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Abstract

Eye tracking is a cornerstone technology for next-generation human-computer
interaction, particularly in Extended Reality (XR), and other healthcare applic-
ations. However, traditional frame-based eye tracking systems are constrained
by latency, power consumption, and motion blur. Event cameras offer a prom-
ising alternative with their high temporal resolution, high dynamic range and
low data redundancy, but existing event-based methods often struggle to bal-
ance tracking accuracy, computational efficiency, and robustness, especially on
resource-constrained mobile hardware.

This thesis addresses these challenges by proposing a novel, purely event-
based eye tracking pipeline designed for high-frequency performance and robust
accuracy within a strict computational budget. The pipeline accepts only event
streams and estimates the pupil region in the field of view. The core contribution
is a dual-state framework that synergistically combines a deep learning-based
pupil detector with a lightweight, rapid template updater. For robust detec-
tion, a lightweight, attention-augmented segmentation network, named Pupi-
1UNet, is developed. It leverages a truncated MobileNetV3 Small encoder and
a parameter-free attention mechanism to accurately segment the pupil bound-
ary from Speed-Invariant Time Surface (SITS) representations, which provide a
stable input by normalizing for motion speed. To overcome the scarcity of an-
notated data, a comprehensive framework is introduced to augment a large-scale
training dataset from limited initial labels. Once a high-confidence pupil tem-
plate is detected, the system transitions to a rapid updating mode, employing
an optimized, vectorized point-to-edge matching algorithm to track the pupil at
kilo-Hertz frequencies with millisecond latency. A dynamic control logic monit-
ors tracking quality and seamlessly reverts to the robust detection mode when
necessary, ensuring both speed and resilience.

Experimental results on the EV-Eye dataset validate the pipeline’s effective-
ness. The PupilUNet detector achieves a P5 accuracy of 96.3% (pupil center
error < 5 pixels), while the rapid updater operates with an average latency of
approximately 1 ms. The lightweight PupilUNet model contains merely 0.177
M parameters and inferences within 0.553 GFLOPs. The fully integrated sys-
tem sustains a P5 accuracy of 85.2% while achieving a peak tracking frequency
of over 960 Hz. This work demonstrates a practical and efficient solution that
successfully navigates the trade-offs between accuracy and latency, establishing
a new baseline for high-performance, event-based eye tracking on mobile and
embedded systems.
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Preface

I have always been drawn to human-centered technology, developing systems
that work with us rather than against us. When Apple released the Vision
Pro and XR started becoming reality, I became curious about the technologies
making these interfaces feel natural and intuitive.

Eye tracking caught my attention because of a striking mismatch: our eyes
move incredibly fast, yet most tracking systems can barely keep up. Then
I discovered event cameras. These neuromorphic sensors work like biological
retinas, responding to changes rather than capturing full frames. It felt like the
missing piece.

The idea that we could create eye tracking systems inspired by how our visual
system works was compelling. Instead of struggling against the natural dynam-
ics of human vision, why not embrace them? This thesis explores that possibility,
using bio-inspired sensors to build truly efficient, human-centered eye tracking
for the next generation of interactive technologies.

I want to express my sincere gratitude to my graduation committee: dr.
Qing Wang (chairman), dr. Guohao Lan, and dr. Xucong Zhang for their
valuable guidance and expertise throughout this research. Special thanks go to
my daily supervisor, dr. Guohao Lan, for his patience, thoughtful guidance,
and considerate support during the challenging moments of this thesis. His
insights and encouragement were instrumental in shaping this work. I extend
my sincere appreciation to the creators of the EV-Eye dataset and the wider
research community dedicated to event-based vision and eye tracking. This work
is built upon the groundwork laid by numerous researchers who have generously
shared their data and findings, and their contributions are invaluable. I am
grateful to TU Delft and the Faculty of Electrical Engineering, Mathematics
and Computer Science for providing the resources and academic environment
that made this research possible. My heartfelt appreciation goes to Yijian Lu
for his warm companionship and encouragement throughout this journey. His
support made the long hours and difficult moments more bearable. In general,
this thesis represents months of learning, debugging, and discovery. The journey
has taught me as much about persistence and as it has about eye tracking.

Jiaheng Liu

Delft, The Netherlands
21st August 2025



vi



Contents

[Prefacel

[L_Introductionl

[1.1 Research Background and Motivation| . . . .. ... .. ... ..
I1.1.1  Eye Movements Tracking & Applications| . . .. ... ..
I1.1.2  Eye Tracking Challenges|. . . . . . ... ... ... ....

2.1 Eye Movement Tracking Paradigms|. . . . . . .. ... ... ...
2.2 Frame-based Eye Tracking Methods| . . . . ... ... ... ...
2.3 Event Cameras in Eye Tracking|. . . . ... ... ... ... ...
2.4 Near-Eye Event-based Eye Tracking Datasets| . . . . . .. .. ..
2.5 Event Data Representations for Pupil Trackingl . . . . .. .. ..
2.6  State-of-the-Art in Event-based Eye Tracking| . . . . . ... ...

. UMMAry| . . . o v e e e e e e e

B_Methodl

3.1 Pipeline Overview and System Architecturel . . . . . . . ... ..
3.2 Event Representation and Data Augmentation| . . . . ... ...

[3.2.1 Frame-based Segmentation for Data Augmentation| . . . .
3.2.2  Speed-Invariant Time Surface (SITS) Accumulation

3.3  Segmentation Model and Pupil Detector| . . . . . .. ... .. ..
3.3.1 PupilUNet Architecture| . . . . . . . ... ... ... ...
13.3.2  Confidence-Weighted Compound Loss Function| . . . . . .
13.3.3  Pupil Detection from Segmentation Resultf. . . . . . . ..

3.4 Pupil Template Updating| . . . ... ... ... ... .......

3.5 Thorough Integration and Control Logic| . . . . . .. .. ... ..

Experiments and Evaluation|

4.1 Dataset Augmentation and Preparation| . . . .. ... .. .. ..
4.1.1  Train and Validation of Frame-based Segmentation|. . . .
4.1.2  PupilUNet Dataset Samples|. . . . . ... ... ... ...
4.1.3  PupilUNet Dataset Preparation|. . . . . . . ... .. ...

4.2 Pupil Detection| . . . . . . .. .. ... o o

vii

O

S



4.2.1 PupilUNet 'Iraining and Validation|. . . . . ... ... .. 40

22 PupilUNet Profiling] . . . . . . . . .o oo oo i 41

4.2.3  Testing on Pupil Detection|] . . . . ... .. ... .. ... 41

4.3 Pupil Template Updating with Optimization| . . . . ... .. .. 43
4.4 Integrated Eye Tracking Pipeline and Evaluation| . . . . . . . .. 44

[ Discussion and Comparison| 47
.l Result Discussion| . . . . . . .. .. ... oo 47
[5.2 Comparison against Competing Methods in Near-eye Iivent-based |

[ Eye Tracking . . . . v o v v oo e e e 48
[6_Conclusion 51

viii



Chapter 1

Introduction

1.1 Research Background and Motivation

1.1.1 Eye Movements Tracking & Applications

The human eye represents one of the most dynamically active organs in the body,
performing three primary types of movements: saccades, fixations (accompanied
by involuntary microsaccades [51]), and smooth pursuits. According to Kowler’s
definition [27], a saccade refers to a rapid shift of the eye’s focal point from one
selected location to another, while fixation denotes the eye maintaining focus on
a stationary target. Smooth pursuit represents the third category, characterized
by continuous tracking of moving targets along the line of sight. Eye tracking
technology harnesses these natural movements to determine pupil position and
subsequent gaze direction, transforming inherent eye behavior into insightful
data. Algorithms and models are deployed to capture input from near-eye or
full-face sensors reporting the dynamic parameters of eye movements. This
capability has established eye tracking as a prominent research domain with
far-reaching potential across multiple scientific and practical applications, as
detailed below.

The significance of eye tracking technology spans diverse domains, demon-
strating substantial impact in modern technology and healthcare applications.
Within Extended Reality (XR) systems, including both augmented and vir-
tual reality, eye tracking has emerged as a cornerstone technology. Following
Apple’s release of the Vision Pro headset in June 2023 [3], XR technologies have
experienced unprecedented growth and are anticipated to fundamentally trans-
form human perception and interaction with cyber-physical environments [55].
Eye tracking provides a revolutionary paradigm for human-computer interfaces
[44] 25], enabling XR devices to accurately interpret users’ emotional states [65)
and intentions without requiring manual input. Through this technology, XR
users can intuitively select virtual targets using their natural line of sight [29],
access customized content that responds to their gaze patterns [28, [10], and
authenticate their identity through reflexive eye movements [36, 26]. These
compelling capabilities establish eye tracking as the foundational framework for
next-generation XR developments.

Healthcare and medical applications represent another critical domain where
eye tracking technology demonstrates its human-centered value. Precision laser



eye surgery procedures depend on accurate real-time eye position data provided
by sophisticated eye tracking systems [46]. Moreover, abnormal eye move-
ment patterns serve as valuable diagnostic indicators for neurological condi-
tions, including Parkinson’s disease [52] and autism spectrum disorders [9].
Eye movement analysis also provides crucial insights into psychological states,
supporting advanced research methodologies in psychology [40]. These diverse
medical and diagnostic applications underscore eye tracking’s essential role in
advancing healthcare innovation and patient care.

1.1.2 Eye Tracking Challenges

Despite the promising applications, eye tracking presents fundamental technical
challenges that stem from the dramatic motion dynamics and the stringent
constraint of spatiotemporal resolution in ocular monitoring. These challenges
can be categorized into three primary perspectives: high-speed motion tracking
demands, the need for computational efficiency, and environmental robustness
requirements.

First, the high-speed nature of eye movements creates substantial tracking de-
mands encompassing both motion capture and hardware performance require-
ments. During saccades, angular velocity can exceed 700°/s [22], generating
intense requirements for rapid motion detection. Simultaneously, the confined
ocular region necessitates critical spatial accuracy within the limited field of
view, demanding precise spatiotemporal resolution to effectively capture both
voluntary and involuntary eye movements for reliable gaze estimation and bio-
metric analysis. To address these motion characteristics, eye tracking systems
must achieve high sampling frequencies and low latency to ensure real-time mo-
tion capture, necessitating sensors with high sampling rates and systems capable
of processing large data throughput without substantial delays.

Second, limited computational resources present a significant constraint, as
eye-tracking applications typically operate on mobile computing devices such
as headsets or smart glasses with limited computational resources and restric-
ted energy budgets. Consequently, the efficiency of software algorithms and
processing architectures becomes critical for practical implementation.

Third, environmental robustness represents a crucial challenge, as eye tracking
systems must maintain reliable performance across diverse real-world scenarios,
including varying lighting conditions, different user populations, and diverse
stimulus tasks that may affect tracking effectiveness. To address these multi-
faceted challenges, effective eye tracking solutions must simultaneously achieve
high-speed motion capture with spatial precision, optimize computational ef-
ficiency for mobile deployment, and ensure robust performance across varied
environmental conditions.

1.1.3 Evolution from Traditional to Event-based Methods

In response to these challenges, eye tracking technology has evolved from invas-
ive early methods using contact lenses and electrooculography (EOG) probes
[41] toward non-intrusive camera-based systems that now dominate human eye
tracking applications [41]. The integration of infrared (IR) light sources with IR~
sensitive cameras [59] represents a key advancement, enabling the Pupil-Center



Corneal Reflection (PCCR) method, which is currently the most prevalent com-
mercial technique [I4]. PCCR systems utilize IR illumination to create bright
pupil appearances and corneal reflections (glints), with algorithms determining
gaze direction by calculating the vector between the pupil center and corneal
reflection [45]. Modern systems also employ pupil tracking, which identifies and
tracks the pupil center under IR illumination [I]. Since eyelashes and reflections
can distort pupil shape, sophisticated algorithms using binary thresholding and
ellipse fitting ensure accurate pupil boundary detection, which is critical for
system precision.

