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Summary

The development of quantum computers is perhaps one of the most exciting innovations
of our time. The most investigated quantum computers, however, suffer from the fact
that quantum information is lost due to interaction between the quantum bits and their
environment. As a radically different approach, it has been proposed that one can instead
use topological phases of matter to create quantum bits that are immune to environmental
noise. The most prominent example of such a topological state of matter is the topological
superconductor, which hosts Majorana zero modes. These quasiparticles can be used to
store information non-locally, and their non-abelian exchange statistics allow for the im-
plementation of protected quantum gates. Their postulated appearance at the edges of a
one-dimensional semiconductor coupled to a superconductor has been a hot research topic
over the last decade. Yet, their claimed observation in condensed-matter experiments has
not been unequivocal. While the experiments produce some of the signatures of Majorana
zero modes, they often exhibit significant deviations from the theory. The main obstacle
here is that one of the fundamental properties of Majorana zero modes, namely their non-
locality, has not yet been accessible due to the design of these experiments.

In this thesis, we have developed shadow-wall lithography as a novel approach to Majo-
rana devices. One of the key concepts of this technique is to move the majority of the
required nanofabrication steps prior to the formation of a semiconductor-superconductor
hybrid, which significantly improves the performance of the device. Moreover, the shallow-
angle deposition of a thin superconducting film allows the hybrid section to be grounded.
This facilitates the simultaneous investigation of both ends of the device, enabling the
search for the predicted end-to-end correlation of theMajorana zeromodes. We extend the
fabrication improvements by also considering the material used in these devices. For their
operation, a magnetic field is required, which quenches the superconductivity in the su-
perconducting film due to both orbital and paramagnetic effects. The paramagnetic effects
are suppressed through the use of Pt impurities, which provide spin-orbit scattering cen-
ters in the film. For the thinnest films, we are able to extend the critical magnetic field up
to 𝐵∥ ∼ 7T. We further demonstrate that the inclusion of Pt does not prevent the quantum
states in the semiconductor from obtaining a Zeeman splitting. We combine the improved
nanofabrication technique and material developments with novel measurement schemes,
such as the use of radio-frequency reflectometry and non-local conductance spectroscopy.
The former allows us to map out large regions of the available experimental parameters
while looking for the predicted end-to-end correlation of zero energy states. We demon-
strate that such correlations are lacking in these devices, indicating that they do not exhibit
an extended topological superconducting phase with Majorana zero modes at their ends.
With non-local measurements, we instead focus on the induced superconducting gap in
the bulk of such a hybrid. We demonstrate a significant tunability through electrostatic
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gating and show a closing and reopening of the induced gap, though the absence of zero-
bias peaks also indicates that this is not due to an extended topological phase transition.
These experiments strongly suggest that the realization of a topological superconductor in
semiconductor-superconductor hybrids requires monumental efforts in the development
of better materials.

While the bulk of this thesis is devoted to the creation of a topological superconductivity,
the final chapters take an alternative approach. We demonstrate that these hybrids possess
all the necessary ingredients to form a topological superconductor by using the shadow-
wall lithography technique to realize an artificial Kitaev chain. By coupling two quantum
dots via a gate-tunable proximitized quantum state in the hybrid segment, we show that
the system can be brought to a sweet spot that hosts unpaired Majorana zero modes. To
demonstrate the versatility of the developed platform, we finally move away from the
study of Majorana zero modes and instead focus on the superconducting diode effect. We
show that the tunability of the superconducting properties in a hybrid segment can be
used to control the presence and magnitude of the superconducting diode effect in short
nanowire Josephson junctions. These two chapters offer an inspiring perspective on the
future of semiconductor-superconductor hybrid devices.
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Samenvatting

De ontwikkeling van quantumcomputers is misschien wel een van de meest opwindende
innovaties van onze tijd. De meest onderzochte quantumcomputers hebben echter last
van het feit dat quantuminformatie verloren gaat door interactie tussen de quantumbits
en hun omgeving. Als een radicaal andere benadering is voorgesteld dat men topologische
fasen van materie kan gebruiken om quantumbits te creëren die immuun zijn voor omge-
vingsruis. Het meest prominente voorbeeld van zo’n topologische toestand van materie
is de topologische supergeleider, die Majorana-nultoestanden bevat. Deze kwasideeltjes
kunnen worden gebruikt om informatie niet-lokaal op te slaan, en hun niet-Abelse uit-
wisselingsstatistieken maken de implementatie van beschermde quantum gates mogelijk.
Hun veronderstelde verschijning aan de randen van een ééndimensionale halfgeleider ge-
koppeld aan een supergeleider is de afgelopen tien jaar een hot topic geweest in het onder-
zoek. Hun beweerde waarneming in gecondenseerde-materie-experimenten is echter niet
ondubbelzinnig geweest. Hoewel de experimenten enkele van de handtekeningen van
Majorana-nultoestanden produceren, vertonen ze aanzienlijke afwijkingen van de theo-
rie. Het belangrijkste obstakel hierbij is dat één van de fundamentele eigenschappen van
Majorana-nultoestanden, namelijk hun niet-lokaalheid, nog niet toegankelijk is vanwege
het ontwerp van deze experimenten.

In deze scriptie hebben we schaduwmuur-lithografie ontwikkeld als een nieuwe benade-
ring voor Majorana-apparaten. Een van de belangrijkste concepten van deze techniek
is om het grootste deel van de benodigde nanofabricagestappen vóór de vorming van
een halfgeleider-supergeleiderhybride uit te voeren, wat de prestaties van het apparaat
aanzienlijk verbetert. Bovendien maakt de ondiepe-hoekdepositie van een dunne super-
geleidende film het mogelijk om het hybride gedeelte te aarden. Dit zorgt er voor dat
beide uiteinden van het apparaat tegelijkertijd onderzocht kunnen worden, waardoor de
zoektocht naar de voorspelde end-to-end correlatie van de Majorana-nultoestanden mo-
gelijk wordt gemaakt. We breiden de fabricageverbeteringen uit door ook het materiaal
dat in deze apparaten wordt gebruikt te overwegen. Voor hun werking is een magnetisch
veld vereist, terwijl dat ook de supergeleiding in de supergeleidende film dooft als gevolg
van zowel orbitale als paramagnetische effecten. De paramagnetische effecten worden
onderdrukt door het gebruik van Pt-verontreinigingen, die spin-baanscatteringcentra in
de film bieden. Voor de dunste films zijn we in staat om het kritische magnetische veld
uit te breiden tot 𝐵∥ ∼ 7T. We tonen verder aan dat de inclusie van Pt niet voorkomt dat
de kwantumtoestanden in de halfgeleider een Zeeman-splitting verkrijgen. We combine-
ren de verbeterde nanofabricagetechniek en materiaalontwikkelingen met nieuwe meet-
methoden, zoals het gebruik van radiofrequentie-reflectometrie en niet-lokale geleidbaar-
heidsspectroscopie. De eerste maakt het mogelijk om grote gebieden van de beschikbare
experimentele parameters in kaart te brengen terwijl we op zoek zijn naar de voorspelde
end-to-end correlatie van nultoestanden. We tonen aan dat dergelijke correlaties ontbre-
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ken in deze apparaten, wat aangeeft dat ze geen ondoorbroken topologische supergelei-
dingsfase vertonen met Majorana-nultoestanden aan hun uiteinden. Met niet-lokale me-
tingen richten we ons in plaats daarvan op de geïnduceerde supergeleidende kloof in het
bulkmateriaal van dergelijke hybriden. We tonen een aanzienlijke afstembaarheid door
elektrostatische velden en laten een sluiting en heropening van de geïnduceerde kloof
zien, hoewel de afwezigheid van nulspanningspieken ook aangeeft dat dit niet te danken
is aan een ondoorbroken topologische fasovergang. Deze experimenten suggereren sterk
dat de realisatie van een topologische supergeleider in halfgeleider-supergeleiderhybriden
monumentale inspanningen vereist bij de ontwikkeling van betere materialen.

Hoewel het grootste deel van deze thesis gewijd is aan de creatie van topologische su-
pergeleiding, nemen de laatste hoofdstukken een alternatieve aanpak. We tonen aan dat
deze hybriden alle noodzakelijke ingrediënten bezitten om een topologische supergelei-
der te vormen door gebruik te maken van de shadow-wall lithography-techniek om een
kunstmatige Kitaev-keten te realiseren. Door twee kwantumdots te koppelen via een af-
stembare proximiteitsgeïnduceerde kwantumtoestand in het hybride segment, tonen we
aan dat het systeem naar een sweet spot kan worden gebracht die ongepaarde Majorana-
nultoestanden herbergt. Om de veelzijdigheid van het ontwikkelde platform te demon-
streren, stappen we ten slotte weg van de studie van Majorana-nultoestanden en richten
we ons in plaats daarvan op het supergeleidende diode-effect. We laten zien dat de regel-
baarheid van de supergeleidende eigenschappen in een hybride segment kan worden ge-
bruikt om de aanwezigheid en omvang van het supergeleidende diode-effect te controleren
in korte nanodraad Josephson-juncties. Deze twee hoofdstukken bieden een inspirerend
perspectief op de toekomst van halfgeleider-supergeleider hybride apparaten.
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Introduction

Isn’t it a noble, an enlightened way of spending our brief time in the sun, to work at
understanding the universe and how we have come to wake up in it?

Richard Dawkins
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1.1 Understanding our universe
From the very beginning of our existence, humans have strongly desired to understand
everything around us. This innate curiosity has driven us to explore, observe, and learn
about the world we live in. Science, with its focus on empirical observation and the sys-
tematic use of the scientific method, has revolutionized our understanding of the universe.
With each scientific revolution, we have gained new insights into the nature of reality, and
the boundaries of what we thought we knew have been pushed further and further. The
pursuit of knowledge and the quest for understanding have been driving forces behind
the evolution of our species.

Perhaps one of the most important revolutions in science has been the invention of the
computer, which continues to have a profound impact on our ability to understand the
universe. Through advanced computational models, we have been able to analyze large
sets of data and perform complex calculations that would have been impossible by hand.
The computer has enabled us to discover patterns, make predictions, and test hypotheses
in ways that were never before possible. From the smallest subatomic particles to the
largest structures in the universe, it has opened up new avenues for exploration and un-
derstanding.

Nevertheless, there exist scientific problems that ordinary computers are fundamentally
unable to solve. One hope is that instead, we can build computers that operate according to
the laws of quantum mechanics. By exploiting some of the strange and counterintuitive
properties of quantum mechanics like superposition and entanglement, these quantum
computers should potentially be able to solve some of the most complex problems. Just
like the inventors of the classical computer could have never imagined what a transforma-
tive effect these machines would have, so too dowe not yet grasp how quantum computers
one day may revolutionize our lives.

However, one of the biggest challenges in building practical quantum computers is the
problem of decoherence. Decoherence occurs when quantum systems interact with their
environment and lose their quantum properties, leading to errors in calculations. While
such errors could in principle be corrected if the decoherence is weak enough, another ap-
proach would be to try to make the system immune to the sources that cause decoherence
in the first place. This is the concept of topological quantum computation [1]. Topologi-
cal quantum computers could play a crucial role in solving some of the most challenging
scientific problems of our time.

1.2 The Majorana paradox
The most prominent building block for realizing a topological quantum computer is the
Majorana quasiparticle. Such quasiparticles can arise at the boundaries of topological su-
perconductors. Without dwelling on what topology means in this context, these particles
possess unique properties which make them well-suited to utilize in quantum bits. One
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can think of these Majorana zero modes as being half an ordinary fermion, which can be
expressed by splitting a fermionic quantum field operator into two Majorana operators:
𝑐 = (𝛾1 + 𝑖𝛾2)/2. This seemingly mathematical trick has interesting consequences if one
can spatially separate the two Majoranas. Due to the particle-hole symmetry of the super-
conductor, the separated Majoranas can only have zero energy. Indeed, this is why they
are commonly referred to as Majorana zero modes. Moreover, inverting the mathemati-
cal expression for the Majorana operators shows that they can be described as an equal
superposition of electrons and holes. Thus, the Majorana zero modes possess no electrical
charge and no spin. As such, these properties evidence that the Majoranas are, in fact,
their own antiparticles¹ [2].

These special properties are also the fundamental reason Majorana zero modes are inter-
esting for quantum computation. Indeed, if the two Majorana modes are well-separated,
any local fluctuations in the environment can not couple to the individual Majorana mode.
Hence, any quantum information that is stored in them should be immune to decoherence.
What is more is that they obey a special kind of exchange statistics, which is referred to as
non-abelian. This means that exchanging two Majoranas in space results in a non-trivial
transformation of the ground state - so that such braiding operations can be used as topo-
logically protected gates in the sense of quantum information processing.

It is thus with good reason that these particles are intensely sought after. Historically,
non-abelian quasiparticles were first predicted to appear in the fractional quantum Hall
effect [3] and later shown to occur in superconductors with an exotic type of pairing [4].
This preceded the inception of the Kitaev chain toy model [5], which first described the
existence of unpaired Majorana zero modes at the ends of a one-dimensional topologi-
cal superconductor. Various works predicted how to emulate this toy model physically,
first based on topological insulators [6] and later culminating in the seminal works by
Lutchin [7] and Oreg [8]. The latter is the so-called Lutchyn-Oreg model, which describes
how to create a topological superconductor through the combination of a semiconducting
wire with spin-orbit coupling, standard 𝑠-wave superconductivity, and a magnetic field².
It formed the basis for over a decade of experimental research into the creation of Majo-
rana zero modes in hybrid semiconductor-superconductor nanowires.

In experiments, the non-abelian nature of the Majorana zero modes can be demonstrated
through complex braiding experiments. However, they also manifest a collection of other
experimental signatures. For example, the most common experimental signature is a ro-
bust conductance peak at zero bias in tunneling experiments. The observation of such
a zero-bias peak should further exhibit specific features: notably, the formation should
be accompanied by the closing and reopening of the superconducting gap, demonstrate a
quantization of the conductance value, and possess end-to-end correlation between two

¹The fact that these operators are their own antiparticles is the reason why they are referred to asMajorana quasi-
particles, for these are the condensed-matter analog to the Majorana fermions described by Ettore Majorana in
1937.
²This model is described extensively in chapter 2.
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sides of a hybrid device. The observation of zero-bias peaks quickly followed the first
predictions, and though none of the specific features were observed, they were indeed at-
tributed to the presence of Majorana zero modes [9].

A decade of research followed, with more andmore reports on the observation of zero-bias
peaks. There exists an abundance of experimental work that claims to have observed Ma-
jorana zero modes, where over the years, the observation of any enhanced conductance
at zero bias has become synonymous to having a topological superconductor [9–30]. Yet,
quantum bits based on Majorana zero modes have not yet been demonstrated, or any ex-
periment more advanced than the demonstration of zero-bias peaks. This is the Majorana
paradox³: Where are the Majorana qubits?

1.3 Developments in the fabrication of semiconductor-
superconductor heterostructures

As experimental research progressed, the simultaneous theoretical developments helped
to elucidate the shortcomings of the first generation of devices. This has led to the exten-
sive development of the materials and fabrication of semiconductor-superconductor hy-
brids. As the first generation of hybrids based on InSb and NbTiN used aggressive argon
milling as the surface treatment, the induced superconducting gap exhibited a finite sub-
gap density of states often referred to as a soft gap. The realization that the surface treat-
ment and interface properties between the materials played a crucial role was made, as
the first samples with a significantly suppressed sub-gap conductance were realized [31].

Further improvements in the fabrication came with the development of in situ deposi-
tion of the superconductor onto the semiconductor, thereby circumventing the need to
remove the native oxide from the semiconductor [32]. This method was extended to InSb,
where native-oxide removal was achieved through hydrogen-radical cleaning [33]. In both
cases, the resulting semiconductor-Al hybrid exhibited a suppressed sub-gap conductance
referred to as a hard gap. Such hybrids were state-of-the-art around the start of this Ph.D.
endeavor.

The main downside of the semiconductor-Al hybrids is that the superconducting shell is
deposited onto the nanowire growth chip. Since the superconducting films are on the or-
der of 10nm thick, the film can, in such cases, not be grounded. Thus, it was impossible to
fabricate three-terminal devices for which the end-to-end correlation of the hybrid could
be investigated. To see whether the observation of zero-bias peaks can be attributed to
Majorana zero modes, one indeed needs to demonstrate such correlations.

³Which is somewhat reminiscent of Enrico Fermi’s famous paradox (Where is everybody?) about the lack of
evidence for extraterrestrial life, despite the massive amount of observable stars in the universe.
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1.4 Outline of this thesis
In this thesis, we have developed a new paradigm for creating hybrid semiconductor-
superconductor nanowires. A conceptual overview of the relevant theoretical concepts
behind such devices is given in chapter 2. We touch upon the basics of superconductiv-
ity and its limitations when subjected to a magnetic field. We then move to the concept
of topological superconductivity and Majorana zero modes in the Lutchyn-Oreg model.
Finally, we will see that one can emulate a Kitaev chain using the very same ingredi-
ents, which provides an attractive alternative to the continuous-nanowire approach inves-
tigated over the last decade.

The novel nanofabrication technique we have dubbed shadow-wall lithography relies on
first creating the necessary surrounding elements of a hybrid device while postponing
the superconductor deposition as one of the final steps. Grounding the superconducting
shell grown on top of a semiconducting nanowire and performing three-terminal mea-
surements requires the film to be grown at shallow angles from the substrate after the
nanowire is deposited. In order to selectively deposit the superconducting film, we use
dielectric wall structures on the chip, which cast a shadow on predefined locations. In
chapter 3, an in-depth description of the technique is provided while chapter 4 demon-
strates the design principles and characterization of basic quantum transport devices based
on this technique.

While the shadow-wall lithography technique has allowed us to create three-terminal de-
vices, the realization that Majorana zero modes might be hard to find in the vast parame-
ter space of these devices requires the implementation of faster measurement techniques.
Radio-frequency reflectometry is well-suited for this, which we use in chapter 5 to look
for end-to-end correlation of zero-energy states and map out the parameter space of such
hybrids.

The realization that Al has poor magnetic-field compatibility has led us to consider how to
improve this. On the one hand, orbital effects of the magnetic field can be suppressed by
growing thinner films. However, superconductors like Al with a low elemental weight also
suffer from paramagnetic effects. These can effectively be suppressed through spin-orbit
scattering centers, such as heavy-elemental impurities. We implement this by incorpo-
rating a sub-monolayer of Pt in our superconducting films. In chapter 6, we investigate
the basic properties of such films and the enhanced field compatibility it offers to hybrid
devices. In chapter 7, we add the measurement technique of non-local spectroscopy to
characterize the gate-tunable bulk properties of InSb/Al/Pt hybrids in a three-terminal ge-
ometry.

In contrast, chapter 8 turns to the physical implementation of a minimal Kitaev chain.
Shadow-wall lithography enables the creation of hybrid devices with gate-defined quan-
tum dots, which possess all the necessary ingredients. We demonstrate that these dots can
be coupled via a short superconducting segment, which enables the creation of Majorana
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zero modes at a fine-tuned device configuration.

In chapter 9, we turn away from the subject of topological superconductivity and instead
investigate the superconducting diode effect. The chapter is intimately linked to chapter 7,
as we demonstrate that the tunability of the proximity effect can also be used to affect the
superconducting diode effect in a nanowire Josephson junction.

Finally, in chapter 10, we draw conclusions from the studies presented in this work and
look forward to what the future of semiconductor-superconductor hybrid devices has to
offer.
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2
Theory

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

John von Neumann

This chapter introduces the theory behind various topics, providing a background for un-
derstanding the experiments presented in this thesis. The description will be predomi-
nantly on a conceptual level while omitting many of the details, in order to give the reader
an intuitive understanding. We start with superconductivity, which is fundamental to all
the following topics. The focus is on the microscopic description in the form of BCS theory.
In addition, we use some results from Ginzburg-Landau theory to look at the properties
of superconductors in a magnetic field. We then look at topological superconductivity,
an exotic form of superconductivity that is accompanied by the emergence of Majorana
zero modes. It will first be described in the Kitaev chain model, which gives a good intu-
ition on the subject. We then turn to the Lutchyn-Oreg model, which describes how we
can realize a topological superconductor by combining a regular superconductor with a
semiconductor, spin-orbit coupling, and a magnetic field. More realistic extensions of this
model are briefly mentioned, and we will see what signatures of Majorana zero modes
one can expect in experiments. Finally, we revisit the Kitaev chain and see how one can
physically realize one using the same ingredients as the Lutchyn-Oreg model.
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2.1 Superconductivity
If the temperature of some materials is lowered below a critical temperature, they un-
dergo a special phase transition. Upon this transition, the material suddenly exhibits zero
electrical resistance and starts to expel magnetic fields. The perfect conductivity associ-
ated with the absence of electrical resistance gave this phenomena its name: supercon-
ductivity. Its initial discovery by Heike Kamerlingh Onnes [1] in 1911 was a complete
surprise, as no classical physics could have predicted it. It gave rise to decades of develop-
ment in theoretical physics, which culminated in two paramount theoretical frameworks:
The Ginzburg-Landau theory [2] and Bardeen-Cooper-Schrieffer (or BCS) theory [3]. The
former is a phenomenological description that predicts the electrodynamics of supercon-
ductors remarkably well. Since we are especially interested in the critical magnetic field
upon which superconductors transition into the normal state, we will present some of its
primary results. More important to us, however, is the microscopic description given by
BCS theory and solutions found using the Bogoliubov-de Gennes formalism [4, 5] - as this
framework can be extended to investigate even more exotic systems, such as proximitized
semiconductors.

2.1.1 BCS theory and the Bogoliubov-de Gennes formalism
The core idea of BCS theory is that it is energetically favorable for electrons to form pairs,
known as Cooper pairs, if there is some attractive interaction between them. The most
common form of superconductivity is known as 𝑠-wave superconductivity. For such su-
perconductors, the interaction is described in the form of a potential 𝑉𝑘𝑘′ which scatters a
pair of electrons with opposite spin and opposite momenta from (𝑘′,−𝑘′) to (𝑘,−𝑘). With
creation and annihilation operators as 𝑐†𝑘𝜎 and 𝑐𝑘𝜎 for electrons with momentum 𝑘 and
spin 𝜎 , the system can be described [6] using the pairing Hamiltonian:

ℋ =∑
𝑘𝜎

𝜉𝑘𝑐†𝑘𝜎 𝑐𝑘𝜎 +∑
𝑘𝑘′

𝑉𝑘𝑘′𝑐†𝑘↑𝑐
†
−𝑘↓𝑐−𝑘′↓𝑐𝑘′↑ (2.1)

Here, 𝜉𝑘 = ℎ̄2𝑘2/2𝑚∗ − 𝜇 represents the single-particle energies relative to the Fermi level
𝜇, with ℎ̄ the reduced Planck constant and 𝑚∗ the effective mass. Upon realizing that the
pairing term needs to scatter electrons from occupied to unoccupied states, it follows that
the attractive interaction only applies to electrons close to the Fermi level. One can then
use the BCS approximation to replace 𝑉𝑘𝑘′ → −𝑉 where the attractive potential −𝑉 is
constant over the relevant energy range.

Subsequently, the mean-field approximation can be used to simplify the Hamiltonian 2.1
further. The basic idea behind the mean-field approximation is to assume that the behavior
of each particle in the system is determined by the average effect of all the other particles
rather than by the individual interactions between each pair of particles. In our case, this
means we can expand a pair of operators like 𝑐−𝑘′↓𝑐𝑘′↑ into a sum of their expectation
value ⟨𝑐−𝑘′↓𝑐𝑘′↑⟩ plus some fluctuations, and assume that the fluctuations are negligible.
We then write Δ = 𝑉 ∑𝑘′⟨𝑐−𝑘′↓𝑐𝑘′↑⟩which represents the superconducting pairing, so that
we arrive at the BCS Hamiltonian in the mean-field approximation:
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ℋ𝑀 =∑
𝑘𝜎

𝜉𝑘𝑐†𝑘𝜎 𝑐𝑘𝜎 −∑
𝑘
(Δ𝑐†𝑘↑𝑐

†
−𝑘↓ +Δ∗𝑐−𝑘↓𝑐𝑘↑) (2.2)

This form of the Hamiltonian can be solved by diagonalizing it, which is most conveniently
done using the Bogoliubov transformation. However, it is more instructive to introduce
at this stage the Bogoliubov-de Gennes formalism, which is a generalization of the Bogoli-
ubov transformation that can also be applied to systems with broken spin degeneracy.

In the Bogoliubov-de Gennes formalism, one defines a new basis known as a Nambu spinor
Ψ. This spinor explicitly includes both electron and hole operators, as well as both spin
species. The Hamiltonian can then be written in this basis as

ℋ𝑀 = 1
2∑𝑘

Ψ†𝐻BdGΨ, Ψ† = (𝑐†𝑘↑, 𝑐
†
𝑘↓, 𝑐𝑘↓,−𝑐𝑘↑) (2.3)

with the Bogoliubov-de Gennes Hamiltonian 𝐻BdG given by

𝐻BdG = 𝜉𝑘𝜏𝑧 +Δ𝜏𝑥 (2.4)

Here, 𝜏𝑖 represent Pauli matrices acting on the particle-hole subspace of the Hamilto-
nian. Solutions of this Hamiltonian can be found by solving the characteristic equation
𝑑𝑒𝑡(𝐻BdG −𝐸𝑘) = 0, which gives us the excitation spectrum

𝐸𝑘 = ±√𝜉 2𝑘 +Δ2 (2.5)

This spectrum actually contains four bands, two resulting from spin degeneracy and the
other two are symmetric copies of these bands around the Fermi level. These copies result
from particle-hole symmetry 𝐸𝑘𝜎 = −𝐸−𝑘−𝜎 , which is revealed by explicitly treating holes
and electrons in the Nambu spinor. If we think of the system without superconducting
pairing, we can describe the electronic excitations with dispersion 𝜉𝑘 (as shown in fig-
ure 2.1a(i)) and hole excitations with dispersion −𝜉−𝑘 . The superconducting pairing then
hybridizes these bands, opening up a gap of 2Δ in the energy spectrum where the bands
initially crossed - that is, around the Fermi level. The resulting spectrum is shown in fig-
ure 2.1a(ii), where we see that the lowest-energy excitation at 𝜉𝑘 = 0 still requires an energy
of Δ. For this reason, it is commonly referred to as the superconducting gap. A zoom-in
near the Fermi level is shown in figure 2.1a(iii). We emphasize that in the case of metallic
systems, the Fermi level is typically much larger than the superconducting pairing. The
energies differ about five orders of magnitude in the particular case of aluminum [7], with
𝜇 = 11.27 eV and Δ ≈ 150−350𝜇eV.
The hybridization of the bands also means that electrons and holes are no longer the ele-
mentary excitations of a superconductor. Instead, the excitations are now quasiparticles
described by a superposition of electrons and holes. To find the appropriate operators for
these quasiparticles, we look to solve the Bogoliubov-de Gennes equations
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Figure 2.1: Excitation spectrum, coherence factors, and density of states of a superconductor. a. (i)
Excitation spectrum in the absence of superconductivity. (ii) Upon using the Bogoliubov-de Gennes formalism,
we explicitly obtain electron (turquoise) and hole (red) solutions. The bands are hybridized via the supercon-
ducting pairing Δ. (iii) Close to the Fermi level, the hybridization opens up a gap of 2Δ in the spectrum. Dashed
lines correspond to the dispersion in the absence of superconductivity. b. Coherence factors 𝑢𝑘 and 𝑣𝑘 near
the Fermi level. The background color represents the quasiparticle charge, going from 𝑒 (red) via 0 (black) to −𝑒
(turquoise). This color is superimposed on the band structure of a, visualizing that quasiparticles near the gap
edge are chargeless superpositions of electrons and holes. c. Density of states of a superconductor, exhibiting
coherence peaks at the edge of the superconducting gap.

𝐻BdG𝜙𝑘 = 𝐸𝑘𝜙𝑘 , 𝜙𝑘 = (𝑢𝑘↑,𝑢𝑘↓, 𝑣𝑘↓, 𝑣𝑘↑)⊤ (2.6)

Since we are dealing with a spin-degenerate system, we have 𝑢𝑘↑ = 𝑢𝑘↓ ≡ 𝑢𝑘 and 𝑣𝑘↑ =
𝑣𝑘↓ ≡ 𝑣𝑘 . These are known as the coherence factors and represent the electron- and hole
components of the excitations. The solution is given by

|𝑢𝑘 |2 =
1+ 𝜉𝑘/|𝐸𝑘 |

2 , |𝑢𝑘 |2 + |𝑣𝑘 |2 = 1 (2.7)

and the excitations, known as Bogoliubov quasiparticles, can be written as

𝛾†𝑘↑ = 𝑢𝑘𝑐†𝑘↑ −𝑣𝑘𝑐−𝑘↓, 𝛾†𝑘↓ = 𝑢𝑘𝑐†−𝑘↓ +𝑣𝑘𝑐𝑘↑ (2.8)

From the coherence factors, the charge of the quasiparticles can be calculated as −𝑒(|𝑢𝑘 |2−
|𝑣𝑘 |2). Thus we see that far below the Fermi level, the excitations are hole-like, whereas
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far above the Fermi level, they are electron-like. Moreover, the lowest energy excitations
at the energy of the superconducting gap feature an equal superposition of electrons and
holes. The coherence factors close to the Fermi level are shown in figure 2.1b. The gradient
color represents the quasiparticle charge, with electron-like excitations as turquoise, equal
superpositions as black and hole-like excitations as red. The charge is also superimposed
on the spectra in figure 2.1a.

Finally, we can calculate the density of states 𝑁𝑠 of a superconductor. This is done by rec-
ognizing there is a one-to-one correspondence between the electronic operators in the nor-
mal state and the Bogoliubov quasiparticles in the superconducting state. This means that
𝑁𝑠(𝐸)𝑑𝐸 = 𝑁𝑛(𝜉 )𝑑𝜉 , and since the relevant energy range is much smaller than the Fermi
level, we can approximate the normal-state density of states 𝑁𝑛(𝜉 ) as constant 𝑁𝑛(𝜉 ) = 𝑁0.
Then, as shown in figure 2.1c, we find

𝑁𝑠
𝑁0

=
||||

𝐸𝑘
√𝐸2𝑘 −Δ2

||||
(2.9)

which diverges at the edge of the superconducting gap 𝐸𝑘 = Δ. The sharp peaks are known
as the coherence peaks, and far from the Fermi level, we see that the superconducting
density of states approaches that of the normal state.

2.1.2 Superconductors in a magnetic field
So far, we have treated the superconductor in the absence of a magnetic field. A magnetic
field generally acts on the different spin species through the Zeeman effect. This either
raises or lowers their energy, resulting in a modified excitation spectrum and density of
states. If we ignore the effect of the magnetic field on the orbital motion of the electrons
and assume the superconductor possesses no spin-orbit scattering, the Hamiltonian in
equation 2.4 can be modified [8] to read

𝐻BdG = 𝜉𝑘𝜏𝑧 +
1
2𝑔𝜇B𝐁 ⋅𝝈 +Δ𝜏𝑥 (2.10)

Here 𝑔 is the Landé 𝑔-factor, 𝜇B is the Bohr magneton, 𝐁 = (𝐵𝑥 ,𝐵𝑦 ,𝐵𝑧) is the magnetic field
and 𝝈 = (𝜎𝑥 ,𝜎𝑦 ,𝜎𝑧) are the Pauli matrices acting on the spin subspace of the Hamiltonian.
The direction of the magnetic field now defines the quantization axis for the spins. In
addition, the energy of the excitations is adjusted by the Zeeman energy 𝐸𝑍 = 𝑔𝜇B𝐵/2
depending on the spin direction, where 𝐵 is the magnitude of the magnetic field. The
excitation spectrum is shown in figure 2.2a, where the color now represents the spin of
each branch. The formerly-degenerate dispersion branches have evolved into four non-
degenerate branches, given by

𝐸𝑘↑ = ±√𝜉 2𝑘 +Δ2 + 1
2𝑔𝜇B𝐵, 𝐸𝑘↓ = ±√𝜉 2𝑘 +Δ2 − 1

2𝑔𝜇B𝐵 (2.11)
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Figure 2.2: Excitation spectrum and density of states of a superconductor in a finitemagnetic field. a. A
magnetic field increases the energy of the spin-up band and lowers the energy of the spin-down band, separating
the two by twice the Zeeman energy 2𝐸𝑍 = 𝑔𝜇B𝐵. b. Zeeman splitting also affects the density of states. The total
density of states becomes the sum of two Zeeman-split versions of the original density of states.

The Zeeman splitting also shows up in the density of states. One way to think about it is
to see that the density of states at zero field contains two copies with a statistical weight
of 1

2 , one for each spin species. The magnetic field then shifts these copies either up or
down by the Zeeman energy, similar to how it acts on the excitation spectrum. The total
density of states becomes the sum of the two, which is given by

𝑁𝑠
𝑁0

= 1
2

|||||

𝐸𝑘 − 1
2𝑔𝜇B𝐵

√(𝐸𝑘 − 1
2𝑔𝜇B𝐵)2 −Δ2

+
𝐸𝑘 + 1

2𝑔𝜇B𝐵

√(𝐸𝑘 + 1
2𝑔𝜇B𝐵)2 −Δ2

|||||
(2.12)

The density of states in a finite magnetic field is shown in figure 2.2b. One notices that
the Zeeman splitting tends to close the energy gap in the system. In particular, the gap
closes when the Zeeman energy equals the magnitude of the superconducting gap at zero
field. That is, at a magnetic field of 𝐵 = 2Δ/𝑔𝜇B. In the case of aluminum, for example, this
happens at 𝐵 = 4.3T assumingΔ= 250𝜇eV. In practice, superconductivity in bulk aluminum
is destroyed far before such magnetic fields are reached.

2.1.3 Critical magnetic field of thin films
Magnetic fields affect both the motion and spin of conduction electrons, which can hinder
the formation of Cooper pairs and hence superconductivity. In most cases, the impact of a
magnetic field on electron orbits is the main factor suppressing superconductivity, as it is
usually more potent than its effect on spins [8]. However, there are methods to minimize
the impact on the electron motion, such as utilizing thin films with a parallel magnetic
field [9]. If the magnetic field’s impact on electron orbits is small, its impact on electron
spins may become dominant.

Let us first focus on the orbital effects of the magnetic field. Since superconductors are
characterized by the absence of electrical resistance, any applied field will induce screen-
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Figure 2.3: Limitations to the critical magnetic field of thin superconducting films. For bulk supercon-
ductors, the critical field is given by the thermodynamic critical field 𝐵0. In films which are thin compared to
the penetration depth, orbital effects of the magnetic field are suppressed, and the critical field is enhanced, as
shown by the red curve. For very thin films, paramagnetic effects put an upper limit on the critical field 𝐵𝑝 .

ing currents flowing in the material. These currents, in turn, generate their own magnetic
field that opposes the external magnetic field. As a result, the magnetic field is completely
expelled from the interior of the superconductor, a phenomenon known as perfect diamag-
netism or the Meissner effect [10]. The screening currents induced in the superconductor,
however, do contribute to the free energy of the material. The free energy density in the
superconducting state 𝑓𝑠 in the absence of a magnetic field is lower than that in the nor-
mal state 𝑓𝑛 by an amount known as the condensation energy 𝑓𝑛 − 𝑓𝑠 . If the screening
currents in the material raise 𝑓𝑠 above 𝑓𝑛 , the normal state becomes energetically favor-
able. The magnetic field for which this happens is the thermodynamic critical field 𝐵0,
given by 𝑓𝑛 − 𝑓𝑠 = 𝐵20/8𝜋 . In our case, bulk aluminum at zero temperature typically has
very poor field compatibility characterized by a thermodynamic critical field on the order
of 𝐵0 ∼ 10mT [11, 12].

One way to overcome this limitation is to make the material very thin and apply the mag-
netic field parallel to the film. In particular, if the thickness 𝑑 of a film becomes comparable
to or smaller than the penetration depth 𝜆, no sufficiently strong screening currents can
arise in the material [8]. In this scenario, an applied parallel field can exceed the ther-
modynamic critical field. If one ignores screening currents altogether, one can rely on
Ginzburg-Landau theory to find that

𝐵𝑐|| = 2√6𝐵0
𝜆
𝑑 (2.13)

where 𝐵𝑐|| is the parallel critical field. The dependence on the thickness of the film is shown
in figure 2.3 as the orbital limit (red curve). One sees that in thin enough films, the parallel
critical field diverges. However, as these orbital effects are more and more suppressed, the
effect of the magnetic field on the electron spins can become dominant.
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To see how paramagnetic effects limit the critical field of a thin film, let us again consider
the free energy density while neglecting the orbital effects of the magnetic field. The free
energy in the normal state can be lowered due to the magnetization of the film by an
amount proportional to the paramagnetic susceptibility and the magnetic field strength.
The paramagnetic susceptibility typically vanishes in the superconducting state at tem-
peratures far below 𝑇c [13]. Thus, paramagnetic effects can lower the free energy in the
normal state below that of the superconducting state - also triggering a phase transition.
The free energy difference is, in this case, given by

𝑓𝑛 −𝑓𝑠 =
1
2𝜒𝑝𝐵

2𝑝 (2.14)

where we have anticipated a paramagnetic limit to the critical field 𝐵𝑝 . The paramagnetic
susceptibility can be written in terms of the density of states as 𝜒𝑝 = 𝑔2𝜇2B𝑁0/2. In ad-
dition, the condensation energy can also be found from BCS theory as 𝑓𝑛 − 𝑓𝑠 = 𝑁0Δ2/2.
Inserting these two into equation 2.14, one finds the Pauli paramagnetic limit or Clogston-
Chandrasekhar limit [14, 15]

𝐵𝑝 =
√2
𝑔𝜇B

Δ (2.15)

This limit is also shown in figure 2.3 as the turquoise curve. For example, if we assume
a thin aluminum film has a superconducting gap Δ = 250𝜇eV, we find that 𝐵𝑝 = 3.1T - a
factor √2 smaller than we found the Zeeman field to close the superconducting gap.

In practice, relevant parameters like the superconducting gap and the penetration depth
may vary with the thickness of the superconductor. In the case of aluminum [16], Δ
increases as the film becomes thinner - thus resulting in an elevated paramagnetic limit.
Similarly, the penetration depth increases as the thickness of the film is reduced [6], which
in turn raises the orbital limit of the critical field. It becomes clear that in order to reach
as high critical fields as possible, one needs to grow the film thin and apply the magnetic
field in parallel. Moreover, the addition of spin-orbit scattering impurities can lift the para-
magnetic limit [9]. We exploit these techniques in chapters 6 and 7, where we use thin
aluminum coated by platinum impurities to proximitize indium-antimonide nanowires.

2.2 Topological superconductivity: Majorana zeromodes
We have seen that regular superconductors exhibit 𝑠-wave superconductivity, where elec-
trons of opposite spin species form pairs. However, one can also imagine pairing up elec-
trons with the same spin. The Pauli exclusion principle then requires the orbital part of the
superconducting wavefunction to be antisymmetric, for example by using the 𝑝-orbital in-
stead of the 𝑠-orbital. It is in systems with this type of 𝑝-wave pairing that the existence
of topological superconductivity was predicted [17, 18]. Such superconductors host Majo-
rana zero modes, which in a one-dimensional system are bound to its ends [19–21]. The
most prominent theoretical model that realizes a topological superconductor is known as
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the Kitaev chain [22], which consists of discrete sites of spinless fermions. Such a chain
can be implemented physically [23–25], as we will see in section 2.3. It also formed the
foundation for a continuous model, first described by Lutchyn [26] and Oreg [27]. This
model is remarkable because it gives a minimalistic description of how to engineer an ef-
fective 𝑝-wave superconductor, starting from an 𝑠-wave superconductor. Majorana zero
modes are indeed predicted to arise in both models, and we will see what specific experi-
mental signatures are expected to result from their emergence.

2.2.1 The Kitaev chain
A superconducting Hamiltonian can be modified to engineer more exotic forms of super-
conducting pairing. In particular, one can attempt to create a topological superconductor
by pairing up electrons with the same spin, otherwise known as 𝑝-wave or spin-triplet
pairing. To understand how this works, we first consider a simplified model known as the
Kitaev chain. The Hamiltonian for this chain is given by

𝐻 = −𝜇
𝑁
∑
𝑛=1

𝑐†𝑛 𝑐𝑛 − 𝑡
𝑁−1
∑
𝑛=1

(𝑐†𝑛 𝑐𝑛+1 +𝑐†𝑛+1𝑐𝑛)+Δ
𝑁−1
∑
𝑛=1

(𝑐𝑛𝑐𝑛+1 +𝑐†𝑛+1𝑐†𝑛 ) (2.16)

It describes a chain of 𝑁 lattice sites labeled by index 𝑛, each hosting a single fermionic
excitation which is assumed to possess no spin. The excitations each have an on-site
chemical potential 𝜇, which is assumed to be equal for all sites. Moreover, they can hop
between adjacent sites via a hopping parameter 𝑡 > 0. Finally, the superconducting pairing
Δ creates or destroys pairs of fermions at adjacent sites. An illustration of the model is
shown in figure 2.4a.

To see under what conditions this chain hosts topological superconductivity, we rewrite
all the fermionic operators in the Hamiltonian in terms of Majorana operators defined by

𝛾𝑛,𝐴 = 𝑐†𝑛 +𝑐𝑛 , 𝛾𝑛,𝐵 = 𝑖(𝑐†𝑛 −𝑐𝑛)
𝛾†𝑛,𝛼 = 𝛾𝑛,𝛼 , 𝛾 2𝑛,𝛼 = 1, {𝛾𝑛,𝛼 , 𝛾𝑚,𝛽 } = 2𝛿𝛼𝛽𝛿𝑛𝑚

(2.17)

so that the fermionic operators are described by 𝑐𝑛 = (𝛾𝑛,𝐴 + 𝑖𝛾𝑛,𝐵)/2. The fermions on one
lattice site can be artificially split into twoMajoranamodes, defined on two new sublattices
𝐴 and 𝐵. Plugging this definition into the Hamiltonian 2.16, we get

𝐻 = −𝜇2
𝑁
∑
𝑛=1

(1+ 𝑖𝛾𝑛,𝐴𝛾𝑛,𝐵) +
𝑖
2
𝑁−1
∑
𝑛=1

((Δ+ 𝑡)𝛾𝑛,𝐵𝛾𝑛+1,𝐴 + (Δ− 𝑡)𝛾𝑛,𝐴𝛾𝑛+1,𝐵) (2.18)

We see that 𝜇 couples Majorana operators on the same site, whereas the new coupling
parameters Δ+ 𝑡 and Δ− 𝑡 now couple them between adjacent sites. The Hamiltonian in
this form is illustrated in figure 2.4b.

We now consider two particular limits of the Hamiltonian. First, let us see what happens if
we set Δ = 𝑡 = 0 and 𝜇 ≠ 0. It becomes evident that the second term in the Hamiltonian 2.18
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Figure 2.4: Emergence of topological superconductivity in the Kitaev chain. a. Kitaev chain in electronic
operators. There are 𝑁 lattice sites labeled by 𝑛, each hosting a single spinless excitation with on-site energy
𝜇. Neighboring sites are coupled through regular tunneling 𝑡 and a shared superconductor Δ. b. Kitaev chain
expressed in Majorana operators. This creates two sublattices 𝐴 (red) and 𝐵 (blue), which are coupled on-site
via 𝜇 and off-site via Δ− 𝑡 and Δ+ 𝑡 . c. In the absence of hopping terms (Δ = 𝑡 = 0 and 𝜇 ≠ 0), the Majorana
modes hybridize to form localized fermions on each site. This describes the topologically trivial scenario. d.
In the absence of an on-site coupling and equalizing the off-site couplings (Δ = 𝑡 ≠ 0 and 𝜇 = 0), two unpaired
Majorana zero modes remain at the ends of the chain, which together form a delocalized fermion. This describes
the topologically non-trivial scenario.

drops out, and we are left only with an on-site coupling. The Majorana modes hybridize
and form fermionic modes, localized on the individual sites and with an excitation energy
|𝜇| - thus leaving the bulk of the chain with an energy gap of this magnitude. This scenario
is topologically trivial and is depicted in figure 2.4c.

In contrast, we can also set the on-site coupling 𝜇 = 0 and pick Δ = 𝑡 ≠ 0. In this case,
the only remaining coupling term in the Hamiltonian is between adjacent sites. Again,
the modes hybridize to form fermionic modes with a bulk excitation gap of 2Δ. However,
unlike in the trivial case, 2Majorana operators are nowmissing from theHamiltonian: 𝛾1,𝐴
and 𝛾𝑁 ,𝐵 . Together they form a delocalized fermionic excitation which has zero energy
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due to its absence from the Hamiltonian. Thus, it introduces a ground state degeneracy
that differs only in the occupation of this fermionic mode. This state of the Kitaev chain
is topologically non-trivial, as shown in figure 2.4d.

More generically, we can allow all parameters 𝜇,Δ, 𝑡 ≠ 0. This will lead to hybridization
between all Majorana modes, both on-site and between sites. It then becomes a contest
to see which of the couplings dominates. One can imagine the coupling between sites to
dominate as long as 𝜇 remains small. Moreover, for any finite 𝑡 we will have (Δ + 𝑡) to
dominate over (Δ− 𝑡). In this scenario, we still maintain two uncoupled Majorana modes
at the ends of the chain - although the bulk excitation gap will start to shrink. In general,
this gap will close when |𝜇| = 2𝑡 , which marks the transition between the trivial (|𝜇| > 2𝑡)
and non-trivial (|𝜇| < 2𝑡) topology of the chain.

2.2.2 The Lutchyn-Oreg model
One of the critical assumptions in the Kitaev chain model is that the chain consists of
spinless fermions, which are coupled via some superconducting pairing. However, we
have seen in section 2.1 that superconductivity typically pairs up electrons with opposite
spin. One can, in principle, try to engineer a physical system that behaves like the Kitaev
chain by combining conventional materials. This was first recognized by Lutchyn [26] and
Oreg [27], and we will follow their approach to demonstrate how Majorana zero modes
may arise in proximitized semiconducting nanowires.

The system under consideration combines four physical ingredients. A one-dimensional
semiconductor forms the basis, in which transverse confinement splits the band structure
into subbands. We then choose to look only at the lowest subband, for which the Fermi
level is near the bottom of the band. Moreover, we only consider momentum along the
direction of the wire and assume it is infinitely long. Second, we assume the nanowire
possesses spin-orbit coupling, which generates an effective magnetic field perpendicular
to the motion of the electrons. The third ingredient is a magnetic field perpendicular to
the field induced by the spin-orbit coupling. Finally, we assume that there is an 𝑠-wave
superconducting pairing in the system, which is characterized by the phenomenological
pairing parameter Δ. We again use the Bogoliubov-de Gennes formalism in the basis of
equation 2.3. The BdG Hamiltonian for this system reads

𝐻BdG = 𝜉𝑘𝜏𝑧 +𝛼𝑘𝑧𝜎𝑦𝜏𝑧 +
1
2𝜇B𝐁 ⋅𝝈 +Δ𝜏𝑥 (2.19)

where 𝑘𝑧 denotes the momentum along the nanowire and 𝛼 is the Rashba spin-orbit pa-
rameter. The nanowire and used coordinate system are shown in figure 2.5a, where we
have chosen the nanowire axis along 𝑧 and the spin-orbit field 𝐵SO along 𝑦. The excitation
spectrum of this system is given by

𝐸𝑘 = ±√𝜉 2𝑘 +𝛼2𝑘2𝑧 +𝐸2Z +Δ2 ±2√𝜉 2𝑘 (𝛼2𝑘2𝑧 +𝐸2Z) +Δ2𝐸2Z)

𝜉𝑘 =
ℎ̄2𝑘2𝑧
2𝑚∗ −𝜇, 𝐸Z = 1

2𝑔𝜇B𝐵
(2.20)
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Figure 2.5: Excitation spectrum of a semiconducting nanowire with spin-orbit coupling and amagnetic
field. a. Illustration of a nanowire coupled to a superconducting shell, together with the used coordinate system.
The colored disk denotes the spin orientation of the excitation spectra presented in figure 2.5b-e and figure 2.6.
b. Excitation spectrum of a semiconductor nanowire in the Bogoliubov-de Gennes formalism. In the absence of
spin-orbit coupling, superconductivity, and a magnetic field, the bands are spin-degenerate parabolas with the
Fermi level located at the band bottom. c. The inclusion of spin-orbit coupling shifts the bands along momentum
by 𝑘SO = 𝑚∗𝛼/ℎ̄2 and in energy by 𝐸SO =ℎ̄2𝑘2SO/2𝑚∗. The bands are no longer spin-degenerate, except at 𝑘𝑧 = 0. d.
Including instead only a magnetic field polarizes the bands and introduces a Zeeman splitting. Spin degeneracy
is lifted, but only a single spin species is present at the Fermi level, preventing the spectrum from obtaining
a superconducting pairing from an 𝑠-wave superconductor. e. When both spin-orbit coupling and a magnetic
field are included, the spin orientation becomes dependent on the values of 𝑘𝑧 and 𝐵. At large 𝑘𝑧 , spins are
predominantly aligned with the spin-orbit field, whereas near 𝑘𝑧 = 0, they align with the magnetic field. The
spectrum forms a helical liquid, where the direction of the spin is linked to the direction of momentum.

To get an intuitive understanding of how the system behaves, we can turn off various
components of the Hamiltonian and look at the resulting spectrum.

