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In this work we propose a novel method to ensure important entropy inequalities are satisfied semi-

discretely when constructing reduced order models (ROMs) on nonlinear reduced manifolds. We 
are in particular interested in ROMs of systems of nonlinear hyperbolic conservation laws. The 
so-called entropy stability property endows the semi-discrete ROMs with physically admissible 
behaviour. The method generalizes earlier results on entropy-stable ROMs constructed on linear 
spaces. The ROM works by evaluating the projected system on a well-chosen approximation of 
the state that ensures entropy stability. To ensure accuracy of the ROM after this approximation 
we locally enrich the tangent space of the reduced manifold with important quantities. Using 
numerical experiments on some well-known equations (the inviscid Burgers equation, shallow 
water equations and compressible Euler equations) we show the improved structure-preserving 
properties of our ROM compared to standard approaches and that our approximations have 
minimal impact on the accuracy of the ROM. We additionally generalize the recently proposed 
polynomial reduced manifolds to rational polynomial manifolds and show that this leads to an 
increase in accuracy for our experiments.

1. Introduction

Conservation laws are nearly universally present in any branch of physics and engineering e.g. fluid dynamics, structural mechan-

ics, plasma physics and climate sciences; they express the conservation of some physical quantity of interest. Often such conservation 
laws are described by hyperbolic equations or systems thereof [1]. Physicists and engineers are increasingly reaching to simulation 
tools for approximate solutions. With the increase in computational power of recent decades, very large-scale problems have indeed 
been solved to a satisfactory accuracy. Nonetheless, some applications of major engineering interest like those of a multi-query (e.g. 
design optimization [2], uncertainty quantification [3]) or real-time nature (e.g. model predictive control [4], digital twin technology 
[5]) remain out of question for many large scale systems. A way around these computational issues has been offered by reduced order 
models (ROMs), which are low-dimensional surrogates of high-fidelity models of interest, often referred to as full order models (FOM) 
in the ROM community. ROMs rely on the offline-online decomposition paradigm [6] for their efficiency, they are trained in an ex-
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pensive offline phase and subsequently evaluated at very low computational cost in new situations in the online phase. Particularly, 
the low dimensionality of the ROM allows for fast and cheap evaluation of its solution.

A popular class of ROMs are projection-based ROMs (pROMs) [7,2], which have traditionally been constructed by projecting 
equations of interest on well-chosen linear subspaces. These subspaces are often found in a data-driven manner using the proper 
orthogonal decomposition (POD) [8,9] or greedy methods [10] and the projections are carried out using a Galerkin [11–16] or 
Petrov-Galerkin [17–19] approach. However, the success of applications of linear subspace-based pROMs has been limited in the 
field of hyperbolic equations. This is a result of an almost inherently slow decay of the so-called Kolmogorov 𝑛-width (KnW) of the 
solution manifolds 𝑢 (i.e. the set of all solution trajectories for a range of parameters and initial conditions of interest) of these 
systems1:

𝑑𝑟(𝑢) = inf⊂ ;dim()=𝑟 sup 
𝒖∈𝑢

inf
𝒗∈ ||𝒖− 𝒗|| , (1)

which measures the worst error that can be incurred when optimally approximating 𝑢 with an optimally chosen 𝑟-dimensional 
linear subspace. The KnW decay of many hyperbolic systems is slow because their solution trajectories are often not contained in 
low-dimensional linear subspaces due to characteristically having moving features as part of their solution. This has been shown 
analytically for some systems [20–24] and empirically for many others. In recent years a range of possible solutions have been 
proposed, falling in roughly four categories. First, there have been adaptive approaches that use linear subspaces that are changed 
during the online phase to be better suited to new conditions [25–32]; second, domain decomposition approaches that localize 
ROM construction in time, space or parameter space [33–38,18,39]; third, Lagrangian, registration and/or optimal transport based 
approaches that track moving features improving linear data compressibility [40–52]; fourth, constructing ROMs on nonlinear spaces 
(manifolds). Since it is not dependent on user-defined localization or adaptation strategies and due to its high expressiveness we will 
be interested in the latter category. In model reduction on manifolds the linear reduced spaces of classical ROMs are replaced by 
nonlinear spaces. Given sufficient expressiveness the nonlinear reduced spaces can potentially approximate the solution manifolds 
of hyperbolic systems. These manifolds are typically constructed from data. In [53–60] autoencoder neural networks are used to 
construct manifold ROMs. Another popular nonlinear manifold construction approach are polynomial manifolds [61–65]. Finally, 
there has been an increasing interest in a more physics-based approach, where ROMs are constructed on the invariant manifolds of 
physical systems [66–69].

Although, to the authors’ knowledge, there have not been any studies of manifold ROMs on large scale under-resolved and 
shock-dominated cases within fluid dynamical applications, it has long been known that their linear counterparts can suffer from 
stability issues for such problems [11,12,70–72,14–16]. It is quite reasonable to assume this will also be the case for manifold 
ROMs. A promising approach to stabilization of such simulations is the concept of entropy stability [73,74], which has been widely 
used in the context of obtaining stable FOMs. A numerical method is entropy stable if it dissipates a convex functional associated 
to a conservation law, referred to as entropy, given suitable boundary conditions. Entropy stability endows numerical methods 
with physically admissible behaviour, which for fluid dynamical applications manifests itself in satisfaction of the second law of 
thermodynamics. Furthermore, it generalizes the 𝐿2-stability properties of linear hyperbolic systems to fully nonlinear systems [73]. 
Additionally, stability in 𝐿𝑝 spaces can be shown formally [75–77].

However, in the projection step to construct pROMs an entropy-stable numerical method generally loses its stability property. In 
recent years, some work has been carried out in the ROM community to preserve the entropy stability property. In Fig. 1 several 
possible approaches have been visualized. In [78] the ROM is evaluated at a corrected state that ensures entropy stability is maintained 
(also known as ‘entropy projection’). Inspired by the approach taken in the classical finite element work in [79], [14] writes the 
conservation laws in symmetric form using an alternative set of variables and projects the continuous equations leading to correct 
entropy estimates. In [80] the Hilbert spaces in which the projections are carried out are defined according to physical arguments. 
We also note the works in [15,16,13]. All these approaches suffer a major drawback – they are built on linear reduced spaces. As a 
result, relatively high-dimensional reduced spaces are required to model many physical systems of interest, which comes at the cost 
of computational efficiency of the ROM.

Our main contribution is to generalize these entropy-stable approaches to nonlinear reduced spaces. This allows for lower-

dimensional reduced spaces and thus potentially more efficient ROMs. In particular, we will be interested in generalizing the work 
in [78]. This approach is coloured red in Fig. 1. Our main argument for not choosing [14,80] stems from the argument given e.g. 
in [81], namely that formulations in alternative variables are not consistent with the famous Lax-Wendroff theorem [82] and can 
thus yield wrong shock solutions. To our knowledge, our method is the first manifold ROM that is provably entropy stable. At the 
same time, we note that preservation of other mathematical structures on reduced manifolds has been successfully achieved in the 
past: symplectic [63,56,83]; metriplectic [84]; conservative [85]. A great overview of recent structure-preserving model reduction 
contributions in general is given in [86].

A second contribution of this work is the development of a novel generalization of polynomial manifolds [64,62] to rational 
polynomial manifolds. While these polynomial manifolds have shown successes in certain applications, in our experience they are 
not sufficiently accurate for shock-dominated problems. Rational polynomials are better at capturing discontinuities, as we will show 
in this work.

1 ( , || ⋅ || ) denoting a Banach space of interest containing analytical PDE or approximate simulation solutions.
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Fig. 1. Flowchart of possible entropy-stable ROM approaches, our method is indicated in red. 𝑢 are the conserved variables and 𝜂 are the alternate variables used in 
[14]. FOM: full order model, ROM: reduced order model. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Most of our results can be generalized to multiple spatial dimensions by following [78]. As we will see, however, our approach 
for finding a nonlinear manifold parameterization for shock-dominated problems becomes computationally expensive if the number 
of degrees of freedom of the FOM is large. We have therefore chosen to focus on one-dimensional problems in this article.

This article is organized as follows. In section 2 we introduce the theory of nonlinear hyperbolic conservation laws and entropy 
analysis, we introduce a baseline entropy-stable FOM [76], and an entropy-stable linear ROM as proposed in [78]. In section 3 we 
introduce our main contribution, the novel entropy-stable nonlinear manifold ROM. In section 4 we discuss our second contribution, 
being rational polynomial manifolds. In section 5 we show the effectiveness of our approach using several numerical experiments 
that are based on a range of well-known conservation laws from fluid dynamics. We conclude our work in section 6.

2. Preliminaries: entropy inequality for conservation laws, entropy-stable FOM, linear ROM

2.1. Introducing the entropy inequality

We give a short introduction to the concept of entropy, some related concepts used in its analysis and its role in the theory 
of nonlinear conservation laws. We consider conservation laws in one spatial dimension that can be written as partial differential 
equations (PDE) of the form:

𝜕𝒖

𝜕𝑡 
+
𝜕𝒇 (𝒖)
𝜕𝑥 

= 0, (2)

where Ω is a spatial domain and [0, 𝑇 ] is a temporal domain with 𝑇 > 0. Furthermore 𝒖 ∶ Ω × (0, 𝑇 ]→ ℝ𝑛 is the solution function, 
𝒇 ∶ ℝ𝑛 → ℝ𝑛 is the nonlinear flux function, 𝑛 ∈ ℕ is the number of conserved quantities and 𝑥 ∈ Ω and 𝑡 ∈ [0, 𝑇 ] are the spatial 
coordinate and time, respectively. To facilitate conservation statements and minimize the role of boundary conditions we will focus on 
periodic spatial domains Ω= 𝕋 ([𝑎, 𝑏]) with 𝑏 > 𝑎 and 𝑏, 𝑎 ∈ℝ in this research, here 𝕋 is the torus. The equations are complemented by 
a set of initial conditions 𝒖0 ∶ Ω→ℝ𝑛 so that 𝒖0(𝑥) = 𝒖(𝑥,0). The conservation law (2) is referred to as hyperbolic when the Jacobian 
matrix 𝜕𝒇

𝜕𝒖
is diagonalizable with real eigenvalues for all physically relevant 𝒖 [74]. In many cases, the solutions of physically relevant 

hyperbolic conservation laws also satisfy additional conservation laws of the form:

𝜕𝑠(𝒖)
𝜕𝑡 

+ 𝜕 (𝒖)
𝜕𝑥 

= 0, (3)

where the function 𝑠 ∶ ℝ𝑛 → ℝ is called the entropy function which is defined to be convex2 and  ∶ ℝ𝑛 → ℝ is called the entropy 
flux. In particular, such an additional conservation law exists if the compatibility relation:

𝜼(𝒖)𝑇
𝜕𝒇

𝜕𝒖
= 𝜕
𝜕𝒖

𝑇

, (4)

is satisfied. Here, 𝜼 ∶ℝ𝑛 → ℝ𝑛, 𝒖↦ 𝜕𝑠 
𝜕𝒖
(𝒖) is the gradient of the entropy function 𝑠 with respect to 𝒖. This mapping is injective due 

to the convexity of 𝑠 and hence can be inverted. A pair (𝑠, ) satisfying the compatibility relation (4) is called an entropy pair of (2).

It is well-known that solutions 𝒖 to (2) can develop discontinuities in finite time for smooth 𝒖0 [87,74,88]. When this occurs the 
solution 𝒖 is said to contain a shock or contact discontinuity depending on the behaviour of the discontinuity [74]. In this case both 
formulation (2) and the manipulations to obtain (3) are no longer valid. We must therefore consider (2) in a weak sense to retain 
a notion of solutions. This weak form of the conservation law is obtained by integrating against a space of smooth test functions 
𝒗 ∶ Ω × [0,∞)→ℝ𝑛 with compact support i.e. 𝒗 ∈ 𝐶∞

0 (Ω × [0,∞)) and transferring all derivatives to these test functions to obtain:

2 A function 𝑔 ∶ℝ𝑛 →ℝ is convex if its Hessian, 𝜕2𝑔
𝜕𝒖2

(𝒖), is positive definite for all 𝒖.
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∫
0 

∫
Ω 
𝒖 ⋅
𝜕𝒗

𝜕𝑡 
+ 𝑓 (𝒖) ⋅ 𝜕𝒗

𝜕𝑥 
𝑑𝑥𝑑𝑡+ ∫

Ω 
𝒖0 ⋅ 𝒗(𝑥,0)𝑑𝑥 = 0, (5)

on periodic Ω. Note that this expression is valid even for discontinuous 𝒖 and that any smooth 𝒖 satisfying the strong form (2) also 
satisfies this weak form (5) [1,87]. However, weakening the notion of a solution like this comes at the cost that it does not necessarily 
yield unique solutions (examples of such cases may be found in [87,88,1,74]). Out of all weak solutions, i.e. solutions to (5), those 
of physical interest are the ones satisfying:

𝜕𝑠(𝒖)
𝜕𝑡 

+ 𝜕 (𝒖)
𝜕𝑥 

≤ 0, (6)

in the sense of distributions, with equality for smooth 𝒖 following (3) and inequality for solutions containing shocks. This inequality 
arises from considering limits of regularized conservation laws, more details can be found in [74]. For scalar conservation laws 
Kruzkov [77] established that weak solutions satisfying (6) are unique, but for systems uniqueness is not yet completely established 
[89]. We can define the total entropy functional as:

[𝒖] ∶= ∫
Ω 
𝑠(𝒖)𝑑𝑥. (7)

Defining appropriate sequences of test functions and taking limits [90,1], it can be shown that the estimate:

𝑑[𝒖]
𝑑𝑡 

≤ 0, (8)

follows from (6) on periodic Ω. This inequality will be the main interest of this paper.

2.2. Entropy-stable spatial discretization (FOM)

We will discretize the conservation law (2) with a finite volume method (FVM) based on flux-differencing [74]. To introduce the 
general and frequently recurring structure of our entropy stability proof we will provide some detail on the full order model (FOM) 
discretization. The FVM discretization will be constructed such that discrete analogues to (8) hold. Other discretization methods 
that similarly mimic (8) are also possible, for example the split-form discontinuous Galerkin (DG) methods described in [91], the 
summation-by-parts schemes in [92] and the higher-order methods of [76,93]. We choose the FVM to keep the exposition simple, 
but note that our entropy-stable ROM framework should work with other entropy-stable FOM discretizations as well.