However, frame-based systems face fundamental limitations. Current frame-
based methods and commercial products operate at modest frequencies of 50-100
Hz [58]. High temporal resolution for capturing rapid saccades requires elev-
ated frame rates [§], creating substantial power consumption, data throughput,
and computational overheads, which are particularly problematic for mobile and
XR applications. Additionally, fast saccades introduce motion blur, degrading
tracking accuracy. These limitations highlight the need for more efficient sens-
ing paradigms that address the trade-offs between temporal resolution, power
efficiency, and tracking precision.

Distinguished from traditional frame-based cameras, bio-inspired event-based
cameras, also known as Dynamic Vision Sensors (DVS), represent a paradigm
shift for near-eye tracking applications. Unlike conventional cameras that cap-
ture entire frames at fixed rates, event cameras feature independent pixels oper-
ating asynchronously [47]. Each pixel monitors significant changes in log-scale
brightness and triggers events containing pixel coordinates, precise timestamps
(with microsecond resolution), and brightness polarity (increase or decrease).
Event cameras offer several key advantages for eye tracking: microsecond-level
latency, exceptional temporal resolution, high dynamic range (> 120dB), and
significantly reduced power consumption and data throughput since static scene
regions are ignored [53]. These characteristics make event cameras exception-
ally well-suited for capturing highly dynamic eye movements with minimal mo-
tion blur and high fidelity, directly addressing the major limitations of their
frame-based counterparts.

The unique, sparse nature of event data necessitates novel eye-tracking al-
gorithms. Common strategies include converting asynchronous event streams
into frame-like or other representations for processing by conventional computer
vision techniques such as convolutional neural networks (CNNs) [I7], or devel-
oping hybrid methods that fuse temporal event information with contextual
data from periodic frames [67]. Foundational approaches [2] fit parametric
eye models (including pupil and corneal glints) to incoming events, continu-
ously updating model states. More advanced, purely event-based algorithms
[32, 57, [61), [7] perform tracking exclusively on event streams by slicing and ac-
cumulating events into customized representations for tracking algorithms. This
enables continuous eye feature estimation at kilohertz frequencies, far exceeding
traditional system capabilities and fully leveraging event camera advantages.
Additionally, researchers are exploring Spiking Neural Networks (SNNs) [21],
which are neuromorphic algorithms naturally suited for processing asynchron-
ous and sparse event data, showing promise for highly efficient and stable eye-
tracking solutions.



1.1.4 Research Gap and Motivation

Despite the advances, current near-eye pure event-based eye tracking approaches
face significant limitations in computational efficiency and robustness. For in-
stance, E-Gaze [32] achieves high-frequency accurate gaze tracking through
morphological operations on event frames but relies heavily on task-specific
experimental parameters, limiting its generalization capability. Similarly, Eye-
TrAES [57] assumes circular pupil shapes in event frames, which may not hold
in real-world scenarios, while their event representations lack critical temporal
and polarity information, underutilizing the event camera’s potential. State-
of-the-art methods from the AIS 2024 Challenge [61] on the 3ET++ data-
set [0, [61I] employ end-to-end neural networks that are computationally in-
tensive, constraining system latency and tracking frequency. Although FACET
[7] achieves optimal pupil detection accuracy with low latency, this performance
depends on high-end processors and TensorRT optimizations, remaining imprac-
tical for mobile computing devices. A significant gap therefore persists between
current near-eye eye tracking capabilities and the requirements for efficient, ro-
bust, accurate, and fast solutions suitable for mobile and XR applications. This
necessitates the development of lightweight, efficient event-based eye tracking
algorithms that can fully leverage event camera advantages while being explain-
able and robust. Such solutions would bridge the theoretical benefits of event-
based sensing with real-world deployment demands, enabling next-generation
eye tracking systems that are simultaneously fast, accurate, energy-efficient,
and robust.

1.2 Research Objectives and Contributions

This thesis project addresses the aforementioned challenges by designing a
purely event-based, near-eye tracking pipeline that delivers ultra-high update
rates and robust accuracy within strict mobile-compute and power budgets,
ideally suited for next-generation, low-latency applications. The primary ob-
jective is to create a robust system capable of detecting and tracking the pupil
at high frequency while maintaining computational latency in the millisecond
range.

The research focuses on monocular eye tracking under the assumption that
both eyes exhibit synchronized movement patterns, also known as conjugate
eye movements [I5]. The near-eye configuration ensures that the eye occupies
the majority of the camera’s field of view (FoV), creating an optimal sensing
environment where the pupil, iris, eyelid, eyelashes, and eyebrow constitute the
primary visual elements while minimizing external distractions.

The fundamental goal centers on accurate localization of the pupil region
within the FoV, as this serves as the cornerstone for subsequent applications,
including gaze estimation and eye movement-based authentication systems. Ac-
curate pupil shape in elliptical models and pupil center coordinates are expected
to fit the reference as precisely as possible. While gaze direction determination
falls outside the scope of this work, owing to its dependency on specific exper-
imental calibration procedures, the pupil tracking results provide the essential
foundation for such applications. Previous research has demonstrated that gaze
direction and point-of-gaze can be effectively derived from pupil tracking data
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Figure 1.1: The overview of the proposed pipeline from pupil detection
to updating.

through regression techniques [67] or LSTM networks [32].

Consequently, pupil detection and tracking are the most critical components
of this research, requiring the development of novel algorithms that can effect-
ively process event-based data streams while maintaining the spatiotemporal
precision and computational efficiency demanded by real-world applications.
The tracking of the pupil is updating the template after detection using the
upcoming events. The pipeline overview, including event-based detection and
rapid template updates, is visualized in Figure The successful implement-
ation of this system will advance the research in near-eye event-based eye track-
ing and establish a foundation for next-generation human-computer interaction
technologies.

Scientific Contributions

The scientific contributions of this thesis are summarized as follows:

e Efficient, Explainable Pupil Detection-Tracking Pipeline: An ef-
ficient and explainable pupil detection-tracking framework is proposed,
capable of kilo-Hertz tracking frequency with latency as low as the milli-
second level. At its core, the lightweight PupilUNet segmentation net-
work directly maps event representations to precise pupil regions. Events
are sliced and accumulated into dual-channel, causality-aware Speed-
Invariant Time Surfaces (SITS) that preserve both event polarity and
temporal dynamics. An optimized lightweight template updater ensures



fast, robust tracking following deep learning-based detection. This integ-
ration achieves high accuracy under challenging conditions and remains
feasible for real-time deployment on resource-constrained hardware.

Real-Data-Driven Augmentation and Training Framework: A
complete framework is developed to address the scarcity of annotated
event-based datasets. Limited elliptical pupil annotations are used to
train a frame-based segmentation model, generating pupil region masks
from fixed-size event windows (5,000 events) in the EV-Eye dataset [67].
During training, an efficient caching mechanism reduces I/O overhead,
accelerates training, and expands the adequate dataset size.

Lightweight, Attention-Augmented PupilUNet Architecture: The
PupilUNet network, derived from the classic U-Net architecture, is optim-
ized through a truncated MobileNetV3 encoder that concentrates on
shallow and mid-level features while discarding deeper, computationally
expensive layers. A minimal-overhead attention mechanism is integrated
into skip connections to enhance feature fusion and sharpen edge focus.
Training with a compound loss function that combines regional accur-
acy, boundary precision, and confidence weighting ensures precise pupil
edge localization with minimal computational cost, enabling deployment
on mobile and embedded systems.

1.3 Outline

This thesis presents a comprehensive account of the research, encompassing a
review of relevant literature, the design of the methodology, the implementation
of algorithms, and extensive experiments to validate and evaluate both perform-
ance and efficiency. The work concludes after a comparative discussion. The
structure is organized into five subsequent chapters:

e Chapter [2} reviews the relevant literature on eye tracking, highlighting the
evolution from traditional frame-based methods to event-based systems.
It critically analyzes existing datasets, event data representations, and
state-of-the-art algorithms, identifying the research gap that this thesis
aims to address.

Chapter [3} details the design and methodology of the proposed dual-state
eye tracking pipeline. This includes the system architecture, the data
augmentation framework for generating training samples, the lightweight
PupilUNet segmentation model, the rapid template updating mechanism,
and the final integrated pipeline.

Chapter [# presents the comprehensive experiments and evaluations con-
ducted to validate the proposed system. It covers the implementation
details, the training and testing of the pupil detector, the optimization
of the updater, and the performance assessment of the final integrated
pipeline on real-world event streams.

Chapter provides a thorough discussion and analysis of the exper-
imental results. It interprets the performance of the detector and up-
dater, examines the accuracy-latency trade-off of the integrated system,



and compares its performance against other prominent event-based eye
tracking methods.

e Chapter [6} concludes the thesis by summarizing the key contributions
and findings. It also discusses the limitations of the current work and
suggests potential directions for future research in the field of event-based
eye tracking.






Chapter 2

Related Works

This chapter provides a comprehensive review of the existing literature on eye
tracking, beginning with an exploration of fundamental eye movement paradigms
and culminating in a detailed analysis of state-of-the-art event-based method-
ologies. The primary objective is to contextualize the challenges inherent in
traditional eye-tracking systems and to establish the motivation for adopting
event cameras for efficient near-eye pupil tracking. This review will systemat-
ically evaluate key datasets and event data representations, critically analyze
current methods, and identify the research gaps that the proposed work aims
to address.

2.1 Eye Movement Tracking Paradigms

Eye tracking is the technology of measuring the point of gaze or the motion of
the pupil relative to the head. Accurate, rapid, and robust eye tracking is a
vital tool in plenty of applications, ranging from human-computer interaction
(HCT) and extended reality (XR) to driver monitoring systems and medical dia-
gnostics [54]. Besides end-to-end solutions from sensor data to neural network
output, the typical process of determining a person’s gaze mainly involves two
fundamental stages. First, key parts of the eye, such as the pupil, iris, and
corneal reflections (glints), are detected and segmented. Second, the features
extracted from these parts are used to build a model that can infer the pupil’s
position and, ultimately, the direction of gaze.
Eye tracking methodologies are broadly categorized into two main types:

e Model-based methods (e.g. [60, B3]) rely on creating an explicit geo-
metric model of the eye. By identifying features like the pupil and iris
contours or reflections from a known light source on the cornea, these
methods can calculate the eye’s orientation. While often accurate, they
necessitate strict calibration procedures and controlled illumination, which
can be cumbersome in real-world scenarios.

e Appearance-based methods (e.g. [0, [B1]) take a more direct approach,
learning a mapping from the visual appearance of the eye directly to the
gaze coordinates. These methods, often employing traditional computer
vision techniques or, more recently, deep neural networks (DNNs), can be



more robust to variations in eye shape and environment. However, they
typically demand high-resolution images and significant computational re-
sources to process the rich visual data.

While the ultimate goal of many eye-tracking systems is to estimate gaze,
the detection and tracking of the pupil is the most fundamental and significant
preceding step. The accuracy and robustness of pupil tracking directly dictate
the performance ceiling for any subsequent gaze estimation. This thesis will
therefore concentrate on the foundational challenge of near-eye pupil tracking.
By focusing on this critical stage, a highly efficient and robust system can be
developed, which can serve as a solid base for future gaze estimation frameworks.
This focused approach allows for a deeper investigation into the core problems of
high-speed detection and resilience to real-world challenges, without the added
complexities and subject-specific calibrations inherent in gaze mapping.