Semiconducting nanowires
For simplicity, let us start with a nanowire without any superconducting pairing. With-
out spin-orbit coupling and a magnetic field, the excitation spectrum is given by 𝐸𝑘 = 𝜉𝑘 .
The parabolic dispersion is shown in figure 2.5b. Here, we have also assumed 𝜇 = 0, thus
setting the bottom of the band at the Fermi level. There are again four bands, two coming
from electrons and holes, since we treat the hole excitations explicitly by using the BdG
formalism. In addition, both bands are spin-degenerate in the absence of a magnetic field
and spin-orbit coupling. In order to resemble the Kitaev chain, we thus need to break spin
degeneracy by enabling these terms in the Hamiltonian.
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If we first include only the magnetic field, we split the excitation spectrum via the Zeeman
splitting. Assuming the magnetic field to be oriented along the nanowire axis, the excita-
tion spectrum is shown in figure 2.5d. The applied field now defines the spin quantization
axis along the nanowire. The color of the bands indicates the expectation value and ori-
entation of the spins, corresponding to the colored disk in figure 2.5a. At the Fermi level,
only a single electronic band is present with a single spin species - effectively creating
the spinless chain. However, this also forbids the band from obtaining a superconducting
pairing, which requires the presence of opposite spin species near the Fermi level.

We can instead try to break spin degeneracy via the spin-orbit coupling. This is a rel-
ativistic effect for which a charged particle moving in an electric field experiences an
effective magnetic field. In our case, the electric field originates from a structural inver-
sion asymmetry. This can quite literally result from the asymmetry in the device geom-
etry due to the presence of a nanowire-substrate interface on one of the facets and the
semiconductor-superconductor interface on some of the other facets. Moreover, one can
also externally apply an electric field through electrostatic gating. In the geometry pre-
sented in figure 2.5a, such gates are typically located underneath the substrate so that we
can assume the electric field to point out of the plane, that is, in the 𝑥-direction. The re-
sulting spin-orbit field points perpendicular to the motion of the electrons and the electric
field, which is indeed along 𝑦 as we assumed in equation 2.19. The effect on the excitation
spectrum is shown in figure 2.5c: the bands split both in energy and momentum, with the
spin quantization axis along the spin-orbit field. Electrons of opposite momentum near the
Fermi indeed have opposite spin, as required for the superconducting pairing. However,
two bands are now available with opposite spin at the Fermi level, as spin degeneracy is
preserved at 𝑘𝑧 = 0. In order to reach an effectively spinless regime in the nanowire that
can still obtain a superconducting pairing, we thus need to combine both effects.

The effect of the spin-orbit interaction depends on the momentum and, in particular, van-
ishes when the momentum is close to zero. At 𝑘𝑧 = 0, the spectrum experiences a Zeeman
splitting just like the case without any spin-orbit interaction. At the same time, the mag-
netic field defines the spin quantization axis along 𝑧 for low-momentum states. At finite
momentum, on the contrary, the spin-orbit field competes with the magnetic field to de-
fine the quantization axis. The spin-orbit field strength increases with momentum so that
the spins are increasingly tilted away from the direction of the external field. Moreover,
since the direction of momentum is coupled to the spin direction, electrons with oppo-
site momentum have their spins tilted in the opposite direction. The resulting excitation
spectrum is shown in figure 2.5e. Thus the combination of a magnetic field and spin-orbit
coupling has allowed us to gap out one of the spin species in the semiconductor, creating
a helical liquid for which the spin direction is coupled to the direction of momentum. In
addition, the spin canting allows the remaining band to maintain the ability to acquire a
superconducting pairing.

Superconducting nanowires and Majorana zero modes
Having seen that a semiconducting wire with spin-orbit coupling and a magnetic field
can form the basis for our one-dimensional 𝑝-wave superconductor, we will now turn on
the 𝑠-wave pairing parameter. It is insightful to start without an external field, such that
both bands are polarized along the spin-orbit field. Like in the case of a conventional
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Figure 2.6: Excitation spectrum of the Lutchyn-Oregmodel, when the Fermi level is at the band bottom
(𝜇 = 0, a-d) or has a finite value (𝜇 = 3Δ, e-h). a. Without a magnetic field, the superconducting pairing opens
up an energy gap of Δ𝑘 = Δ0 = Δ in the spectrum. b. A small magnetic field polarizes the bands near 𝑘𝑧 = 0, and
starts to split them via the Zeeman splitting. c. When the magnetic field is sufficiently strong, the gap closes
at 𝑘𝑧 = 0, which signals the topological phase transition. d. Further increasing the magnetic field causes the
gap to reopen with an inverted band structure at low momentum. e. The gap at low momentum Δ0 = √Δ2 +𝜇2
is increased when the Fermi level is not at the bottom of the band. f. The same magnetic field which causes a
topological phase transition when 𝜇 = 0 is now insufficient to close the gap. g. Instead, the gap closes when the
magnetic field equals 𝐸𝑐𝑍 = √Δ2 +𝜇2. h. Further increasing the magnetic field again causes the gap to reopen
with an inverted band structure.

superconductor, the pairing parameter hybridizes the electron and hole excitations of the
system to open up energy gaps of 2Δ around the Fermi level. Three such crossings are
present (or four if 𝜇 ≠ 0): 2 at a finite momentum 𝑘𝐹 and one at zero momentum. The
resulting spectrum is shown in figure 2.6a for 𝜇 = 0 and figure 2.6e for 𝜇 = 3Δ.
Let us now focus on the special case of 𝜇 = 0. If we turn on a small magnetic field as shown
in figure 2.6b, the excitation spectrum near 𝑘𝑧 = 0 starts to become polarized and obtains
a Zeeman splitting. While in the absence of the superconducting pairing, this would be
enough to gap out one of the spin species, the gap opened up by the superconducting
pairing actually works against the Zeeman effect. Thus, the magnetic field must be suffi-
ciently large to overcome the superconducting gap. As shown in figure 2.6c, the gap at
𝑘𝑧 = 0 closes once the Zeeman energy equals the superconducting gap 𝐸𝑍 = Δ. The closing
of this gap signals the topological phase transition. Increasing the magnetic field further
reopens the gap with an inverted band structure close to 𝑘𝑧 = 0, indicating that the system
has become a topological superconductor - accompanied by Majorana zero modes at its
ends.

In the more general case, we have 𝜇 ≠ 0. This results in an increased energy gap Δ0 =
√Δ2 +𝜇2 around 𝑘𝑧 = 0, while the energy gap at finite momentum Δ𝑘 ≈ Δ does not de-
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pend strongly on 𝜇. Upon the application of a magnetic field, the Zeeman splitting starts
to shrink the zero-momentum gap according to Δ0 = √Δ2 +𝜇2 − 𝐸𝑍 . Recognizing that
we need to close this gap to trigger the topological phase transition, we can find the
phase-transition field 𝐸𝑐𝑍 = √Δ2 +𝜇2. In figure 2.6e-f, we show that when 𝜇 = 3Δ the zero-
momentum gap is dominated by 𝜇, has not yet closed at 𝐸𝑧 = Δ, closes at 𝐸𝑍 = √Δ2 +𝜇2
and reopens for higher Zeeman energies.

2.2.3 Beyond the Lutchyn-Oreg model
The appearance of Majorana zero modes in the Lutchyn-Oreg model is indeed quite in-
triguing, predominantly because the fundamental physics can be captured in such a mini-
malistic model. We will now see that the real world is, in fact, not so accurately described
by this model. Perhaps the most obvious shortcoming is that real nanowires are three-
dimensional objects of finite length. One of the consequences is that it is no longer suffi-
cient to consider only a single subband, and that the orbital effects of the magnetic field
need to be considered. What is more problematic, however, is that superconductivity is
added to the model via a phenomenological parameter. It turns out that the presence of a
superconducting material is very relevant, and one needs to take into account how exactly
superconductivity is induced in the semiconductor. In addition, many of the parameters
are assumed to be constant over space. However, all key ingredients (𝛼 , Δ, 𝐵, and 𝜇) are
likely to be spatially dependent, for example due to the presence of disorder in realistic
systems. Finally, the effect of electrostatic gating is only included by affecting 𝜇 in the
model. In contrast, in reality it affects almost every relevant parameter - as we will see
later in this section.

The proximity effect
To see how superconductivity is properly included, we first need to understand how su-
perconductivity is induced in the nanowire. This is known as the proximity effect, and
the underlying physical mechanism is known as Andreev reflection [28]. Historically,
Andreev reflection was introduced as the mechanism underlying transport between a su-
perconductor and a metal when the voltage difference between the materials is smaller
than the gap of the superconductor 𝑒𝑉 < Δ - which we here choose to be 𝑒𝑉 = 0. One
assumes the incoming electron in the semiconductor to be a Bloch wave coming from in-
finity. What happens upon reaching the semiconductor-superconductor interface depends
crucially on the interface transparency 𝑇 [29]. There are two possibilities: electrons can
Andreev reflect with probability 2𝑇 2/(2−𝑇 )2, a process for which the electron can grab a
second electron from below the Fermi surface and enter the superconductor as a Cooper
pair. On the other hand, the electron can reflect back with probability 1 − 2𝑇 2/(2 − 𝑇 )2.
The Andreev reflection process effectively leaves a hole excitation in the semiconductor,
which forms a phase-conjugated pair with the incident electron. It is this pairing that
opens up an energy gap in the spectrum of the semiconductor, which decays away from
the interface [30] and is diminished for lower interface transparencies.

In nanowires, however, the interface between the materials is not perpendicular to some
infinite semiconductor. In fact, the dimensions of the semiconductor in this direction
are required to be small, as we are looking for an effective one-dimensional system with
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transverse confinement. So, instead of pure Bloch waves, the electrons participating in
the Andreev reflection constitute standing waves along the cross-section whose wave-
function is defined by the geometry. These wavefunctions are precisely the subbands of
the one-dimensional nanowire, and they determine the rate of Andreev reflection of the
particular subband: If the wavefunction of a subband is located near the interface, the rate
of Andreev reflection is high, in which case the obtained superconducting pairing can be
as large as the size of the gap in the superconductor. In contrast, the superconducting
pairing is reduced and can even vanish altogether if the wavefunction of a subband is lo-
cated far away from the interface. The main consequence is that each subband obtains
its own superconducting pairing, and they need to be considered individually. Moreover,
the presence of the superconductor also strongly affects the electrostatic potential profile
in the nanowire and, thus, where the subbands are formed. These effects also need to be
taken into account, as we will see below.

Electrostatic effects in hybrid nanowires
For an insightful and more realistic modeling of the hybrid nanowires, we follow the work
of Antipov et al¹ [31]. Let us start by considering an infinite semiconducting nanowire,
but explicitly introduce a finite cross-section. Moreover, we consider the presence of the
superconductor on two facets of the nanowire instead of simply assuming a phenomeno-
logical pairing parameter. We also introduce an electrostatic gate to the problem, which is
operated via a gate voltage 𝑉𝑔 and is located on the bottom of the nanowire. A schematic
illustration of the cross-section is shown in the inset of figure 2.7a.

As anticipated in the previous section, we are looking for the band structure of the nano-
wire. In order to do so, a Hamiltonian describing the three-dimensional nanowire is used,
which includes the electrostatic profile 𝜙(𝑧) of the nanowire. To find 𝜙(𝑧), one needs to
self-consistently solve the Poisson equation and the Schrödinger equation for the prob-
lem. Figure 2.7a shows the setup for the Poisson equation: At the interface between the
superconductor and semiconductor, the electrostatic potential is determined by the band
offset 𝑊 between the materials. On the other end of the wire cross-section, the potential
is determined by the value of 𝑉𝑔 .
An example of the calculated cross-sectional density profile at 𝑉𝑔 = 0V and corresponding
eigenstates are shown in figure 2.7b. Most of the electronic density is located near the
semiconductor-superconductor surface. This is not surprising, as the assumed negative
band offset is known to generate an accumulation layer. Consequently, the wavefunctions
of the various subbands also carry a large weight near the interface. This situation also
holds when the applied gate voltage is negative: the electrostatic potential creates a strong
confinement of the carrier density near the interface. In contrast, a positive gate voltage
causes the electrostatic potential to drop at some distance from the interface and can cause
some bands to appear which are not confined there.

Each of the subbands couples differently to the superconductor. One can think of this as
the result of hybridization between states in the semiconductor and states in the super-
conductor. Then, the coupling between the materials can be characterized by the weight

¹The mathematical models are too cumbersome to reproduce here and on their own not very insightful, so we
instead focus on the results in this section.
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Figure 2.7: Effects of electric fields on semiconductor-superconductor nanowires. a. Electrostatic profile
along a nanowire cross-section, depending on gate voltage 𝑉𝑔 and band-offset𝑊 . Inset shows the wire geometry.
b. Electron density and subbands in the normal state of the nanowire at 𝑉𝑔 = 0V. c. Density of states as a function
of 𝑉𝑔 . The gate voltage controls the number of subbands in the nanowire, each with their own induced gap. d.
Induced gap in the nanowire (black) and the corresponding weight in the superconductor (green). e. Topological
phase diagram as a function of 𝑉𝑔 and parallel magnetic field 𝐵. Each subband can transition into a topological
phase when the gate voltage is near their band bottom, with the black lines presenting the phase transition
boundaries. Adapted from [31].

of the subband in the superconductor𝑊 SC, which essentially describes how much of the
wavefunction of each subband is located in the superconductor. In other words, subbands
with a large weight in the superconductor are subject to a strong coupling to it. At this
point, we need to make a distinction between the superconducting gap Δ0 in the super-
conductor and the induced gap Δind in the semiconductor: Depending on their weight in
the superconductor, each of the subbands will obtain their own induced superconducting
gap. Since the applied gate voltage is also used to control the number of active subbands
in the nanowire, it can be used directly to control the induced gap in the density of states.
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This is shown in figure 2.7c, where the induced gap shrinks as the gate voltage is increased.
Figure 2.7d shows the correspondence between the induced gap in the nanowire and the
corresponding weight in the superconductor.

We have seen that subbands are confined close to the semiconductor-superconductor inter-
face for strongly negative gate values. Such confinement has the consequence of creating
a strong coupling between the subband to the superconductor, resulting in a large induced
gap. This is known as metalization or renormalization of the semiconductor [31, 32], and it
has some profound consequences. It is, indeed, not only the value of the induced gap that
gets renormalized - other parameters like the 𝑔-factor and spin-orbit coupling strength
are also adjusted to become closer to their value in the superconductor. Such effects are
vastly unfavorable for the transition into a topological phase, as the 𝑔-factor determines
how quickly the gap can close and reopen upon the application of a magnetic field. Fig-
ure 2.7e shows simulations of a topological phase diagram as a function of gate voltage
and magnetic field. The strongly-coupled bands, like the one around 𝑉𝑔 = −2.3V, only
transition to a topological phase near 𝐵 = 4T - a value which exceeds the Pauli limit for
aluminum films with a realistic thickness. On the other hand, bands that are too weakly
coupled essentially obtain no superconducting pairing and, by definition, can not give rise
to a topological superconducting phase. However, there are some bands in between these
two regimes which are characterized by an intermediate coupling. It is there that one
should look for a topological phase transition and Majorana zero modes.

The above example provides quite the paradigm shift in the way one thinks about semi-
conductors coupled to superconductors. The fact that subbands get renormalized by the
superconductor provides crucial information on where to look for Majorana zero modes
and how the proximity effect works in these hybrids. In fact, it has become even more
clear how important the properties of the materials are: the renormalization of the band
structure is entirely governed by the band offset between the materials in combination
with the exact geometry of the devices.

2.2.4 Detection methods: local and nonlocal spectroscopy
As we have seen, Majorana zero modes appear at the edges of a one-dimensional topo-
logical superconductor. In practice, if we fabricate a nanowire that is partially covered
by a superconductor, we need to create probes near the edges of that superconductor in
order to detect them. If we also create tunnel barriers in between the probe and the su-
perconducting region, we can use the technique of tunneling spectroscopy to learn about
the density of states underneath the superconductor. Moreover, we can make use of a
nonlocal conductance measurement if we create one probe at each end and ground the
superconducting material. Both techniques should reveal the presence of Majorana zero
modes through specific signatures, which we will elucidate in the following section.

Local and nonlocal transport
In figure 2.8a, we show a schematic of a typical device. A hexagonal nanowire is shown
in green and, in our case, is made of InSb - a semiconductor with a strong spin-orbit
coupling and large 𝑔-factor, as required by the Lutchyn-Oreg model. Shown in grey-blue
is the superconductor, which covers the central region on three nanowire facets. In our
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case, Al is the material of choice - an 𝑠-wave superconductor. The superconductor extends
onto the dielectric substrate (HfO2, shown in transparent white), where it can be used as
one of the electrical connections to the device. On the two sides of the device, we see two
yellow contacts made of a non-superconducting metal: a Cr/Au bilayer. Both of these also
provide an electrical contact, so the device has a total of three of them. A bare section of
semiconductor remains in between the metallic contacts and the superconducting region.
Here, the electron density can be tuned via electrostatic gating. This is done by applying
a voltage to the set of gate electrodes underneath the dielectric layer, which are made
from a Ti/Pd bilayer and shown in red. The two outer electrodes function to control the
semiconducting junctions, whereas the central gate will allow us to adjust the Fermi level
underneath the superconductor.

Inside the longitudinal cross-section of the nanowire in figure 2.8a, we have drawn an
illustration of the relevant transport processes. We start by looking at the simple scenario
in which no magnetic field and consequentially no Majorana zero modes are present. We
will also assume that the superconducting region is sufficiently long, much longer than
the superconducting coherence length. One typically applies a voltage bias 𝑉b to one of
the two normal metallic contacts while keeping the other normal and superconducting
contacts grounded. One can then measure the local and nonlocal conductance: In the
case of local conductance, one measures the current flowing through the biased contact
as the response to the applied voltage. In contrast, the nonlocal signal only captures the
part of the current which drains away via the unbiased normal contact and not via the
superconductor [33].

In figure 2.8a, we have chosen the left contact to apply the voltage bias. A tunnel barrier is
assumed to be present in the semiconducting junction, as indicated by the dashed orange
line. Furthermore, we assume there is an induced gap Δi in the superconducting section
of the semiconductor, which it obtains from the superconductor with a gap ΔSC. Various
transport mechanisms can take place depending on the value of the applied bias voltage. If
the bias is larger than the gap of the superconductor |𝑒𝑉b| > ΔSC, injected carriers will en-
ter the proximitized region with enough energy to escape into the superconducting shell.
As a consequence, they will contribute to the local conductance but not the nonlocal con-
ductance. If the bias voltage falls in between the two gap parameters Δi > |𝑒𝑉b| > ΔSC, the
carriers do not possess enough energy to escape via the shell and can only drain away
via the opposing normal contact. They will thus contribute both to the local conductance
and the nonlocal conductance. Finally, if the applied voltage is below the induced gap
|𝑒𝑉b| < Δi, there are no single particle states available and carriers can only enter the su-
perconducting region via Andreev reflection. The formed Cooper pairs can simply enter
and drain away via the superconductor, only contributing to the local conductance.

The transparency of the tunnel barrier further determines the magnitude of the measured
conductance. Examples of the resulting local signal for various barrier transparencies 𝑇
are shown in figure 2.8b. In the ideal case of a single ballistic conduction channel and at
energies far above the superconducting gap, the local conductance value is proportional
to the transparency of the tunnel barrier𝐺local(𝑒𝑉b ≫ΔSC) = 𝐺0𝑇 - where𝐺0 = 2𝑒2/ℎ is the
conductance quantum. It can intuitively be understood that the junction possesses a sin-
gle quasiparticle channel of which the junction transparency sets the transmission - thus
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Figure 2.8: Local and nonlocal spectroscopy of proximitized nanowires. a. Schematic illustration of a
proximitized nanowire and the transport processes. The nanowire (green) is contacted in the center by a super-
conductor (blue) and on the ends by normal metals (yellow). It is separated by a dielectric (transparent white)
from a set of electrostatic gates (red). The superconductor has a gap Δsc and induces a gap Δi in the semicon-
ductor. Tunnel barriers (orange dashed lines) are created through appropriate gate potentials. A voltage bias
𝑉b controls the energy of the injected electrons. b. Local conductance for various tunnel barrier transparencies.
Above Δsc, the conductance in units of the conductance quantum 𝐺0 = 2𝑒2/ℎ approaches the transparency of the
tunnel barrier. Below Δi, transport is governed by Andreev reflection, and conductance is enhanced for high
transparencies. In between, a peak represents the density of states of the proximitized semiconductor. c. Only
injected particles in between Δi and Δsc can escape via the opposing normal lead and contribute to the nonlocal
conductance.

reaching a single conductance quantum when 𝑇 = 1, with the factor 2 in the conductance
quantum owing to the spin degeneracy of the channel. Below the induced gap, however,
the conductancemagnitude is governed by the Andreev reflection probability. At zero bias
specifically, it is given by the Beenakker formula 𝐺local(𝑒𝑉b = 0) = 𝐺02𝑇 2/(2−𝑇 )2 [34]. In
between the induced and superconducting gaps, the exact structure can be quite compli-
cated. We have seen in section 2.2.3 that multiple subbands, each with their own value of
Δi, form in the superconducting region. They all contribute to the density of states, and
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the result is that the peak structure in the local conductance depends on the exact details of
the electrostatics, materials, and geometry. The general shape is some broadened or even
multiple peaks - in stark contrast to the singularity in the density of states of a metallic
superconductor.

The nonlocal conductance is affected similarly by the transparency of both semiconductor
junctions. Figure 2.8c shows the nonlocal conductance for various barrier transparencies,
assuming the receiving junction is fully transparent. As we have seen before, carriers in-
jected either above ΔSC or below Δi do not contribute to the nonlocal conductance. Only
in between can we measure a nonlocal conductance. In the ideal case with both junctions
fully transparent, each injected charge will exit via the opposing lead so that it contributes
a single conductance quantum to the conductance [35]. Moreover, in the ideal case, the
signal should be symmetric around zero energy. However, in reality, it is almost always
antisymmetric, and the exact shape and even the sign of the signal depend on the details
of the sample. In general, the signal increases in magnitude with increasing barrier trans-
parencies.

The initial proposal to measure nonlocal conductance assumed that nonlocal transport
was governed either through direct quasiparticle transport or via crossed Andreev reflec-
tion [33]. The two cases differ because, in the former, the sign of the charge is preserved,
while in the latter, it is reversed. This has implications for the sign of the nonlocal conduc-
tance, which was predicted to exhibit rectifying effects near the topological phase transi-
tion [33] as a result. However, we have recently shown that nonlocal transport in long
wires actually functions rather differently [36]: First, a charge carrier is injected into the
superconducting region at some energy 𝑒𝑉b. The injected carrier is either an electron or
a hole, depending on the sign of the applied bias, and thus has a charge of −𝑒 or 𝑒. Such
charges are, however, not the elementary excitations of a superconductor - as we have
seen before, these are Bogoliubov quasiparticles. Thus, the injected charge excites the sys-
tem both in energy and charge [37–39]. Inside the superconducting region, the charges
are subjected to a few processes: If their injection energy allows it, they may drain away
via the superconducting lead. Inelastic scattering causes the remaining charges to relax to
the lowest available state at the edge of the induced gap. In addition, Andreev reflection
at the interface with the superconductor drains away the excess charge and converts the
injected particle into a Bogoliubov quasiparticle. The quasiparticles then diffuse around in
the proximitized region, where they may recombine with other quasiparticles into Cooper
pairs - allowing them to drain to ground via the superconductor. The remaining ones can
reach the opposite normal contact, where they will exit and contribute to the nonlocal
conductance. In reality, tunnel junctions often have different transmission amplitudes for
electrons or holes - and as the quasiparticles are equal superpositions of both, the details
of the receiving junction will determine which kind of charge they are projected onto [40].
Note that this does not depend on the sign of the injected charge due to the energy and
charge relaxation. The measured current direction thus does not depend on the sign of
the voltage bias, leading to an antisymmetric nonlocal conductance.

Signatures of the topological phase
We are now ready to consider the signatures of Majorana zero modes in local and nonlocal
conductancemeasurements. Aswe have seen in section 2.2.2, Majorana zeromodes appear
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Figure 2.9: Signatures of Majorana zero modes in local and nonlocal spectroscopy. a. In the local spec-
trum, the superconducting gap closes, followed by the formation of a zero-bias peak. A gap reopening should
also be visible, and the peak should exhibit specific features: Conductance quantization to 𝐺 = 2𝑒2/ℎ, and peak
splitting and oscillations if the nanowire is short. b. In the nonlocal spectrum, no local states should be visible
so that the zero-bias peak is absent. The closure and reopening of the induced gap should be well visible, and
the conductance should be rectified near the topological phase transition. Adapted from [33].

at the ends of the superconducting segment of the nanowire after the Zeeman energy
exceeds some critical value. Thus, we are interested in the evolution of the local and
nonlocal spectra as a function of a magnetic field.

If we ignore the orbital effects of the magnetic field, the primary effect is to provide a
Zeeman splitting of the states at low momentum. This will cause the induced gap in the
semiconductor to close linearly. After the gap closes, Majorana zero modes form at the
edges while the bulk states will become gapped again. The Majorana zero mode exists
as part of the ground state manifold, so that exciting it costs no energy. As a result, it
shows up as a state at zero energy in local spectroscopy measurements. The induced
gap at that point reopens, such that the local measurement will feature a zero-bias peak
amid a gapped region. The peak itself is predicted to possess some distinctive properties.
Most prominently, the tunneling process into a Majorana zero mode is characterized by
resonant Andreev reflection. This gives rise to a quantization of the zero-bias peak [41–
43], which has a conductance value of 𝐺 = 2𝑒2/ℎ. In addition, the two Majorana zero
modes at the two ends of the wire might have some overlapping wavefunctions. This splits
the zero-bias peak and causes an oscillatory behavior as the magnetic field is increased
further [44]. Finally, the local spectra on both ends of the superconducting section must
simultaneously feature all these signatures. This predicted end-to-end correlation is a
direct consequence of the Majorana zero modes appearing in pairs at both ends of the
wire upon the topological phase transition. The characteristic signature of a topological
phase transition as a function of a magnetic field in the local conductance measurements
is shown in figure 2.9a. In practice, some of the signatures might be weakened in actual
experiments: for example, thermal effects may reduce the zero-bias peak height below
𝐺 = 2𝑒2/ℎ. Moreover, the states that constitute the induced gap are bulk states, meaning
they potentially couple weakly to the tunnel probes. Thus, the closing and reopening of
the induced gap might not be visible in the local conductance measurements [45].
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This is where the nonlocal conductance comes in. Zero-bias peaks can, unfortunately, also
originate from various other physical sources [46–56]. For example, confinement happens
naturally near the end of the superconducting section, as the electrostatic potential in the
wire is disrupted both by the termination of the superconducting shell and the voltage on
the tunnel barrier gate. Such confinement often results in discrete sub-gap states, which
can also reach and stick to zero bias. Thus, the observation of zero-bias peaks in isola-
tion is insufficient as a signature of a topological superconductor. Even the concomitant
appearance of peaks at both ends of the device is insufficient. Indeed, their formation
must necessarily be accompanied by a closing and reopening of the bulk gap. As we have
seen, nonlocal conductance is sensitive to the induced gap in the semiconductor. Con-
sequentially, this important signature of a topological phase transition is also visible in
the nonlocal spectra. Moreover, nonlocal measurements are insensitive to any local states
near the ends of the superconducting section. Neither the Majorana zero modes nor any
other confinement- or disorder-induced zero-energy states will appear in the nonlocal con-
ductance. The characteristic signature of a topological phase transition as a function of
a magnetic field in the nonlocal conductance measurements is shown in figure 2.9b. A
topological phase transition should simultaneously be observed in both local spectra as
zero-bias peaks and in the nonlocal spectra as a closure and reopening of the induced gap.

2.3 The realistic Kitaev chain
Experimental work over the last decade has shown that it is challenging to realize a topo-
logical superconductor based on the semiconductor-superconductor nanowire model. It
was already recognized shortly after the first nanowire experiments that instead, it may be
advantageous to try to emulate a Kitaev chain in a system of coupled quantumdots [23–25].
This can be done with the same ingredients used for the continuous nanowire approach: a
semiconductor coupled to a superconductor in the presence of spin-orbit interaction and
a magnetic field.

2.3.1 The Kitaev chain in proximitized nanowires
The original Kitaev chain toy model consists of a chain of spinless fermionic sites. Such a
chain can be physically realized in proximitized semiconductors, with an example of a five-
site chain in a nanowire shown in figure 2.10. The closest analog of the fermionic sites are
quantum dots, where three-dimensional confinement discretizes their energy spectrum.
We are looking to consider such an energy level and make sure that the energy spacing to
the next level is large compared to other energy scales in our system. This spacing is called
the addition energy [57], which is given by 𝐸add = 𝐸C + 𝛿𝐸L. The first term describes the
charging energy 𝐸C = 𝑒2/𝐶 , where 𝐶 is the capacitance between the quantum dot and the
environment. The second term is the level spacing 𝛿𝐸L ∝ 1/𝑚∗𝐿2, which is inversely pro-
portional to the largest length of the dot 𝐿. We thus want to maximize the addition energy
- and since both the charging energy and level spacing increase with a shrinking quantum
dot size, we look to make the quantum dots as small as possible. The material of choice
should have a small dielectric constant to minimize the capacitance to the environment.
Furthermore, a large effective mass of the carriers is desired.

In general, though, the energy levels of a quantum dot are spin-degenerate, hosting a pair
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of electrons with opposite spins. Indeed, this degeneracy will need to be removed, and
we can do so through the application of a magnetic field. Recalling that the energy of
spinfull states is adjusted by the Zeeman energy 𝐸Z = 𝑔𝜇B𝐵/2, we see that materials with a
large 𝑔-factor are desired. The evolution of the addition energy as a function of a magnetic
field is shown in figure 2.10a. At the very minimum, we require that the Zeeman splitting
exceeds the thermal energy of the electrons 𝐸Z > 𝑘B𝑇 . If we tune the spin-polarized dot
level close to the Fermi level via electrostatic gating, the quantum dot can be considered
spinless [58].

The original model by Kitaev contains the three coupling parameters 𝜇, 𝑡 , and Δ, which
are assumed to be uniform along the chain. In reality, however, each quantum dot 𝑛 can
be tuned via its on-site electrochemical potential 𝜇n, with generalized couplings 𝑡n and
Δn between the sites. The couplings can, in theory, be introduced to the chain via bulk
superconductors separating adjacent quantum dots, as shown in figure 2.10b. In this case,
electrons hopping from one dot to the next can do this via virtual occupation of quasipar-
ticle excitations above the superconducting gap - a transport mechanism known as elastic
co-tunneling (ECT) with amplitude 𝑡n. Similarly, two electrons at adjacent sites can join
the superconducting condensate together as a Cooper pair - via a transport mechanism
known as crossed Andreev reflection (CAR) with amplitude Δn.

However, we face a similar problem as the Lutchyn-Oreg model: we can tune adjacent
quantum dots to have the same spin species, which allows direct tunneling via 𝑡n but pre-
vents them from obtaining a superconducting pairing Δn from an 𝑠-wave superconductor.
If we instead tune adjacent quantum dots to be of opposite spin species, the supercon-
ducting pairing is enabled, but the regular tunneling is forbidden. Thus, we need to tilt
the spins in each quantum dot somehow so that they obtain both a parallel and an anti-
parallel spin component. As we have seen before, this issue can be resolved by requiring
the material to exhibit spin-orbit coupling and applying the magnetic field perpendicu-
lar to the spin-orbit field. The spin-orbit coupling can be present in the quantum dots
themselves or the connecting superconductor.

Thus, we have seen that a Kitaev chain can be physically implemented in a system with
the same ingredients as the Lutchyn-Oreg model: low-dimensional semiconductors with
strong spin-orbit coupling coupled to superconductors in the presence of a magnetic field.
However, the generalized Kitaev Hamiltonian is more complicated as it contains three
tunable parameters per quantum dot in the chain. One might think that it demands very
stringent tuning, requiring all the 𝜇n’s to be zero and all the 𝑡n’s and Δn’s to be equal. This
defines the ideal scenario, but just like for the Kitaev toy model, it is unnecessary. It can be
shown that if the chain contains 𝑁 sites, it is robust again variations of 𝑁 −1 parameters
in the Hamiltonian [25]. However, the quasiparticle excitation gap in the bulk is limited
by the smallest coupling in the chain.

The problem, however, with bulk superconductors is that in general, 𝑡n and Δn cannot
be independently controlled - making it difficult to realize any 𝑡n = Δn. Moreover, these
processes can only occur if the length of the superconductor is sufficiently short - that is,
much shorter than the coherence length 𝜉0. This results in couplings which are generically
too weak, especially in the case of Δn since it is a two-particle process [59]. Experimental
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Figure 2.10: Implementation of a (five-site) Kitaev chain in proximitized nanowires. A nanowire (green)
is coupled to short superconducting segments (blue). At the ends of the wire, normal metals (yellow) make
contacts that can be used to probe the Majorana zero modes. The nanowire is separated by a gate dielectric
(transparent white) from a set of bottom gates (red). Three narrow gates can create a confining potential to
form quantum dots underneath the bare semiconducting segments. a. The quantum dots are characterized by
a charging energy 𝐸C and a level spacing 𝛿𝐸L. Upon including a magnetic field, the levels obtain a Zeeman
splitting 𝐸Z = 𝑔𝜇B𝐵/2. b. Bulk superconductors were initially envisioned to mediate the coupling terms 𝑡n and
Δn, where 𝑡n is a virtual hopping process via the quasiparticle continuum and Δn allows Cooper pairs from the
condensate to split into two electrons at opposite sites. c. Instead, we can use short proximitized semiconductor
sections in which Andreev bound states form to mediate the coupling. Both 𝑡n and Δn use virtual excitations
from the ground state to the excited states of the Andreev bound state. In both cases, 𝑡n is referred to as elastic
co-tunneling (ECT) and Δn as crossed Andreev reflection (CAR).

attempts at generating a coherent coupling via CAR using proximitized semiconductors
have also proven to be unsuccessful, likely due to the absence of a hard induced gap in
these systems [60–63].
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2.3.2 Tunable coupling via Andreev bound states
Instead, we have developed an alternative way to introduce the two coupling mechanisms
between quantum dots. This method utilizes the presence of Andreev bound states (ABSs)
in short hybrid segments to mediate the coupling [64, 65], offering a versatile way to
realize the Kitaev chain.

Andreev bound states in short hybrids
One can think of Andreev bound states as single-particle levels which have obtained a su-
perconducting pairing via interaction with a superconductor, as schematically illustrated
in figure 2.11a. Such levels can generally be formed by confining a material in all spatial
dimensions. Indeed, the energy levels in a quantum dot are an example of such single-
particle levels. Thus, all we have to do is create more quantum dots in our nanowires
and couple them to superconductors. Like before, we will assume that the quantum dot
is sufficiently small so that the level spacing is larger than the superconducting gap. This
allows us to consider only a single energy level close to the Fermi level.

The single-particle level obtains the superconducting pairing through contact of the short
semiconducting segment with an 𝑠-wave superconductor. Since the superconductor is
typically a large body of metal that is connected to ground, the charging energy of the
dot is strongly quenched. If we assume spin-orbit coupling to be weak as well, it can be
described by the Hamiltonian

𝐻ABS = 𝜇(𝑐†↑ 𝑐↑ +𝑐
†
↓ 𝑐↓) +Γ(𝑐

†
↑ 𝑐

†
↓ +𝑐↓𝑐↑) (2.21)

where 𝜇 denotes the chemical potential and Γ the superconducting coupling strength [66].
Indeed, the latter can be understood as the analog of Δ in a regular superconductor, for
example through comparison with equation 2.2. The ground state of this level is a spin-
singlet state of the form |𝑆⟩ = 𝑢 |0⟩ − 𝑣 ||↑↓⟩, which can be understood as the analog of a
Cooper pair. Likewise, 𝑢 and 𝑣 denote the coherence factors which are given by 𝑢2 =
1 − 𝑣2 = (1 + 𝜇/ √𝜇2 +Γ2)/2 as shown in figure 2.11b. Finally, excitations of the ABS are
the doublet states ||↑⟩ , ||↓⟩, whose excitation energy is depicted in figure 2.11a and given
by 𝐸 = √𝜇2 +Γ2. Like Bogoliubov quasiparticles in a superconductor, the excitations are
still gapped when 𝜇 = 0 - justifying our interpretation of Γ as the induced gap. In fact,
the doublet states are themselves Bogoliubov quasiparticles like those described in equa-
tion 2.8. This implies that the electron-like and hole-like components of the excitation can
be controlled via the chemical potential. Unlike superconductors, however, the chemical
potential can be controlled via electrostatic gating. This gives us a direct knob to manipu-
late the coherence factors and excitation energy of the ABS.

Crossed Andreev reflection and elastic co-tunneling
We are now ready to see how this state can be used to generate a coherent coupling be-
tween quantum dots. This is schematically illustrated in figure 2.10c and figure 2.11a. The
ABS couples to the left and right quantum dots via the tunnel couplings 𝑡L and 𝑡R, respec-
tively [64]. The singlet state of the ABS can be excited by the injection of an electron
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Figure 2.11: Coupled quantum dots via an intermediate Andreev bound state. a. Schematic illustration
of two quantum dots coupled via an Andreev bound state. The central quantum dot obtains a superconducting
pairing Γ from the superconductor and couples to the adjacent quantum dots with couplings 𝑡L and 𝑡R. b. Coher-
ence factors of the ABS 𝑢 and 𝑣 near the minimum of the excitation energy. c. Excitation spectrum of a single
ABS with induced gap Γ. The charge of the excitation can be tuned via the chemical potential 𝜇. d. The left and
right quantum dots obtain an effective coupling 𝑡 and Δ, which can be controlled via the chemical potential of
the ABS. Virtual paths can either interfere constructively or destructively near zero chemical potential, resulting
in a peak for Δ and a dip for 𝑡 . Tuning of the chemical potential can also equalize the two coupling parameters,
as required for the topological phase in the Kitaev chain.

from one of the quantum dots, causing it to end up in one of the doublet states. Note that
these electrons do not have the energy to excite the ABS, so it needs to be regarded as a
virtual process. This makes use of the |0⟩ part of the singlet state, thus the excitation is
governed by the amplitude 𝑢. Next, the ABS can relax back to the ground state via two
options: Either the electron can exit to the other dot, again using the |0⟩ part of the singlet
and hence the amplitude 𝑢. Alternatively, the electron can pair up with an electron from
the second dot. This uses the ||↑↓⟩ part of the singlet state with amplitude 𝑣 , which allows
the pair to enter the superconducting condensate of the proximitizing superconductor as
a Cooper pair. The first process described here is known as elastic co-tunneling, whereas
the second is crossed Andreev reflection.

There is, however, a second virtual path available for both processes: An electron can first
leave the ABS, using the ||↑↓⟩ part of the singlet state and thus amplitude 𝑣 . Completing
the ECT process then requires an electron to hop from the other dot into the ABS, again
with amplitude 𝑣 . Alternatively, completing CAR requires the second electron from the
ABS to leave to the other quantum dot using amplitude 𝑢. This effectively splits a Cooper
pair from the condensate of the bulk superconductor. Interestingly, the two paths for
each process interfere - and in a strikingly different way. The two processes interfere
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destructively for ECT, whereas for CAR they interfere constructively. Overall, the two
quantum dots obtain effective coupling amplitudes 𝑡 and Δ via the mediating ABS, which
are described by

𝑡 ∝ |||
𝑢2 −𝑣2

√𝜇2 +Γ2
|||

2
, Δ ∝ |||

2𝑢𝑣
√𝜇2 +Γ2

|||
2

(2.22)

Recalling that 𝑢 and 𝑣 are proportional to the chemical potential, we immediately see that
Δ is only significant when 𝜇 is close to zero, when the ABS excitation energy is close to
its minimum. This in contrast to 𝑡 , which vanishes when 𝜇 = 0. Their behavior versus
chemical potential is shown in figure 2.11c, revealing a crossover between 𝑡-dominated
coupling far from the energy minimum to Δ-dominated coupling close to it. Crucially, a
value of the chemical potential for which the two are equal will always exist, allowing us
to realize this fundamental requirement for the artificial Kitaev chain.

Note that the description here has assumed a weak spin-orbit coupling for the Andreev
bound state. As mentioned before, spin-orbit coupling is required to be finite in order to
couple spin-polarized quantum dots with both types of coupling. We have also excluded
the effect of a magnetic field on the ABS in the above picture. Including it would modify
the energies of the two doublet excitations via the Zeeman splitting and consequentially
alters the amplitude of the various virtual paths between the coupled dots [64]. In addition,
𝑡 and Δ also start to be affected by the choice of the quantum dot spin direction - making
the exact form more complicated. The general conclusion, though, remains: constructive
interference causes CAR to peak near 𝜇 = 0, whereas ECT vanishes in its vicinity. We have
experimentally verified the theory [65] and further used it to demonstrate the splitting of
Cooper pairs into two electrons with equal spins [67]. In chapter 8, we use this to realize
a minimal Kitaev chain, consisting of only two quantum dots coupled via an ABS - and
demonstrate the formation of Majorana zero modes in the process.
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3
Methods and optimization of
nanofabrication techniques

Over 2000 nanowires were brutally displaced from their motherchip during the course of this
Ph.D.

Throughout this thesis, we make use of our novel nanofabrication technique of shadow-
wall lithography. The design principles and characterization of basic quantum transport
devices based on this method are presented in chapter 4. As a complement, this chapter
provides a more in-depth description of the technique - starting from bare substrates and
ending with fully fabricated devices. This includes the fabrication of two types of shadow-
wall substrates, as well as the optimization of their fabrication processes. Next, the de-
position of semiconductor nanowires is shown. Then, the process and optimization of
hydrogen-radical cleaning are described - a process crucial to the creation of high-quality
devices which is used to selectively remove the native nanowire oxides. The deposition of
the superconductor is treated after that, before ending the chapter with a section on the
creation of Ohmic contacts. Other experimental methods, such as the experimental setups,
electrical circuits, measurement techniques, and data analysis, are described in detail in
the supplemental information sections of the experimental chapters.
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3.1 Shadow-wall substrate fabrication and optimization
A semiconductor-superconductor hybrid device typically contains several elements that
are present regardless of the purpose of the device or the intended experiment. First of
all, the semiconductor needs to be brought in contact with a superconductor in order to
induce superconductivity in it. This forms a hybrid that needs to be contacted by Ohmic
contacts, typically made of a stack of normal metals. Additional metallic electrodes are
required nearby to control the chemical potential and electron density, often requiring an
elaborate pattern to independently affect various parts of the hybrid. These electrodes are
usually separated from the device by a gate dielectric. In addition, thick-metallic bond
pads can be present to facilitate the wire-bonding connection between the sample chip
and the measurement setup. Each of these elements requires precise patterning, which
can be accomplished through the use of Electron-Beam Lithography (EBL) combined with
deposition or etching techniques. Unfortunately, forming the interface between the se-
miconductor and superconductor is almost always the first step in fabrication. Yet, it is
precisely this interface that plays a crucial role in the quality of the final device [1]. What
is worse is that this interface is also extremely fragile [2], being adversely affected by
the elevated temperature of the various fabrication processes. Moreover, the repeated
processing inevitably adds contamination to the surface of the hybrids - which is also
known to reduce their quality [3]. Indeed, the many fabrication steps after forming the
semiconductor-superconductor interface (or post-fabrication for short) are detrimental,
both to the performance as well as the reproducibility of hybrid devices.

We have developed the Shadow-Wall Lithography (SWL) technique in order to circum-
vent the drawbacks of post-fabrication. This is done by executing many of the fabrication
steps prior to the deposition of the nanowire. Importantly, this avoids the thermal budget
of the InSb/Al interface, allowing for a broader range of nanofabrication processes to be
used as well as improving the performance of many fabrication steps. In addition, SWL
eliminates the need to etch the superconductor by replacing it with a selective deposition.
This requires the fabrication of pre-patterned dielectric structures in order to selectively
block the deposition of superconductingmaterial. SWL allows for a wide range of complex
device architectures, although at the expense of a more challenging design process. Un-
derstanding the fabrication of SWL substrates and its limitations is crucial for the design
of condensed matter experiments involving semiconductor-superconductor hybrids.

In figure 3.1, we present a Scanning-Electron Microscopy (SEM) image of an exemplary
shadow-wall sample after measurements have concluded. This particular sample is used in
the three-terminal experiments presented in chapter 7. A large-scale overview of the chip
is shown in figure 3.1a. Here, 12 structures, each containing one device and consisting of
2×3 shapes, are visible within a 5𝑥5mm area. The distance between the center of adjacent
structures is approximately 1mm. In figure 3.1b, we zoom in on one of these structures.
The 4 diamond shapes and 2 trapezoid shapes are the bond pads, which are used to connect
the sample to the measurement setup. On top of the pads, bond scraps from the removal of
the bonds aftermeasurement are visible. The brighter pads are connected to the twoOhmic
contacts Ω1 and Ω2 of the device, whereas the pad in between them is connected to the
central superconducting lead. The other three pads connect to the three electrostatic gates
that control the hybrid. The faint lines between the pads are the shadowwalls, which form
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Figure 3.1: Example of a shadow-wall substrate and 8𝜇𝜇𝜇m nanowire hybrid. a. Large-scale overview of
a chip used for three-terminal measurements. The chip hosts 12 structures, separated approximately by 1mm.
b. Zoom-in on a single structure. The 6 pads are connected to the three leads (denoted by Ω1, Ω2, and 𝑠𝑐) and
three electrostatic gates of the device. Shadow walls are used to galvanically isolate the various elements of the
structure. c. The central area of the structure hosts an isolated pocket in which the nanowire is placed. d. The
nanowire is placed on a set of gate electrodes in the center of the structure. The middle lead of the device, in
the top-left corner, connects directly to one of the bond pads. The normal leads are routed via the shadow of
the walls and through gaps in the walls to their respective bond pockets. e,f. The two semiconductor junctions
separate the Al-covered part of the device from the normal leads. Individual narrow gates control the junction
transmissions, while the larger central gate controls the chemical potential in the hybrid segment of the device.
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bond pockets that galvanically isolate the bond pads. In the center, a small isolated pocket
can be seen. A zoom-in of this pocket is shown in figure 3.1c, where the shadow walls are
presented as brighter lines. In addition, the Ohmic contacts are shown as narrow strips
moving from the bottom-left and top-right to the center of the structure. In the center, the
nanowire is placed on top of the gate array as displayed in figure 3.1d. It is contacted by
the superconducting film on the top-left side, forming a 8𝜇m long superconducting hybrid.
The film connects directly to one of the bond pads. Various gaps in the shadowwalls can be
seen, which are crucial elements to ensure electrical isolation between the bond pads. The
Ohmic contacts are routed through such gaps in the walls in the bottom-left and top-right
corner. Further zoom-ins on the Ohmic contacts on the nanowire are shown in figure 3.1e
and f. The hybrid segment of the nanowire is separated from the Ohmic contacts by a
section of uncovered nanowire. Underneath this section is a narrow finger gate, which
can be used to form a tunnel barrier through electrostatic gating. The hybrid segment
itself is positioned on top of a larger gate, which is used to tune the chemical potential in
the segment.

In this thesis, two SWL substrate fabrication methods are used. In chapter 4, substrates
are fabricated using a top-down approach which involves the growth of separate layers
and their subsequent etching. On the other hand, chapters 5, 6, 7, 8 and 9 use bottom-up
substrates for which the individual layers are selectively deposited. Both methods have 4
fabrication stages in common, as shown in figure 3.2. The left and right columns give an
overview of the various nanofabrication steps used to transition between the stages for the
top-down and bottom-up approaches, respectively. Details of these steps are elucidated
in the following two sections. In both cases, we start with initial substrates made from
(usually intrinsic) Si covered by a 285nm layer of SiO2, as shown in figure 3.2a. The first
round of fabrication involves the formation of patterned gate electrodes, which are used
for electrostatic gating of the devices. This results in the stage depicted in figure 3.2b. In
the next round, bond pads are deposited at the ends of the gate electrodes as well as at
the eventual termination of the Ohmic leads. This results in the stage shown in figure 3.2c.
Subsequently, the entire chip is covered in a high-quality gate dielectric before fabricat-
ing the shadow walls, as displayed in figure 3.2d. A final round of cleaning primes the
substrates for nanowire deposition.

3.1.1 Top-down substrates
Top-down: gate layer and bond pads
The top-down approach for the fabrication of shadow-wall substrates relies on the growth
and subsequent etching of the different materials. Before the first fabrication round, the
substrates are covered by a layer of Al2O3using Atomic Layer Deposition (ALD)¹. This
layer acts as a stopping layer for the various etching steps in the fabrication flow. At this
point the fabrication of the gate layer can begin. This requires a total of 7 steps (includ-
ing ALD), which are shown in figure 3.3a. First, a thin layer of W is sputtered² globally
on the chip, as shown in figure 3.3a(ii). Next, the W layer is covered by a thin layer of

¹17nm Al2O3 grown at 𝑇 = 300∘C
²17nm W grown using RF sputtering at 𝑃 = 150W in a 20𝜇bar Ar pressure
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Figure 3.2: Fabrication flow of shadow-wall substrates. The left column (blue) shows the flow for top-down
fabrication, whereas the right column (green) depicts the bottom-up approach. a. The base substrates consist
of (intrinsic) silicon (light purple) covered by 285nm silicon oxide (dark purple). b. After an initial round of
fabrication, the substrates are covered with arrays of thin (∼ 17nm) gate electrodes (red). c. Large and thicker
(∼ 50nm) metallic pads (dark yellow) are connected to the gates to facilitate wire bonding of the samples. d. The
substrates are covered in a gate dielectric (light blue) before fabricating the shadow walls (green), which define
the shadow lithography pattern for the deposition of the superconducting layer.
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negative EBL resist³ (figure 3.3a(iii)). The resist layer is subsequently exposed in the shape
of the gate pattern using EBL. After exposure, the resist is developed⁴ which removes the
unexposed parts of the resist layer. Both exposure and development of the resist layer are
depicted in figure 3.3a(iv). The desired pattern is then dry-etched into the W layer (fig-
ure 3.3a(v)), using Reactive-Ion Etching (RIE)⁵. Afterward, the resist layer, which covers
the remaining W, is removed using the appropriate stripper⁶ (figure 3.3a(vi)). However,
this may leave undesirable resist residues on top of the gates as the etching process can
harden the resist layer through heating, making it difficult to remove. Thus, an aggres-
sive O2 plasma cleaning⁷ is used as a final step to remove any residues from the sample
(figure 3.3a(vii)).

