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Abstract

Climate change is one of the biggest challenges of this time. One of the necessary changes to
combat this challenge is a shift from conventional power resources, such as coal and natural
gas, to large scale deployment of renewable resources, such as wind and solar power. However,
renewable energy resources are volatile because they depend on the weather, which poses a
problem because supply and demand should always be exactly matched. Along with a shift in
energy production, also appliances that use non renewable energy are becoming electric, e.g.,
electric heating and cooling in buildings and electric vehicles (EVs). This causes an increase
in electricity demand and is a burden on the main grid. To reduce the demand on the grid, it
is important that a part of the energy is produced locally by distributed renewable resources,
such as residential solar panels. To maintain a stable operation of the grid, the smart grid
paradigm has to be adopted. Advancements in information and communication technologies
provide the means for an efficient management of the grid using various services, such as
distributed generation and storage.

Because of the conflicting nature of the agents in an electricity network, game theory is a
widely used framework to tackle this problem. In a realistic model of a power grid coupling
constraints must be taken into account, because the agents have shared resources. There-
fore, the economic dispatch problem is modeled as a noncooperative game with coupling
constraints, called a generalized game. Three distributed algorithms are derived to reach a
generalized Nash equilibrium (GNE). It is shown through simulations that these algorithms
have the potential to ensure a safe and efficient operation of the grid, while minimizing the
cost of power usage. To reduce the cost even further, a method is presented to make more
optimal use of the storage units.
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Chapter 1

Introduction

1-1 Motivation

Environmental concerns over the past years have asked for a change in the way our energy
is produced. The past five years were the hottest years ever recorded and average sea levels
have been rising at a rate roughly twice as fast as the long-term trend since recording began
in 1880 [1]. It has become ever more evident that a paradigm shift from conventional energy
resources, such as coal and natural gas, to renewable energy resources, such as solar and wind
power, is necessary. Not only do renewable energy resources cause less pollution, they also
reduce the burden on the main grid by producing a proportion of the demand locally [2].

In the EU, buildings are responsible for approximately 40% of energy consumption and 36% of
greenhouse gas emissions [3], so a lot of improvement can be made in this sector. Large scale
deployment of renewable energy resources can be realized in a distributive manner with the
increase in small scale renewable energy generators, such as residential solar panels. These
distributed energy resources (DERs) invite consumers to become prosumers: people who
consume and produce energy. However, renewable energy resources are dependent on the
weather which makes them volatile. Because supply and demand should always be exactly
matched in an electricity network, the volatile nature of renewable energy resources poses
a challenge. Besides the volatility of renewable energy production, another problem is the
growing load on the grid. This is caused by the increase in electric appliances, such as electric
vehicles (EVs) and electric heating and cooling systems in buildings.

With an increasing amount of DERs, along with advancements in information and communi-
cation technologies, the need for a central entity to regulate the electricity market decreases.
A power network that contains intelligent nodes that can operate, communicate, and interact
autonomously to efficiently deliver power and electricity to their consumers is called a smart
grid [4]. In a smart grid, prosumers could have the possibility to trade their lack or excess of
energy directly with each other and to schedule the demand of appliances to reduce the peaks
in energy demand. Another promising technology to ensure a stable operation of the grid is
the use of storage devices. With these new technologies gaining ground, the question arises
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2 Introduction

how to safely and efficiently distribute and use power in a smart grid. In the literature about
future power grids different methods have been proposed how the grid should be managed.
However, an efficient and reliable algorithm to allocate the resources in a smart grid has yet
to be found. For a survey on methods found in literature the reader is referred to [5].

1-2 Research objective

Since the agents in a power network are assumed to be self-interested parties, game theory is a
widely used framework to obtain a market equilibrium. An equilibrium state in a noncooper-
ative game is called a Nash equilibrium. A special kind of noncooperative game is one where
the agents have some shared resources, which is called a generalized (noncooperative) game.
In a generalized game the strategy set of each agent is dependent on the decisions of the other
agents, which means the shared constraint couples the decisions of the agents. Decentral-
ized algorithms for Nash equilibrium seeking in generalized noncooperative networked games
have gained high interest recently. These newly developed algorithms provide the means for
efficient and robust energy management mechanisms [6]. However, they have not yet been
tested in an energy market setting. This work aims at using recently developed distributed
algorithms for generalized games on a resource allocation problem to obtain a stable operation
of the grid and minimize the cost of power usage, while respecting the shared constraints.

1-3 Outline

First, Chapter 2 gives a short introduction on how the electricity market of today is organised
and how the future grid is envisioned. Chapter 3 gives the mathematical background from
which the algorithms in this work are derived. First, the basic idea of game theory is explained,
after which the more specific case of a generalized noncooperative networked game with
coupling constraints is considered. Then, in Chapter 4 the electricity market model on which
the algorithms will be tested is derived. Chapter 5 gives the derivation of the proposed
algorithms and in Chapter 6 these algorithms are used in simulations on the market model
derived in Chapter 4. Finally, Chapter 7 gives the discussion and Chapter 8 concludes this
work and gives some recommendations for future work.
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Chapter 2

Electricity markets

This chapter gives a short introduction on electricity markets. First, the operation of the
current electricity market will be explained in Section 2-1. Then, in Section 2-2 the electricity
market of the future will be discussed.

2-1 Current electricity market

The electricity system consists of two parts: a physical infrastructure and an organised elec-
tricity market where electricity is traded [7]. The physical infrastructure consists of genera-
tors and a transport system. The transport system is usually divided in transmission lines
for long distance transport, and a distribution network for electricity delivery to consumers.
The electricity market consists of electricity suppliers, consumers, transmission system oper-
ators (TSOs), distribution system operators (DSOs) and regulators. The TSO is responsible
for the transportation of electricity over long-distance power lines, while the DSO is respon-
sible for the distribution of electricity to the customers [7]. The DSO also installs electricity
meters at customers and communicates the consumption to the electricity providers. Unlike
other commodities, such as coal, electricity cannot (yet) be stored at large scale. This means
that supply and demand of electricity should always be balanced. Balancing of the grid is
the responsibility of the TSO and balance responsible parties. In Figure 2-1 a basic overview
of the current power grid is shown.

In general, electricity markets are divided in four different types, depending on the time period
before delivery [8]. These are the forward market, the day-ahead market, the intraday market
and the balancing market. Beside these four markets, there also exist long-term contracts,
which can cover up to 20 years or more [7]. In what follows a brief description of each market
will be given. How these markets are organised in detail differs from country to country, but
the next four sections will give a general idea of how these markets work.
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4 Electricity markets

Figure 2-1: Overview of the current power grid [7]

2-1-1 Forward market

On the forward market contracts are traded to buy electricity for days, weeks or years in
advance. With these contracts a certain amount of power is guaranteed to be available in the
future for the buyer. These types of contracts are generally for large amounts of electricity
and cover most of the electricity that is traded [8].

2-1-2 Day-ahead market

On the day-ahead market, contracts are traded for a time period of 24 hours ahead. These are
power contracts for physical delivery at each hour for the next day’s 24 hours. At this point in
time a more accurate forecast of the demand profile of the next day is available, so the amount
of power that is bought for the next day is a more accurate representation of the power that
is actually going to be used. The day-ahead market works with an auction mechanism, where
suppliers place bids on their supply and buyers place bids to purchase electrical energy. Bids
to supply power are ranked in ascending order and bids to buy power are ranked in descending
order. The intersection of supply and demand determines the marginal price for the entire
region covered by the electricity pool [9].

2-1-3 Intraday market

On the intraday market, the expected demand for which energy is bought on the forward and
day-ahead market is further refined due to better forecasts. On this market power products
can be continuously traded in hourly intervals as well as freely definable blocks up to 5 minutes
prior to delivery [10]. Instead of the auction mechanism used in the day-ahead market where
the clearing price is the price for all transactions, the intraday market uses a pay-as-bid
process. This means that the same product can have different prices depending on the time
the trade was made. With an increase in volatile energy resources, such as wind and solar
power, the intraday market is becoming increasingly important [9].

J.A. Logeman Master of Science Thesis



2-2 Future electricity market 5

2-1-4 Balancing market

A mismatch between supply and demand causes the frequency of the grid to change, where
excess supply causes an increase in frequency, and excess demand causes a decrease in fre-
quency. In Europe the standard frequency of the grid is 50 Hertz. A change in this frequency
can cause damage to assets or even power outages. Because it is impossible to exactly predict
how much power is needed at each point in the future, a fourth market is needed, which is
called the balancing market. Because balancing is used to keep the frequency within a narrow
bound, it is also called frequency control. To ensure a balanced operation of the grid in this
last stage, flexible generators are used to meet the peaks in demand in real-time. This short
term balancing of supply and demand is done in three stages: primary reserves, secondary
reserves and tertiary reserves. The difference between these three reserves is the time period
within which they are activated. If there is a mismatch between supply and demand, the
primary reserves can be activated within seconds. If the mismatch still exists, secondary
reserves can be used to get the supply to meet the demand again. This secondary control can
be activated for one, up to several minutes. The tertiary reserves are used if there still exists
a deviation from the nominal value and can be activated for several minutes up to several
hours.

2-2 Future electricity market

In the current power system there are only a few large power supplying companies. With
an increase in renewable energy sources, such as wind farms, and distributed energy gener-
ation, such as residential solar panels, the volatility of energy supply increases. Also, with
an increasing amount of demanding electric appliances, such as electric vehicles (EVs) and
electrical heating and cooling systems, the demand of electricity increases. This increasing
volatility and demand ask for more intelligent solutions in order to ensure a safe and reliable
operation of the grid. One way of achieving this is to liberalize the electricity markets and
use a bottom-up approach which allows for a more proactive role for consumers.

2-2-1 Smart grid

Allowing consumers to have a more active role in the power system asks for more intelligent
solutions in the grid. A grid that has intelligent nodes is often referred to as a smart grid. In
[4] a smart grid is defined as a power network composed of intelligent nodes that can operate,
communicate and interact autonomously to efficiently deliver power and electricity to their
consumers. Another concept that is often seen in power grid literature is that of a microgrid.
According to [11] a microgrid is a single, controllable, independent power system that consists
of distributed energy resources (DERs), loads, energy storage, and control devices. In a
microgrid DERs and storage devices are directly connected to the users. A microgrid can
be connected to the main grid or operate in an islanded mode. A microgrid with smart grid
characteristics allows for an autonomous and efficient power network. Figure 2-2 shows an
illustration of the smart grid paradigm.
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6 Electricity markets

Figure 2-2: Overview of smart grid paradigm [12]

In the literature about future electricity markets there are two main methods to provide
a stable and reliable operation of a microgrid: demand management and energy storage.
Demand management involves scheduling the use of appliances in order to reduce peaks in
the total energy demand and to reduce cost. However, as not all appliances can be shifted to
a time with little demand (e.g. because a consumer wants to use that appliance at a certain
time or the appliance requires a continuous operation), shifting demand does not solve the
problem of the intermittent nature of renewable energy resources completely. Another way
to reduce peaks in the demand is the use of storage devices. Distributed energy storage in
the form of batteries is still rather expensive, but as technology advances, the cost of these
storage units will decrease and the economical services they can provide will increase [13].