2.2 Frame-based Eye Tracking Methods

The vast majority of conventional eye trackers [50] [42] 30, 24] 64] are frame-
based, meaning they rely on grayscale or RGB cameras that capture a sequence
of images at a fixed frame rate. To enhance the contrast between the pupil
and the iris, these systems commonly utilize active infrared (IR) illumination.
This technique makes the pupil appear as a bright, easily distinguishable circle
or ellipse, simplifying the detection task for image processing algorithms. A
prominent example of commercial frame-based systems is the Tobii Pro Glasses
3 [58]. These wearable eye trackers are equipped with multiple cameras and
IR illuminators to capture a wide field of view and track eye movements with
high precision. While such systems offer robust performance in many research
and industrial settings, they are still bound by the limitations of frame-based
technology.

Traditional frame-based eye-tracking methods face several key limitations des-
pite their widespread use:

e Limited Temporal Resolution: Frame-based cameras are rate-limited
by their frames per second (FPS), which is typically below 200 Hz for even
high-speed models. This temporal ceiling makes it difficult to capture the
dynamics of rapid eye movements like saccades, which can reach velocities
of up to 700°/s [22].

e Data Redundancy: By capturing full frames at fixed intervals, these
cameras generate a massive amount of redundant data, as much of the
scene (and the eye) remains unchanged between consecutive frames. This
leads to inefficiencies in data transmission, storage, and processing.

e Motion Blur: Fast eye movements can result in significant motion blur
in standard camera frames, degrading the sharpness of the pupil boundary
and complicating accurate detection.

e Sensitivity to Lighting: Although IR illumination helps, these systems
can still be sensitive to ambient light conditions, which can interfere with
pupil detection.
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Figure 2.1: The event camera DAVIS346. [19]

These limitations highlight the need for a new sensing paradigm that can
overcome the speed and data efficiency bottlenecks of frame-based systems.

2.3 Event Cameras in Eye Tracking

Event cameras, also known as neuromorphic or dynamic vision sensors (DVS),
represent a paradigm shift in visual sensing, inspired by the workings of the hu-
man retina [I3]. Unlike traditional cameras that capture entire frames, event
cameras feature independent pixels that operate asynchronously. Each pixel
monitors the light intensity falling upon it and generates an event only when
a significant change in brightness (either positive or negative) is detected. An
event encodes the pixel’s coordinates (x,y), a precise timestamp ¢ (with mi-
crosecond resolution), and the polarity of the brightness change (p € {—1,1}).
Hence, an event stream involving N events can be defined as a set of N quad-
ruples:

€= {ei}iLy = {wiyis tis i}y (21)

Figure shows the visualization of the events in 3 dimensions with pixel
coordinates and timestamps, which demonstrates the event camera’s sensitivity
to motion.

The event camera used in this thesis is DAVIS346 (Figure , a specific type
of event camera that is particularly well-suited for this research. The DAVIS346
not only outputs a stream of asynchronous events but can also provide simul-
taneous grayscale frames, making it ideal for developing and validating hybrid
datasets. It features a resolution of 3462260 pixels, a high dynamic range of 120
dB, a short latency of approximately 20 us, and the capability of generating up
to 12M Events per second [19].

The unique operating principle of event cameras offers several compelling
advantages for eye tracking:

e High Temporal Resolution and Low Latency: With microsecond-
level temporal resolution, event cameras can capture the full dynamics of
fast eye movements without motion blur.

e Low Data Redundancy: By only transmitting information about changes,
event cameras drastically reduce the amount of redundant data, leading
to lower bandwidth and power consumption.

11
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Figure 2.2: An event camera in front of a rapidly rotating dotted disk
generates an event stream. The moving dots trigger a clear event
stream in the three-dimensional space, combining pixel coordinates
and time axis. [12]

¢ High Dynamic Range (HDR): Event cameras can handle a much wider
range of lighting conditions than traditional cameras, making them more
robust to challenging illumination environments.

e No Need for IR Lighting: The high sensitivity to temporal contrast
means that event cameras can often track the pupil boundary effectively
under ambient light, potentially eliminating the need for power-consuming
IR illuminators.

Some research explores processing event data directly through neuromorphic
computing[4, 2I]. However, this approach often requires novel, bio-inspired
processors to fully harness its potential, which are not yet widely available
for mobile applications. Therefore, this thesis focuses on developing efficient
algorithms for conventional computing hardware.

2.4 Near-Eye Event-based Eye Tracking Data-
sets

The development of robust, learning-based eye tracking methods is critically
dependent on the availability of high-quality datasets. In recent years, several
datasets featuring near-eye event data have been introduced.

EVBEye’s dataset [2]: This was one of the pioneering datasets to combine
frame and event data for gaze tracking. By fitting an eye model using both
modalities, it could map gaze directions. However, a significant limitation of
EVBEye is the simplicity of its data collection scenario; it primarily consists
of smooth pursuit eye movements, which does not provide enough diversity to
train models for robust, general-purpose tracking.

EyeTrAES’s dataset [57]: This dataset also provides event-based data for eye
tracking. It claims its wearable and mobile data collection setup, but the field
of view is rather small, so that it can assume a circular pupil shape.

12



3ET++ [6I]: This is a pure event-based dataset created for a tracking chal-
lenge. A major drawback is that it only provides pupil center labels. This
level of annotation with no pupil region and shape information is insufficient
to evaluate pupil detection. For applications that require point-of-gaze (PoG)
rendering or a more detailed understanding of the eye’s state, the pupil center
is not enough.

EV-Eye [67]: It is the most comprehensive large-scale, multimodal eye-
tracking dataset available. It was collected from 48 participants and contains
over 1.5 million near-eye binocular grayscale images and 2.7 billion event samples
from two DAVIS346 cameras. The dataset captures a wide range of natural eye
movements, including fixations, saccades, and smooth pursuits. Due to its large
size, diversity of subjects and movements, and rich multi-modal data, the EV-
Eye dataset was selected for this thesis. It provides an ideal foundation for
developing and rigorously evaluating a novel pupil-tracking algorithm.

2.5 Event Data Representations for Pupil Track-
ing

The conversion of raw event streams into suitable representations for deep learn-
ing architectures represents a fundamental challenge in event-based pupil track-
ing. Raw event data, comprising sequences of (x,y,t, p) tuples, inherently lacks
compatibility with conventional deep learning frameworks such as CNNs, which
are designed to process dense, grid-structured inputs [63]. Consequently, trans-
forming sparse, asynchronous event data into appropriate representations be-
comes a critical preprocessing step that directly impacts downstream perform-
ance.

Several distinct approaches have emerged to address this representational
challenge, each offering unique advantages while introducing specific limitations.
Examples of each event representation are illustrated in Figure

e Event Frames represent the most straightforward approach to event data
conversion [35]. This method slices events based on either fixed temporal
windows or predetermined event counts, subsequently accumulating these
slices into 2D histograms according to specific processing rules like contri-
bution and decay [20]. In this representation, each pixel value encodes the
cumulative effect of events occurring at that spatial coordinate. While this
approach offers computational simplicity and ease of implementation, it
fundamentally sacrifices the precise temporal information contained within
each window, potentially limiting the representation’s capacity to capture
fine-grained temporal dynamics essential for accurate pupil tracking.

e Voxel Grid representations provide a more sophisticated approach by
leveraging the natural three-dimensional structure of event data. Raw
events, inherently existing as points in spatiotemporal coordinates (x,y,t),
can be systematically organized into dense, regular volumetric structures
through temporal partitioning [69]. This methodology achieves a balanced
compromise between temporal resolution preservation and computational
efficiency when compared to processing raw three-dimensional event data
directly. However, the resulting multi-stack volumes increase computa-
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tional latency during neural network processing, potentially limiting real-
time applications.

e Time Surface (TS) representations offer an alternative paradigm that
emphasizes temporal context preservation through spatially-distributed
timestamp encoding. A Time Surface constructs a two-dimensional map
storing the timestamp of the most recent event at each pixel location, en-
hanced by an exponential decay kernel for temporal weighting. Following
Macanovié¢ et al.’s formulation [38], each pixel value is computed accord-
ing to , where 7 represents a scene-dependent tunable parameter, ¢
denotes the reference timestamp, and T'(x,y) captures the temporal con-
text of the most recent proximate event preceding time ¢. The exponential
decay function ensures that recent events maintain high pixel intensities
while historical events gradually fade [48]. While this approach effect-
ively encodes recent motion history, its representation exhibits velocity-
dependent characteristics that pose significant challenges for feature ex-
traction. Specifically, fast-moving pupils generate markedly different tem-
poral patterns compared to slow-moving ones, creating substantial dif-
ficulties for segmentation models attempting to learn velocity-invariant
features from Time Surface representations.

_ =T (z.9)|
E

Value(z,y;t) = e (2.2)

To address the velocity dependency inherent in standard Time Surface rep-
resentations, Manderscheid et al. introduced the Speed-Invariant Time Surface
(SITS) [39]. The standard Time Surface suffers from a critical limitation: its
exponential decay exp(—A - At) depends entirely on the temporal interval At
between events, causing identical objects moving at different velocities to pro-
duce drastically different representations. During rapid saccadic eye movements,
pupil edges generate high-intensity, sharp features due to small At values, while
smooth pursuit movements create dim, blurred representations with larger tem-
poral intervals. This velocity-dependent variability forces neural networks to
allocate learning capacity to accommodate speed-induced appearance changes
rather than focusing on intrinsic geometric properties.

SITS addresses this challenge by shifting temporal decay dependency from
physical time to event time. When an event (z,y,t,p) occurs, instead of com-
puting the temporal difference At = ¢t — t,5¢ from the previous event around
location (z,y), SITS calculates the number of events ANgyents that occurred
within the local neighborhood during this interval. The SITS value is then
computed as:

SITS(x,y,t) = exp(—A + ANeyents) (2.3)

This formulation effectively normalizes velocity influences: during rapid move-
ments, although At is small, the burst of global events results in large A Neyents
values, while slow movements produce small ANgyents despite longer temporal
intervals. Consequently, SITS generates consistent pupil edge representations
across varying movement speeds, encoding intrinsic geometric shapes rather
than transient motion states. This property proves particularly advantageous for
segmentation tasks, as it enables networks to learn stable, velocity-independent
geometric contours while improving model robustness and generalization cap-
ability.
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2.6 State-of-the-Art in Event-based Eye Track-
ing

Event-based eye tracking has emerged as a promising alternative to traditional
frame-based approaches, offering the potential for ultra-low latency, high tem-
poral resolution, robust performance, and reduced data redundancy. However,
existing methods face a fundamental trade-off between computational efficiency
and tracking robustness, with different approaches prioritizing distinct aspects
of this challenge.

Early work in this domain, conducted in EV-Eye [67], introduced a hybrid
event-frame methodology that combines event data with traditional frames
through a template updating mechanism. After applying frame-based segment-
ation and obtaining pupil templates, the algorithm maps candidate event points
to their corresponding local edge segments in real time, updating contour con-
tinuity and suppressing noise from irrelevant events. This targeted update re-
duces computational load, preserves temporal resolution at the microsecond
scale, and supports accurate gaze estimation in dynamic conditions. While this
approach demonstrates improved stability and accuracy compared to previous
work [2], the dependency on frames inherently sacrifices the ultra-low latency
advantages that make event cameras particularly attractive for real-time eye
tracking applications.

Moving toward pure event-based solutions, E-Gaze [32] demonstrated the feas-
ibility of high-frequency gaze tracking using morphological operations applied
directly to event frames. Although this method shows promise in controlled
laboratory settings and performs well on the specific dataset from [2], its prac-
tical applicability is limited by several factors. The approach relies heavily on
task-specific experimental parameters that hinder generalization to diverse real-
world conditions. More critically, eye part segmentation struggles with common
challenges such as eyelid-pupil or pupil-glint adhesion, which can cause signific-
ant tracking degradation.