While we found initial success in this approach of gate fabrication, the reliance on etching
does come with limitations. On the one hand, organic material (EBL resist) on top of the
gates can be problematic if it is not properly removed. In this case, resist residues could
be present between the gate electrode and the gate dielectric, and inevitably underneath
the hybrid device. Such residues are essentially very poor-quality dielectric, which is
filled with charge traps [4]. Consequentially, they can result in an undesirable loss of
electrical stability of the hybrid devices. In addition, our etching process turned out to
have poor reproducibility. For example, in figure 3.3b and c, we show two examples of
a shadow-wall structure with etched gates. In figure 3.3b, a properly-formed structure is
shownwhere the fine gate (blue box) is well-separated from the other two gates. However,
the similar structure in figure 3.3c shows an example where the three gates are merged.
As a result, various parts of the hybrid can not be individually controlled with the gates,
rendering the structure useless. What is more concerning is that these two structures
were adjacent on a single chip, with a spacing between them on the order of 950𝜇m. The
non-uniformity of the etching process causes such a low reliability that chips essentially
can only be fabricated one at a time. Furthermore, this also limits the spatial resolution
and size of the gate pattern. A fine set of narrow gates, such as the ones used to form
quantum dots, is difficult to realize using this specific fabrication recipe.

After the fabrication of the gate layer, bond pads are created to facilitate the wire bonding
of the sample to the measurement setup. First, the substrates are covered in positive EBL
resist⁸. The bond pad areas are exposed in the EBL, after which the sample is developed⁹.
Next, the W is sputtered¹⁰ which covers the exposed parts of the chip, forming the bond
pads. The sample is then put in liftoff¹¹ to remove the excess resist andW. At this point, the
gate layer and bond pads are finished and need to be covered by the gate dielectric. Before
growing this layer, the sample is again subjected to an aggressive O2 plasma cleaning¹².
This ensures no organic residues remain between the gate electrodes and the dielectric

³AR-N 7500.08 spun at 4krpm for 1min, hot-baked at 𝑇 = 85∘C for 3min
⁴AR 300-47 for 2min, followed by 30s in H2O and post-baking at 𝑇 = 120∘C for 1min
⁵RIE etching using SF6 at 𝑇 = 20∘C for 1min
⁶AR 600-71 overnight (∼ 18h), followed by 30s in H2O
⁷O2 plasma at a pressure of 𝑝 = 0.7mbar and 𝑃 = 600W for 40min
⁸PMMA 950k A6 spun at 4krpm for 1min, hot-baked at 𝑇 = 185∘C for 10min
⁹3 ∶ 1 mixture of IPA:MIBK for 1min, followed by IPA for 1min
¹⁰50nm W grown using RF sputtering at 𝑃 = 150W in a 20𝜇bar Ar pressure
¹¹30min in acetone at 𝑇 = 50∘C followed by 5 minutes of low-power ultrasonic bath
¹²O2 plasma at a pressure of 𝑝 = 0.7mbar and 𝑃 = 600W for 40min
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Figure 3.3: Fabrication procedure of W bottom gates. a. W gates are fabricated by first sputtering a full
W film on the substrate and subsequently etching down the layer to achieve the desired pattern. b. Example
SEM image of the desired gate pattern with successful etching. c. Example SEM image of unsuccessful gate
fabrication due to nonuniform etching. Notably, the two structures in b and c are adjacent on the same chip,
only 950𝜇m apart. Scale bars represent 1𝜇m.

layer. The Al2O3 gate dielectric is grown directly afterward, using ALD¹³. The samples are
now ready for the fabrication of the shadow walls.

Top-down: shadow walls
The shadow walls themselves are made from a dielectric material in order to facilitate
electrical isolation between various parts of the chip. The 6 fabrication steps involved are
shown in figure 3.4a. First, a ∼ 700nm thick Si3N4 layer is grown globally on the chip using
Plasma-Enhanced Chemical Vapor Deposition¹⁴ (PECVD), as shown in figure 3.4a(ii). The
Si3N4 layer is then covered by a thin layer of negative EBL resist¹⁵ (figure 3.4a(iii)). The
resist layer is subsequently exposed in the shape of the shadow-wall pattern using EBL.
After exposure, the resist is developed¹⁶ which removes the unexposed parts of the resist
layer. Both exposure and development of the resist layer are depicted in figure 3.4a(iv). The
desired pattern is then dry-etched into the Si3N4 layer (figure 3.4a(v)), using RIE¹⁷ (RIE).
Here, the time is calibrated to slightly over-etch the Si3N4 layer, whereas the Al2O3 acts
as a stopping layer to protect the gate electrodes. Finally, the resist layer which covers

¹³17nm Al2O3 grown at 𝑇 = 300∘C
¹⁴700nm Si3N4 grown at 𝑇 = 300∘C
¹⁵AR-N 7500.18 spun at 4krpm for 1min, hot-baked at 𝑇 = 85∘C for 3min
¹⁶AR 300-47 for 2min, followed by 30s in H2O and post-baking at 𝑇 = 120∘C for 1min
¹⁷RIE etching using CHF3/O2 gases at 𝑝 = 8.0mtorr and 𝑃 = 50W
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Figure 3.4: Fabrication procedure of Si3N4 shadow walls. a. Shadow walls are grown by globally depositing
a thick (∼ 700nm) Si3N4 layer using PECVD before etching it down to achieve the desired pattern. b. Example
SEM of Si3N4 shadow walls. Lateral etching can damage fine structures such as nozzles (red) and alter the shape
of the walls (blue). Scalebar represents 500nm. Image taken at 60∘ angle from the substrate.

the remaining Si3N4 is removed¹⁸ and the substrates are cleaned with an aggressive O2
plasma¹⁹ (figure 3.4a(vii)). At this point, the substrate is ready for nanowire deposition.

The RIE process is typically only partially directional. As a result, the etching of thick
layers might suffer from lateral etching, as demonstrated in figure 3.4b. The lateral etching
can lead to deformation or even a complete removal for narrow features. This is shown,
for example, in the red box, where a nozzle used to create nanowire junctions is depicted.
The width of the nozzle using this process is limited, as narrower nozzles would collapse
more quickly due to the lateral etching. Similarly, a thicker Si3N4 layer results in a more-
significant lateral etching as the required etching time increases with the layer thickness.
Thus, the Si3N4 thickness is also limited, which in turn affects the length of the shadow
cast by the shadowwalls. This canmake the deposition of the nanowires quite challenging,
as they need to be placed in close proximity to the walls.

3.1.2 Bottom-up substrates
Bottom-up: gate layer and bond pads
In the bottom-up approach, the various layers of the shadow-wall substrates are directly
deposited. The main advantage is that the least reliable fabrication step, the etching of
various layers, is avoided. At the start of the fabrication, no etch-stop layer in the form of
ALD-depositedAl2O3 is required. The formation of the gate layer is thus reduced to 4 steps,
which are depicted in figure 3.5a. First, a thin layer of positive EBL resist is spun across

¹⁸AR 600-71 over night (∼ 18h), followed by 30s in H2O
¹⁹O2 plasma at a pressure of 𝑝 = 0.7mbar and 𝑃 = 600W for 40min
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the sample²⁰ (figure 3.5a(ii)). The pattern of the bottom gate array is then exposed in the
EBL and subsequently developed²¹, as shown in figure 3.5a(iii). Next, the gate metals are
deposited using an electron-beam evaporator (EBE). First, a thin layer of Ti is deposited as
a sticking layer, followed by a thin Pd film²². The sample is then put in acetone for the lift-
off process²³, which removes the EBL resist as well as the Ti/Pd layer on top (figure 3.5a(iv)).
The bond pads are fabricated afterward, using the same fabrication as for the top-down
substrates (see section 3.1.1).

With this method, the gate metals are deposited in the desired pattern onto the substrate
and require no etching. A correct dose for the EBL process is, in this case, the most critical
process parameter. For example, if the dose is too low, the positive resist does not get
fully exposed, which results in resist residues after the development. These residues then
remain during the gate metal deposition, resulting in non-flat gate electrodes as shown
in figure 3.5b. On the other hand, none of these residues should remain if the dose is
correct. This results in flat gate electrodes, as shown in figure 3.5c. The roughness of the
films can be investigated using Atomic Force Microscopy (AFM). An example is shown in
figure 3.5d, for which a roughness of 𝑅a = 0.25nm is estimated.

²⁰PMMA 950k A2 spun at 4krpm for 1min, hot-baked at 𝑇 = 185∘C for 10min
²¹3 ∶ 1 mixture of IPA:MIBK for 1min, followed by IPA for 1min and 1min post-baking at 𝑇 = 110∘C
²²3nm Ti evaporated at 0.5Å/s followed by 17nm Pd evaporated at 1.0Å/s
²³Room temperature acetone overnight (∼ 18h) or in 𝑇 = 50∘CAcetone for 1h, followed by a low-power ultrasonic
bath for 5min
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Figure 3.5: Fabrication procedure of Ti/Pd bottom gates. a. Ti/Pd gates are fabricated by first patterning the
desired shape before depositing a Ti/Pd film using electron-beam evaporation. b. Underdosing during lithog-
raphy can lead to resist residues on the substrate, resulting in non-flat gates. c. With the correct dose, small
feature sizes can be achieved, and the gate roughness is limited by grains in the film. d. AFM image of the gates
depicted in panel c around the red dashed box. The films have a roughness of 𝑅𝑎 = 0.25nm. Scalebars represent
200nm.
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For the optimized EBL dose, we can obtain gate arrays with features sizes as small as
20nm spacing between the gates and a gate width of 30nm. This allows the formation of
narrow gate-defined quantum dots in the semiconductor. The size of the dots determines
the orbital level spacing 𝐸n, which is inversely proportional to its length 𝐿 (𝐸n ∝ 1/𝐿2).
Thus, small dots have a large orbital level spacing, which, together with a large 𝑔-factor,
opens up the possibility to spin-polarize the dot levels. The ability to do this is a crucial
requirement for the experiment done in chapter 8 on the unit-cell Kitaev chain (see also
the theory in section 2.3). This would likely be difficult to implement with our recipe
for etched W gates (see section 3.1.1). Thus, the direct deposition of Ti/Pd gates forms
an essential improvement over the etched W gates, which enabled a vast number of new
device architectures and experiments.

Similarly, the direct deposition of Ti/Pd gates with the correct EBL dose significantly im-
proved the reproducibility of the substrate fabrication. For example, substrates are made
with this technique on a 2× 2cm chip containing 4 dies of 1× 1cm. Each die contains 12
shadow-wall structures, allowing for an equal number of devices to be made per die. Thus
a total of 48 gate arrays are present on the chip. With the optimized recipe, we typically
obtain a yield close to 100% for the gate layer. In contrast to the etched W gates, the de-
posited Ti/Pd gates allow the creation of a large number of identical and fully functional
substrates. This improvement is essential for optimizing recipes for a new superconductor,
as done in chapter 5, as well as the large-scale studies of many samples in chapter 6.

Bottom-up: shadow walls
In contrast to the top-down approach, this method uses a different gate dielectric: HfO2
instead of Al2O3. The shadow walls themselves are fabricated in 2 steps, as shown in
figure 3.6a. First, an ∼ 800nm thick layer of Hydrogen Silsesquioxane (HSQ) is spin-coated
on the chip²⁴. The HSQ acts as a negative resist, which forms a silicon-rich oxide upon
exposure to the EBL. Development²⁵ removes the unexposedHSQ, leaving only the shadow
walls. While the samples can typically be blown dry with an N2 gun, small features with
large aspect ratios can benefit from drying using a Critical Point Dryer (CPD) to avoid
them from collapsing. Note that the developer is based on TMAH, which is used to etch
Al2O3. While we typically use HfO2 as the gate dielectric, it can be replaced with Al2O3
but only if the walls are fabricated before the gate dielectric is grown. Prior to nanowire
deposition, the substrates are cleaned using a moderate O2 plasma²⁶ to remove organic
residues.

The optimization of HSQ shadow-wall fabrication relies on the correct dosing in the EBL.
For example, if the dose is too high, the electron backscattering on the substrate can cause
narrow gaps in the walls to merge, as shown in figure 3.6b. On the other hand, a low dose
results in the malformation or removal of narrow features such as nozzles (figure 3.6c).
With the correct dose, figure 3.6d shows that narrow features can be fully formed without
merging at the base. However, such features with large aspect ratios can collapse upon
each other if patterned close together and not dried using the CPD - or if exposed to the

²⁴FOx-25 spun at 1.5krpm for 1min, hot-baked at 𝑇 = 180∘C for 2min
²⁵5min in MF-321 at 𝑇 = 50∘C, followed by rinsing for 30s in H2O and 30s in IPA.
²⁶O2 plasma at a pressure of 𝑝 = 0.7mbar and 𝑃 = 600W for 5min
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Figure 3.6: Fabrication procedure of HSQ shadowwalls. a. HSQwalls are fabricated by spin-coating an HSQ
layer and exposing the desired pattern using EBL. b. Too high doses can merge small gaps in the wall structure.
c. Too low doses are detrimental to fine structures such as nozzles. d. With the correct dose, narrow features
with large aspect ratios can fully form without merging at the base. However, CPD might be required to dry
chips with such features, and SEM exposure can also cause them to collapse, as seen in this image. Scalebars
represent 500nm.

electron beam of an SEM. In comparison to the etched Si3N4 walls, the minimal feature
size of HSQ walls is only limited by the EBL resolution. We have found that nozzles with a
small width of ∼ 20nm can be reliably fabricated using this method. This enables the cre-
ation of extremely short nanowire Josephson junctions [5], essential for the experiments
presented in chapter 9 on the superconducting diode effect.

3.2 Nanowire deposition
After the preparation of the substrates, nanowires need to be deposited on top of the gate
electrodes. For the shadow-wall lithography to function correctly, the nanowires must
be placed in close vicinity to the shadow walls. Depending on the height of the walls
and the deposition angle, the maximum allowed distance from the wall can vary between
∼ 500nm and ∼ 1400nm. It is beneficial to calculate the estimated shadow length of the
walls for a given superconductor recipe, and adjust the size of the gate array such that
the gate electrodes themselves fall within the shadow length of the wall. This way, it
is assured that the proper parts of the nanowire are shadowed by the walls during the
superconductor deposition whenever the nanowire is placed on top of the gates.

Throughout this thesis, we make use of stemless InSb nanowires [6]. These nanowires
offer relatively high mobility, can be as long as 15𝜇m, and can have diameters as small
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as 80nm. The length can be exploited to make extremely long hybrids, up to 8𝜇m in
chapter 7. On the other hand, the small diameter is beneficial to increase the level spacing
of the nanowire subbands and energy levels.

The nanowires are deposited using an optical nanomanipulator setup. This technique uses
a sharp needle to mechanically transfer nanowires from the growth chip to a target sub-
strate [7]. However, the addition of shadow walls on the substrate poses a new challenge:
the target area for landing the nanowire is small and close to the shadow walls, which
makes direct placement very challenging. Here, we show step-by-step how the nanowires
are placed on shadow-wall substrates.

The nanowire deposition process is illustrated in figure 3.7. In figure 3.7a, the manual
controller is shown. It possesses three rotating knobs which can be used to maneuver the
needle in three orthogonal directions. The needle itself and the arm onwhich it is mounted
are shown in figure 3.7b. A tightening screw can be used to clamp or release the needle.
By releasing it, the needle can be manually rotated around its axis. Figure 3.7c depicts
the tip of the needle, which has an apex of around 100nm. It is close to a growth field of
nanowires, depicted as black dots in this image. The coordinate system is also shown, and
corresponds to the rotational knobs in figure 3.7a. Movements of the needle in figure 3.7
are represented by a white arrow, whereas black arrows are used to highlight the chosen
nanowire.

First, the nanowire has to be picked up from the growth chip. This is depicted in the red
panels of figure 3.7. The needle is initially brought close to the nanowire, as shown in
figure 3.7d. In addition, it needs to be relatively close to the surface of the growth chip.
Then, the needle is pushed sideways into the nanowire, causing it to bend as shown in
figure 3.7e. If the needle is positioned too far from the surface, the nanowire will fully
bend and slip underneath the needle. This is a consequence of their large aspect ratios.
However, if the needle is low enough, the nanowire will usually break at the connection
to the growth chip. While thicker nanowiresmay stick to the needle directly due to van der
Waals forces, thinner nanowires often jump away a small distance before sticking upright
to the substrate. This is depicted in figure 3.7f. As the mechanical connection between the
nanowire and the substrate is broken, it is now easier to pick up by combining a sideways
and upward motion of the needle. This typically results in the nanowire sticking vertically
to the tip, as depicted in figure 3.7g.

At this point, the nanowire can be deposited onto the substrate, as illustrated in the blue
panels of figure 3.7. To facilitate a correct landing, it is helpful to manually rotate the
needle such that the nanowire is positioned horizontally on the bottom of the tip, as shown
in figure 3.7h. In addition, a reticle in one of the ocular lenses of the microscope can
be aligned with the nanowire, depicted as the white cross-hair in figure 3.7h. Next, the
aligned reticle serves as a reference for the target substrate. The substrate can be manually
rotated to align the shadow walls with the reticle. This, in turn, ensures that the nanowire
is oriented parallel to the shadow walls. The needle is then brought close to the center of
the structure, a little bit above the surface of the substrate, as shown in figure 3.7j. Once
the nanowire is close to the electrostatic gates, depicted in orange here, the needle can be
lowered as depicted in figure 3.7k. Van der Waals forces will then cause the nanowire to
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Figure 3.7: Nanowire deposition on shadow-wall substrates. a. The nanomanipulator setup possesses indi-
vidual control over three movement axes. b. The needle used for nanowire transfer can be manually rotated. c.
Optical microscope image of the manipulator needle close to a field of nanowires (black dots). d-g. Red panels
show how nanowires are picked up from the growth chip. h-l. Blue panels depict the various steps during na-
nowire deposition. m-o. Green panels illustrate the nanowire pushing process. In all panels, the used nanowire
is highlighted with a black arrow. White arrows represent the movement of the manipulator needle. Scale bars
correspond to 2𝜇m.
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snap to the substrate, finishing the deposition process (figure 3.7l). Note that depending
on the size of the gates and the position of the nanowire on the needle, it can be possible to
directly deposit the nanowire on top of the gates. However, the vicinity of the gates near
the shadow walls (shown in green) can cause the nanowire to attach to the walls instead -
effectively causing a loss of the nanowire and disabling the structure from being used.

Instead, we often rely on the process of nanowire pushing to bring the nanowire on top
of the gates. This is demonstrated in the green panels of figure 3.7. The needle is first
brought close to the substrate, allowing it to touch weakly. The needle is then moved
across the substrate, pushing on the ends of the nanowire to move it slightly closer to the
gates (figure 3.7m). Subsequently, the nanowire is straightened out by moving the needle
in the orthogonal direction, as shown in figure 3.7n. This cycle of slightly pushing and
straightening is repeated until the nanowire is on top of the gates. The final position is
displayed in figure 3.7o.

3.3 Interface cleaning and metal deposition
3.3.1 Semiconductor surface treatment
Once all nanowires are placed on the shadow-wall substrate, the sample is ready for the su-
perconductor deposition. However, the nanowires possess a native oxide layer which pre-
vents making good contact. Thus, it first needs to be removed, which we achieve through
atomic hydrogen cleaning [8].

The hydrogen-cleaning process is executed inside the load lock of a custom electron-beam
evaporator. This is schematically depicted in figure 3.8a. The sample itself is mounted onto
a heatable stage, which can rotate freely about its axis. The stage temperature is set to
𝑇 = 550K, where the sample is thermalized at this temperature for 2h before starting the
cleaning process. H2 gas is injected into the chamber at a flow of 2mln/min. A fraction
of the H2 molecules is dissociated into H∗ radicals through the use of a W filament at a
temperature of 𝑇 = 1700∘C. This results in a chamber pressure of 𝑝 = 6.3 ⋅ 10−5mbar. The
created H∗ radicals are volatile and react with the native nanowire oxide [9]. This reaction
results in the formation of H2O, which is pumped out of the process chamber. The cleaning
angle 𝜑 can be adjusted by rotating the stage. During the cleaning, we use a combination
of two cleaning angles 𝜑 = 30∘ and 𝜑 = 120∘ as depicted in figure 3.8b. Both angles receive
an equal hydrogen cleaning time 𝑡cleaning, which is the main parameter over which we
optimize the cleaning process.

To optimize the cleaning time, we investigate the transport characteristics of InSb/Al Jo-
sephson junctions [10]. Such devices can be measured either in a voltage-bias configura-
tion or in a current-bias configuration, of which the circuits are schematically depicted in
figure 3.8c and d. In the case of a voltage bias, a DC voltage 𝑉dc = 1mV is applied across
the device while measuring the resulting current 𝐼 . The nanowire conductance 𝐺 is then
calculated as 𝐺 = 𝐼 /(𝑉dc −𝐼 ⋅𝑅s), where 𝑅s is the series resistance of the circuit. In addition,
the doped Si layer on the back of the chip can be used as a gate by applying a back-gate
voltage 𝑉BG. The nanowire conductance is then measured as a function of 𝑉BG, resulting
in a pinch-off curve as shown in figure 3.8e. At high back-gate voltages, the conductance
tends to saturate to a saturation conductance 𝐺sat. This value is obtained from the mea-
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Figure 3.8: Optimization of the hydrogen cleaning process. a. Illustration of the cleaning setup. The holder
and substrate can be rotated to adjust the cleaning angle 𝜑. b. A mix of two cleaning angles (30∘C and 120∘C
with respect to the substrate) is used to remove the native oxide (dark green) from the nanowires. c. A nanowire
Josephson junction in the voltage-bias configuration, used for panels e and g. d. A nanowire Josephson junction
in the current-bias configuration, used for panels f and h. e. Example pinch-off trace to determine the saturation
conductance𝐺sat (red dashed line) by averaging the conductance in between 13.7V< 𝑉BG < 15V (light blue area).
f. Example switching current map to determine the saturation switching current 𝐼SW,sat (orange dashed line) by
averaging switching current values (white line) in between 10V< 𝑉BG < 15V. g. Box plots of 𝐺sat as a function
of H∗-cleaning time. h. Box plots of 𝐼SW,sat as a function of H∗-cleaning time.
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surements by averaging conductance values in a window 13.7V< 𝑉BG < 15V, depicted
as the light-blue rectangle. The saturation conductance serves as one of the metrics for
characterizing the hydrogen cleaning process.

On the other hand, Josephson junctions can also be measured by using a current bias
(figure 3.8d). A current 𝐼dc is applied to the device, resulting in a voltage drop 𝑉 . At low
values of 𝐼dc, the current across the junction is a supercurrent which results in no voltage
dropping across the device. As the current is increased, the junction switches to a resistive
state at a current value 𝐼SW. This value typically increases and saturates at high back-gate
voltages. In addition, the differential resistance 𝑅 ≡ dV/dIdc is measured using standard
lock-in techniques. The sample resistance is measured as a function of 𝐼dc and 𝑉BG, as
shown in figure 3.8f. The switching current is depicted as a white curve on top. We define
the saturation switching current 𝐼SW,sat as the average value of the switching current in
a window of 13.7V< 𝑉BG < 15V, depicted as the dashed orange line. This serves as the
second metric for characterizing the hydrogen cleaning process.

Both saturation conductance and switching current can vary between different nanowires.
In particular, they rely on microscopic details as well as the diameter of the used nanowire,
as this influences their mobility [6]. Thus, to optimize the cleaning process, we prepare
several chips, each with a large number of nanowires, all from the same growth field.
Picking nanowires from the same field ensures that the spread in diameters is minimal,
on the order of 20nm. The substrates accommodate up to 16 nanowires, so a statistical
analysis of the results on a single chip can be used.

In figure 3.8g, the saturation conductance is shown for 4 chips while varying the cleaning
time. Here, a cleaning time of 𝑡cleaning = 2×25minmeans a combination of 25min cleaning
at an angle of 𝜑 = 30∘ followed by 25min cleaning at 𝜑 = 120∘. Results are presented as
box plots, displaying the median and spread of the saturation conductance across multiple
nanowires on the same chip. The 4 chips contain data of 10, 10, 6 and 9 nanowires for the
cleaning times of 2 × 25min, 2 × 30min, 2 × 35min and 2 × 40min respectively. Likewise,
results of the saturation switching current are shown in figure 3.8h. Both panels display
a maximum value of the respective metric for a cleaning time of 𝑡cleaning = 2×30min. As
the two parameters 𝐺sat and 𝐼SW,sat are indicative of the interface transparency between
InSb and Al, this cleaning time achieves an optimal removal of the native oxide of the
nanowires. This was verified by analyzing samples using Energy-dispersive X-ray spec-
troscopy (EDX) in a Transmission electron microscope (TEM); see also chapter 4. We note
that the interface quality apparently decreases when the sample is cleaned for 2× 35min
and 2 × 40min. We suspect that over-cleaning results in the removal of Sb molecules at
the surface after the oxide has been completely removed. This increases the surface rough-
ness, and combined with the presence of In droplets, the transparency between the InSb
and Al can be adversely affected.

3.3.2 Superconductor deposition
After removing the nanowire oxide, the sample is cooled down through active liquid nitro-
gen (LN2) cooling. The heater is then used to stabilize the stage temperature at 𝑇 = 138K,
where the sample is allowed to thermalize for 1h. At the same time, a shroud surround-
ing the evaporator chamber is filled with LN2, which reduces the chamber pressure from
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𝑝 =∼ 2 ⋅10−8mbar to 𝑝 =∼ 2 ⋅10−9mbar. Then, we precondition the chamber by evaporating
∼ 20nm of getter material (such as Ti, V or Nb), which reacts with residual gas species in
the chamber (such as O2, H2O and N2). This reduces the pressure even further, bringing
it down to 𝑝 =∼ 2 ⋅ 10−10mbar. The Al film is then deposited onto the sample at a rate of
0.05Å/s, with the deposition angle and film thickness depending on the sample require-
ments (see supplemental information of the various chapters for details). After this, for
some samples, a thin Pt deposition is included (see chapters 6 and 7). To prevent the
films from deforming during the warm-up to room temperature, they are protected either
through the deposition of a capping layer (20nm AlO𝑥 deposited at ∼ 0.2Å/s) or through
cold oxidation of the film in the load lock of the evaporator. This is done by exposing the
samples to an O2 pressure of 200mTorr for 5min.

The deposition process is schematically depicted in figure 3.9. In figure 3.9a, the substrate
is shown with a nanowire placed on top of the gates. In addition, it illustrates the deposi-
tion of Al at an angle with respect to the substrate. A typical deposition angle is 𝜑 = 30∘,
which results in a shadow length of ∼ 1.4𝜇m for a shadow wall height of 800nm. The red
and yellow bars indicate the location of two cross-sections displayed in figure 3.9d and e,
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Figure 3.9: Deposition of the superconducting and normal metals for a three-terminal device. a. A
nanowire (green) is placed on top of the gates in the vicinity of the shadow walls. The direction of the Al flow
is indicated with a black arrow. The red and yellow bars indicate the locations of the cross-sections taken in
d and e. b. After H∗-cleaning and superconductor deposition, part of the nanowire is covered by the Al (grey)
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where no Al film is present. d,e. Cross-sectional cuts in the shadow of the walls (d) and outside the shadow (e),
showing the position of the nanowire (i), Al film deposition (ii) and normal contact placement (iii).
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and the situation before deposition is shown in subpanel (i). The deposition itself covers a
predefined section of the nanowire with Al, forming the hybrid segment wherever there is
a gap in the shadow walls (see figure 3.9b, d(ii) and e(ii)). The parts of the nanowire which
lie in the shadow of the walls can later be used to form nanowire junctions and normal
metal contacts. Some device archetypes, such as Josephson junctions and Superconduct-
ing Quantum Interference Devices (SQUIDs), do not require any Ohmic contacts and are
ready for loading into the measurement setup at this point.

3.3.3 Normal contact deposition
As a final step, some samples may require the formation of Ohmic contacts made from a
normal metal. In principle, this can be achieved in the same chamber as the superconduc-
tor deposition without breaking the vacuum. It requires the use of shadow-wall deposition
at 2 different angles [11]. However, making contact with InSb is difficult due to the forma-
tion of a Schottky barrier when a mild interface treatment is used. This problem can, in
principle, be alleviated by including an additional gate underneath [12]. It can instead be
beneficial to create the Ohmic contacts in a different evaporator while using standard EBL
techniques - avoiding both the added complexity of designing a substrate for double-angle
deposition, as well as the requirement of additional gates underneath the contacts.

In order to do so, the sample is first coated in a layer of positive EBL resist²⁷. The pattern of
the Ohmic contacts is then exposed in the EBL and subsequently developed²⁸. Since this
process requires the sample to move between evaporators, a newly-formed oxide layer
needs to be removed from the nanowire. This is done through aggressive Ar ion milling²⁹,
which locally destroys the semiconductor crystal and leaves the surface of the nanowire
covered with In droplets. While normal metals typically form a Schottky barrier with
InSb [12], this facilitates a good Ohmic contact between the nanowire and the contact
metal. An electron-beam evaporator (EBE) is used first to deposit a sticking layer of Cr or
Ti, followed by the evaporation of a thick Au film³⁰. The sample is then put in acetone for
the lift-off process³¹. At this point, the sample is ready for loading into the measurement
setup. An example of the sample after deposition of the normal metal is schematically
depicted in figure 3.9c, with cross-sections in figure 3.9d(iii) and e(iii).
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4
Shadow-wall lithography of

ballistic superconductor-
semiconductor quantum devices

The realization of hybrid superconductor–semiconductor quantum devices, in particular
a topological qubit, calls for advanced techniques to readily and reproducibly engineer
induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip
fabrication paradigm based on shadow walls that offers substantial advances in device
quality and reproducibility. It allows for the implementation of hybrid quantum devices
and ultimately topological qubits while eliminating fabrication steps such as lithography
and etching. This is critical to preserve the integrity and homogeneity of the fragile hy-
brid interfaces. The approach simplifies the reproducible fabrication of devices with a
hard induced superconducting gap and ballistic normal-/superconductor junctions. Large
gate-tunable supercurrents and high-order multiple Andreev reflections manifest the ex-
ceptional coherence of the resulting nanowire Josephson junctions. Our approach enables
the realization of 3-terminal devices, where zero-bias conductance peaks emerge in a mag-
netic field concurrently at both boundaries of the one-dimensional hybrids.

This chapter has been published as Shadow-wall lithography of ballistic superconductor-semiconductor quantum
devices, S. Heedt†, M. Quintero-Pérez†, F. Borsoi†, A. Fursina, N. van Loo, G.P. Mazur, M.P. Nowak, M. Ammer-
laan, K. Li, S. Korneychuk, J. Shen, M.A.Y. van de Poll, G. Badawy, S. Gazibegovic, N. de Jong, P. Aseev, K. van
Hoogdalem, E.P.A.M. Bakkers and L.P. Kouwenhoven in Nature Communications 12, 4914 (2021).
† These authors contributed equally to this work.
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4.1 Introduction
Hybrid superconducting/semiconducting nanowires are a promising material platform for
the formation of one-dimensional topological superconductors bounded by pairs of Ma-
jorana modes [1–3]. Owing to their non-Abelian exchange statistics, these localized Ma-
jorana bound states (MBS) are the fundamental constituents for fault-tolerant topological
quantum computing [4, 5]. Individual qubits comprise at least four MBS in several inter-
connected nanowire segments with a hard induced superconducting gap [6, 7]. Residual
fermionic states within the gap would compromise the topological protection of the Ma-
jorana modes. Hence, a fundamental challenge in the development of topological qubits
is the engineering of complex, interconnected hybrid devices with hard superconducting
gaps and clean, homogeneous interfaces [8, 9].

Here, we introduce a fabrication technique that resolves these challenges and provides
high-quality hybrid quantum devices, reflected by the absence of chemical intermixing, a
high interface transparency and hard induced gaps, while involving minimal nanofabrica-
tion steps compared with previously established methods [10, 11]. Our approach is based
on the deposition of superconducting thin films at a shallow angle onto semiconducting
nanowires, which have been selectively placed on substrates with pre-patterned gates
and shadow-wall structures. It enables complex hybrid devices while eliminating lithog-
raphy, etching, and other fabrication steps after the deposition of the superconductor, in
the following referred to as post-interface fabrication. While shadow-wall lithography is
compatible with a large variety of materials, we utilize InSb nanowires coated with Al
half-shells to induce superconducting correlations – a suitable material combination to
study Majorana physics [11, 12]. The homogeneity of the interface between InSb and Al
ultimately determines the device quality, but it is known to have very limited chemical
and thermal stability [9, 13]. Therefore, the reduction or elimination of post-interface fab-
rication steps represents a paradigm shift that enables pristine hybrid interfaces. Similar
advances in quality and reproducibility (Supplementary Note 1) were made possible by
the reverse fabrication process established for carbon nanotube devices [14].

In this article, we investigate the transport properties of hybrid nanowire shadow-wall de-
vices. Initially, we examine Josephson junctions and detect subharmonic gap features that
arise from multiple Andreev reflections [15]. These junctions exhibit gate-tunable super-
currents of up to 90nA, which is exceptionally large for InSb/Al nanowires compared to
previous works on InSb Josephson junction devices [9, 16, 17]. The shadow-wall method
also facilitates 3-terminal hybrid devices with two normal metal/superconductor (N–S)
interfaces, which are crucial to corroborate earlier Majorana signatures [18–20]. We in-
vestigate the transport at a single N–S interface and observe a crossover between a hard
induced gap and pronounced Andreev enhancement upon increasing the junction trans-
parency, consistent with the expected behaviour for ballistic junctions [21, 22]. Finally,
we report the emergence of discrete subgap states in the tunnelling conductance at both
nanowire ends and detect stable zero-energy conductance peaks that coexist at certain
magnetic fields and chemical potentials.

Our fabrication method paves the way for more advanced nanowire devices, including
qubit implementations [6, 7, 23] and other multi-terminal devices that are essential for fun-
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Figure 4.1: Illustration of the shadow-wall technique. a Micromechanical transfer of the nanowires onto
local bottom gates (covered by Al2O3 dielectric) in the proximity of the Si3N4 shadow walls. b Illustration of a
final device following the H radical cleaning and Al deposition at a shallow angle. c False-colour SEM image
of an exemplary sample prior to Al deposition. Shadow walls are designated in blue and bond pads, which are
enclosed by the shadow walls, are shaded in dark yellow. Gaps are placed at critical locations along the shadow
walls (cf. green circle and the illustration in the blow-up following Al deposition). This ensures that bond pads
with leads are isolated from each other after the Al deposition. The area illustrated in panel (a) is indicated by the
orange box. d Schematic of the InSb nanowire cross-section during H radical cleaning (top). The native oxide of
the semiconductor is denoted by a dark green layer. The Al thin film deposited at a shallow angle of 30∘ forms
an electrical connection from the nanowire to the substrate (bottom).

damental research on topological superconductors [18, 24]. The versatility of the shadow-
wall technique introduces a convenient and quick way to implement new device geome-
tries with various combinations of semiconductor and superconductor materials.

4.2 Results
4.2.1 Shadow-Wall Lithography
A well-established approach to realize hybrid devices is based on the epitaxial growth of
nanowires followed by the in-situ evaporation of a superconductor [10, 25]. This method
requires a subsequent etching step to expose gate-tunable wire segments without metal.
Nanowires have also been grown on opposite crystal facets of etched trenches [11, 26],
which enables the formation of shadowed junctions without the need to etch the supercon-
ductor [11]. The native oxide that forms during the ex-situ processing is removed prior to
the deposition of the superconductor. Another recent study employed growth chips with
bridges and trenches that act as selectively shadowing objects during the evaporation of a
superconductor [27]. Common to those methods is that the hybrid nanowires are removed
from the growth substrate following the evaporation and undergo several post-interface
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fabrication steps such as alignment via scanning electron microscopy (SEM), electron-
beam lithography involving resist coating, or etching. The latter, in particular, degrades
the electrical device performance compared with shadowed junctions [13]. Moreover, hy-
brid devices are prone to degradation. High-temperature processing (e.g. certain dielectric
deposition methods or resist baking) cannot be performed, as it would lead to chemical
intermixing at the super-/semiconductor interface [28, 29]. The limited chemical stability
of the interface requires sample storage in vacuum at a temperature 𝑇 < 0 ∘C, which is
hardly compatible with standard fabrication methods. The low thermal budget and the
additional fabrication steps limit the achievable device performance in terms of electrical
noise, lithographical alignment accuracy, contamination and disorder. The considerable
variation from device to device imposes singular rather than standardized designs and
results in a limited reproducibility of basic transport measurements.

In contrast, the core principle of our approach is to minimize or eliminate post-interface
fabrication. We have engineered scalable substrates that comprise all desired functionali-
ties without being subject to any fabrication restrictions (e.g. thermal budget limitations)
since the semiconductor nanowires are only introduced right before the superconductor
deposition. As depicted in Fig. 4.1a, we transfer InSb nanowires [30] to these substrates
onto pre-patterned bottom gates covered by a continuous dielectric layer in the vicinity of
shadow-wall structures. The nanowires are loaded into a customized evaporation chamber
where the native oxide is removed at 𝑇 = 550K by exposure to a directed flow of atomic
hydrogen radicals. Without breaking the vacuum, Al is subsequently deposited onto the
samples at 𝑇 = 140K. The superconductor is evaporated at a shallow angle of 30∘ with
respect to the substrate plane, which creates a 3-facet nanowire shell that is connected to
the leads and bond pads on the substrate (Fig. 4.1d). As illustrated in Fig. 4.1b, the shadow
walls enable selective deposition on both the nanowires and the substrate. Adding gaps at
critical locations along the shadow walls (Fig. 4.1c) ensures that the leads are electrically
isolated from one another while eliminating the need for post-interface fabrication such as
lift-off patterning or Al etching. Fig. 4.2a shows an exemplary device without local gates
that is directly bonded to a printed circuit board for low-temperature transport measure-
ments. Here, the p+-doped Si substrate enables back-gate control of the electron density
in the nanowire (see Fig. 4.2b).

4.2.2 Materials Analysis
The quality of the InSb nanowires, Al thin films, and InSb/Al interfaces is assessed by
transmission electron microscopy (TEM) of cross-sectional lamellae prepared via focused
ion beam (FIB).These lamellae are cut out from devices like the one depicted in Fig. 4.2a (cf.
dashed line). A continuous high-quality polycrystalline Al layer is formed on three facets
of the InSb nanowires and the samples exhibit a sharp superconductor–semiconductor
interface (see Figs. 4.2c,e and Supplementary Fig. 4.7). No oxide formation is observed
between the Al grains, which is evident in the elemental energy-dispersive X-ray spec-
troscopy (EDX) composite image (Fig. 4.2c). The middle facet has twice the Al layer thick-
ness (16nm) compared to the top and bottom facets (8nm) due to the evaporation angle
of 30∘ with respect to the substrate plane. The InSb/Al interface is clean and there is no
residual native oxide (see Figs. 4.2d,e), which confirms that our procedure of atomic hydro-
gen radical cleaning can effectively remove the oxide without damaging the InSb crystal
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Figure 4.2: TEM analysis of the InSb/Al interface. a False-colour SEM image of an InSb nanowire Josephson
junction. b Schematic of the measurement setup. The back-gate voltage, 𝑉BG, is applied to the p+-doped Si
substrate to tune the electron density in the nanowire. c Cross-sectional EDX elemental composite image of
the [111] InSb nanowire covered with the Al layer and a protective layer of SiN𝑥 . d Line-cuts of the integrated
elemental counts within the orange box in panel (c). e High-resolution bright-field scanning TEM image of the
InSb/Al interface at the location indicated by the blue box in panel (c).

structure. The nanowires are single-crystalline, defect-free, and exhibit a hexagonal ge-
ometry. The polycrystalline Al layer forms a continuous metallic connection from the
nanowire to the substrate. This connection is crucial for the contact between the shell and
the thin Al lead on the substrate and it is fundamental for more complex devices such as
superconducting interferometers (see Supplementary Fig. 4.36) and 3-terminal Majorana
devices that can reveal the opening of a topological gap [18].
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4.2.3 Highly Transparent Josephson Junctions
We employ mesoscopic InSb/Al Josephson junctions like the one depicted in Fig. 4.2a to
study the induced superconductivity in the nanowires. Each device comprises two Al
contacts (1.8μm wide) separated by a 110–150nm long bare nanowire segment that is
tunable by the back-gate voltage, 𝑉BG. The source–drain voltage, 𝑉SD, is applied or mea-
sured between the two Al electrodes (Fig. 4.2b). Fig. 4.3a shows the differential resistance,
𝑅 = d𝑉SD/d𝐼SD, as a function of bias current, 𝐼SD, and temperature for a typical device. The
blue region (𝑅 = 0Ω) denotes the superconducting phase, which persists up to ∼ 1.8K, con-
sistent with the enhanced superconducting critical temperature for thin films with respect
to bulk Al [31]. At low temperatures (𝑇 < 0.6K), the hysteretic behaviour of the asymmet-
ric 𝑉SD–𝐼SD traces is caused by self-heating of the junction. This effect disappears at higher
temperatures (𝑇 > 0.6K), which can be attributed to enhanced thermalization via electron–
phonon coupling [32]. Remarkably, at 𝑇 = 30mK, the switching current, 𝐼sw, i.e. the observ-
able supercurrent, ranges from 30 to 90nA across all devices in the open-channel regime.
The magnitude of the intrinsic supercurrent, 𝐼c, in ballistic and short junctions can be
predicted via the Ambegaokar–Baratoff formula: 𝐼c𝑅N = 𝜋Δind/2𝑒, with the normal-state
resistance 𝑅N, the induced gap Δind, and the electron charge 𝑒 [33]. Here, the typical 𝐼sw𝑅N
product is ∼ 110μV, i.e. only one-third of 𝜋Δind/2𝑒 ∼ 360μV. The discrepancy between 𝐼sw
and 𝐼c is consistent with previous experiments [16, 17, 34] and can be explained by prema-
ture switchings due to thermal activation and current fluctuations [35, 36]. We note that
the magnitude of 𝐼sw as well as the normalized quantity 𝑒𝐼sw𝑅N/Δind ∼ 0.5 are significantly
larger than in previous reports on InSb Josephson junctions [9, 16, 17].

In Fig. 4.3b, we show the differential conductance, 𝐺 = d𝐼SD/d𝑉SD, as a function of 𝑉SD
(red curves) for the same Josephson junction (top) and for a second device (bottom). The
traces display subharmonic conductance peaks originating from multiple Andreev reflec-
tion (MAR) processes [15]. By fitting the conductance with a coherent scattering model
(green curves), we can estimate the induced superconducting gap,Δind (235μeV and 229μeV
for device 1 and 2, respectively), and the gate-tunable tunnelling probability of the differ-
ent subbands (see Supplementary Figs. 8–10) [37].

In Fig. 4.3c, we report the evolution of the MAR pattern as a function of magnetic field, 𝐵∥,
parallel to the nanowire axis of device 2. Here, the presence of subgap states close to the
gap edge alters the typical MAR pattern and gives rise to an intricate energy dispersion in
magnetic field that is further discussed in Supplementary Note 3. Eventually, the magnetic
field quenches the superconductivity at a critical value of 𝐵c = 1.2–1.3T. This limit can
be enhanced to about 2T by using a thinner Al shell (Supplementary Fig. 4.20). These
values are well above the magnetic field at which a topological phase transition should
occur in hybrid InSb/Al nanowires [38]. In Fig. 4.3c, the out-of-gap conductance displays
a dense pattern of faint peaks with an average spacing of about 30μV and an effective
Landé 𝑔 factor of ∼ 20 (extracted from the energy dispersion in magnetic field). This 𝑔
factor is larger than in Al (|𝑔| = 2) but smaller than in InSb (|𝑔| = 30–50), which indicates
that these peaks stem from discrete states of the nanowire hybridized with the ones in
the metal [39]. The observation of this structure might be correlated with our choice of
nanowire surface treatment. In fact, the gentle atomic hydrogen cleaning preserves the
pristine semiconductor crystal quality, unlike the invasive chemical or physical etching
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methods adopted in previous works [9, 16, 17, 34, 40].
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Figure 4.3: Multiple Andreev reflections and supercurrent in InSb/Al Josephson junctions. aDifferential
resistance, 𝑅, as a function of 𝐼SD (upward sweep direction) and 𝑇 for device 1 at 𝑉BG = 13.65V. The switching
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quasiparticle transport via multiple Andreev reflections. b Conductance line traces (red) versus source–drain
voltage for device 1 at 𝑉BG = 5.1V (top) and for device 2 at 𝑉BG = 3.0V (bottom). The theoretical fits (green) yield
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oriented along the nanowire, for device 2 at 𝑉BG = −0.9V.
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4.2.4 Hard Induced Gap and Ballistic Superconductivity
A common technique to search for evidence of Majorana bound states is N–S tunnelling
spectroscopy, which probes the local density of states. Signatures of MBS in proximitized
InSb nanowires are zero-bias peaks (ZBPs) in the differential conductance at moderately
large magnetic fields [41]. The ZBP height in the zero-temperature limit is predicted to
be 𝐺0 = 2𝑒2/ℎ, independent of the tunnel-coupling strength, due to resonant Andreev re-
flection via a Majorana zero mode [42]. ZBPs of non-topological origin, which mimic
the subgap behaviour of MBS, may arise from disorder or potential inhomogeneities [43].
A major challenge is to reduce the detrimental role of disorder at the superconductor–
semiconductor interface, which determines the final device quality. The measure of suc-
cess is a hard induced gap at a finite magnetic field and quantized Andreev enhancement
as a signature of ballistic transport [44, 45].

An exemplary N–S device is depicted in Fig. 4.4a. Here, the N contact to the InSb nano-
wire was formed in a post-interface fabrication step, similar to the contacting of conven-
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tional shadow junctions (Supplementary Note 1). Alternatively, Al leads that are defined
by the shadow walls – microns away from the N–S junction – can serve as N contacts
but require additional bottom gates to render all nanowire segments fully conducting (cf.
Fig. 4.1b). Another option to fabricate N contacts in situ involves using two deposition
angles, which we describe in detail elsewhere [46]. In Fig. 4.4b, we present voltage-bias
spectroscopy of the N–S junction in Fig. 4.4a where the transmission is tunable via a pre-
fabricated bottom tunnel gate. The line-cuts in Fig. 4.4c at low tunnel-gate voltage, 𝑉TG,
highlight the pronounced suppression of the subgap conductance, 𝐺S, by about two or-
ders of magnitude compared with the normal-state conductance, 𝐺N (cf. Supplementary
Fig. 4.29). As the first one-dimensional subband starts to conduct fully at 𝑉TG > 0.6V, the
above-gap conductance reaches the conductance quantum, 2𝑒2/ℎ, and the quantization
manifests itself as a plateau in the tunnel-gate dependence (Fig. 4.4d). At the same time,
the conductance below the gap edge reaches 4𝑒2/ℎ owing to two-particle transport via
Andreev reflection [21]. This pronounced doubling of the normal-state conductance to-
gether with the quantization of 𝐺N signifies a very low disorder strength in the junction
and a strong coupling at the nanowire/Al interface [47]. While the subgap conductance
reaches up to 2𝐺0, it drops again at 𝑉TG ∼ 0.8V, possibly due to inter-subband scattering
as a result of residual disorder [44, 47–49]. The plot of 𝐺S versus 𝐺N (Fig. 4.4e) follows
the Beenakker model [22] reasonably well without any fitting parameter, which shows
that in the single-subband regime electrical transport below the gap edge is dominated by
Andreev processes. The data are well-described by the BTK theory [21] across the entire
gate voltage range, demonstrating a hard induced gap of Δind ∼ 230μeV (see Methods and
Supplementary Fig. 4.31). Discrete subgap states and ZBPs appear at a finite magnetic
field and field-dependent voltage-bias spectroscopy for this N–S device is presented in
Supplementary Fig. 4.32.