2-2-2 Market organization

Besides the physical infrastructure and assets in a microgrid, the grid also needs an organized
market where power can be traded. The degree of decentralization in these markets is an
aspect where the papers in literature differ. Some papers consider a fully decentralized mar-
ket structure which allows full autonomy of the agents in the system. This means that all
prosumers that participate in the network can trade electricity directly with each other and
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2-2 Future electricity market 7

the main grid, without the need of a central entity. Also, the relevant control signals needed
for the optimization process are shared directly between the agents. Other papers consider
a distributed market structure where a central coordinator is in charge of the trading pro-
cess. The preference goes to a full peer-to-peer (P2P) market, because it lacks the need of a
central entity and allows for more autonomy of the agents. To achieve a full P2P market a
distributed algorithm is necessary, as opposed to semi-decentralized algorithms were a central
node is necessary to share all relevant control signals.
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Chapter 3

Mathematical background

This chapter introduces the mathematical concepts that are used in the rest of this thesis.
First, the basic idea of game theory is explained in Section 3-1. Game theory consists of two
main branches, which are discussed in Section 3-1-1 and Section 3-1-2. Then, in Section 3-2
the specific case of a noncooperative game is discussed where the agents in the game have
some shared resources. The theory presented in this section is what forms the basis for the
algorithms presented in the rest of this work. Finally, where in Section 3-2 it is assumed the
problem is deterministic, Section 3-3 discusses the case when there are uncertainties in the
system.

3-1 Game theory

According to [14] game theory can be defined as: "The study of mathematical conflicts and
cooperation between rational intelligent decision-makers." It provides a framework to analyze
situations in which two or more agents have to make decisions that influence each others
welfare [14]. Because of the conflicting interests of the agents that perform P2P trading
or demand management, game theory provides a very effective tool for the decision-making
processes. There are two main branches within game theory: noncooperative game theory
and cooperative game theory. These concepts are explained in more detail in Section 3-1-1
and Section 3-1-2, respectively.

3-1-1 Noncooperative game theory

Noncooperative game theory can be used to analyze the decision making process of inde-
pendent players with partially or totally conflicting interests. It captures the distributed
decision-making process that allows the players to optimize their objective functions coupled
through the actions of the involved players, without any coordination or communication [4].
Noncooperative does not necessarily mean that the players do not cooperate; it rather means
that cooperation must be self-enforcing and cannot be the result of any communication or
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10 Mathematical background

coordination of strategic choices among the players [15]. There are two types of noncooper-
ative games: static games and dynamic games. A static game is a game in which time or
information does not affect the choices of the players. It can be seen as a one-shot process
in which players only make a decision once [15]. Even when the decisions of the players are
taken at different points in time, without them having any information about the choices of
the others, the game is considered static. A dynamic game is a game in which players have
some form of information about each others’ choices. In such a game the agents can act more
than once and time has a central role in the decision making [15]. With some additional
information, dynamic games can be formulated as static games. A popular representation for
describing a noncooperative static or dynamic game is the notion of a strategic (or normal)
form. Following [15, Definition 3.1] a strategic game is defined as G = (N , (Si)i∈N , (ui)i∈N ),
where:

• N is a finite set of players, i.e., N = {1, . . . , N}.

• Si is the set of available strategies for player i.

• ui : S → R is the utility (payoff) function for player i, with S = S1× · · ·×Si× · · ·×SN
(Cartesian product of the strategy sets).

In such a game, each player wants to choose an action si ∈ Si that optimizes its utility
function ui(si, s−i). This utility function does not only depend on the strategy of that player,
si, but also on the strategies of all other players than player i, denoted by s−i. Note that in
a static game, since no information is available, the notion of action and strategy mean the
same thing. In a dynamic game however, one has to distinguish between the two. A strategy
can be seen as a mapping from the information available to the player to the action set of
this player [15]. There are games in which the strategy choices are made in a deterministic
matter, which are called pure strategies, and games in which the strategies follow a probability
distribution over the action sets, which are called mixed strategies.

The most accepted solution concept for noncooperative games is the so-called Nash equilib-
rium. A Nash equilibrium is a state of a noncooperative game where no player can improve
its utility by changing its own strategy, if the other players maintain their current strategy
[15]. When dealing with pure strategies, the Nash equilibrium can be defined as in [15]:
A pure-strategy Nash equilibrium of a noncooperative game G = (N , (Si)i∈N , (ui)i∈N ) is a
strategy profile s∗ ∈ S such that ∀i ∈ N the following holds:

ui(s∗i , s∗−i) ≥ ui(si, s∗−i), ∀si ∈ Si. (3-1)

The main advantage of this solution concept is that it characterizes a stable state of a
noncooperative game, which can often be reached by the players in a distributive manner and
with little coordination [4]. However, there are also some drawbacks. A noncooperative game
can have multiple Nash equilibria or none at all. Selecting a desirable Nash equilibrium from
multiple solutions is a challenging topic. Also, a Nash equilibrium is not necessarily the best
outcome in terms of payoff. For examples of noncooperative games and Nash equilibria the
reader is referred to [15, Chapter 3].
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3-1 Game theory 11

3-1-2 Cooperative game theory

While noncooperative game theory studies the behaviour of competing players that cannot
coordinate their decisions or communicate with one another, cooperative game theory provides
analytical tools to study the behaviour of players when they cooperate [15]. Cooperative game
theory has two main branches: bargaining theory and coalitional games. Bargaining theory
studies the bargaining process among players to determine the terms of the cooperation.
Coalitional games describe the formation of cooperating groups, called coalitions, which can
strengthen the position of the players in a game. Coalitional games prove to be a very powerful
tool for designing fair, robust, practical and efficient cooperation strategies in communication
networks. A coalitional game is defined by the pair (N , v), where N is the set of players in
a coalitional game and v is a mapping that determines the payoff that each player receives,
called the coalition value [15]. Any coalition S ⊆ N represents an agreement between the
players in S to act as a single group. Coalitional games are grouped into three classes:
canonical coalitional games, coalition-formation games and coalitional graph games.

In a canonical coalitional game, the coalition is formed by all the players of the game. The
main question is how to stabilize the coalition and how to distribute the gains of the coalition
among the players in a fair manner. This can be done by using the Shapley value. The
Shapley value is the expected marginal contribution of player i to the grand coalition, when
the players join the coalition in a random order [15]. Following the notation in [15], given
a canonical game (N , v), the Shapley value φ(v) assigns the payoff φi(v) for every player i
given by

φi(v) =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!
N ! [v(S ∪ {i})− v(S)]. (3-2)

This way, the total surplus generated by the grand coalition is distributed fairly among the
agents.

In a coalition-formation game, the main question is how the coalitions must be formed and
what the cost for cooperation is. Coalition-formation games can be divided into two groups:
static coalition-formation games and dynamic coalition-formation games. In a static coalition-
formation game, the structure of the coalition is imposed by an external factor and the objec-
tive is to study the properties of this structure, like stability. The main objective of dynamic
coalition-formation games is to analyze the formation of coalitions through the players’ inter-
actions and to study how the system reacts to environmental changes, for example a change
in the number of players [16]. Solving coalition-formation games, the dynamic variants in
specific, is more difficult and application specific than solving canonical games.

A coalitional game where players’ interactions are governed by a communication graph struc-
ture is referred to as a coalitional graph game. The main question here is how to stabilize
the grand coalition or form a network structure taking the communication graph into account
[15]. For a more elaborate treatment of this topic, the reader is referred to [15, Chapter 7].
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12 Mathematical background

3-2 Generalized Nash equilibrium problems and variational inequal-
ities

With a standard Nash equilibrium problem (NEP) as described in Section 3-1-1, only the
payoff of each agent depends on the decisions of the other agents. However, when the players
have some shared limited resources, as is the case in a power grid, not only the payoff depends
on the decisions of the other players, but also the feasible set of each player depends on the
strategies of the other players. The problem is then called a generalized Nash equilibrium
problem (GNEP). In many practical applications, ranging from economics to engineering,
these coupling constraints have to be considered to obtain a realistic model [17]. In a GNEP,
each agent seeks to minimize its own cost function under not only local feasibility constraints,
but also some joint feasibility constraints. In what follows it will be explained in more detail
what a generalized game looks like and how they can be solved.

We consider a set of noncooperative agents I = {1, . . . , N}, each of which has to choose
its strategy xi ∈ Rni from its local decision set Ωi ⊆ Rni . The cost function of each agent
depends on the decision of agent i itself, xi, and the decisions of the other agents, x−i:

Ji(xi,x−i) := fi(xi,x−i) + gi(xi). (3-3)

The part gi(xi) denotes a local cost and can be non smooth. For this example we consider the
local cost to be a local constraint via an indicator function, i.e., gi(xi) = IΩi(xi). Furthermore,
because we consider a game with shared limited resources, the coupling between the agents
not only arises from the cost function, but also via their feasible decision sets. In this example
the specific case is considered where the game has affine coupling constraints, i.e., Ax ≤ b.
Each player i aims to minimize its objective function, given the strategies x−i of the other
players:

∀i ∈ I :
{

minxi∈Ωi Ji(xi,x−i)
s.t. Aixi ≤ b−

∑N
j 6=iAjxj .

(3-4)

The feasible set of each player i, which is dependent on the decisions of the other players,
x−i, is denoted by

Xi(x−i) :=

yi ∈ Ωi | Aiyi ≤ b−
N∑
j 6=i

Ajxj

 . (3-5)

The collective feasible set can be written as

X = {y ∈ Ω | Ay − b ≤ 0m}. (3-6)

It is assumed that for each i ∈ I and x−i ∈ X−i the function fi(·, x−i) is convex and continu-
ously differentiable and the set X satisfies Slater’s constraint qualification [18]. A generalized
Nash equilibrium (GNE) is a collective strategy x∗ ∈ X such that for all i ∈ I

Ji(x∗i ,x∗−i) ≤ inf{Ji(y,x∗−i)|y ∈ Xi(x∗−i)}. (3-7)

However, GNEPs are generally very hard to solve. According to [19] it is reasonable to state
that the only GNEPs for which solution procedures exist, are the ones that can be reduced to
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3-2 Generalized Nash equilibrium problems and variational inequalities 13

a variational inequality (VI), for which a vast amount of theory is available. The VI defined
by X and F , is the problem of finding a vector x∗ ∈ X such that

F (x∗)T (x− x∗) ≥ 0, ∀x ∈ X , (3-8)

where X ⊂ Rn is a closed convex set and F : X → Rn is a continuous function. The
VI(X , F ) is equivalent to finding a vector x∗ ∈ X that satisfies the minimum principle

∇f(x∗)T (x− x∗) ≥ 0, ∀x ∈ X , (3-9)

where F = ∇f . If we now define X as in (3-6) and F as

F (x) ≡

 ∇x1J1(x1,x−1)
...

∇xNJN (xN ,x−N )

 , (3-10)

where for each i ∈ I, Ji(xi,x−i) is defined as in (3-3), every solution of the VI(X , F )
is a solution of the GNEP (3-4) [19]. However, in the reduction from a GNEP to a VI
not all solutions are preserved. It can even happen that the GNEP has solutions, but the
corresponding VI has none. In order for the solution set of the VI to be nonempty and
compact, the set X must be compact and convex and the function F (x) must be continuous
[20].

