contras ve pessimis c risk on the right-
handside of ( . ). Plugging these es mates in into ( . ) produces:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) − �̂�DA(�̂�𝒮 | 𝑧, 𝑢) ≤ �̂�DA(�̂�𝒯 | 𝑧, 𝑞∗) − �̂�DA(�̂�𝒮 | 𝑧, 𝑞∗) . ( . )

Combining inequali es . and . gives:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) − �̂�DA(�̂�𝒮 | 𝑧, 𝑢) ≤ 0 .

Bringing the second term on the le -handside to the right-handside shows that the tar-
get risk of the TCP es mate is always less than or equal to the target risk of the source
classifier’s:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) ≤ �̂�DA(�̂�𝒮 | 𝑧, 𝑢) . ( . )

However, equality of the two risks in . occurs with probability 0, which we will show in
the following.

The total mean for the source classifier consists of the weighted combina on of the class
means, resul ng in the overall source sample average:

𝜇𝒮 =∑𝜋𝒮 𝜇𝒮

=∑
∑ 𝑦
𝑛 [ 1

∑ 𝑦
∑𝑦 𝑥 ]

=1𝑛 ∑𝑥 . ( . )

The total mean for the TCP-DA es mator is similarly defined, resul ng in the overall tar-
get sample average:

𝜇𝒯 =∑𝜋𝒯 𝜇𝒯

=∑
∑ 𝑞
𝑚 [ 1

∑ 𝑞
∑𝑞 𝑧 ]

=∑ 1
𝑚∑𝑞 𝑧 ( . )

= 1𝑚∑𝑧 . ( . )
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Note that since 𝑞 consists of probabili es, the sum over classes ∑ 𝑞 in ( . ) is 1, for
every sample 𝑗. Equal risks for these parameter sets, �̂�DA(𝜃𝒯 | 𝑧, 𝑢) = �̂�DA(�̂�𝒮 | 𝑧, 𝑢),
implies equality of the total means, 𝜇𝒯 = 𝜇𝒮 . By Equa ons . and . , equal total means
imply equal sample averages: 𝑚 ∑ 𝑧 = 𝑛 ∑ 𝑥 . Given a set of source samples,
drawing a set of target samples such that their averages are exactly equal, cons tutes a
single event under a probability density func on:

𝑝𝒯( 𝒳 = 𝑧 ,… ,𝒳 = 𝑧 | 1𝑚 ∑𝑧 = 1
𝑛 ∑𝑥 ) .

By defini on, single events under con nuous distribu ons have probability 0. Therefore,
a strictly smaller risk occurs almost surely:

�̂�DA(�̂�𝒯 | 𝑧, 𝑢) < �̂�DA(�̂�𝒮 | 𝑧, 𝑢) .
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7
Discussion

This chapter reflects on the work presented in this thesis as well. Several findings are dis-
cussed and a series of open ques ons is presented. Addi onally, the benefit of domain
adapta on to open science is considered and a future step towards dynamical domain
adapta on is explored.

175



7

176 7. Discussion

In Chapter , I outlined my research ques on: when and how can a sta s cal classifier
generalize from a source to a target domain? This ques on is very general and the work
presented in this thesis is insufficient to fully answer it. For the broadest case of domain
shi , the answer is simple: it is impossible for a classifier to generalize from a source do-
main to all possible target domains. For par cular cases, it depends on the rela onship
between the domains. There are many ways in which two domains can be related to each
other, each with many possible of ways of exploi ng that informa on for designing a clas-
sifier. These ways have not all been found. But, on reflec on, some observa ons can be
made and some new ques ons can be asked, which are presented in the following subsec-
ons.

With complexity of domain rela onships, I mean how many variables change and how
much they change. In this regard, the simplest change is the case of prior shi : only one dis-
crete variable changes. However, even this case can be complicated to deal with. The rarer
a class, the more difficult it is to es mate it. Furthermore, it is not en rely clear whether
source samples should be reweighted to match the class propor ons of the target domain
or whether they should be balanced in order to facilitate training the classifier. Moreover,
it is not en rely clear how they should be up- or downweighted: although theore cally
a sample should be assigned a different loss, performance improvements have been re-
ported for methods that upsample and interpolate between source samples. That implies
an assump on of smooth varia on in feature space and raises the ques on of whether this
can always be assumed.