4.2.5 Emergence of Zero-Bias Peaks at Both Nanowire Ends
The shadow-wall technique enables 3-terminal Majorana devices for nonlocal correlation
experiments [18, 19] by harnessing the continuous connection of the Al shell to the sub-
strate, as depicted in Fig. 4.5a. Here, the Al thin film serves as the superconducting drain
lead. Established fabrication methods do not allow for the implementation of such devices
since etching away the superconductor causes disorder at the InSb surface and contacting
the Al shell requires selective removal of the native oxide of Al, which affects the integrity
of the thin film. As shown in Fig. 4.5a, optional Ti/Au contacts are again added at both
nanowire ends in the same fabrication run and on the same substrate as the sample in
Fig. 4.4. With this device type, we can study the simultaneous emergence of ZBPs at
both N–S boundaries in a magnetic field oriented along the wire. Here, the hybrid nano-
wire segment is 1μm long and the chemical potential, 𝜇, is controlled via a bottom gate
(super gate) at potential 𝑉SG. The differential conductance is measured concurrently at
both N–S boundaries by alternating the 𝑉SD sweep between the left and right N terminals
for every increment of 𝐵∥ or 𝑉SG. Using this technique, we demonstrate the formation
of zero-energy subgap states at both nanowire ends for 𝑉SG = 0V (see Figs. 4.5e,f). The
effective 𝑔 factor extracted from the linear energy dispersion at the two boundaries is
∼ 10, albeit the values of 𝑔 can be strongly gate-dependent [12]. Many experiments have
demonstrated ZBPs in tunnelling spectroscopy at a single N–S boundary, indicating the
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Figure 4.5: Zero-bias conductance peaks at two opposite N–S boundaries. a False-colour SEM image of the
correlation device based on an 80nm wide InSb nanowire with a 1μm long hybrid segment. b, c Line-cuts of the
differential conductance at zero field (blue) and at 𝐵∥ = 1.05T (orange) taken from panel (e) and (f), respectively.
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the variation in conductance assuming an uncertainty of ±0.5kΩ in the series resistance. For the line-cut at the
right N–S junction, this variation is less than the line width. e, f Differential conductance, 𝐺 = d𝐼SD/d𝑉SD, as
a function of bias voltage, 𝑉SD, and magnetic field, 𝐵∥, measured concurrently at the left and right junction,
respectively. Here, the super gate underneath the hybrid nanowire segment is grounded (𝑉SG = 0V).

presence of a robust state at zero energy [41, 49–51]. The robustness of ZBPs in the param-
eter space (defined by chemical potential and magnetic field) has been used to substantiate
their topological origin [52].

So far, no experiment has revealed the emergence of ZBPs concurrently at both boundaries
of a long hybrid nanowire. Recent experimental studies reported correlations between
bound states at both ends of short (up to 400nm long) hybrid nanowire devices [53, 54].
ZBPs often originate from trivial Andreev bound states (ABS). In topological nanowires,
ABS can form by overlapping MBS due to local variations in the chemical potential or ran-
dom disorder, which emphasizes the need for long and pristine hybrids [43]. A topological
phase with well-separated MBS requires that potential inhomogeneities along the hybrid
segment,Δ𝜇, aremuch smaller than thewidth of the topological phase, 2√𝐸2Z −Δ2

ind, where
𝐸Z is the Zeeman energy [1, 55]. We see in Figs. 4.5e,f that the ZBPs at the two bound-
aries do not exhibit the same onset field, which is defined as the field where the zero-bias
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conductance reaches half of its maximum value. In Fig. 4.5d, this corresponds to 0.85T on
the left and 0.78T on the right side (grey arrows). This observation could be explained by
the presence of long-range inhomogeneities that result in a difference in Δ𝜇 at the two na-
nowire ends of about 70μeV, considering 𝑔 = 10. A possible origin of this inhomogeneity
might be a variation in the deformation potential along the length of the hybrid due to a
slight bend in the nanowire [56]. At larger values of 𝜇, potential variations are expected to
be suppressed due to screening. This might be supported by another data set measured at
a larger chemical potential (𝑉SG ∼ 0.5V) presented in Supplementary Fig. 4.35, where we
observe the same ZBP onset field at both N–S boundaries. The concomitant evolution as
a function of 𝑉SG at both nanowire ends is shown in Supplementary Figs. 28 and 29. This
observation might corroborate the signatures of MBS [19, 55], but it cannot be regarded
as conclusive evidence for truly separated MBS [43].

Figs. 4.5b,c show differential conductance line-cuts, which reveal a zero-bias conductance
close to 2𝑒2/ℎ for the ZBP at the left boundary of the device, as highlighted in Fig. 4.5d.
While ZBP conductance close to 𝐺0 has been observed for several N–S junctions, it de-
pends on the fine-tuning of the tunnel barriers, which can be strongly affected by trans-
mission resonances. Experimentally, ZBPs are in general substantially lower than the
expected value of 𝐺0 [42, 50]. Theoretical studies recently pointed out that partially or
fully overlapping MBS can cause quantized ZBPs, indistinguishable from those resulting
from isolated MBS [55, 57, 58]. Hence, the quantized ZBP conductance is a critical but not
sufficient hallmark of MBS [54, 58].

4.3 Discussion
The 3-terminal hybrid nanowire devices provide a fundamental tool to study the evolu-
tion of the induced superconducting gap in the bulk of the hybrid, where electron- and
hole-type bands become inverted at the topological phase transition. There, the closing
and reopening of the induced gap are accompanied by the emergence of delocalized MBS,
hallmarked by ZBPs at both boundaries of the hybrid nanowire [20]. Here, we demon-
strate hard-gap N–S junctions in a magnetic field where only discrete subgap states move
to zero energy to form ZBPs at both boundaries and that respond similarly to variations in
the chemical potential. While these are critical signatures of MBS, upcoming studies will
attempt to correlate the local tunnelling conductance with the evolution of the induced
bulk gap via the non-local conductance between the two N terminals [18].

Our approach promotes the development of intriguing nanowire-based quantum devices.
The ballistic hard-gap N–S junctions together with the thin Al connections across the
substrate represent a vital starting point for realizing a topological qubit. A qubit imple-
mentation with a single read-out loop [7] would allow for measuring the projection of the
qubit state on one axis of the Bloch sphere. A schematic of the loop qubit is presented
in Fig. 4.6a. It is made from a single nanowire with two superconductor–semiconductor
segments connected via a superconducting loop that encircles a central shadow-wall pil-
lar. Bottom gates at the centre of the device are used to define a read-out quantum dot
in the nanowire with tunable tunnel couplings to the MBS denoted as 𝛾2 and 𝛾3 in the
schematic. Parity read-out will be performed by measuring the quantum capacitance via
radio-frequency gate reflectometry [6, 7, 59]. In Fig. 4.6b, we present an exemplary real-
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Figure 4.6: Illustration of the proposed Majorana loop qubit. a Schematic of a single-nanowire loop-qubit
device. The presumable locations of the MBS at the boundaries of the two hybrid segments are denoted by 𝛾𝑖 ,
where 𝑖 ∈ {1,2,3,4}. The electron parity is fixed due to the finite charging energy of the loop qubit. This configu-
ration offers the desired ground-state degeneracy for a single qubit and can provide information on decoherence
and quasiparticle poisoning. b False-colour SEM image of an InSb nanowire following the shadow-wall deposi-
tion. Two segments of the nanowire are covered with a superconducting 3-facet Al shell. These hybrid segments
are interconnected via an Al loop running across the substrate.

ization of the basic elements of such a device via the shadow-wall technique. It comprises
a superconducting loop to provide a connection for the exchange of Cooper pairs that acts
as a blocker for quasiparticle transport between the two hybridized nanowire segments.
The shadow-wall technique is ideally suited to realize these superconducting intercon-
nects across the substrate for multi-terminal devices without the need for post-interface
fabrication.

4.4 Methods
4.4.1 Nanowire growth
The InSb nanowires are grown on InSb (111)B substrates coveredwith a pre-patterned SiN𝑥
mask via metalorganic vapour-phase epitaxy (MOVPE). These nanowires are not grown
on top of InP stems but nucleate instead directly on the growth substrate at Au catalyst
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droplets [30]. The investigated nanowires have an average diameter of 100nm, which is
controlled by the Au droplet size and the growth mask openings, and a typical length in
the order of 10μm.

4.4.2 Device fabrication
Bottom gates are fabricated on Si/SiO2 substrates via dry-etching of W thin films, which
are subsequently covered byAl2O3 gate dielectric via atomic layer deposition (ALD). Shadow
walls of ∼ 600nmheight are created via reactive-ion etching of thick layers of Si3N4 formed
via plasma-enhanced chemical vapour deposition (PECVD). Using a micromanipulator, in-
dividual nanowires are placed deterministically next to the shadow walls. The native ox-
ide of the nanowires is removed via atomic hydrogen radical cleaning (see Supplementary
Note 1). The Al thin films are deposited by evaporation under a shallow angle that forms
continuous contacts between the nanowires and the substrate and creates segments on the
chip that are electrically isolated from one another. This allows to immediately cool down
the devices without the need for additional post-interface fabrication steps. We have not
observed a decreased stability or performance of devices that were made with an extra fab-
rication step to create N contacts. We attribute this to the fact that the hybrid segments
are not directly exposed and resist baking is avoided during the fabrication of the contacts.

4.4.3 TEM analysis
The cross-sectional lamellae for TEM are prepared using the focused ion beam technique
with a Helios G4 UX FIB/SEM fromThermo Fisher Scientific after capping the devices with
a protective layer of sputtered SiN𝑥 . TEM analysis is carried out at an acceleration voltage
of 200kV with a Talos electron microscope from Thermo Fisher Scientific equipped with
a Super-X EDX detector.

4.4.4 Transport measurements
Electrical transport measurements are carried out in dilution refrigerators equipped with
3-axes vector magnets. The base temperature is approximately 15mK, corresponding to
an electron temperature of about 30mK measured with a metallic N–S tunnel junction
thermometer. The sample space is evacuated by a turbomolecular pump for at least one
day prior to the cool-down to remove surface adsorbates that limit the device performance.
Conductance measurements are performed using a standard low-frequency lock-in tech-
nique. For voltage-bias measurements, the excitation voltage is 𝑉AC ≤ 20μV at a lock-in
frequency of at least 20Hz. For all two-terminal conductance measurements we only sub-
tract setup-related series resistances without making any assumptions about additional
contact resistances of the metal–semiconductor interface. Current-driven measurements
are carried out in a four-point configuration. After taking the data, we became aware of
the relatively low bandwidth of the employed current-to-voltage amplifiers. Hence, we re-
calibrated the lock-in data via a mapping according to the measured DC conductance that
does not suffer from any bandwidth limitations and is insensitive to the reactive response
of the circuit (Supplementary Note 4).
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4.4.5 Superconducting gap extraction
The BCS–Dynes term is given by a smeared BCS density of states with the broadening
parameter Γ [60]:

𝑑𝐼SD
𝑑𝑉SD

(𝑉SD) = 𝐺NRe[
𝑒𝑉SD − 𝑖Γ

√(𝑒𝑉SD − 𝑖Γ)2 −Δ2
ind

].

For all of our N–S devices, the fit of the BCS–Dynes term yields typical broadening pa-
rameters of less than 10μeV. The model by Blonder, Tinkham, and Klapwijk (BTK) incor-
porates the transition between BCS tunnelling and Andreev reflection in the open channel
regime [21]. Fits of the BCS–Dynes term and of the BTK model to the N–S junction data
(including the data in Fig. 4.4b) are presented in Supplementary Note 4. The subgap con-
ductance for a ballistic N–S junction with a single subband, where the transport is dom-
inated by Andreev processes, has been described by Beenakker [22]. At a large enough
chemical potential [61], it is given by

𝐺S =
4𝑒2
ℎ

𝑇 2

(2−𝑇 )2
= 2 𝐺2

N

(2𝐺0 −𝐺N)2
,

where the transmission probability, 𝑇 , has been substituted with the normal-state conduc-
tance, 𝐺N, in units of 2𝑒2/ℎ. This function is plotted together with the measured data in
Fig. 4.4e.

Data availability
The data that support the plots within this paper and other findings of this study are avail-
able at https://doi.org/10.5281/zenodo.5034524.

4.5 Supplementary information
4.5.1 Fabrication Details
Chips without Bottom Gates
Chips that contain devices with a global back-gate like the ones presented in Figs. 4.2 and
4.3 of the main text are fabricated on p+-doped Si wafers covered with 285nm of thermal
SiO2. The first fabrication step consists of patterning the bond pads via electron-beam
lithography (EBL), W sputtering and lift-off in acetone. Afterwards, plasma-enhanced
chemical vapour deposition (PECVD) of 600nm of Si3N4 is performed followed by EBL,
reactive-ion etching (RIE) with CHF3/O2 gases, resist lift-off and an oxygen plasma descum
step to remove carbon residues. Eventually, nanowires are deposited under an optical
microscope using a micromanipulator equipped with tungsten needles [62].

Chips with Bottom Gates
Chips with additional local bottom gates (used e.g. for the experiments in Figs. 4.4 and 4.5
of the main text) are fabricated by sputtering 17nm ofW on Si wafers covered with 285nm
of thermal SiO𝑥 (protected by an Al2O3 etch-stop layer), followed by EBL patterning and

https://doi.org/10.5281/zenodo.5034524
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RIE of theW layer with SF6 gas. Next, 18nm of a high-quality Al2O3 layer are deposited by
atomic layer deposition (ALD), acting as the bottom-gate dielectric. Shadow walls on top
of the bottom gates are created by first depositing 600nm of Si3N4 by PECVD, followed by
EBL patterning with precise alignment of the shadowwalls with respect to the underlying
fine bottom gates. Then, RIE with CHF3/O2 gases is used to selectively etch Si3N4 while
the Al2O3 gate dielectric acts as an etch-stop layer. Finally, after the resist strip, an oxygen
plasma descum step is used to remove carbon residues from the chips. The nanowires are
then mechanically transferred on top of the bottom gates under an optical microscope
using a micromanipulator equipped with tungsten needles [62].

Additional Fabrication Steps for N–S Devices
For devices with additional Ti/Au normal-metal contacts, such as the ones presented in
Figs. 4.4 and 4.5 of the main text, an extra post-interface fabrication step is included. It
consists of EBL patterning (solvents are removed from the resist via vacuum pumping in-
stead of conventional resist baking to accommodate the low thermal budget), 40s of argon
ion milling at 1.5 ⋅ 10−3mbar with a commercial Kaufmann source in the load lock of an
electron-beam evaporator, and in-situ evaporation of 10nm/120nm of Ti/Au at a pressure
of 8 ⋅ 10−8mbar followed by lift-off in acetone. Note that this step is not strictly essential
and could have been omitted. Bottom gates underneath the nanowire can open up the
channels and tune the conductance. Combining this electrostatic gate control with addi-
tional Al contacts that are defined by shadow walls microns away from the N–S junction
allows to entirely avoid post-interface fabrication for these devices.

Semiconductor Surface Treatment
To obtain a pristine, oxide-free semiconductor surface, we accomplish a gentle oxygen re-
moval via atomic hydrogen radical cleaning. For this purpose, a custom-made H radical
generator is installed in the load lock of our aluminium electron-gun evaporator. It con-
sists of a gas inlet for H2 molecules connected to a mass-flow controller and a tungsten
filament at a temperature of about 1700 ∘C that dissociates a fraction of the molecules into
hydrogen radicals [63].

The cleaning process is evaluated via the transport characteristics of InSb/Al nanowire
Josephson junctions and TEM analysis of the same devices. In particular, we consider the
magnitude of the supercurrents and the amount of interfacial oxide, measured by EDX, as
critical indicators of the interface transparency. During optimization, we vary the process
duration and the hydrogen flow, and keep the substrate temperature constant at 550K.
It has been demonstrated in the literature that this temperature results in an efficient
cleaning of InSb, allowing for indium- and antimony-based oxides to be removed with
similar efficiency [64, 65].
The optimal removal of the native oxide is achieved for a process duration of 30mins
and a hydrogen flow of 2mln/min. During atomic hydrogen cleaning, the H2 pressure is
6.3 ⋅ 10−5mbar. This recipe, which is used for all the devices shown in this paper, results
in a constant EDX count of oxygen at the interface (i.e. the traces do not show oxygen
peaks, see Fig. 4.2d of the main text) and yields the highest supercurrents in the Josephson
junction devices (∼ 90nA).
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Figure 4.7: Cross-sectional TEM images of InSb nanowires covered by a thin layer of Al. SiN𝑥 was sputter-coated
as a protective layer before focused ion beam (FIB) lamella preparation. a Annular dark-field (ADF) scanning
TEM image of a nanowire cross-section. This sample is identical to the device presented in Figs. 4.2c–e of the
main text (sample ID: U61). Al is deposited at an angle of 30∘ with respect to the substrate plane at 𝑇 = 140K.
bADF scanning TEM image of another nanowire cross-section (sample ID: U34). Here, 30nm of Al are deposited
at an angle of 25∘ with respect to the substrate plane at 𝑇 = 80K. c EDX elemental composite image of the device
in panel (b) identifying the individual compounds and the Al thin film.

Superconductor Deposition
After cleaning the semiconductor surface, the chips are loaded into the main chamber
of the evaporator and cooled down by actively circulating liquid nitrogen through the
sample holder. After one hour of thermalization, aluminium is deposited by electron-beam
evaporation at a typical rate of 0.2nm/min.

The aluminium growth conditions are optimized by studying the quality of thin films de-
posited on Si substrates – typically also containing transferred InSb nanowires – at dif-
ferent evaporation rates, temperatures and angles. It is observed that evaporation angles
close to 90∘ with respect to the substrate plane are favourable for aluminium thin-film
growth, whereas at shallower angles the self-shadowing effect of Al atoms on the surface
becomes more prominent, giving rise to columnar growth, possible voids in the film, and
greater roughness [66, 67]. To minimize this angle-dependent self-shadowing effect, the
substrate temperature can be slightly increased to give the atoms arriving at the substrate
enough momentum to rearrange into a crystal before the next atoms arrive at the sub-
strate. Our results and the work by Dong et al. [66] indicate that, for a fixed deposition
rate, the temperature optimum depends on the evaporation angle.

In this work, a temperature optimum of around 140K is found for Al growth at 30∘ with
respect to the substrate plane, allowing for homogeneous 3-facet coverage of the hexago-
nal nanowires as well as a connection from the nanowires to the substrate. The Josephson
junctions made at this growth temperature exhibit roughly four times higher supercur-
rents than similar devices produced when Al was deposited at a substrate temperature
of ∼ 80K. Cross-sectional TEM images of FIB lamellae from nanowires with Al grown at
140K and 80K are presented in Supplementary Figure 4.7a (as well as Figs. 4.2c,e of the
main text) and Supplementary Figures 4.7b,c, respectively. Comparing these figures, the
superior quality of the deposition at 140K is evident; the nanowire facets are more uni-
formly covered and form a continuous film, the crystalline quality of the Al is higher and
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the oxidation of the Al facets is much less prominent than in the case of the deposition at
80K (in Supplementary Figure 4.7c, the abundant oxide formation in the aluminium film
at the top and bottom-left nanowire facets is especially noticeable).

In addition, Supplementary Figure 4.8 illustrates a comparison between a higher Al growth
temperature (160K) and Al grown at 140K.The former results in both granular Al covering
the middle nanowire facet, which is better observed in the tilt-view image in Supplemen-
tary Figure 4.8b, and a film on the substrate where the different grains are clearly distin-
guishable. In comparison, images corresponding to deposition at 140K instead show a
featureless Al film on the middle facet, where roughness is indiscernible under these SEM
conditions (Supplementary Figure 4.8d), and a granular but more uniform Al structure on
the substrate.

a

InSb

Al

100 nm

100 nm

100 nm

100 nm

c

b d

shadow
wall

0°

30°

0°

30°

T = 160 K T = 140 K

Figure 4.8: SEM images of InSb nanowires with Al thin films deposited at different temperatures. For both
samples the evaporation angle is 30∘ relative to the substrate plane. a, b Top-view and tilt-view (tilt angle: 30∘)
SEM images of InSb nanowires covered with an Al thin film deposited at 160K. The maximum film thickness,
which corresponds to the thin film on the middle nanowire facet, is 20nm. c, d Top-view and tilt-view (tilt angle:
30∘) SEM images of a nanowire Josephson junction. Here, the Al thin film is deposited at 140K and the film
thickness at the middle nanowire facet is 15nm. Panel (d) exhibits a featureless Al shell on the middle wire facet,
whereas grains are visible on the middle facet in the case of Al grown at 160K (panel (b)).

Reproducibility and Typical Yield of Shadow-Wall Devices
As shown in Supplementary Figure 4.9, there are 4 unique orientations of a 3-facet Al shell
on hexagonal nanowires. This rotational configuration has major implications for the
electrostatics of the junctions, for the screening of the gates and it determines whether
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the electronic wave functions are pushed away from or towards the superconductor by
the gates [39], renormalizing key parameters such as spin–orbit coupling, 𝑔 factors and
possibly gap hardness. To some degree, this random variation can be mitigated by post-
selecting certain wire rotations after detailed SEM inspections, but it is very difficult to
eliminate. Moreover, this would reduce the device yield by up to 75%. In contrast, the
shadow-wall lithography method resolves this issue by removing any random variation
in rotational configuration and enforcing the scenario in Supplementary Figure 4.9a.

Another source of random variation inherent in conventional fabrication methods is the
design customization required for every device based on SEM images of individual nanowires.
Shadow-wall lithography, however, relies on standardized designs and allows for conve-
nient blind fabrication, which eliminates imaging and alignment steps. It offers inherently
good alignment between the gates and the edges of the superconductors, resulting in low
variability in device dimensions with many nearly identical devices made in a single de-
position step.

By design, all nanowires are aligned along the same direction on the chip. This is an im-
portant bonus feature of the shadow-wall technique that ensures that the largest possible
magnetic field of the vector magnet can be applied along every nanowire axis, which is
critical for finding a topological phase transition.

As presented in Supplementary Note 2 for the Josephson junctions as well as in Supple-
mentary Note 4 and Figs. 4.4 and 4.5 of the main text for the N–S devices, the magnitude
of the induced gap is consistent across all devices. The atomic hydrogen cleaning yields
pristine interfaces with high interface transparency resulting in hard-gap superconductiv-
ity on a par with state-of-the-art shadow-deposition methods. By omitting all or in some
cases all but one fabrication steps, our approach avoids the ageing of the superconductor–
semiconductor interface and yields many nominally identical devices.

Beyond the reduced variations among devices, a qualitatively new feature not offered
by other techniques is the significant flexibility in device designs, such as the arbitrary
shadow lengths and fundamentally new device geometries (e.g. 3-terminal Majorana de-
vices or SQUIDs, see Supplementary Note 5). Depending on the layout, our pre-patterned
chips typically accommodate up to 16 nanowire devices. It is readily viable to have around
10 fully functional devices on a single chip to consistently optimize the fabrication param-
eters. The yield per chip can be affected by the accidental transfer of multiple wires at
once or by nanowires breaking during the transfer. In Supplementary Figures 4.11, 4.12
and 4.13, we show scanning electron micrographs taken prior to the cool-down of the Jo-
sephson junctions. On the first chip (sample ID: U12) 13 nanowires are transferred and
result in 12working devices, i.e. where the junctions are well-defined. On the second chip
(sample ID: U51) in total 12 nanowires are transferred, which yield 11 working devices.
However, 2 turned out to be narrow nano-flakes [68, 69], which can be indistinguishable
from nanowires in optical microscopy. On a third chip (sample ID: U55) 12 nanowires are
positioned and yield 9working devices. Among those, 7 are hexagonal-shaped nanowires
and 2 turned out to be narrow nano-flakes. In Supplementary Figure 4.10, the reproducibil-
ity of the device dimensions within each chip and among two of the chips is illustrated by
box plots of the extracted junction lengths.



4

84
4 Shadow-wall lithography of ballistic superconductor-

semiconductor quantum devices

Al
InSb

a

substrate

b c d

Figure 4.9: The 4 unique orientations of the Al-covered facets on hexagonal nanowires.
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Figure 4.10: Box plots showing the distribution of the Josephson junction length across the devices on chips U12
(Supplementary Figure 4.11), U51 (Supplementary Figure 4.12) and U55 (Supplementary Figure 4.13). The boxes
denote the lower and upper quartiles of the distributions, the central horizontal lines denote the medians, and
the whiskers show the minimum and maximum values of the junction length. The two diamonds are determined
as outliers due to physical damage to the shadow walls. Chips U51 and U55 have been prepared using nominally
the same shadow-wall layout and the median junction length differs by only 4nm. For chip U12 the junction
length is larger by design.
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Figure 4.11: Typical yield of the nanowire transfer for Josephson junction devices: Scanning electron micro-
graphs of all Josephson junction devices on a typical chip (sample ID: U12) taken after the Al deposition. Out
of 13 nanowire transfer attempts, 12 nanowires are perfectly positioned, and only in one case the transfer failed
(device 3.3). The scale bars indicate 1μm.
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Figure 4.12: Typical yield of the nanowire transfer for Josephson junction devices: Scanning electron micro-
graphs of all Josephson junction devices on a typical chip (sample ID: U51) taken after the Al deposition. Out
of 12 nanowire transfer attempts, 9 nanowires are perfectly positioned, 2 narrow flakes – rather than nanowires
– are accidentally transferred (devices 2.4 and 4.1), and in one case, two nanowires are transferred in the same
location (device 2.1). The scale bars indicate 1μm.
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Figure 4.13: Typical yield of the nanowire transfer for Josephson junction devices: Scanning electron micro-
graphs of all Josephson junction devices on a typical chip (sample ID: U55) taken after the Al deposition. Out
of 12 nanowire transfer attempts, 7 nanowires are perfectly positioned, 2 of them are not (devices 1.2 and 3.1), 2
narrow flakes – rather than nanowires – are accidentally transferred (devices 1.1 and 3.3), and in one case, two
nanowires are transferred in the same location (device 4.2). The scale bars indicate 1μm.
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4.5.2 Additional Transport Measurements of Josephson Junctions
In this section, we summarize the characteristics of the Josephson junction devices listed
in Supplementary Table 4.1. All devices are fabricated by evaporating an Al thin film at an
angle of 30∘ with respect to the substrate plane. Device 3 differs from the other samples in
the thickness of the Al shell. We note that despite such a low shell thickness, all nanowire
devices on sample U59 are in electrical contact with the Al film on the substrate.

Josephson junction Sample ID/ Evaporation Channel Maximum Al Oxidationdevice name angle width (nm) thickness (nm)
device 1 U55/2.3 30∘ 100 16 in O2 atmosphere
device 2 U51/1.2 30∘ 100 16 in O2 atmosphere
device 3 U59/2.3 30∘ 100 11 Al2O3 capping
device 4 U55/3.3 30∘ 160 16 in O2 atmosphere

Table 4.1: Summary of the Josephson junction devices presented in this study. Devices 1, 2, and 3 are all nominally
identical in their geometries with a nanowire diameter of 100nm and a separation between the Al contacts of
115nm. Device 3 was made with a thinner Al shell thickness and capped in situ with around 20nm of Al2O3.
Device 4 is a Josephson junction formed in an InSb nano-flake. Here, the channel width is 160nm.

Device 1
The current and differential conductance in the normal state (𝑉SD = 10mV) display a step-
like increase as a function of 𝑉BG (Supplementary Figures 4.14a,b). The first two steps
approximately align with the quantized values expected for one-dimensional transport,
providing possible hints for ballistic transport at zero magnetic field. At lower bias volt-
age, features of the induced superconductivity appear such as the conductance peaks due
to multiple Andreev reflections and the zero-bias supercurrent peak (Supplementary Fig-
ures 4.14c,d). A line-cut of Supplementary Figure 4.14c is presented in Fig. 4.4b of the
main text, whereas a line-cut of Supplementary Figure 4.14d is shown in panel (e). Here,
the experimental data (red trace) is fitted with the theoretical model (green trace) to iden-
tify the number and the transmissions of the nanowire subbands, which are plotted in
Supplementary Figure 4.14f. Similarly, in Supplementary Figure 4.15a, we illustrate the
extracted transmission probabilities of the three lowest subbands in the back-gate volt-
age range of Supplementary Figure 4.14c. The sum of these transmission probabilities
extracted from the MAR pattern is compared to the normal-state conductance in Supple-
mentary Figure 4.15b.

Device 2
Thenormal-state current and conductance (𝑉SD = 10mV) as a function of back-gate voltage
are displayed in Supplementary Figures 4.16a,b. While conductance plateaus are more dif-
ficult to identify than in the case of device 1, the presence of an induced superconducting
gap is clear from the MAR conductance peaks and the supercurrent peak (Supplementary
Figures 4.16c,d). By fitting each line-cut of panel (c) (just like in panel (d)), we can extract
the transmissions of the nanowire subbands across the full measurement range (Supple-
mentary Figure 4.16e). The closing of the superconducting gap and the suppression of the
switching current with the magnetic field aligned along three perpendicular orientations
are shown in Supplementary Figure 4.17 and Supplementary Figure 4.18, respectively.
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Device 3
Device 3 differs from the first two samples by having a significantly thinner Al shell. To
protect the thin film from oxidation, the device is capped in situ with a 20nm Al2O3 layer.
This results in a large zero-field switching current of more than 50nA (Supplementary
Figure 4.19) and a critical magnetic field of ∼ 2T (Supplementary Figure 4.20).

Device 4
In this nano-flake device, the normal-state current manifests sharp steps and the differen-
tial conductance features quantized plateaus owing to ballistic transport in the junction
(Supplementary Figures 4.21a,b). The presence of a moderate supercurrent (Supplemen-
tary Figure 4.21c) demonstrates that our fabrication technique can be used not only to
proximitize one-dimensional nanowires, but also other types of nanostructures such as
quasi-two-dimensional nano-flakes.

Voltage-biased conductance measurements in the tunnelling regime for 7 Josephson junc-
tions (including devices 1–3) are depicted in Supplementary Figure 4.22. The average in-
duced gap extracted for these devices is Δind = 248 ± 10μeV. It is slightly higher than in
the more transmissive regime at more positive gate voltages since the global back gate to
some degree also tunes the coupling to the superconductor, in agreement with the litera-
ture [12].
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Figure 4.14: Additional transport measurements of the first Josephson junction device. a 𝐼SD vs. 𝑉BG sweep
at 𝑉SD = 10mV, showing the field-effect tunability of the junction. Inset: scanning electron micrograph of the
device. b DC conductance, 𝐺, after subtracting the series resistance of the setup, as a function of 𝑉BG at 10mV
bias voltage. c, d 𝐺 vs. 𝑉SD and 𝑉BG in the few-subbands and many-subbands regime, respectively: vertical
features in both scans at constant bias voltages are the characteristic peaks originating from MARs. e Line-cut
of (d) at 𝑉BG = 14.61V in red and best fit of the trace in green according to the coherent scattering model in
Supplementary Note 3. f Extracted transmission probabilities, 𝑇𝑛 , as a function of 𝑉BG in the multi-subbands
regime, with 𝑛 ∈ {1,2,…,8}. In this back-gate voltage range, the transmission of the first five subbands is already
saturated at 𝑇𝑛 = 1.
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Figure 4.15: Tunability of the subbands of the first Josephson junction device. a Transmission probabilities, 𝑇𝑛 ,
of the first three subbands as a function of 𝑉BG. The parameters are extracted by fitting the conductance map of
Supplementary Figure 4.14c with the coherent scattering model described in Supplementary Note 3. b Out-of-
gap conductance as a function of 𝑉BG in black (i.e. vertical line-cut of Supplementary Figure 4.14c at 𝑉SD = 700μV)
together with the sum of the transmission probabilities in red.
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Figure 4.16: Additional transport measurements of the second Josephson junction device. a 𝐼SD vs. 𝑉BG sweep
at 𝑉SD = 10mV, showing the field-effect tunability of the junction. Inset: scanning electron micrograph of the
device. b DC conductance, 𝐺, after subtracting the series resistance of the setup, as a function of 𝑉BG at 10mV
bias voltage. c 𝐺 vs. 𝑉SD and 𝑉BG in the weak-tunnelling regime: subharmonic gap features correspond to
different orders of MARs. d Line-cut of (c) at 𝑉BG = 0.25V in red and best fit of the trace in green according to
the coherent scattering model in Supplementary Note 3. e Extracted transmission probabilities, 𝑇𝑛 , depicted as
a function of 𝑉BG with 𝑛 ∈ {1,2,3}.
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Figure 4.17: Superconducting critical magnetic fields of the second Josephson junction device. Colour maps of
𝐺 vs. 𝑉SD and magnetic field taken at 𝑉BG = 1.45V for different magnetic field orientations: in a the field 𝐵∥
is oriented parallel to the nanowire direction, in b 𝐵⟂ is orthogonal to the plane of the substrate, and in c the
transversal field 𝐵tr is orthogonal to the nanowire direction but in the substrate plane. The inset in panel (b)
shows a scanning electron micrograph of the device together with the different magnetic field directions.
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Figure 4.18: Switching current of the second Josephson junction device in the open-channel regime (𝑉BG = 5.7V).
Differential resistance, 𝑅, as a function of 𝐼SD and magnetic field in three different orientations: a Magnetic
field, 𝐵∥, aligned parallel to the nanowire, b magnetic field, 𝐵⟂, oriented out-of-plane, and c transversal in-plane
magnetic field, 𝐵tr. The vectors in the inset of panel (c) illustrate the three field orientations.
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Figure 4.19: Back-gate dependence of the switching current of the third Josephson junction device. Colour map
of 𝑅 as a function of 𝐼SD and 𝑉BG; the green trace is taken at 𝑉BG = 13.82V. The switching current (in dark blue)
is suppressed in the low back-gate voltage regime. The inset on the right shows a scanning electron micrograph
of the device. The Al segments are capped with a protective layer of Al2O3 evaporated at an angle of 30∘.
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Figure 4.20: Transportmeasurements of the third Josephson junction device. a𝑉SD vs. 𝐵∥ in the tunnelling regime.
Owing to the thinner Al shell, the superconducting critical field is 𝐵c ∼ 2T, much larger than for the previous two
junctions. The tunnelling conductance peaks at ±2Δind split into a manifold of resonances at a finite magnetic
field due to the different 𝑔 factors of the discrete quasiparticle states at the gap edge. b, c Line-cuts of (a) at the
positions indicated by the two lines.



4

94
4 Shadow-wall lithography of ballistic superconductor-

semiconductor quantum devices

−100 0 100
ISD (nA)

0.0

0.5

1.0

1.5

2.0

R
 (k

Ω
)

Isw = 35

VBG = 12
a bdevice 2 c

0 4 8
VBG (V)

0.0

0.4

0.8

1.2
I S

D
 (μ

A)

0 4 8
VBG (V)

0

2

4

6

G
 (2

e2 /h
)

device 4 V

nA

2 µm InSb flake

Al film Al film

[-111]

Figure 4.21: Ballistic transport and supercurrent in an InSb flake Josephson junction (device 4) at zero magnetic
field. a 𝐼SD vs. 𝑉BG at 𝑉SD = 10mV. Bottom inset: scanning electron micrograph of the nano-flake Josephson junc-
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Figure 4.22: Voltage-biased induced gap measurements on 7 different Josephson junction devices in the tun-
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tering model in Supplementary Note 3 and it corresponds to the conductance peaks where the coherence peaks
on both sides of the junctions are aligned.
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4.5.3 Modelling of Andreev Transport
Modelling of the Conductance of a Biased Josephson Junction and the Fitting Pro-
cedure
We calculate the conductance of a voltage-biased Josephson junction following the ap-
proach of ref. [70]. In the model, we account for the electrons and holes propagating
through the normal region of the junction with the transparency 𝑇 . The quasiparticles are
accelerated by the voltage 𝑉SD applied to the structure and are Andreev reflected at the su-
perconducting leads with the induced superconducting gap Δind. The sequential Andreev
reflections imprint the conductance with the subgap features appearing at 𝑉SD = 2Δind/𝑁 𝑒,
where 𝑁 is integer – see Supplementary Figure 4.23.
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Figure 4.23: Conductance,𝐺, of a single-mode Josephson junction versus bias voltage, 𝑉SD, for five transparencies
(𝑇 ) of the normal region.

For the analysis of the experimental conductance traces, we estimate the total conductance
𝐺theory(𝑉SD) of a multimode nanowire Josephson junction as a sum of 𝑀 single-mode
contributions resulting from the presence of𝑀 modes of the transverse quantization [71]:

𝐺theory (𝑉SD) =
𝑀
∑
𝑖=1

𝐺𝑖 (𝑉SD,𝑇𝑖 ,Δind) , (4.1)

where 𝑇𝑖 is the transmission probability for the 𝑖-th mode. We obtain 𝑇𝑖 and Δind (induced
in the nanowire by the presence of the Al shell) by fitting the numerically calculated con-
ductance to the experimental one by minimizing 𝜒 = ∫[𝐺exp(𝑉SD) − 𝐺theory(𝑉SD)]2𝑑𝑉SD.
𝑀 is a free parameter of the fitting procedure and it is chosen as the smallest number for
which at least one of the parameters 𝑇𝑖 is zero.
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Theory for Multiple Andreev Reflections in the Presence of Subgap States
Theoriginal theory developed in ref. [70] assumes a bulk superconducting density of states
in the leads. To account for different properties of the two leads, especially the presence
of subgap states in one of the contacts, we extend this theory as follows.

We consider a Josephson junction consisting of two superconducting electrodes connected
through a normal scattering region. We assume that the first contact is kept at zero voltage,
while the second one is biased at 𝑉SD. In the normal region, adjacent to the 𝐿-th lead, the
quasiparticle wave function takes the form,

Ψ𝐿 =∑
𝑛
[( 𝐴𝐿𝑛

𝐵𝐿𝑛 )𝑒𝑖𝑘𝑥 +( 𝐶𝐿𝑛
𝐷𝐿𝑛

)𝑒−𝑖𝑘𝑥]𝑒−𝑖[𝐸+𝑛𝑒𝑉SD]𝑡/ℎ̄, (4.2)

where 𝐴𝐿𝑛 , 𝐶𝐿𝑛 (𝐵𝐿𝑛 , 𝐷𝐿𝑛 ) correspond to the electron (hole) amplitudes, the time dependence
stems from the voltage applied to the leads and 𝑥 points in the direction opposite to the
scattering region. We describe the scattering properties of the normal region by the scat-
tering matrix:

𝑆0 = ( 𝑟 𝑡
𝑡 −𝑟 ) , (4.3)

which sets the transmission probability through the scattering region with the transmis-
sion amplitude 𝑡 = √𝑇 and the reflection amplitude 𝑟 = √1−𝑇 . We rely on the short-
junction approximation and use the energy-independent 𝑆0 to setup the matching condi-
tions for the wave functions Ψ𝐿. The electron and hole coefficients are related by:

( 𝐴1𝑛
𝐴2𝑛+1

) = 𝑆0 ( 𝐶1𝑛
𝐶2𝑛+1

) , (4.4)

and

( 𝐷1𝑛
𝐷2𝑛−1

) = 𝑆∗0 (
𝐵1𝑛
𝐵2𝑛−1 ) , (4.5)

respectively. The shifts of the indexes correspond to the changes of quasiparticle energies
due to the bias voltage. At each superconductor–normal-conductor interface we take into
account the Andreev reflection:

( 𝐶𝐿𝑛
𝐵𝐿𝑛 ) = ( 𝑎𝑛 0

0 𝑎𝑛 )( 𝐷𝐿𝑛
𝐴𝐿𝑛

) , (4.6)

with the amplitude 𝑎𝑛 ≡ 𝑎(𝐸 +𝑛𝑒𝑉SD), where,
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Figure 4.24: Experimental (blue dots) and theoretical (black curves) conductance traces of a Josephson junction
with a subgap state in one of the superconducting leads. a is for 𝐵∥ = 0 and b is for 𝐵∥ = 0.2T.

𝑎 (𝐸) = 1−𝛿𝐿,1Γ(𝐸)
Δind

{ 𝐸 − sgn (𝐸) √𝐸2 −Δ2
ind |𝐸| > Δind

𝐸 − 𝑖 √Δ2
ind −𝐸2 |𝐸| ≤ Δind.

(4.7)

The Andreev reflection amplitude is modified by the factor [1−𝛿𝐿,1Γ(𝐸)] where,

Γ(𝐸) = 𝛾 2
(𝐸 ±𝐸0)2 +𝛾 2

, (4.8)

is the Lorentzian distribution that accounts for absorption of the quasiparticles in the sub-
gap states (with the energy ±𝐸0) in the first lead. We set 𝛾 = 4μeV.
The electronic excitations in the normal part of the junction originate from the quasi-
particles incoming from the nearby superconducting contacts. We therefore write down
equation (4.6) including the quasiparticle source terms [72]:
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( 𝐶𝐿𝑛
𝐵𝐿𝑛 ) =( 𝑎𝑛 0

0 𝑎𝑛 )( 𝐷𝐿𝑛
𝐴𝐿𝑛

)

+( 𝐽 (𝐸 + 𝑒𝑉𝐿)
0 ) 1

√2𝛿𝑝,𝑒𝛿𝑠,𝐿𝜅
+𝐿

+( 0
𝐽 (𝐸 − 𝑒𝑉𝐿) ) 1

√2𝛿𝑝,ℎ𝛿𝑠,𝐿𝜅
−𝐿 ,

(4.9)

with 𝐽 (𝐸) = √[1−𝑎(𝐸)2]𝐹𝐷(𝐸), where 𝐹𝐷(𝐸,𝑇 = 30mK) is the Fermi distribution. In equa-
tion (4.9) 𝑝 sets the injected quasiparticle type, 𝑠 determines the lead in which we consider
the source term, 𝜅±1 = 𝛿𝑛,0, 𝜅±2 = 𝛿𝑛,±1 keep track of the quasiparticle energy shifts due to
the bias, and where 𝑉1 = 0 and 𝑉2 = 𝑉SD. We calculate the current 𝐼 𝐿 in the 𝐿-th lead as:

𝐼 𝐿 =
𝐼max

∑
𝚤=−𝐼max

𝐼 𝐿𝚤 𝑒𝚤𝑉SD𝑒𝑖𝑡/ℎ̄, (4.10)

with the Fourier components,

𝐼 𝐿𝚤 = 𝑒
ℎ̄𝜋 ∑

𝑠=1,2
∑
𝑝=𝑒,ℎ

∫
∞

−∞
𝑑𝐸

𝑁max

∑
𝑛=−𝑁max

(U𝐿∗𝚤+𝑛U𝐿𝑛 −V𝐿∗𝚤+𝑛V𝐿𝑛). (4.11)

U𝐿𝑛 = (𝐴𝐿𝑛 ,𝐵𝐿𝑛)
𝑇
and V𝐿𝑛 = (𝐶𝐿𝑛 ,𝐷𝐿𝑛)

𝑇
are vectors that consist of the electron and hole am-

plitudes. The DC current is obtained for 𝚤 = 0 and subsequently used to calculate the
conductance, 𝐺 = 𝑑𝐼 𝐿/𝑑𝑉SD. To efficiently sample the non-uniform conductance trace we
use the Adaptive package [73].

In Supplementary Figure 4.24, we show the calculated MAR conductance traces (black
curves) together with two cross-sections (blue dots) from the experimental map in Fig. 4.3c
of the main text. We focus here on two cases: 𝐵∥ = 0 and 𝐵∥ = 0.2T with the parameters
used for the calculations given in the first and second row of Supplementary Table 4.2,
respectively. The calculated traces agree qualitatively well with the data: they capture
the peak positions and the overall line shape. In particular, we observe two ordinary MAR
peaks at 𝑉SD = 2Δind/𝑁 𝑒with𝑁 = 1,2 and two peaks induced by the presence of the subgap
state at 𝑉SD = (Δind +𝐸0)/𝑁 𝑒 with 𝑁 = 1,2. The increase of the magnetic field significantly
alters the energy of the subgap state causing a further splitting between the MAR and the
subgap-induced peaks.

To better understand the transport features in Fig. 4.3c of the main text, we simulate the
conductance assuming a single subgap state whose energy evolves linearly in themagnetic
field as 𝐸0 = ±(𝐸𝐵∥=0 −

1
2𝑔𝜇B𝐵∥), where g = 18 and 𝐸𝐵∥=0 = 210μeV. The result is shown in

Supplementary Figure 4.25a, where we have assumed a junction transmission of 𝑇1 = 0.065
and a magnetic field dependence of the gap given by Δind = Δ0(1−𝐵2∥ /𝐵2c) [74, 75] with 𝐵c
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𝐵|| (T) Δind (μeV) 𝑇1 𝐸0 (μeV)
0 236 0.065 210
0.2 220 0.065 120

Table 4.2: Parameters used for the calculation of the conductance traces in Supplementary Figure 4.24.

= 1.1 T and Δ0 = 236μeV. In Supplementary Figures 4.25b–d, we illustrate the quasiparticle
transport processes for different magnetic fields. The conductance peaks at 𝑉SD = ±2Δind/𝑒
correspond to an energy difference of 2Δind as denoted by the red arrows. If the electron
transfer involves a subgap state at energy 𝐸0 on one side of the junction, the corresponding
bias voltage is 𝑉SD = (Δind +𝐸0)/𝑒 (Supplementary Figure 4.25d). As the magnetic field is
increased, the subgap state moves to lower energies. Once the state is at zero energy
(𝐸0 = 0), electrons only require an energy of 𝑒𝑉SD = Δind (Supplementary Figure 4.25c). In
Fig. 4.3c of the main text, this occurs around 𝐵∥ = 0.4T. As the subgap state crosses zero
energy, electrons again require an energy of 𝑒𝑉SD = Δind +𝐸0 to cross the junction via this
state (Supplementary Figure 4.25b). If the junction is more transmissive, as is the case
for Fig. 4.3c of the main text, also a MAR process occurs, identified by the conductance
peak that emerges at 𝑉SD ∼ 0.24mV at zero field and is associated with an energy Δind.
In addition, when the subgap state moves to lower energies due to the Zeeman effect,
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Figure 4.25: Multiple Andreev reflections in the presence of a subgap state. a Calculated conductance in the
presence of a subgap state at energy 𝐸0. Both quantities Δind and 𝐸0 vary with magnetic field. b–d Schematics
of the first-order multiple Andreev reflection processes for different magnetic fields increasing from the bottom
to the top panel. The superconducting gap is varied accordingly.
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it also allows for a MAR process to occur, which results in a splitting of the MAR peak.
With increasing magnetic field, the superconducting gap on both sides of the junction
shrinks, resulting in the scenario shown in Supplementary Figure 4.25a, where the subgap
state moves as a function of 𝐵∥ from 𝑉SD = 2Δind/𝑒 down to Δind/𝑒 and back up to 2Δind/𝑒.
Considering that multiple subgap states can peel off from the gap edge with different
associated 𝑔 factors, a rich and complex pattern can occur. This interpretation of the
involved transport processes is supported by the numerical simulation.

4.5.4 Additional Transport Measurements in Normal Metal/Super-
conductor Junctions

Calibrating the AC conductance
TheAC conductance is measured using a standard low-frequency lock-in technique. Some
of the employed current-to-voltage amplifiers have been found to suffer from a relatively
low bandwidth. This required a recalibration of the measured differential conductance of
the N–S devices. The approach shown here is similar to a calibration procedure developed
by Jouri Bommer, Guanzhong Wang and Michiel de Moor (see also guidelines on lock-in
measurements by the same authors:
http://homepage.tudelft.nl/q40r9/lockin-meas-guide-v20200603.pdf).

Supplementary Figure 4.26 shows the raw conductance data from Fig. 4.4 of the main
text prior to the subtraction of any series resistance. For the mapping of the lock-in con-
ductance, 𝐺LI, to the numerical DC conductance, 𝐺num, the data is binned into a two-
dimensional histogram (resolution 0.003 ⋅ 2𝑒2/ℎ). Since the numerical conductance suf-
fers from noise, we determine the centre of the distribution for each bin of 𝐺LI by fit-
ting a Gaussian distribution to the histogram of 𝐺num (see right panel of Supplementary
Figure 4.26). Data points that are more than 5 standard deviations from the centre of
the distributions are discarded as outliers. Here, the mapping yields the parametrization
𝐺num = −0.016 ⋅𝐺2

LI +0.995 ⋅𝐺LI.

Supplementary Figure 4.27 shows the calibration for the left junction of the correlation
device in Fig. 4.5e of the main text. In Supplementary Figure 4.28, the calibration is
presented for the right junction of the correlation device in Fig. 4.5f of the main text.
This is the only N–S junction device that was measured at a relatively large lock-in fre-
quency (𝑓 = 72Hz). The right panels of Supplementary Figure 4.27 and Supplementary
Figures 4.28a–c show exemplary fits of the histograms using a Gaussian. The red traces
represent the fitting by the least-squares method using the polynomial regression func-
tion 𝐺num = 𝐴 ⋅ 𝐺2

LI + 𝐵 ⋅ 𝐺LI + 𝐶 . The mapping in Supplementary Figure 4.27 yields the
parametrization 𝐺num = −0.108 ⋅𝐺2

LI +1.043 ⋅𝐺LI −0.003. In Supplementary Figure 4.28, the
weighted average of the fitting functions yields the mapping function 𝐺num = 0.023 ⋅𝐺2

LI +
1.034 ⋅𝐺LI−0.040, where the residuals of the individual measurements provide the weights.
Supplementary Figure 4.28d summarizes the parabolic (𝐴) and linear (𝐵) fit parameters
from Supplementary Figures 4.28a–c. The black data point indicates the weighted average
of the fit parameters.

http://homepage.tudelft.nl/q40r9/lockin-meas-guide-v20200603.pdf
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Figure 4.26: Calibration function extracted from the conductance data of the N–S junction presented in Fig. 4.4 of
the main text. Numerical differential conductance, 𝐺num, vs. AC differential conductance, 𝐺LI. Here, the lock-in
frequency is 𝑓 = 23Hz.
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Figure 4.27: Calibration function extracted from the conductance data of the N–S junction presented in Fig. 4.5e
of the main text. Numerical differential conductance, 𝐺num, vs. AC differential conductance, 𝐺LI. Here, the lock-
in frequency is 𝑓 = 23Hz.