To come to a solution procedure, we start by stating the Lagrangian of the GNEP, which is
given by

Li(x, λi) := Ji(xi,xi) + IΩi(xi) + λ>i (Ax− b), (3-11)

where λi ∈ Rm≥0 is the Lagrangian dual variable. The Karush-Kuhn-Tucker (KKT) conditions
for the GNEP are  0 ∈ ∇xiJi(x∗i ,x∗−i) + NΩi(x∗i ) +A>i λ

∗
i

0 ∈ NRm
≥0

(λ∗i )− (Ax∗ − b).
(3-12)

In terms of the VI, the collective decision x∗ is a solution of the VI(X , F ) if and only if

x∗ ∈ argmin
y∈X

(y − x∗)>F (x∗), (3-13)

which gives rise to the following KKT conditions: 0 ∈ ∇xiJi(x∗i ,x∗−i) + NΩi(x∗i ) +A>i λ
∗

0 ∈ NRm
≥0

(λ∗)− (Ax∗ − b).
(3-14)

The solution x of the VI(X , F ) at which the KKT conditions (3-14) hold is a solution of the
GNEP at which the KKT conditions (3-12) hold with λ1 = λ2 = . . . = λN [19]. This is called
the variational GNE (v-GNE). Conversely, the solution x of the GNEP at which the KKT
conditions (3-12) hold with λ1 = λ2 = . . . = λN , is a solution of the VI(X , F ) [19]. In other
words, the agents have to reach consensus on the dual variable λ to come to the variational
solution. This variational solution also reflects a notion of fairness among the agents [21].
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14 Mathematical background

The KKT conditions in (3-14) can be written in a more compact form as the monotone
inclusion

0 ∈ T (x,λ) :=
[
F (x) + NΩ(x) +A>λ
NRm

≥0
(λ)− (Ax− b)

]
. (3-15)

Finding a solution of the VI(X , F ) (and hence of the original variational GNEP (v-GNEP))
now comes down to finding the zeros of the operator T . To solve this monotone inclusion,
different operator splitting schemes can be used. One of the simplest operator splitting
schemes is the forward-backward (FB) scheme [22]. The operator T is split in a part A
and B, for which it holds that T = A + B. The zeros of the mapping A + B correspond
to the fixed point of a specific operator depending on both A and B. The solution can
then be found by using a fixed point iteration on this operator. Besides the FB splitting,
different operator splitting methods exist which all have their benefits and drawbacks, e.g.
the forward-backward-forward and forward-backward-half-forward scheme [23].

3-3 Stochastic generalized Nash equilibrium problems

The NEP and GNEP discussed in the previous section were derived for the deterministic
case when there is no uncertainty in the system. However, in real applications one may
encounter uncertainties, for example uncertainty in the demand in an electricity market.
When the cost functions of the NEP contain expected value functions, the problem is called
a stochastic NEP (SNEP). When the system also has shared constraints, a SNEP becomes a
stochastic GNEP (SGNEP). If the random variable is known, a SGNEP could be solved in
the same way as a deterministic GNEP by solving the corresponding VI. However, because
the pseudo-gradient is usually not accessible due to excessive computations, the solution
of the stochastic VI (SVI) relies on samples of the random variables [18]. There are two
main methodologies which are used for this matter: sample average approximation (SAA)
and stochastic approximation (SA). In the SAA approach, the expected value is replaced
with the average over an infinite number of samples of the random variable [24]. In the
SA approach, each agent uses only one realization of the random variable. This method is
computationally less expensive, but usually requires stronger assumptions on the mappings
involved [18]. As an alternative, the SA scheme can be used with variance reduction. This
scheme considers the average over an increasing amount of samples, which is possible when
there is a lot of data available. This method is computationally more expensive than using
only one realization, but usually requires less strong assumptions on the mappings involved
[24].

Using the same setup as in the previous section, a set of agents I = {1, . . . , N} with strategies
xi ∈ Ωi ⊆ Rni is considered. The cost function of each agent i depends on the decision of
agent i itself, xi, the decisions of the other agents, x−i, and in the stochastic case also on the
random variable ξ : Ξ→ Rd through which the uncertainty is expressed:

Ji(xi,x−i) := Eξ[fi(xi,x−i, ξ(ω))] + gi(xi), (3-16)

where (Ξ,F ,P) denotes the probability space. The local cost gi(xi) is again taken to be the
local constraint via the indicator function, gi(xi) = IΩi(xi), and we also look at the specific
case where the game has affine coupling constraints Ax ≤ b. The feasible set of each agent
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i ∈ I is denoted by (3-5) and the collective feasible set by (3-6). It is assumed there is
no uncertainty in the constraints and, as in the deterministic case, that for each i ∈ I and
x−i ∈ X−i the cost function is convex and continuously differentiable and the set X satisfies
Slater’s constraint qualification [18].

Given the decisions of the other agents x−i, each player aims to to solve the local optimization
problem:

∀i ∈ I :
{

minxi∈Ωi J(xi,x−i)
s.t. Aixi ≤ b−

∑N
j 6=iAjxj .

(3-17)

The aim of the algorithm is to compute the stochastic GNE, that is, a collective strategy
x∗ ∈ X such that for all i ∈ I

Ji(x∗i ,x∗−i) ≤ inf{Ji(y,x∗−i)|y ∈ Xi(x∗−i)}. (3-18)

As in the previous section, the solution we are interested in, is the solution of the associated
SVI(X ,F)

〈F(x∗),x− x∗〉 ≥ 0, ∀x ∈ X , (3-19)

where F(x) is the (pseudo) gradient mapping

F(x) = col((E[∇xifi(xi,x−i, ξ)])i∈I). (3-20)

The Lagrangian of the SGNEP is

Li(x, λi) := Eξ[fi(xi,x−i, ξ)] + IΩi(xi) + λ>i (Ax− b), (3-21)

where λi ∈ Rm≥0 is the Lagrangian dual variable. The KKT conditions for the SGNEP are 0 ∈ E[∇xifi(x∗i ,x∗−i, ξ)] + NΩi(x∗i ) +A>i λ
∗
i

0 ∈ NRm
≥0

(λ∗i )− (Ax∗ − b).
(3-22)

In terms of the associated SVI, the collective decision x∗ is a solution of the SVI(X ,F) if
and only if

x∗ ∈ argmin
y∈X

(y − x∗)>F(x∗), (3-23)

which gives the following KKT conditions:

∀i ∈ I :

 0 ∈ E[∇xifi(x∗i ,x∗−i, ξ)] + NΩi(x∗i ) +A>i λ
∗

0 ∈ NRm
≥0

(λ∗)− (Ax∗ − b).
(3-24)

Again, the agents have to reach consensus on the dual variable λ to come to the variational
solution of the game. As in the deterministic case, the KKT conditions (3-24) can be rewritten
as a monotone inclusion on which different operator splitting schemes can be applied.
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Chapter 4

Problem formulation

This chapter presents the electricity market model for which the algorithms in Chapter 5
will be derived. First, Section 4-1 gives some notations that are used in this chapter and
Chapter 5. Then, Section 4-2 describes the market setup, after which Section 4-3 will give
the final optimization problem which will be used in Chapter 5.

4-1 Notation

0N and 1N denote a vector consisting of N zeros or ones, respectively. Given x1, . . . , xN ∈ Rn,
x := col(x1, . . . , xN ) = [x>1 , . . . , x>N ]>. The resolvent of a maximally monotone operator A
is denoted by JA = (Id + A)−1. The mapping IS : Rn → {0,∞} denotes the indicator
function for the set S ⊆ Rn, i.e., IS(x) = 0 if x ∈ S, IS(x) = ∞ otherwise. The set-valued
operator NS : Rn → Rn denotes the normal cone operator for the set S ⊆ Rn and is defined

as NS(x) = ∂IS(x) =
{
∅, x /∈ S
{w ∈ Rn|w>(z − x)} ≤ 0, ∀z ∈ S, x ∈ S

.

4-2 Electricity market model

The electricity market considered in this work is a full peer-to-peer (P2P) market, derived
from the electricity market model presented in [6]. A day-ahead P2P electricity market
with prosumers in a microgrid is modeled as an economic dispatch problem. The agents
(prosumers) in the system can trade electricity with the main grid as well as with (some
of the) other agents autonomously and they might have dispatchable generation capabilities
and/or storage units. All relevant control signals needed for the optimization process are
shared directly between the agents without the need of a central coordinator.

The total set of agents is denoted by N = {1, 2, . . . , N}. They communicate through the
communication graph G = (N , E), where the vertices N represent the agents and the edges
E ⊆ N ×N represent the communication links between the them, with |E| = E. The set of
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18 Problem formulation

prosumers with which prosumer i can trade power are called the neighbors of agent i and is
denoted by Ni = {j|(i, j) ∈ E}. Hence, agent i can trade energy with agent j only if the edge
(i, j) lies in the set of edges E . Furthermore, the graph G is undirected, which means that if
for agents i and j (i, j) ∈ E , we also have that (j, i) ∈ E . Also, the graph is assumed to be
connected, i.e., there always exists a path between any two prosumers.

At each time instant h, each agent i ∈ N has a certain demand, denoted by pdi,h. This
demand is defined as the difference between the aggregate load at that time instant and the
total power produced by non-dispatchable generation units (such as a PV system) owned by
that agent, where a positive pdi,h means that the aggregate load at time instant h is greater
than the non-dispatchable generation. To meet this demand pdi,h, agent i has the following
set of decision variables at each time instant h:

xi,h = col
(
pdgi,h, p

st
i,h, p

mg
i,h , {p

tr
(i,j),h}j∈Ni

)
∈ Rni , (4-1)

where pdgi,h ∈ R≥0 denotes the power produced by dispatchable generation units, psti,h ∈ R
denotes the power delivered to/by the storage unit, pmgi,h ∈ R denotes the power traded with
the main grid and ptr(i,j),h ∈ R denotes the power traded with neighbor j ∈ Ni. Note that a
positive value for psti,h means power is used from the storage unit and a negative value means
power is delivered to the storage unit. For pmgi,h and ptr(i,j),h a positive value means buying
power and a negative value means selling power.

The goal of each agent is to minimize the cost of power usage, while certain constraints
must be satisfied. In what follows the cost functions and constraints for each of the decision
variables will be discussed.

4-2-1 Cost functions and constraints

Power balance

As stated before, pdi,h denotes the difference in the aggregate load and the total generation
by non-dispatchable generation units for agent i at time instant h. Hence, pdi,h indicates the
actual power demand of that agent at that time instant. This power must be obtained by
dispatchable generation, using the storage unit, trading with the main grid and/or trading
with neighbors. Therefore, these decision variables combined must equal the demand at each
time instant:

1>ni
xi,h = pdi,h. (4-2)

Dispatchable generation

Residential dispatchable generation units are for example micro-combined heat and power
(CHP) units [25]. A micro-CHP unit can simultaneously produce heat and electricity in
individual homes and is considered an important technology for the future power grid [26].

The group of agents that own a dispatchable generation unit is denoted by N dg ⊆ N . Since
the goal of the optimization problem is to minimize the cost of power usage, also the power
produced by dispatchable generation units must be minimized. A widely adopted cost function
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4-2 Electricity market model 19

for dispatchable generation is a quadratic convex function [27], [28]. The cost function reads
as

fdgi,h = qdgi (pdgi,h)2 + cdgi p
dg
i,h, (4-3)

where qdgi > 0 and cdgi are constants.