A er prior shi , covariate shi is the most constrained case. In its simplest form, only
one covariate (i.e. feature) changes. This has been extensively studied and many open
ques ons such as how far the variable can shi , how many samples are required to es -
mate the importance-weight and how the classifier behaves under importance-weight es -
ma on errors, have been addressed already [ , ]. It seems that the most important things
to check before a emp ng a method is: does the assump on of equal class-posterior dis-
tribu ons hold and if not, how strongly is it violated? Are the domains so far apart that the
weights will become bimodal? Do you have enough source and target samples to es mate
importance-weights? If weight es ma on is done parametrically, do you have enough
samples to prevent low probabili es in the denominator and if done non-parametrically,
do you have enough samples to perform hyperparameter es ma on (e.g. kernel band-
width selec on for kernel density es mators)? Is the sample selec on variable smooth? Is
there model misspecifica on (for weight or selec on variable es ma on and for training
the classifier)?

Further openques ons include: howdoes data preprocessing affect importanceweight
es ma on versus classifier training? Should each domain be normalized separately to
bring the domains closer together thereby avoiding weight bimodality or should this be
avoided because it induces a viola on of the covariate shi assump on? Is it ok to trans-
form only the features that have not shi ed between domains? Does the assump on of
equal class-posterior distribu ons hold for a part of feature space? Can mul ple source
domains aid in weight es ma on? Are hybrid distribu ons (joint distribu ons made up of
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the product of discrete distribu ons for discrete features and con nuous distribu ons for
con nuous features) necessary or useful for weight es ma on?

The simplest version of concept shi , is where only one of the condi onal distribu ons
𝑝(𝑦 | 𝑥 ) changes. However, even such a situa on is impossible to es mate from data
without observa on of at least one labeled sample in each domain, for each class. My
advice would be to es mate it from meta-data: if the experimenter recorded how data
in each domain is annotated, for instance when crowd-sourced annotators have to explain
why they assigned a sample to a par cular class, then it is possible to find discrepancies and
correspondences between annota on strategies. This addi onal informa on might allow
for correc ng sets of labels and reduce the shi in concept. However, concrete methods
for doing so are very applica on-specific.

The rest of the types of rela onships are much more complicated, because mul ple
changes occur at the same me. For example, for subspace mappings, there are both
changes in the data distribu ons and changes in the class-posterior distribu ons, and pos-
sible changes in class propor ons as well. Since these are less constrained, they are harder
to study. This makes it harder to predict whether a specific adap ve method will be suc-
cessful for a given a domain shi problem. Furthermore, it is s ll unclearwhat the effects of
sample sizes or es ma on errors are for methods based on subspace mappings, domain-
invariant spaces, domain manifolds, low-joint-error, etc. It would be very informa ve to
study these factors.

In conclusion, I would argue that there is s ll a lot to be done before domain-adap ve
classifiers becomeprac cal, everyday tools. At themoment, there are toomany researchers
proposingmethods to address very specific cases (some mes even just between twodatasets)
and only a handful of researchers working on answering theore cal ques ons. This is a
shame, as advances in theory o en shape successful methods. With this in mind, the next
two subsec ons present some open ques ons that I find interes ng.

7.1. Validity of the covariate shi assump on
The current assump on in covariate shi , namely 𝑝𝒯(𝑦 | 𝑥) = 𝑝𝒮(𝑦 | 𝑥), might be too
restric ve to ever be valid in nature. The assump on is o en interpreted as the decision
boundary being in the same loca on in both domains, but considering that they are dis-
tribu ons, the func ons need to be equal for the whole sample space. Both Figure . in
Chapter and Figure . from Chapter show examples of the shape of the posterior dis-
tribu ons. Equal class-posterior distribu ons is a much more difficult condi on to sa sfy
than equal decision boundaries. As such, there are many occasions where the assump-
on is made but is not actually valid, leading to detrimental performances of importance-
weighted classifiers (c.f. Chapter ).

Fortunately, some experiments have indicated that there is some robustness to a viola-
on of the covariate shi assump on. It would be very interes ng to perform a perturba-
on analysis and see if a less restric ve assump on can be found. This might take the form



7

178 7. Discussion

of decision boundaries lying within a specified 𝜖 distance from each other. Or it might be
possible to incorporate the distance between decision boundaries as a slack variable, which
would influence importance-weight es ma on directly. Since a less restric ve condi on
would be easier to sa sfy, methods relying on it would be more robust in prac ce.