List of N–S Devices
The specifications of the N–S junction devices studied in this work are listed in Supple-
mentary Table 4.3. All devices are fabricated by evaporating an Al thin film at 30∘ with
respect to the substrate plane.
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Figure 4.28: Calibration functions extracted for the N–S junction presented in Fig. 4.5f of the main text. a–
c Numerical differential conductance, 𝐺num, vs. AC differential conductance, 𝐺LI. Each of the three panels is
from separate data set. Here, the lock-in frequency is 𝑓 = 72Hz. d Summary of the parabolic (𝐴) and linear
(𝐵) fit parameters in panels (a–c). The colors of the data points correspond to the axis colors of the respective
panels. The black data point denotes the weighted average fit parameters, where the weights are determined by
the residuals of the individual fits. The grey area designates the 95% confidence interval.

N–S device Sample ID/ Evaporation Nanowire Maximum Al Oxidationdevice name angle diameter (nm) thickness (nm)
device 1 U53/1.3 30∘ 100 16 in O2 atmosphere
device 2 U53/1.1 30∘ 100 16 in O2 atmosphere
device 3 U48/2.3 30∘ 105 16 in O2 atmosphere
device 4 U53/1.2, left 30∘ 80 16 in O2 atmospheredevice 5 U53/1.2, right

Table 4.3: Summary of the N–S devices presented in this study. Device 1 is the sample presented in Fig. 4.4 of the
main text. Devices 4 and 5 correspond to the left and right N–S junctions, respectively, of the sample presented
in Fig. 4.5 of the main text.

N–S Junction Spectroscopy
Deep in the tunnelling regime, the subgap conductance is strongly suppressed. As illus-
trated in Supplementary Figure 4.29, the ratio of the above-gap conductance and the sub-
gap conductance is approximately a factor of 100. In Supplementary Figures 4.29a,b, the
differential conductance line-cut for N–S device 1 (i.e. the same device as in Fig. 4.4 of the
main text) is fitted using the BCS–Dynes term (red) and the BTK model (green). The data



4.5 Supplementary information

4

103

in Supplementary Figures 4.29c,d shows a line-cut for another N–S junction (device 2),
which is not presented in the main text. The fitting parameters of the BTK model are
the induced gap, Δind, the normal-state conductance, 𝐺N, and the temperature, 𝑇 . For
device 1 it yields an induced gap of Δind = 231μeV and for device 2 the extracted gap is
Δind = 241μeV. In the BTK model the only effective broadening parameter is the tempera-
ture, which for both devices yields 𝑇 ≈ 0.1K. The two N–S junctions presented in Fig. 4.5
of the main text (devices 4 and 5) also exhibit comparable values of the induced gap of
Δind ∼ 230–240μeV.
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Figure 4.29: a, b Differential conductance vs. source–drain voltage line-cut for N–S device 1 (same as in Fig. 4.4
of the main text) on a linear scale in (a) and on a logarithmic scale in (b). Here, the tunnel-gate voltage is
𝑉TG = 0.530V and the super-gate voltage is 𝑉SG = 0V. c, d Differential conductance vs. source–drain voltage
line-cut for N–S device 2 (not presented in the main text) on a linear scale in (c) and on a logarithmic scale in (d).
Here, the tunnel-gate voltage is 𝑉TG = 2.004V and the super-gate voltage is 𝑉SG = 7.0V.The fit of the BCS–Dynes
term and of the BTK model are shown in red and green, respectively.
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Temperature Dependence of the Induced Gap
In Supplementary Figure 4.30, we present the temperature dependence for another device
(N–S device 3), which is not presented in the main text. In the limit 𝑘B𝑇 ≪Δind, the subgap
conductance, 𝐺S, scales with temperature, 𝑇 , as [36]

𝐺S (𝑉SD = 0) = 𝐺N√
2𝜋Δind
𝑘B𝑇

𝑒−Δind/𝑘B𝑇 , (4.12)

where 𝐺N is the normal-state conductance and 𝑘B is the Boltzmann constant. The purple
trace in Supplementary Figure 4.30a measured at 𝑇 = 18mK is well described by the BTK
model with an induced gap of Δind = 237μeV. This is very similar to the magnitude of the
induced gap of the other two N–S devices shown in Supplementary Figure 4.29, albeit
those junctions are formed in a separate Al deposition step on another substrate. The
theoretical model in equation (4.12) can describe the smearing of the density of states
with temperature. It yields a fit parameter of Δind ≈ 210μeV, which is a bit smaller than
the gap directly extracted from the tunnelling spectroscopy.
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Figure 4.30: Temperature dependence of the induced gap (N–S device 3). a Tunnelling conductance vs. source–
drain voltage between 𝑇 = 18mK (purple) and 𝑇 = 1.17K (yellow). b Subgap conductance averaged between
𝑉SD = ±30μV (𝐺S) divided by the normal-state conductance (𝐺N) as a function of 𝑇 . The blue trace is a fit to
equation (4.12).

Hard Induced Gap
In Supplementary Figure 4.31, we report the fit of the BTK model to the data shown in
Fig. 4.4b of the main text (N–S device 1). The extracted induced superconducting gap is
Δind ∼ 230μeV.

Zero-Bias Peaks in the N–S Device
In Supplementary Figure 4.32, we present additional data for the first N–S device (cf.
Fig. 4.4 of the main text) in a parallel magnetic field for two different super-gate voltages.
In the main text, we present ballistic transport and pronounced Andreev enhancement for
the same N–S device. Here, we show the evolution of discrete subgap states as a function
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Figure 4.31: N–S junction voltage-bias spectroscopy and the corresponding fit of the BTK model [21] for N–
S device 1. a Differential conductance, 𝐺, as a function of source–drain voltage, 𝑉SD, and bottom tunnel-gate
voltage, 𝑉TG, from Fig. 4.4b of the main text. b Fit of the BTKmodel to the data set in panel (a). The fit parameters
include the induced gap, the temperature, and the barrier strength 𝑍 , wich is given by the transmission (1+𝑍 2)−1.
c, d Line-cut of the data in panel (a) (dark blue) at 𝑉TG = 0.53V and at 𝑉TG = 0.69V, respectively. The orange
traces show the corresponding fits to the BTK model.

of magnetic field and the formation of ZBPs, which in some cases can reach a conductance
close to 2𝑒2/ℎ.

Zero-Bias Peaks and Super-Gate Dependence
Additional N–S spectroscopy measurements of the left N–S junction of the device pre-
sented in Fig. 4.5 of the main text are shown in Supplementary Figure 4.33. Here, the
voltage at the super gate – the bottom gate controlling the electrochemical potential in
the hybrid nanowire segment – is larger (𝑉SG = 0.525V vs. 0V). The differential conduc-
tance vs. 𝑉SD and 𝐵∥ is depicted in Supplementary Figure 4.33a, the bias-voltage line-cut
in Supplementary Figure 4.33b illustrates the pronounced zero-bias conductance peak at
large magnetic fields. However, the magnitude of the ZBP conductance depends on the
tuning of the tunnel-gate and super-gate voltages (cf. Supplementary Figure 4.33c).

In Supplementary Figure 4.34 additional data from the high-field regime are presented
(here 𝐵∥ = 0.85−1.15T). For the same bottom-gate settings as in Supplementary Figure 4.33
we observe ZBPs that emerge concurrently at both boundaries of the superconductor–
semiconductor nanowire segment (cf. Supplementary Figures 4.34a,b). By fixing the mag-
netic field at 𝐵∥ = 1.0T we can observe the evolution of the ZBPs at the left and right
N–S junctions as a function of the voltage on the super gate underneath the hybrid nano-
wire segment (see Supplementary Figures 4.34c,d). The asymmetry in the conductance of
Supplementary Figure 4.34d with respect to bias polarity is presumably related to energy-
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Figure 4.32: Magnetic-field-dependent voltage-bias spectroscopy for N–S device 1 from Fig. 4.4 of the main text,
demonstrating the formation of zero-bias peaks in the differential conductance. a 𝐺 as a function of 𝑉SD and
𝐵∥. The super-gate voltage is 𝑉SG = 7.5V and the tunnel-gate voltage is 𝑉TG = 0.5V. b Line-cuts from panel (a) at
the positions indicated by the two lines. c 𝐺 as a function of 𝑉SD and 𝐵∥. Here, 𝑉SG = 2.97V and 𝑉TG = 0.417V.
d Line-cuts from panel (c) at the positions indicated by the two lines.

dependent tunnel barrier transmission at the right N–S junction. The concurrent evolution
of the ZBPs at both N–S boundaries of the correlation device as a function of the super-
gate voltage is also depicted in Supplementary Figure 4.35 for same tunnel-gate settings
as in Fig. 4.5 of the main text.

4.5.5 Realization of Advanced Hybrid Devices
In this section, we present another example of more advanced nanowire devices that can
be realized using the shadow-wall technique. In the main text, we have introduced the
necessary ingredients to realize the basic implementation of a topological qubit using the
shadow-wall technique. In Supplementary Figure 4.36, we show another application of
the shadow-wall concept, which is intended as an experimental implementation of a the-
oretical proposal by Schrade and Fu [76]. It represents a superconducting quantum inter-
ference device (SQUID) formed by two InSb nanowires (green) placed deterministically
in close vicinity of shadow walls (blue). Previous realizations of nanowire SQUIDs relied
on electron-beam lithography and standard lift-off technique [77]. Here, top gates (yel-
low) are fabricated to form a single Josephson junction (JJ) on the left side of the device
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Figure 4.33: Voltage-bias spectroscopy of a subgap state with a large zero-bias peak conductance close to 2𝑒2/ℎ
(measured at the left N–S junction of the device presented in Fig. 4.5 of the main text). Here, the super-gate
voltage 𝑉SG = 0.525V. a Differential conductance, 𝐺, as a function of the bias voltage at the left terminal, 𝑉SD,
and the magnetic field along the wire axis. b Voltage-bias line-cut of the differential conductance at zero field
(blue) and at 𝐵∥ = 1.11T (orange). c 𝐺 vs. 𝐵∥ line-cuts at 𝑉SD = 0μV from panel (a) (red, at 𝑉SG = 0.525V) and
from Fig. 4.5e of the main text (purple, at 𝑉SG = 0V). The shaded areas behind the solid traces correspond to the
variation in conductance assuming an uncertainty of ±0.5kΩ in estimating the actual series resistance.

and a superconducting island is defined by two tunnel gates and one plunger gate on the
right side of the device. Source and drain electrodes are created by bonding directly to the
Al film (grey) at the bottom and at the top of the SQUID loop, respectively. By utilizing
shadow-wall substrates with bottom gates, this SQUID sample can be realized without any
post-interface fabrication steps.
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Figure 4.34: Simultaneous appearance of zero-bias peaks at both hybrid boundaries (same device as in Fig. 4.5 of
the main text). The two tunnel gates are set to 𝑉TG,left = 0.47V and 𝑉TG,right = 0.13V. a, bDifferential conductance,
𝐺left/right, as a function of magnetic field, 𝐵∥, and bias voltage at the left and right terminal, respectively. Here,
the super-gate voltage 𝑉SG = 0.525V, i.e. identical as for the data in Supplementary Figure 4.33a. c, d Differential
conductance,𝐺left/right, at 𝐵∥ = 1.0T as a function of𝑉SG and bias voltage at the left and right terminal, respectively.
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Figure 4.35: Simultaneous appearance of zero-bias peaks at both hybrid boundaries (same device and same tunnel-
gate settings as in Fig. 4.5 of the main text). The two tunnel gates are set to 𝑉TG,left = 0.52V and 𝑉TG,right = 0.21V.
a, b Differential conductance, 𝐺left/right, at 𝐵∥ = 1.0T as a function of 𝑉SG and bias voltage at the left and right
terminal, respectively. c, d Line-cuts from panels (a) and (b) at the values of 𝑉SG designated by the coloured lines.
The shaded areas behind the solid traces correspond to the variation in conductance assuming an uncertainty of
±0.5kΩ in estimating the actual series resistance.
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Figure 4.36: SQUID sample formed by placing two InSb nanowires next to each other in the shadow region of the
dielectric walls. Electrical current flows from source to drain via the Josephson junction (denoted as JJ) and the
hybrid charge island as indicated by the white arrows. The magnetic flux threading through the SQUID loop is
denoted as Φ. The bottom of the SQUID loop is partly formed by the Al thin film covering the side of the central
shadow wall.
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Parametric exploration of

zero-energy modes in three-
terminal InSb-Al nanowire devices

Lasciate ogne speranza, voi ch’intrate.

Dante Alighieri

We systematically study three-terminal InSb-Al nanowire devices by using radio-frequency
reflectometry. Tunneling spectroscopymeasurements on both ends of the hybrid nanowires
are performed while systematically varying the chemical potential, magnetic field and
junction transparencies. Identifying the lowest-energy state allows for the construction
of lowest- and zero-energy state diagrams, which show how the states evolve as a func-
tion of the aforementioned parameters. Importantly, comparing the diagrams taken for
each end of the hybrids enables the identification of states which do not coexist simulta-
neously, ruling out a significant amount of the parameter space as candidates for a topo-
logical phase. Furthermore, altering junction transparencies filters out zero-energy states
sensitive to a local gate potential. Such a measurement strategy significantly reduces the
time necessary to identify a potential topological phase and minimizes the risk of falsely
recognizing trivial bound states as Majorana zero modes.

This chapter has been published as Parametric exploration of zero-energymodes in three-terminal InSb-Al nanowire
devices, J.-Y. Wang, N. van Loo, G.P. Mazur, V. Levajac, F.K. Malinowski, M. Lemang, F. Borsoi, G. Badawy, S.
Gazibegovic, E.P.A.M. Bakkers, M. Quintero-Pérez, S. Heedt and L.P. Kouwenhoven in Physical Review B 106,
075306 (2022).
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5.1 Introduction
Superconductor-semiconductor hybrids have attracted great interest in recent years for
their potential applications in creating Majorana zero modes (MZMs) [1–3]. Extensive
experiments have been carried out on such hybrid nanowires [4–11] and hybrid two-
dimensional electron gases (2DEGs) [12–14]. Zero-bias peaks (ZBPs), observed at the
ends of such hybrids, were initially considered as evidence for the existence of MZMs.
However, such ZBPs could also originate from alternative trivial mechanisms, such as
quasi-Majoranas [15], disorder [16–20], or a combination of Zeeman and Little-Parks ef-
fects [21]. On the other hand, end-to-end correlations are a unique property of paired
MZMs in a topological superconductor, and could be used to distinguish MZMs from triv-
ial Andreev bound states in three-terminal architectures [22–25].

Simulations taking into account the physical details of experimental devices (i.e. supercon-
ductor-semiconductor coupling, band offset at the interface, multiple subbands, and dis-
order effects) predict a significantly reduced and complex topological phase space [26].
Therefore, finding such a phase in the large parameter space requires the development
of a detection method capable of scanning the entire parameter space within a practical
time [27]. Radio-frequency (rf) techniques have been succesfully implemented on super-
conducting qubits [28], spin qubits [29] and hybrid devices [30, 31]. Compared to tradi-
tional dc conductance measurements, it enables a fast and high-resolution exploration of
all essential parameters in hybrid devices.

Three-terminal InSb-Al nanowire devices are systematically investigated using rf reflec-
tometry. Local tunneling spectroscopy is performed at two ends of the hybrid nanowires,
while exploring the chemical potential (controlled by the so-called ‘super gate’) and ex-
ternal magnetic field. The lowest-energy states (LESs) and zero-energy states (ZESs) are
extracted as a function of super gate voltage and magnetic field, forming LES or ZES di-
agrams. As MZMs in an idealized model feature end-to-end correlations, the extracted
diagrams of the two sides are compared to filter out uncorrelated ZESs. Stability of ZESs
to transparency variation is studied by altering barrier gate settings, and zero-energy An-
dreev states residing around junctions are successfully identified. In addition, induced
superconductivity on two ends of the hybrid nanowires is extracted, helpful for quan-
tifing superconductor-semiconductor coupling in the hybrid nanowires. By applying the
aforementioned experimental procedure, typical patterns of ZBPs are indentified in the
studied devices, but after a closer inspection non-topological explanations are more likely.
The approach is able to significantly accelerate the idenfication on a potential topological
phase.

5.2 Experimental Setup
Fig. 5.1(a) shows a circuit diagram of the measurement setup together with a false-color
scanning electron microscope (SEM) image of Device 1. Three-terminal devices are fab-
ricated from InSb nanowires [32] using the recently developed shadow-wall lithography
technique, enabling high-quality semiconductor-superconductor quantum devices [33,
34]. In the SEM image, an Al film (blue) is connected from the substrate to the nanowire
to serve as a superconducting drain lead, while Ti/Au contacts (yellow) are fabricated on
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Figure 5.1: Rf reflectometry measurement setup and its basic characteristics. (a) Measurement circuit together
with a false-color SEM image of a three-terminal InSb-Al device. The superconducting lead (blue) is made from
Al, connecting from the substrate to the nanowire. The superconductor-semiconductor hybrid is ∼2 𝜇m long.
Two probe leads (yellow), made from Ti/Au, are bonded to two superconducting inductors 𝐿1, 𝐿2. Voltages 𝑉LB
and 𝑉RB are applied to bottom gates (orange) for tuning the left and right tunneling barriers, respectively. The
chemical potential of the hybrid nanowire is tuned by the super gate (turquoise) with voltage 𝑉SG. (b) and (c)
Dc conductance of left and right junction (𝑔L, 𝑔R) versus corresponding barrier gate voltage (𝑉LB, 𝑉RB). (d) and
(e) Corresponding rf response as a function of barrier gates in the same range as (b) and (c). (f) and (g) Line cuts
at specific gate voltages from (d) and (e). In (d)-(g), 𝑉rf is the amplitude of the reflected rf signal with ∼30 dB
amplification at 4 K and ∼65 dB amplification at room temperature. (h) Bias-voltage waveforms applied at two
probe leads as a function of time. In the shaded time period, voltage-bias spectroscopy of either side is performed.
T is the time period for measuring bias-spectroscopy traces on both sides.

both ends of the hybrid nanowire to serve as probe leads. Voltages 𝑉LB, 𝑉RB are applied
onto barrier gates (orange) to tune the transparency of the tunneling junctions. The volt-
age on the super gate (turquoise), 𝑉SG, is changing the chemical potential of the hybrid
nanowire. In Fig. 5.10, we show SEM pictures of two additional measured devices and a
schematic of the cross-section of the device. The hybrids in all three devices are ∼2 𝜇m
long.

In order to accelerate tunneling spectroscopy at both junctions, an rf-conductance mea-
surement scheme is employed [30, 35, 36]. The left and right probe lead of the device are
connected to two superconducting spiral inductors (𝐿1, 𝐿2) [29]. Together with parasitic
capacitors (𝐶P1, 𝐶P2) to ground, the inductors form two rf resonant circuits with typical
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resonance frequencies 250-450 MHz (see optical images of inductor chips with devices in
Fig. 5.11). Each resonator acts as an impedance transformer for the corresponding tun-
neling junction. On resonance, the typical junction impedance (∼150 kΩ) is converted
towards 50 Ω, which is the characteristic impedance of the transmission lines in the cryo-
stat. Consequently, the reflection of the rf circuits at resonance displays a sensitive depen-
dence on the differential conductance of the tunneling junctions. Fig. 5.1(b) and Fig. 5.1(c)
present the pinch-off curves of the junctions at the two ends of the hybrid nanowire, at
10 mV dc bias, while Fig. 5.1(d)-(g) show corresponding response of the resonator circuits.
The rf reflection has a sensitive response to conductance changing from 0.005 𝐺0 to 0.6𝐺0
(𝐺0=2𝑒2/ℎ). Such a broad conductance response allows sensitive rf detection at different
tunneling transparencies.

The integration time per data point is about 1 ms, approximately two orders of magnitude
less than the integration time of a conventional lock-in conductance measurement. To
take advantage of the reduced integration time, we employ a rastering scheme [36, 37]
to rapidly sweep the dc voltage bias applied at the tunneling junctions. Fig. 5.1(h) shows
the waveforms generated by an arbitrary waveform generator (AWG). To perform the
tunneling spectroscopy measurements at the two ends of the nanowire, the AWG gener-
ates a pair of triangular pulses, each sweeping the dc voltage bias at one of the junctions.
The waveforms are accompanied by triggers, synchronizing the data aquisition with the
voltage sweeps. Throughout the experiment, we perform pairs of tunneling spectroscopy
measurement (typically 200 data points for each side with a total duration of ∼0.4 s), which
we repeat while varying gate voltages and the external magnetic field.

5.3 Results
5.3.1 Tunneling spectroscopy
Initially, basic characterization of devices and resonators is performed before moving to
tunneling spectroscopywith rf. First, cross-talk between the super gate and barrier gates is
measured at a fixed dc voltage bias. While sweeping 𝑉SG, barrier gate voltages are changed
accordingly to maintain a constant junction conductance (see Fig. 5.12(a) and Fig. 5.12(b)).
Next, themagnetic field is aligned along the nanowire axis. Furthermore, the resonator fre-
quency shift in an external magnetic field is characterized (see Fig. 5.12(c) and Fig. 5.12(d)).
As the external magnetic field is swept, the probing frequencies are adjusted to maintain
a high sensitivity of the rf conductance measurement. Finally, tunneling spectroscopy is
performed on both sides of the device by applying the dc bias waveform illustrated in
Fig. 5.1(h), while stepping 𝑉SG and the parallel magnetic field, 𝐵||.

Fig. 5.2 shows segments of tunneling spectroscopy measurements on two nanowire ends
at different 𝐵||. Fig. 5.2(a) and Fig. 5.2(c) show the results as a function of 𝑉SG at 𝐵||=0.
Line cuts at different 𝑉SG are presented in Fig. 5.2(b) and Fig. 5.2(d). Suppressed conduc-
tance in between two pronounced coherence peaks suggests a hard superconducting gap.
The superconducting gap is ∼260 𝜇eV, consistent with previous report based on the same
fabrication platform [33, 34]. Fig. 5.2(e) and Fig. 5.2(g) present an example of sub-gap fea-
tures at 𝐵||=0.48 T for the same 𝑉SG range as Fig. 5.2(a) and Fig. 5.2(c). ZBPs are formed
at both ends between 𝑉SG = −0.23V and 𝑉SG = −0.15V (see Fig. 5.2(f) and Fig. 5.2(h) for
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Figure 5.2: (a) and (e) Selected segments of tunneling spectroscopy at the left junction at 𝐵|| = 0 T and 𝐵|| = 0.48 T,
respectively. Line cuts are taken at colored bars and shown in (b) and (f). (c) and (g) are similar as (a) and (e),
but for the right junction. (d) and (h) show line cuts from (c) and (g). Line cuts at zero magnetic field show a
hard gap on both sides. Results at 𝐵|| = 0.48 T illustrate the coexistence of zero-bias peaks on two sides. Note
that the curves shown in (b), (d), (f) and (h) are shifted vertically for better visibility.

line cuts). ZBPs, peaks in differential conductance at zero energy, indicate the existence
of ZESs, which are states with zero energy. Having established our setup for tunneling
spectroscopy at both nanowire ends, we start mapping ZESs as a function of multiple
parameters over a large range with high resolution.

5.3.2 Diagrams of lowest- and zero-energy states
For a given combination of 𝐵|| and 𝑉SG, the presence of ZBPs is validated by analyzing
one 𝑉rf-𝑉L/R trace (see Fig. 5.15 for details). This is repeated for all measured parameter
values and presented as ZES diagrams, as shown in Fig. 5.3. Fig. 5.3(c) shows coexisting
ZESs on both ends of the hybrid nanowire. In these diagrams, three distinct regimes can
be observed. (1) For negative super gate voltages (𝑉SG < −0.8V), ZESs only appear at
high magnetic field (on the order of 𝐵|| = 0.8 T) and there are no coexistent ZESs. (2) For
positive super gate voltages (𝑉SG > 0.5 V), ZESs are ubiquitous at fields as low as 𝐵|| = 0.2 T
(An example of bias spectroscopy in this regime is shown in Fig. 5.13). Here, coexistent
ZESs are sparsely distributed in parameter space. (3) In an intermediate regime (−0.8V <
𝑉SG < 0.5V), ZESs emerge at moderate magnetic fields compared to the other two regimes.
Notably, ZESs form regular shapes in parameter space and there is a significant amount
of coexisting ZESs. This behavior is reproduced for two other InSb-Al hybrid nanowires
presented in this work (see Fig. 5.21 and Fig. 5.23). A recent work on InSb-Al hybrid islands
reports three similar regimes in 𝑉SG [38]. It is explained by a tunable superconductor-
semiconductor coupling with 𝑉SG [26, 39, 40]. The intermediate regime is identified to be
the most promising region to search for a topological superconducting phase. We focus
the subsequent measurements on this intermediate super gate regime (marked bymagenta
rectangles in Fig. 5.3).

Fig. 5.4 presents high-resolution diagrams obtained in the intermediate super gate regime.
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Figure 5.3: ZES diagrams as a function of 𝑉SG and 𝐵|| for the left junction (a) and right junction (b). Black and
white pixels indicate the presence and absence of ZESs, respectively. (c)Diagramwith black pixels indicating the
coexistence of ZESs on both ends. In each panel, there are 2523 data points along 𝑉SG and 61 along 𝐵|| (i.e. total
number of pixels is 2523×61). The full data set is acquired in ∼142 hours. Magenta rectangles mark the region
with a relatively large density of coexistent ZESs. Calibration measurements, including Fig. 5.1(d), Fig. 5.1(e) and
Fig. 5.12, take ∼13.5 hours.

Fig. 5.4(a) and Fig. 5.4(b) show the energy of LESs probed at the two junctions, E𝐿0 and E𝑅0 ,
versus 𝑉SG and 𝐵|| (LES extraction method is shown in Fig. 5.15). At zero magnetic field,
𝐸L/R0 is close to the superconducting gap (∼260 𝜇eV). As 𝐵|| increases, 𝐸L/R0 starts to drop
due to the emergence of sub-gap states. In order to illustrate the dependence of 𝐸L/R0 on 𝐵||,
examples of two vertical line cuts are shown in Fig. 5.4(d) and Fig. 5.4(e). These are picked
to illustrate two types of behavior: For the blue line cuts (𝑉SG = −0.18V), the behavior
on both sides of the nanowire is similar. Sub-gap states emerge and drop to zero energy,
with a comparable effective g-factor (solid green lines are fitting traces to the linear part
of the data). On the other hand, the magenta line cuts (𝑉SG = −0.6V) show an example
where on one junction, a sub-gap state drops to zero energy while on the other side no
sub-gap states emerge. In order to identity LESs that may extend between the two ends
of the hybrid nanowire, the energy difference between LESs, |𝐸L0 − 𝐸R0 |, is calculated and
shown in Fig. 5.4(c). Fig. 5.4(f) shows the line cuts at the same 𝑉SG as in Fig. 5.4(d) and
Fig. 5.4(e). Notably, for the blue line cut the energy difference of the LESs on both ends is
close to zero within a large range of field, indicating a potential correlation. In contrast,
the magenta line cut shows a large energy difference for almost all field values, which
signifies uncorrelated behavior.

From the LES diagrams, states with zero energy are identified. These states are presented
in ZES diagrams, shown in Fig. 5.4(g)-Fig. 5.4(i) (see the example of the extraction process
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function of 𝑉SG and 𝐵||. (b) Energy of LESs, 𝐸R0 , probed on the right junction versus 𝑉SG and 𝐵||. (c) Energy
difference between the LESs probed on the two ends. (d)-(f) Line cuts taken at different 𝑉𝑆𝐺 from (a)-(c). In
(d) and (e), solid green lines are linear fits. (g) and (h) ZES diagrams for the left and right junction, respectively.
(i) Diagram of coexisting ZESs on both ends. Gates are swept by following the cyan dashed lines (𝑔L ∼0.035G0,
𝑔R ∼0.064𝐺0) in Fig. 5.14. In (a)-(c) and (g)-(i), each panel includes 522×101 pixels. The dataset is acquired in
∼35 hours.

in Fig. 5.15). Similar to Fig. 5.3, black pixels in Fig. 5.4(g) and Fig. 5.4(h) represent the
presence of ZESs, while white pixels indicate the absence of ZESs. Regular features are
observed in these diagrams, including parabolic and oscillatory shapes, as well as clusters
of black pixels. The intersection of the two diagrams yields a diagram (Fig. 5.4(i)) consisting
of ZESs which coexist on both sides. Around 𝑉SG ∼ −0.2V and 𝐵|| > 0.5T, a high density of
coexistent ZESs is observed which indicates a potential candidate region for a topological
phase. In the following section, this region and several of the regular patterns will be
further analyzed.

5.3.3 Detailed analysis of ZES and LES diagrams
Coexisting ZBP clusters
ZES diagrams constructed in the previous section identify a region with coexisting ZESs
on both ends of the nanowire hybrid. Fig. 5.5(a)-Fig. 5.5(c) show a zoom-in of Fig. 5.4(g)-
Fig. 5.4(i). At fixed 𝑉SG = −0.18V, tunneling spectroscopy on both ends of the hybrid nano-
wire shows a sub-gap state reaching zero energy around 0.5 T (Fig. 5.5(d) and Fig. 5.5(e)).
After a single oscillation, it sticks to zero energy for ∼300mT. On the other hand, when the
magnetic field is fixed at 0.82 T, a stable ZES is observed only on the left side (Fig. 5.5(f)).



5.3 Results

5

125

−0.8 −0.4 0.0
VSG (V)

0.0

0.5

1.0

B
∥ 

(T
)

−0.8 −0.4 0.0
VSG (V)

0.0

0.5

1.0

B
∥ 

(T
)

−0.8 −0.4 0.0
VSG (V)

0.0

0.5

1.0

B
∥ 

(T
)

0.0 0.5 1.0
B ∥  (T)

−0.4

0.0

0.4

V L
 (m

V)

0.0 0.5 1.0
B ∥  (T)

−0.4

0.0

0.4

V R
 (m

V)

−0.8 −0.4 0.0
VSG (V)

−0.4

0.0

0.4

V L
 (m

V)

−0.8 −0.4 0.0
VSG (V)

−0.4

0.0

0.4
V R

 (m
V)

10
15

V r
f (

m
V)

15
20

V r
f (

m
V)

10
20

V r
f (

m
V)

14
18

V r
f (

m
V)

B ∥=0.82 T B ∥=0.82 T

VSG=-0.18 V VSG=-0.18 V

left right both

(a) (b) (c)

(d) (e)

(f) (g)

Figure 5.5: Clusters of ZBPs with respect to super gate and magnetic field. (a)-(c) ZES diagrams for the left
junction, the right junction, and coexistence in both junctions (same as Fig. 5.4(g)-Fig. 5.4(i), but with reduced
super gate range). In (a), the green mark indicates the position of 𝑉SG = −0.18V and corresponding tunneling
spectroscopy data is shown in (d). The results at 𝐵|| = 0.82 T (yellow mark) is shown in (f). In (b), tunneling spec-
troscopy data of the vertical (pink mark) and horizontal (red mark) line cut is shown in (e) and (g), respectively.
In (c), the horizontal and vertical dashed line indicates 𝐵|| = 0.82T and 𝑉SG = −0.18V, respectively.

Remarkably, it persists for more than 800mV in 𝑉SG. Considering that the dielectric layer
is made from 20 nm HfO𝑥 , chemical potential is changed by a significant amount in this
super gate range. Such stable ZBPs as a function of super gate voltage and magnetic field,
together with similar behavior on both sides of the device as a function of magnetic field,
have been previously interpreted as evidence of MZMs. However, robust ZBPs can also
originate from Andreev bound states formed in quantum dots near the junction [41], as
well as due to disorder [20]. Indeed, tunneling spectroscopy along super gate on the right
side of the device (Fig. 5.5(g)) reveals a strikingly different behavior, with only two cross-
ings through zero energy. The different behaviors on the two sides of the device can be
recognized as well from ZES diagrams in Fig. 5.5(a)-Fig. 5.5(c). Such clearly distinct be-
havior with respect to changes in the chemical potential implies that the ZESs on the two
sides of the device do not originate from an unbroken topological superconducting phase.

Parabolic patterns in ZES diagrams
In Fig. 5.4, ZESs form parabolic patterns in the 𝑉SG-𝐵|| space. Such parabolic patterns can
represent the onset of a topological phase when Majorana zero modes at two ends of a
short hybrid nanowire strongly interact [9, 42]. In Fig. 5.6, an example of such a parabola is
shown and its tunneling spectroscopy data is presented. In Fig. 5.6(a), an orange rectangle
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Figure 5.6: Parabolic patterns in ZES diagrams. (a) ZES diagram for the left junction (same as Fig. 5.4(g)). The
region marked by the orange rectangle is re-plotted in (b). Three line cuts are made at different 𝐵|| and corre-
sponding tunneling spectroscopy data is displayed in (c)-(e). White dashed lines serve as guide to the eye. (f)
Evolution of sub-gap levels in magnetic field at 𝑉SG = 0.35 V (red vertical line cut from (b)).

marks the region with such a parabolic pattern. This region is re-plotted in Fig. 5.6(b).
In order to understand the pattern, three line cuts are made at different magnetic fields
and corresponding spectroscopic results are plotted in Fig. 5.6(c)-Fig. 5.6(e). At 𝐵|| = 0.2 T
(Fig. 5.6(c)), there is a pair of levels emerging below the superconducting gap, marked by
white dashed lines. Once the magnetic field is increased to 0.3 T (Fig. 5.6(d)), the pair of
sub-gap levels merges at zero energy, forming ZBPs. This field corresponds to the onset of
ZESs in Fig. 5.6(b). At higher 𝐵||, for example 𝐵|| = 0.5 T (Fig. 5.6(e)), the sub-gap levels form
two crossings at zero energy. The evolution of these sub-gap levels in 𝐵|| at 𝑉SG = 0.35 V
is shown in Fig. 5.6(f). In Fig. 5.16, another parabolic pattern which has similar properties
as Fig. 5.6 is presented. This behavior is fully explained by Zeeman-driven Andreev level
splitting in a quantum dot proximitized by a superconducting lead [43].

Oscillatory patterns in LES diagrams
The oscillation of LESs in magnetic field with an increasing amplitude and period is con-
sistent with the prediction of smoking gun evidence for MZMs [42]. This type of behavior
would result in oscillatory patterns in LES and ZES diagrams. An example of such pat-
terns is shown in Fig. 5.7(a) and Fig. 5.7(b). A line cut through such a circle, shown in
Fig. 5.7(c) (𝑉SG = −0.08V), shows the energy of a LES dropping to zero before oscillating
with increasing amplitude and period, thus matching the smoking gun predictions. The
tunneling spectroscopy data as a function of 𝐵|| corresponding to this particular line cut
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Figure 5.7: Oscillatory patterns in LES diagrams. (a) LES diagram for the right junction (same as Fig. 5.4(b)). The
region marked by the orange rectangle is plotted in (b). (c) Example of an oscillating LES, showing 𝐸R0 versus 𝐵||
for the line cut taken at 𝑉SG = −0.08V (marked by the magenta bar in (b)). Tunneling spectroscopy data taken
at 𝑉SG = −0.12V (black bar), 𝑉SG = −0.08V (magenta bar), and 𝑉SG = −0.05V (blue bar) is shown in (d), (e) and
(f), respectively. In (d)-(f), three sub-gap states are marked by orange, white, and black lines which serve as a
guide to the eye. Gradient colors indicate interaction between states.

is shown in Fig. 5.7(e). In this map, three discrete sub-gap states are observed and marked
with an orange, white, and black lines. The LES (orange) first comes down in energy and
crosses through zero energy, before interacting with another state (white). Interaction
between these states results in an anti-crossing, which can be attributed to the mixing of
different spin species of two states via spin-orbit interaction [44], and is represented by a
gradient color. The LES crosses through zero once more, and subsequently interacts with
another state (black). In addition, two spectroscopy results at a lower (𝑉SG = −0.12V) and
higher (𝑉SG = −0.05V) super gate voltage are presented in Fig. 5.7(d) and Fig. 5.7(f), respec-
tively. By changing the super gate voltage, the magnitude of the interaction between the
states can be tuned. Consequently, the interactions can become negligible which results
in states crossing rather than anti-crossing. This indicates that the results in Fig. 5.7(e)
or Fig. 5.7(c) arise from several sub-gap states interacting with each other. Thus, while
the behavior of LESs in Fig. 5.7(e) and Fig. 5.7(c) is consistent with the predicted evidence
of MZMs, such oscillations can originate from anti-crossings between the LES and other
states. The analysis made above suggests that although oscillatory patterns in LES and ZES
diagrams are expected for interacting MZMs, they may also originate from interactions
between topologically trivial Andreev bound states.
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Induced superconductivity
In addition to extracting the energy of various sub-gap states in the system, two other
important parameters can be determined from the data: the superconducting gap size
Δ and the effective g-factor 𝑔∗. From the local tunneling spectroscopy measurements,
the superconducting gap can be estimated by fitting zero-field g𝐿/𝑅-V𝐿/𝑅 traces with the
BCS−Dynes formula [45], where g𝐿/𝑅 is obtained from V𝑟𝑓 -g𝐿/𝑅 correspondence in Fig. 5.1.
On the other hand, the effective g-factor is determined by making a linear fit to the energy
dependence of the LES as a function of magnetic field [44, 46]. In Fig. 5.8, the evolution
of these two parameters is shown as a function of super gate voltage. At both ends of
the nanowire, the estimated gap size behaves similarly and remains largely unaffected
by the super gate. It only shows a small dip in the vicinity of V𝑆𝐺= −0.25V, and from the
spectra shown in Fig. 5.2 it can be seen that these dips correspond to the energy minima of
two LESs. However, if we instead look at the field evolution it becomes apparent that the
extracted g-factors do not behave in a similar way. This indicates that the LESs at two ends
are uncorrelated. The right side of the device shows an absence of sub-gap states below
V𝑆𝐺=−0.4V (see an example in Fig. 5.17). The corresponding g-factor is estimated from
the gap edge and remains close to 2, as the measured properties are dominated by the Al
film. It is worth to note that with local tunneling spectroscopy, only the superconducting
properties in the vicinity of the junctions are detected while leaving the bulk properties
inaccessible. In contradiction to our observations, the induced gap size and effective g-
factor should behave similarly if they represent bulk properties [39]. Thus, we conclude
that the behavior shown in Fig. 5.8 belongs to Andreev bound states formed locally in the
vicinity of the junctions [47]. Nonlocal measurements are required in order to investigate
induced superconductivity, including gap closing, in the bulk of the hybrids [27].
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Figure 5.8: Gate-dependent induced superconductivity. (a) Superconducting gap as a function of super gate
voltage V𝑆𝐺 extracted from the left (yellow) and right (green) junction. (b) Effective g-factor versus V𝑆𝐺 for
the left (yellow) and right (green) end of the hybrid nanowire. Magenta and blue points correspond to the data
extracted from the traces in Fig. 5.4(d) and Fig. 5.4(e). g-factors are extracted by fitting the linear part of the
traces 𝐸L/R0 vs 𝐵||.
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Figure 5.9: Overlapping ZES diagrams taken at different barrier gate settings for the left junction (a), right
junction (b), and coexistence in both junctions (c). The panels are obtained by overlapping ZES diagrams from
Fig. 5.18 (𝑔L ∼ 0.027𝐺0, 𝑔R ∼ 0.025𝐺0), Fig. 5.19 (𝑔L ∼ 0.029𝐺0, 𝑔R ∼ 0.004𝐺0), Fig. 5.4 (𝑔L ∼ 0.03𝐺0, 𝑔R ∼ 0.064𝐺0),
and Fig. 5.20 (𝑔L ∼ 0.047𝐺0, 𝑔R ∼ 0.129𝐺0).

5.3.4 Influence of barrier gates
ZESs formed in the vicinity of the junction can mimic MZM behavior with respect to
magnetic field and chemical potential variations [48]. Tunnel transparency is an important
experimental parameter which can be used for distinguishing MZMs from trivial Andreev
bound states. To investigate the stability of ZESs shown in Fig. 5.4, similar measurements
are performed with three different barrier gate settings. The corresponding processed
diagrams are plotted in Fig. 5.18, Fig. 5.19, and Fig. 5.20 in the supplementary material.
ZES diagrams obtained for four different barrier gate settings are overlapped to form ZES
histograms in Fig. 5.9. As shown in Fig. 5.9(a), the left end of the hybrid exhibits clusters
of ZESs in the space of chemical potential and magnetic field. As those ZESs are stable
against variation of all experimentally accessible parameters, they are compatible with
MZMs. However, as shown in Fig. 5.9(b), the right side of the studied hybrid does not
show similar stability and thus indicates that the device does not exhibit an unbroken
topological superconducting phase. As expected, the uncorrelated behavior between left
and right end of the hybrid is recognized as well in the histogram of coexisting ZESs
(Fig. 5.9(c)). Similar studies have been performed on the other two devices and details are
presented in Fig. 5.21-Fig. 5.24 in the supplementary material. The results do not yield
evidence for correlated MZMs either.

5.4 Discussion
In this work, three-terminal InSb-Al hybrid nanowire devices have been systematically
studied using rf reflectometry. This approach introduces a critical experimental technique
to quickly map out a large phase space at both ends of superconductor-semiconductor hy-
brid nanowires, which is crucial for searching for candidate regions of a topological phase.
Awide range of chemical potential can bemapped out in high resolution by varying the su-
per gate voltage, and consequently the chance of missing topologically non-trivial regions
is minimized. Tunneling spectroscopy depending on super gate voltage andmagnetic field
enables the extraction of LESs and ZESs, as well as induced superconducting gap and effec-
tive g-factor. Constructed diagrams of ZESs and LESs indicate the most promising regions
for searching for MZMs [27]. Combined with the tunneling-spectroscopy data, clusters
of ZPBs, parabolic and oscillatory patterns in ZES and LES diagrams are analyzed for the
first time in large scale and high resolution. While such patterns mimic the predicted
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behavior of MZMs, the systematic exploration of all accessible experimental parameters
suggest a non-topological origin. Further analysis by altering barrier gates indicate that
the ZESs and LESs observed in this work are likely localized in the vicinity of the tunnel
junctions. Additionally, the simultaneous detection of LESs at both ends of the hybrid
enables the possibility to look for correlated ZESs, which is a prerequisite to prove the
existence of paired MZMs. Yet, the observation of correlated ZBPs can also originate from
trivial mechanisms such as Andreev bound states with a long localized length [49]. Even
so, no indication of correlated behavior is observed in this work.

The absence of an unbroken topological superconducting phase in these samples can be
attributed to several physical origins. Possible reasons include disorder, inhomogeneous
interface band bending, local chemical potential fluctuations and a non-perfect detection
method. Here, these four possible shortcomings are elaborated. (1) In addition to forming
trivial sub-gap levels which can mimic MZMs, disorder effects could push the Majorana
wavefunctions away from the ends of the hybrid nanowires [20, 22]. In this case, even if a
topological phase is formed in the bulk, the MZM wavefunction cannot be probed by tun-
neling probes at the end of the hybrid nanowire. (2) Local chemical potential fluctuations
with an energy above the helical gap can break a single topological phase into segments.
In this case, the two ends of a hybrid nanowire are not necessarily correlated. In real de-
vices, such fluctuations can originate from non-uniform gating effects, grain boundaries
in aluminium, and disorder from impurities. (3) Recently, the interface band bending be-
tween the superconductor and semiconductor was recognized as an important ingredient
for tuning the properties of the hybrid [26, 39, 40]. In particular, band bending can lead to
the occupation of multiple subbands, and for the InSb-Al system the experimental impli-
cations are still unknown. This makes it difficult to predict the experimental conditions to
achieve a topological superconducting phase. (4) The experimental protocol in this work
is specifically designed to search for paired MZMs at two ends of an extended topological
phase. If for any reason, a topological phase would not be continuous across the entire
hybrid, it is possible that MZMs can be probed on one end but not on the other. In this
case, the protocol applied in this work would miss a potential topological phase in the
parameter space. Such a false negative cannot be ruled out by these measurements. We
would note that a more general conclusion, like if topological phase is achievable in InSb-
Al hybrid nanowires, cannot be drawn before exploring a large number of such devices to
achieve statistical relevance.

For the aforementioned problems, several solutions can be proposed. (1)The InSb nanowires
in this work have transport mobilities of ∼ 4 × 104 cm2/V⋅s [32]. The introduction of cap-
ping layers on top of the semiconductor could alleviate disorder and improve transport
mobilities [50]. (2) In order to improve resilience against local chemical potential fluc-
tuations, alternative superconductors with larger superconducting gaps can be consid-
ered. Recent reports have successfully realized growth of Sn (Δ ∼ 700 𝜇eV) [51] and Pb
(Δ ∼ 1.25meV) [52] on semiconductor nanowires. These hybrids may have a higher chance
to achieve an uninterrupted topological phase in spite of the challenges in fabrication. (3)
Band bending at the interface between superconductors and semiconductors can be engi-
neered by inserting modulation layers [50]. Simultaneously, proper engineering of these
layers can also be used as a tool to influence themagnitude of the induced superconducting
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gap. (4) Nonlocal measurements, proposed to probe the superconducting gap on three-
terminal devices [53], can complement the fast rf reflectometry used in this work [27].
Corresponding experimental work established its capability of detecting bulk properties
beyond the local characteristics [54, 55], though the measurement speed was slow. Com-
bining our present protocol with nonlocal measurement would strike a balance between
measurement speed and detection reliability.

The experimental protocol developed in this work, together with possible improvements
discussed above, will pave theway for unambiguously detectingMZMs in superconductor-
semiconductor hybrid systems in the future.

Data availability.
The authors declare that all relevant raw data together with analysis files are available at
https://doi.org/10.5281/zenodo.5938281

5.5 Supplementary material
5.5.1 Methods and additional data
Device fabrication.
The InSb nanowires, with a typical diameter of 100 nm, are grown on InSb (111)B substrates
coveredwith pre-patterned SiN𝑥 mask viametalorganic vapour-phase epitaxy (MOVPE) [32].
InSb nanowires are transfered onto pre-patterned substrates with a micro-manipulator.
Hydrogen cleaning is used to remove the native oxide on the nanowire surface. Subse-
quently, a thin aluminum film (∼ 15 nm) is evaporated at 138 K and a 30 degree angle with
respect to the substrate using shadow-wall lithography [33]. Finally, e-beam evaporation
is used to make Ti/Au (10/120 nm) contacts on the nanowire ends right after the removal
of the NW oxide using argon ion milling.

Transport measurements.
Samples are measured at a base temperature of ∼20mK in a dilution refrigerator equipped
with a 6/2/2 T vector magnet. Two different measurement techniques are used in this
work. (1) Conductance measurements are performed with standard dc technique. (2) For
the rf measurements, resonators typically have resonance frequencies in the range of 250-
450MHz. For resonators, the inductors have inductances of 300-730 nH and a parasitic
capacitance of ∼0.5 pF. The acquisition time for each data point is typically 1ms. In each
tunneling spectroscopy line trace, there are typically 201 or 401 data points. The rf signals
are generated and demodulated by UHFLI from Zurich Instruments. Within the measure-
ments presented in this work, the junction conductances on the two sides are kept at rel-
atively low values (below 0.3𝐺0) in order to minimize voltage divider effects from serial
resistances in the setup while assuring sensitivity to rf detection. An arbitrary waveform
generator Tektronix 5014C generates the waveforms which serve as bias voltages.

Correspondence between rf reflection and differential conductance.
In our data, zero-field rf reflection results can be converted into differential conductance.
Converting rf reflection data at finite magnetic field is difficult due to inadequate calibra-

https://doi.org/10.5281/zenodo.5938281
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tion on resonators in field, which has little influence on this article as we focus on the
energy of sub-gap states rather than conductance amplitude of these states.