The amount of power that can be produced by dispatchable generation by agent i is bounded
by a minimum amount pdg

i
> 0 and a maximum amount pdgi ≥ 0. The constraint on the

decision variable pdgi now reads as

pdg
i
≤ pdgi,h ≤ p

dg
i , if i ∈ N dg

pdgi,h = 0, otherwise.
(4-4)

Storage unit

Storage units are also an important part of the future grid. To deal with the volatility
of renewable energy resources and increased load in the grid, they can provide a range of
services to ensure a reliable and efficient operation, e.g. providing frequency response, black-
start capabilities and reserve capacity and supporting self-consumption for residences with
rooftop photovoltaic (PV) systems [13]. As of now, using batteries for energy storage is still
rather expensive, but as technology advances, the cost of these storage units will decrease
and the economical services they can provide will increase [13].

The group of agents that own a storage unit is denoted by N dg ⊆ N . Because the maximum
capacity and efficiency of a battery deteriorate with the use of the battery [29], another goal
of the optimization is to minimize the use of the storage unit. The cost function fsti,h for using
the storage unit is defined by a quadratic cost:

fsti,h = qsti (psti,h)2 + csti p
st
i,h, (4-5)

where qsti ≥ 0 and csti are constants.

There are a multiple methods to estimate the state of charge (SOC) of a lithium-ion battery
[30]. Because accurate SOC estimation is quite a complex matter, see e.g., [31] and [30], and
it is not the goal of this work to have a model of the battery that is as realistic as possible,
a simple integrator is used to estimate the SOC. Using the SOC, denoted by si,h > 0, the
constraints on the decision variable psti,h are given by

si,h+1 = aisi,h + bip
st
i,h,

si ≤ si,h+1 ≤ si, if i ∈ N st

−pchi ≤ psti,h ≤ pdhi ,
psti,h = 0, otherwise,

(4-6)

where ai ∈ (0, 1] is the efficiency of storage, bi = − Ts
ecap,i

, where Ts denotes the sampling time
and ecap,i the maximum capacity of storage, si, si ∈ [0, 1] denote the minimum and maximum
SOC of the storage unit of agent i, respectively, and pchi ≥ 0 and pdhi ≥ 0 denote the maximum
charging and discharging power.
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Trades with main grid

Each agent i can trade power with the main grid. At each time instant h, the price of
electricity from the main grid is dependent on the total electricity demand at that time
instant. A typical function for the price is of quadratic nature [27]:

cmgh (p̂mgh ) = qmgh (p̂mgh )2, (4-7)

where qmgh > 0 is a constant and p̂mgh denotes the total load on the main grid:

p̂mgh =
∑
i∈N

pmgi,h . (4-8)

The cost function for trades with the main grid of agent i at time instant h is defined as the
price at that time instant times the relative amount of power agent i trades with the main
grid:

fmgi,h

(
pmgi,h , p̂

mg
h

)
= cmgh (p̂mgh )

pmgi,h∑
j∈N p

mg
j,h

= qmgh

∑
j∈N

pmgj,h

 pmgi,h . (4-9)

To prevent congestion of the grid and to ensure continuous operation of the generators that
supply the main grid, the amount of electricity that can be traded between the main grid and
the agents is bounded by a lower and upper bound pmg > pmg ≥ 0:

pmg ≤
∑
i∈N

pmgi,h ≤ p
mg. (4-10)

This constraint on the aggregate load couples the decisions of the agents.

P2P trading

As stated before, the group of agents with which agent i can trade are called the neighbors of
agent i and is denoted by Ni. The cost function of P2P trades is defined by a linear function
as

f tri,h

(
{ptr(i,j),h}j∈Ni

)
=
∑
j∈Ni

ctr(i,j)p
tr
(i,j),h, (4-11)

where ctr(i,j) > 0 is the cost of the electricity trade on which agent i and j have agreed.

The amount of power agent i and j can trade is bounded by a maximum value ptr(i,j):

−ptr(i,j) ≤ p
tr
(i,j),h ≤ p

tr
(i,j), ∀j ∈ Ni. (4-12)

The last constraint dictates that at each time step the amount of power agent i trades with
agent j is the same amount as agent j trades with agent i, but with opposite sign:

ptr(i,j),h + ptr(j,i),h = 0, ∀j ∈ Ni. (4-13)

Hence, the amount of power agent i sells to agent j is the same amount agent j buys from
agent i at each time instant. Constraint (4-13) is called the reciprocity constraint and also
couples the decisions of agents i and j.
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4-3 Economic dispatch problem 21

4-3 Economic dispatch problem

Following [6], a more compact notation is introduced for some of the constraints and decision
variables. First, define the set that contains only the local constraints of agent i:

xi,h ∈ Ωi,h, (4-14)

where Ωi,h is a set such that the constraints (4-2), (4-4), (4-6) and (4-12) hold. Furthermore,
define the stacked vector xi, which contains the decision variables of agent i over all time
steps:

xi = col({xi,h}h∈H), where H = {1, 2, . . . ,H}, (4-15)

where H is the amount of time instants. Just as in [6], two matrices are used in order to
manipulate the selection of the different decision variables from the vector xi, in particular
the trades with the main grid and trades with neighboring agents. For all i ∈ N we define

Smgi := IH ⊗ a>ni,3,

Str(i,j) := IH ⊗ a>ni,r(i,j), ∀j ∈ Ni,
(4-16)
(4-17)

where ani,l ∈ Rni is a column vector of dimension ni which contains all zeros except for the
l−th entry being 1. In (4-17) r(i, j) denotes the index of the power traded with neighbor j.
Hence, Smgi and Str(i,j) select the decision variables associated with trading with the main grid
and neighbor j, respectively:

Smgi = col({pmgi,h }h∈H) =: pmgi ,

Str(i,j) = col({ptr(i,j),h}h∈H) =: ptr(i,j), ∀j ∈ Ni.

Now that all the cost functions and constraints are defined, the economic dispatch problem
can be formulated. As stated before, the goal of each agent is to minimize the cost of power
usage, while meeting the constraints. This means that each agent i searches for a strategy
x∗i that minimizes its local objective function, while being subject to all the constraints. The
cumulative local objective function for agent i is the summation of the cost functions (4-3),
(4-5), (4-11) and (4-9) over the time horizon H:

Ji(xi, p̂mg) =
∑
h∈H

(
fdgi,h(pdgi,h) + f sti,h(psti,h) + fmgi,h (pmgi,h , p̂

mg
h ) + f tri,h(ptri,h),

)
(4-18)

where p̂mg = col(p̂mg1 , . . . , p̂mgH ), with p̂mgh as defined in (4-8). Now, the optimization problem
of agent i can be written as

x∗i ∈



argminxi
Ji(xi,

∑
j∈N

Smgj xj)

s.t. xi ∈ Ωi :=
∏
h∈H

Ωi,h,

Str(i,j)xi + Str(j,i)xj = 0, ∀j ∈ Ni,

pmg1H ≤
∑
j∈N

Smgj xj ≤ p̄mg1H ,

(4-19a)

(4-19b)

(4-19c)

(4-19d)
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Following [6], to make the computations easier, the constraints in (4-19) are written in a more
compact form. Let us start by recasting the reciprocity constraints (4-19c) by introducing
the incidence-selection matrix R, whose (l, i)−block is

[R]l,i :=

Str(i,j), if el = (i, j), for some j 6= i,

0(H×Hni), otherwise,
(4-20)

where Str(i,j) is defined in (4-17). Using this matrix R, the reciprocity constraint (4-19c) can
be written compactly as

Rx = 0EH . (4-21)

The grid constraint (4-19d) can be recast to a more compact form as

Ax− b ≤ 02H , (4-22)

where

A =
[
S
−S

]
, (4-23)

S =
[
Smg1 , . . . , SmgN

]
(4-24)

and

b =
[
p̄mg1H
−pmg1H

]
. (4-25)

The cost function (4-18) can be split in a part that contains the cost of only the local decision
variables of each agent and a part that also contains the decision variables of the other agents,
which couples the decisions of all agents. The local part of the cost function is given by

Ji,lc(xi) =
∑
h∈H

(
fdgi,h(pdgi,h) + fsti,h(psti,h) + f tri,h(ptri,h)

)
(4-26)

and the coupling part by

Ji,cp(xi, Sx) =

Q∑
j∈N

Smgj xj

> Smgi xi, (4-27)

where Q := diag(qmg1 , . . . , qmgH ).

Using the compact notation for the reciprocity and grid constraints, the optimization problem
(4-19) can be written in standard form:

∀i ∈ N :


argminxi

Ji,lc(xi) + Ji,cp(xi, Sx)
s.t. xi ∈ Ωi,

Rx = 0EH ,
Ax− b ≤ 02H ,

(4-28a)
(4-28b)
(4-28c)
(4-28d)

This optimization problem is the starting point for the algorithms derived in Chapter 5.
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Chapter 5

Distributed algorithms

Now the optimization problem is defined in standard form, the main algorithms to solve
the economic dispatch problem given in (4-19) can be derived. As stated in Chapter 3, we
are looking for the variational solution of the generalized Nash equilibrium problem (GNEP)
given in (4-28). Because we want a full peer-to-peer (P2P) market, where there is no need
for a central coordinator, the goal of the algorithms is to compute the variational generalized
Nash equilibrium (v-GNE) in a distributive manner. In order to arrive at the algorithms,
first, Section 5-1 will give the main derivation towards the monotone operator T , which will
be used for the different operator splitting schemes. Section 5-2 will derive a preconditioned
forward-backward (pFB) scheme, Section 5-3 a forward-backward-forward (FBF) scheme and
Section 5-4 a forward-backward-half-forward (FBHF) scheme. Note that it is not the intention
of this work to provide theoretical guarantees of convergence of the proposed algorithms, but
to test them on an energy market model. Therefore, no proofs of convergence will be given
in this chapter. For a more theoretical derivation of the algorithms with proofs, see e.g. [32]
and [23].

5-1 Main algorithm derivation

First, define the feasible set of each agent i, which consists of the local feasible set Ωi and the
shared constraints:

Xi(x−i) = {yi ∈ Ωi | Riyi = 0EH , Aiyi ≤ b−
N∑
j 6=i

Ajxj}, (5-1)

where H is the number of time steps and E is the number of edges of the communication
graph G (defined in Section 4-2). The collective feasible set can now be written as

X = {y ∈ Ω | Ry = 0EH , Ay − b ≤ 02H}, (5-2)
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where Ω =
∏
i∈N Ωi, R is defined in (4-21), A in (4-23) and b in (4-25). A collective strategy

x∗ = col(x∗1, . . . , x∗N ) ∈ X is a generalized Nash equilibrium (GNE) for the game given in
(4-28) if, for all i ∈ N , it holds that

Ji(x∗i , Sx∗) ≤ inf{Ji(y, Sx∗) | y ∈ Xi}, (5-3)

where S is defined in (4-24). To find the GNE, we first define the Lagrangian of the game in
(4-28) for each agent i:

Li(x, µi, λi) = Ji(xi, Sx) + IΩi(xi) + µ>i Rx+ λ>i (Ax− b), (5-4)

where IΩi(xi) is the indicator function for the set of local constraints Ωi, µi is the dual variable
associated with the reciprocity constraint and λi is the dual variable associated with the grid
constraint. The Karush-Kuhn-Tucker (KKT) conditions associated with this Lagrangian read
as 

0ni ∈ ∇xiJi(x∗i , Sx∗) + NΩi(x∗i ) +R>i µ
∗
i +A>i λ

∗
i

0EH ∈ Rx∗

02H ∈ NR2H
≥0

(λ∗i )− (Ax∗ − b).
(5-5)

As stated in Chapter 3, the GNEPs we are interested in are those that can be passed to a
corresponding variational inequality (VI), i.e., the problem of finding a vector x∗ ∈ X , such
that

F (x∗)T (x− x∗) ≥ 0, ∀x ∈ X . (5-6)
The solutions that are preserved when passing the GNEP to a VI are those for which all
players have the same Lagrangian multipliers for the grid and reciprocity constraints, i.e.,
λ1 = λ2 = . . . = λN and µ1 = µ2 = . . . = µN , respectively [19]. Besides the social fairness
of this solution, a v-GNE is also computationally attractive, because a VI can be solved by
operator splitting techniques. Since the collective strategy x∗ is a solution of the VI(X , F ) if
and only if

x∗ ∈ argmin
y∈X

(y − x∗)>F (x∗), (5-7)

the KKT conditions of the VI read as
0ni ∈ ∇xiJi(x∗i , Sx∗) + NΩi(x∗i ) +R>i µ

∗ +A>i λ
∗

0EH ∈ Rx∗

02H ∈ NR2H
≥0

(λ∗)− (Ax∗ − b).
(5-8)

These KKT conditions can be written in a more compact form as the following monotone
operator:

T (x, µ,λ) :

xµ
λ

 7→
F (x) + NΩ(x) +R>µ+A

>
λ

−Rx
NR2HN

≥0
(λ)− (Ax− b)

 , (5-9)

where
F (x) = col((∇xiJi(xi, Sx))i∈N ), (5-10)
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5-1 Main algorithm derivation 25

A = blkdiag(A1, . . . , AN ) and b = 1
N col(b, . . . , b), where b is defined in (4-25).