The scheme is formulated as:

Δ𝑥𝑖
𝑑𝒖𝑖

𝑑𝑡 
+ 𝒇 𝑖+1∕2 − 𝒇 𝑖−1∕2 = 0, 𝑖 ∈ {0, ...,𝑁 − 1}, (9)

on a grid of 𝑁 grid cells so that 𝑖 ∈ {0, ...,𝑁 − 1}. Here, 𝒖𝑖 ∶ [0,∞) → ℝ𝑛 is the numerical solution vector in the 𝑖-th grid cell, 
Δ𝑥𝑖 ∶= 𝑥𝑖+1∕2 − 𝑥𝑖−1∕2 is the cell size of the 𝑖-th cell with 𝑥𝑖±1∕2 denoting respectively the 𝑥 values of the right (+) and left (−) 
cell boundary and 𝒇 𝑖+1∕2 ∶= 𝒇ℎ(𝒖𝑖+1,𝒖𝑖) is the numerical flux on the right cell boundary of the 𝑖-th cell with 𝒇ℎ ∶ ℝ𝑛 × ℝ𝑛 → ℝ𝑛
being a two-point numerical flux function [94] approximating the flux function 𝒇 on a cell boundary based on two neighbouring 
numerical solution values, similarly 𝒇 𝑖−1∕2 approximates 𝒇 on the left boundary. We also define the total number of unknowns as 
𝑁ℎ ∶= 𝑛 ⋅𝑁 . Periodic boundary conditions are enforced by setting 𝒖𝑁 ∶= 𝒖0 and 𝒖−1 ∶= 𝒖𝑁−1. In the schemes we are considering 
the numerical flux function is constructed from entropy-conservative flux functions [73,94,95]. These are flux functions that assure 
discrete analogues of (3) and (8) are satisfied with equality. This makes them suitable starting points from which to construct flux 
functions that have appropriate entropy-dissipative properties. We follow Tadmor’s framework [94] of entropy-conservative fluxes, 
which are defined as follows:

Definition 1 (Entropy-conservative numerical flux). An entropy-conservative two-point numerical flux 𝒇∗
ℎ
∶ℝ𝑛 ×ℝ𝑛→ℝ𝑛 is a numer-

ical two-point flux satisfying:

1. consistency: 𝒇 ∗
ℎ
(𝒖,𝒖) = 𝒇 (𝒖);

2. symmetry: 𝒇 ∗
ℎ
(𝒖𝑙,𝒖𝑟) = 𝒇 ∗

ℎ
(𝒖𝑟,𝒖𝑙);

3. entropy conservation: (𝜼(𝒖𝑙) − 𝜼(𝒖𝑟))𝑇 𝒇 ∗
ℎ
(𝒖𝑙,𝒖𝑟) = 𝜓(𝒖𝑙) −𝜓(𝒖𝑟).

The entropy-dissipative fluxes 𝒇ℎ ∶ ℝ𝑛 × ℝ𝑛 × ℝ𝑁ℎ → ℝ𝑛 are now constructed from entropy-conservative fluxes 𝒇 ∗
ℎ

by adding 
(possibly solution dependent) entropy dissipation operators like:

𝒇 𝑖+1∕2 ∶= 𝒇ℎ(𝒖𝑖+1,𝒖𝑖,𝒖ℎ) = 𝒇 ∗
ℎ
(𝒖𝑖+1,𝒖𝑖) −𝑫𝑖+1∕2(𝒖ℎ)Δ𝜼𝑖+1∕2 (10)

with 𝑫𝑖+1∕2 ∶ ℝ𝑁ℎ → 𝕊𝑛+ so that 𝑫𝑖+1∕2(𝒖ℎ) is symmetric positive semi-definite (SPSD) for any 𝒖ℎ(𝑡) ∈ ℝ𝑁ℎ (𝕊𝑛+ and 𝕊𝑛++ are the 
convex sets of symmetric positive definite and symmetric positive semi-definite 𝑛×𝑛 matrices, respectively). Here, 𝒖ℎ ∶ [0,∞)→ℝ𝑁ℎ
is the numerical solution vector on the whole grid to be defined in what follows (this is required for higher order reconstructions like 
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in e.g. [76]). Additionally, we have defined Δ𝜼𝑖+1∕2 ∶= 𝜼(𝒖𝑖+1) − 𝜼(𝒖𝑖). We will refrain from denoting explicitly the dependence on 
𝒖ℎ in the third argument of 𝒇ℎ and simply write 𝒇ℎ(𝒖𝑖+1,𝒖𝑖) for (10).

For the purpose of model reduction in section 3 we rewrite discretization (9) with flux (10) in a matrix-vector formulation. We 
will introduce the following notations: volume-based quantities which live on cell centers and interface-based quantities which live 
on cell interfaces. The numerical solution vector is a volume-based quantity given by:

𝒖ℎ(𝑡) ∶= [𝑢10(𝑡)..., 𝑢
𝑘
𝑖
(𝑡), 𝑢𝑘

𝑖+1(𝑡), ..., 𝑢
𝑛
𝑖
(𝑡), ...]𝑇 ∈ℝ𝑁ℎ ,

where 𝑢𝑘
𝑖
(𝑡) ∈ℝ is the approximation of the 𝑘-th conserved variable (the variable conserved by the 𝑘-th equation in (2)) in the 𝑖-th 

cell evaluated at time 𝑡. The numerical flux vector is an interface-based quantity, overloading the notation for the numerical flux 
function, it is given by:

𝒇ℎ(𝒖ℎ) ∶= [𝑓 1
1∕2, ..., 𝑓

1
𝑁−1∕2, 𝑓

2
1∕2, ...𝑓

𝑘
𝑖−1∕2, 𝑓

𝑘
𝑖+1∕2, ..., 𝑓

𝑛
𝑖+1∕2, ..., 𝑓

𝑛
𝑁−1∕2]

𝑇 ∈ℝ𝑁ℎ ,

where 𝑓𝑘
𝑖+1∕2 is the numerical flux of the 𝑘-th conservation equation evaluated at interface 𝑖+1∕2 between cells 𝑖+ 1 and 𝑖. Periodic 

boundary conditions are built into the flux vector by evaluating 𝑓𝑘
𝑁−1∕2(𝒖0,𝒖𝑁−1) for all 𝑘 ∈ {1, ..., 𝑛}.

To perform finite-difference operations as in (9) for volume-based and interface-based quantities, respectively, the following 
matrices are defined:

Δ̄𝑣 =
⎡⎢⎢⎢⎣
1 0 0 −1
−1 1 0 0
0 ⋱ ⋱ 0
0 0 −1 1

⎤⎥⎥⎥⎦ ∈ℝ𝑁×𝑁, Δ̄𝑖 =
⎡⎢⎢⎢⎣
−1 1 0 0
0 ⋱ ⋱ 0
0 0 −1 1
1 0 0 −1

⎤⎥⎥⎥⎦ ∈ℝ𝑁×𝑁.

We note the skew-adjointness relation

Δ̄𝑣 = −Δ̄𝑇
𝑖
, (11)

and that both have zero row and column sum. These properties will be used in proving entropy stability of the scheme. For systems 
we define Δ𝑣 ∶= 𝐼 ⊗ Δ̄𝑣 and Δ𝑖 ∶= 𝐼 ⊗ Δ̄𝑖 with 𝐼 being the 𝑛 × 𝑛 identity matrix and ⊗ the Kronecker product. Clearly, Δ𝑣 and Δ𝑖
satisfy a similar skew-adjointness property (11). We will also introduce the FVM mass matrices Ω̄ℎ = diag(Δ𝑥𝑖) with 𝑖 = 0,1, ...,𝑁 −1
and Ωℎ ∶= 𝐼 ⊗ Ω̄ℎ. With these operators we can write a compact form of the discretization (9) as follows:

Ωℎ
𝑑𝒖ℎ

𝑑𝑡 
+Δ𝑣𝒇ℎ(𝒖ℎ) = 0. (12)

To emphasize the role played by the dissipation operator 𝑫𝑖+1∕2 in obtaining entropy-stable spatial discretizations we will decompose 
Δ𝑣𝒇ℎ(𝒖ℎ) in an entropy-conserving part and an entropy-dissipating part, resulting in:

Ωℎ
𝑑𝒖ℎ

𝑑𝑡 
+Δ𝑣𝒇 ∗

ℎ
(𝒖ℎ) = Δ𝑣𝑫ℎ(𝒖ℎ)Δ𝑖𝜼ℎ, (13)

here, 𝒇 ∗
ℎ
(𝒖ℎ) is a vector of entropy conservative numerical fluxes, 𝑫ℎ(𝒖ℎ) ∈ 𝕊𝑁ℎ+ is an SPSD matrix containing the terms associated 

to the dissipation operators 𝑫 𝑖+1∕2 and 𝜼ℎ is a vector containing the grid values of the entropy variables ordered similarly as 𝒖ℎ.

Having introduced an entropy-dissipative numerical flux, we evaluate the discrete analogue to the continuous total entropy func-

tional (7) which should be suitably dissipated by the entropy stable discretization (13) or conserved in the case of no dissipation. The 
discrete total entropy functional will be defined as:

𝑆ℎ[𝒖ℎ] ∶= 𝟏𝑇 Ω̄ℎ𝒔ℎ, (14)

where 𝟏 is a vector of ones and the local entropy is defined as:

𝒔ℎ(𝒖ℎ(𝑡)) ∶= [𝑠(𝒖0(𝑡)), ..., 𝑠(𝒖𝑖(𝑡)), ..., 𝑠(𝒖𝑁−1(𝑡))]𝑇 ∈ℝ𝑁,

which is a volume-based quantity. The time evolution of 𝑆ℎ is given by

𝑑𝑆ℎ[𝒖ℎ]
𝑑𝑡 

= 𝟏𝑇 Ω̄ℎ
𝑑𝒔ℎ

𝑑𝑡 
=
∑
𝑖 
Δ𝑥𝑖𝜼(𝒖𝑖)𝑇

𝑑𝒖𝑖

𝑑𝑡 
= 𝜼𝑇

ℎ
Ωℎ
𝑑𝒖ℎ

𝑑𝑡 
.

We also define the entropy flux potential vector as:

𝝍ℎ(𝒖ℎ(𝑡)) ∶= [𝜓(𝒖0(𝑡)), ..., 𝜓(𝒖𝑖(𝑡)), ..., 𝜓(𝒖𝑁−1(𝑡))]𝑇 ∈ℝ𝑁,

which is a volume-based quantity, like the local entropy vector. To analyse the entropy evolution we can substitute the spatial 
discretization (13) in the previous expression to obtain:

𝑑𝑆ℎ[𝒖ℎ]
𝑑𝑡 

= 𝜼𝑇
ℎ
Ωℎ
𝑑𝒖ℎ

𝑑𝑡 
= −𝜼𝑇

ℎ
Δ𝑣𝒇 ∗

ℎ
(𝒖ℎ) + 𝜼𝑇ℎΔ𝑣𝑫ℎ(𝒖ℎ)Δ𝑖𝜼ℎ
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= (Δ𝑖𝜼ℎ)𝑇 𝒇 ∗
ℎ
(𝒖ℎ) − 𝜼𝑇ℎΔ

𝑇
𝑖
𝑫ℎ(𝒖ℎ)Δ𝑖𝜼ℎ

= 𝟏𝑇 Δ̄𝑖𝝍ℎ − 𝜼𝑇ℎΔ
𝑇
𝑖
𝑫ℎ(𝒖ℎ)Δ𝑖𝜼ℎ

= 0 − 𝜼𝑇
ℎ
Δ𝑇
𝑖
𝑫ℎ(𝒖ℎ)Δ𝑖𝜼ℎ

≤ 0, (15)

where we used the skew-adjointness property (11), the entropy conservation condition of the numerical flux, positive-definiteness of 
the dissipation operator 𝑫ℎ(𝒖ℎ) (and thus of Δ𝑇

𝑖
𝑫ℎ(𝒖ℎ)Δ𝑖) and the zero column sum of Δ̄𝑖. Clearly, in case no entropy dissipation is 

added in the numerical flux (10), equation (15) reduces to
𝑑𝑆ℎ[𝒖ℎ]
𝑑𝑡 

= 0.

We note that the inequality (15) allows for formal 𝐿𝑝-stability statements [75,1,76].

2.3. The entropy-stable linear ROM of Chan [78]

The main aim of this work is to propose reduced order models (ROMs) that are a nonlinear generalization of the entropy-stable ROM 
of Chan [78]. To highlight key conceptual differences between the ROM in [78] and ours, and to introduce the ROM methodology, we 
will briefly discuss the elements of Chan’s ROM leading to its entropy stability. Classical reduced order models including [78] make the 
assumption that the evolution of 𝒖ℎ(𝑡) can be accurately approximated with elements from a linear space  ⊂ℝ𝑁ℎ where dim() ∶=
𝑟 ≪𝑁ℎ so that  can be referred to as low-dimensional [12–19]. Classically, the subspace  is constructed using a truncated proper 
orthogonal decomposition (POD) based on snapshot data collected in a matrix 𝑋 ∈ ℝ𝑁ℎ×𝑛𝑠 with 𝑛𝑠 ∈ ℕ the number of snapshots 
[11,12]. The construction of the ROM in [78] starts by defining the approximation 𝒖ℎ ≈ 𝒖𝑟 ∶= Φ𝒂 with 𝒂 ∈ ℝ𝑟 being generalized 
coordinates in  relative to the basis Φ. Here, we assume Φ is orthogonal in the Ωℎ-weighted inner product, i.e. 𝜙𝑇

𝑖
Ωℎ𝜙𝑗 = 𝛿𝑖𝑗 with 𝜙𝑖

the 𝑖-th column of Φ and 𝛿𝑖𝑗 the Kronecker delta function. Then, the approximation is substituted in (13) introducing a semi-discrete 
residual which is set orthogonal to  by solving the Galerkin projected system:

𝑑𝒂

𝑑𝑡 
+Φ𝑇Δ𝑣𝒇 ∗

𝑟
(𝒂) = Φ𝑇Δ𝑣𝑫𝑟(𝒂)Δ𝑖𝜼𝑟(𝒂), (16)

with 𝒇 ∗
𝑟
(𝒂) ∶= 𝒇 ∗

ℎ
(Φ𝒂), 𝑫𝑟(𝒂) ∶=𝑫ℎ(Φ𝒂) and 𝜼𝑟(𝒂) ∶= 𝜼ℎ(Φ𝒂). Equation (16) defines a (linear) POD-Galerkin ROM [12–16].