Device1 Device2
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Figure 5.10: Scanning-electron microscope (SEM) images of the three InSb-Al nanowire devices presented in this
work ((a), (c) and (d)). The length of the InSb-Al hybrids is ∼2 𝜇m. Scale bars in the pictures are 1 𝜇m. In (a),
the super gate and insulating nanostructures (HSQ wall) for the shadow-wall evaporation are outlined in orange
and magenta, respectively. (b) Schematic cross-section of an InSb-Al nanowire hybrid.
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Figure 5.11: (a) Optical image of a PCB board with a sample chip and a frequency multiplexing chip [29] after
bonding. (b) Optical image of a representative device. Bonding pads for different gates and leads are labelled.
(c) Optical image of a frequency multiplexing chip.
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Figure 5.12: Basic characteristics of Device 1. (a) Current through the left junction, 𝐼 , as a function of barrier
gate voltage 𝑉LB and 𝑉SG at 10mV bias voltage. (b) Current through the right junction, 𝐼 , as a function of
barrier gate voltage 𝑉RB and 𝑉SG at 10mV bias voltage. In Fig. 5.3 in the main text, the super gate is swept while
compensating the two barrier gate voltages by following the white dashed lines in (a) and (b). (c) Dependence
of the resonators on parallel magnetic field. Four resonators are visible in this panel, of which two are bonded
to Device 1. (d) Extracted resonant frequencies of the left and right resonators as a function of 𝐵||. (e)-(h)
Resonator reflection spectra (blue and green solid dots) and corresponding fitted curves (red solid lines) for two
resonators based on a hanger superconducting resonator model [56]. (e) and (f) show respectively the amplitude
and phase of the left resonator. (g) and (h) show respectively the amplitude and phase of the right resonator.
Internal quality factors of the two resonators, 𝑄L and 𝑄R, are fitted to be ∼ 47 and ∼ 28, respectively.
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Figure 5.13: Tunneling spectroscopy results at relatively positive super gate voltage (Device 1). (a) Tunneling
spectroscopy of the left junction at 𝐵||=0.3 T. A line cut is made at 𝑉SG=0.64 V and the data is shown in (c). (b)
Tunneling spectroscopy of the right junction at 𝐵||=0.3 T. A line cut is made at 𝑉SG=0.7 V and the data is shown
in (d). The sub-gap features in such a super gate voltage range is more crowded as compared with the results at
less positive super gate value (Fig. 5.15).
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Figure 5.14: Conductance measurements of the two junctions in Device 1, together with gate-compensation
lines used in tunneling spectroscopy measurements. (a) Calculated conductance of the left junction, 𝑔L, from
Fig. 5.12(a) (b) Calculated conductance of the right junction, 𝑔R, from Fig. 5.12(b). In (a) and (b), dashed lines
with different colors illustrate how gates are swept during corresponding measurements. Data is taken from the
data set of Fig.3 in the main text.
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Figure 5.15: Example of the energy extraction for LESs and ZESs. Data from Device 1. (a) Tunneling spec-
troscopy versus super gate voltage at 𝐵|| = 0.5 T, taken from the data set of Fig. 5.4 in the main text. Black and
red dots mark the extracted LESs and ZESs, respectively. Line cuts, taken at 𝑉SG = −0.4V (orange) and 𝑉SG =
−0.2V (magenta), are shown in (b). Black triangles mark the position of the extracted LESs, whilst red triangle
marks the position of the extracted ZESs. The grey area displays the bias window from −10 𝜇V to 10 𝜇V used for
the extraction of ZESs. The concrete procedure of extracting LESs is (1) The data of 𝑉rf vs bias is smoothed with
the function “savgol_filter”, which belongs to a python package “scipy.signal”; (2) All peaks are found from the
smoothed data with the function “find_peaks”, which also belongs to the python package “scipy.signal”; (3) The
peak with minimum absolute energy is considered as the LES.
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Figure 5.16: Another example of parabolic patterns in ZES diagrams for Device 1. (a) ZES diagram for the left
junction (same as Fig. 5.4(g) in the main text). The region marked by the orange rectangle is shown in (b). Three
line cuts are made at different magnetic fields and corresponding tunneling spectroscopy data is shown in (c)-
(e). White dashed lines serve as a guide to the eye for a pair of sub-gap levels. (f) Evolution of sub-gap levels in
magnetic field at 𝑉SG = 0.22 V. Together with Fig. 5.6 in the main text, we show that parabolic patterns in ZES
diagrams, consistent with onset of a topological phase in short hybrid nanowires [42], can be fully explained by
Zeeman-driven Andreev level splitting in a quantum dot−superconducting lead architecture [43].
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Figure 5.17: Tunneling spectroscopy results at 𝑉SG = −0.5V for the left (a) and right (b) junction. For the left side,
sub-gap states are present whilst they are absent for the right side. Data is taken from the data set of Fig. 5.4 in
the main text (Device 1).
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Figure 5.18: LES and ZES diagrams for 𝑔L ∼ 0.027𝐺0, 𝑔R ∼ 0.025𝐺0. Data comes from Device 1. Gates are swept
by following the green dashed lines in Fig. 5.14. Compared with Fig. 5.4 in the main text, both barrier gates are
shifted to more negative value by 20 mV, in order to confirm the stability of the LESs and ZESs against varying
tunneling transparency. (a) LES diagram in 𝑉SG−𝐵|| space on the left end of the hybrid nanowire. (b) LES diagram
in 𝑉SG−𝐵|| space on the right end of the hybrid nanowire. (c) Energy difference between LESs probed on the two
sides. (d) and (e) ZES diagrams for the left and right junctions, respectively. (f) Diagram of coexisting ZESs on
both ends. In (a)-(f), each panel includes 522×101 pixels. The data set is taken in ∼35 hours.
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Figure 5.19: LES and ZES diagrams for 𝑔L ∼ 0.029𝐺0, 𝑔R ∼ 0.04𝐺0. Data comes fromDevice 1. Gates are swept by
following the magenta dashed lines in Fig. 5.14. Compared with Fig. 5.4 in the main text, both barrier gates are
shifted to more negative value by 10 mV, in order to confirm the stability of the LESs and ZESs against varying
tunneling transparency. (a) LES diagram in super gate-magnetic field space on the left end of the hybrid nanowire.
(b) LES diagram in super gate-magnetic field space on the right end of the hybrid nanowire. (c) Energy difference
between ZESs probed on the two sides. (d) and (e) ZES diagrams for the left and right junctions, respectively.
(f) Diagram of coexistent ZESs on both ends. In (a)-(f), each panel includes 522×100 pixels. The dataset is taken
in ∼34.5 hours. Note that compared with data sets in Fig. 5.4 in the main text, Fig. 5.18 and Fig. 5.20, in this data
set the results at 𝐵|| = 0.69 T was not taken because of technical errors. In (a)-(c), data at 𝐵|| = 0.69 T is set to NaN
and panels display a white line at this field value.
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Figure 5.20: LES and ZES diagrams for 𝑔R ∼ 0.047𝐺0, 𝑔R ∼ 0.129𝐺0. Data comes from Device 1. Gates are swept
by following the yellow dashed lines in Fig. 5.14. Compared with Fig. 5.4 in the main text, both barrier gates
are shifted to more positive value by 10 mV, in order to confirm the stability of the LESs and ZESs against
varying tunneling transparency. (a) LES diagram in super gate-magnetic field space on the left end of the hybrid
nanowire. (b) LES diagram in super gate-magnetic field space on the right end of the hybrid nanowire. (c) Energy
difference between ZESs probed on both ends. (d) and (e) ZES diagrams for left and right junctions, respectively.
(f) Diagram of coexistent ZESs on both ends. In (a)-(f), each panel includes 522×101 pixels. The data set is taken
in ∼35 hours.



5

138
5 Parametric exploration of zero-energy modes in three-

terminal InSb-Al nanowire devices

−3 0 3
VSG (V)

0.0

0.5

1.0

V L
B 

(V
)

−3 0 3
VSG (V)

−0.5

0.0

0.5

V R
B 

(V
)

−3 −2 −1 0 1 2 3
VSG (V)

0.0

0.5

1.0

B
∥ 

(T
)

−3 −2 −1 0 1 2 3
VSG (V)

0.0

0.5

1.0

B
∥ 

(T
)

−3 −2 −1 0 1 2 3
VSG (V)

0.0

0.5

1.0

B
∥ 

(T
)

0

300

I (
nA

)

0

300

I (
nA

)

both (1203*121 pixels)

right (1203*121 pixels)

left (1203*121 pixels)

(a) (b)

(c)

(d)

(e)

left right

Device2

Figure 5.21: Cross-talk properties of Device 2 and large-scale ZES diagrams. (a) Current through the left junc-
tion, 𝐼 , as a function of barrier gate voltage 𝑉LB and 𝑉SG at 10mV bias voltage. (b) Current through the right
junction, 𝐼 , as a function of barrier gate voltage 𝑉RB and 𝑉SG at 10mV bias voltage. ZES diagrams in parameter
space of super gate voltage 𝑉SG and parallel magnetic field 𝐵|| for the left junction (c), right junction (d), and
coexistence in both junctions (e). Gates are scanned by following the white dashed lines in (a) and (b). In (c)-(e),
each panel includes 1203×121 pixels. The data set is taken in ∼ 96.8 hours. Similar as Fig. 5.3 in the main text
(Device 1), three distinct regimes along 𝑉SG can be identified and the intermediate supergate regime (marked
by magenta rectangles) is further investigated in Fig. 5.22.
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Figure 5.22: Conductance measurements of the two junctions in Device 2, together with gate-compensation
lines used in tunneling spectroscopy measurements. (a) Calculated conductance of the left junction, 𝑔L, from
Fig. 5.21(a) (b) Calculated conductance of the right junction, 𝑔R, from Fig. 5.21(b). In (a) and (b), dashed lines
with different colors illustrate how gates are swept during corresponding measurements. The dashed lines have
a difference of 10 mV in each barrier gate with respect to each other. (c)-(n) ZES diagrams at various barrier
gate settings. (c), (f), (i), and (l) show results for the left junction. (d), (g), (j), and (m) show results for right
junction. (e), (h), (k), and (n) show the diagram of coexistent ZESs on both sides. (c)-(e) are taken at 𝑔L ∼ 0.018𝐺0
and 𝑔R ∼ 0.079𝐺0, marked with a cyan color. (f)-(h) are taken at 𝑔L ∼ 0.027𝐺0 and 𝑔R ∼ 0.107𝐺0, marked with a
magenta color. (i)-(k) are taken at 𝑔L ∼ 0.045𝐺0 and 𝑔R ∼ 0.137𝐺0, marked with a blue color. (l)-(n) are taken at
𝑔L ∼ 0.072𝐺0 and 𝑔R ∼ 0.171𝐺0, marked with a yellow color. From these data sets, overlapping ZES diagrams are
constructed which are shown for the left (o) and right (p) junction, as well as coexistence in both junctions (q).
In (c)-(n), each panel includes 601×121 pixels. The total data set is taken in ∼ 193.6 hours.
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Figure 5.23: Cross-talk properties of Device 3 and large-scale ZES diagrams. (a) Current through the left junc-
tion, 𝐼 , as a function of barrier gate voltage 𝑉LB and 𝑉SG at 5mV bias voltage. (b) Current through the right
junction, 𝐼 , as a function of barrier gate voltage 𝑉RB and 𝑉SG at 5mV bias voltage. ZES diagrams in parameter
space of super gate voltage 𝑉SG and parallel magnetic field 𝐵|| for the left junction (c), right junction (d), and
their intersection (e). Gates are scanned by following the white dashed lines in (a) and (b). In (c)-(e), each panel
includes 804×121 pixels. The data set is taken in ∼ 42.3 hours. Similar as Fig. 5.3 in the main text (Device 1)
and Fig. 5.21 (Device 2), there are three different regimes along 𝑉SG for right side, while left side does not have
such clear characteristics. Nonethless, we still focus on similar intermediate super gate region (within magenta
rectangles) and do further investigation in Fig. 5.24.
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Figure 5.24: Conductance measurements of the two junctions in Device 3, together with gate-compensation
lines used in tunneling spectroscopy measurements. (a) Calculated conductance of the left junction, g𝐿, from
Fig. 5.23(a) (b) Calculated conductance of the right junction, g𝑅 , from Fig. 5.23(b). In (a) and (b), dashed lines
with different colors illustrate how gates are swept during corresponding measurements. (c)-(h) ZES diagrams
at various barrier gate settings. (c) and (f) show results for the left junction. (d) and (g) show results for right
junction. (e) and (h) show the diagram of coexistent ZESs on both sides. (c)-(e) are taken at 𝑔L ∼ 0.129𝐺0 and
𝑔R ∼ 0.056𝐺0, marked with a cyan color. (f)-(h) are taken at 𝑔L ∼ 0.271𝐺0 and 𝑔R ∼ 0.154𝐺0, marked with a
magenta color. From these data sets, overlapping ZES diagrams are constructed which are shown for the left
(i) and right (j) junction, as well as coexistence in both junctions (k). In (c)-(k), each panel includes 601×121
pixels. The total data set is taken in ∼ 83 hours. Notably, left side has dramatic changes in ZES diagrams with
varying barrier gates (see (c) and (f)), while the right side just undergoes moderate changes (see (d) and (g)). The
origins could be found from conductance measurement in (a) and (b). Conductance of the left junction has quite
distinct modulations along cyan and magenta dashed line, whereas for the right side conductance has similar
modulations along two dashed lines.
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6
Spin-mixing enhanced proximity

effect in aluminum-based
superconductor-semiconductor

hybrids

In superconducting quantum circuits, aluminum is one of the most widely used materi-
als. It is currently also the superconductor of choice for the development of topological
qubits. In this application, however, aluminum-based devices suffer from poor magnetic
field compatibility. In this article, we resolve this limitation by showing that adatoms of
heavy elements (e.g. platinum) increase the critical field of thin aluminum films by more
than a factor of two. Using tunnel junctions, we show that the increased field resilience
originates from spin-orbit scattering introduced by Pt. We exploit this property in the con-
text of the superconducting proximity effect in semiconductor-superconductor hybrids,
where we show that InSb nanowires strongly coupled to Al/Pt films can maintain super-
conductivity up to 7 T. The two-electron charging effect, a fundamental requirement for
topological quantum computation, is shown to be robust against the presence of heavy
adatoms. Additionally, we use non-local spectroscopy in a three-terminal geometry to
probe the bulk of hybrid devices, showing that it remains free of sub-gap states. Finally,
we demonstrate that semiconductor states which are proximitized by Al/Pt films maintain
their ability to Zeeman-split in an applied magnetic field. Combined with the chemical
stability and well-known fabrication routes of aluminum, Al/Pt emerges as the natural
successor to Al-based systems and is a compelling alternative to other superconductors,
whenever high-field resilience is required.

This chapter has been published as Spin-mixing enhanced proximity effect in aluminum-based superconductor-
semiconductor hybrids, G.P. Mazur†, N. van Loo†, J.-Y. Wang, T. Dvir, G. Wang, A. Khindanov, S. Korneychuk,
F. Borsoi, R.C. Dekker, G. Badawy, P. Vinke, S. Gazibegovic, E.P.A.M. Bakkers, M. Quintero-Pérez, S. Heedt and
L.P. Kouwenhoven in Advanced Materials 2022, 34, 2202034. † These authors contributed equally to this work.
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6.1 Introduction
Topological superconductivity can arise in hybrid material stacks containing a conven-
tional superconductor and a semiconductor with strong Rashba spin-orbit coupling [1, 2].
Narrow-gap semiconductors with a large g-factor and low carrier density (such as InAs
and InSb) are most commonly used, either as 1D nanowires [3] or 2D electron gases [4].
The first generation of semiconductor-superconductor hybrids was made using Nb [5]
and NbTiN [6] as the superconductor. While these materials offer a large superconduct-
ing gap and resilience to high magnetic fields, the hybrids suffered from a finite in-gap
conductance (often described as “soft-gap”). In addition, Nb-based hybrids have not been
shown to host parity-conserving transport - a key ingredient for the development of topo-
logical qubits [7]. These drawbacks remained even after substantial improvements of the
fabrication, such as epitaxial growth of the superconductor [8].

In the meantime, aluminum has emerged as the material of choice. Thin shells made of
this metal combined with an oxide-free interface result in clean electronic transport [9, 10].
This includes suppressed sub-gap tunneling conductance (hard induced gap) and parity-
conserving transport [11], which enables the search for topological superconductivity.
For a topological phase to emerge, the minimal condition states that the Zeeman energy
𝑉Z = 𝑔𝜇B𝐵 must be larger than the induced superconducting gap Δ, where 𝑔 is the Landé
g-factor, 𝜇B is the Bohr magneton and 𝐵 is the applied magnetic field. It was demonstrated
recently that the properties of the semiconductor, such as spin-orbit coupling and g-factor,
are renormalized by the presence of a proximitizing metal [12, 13]. As a result, stronger
magnetic fields than initially anticipated are required to close and reopen the induced
superconducting gap [14]. Typical aluminum-based hybrids, however, have a zero-field
superconducting gap Δ0 ranging from 200 to 300 𝜇eV [6], which results in poor field com-
patibility. This has fueled the search for alternative superconducting systems, with re-
cent works reporting superconductivity and parity-conserving transport in InSb/Sn [15],
InAs/Pb [16, 17] and InAs/In [18] hybrids. These superconductors offer higher field com-
patibility than aluminum, yet they bring different challenges such as chemical instability
and fabrication constraints [19, 20]. To avoid these constraints, in this work we present
a different approach by eliminating the main drawback of aluminum: its poor resilience
against magnetic fields.

For a Bardeen-Cooper-Schrieffer (BCS) type superconductor like aluminum, there are two
dominant mechanisms which quench superconductivity in a finite magnetic field. The
first of these is orbital depairing, which results from the cyclotron motion of conduction
electrons due to the magnetic field. If the superconductor is grown as a thin film, this
mechanism can be suppressed when the field is applied in the plane of the film. For light
elements such as Al, there is a second contribution arising from spin physics. Once the
magnetic field reaches a certain value, the paramagnetic ground state becomes energeti-
cally favourable. This results in a first-order phase transition into the normal state. The
field for which this happens is known as the Chandrasekhar-Clogston [21, 22] or Pauli
limit, and is given by 𝐵𝑃 = Δ0/( √2𝜇𝐵). In addition, the quasiparticle excitation spectrum
spin-splits upon applying a magnetic field. In their seminal experiment [23], Tedrow and
Meservey demonstrate that Zeeman splitting can be quenched and eventually suppressed
completely through the addition of heavy metal impurities, such as platinum (Pt). These
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heavy atoms introduce spin-orbit scattering, which prevents spins from being polarized
by an external magnetic field. As a result, superconductors made of lightweight elements
can reach unprecedentedly high critical fields. This has straightforward applications in
the field of semiconductor-superconductor hybrids, where large Zeeman energies are a
necessary condition for achieving a topological superconducting phase.

6.2 Al/Pt thin films and tunnel junctions
We begin this study by evaluating the properties of aluminum films with a thickness of
6 nm, coated with varying amounts of platinum. We define the platinum thickness 𝑑Pt as
measured by the quartz balance in the deposition chamber (For details of the calibration
see section 6.7.1 of the supporting information). Figure 6.1 presents the superconducting
transitions of Al/Pt films as a function of temperature (Fig. 6.1a) and in-plane magnetic
field (Fig. 6.1b). Importantly, the addition of Pt does not affect the shape and sharpness
of the superconducting transitions, which indicates that the films do not become strongly
disordered or inhomogeneous [24]. The bare aluminum film has a critical temperature
𝑇c = 1.79 K and in-plane critical field 𝐵c = 2.6 T. Upon the addition of platinum, the crit-
ical field is increased above the bare aluminum’s Chandrasekhar-Clogston limit already
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Figure 6.1: Properties of Al/Pt thin films. Four-point measurements of resistance 𝑅 normalized to its value in
the normal state 𝑅N as a function of temperature (a) and in-plane magnetic field (b). Measurements have been
performed for 6 nm thick aluminumfilmswith varying amount of platinum 𝑑Pt. c. In-plane critical magnetic field
and temperature as a function of Pt thickness, together with the predicted critical field from theory calculations.
d. Annular bright field scanning-tunneling electron micrograph and energy-dispersive X-ray images of the Al
film with 1.89Å of Pt. The thin layer of platinum (orange) is visible on top of aluminum film (red). The film is
grown on top of amorphous SiO2 and amorphous AlO𝑥 on top of the film serves as the capping layer. Scale bars
are 5 nm.
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for 𝑑Pt ≈ 1Å, while leaving 𝑇c unaffected. In agreement with previous studies on Al/Pt
bilayers [23], the critical field starts to saturate for 𝑑Pt ≈ 2Å and increases only by an
additional 300mT for 𝑑Pt ≈ 5.1Å (see Fig. 6.1c). At these thicknesses, however, 𝑇c starts
to decrease as a result of the inverse proximity effect, as shown for Au/Be bilayers [25].
Our theoretical model based on the Usadel equation (see section 6.7.3 of the supporting
information) captures the increase of 𝐵c as a direct result of including spin-orbit scatter-
ing (Fig. 6.1c). The calculated spin-orbit scattering energies increase linearly with 𝑑Pt, in
agreement with previous experiments [23]. In addition, we perform a structural analysis
of the films. Fig. 6.1d presents the cross-section of an Al/Pt film with 𝑑Pt ≈ 1.9Å, which
reveals the poly-crystalline structure of the Al. The results of electron energy loss spec-
troscopy (EELS) performed on the studied samples indicate that aluminum and platinum
do not form an alloy, in agreement with the bulk phase diagram [26].

Furthermore, we investigate the impact of Pt atoms on the Al quasiparticle density of
states through normal-metal/insulator/superconductor (NIS) tunneling measurements. A
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Figure 6.2: Conductance spectroscopy on Al and Al/Pt NIS tunnel junctions. a. Experimental tunneling
conductance of a ∼ 4.5 nm Al tunnel junction. b. Experimental tunneling conductance of a ∼ 4.5 nm Al + 1.9 Å Pt
tunnel junction. c. Schematic and measurement circuit of a NIS tunnel junction. The tunnel barrier is formed by
the AlO𝑥 layer between the Al/Pt and Ag electrodes. d. Tunneling conductance from theory calculations of the
Al tunnel junction. e. Tunneling conductance from theory calculations of the Al/Pt tunnel junction. The dashed
orange lines present the energy gap 𝐸g. The order parameter Δ which is extracted from theory is presented
by dashed red lines. Dashed yellow lines show the magnetic field 𝐵c1 for which the energy gap is closed, and
the dashed pink lines indicate the magnetic field 𝐵c2 for which the order parameter is calculated to vanish. f.
Overview of the extracted energy gap from experiments (dots), the predicted energy gap from theory (solid line)
and the corresponding order parameter (dash-dotted line) of the Al (blue) and Al/Pt (red) films.
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schematic illustration together with the used measurement circuit for these experiments
is shown in Figure 6.2c. Further details on the fabrication and measurements can be found
in section 6.7.2 of the supporting information. For the aluminum film, we observe a Zee-
man splitting of the quasiparticle coherence peaks (Fig. 6.2a). At an in-plane magnetic
field of 𝐵∥ = 3.45 T, the film undergoes a first-order phase transition to the normal state.
Our theoretical model reproduces these two key features (Fig. 6.2d), where the first-order
transition is reflected in an abrupt collapse of the order parameter. The critical field ex-
tracted from the model is 200mT smaller than the experimentally measured value. This
discrepancy between theory and experiment can be explained by the hysteretic behavior
of the order parameter near the transition [27] (see Fig. 6.8 in the supporting informa-
tion). A metastable superconducting state can persist for magnetic fields slightly above
the calculated critical value.

For the Al/Pt film with 𝑑Pt = 1.9Å, Zeeman splitting is not observed. Instead, the film un-
dergoes a second-order phase transition at 𝐵∥ = 6.34 T induced primarily by orbital effects
(Fig. 6.2b). Importantly, the energy gap in the film remains free of quasiparticle states
(for log-scale linecuts, see Fig. 6.9 in the supporting information). Theoretical modelling
of the film reveals a small magnetic field range with gapless superconductivity close to
the transition (Fig. 6.2e), which is an expected feature when the transition from the super-
conducting into the normal state is of second order[28]. For both Al and Al/Pt films, the
model yields diffusion constants which correspond to a mean free path of 𝑙mfp ≈ 7Å. This
value is consistent with reports on Al films grown under similar conditions [29, 30]. Since
the addition of Pt does not seem to affect the mean free path, the increase in critical mag-
netic field cannot be attributed to increased disorder. The suppression of Zeeman splitting
instead demonstrates that spin mixing is the dominant mechanism. From the model, the
increased spin-orbit scattering energy of the Al/Pt film is extracted to be ΓSO = 7.5meV,
corresponding to a spin-orbit scattering time of 𝜏SO = 1.3 ⋅ 10−13 s. We note, however, that
this extracted value of the spin-orbit scattering energy could be overestimated due to the
presence of Fermi-liquid effects [31] (see discussion in section 6.7.4 of the supporting in-
formation). In Fig. 6.2f, the measured energy gap is shown together with the energy gap
extracted from theory, as well as the corresponding order parameter. We observe good
quantitative agreement between the model and our experiment.

6.3 Spectroscopy andCoulombblockade of InSb/Al/Pt hy-
brids

The next step of our study is to induce superconductivity in InSb nanowires using Al/Pt
films. In order for any material combination to be considered for Majorana experiments
and topological qubits, two fundamental properties need to be demonstrated. In tunnel-
ing spectroscopy, a proximity-induced gap free of sub-gap states (i.e. a hard gap) should
be observed. While this is conventionally done on hybrids with a grounded superconduc-
tor, designs of topological qubits typically contain superconducting segments which are
floating [7]. These have a finite charging energy, and it is energetically favorable to add
charges to such an island in pairs if the low-energy excitation spectrum of the hybrid is
free of single-charge states (i.e. 2e charging). Both a hard superconducting gap and 2e
charging have already been demonstrated for Al-based hybrids [3, 11, 32]. In order to con-
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firm that platinum does not compromise these properties, for example through hosting
single-electron states [33], hybrids with a grounded superconducting shell as well as with
a floating shell have been investigated.

In Figure 6.3, we show the results of both tunneling spectroscopy and Coulomb blockade
measurements on InSb/Al/Pt nanowires. The fabrication follows our shadow-wall lithog-
raphy method [9, 10], of which details can be found in the supporting information (sec-
tions 6.7.5, 6.7.6 and 6.7.7). In Fig. 6.3a, schematic illustrations and measurement circuits
of a tunneling spectroscopy device (top) and a superconducting island device (bottom) are
shown. SEM images of all the measured devices are shown in Fig. 6.12 and 6.13. The mea-
surements are conducted by applying a bias voltage between the source and drain contacts.
The chemical potential in the hybrid is controlled by the so-called super gate voltage 𝑉SG,
while the tunnel gate voltages 𝑉TG are used to induce tunnel barriers in the nanowire
junctions. Details of the measurements can be found in section 6.7.8 of the supporting
information.

In order to measure the spectroscopy device, the semiconducting nanowire junction is
tuned into the tunneling regime. Under this condition, the measured differential conduc-
tance reflects the quasiparticle density of states (DOS) in the proximitized section of the
nanowire. Here, the super gate voltage is set to 𝑉SG = -1 V, where a strong coupling be-
tween the nanowire and the superconducting shell is expected [13, 34]. The differential
conductance is shown as a function of magnetic field parallel to the nanowire axis in
Fig. 6.3c, with linecuts taken at 𝐵 = 0.0 T and 𝐵 = 4.5 T presented in Fig. 6.3e. At zero mag-
netic field, a large superconducting gap of Δ = 304 𝜇eV is observed. This is significantly
larger than in the case of conventional Al-based hybrids, which is a direct consequence of
the reduced thickness (∼ 4.5 nm) of the Al shell [23]. In addition, the in-gap conductance is
suppressed by two orders of magnitude and the differential conductance matches the BTK
theory [35], indicating that the superconducting gap is free of sub-gap states (i.e. a hard
gap). Importantly, at B = 4.5 T the superconducting gap is still on the order of ∼ 100 𝜇eV,
which allows to look for Majorana signatures at Zeeman energies which were not accessi-
ble before. Remarkably, as can be seen from the in-gap and out-of-gap linecuts in Fig. 6.3f,
the superconducting gap remains hard up to 𝐵 = 6.0 T. The field compatibility offered by
Al/Pt hybrids opens up the opportunity to study high-field signatures of Majorana zero
modes, like Majorana oscillations [36]. The superconducting island device is studied by
inducing tunnel barriers in the semiconducting nanowire junctions, which separate the
island from the leads. The voltage on the super gate is then swept to tune the charge on
the island, as shown in Fig. 6.3b. This results in a periodic sequence of 2e Coulomb dia-
monds with a charging energy 𝐸c ≈ 30 𝜇eV. Linecuts are shown in Fig. 6.3d, where at finite
bias the Coulomb peak periodicity has doubled due to the onset of single-electron trans-
port in the quasiparticle excitation spectrum. The magnetic field evolution is shown in
Fig. 6.18 of the supporting information. The observation of 2e charging demonstrates that
semiconductors coupled to Al/Pt are a suitable replacement of Al-based hybrids, capable
to be used for the development of parity-protected topological qubits. Additional data on
tunneling spectroscopy devices and superconducting islands is shown in section 6.8 of the
supporting information.
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Figure 6.3: Transport data on 2-terminal InSb/Al/Pt hybrids (devices A and B). a. Schematics of devices
used for tunneling spectroscopy (top, Device A) and Coulomb blockade spectroscopy (bottom, Device B). De-
vice A has a grounded superconducting shell of 1.8 𝜇m long, while the floating shell of Device B is 0.8 𝜇m long.
Dashed yellow potentials indicate the formation of tunnel barriers in the semiconducting junctions. b. 2𝑒-
periodic Coulomb diamonds measured on device B. The inset is a logarithmic overlay of the Coulomb diamonds,
highlighting the 2𝑒 periodicity at low biases. c. Differential conductance from tunneling spectroscopy of de-
vice A in logarithmic scale, taken at 𝑉SG = -1 V as a function of parallel magnetic field. d. Linecuts from the
Coulomb-blockade measurements in panel b at the locations designated by the colored lines. e. Linecuts from
the tunneling spectroscopy measurement in panel c at the locations designated by the colored lines, shown in
linear (top) and logarithmic (bottom) scale. The dashed lines show conductance from BTK theory, with Δ =
304 𝜇eV, temperature 𝑇 = 70mK and transmission 𝐺N = 0.018G0. f. Differential conductance taken from the
tunneling spectroscopy measurement in panel c at the locations designated by the colored lines, shown in linear
(top) and logarithmic (bottom) scale.
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6.4 Non-local measurements of three-terminal hybrids
The experiments presented above are a prerequisite for investigating topological super-
conductivity. Most of the research to date has focused on the study of zero-bias anomalies
and their evolution as a function of chemical potential and magnetic field [6, 37]. How-
ever, it is becoming increasingly clear that spectroscopy of the density of states at the
ends of a nanowire is inconclusive when it comes to identifying an extended topological
superconducting phase [38, 39]. While conventional tunneling experiments can provide
information on the local density of states at both ends of a wire, the induced gap in the bulk
of the hybrid can instead be probed by measuring the non-local conductance in a three-
terminal geometry [40]. Consequently, the observation of correlated zero-bias peaks at
both ends of a wire should be accompanied by the closing and reopening of the induced
superconducting gap in the non-local spectra [41].

In Fig. 6.4a we present a schematic of such a three-terminal device, together with the mea-
surement circuit. The Al/Pt shell covers three facets of the InSb nanowire and is directly
connected to the film on the substrate. This forms the third lead of the device, which
we connect to ground in the presented measurements. The super gate voltage 𝑉SG con-
trols the chemical potential in the hybrid, and the tunnel gate voltages, 𝑉TL and 𝑉TR, are
used to control the left and right semiconducting nanowire junction conductances, respec-
tively. In this work, we fix the super gate voltage to be 𝑉SG = -2 V, where the nanowire
is expected to be strongly coupled to the superconducting shell [13, 34]. Bias voltages
are applied to the left (𝑉L) or right (𝑉R) normal contact while keeping the middle lead
grounded. The local (𝑔LL, 𝑔RR) and non-local (𝑔LR, 𝑔RL) conductances are measured to
form the full conductance matrix of the system, where they are defined as 𝑔ij ≡ d𝐼i/d𝑉j.
Figure 6.4(c-f) shows an example of such a conductance matrix, measured as a function
of parallel magnetic field. The critical field in this device is reduced to ∼ 4T in compari-
son to the single-facet device in the previous section. This is a direct consequence of the
thicker Al/Pt shell (∼ 8 nm), in which the orbital depairing is more pronounced. The local
spectrum on the right junction exhibits a few sub-gap states, which are not present in the
local spectrum on the left junction. This suggests that these states are confined locally
near the right junction. The corresponding non-local conductances are zero everywhere
inside the gap, confirming the local nature of these sub-gap states. This is emphasized
in Fig. 6.4b, which displays the extracted energy gap 𝐸g in the hybrid (top panel) as well
as the non-local slope 𝑆 ≡ d2𝐼i/d𝑉 2

j |𝑉𝑗=0 (bottom panel). The non-local slope stays close
to zero only while there is an energy gap present in the bulk of the hybrid. It starts to
deviate from zero around 𝐵∥ ≈ 3.4 T, indicating the gap in the system becomes soft before
closing eventually around B∥ ≈ 3.8 T. Remarkably, the induced superconducting gap in the
bulk of these hybrids can be free of sub-gap states up to high magnetic fields. The effect
of the super gate voltage on the proximity effect in these hybrids will be explored in chap-
ter 7. The extraction procedure for the energy gap and the non-local slope is described in
section 6.7.8 of the supporting information.
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Figure 6.4: Three-terminal measurements on InSb/Al/Pt hybrids (device C). a. Schematic of a three-
terminal hybrid device and the measurement circuit. The hybrid has a superconducting shell of 1 𝜇m in length,
which is grounded through its connection to the film on the substrate. Yellow dashed potentials indicate the
formation of tunnel barriers in the semiconducting junctions. b. Extracted energy gap in the bulk of the hybrid
(top), together with the non-local slope at zero bias (bottom). c-f. Differential-conductance matrix measure-
ments as a function of parallel magnetic field. Panels c,f show the local conductances 𝑔LL and 𝑔RR, respectively,
whereas panels d,e present the non-local conductances 𝑔LR and 𝑔RL. Conductances are defined as 𝑔ij ≡ d𝐼i/d𝑉j.
Data is taken at 𝑉SG = -2 V.
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6.5 Zeeman splitting inside the hybrid
Having shown that the addition of Pt adatoms quenches the Zeeman effect in the Al
shell, we turn our attention to the semiconductor part of the hybrid device. Breaking
the Kramers degeneracy through Zeeman splitting of the DOS of the hybrid segment lies
at the heart of the proposed schemes to reach the topological regime [1, 2]. Tunneling
into a discrete Andreev bound state (ABS) in the hybrid nanowire involves a transition
between a spinless singlet state and spinful doublet states. The doublet state splits under
the effect of an external magnetic field [42, 43]. Thus, measuring the evolution of the ABS
spectrum in a magnetic field would show whether the effect of spin mixing leaks to the
proximitized semiconductor.

Figure 6.5a shows a schematic illustration and the measurement circuit of another three-
terminal device, with a hybrid segment 150 nm long. The local conductance 𝑔LL as a func-
tion of 𝑉SG and 𝑉L taken at zero field is shown in Fig. 6.5b. We observe a clean supercon-
ducting gap, in addition to a series of sub-gap resonances. They appear only when setting
𝑉SG > 0V, and reflect the presence of discrete states in the confined semiconductor. These
states hybridize with the superconductor to form Andreev bound states. In Fig. 6.5c-f, we
track the evolution of the ABSs in an applied magnetic field by measuring the conductance
matrix. We set 𝑉SG = 0V, so that the energy of one of the ABSs is reduced below the quasi-
particle continuum. To verify that the ABS is located in the hybrid segment and is not a
local resonance on the left junction, we notice that it appears at the same energy on both
sides, in 𝑔LL and 𝑔RR. We also note that it shows up in the non-local signals, 𝑔RL and 𝑔RL,
consistent with a state which is extended along the entire hybrid. Upon application of the
magnetic field, the ABS splits into two peaks that move with the same slope in opposite
directions. The outgoing peaks are soon merged with the quasiparticle continuum, but the
peaks shifting to lower energy cross at 𝐵 = 0.34T, where the ABS ground state turns from
even to odd [42]. We extract its gyromagnetic ratio to be 𝑔 = 20.0 ± 0.3, showing only a
moderate amount of renormalization of the semiconducting properties [12, 13]. Thus, the
effect of spin mixing from Pt enhances the critical field of the Al shell, but does not nega-
tively influence the spin properties in the semiconductor. This is evidenced by the picture
of an extended ABS in the hybrid segment, which Zeeman splits with a high 𝑔 factor in the
presence of a magnetic field. This demonstration is of crucial importance, as a spin-mixed
hybrid would be fundamentally incapable of transitioning into a topological phase. It is
still an open question if hybrids would preserve these properties when the semiconductors
are coupled to high-atomic-number superconductors, like Sn, In or Pb [15, 17, 18].
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Figure 6.5: Spin splitting of Andreev bound states in InSb/Al/Pt hybrids (device D). a. Schematic of a
three-terminal hybrid and the measurement circuit. The hybrid has a superconducting shell of 150 nm in length,
which is grounded through its connection to the film on the substrate. Yellow dashed potentials indicate the
formation of tunnel barriers in the semiconducting junctions. b. Local differential conductance as a function of
super gate voltage taken at zero applied magnetic field. c-f. Differential-conductance matrix measurements as
a function of parallel magnetic field. Panels c,f show the local conductances 𝑔LL and 𝑔RR, respectively, whereas
panels d,e illustrate the non-local conductances 𝑔LR and 𝑔RL. Data is taken at 𝑉SG = 0.0V.
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6.6 Conclusion
In this work, we have examined the properties of thin aluminum films coated with sub-
monolayer amounts of platinum, as well as semiconductor nanowires proximitized by
Al/Pt bilayers. By measuring the critical temperature and parallel magnetic field of thin
films, we have found that ∼ 2Å of Pt can increase the critical field above the Chandrasekhar-
Clogston limit without having a significant effect on the size of the superconducting gap.
We show, using our theoretical model, that the spin-orbit scattering rate of Pt-covered
films is drastically increased. At the same time, various critical parameters of the films,
such as the mean free path and coherence length, remain unaffected. When coupling
InSb nanowires to these Pt-enhanced films, we observe a hard superconducting gap up
to magnetic fields as high as 6 T. Additionally, parity-conserving transport results in the
formation of 2𝑒-periodic diamonds in Coulomb-blockade experiments. Upon switching
to a three-terminal geometry, non-local measurements provide evidence of a bulk energy
gap which is free of sub-gap states. Furthermore, the spin splitting of extended Andreev
bound states in a short hybrid is observed. This evidences that the spin mixing from Pt
does not adversely affect the semiconducting properties of a hybrid. Crucially, like Al,
the Al/Pt system satisfies all the necessary requirements for investigating Majorana zero
modes and topological qubits.

What should also be considered is that the fabrication of aluminum/platinum samples can
be straightforwardly executed, with minimal modifications of the well-established alu-
minum technology. Importantly, aluminum and platinum are non-toxic materials suited
for most UHV deposition chambers. As a result, the development of scalable quantum sys-
tems can be readily implemented using Al/Pt bilayers - which is still a major challenge for
heavy elements with a low melting point like Sn and Pb. Thus, we expect that Al covered
with Pt will be the natural successor to Al-based hybrids. Furthermore, since Al can be
grown especially thin in planar geometries, we anticipate that Al/Pt will be particularly
attractive for proximitizing two-dimensional semiconductors and van der Waals materi-
als. Future works involving Al/Pt hybrids will focus on investigating Majorana physics,
exploring their behavior as a function of chemical potential and high Zeeman energies.

Data Availability and Code availability
Raw data presented in this work and the data processing/plotting codes are available at
https://doi.org/10.5281/zenodo.5835794. Theory simulation code is available upon
reasonable request.

6.7 Supporting information: Methods and materials
6.7.1 Platinum thickness calibration
In this work we use sub-nanometric amounts of platinum to enhance the magnetic field
resilience of aluminum. As platinum and aluminum do not form an abrupt interface, the
thickness estimation from TEM analysis is not reliable. Instead, atom-force microscopy
(AFM) was used to calibrate the tooling factor of the quartz crystal balance. Prior to the
deposition of platinum, the deposition rate was stabilized between a value of 0.01 Å/s to
0.03 Å/s. Upon opening of the shutter, there is an apparent sharp drop of the deposition

https://doi.org/10.5281/zenodo.5835794
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rate due to thermal effects on the quartz crystal monitor (QCM). The rate relaxes back to
its initial value after few tens of seconds when the monitor re-cools again. This thermal
effect makes it difficult to accurately estimate the thickness of deposited metal during the
deposition. To precisely estimate how much Pt was deposited, the deposition rate as a
function of time was recorded. Knowing the rate before opening the sample shutter, we
calculated the deposition time to obtain the desired thickness. This way we minimized
the impact of the thermal effect caused on the estimated thickness by the QCM. After the
deposition is complete, the closing of the shutter induces a similar spike on the rate. The
rate was allowed to stabilize again at this point. The exact amount of Platinum deposited
was then calculated using a linear fit between the stabilized rate before and after the de-
position, which accounts for possible drifts in the deposition rate. The curves were then
integrated between the opening and closing of the shutter, with the area under the curve
corresponding to the deposited Pt thickness. This process is presented in Fig. 6.6.
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Figure 6.6: Example of a fitting procedure to precisely estimate the platinum thickness. Dark gray points corre-
spond to the raw rate measured by the quartz crystal monitor. Red points are masked and excluded from the
fit. Purple markers indicate the range of the fit, and the cyan line is the fitted linear curve. The yellow rectan-
gle marks the range of integration and the integrated light gray area corresponds to the evaporated platinum
thickness.
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6.7.2 Al films
The Al films presented in this work have been deposited with a rate of 0.05Å/s on an
intrinsic silicon substrate with 285 nm thermally oxidized SiO2. Prior to the aluminum
deposition, the substrate was kept at 138 K for 1 hour to achieve good thermalization.
Metals were evaporated at an angle of 30∘ from the normal. After aluminum deposition,
platinum was deposited with the above mentioned procedure. AlOx was deposited at
0.1-0.2 Å/s. All materials were deposited at a substrate temperature of 138 K. The critical
temperature and magnetic field of the films was measured in a 4-terminal geometry, with
4 probes in a line separated by 1mm. The thickness of the films is 6 nm as estimated
from the quartz crystal monitor (QCM) and transmission electron microscopy (TEM). The
films are subsequently capped with a layer of evaporated AlOx, which protects them from
oxidation when exposed to air. We note however that the observed thickness of platinum
from TEM appears larger than indicated by QCM in the deposition chamber.

The tunnel junctions in this work have been grown under similar conditions. A 6 nm Al
film is deposited at 138 K with 30∘ angle from the normal. The films are oxidized at 138 K
with an oxygen pressure of 10 Torr. Without breaking the vacuum, 40 nmAg is evaporated
at 0.5 Å/s as the counter electrode at −30∘ from the normal. The samples are subsequently
protected with an AlOx capping layer. They are measured in a 4-terminal geometry: 2
probes are used to provide the source and drain contacts, where a voltage 𝑉 is applied to
one probe and the current 𝐼 through the junction is measured on the other probe. At the
same time, 2 additional probes are used to directly measure the voltage drop 𝑉dc on the
junction.
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Figure 6.7: Electron energy-loss spectroscopy extracted at the center of the studied films. The spectra do not
change with the increase of Pt thickness. This indicates that Al and Pt do not form a compound, despite the
detection of Pt inside the Al layer with EDX. Based on the shape of the spectra we conclude that Pt is physically
implanted inside the Al layer during deposition. Values on the y axis have been offset by -60 a.u. for clarity.
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6.7.3 Usadel equation and theory fitting
We use the Usadel equation [44] to calculate the critical fields of the films and fit the
tunneling spectroscopy data. The Usadel equation is written in terms of the quasiclassical
Green’s function [45, 46] ̌𝑔(𝑖𝜔𝑛 , 𝑟) and is valid in the limit of dirty superconductors, 𝑙mfp ≪
𝜉 , where 𝑙mfp is the electronic mean free path and 𝜉 is the superconducting coherence
length. Introducing Pauli matrices 𝜎̂ ( ̂𝜏 ) in spin (Nambu) space, the Usadel equation for a
superconductor with spin-orbit impurities in external magnetic field can be written as

𝐷𝜕 ⋅ ( ̌𝑔𝜕 ̌𝑔) − [𝜔𝑛 ̂𝜏𝑧 + 𝑖𝑉 Z ⋅ 𝜎̂ ̂𝜏𝑧 +Δ ̂𝜏+ +Δ∗ ̂𝜏− + Σ̌SO, ̌𝑔] = 0, (6.1)

where the covariant derivative is defined as 𝜕⋅ = ∇ − 𝑖[𝐴 ̂𝜏𝑧 , ⋅], 𝐴 is the vector potential,
𝜔𝑛 are Matsubara frequencies, 𝑉 Z = 𝑔el𝜇B𝐵/2 is the Zeeman field originating from the
external magnetic field 𝐵, 𝑔el is the electronic 𝑔-factor, 𝜇B is the Bohr magneton, Δ is the
superconducting pair potential, and ̂𝜏± = ( ̂𝜏𝑥 ± ̂𝜏𝑦 /2). The diffusion constant 𝐷 corresponds
to scattering on non-magnetic impurities and is given by 𝐷 = 𝑣F𝑙mfp/3, where 𝑣F is Fermi
velocity in the superconductor. The quasiclassical Green’s function is subject to a nor-
malization condition ̌𝑔2 = 1. As it was first shown in Ref. [31], scattering on spin-orbit
impurities produces the self-energy term Σ̌SO = 𝜎̂ ̌𝑔𝜎̂ /(8𝜏SO) in the Usadel equation, where
𝜏SO is scattering time. For convenience, we introduce the spin-orbit scattering energy as
ΓSO = 3ℎ̄/(2𝜏SO). In general, the Usadel equation has to be supplemented with appropriate
boundary conditions, which for a superconductor-insulator interface read 𝜕 ̌𝑔|interface = 0,
and the resulting boundary problem has to be solved. However, for very thin supercon-
ductors (with thickness 𝑑SC ≪ 𝜉 ,𝜆London, where 𝜆London is the London penetration depth)
in a parallel magnetic field the spatial dependencies of the Green’s function and the order
parameter can be neglected [47], and the order parameter can be chosen real. In that case,
the Usadel equation (6.1) becomes an algebraic equation:

[𝜔𝑛 ̂𝜏𝑧 + 𝑖𝑉 Z ⋅ 𝜎̂ ̂𝜏𝑧 +Δ ̂𝜏1 + Σ̌SO + Σ̌ORB, ̌𝑔] = 0, (6.2)

where orbital effects of the magnetic field lead to an additional contribution to the self-
energy:

Σ̌ORB = ΓORB
̂𝜏𝑧 ̌𝑔 ̂𝜏𝑧
4 , (6.3)

and the orbital depairing energy is given by

ΓORB = 𝐷𝑒2𝐵2𝑑2SC
3ℎ̄𝑐2 . (6.4)

Equation (6.4) is a familiar result for thin superconducting films subjected to a parallel
magnetic field [28, 48].

To calculate the order parameter self-consistently, Eq. (6.2) needs to be solved together
with the gap equation,

Δ log( 𝑇
𝑇𝑐0

) = 2𝜋𝑇 ∑
𝜔𝑛>0

(14Tr( ̂𝜏𝑥 ̌𝑔) − Δ
𝜔𝑛

) , (6.5)
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Independent parameters Extracted Parameters
𝑇 (mK) 𝑑SC (nm) 𝑔el 𝑣F (m/s) Δ0 (meV) 𝑙mfp (nm) ΓSO (meV)
20 6 2 2×106 0.27 0.9 see Fig. 6.11a

Table 6.1: Values of parameters used in critical field simulations of Al and Al/Pt films (see Fig. 1 of the main text).
Extracted parameters were obtained by fitting experimental data.

where 𝑇 is temperature and 𝑇𝑐0 is critical temperature of the bare superconductor. In ad-
dition, to appropriately identify first-order transitions one needs to ensure that the free
energy difference between the superconducting and the normal state is negative through-
out the calculation [49–51]. Once the self-consistent value of the order parameter and the
corresponding Green’s function are obtained, the density of states in the superconductor
can be calculated using

𝑁(𝐸) = 1
8𝑁0Re[Tr( ̂𝜏𝑧 ̌𝑔|𝜔𝑛→−𝑖𝐸+)], (6.6)

where 𝑁0 is the density of states at the Fermi level. The differential conductance in the
SIN junction is related to the density of states through convolution [30],

𝑑𝐼
𝑑𝑉 (𝑉 ) ∝ ∫

∞

−∞
𝑁(𝐸)𝐾(𝐸 + 𝑒𝑉 )𝑑𝐸, (6.7)

where 𝑉 is a voltage bias and the convolution kernel is given by

𝐾(𝑥) = 𝛽𝑒𝛽𝑥
(1+ 𝑒𝛽𝑥 )2 (6.8)

with the inverse temperature 𝛽 = 1/𝑘B𝑇 .

6.7.4 Simulation details
We use Eqs. (6.2)-(6.5) to calculate the values of the pair potential and to simulate the
critical fields of the Al and Al/Pt films considered in Fig. 6.1 of the main text. We take the
critical temperature to be 𝑇𝑐0 = 1.79 K for all simulated samples. Using the critical field
of the bare Al film (which we assume has a negligible amount of spin-orbit impurities)
measured in the experiment, 𝐵𝑐 ≈ 2.6 T, we extract the value of the mean free path in
the film by solving the Usadel equation (6.2)-(6.5) with Σ̌SO = 0 and obtain 𝑙mfp ≈ 0.9 nm.
We further use this value to simulate the critical fields of the Pt-covered samples (see red
dashed curve in Fig. 1c of the main text) and extract the respective values of the spin-orbit
scattering rate (see Fig. 6.11a). Values of the parameters used in these simulations, both
independent and extracted by fitting experimental data, are given in Table 6.1.

Conductance spectroscopy on the Al and Al/Pt films presented in Fig. 2 of the main text is
simulated using Eqs. (6.2),(6.5),(6.6) and (6.7). Table 6.2 summarizes values of the param-
eters, both independent and extracted by fitting experimental data, used in conductance
simulations.