Similarly, EyeTrAES [57] simplifies the tracking problem by assuming circular
pupil geometry in event representations. While this assumption reduces com-
putational complexity, it fails to account for the reality that pupils often appear
elliptical, particularly under oblique viewing angles. Furthermore, event frame
representation underutilizes the rich temporal dynamics and polarity informa-
tion that constitute the primary advantages of event cameras over conventional
Sensors.

Since these morphological approaches [32] [57] have not been tested on the
EV-Eye dataset, trials are done on this selected dataset following a similar
morphological method. The pipeline of morphological processing, filtering and
ellipse fitting is visualized in Figure In Figure a fixed number of
events are sliced and accumulated into an event frame, which is then applied
to a clustering algorithm named DBSCAN [I1] in Figure Based on
thresholds including contour area, circularity, hull area, hull circularity, solidity,
and density, clusters are filtered in Figure leaving pupil arcs alone like
Figure After fitting ellipses to the remaining arcs and going through
posterior filtering to discard implausible ellipses, the result should be the pupil
region in Figure However, this is only an ideal scene. Adhesion of eye
parts is common as displayed in Figure when the morphological approaches
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can hardly handle the cases. The robustness and adaptation of such methods
are unsatisfactory according to the trials. Furthermore, the need for tailored
parameters and thresholds heavily confines their practicability.

Apart from finding pupils via morphological operations and classic image
processing techniques, the recent 3ET++ Challenge [61] showcased a different
paradigm, with leading solutions employing complex end-to-end deep neural
networks that directly regress pupil centers from raw event streams. Despite
achieving impressive performance metrics, these regression-based approaches
suffer from inherent architectural limitations. These approaches lack explicit
geometric shape modeling, making the models behave like a black box. When
severe occlusions occur, for instance, the centroid of the event distribution shifts
dramatically, leading to significant prediction errors. This vulnerability stems
from the regression paradigm’s tendency to map events directly to coordinate
predictions without incorporating geometric constraints that could provide sta-
bility under challenging conditions. Additionally, the computational intensity
of these deep learning models introduces significant latency overhead, reducing
tracking rates and limiting their suitability for mobile deployment scenarios
where real-time performance is essential.

Combining geometric pupil shape modeling, FACET [7] attempts to regress
ellipse parameters from fast causal event volumes, providing more detailed ellipt-
ical parameter estimation compared to 3ET++ methods. It addresses latency
issues through hardware acceleration using technologies like NVIDIA TensorRT
on an NVIDIA RTX3090. While achieving both high detection accuracy and
reduced latency, FACET’s end-to-end neural network architecture presents its
own challenges, as it shares the same regression-based limitations regarding ex-
plainability and robustness. The complexity of the Feature Pyramid Network
(FPN) with multiple detection heads architecture during training and deploy-
ment further complicates its computation and practical implementation.

These limitations across existing methods reveal a fundamental paradigmatic
divide in event-based pupil tracking between regression and segmentation ap-
proaches. Regression-based methods, as demonstrated in the SET++ Challenge
submissions and FACET, attempt to map events directly to coordinate predic-
tions but may struggle under occlusion and noise conditions due to their lack of
explicit geometric constraints. This absence of shape modeling creates a critical
weakness when dealing with partial occlusions or noisy event data.

In contrast, segmentation-based approaches offer a fundamentally different
strategy by modeling pupil shape explicitly, thereby naturally preserving geo-
metric continuity even under adverse conditions. This paradigmatic difference
becomes particularly evident when examining pupil occlusion resilience. The
Swift-Eye framework [66] exemplifies the advantages of segmentation method-
ologies, achieving Intersection over Union (IoU) higher than 0.7 and Fl-score
higher than 0.81 even in large occlusion scenes with a dedicated strategy to
tackle occlusions. These performance gains occur precisely in scenarios where
regression methods fail due to centroid shift issues, highlighting the importance
of explicit geometric modeling. However, the complex neural network architec-
ture limits computational latency.

The evidence suggests that segmentation-based approaches provide a more
robust foundation with slightly more latency for event-based eye tracking by
explicitly modeling pupil geometry rather than relying on direct coordinate
regression. This geometric modeling capability, combined with efficient template
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fitting mechanisms, offers the potential to achieve both the robustness required
for real-world deployment and the computational efficiency necessary for real-
time applications. The integration of segmentation models with proven template
updating strategies, such as the points-to-edge mechanisms demonstrated in EV-
Eye [67], presents a promising direction for addressing the current limitations
in event-based eye tracking systems.

2.7 Summary

The review of the existing literature reveals a clear trajectory in eye tracking re-
search, moving from traditional, frame-based systems with inherent limitations
in speed and data efficiency towards the promising paradigm of event-based
sensing. While event cameras offer significant advantages, current methods still
face challenges in computational efficiency, robustness, and practicality for mo-
bile applications. A critical analysis of datasets, event representations, and
state-of-the-art algorithms highlights a specific need for a method that can:

e Robustly segment the pupil region, rather than simply regressing to a
center point, to improve robustness and provide more detailed region in-
formation.

e Utilize an event representation that is invariant to motion speed to create
stable features for the learning algorithm.

e Achieve high performance on a lightweight, efficient neural network archi-
tecture suitable for edge devices.

This thesis proposes to address these challenges. By feeding causal Speed-
Invariant Time Surface (SITS) representations into a segmentation model fol-
lowed by ellipse fitting, the proposed work aims to achieve highly efficient and
accurate pupil detection. This approach is designed to be robust and explain-
able, setting a new baseline for near-eye tracking on resource-constrained plat-
forms. The focus on detection and segmentation lays the groundwork for a
subsequent rapid template updating mechanism, pointing towards a complete,
high-frequency eye-tracking system.
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Figure 2.3: (a) shows a simple event frame accumulated from 5000
consecutive events in the EV-Eye dataset [67]. Red pixels repres-
ent positive events while green pixels represent negative events. (b)
shows the event voxel grid from [13], where the raw event stream is
discretized into temporal bins. (c) shows a time surface from [38] as
a 3D contour map with highlighted motion contours. Higher amp-
litude values correspond to more recent events.
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Figure 2.4: Trial pipeline on EV-Eye dataset using morphological op-
erations to detect pupil.
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Figure 2.5: An example of adhered eye parts. The pupil arc in red is
mixed with the eyelid. The method cannot split the adhesion.
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Chapter 3

Method

3.1 Pipeline Overview and System Architecture

This chapter outlines the architecture of the proposed eye tracking system,
which processes pure near-eye monocular event recordings and outputs ellipse
parameters that characterize the pupil region within the field of view. The
system operates on an updating-after-detection paradigm, where robust pupil
detection ensures accuracy through segmentation and ellipse fitting, while tem-
plate updating mechanisms optimize both tracking frequency and latency.

The eye tracking pipeline operates in two primary states: pupil detection and
pupil updating, with control logic governing transitions between these modes
(Figure [1.1)). The system begins by partitioning the incoming event stream
into slices of 5000 events, which are then accumulated to create dual-channel
SITS frames as detailed in Section These frames serve as input to the
PupilUNet segmentation model, which extracts event coordinates correspond-
ing to the pupil boundary. Subsequently, an elliptical template is fit to these
coordinates to define the pupil region. The architectural details of PupilUNet
and the ellipse fitting approach are presented in Section [3.3]

For PupilUNet model training, the EV-Eye dataset [67] is leveraged with aug-
mented annotations through the augmentation strategy (Section . Using
the provided frame-annotation pairs, a frame-based model is trained to gen-
erate pupil masks on reference frames where manual annotations are unavail-
able. By counting causal event slices backward from extended reference frame
timestamps, corresponding SITS-mask samples are created for PupilUNet, es-
tablishing comprehensive train, validation, and test datasets for the SITS seg-
mentation model.

Once successful pupil detection occurs, the system shifts to updating mode
(Section . Here, the event slice size is reduced to 500 events, and candidate
points are filtered in based on their proximity to the previous template. The
optimized points-to-edge matching and template center updating algorithm then
refines the template location. The system includes safeguards against abnormal
fitting: when template scores fall below the threshold (indicating potential pupil
occlusion or template distortion), the pipeline automatically returns to detection
mode to establish a fresh template.

The complete system architecture, spanning from data preparation through
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Figure 3.1: Complete system architecture showing PupilUNet training
pipeline (blue) and eye tracking pipeline (green). PupilUNet train-
ing pipeline: A U-Net frame-based model trained on 9011 frames
with EV-Eye’s original annotations generates extended annotations
for additional frames, creating white pupil masks in Samples. Train-
ing samples consist of SITS-pupil mask pairs, where SITS inputs are
generated by counting back 5000 events from reference timestamps
and forming dual-channel frames (red: positive event channel, green:
negative event channel). These samples train the PupilUNet seg-
mentation model. Eye tracking pipeline: Event streams are sliced
and accumulated into dual-channel SITS frames. PupilUNet predicts
pupil boundary maps, yielding point coordinates that undergo ellipse
fitting for final detection results. The system alternates between de-
tection and updating modes based on template score examination.
During Template Updating, candidate points (red dots) refine the
template, with gray and blue ellipses representing previous and cur-
rent templates, respectively.

final tracking results, is illustrated in Figure [3.1] Despite the increased com-
putational complexity of the segmentation-fitting approach compared to end-
to-end regression methods, the enhanced explainability proves invaluable for
system debugging and optimization. When tracking errors occur, each pipeline
stage can be systematically traced from event frame quality to segmentation
mask accuracy to ellipse fitting success, enabling targeted improvements. The
robustness is also guaranteed because the segmentation model learns the shape
and context of pupil regions, which enables the model to predict pupil regions
even under challenging circumstances like partial pupil occlusion. The ellipse
fitting further enhances robustness by minimizing possible segmentation out-
liers’ distractions. Due to the fast updating mechanism, the average latency of
eye tracking drops even if the segmentation-fitting detector takes a longer time.
Section [3.5] addresses the integration of both tracking states and their control
logic to form the complete tracking pipeline. Detailed implementation specifics
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for each component and validations are provided in Chapter

3.2 Event Representation and Data Augmenta-
tion

A primary obstacle in developing robust segmentation models for event-based
vision is the significant cost and effort associated with creating large and com-
prehensive annotated datasets that consist of frames and corresponding dense
and precise labels. To overcome this limitation, frame-like event representation
and an augmented dataset size are required. The data augmentation approach
is designed to generate large-scale, high-quality, comprehensive training and
validation datasets from the sparsely annotated EV-Eye dataset [67]. This
process operates in two main stages: first, generating extensive new pupil mask
annotations using a frame-based segmentation model, and second, converting
corresponding event data into a specialized frame-like representation suitable
for training the PupilUNet.

3.2.1 Frame-based Segmentation for Data Augmentation

The core of the data augmentation strategy is to leverage the limited provided
ground truths of pupil annotation to generate a much larger set of annotations
at timestamps when grayscale frames exist without annotations. The EV-Eye
dataset provides 9,011 grayscale frames paired with elliptical pupil annotations.
While valuable, this number is insufficient for training a stable and accurate
segmentation network. The data augmentation approach uses these initial pairs
to bootstrap the annotation process for other unannotated frames in the EV-Eye
dataset.

In the field of image segmentation, one of the most influential deep-learning-
based solutions is U-Net [56], which is a convolutional neural network archi-
tecture developed initially for biomedical image segmentation. The architecture
features a distinctive U-shaped design with a contracting path (encoder) that
captures context through successive convolutions and pooling operations, and an
expansive path (decoder) that enables precise localization through upsampling
and concatenation with high-resolution features from the contracting path. The
key innovation of U-Net lies in its skip connections, which directly connect cor-
responding layers in the encoder and decoder paths, allowing the network to
combine low-level spatial information with high-level semantic features for ac-
curate pixel-wise predictions [37]. Since its introduction, U-Net has been widely
adopted and adapted for various image segmentation tasks beyond biomedical
applications, including satellite imagery analysis, autonomous driving, and gen-
eral computer vision tasks [I8] [68]. The architecture’s effectiveness stems from
its ability to work with relatively small datasets while achieving high segment-
ation accuracy, making it particularly valuable in domains where labeled data
is scarce [56].