Similar to the FOM case, see equation (14), we can evaluate the evolution of the ROM total entropy. The reduced total entropy 
functional is defined as:

𝑆𝑟[𝒂] ∶= 𝑆ℎ[Φ𝒂] = 𝟏𝑇 Ω̄ℎ𝒔𝑟(𝒂), (17)

with 𝒔𝑟(𝒂) ∶= 𝒔ℎ(Φ𝒂). The evolution of the reduced total entropy is:

𝑑𝑆𝑟[𝒂]
𝑑𝑡 

= 𝟏𝑇 Ω̄ℎ
𝑑𝒔𝑟

𝑑𝑡 
=
∑
𝑖 
Δ𝑥𝑖𝜼(Φ𝑖𝒂)𝑇Φ𝑖

𝑑𝒂

𝑑𝑡 
= 𝜼𝑇

𝑟
ΩℎΦ

𝑑𝒂

𝑑𝑡 
,

with Φ𝑖 ∈ℝ𝑛×𝑟 the rows of Φ approximating values in cell 𝑖. The entropy evolution of (16) is:

𝑑𝑆𝑟[𝒂]
𝑑𝑡 

= 𝜼𝑇
𝑟
ΩℎΦ

𝑑𝒂

𝑑𝑡 
= −𝜼𝑇

𝑟
ΩℎΦΦ𝑇Δ𝑣𝒇 ∗

𝑟
(𝒂) + 𝜼𝑇

𝑟
ΩℎΦΦ𝑇Δ𝑣𝑫𝑟(𝒂)Δ𝑖𝜼𝑟

= −�̃�𝑇
𝑟
Δ𝑣𝒇 ∗

𝑟
(𝒂) + �̃�𝑇

𝑟
Δ𝑣𝑫𝑟(𝒂)Δ𝑖𝜼𝑟,

where, since ΦΦ𝑇Ωℎ defines an Ωℎ-orthogonal projection operator [96], �̃�𝑟 ∶= ΦΦ𝑇Ωℎ𝜼𝑟 are the so-called projected entropy vari-

ables. It is unclear whether this expression is bounded. To solve this, Chan [78] proposes a technique used earlier in DG finite element 
literature [97–99]. Namely, the discretization is not evaluated at Φ𝒂 but at the entropy projected state:

�̃�𝑟 ∶= 𝒖(ΦΦ𝑇Ωℎ𝜼𝑟) = 𝒖(�̃�𝑟),

where we have defined 𝒖 ∶ℝ𝑁ℎ →ℝ𝑁ℎ ,𝜼ℎ↦ 𝒖ℎ for notational convenience. Recall that the mapping 𝒖 is indeed available since 𝜼 is 
injective. In this case we have:

𝑑𝑆𝑟[𝒂]
𝑑𝑡 

= −�̃�𝑇
𝑟
Δ𝑣𝒇 ∗

ℎ
(𝒖(�̃�𝑟)) + �̃�𝑇𝑟 Δ𝑣𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟

= (Δ𝑖�̃�𝑟)𝑇 𝒇 ∗
ℎ
(𝒖(�̃�𝑟)) − �̃�𝑇𝑟 Δ

𝑇
𝑖
𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟

= 𝟏𝑇 Δ̄𝑖�̃� 𝑟 − �̃�𝑇𝑟 Δ
𝑇
𝑖
𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟

= 0 − �̃�𝑇
𝑟
Δ𝑇
𝑖
𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟

≤ 0, (18)
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so that we re-obtain an entropy estimate that mimics the FOM estimate (15). Here, �̃� 𝑟 is the entropy flux potential vector evaluated 
at the entropy projected state. A key difference with the DG literature [97–99] is that in the ROM case the basis Φ is only constructed 
to resolve solutions present in the snapshot matrix 𝑋, whereas in DG the trial basis is able to approximate a larger subspace of the 
relevant PDE function spaces. As a result, the DG trial basis can resolve the entropy variables well, but this may not be the case for 
the reduced basis Φ. To address this issue, [78] builds the basis Φ from a set of augmented snapshots given (with some abuse of 
notation) by:

�̃� = [𝑋,𝜼(𝑋)], (19)

so that the projection of the entropy variables on the basis Φ is close to the identity. As we will explain in section 3.3, for our proposed 
nonlinear manifold ROMs, such a construction is not sufficient, and a new tangent space enrichment technique will be proposed to 
ensure the accuracy of the entropy projection.

3. An entropy-stable nonlinear manifold Galerkin ROM

The solution manifolds of many hyperbolic conservation laws (2) have slow Kolmogorov 𝑛-width decay (1). Hence, approximations 
using linear subspaces as in [78] may require very large reduced space dimensions 𝑟 before they become accurate. This comes at the 
cost of their efficiency. For this reason ROMs built on nonlinear spaces endowed (at least locally) with a manifold structure have 
become a topic of interest [53–55,63,56,100,101,64,57–61,65]. To address the shortcomings of the linear subspaces employed in 
[78] we will generalize this method to nonlinear reduced spaces, while keeping the entropy-stability property. We will be interested 
specifically in nonlinear subsets of ℝ𝑁ℎ endowed with some inner product, instead of any abstract space. Therefore we will not be 
very rigorous about our use of the word manifold, following predominantly the treatise of [55] and standard multivariable calculus 
interpretations. For a rigorous treatment we suggest consulting the recent preprint [100]. We will give a brief description of nonlinear 
manifold ROMs and then propose our generalization of [78].

3.1. Manifold Galerkin model reduction

In constructing ROMs on nonlinear manifolds we make the assumption that for any 𝑡 ∈ [0, 𝑇 ] there are points 𝒖𝑟(𝑡) on a low-

dimensional submanifold  ⊂ℝ𝑁ℎ that accurately approximate 𝒖ℎ(𝑡). Here, we denote 𝑟 ∶= dim() and the low-dimensionality of 
 implies that 𝑟 ≪𝑁ℎ. We will refer to the submanifold  as the reduced manifold. Instead of the classical affine reduced space 
parameterization seen in the previous section we will use nonlinear manifold parameterizations given as:

𝒖ℎ(𝑡) ≈ 𝒖𝑟(𝑡) ∶=𝝋(𝒂(𝑡)) ∈, (20)

where:

𝝋 ∶ℝ𝑟→ℝ𝑁ℎ , (21)

is assumed to be a smooth nonlinear injective function - at least when restricted to some subset  ⊆ ℝ𝑟 of interest where the ROM 
will be well-defined. This means that 𝝋(ℝ𝑟) = with a Jacobian 𝑱 ∶ℝ𝑟→ℝ𝑁ℎ×𝑟, 𝒂↦ 𝜕𝝋

𝜕𝒂
(𝒂) of full rank for any 𝒂 ∈ ⊆ℝ𝑟, where 

𝒂 ∶ [0, 𝑇 ]→ℝ𝑟 are generalized coordinates on the manifold . The function 𝝋 may be obtained in many ways: some examples are 
quadratic approximations [64,63,62,61,65] or neural networks [53–55,59,57,60,101,58]. We will propose a new method based on 
rational polynomials in section 4. In this section, we develop an entropy-stable ROM which is agnostic of the choice for 𝝋.

To construct a ROM we substitute (20) into the FOM discretization (13) so that after applying the chain rule we find the residual:

𝒓
(
𝑑𝒂

𝑑𝑡 
,𝒂
)
∶= 𝑱 𝑑𝒂

𝑑𝑡 
+Ω−1

ℎ
Δ𝑣𝒇 ∗

𝑟
(𝒂) − Ω−1

ℎ
Δ𝑣𝑫𝑟(𝒂)Δ𝑖𝜼𝑟(𝒂),

where we define 𝒇 ∗
𝑟
(𝒂) ∶= 𝒇 ∗

ℎ
(𝝋(𝒂)), 𝑫𝑟(𝒂) ∶=𝑫ℎ(𝝋(𝒂)) and 𝜼𝑟(𝒂) ∶= 𝜼ℎ(𝝋(𝒂)). The ROM is defined by minimizing this residual in 

the Ωℎ-norm for 𝑑𝒂
𝑑𝑡 given some 𝒂, this results in the ROM:

(𝑱 𝑇Ωℎ𝑱 )
𝑑𝒂

𝑑𝑡 
+ 𝑱 𝑇Δ𝑣𝒇 ∗

𝑟
(𝒂) = 𝑱 𝑇Δ𝑣𝑫𝑟(𝒂)Δ𝑖𝜼𝑟(𝒂),

which is indeed well-defined for 𝒂 ∈ ⊆ ℝ𝑟 since the Jacobian 𝑱 is assumed to be of full-rank on the subset , making the mass 
matrix (𝑱 𝑇Ωℎ𝑱 ) invertible [96]. In this nonlinear case the ROM is given by the coefficients of an orthogonal projection of the FOM 
on the tangent space of  defined by 𝑇𝑢𝑟 ∶= span(𝑱 (𝒂)) with 𝒂 such that 𝒖𝑟 =𝝋(𝒂). This orthogonal projection is carried out using 
the Ωℎ-weighted Moore-Penrose pseudoinverse 𝑱 † ∶= (𝑱 𝑇Ωℎ𝑱 )−1𝑱 𝑇Ωℎ. Constructing a ROM by projecting the FOM on the tangent 
space instead of the reduced manifold itself will result in key differences in our approach compared to the linear case outlined in [78]: 
in contrast to the linear case where 𝑱 =Φ, 𝑇𝑢𝑟 and  are no longer the same space. We introduce 𝑱+ = 𝑱 †Ω−1

ℎ
= (𝑱 𝑇Ωℎ𝑱 )−1𝑱 𝑇

and write the ROM in compact form:

𝑑𝒂

𝑑𝑡 
+ 𝑱+Δ𝑣𝒇 ∗

𝑟
(𝒂) = 𝑱+Δ𝑣𝑫𝑟(𝒂)Δ𝑖𝜼𝑟(𝒂). (22)
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Remark 1. The choice of inner-product spaces for ROMs of hyperbolic systems has recently come into question [80]. Indeed when 
𝑛 > 1 the norm ||𝑱𝜶||Ωℎ for 𝜶 ∈ ℝ𝑟 is dimensionally inconsistent in general. It is shown in [80,14] that dimensionally consistent 
inner products that are more appropriate in some sense can improve robustness of the ROMs. For our approach however it will 
be important that the ROM is calculated with the same inner product as used to calculate 𝑑𝑆ℎ

𝑑𝑡 . Therefore, we will only deal with 
nondimensionalized conservation laws. Alternatively, our results can also be applied at an equation-by-equation basis at the cost of 
potentially introducing a larger number of generalized coordinates.

Remark 2. A popular approach to construct nonlinear manifold ROMs is the least squares Petrov-Galerkin (LSPG) method [54,55]. 
Using this method a fully discrete residual is minimized. We have chosen not to use this method because we want to use the structure 
of our entropy-stable FOM discretization in constructing entropy-stable ROMs. The fully discrete residual minimization approach of 
LSPG makes it more difficult to apply this structure.

3.2. An entropy-stable nonlinear manifold Galerkin ROM

The reduced total entropy functional of the nonlinear manifold ROM is now defined similarly to the linear case (equation (17)) 
as:

𝑆𝑟[𝒂] ∶= 𝑆ℎ[𝝋(𝒂)] = 𝟏𝑇 Ω̄ℎ𝒔𝑟(𝒂),

with 𝒔𝑟(𝒂) ∶= 𝒔ℎ(𝝋(𝒂)). The reduced total entropy evolution is given by:

𝑑𝑆𝑟[𝒂]
𝑑𝑡 

= 𝟏𝑇 Ω̄ℎ
𝑑𝒔𝑟

𝑑𝑡 
=
∑
𝑖 
Δ𝑥𝑖𝜼(𝝋𝑖(𝒂))𝑇 𝑱 𝑖

𝑑𝒂

𝑑𝑡 
= 𝜼𝑇

𝑟
Ωℎ𝑱

𝑑𝒂

𝑑𝑡 
, (23)

where 𝝋𝑖 ∶ℝ𝑟→ℝ𝑛 is the ROM approximation of the conserved variables in the 𝑖-th cell and 𝑱 𝑖 ∈ℝ𝑛×𝑟 is the Jacobian matrix of 𝝋𝑖
evaluated at 𝒂. Using (22), the entropy evolution of the nonlinear manifold Galerkin ROM is:

𝑑𝑆𝑟[𝒂]
𝑑𝑡 

= 𝜼𝑇
𝑟
Ωℎ𝑱

𝑑𝒂

𝑑𝑡 
= −𝜼𝑇

𝑟
Ωℎ𝑱𝑱+Δ𝑣𝒇 ∗

𝑟
(𝒂) + 𝜼𝑇

𝑟
Ωℎ𝑱𝑱+Δ𝑣𝑫𝑟(𝒂)Δ𝑖𝜼𝑟(𝒂)

= −�̃�𝑇
𝑟
Δ𝑣𝒇 ∗

𝑟
(𝒂) + �̃�𝑇

𝑟
Δ𝑣𝑫𝑟(𝒂)Δ𝑖𝜼𝑟(𝒂), (24)

where the projected entropy variables are defined as �̃�𝑟 = (Ωℎ𝑱𝑱+)𝑇 𝜼𝑟 = 𝑱𝑱 †𝜼𝑟, where 𝑱𝑱 † is an Ωℎ-orthogonal projection on 𝑇𝑢𝑟. 
It follows from (24) that the reduced total entropy evolution satisfies an equation that is quite similar to the total entropy evolution 
of the FOM. However, instead of the actual entropy variables 𝜼𝑟 evaluated at the point 𝒖𝑟 on the reduced manifold , the inner 
product is taken with the projected entropy variables �̃�𝑟. We would like to use the entropy conservation condition at this point to 
show that the inner product in (24) is zero, but this does not hold because 𝜼(𝒖𝑟) ≠ �̃�𝑟 in general. To solve this, we can instead use 
the invertibility of the entropy variables to find for what state �̃�𝑟 ∈ℝ𝑁ℎ we do have 𝜼(�̃�𝑟) = �̃�𝑟. If we evaluate our flux at this state 
instead we can invoke the entropy conservation condition of the numerical flux to complete the proof of entropy conservation (or 
stability). This is exactly what is done in the linear setting in [78] and leads to our main novelty.