The pFB and the FBHF algorithms need the pseudo-gradient mapping F (x) to be strongly
monotone to guarantee convergence, while the FBF only needs plain monotonicity of the
involved operators [23]. Because the pseudo-gradient mapping F (x) is only (maximally)
monotone [33], the pFB and the FBHF algorithms are not guaranteed to converge. However,
the results in Chapter 6 will show that the pFB and FBHF also converge to a solution.

5-1-1 Consensus constraint

To impose consensus on the dual variable λ, the monotone operator T can be extended by
an auxiliary variable. This can be done in two ways: using the incidence matrix V ∈ RE×N
or the Laplacian matrix L ∈ RN×N of the communication graph G (defined in Section 4-2).
The incidence matrix V is defined such that V >V = L.

Laplacian matrix

In [32] the authors proposed to the use the Laplacian constraint Lλ = 02HN to force consensus
on the dual variable λ, i.e., λi = λj , ∀j ∈ Ni, where L = L⊗I2H ∈ R2HN×2HN . The operator
T is expanded by introducing the auxiliary variable z ∈ R2HN . The extended operator Te
reads as

Te(x, µ,z,λ) :


x
µ
z
λ

 7→


F (x) + NΩ(x) +R>µ+A
>
λ

−Rx
Lλ

NR2HN
≥0

(λ)− (Ax− b)− L>z + Lλ

 . (5-11)

Incidence matrix

In [33], to impose consensus on the dual variable λ, the consensus constraint V λ = 02HN is
added, where V = V ⊗ I2H ∈ R2HE×2HN . The operator T is expanded with the auxiliary
variable z ∈ R2HN and defined as follows:

Te(x, µ,z,λ) :


x
µ
z
λ

 7→

F (x) + NΩ(x) +R>µ+A

>
λ

−Rx
−V λ

NR2HN
≥0

(λ)− (Ax− b) + V
>
z

 . (5-12)

The original GNE seeking problem given in (4-19) has now become the problem of finding
the zeros of the operator Te in (5-11) or (5-12).

The incidence matrix uses the edges of the communication graph G, where the Laplacian
matrix uses the nodes of G. When there are a lot of edges the Laplacian matrix may become
faster. However, the Laplacian matrix uses an extra communication step. Because of the extra
communication step needed when using the Laplacian matrix, the algorithms are derived using

Master of Science Thesis J.A. Logeman



26 Distributed algorithms

the incidence matrix. Section 6-3 will show a comparison with the algorithms that are derived
using the Laplacian matrix.

5-2 Preconditioned forward-backward operator splitting

Using the extended operator Te given in (5-12) we can derive the three algorithms. We start
by splitting the operator Te in three parts, A, B and C, in the following way:

A :


x
µ
z
λ

 7→

F (x)

0
0
b



B :


x
µ
z
λ

 7→


0 R> 0 A
>

−R> 0 0 0
0 0 0 −V
−A 0 V

> 0



x
µ
z
λ



C :


x
µ
z
λ

 7→


NΩ(x)
0
0

NR2HN
≥0

(λ)



(5-13)

The zeros of A+B+C correspond to the zeros of the monotone operator Te in (5-12). As stated
before, the zeros of Te correspond to the solution of the GNE given in (4-19) [18]. Because the
forward-backward (FB) scheme cannot be applied directly to the GNEP, a preconditioning
matrix is necessary [32]. The preconditioning matrix is given by:

ΦFB =


α−1 −R> 0 −A>

−R β
−1 0 0

0 0 γ−1 V

−A 0 V
>

δ
−1

 , (5-14)

where the step sizes on the diagonal are defined as follows:

α = blkdiag({αi}i∈N ), (5-15)

where the αi’s are defined as α = blkdiag(αi,1, . . . , αi,H), where
αi,h = diag

(
αdgi,h, α

st
i,h, α

mg
i,h , {αtr(i,j),h}j∈Ni

)
,

β = βIEH , (5-16)

γ = γI2HN , (5-17)

and
δ = δI2HN . (5-18)
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5-3 Forward-backward-forward operator splitting 27

If we denote the state variable of the distributed algorithm by ω = col(x, µ,z,λ), the pFB
algorithm can be written as a fixed-point iteration of the form ωk+1 = TFBω

k where TFB =
JΦ−1(B+C)(Id− Φ−1

FBA), i.e.:

ωk+1 = (Id + Φ−1
FB(B + C))−1 ◦ (Id− Φ−1

FBA)ωk. (5-19)

Using a change of coordinates wki = [V >zk]i, we arrive at Algorithm 1, where the matrices
Smgi and Str(i,j) are defined in (4-16) and (4-17), respectively. For all i ∈ N , the algorithm
works as follows:

• Strategy update: Agent i updates its strategy xi. In order to do this it needs to cal-
culate the gradient of the cost function and project the solution onto its local constraint
set.

• Communication:

– Agent i sends its most recent trading strategy Str(i,j)x
k+1
i with agent j to the cor-

responding trading partner j ∈ Ni, ∀j ∈ Ni.
– Agent i sends its local copy of λi to all neighbors in Ni.

• Dual variable update (reciprocity constraint): Agent i updates its local copy of
the dual variable µ(i,j).

• Auxiliary variable update: Agent i updates its auxiliary variable wi.

• Dual variable update (grid constraint): Agent i updates its local copy of the dual
variable λi.

The advantage of the pFB over the FBF algorithm is that it only needs one evaluation of
the pseudo-gradient mapping per iterative step. The disadvantage is that it needs strong
monotonicity of the pseudo-gradient mapping to guarantee convergence, which is not always
satisfied. Compared to the FBHF algorithm, the pFB converges under the same conditions.

5-3 Forward-backward-forward operator splitting

Where the pFB generates one sequence, the FBF scheme generates two sequences (uk,vk)k≥0.
First, define the operator D = A + B, where A and B are defined in (5-13). Now, the two
sequences are defined as:

uk = (Id + Ψ−1C)−1 ◦ (vk −Ψ−1Dvk)
vk+1 = uk + Ψ−1(Dvk −Duk).

(5-20)

The matrix Ψ is a block-diagonal matrix that contains the step sizes:

Ψ =


α−1 0 0 0

0 β
−1 0 0

0 0 γ−1 0
0 0 0 δ

−1

 , (5-21)
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Algorithm 1 Preconditioned Forward-Backward
Initialization: ∀i ∈ N , set:
Initial conditions: x0

i ∈ Ωi, µ0
(i,j) = 0, ∀j ∈ Ni, w0

i = 0 and λ0
i ∈ R2H

≥0

Iterate until convergence:
∀i ∈ N :

(1) Receives Smgj xkj , ∀j ∈ N , then updates

xk+1
i = projΩi

{
xki − αi

(
∇xiJi(xki , Sxk) +

∑
j∈Nj

(
(µk(i,j))

>Str(i,j)

)
+ (λki )>

[
Smgi
−Smgi

])}

(2) Receives Str(j,i)x
k+1
j and λkj , ∀j ∈ Ni, then updates:

µk+1
(i,j) = µk(i,j) − β(i,j)

(
Str(i,j)x

k
i + Str(j,i)x

k
j − 2Str(i,j)x

k+1
i − 2Str(j,i)x

k+1
j

)
, ∀j ∈ Ni

wk+1
i = wki + γi

∑
j∈Ni

(λki − λkj )

λk+1
i = projR2H

≥0

{
λki + δi

([
Smgi
−Smgi

]
(2xk+1

i − xki )−
[

p̄mg

N 1H
− p̄mg

N 1H

]
− 2wk+1

i + wki

)}

where the step sizes are defined in (5-15), (5-16), (5-17) and (5-18). The FBF algorithm that
follows from these two sequences is given in Algorithm 2.

The theoretical advantage of the FBF over the pFB and FBHF is that it only needs mono-
tonicity of the involved operators instead of strong monotonicity [23]. However, this comes at
the cost of an extra communication round, because the pseudo-gradient has to be evaluated
twice each iterative step.

5-4 Forward-backward-half-forward operator splitting

Just like the FBF, the FBHF operator splitting also generates two sequences, but uses a
different splitting. The two sequences for the FBHF are defined as:

uk = (Id + Ψ−1C)−1 ◦ (vk −Ψ−1(A+ B)vk)
vk+1 = uk + Ψ−1(Bvk − Buk).

(5-22)

The matrix Ψ in (5-22) is defined as in (5-21). The FBHF algorithm is given in Algorithm 3.