In this task, a classic frame-based U-Net model, featuring a standard encoder-
decoder architecture with five levels of down-sampling and corresponding skip
connections, is trained on 7208 frame-annotation pairs and validated on 1803
pairs, both from the 9011 ground truth annotation pairs. The architecture of
this frame-based U-Net model is illustrated in Figure This model learn
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Frame-based U-Net Architecture
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Figure 3.2: A classic U-Net segmentation model to annotate pupil re-
gion. The architecture refers to FACET([7]

to segment the pupil from grayscale images accurately. Once trained, this net-
work is deployed as an auto-annotator on other frames within the dataset for
which no ground-truth labels existed. This process can effectively expand the
pool of annotations from a few thousand to over 60,000, creating a compre-
hensive set of different pupil masks, each with a precise reference timestamp for
aligning frames with event slices. This automated annotation pipeline serves as
the foundation for generating the training, validation and testing samples for
event-based PupilUNet, as depicted in the blue part of Figure The an-
notation masks are donut-shaped zones with 5-pixel thickness representing pupil
boundaries, since events are mainly triggered by the movement of the boundary.
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3.2.2 Speed-Invariant Time Surface (SITS) Accumulation

With a large collection of timestamped pupil masks, the next step is to cre-
ate a corresponding event-based input representation for sample pairs. Rather
than using raw event data, which is sparse and asynchronous, the PupilUNet
segmentation task needs to accumulate events into a dense, frame-like tensor
beforehand using the Speed-Invariant Time Surface (SITS) method introduced
in Section This representation is specifically designed to preserve critical
temporal dynamics and event polarity, which are essential for understanding
motion. The speed-invariant characteristic stabilizes the spatiotemporal fea-
tures of the moving pupil at various speeds, which is crucial for the model to
learn meaningfully.

For each generated pupil mask and its associated timestamp tj,pe;, & causal
window of the most recent N events (where N is empirically set to 5000) is
extracted from the event stream. These events are then projected onto two
separate 2D grids following SITS’s algorithm, one for positive (ON) events and
one for negative (OFF) events, matching the sensor’s resolution of 260 x 346
pixels. The value at each pixel (x, y) in each channel is based on the recency of
the last event at that location, calculated using an exponential decay function
with regarding to the AN in (, where A is a decay constant empirically set
to 0.001 for clear pupils, and AN is the relative index difference between the
current event and the last recorded event at that exact pixel. This formulation
makes the representation robust to variations in motion speed, as it depends on
the order of events rather than their absolute timestamps.

The final result is a dual-channel SITS frame where one channel represents
the speed-invariant time surface of ON events and the other represents the
OFF events. This representation provides a rich, motion-aware input to the
PupilUNet that encodes both spatial and temporal information from the event
stream.

3.3 Segmentation Model and Pupil Detector

The core of the detection pipeline is a deep learning model designed for efficient,
accurate pupil segmentation, followed by a robust ellipse fitting procedure. This
section details the architecture of the dedicated PupilUNet, the specialized loss
function used for its training, and the methodology for extracting precise ellipse
parameters from the model’s output.

3.3.1 PupilUNet Architecture

Built on U-Net, the PupilUNet is a lightweight segmentation network deeply cus-
tomized for performance and efficiency in near-eye pupil tracking. The architec-
ture is illustrated in Figure A key innovation of PupilUNet is its truncated
encoder, which utilizes MobileNet V3-Small [I6] as its backbone. MobileNetV3-
Small is a lightweight convolutional neural network architecture optimized for
mobile and edge devices through neural architecture search, featuring squeeze-
and-excitation blocks and hard-swish activations to achieve efficient inference
with minimal computational overhead. Considering that pupil segmentation
relies on identifying low-to-mid-level geometric features, such as contours and
edges, rather than abstract, high-level semantic information like this is a human
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eye, the architecture should be optimized to preserve these crucial spatial details
while minimizing computational complexity. Thus, unlike conventional U-Net
designs that use the full depth of a backbone network (e.g., Section , the
encoder here is intentionally truncated, using only the shallow and middle-layer
modules up to a 1/8 downsampling resolution. By discarding the deeper, com-
putationally expensive layers, the model not only achieves a significant reduction
in parameters and latency but, more importantly, it prevents the fine spatial
information critical for precise contour detection from being diluted through
excessive downsampling.

The decoder is engineered to complement this efficient encoder by integrating
a parameter-free attention mechanism. Within each decoder block, skip connec-
tions from the encoder are enhanced using a Simple, Parameter-Free Attention
Module (SimAM) [62]. Before fusing the shallow features from the encoder with
the upsampled features from the decoder, it computes attention weights through
spatial statistics, calculating the spatial mean (u) and variance (v) across height
and width dimensions. It then applies an energy function

dsq

e= o+ N + 0.5, (3.1)
where d,sq represents squared deviations from the mean and A is a hyperpara-
meter. A sigmoid activation then generates attention weights that are element-
wise multiplied with the input features, highlighting salient regions correspond-
ing to pupil edges while suppressing irrelevant background noise. The Pupi-
1UNet decoder employs two decoder block instances with SimAM integration.
The first one processes bottleneck output (40 channels, 1/8 resolution) with S2
skip features (24 channels, 1/4 resolution). The other one fuses D1’s output (32
channels, 1/4 resolution) with S1 skip features (16 channels, 1/2 resolution).
Each decoder block applies bilinear upsampling, handles spatial dimension mis-
matches through interpolation, applies SimAM attention to skip connections,
concatenates features, and processes the fused representation through dual con-
volutional layers with batch normalization and dropout regularization. This is
achieved without adding any trainable parameters and with negligible computa-
tional overhead, offering an extremely cost-effective method to improve feature
fusion and sharpen boundary delineation. The final stage of the network con-
sists of a lightweight head that produces a single-channel logit map representing
the pupil segmentation.
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PupilUNet Architecture

MobileNetV3-Small Encoder with SimAM Attention (Dual-Channel Input)
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Figure 3.3: PupilUNet Architecture Overview. The proposed Pupi-
IUNet employs a truncated MobileNetV 3-Small encoder that extracts
multi-scale features at three hierarchical levels: S1 (H/2 x W/2 x 16
channels), S2 (H/4 x W/4 x 24 channels), and a bottleneck layer
(H/8 x W/8 x 40 channels). The encoder is intentionally truncated at
1/8 resolution to preserve low-to-mid-level geometric features cru-
cial for contour segmentation. The decoder consists of two up-
sampling blocks (D1 and D2) that progressively restore spatial resolu-
tion through bilinear interpolation. Skip connections with parameter-
free SImAM attention modules enhance feature fusion by selectively
emphasizing relevant geometric information from encoder layers. The
model accepts dual-channel input images and generates single-channel
segmentation masks through a lightweight output head. This stream-
lined architecture balances computational efficiency with segmenta-
tion accuracy for pupil detection tasks.
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3.3.2 Confidence-Weighted Compound Loss Function

To train PupilUNet effectively, a sophisticated loss function was developed to im-
prove the accuracy and robustness of pupil segmentation. A simple loss function
is often insufficient, as it may struggle with the severe class imbalance between
the small pupil region and the large background, or fail to enforce sharp bound-
ary prediction. The single criterion also causes overfitting during training and
validation. Therefore, a compound loss is formulated as a confidence-weighted
sum of three distinct loss functions, each targeting a specific aspect of the seg-
mentation task.

e Dice Loss is a segmentation loss function based on the Dice similar-
ity coefficient that directly optimizes the overlap between predicted and
ground truth regions [43], making it particularly effective for handling
class imbalance and ensuring accurate regional overlap.

e Focal Loss [34] is a refinement of standard cross-entropy. It focuses the
training process on hard-to-classify pixels, particularly those along the
pupil boundary. It down-weights the loss for easily classified background
pixels, forcing the model to concentrate on achieving higher precision at
the edges.

e Boundary Loss [23] explicitly penalizes inaccuracies at the pupil bound-
ary. It uses a distance map to apply a higher penalty to misclassified
pixels that are further from the true boundary, directly encouraging the
model to generate sharp and precise edges.

Furthermore, to enhance robustness against noisy or low-quality training samples
generated by the data augmentation pipeline, a confidence weighting scheme is
integrated into the final loss calculation. A sample confidence score is calcu-
lated for each SITS-mask pair based on the density of events within the pupil
boundary region. This score allows the training process to weight high-quality
samples more heavily, improving the model’s robustness against ambiguous or
noisy data, such as those generated during blinks or occlusions. The final loss
L for each sample is scaled by this confidence score C, which is stated in ( [3.2):

L=Cx (WDi(ze X EDice + WFocal X EFocal + WBoundary X LBoundary)» (32)

where Wpice, Wrocat and Woundary are weights that balance the effect of each
loss. This strategy allows the model to learn more from high-quality, reliable
samples while reducing the influence of ambiguous data, leading to a more stable
and accurate final model.

3.3.3 Pupil Detection from Segmentation Result

The output of the PupilUNet is a probability map, which must be translated into
precise elliptical parameters for the following applications. This is accomplished
through a multi-stage process designed to maximize accuracy by leveraging the
raw event data.

First, the model’s output logits are passed through a sigmoid function to gen-
erate a probability map, which is then binarized using an empirical threshold
to create an initial pupil mask. However, instead of fitting an ellipse directly
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to this mask, which may contain quantization errors, the system employs an
event-based fitting strategy. The binary mask serves as a spatial filter to select
event coordinates from the original input slice that fall within the predicted
pupil boundary region. An ellipse is then fitted directly to this subset of high-
precision event coordinates. This approach leverages the superior spatiotem-
poral resolution of the raw event data, using the segmentation mask as a robust
guide to achieve a more accurate, sub-pixel fit.

Finally, a posterior filtering step is applied to ensure the plausibility of the
detection. The parameters of the fitted ellipse are validated against physiological
constraints, including realistic ranges for axis lengths and aspect ratios. Ellipses
that are deemed implausible (e.g., excessively large, small, or elongated) are
discarded. This final check enhances the robustness of the detector by rejecting
erroneous fits that can occur under challenging conditions, ensuring that only
reliable pupil detections are passed to subsequent stages of the pipeline.

3.4 Pupil Template Updating

To achieve the ultra-high tracking frequencies required for real-time applica-
tions, the system cannot rely solely on the computationally intensive deep learn-
ing detector for every estimation. Therefore, once an initial, high-confidence
pupil template is established, the pipeline transitions to a lightweight and rapid
updating mode, referring to EV-Eye’s approach [67]. This mode is designed to
incrementally refine the pupil’s position using small, subsequent slices of events,
achieving low latency and high speed. The process consists of candidate selec-
tion, iterative center refinement, and a quality assessment.

First, candidate events are selected from the incoming small event slice (e.g.,
500 events) by filtering them through a donut-shaped Region of Interest (ROI)
centered on the last known pupil elliptical template. This ringlike region, defined
by inner and outer scaled ellipses of the template, efficiently isolates events
most likely to originate from the moving pupil boundary, discarding irrelevant
background noise and events from other eye parts. This selection step is critical
for both efficiency and accuracy, as these events generated by moving the pupil
boundary are significant to infer the tiny translational motion within a short
time.