We now present the main novelty of our work. We introduce a novel nonlinear manifold generalization of the linear entropy 
projection of [78]. It is given by:

�̃�𝑟 = 𝒖(𝑱𝑱 †𝜼𝑟) = 𝒖(�̃�𝑟), (25)

where the entropy variables 𝜼𝑟 evaluated at the ROM state 𝒖𝑟 are projected onto the tangent space 𝑇𝑢𝑟 instead of the reduced space 
itself. We note that projecting the entropy variables on the tangent space 𝑇𝑢𝑟 is a rather natural operation as the entropy variables 
can be interpreted as the gradient vector field of the entropy functional 𝑆ℎ and thus as tangent vectors of ℝ𝑁ℎ . The vector �̃�𝑟 is the 
entropy projected state of the ROM. Carrying out this entropy projection on the tangent space is necessary as the projected entropy 
variables �̃�𝑟 appearing in the reduced total entropy evolution equation also are projected on the tangent space.

A potential issue of our proposed form (25) is that the difference between the projected entropy variables �̃�𝑟 and the original 
entropy variables 𝜼𝑟 can be very large. Namely, in similar fashion to the naively constructed linear spaces spanned by Φ described 
in subsection 2.3 and [78], for arbitrary 𝝋 the entropy variables 𝜼𝑟 may not be well-resolved by the columns of 𝑱 (𝒂) and thus by 
the Ωℎ-orthogonal projection in (25). This will very likely cause problems with accuracy of the ROM and the mapping 𝒖 might not 
even be well-defined at �̃�𝑟. We will propose a novel method to assure the difference between 𝜼𝑟 and �̃�𝑟 remains small in the following 
section.

First, we continue constructing an entropy-stable nonlinear manifold ROM and perform a Galerkin projection of the FOM at the 
entropy projected state �̃�𝑟. Doing so we obtain the following ROM:

𝑑𝒂

𝑑𝑡 
+ 𝑱+Δ𝑣𝒇 ∗

ℎ
(�̃�𝑟) = 𝑱+Δ𝑣𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟, (26)

where we used �̃�𝑟 = 𝜼ℎ(𝒖(�̃�𝑟)). Here, the Jacobian matrix is still evaluated at the reduced coordinate 𝒂 ∈ℝ𝑟 such that 𝒖𝑟 = 𝝋(𝒂) i.e. 
the non-projected state. It can be seen that the reduced total entropy evolution is bounded for this ROM since:
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Fig. 2. A visualization of the ROM construction. The entropy variables 𝜼𝑟 are projected on the tangent space 𝑇𝑢𝑟 to obtain �̃�𝑟 . A new state 𝒖ℎ (not necessarily on 
the reduced manifold) is found with entropy variables 𝜼ℎ such that �̃�𝑟 = 𝜼ℎ . We set �̃�𝑟 = 𝒖ℎ and project −Δ𝑣𝒇ℎ(�̃�𝑟) orthogonally on the tangent space to complete the 
ROM.

𝑑𝑆𝑟[𝒂]
𝑑𝑡 

= −�̃�𝑇
𝑟
Δ𝑣𝒇 ∗

ℎ
(𝒖(�̃�𝑟)) + �̃�𝑇𝑟 Δ𝑣𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟

= (Δ𝑖�̃�𝑟)𝑇 𝒇 ∗
ℎ
(𝒖(�̃�𝑟)) − �̃�𝑇𝑟 Δ

𝑇
𝑖
𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟

= 𝟏𝑇 Δ̄𝑖�̃� 𝑟 − �̃�𝑇𝑟 Δ
𝑇
𝑖
𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟

= 0 − �̃�𝑇
𝑟
Δ𝑇
𝑖
𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟

≤ 0, (27)

where �̃� 𝑟 =𝝍ℎ(�̃�𝑟) is the entropy flux potential of the entropy projected state and we were allowed to invoke the entropy conservation 
condition of the numerical fluxes of the FOM. Clearly, we have: 

𝑑𝑆𝑟[𝒂]
𝑑𝑡 

= 0,

when no entropy dissipation is present. Note that this approach exactly recovers the linear approach of [78] when 𝑱 = Φ, making 
it a proper generalization. Thus, by changing the state at which the FOM is evaluated and projected to the entropy projected state 
�̃�𝑟, correct total entropy evolution estimates can be recovered. We added a visualization of the ROM construction with an entropy 
projection in Fig. 2. Note also that it is necessary in the derivation that the FOM is entropy stable, as we used the properties of 𝒇 ∗

ℎ

and 𝑫ℎ. The entropy stability of the FOM is thus a fundamental assumption of our ROM. The data used to construct 𝝋 does not need 
to come from an entropy stable FOM however, as 𝝋 is arbitrary in the proof.

Remark 3. To make relation (27) hold in a fully-discrete setting for Galerkin ROMs, entropy-stable time integration is necessary. 
This is not trivial as most methods to satisfy entropy inequalities exactly during time integration require convexity of the entropy 
for existence results [102,73,103]. Although this is the case for 𝑆ℎ, 𝑆𝑟 is not necessarily convex in the generalized coordinates 𝒂
unless 𝝋(𝒂) is affine i.e. 𝝋(𝒂) = Φ𝒂+ 𝒖0 for some constant 𝒖0 ∈ℝ𝑁ℎ and Φ∈ℝ𝑁ℎ×𝑟. If we denote by 𝑯 the Hessian operator, then 
in particular the reduced entropy 𝑟 at some 𝒂 ∈ℝ𝑟 and for some 𝝋 is convex if:

𝑯𝒂𝑟(𝒂) =𝑯𝒂(ℎ ◦𝝋) = 𝑱 (𝒂)𝑇𝑯𝒖ℎ(𝝋(𝒂))𝑱 (𝒂) +
∑
𝑖,𝑘 

Δ𝑥𝑖𝜂𝑘(𝝋𝑖(𝒂))𝑯𝒂𝜑
𝑘
𝑖
(𝒂) ≻ 0, (28)

where 𝑘 runs over the number of conserved variables and 𝑖 over the grid. See [104] for a derivation. This condition should hold for all 
𝒂 that map to physically relevant states 𝒖𝑟. Although this condition can possibly be satisfied, in this work we focus on semi-discrete 
entropy stability and leave fully discrete entropy-stable ROMs as a suggestion for future work. In numerical experiments we use 
sufficiently small time steps to make entropy errors coming from the time integration negligible, for details see subsection 5.2.

Remark 4. The entropy conservative hyper-reduction method proposed in [78] does not generalize to nonlinear spaces as it relies on 
precomputation of compositions of linear operators. In the nonlinear case precomputation is not possible due to the changing tangent 
space. An entropy conservative hyper-reduction method suitable for nonlinear reduced spaces is also a suggestion for future work.

3.3. Tangent space enrichment

To arrive at the correct entropy estimate (27) we carried out the entropy projection (25). Though the evolution of the entropy 
then satisfies a correct estimate, it is not clear whether the ROM solution itself remains accurate. Particularly, the difference between 
the entropy projected state (25) and the original state (20) can be very large. To see this we consider the entropy projection error:
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𝜀𝑠 ∶= ||𝒖𝑟 − �̃�𝑟||Ωℎ .
Assuming the mapping 𝒖 from entropy variables to conservative variables is sufficiently smooth, using the mean-value theorem we 
can bound this term as follows:

||𝒖𝑟 − �̃�𝑟||Ωℎ = ||𝒖𝑟 − 𝒖(𝑱𝑱 †𝜼𝑟)||Ωℎ
= ||𝒖𝑟 − [

𝒖𝑟 −
𝜕𝒖

𝜕𝜼
(𝜽)(𝐼 − 𝑱𝑱 †)𝜼𝑟

] ||Ωℎ 𝜃𝑖 ∈ [(𝒖𝑟)𝑖, (�̃�𝑟)𝑖] ∀𝑖

≤ ||𝜕𝒖
𝜕𝜼

(𝜽)||Ωℎ ||(𝐼 − 𝑱𝑱 †)𝜼𝑟||Ωℎ
= ||( 𝜕2𝒔

𝜕𝒖2

)−1
(𝜽)||Ωℎ ||(𝐼 − 𝑱𝑱 †)𝜼𝑟||Ωℎ ,

where we used the definition of the entropy variables in the last line and used the induced operator Ωℎ -norm for the Hessian matrix 
of the entropy function. It can be seen that there are two contributions to this bound. There is one based on the model, specifically on 
the Hessian of the entropy, and one given by the projection error of 𝜼𝑟 on the tangent space 𝑇𝑢𝑟. As long as the entropy is a convex 
function at the mean value 𝜽, the contribution of the model-based term is bounded by a term involving the inverse of the smallest 
eigenvalue of the entropy Hessian. We have little influence over this term. Specifically, this term can be large when the entropy is 
close to being non-convex. We do have control over the projection error. The magnitude of this term is controlled by the choice of 
reduced space. For a general reduced space constructed to contain solution snapshots this term can be very large, since the columns 
of the Jacobian 𝑱 can be close to orthogonal to 𝜼𝑟 while the standard nonlinear manifold ROM (22) works fine. In the linear case, 
Chan [78] solved this problem by enriching the snapshot data to construct Φ with snapshots of the entropy variables. This lowered 
the projection error contribution to the bound on 𝜀𝑠 since 𝑱 = Φ in this case. However, for the general nonlinear case, 𝑱 is not the 
same as the reduced space itself and we can no longer construct our reduced space to also contain the entropy variables to keep the 
projection error low. Instead, we need a different approach and therefore we propose a novel method to which we refer as tangent 
space enrichment.

The key idea of tangent space enrichment is to construct an 𝑟+1-dimensional manifold ̂ ⊂ℝ𝑁ℎ from the original 𝑟-dimensional 
manifold  by a ‘lifting’ operation. Consequently, we use this new manifold for the ROM instead. This lifting operation is defined so 
that the original manifold  is a subset of the lifted manifold ̂, i.e.  ⊂ ̂. Most importantly however, for all points 𝒖𝑟 ∈ ⊂ ̂
the lifting operation is constructed such that 𝜼𝑟 ∈ 𝑇𝑢𝑟̂. This means that the entropy variable projection error is precisely zero at the 
points contained in the old manifold when projecting 𝜼𝑟 on the tangent space of the new manifold. This assures that the entropy 
projection is accurate for the points 𝒖𝑟 ∈ ⊂ ̂ when using tangent space enrichment.

We motivate this approach over a more straightforward generalization of Chan’s snapshots enrichment [78] (i.e., method (19) as 
explained in subsection 2.3) by the following. Nonlinear reduced spaces are often constructed iteratively by minimizing some loss 
function. A nonlinear version of Chan’s enrichment method would require, for a given 𝒂, fitting 𝝋(𝒂) to a snapshot 𝒖ℎ whilst the 
Jacobian 𝑱 (𝒂) has a low entropy projection error 𝜀𝑠. The construction of  would therefore require including terms based on 𝑱 in 
the loss function. This can be very expensive and generally will not exactly embed the entropy variables in the tangent space at the 
appropriate points. As will be discussed, our method requires no extra effort in constructing 𝝋 and contrary to the straightforward 
approach exactly enriches the tangent spaces with the correct entropy variables.

Our novel tangent space enrichment is defined by the following parameterization for ̂:

�̂�(𝒂, 𝛼) =𝝋(𝒂) + 𝜼(𝝋(𝒂))𝛼, (29)

here 𝝋 ∶ ℝ𝑟 → ℝ𝑁ℎ is the parameterization of the original manifold , 𝒂 ∈ ℝ𝑟 are the 𝑟 reduced coordinates associated to the 
original parameterization 𝝋 and 𝛼 ∈ ℝ is the 𝑟 + 1-th reduced coordinate associated to the lifting operation. As in Remark 1, here 
we see another reason for the importance of non-dimensionalization. Namely, on dimensional grounds the expression (29) does not 
make sense if 𝝋 and 𝜼 are not suitably normalized.

The new parameterization can be interpreted as follows. Given any point 𝝋(𝒂) ∈ we generate new points �̂�𝑟 ∈ ̂ by lifting 
the new points from the point 𝝋(𝒂) in the direction of 𝜼(𝝋(𝒂)) by a distance ||�̂�(𝒂, 𝛼) −𝝋(𝒂)|| = ||𝜼(𝝋(𝒂))|| ⋅ |𝛼|. Note that at 𝛼 = 0
we do not lift the point at all, resulting in a point at 𝝋(𝒂); in other words, the original manifold  is the set �̂�(ℝ𝑟, 𝛼 = 0). The lifting 
operation is visualized in Fig. 3. The Jacobian matrix of the new parameterization (29), whose columns span the tangent space 𝑇�̂�𝑟̂
of the lifted manifold ̂ at the point �̂�𝑟 ∈ ̂, is given by:

�̂� (𝒂, 𝛼) =
[
𝜕�̂�

𝜕𝒂

𝜕�̂�

𝜕𝛼

]
(30)

=
[(
𝐼 + 𝛼 𝜕𝜼

𝜕𝒖
(𝝋(𝒂))

)
𝑱 (𝒂) 𝜼(𝝋(𝒂))

]
,

where 𝐼 ∈ℝ𝑁ℎ×𝑁ℎ is the identity matrix and 𝜕𝜼
𝜕𝒖
(𝝋(𝒂)) = 𝜕2𝒔ℎ

𝜕𝒖2
(𝝋(𝒂)) ⪰ 0 is a sparse SPSD 2𝑛−1-diagonal matrix containing components 

of the Hessian of the local entropy value with respect to the solution on each diagonal. Note that the derivative with respect to the 
𝑟+1-th tangent space enrichment coordinate 𝛼 is exactly 𝜼(𝝋(𝒂)). Furthermore, on the old manifold  associated to 𝛼 = 0 the matrix 
𝜕�̂�

𝜕𝒂
is equal the original Jacobian 𝑱 (𝒂). At the points �̂�(𝒂, 𝛼 = 0) = 𝝋(𝒂) we have thus exactly enriched the tangent space with the 
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Fig. 3. A visualization of tangent space enrichment. The dark purple curve is the original manifold , the light purple region is a section of the enriched manifold 
∗ . ∗ is constructed by lifting points from 𝜑(𝒂) along lines in the direction of 𝜼(𝜑(𝒂)).

entropy variables 𝜼𝑟 = 𝜼(𝝋(𝒂)) at those points. This is the direct result of the lifting operation. This can be seen from the enriched 
parameterization (29). Lifting a point from 𝝋(𝒂) by changing 𝛼 while keeping 𝒂 constant, moves a point in the direction tangent to 
𝜼(𝝋(𝒂)). As a consequence 𝜼(𝝋(𝒂)) appears as a tangent vector in the enriched Jacobian (30).