The advantage of the FBHF compared to the FBF is that it needs only one evaluation of
the pseudo-gradient mapping, so the agents only need to communicate once each iterative
step. However, it needs the pseudo-gradient to be strongly monotone to provide a theoretical
guarantee of convergence [23], just like the pFB algorithm.
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Algorithm 2 Distributed Forward-Backward-Forward
Initialization: ∀i ∈ N , set:
Initial conditions: x0

i ∈ Ωi, µ0
(i,j) = 0, ∀j ∈ Ni, w0

i = 0 and λ0
i ∈ R2H

≥0

Iterate until convergence:
∀i ∈ N :

(1) Receives Smgj xkj , ∀j ∈ N and Str(j,i)x
k
j and λkj , ∀j ∈ Ni, then updates:

x̃ki = projΩi

{
xki − αi

(
∇xiJi(xki , Sxk) +

∑
j∈Ni

(
(µk(i,j))

>Str(i,j)

)
+ (λki )>

[
Smgi
−Smgi

])}

µ̃k(i,j) = µk(i,j) + β(i,j)
(
Str(i,j)x

k
i + Str(j,i)x

k
j

)
, ∀j ∈ Ni

w̃ki = wki + γi
∑
j∈Ni

(λki − λkj )

λ̃ki = projR2H
≥0

{
λki + δi

([
Smgi
−Smgi

]
xki −

[
p̄mg

N 1H
− p̄mg

N 1H

]
− wki

)}

(2) Receives Smgj x̃kj , ∀j ∈ N and Strj x̃kj and λ̃ki , ∀j ∈ Ni, then updates:

xk+1
i = x̃ki + αi

(
∇xiJi(xki , Sxk)−∇xiJi(x̃ki , Sx̃k) +

∑
j∈Ni

(
(µk(i,j))

>Str(i,j)

)
−
∑
j∈Ni

(
(µ̃k(i,j))

>Str(i,j)

)

+ (λki − λ̃ki )>
[
Smgi
−Smgi

])

µk+1
(i,j) = µ̃k(i,j) − β(i,j)

(
Str(i,j)x

k
i + Str(j,i)x

k
j − Str(i,j)x̃

k
i − Str(j,i)x̃

k
j

)
, ∀j ∈ Ni

wk+1
i = w̃ki − γi

∑
j∈Ni

(
(λki − λkj )− (λ̃ki − λ̃kj )

)

λk+1
i = λ̃ki + δi

([
Smgi
−Smgi

]
(xki − x̃ki )− wki + w̃ki

)

5-5 Stochastic algorithms

In the previous sections, the algorithms are derived for the case where the total demand is
assumed to be exactly known for each agent. However, in reality the day-ahead demand
can only be estimated. Therefore, this section shows the derivation of the stochastic case
until we arrive at the monotone inclusion Te. The derivations for the pFB, FBF and FBHF
algorithms can be done in the same way as shown in Section 5-2, Section 5-3 and Section 5-
4, respectively. Because there is a lot of data available, the stochastic approximation (SA)
scheme with variance reduction is used. Also, because of the increasing number of samples, the
SA scheme with variance reduction needs less strong assumptions on the mappings involved
than the SA with only one realization of the cost function [24].
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Algorithm 3 Distributed Forward-Backward-Half-Forward
Initialization: ∀i ∈ N , set:
Initial conditions: x0

i ∈ Ωi, µ0
(i,j) = 0, ∀j ∈ Ni, w0

i = 0 and λ0
i ∈ R2H

≥0

Iterate until convergence:
∀i ∈ N :

(1) Receives Smgj xkj , ∀j ∈ N and Strj xkj and λkj , ∀j ∈ Ni, then updates:

x̃ki = projΩi

{
xki − αi

(
∇xiJi(xki , Sxk) +

∑
j∈Ni

(
(µk(i,j))

>Str(i,j)

)
+ (λki )>

[
Smgi
−Smgi

])}

µ̃k(i,j) = µk(i,j) + β(i,j)
(
Str(i,j)x

k
i + Str(j,i)x

k
j

)
, ∀j ∈ Ni

w̃ki = wki + γi
∑
j∈Ni

(λki − λkj )

λ̃ki = projR2H
≥0

{
λki + δi

([
Smgi
−Smgi

]
xki −

[
p̄mg

N 1H
− p̄mg

N 1H

]
− wki

)}

(2) Receives Strj x̃kj and λ̃kj , ∀j ∈ Ni, then updates:

xk+1
i = x̃ki + αi

( ∑
j∈Ni

(
(µk(i,j) − µ̃

k
(i,j))

>Str(i,j)

)
+ (λki − λ̃ki )>

[
Smgi
−Smgi

])

µk+1
(i,j) = µ̃k(i,j) − β(i,j)

(
Str(i,j)x

k
i + Str(j,i)x

k
j − Str(i,j)x̃

k
i − Str(j,i)x̃

k
j

)
, ∀j ∈ Ni

wk+1
i = w̃ki − γi

∑
j∈Ni

(
(λki − λkj )− (λ̃ki − λ̃kj )

)

λk+1
i = λ̃ki − δi

([
Smgi
−Smgi

]
(xki − x̃ki )− wki + w̃ki

)

The derivation is the same as shown in Section 5-1, but now each cost function Ji is an
expected value function Ji, which can be defined as

Ji(xi, Sx) = E[Ji(xi, Sx, ξ)], (5-23)

where ξ is the random variable. The stochastic GNE (SGNE) can be defined as

Ji(xi, Sx) ≤ inf{Ji(y, Sx) | y ∈ Xi}, (5-24)

where Xi is defined in (5-1). As in the deterministic case, we seek a stochastic v-GNE
(v-SGNE) by studying the associated stochastic VI (SVI), which reads as

F(x∗)T (x− x∗) ≥ 0, ∀x ∈ X , (5-25)
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where

F(x) ≡

 ∇x1J1(x1, Sx)
...

∇xN JN (xN , Sx)

 , (5-26)

and X as defined in (5-2). To recast the stochastic GNEP (SGNEP) into a monotone
inclusion, first, define the Lagrangian of the of the SGNEP for each agent i:

Li(x, µi, λi) = Ji(xi, Sx) + IΩi(xi) + µ>i Rx+ λ>i (Ax− b). (5-27)

The vector x∗ is a SGNE if and only if the following KKT conditions are satisfied:
0ni ∈ E[∇xiJi(x∗i , Sx∗, ξ)] + NΩi(x∗i ) +R>i µ

∗
i +A>i λ

∗
i

0EH ∈ Rx∗

02H ∈ NR2H
≥0

(λ∗i )− (Ax∗ − b).
(5-28)

Since the collective strategy x∗ is a solution of the VI(X ,F) if and only if

x∗ ∈ argmin
y∈X

(y − x∗)>F(x∗), (5-29)

the KKT conditions of the SVI read as
0ni ∈ E[∇xiJi(x∗i , Sx∗, ξ)] + NΩi(x∗i ) +R>i µ

∗ +A>i λ
∗

0EH ∈ Rx∗

02H ∈ NR2H
≥0

(λ∗)− (Ax∗ − b).
(5-30)

As in the deterministic case, we can rewrite the KKT conditions in (5-30) in a more compact
form as

T (x, µ,λ) :

xµ
λ

 7→
F(x) + NΩ(x) +R>µ+A

>
λ

−Rx
NR2HN

≥0
(λ)− (Ax− b)

 , (5-31)

with F as defined in (5-26). We assume that each agent has access to a pool of samples of
the random variable and is able to compute an approximation of E[∇xiJi(x∗i , Sx∗, ξ)] [18].

The v-SGNE we seek is the equilibrium for which the agents reach consensus on the dual
variables λi. To impose this consensus on the dual variables the operator T is extended by
an auxiliary variable z:

Te(x, µ,z,λ) :


x
µ
z
λ

 7→

F(x) + NΩ(x) +R>µ+A

>
λ

−Rx
−V λ

NR2HN
≥0

(λ)− (Ax− b) + V
>
z

 . (5-32)

The derivation of the stochastic version of the pFB, FBF and FBHF is done in the same way
as shown in Section 5-2, Section 5-3 and Section 5-4, respectively.

Master of Science Thesis J.A. Logeman



32 Distributed algorithms

J.A. Logeman Master of Science Thesis



Chapter 6

Simulation and results

This chapter discusses the simulations that were performed to test the algorithms derived
in the previous chapter. First, Section 6-1 presents the energy data that is used in the
simulations. As stated in the introduction, the main goal of the algorithms is to achieve
a more stable operation of the grid while minimizing the cost of power usage. Section 6-2
shows these main results of the algorithms. As described in Section 5-1-1, either the Laplacian
matrix or the incidence matrix of the communication graph G can be used to force consensus
on the dual variable λ. Section 6-3 compares the performance of these two matrices. Next,
Section 6-4 shows how the algorithms behave for different amounts of agents. As described
in Section 5-5, in a realistic model the exact day-ahead demand cannot be known and has
to be modeled as a random variable. Section 6-5 shows the performance of the algorithms
using this uncertainty in the demand. Finally, Section 6-6 discusses a method to make more
optimal use of the storage units.

6-1 Demand data

To simulate a realistic scenario of a neighborhood, different types of agents are taken into
account. In the simulations performed in the next sections, six types of customers are consid-
ered. There are three different types of residential customers and three types of commercial
customers. The three residential customers are based on their total power usage each day and
are divided in low-, medium- and high-scale users. For the commercial customers, a primary
school, a small office and a small retail store are used.

The data is taken from the OpenEI platform [34]. The primary school, office and retail
load profiles have been scaled down for the simulations because of the limited total number
of agents. For the simulations one office, one primary school and one retail store is used.
The rest of the agents are randomly taken from the low-, medium- and high-scale residential
profiles. Only the large-scale residential customers, the primary school, the office building
and retail store have dispatchable generation units. The larger the energy profile, the lower
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the cost of dispatchable generation. Figure 6-1 shows what the different load profiles look
like.
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Figure 6-1: Unscaled load profiles from the OpenEI database

6-2 Main results

Section 6-2-1 presents the main results of the three algorithms derived in Chapter 5, which
is to obtain a stable operation of the grid, while minimizing the cost of power usage. Sec-
tion 6-2-2 shows the performance of the algorithms in terms of convergence of the primal
and dual residuals associated with the reciprocity constraint. As stated in Section 5-1, where
the forward-backward-forward (FBF) only needs plain monotonicity of the pseudo-gradient
mapping F (x) (defined in (5-10)) to guarantee convergence, the preconditioned forward-
backward (pFB) and forward-backward-half-forward (FBHF) algorithms need strong mono-
tonicity of F (x) to guarantee convergence, which is not satisfied in this case. However, the
results in Section 6-2-2 show that also these two algorithms converge towards a solution.
The simulations were performed with Matlab R2020a using the Yalmip toolbox [35] with the
quadprog solver. In this section, all simulations were performed for a 10-agent network.

6-2-1 Total load vs. dispatchable generation and import from main grid

The main goal of the algorithms is to obtain a stable operation of the grid while minimizing
the cost of power usage. Figure 6-2, Figure 6-3 and Figure 6-4 show the total power imported
from the main grid, total power produced by dispatchable generation and the total load at
each time step for the pFB, FBF and FBHF algorithm, respectively. For the scenario where
none of the agents have storage units, the demand has to be met by importing from the main
grid and by dispatchable generation, if present. When four of the agents have storage units
the load on the main grid gets flat and peaks in the demand are accounted for by the storage
units. When all agents have storage the load on the main grid stays flat, but gets lower
because more power can be accounted for by the storage units.

Besides a stable operation of the grid, we also wanted to achieve a reduction in cost. Table 6-1
shows the total cost for each scenario. It can be observed that by using storage units to reduce
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Figure 6-2: Total power imported from the main grid and produced by dispatchable generation
units vs. total load in a 10-agent network using the pFB algorithm
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Figure 6-3: Total power imported from the main grid and produced by dispatchable generation
units vs. total load in a 10-agent network using the FBF algorithm
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Figure 6-4: Total power imported from the main grid and produced by dispatchable generation
units vs. total load in a 10-agent network using the FBHF algorithm

the load on the main grid in peak hours also the cost is reduced.