The core of the updating mechanism is an iterative point-to-edge matching
algorithm that refines the template’s center [67]. For a set of candidate points
P, the algorithm computes the translation vector T that minimizes the sum of
squared distances between the translated candidates and their closest corres-
ponding points on the existing ellipse boundary, Q. This is expressed as:

N
. 1 9
min EBE(T) = min = Z; lgs — (ps +T)| (3.3)

This minimization is solved iteratively. In each iteration, the algorithm calcu-
lates the average displacement vector, AT, from the candidate points to their
projections on the current template boundary. This mean displacement is then
added to the total translation T:

Tiy1 =T, + ATk (34)
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This process is repeated until the change in translation converges, at which point
the final vector T is applied to the template’s center. For stability, only the cen-
ter of the ellipse is updated, while its shape and orientation are preserved from
the last robust detection. This method provides a computationally inexpensive
yet robust way to track motion between complete detection cycles.

Finally, a quantitative fit score is calculated to assess the quality of the update.
This score measures the consensus between the new event data and the updated
ellipse, effectively evaluating how well the events conform to the template’s
boundary. Since the point-to-edge algorithm maintains the template shape,
the updated template may fail to fit the real pupil boundary, when the pupil
moves far from the center of the FoV and its projection on the FoV changes
dramatically during a saccade. This score then serves as a critical safeguard,
enabling the system to be aware of tracking degradation or failure when the fit
score is under the threshold. In this case, the detection mode should be called
back to refresh the template’s shape.

3.5 Thorough Integration and Control Logic

The complete eye tracking system architecture (i.e., the green part in Figure
is a bimodal pipeline that dynamically switches between the robust de-
tection mode and the rapid updating mode to achieve an optimal balance of
accuracy, frequency, and latency. The control logic governing this transition is
fundamental to the system’s performance and resilience.

The pipeline begins in detection mode. It accumulates a large slice of events
(e.g., 5000) to construct a dense, high-quality SITS representation. This is fed
into the PupilUNet to perform segmentation and ellipse fitting, as detailed in
Section [3.3] The primary goal of this mode is to establish a highly accurate
and reliable initial pupil template. The use of a larger event window ensures
that the input to the neural network is sufficiently rich to overcome noise and
produce a confident detection.

Upon a successful detection, the system immediately transitions into updat-
ing mode. The event slicer is dynamically reconfigured to process much smaller
packets of events (e.g., 500). This drastic reduction in slice size is the key to
enabling kilo-Hertz tracking frequencies and minimizing latency to the milli-
second level. In this mode, the system applies the efficient template updating
algorithm described in Section to each incoming slice.

A critical component of the integration is the monitoring mechanism that
triggers a transition from updating back to detection mode. After each updat-
ing cycle, the quality of the updated template is quantified using a fit score,
which measures the mean absolute distance of candidate events from the el-
lipse boundary in a normalized coordinate space. This score, adapted from the
method proposed in E-Gaze [32], is calculated as follows:

1 n
Sﬁtzlfﬁzmpﬂ\zfﬂ (3.5)
i=1

where n is the number of candidate events and pj is the coordinate of the i-
th event in the normalized, axis-aligned space of the ellipse. This normalized
coordinate is derived by translating the event to the ellipse’s center, rotating it
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into the ellipse’s frame of reference, and scaling by the semi-axis lengths:

, [z w . xf\ [ cos¢ sing) (x;—=x
o= (ae) e ()= (G o) G2i) 6o

In these equations:
e Sg; is the resulting fit score, with a value of 1 indicating a perfect fit.

e 1 is the total number of candidate events.

(z,y;) are the original coordinates of the i-th event.

(2p, yp) is the center of the ellipse template.

(wp, hp) are the semi-axis lengths (width, height) of the ellipse.
e ¢ is the rotation angle of the ellipse in radians.
o (z%,y}) are the coordinates of the event after translation and rotation.

If this score falls below a predefined threshold, it signals a potential loss of
tracking fidelity, which may be caused by pupil occlusion, rapid saccades towards
the edge of FoV, or accumulated tracking drift. In response to this low-quality
assessment, the control logic immediately reverts the pipeline to the robust
detection mode. It resets the event slicer to the larger window size and attempts
to re-detect the pupil from scratch using the PupilUNet detector.

This dual-state architecture combines the strengths of both approaches. It
leverages the high accuracy and robustness of deep learning-based segmentation
to anchor the tracking process, while exploiting the speed and efficiency of a
lightweight iterative updater for low-latency, high-frequency refinement. The
shifting logic ensures that the system can operate at maximum speed during
reliable tracking and can recover from failures, resulting in a pipeline that is
fast, accurate, and robust.
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Chapter 4

Experiments and
Evaluation

This chapter presents detailed implementations of the methods in Chapter [3|and
a comprehensive evaluation of the proposed event-based eye tracking pipeline.
The experiments and evaluation are detailed in four sections:

e Section the data augmentation process was accomplished by training
and assessing the frame-based segmentation model used for annotation
expansion, followed by the preparation of the final event-annotation data-
set for the PupilUNet model, including the data caching and sampling
strategies.

e Section the training, validation and performance profiling of the
proposed PupilUNet model were conducted. After that, the overall pupil
detector, including elliptical template generation, was tested.

e Section the algorithm of pupil updating was implemented and op-
timized by vectorized operations.

e Section the performance of the fully integrated detection-updating
pipeline was evaluated on real-world event streams, assessing its accuracy,
latency, and operational characteristics.

The computing device used in this thesis was equipped with an AMD Ryzen
5800H CPU and an NVIDIA RTX 3070 Laptop. The experiments were conduc-
ted in an environment with Python 3.11 and Pytorch 2.2.2+cull8. The EV-Eye
dataset can be downloaded from
https://1drv.ms/f/s!Ar4TcaawWPssqmu-0vJ45vYR30Hw. The code implement-
ation can be found in the repository
https://github.com/SolarPlover/TUDelft_Thesis/tree/DL.

4.1 Dataset Augmentation and Preparation
A large dataset size is necessary for a stable and robust segmentation model.

The key module in the eye tracking system, PupilUNet, requires abundant
densely annotated samples consisting of frame-like event representations and
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Figure 4.1: Near-eye grayscale frame segmentation example. The green
ellipse outlines the pupil region.

pupil boundary label mask pairs to predict whether an event is related to the
moving pupil boundary. Following the method in Section a multi-stage
data augmentation and preparation pipeline is thus established to generate a
large-scale, high-quality dataset for training the PupilUNet.

4.1.1 Train and Validation of Frame-based Segmentation

The EV-Eye dataset provides 9011 ground truth pupil annotation pairs and
many more unannotated near-eye grayscale frames, which can be leveraged to
expand the number of reference pupil masks at corresponding timestamps. The
foundation of the data augmentation strategy is a frame-based U-Net model,
as described in Section [3.:2.1] trained to generate new pupil mask annota-
tions. This model was trained on the initial ground truth data provided by
the EV-Eye dataset, which consisted of 9,011 frame samples labeled with bin-
ary masks of the same 346x260 resolution as the frames. The png masks con-
tained highlighted elliptical pupil regions extracted from the hdf5 files in the
Data_davis_labelled with_mask folder. This dataset was then split into a
training set of 7,208 samples and a validation set of 1,803 samples.

The frame-based segmentation model, a classic U-Net architecture with a
standard five-level encoder-decoder structure and 17.3 million trainable para-
meters, was trained for 70 epochs using the PyTorch Lightning framework. The
network had 1 input channel (grayscale frames) and 2 pixel-level segmentation
classes (pupil region or not). An Adam optimizer with a learning rate of 2x 1073
and a weight decay of 1 x 1075 was employed, and 16-bit automatic mixed pre-
cision (AMP) was used to accelerate the training. Validation was performed
every five epochs to monitor the mean distance between predicted and refer-
ence pupil centers, saving the best-performing models. The training converged
successfully, achieving a best validation mean distance of 0.6148 pixels at epoch
65. The model also demonstrated exceptional accuracy on other pixel-error
thresholds, reaching 100% for P3 accuracy (P3: pixel error between predicted
and reference pupil centers < 3 pixels) and 86.4% for P1 accuracy (pixel error
< 1 pixel). The low mean distance error on the validation set confirmed that
the model was sufficiently accurate and robust to serve as an ”auto-annotator.”
Subsequently, this trained model was deployed to predict pupil masks on over
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Figure 4.2: Near-eye grayscale frame with dilated donut-shaped mask.
The gray mask was then used as the label in the PupilUNet dataset.
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Figure 4.3: The process to pair a pupil mask with the corresponding
SITS to form a sample in the PupilUNet dataset. A white donut-
shaped pupil boundary region was segmented by the frame-based
segmentation model, serving as the label of the sample. The sample
data was the dual-channel SITS accumulated from the causal slice of
5000 events preceding the corresponding timestamp.

60,000 unannotated frames from the EV-Eye dataset, effectively expanding the
pool of available annotations for the next stage. An example of frame-based
segmentation results is visualized in Figure

4.1.2 PupilUNet Dataset Samples

After the frame-based U-Net model successfully segmented pupil regions in un-
annotated frames, labels for the PupilUNet dataset were generated by dilating
the contours of the elliptical pupil to create donut-shaped masks with 5-pixel
thickness. The masks indicated the region where events were likely triggered by
the moving pupil boundary, since event cameras are sensitive to edges of moving
objects. An example of the dilated mask is demonstrated in Figure

With an extensive set of timestamped pupil masks generated, the final dataset
for training the PupilUNet model was prepared once event representations were
processed following the method in Section For each new annotation, a
corresponding input sample was created by precisely locating its timestamp and
extracting a causal window of the 5,000 most recent events preceding it, using
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the bisect_right function for efficient searching. These events were accumu-
lated into the dual-channel SITS representation with a decay factor A = 0.001 in
(. The dual-channel SITS was then paired at each corresponding timestamp
with the donut-shaped binary mask, where the white ring represents the pupil
boundary. This design aligns with the nature of event data, as events are primar-
ily generated by the motion of contours. The process is illustrated in Figure
4.0l

Samples were generated in the PupilUNet dataset, but they should not con-
tribute equally during the training process. Some samples represented pupil
occlusions or meaningless noise during fixations, which were not beneficial for
PupilUNet to learn the constant features of the pupil region. To quantify the
significance of samples, a confidence score for each sample was computed by
measuring the density of events within the pupil donut-shaped mask and ap-
plying a square root function to normalize the score, making the subsequent
training process more robust to noisy data. A visualization of samples from the
prepared dataset is shown in Figure [4.4] demonstrating the SITS representation
and the corresponding confidence scores for samples of varying quality.

4.1.3 PupilUNet Dataset Preparation

There are 48 users and 388 sessions with event recordings and frames in the
EV-Eye dataset. To simplify the PupilUNet dataset, 193 sessions from 24 users
were selected to go through the data augmentation process to expand pupil
annotations. From the total pool of 193 sessions containing both events and
augmented masks, a final dataset of 60,000 samples was randomly compiled
and partitioned into 40,000 for PupilUNet training, 10,000 for validation, and
10,000 for testing.

To manage this large-scale dataset efficiently and ensure experimental repro-
ducibility, a sophisticated, three-tier caching strategy was implemented:

e Annotation Cache: At the first level, a function scans the data direct-
ory once and caches the file paths of all corresponding event recordings
and mask directories into a single pickle file. It intelligently checks file
modification times to automatically rebuild the cache if the underlying
data changes, reducing startup time from minutes to milliseconds on sub-
sequent runs.

e Persistent Events Cache: At the second level, the PersistentEventsCache
class processes the raw text-based event files (events.txt) into a compressed
NumPy (.npz) format using np.savez_compressed. This binary format
allows for significantly faster data loading by bypassing the expensive text
parsing process. This approach is fundamental to achieving efficient train-
ing workflows.

e Dataloader Cache: At the third level, the dataloader_with_cache
function saves the exact list of samples assigned to the train, validation,
and test sets, guaranteeing reproducibility across different experiments.