Given the tangent space enrichment, the ROM is constructed in a similar fashion as in the previous section, but using the enriched 
lifted manifold ̂. The 𝑟 + 1-th tangent space enrichment coordinate 𝛼 is simply treated as an additional reduced coordinate. The 
ROM thus takes the form:

𝑑

𝑑𝑡

[
𝒂

𝛼

]
+ �̂�+Δ𝑣𝒇 ∗

ℎ
( ̂̃𝒖𝑟) = �̂�

+Δ𝑣𝑫ℎ( ̂̃𝒖𝑟)Δ𝑖 ̂̃𝜼𝑟,

where:

̂̃𝒖𝑟 = 𝒖(�̂� �̂�
†
�̂�𝑟),

and ̂̃𝜼𝑟 = �̂� �̂�
†
𝜼(�̂�(𝒂, 𝛼)). Since the proof of entropy stability for our ROM is independent of the manifold parameterization, this ROM 

is still entropy stable.

4. Rational polynomial manifolds

4.1. Background

In this article we are interested in systems that can exhibit strong spatial gradients that are moving in time. Many existing data 
compression methods for reduced manifold construction are not well suited for these types of systems. Linear data compression 
methods like proper orthogonal decomposition (POD) and general reduced basis methods fail because the moving gradients imply 
that the data is often of very high rank. This indicates that the data is not well represented in low-dimensional linear subspaces, which 
is the fundamental assumption of linear approaches. Nonlinear data compression methods offer a potential solution to this problem by 
instead compressing the highly nonlinear data on nonlinear reduced manifolds. In model reduction different parameterizations have 
become popular, in particular the decoder part of autoencoder neural networks [53–55,59,57,60,101,58] and multivariate quadratic 
polynomials [64,63,62,61,65]. However, in the vicinity of strong gradients these nonlinear methods can suffer from oscillations [61]. 
These oscillations may be difficult or impossible to remove. Particularly, optimizing for non-oscillatory fits of neural networks is 
generally difficult [105], while quadratic manifolds are essentially nonlinear subsets of spaces that are still linear [62]. The oscillations 
are a problem for Galerkin projection-based ROMs which can be sensitive to errors in the solution compression [19]. To accurately 
assess the performance of our novel entropy-stable manifold Galerkin ROM there is thus a need for nonlinear data compression 
methods that are more capable of dealing with large and moving spatial gradients, particularly without significant oscillations. 
Recently, neural networks with discontinuous activation functions have been proposed [105], however training these networks can 
be cumbersome. Furthermore, registration based approaches [45,48] have been very effective, but have not yet been applied in the 
context of nonlinear manifold ROMs similar to ours. In this research we will propose a novel reduced manifold parameterization 
method based on rational polynomials, that is far less oscillatory around strong spatial gradients than the previously mentioned 
methods (neural networks and quadratic approaches), but is still equally interpretable as the recently proposed quadratic manifolds.

4.2. Pole-free rational quadratic manifolds

We now give a description of rational polynomial manifolds. A rational polynomial manifold is the element-wise ratio of two 
polynomial manifolds:

𝝋(𝒂) =
∑𝑝num

𝑖=1 𝑯 𝑖 ∶ 𝒂⊗𝑖 + 𝒖ref∑𝑝den

𝑖=1 𝑮
𝑖 ∶ 𝒂⊗𝑖 + 𝟏 

, (31)

here, 𝑯 𝑖,𝑮𝑖 ∈ ℝ𝑁ℎ×𝑟×...×𝑟 are (𝑖 + 1)th-order tensors with the first axis of size 𝑁ℎ and 𝑖 axes of length 𝑟, 𝒂⊗𝑖 is the 𝑖-fold outer 
product such that for example (𝒂⊗3)𝑖𝑗𝑘 = 𝑎𝑖𝑎𝑗𝑎𝑘, 𝑯 𝑖 ∶ 𝒂⊗𝑖 denotes summation of the components of 𝒂⊗𝑖 and the components of 
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slices along the first axis of 𝑯 𝑖, again as example 
(
𝑯3 ∶ 𝒂⊗3)

𝑖
=
∑𝑟−1
𝑗,𝑘,𝑙=0

(
𝑯3)

𝑖𝑗𝑘𝑙
𝑎𝑗𝑎𝑘𝑎𝑙 . Furthermore, we have 𝒖ref ∈ℝ𝑁ℎ and we 

consider division of two vectors element-wise. The constant vector in the denominator has been normalized to one. The expression 
(31) generalizes polynomial manifolds [61,64], in the sense that those are recovered by setting 𝑝den = 0. This shows that rational 
polynomial manifold encapsulate a larger class of functions than polynomial manifolds. Rational functions are known for their strong 
approximation properties of functions with singularities like discontinuities [106]. This is mostly done by clustering poles originating 
from (complex) roots of the denominator around locations where the function has a singularity [107,108]. This has lead to significant 
reductions of the Gibbs phenomenon [109–111]. As a result rational approximations give us the opportunity to model steep gradients 
in the snapshot data which may be present in the form of advected shocks. Since higher-order tensors can become quite expensive to 
deal with, we restrict our attention to rational quadratic manifolds by setting 𝑝num = 𝑝den = 2.

To compromise between efficiency and expressiveness we will take 𝑝num = 𝑝den = 2. The 𝑖-th component of the vector-valued 
function output 𝜑𝑖(𝒂) can then be written as:

𝜑𝑖(𝒂) =
𝒂𝑇𝑯2

𝑖
𝒂+𝑯1

𝑖
𝒂+ (𝒖ref)𝑖

𝒂𝑇𝑮2
𝑖
𝒂+𝑮1

𝑖
𝒂+ 1 

, (32)

where 𝑯2
𝑖
,𝑮2
𝑖
∈ ℝ𝑟×𝑟 are the 𝑖-th slices along the first axes of 𝑯2 and 𝑮2, respectively and 𝑯1

𝑖
,𝑮1
𝑖
∈ ℝ1×𝑟 are the 𝑖-th rows of 𝑯1

and 𝑮1, respectively. Since the matrices are only used in quadratic forms, we can, without loss of generality, assume 𝑯 2
𝑖
,𝑮2
𝑖

to be 
symmetric. An obvious concern with expressions of this form is the occurrence of spurious poles, i.e. unwanted division by zero. We 
avoid this issue for the case 𝑝num = 𝑝den = 2 and all 𝒂 ∈ ℝ𝑟 by constraining the quadratic form in the denominator to be positive 
semi-definite and setting the linear term to zero:

𝑮2
𝑖
⪰ 0, 𝑮1

𝑖
= 0, ∀𝑖 ∈ {0, ...,𝑁ℎ}.

It is easily seen that, in this case, the denominator is never less than 1. Consequently, spurious poles cannot occur for any real 𝒂. 
Removing the linear term has not resulted in a significant loss in accuracy in our numerical experiments. The full 𝝋 is then given as:

𝝋(𝒂) =
𝑯2 ∶ [𝒂⊗ 𝒂] +𝑯1𝒂+ 𝒖ref

𝑮 ∶ [𝒂⊗ 𝒂] + 𝟏 
, 𝑮𝑖 ⪰ 0 ∀𝑖, (33)

since there is no linear term in the denominator we write 𝑮 instead of 𝑮2. To construct manifold Galerkin ROMs we will require the 
Jacobian matrix of this expression - see equations (22) and (30). The Jacobian matrix is given by the following:

𝜕𝝋

𝜕𝒂
= 2𝑯2 ⋅ 𝒂+𝑯1

(𝑮 ∶ [𝒂⊗ 𝒂] + 𝟏)⊗ 𝟏
−

[
𝑯2 ∶ [𝒂⊗ 𝒂] +𝑯1𝒂+ 𝒖ref

(𝑮 ∶ [𝒂⊗ 𝒂] + 𝟏)2
⊗ 𝟏

]
◦ (2𝑮 ⋅ 𝒂), (34)

where the operation 2𝑯2 ⋅ 𝒂 ∈ℝ𝑁ℎ×𝑟 indicates slice-wise matrix multiplication, i.e. for the 𝑖-th row it holds that (2𝑯 2 ⋅ 𝒂)𝑖 = 2𝑯2
𝑖
𝒂, 

due to symmetry of 𝑯2
𝑖
,𝑮𝑖 the order of axes is not relevant, division of matrices is understood element-wise and ◦ is the Hadamard 

matrix multiplication operator.

4.3. Manifold construction

We will determine the coefficient tensors in (33) from data. Like for quadratic manifolds [64,61], it holds for rational quadratic 
manifolds that the coefficients in two different slices of the coefficient tensors are independent, as can be seen in (32). Consequently, 
the coefficients can be determined purely from the parametric and temporal behaviour of the data in the specific cell and solution 
variable associated to the 𝑖-th component 𝜑𝑖(𝒂) of 𝝋(𝒂). The task of fitting a rational manifold thus reduces to fitting an expression 
(32) to data for each cell and solution variable.

In the spirit of quadratic manifolds we will compress the snapshot data defined by:

𝑋 = [𝒖ℎ(𝑡0),𝒖ℎ(𝑡1), ...,𝒖ℎ(𝑡𝑛𝑠−1)] ∈ℝ𝑁ℎ×𝑛𝑠 ,

where 𝑛𝑠 ∈ ℕ is the number of snapshots, as the coefficients of their projection on the first 𝑟 left singular vectors of 𝑋 given in 
Φ ∈ ℝ𝑁ℎ×𝑟. Following this we define 𝐴 ∶= (Φ𝑇𝑋)𝑇 ∈ ℝ𝑛𝑠×𝑟. We aim to find the coefficients 𝑮𝑖,𝑯2

𝑖
,𝑯1

𝑖
, (𝒖ref)𝑖 such that for all 

𝑗 = 0, ..., 𝑛𝑠 −1 we have 𝜑𝑖(𝒂𝑗 ) ≈𝑋𝑖𝑗 , where 𝒂𝑗 is the 𝑗-th row of 𝐴 written as a column vector. Defining the 𝑖-th row of 𝑋 as 𝒚𝑖 ∈ℝ𝑛𝑠 , 
the optimization procedure for the coefficients 𝑮𝑖,𝑯2

𝑖
,𝑯1

𝑖
, (𝒖ref)𝑖 and the residual:

𝒓(𝑯 ,𝑳,𝒉, 𝑢) = 𝒚𝑖 − (𝐴𝑯 ◦𝐴)𝟏+𝐴𝒉+ 𝑢
(𝐴𝑮 ◦𝐴)𝟏+ 1 

,

is formulated as:

𝑮𝑖,𝑯
2
𝑖
,𝑯1

𝑖
, (𝒖ref)𝑖 = arg min 

𝑮∈𝕊𝑟+ ,𝑯∈𝕊𝑟,𝒉∈ℝ𝑟,𝑢∈ℝ
||𝒓(𝑯 ,𝑳,𝒉, 𝑢)||2 , (35)

though the sets 𝕊𝑟+ and 𝕊𝑟 are convex subsets of ℝ𝑟×𝑟 the objective function is non-convex due to the division operation.
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A popular approach is to linearize this nonlinear optimization problem [112,113] by multiplying with the denominator. This results 
in a convex semi-definite program which can be solved very efficiently with e.g. interior point methods. However, the optimum value 
of this linearized problem is generally not the same as the nonlinear problem (35). In addition, our experience is that the linearized 
approach does not sufficiently remove the oscillations in order to be used in our ROMs, even though it decreases them compared to 
quadratic manifolds for some toy problems. Iterative approaches that attempt to somehow refine the solution of the linearized problem 
and that can potentially be supplemented with our semi-definite constraint exist [112–114]. However, convergence to (local) minima 
of the nonlinear problem is generally not guaranteed, nor is convergence in general [115,116]. Another approach worth mentioning 
is the differential correction algorithm analyzed e.g. in [117,106], however incorporating the semi-definite constraint is not trivial. 
For these reasons, we will stick to the fully nonlinear and expensive optimization problem (35). Nonetheless, we believe that the 
linearized approach and the differential correction algorithm hold significant promise and that they will be crucial for future work 
in order to scale the approach to larger meshes and datasets. Finally, we will implement the semi-definite constraint in this fully 
nonlinear setting by optimizing for the Cholesky decomposition 𝑮𝑖 =𝑳𝑖𝑳𝑇𝑖 [96], so that the residual becomes:

𝒓(𝑯 ,𝑳,𝒉, 𝑢) = 𝒚𝑖 − (𝐴𝑯 ◦𝐴)𝟏+𝐴𝒉+ 𝑢
(𝐴𝑳 ◦𝐴𝑳)𝟏+ 1 

, (36)

and the minimization problem becomes:

𝑳𝑖,𝑯
2
𝑖
,𝑯1

𝑖
, (𝒖ref)𝑖 = arg min 

𝑳∈𝕃𝑟,𝑯∈𝕊𝑟,𝒉∈ℝ𝑟,𝑢∈ℝ
||𝒓(𝑯 ,𝑳,𝒉, 𝑢)||2 , (37)

where 𝕃𝑟 ⊂ℝ𝑟×𝑟 is the vector subspace of lower triangular 𝑟× 𝑟 matrices. As initial guess we can either use 𝑳𝑖−1,𝑯2
𝑖−1,𝑯

1
𝑖−1, (𝒖ref)𝑖−1

if available and corresponding to the same solution variable, or otherwise simply vectors or tensors consisting of “ones”. We will 
carry out the fitting procedure using the JAXFit package [118] for GPU-accelerated nonlinear least squares solutions.

We can estimate the computational complexity of the JAXfit algorithm to solve (37). JAXfit implements the iterative Levenberg-

Marquardt (LM) method [119,120] to solve (37). Details on the specific implementation of the LM method are given in [118]. The 
computational complexity of this algorithm depends heavily on the number of iterations 𝑛𝜀 ∈ℕ to satisfy certain convergence criteria 
[121]. For a single iteration however the most expensive operation is an SVD. The SVD results allow further computations within the 
iteration to scale with a number of diagonal matrix inversions. The relevant number of unknown coefficients given some reduced space 
dimension 𝑟 ∈ ℕ are a symmetric matrix 𝑯 ∈ 𝕊𝑟 and a lower triangular matrix 𝑳 ∈ 𝕃𝑟 which are both parameterized by 𝑟(𝑟 + 1)∕2
real numbers, a vector 𝒉 ∈ℝ𝑟 and 𝑢 ∈ℝ defining 𝑟+ 1 further coefficients. The total number of fittable coefficients we search for is 
thus:

𝑁𝑐(𝑟) = 𝑟2 + 2𝑟+ 1, (38)

where 𝑁𝑐 ∶ ℕ→ ℕ gives this number as a function of 𝑟. If 𝑁𝑡 ∈ ℕ is the number of time samples which we fit against, the imple-

mentation [118] requires the SVD of a 𝑁𝑡 ×𝑁𝑐(𝑟) matrix. This operation scales as (𝑁𝑡𝑁𝑐(𝑟)2) [122]. The diagonal matrices are 
all of size 𝑁𝑐 (𝑟). Assuming the required number of diagonal matrix inversions is sufficiently small, an estimate of the computational 
scaling of the LM method to solve (37) is then given by:

(
𝑁𝑡𝑁𝑐(𝑟)2𝑁ℎ𝑛𝜀

)
,

where 𝑁ℎ appears because the coefficient inference step has to be repeated for every grid cell and conserved variable.