7.2.More specific domain discrepancy metrics
Most measures that describe discrepancies between domains are very general; they are
either distribu on-free or classifier-agnos c. General measures produce looser general-
iza on bounds than more specific measures. As new insights are gained into causes of
domain shi , new, more precise metrics should be developed. These can contain prior
knowledge on the problem at hand: for example, in natural language processing, one of-
ten encodes text documents in bag-of-word or n-gram features. General measures such as
the MaximumMean Discrepancy might show small values for essen ally en rely different
contexts. A more specific measure, such as the total varia on distance between Poisson
distribu ons, would take the discreteness and sparseness of the feature space into ac-
count. Consequently, it would be more descrip ve and it would be preferable for natural
language processing domains. Such specific forms of domain discrepancy metrics would
lead to ghter generaliza on bounds, stronger guarantees on classifier performance and
more prac cal adap ve classifiers.

Finding domain discrepancies specific to a task or type of data is not a trivial task. A good
place to start is to look at methods that incorporate explicit descrip ons of their adapta-
ons. For instance, a subspace mapping method explicitly describes what makes the two
domains different (e.g. ligh ng or background). Looking at the types of adapta ons they
recover would be informa ve as to what types of discrepancies are useful for specific ap-
plica ons. I think therefore that methods with explicit descrip ons of ”transfer” could be
exploited for finding more specific domain discrepancy metrics.

7.3. Open access and ins tu on-varia on
Being able to classify a dataset by downloading a source domain and training a domain-
adap ve classifier instead of annota ng samples, can save a tremendous amount of me,
money and effort. It increases the value of exis ng datasets. Not only does it save anno-
ta on costs, but it can also increase sta s cal power by providing more data. I believe the
development of domain-adap ve or transfer learning methods, creates a larger incen ve
for researchers to make their data publicly available.

It is not uncommon to hear that different research groups working in the same field
do not use each other’s data. The argument is that the other group is located in a differ-
ent environment, experiments differently or uses a different measuring device, and that
their data is therefore not ”suitable” [ ]. For example, in biosta s cs, gene expression
micro-array data can exhibit ”batch effects” [ ]. These can be caused by the amplifica on
reagent, me of day, or even atmospheric ozone level [ ]. In some datasets, batch effects
are themost dominant source of varia on and are easily iden fied by clustering algorithms
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[ ]. However, addi onal informa on such as local weather, laboratory condi ons, or ex-
perimental protocol, should be available. That informa on could be exploited to correct
for the batch effect. The more knowledge we have of possible confounding variables, the
be er we would be able to model the transfer from one batch to the other. Consider-
ing the financial costs of genome sequencing experiments, the ability to combine datasets
frommul ple research centers without batch effects is very desirable. Larger benefits from
open access further encourage data sharing.

7.4. Sequen al adapta on
Successful adapta on is defined as an improvement over the performance of the origi-
nal system. As may be understood from this thesis, it is not clear which condi ons have
to be fulfilled in order for the system to perform well. It seems that in cases where it is
difficult to describe how two popula ons relate to each other, adap ve systems become
highly uncertain. Conversely, the more similar the popula ons are, the likelier it is that the
system adapts well. It would, for example, be easier to adapt to predict heart disease in
adolescents based on adults, then it would be to adapt to infants. But that raises the ques-
on: can we design a system that first adapts to an intermediate popula on and only then
adapts to the final target popula on? In other words, a system that sequen ally adapts?

Intermediate domains are o en available, but overlooked. When incorporated, these
would present a series of changes instead of one large jump. For example, adap ng from
European hospitals to predic ng illnesses in Asian hospitals is difficult. But a sequen al
adap ve system star ng in western Europe would first adapt to eastern Europe, followed
by the Middle-East, then to west Asia and finally reaching a popula on of eastern Asian
pa ents. If the domain shi s are not too dissimilar in each transi on, then adapta on
should be easier.