Similarly to initial studies of the Al/Pt system, our theoretical model yields a linear depen-
dence of ΓSO on 𝑑Pt. We note however that even for 𝑑Pt = 5.1 Å, the extracted value of ΓSO
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Independent parameters Extracted Parameters
𝑇 (mK) 𝑑SC (nm) 𝑔el 𝑣F (m/s) Δ0 (meV) 𝑙mfp (nm) ΓSO (meV)

Al 110 4.5 2 2×106 0.31 0.68 0.0
Al/Pt 30 4.5 2 2×106 0.306 0.68 7.5

Table 6.2: Values of parameters used in conductance spectroscopy simulations of Al and Al/Pt tunnel junctions
(see Fig. 2 of the main text). Extracted parameters were obtained by fitting experimental data.

is smaller than ΓSO = 7.5meV, which we extract from the tunneling measurements. Initial
studies of Al/Pt revealed unphysically large spin-orbit scattering rates [23]. In the case of
the above mentioned experiment, the extracted spin-orbit scattering rate was higher than
the momentum scattering rate, which indicated that the increase of critical field was not
fully understood. It was pointed out later [31] that, due to Fermi liquid effects, the 𝑔-factor
of such a thin Al films is being reduced [30]. We plot the energy difference between the
spin-up and spin-down quasiparticle peaks in a 4.5-nm Al film as a function of magnetic
field in Fig. 6.11. The analysis is made for fields larger then 1 T. In our case, we do not
observe a clear deviation from a 𝑔-factor of 2 (indicated by the orange curve). The slight
discrepancy observed near the transition can be a result of the peak broadening, rather
than Fermi-liquid effects. We note, however, that the Fermi-liquid correction becomes
more relevant at higher magnetic field values, and we cannot fully exclude the presence
of these effects in Al/Pt devices.
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Figure 6.8: Additional experimental tunnel junction data in the vicinity of the critical field of the Al tunnel
junction. Panels illustrate the magnetic field up (a) and down (b) sweeps, respectively. Measurements show a
clear difference in the critical field value, evidencing hysteresis as expected for the first order phase transition.
Orange lines depict the gap edge and yellow lines mark the critical field extracted from experimental data.
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6.7.5 Nanowire hybrids: substrate fabrication
The nanowire hybrids presented in this work are fabricated on pre-patterned substrates,
following the shadow-wall lithography technique described in [9, 10]. Intrinsic silicon
wafers (2𝑘Ω⋅cm) with 285nm thermal SiOx serve as the base for the device substrates. Lo-
cal bottom gates are patterned with standard electron-beam litography (EBL) techniques,
using PMMA 950k A2 spun at 4krpm for one minute followed by 10 minutes of baking on
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Figure 6.10: Field rotation scan taken at 3.5 T for Al/Pt/AlO𝑥 /Ag NIS tunnel junction. The angle Θ is defined as
the angle between the substrate plane and the normal, where 0 degrees is the substrate plane. A misalignment
between the substrate plane and the applied field of only 2 degrees is enough to turn the film normal.

a 185 ∘C hot plate. After development of the resist using a 3:1 solution of IPA and MIBK,
3nm Ti and 17nm Pd are deposited as the gate metal using e-beam evaporation at 0.5Å/s
and 1Å/s, respectively. Subsequently, bond pads are patterned with EBL using PMMA
950k A6 spun at 4krpm for one minute and hot-baked at 185 ∘C for 10 minutes. After
development, 50nm of W is sputtered using RF-sputtering at 150W in an Ar pressure of
20𝜇bar. Next, the substrates are covered with high-quality HfO𝑥 gate dielectric grown at
110 ∘C using atomic layer deposition (ALD). Finally, shadow walls are patterned on top of
the dielectric. FOx-25 (HSQ) is spun at 1.5krpm for one minute, followed by 2 minutes
of hot baking at 180 ∘C and patterning with EBL. The HSQ is then developed with MF-
321 at 60 ∘C for 5 minutes and the substrates are subsequently dried using critical point
dryer (CPD). Nanowires are deposited onto the gates using an optical nanomanipulator
setup. For some devices, a modified version of the fabrication flow presented above was
used. For devices H and I, the shadow walls are grown using a double-layer process. First,
PMMA 950k A8 is spun at 4krpm and hot baked at 185 ∘C for 10 minutes. After EBL and
development, FOx-25 (HSQ) is spun at 2krpm for one minute, followed by 2 minutes of
hot baking at 180 ∘C and patterning with EBL. HSQ is developed for 15 minutes using MF-
321 at 60 ∘C, followed by stripping of the PMMA using acetone at 50 ∘C for 10 minutes
and drying of the substrates using CPD. For device H, bottom gates are instead fabricated
using sputtered W, etched down using reactive ion etching (RIE). Details are described
in [9, 10]. For devices B, H and I, AlO𝑥 grown at 300 ∘C using ALD was used as the gate
dielectric instead of HfO𝑥 . Since the HSQ developer etches AlO𝑥 , the ALD is moved in the
fabrication flow to be done after the shadow walls are fabricated. For device J, p++ doped
Si wafers (0.02Ω⋅cm) with 285nm thermal SiOx were used. The Si serves as a global back
gate, and so no local gates were patterned. Instead, only the bond pads and shadow walls
were fabricated onto the substrate.
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6.7.6 Nanowire hybrids: superconductor deposition
To obtain a pristine, oxide-free semiconductor surface, a gentle oxygen removal is accom-
plished via atomic hydrogen radical cleaning. For this purpose, a custom-made H radical
generator is installed in the load lock of an aluminium electron-gun evaporator. It consists
of a gas inlet for H2 molecules connected to a mass-flow controller and a tungsten filament
at a temperature of about 1700 ∘C that dissociates a fraction of the molecules into hydro-
gen radicals. The optimal removal of the native oxide is achieved for a process duration of
60mins and at a H2 pressure of 6.3⋅10−5mbar. This recipe, which is used for all the devices



6

168 6 Spin-mixing enhanced proximity effect in aluminum-based superconductor-semiconductor hybrids

shown in this paper, results in a constant EDX count of oxygen at the interface as shown
in the previous works utilizing our shadow wall lithography technique (see Refs[9, 10]).

After the native oxide removal, the samples are cooled down to 138 K and thermalized for
one hour. The Al is then deposited with a rate of 0.05Å/s. The various samples presented
in this work are shown in Fig. 6.8, and can be separated into three categories based on the
facet coverage of the nanowire. For nanowires with a single covered facet (pink outline
in Fig. 6.8), a thin Al film is grown with a 30∘ angle with respect to the substrate. After Pt
deposition at the same angle, the film is oxidized while still cold at an oxygen pressure of
200mTorr for 5 minutes. With these growth conditions, the top and botom-side facets of
the nanowire are coveredwith extremely thin granular Al and are expected to fully oxidize.
Similarly, 2 nanowire facets can be covered with Al (cyan outline in Fig. 6.8) by growing
a slightly thicker film at 50∘ −60∘ from the substrate. On the other hand, nanowires with
3-facet coverage (orange outline in Fig. 6.8) can be grown at 30∘ (or a mix of 15∘ and 45∘)
with thicker films. In that case, there is a continuous connection between the nanowire
shell and the film on the substrate. This can serve as a ground or source/drain contact
to the nanowire. These samples are typically capped with evaporated AlOx (∼ 0.2 Å/s) to
prevent oxidation of the shell-substrate connection. Details on the growth conditions of
all presented samples are shown in Table 6.3.

6.7.7 Nanowire hybrids: contacts
For most devices presented in this work, contacts are fabricated ex-situ after the super-
conductor deposition. PMMA 950k A6 is spun at 4 krpm and subsequently cured at room
temperature in a vacuum oven to prevent intermixing at the pristine InSb-Al interface.
Contacts are patterned using EBL, and Ar milling is used to remove the native oxide prior
to deposition of 10 nm Cr and 120 nm Au using e-beam evaporation at 0.5 Å/s and 1.5 Å/s,
respectively. For devices H and I, contacts are deposited in-situ. Using the single-shot
fabrication technique presented in [10], 50 nm Pt is deposited at a 30∘ angle with respect
to the substrate to form metallic contacts. For device J, the Al/Pt shell is deposited at a 30∘
angle with respect to the substrate, forming the source and drain contacts.

6.7.8 Nanowire hybrids: measurements
Transport measurements are conducted in dilution refrigerators with a base temperature
of ∼ 20mK.Allmagnetic fieldmeasurements presented in thiswork have themagnetic field
aligned parallel to the nanowire using 3-axis vector magnets. Voltage-bias measurements
were conducted in a 2-terminal geometry (with the exception of devices C and D) using
standard lock-in techniques. The used excitation voltages are between 10𝜇V and 20𝜇V,
with frequencies between 15Hz and 40Hz. To calculate the voltage drop on the sample
and the corresponding conductance, a setup-specific series resistance is taken into account
(see Table 6.3). The used series resistances consist of the input resistance of the current
amplifier, output resistance of the voltage source and resistance of the RC filters present
in the dilution fridge (no contact resistance is assumed in any of the measurements).

Measurements in the 3-terminal geometry on devices C and D are conducted using the
circuit described in [52]. When measuring the conductance matrix, the bias on the left
contact of the device 𝑉L is swept first while the bias on the other side 𝑉R is set to zero.
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Device # facets Angle (∘) dAl (nm) Oxidation dPt (Å) Figure Rseries (Ω)
A 1 30 5.5 200mTorr O2 1.8 3d 15134

3e 15134
3f 15134
S8 15134
S9 6134

B 2 60 7.5 AlO𝑥 capping 2 3b 6134
3c 6134
S12 6134

C 3 15 + 45 4 + 4 AlO𝑥 capping 2 4 6778
D 3 15 + 45 4 + 4 AlO𝑥 capping 2 5 0
E 1 30 5.5 200mTorr O2 1.8 S10 15134
F 1 30 5.5 200mTorr O2 1.8 S11 6134
G 1 30 8 200mTorr O2 1.8 S13 6144
H 2 50 7.5 200mTorr O2 2 S14 8668
I 2 50 7.5 200mTorr O2 2 S15 15134
J 3 30 12.5 200mTorr O2 5 S16 6778

Table 6.3: Overview of sample fabrication parameters. The deposition angle is specified with respect to the
substrate. The # facets column indicates the amount of nanowire facets covered with Al/Pt, of which cross-
section illustrations are shown in Fig. 6.13. Right two columns show the subtracted series resistance from the
raw data for each plot, which consists of the input resistance of the current amplifier, output resistance of the
voltage source and resistance of the RC filters present in the dilution fridge. For devices C & D, we refer to the
main body of the manuscript, as the series resistance varies for the grounding and biasing lines.

The corresponding matrix elements 𝑔LL and 𝑔RL are recorded. Next, the right-contact bias
𝑉R is swept while setting the bias on the left contact 𝑉L to zero and the remaining two
conductance matrix elements 𝑔RR and 𝑔LR are recorded. All three-terminal measurements
are conducted with low junction conductances compared to the circuit resistances, such
that voltage-divider effects are negligible [52]. For the data presented on device C, only the
DC voltage drop on each junction is corrected by performing the standard two-terminal
correction 𝑉L = 𝑉 applied

L − 𝐼L𝑅series. Measurements taken on device D are not corrected for
any series resistances.

To extract the induced gap size from measurements on device C, each voltage-bias line
trace is first smoothed by applying a Savitzky-Golay filter. Subsequently, the data is split
into positive bias and negative bias, before being normalized by the peak non-local con-
ductance value in the corresponding half. The induced gap is then determined separately
for positive and negative bias values, by calculating the voltage value for which the signal
crosses 20% of the peak value. The energy gap 𝐸g shown in the main text Fig. 6.4b is the
average of these two values. See Fig. 6.22 for the non-local data with an overlay of the
extracted 𝐸g values, as well as the processed data with overlay. The non-local slope is
calculated by averaging the gradient of the Savitzky-Golay filtered data within a ±9𝜇V
window around zero bias.
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Figure 6.12: SEM images of some of the nanowire hybrid devices presented in this work. Scale bars are 500 nm.
The borders of each panel are color-coded corresponding to the three bottom panels in Fig. 6.13, which show
illustrations of the intended cross-section of various fabrication recipes used in this work. Device B, which
showed Coulomb oscillations, was not intended to be an island device; we suspect a second barrier was present
at the grounding contact due to incomplete Ar milling of the AlOx capping layer. Additionally, it shows signs of
ESD which we suspect happened during unloading from the fridge. The image of device D was taken prior to
contact deposition - dashed rectangles indicate the designed contact location.
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6.8 Supporting information: Additional data onnanowire
hybrids
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Figure 6.14: Device A additional data. a. Differential conductance as a function of tunnel gate voltage, taken at
𝑉SG = −0.8V. b. BTK theory, with Δ = 304 𝜇eV, 𝑇 = 50mK and transmission 𝐺N estimated from the experimental
data. Bottom panels show conductance traces at various transmissions, taken at the locations designated by the
colored lines, of the experiment (c) and theory (d) in a linear scale. The same traces are shown in logarithmic
scale in panels e,f.



6.8 Supporting information: Additional data on nanowire hybrids

6

173

−0.50 −0.25 0.00 0.25 0.50
Vdc (mV)

0.15

0.30

0.45

0.60

V T
G 

(V
) −0.50 −0.25 0.00 0.25 0.50

Vdc (mV)

0.00

0.25

0.50

0.75

1.00

1.25
G
(2
e2
/h
)

−0.50 −0.25 0.00 0.25 0.50
Vdc (mV)

10
−5

10
−3

10
−1

G
(2
e2
/h
)

0.0 0.2 0.4 0.6 0.8
G (2e2/h)a b

c

Figure 6.15: Device A additional data. a. Differential conductance as a function of tunnel gate voltage, taken at
𝑉SG = −2.0V. At this super gate voltage, an unfavorable electrostatic potential leads to more disordered transport
in the tunnel junction. Line cuts taken at different transmission values of the tunnel junction, at the locations
designated by the colored lines, are shown in the linear (b) and logarithmic (c) scale.
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Figure 6.16: Device E. Additional data on magnetic field compatibility of single-facet devices. Differential con-
ductance vs parallel magnetic field map presented in the linear (a) and logarithmic (b) scale. Panel b reveals a
few discrete sub-gap states, which typically originate from disorder in the semiconducting junction. Panels c
and d depict linecuts taken at 𝐵 = 0 T (green) and 𝐵 = 4.5 T (cyan). Out-of-gap and in-gap conductances as a
function of magnetic field are shown in the linear (d) and logarithmic (f) scale. The length of the studied device
is about 1.8𝜇m, similar to a device presented in the main text in Fig 2. The data is taken at 𝑉SG = -2 V.
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Figure 6.17: Device F. Additional data on magnetic field compatibility of single-facet devices. a. Differential
conductance as a function of parallel magnetic field at VSG = 0V. Discrete Andreev bound states cross and anti-
cross inside the gap. Above 𝐵 = 4 T, the gap is hard again. Panels b and c depict differential conductance scans
at 𝐵 = 0 T and 𝐵 = 5 T.
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Figure 6.18: Device B. a. 2𝑒 coulomb diamonds with estimated diamond size in dashed orange lines. b. Parallel
magnetic field dependence of 2𝑒 transport presented in Fig. 6.3 in the main text. A 2𝑒 to 1𝑒 transition is observed
when the energy of the lowest energy sub-gap state drops below the charging energy of the island. c,d Linecuts
of the magnetic field measurements, showing 2𝑒 periodic coulomb peaks at low magnetic field.
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Figure 6.19: Device G. Additional data presenting 2𝑒 charging on a single-facet device. a. Voltage-bias spec-
troscopy, showing clear 2𝑒 and 1𝑒 charging processes. b. Magnetic field dependence of 2𝑒 transport. c. Linecut
taken at zero bias and zero magnetic field. d. Linecuts at higher bias (𝐵 = 0 T) and 𝐵 = 1.6 T (zero bias).
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Figure 6.20: Device H. Example of a 2-facet device fabricated with the single-shot technique. a. Voltage bias
spectroscopy as a function of magnetic field, which resembles the closing and reopening of the superconducting
gap followed by the formation of a faint but stable zero-bias peak. Panels b and c depict differential conductance
scans at 𝐵 = 0 and 𝐵 = 3 T. Due to non-functioning super gate and dielectric instability, the device could not be
further investigated.
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Figure 6.21: Device I. Example of a 2-facet device fabricated with the single-shot technique. a. Differential
conductance map as a function of magnetic field, with a hard gap up to 𝐵 = 4.5 T. b. Linecuts of the differential
conductance at 𝐵 = 0 T and 𝐵 = 4 T. c. Evolution of the out-of-gap (𝑉dc = 0.6mV) and in-gap (𝑉dc = 0mV)
conductance as a function of parallel magnetic field. Oscillatory behavior of the out-of-gap conductance indicates
the presence of a quantum dot in the vicinity of the tunnel junction.
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Figure 6.22: Device C. Extraction of the induced gap size from non-local signals 𝑔LR a and 𝑔LR b. Negative
energy values are shown in pink, positive energy values in green. In panels c and d, the extracted gap values
are overlayed with the normalized and Savitzky-Golay filtered data. Panels e and f show the absolute value of
both non-local signals in a logarithmic scale.
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Figure 6.23: Device J. Collection of data on a nanowire Josephson junction with Al/Pt. a. Differential conduc-
tance as a function of back-gate voltage in a low-transmission regime. b,c. Differential conductance traces as
a function of voltage bias. Linecuts are taken from panel a at the locations designated by the colored lines. d.
Differential conductance at a higher transmission. e,f. Differential conductance traces as a function of voltage
bias. Linecuts are taken from panel d at the locations designated by the colored lines. g. Parallel magnetic field
evolution of the differential conductance, with a critical field of 𝐵c = 2 T. h. Linecuts showing the zero-field and
finite field spectroscopy, taken from panel g at the locations designated by the colored lines. i. Linecuts showing
the in-gap and out-of-gap conductance, taken from panel g at the locations designated by the colored lines. j.
Temperature evolution of the switching current. k. show the differential resistance trace at 𝑇 = 50mK. l. In-gap
resistance versus temperature, indicating a critical temperature of 𝑇c = 1.6 K. About 5.8 kΩ resistance in panels
j-l corresponds to the resistance of the fridge lines. In comparison to InSb-Al Josephson junctions [9, 10], the
reduced 𝑇c in combination with a modest increase in 𝐵c indicates that the orbital contribution of the magnetic
field dominates the behavior of devices with relatively thick (12.5 nm) Al shells.
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7
Electrostatic control of the

proximity effect in the bulk of
semiconductor-superconductor

hybrids
The proximity effect in semiconductor-superconductor nanowires is expected to generate
an induced gap in the semiconductor. The magnitude of this induced gap, together with
the semiconductor properties like spin-orbit coupling and 𝑔 - factor, depends on the cou-
pling between the materials. It is predicted that this coupling can be adjusted through
the use of electric fields. We study this phenomenon in InSb/Al/Pt hybrids using nonlo-
cal spectroscopy. We show that these hybrids can be tuned such that the semiconductor
and superconductor are strongly coupled. In this case, the induced gap is similar to the
superconducting gap in the Al/Pt shell and closes only at high magnetic fields. In contrast,
the coupling can be suppressed which leads to a strong reduction of the induced gap and
critical magnetic field. At the crossover between the strong-coupling and weak-coupling
regimes, we observe the closing and reopening of the induced gap in the bulk of a nano-
wire. Contrary to expectations, it is not accompanied by the formation of zero-bias peaks
in the local conductance spectra. As a result, this cannot be attributed conclusively to the
anticipated topological phase transition and we discuss possible alternative explanations.

This chapter has been published as Electrostatic control of the proximity effect in the bulk of semiconductor-
superconductor hybrids, N. van Loo†, G.P. Mazur†, T. Dvir, G. Wang, R.C. Dekker, J.-Y. Wang, M. Lemang, C.
Sfiligoj, A. Bordin, D. van Driel, G. Badawy, S. Gazibegovic, E.P.A.M. Bakkers and L.P. Kouwenhoven in Nature
Communications 14, 3325 (2023).
† These authors contributed equally to this work.
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7.1 Introduction
When a semiconductor is coupled to a superconductor, the resulting hybrid is expected to
inherit properties of both. The combination of these properties can be exploited to create
exotic phases of matter [1, 2]. For example, a magnetic field can trigger the transition
to a phase of topological superconductivity in semiconducting nanowires with strong
spin-orbit coupling [3, 4]. In theory, this should be accompanied by the formation of
Majorana zero modes (MZMs) at the ends, together with a closing and reopening of the
superconducting gap in the bulk of the hybrid [5, 6]. In general, the proximity effect
induces superconductivity in the semiconductor as a result of Andreev reflection at
the interface between the materials. This effect manifests itself as the emergence of an
induced superconducting gap Δi in the semiconductor. The size of this gap depends
on the size of the proximitizing superconductor ΔSC, as well as the coupling between
the materials [7]. Importantly, the coupling also affects various other properties of the
hybrid, such as the spin-orbit coupling and 𝑔 - factor. Moreover, it is expected to be
tunable through the use of electric fields [8, 9].

In experiments, a modest tunability of the superconducting gap [10, 11] and the 𝑔 - factor
of Andreev bound states (ABSs) [12, 13] have been reported. However, most experiments
to date rely on tunnelling measurements at the end of a nanowire, which only provide
information on the local density of states. Yet, it remains unknown what information
these observations provide about the proximity effect in the bulk of a hybrid. Advances
in nanofabrication now enable the study of semiconductor-superconductor hybrids in a
three-terminal geometry [14–16]. In addition to the local density of states at the two ends
of a nanowire, such devices allow the nonlocal conductance to be measured. Nonlocal
transport is fundamentally carried by states in the nanowire that couple to both leads.
Moreover, it requires their energy to reside in an energy window between the gap of the
superconductor and the induced gap in the semiconductor [5], and thus can be used to
directly determine the induced gap in the bulk of the hybrid [17]. Measurements in this
geometry have been used to observe the closing of the induced gap [18], map the local
charge of ABSs [19, 20], investigate the quasiparticle wavefunction composition [21] and
search for topological superconductivity in a variety of platforms [22, 23].

In this article, we investigate the effect of gate-induced electric fields on the bulk of InSb
nanowires, proximitized by Al/Pt films [24]. To do this, we utilize nonlocal spectroscopy.
We demonstrate that the devices can be tuned into a strongly-coupled regime with
an induced gap close to that of the Al/Pt shell. Likewise, gate voltages can be used
to significantly reduce the induced gap and eventually fully close it. By applying a
parallel magnetic field, we show that wires in the strong-coupling regime can have
critical magnetic fields close to that of the superconducting shell. On the other hand, a
gate-reduced coupling drastically lowers the critical field.

The three-terminal devices presented in this work are fabricated using our shadow-wall
lithography technique [15, 16]. In Fig. 7.1a we depict the device schematic of a nanowire
hybrid used in these experiments. A set of pre-patterned bottom gates is separated from
the InSb nanowire by a thin layer of HfO2. Voltages on the two tunnel gates, 𝑉TL and
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Figure 7.1: (a) Schematic of a three-terminal hybrid device and the measurement circuit. The superconducting
shell is grounded through its connection to the film on the substrate. Yellow dashed potentials indicate the
formation of tunnel barriers in the semiconducting junctions. (b) Illustration of three different coupling regimes
between the superconductor and semiconductor. (i) Strong-coupling: electrons (red) are confined at the interface
which results in a renormalization of the semiconducting properties. (ii) Crossover: predicted to be optimal for
the formation of a topological superconductor. (iii): Weak-coupling: electrons accumulate far from the interface,
which can result in unproximitized states. (c) Transport schematic of nonlocal measurements. (i) Below Δi
(blue), only local processes are possible. (ii) In between Δi and ΔSC, nonlocal transport can occur. (iii) Above
ΔSC, electrons are drained to ground. (d) Example of measured nonlocal conductance 𝑔RL taken on device A,
corresponding to the diagram in (c). Blue and red dashed lines indicate the induced and superconductor gap,
respectively.

𝑉TR, are used to induce tunnel barriers in the exposed semiconducting segments. The
super gate voltage 𝑉SG is used to apply an electric field in the bulk of the hybrid. The
nanowire is covered on three facets by an Al/Pt film, where the Pt serves to enhance the
critical magnetic field of the Al film [24]. This superconducting shell extends onto the
substrate, forming the connection to ground. Two Cr/Au contacts are fabricated at the
ends of the wire. The devices are measured by individually applying bias voltages, 𝑉L
and 𝑉R, to the left and right leads. The conductance matrix is obtained by measuring the
differential conductances 𝑔ij ≡ d𝐼i/d𝑉j, with 𝑖, 𝑗 = 𝐿,𝑅 using standard lock-in techniques
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(see Supplementary section I and II for details of device fabrication and measurement).

In Fig. 7.1b, we illustrate the expected effect of electric fields on the bulk of the hybrid
as calculated by [25]. For negative gate voltages (Fig. 7.1b(i)), electrons accumulate near
the semiconductor-superconductor interface which results in a strong coupling to the
superconductor. As a consequence, the semiconducting properties of the hybrid are
strongly renormalized. We refer to this as the strong-coupling regime in the rest of this
work. On the other hand, electrons can accumulate far from the interface through the
application of positive gate voltages (Fig. 7.1b(iii)). This results in a diminished coupling
with unproximitized states in the hybrid, to which we refer as the weak-coupling regime.
Finally, there is a crossover between these two regimes (Fig. 7.1b(ii)) where electrons
still maintain superconducting correlations, while their semiconducting properties are
only moderately renormalized. As a result, this crossover is expected to be optimal
for the emergence of topological superconductivity [25]. Furthermore, the application
of an electric field also changes the electron density in the hybrid. Due to quantum
confinement we expect the formation of discrete subbands, each with their own coupling
strength. Thus, applied gate voltages should be able to tune the hybrid between the
different subbands.

To characterize the different coupling regimes, we determine the induced gap in our de-
vices using nonlocal spectroscopy. The transport mechanisms involved in such measure-
ments are schematically depicted in Fig. 7.1c, together with an example of the resulting
nonlocal conductance 𝑔RL in Fig. 7.1d. If the applied bias 𝑉L is below the induced gap Δi,
electrons from the lead can only enter the superconducting region through Andreev reflec-
tion (Fig. 7.1c(i)). This results in the formation of Cooper pairs, which drain away into the
superconducting lead. As a consequence, no nonlocal conductance is observed below the
induced gap (Fig. 7.1d). Similarly, electrons injected above the gap of the superconductor
ΔSC are likely to drain to the ground without reaching the other side [26] (Fig. 7.1c(iii)).
However, if the applied bias is larger than Δi but below ΔSC, injected electrons can reach
the opposite lead of the device. This results in a finite nonlocal conductance as shown in
Fig. 7.1d, from which Δi (dashed blue lines) and ΔSC (dashed red lines) can be estimated.
In Supplementary section III, we describe how these parameters are determined from the
data. While this picture helps to understand three-terminal measurements, we note that
nonlocal processes can involve energy relaxation of the injected electrons as well as non-
equilibrium effects not captured by the single-particle transport theory [21]. We further
elaborate on this in Supplementary section II.B.

7.2 Results and Discussion
First, we investigate the gate tunability of the induced gap. We measure the full con-
ductance matrix of a device as a function of super gate voltage 𝑉SG at zero magnetic
field. In Fig. 7.2, we show such a measurement on a long nanowire hybrid (device B,
8 𝜇m long). Panels c and d depict the nonlocal signals 𝑔RL and 𝑔LR, in which the induced
gap is directly visible as the white area between two anti-symmetric peaks. For a large
range of low gate voltages, the peaks in the nonlocal signal are relatively sharp. This
indicates that the difference between Δi and ΔSC is small, and so it is associated with the
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strong-coupling regime. Above a certain gate voltage 𝑉SG > 3.5𝑉 , the peaks gradually
become wider. This signals the reduction of the induced gap, as the coupling between
the semiconductor and superconductor is decreased. The induced gap fully closes above
𝑉SG > 6𝑉 , which means that at this point there reside states in the bulk of the nanowire
which do not couple at all to the superconductor. To better visualize the effect of 𝑉SG, in
the top panel of Fig. 7.2e we plot the behavior of the induced gap in the bulk (blue) and
the gap of the superconducting shell (red). In addition, we show in the bottom panel the
nonlocal slope at zero bias [18]. This parameter is defined as 𝑆ij ≡ d2𝐼i/d𝑉 2

j |𝑉𝑗=0, with 𝑆RL
presented in purple and 𝑆LR in orange. Indeed, their deviation from zero above 𝑉SG > 6𝑉
confirms that the hybrid has become gapless. We generically observe the tunability of
the induced gap, and hence the coupling between the semiconductor and superconductor.
However, the application of an electric field does not exclusively tune the coupling but
also controls the density in the hybrid. Typically, we observe a sudden onset of the
reduction of Δi while the magnitude of the nonlocal signal increases concurrently.This
behavior has theoretically been related to the occupation of an additional subband with
a reduced coupling [8]. Still, it remains unknown how many sub-bands are active in our
hybrids.

It is particularly interesting how the reduction of the induced gap is also reflected in the
local signals 𝑔LL and 𝑔RR, which are displayed in Fig. 7.2a and b. In the strong-coupling
regime, the local signals exhibit two sharp coherence peaks and for the majority of the
gate voltages, a clean superconducting gap. However, some states can be seen in these
spectra which do not correlate between the two panels nor show up in the nonlocal
signals - a confirmation that these states are confined to the local tunnel junctions.
Exemplary linecuts in this regime of the full conductance matrix are shown in Fig. 7.2f.
In 𝑔LL and 𝑔RR, we see a typical local spectrum which in literature is referred to as
a hard superconducting gap. While the sub-gap conductance does not actually go to
zero, we note that the junctions are relatively transparent. This results in a significant
amount of Andreev reflection [27], which contributes only to the local conductance.
To confirm this, we have repeated similar measurements in the tunneling regime (see
Supplementary information Fig. 7.14). Indeed, the hard gap is also visible in 𝑔RL and 𝑔LR,
which show zero response outside of the two anti-symmetric peaks. As 𝑉SG increases,
the semiconductor-superconductor coupling is reduced. Linecuts in the regime of weak
coupling are shown in Fig. 7.2f. The coherence peaks visible in 𝑔LL and 𝑔RR have now
broadened significantly, while the sub-gap conductance still only contains contributions
from Andreev reflection. The peaks in 𝑔RL and 𝑔LR have also broadened accordingly,
while the absence of signal in between still evidences a hard gap. This changes when
𝑉SG is increased further, as show in Fig. 7.2g. The absence of a flat part in 𝑔RL and
𝑔LR now indicates that an induced gap is absent in the system. This is also seen in
𝑔LL and 𝑔RR, where the conductance close to zero bias is now increased beyond what
can be explained by Andreev reflection. Indeed, the nanowire now exhibits a soft gap
as measured from the local spectra, while the nonlocal signals demonstrate that the
hybrid is gapless. Such a soft gap has long been attributed only to the quality of the
semiconductor-superconductor interface [28]. Yet, here we show that this is not the
full story: a soft gap can equally well exist in hybrids with a pristine interface. In this
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Figure 7.2: (a-d) Conductance matrix measured as a function of 𝑉SG in the absence of a magnetic field on device
B (8 𝜇m long hybrid). At low 𝑉SG, a large induced gap is observed in 𝑔RL and 𝑔LR (panels c,d). For increasing
𝑉SG, the induced gap gradually decreases and eventually fully closes. At the same time, the superconducting
gap in 𝑔LL and 𝑔RR (panels a,b) becomes soft. (e) Top: Δi (blue) and ΔSC (red). Dark colors represent the mean
of four values, obtained from the positive and negative biases of the two nonlocal signals. Similarly, the shaded
areas correspond to the standard deviation. Bottom: calculated nonlocal slope at zero bias for 𝑔RL (purple) and
𝑔LR (orange). (f) Linecuts of the conductance matrix taken at 𝑉SG = 1.26V in the strong-coupling regime, where
a large induced gap is observed. (g) Linecuts of the conductance matrix taken at 𝑉SG = 4.67V in the weak-
coupling regime, where the induced gap is significantly reduced. (h). Linecuts of the conductance matrix taken
at 𝑉SG = 8.44V. The induced gap is closed as visible in 𝑔RL and 𝑔LR, whereas the superconducting gap in 𝑔LL and
𝑔RR has turned soft.

case, it is caused by a combination of a weak semiconductor-superconductor coupling
and increasing electron density in the nanowire. Since a high electron density and weak
or absent semiconductor-superconductor coupling are unfavorable conditions for the
formation of a topological superconducting phase, this demonstrates that hybrids with
a soft gap in the local spectra are unlikely to undergo a topological phase transition.
Moreover, topological superconductivity has to be realized by a Zeeman-driven gap
closing and reopening, which is not possible to realize in devices gapless already at zero
field.
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We proceed by exploring the effect of parallel magnetic fields 𝐵∥ on the induced gap of
a 1 𝜇m long hybrid (device C). In Fig. 7.3, we present two field sweeps of the nanowire
in the two extreme regimes. In the strong-coupling regime (Fig. 7.3a-e), the induced gap
decreases slowly with magnetic field. For 𝑔RL and 𝑔LR it can be seen that the white area
between the anti-symmetric peaks persists up to almost 𝐵∥ = 4T. At the same time, a few
states can be observed in 𝑔LL and 𝑔RR. Again, the absence of correlation between the two
sides and the absence of these states from the nonlocal signals confirms they are confined
locally near the tunnel junctions. By looking at the estimated induced gap and the
nonlocal slope in Fig. 7.3e, we observe an induced critical field 𝐵c∥ = 3.5T. The outer ridge
of the nonlocal signal decreases more slowly, which indicates that the shell maintains a
superconducting gap (red) up to higher fields. By fitting the linear part of the induced-gap
closing to the Zeeman energy 𝐸Z = 𝑔𝜇B𝐵/2, we estimate the 𝑔 - factor to be 𝑔 = 2.3 (see
Supplementary section IV). This demonstrates that the semiconductor properties are
indeed strongly renormalized in this regime [8, 9]. Such a low 𝑔 - factor and the absence
of any states below Δi may suggest that the semiconductor is depleted. Yet, we observe
that the induced critical field in the strong-coupling regime varies significantly from wire
to wire, and likely depends on the microscopic details (see Supplementary section IV).
Moreover, we note that the addition of Pt in the shell causes its 𝑔 - factor to be reduced
close to zero, so that the effective 𝑔 - factor in the hybrid can be reduced below 𝑔 = 2 [24].
In the weak-coupling regime (Fig. 7.3f-j) on the contrary, the induced gap closes quickly
upon the application of the magnetic field. Thereafter, the spectrum remains gapless and
filled with a plethora of states. This is also reflected in 𝑔LL and 𝑔RR, where the same states
are visible. From both the induced gap and the nonlocal slope in Fig. 7.3j, we observe an
induced critical field 𝐵c∥ = 0.16T. We estimate a 𝑔 - factor of 𝑔 = 54, although this value
can be overestimated as orbital effects of the magnetic field are more prominent in this
regime [29–31]. The rapid closing of the induced gap confirms that the hybrid inherits
more of the semiconductor properties in the weak-coupling regime.

We next turn our attention to the crossover between these two regimes, which is expected
to be optimal for the formation of a topological superconducting phase [25]. In Fig. 7.4a-d,
the conductance matrix of the same nanowire (device C, 1 𝜇m) taken at 𝑉SG = −0.3𝑉 is
shown. In the nonlocal spectra (Fig. 7.4c and d), we see a collection of states moving down
in energy as the magnetic field is increased. The induced gap closes around 𝐵c∥ = 0.8T
and reopens around 𝐵c∥ = 1.6T. The induced gap (blue) and nonlocal slope are presented
in Fig. 7.4e. Here, the closing and reopening of the induced gap is directly visible. The
reopened gap reaches energies of Δi = 50𝜇eV, which is similar to predictions of the gap
size in topological systems [6]. The reopening is also reflected in the behavior of the
nonlocal slope, which deviates from zero around 𝐵∥ = 1T before returning to zero again
at higher fields. Fig. 7.4f-h provide linecuts from 𝑔RL, emphasizing that the induced gap
is finite at zero field, closed at intermediate field, and reopened at higher fields. However,
neither of the local signals (Fig. 7.4a and b) exhibit zero-bias peaks. This suggests that
the observed feature does not originate from a topological phase with Majorana zero
modes at the ends, extended over the full length of the hybrid. Yet, it may be possible
that the presence of tunnel gates generates a smooth potential profile near the ends of the
wire. In this case, the local spectra only represent the presence of bound states formed
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Figure 7.3: (a-d) Conductance matrix measured as a function of 𝐵∥ for device C (1 𝜇m hybrid) in the strong-
coupling regime (𝑉SG = −0.75V), where the induced gap only closes at large magnetic fields as visible in 𝑔RL and
𝑔LR (panels c,d). In 𝑔LL and 𝑔RR (panels a,b), a few sub-gap states localized in the vicinity of the tunnel junctions
are observed. (e) Top panel: Δi (blue) and ΔSC (red) In the strong-coupling regime . Bottom panel: Nonlocal
slope extracted from 𝑔RL (purple) and 𝑔LR (orange). (f-i) Conductance matrix measured as a function of 𝐵∥ for
device C (1 𝜇m hybrid) in the weak-coupling regime (𝑉SG = 0.5V.), where the induced gap instead closes at small
magnetic fields as visible in 𝑔RL and 𝑔LR (panels h,i). This is also reflected in 𝑔LL and 𝑔RR (panels f,g). (j) Top
panel: Δi (blue) and ΔSC (red) In the strong-coupling regime . Bottom panel: Nonlocal slope extracted from 𝑔RL
(purple) and 𝑔LR (orange).

on the smooth potential, while pushing the Majorana zero modes towards the center
of the hybrid - effectively decoupling them from the leads [32, 33]. Similar effects are
expected to be caused by the device disorder independent of the tunnel gate voltage [34].
Accordingly, the gap reopening in the bulk should remain visible in the nonlocal spectra
as this effectively measures the largest gap in the system, while no zero-bias peaks are
observed in the local signals (see Supplementary section IIB). This scenario is supported
by the observation that the local signals 𝑔LL and 𝑔RR do not appear to depend on the length
of the hybrid and are not always correlated, as we elaborate on Supplementary section
IV. On the contrary, it is also possible that the reopening of the gap has a topologically
trivial origin. The hybrid segment of this device is only 1 𝜇m long, so that it is likely to be
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Figure 7.4: (a-d) Conductance matrix measured as a function of B∥ at 𝑉SG = −0.3V for device C (1 𝜇m hybrid).
A closing and reopening of the induced gap is observed in 𝑔RL and 𝑔LR (panels c,d), but it is not accompanied
by the formation of zero-bias peaks in 𝑔LL and 𝑔RR (panels a,b). (e) Δi (blue) and ΔSC (red) corresponding to
the conductance matrix in (a-d). Bottom: Nonlocal slope extracted from 𝑔RL (purple) and 𝑔LR (orange). (f-h)
Nonlocal conductance 𝑔RL presented for (f) B∥ = 0T with a large induced gap, (g) 𝐵∥ = 1.4T illustrating a closed
induced gap, (h) 𝐵∥ = 2.2T showing flat nonlocal conductance around zero-bias corresponding to a reopening of
the induced gap.

within the short wire limit. In this case, the resulting spectrum is comprised of discrete
energy levels with a small energy spacing. Both the Zeeman and orbital contributions
of the magnetic field allow these states to come down and cross zero energy. However,
in this limit there is no band structure forming in the nanowire, making the concept of
topology ill-defined [35]. Alternatively, the observed gap reopening can originate from
two sets of trivial ABSs localized near the nanowire junctions. In this case, spatial overlap
due to a long localization length can enable transport through the hybrid [36]. Likewise,
such states can cross zero energy without invoking a topological phase transition.

Finally, to enhance the picture we map out the induced gap of a nanowire as a function
of parallel magnetic field and super gate voltage. In Fig. 7.5a, we present such an induced
gap diagram for the same 1 𝜇m long hybrid (device C). To complement this diagram, we
show the corresponding normalized nonlocal slope 𝑆Norm at zero bias in Fig. 7.5b. This
quantity captures the collective behavior of the nonlocal slope from the two nonlocal
signals, remaining close to zero whenever an induced gap is present in the hybrid. It is
defined as 𝑆Norm = |𝑆RL𝑆LR|/ √|𝑆RL𝑆LR| where the normalization is done independently
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Figure 7.5: Induced gap and nonlocal slope diagrams for device C (1 𝜇m long hybrid). (a) Induced gap as a
function of VSG and B∥. (b) Normalized nonlocal slope 𝑆Norm as a function of 𝑉SG and 𝐵∥. Dashed orange ellipses
highlight the reopening of the induced gap, which occurs in a small but finite range of 𝑉SG values.

for every gate voltage. In the strong-coupling regime below 𝑉SG < −0.5𝑉 , we see that
Δi decays slowly when the magnetic field is increased. It closes around 𝐵c∥ = 3.5T,
which is also reflected in 𝑆Norm as it deviates from zero. In contrast, above 𝑉SG > −0.1𝑉
the semiconductor-superconductor coupling is strongly diminished which results in a
significant reduction of Δi and 𝐵c∥ . Near the crossover between −0.4𝑉 < 𝑉SG < −0.1𝑉 as
indicated by the dashed orange ellipses, the closing of Δi is followed by its reopening at
higher magnetic fields. This is also visible in the behavior of 𝑆Norm, which becomes finite
when the gap closes and returns to zero at the reopening. Importantly, the reopening
occurs in a finite but narrow range of gate voltages. While a strong reduction of 𝐵c∥ is
generically observed in our hybrids, only one out of the eleven nanowires studied in
detail showed a subsequent reopening of the induced gap. In Supplementary section IV,
we show phase diagrams and representative overviews of additional nanowires studied
in this work.

In conclusion, we have demonstrated that electric fields can be used to control the bulk
properties of InSb nanowires proximitized by Al/Pt films, using a three-terminal geometry.
Even though this has been attempted in the past using two-terminal experiments [10, 12],
local tunneling spectroscopy does not allow for discriminating between states localized
in the junction area which are known to possess a gate-tunable coupling [37]. Such
states are present in virtually all our local spectra, which demonstrates that nonlo-
cal measurements are truly necessary to properly investigate the bulk properties of
semiconductor-superconductor hybrids. On the one hand, a strong-coupling regime
can be achieved where the induced gap is large and closes only at high magnetic fields.
This corresponds to a metallized nanowire which has a strong renormalization of the
semiconducting properties. In contrast, a weak-coupling regime can be realized where
the induced gap and critical field are strongly reduced. In particular, the induced gap
can be fully closed at zero magnetic field. We have demonstrated that under these
conditions the system also exhibits a soft gap in the local spectra of the nanowire. Thus,
the presence of a soft gap is a clear indication that the bulk of the hybrid posesses a
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high electron density with a weak (or absent) semiconductor-superconductor coupling.
Indeed, the strong-coupling regime acts too much like a regular superconductor whereas
the weak-coupling regime acts too much like an ordinary semiconductor. Neither of
these regimes have an interesting combination of both properties - making a large part
of the gate voltage range irrelevant for the realization of a topological superconductor.
Only at the crossover one can hope to find the right combination of semiconductor and
superconductor properties.

By mapping out the induced gap diagram of a 1 𝜇m nanowire near the crossover, we do
observe a closing and reopening of the induced gap in a finite range of magnetic fields
and gate voltages. However, the corresponding local signals reveal an absence of zero-
bias peaks. As a consequence, the gap reopening cannot be conclusively attributed to the
existence of a topological phase. We speculate that the density in the hybrids is too high
whenever the coupling is weakened [8]. In fact, it is currently unclear what are the opti-
mal density and coupling for reaching a topological phase in InSb/Al based hybrids. Thus,
a desireable future improvement would be to decouple the semiconductor and supercon-
ductor via an epitaxial barrier, such that density in the wire and the coupling could be
tuned independently [38].

7.3 Methods
7.3.1 Device fabrication
The nanowire hybrids presented in this work are fabricated on pre-patterned substrates,
following the shadow-wall lithography technique described in [15, 16]. Intrinsic silicon
wafers (2𝑘Ω⋅cm) with 285nm thermal SiOx serve as the base for the device substrates.
Local bottom gates are patterned with standard electron-beam lithography (EBL) tech-
niques, using PMMA 950k A2 spun at 4krpm for one minute followed by 10 minutes
of baking on a 185 ∘C hot plate. After development of the resist using a 3:1 solution
of IPA and MIBK, 3nm Ti and 17nm Pd are deposited as the gate metal using e-beam
evaporation at 0.5Å/s and 1Å/s, respectively. Subsequently, bond pads are patterned with
EBL using PMMA 950k A6 spun at 4krpm for one minute and hot-baked at 185 ∘C for 10
minutes. After development, 50nm of W is sputtered using RF-sputtering at 150W in an
Ar pressure of 20𝜇bar. Next, the substrates are covered with 17nm high-quality HfO𝑥
gate dielectric grown at 110 ∘C using atomic layer deposition (ALD). Finally, shadow walls
are patterned on top of the dielectric. FOx-25 (HSQ) is spun at 1.5krpm for one minute,
followed by 2 minutes of hot baking at 180 ∘C and patterning with EBL. The HSQ is then
developed with MF-321 at 60 ∘C for 5 minutes and the substrates are subsequently dried
using critical point dryer (CPD).

Nanowires are placed on top of the gates using an optical nanomanipulator setup. Samples
are placed in a custom e-beam evaporator, where the native nanowire oxide is removed
and the superconductor is deposited. To obtain a pristine, oxide-free semiconductor
surface, a gentle oxygen removal is accomplished via atomic hydrogen radical cleaning.
For this purpose, a custom-made H radical generator is installed in the load lock of an
aluminium electron-gun evaporator. It consists of a gas inlet for H2 molecules connected
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to a mass-flow controller and a tungsten filament at a temperature of about 1700 ∘C that
dissociates a fraction of the molecules into hydrogen radicals. The optimal removal of
the native oxide is achieved for a process duration of 60mins and at a H2 pressure of
6.3⋅10−5mbar. This recipe, which is used for all the devices shown in this paper, results in
a constant EDX count of oxygen at the interface as shown in the previous works utilizing
our shadow wall lithography technique (see Refs[15, 16]). After the native oxide removal,
the samples are cooled down to 138 K and thermalized for one hour. The Al is then
deposited with a rate of 0.05Å/s, alternating 2 nm at 15∘ and 45∘ angles with respect to
the substrate for a total of 8 nm. Subsequently, a 2ÅPt layer is deposited at 30∘ following
the approach of [24]. Finally, the samples are capped with evaporated AlOx (∼ 0.2 Å/s) to
prevent oxidation of the shell-substrate connection.

Ohmic contacts are fabricated ex-situ after the superconductor deposition. PMMA 950k
A6 is spun at 4 krpm and subsequently cured at room temperature in a vacuum oven to
prevent intermixing at the pristine InSb-Al interface. Contacts are patterned using EBL,
and Ar milling is used to remove the native oxide prior to deposition of 10 nm Cr and
120 nm Au using e-beam evaporation at 0.5 Å/s and 1.5 Å/s, respectively.

7.3.2 Measurement details
Transport measurements are conducted in dilution refrigerators with a base temperature
of ∼ 20mK. All magnetic field measurements presented in this work have the magnetic
field aligned parallel to the nanowire using 3-axis vector magnets. We have used two
adaptations of the three-terminal circuit presented in [39], which are shown in supple-
mentary Fig. 7.10. For the measurements on device C, the Al/Pt film is grounded at room
temperature, so that there is a finite resistance originating from the fridge line and filters
in between the ground and the sample. This can give rise to voltage-divider effects, which
we correct. We do this using formula (14) of ref [39]:

𝐺(V) = 𝐺′(Vapplied) (𝕀−𝑍 𝐺′(Vapplied))−1 (7.1)

Here, 𝐺(V) is the corrected conductance matrix, 𝐺′(Vapplied) is the measured conductance
matrix, V = (𝑉L,𝑉R)𝑇 is the bias on the sample, Vapplied = (𝑉 applied

L ,𝑉 applied
R )𝑇 is the bias

applied by the voltage sources and 𝑍 is the impedance matrix:

𝑍 = [𝑅L +𝑅g 𝑅g
𝑅g 𝑅R +𝑅g] (7.2)

For device C, the circuit uses a grounding line resistance 𝑅g = 2834Ω and biasing line
resistances 𝑅L = 𝑅R = 3944Ω. In addition, the DC voltage drop on the sample is corrected
by measuring the current I = (𝐼L, 𝐼R)𝑇 using

V = Vapplied −𝑍 I (7.3)

The other samples in this work have used an adapted circuit, where the Al/Pt film is di-
rectly connected to the cold ground in the fridge aswell as the ground at room temperature.
The drawback is that the thermal voltage 𝑉th introduces an offset in the bias voltages ap-
plied to the left and right lead, which needs to be corrected. The connection of the Al/Pt
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film to ground at room temperature enables the direct measurement of this thermal volt-
age. Yet, this largely eliminates voltage-divider effects from the measurements. The DC
voltage drop is also corrected using equation 7.3 with 𝑅g = 0Ω. By maintaining a low con-
ductance compared to the line resistances, we can use the simplified correction of formula
(16) of ref [39]:

𝐺(V) = 𝐺′(Vapplied) + [𝑅L 𝑔
2
LL 0

0 𝑅R 𝑔2RR] (7.4)

Note that this simplification can give an error in the nonlocal signals when the zero-bias
conductance in the receiving junction is large, either due to the presence of a sub-gap
state or Andreev reflection. This leads to a bias-independent offset, which in some mea-
surements we correct by subtracting the offset as calculated from sub-gap or finite-bias
conductance values.

When measuring the conductance matrix, the bias on the left contact of the device 𝑉L is
swept first while the bias on the other side 𝑉R is set to zero. Before sweeping the bias,
the thermal voltage is measured and the bias offsets is calibrated accordingly. The cor-
responding matrix elements 𝑔LL and 𝑔RL are recorded. Next, the right-contact bias 𝑉R is
swept while setting the bias on the left contact 𝑉L to zero and the remaining two conduc-
tance matrix elements 𝑔RR and 𝑔LR are recorded. For the super gate sweeps presented in
this work, we aim to maintain a constant transmission in both the nanowire junctions. To
do this, the two tunnel gate voltages 𝑉TL and 𝑉TR are automatically adjusted each time
the super gate voltage is changed. This is done by looking at the out-of-gap local conduc-
tances 𝑔LL and 𝑔RR. If one of the conductances is found to deviate more than 0.005×2𝑒2/ℎ
from the specified value, the respective tunnel gate voltage is tuned to bring the out-of-gap
local conductance back to the specified value.