Remark 5. Existence and uniqueness of solutions of the above minimization problem (35) are important matters to address. Due 
to the nonlinearity of the problem several issues can occur, such as the relevant set of rational functions being non-compact and 
loss of semicontinuity of the least-squares objective [123]. Although our problem is not exactly the same as [123], issues with 
compactness could occur here as well. For example, consider the pointwise monotone sequence of positive valid rational functions 
(𝑠𝑛) with 𝑠𝑛(𝑡) = 𝑛∕[𝒂(𝑡)𝑇 (𝑛𝑮)𝒂(𝑡) + 1],𝑮 ≻ 0 and 𝒂(𝑡) ≠ 0. It has a pointwise limit 𝑠(𝑡) = 1∕𝒂(𝑡)𝑇𝑮𝒂(𝑡) which is not in our considered 
set of rational functions. Thus by Beppo-Levi’s lemma [124] the set of rational functions is not closed in 𝐿𝑝([0, 𝑇 ]) and cannot be 
compact. These rather technical complications would require a detailed analysis which is out of the scope of this article. Nonetheless, 
the regularization used implicitly by the Levenberg-Marquardt (LM) method is sufficient to guarantee existence and uniqueness of 
individual iterations. In practice, we find that the well-posedness of the iterations and an adequate termination mechanism are 
sufficient to obtain accurate rational quadratic approximants (33) even though a true minimizer to (35) may not always exist.

5. Numerical experiments

To show that our entropy-stable manifold Galerkin ROMs satisfy appropriate semi-discrete entropy inequalities we will perform 
numerical experiments on a range of one-dimensional nonlinear conservation laws. All three experiments will be carried out using the 
rational quadratic manifolds proposed in section 4. We will also compare the ability of the rational quadratic manifolds to compress 
convection dominated data to that of linear POD-based methods and quadratic manifolds [64,65,61]. We do not compare against 
neural network based approaches [54,55,101] since in our experience they struggle with approximating discontinuities, and require 
careful hyperparameter tuning to give reasonable results. The underlying FOM discretizations will be the existing TeCNO schemes of 
[76], so that we will only mention some aspects of the discretizations but for details we will refer to [76]. For temporal discretization 
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Table 1
Overview of numerical experiments.

Experiment Purpose 
Inviscid Burgers Manifold accuracy 
Shallow water Entropy conservation properties 
Compressible Euler Impact of entropy projection and tangent space enrichment 

we use classical Runge-Kutta methods; for entropy-conservative approaches we refer to [73,102]. In the light of Remark 3, we 
emphasize again that existing entropy-conservative time discretization methods do not generalize well to reduced order models, 
and are therefore not considered here. We will start with the inviscid Burgers equation in subsection 5.1, then we will treat the 
shallow water equations in subsection 5.2 and finally we will treat the compressible Euler equations with ideal thermodynamics in 
subsection 5.3. We test different aspects of the ROM with the different test cases. An overview of the different test purposes has been 
provided in Table 1. Our main interests are the entropy stability and conservation properties of our ROM and therefore, for simplicity, 
we focus exclusively on reproductive test cases.

The experiments have been implemented using the JAX library [125] in Python, which allows for automatic differentiation to 
compute Jacobian matrices and, where possible, accelerated computing using an Nvidia A2000 laptop GPU.

5.1. Inviscid Burgers equation

We will use this experiment mainly to highlight the accuracy of our proposed rational quadratic manifolds when compared to 
existing (‘standard’) Galerkin ROMs on different types of manifolds. From an entropy projection point-of-view, this experiment is less 
interesting since the mapping between conserved and entropy variables simply becomes the identity. We will already include the 
entropy-stable ROM (26) here, but the focus on the role of entropy stability will be in the next test cases.

The inviscid Burgers equation is given by:

𝜕𝑢

𝜕𝑡 
+ 𝜕

𝜕𝑥

(
𝑢2

2 

)
= 0, (39)

with conserved variable 𝑢 ∶ Ω × [0, 𝑇 ]→ℝ. As continuous and discrete entropy we take [74]:

[𝑢] = 1
2 ∫

Ω 
𝑢2𝑑𝑥,

and

𝑆ℎ[𝒖ℎ] =
1
2
||𝒖ℎ||2Ωℎ .

The reduced entropy functional follows in a straightforward fashion from the discrete entropy functional. Using these specific entropies 
we have for the entropy variables:

𝜂(𝑢) = 𝑢.

Consequently, the manifold parameterization with TSE is given in the particularly simple form:

𝝋∗(𝒂, 𝛼) = (1 + 𝛼) ⋅𝝋(𝒂).

An entropy conservative flux is given by [76]:

𝑓𝑖+1∕2 =
𝑢2
𝑖+1 + 𝑢𝑖+1𝑢𝑖 + 𝑢

2
𝑖

6 
,

and we use a local Lax-Friedrichs-type of entropy dissipation operator [74]:

𝐷𝑖+1∕2(𝒖ℎ) = max(|𝑢𝑖+1|, |𝑢𝑖|).
We will discretize (39) on a domain Ω = 𝕋 ([0,𝐿]) of length 𝐿 = 1 using a numerical grid consisting of 300 cells. Discretization in 
time will be done using the classical Runge-Kutta 4 (RK4) method [126] with a time step of size Δ𝑡 = 0.001. We will integrate in time 
until 𝑇 = 1. Solution snapshots are captured after every 5 timesteps resulting in 𝑛𝑠 = 201. We perform two tests. In the first, we will 
compress the data to a reduced dimension of 𝑟 = 15 for all manifolds and test the manifold reconstruction accuracy and the accuracy, 
computational efficiency and numerical robustness of the resulting manifold ROMs in the reconstructive regime. In the second test we 
will analyze the convergence behaviour for a range of reduced dimensions. We will construct the quadratic manifolds by solving an 𝑙2-

regularized version of (37) with the denominator set to 1. The regularization is implemented by absorbing the regularization matrix 
into the system matrix, as in e.g. [119, eq. 10.36] and the resulting least-squares problem is solved using JAX.numpy.linalg.lstsq 
[125]. The initial condition is a simple offset sine wave:
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Fig. 4. Normalized singular values of the inviscid Burgers equation data. Fig. 5. Original data and reconstructions for 𝑟= 15 in space-time plots. 

Fig. 6. Space–time errors 𝜀𝑥𝑡 of the reconstructions. 

𝑢0(𝑥) = sin(2𝜋𝑥) + 1.

The KnW decay (1) for this system is very slow as is evident from the normalized singular values depicted in Fig. 4. Defining the 
relative information content (RIC) as in [6] we have RIC ≈ 99.5% for 𝑟 = 15.

We will first compare the reconstruction accuracy of our proposed rational quadratic manifold to existing quadratic manifold [64] 
and POD linear [11] manifold approaches for the solution data of the FOM with 𝑟 = 15. To do this we will save the matrix of generalized 
coordinates 𝐴 =Φ𝑇𝑋 ∈ℝ𝑟×𝑛𝑠 associated to the snapshots in 𝑋. Note that these coordinates form the reduced representation for all 
manifolds since all of the tested manifolds are constructed from the POD compression of the data. In turn we will try to reconstruct 
the snapshots in 𝑋 from their reduced representations in 𝐴. We will construct the quadratic manifold as in [64] with a manually 
determined regularization coefficient 𝜆 = 0.001 (𝛼 in (27) of [64]) and the rational manifold using the fully nonlinear curve-fitting 
approach outlined in the previous section. In Fig. 5 we display the reconstruction in addition to the original data using an 𝑥 − 𝑡 plot. 
Furthermore, in Fig. 6 we plot the local error in space–time defined, with some abuse of notation, as:

𝜀𝑥𝑡 =𝝋(𝐴) −𝑋.

It can be seen that for 𝑟 = 15, the reconstruction accuracy of both the quadratic as POD linear manifold is poor, whereas the re-

construction of the rational quadratic manifold is visually nearly identical to the data. Indeed, the largest local error of the rational 
quadratic manifold is at most approximately 0.003 which is two orders of magnitude lower than the largest errors of the quadratic 
and linear manifolds (approximately 0.4 and 0.6 respectively). The sources of error for the linear and quadratic manifolds are pre-

dominantly oscillations around the moving shock discontinuity as can be seen in Fig. 6. This shows the poor performance of these 
methods for such problems. The rational quadratic manifold also oscillates around the shock, but with a much smaller amplitude, 
indicating that it is better-suited for shock-dominated problems. The accuracy of the rational quadratic manifold is much higher than 
the quadratic and POD linear manifolds.

Having compared the different reduced manifolds in some detail for 𝑟 = 15 we will now consider the general behaviour of the 
reduced manifolds over a broader range of reduced space dimensions 𝑟 ∈ {2,3, ...,40}. During the construction we will track the fitting 
time and the following two error measures:
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Fig. 7. Convergence behaviour 𝑝
𝑥𝑡
, 𝑝 ∈ {𝐹 ,∞} as a function of the reduced 

space dimension 𝑟.
Fig. 8. Convergence behaviour 𝑝

𝑥𝑡
, 𝑝 ∈ {𝐹 ,∞} as a function of the number of 

fittable coefficients 𝑁𝑐 .

Fig. 9. Fitting time in seconds as a function of the reduced space dimension 𝑟. Fig. 10. Number of fittable coefficients 𝑁𝑐 as a function of the reduced space 
dimension 𝑟.

𝐹
𝑥𝑡
∶= ||𝜀𝑥𝑡||2𝐹 , ∞

𝑥𝑡
∶= max

𝑖,𝑗
(𝜀𝑥𝑡)𝑖𝑗 ,

where || ⋅ ||𝐹 is the Frobenius matrix norm. We will also be interested in the behaviour of the error as a function of the number of 
fittable coefficients 𝑁c ∈ ℕ. Analyzing this behaviour will give an indication of which parameterization makes more efficient use of 
fittable coefficients by showing which parameterization has the lowest error for the same number of fittable coefficients. We terminate 
the rational manifold fitting procedure at the 𝑛-th iteration if Δ𝒙𝑛∕||𝒙𝑛||,Δ𝑓𝑛∕𝑓𝑛 < 10−4 holds, the absolute change Δ𝑓𝑛 < 10−14 or 
the gradient ||∇𝑥𝑓𝑛|| < 10−8, where 𝑓 is the cost function (37) and 𝒙 ∈ℝ𝑁𝑐 is short for the vectorized coefficients being solved for 
in (37). The quadratic manifolds have been constructed using a regularization parameter 𝜆 = 0.001 (obtained via manual tuning). 
We plot the error 𝑝

𝑥𝑡
, 𝑝 ∈ {𝐹 ,∞} as a function of 𝑟 and 𝑁𝑐 in Fig. 7 and Fig. 8, respectively. In both cases the rational manifolds 

significantly outperform the quadratic manifolds and POD. In the experiment rational manifolds exhibit both faster convergence and 
several orders of magnitude lower errors (Fig. 7). Note also that the error 𝐹

𝑥𝑡
of quadratic manifolds at 𝑟 seems comparable to POD 

at reduced space dimension (𝑟2) which is to be expected following the findings of [62]. They also make more efficient use of the 
available fittable coefficients than quadratic manifolds as their error given a specific number of fittable coefficients is much lower 
(Fig. 8). 𝑁𝑐 as a function of 𝑟 is shown in Fig. 10. This improved accuracy comes at the cost of significantly larger fitting times as 
can be seen Fig. 9. The slow fitting time is a serious shortcoming of rational manifolds that has to be addressed in the future, if they 
are to be used in more complex problems like multi-dimensional problems. We note that the quadratic manifold fitting times could 
potentially be decreased significantly by computing the necessary pseudoinverses to solve the fitting problems only once, which we 
did not do.

We continue to consider the ROM performance and accuracy in more detail. We compare the rational quadratic manifold ROM 
in entropy stable (26) (ES-ROM) and generic (22) (RQ-ROM) form (manifold Galerkin without entropy projection, thus not entropy 
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Fig. 11. Total error evolution for the ROMs 𝜀𝑢(𝑡) and the ideal linear projection 
error 𝜀proj(𝑡) for reduced manifolds with constant 𝑟= 15.

Fig. 12. Spatial profile 𝒖𝑟(𝑡) for the ROMs at 𝑡 = 𝑇 for reduced manifolds with 
constant 𝑟= 15.