Of course, the sequen al strategy also raises a number of extra ques ons: will adapta-
on errors accumulate? How should the possible performance gain be traded off against
the addi onal computa onal cost? Will performance feedback be necessary? Some of
these ques ons have been addressed in dynamical learning se ngs, such as reinforce-
ment learning or mul -armed bandits [ , ]. The analysis of sequen al adap ve systems
could build upon their findings.

The sequen al adapta on se ng also shares some overlap with sequen al Monte Carlo
sampling, for me series predic on and state-space models [ ]. In that se ng, a con n-
uous signal that changes its characteris cs over me is modeled and extrapolated. One
method, called par cle filtering, actually employs importance-weigh ng over me [ , ].
Each sample is weighted with its importance with respect to the signal in the next me-
step. However, sudden large changes would cause the same sampling variance problems
as discussed in Chapter . Considering the similarity to importance-weighing in covariate
shi , developments in par cle filtering could be very useful to sequen al domain adapta-
on. In summary, a lot is known about dynamical learning, which should not be neglected
in designing a sequen al domain-adap ve classifier.
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7.5. Conclusion
I hope to have convinced the reader that domain adapta on is an interes ng topic of re-
search within machine learning and ar ficial intelligence. Progress in the design and anal-
ysis of classifiers that generalize to target domains would be beneficial to all areas where
supervised learning is already being used, especially in areas where annota on is expen-
sive and similar datasets are available. There is s ll a lot of work to be done before these
methods become prac cal, but with it come many exci ng challenges as well.
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Nota on

Please refer to this list for a descrip on of the mathema cal nota on in this thesis. Note
that individual chapters may deviate when necessary.

𝒳 Input space, for example ℝ .
𝒴 Output space, for example {−1,+1} or {1, … , 𝐾}.
𝐷 Dimensionality of input space.
𝐾 Number of classes, i.e. |𝒴|.
𝑝𝒮 Source probability distribu on func on.
𝑝𝒯 Target probability distribu on func on.
𝒮 Source domain: (𝒳,𝒴, 𝑝𝒮).
𝒯 Target domain: (𝒳,𝒴, 𝑝𝒯).
𝑋 Source data, indexed by 𝑖 for samples, 𝑑 for features and 𝑘 for classes.
𝑥 Source data sample, indexed by 𝑑 for features.
𝑍 Target data, indexed by 𝑗 for samples, 𝑑 for features and 𝑘 for classes.
𝑧 Target data sample, indexed by 𝑑 for features.
𝑦 Source labels 𝑦 ∈ 𝒴, indexed by 𝑖 for samples and 𝑘 for classes.
𝑢 Target labels 𝑢 ∈ 𝒴, indexed by 𝑗 for samples and 𝑘 for classes.
𝒟𝒮 Dataset of labeled source samples: 𝒟𝒮 = {(𝑥 , 𝑦 )} .
𝒟𝒯 Dataset of labeled target samples: 𝒟𝒯 = {(𝑧 , 𝑢 )} .
𝔼 Expecta on, or expected value, of a distribu on.
𝕍 Variance of a distribu on.
ℂ Covariance between two variables.
ℋ Hypothesis space of classifica on func ons.
ℎ Classifica on func on; ℎ ∶ 𝒳 → 𝒴.
𝜃 Classifica on func on parameters.
ℓ Loss func on, which compares a predic on ℎ(𝑥 ) to a true label 𝑦 .
𝑅 Risk func on, i.e. the expected loss: 𝑅(ℎ) = 𝔼ℓ(ℎ).
�̂� Empirical risk, i.e. the average loss: �̂�(ℎ|𝒟𝒮 ).
𝑤 Importance weights; 𝑤(𝑥 ) or 𝑤 , indexed by 𝑖 for samples.
𝐿 Order of regulariza on, e.g. 𝐿 -regulariza on.
𝜆 Regulariza on parameter.
D Divergence between two distribu ons: D(𝑝𝒮 , 𝑝𝒯).
D̂ Empirical divergence between two datasets: D̂(𝑋, 𝑍).
𝑑 Distance between two samples; 𝑑(𝑥, 𝑧).
𝜙 Basis func on; 𝜙(𝑥).
𝜅 Kernel func on; 𝜅(𝑥, 𝑥 ) = 𝜙(𝑥)𝜙(𝑥 ) .
𝒩 Normal distribu on, i.e. 𝒩(𝑥 | 𝜇, Σ).
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