Scenario No agents storage 4 agents storage 10 agents storage
pFB 100% -6.63% -12.29%
FBF 100% -6.19% -12.30%
FBHF 100% -6.11% -12.29%

Table 6-1: Total cost per algorithm for each scenario

6-2-2 Stopping criteria

The stopping criteria used in the simulations are the primal and dual residuals associated with
the reciprocity constraint, i.e., ||col({Str(i,j)u

k
i +Str(j,i)u

k
j }∀j∈Ni,i∈N )||2 ≤ 0.001 and ||col({uk+1

i −
uki }i∈N )||2 ≤ 0.01, respectively. Figure 6-5 shows the convergence of the primal residual for
the three algorithms for each of the three scenario’s. As expected, the primal residuals all
converge towards the stopping value. Figure 6-6 shows the convergence of the dual residual
for the three algorithms for each of the three scenario’s. Also the dual residuals all converge
towards the stopping value. As stated in Chapter 3, the solution we are looking for is the
variational solution of the game, i.e., the solution where λ1 = . . . = λN , ∀i ∈ N . Figure 6-7
shows the disagreement on this dual variable λ for the three algorithms for each of the three
scenarios. The disagreement is given by ||(L⊗ I2H)λk)||, where L is the Laplacian matrix of
the communication graph G, I2H is a (2H × 2H) identity matrix and H denotes the number
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of time steps. It can be observed that this value gets smaller over time, which means the
individual λi’s are converging towards the same value.
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Figure 6-5: Primal residual for each scenario for all three algorithms
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Figure 6-6: Dual residual for each scenario for all three algorithms
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Figure 6-7: Disagreement on dual variable λ for each scenario for all three algorithms

6-3 Incidence matrix vs. Laplacian matrix

As described in Section 5-1-1, two different matrices can be used to force consensus on the dual
variable λ: the Laplacian matrix L or the incidence matrix V of the communication graph
G. In all other simulations in this chapter the incidence matrix V was used because it needs
one communication step less per iteration. To show the difference in simulation between the
two matrices, Figure 6-8 shows the number of iterations and the elapsed CPU time for both
versions of the algorithms for different levels of connectivity for a 10-agent network. The level
of connectivity is defined as the number of communication links between the agents divided
by the total possible number of communication links. Four different levels of connectivity
are tested, which are 0.222, 0.5, 0.75 and 1. A connectivity level of 0.222 is a ring graph
in a 10-agent network, a connectivity level of 1 means a fully connected graph where each
agent has a connection with every other agent. In the legend of Figure 6-8 the algorithms
derived with the incidence matrix have their regular name and the algorithms derived with the
Laplacian matrix have a subscript L added. The communication links were created randomly
each simulation. The results in Figure 6-8 show the average results over three simulations.
It can observed that for a 10-agent network, using a ring graph results in more iterations,
where the other three levels of graph connectivity show roughly the same amount. Although
the amount of iterations does not differ significantly between a connectivity level of 0.5 0.75
and 1, the average CPU time does increase for each algorithm for a connectivity of 0.75 and
1 compared to a connectivity of 0.5. Between the two different versions of each algorithm no
real trend is visible for the different levels of connectivity. Except when using a ring graph, the
performance between each two versions is similar. Comparing all algorithms, both versions
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of the FBHF algorithm are slightly faster than the other algorithms, and the two versions of
the pFB are the slowest, except when using a ring graph.
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Figure 6-8: Number of iterations and elapsed cpu time vs. the level of connectivity of the
communication graph G (achieved on Matlab R2020a with a 1.8 GHz Intel Core i7 and 16 GB
DDR4 RAM)

6-4 Scalability

To test how the algorithms behave with an increasing number of agents, simulations were done
using a 10-, 20-, and 30-agent network, shown in Figure 6-9. For all simulations the graph
connectivity was taken to be 0.5, and the same stopping criteria were used as in Section 6-2,
i.e., ||col({Str(i,j)u

k
i + Str(j,i)u

k
j }∀j∈Ni,i∈N )||2 ≤ 0.001 and ||col({uk+1

i − uki }i∈N )||2 ≤ 0.01. The
results in Figure 6-9 represent the average of three simulations. It can be observed that both
the amount of iterations and the elapsed CPU time increase as the number of agents increases.
This is to be expected, since the strategy vector gets larger and there are more agents that
have to communicate with each other. In particular, where the amount of iterations not even
doubles from a 10- to a 30-agent network, the elapsed cpu time is roughly 20 times as high.
Also noticeable is that for the 30-agent network, the amount of iterations and cpu time of the
FBF increase more than that of the pFB and FBHF. This is probably due to the fact that
the FBF needs to evaluate the gradient twice each iterative step, instead of once.
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Figure 6-9: Number of iterations and elapsed cpu time vs. the amount of agents in the network
(achieved on Matlab R2020a with a 1.8 GHz Intel Core i7 and 16 GB DDR4 RAM)

6-5 Stochastic demand

In the simulations done until now, it was assumed all agents have exact knowledge of the
total demand profile for the day ahead. However, in reality the demand for the day ahead
cannot be exactly known, but has to be estimated. Therefore this section discusses the case
where the total demand for the day ahead is modeled as a random variable. When using
this stochastic demand, the algorithms are not guaranteed to converge anymore. This section
shows that in the simulations the algorithms still converge towards a solution.

For all three algorithms the cost function is approximated using the stochastic approximation
(SA) scheme with variance reduction, because it is assumed there is a lot of data available
(see Section 5-5). Each agent has access to an increasing number Sk of samples of the random
variable ξ and is able to compute an approximation of F(x) [18]:

F̂ (x, ξ) = FSA(x, ξ)

= col

 1
Sk

Sk∑
t=1
∇x1J1(x1, Sx, ξ

(t)
1 ), . . . , 1

Sk

Sk∑
t=1
∇xNJN (xN , Sx, ξ(t)

N

 , (6-1)

where ξ = col(ξ̄1, . . . , ξ̄N ), ∀i ∈ N , ξ̄i = col(ξ(t)
i , . . . , ξ

(Sk)
i ) and ξ is an i.i.d. sequence of

random variables drawn from a normal distribution.

Because in the stochastic case the residuals do not converge as well as in the deterministic
case, the stopping criteria are relaxed to ||col({Str(i,j)u

k
i + Str(j,i)u

k
j }∀j∈Ni,i∈N )||2 ≤ 0.01 and
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||col({uk+1
i − uki }i∈N )||2 ≤ 0.1. The simulations were carried out using a 10-agent network

and a graph connectivity of 0.5. Figure 6-10 and Figure 6-11 show the convergence of the
primal and dual residuals, respectively. Figure 6-12 shows the disagreement on the dual
variable λ. It can be observed that the two residuals and the disagreement on λ still converge
in this stochastic case, although at a slower rate than in the deterministic case. Also, they keep
oscillating, which is to be expected because each agent uses a slightly different approximation
of the demand. Also noticeable is that the FBF algorithm needs significantly more iterations
to converge to the stopping criteria than the pFB and the FBHF algorithms for all three
scenario’s. In the deterministic case in Section 6-2-2 there was not such a difference.

To make the comparison more clear with the deterministic case, Figure 6-13 shows a plot of
the convergence of the primal and dual residual of the FBF algorithm for the scenario where
four agents have storage units for both the deterministic and stochastic case. As one can see,
the stochastic version of the algorithm converges at a slower rate than the deterministic one.
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Figure 6-10: Primal residual for each scenario for all three algorithms for the stochastic case

Instead of using a normal distribution for the stochastic demand, the algorithms were also
tested when the numbers were drawn from a uniform distribution. The results are shown
in Figure 6-14. Because the results for the three scenario’s are similar, only the results for
one of the three scenario’s is shown when using a uniform distribution. It can be observed
that when using a uniform distribution, the algorithms do not reach the stopping criterion for
the primal residual used for the normal distribution. This is to be expected, because when
drawing from a uniform distribution the approximations of the different agents differ more
from each other.
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Figure 6-11: Dual residual for each scenario for all three algorithms for the stochastic case
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Figure 6-12: Disagreement on dual variable λ for each scenario for all three algorithms for the
stochastic case
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Figure 6-13: Primal and dual residual of the deterministic case vs. the stochastic case for the
FBF algorithm with four agents with storage

6-6 Storage constraints

The simulations until now were performed for a single day, which means it might happen that
the best strategy is to use all of the available battery capacity on that day, leaving no capacity
for the start of the next day. However, one could imagine a situation in which some days have
a higher total demand, which means it could be beneficial to save some battery capacity on a
certain day for later days. To make more optimal use of the battery, an extra constraint can
be imposed. First, Section 6-6-1 and Section 6-6-2 discuss two methods that were tested, but
did not result in a better performance of the algorithm. For the sake of completeness, they
are added in this section. Section 6-6-3 discusses a method that did result in a reduction of
the cost.

6-6-1 Hard constraint

In order to discourage too much usage of the storage unit in a day, a constraint can be imposed
that enforces the final state of charge (SOC) to be the same as the initial SOC:

si,H = si,0, (6-2)

where H denotes the last time step of a day. However, this constraint is also enforced on
days with higher demand. Since the goal was to save battery power for days with higher
demand, this constraint is too restrictive. A better way would be to have a soft constraint,
which allows for more flexibility.
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Figure 6-14: Primal and dual residual and disagreement on the dual variable λ when using a
uniform distribution for all three algorithms for the scenario where all agents have storage units

6-6-2 Soft constraint

The soft constraint penalizes a deviation from the initial SOC at the end of the day. This is
added as an extra term in the cost function:

fsti =
∑
h∈H

(
qsti (psti,h)2 + csti p

st
i,h

)
+ dst(si,0 − si,H), (6-3)

where si, h is the SOC at time step h as defined in (4-6) and dst ∈ R is a penalty factor. This
way, the more the SOC at the end of the day deviates from the initial SOC, the higher the
penalty gets. Another element is added to this penalty that also penalizes long term use of
the storage unit. This is done by increasing the penalty factor by a certain amount each day
the SOC does not reach the initial value of 0.5. The more days an agent has less than the
initial SOC at the end of the day, the higher the penalty gets.

Both the hard and soft constraint were tested with the pFB algorithm on a data set that
contains the demand profiles of 8 consecutive days, where day 3 and 4 have a higher total
demand than the other days, see Figure 6-15. On the first day, all the agents start with a
SOC of 0.5 and each consecutive day they start with the SOC with which they ended on the
day before. This way the strategy is determined over all 8 days. Table 6-2 shows the cost of
both the hard and soft constraint compared to using no extra constraint. As expected, the
soft constraint performs better than the hard constraint, but both methods perform worse
than having no extra constraint. Figure 6-16 shows the total cost and average SOC at the

J.A. Logeman Master of Science Thesis



6-6 Storage constraints 45

end of each day. It can be observed that the hard constraint results in a higher cost every
day and the soft constraint only results in a lower cost on day 3.
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Figure 6-15: Demand profile used for the simulations
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Figure 6-16: Total cost and average state of charge per day when using a hard and soft constraint
compared to using no constraint

No constraint Hard constraint Soft constraint
100% +6.91% +1.78%

Table 6-2: Total cost when using a hard and soft constraint compared to using no constraint for
the pFB algorithm
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6-6-3 Forecast

A better way to account for days with more demand is to use the forecast of more than one
day ahead when calculating the optimal strategy for a certain day, just like in model predictive
control (MPC). In the simulations in Section 6-2 to Section 6-5, a single day was simulated
where only the (expected) demand of that particular day was used when determining the
strategy. To account for days with higher demand, instead of only looking at the expected
demand of the day for which the strategy has to be determined, each agent also uses the
expected demand of days in the future to determine its strategy. This way the algorithm
optimizes a strategy over multiple days, but only implements the strategy of the upcoming
day. Figure 6-17 shows an overview of this methodology with a prediction horizon of 2 days
and a control horizon of 1 day. In Figure 6-17a the strategy is predicted over a period of 2
days. From this strategy, only the strategy of the upcoming day is used, which can be seen
in Figure 6-17b. After that day, the algorithm moves one day forward and the same process
is repeated , shown in Figure 6-17c and Figure 6-17c. In this example a control horizon of
1 day is used, which consists of 24 time steps in the simulations. The control horizon could
also be reduced so less time steps are actually used from each strategy. However, this way a
new strategy has to be calculated more often which would increase simulation time.