Among the total 40,000 4 10,000 + 10,000 samples in the PupilUNet data-
set, sample confidences exhibited the distribution in Figure Analyzing the
confidence statistics, it is clear that most samples could contribute meaningfully
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to the pupil feature learning. Some samples with low confidence would hardly
impact the training process, as the PupilUNet would consider them as less signi-
ficant samples and not learn from corrupted samples with heavy pupil occlusion
or noise. The final outcome of the event-based segmentation was stable and
robust following this strategy.
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Figure 4.4: Visualization of three representative samples from the data-
set, showcasing low, medium, and high confidence scores. The left
column displays the dual-channel SITS representation (ON events in
red, OFF in blue) overlaid with the pupil boundary (white ring) for
reference. The right column visualizes the pupil boundary masks
from the frame-based segmentation model.
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Figure 4.5: The confidence score statistics of the PupilUNet dataset.
Left Plot: The histogram shows the distribution of confidence scores
across all samples. Most samples had relatively high confidence and
could contribute to the learning. Right Plot: The box plot compares
confidence distributions across train, validation, and test sets. The
bottom edge of a box represents the 25% percentile (i.e., 25% of
samples have confidence below this value). The top edge of a box
represents the 75% percentile. The horizontal orange line inside a
box is the median. The vertical lines show the range of normal data
variation within +30. The individual dots refer to outliers that fall
outside the top and bottom bars of the vertical lines.
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4.2 Pupil Detection

4.2.1 PupilUNet Training and Validation

The PupilUNet model was built according to Section [3.3.1jusing Pytorch. It was
trained and validated using a combination of modern deep learning techniques
to maximize performance, efficiency, and robustness. The program incorporated
several key implementation details:

e Model Architecture Implementation: The PupilUNet class utilized
pretrained MobileNetV3-Small as its encoder backbone. The input layer
was modified to accept 2 channels corresponding to the bipolar SITS rep-
resentation. The architecture was intentionally truncated, using only the
initial blocks of the backbone up to a é downsampling resolution to focus
on geometric features. The DecoderBlock integrated SimAM specifically
for skip connection enhancement. During forward propagation, the up-
sampled decoder feature was concatenated with the attention-enhanced
skip connection. This selective application targeted shallow encoder fea-
tures containing geometric and edge information crucial for pupil bound-
ary detection.

e Mixed Precision Training: By leveraging torch.cuda.amp.autocast
and GradScaler, the training process utilized tensor cores on NVIDIA
GPUs for FP16 calculations. This approach significantly accelerated train-
ing speed and reduced memory consumption without compromising model
accuracy.

e Confidence-Weighted Compound Loss: As introduced in Section
B:3:2] compound loss was used with weights of 0.375 for Dice Loss, 17.5 for
Focal Loss, and 0.086 for Boundary Loss. The weights were determined to
balance their numerical values first and then set their impact as approxim-
ately 4:3:3, respectively. The final loss was calculated by directly multiply-
ing the per-sample compound loss by the sample’s confidence score before
averaging the batch, effectively forcing the model to prioritize high-quality
data.

e Dynamic Learning Rate and Early Stopping: A ReduceLROnPlateau
scheduler automatically adjusted the AdamW optimizer’s learning rate
(initially 1.0 x 1072 ) by monitoring the validation loss. An early stopping
mechanism with a patience of three validation checks was implemented
to prevent overfitting and terminate training when performance on the
validation set ceased to improve.

The model was trained for a maximum of 50 epochs with a batch size of
192 to exploit the GPU. The model achieved its best validation loss of 0.1090
at epoch 24. Although training continued, the validation loss did not improve
further over the subsequent three validation checks, triggering the early stopping
mechanism. The final saved model was therefore the one from epoch 24, which
demonstrated the best generalization capability on unseen data.
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4.2.2 PupilUNet Profiling

An analysis of the final PupilUNet architecture revealed a highly efficient and
lightweight design, making it well-suited for deployment on resource-constrained
devices. The model contained only 0.177 million parameters and required just
around 0.553 GFLOPs to infer on a dual-channel SITS frame of 346 %260 resolu-
tion. This efficiency was a direct result of the truncated MobileNetV3-Small en-
coder, which focused on essential low-to-mid-level features, and the parameter-
free SiImAM attention mechanism. A breakdown of the computational cost
showed that standard convolutional operations accounted for the majority of the
workload, while the overhead from attention and other operations was negligible.
This confirmed that the model’s design successfully balanced high performance
with low computational demand.

4.2.3 Testing on Pupil Detection

The performance of the trained PupilUNet detector was rigorously evaluated on
the 10,000-sample test set from model inference to ellipse fitting. The evaluation
pipeline prefigured the detection stage of the final system and proceeded as
follows:

1. Event Preprocessing: A slice of 5,000 events was accumulated into a
dual-channel SITS tensor following the same algorithm as that in training.

2. Model Loading & Inference: The PupilUNet model, set to eval()
mode, performed inference without gradient calculation, dropout, or batch-
norm processes to generate a probability map of pupil boundary.

3. Event Filtering: The map was binarized with a threshold of 0.9 to create
a preliminary mask that was the most likely to cover the pupil boundary.
The raw events that fell within the mask were triggered by the moving
pupil boundary.

4. Precise Ellipse Fitting: The fit_ellipse_from events function fit-
ted an ellipse directly to the coordinates of the pupil boundary events.
This function leveraged the high spatiotemporal precision of the original
event data and used probability weighting via np.percentile to focus the
cv2.fitEllipse algorithm on the most confident event points.

5. Posterior Check: The posterior_ellipse _filtering function valid-
ated the fitted ellipse against physiological constraints, including axis
lengths and aspect ratio of the pupil, to ensure the results were plaus-
ible, discarding erroneous detections.

The detector returned the elliptical parameters of the pupil template, con-
sisting of the ellipse center coordinate, axis lengths, and rotation degree. Figure
shows two examples of pupil detection results. The detector’s performance
on the real test set was evaluated using standard segmentation and detection
metrics, as introduced in Table The results from testing on 10,000 samples
were also listed in Table 1l

2|GNP|

DiCe(G,P) = m. (41)
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(a) Example 1: Events and Probability Map (b) Example 1: Reference and Predicted El-
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Figure 4.6: Two examples visualize the key steps in pupil detection.
The PupilUNet accepts SITS as input and predicts probability maps
of pupil boundary in purple. Events within the binarized masks are
dotted in yellow. The ellipses in red are fitted using the yellow event
coordinates, compared with the reference elliptical pupil templates
in green.

_lenp|
UG, P) = (Zpy (4.2)
PE = /2y — 24) + (4 — y)*. (4.3)

The results demonstrated the detector’s high accuracy, achieving an average
pixel error of just 1.97 pixels and a P5 accuracy of 96.3%. This indicated that
in over 96% of valid cases, the detected pupil center was within 5 pixels of
the ground truth. The average total latency for an overall detection pipeline
(preprocessing and inference) was approximately 80 ms, including detection time
of 26.284 ms from SITS to ellipses. The slow preprocessing time included event
stream slicing and accumulating in pure Python implementations. There are
optimized libraries like dv_processing [20] that can compress the preprocessing
time to milliseconds. While tens of milliseconds are still slow for real-time
tracking on its own, it is perfectly acceptable for establishing a robust initial
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Metrics Description \ Average Values

Dice . It measures overlap between the ref- | 0.863
Coefficient . .
erence pupil region (G) and pre-
dicted pupil elliptical template (P),
calculation in (4.1)).
Intersection

IoU is the fraction of the combined | 77.0%
area covered by both masks that is
correctly predicted, . It penal-
izes both missed ground-truth pixels
(false negatives) and extra predicted
pixels (false positives) equally.

Pixel Error PE measures Euclidean distance in | 1.96
pixels between predicted pupil cen-
ter (zp,yp) and reference center

(24:Yg) as "

over Union

P3 85.7%
P5 Pd is the percentage of test samples | 96.3%
P10 whose predicted pupil center lies | 99.5%
within d pixels of the reference cen-
ter.
Detection

The time includes PupilUNet infer- | 26.3 ms
ence time on dual-channel SITS, el-
lipse fitting and filtering time.

Time

Detection

Success Rate It is the percentage of successfully | 86.5%

detected samples within all samples
with references.

Table 4.1: Detector evaluation metrics and their introduction.

template or for re-detection after tracking loss. The overall tracking frequency
would not be encumbered too much because of the following fast updating.

4.3 Pupil Template Updating with Optimization

To achieve the ultra-low latency required for real-time tracking, the computa-
tionally intensive PupilUNet detector is complemented by a rapid template up-
dating mechanism. The implementation of pupil template updating is a highly
optimized version of the iterative point-to-edge matching algorithm described
in Section Key implementation details include:

e Candidate Selection: The select_candidates_donut function efficiently
filters events. It transforms all event coordinates into the ellipse’s local
frame using a single matrix multiplication. It then calculates the nor-
malized radial distance squared for each point, allowing it to filter events
within the donut region (defined by inner_scale=0.8 and outer_scale=1.2)
without resorting to computationally expensive square root operations.
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e Vectorized Update Algorithm: The template update_fast function
is the core of the optimization. It replaces a slow, iterative Python loop
with a fully vectorized approach. The closest_points_on_ellipse_vectorized
function processes all candidate points simultaneously. It pre-computes ro-
tation matrices and applies the Newton-Raphson method to entire NumPy
arrays. An active newton mask is used to manage convergence for each
point individually within the vectorized loop, ensuring efficiency.

e Quality Assessment: The check_template function implements the fit
score from E-Gaze. It normalizes all candidate event coordinates into
the updated ellipse’s axis-aligned space and calculates the mean absolute
deviation from a unit circle. A score close to 1 indicates a good fit. In the
final pipeline, a threshold of 0.95 is used to accept or reject an update.

This vectorized implementation reduced the time taken to update the tem-
plate’s position to the sub-millisecond level as low as 0.978 ms on average, a
critical factor in enabling kilo-Hertz tracking frequencies.

4.4 Integrated Eye Tracking Pipeline and Eval-
uation

The final stage of the evaluation assessed the complete, integrated eye tracking
system on raw data streams in the EV-Eye dataset with the dv_processing lib-
rary [20] to accelerate the preprocessing of the event recording. The pipeline,
composed of an event recording parsing program and a pupil detector/updater,
demonstrated the cooperation between the detection and updating modes. Here
are the details of the thorough integration:

e System Composition: The main loop in the pipeline uses the high-
performance dv.EventStreamSlicer and dv.SpeedInvariantTimeSurface
from the dv-processing library [20] to handle the demanding task of sli-
cing and accumulating the event stream. This offloads the most time-
consuming preprocessing operations from Python to optimized C++ code.
It is claimed that the peak throughput of SITS accumulation can reach up
to 36.8 MegaEvent/s on their system setup, while the prepossessing costs
less than 1ms in my experiments.

e Dynamic State shifting: A boolean flag, detected, indicates the sys-
tem’s state between detection and updating. The main loop continu-
ously checks this flag. If the pupil is lost (detected is False), it config-
ures the slicer for large, 5,000-event packets for robust detection using
slicer.modifyNumberInterval. Once a pupil is successfully detected
(Figure , the flag is set to True, and the slicer is immediately re-
configured for small, 500-event packets for rapid updating (Figure .
If an update fails the quality check of , the flag is reset, and
the system reverts to detection mode.

e Callback Logic: The slicing callback function acts as the control
hub. It receives event packets from the slicer and, based on the detected
flag, directs the data to either the full detection pipeline
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DETECTING . |l TRACKING

(a) A pupil was detected in the eye tracking (b) The pupil template was updated in the eye
pipeline. tracking pipeline.

Figure 4.7: Two states in the integrated pipeline.