Fig. 13. Condition numbers 𝜅(𝑱 (𝒂)) of Jacobians used for the different reduced order models as a function of time for 𝑟= 15. 

stable) to a linear manifold POD-Galerkin ROM (L-ROM) and a quadratic manifold Galerkin ROM (Q-ROM). We will make a compar-

ison of the ROMs using the previously obtained manifolds with 𝑟 = 15. The initial conditions for the simulations will be taken as the 
first column of the matrix 𝐴 =Φ𝑇𝑋 and the entropy stable form of the rational quadratic ROM will have 𝛼 = 0 at 𝑡 = 0. We plot the 
temporal evolution of the total error norm:

𝜀𝑢(𝑡) ∶= ||𝒖ℎ(𝑡) − 𝒖𝑟(𝑡)||Ωℎ ,
and the ideal linear projection error (L-ideal):

𝜀proj(𝑡) ∶= ||(𝐼 −Π𝑟lin )𝒖ℎ(𝑡)||Ωℎ ,
where Π𝑟lin ∶ℝ

𝑁ℎ →  projects on the 𝑟lin-dimensional reduced space of the respective linear ROMs in the different experiments. The 
ideal projection error forms a lower bound for the linear POD-Galerkin ROM error. To measure computational performance we will 
track the runtimes of the online phases which we denote 𝑡online. To assess the numerical robustness of the proposed rational quadratic 
manifolds, we will also track the condition number 𝜅(𝑱 (𝒂)) of the Jacobian of the enriched parameterization (30), the rational 
quadratic parameterization (34) and the quadratic and POD linear manifolds and verify that at every timestep the Jacobians are full-

rank. We note that all necessary pseudoinverses are computed using JAX numpy’s pinv function. The errors for the simulations are 
shown in Fig. 11. We also show the spatial profile of the solution at 𝑡 = 𝑇 as predicted by the different ROMs and different manifolds 
in Fig. 12. The rational manifold ROMs clearly outperform the others and the differences between the results of the rational manifolds 
themselves are nearly zero. Steep increases in errors occur for all ROMs upon formation of the shock which indicates this is indeed a 
difficult instant of the flow for the reduced manifolds to fit to the data. Table 2 shows that the online phases of the quadratic manifold 
ROM and the rational manifold ROMs are nearly equally fast showing that the Jacobian of the quadratic manifold parameterization 
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Table 2
Computational cost of online phase for 𝑟= 15.

method ES-ROM RQ-ROM Q-ROM L-ROM 
𝑡online 7.01 s 6.74 s 6.14 s 0.543 s 
full-rank True True True True 

and of the rational manifolds with and without enrichment are nearly equally expensive to compute. It is also shown in Table 2 that all 
parameterizations are full-rank throughout the runs. Furthermore, the condition numbers of the different Jacobian parameterizations 
are displayed in Fig. 13. This figure shows that both the enriched as well as the standard rational quadratic parameterizations are the 
least well-conditioned followed by the quadratic manifold parameterization and then the optimally conditioned POD linear manifold. 
This does not seem to affect the ROM in the reproductive regime, but some explicit regularization may be necessary for inter- or 
extrapolating cases. Addition of regularizing terms in an entropy stable manner is an interesting subject of future research.

From this experiment we conclude that, at the cost of a slower fitting process, rational quadratic manifolds can significantly 
outperform quadratic and linear POD manifolds in terms of reconstruction accuracy for the same reduced space dimension.

5.2. Shallow water equations

This experiment will mainly focus on the entropy conservation and stability aspect of our proposed ROM on rational manifolds. We 
show that our novel entropy-stable ROM satisfies the reduced total entropy estimate (27). To this end we will carry out experiments 
with the shallow water equations. We use the shallow water equations due to their nontrivial entropy function, which will be defined 
later, as compared to the Burgers equation. We will perform one experiment where discontinuities appear in the solution and one 
where the solution remains smooth during the time interval of interest. In the smooth case we can run the FOM and ROMs without 
entropy dissipation operators. As a result we can analyse the entropy conservation properties of the ROM. In the discontinuous case 
we will analyse the behaviour of the reduced entropy as compared to the FOM entropy.

In the following we briefly introduce the shallow water equations and the entropy-stable numerical scheme used to obtain the 
FOM. The shallow water equations are given by:

𝜕

𝜕𝑡

[
ℎ

ℎ𝑢

]
+ 𝜕

𝜕𝑥

[
ℎ𝑢

ℎ𝑢2 + 1
2𝑔ℎ

2

]
= 0, (40)

with conserved variables ℎ ∶ Ω× [0, 𝑇 ]→ℝ and ℎ𝑢 ∶ Ω× [0, 𝑇 ]→ℝ representing the local water column height and the momentum 
per unit mass, respectively. We collect the conserved variables in a vector 𝒖 ∶= [ℎ,ℎ𝑢]𝑇 . The constant 𝑔 ∈ ℝ+ is the positive real 
gravitational acceleration, we assume the equations are normalized such that 𝑔 = 3, which gave challenging test cases for our spatial 
domain size and initial conditions. As continuous and discrete total entropy we take the common choice [127]:

[𝒖] = ∫
Ω 

1
2

(
𝑢22
𝑢1

+ 𝑔𝑢21

)
𝑑𝑥,

leading to:

𝑆ℎ[𝒖ℎ] =
∑
𝑖 
Δ𝑥𝑖

ℎ𝑖𝑢
2
𝑖
+ 𝑔ℎ2

𝑖

2 
,

from which the reduced total entropy follows. This choice leads to the following entropy variables:

𝜼(𝒖) =
⎡⎢⎢⎣
𝑔𝑢1 −

1
2

(
𝑢2
𝑢1

)2

𝑢2
𝑢1

⎤⎥⎥⎦ ,
where 𝑢1 = ℎ and 𝑢2 = ℎ𝑢, and inverse function:

𝒖(𝜼) =
2𝜂1 + 𝜂22

2𝑔

[
1
𝜂2

]
.

An entropy conservative flux is given by [127,76]:

𝒇 𝑖+1∕2 =

[
ℎ𝑖+1∕2𝑢𝑖+1∕2

ℎ𝑖+1∕2 ⋅ 𝑢
2
𝑖+1∕2 +

1
2𝑔ℎ

2
𝑖+1∕2

]
,

where 𝑎𝑖+1∕2 =
1
2 (𝑎𝑖+1 + 𝑎𝑖) indicates taking the average of neighbouring volume based quantities. As entropy dissipation operator 

we take the diffusion operators of Roe type (see [76]) with the eigenvalues and eigenvectors of the flux Jacobian evaluated at the 
arithmetic average of neighbouring values. We obtain a second accurate entropy dissipation operator using the entropy stable total 
variation diminishing (TVD) reconstruction based on the minmod limiter (see [76]).
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Fig. 14. 𝑥− 𝑡 plot of solution approximation by the ROMs and FOM for the dam break problem. 

We will discretize (40) for both experiments on a domain Ω= 𝕋 ([−𝐿,𝐿]) with 𝐿 = 1 using a numerical grid consisting of 300 cells. 
Discretization in time will be done using the RK4 method with a time step of size Δ𝑡 = 0.0005. We will integrate the discontinuous 
experiment in time until 𝑇 = 1 and the smooth experiment until 𝑇 = 0.5. Solution snapshots are captured every 5 timesteps resulting 
in 𝑛𝑠 = 401 and 𝑛𝑠 = 201 for the discontinuous and smooth experiment, respectively. For the discontinuous case we will be interested 
in a dam break problem, this means we will take as initial condition:

ℎ0(𝑥) =

{
1.5 |𝑥| < 0.2,
1 |𝑥| ≥ 0.2,

(ℎ𝑢)0(𝑥) = 0.

The smooth case will consist of a quiescent water level with a small perturbation, so that the initial condition is given by:

ℎ0(𝑥) = 1 + 0.1 ⋅ exp
(
−100 ⋅ 𝑥2

)
, (ℎ𝑢)0(𝑥) = 0.

The reduced space dimension is taken at 𝑟 = 15 for both experiments.

Although it is important that entropy is appropriately conserved or dissipated, accuracy with respect to the FOM is also required 
for an effective ROM. Hence, before we analyse the conservation properties of our proposed ROM, we compare the FOM solution 
approximation quality of our entropy-stable ROM and the generic ROM. We will provide space–time plots of both the discontinuous 
and smooth experiments. The discontinuous case is given in Fig. 14 and the smooth case is given in Fig. 15. Visually, both ROMs 
closely resemble the FOM in both cases. Furthermore, it can be seen from the sharp colour gradients that the dam break problem 
develops shocks. To emphasize these are difficult cases for linear model reduction approaches we also plot the normalized singular 
value decay in Fig. 16 and Fig. 17 for the dam break and water height perturbation problems, respectively. For the dam beak problem 
the decay is very slow and the water height perturbation decays moderately slow, indicating slow and moderately slow Kolmogorov 
𝑛-width decay (1).

We will analyse the entropy conservation and stability properties of the entropy-stable (ES-ROM) and generic (RQ-ROM) rational 
manifold ROMs. To this end, we define the entropy error:

𝜀 (𝑡) ∶= ||𝑆ℎ[𝒖ℎ(𝑡)] −𝑆𝑟[𝒂(𝑡)]|| ,
giving the absolute instantaneous deviation of the entropy of the ROM from the entropy of the FOM. Similarly we will define the 
entropy conservation error:

𝜀0 (𝑡) ∶= ||𝑆𝑟[𝒂(0)] −𝑆𝑟[𝒂(𝑡)]|| ,
which measures the departure from the initial entropy and thus the error in exact conservation of the entropy in time. Since our 
models are semi-discretely entropy stable we have to monitor the instantaneous time rate of change of reduced total entropy (27) to 
verify that our proposed theoretical framework works. Hence, we will analyse the contribution to the total entropy production (23)

of two separate parts of the ROM (26), namely the entropy conserving part:
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Fig. 15. 𝑥− 𝑡 plot of solution approximation by the ROMs and FOM for the water height perturbation problem. 

Fig. 16. Normalized singular values of the shallow water equations data for the 
dam break problem.

Fig. 17. Normalized singular values of the shallow water equations data for the 
water height perturbation problem.(

𝑑𝑆𝑟

𝑑𝑡 

)
cons

∶= −�̃�𝑇
𝑟
Δ𝑣𝒇 ∗

ℎ
(𝒖(�̃�𝑟)),

which should equal zero to machine precision, and the entropy dissipative part:(
𝑑𝑆𝑟

𝑑𝑡 

)
diss

∶= �̃�𝑇
𝑟
Δ𝑣𝑫ℎ(�̃�𝑟)Δ𝑖�̃�𝑟,

which should always be negative or zero. Similar quantities can be defined in an obvious manner for the generic ROM without entropy 
projection. In the results given by Fig. 19 and Fig. 21 we have used symmetric log plots which are linear around zero so that negative 
values can also be plotted. This allows us to see when a ROM is unphysically producing entropy i.e. 

(
𝑑𝑆𝑟

𝑑𝑡 
)

cons
,

(
𝑑𝑆𝑟

𝑑𝑡 
)

diss
> 0.

The results of the discontinuous dam break experiment are displayed in Fig. 18 and Fig. 19. The results confirm that the proposed 
entropy stable framework works as expected. This is the case since the entropy production of the conservative part is zero to machine 
precision for the entropy-stable ROM while the entropy dissipative part does not change sign and is indeed negative. The entropy 
production of the conservative part of the generic ROM is orders of magnitude larger than that of the entropy-stable ROM. An 
important point is that large portions in time of the entropy production by the entropy conservative part are positive (instead of zero). 
This indicates physically incorrect behaviour as entropy is being produced. The contribution of the entropy dissipation operator from 
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Fig. 18. The evolution of the reduced total entropy 𝑟 of the entropy-stable and generic ROM compared to the entropy of the FOM and the evolution of the entropy 
error 𝜀 of the entropy-stable and generic ROM for the dam break problem.

Fig. 19. The entropy production 
(
𝑑𝑆𝑟

𝑑𝑡 
)

cons
of the conservative part of the ROMs and the entropy production 

(
𝑑𝑆𝑟

𝑑𝑡 
)

diss
of the dissipative part of the ROMs for the dam 

break problem.

the generic ROM is erratic. Moreover, it is also occasionally positive showing that this part of the ROM is also sometimes producing 
physically incorrect results. The temporal evolution of the entropy error, 𝜀 , is also given in Fig. 18. The temporal evolution is 
approximately constant in time for the entropy-stable ROM and 𝜀 is small. This indicates that the evolution of the entropy behaves 
roughly the same as the FOM and is off mainly due to an error in representation of the initial condition and of subsequent FOM 
solutions. The general behaviour of the entropy error of the generic ROM is erratic and shows that the entropy of the generic ROM 
oscillates around the values predicted by the FOM. This can also be seen in the temporal evolution of the reduced entropy as in the 
top panel of Fig. 18.

The results of the smooth experiment are shown in Fig. 20 and Fig. 21. As there is no entropy dissipation present in the FOM 
or ROM the entropy should remain approximately constant (exact conservation is difficult since RK4 is not an entropy conservative 
time-integrator [128,129,73]). For our entropy-stable ROM this is indeed the case as can be seen from the bottom panel of Fig. 20, 
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Fig. 20. The evolution of the reduced total entropy 𝑟 of the entropy conserving and generic ROM compared to the entropy of the FOM and the evolution of the 
entropy error 𝜀0

of the entropy conserving and generic ROM for the water height perturbation problem.

Fig. 21. The entropy production 
(
𝑑𝑆𝑟

𝑑𝑡 
)

cons
of the conservative part of the ROMs for the water height perturbation problem. 

the entropy conservation error, 𝜀0 , does not exceed (10−9). The entropy of our entropy-stable ROM stays almost exactly constant. 
The error in entropy with respect to the FOM is almost entirely dictated by the initial error 𝜀 (0) = ||𝑆ℎ[𝒖ℎ(𝑡)] −𝑆𝑟[𝒂(0)]||. The generic 
ROM does not conserve entropy and its entropy conservation error behaves erratically. This manifests itself in clear deviations from 
the FOM entropy which can be observed in the top panel of Fig. 20. For completeness we also plot the entropy production of the 
conservative part of the spatial discretization of the ROM 

(
𝑑𝑆𝑟

𝑑𝑡 
)

cons
in Fig. 21. Again, it can be seen that entropy is conserved 

up to machine precision by the spatial discretization of our entropy-stable ROM where this is not the case for the generic ROM. 
Additionally, the generic ROM produces entropy during several intervals of the simulation and is therefore not physically correct. 
From both experiments, we conclude that our novel entropy-stable ROM ensures physically correct behaviour, whereas this cannot 
be assumed for the generic manifold Galerkin ROM.