(a) Strategy is predicted over 2 days (b) Only the strategy of the next day is used

(c) Horizon is moved one day forward, again predicting
the strategy over 2 days (d) Again only the strategy of the next day is used

Figure 6-17: Overview of using a prediction horizon of 2 days and control horizon of 1 day

This method was tested with a prediction horizon of 2 days, with a control horizon of 1
day, and compared with a prediction horizon of only 1 day, also with a control horizon of 1
day. Again, the demand profile shown in Figure 6-15 is used. By looking more than one day
ahead when determining the strategy of the next day, battery capacity can be saved for when
energy is more expensive, i.e., when the total demand is higher. As explained in Section 6-5,
in reality the total demand at each time step in the future can only be estimated, so for these
simulations the total demand is again modeled as a random variable, where the numbers are
drawn from a normal distribution.
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Table 6-3 shows the total cost when using a prediction horizon of 2 days compared to a
prediction horizon of 1 day. Although the reduction is slight, using a 2 day prediction horizon
results in a lower cost.

Prediction horizon 1 day 2 days
pFB 100% -0.77%
FBF 100% -0.77%
FBHF 100% -0.78%

Table 6-3: Total cost when using a prediction horizon of two days compared to a prediction
horizon of one day

Figure 6-18a shows the total cost of each day for the two different cases. It can be observed
that using a 2 day prediction horizon increases the cost on the second day and reduces the
cost on day 3 and 4, where the total demand is higher. This is to be expected since on
the second day battery capacity is saved, which is used on day 3 and 4. This can be seen
in Figure 6-18b, which shows the average SOC over all agents at the end of each day. As
expected, when using a 2 day prediction horizon, the average SOC over all agents is higher
after day 2 and 3. Although not as visible as for day 2 and 3, on day 5 and 7 also a small
amount of battery power is saved to use on day 6 and 8, respectively.
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Figure 6-18: Comparison between a prediction horizon of 1 and 2 days for all three algorithms
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Chapter 7

Discussion

Three distributed algorithms were proposed to obtain a safe and efficient operation of the
future grid while respecting the imposed constraints as well as minimizing the cost of power
usage. They were tested in a simulation on an electricity market model where it was shown
that the algorithms are capable of achieving this goal in a distributive manner. However,
although the cost functions in this model are based on real life examples, e.g., a quadratic cost
function for producing electricity, and real electricity demand data was used, all coefficients
for the cost functions and constraints are artificial. To get a more meaningful result in terms
of cost reduction, it would be useful to test the algorithms with more realistic values for the
coefficients.

In the literature about energy management and peer-to-peer (P2P) trading, each paper con-
siders a slightly different aspect of the energy market and slightly different goals they want
to achieve [27], [36], [37]. Because there is no single test platform where each algorithm
and method can be tested, it is hard to make a meaningful comparison to existing literature
in terms of performance and cost reduction. Although it is hard to make a comparison in
terms of performance, one thing that is important to note is that there are very few papers
that consider the shared constraints necessary for a realistic model, which is an advantage
of the algorithms used in this thesis. Also, the proposed algorithms are capable of handling
uncertainties.

The step sizes used for all simulations were found by trial and error. However, the performance
of the algorithms is very dependent on these step sizes. For example, changing the value of
the step size δi to 0.1 for all agents instead of 0.05 makes the algorithms more than twice as
slow. The forward-backward-forward (FBF) does not even converge for this value of δi in the
scenario where none of the agents have storage (see Section A-2).

In Section 6-4 the results were shown for an increasing number of agents. It can be observed
that the amount of time needed for each iteration increases significantly for an increasing
amount of agents. Because the goal of this thesis was to prove the algorithms work and not
to be programmed as efficiently as possible for a large amount of agents, this problem might
be partly due to the way it was programmed rather than a problem of the actual algorithms
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themselves. It should be noted that these simulations were done on a single computer, where
the optimization steps for each agent were done consecutively. In a real application all agents
can do their own optimization at the same time. This would reduce the simulation time
significantly.
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Chapter 8

Conclusion and recommendations

8-1 Summary and conclusions

The increase in renewable distributed energy resources and the increase in electric appliances
pose a problem to the electric grid. Because supply and demand should always be balanced
and power outages because of grid congestion must be prevented, energy management algo-
rithms are being developed to ensure a safe and efficient operation of the future grid.

8-1-1 Main results

Because of the selfish nature of the agents in a power grid, game theory was used to model
the electricity market. To prevent congestion of the grid, a constraint was added to limit
the total amount of power that all agents combined can buy from the main grid at each
time step. Together with a reciprocity constraint for the peer-to-peer (P2P) trades, these
constraints couple the decisions of the agents, which make the game a so called generalized
Nash equilibrium problem (GNEP). To solve this generalized game, it was passed to a
variational inequality (VI). On its turn, this VI was recast as a monotone inclusion. This
monotone inclusion can be solved by a fixed-point iteration using different operator splitting
schemes. Because we wanted a full P2P market without the need of a central coordinator,
we looked for distributed algorithms in which each agent only knows its local cost function
and local feasible set and the dual variables are shared directly between the agents. To
obtain a fully distributed algorithm, three recently developed operator splitting schemes,
i.e., preconditioned forward-backward (pFB), forward-backward-forward (FBF) and forward-
backward-half-forward (FBHF), were derived for the electricity market model and tested in
a simulation. Although the pFB and FBHF algorithms are not guaranteed to converge with
the used cost function, the simulations show that all three algorithms are capable of ensuring
a stable and safe operation of the grid while reducing the cost.
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8-1-2 Scalability

The algorithms were also tested for different amounts of agents, where it was shown that the
time each iteration takes increases significantly when the number of agents increases. The
amount of iterations to reach the stopping criteria also increased, but where the amount of
iterations was only twice as high when going from a 10- to a 30-agent network, the elapsed
CPU time was more than 20 times as high. It was found that the FBF algorithm needs more
iterations and CPU time with an increasing number of agents than the pFB and the FBHF
algorithms.

8-1-3 Stochastics

In Section 6-2 the simulations were performed using a deterministic demand profile for the day
ahead. Since the day ahead demand profile cannot be exactly known in reality, the algorithms
were also tested using a stochastic demand profile. To approximate the cost function, the
stochastic approximation (SA) method with variance reduction was used where the numbers
where drawn from a normal distribution. Although the algorithms are not guaranteed to
converge using this stochastic demand, it was shown that all three of them still converge
towards a solution.

8-1-4 Storage constraint

All simulations up until Section 6-6 were done for a single day ahead. As it may occur that
some days have a higher total demand than others, it might be beneficial to take the expected
demand of extra days in the future into account when determining a strategy. The algorithms
were tested in a simulation that involves multiple days. It was found that by using the forecast
of an extra day ahead when calculating the strategy of the next day, the cost over all days
was decreased by 0.8%.

8-2 Recommendations

This section discusses the recommendations that arose from working on this thesis. Most of
these recommendations follow from the limitations discussed in Chapter 7.

The electricity market setup in this thesis was used to prove the algorithms are capable of
achieving the goal stated in Section 1-2. However, the coefficients for the cost functions and
the constraints are artificial. To get a more meaningful result, it would be useful to test the
algorithms in a more realistic energy market setting.

Because the algorithms are so sensitive to the step sizes, it would be interesting to run
an optimization of the step sizes to obtain optimal values. This way the algorithms could
potentially become even faster.

Because the goal of this thesis was to prove the algorithms work, they were not programmed
as efficiently as possible. In Section 6-4 it was shown that the algorithms become signifi-
cantly slower when the number of agents increases. It would be interesting to see how much
improvement can be achieved by programming more efficiently.
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8-2 Recommendations 53

In the simulations in this thesis a time step of one hour was used. In future work one could
run the algorithms with smaller time steps so they can also be used for the intraday and
balancing market, as described in Section 2-1-3 and Section 2-1-4.

In general it would be helpful to have a test platform to get a more meaningful comparison
between different energy management algorithms and methods.
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Appendix A

Simulation values

This appendix shows the values that were used for the cost functions (Section A-1) and for
the step sizes (Section A-2). Section A-2 also shows the influence of the step sizes on the
performance of the algorithms.

A-1 Values cost functions

For the cost functions, the following values were used: qmgh = 1.5
N , ∀h ∈ H, qsti = 0 and csti = 1,

∀i ∈ N st, ctr(i,j) = 1, ∀j ∈ Ni and i ∈ N and cdgi = 1, ∀i ∈ N dg. Furthermore, we have that
qdgi = 1

3 for the large-scale residential customers and qdgi = 1
4 for the school, office and retail

buildings.

A-2 Step sizes

The step sizes used in the simulations were found by trial and error. The following values
were used:

• αdgi,h = 0.1, ∀i ∈ N

• αsti,h = 0.1, ∀i ∈ N

• αmgi,h = 0.1, ∀i ∈ N

• αtr(i,j),h = 2.5, ∀i ∈ N , ∀j ∈ Ni

• βij = β = 0.1, ∀i ∈ N , ∀j ∈ Ni

• γi = γ = 0.1, ∀i ∈ N

• δi = δ = 0.05, ∀i ∈ N
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The algorithms are very sensitive to the step sizes. For example, using δi = 0.1 instead of
δi = 0.05, ∀i ∈ N , makes the algorithms much slower, needing more iterations to reach
the stopping criteria, or not converging at all. For example, the forward-backward-half-
forward (FBHF) needed approximately 180 iterations for the scenario where none of the agents
have storage units to converge to the given stopping criteria when using δi = 0.05, ∀i ∈ N ,
and 440 iterations when using δi = 0.1, ∀i ∈ N . Even more so, the forward-backward-
forward (FBF) algorithm does not converges at all anymore using this value for the scenario
where none of the agents have storage units. The results for this specific case are shown in
Figure A-1. The residuals appear to converge at first, but from around 75 iterations they
start to diverge. The disagreement on the dual variable λ diverges from the start. It is clear
from these results that the algorithms show great dependency on the chosen step sizes.
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Figure A-1: Primal and dual residual and disagreement on λ when using δi = 0.1 instead of
δ = 0.05, ∀i ∈ N for the FBF algorithm when none of the agents have storage units
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Glossary

List of Acronyms

P2P peer-to-peer
DER distributed energy resource
EV electric vehicle
TSO transmission system operator
DSO distribution system operator
PV photovoltaic
NEP Nash equilibrium problem
GNEP generalized Nash equilibrium problem
GNE generalized Nash equilibrium
v-GNE variational GNE
v-GNEP variational GNEP
SNEP stochastic NEP
SGNEP stochastic GNEP
SGNE stochastic GNE

stochastic GNEPs

v-SGNE stochastic v-GNE
SOC state of charge
CHP combined heat and power
FB forward-backward
pFB preconditioned forward-backward
FBF forward-backward-forward
FBHF forward-backward-half-forward
SA stochastic approximation
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62 Glossary

SAA sample average approximation
KKT Karush-Kuhn-Tucker
VI variational inequality
SVI stochastic VI
MPC model predictive control
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