Metric Value
Operational Statistics
Total Processed Slices 3,774
Detection / Update Ratio 38.6% / 61.4%
Latency Statistics
Average Detection Latency 28.1 ms
Average Update Latency 1.04 ms
Accuracy vs. Ground Truth
P5 Accuracy 85.2%
P10 Accuracy 96.3%

Table 4.2: Integrated pipeline performance on a sample recording.

(get_pupil_each frame) or the lightweight update pipeline

(select_candidates_donut, template update fast, check template).

The performance of the integrated pipeline on a sample recording (dvSave-
2022_07_13_11_18_03.aedat4) is summarized in Table The system processed
3,774 event slices, with the robust detector being invoked 38.6% of the time
and the rapid updater 61.4% of the time. The average latency for a complete
detection cycle was 28.10 ms. Most critically, the average latency for a template
update was merely 1.04 ms, demonstrating the effectiveness of the architecture.
Considering the eye tracking was dominated by updating, and the event slicing
time was less than its computational latency, the peak tracking frequency was
up to 961.5 Hz.

To evaluate the pipeline’s end-to-end accuracy, the sequence of generated
templates was compared to the manually annotated ground truth for that re-
cording session. Since the timestamps of the generated templates and ground
truth annotations do not align perfectly, the match_annotations_to_templates
function estimates the pupil position at each ground truth timestamp by lin-
early interpolating between the two temporally closest templates generated by
the pipeline. The PE was then calculated between this interpolated position
and the ground truth.
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The results show that the integrated system maintained high accuracy, with
85.2% of the estimations having a pixel error of 5 pixels or less, and 96.3% having
an error of 10 pixels or less. This confirms that the proposed pipeline not only
operates at very high frequencies due to its efficient updater but also preserves
the high accuracy established by its robust deep learning-based detector.
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Chapter 5

Discussion and Comparison

5.1 Result Discussion

The results presented in Chapter [4] validate the proposed eye tracking system
with a critical and successful engineering trade-off. The discussion on the results
includes analyzing the relationship between the performance of the detector, the
efficiency of the updater, and the final performance of the integrated pipeline.

Considering the detection mode at first, the pupil detector equipped with the
PupilUNet segmentation model achieved a P5 accuracy of 96.3% when tested
on individual samples. The SITS representation proved highly effective at pre-
processing the event stream, providing the network with a stable, normalized
representation implying learnable pupil boundary features regardless of the pu-
pil motion. The PupilUNet architecture itself, as a key contribution of this work
with its truncated encoder and attention-augmented skip connections, was able
to learn this representation effectively. The training was enabled by the real-
data-driven augmentation framework, which provided the large-scale dataset ne-
cessary for robust learning. The average pixel error of 1.97 pixels demonstrates
that this lightweight, segmentation-based approach can achieve competing pre-
cision when the input data is properly conditioned.

However, the 28.10 ms average detection latency makes it clear that relying
solely on the PupilUNet for every slice would cap the system’s tracking fre-
quency at around 36 Hz, falling far short of the kilo-Hertz goal required for
next-generation applications. Although latency could potentially be further re-
duced through inference optimizations such as TensorRT like that in [7], fresh
detections for every 5000-event slice are unnecessary. The high temporal res-
olution of event cameras ensures minimal time intervals between slices, limit-
ing pupil movement and allowing reliable region of interest determination from
the previous template. This leads to the detector’s intended role to serve as
a robust, high-accuracy anchor and recovery mechanism, not as the primary
real-time tracker.

This is where the performance of the rapid updating mode becomes critical.
The measured average update latency of around 1 ms is significant for the
pipeline’s high-frequency capabilities. This millisecond-level performance was
achieved through the optimization technique of a vectorized implementation,
as detailed in Section which made it possible to process entire batches
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of candidate points simultaneously. The testing sample of an event recording
in Section [£.4] confirmed the success of the dual-state pipeline, as the system
spent most (61.4%) of its time in this ultra-fast mode. This figure shows that the
pipeline is not constantly re-detecting. The high-quality templates provided by
the PupilUNet, combined with an effective fit_score threshold, allow the system
to maintain a stable track for extended periods using the computationally trivial
updater.

Finally, the integrated pipeline’s end-to-end accuracy reflects a balance between
latency and precision. The measured reduction in P5 accuracy compared with
the standalone detector arises from the design choice to prioritize continuous,
high-frequency operation. Minor drift accumulates during rapid update phases
before the control logic triggers a full re-detection. These brief intervals of devi-
ation are the cost of achieving a peak frequency above 960 Hz while sustaining
85.2% accuracy within 5 pixels. Additional performance drop stems from the
different evaluation protocols: the standalone detector is assessed on isolated
samples with explicit references, whereas the integrated pipeline is tested on
continuous event recordings with unevenly sampled ground truth and inter-
polation between annotations, introducing further error. These factors mean
the integrated test understates the pipeline’s true performance. Crucially, the
segmentation-based approach offers explainability absent in end-to-end black-box
regression, enabling post-analysis to localize failure causes to the event data,
segmentation mask, or geometric fitting. Targeted improvements, including ad-
aptive re-detection policies, refined interpolation and annotation, and enhanced
segmentation, can narrow the accuracy gap without losing the substantial gains
in real-time throughput.

5.2 Comparison against Competing Methods in
Near-eye Event-based Eye Tracking

To better demonstrate the performance and efficiency of the proposed pipeline,
it is compared against three representative near-eye event-based eye tracking
methods: EV-Eye [67], FACET [7], and TennSt [49]. Each represents a
distinct design paradigm: template updating with mixed modalities, elliptical
parameter regressions, and regression-based deep neural networks, respectively.
The primary metrics for the comparison are P5 accuracy, count of model para-
meters and GFLOPs, measuring the accuracy and efficiency of the methods.
The inference time varies across different computing platforms, so model size
and operation count are used for efficiency evaluation.

As introduced in Section EV-Eye is one of the fundamental large-scale
systems designed for near-eye tracking, employing a frame-event hybrid pipeline.
The EV-Eye method is inherently dependent on frame input, which increases
latency for image segmentation. In contrast, the proposed PupilUNet pipeline
operates in a purely event-driven manner, eliminating the need for frames while
still achieving stable template updates. Quantitatively, EV-Eye reports a P5
accuracy of around 99.91% with 17.27 M parameters and 40.11 GFLOPs of the
detector, while the PupilUNet method achieves comparable accuracy with much
lower computational cost on standard hardware.

FACET advances the field by introducing direct regression to estimate ellipt-
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P5 Latency &
Methods Accuracy Parameters | GFLOPs Compute Cost
EV-Eye High(Detection)
7] 99.91% 17.27T M 40.11 Low(Updating)
[P;?CET 99.98% 3.92 M 3.44 Medium
[TLEHSt 96.77% 0.81 M 549 | Medium
PupilUNet| o 550, 0.18 M 055 | Low
Pipeline

Table 5.1: Comparison of event-based eye tracking methods.

ical parameters from causal event volumes, outputting pupil shape parameters
without additional fitting steps. It demonstrates high accuracy (P5 accuracy
of 99.98% ) and lower model complexity (3.92 M parameters) than EV-Eye’s
image segmentation network. However, FACET relies on a relatively heavy Fea-
ture Pyramid Network backbone and is optimized primarily for high-end GPUs
with TensorRT support. The proposed PupilUNet pipeline, by contrast, uses a
lightweight segmentation-plus-update strategy that runs efficiently on middle-
end devices. While FACET achieves slightly lower pixel error, the PupilUNet
system demonstrates better robustness in occlusion scenarios due to explicit seg-
mentation and template fitting. It is more suitable for mobile or XR deployment
where computational budgets are tight.

TennSt ranked top 3 in the [61] eye tracking challenge. It represents regression-
based pupil center tracking, trained on the 3ET++ benchmark. By directly
mapping event volumes to pupil center coordinates, it achieves competitive ac-
curacy under clean conditions. Nevertheless, TennSt is vulnerable to centroid
shifts when partial occlusions occur, since no geometric constraints are enforced.
The PupilUNet system addresses this weakness by combining segmentation with
explicit ellipse fitting, preserving shape continuity and resilience to occlusions.
Although TennSt has as few as 0.81 M parameters and 5.49 GFLOPs for infer-
ence, my detector is even more lightweight. The lightweight updating mechan-
ism further ensures kHz-level update rates with minimal overhead.

Table provides a comprehensive comparison of the methods discussed
above. The results highlight that the proposed pipeline offers a balanced trade-
off between accuracy, robustness, and computational efficiency, positioning it as
a practical candidate for eye tracking applications.
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Chapter 6

Conclusion

This thesis presented an effective, efficient, purely event-based pupil tracking
pipeline designed to meet the demanding requirements of next-generation eye
tracking applications such as Extended Reality (XR). The research was motiv-
ated by the inherent limitations of traditional frame-based systems and exist-
ing event-based methods, which often struggle to simultaneously achieve high
tracking frequency, low latency, robust accuracy, and computational efficiency
suitable for resource-constrained mobile devices. The primary contribution of
this work is an efficient, explainable, dual-state pupil detection-tracking frame-
work that successfully navigates the critical trade-off between the robustness of
deep learning-based detection and the speed of pupil template updating.

The development of this pipeline was supported by several key innovations.
First, to overcome the scarcity of annotated event-based eye tracking data, a
real-data-driven data augmentation framework was established. This involved
training a frame-based segmentation model to generate a large-scale, high-
quality dataset of pupil masks, which was then paired with Speed-Invariant Time
Surface (SITS) representations for training the core event-based model. Second,
a lightweight, attention-augmented PupilUNet architecture was designed. By
utilizing a truncated MobileNetV3 Small encoder and a parameter-free atten-
tion mechanism, this model achieved robust pupil segmentation with minimal
computational overhead, focusing specifically on the low-to-mid-level geometric
features crucial for pupil boundary detection. Finally, this robust detector was
integrated with a highly optimized, vectorized template updater. A dynamic
control logic, based on a quantitative fit score, intelligently switches between the
two modes, ensuring that the system can anchor its tracking with high accuracy
and then maintain it at kilo-Hertz frequencies with minimal latency.

Experimental evaluation validated the effectiveness of this dual-state ap-
proach. The standalone PupilUNet detector demonstrated high accuracy, achiev-
ing a P5 accuracy of 96.3% on the test set. The rapid updater, on the other
hand, achieved an average latency of approximately 1 ms. The fully integrated
pipeline successfully combined these strengths, maintaining a P5 accuracy of
85.2% while operating at a peak frequency of over 960 Hz. This result confirms
that the system’s architecture makes an effective engineering trade-off, sacrifi-
cing a minor amount of peak accuracy for a massive gain in real-time operational
speed and efficiency. The segmentation-based methodology also provides inher-
ent explainability, allowing for easier debugging of tracking failures compared
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to end-to-end regression models.

Despite its success, this work has identified several limitations that provide
clear directions for future research. The primary limitation is the slight drop
in accuracy in the integrated pipeline, which is an inherent consequence of the
latency-accuracy trade-off. Furthermore, the initial implementation of SITS ac-
cumulation in Python proved to be a significant performance bottleneck, under-
scoring the necessity of optimized, low-level libraries for real-time preprocessing
in event-based vision systems.

Future work will focus on three main areas. First, to ensure generalization
and robustness across different datasets, the proposed pipeline will be migrated
and tested on other event-based eye tracking datasets. Second, further perform-
ance optimizations will be explored. the PupilUNet detector could be acceler-
ated using inference optimization frameworks like NVIDIA TensorRT, while the
template updater could be implemented in a faster backend language to reduce
latency further. Finally, the tracking algorithm itself can be enhanced by incor-
porating a Kalman filter into the updating stage. This would enable predictive
tracking, leading to smoother template updates and improved resilience to brief
occlusions or tracking drift, ultimately pushing the boundaries of what is pos-
sible for efficient and robust eye tracking on mobile and embedded systems.
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