5.3. Compressible Euler equations

The focus of this experiment is on the effect of the entropy projection and tangent space enrichment on the accuracy of the ROM. 
We will be interested in particular in the benefit of tangent space enrichment in the reconstruction accuracy of the entropy projection. 
In addition, we will analyse the error that can be incurred with respect to the FOM by the introduction of an entropy projection step in 
the ROM as we propose. A good case to study for this experiment are the compressible Euler equations. Due to their nontrivial entropy 
functional and corresponding entropy variables it is not expected that without extra measures, like TSE, the entropy projection will 
be accurate. Again, we will use rational quadratic manifolds as a reduced manifold for this experiment.
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A short introduction to the compressible Euler equations now follows. The compressible Euler equations are given by:

𝜕

𝜕𝑡

⎡⎢⎢⎣
𝜌

𝜌𝑢

𝐸

⎤⎥⎥⎦+ 𝜕

𝜕𝑥

⎡⎢⎢⎣
𝜌𝑢

𝜌𝑢2 + 𝑝
(𝐸 + 𝑝)𝑢

⎤⎥⎥⎦ = 0, (41)

where 𝜌 ∶ Ω × [0, 𝑇 ]→ℝ is the density, 𝜌𝑢 ∶ Ω × [0, 𝑇 ]→ℝ is the momentum and 𝐸 ∶ Ω × [0, 𝑇 ]→ℝ is the total energy. We gather 
these conserved variables in a vector 𝒖 = [𝜌, 𝜌𝑢,𝐸]𝑇 . Furthermore, we assume the equations are suitably normalized so that they 
are dimensionless. The pressure 𝑝 ∶ ℝ𝑛 → ℝ is related to the conserved variables through an equation of state, representing the 
thermodynamics at hand:

𝑝(𝒖) =

(
𝑢3 −

1
2
𝑢22
𝑢1

)
(𝛾 − 1), (42)

where 𝛾 ∈ ℝ+ is the specific heat ratio, which we take at the standard choice 𝛾 = 1.4. The thermodynamic quantities, i.e. pressure, 
density and total energy are necessarily nonnegative. Throughout the experiments we will assume our FOM and ROMs respect this 
condition, assuring this condition mathematically may be the subject of future work. The entropy functional of interest will be taken 
as:

[𝒖] = ∫
Ω 

−𝑢1𝜎
𝛾 − 1 

𝑑𝑥,

where 𝜎 ∶ℝ𝑛→ℝ is the specific entropy defined as a function of the conserved variables like:

𝜎(𝒖) = ln

(
𝑝 
𝑢
𝛾

1

)
,

where 𝑝 is evaluated using (42). Different entropies are also possible, see for instance [130]. In turn, this gives rise to the discrete 
total entropy functional:

𝑆ℎ[𝒖ℎ] =
∑
𝑖 
Δ𝑥𝑖

−𝜌𝑖𝜎𝑖
𝛾 − 1 

.

The associated entropy variables are given by:

𝜼(𝒖) =
⎡⎢⎢⎢⎣
𝛾−𝜎
𝛾−1 −

𝑢22
2𝑢1𝑝

𝑢2∕𝑝
−𝑢1∕𝑝

⎤⎥⎥⎥⎦ ,
and consequently the inverse of the entropy variables is:

𝒖(𝜼) = exp

(
𝛾

1 − 𝛾
−

[
𝜂1 −

1
2
𝜂22
𝜂3

])⎡⎢⎢⎢⎢⎣
(−𝜂3)

1 
1−𝛾

−𝜂2(−𝜂3)
𝛾

1−𝛾(
1
2 𝜂

2
2 −

𝜂3
𝛾−1

)
⋅ (−𝜂3)

2𝛾−1
1−𝛾

⎤⎥⎥⎥⎥⎦
.

Considering −𝜂3 = 𝜌∕𝑝 is generally exponentiated to some noninteger power we see the importance of positivity of the thermodynamic 
variables. As in [76], we will use the entropy conserving numerical flux by Ismail and Roe [131] for which we define the following 
variables:

𝒛 =
⎡⎢⎢⎣
𝑧1

𝑧2

𝑧3

⎤⎥⎥⎦ =
√
𝜌

𝑝 

⎡⎢⎢⎣
1
𝑢

𝑝

⎤⎥⎥⎦ ,
finally an entropy conservative flux is given by 𝒇 𝑖+1∕2 =

[
𝑭 1
𝑖+1∕2 𝑭 2

𝑖+1∕2 𝑭 3
𝑖+1∕2

]𝑇
:

𝑭 1
𝑖+1∕2 = 𝑧2𝑖+1∕2 ⋅ (𝑧

3)ln
𝑖+1∕2,

𝑭 2
𝑖+1∕2 =

𝑧3𝑖+1∕2

𝑧1𝑖+1∕2

+
𝑧2𝑖+1∕2

𝑧1𝑖+1∕2

𝑭 1
𝑖+1∕2,

𝑭 3
𝑖+1∕2 =

1
2
𝑧2𝑖+1∕2

𝑧1𝑖+1∕2

(
𝛾 + 1
𝛾 − 1

(𝑧3)ln
𝑖+1∕2

(𝑧1)ln
𝑖+1∕2

+ 𝑭 2
𝑖+1∕2

)
,

where 𝑎ln denotes the logarithmic mean, which is defined as:
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Fig. 22. Normalized singular values of the compressible Euler equations data for the modified Sod’s shock tube problem. 

𝑎ln
𝑖+1∕2 ∶=

𝑎𝑖+1 − 𝑎𝑖
ln𝑎𝑖+1 − ln𝑎𝑖

.

Computation of the logarithmic mean is generally not numerically stable when 𝑎𝑖+1 ≈ 𝑎𝑖, but a popular algorithm which we will 
use to deal with this is also given in [131]. There is an abundance of alternative entropy conservative numerical fluxes that can 
be used [92,132,133,94,134,135] some of which also conserve kinetic energy in the sense of Jameson [136]. As an entropy dissi-

pation operator we take the Roe-type diffusion operator [76] where the eigenvalues and vectors of the flux Jacobian are evaluated 
at the arithmetic average of the neighbouring conserved variables. As with the shallow water equations, we obtain a second accu-

rate entropy dissipation operator using the entropy stable total variation diminishing (TVD) reconstruction based on the minmod 
limiter [76].

For the experiment we will consider a periodic modification of the famous Sod’s shock tube [137], which avoids the need to 
implement entropy stable boundary conditions. We will discretize (41) on a domain Ω = 𝕋 ([0,𝐿]) with 𝐿 = 1 on a numerical grid 
of 250 cells. The number of cells is relatively small to facilitate a relatively short manifold learning process. Integration of the ROM 
in time will be carried out using the RK4 time integrator with a time step size Δ𝑡 = 0.0001. We will integrate in time until 𝑇 = 0.5
(beyond the typical time used for this experiment), resulting in interesting shock-rarefaction interactions. Again, we will capture 
snapshots after every 5 timesteps so that we have 𝑛𝑠 = 1001. Our periodic modification of Sod’s shock tube experiment has an initial 
condition given by:

𝜌0(𝑥) =

{
1 0.25 < 𝑥 < 0.75
0.125 elsewhere

𝑢0(𝑥) = 0, 𝑝0(𝑥) =

{
1 0.25 < 𝑥 < 0.75
0.1 elsewhere

,

where the conserved variables (𝜌, 𝜌𝑢,𝐸) are calculated from these primitive variables using the equation of state (42) and the definition 
of momentum. We take a reduced space dimension 𝑟 = 15.

We will be primarily interested in the entropy projection and tangent space enrichment during this experiment, but for complete-

ness we also plot the ROM approximations to the FOM solution and the singular values. The singular values are displayed in Fig. 22

and the ROM approximations are shown using 𝑥 − 𝑡 plots in Fig. 23. A relatively slow decay of singular values can be observed in 
Fig. 22, hence linear model reduction methods are likely to not perform well for this problem. The FOM solution is approximated 
well by our novel entropy-stable manifold Galerkin ROM. The solution approximations of the ROM as displayed in Fig. 23 are nearly 
identical to the FOM.

We are interested in the accuracy of the entropy projection with and without tangent space enrichment. Accordingly, we introduce 
a metric to measure this accuracy. Since we are not only interested in comparing errors, but also to get an idea of the absolute size 
of the error we specifically introduce the relative entropy projection error:

𝜀Π(𝑡) ∶=
||𝒖𝑟(𝑡) − 𝒖(Π𝑇𝜼𝑟(𝑡))||Ωℎ||𝒖𝑟(𝑡)||Ωℎ ,

measuring not only how far the entropy projection is from the identity mapping as with the entropy projection error 𝜀𝑠 of 
subsection 3.3, but also the size of the error 𝜀𝑠 relative to the approximated value 𝒖𝑟. We will plot this value for two ROM sim-

ulations of the compressible Euler equations with an entropy projection, where one has an enriched tangent space and the other 
not. The results are provided in Fig. 24. The entropy projection error with TSE can be seen to be a very small fraction of the norm ||𝒖𝑟(𝑡)||Ωℎ , indicating minimal impact on the accuracy of the ROM given it is well-conditioned. In contrast, the ROM without TSE 
instantly produces NaN values and could therefore not be included in Fig. 24. To obtain a further comparison we plot the spatial 
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Fig. 23. 𝑥− 𝑡 plot of solution approximation by the entropy-stable ROM compared to the FOM for the modified Sod’s shock tube problem. 

Fig. 24. The relative entropy projection error for a ROM with TSE. The ROM without TSE resulted in all NaN values and is therefore not included in the figure. 

profiles of the projected entropy variables at two selected moments 𝑡𝑝 ∈ ℝ+ in time, namely 𝑡𝑝 ∈ {0.1,0.5}. To have a meaningful 
comparison, i.e. one where we are not projecting NaN values to start with, we calculate the entropy variables from the stable ROM 
with enriched tangent space. Furthermore, we use the generalized coordinates 𝒂𝑝 =Φ𝑇𝑋𝑝 to compute the tangent space basis for the 
ROM without TSE. The results are shown in Fig. 25 and Fig. 26. Very poor reconstruction of entropy variables can be observed for 
the ROM without TSE, whereas with TSE the reconstruction is accurate at both moments. From Fig. 25 and Fig. 26 the NaN values in 
Fig. 24 can be explained by the projection of the entropy variables taking unphysical values (positive 𝜂3). From this we conclude that 
tangent space enrichment or any other manner of assuring the accuracy of the entropy projection is vital for a properly functioning 
ROM when using an entropy projection.

In applying the tangent space enrichment framework, we rely on the artificial TSE coordinate 𝛼 staying small (𝛼 ≪ 1) during 
simulations. If this is not the case we cannot assure that the reduced space can accurately represent the solution nor that the local 
tangent space can accurately represent the FOM dynamical system 𝑑𝒖ℎ

𝑑𝑡 at that point. The reason for this being that the enriched 
manifold parameterization �̂� and its Jacobian matrix �̂� are no longer close to the original parameterization 𝝋 and Jacobian 𝑱 which 
are accurate by assumption. To verify this is indeed not the case we will monitor the value of 𝛼 throughout a simulation of the 
compressible Euler equations. The results are shown in Fig. 27. We have also plotted the error 𝜀𝑢 of the ROM with entropy projection 
and tangent space enrichment and of a generic manifold Galerkin ROM for reference in Fig. 28. It can be seen in Fig. 27 that the value 
of 𝛼 remains small around (10−5). Consequently, the original manifold parameterization 𝝋 and Jacobian 𝑱 are well-approximated 
by their enriched counterparts �̂� and �̂� . It can be seen in Fig. 28 that this is, in fact, the case, as the errors of the ROM differ by at 
most (10−5) and evolve very similarly. Hence, we conclude that the entropy projection step, introduced to obtain an entropy stable 
framework, is not detrimental to the accuracy of the ROM, provided that an enriched tangent space is used.
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Fig. 25. Entropy variable 𝜼𝑟 and conserved variable 𝒖𝑟 approximation by entropy projection with and without TSE at 𝑡𝑝 = 0.1. 

Fig. 26. Entropy variable 𝜼𝑟 and conserved variable 𝒖𝑟 approximation by entropy projection with and without TSE at 𝑡𝑝 = 0.5. 
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Fig. 27. Value of the artificial TSE coordinate 𝛼 throughout a simulation of the modified Sod’s shock tube experiment. 

Fig. 28. Value of the ROM error 𝜀𝑢 throughout a simulation of the modified Sod’s shock tube experiment. 

6. Conclusion

In this article we have proposed a method to construct nonlinear manifold Galerkin reduced order models (ROMs) in such a way 
that the important total entropy functional of the ROM approximation is appropriately conserved or dissipated. This is a crucial 
concept in obtaining stable and physically admissible ROM solutions. In particular, we have focused on systems of one-dimensional 
nonlinear conservation laws. Correct semi-discrete entropy estimates upon orthogonal projection were obtained for these systems by 
evaluating the projected system not at the current state, but at its entropy projection. This was proposed earlier for linear ROMs and 
extended in this work to nonlinear manifold ROMs.

The entropy projection of the state is obtained by transforming conservative variables to entropy variables, consequently projecting 
these on the tangent space of the reduced manifold and finally transforming back to conserved variables. To assure accuracy, it is 
important that the entropy projection is as close as possible to the identity mapping. This is generally not the case for general nonlinear 
reduced spaces and hence we have proposed the method of tangent space enrichment (TSE). With TSE the manifold is lifted along an 
additional dimension parameterized by a new coordinate. This coordinate direction is constructed to linearly extend in the direction 
of the local entropy variables, so that the tangent space spans the entropy variable at least approximately given the absolute value of 
the TSE coordinate. Accordingly, the entropy projection error will stay small.

We have tested our proposed framework on several nonlinear conservation laws from fluid dynamics. We verified that the entropy 
estimates are satisfied (semi-discretely): the projection of entropy-conserving flux differences produces no total entropy and the 
projection of entropy dissipative terms dissipates total entropy. This is in contrast to the generic manifold Galerkin framework which 
leads to production of entropy in our numerical experiments, which is physically incorrect. We have also shown that the introduction 
of the artificial TSE coordinate is vital for the accuracy of the entropy projection and leads to minimal decreases in accuracy.

We have also for the first time generalized the recently proposed quadratic manifolds to rational quadratic manifolds. We have 
suggested a framework to find the coefficients of the rational quadratic manifolds based on a nonlinear curve fitting approach. We 
have also formulated the rational quadratic polynomials such that they do no not have real poles. This was achieved through semi-

definite constraints, avoiding division by zero for any point in the reduced space. Numerical experiments on the inviscid Burgers 
equation have shown the increased performance of these rational quadratic manifold parameterizations as compared to existing 
quadratic manifold parameterizations and linear methods.

In future work, three challenges need to be tackled to make the approach computationally efficient: (i) we need a faster way to fit 
the rational quadratic manifolds, (ii) we need an entropy-stable hyper-reduction approach and (iii) we need a multi-D formulation of 
the ROM. The first challenge can possibly be achieved through linearization and iterative techniques combined with better choices 
of generalized coordinates [138], whereas hyper-reduction could be achieved by adapting the constrained optimization formulation 
that we proposed for energy-conserving systems in [12]. The last challenge could be tackled through appropriately dealing with 
the Kronecker-product structure as in [78]. In addition, the framework would benefit from extension with an entropy-stable time 
integration method and entropy-stable treatment of boundary conditions.
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