7.3.3 Data analysis
We extract the induced gap Δi and the gap of the superconducting film ΔSC from the non-
local spectra 𝑔RL and 𝑔LR, as a function of various device parameters like as the super gate
voltage 𝑉SC and the parallel magnetic field 𝐵∥. In such spectra, the nonlocal conductance
is finite only in an energy window between ΔSC and Δi. For a given trace of the nonlocal
conductance as a function of bias voltage, we determine an adaptive threshold based on the
noise level at a large bias voltages. ΔSC and Δi are estimated by checking when the nonlo-
cal conductance exceeds the threshold value. This is done independently for both 𝑔RL and
𝑔LR as well as both positive and negative bias values. This results in four estimates of ΔSC
and Δi each, from which the mean and standard deviation are calculated and presented
in the figures. Values of the nonlocal slope 𝑆RL and 𝑆LR are estimated as the numerical
derivative of the data at zero bias voltage, after application of a Savitzky-Golay filter. A
detailed description and examples can be found in the supplementary information.

Data Availability
Raw data presented in this work and the data processing/plotting codes are available at
https://doi.org/10.5281/zenodo.6913897.

https://doi.org/10.5281/zenodo.6913897
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7.4 Supplemental information
7.4.1 Analysis details
Determination of the induced gap and gap in the superconducting shell
In Fig. 7.6 we show how we extract Δi and ΔSC from the nonlocal conductance. Fig. 7.6a
shows the nonlocal conductance 𝑔LR from the 8𝜇m device, which is also shown in the
main text Fig. 7.2b. We show examples of the extraction algorithm for two linecuts,
presented in the middle column (yellow) and right column (orange) for a large gap and a
closed gap, respectively. In panels Fig. 7.6c and g, the two linecuts are shown. We first
split the signal into two separate traces for positive (red) and negative (blue) biases and
take its absolute value, as shown in Fig. 7.6d and h. Next, the two traces are normalized
by their peak value. We then look at the noise level of each trace for biases larger than
ΔSC, as shown in dark blue and dark red in Fig. 7.6e and i. The maximum of the noise
level is then used to set a threshold value, shown as the horizontal lines in dark blue
and dark red in Fig. 7.6e and i. We then apply this threshold value to the Savitzky-Golay
filtered version of the data as shown in Fig. 7.6f and j, which estimates Δi individually
for positive and negative bias as shown in light green and pink vertical lines. Similarly,
the threshold is used to estimate ΔSC as shown in dark green and purple vertical lines in
Fig. 7.6f and j. Finally, we show the filtered and renormalized data in Fig. 7.6b, together
with the four estimated energy values Δi and ΔSC at positive and negative biases. We
see that the algorithm estimates them very well from the nonlocal signal, but sometimes
deviates. This is usually the result of a linecut with a weak signal, which cannot be
avoided during these measurements. We always check by eye if the obtained energy
values match the nonlocal signals well. We occasionally increase the threshold for the
estimation of the gaps by a factor of ∼ 1.2 - 3 in order to avoid false triggers on noise,
which is typically needed for longer nanowires where the magnitude of the nonlocal
signal is small. Similarly, we apply a maximum to the threshold of ∼ 0.4 - 0.8 to prevent
the algorithm from failing to find a value.

We apply the above algorithm to both nonlocal signals 𝑔RL and 𝑔LR of a given measure-
ment. From this we obtain four estimates of Δi: one at positive and one at negative
bias, for both 𝑔RL and 𝑔LR. This is shown in Fig. 7.7a, which displays both nonlocal
conductances from device B (8𝜇m) together with the extracted Δi estimates. In the top
panel of Fig. 7.7b, the four Δi traces are displayed as a function of super gate voltage
𝑉SG. We take the mean value of these traces as Δi, which is shown in dark blue in the
bottom panel of Fig. 7.7b. In addition, we take the standard deviation of the four traces
and plot it as the shaded blue area. A small standard deviation means the four estimates
agree well to one another, which increases our confidence that the algorithm extracts
the correct values. However in some cases, the nonlocal signal is strongly asymmetric in
terms of signal strength which can hinder the correct estimation of one of the four traces.
We always check by eye if this happens, in which case we adjust the procedure to first
omit the strongly deviating trace out of the two positive-bias and negative-bias traces for
a single nonlocal matrix element. Subsequently, one trace for 𝑔RL and one trace for 𝑔LR
remain of which the mean and standard deviation are calculated. This is done, for example,
in Fig. 5 of the main text as 𝑔LR would overestimate the size of Δi due to asymmetries
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in the signal strength. In most of the data however, both nonlocal signals look simi-
lar and result in similar estimations forΔi even if the visibility of one of the signals is weak.

The gap in the superconducting shell ΔSC is determined from the measurement in a similar
way. Four traces at positive and negative bias are obtained from 𝑔RL and 𝑔LR, as shown in
Fig. 7.8a. The top panel in Fig. 7.8b shows the traces as a function of super gate voltage
𝑉SG. We determine ΔSC by calculating their mean, which is shown in the bottom panel
of Fig. 7.8b as the dark red curve. Similarly, the standard deviation is shown as the red
shaded area. We note that the algorithm we apply to estimate Δi and ΔSC does have its
limitations. For instance,ΔSC should remain constant but in some cases the nonlocal signal
close to this value is weak in comparison to the rest of the trace. This usually happens in
the weak-coupling regime, where the majority of the quasiparticle transport across the
hybrid is carried by low-energy states. As a result, the outer edge of the nonlocal signal
can become almost invisible. For example, this happens in the main text in Fig. 7.2b for
the 640 nm long hybrid. We suspect that energy relaxation in the hybrid plays a role in
this [21].
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Figure 7.6: Example of the gap extraction algorithm used in this work, with data on device B (8𝜇m). Middle and
right columns show linecuts taken at locations specified by the color bars in panel (a) for various stages during
the analysis. (a) Nonlocal conductance matrix element 𝑔LR. (b) 𝑔LR after processing, including the estimates for
Δi and ΔSC. (c,g) Linecuts of 𝑔LR taken with a large induced gap (c) and a closed gap (g). (d,h)The 𝑔LR data is split
into positive (red) and negative (blue) bias values and the absolute value is taken. (e,i) The positive and negative
bias traces are normalized by their maximum value. The out-of-gap signal is used to set separate thresholds
for positive (dark red) and negative (dark blue) biases relative to the maximum of the signal. (f,j) The data is
smoothened using a Savitzky-Golay filter. The thresholds obtained in panels (e,i) are used to determine the Δi
for positive (pink) and negative (light green) biases, as well as for ΔSC for positive (purple) and negative (dark
green) biases.
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Figure 7.7: Example of the induced gap extraction. (a) 𝑔RL and 𝑔LR taken on device B, together with the four
estimates for Δi: negative bias for 𝑔RL (yellow) and 𝑔LR (light green), and positive bias for 𝑔RL (cyan) and 𝑔LR
(pink). (b) Top: the four estimated values of Δi, offset by 0.05meV. Bottom: Mean of the four traces (dark blue)
and their standard deviation (blue shaded area).
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Figure 7.8: Example of extraction of the superconducting gap in the shell. (a) 𝑔RL and 𝑔LR taken on device B,
together with the four estimates for ΔSC: negative bias for 𝑔RL (dark yellow) and 𝑔LR (dark green), and positive
bias for 𝑔RL (blue) and 𝑔LR (purple). (b) Top: the four estimated values ofΔSC, offset by 0.05meV. Bottom: Mean
of the four traces (dark red) and their standard deviation (red shaded area).
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Extraction of the nonlocal slope
Estimation of Δi is challenging when the magnitude of the nonlocal signal is small, which
is typically the case for long hybrids. In particular, problems arise when the induced gap
is closed. This results in residual fluctuations as shown in Fig. 7.6 above 𝑉SG > 6V. Thus,
we always complement the gap estimation algorithm by looking at the nonlocal slopes 𝑆RL
and 𝑆LR. In Fig. 7.9 we show an example of how these are obtained from the nonlocal data.
Examples are shown for two linecuts, presented in the middle column (yellow) and right
column (orange) for a large gap and a closed gap, respectively. We first apply a Savitzky-
Golay filter, as is shown in dark green in Fig. 7.9b and d. We subsequently calculate the
derivative of the filtered data, of which we take the value at zero bias to be the nonlocal
slope. In Fig. 7.9c and e, we show the filtered data together with the tangent at zero bias
as a dashed orange line. We see that the nonlocal slope at zero bias is significantly larger
when the gap is closed. As can be seen in the various plots of the nonlocal slope in the
main text, 𝑆RL and 𝑆LR behave similar in the sense that once the induced gap closes, both
of them start to deviate from zero.
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Figure 7.9: Example of the determination of the nonlocal slope. Middle and right columns show linecuts taken
at locations specified by the color bars in panel (a) for various stages during the analysis. Linecuts are the same
as the ones used in Fig. 7.6. (a) Nonlocal conductance matrix element 𝑔LR taken on device B. (b,d) Linecuts of 𝑔LR
taken with a large induced gap (b) and a closed gap (d). The signals are smoothened using a Savitzky-Golay filter,
shown in dark green. (c,e) Filtered signals together with the tangent of the nonlocal slope at zero bias (orange
dashed line).
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7.4.2 Additional data and discussion
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Figure 7.10: Schematic of the used measurement circuit, including fridge line resistance 𝑅L,𝑅R and 𝑅g. Left
side shows the regular circuit used for device C, which has the fridge line resistance between the Al/Pt film
and the ground. This results in potential voltage-divider effects, which need to be corrected. Right side shows
the cold-grounded adaptation of the measurement circuit used for devices A and B. The cold grounding helps
circumvent voltage-divider effects, but introduces a thermal voltage 𝑉th on the applied biases. This is measured
by also grounding the sample at room temperature and is actively compensated for during the measurements.

Overview of devices
In this work, we show data on six nanowire hybrids (see Fig. 7.11). Two of these devices
are presented in the main text, with additional data on those and four other devices in this
section. In total, we fabricated 7 chips on which a total of 36 nanowires were cooled down
for measurement. Due to fabrication issues, some of these chips were non-functional
which resulted in 15 nanowires working (defined as fully gate-controllable and with a
hard induced gap). We performed a detailed study on 11 of these nanowires, with hybrid
lengths varying from 240 nm up to 8 𝜇m. In this section, we present the full conductance
matrices corresponding to the main text figures in Fig. 7.16 and Fig. 7.17. We also show
two additional induced gap diagrams without a reopening of the induced gap in Fig. 7.13,
Fig. 7.20. We elaborate on the soft gap versus hard gap nomenclature in Fig. 7.14. We also
show a comparison on the local spectra 𝑔LL and 𝑔RR for short and long wires in Fig. 7.15.
Finally, we give a representative device overview of hybrids for which we did not map
out the induced gap diagram in Fig. 7.12, Fig. 7.18 and Fig. 7.19.

We systematically observe the gate-tunable reduction of the induced gap in the explored
nanowires. While in short devices Δi cannot be closed at zero field, we do observe that
discrete states can cross zero energy. This is shown in Fig. 7.21 and Fig. 7.19(a-d). In such
devices, the induced gap consists of a collection of discrete Andreev bound states (ABS).
We suspect that some of these states can acquire a finite charging energy as their wave
function is pulled away from the semiconductor-superconductor interface due to strongly
positive super gate voltages. The presence of a charging energy can allow them to cross
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zero energy [40], resembling the closing of the induced gap. However, this only happens
for a finite range of gate voltages, in contrast to the long hybrids where the induced gap
can be fully closed. It is not yet clear why this happens for some short devices (device E
and F) but not for others (device A and D).

Similarly, we observe a strong reduction of the induced critical field as a function of super
gate voltage. However, in some devices the critical induced field in the strong-coupling
regime can be significantly lower than the critical field of the superconducting shell. For
example, Fig. 7.12(e-h) shows that the induced critical field in the strong-coupling regime
for device A reaches only 𝐵c∥ = 1.5T, while ΔSC closes only above 𝐵 > 4T.

Hard and soft induced superconducting gaps
In literature on the proximity effect, various definitions are used to judge on the presence
of an induced gap in a proximitized system. An induced gap is typically referred to as
a hard gap, while the absence of a gap (but with a reduced conductance at low bias) is
referred to as a soft gap. Typically, a local signal is used and the sub-gap to out-of-gap
ratio is used to claim a hard induced gap. However, such a metric is unable to distinguish
between the presence of a true induced gap or, for example, the reduction of local sub-gap
conductance due to coulomb blockade in the semiconducting junctions. Fortunately,
nonlocal conductance can be used to determine if an induced gap is present in a hybrid.
For example, in Fig. 7.14 we show additional data on device B where a voltage on the
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Figure 7.11: SEM images of the devices presented in this work. The white scalebar in each panel represents
1𝜇m. The top row shows the two devices used for the main text. The length of the hybrid section of each device
is: Device A - length: 640 nm, diameter: 79 nm, Device B - length: 8𝜇m, diameter: 120 nm, Device C - length:
1𝜇m, diameter: 126 nm, Device D - length: 240 nm, diameter: 75 nm, Device E - length: 450 nm, diameter: 77 nm,
Device F - length: 840 nm, diameter: 81 nm.
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super gate is used to close the induced gap. In Fig. 7.14e, we show the conductance matrix
at 𝑉SG = 6.05V. Here, Δi is on the order of Δi = 120𝜇eV, which is visible in the nonlocal
conductances 𝑔RL and 𝑔LR as the flat part between the two peaks. At the same time,
the local conductances 𝑔LL and 𝑔RR show a broadening of the coherence peaks which
corresponds to the reduction of Δi. At higher super gate voltages, Δi closes. For example,
Fig. 7.14f shows the conductance matrix at 𝑉SG = 7.45V. From the local signal 𝑔LL it may
appear as if the hybrid still has a hard gap, while 𝑔RR shows a finite sub-gap conductance.
In this case, the nonlocal signals 𝑔RL and 𝑔LR both show an absence of a flat part between
the two peaks (i.e. a finite nonlocal slope at zero bias) which confirms that the hybrid is
gapless.

We note that the induced gap in short hybrids does not close at zero magnetic field, as can
be seen for example in Fig. 7.12. This is a consequence of the short length of this hybrid:
while states without any semiconductor-superconductor coupling may form in the weak-
coupling regime, in practice these can obtain a finite energy gap if they are allowed to mix
with proximitized states. Suchmixing can occur due to disorder and, in this particular case
of short hybrids, due to the presence of tunnel junctions at the ends of the hybrid segment.

Absence of end-to-end correlation in local spectra
One striking feature we observe is that the local conductance spectra 𝑔LL and 𝑔RR do not
seem to change significantly as the length of a nanowire hybrid is increased. In Fig. 7.15,
we compare the spectra of device F (800 nm) and device B (8 𝜇m) in the weak-coupling
regime. The local spectra of device F (Fig. 7.15(a,b)) show the field evolution of a discrete
number of states, as expected for a short nanowire hybrid [41]. For device B, the increased
length is expected to reduce the level spacing of these states such that they form a con-
tinuum. However, the local spectra show a similar field evolution of a discrete number
of states (Fig. 7.15(g,h)). In addition, the local spectra 𝑔LL and 𝑔RR generically appear to
be uncorrelated. These observations both indicate that the tunnel junctions significantly
disrupt the potential profile at the ends of the hybrid, leading to the formation of localized
states. This suggests that the local spectra are only looking at an effective short nanowire
segment located in the vicinity of the tunnel junctions. Such a scenario could potentially
give rise to dark Majoranas, which would not show up as zero-bias peaks in the local end
spectra but still be visible in the nonlocal signals as a reopening in the bulk of the nano-
wire. This in contrast to the formation of quasi-Majoranas, which form on the smooth
potential of the tunnel barriers - resulting in a zero-bias peak without a reopening of the
bulk gap.

Interpretation of nonlocal transport measurements
In this work, we use nonlocal spectroscopy to investigate the bulk properties of three-
terminal InSb/Al/Pt nanowire hybrids. In particular, nonlocal transport is facilitated
through the density of states between ΔSC and Δi. However, several processes compli-
cate this simple picture. For example, the visibility of nonlocal signals is affected strongly
by the non-ideal injection and detection processes in the tunnel junctions [21]. Moreover,
relaxation from above to below ΔSC is sometimes visible in the nonlocal spectra [21]. In
addition, Δi can potentially vary along the length of the hybrid. As a result, the nonlo-
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cal signal may reflect the largest induced gap somewhere in the bulk. However, nonlocal
transport is likely insensitive to fluctuations of Δi on a short length scale as quasipar-
ticles can cross such areas through various tunneling mechanisms. Despite the above-
mentioned complications, we systematically observe a good correspondence between the
two nonlocal signals 𝑔RL and 𝑔LR, which supports the assumption that nonlocal transport
can be used to evaluate bulk properties.
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Figure 7.12: Representative overview of device A (640 nm). (a-d: Blue) Conductance matrix as a function of
𝑉SG taken at 𝐵∥ = 0T. This corresponds to panels (a,b) of Fig. 7.2 in the main text. (e-h: Orange) Conductance
matrix as a function of 𝐵∥ in the strong-coupling regime, taken at 𝑉SG = −2V. (i-l: Green) Conductance matrix
as a function of 𝑉SG taken at 𝐵∥ = 0.6T. (m-p: Red) Conductance matrix as a function of 𝐵∥ in the weak-coupling
regime, taken at 𝑉SG = 2V. (q) Top: Δi as function of 𝑉SG at 𝐵∥ = 0T (blue) and 𝐵∥ = 0.6T (green). Middle: Nonlocal
slope as function of 𝑉SG at 𝐵∥ = 0T, indicating the nanowire maintains an induced gap at all gate values. Bottom:
Nonlocal slope as function of 𝑉SG at 𝐵∥ = 0.6T, showing the induced gap closing around 𝑉SG = −1V. (r) Top: Δi
as function of 𝐵∥ at 𝑉SG = −2V (orange) and 𝑉SG = +2V (red). Middle: Nonlocal slope as function of 𝐵∥ taken
at 𝑉SG = −2V, showing the induced gap closing at 𝐵c∥ = 1.5T. Bottom: Nonlocal slope as function of 𝐵∥ taken at
𝑉SG = 2V, showing the induced gap closing at 𝐵c∥ = 0.3T.
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Figure 7.13: Induced gap and nonlocal slope diagrams for device B (8 𝜇m long hybrid). (a) Top: Δi as a function
of VSG and B∥. Bottom: Δi at B∥ = 0 T. We note that the gate voltage for which Δi starts to decrease is quite
different from the data presented in the main text (Fig. 7.2(c-d)). This is the result of dielectric hysteresis, as
the gate voltages are swept over a large voltage range. (b) Top: 𝑆Norm as a function of 𝑉SG and 𝐵∥. Bottom: Bc∥
as a function of 𝑉SG. (c-f: Orange) Conductance matrix as a function of 𝐵∥ taken at 𝑉SG = −0.1V. (g-j: Yellow)
Conductance matrix as a function of 𝐵∥ taken at 𝑉SG = −0.5V. (c-f: Red) Conductance matrix as a function of 𝐵∥
taken at 𝑉SG = 0.5V.
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Figure 7.14: Full conductance matrix of device B (8𝜇m) as a function of 𝑉SG taken at 𝐵∥ = 0T. (a,b) Local conduc-
tances 𝑔LL and 𝑔RR. (c,d) Nonlocal conductances 𝑔RL and 𝑔LR. (e) Linecuts of the local and nonlocal spectra taken
at 𝑉SG = 6.05V where the nanowire has a (hard) induced gap. (f) Linecuts of the local and nonlocal spectra taken
at 𝑉SG = 7.45V where the induced gap in the nanowire is closed (i.e. a soft gap).
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Figure 7.15: Comparison of the spectra between short (device F, 800 nm) and long (device B, 8 𝜇m) hybrids in the
weak-coupling regime. Both short (left) and long (right) nanowires form similar-sized fragmented segments in
the nanowire near the junctions, as a result of the identical feature size of the tunnel gate geometry. Accordingly,
both spectra exhibit a similar number of discrete states which are formed near the junctions. (a-d) Conductance
matrix of device F as a function of 𝐵∥ in the weak-coupling regime, taken at 𝑉SG = 1.75V. (e,f) linecuts of the
local spectra 𝑔LL and 𝑔RR taken at 𝐵∥ = 0.7T. (g-j) Conductance matrix of device B as a function of 𝐵∥ in the
weak-coupling regime, taken at 𝑉SG = 1V. (k,l) linecuts of the local spectra 𝑔LL and 𝑔RR taken at 𝐵∥ = 0.7T.
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Figure 7.16: Full conductance matrix of device C (1𝜇m) as a function of parallel magnetic field in the strong-
coupling regime, corresponding to panels (a,b) of Fig. 7.3 in the main text. (a,b) Local conductances 𝑔LL and 𝑔RR.
(c,d) Nonlocal conductances 𝑔RL and 𝑔LR. (e) Top: Δi as a function of parallel magnetic field. The dashed black line
indicates the fit of the Zeeman energy to the linear part of the data with 𝑔 = 2.27. The dashed blue line indicates
the zero-field induced gap Δ0. Bottom: Normalized nonlocal slope 𝑆Norm = |𝑆RL𝑆LR |/ √|𝑆RL𝑆LR | normalized by its
maximum value. The dashed purple line indicates the estimated induced critical field 𝐵c∥ .
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Figure 7.17: Full conductance matrix of device C (1𝜇m) as a function of parallel magnetic field in the weak-
coupling regime, corresponding to panels (c,d) of Fig. 7.3 in the main text. (a,b) Local conductances 𝑔LL and 𝑔RR.
(c,d) Nonlocal conductances 𝑔RL and 𝑔LR. (e) Top: Δi as a function of parallel magnetic field. The dashed black
line indicates the fit of the Zeeman energy to the linear part of the data with 𝑔 = 54. The dashed blue line indicates
the zero-field induced gap Δ0. Bottom: Normalized nonlocal slope 𝑆Norm = |𝑆RL𝑆LR |/ √|𝑆RL𝑆LR | normalized by its
maximum value. The dashed purple line indicates the estimated induced critical field 𝐵c∥



7.4 Supplemental information

7

215

−0.5 0.0 0.5
VL (mV)

−8

−4

0

4

8

V S
G 

(V
)

−0.5 0.0 0.5
VR (mV)

−8

−4

0

4

8

V S
G 

(V
)

−0.5 0.0 0.5
VL (mV)

−8

−4

0

4

8

V S
G 

(V
)

−0.5 0.0 0.5
VR (mV)

−8

−4

0

4

8

V S
G 

(V
)

−0.5 0.0 0.5
VL (mV)

−3
−2
−1

0
1
2
3

V S
G 

(V
)

−0.5 0.0 0.5
VR (mV)

−3
−2
−1

0
1
2
3

V S
G 

(V
)

−0.5 0.0 0.5
VL (mV)

−3
−2
−1

0
1
2
3

V S
G 

(V
)

−0.5 0.0 0.5
VR (mV)

−3
−2
−1

0
1
2
3

V S
G 

(V
)

−0.5 0.0 0.5
VL (mV)

0
1
2
3
4

B |
| (

T)

−0.5 0.0 0.5
VR (mV)

0
1
2
3
4

B |
| (

T)

−0.5 0.0 0.5
VL (mV)

0
1
2
3
4

B |
| (

T)

−0.5 0.0 0.5
VR (mV)

0
1
2
3
4

B |
| (

T)

−0.5 0.0 0.5
VL (mV)

0

1
B |

| (
T)

−0.5 0.0 0.5
VR (mV)

0

1

B |
| (

T)

−0.5 0.0 0.5
VL (mV)

0

1

B |
| (

T)

−0.5 0.0 0.5
VR (mV)

0

1

B |
| (

T)

0.0

0.1

0.2

0.3

E 
(m

eV
)

−2

0

2

S 
(2
e2
/(h

⋅m
V)

)

−8 −4 0 4 8
VSG (V)

−2

0

2

S 
(2
e2
/(h

⋅m
V)

)

0.0

0.1

0.2

0.3

E 
(m

eV
)

−2

0

2

S 
(2
e2
/(h

⋅m
V)

)

0 1 2 3
B|| (T)

−2

0

2

S 
(2
e2
/(h

⋅m
V)

)

0.0

0.3

0.6

g L
L 

(2
e2
/h

)

0.0

0.3

0.6

g R
R 

(2
e2
/h

)

−30

−15

0

15

30

g R
L 

(1
0−

3
⋅2
e2
/h

)

−30

−15

0

15

30

g L
R 

(1
0−

3
⋅2
e2
/h

)

0.0

0.3

0.6

g L
L 

(2
e2
/h

)

0.0

0.3

0.6

g R
R 

(2
e2
/h

)

−50

−25

0

25

50

g R
L 

(1
0−

3
⋅2
e2
/h

)

−50

−25

0

25

50

g L
R 

(1
0−

3
⋅2
e2
/h

)

0.0

0.4

0.8

g L
L 

(2
e2
/h

)

0.0

0.4

0.8

g R
R 

(2
e2
/h

)

−10

−5

0

5

10

g R
L 

(1
0−

3
⋅2
e2
/h

)

−10

−5

0

5

10

g L
R 

(1
0−

3
⋅2
e2
/h

)

0.0

0.2

0.4

g L
L 

(2
e2
/h

)

0.0

0.2

0.4

g R
R 

(2
e2
/h

)

−30

−15

0

15

30

g R
L 

(1
0−

3
⋅2
e2
/h

)

−30

−15

0

15

30

g L
R 

(1
0−

3
⋅2
e2
/h

)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

(q) (r)

B||=0T VSG= −8V

B||=0.6T VSG=8V

Δi (B||=0T) Δi (VSG= −8V)

Δi (B||=0.6T)
Δi (VSG=8V)

Figure 7.18: Representative overview of device D (240 nm hybrid). (a-d: Blue) Conductance matrix as a function
of𝑉SG taken at 𝐵∥ = 0T. (e-h: Orange) Conductancematrix as a function of 𝐵∥ in the strong-coupling regime, taken
at 𝑉SG = −8V. (i-l: Green) Conductance matrix as a function of 𝑉SG taken at 𝐵∥ = 0.6T. (m-p: Red) Conductance
matrix as a function of 𝐵∥ in the weak-coupling regime, taken at 𝑉SG = 8V. (q) Top: Δi as function of 𝑉SG at
𝐵∥ = 0T (blue) and 𝐵∥ = 0.6T (green). Middle: Nonlocal slope as function of 𝑉SG at 𝐵∥ = 0T, indicating the
nanowire maintains an induced gap at all gate values. Bottom: Nonlocal slope as function of 𝑉SG at 𝐵∥ = 0.6T,
showing the induced gap closing around 𝑉SG = −0.5V. (r) Top: Δi as function of 𝐵∥ at 𝑉SG = −8V (orange) and
𝑉SG = −8V (red). Middle: Nonlocal slope as function of 𝐵∥ taken at 𝑉SG = −8V, showing the induced gap closing
at 𝐵c∥ = 1.6T. Bottom: Nonlocal slope as function of 𝐵∥ taken at 𝑉SG = 8V, showing the induced gap closing at
𝐵c∥ = 0.2T.



7

216 7 Electrostatic control of the proximity effect in the bulk of semiconductor-superconductor hybrids

−0.5 0.0 0.5
VL (mV)

−8

−4

0

4

8

V S
G 

(V
)

−0.5 0.0 0.5
VR (mV)

−8

−4

0

4

8

V S
G 

(V
)

−0.5 0.0 0.5
VL (mV)

−8

−4

0

4

8

V S
G 

(V
)

−0.5 0.0 0.5
VR (mV)

−8

−4

0

4

8
V S

G 
(V

)

−0.5 0.0 0.5
VL (mV)

−3
−2
−1

0
1
2
3

V S
G 

(V
)

−0.5 0.0 0.5
VR (mV)

−3
−2
−1

0
1
2
3

V S
G 

(V
)

−0.5 0.0 0.5
VL (mV)

−3
−2
−1

0
1
2
3

V S
G 

(V
)

−0.5 0.0 0.5
VR (mV)

−3
−2
−1

0
1
2
3

V S
G 

(V
)

−0.5 0.0 0.5
VL (mV)

0

1

2

3

4

B |
| (

T)

−0.5 0.0 0.5
VR (mV)

0

1

2

3

4

B |
| (

T)

−0.5 0.0 0.5
VL (mV)

0

1

2

3

4

B |
| (

T)

−0.5 0.0 0.5
VR (mV)

0

1

2

3

4

B |
| (

T)

−0.5 0.0 0.5
VL (mV)

0

1

B |
| (

T)

−0.5 0.0 0.5
VR (mV)

0

1

B |
| (

T)
−0.5 0.0 0.5

VL (mV)

0

1

B |
| (

T)

−0.5 0.0 0.5
VR (mV)

0

1

B |
| (

T)

0.0

0.1

0.2

0.3

E 
(m

eV
)

−2

0

2

S 
(2
e2
/(h

⋅m
V)

)

−8 −4 0 4 8
VSG (V)

−2

0

2

S 
(2
e2
/(h

⋅m
V)

)

0.0

0.1

0.2

0.3

E 
(m

eV
)

−2

0

2

S 
(2
e2
/(h

⋅m
V)

)

0 1 2 3
B|| (T)

−2

0

2

S 
(2
e2
/(h

⋅m
V)

)

0.0

0.3

0.6

g L
L 

(2
e2
/h

)

0.0

0.3

0.6

g R
R 

(2
e2
/h

)

−30

−15

0

15

30

g R
L 

(1
0−

3
⋅2
e2
/h

)

−30

−15

0

15

30

g L
R 

(1
0−

3
⋅2
e2
/h

)

0.0

0.3

0.6

g L
L 

(2
e2
/h

)

0.0

0.3

0.6

g R
R 

(2
e2
/h

)

−50

−25

0

25

50

g R
L 

(1
0−

3
⋅2
e2
/h

)

−50

−25

0

25

50

g L
R 

(1
0−

3
⋅2
e2
/h

)

0.0

0.4

0.8

g L
L 

(2
e2
/h

)

0.0

0.3

0.6

g R
R 

(2
e2
/h

)

−10

−5

0

5

10

g R
L 

(1
0−

3
⋅2
e2
/h

)

−10

−5

0

5

10

g L
R 

(1
0−

3
⋅2
e2
/h

)

0.0

0.2

0.4

g L
L 

(2
e2
/h

)

0.0

0.2

0.4

g R
R 

(2
e2
/h

)

−30

−15

0

15

30

g R
L 

(1
0−

3
⋅2
e2
/h

)
−30

−15

0

15

30

g L
R 

(1
0−

3
⋅2
e2
/h

)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

(q) (r)

B||=0T VSG= −8V

B||=0.6T VSG=8V

Δi (B||=0T) Δi (VSG= −8V)

Δi (B||=0.6T) Δi (VSG=8V)

Figure 7.19: Representative overview of device E (450 nmhybrid). (a-d: Blue) Conductancematrix as a function of
𝑉SG taken at 𝐵∥ = 0T. (e-h: Orange) Conductance matrix as a function of 𝐵∥ in the strong-coupling regime, taken
at 𝑉SG = −8V. (i-l: Green) Conductance matrix as a function of 𝑉SG taken at 𝐵∥ = 0.6T. (m-p: Red) Conductance
matrix as a function of 𝐵∥ in the weak-coupling regime, taken at 𝑉SG = 8V. (q) Top: Δi as function of 𝑉SG at 𝐵∥ = 0T
(blue) and 𝐵∥ = 0.6T (green). Middle: Nonlocal slope as function of 𝑉SG at 𝐵∥ = 0T, showing an occational closing
of the induced gap due to discrete states crossing zero energy. Bottom: Nonlocal slope as function of 𝑉SG at
𝐵∥ = 0.6T, showing the induced gap closing around 𝑉SG = −1V. (r) Top: Δi as function of 𝐵∥ at 𝑉SG = −8V (orange)
and 𝑉SG = −8V (red). Middle: Nonlocal slope as function of 𝐵∥ taken at 𝑉SG = −8V, showing the induced gap
closing at 𝐵c∥ = 1.6T. Bottom: Nonlocal slope as function of 𝐵∥ taken at 𝑉SG = 8V, showing the induced gap closing
at 𝐵c∥ = 0.23T.
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Figure 7.20: Induced gap and nonlocal slope diagrams for device F (800 nm long hybrid). (a) Top: Δi as a function
of VSG and B∥. Bottom: Δi at B∥ = 0 T. (b) Top: Normalized nonlocal slope 𝑆Norm as a function of 𝑉SG and 𝐵∥.
Bottom: Parallel induced critical field Bc∥ as a function of 𝑉SG. (c-f: Orange) Conductance matrix as a function of
𝐵∥ taken at 𝑉SG = −0.1V. (g-j: Yellow) Conductance matrix as a function of 𝐵∥ taken at 𝑉SG = −1.75V. (c-f: Red)
Conductance matrix as a function of 𝐵∥ taken at 𝑉SG = 1.75V.
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8
Realization of a minimal
Kitaev chain in coupled

quantum dots
Majorana bound states constitute one of the simplest examples of emergent non-Abelian
excitations in condensed matter physics. A toy model proposed by Kitaev shows that
such states can arise at the ends of a spinless 𝑝-wave superconducting chain [1]. Practical
proposals for its realization [2, 3] require coupling neighboring quantum dots in a chain
via both electron tunneling and crossed Andreev reflection [4]. While both processes
have been observed in semiconducting nanowires and carbon nanotubes [5–8], crossed-
Andreev interaction was neither easily tunable nor strong enough to induce coherent hy-
bridization of dot states. Here we demonstrate the simultaneous presence of all necessary
ingredients for an artificial Kitaev chain: two spin-polarized quantum dots in an InSb
nanowire strongly coupled by both elastic co-tunneling and crossed Andreev reflection.
We fine-tune this system to a sweet spot where a pair of Poor Man’s Majorana states is
predicted to appear. At this sweet spot, the transport characteristics satisfy the theoreti-
cal predictions for such a system, including pairwise correlation, zero charge and stability
against local perturbations. While the simple system presented here can be scaled to simu-
late a full Kitaev chain with an emergent topological order, it can also be used imminently
to explore relevant physics related to non-Abelian anyons.

This work has been published as Realization of a minimal Kitaev chain in coupled quantum dots, T. Dvir†, G.
Wang†, N. van Loo†, C.-X. Liu, G.P. Mazur, A. Bordin, S.L.D. ten Haaf, J.-Y. Wang, D. van Driel, F. Zatelli, X. Li,
F.K. Malinowski, S. Gazibegovic, G. Badawy, E.P.A.M. Bakkers, M. Wimmer and L.P. Kouwenhoven in Nature
614, 445–450 (2023).
† These authors contributed equally to this work.
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Engineering Majorana bound states in condensed matter systems is an intensively
pursued goal, both for their exotic non-Abelian exchange statistics and for potential
applications in building topologically protected qubits [1, 9, 10]. The most investigated
experimental approach looks for Majorana states at the boundaries of topological
superconducting materials, made of hybrid semiconducting-superconducting heterostruc-
tures [11–15]. However, the widely-relied-upon signature of Majorana states, zero-bias
conductance peaks, is by itself unable to distinguish topological Majorana states from
other trivial zero-energy states induced by disorder and smooth gate potentials [16–21].
Both problems disrupting the formation or detection of a topological phase originate
from a lack of control over the microscopic details of the electron potential landscape in
these heterostructure devices.

In this work, we realize a minimal Kitaev chain [1] using two quantum dots (QDs) coupled
via a short superconducting-semiconducting hybrid [2]. By controlling the electrostatic
potential on each of these three elements, we overcome the challenge imposed by random
disorder potentials. At a fine-tuned sweet spot where Majorana states are predicted to
appear, we observe end-to-end correlated conductance that signals emergent Majorana
properties such as zero charge and robustness against local perturbations. We note that
these Majorana states in a minimal Kitaev chain are not topologically protected and have
been dubbed “Poor Man’s Majorana” (PMM) states [3].

8.1 Realization of a minimal Kitaev chain
The elementary building block of the Kitaev chain is a pair of spinless electronic sites
coupled simultaneously by two mechanisms: elastic co-tunneling (ECT) and crossed
Andreev reflection (CAR). Both processes are depicted in Figure 8.1a. ECT involves
a single electron hopping between two sites with an amplitude 𝑡 . CAR refers to two
electrons from both sites tunneling back and forth into a common superconductor with an
amplitude Δ (not to be confused with the superconducting gap size), forming and splitting
Cooper-pairs [4]. To create the two-site Kitaev chain, we utilize two spin-polarized QDs
where only one orbital level in each dot is available for transport. In the absence of
tunneling between the QDs, the system is characterized by a well-defined charge state
on each QD: |𝑛LD 𝑛RD⟩, where 𝑛LD, 𝑛RD ∈ {0,1} are occupations of the left and right QD
levels. The charge on each QD depends only on its electrochemical potential 𝜇LD or 𝜇RD,
schematically shown in Figure 8.1b.

In the presence of inter-dot coupling, the eigenstates of the combined system become
superpositions of the charge states. ECT couples |10⟩ and |01⟩, resulting in two eigenstates
of the form 𝛼 |10⟩ − 𝛽 |01⟩ (Figure 8.1c), both with odd combined charge parity. These
two bonding and anti-bonding states differ in energy by 2𝑡 when both QDs are at their
charge degeneracy, i.e., 𝜇LD = 𝜇RD = 0. Analogously, CAR couples the two even states
|00⟩ and |11⟩ to produce bonding and anti-bonding eigenstates of the form 𝑢 |00⟩ − 𝑣 |11⟩,
preserving the even parity of the original states. These states differ in energy by 2Δ when
𝜇LD = 𝜇RD = 0 (Figure 8.1d). If the amplitude of ECT is stronger than CAR (𝑡 > Δ), the
odd bonding state has lower energy than the even bonding state near the joint charge
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Figure 8.1: Coupling quantum dots through elastic co-tunneling (ECT) and crossed Andreev reflection
(CAR). a. Illustration of the basic ingredients of a Kitaev chain: two QDs simultaneously coupled via ECT with
amplitude 𝑡 and via CAR with amplitude Δ through the superconductor in between. b. Energy diagram of a
minimal Kitaev chain. Two QDs with gate-controlled chemical potentials are coupled via both ECT and CAR.
The two ohmic leads enable transport measurements from both sides. c. Energy diagram showing that coupling
the |01⟩ and |10⟩ states via ECT leads to a bonding state (|10⟩− |01⟩)/ √2 and anti-bonding state (|10⟩+ |01⟩)/ √2. d.
Same showing how CAR couples |00⟩ and |11⟩ to form the bonding state (|00⟩− |11⟩)/ √2 and anti-bonding state
(|00⟩ + |11⟩)/ √2 . e. Illustration of the N-QD-S-QD-N device and the measurement circuit. Dashed potentials
indicate QDs defined in the nanowire by finger gates. f. Charge stability diagram of the coupled-QD system,
in the cases of 𝑡 > Δ (i), 𝑡 = Δ (ii) and 𝑡 < Δ (iii). Blue marks regions in the (𝜇LD, 𝜇RD) plane where the ground
state is even and orange where the ground state is odd. g. False-colored scanning electron microscopy image
of the device, prior to the fabrication of the normal leads. InSb nanowire is colored green. QDs are defined by
bottom finger gates (in red) and their locations are circled. The gates controlling the two QD chemical potentials
are labeled by their voltages, 𝑉LD and 𝑉RD. The central thin Al/Pt film, in blue, is grounded. The proximitized
nanowire underneath is gated by 𝑉PG. Two Cr/Au contacts are marked by yellow boxes. The scale bar is 300 nm.
h. Right-side zero-bias local conductance 𝐺RR in the (𝑉LD,𝑉RD) plane when the system is tuned to 𝑡 > Δ (1)
and 𝑡 < Δ (2). The arrows mark the spin polarization of the QD levels. The DC bias voltages are kept at zero,
𝑉L = 𝑉R = 0, and an AC excitation of 6 µV RMS is applied on the right side.

degeneracy 𝜇LD = 𝜇RD = 0 (see Methods for details). The system thus features an odd
ground state in a wider range of QD potentials, leading to a charge stability diagram
shown in Figure 8.1f(i) [22]. The opposite case of CAR dominating over ECT, i.e., 𝑡 < Δ,
leads to a charge stability diagram shown in Figure 8.1f(iii), where the even ground state
is more prominent. Fine-tuning the system such that 𝑡 = Δ equalizes the two avoided
crossings, inducing an even-odd degenerate ground state at 𝜇LD = 𝜇RD = 0 (Figure 8.1f(ii)).
This degeneracy gives rise to two spatially separated PMMs, each localized at one QD [3].
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Figure 8.1e illustrates our coupled QD system and the electronic measurement circuit. An
InSb nanowire is contacted on two sides by two Cr/Au normal leads (N). A 200 nm-wide
superconducting lead (S) made of a thin Al/Pt film covering the nanowire is grounded and
proximitizes the central semiconducting segment. The chemical potential of the proximi-
tized semiconductor can be tuned by gate voltage 𝑉PG. This hybrid segment shows a hard
superconducting gap accompanied by discrete, gate-tunable Andreev bound states (Fig-
ure 8.5). Two QDs are defined by finger gates underneath the nanowire. Their chemical
potentials 𝜇LD, 𝜇RD are linearly tuned by voltages on the corresponding gates 𝑉LD,𝑉RD.
Bias voltages on the two N leads, 𝑉L,𝑉R, are applied independently and currents through
them, 𝐼L, 𝐼R, are measured separately. Transport characterization shows charging energies
of 1.8meV on the left QD and 2.3meV on the right (Figure 8.5). Standard DC+AC lock-in
technique allows measurement of the full conductance matrix:

𝐺 = (𝐺LL 𝐺LR
𝐺RL 𝐺RR

) = (
d𝐼L
d𝑉L

d𝐼L
d𝑉R

d𝐼R
d𝑉L

d𝐼R
d𝑉R

). (8.1)

Measurements were conducted in a dilution refrigerator in the presence of a magnetic
field 𝐵 = 200mT applied approximately along the nanowire axis. The combination of
Zeeman splitting 𝐸Z and orbital level spacing allows single-electron QD transitions to
be spin-polarized. Two neighbouring Coulomb resonances correspond to opposite spin
orientations, enabling the QD spins to be either parallel (↑↑ and ↓↓) or anti-parallel (↑↓ and
↓↑). We report on two devices, A in the main text and B in Extended Data (Figure 8.11 and
Figure 8.12). A scanning electron microscope image of Device A is shown in Figure 8.1g.

Transport measurements are used to characterize the charge stability diagram of the
system. In Figure 8.1h(1), we show 𝐺RR as a function of QD voltages 𝑉LD,𝑉RD when both
QDs are set to spin-down (↓↓). The measured charge stability diagram shows avoided
crossing which indicates the dominance of ECT. In Figure 8.1h(2), we change the spin
configuration to ↓↑. The charge stability diagram now develops the avoided crossing of
the opposite orientation, indicating the dominance of CAR for QDs with anti-parallel
spins. This is, to our knowledge, the first verification of the prediction that spatially
separated QDs can coherently hybridize via CAR coupling to a superconductor [23].
Thus, we have introduced all the necessary ingredients for a two-site Kitaev chain.

8.2 Tuning the relative strength of CAR and ECT
Majorana states in long Kitaev chains are present under a wide range of parameters due
to topological protection [1]. Strikingly, even a chain consisting of only two sites can host
a pair of PMMs despite a lack of topological protection, if the fine-tuned sweet spot 𝑡 = Δ
and 𝜇LD = 𝜇RD = 0 can be achieved [3]. This, however, is made challenging by the above-
mentioned requirement to have both QDs spin-polarized. If spin is conserved, ECT can
only take place between QDs with ↓↓ or ↑↑ spins, while CAR is only allowed for ↑↓ and ↓↑.
Rashba spin-orbit coupling in InSb nanowires solves this dilemma [2, 24, 25], allowing fi-
nite ECT even in anti-parallel spin configurations and CAR between QDswith equal spins.
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Figure 8.2: Tuning the relative strength of CAR and ECT for the ↓↑ spin configuration. a-c. Conductance
matrices measured with 𝑉PG = (198,210,218) mV, respectively. d-f. 𝐺LR and 𝐺RR as functions of 𝑉R when
𝑉LD,𝑉RD are set to the center of each charge stability diagram in panels a to c, indicated by the black dots in the
corresponding panels above them. g. Local (𝐺RR) and nonlocal (𝐺LR) conductance as a function of 𝑉R and 𝑉PG
while keeping 𝜇LD ≈ 𝜇RD ≈ 0, showing the continuous crossover from 𝑡 > Δ to 𝑡 < Δ. h. Green dots: peak-to-peak
distance (𝑉PP) between the positive- and negative-bias segments of 𝐺RR, showing the closing and re-opening of
QD avoided crossings. Purple dots: average 𝐺LR (⟨𝐺LR⟩) as a function of 𝑉PG, showing a change in the sign of
the nonlocal conductance.

A further challenge is to make the two coupling strengths equal for a given spin combi-
nation. Refs. [24–26] show that both CAR and ECT in our device are virtual transitions
through intermediate Andreev bound states residing in the short InSb segment under-
neath the superconducting film. Thus, varying 𝑉PG changes the energy and wavefunction
of said Andreev bound states and thereby 𝑡,Δ. We search for the 𝑉PG range over which Δ
changes differently than 𝑡 and look for a crossover in the type of charge stability diagrams.

Figure 8.2a-c shows the resulting charge stability diagrams for the ↓↑ spin configuration
at different values of 𝑉PG. The conductance matrix 𝐺(𝑉L = 0,𝑉R = 0) at 𝑉PG = 198mV is
shown in Figure 8.2a. The local conductance on both sides, 𝐺LL and 𝐺RR, exhibit level
repulsion indicative of 𝑡 > Δ. We emphasize that ECT can become stronger than CAR even
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though the spins of the two QD transitions are anti-parallel due to the electric gating men-
tioned above. The dominance of ECT over CAR can also be seen in the negative sign of the
nonlocal conductance, 𝐺LR and 𝐺RL. During ECT, an electron enters the system through
one dot and exits through the other, resulting in negative nonlocal conductance. CAR,
in contrast, causes two electrons to enter or leave both dots simultaneously, producing
positive nonlocal conductance [27]. The residual finite conductance in the center of the
charge stability diagram can be attributed to level broadening due to finite temperature
and dot-lead coupling (see Figure 8.14). In Figure 8.2d, we show the conductance spectrum
measured as a function of 𝑉R, with 𝑉LD and 𝑉RD tuned to 𝜇LD ≈ 𝜇RD ≈ 0 (black dots in
panels c(ii, iv)). A pair of conductance peaks or dips is visible on either side of zero energy.

Figure 8.2c shows 𝐺 at 𝑉PG = 218mV (the 𝐺RR component is also used for Figure 8.1h(2)).
Here, all the elements of 𝐺 exhibit CAR-type avoided crossings. The spectrum shown
in panel f, obtained at the joint charge degeneracy point (black dots in panels c(ii, iv)),
similarly has two conductance peaks surrounding zero energy. The measured nonlocal
conductance is positive as predicted for CAR. The existence of both 𝑡 > Δ and 𝑡 < Δ
regimes, together with continuous gate tunability, allows us to approach the 𝑡 ≈ Δ sweet
spot. This is shown in panel b, taken with 𝑉PG = 210mV. Here, 𝐺RR and 𝐺LL exhibit no
avoided crossing while 𝐺LR and 𝐺RL fluctuate around zero, confirming that CAR and
ECT are in balance. Accordingly, the spectrum in panel e confirms the even and odd
ground states are degenerate and transport can occur at zero excitation energy via the
appearance of a zero-bias conductance peak. The crossover from the 𝑡 > Δ regime to the
𝑡 < Δ regime can be seen across multiple QD resonances (Figure 8.13).

To show that gate-tuning of the 𝑡/Δ ratio is indeed continuous, we repeat charge stability
diagram measurements (Figure 8.7) and bias spectroscopy at more 𝑉PG values. As before,
each bias sweep is conducted while keeping both QDs at charge degeneracy. Figure 8.2g
shows the resulting composite plot of 𝐺RR (i) and 𝐺LR (ii) vs bias voltage and 𝑉PG. The
X-shaped conductance feature indicates a continuous evolution of the excitation energy,
with a linear zero-energy crossing agreeingwith predictions in Ref. [3]. Following analysis
described in Methods, we extract the peak spacing and average nonlocal conductance in
Figure 8.2h in order to visualize the continuous crossover from 𝑡 > Δ to 𝑡 < Δ.

8.3 Poor Man’s Majorana sweet spot
Next, we study the excitation spectrum in the vicinity of the 𝑡 = Δ sweet spot. The
predicted zero-temperature experimental signature of the PMMs is a pair of quantized
zero-bias conductance peak on both sides of the devices. These zero-bias peaks are
persistent even when one of the QD levels deviates from charge degeneracy [3]. We
focus on the ↑↑ spin configuration since it exhibits higher 𝑡,Δ values when they are equal
(see Figure 8.8). Figure 8.3a shows the charge stability diagram measured via 𝐼R under
fixed 𝑉L = 0,𝑉R = 10µV. No level repulsion is visible, indicating 𝑡 ≈ Δ. Panel b(i) shows
the excitation spectrum when both dots are at charge degeneracy. The spectra on both
sides show zero-bias peaks accompanied by two side peaks. The values of 𝑡,Δ can be
read directly from the position of the side peaks, which correspond to the anti-bonding
excited states at energy 2𝑡 = 2Δ ≈ 25µeV. The height of the observed zero-bias peaks is
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a

c d e
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Figure 8.3: Conductance spectroscopy at the 𝑡 = Δ sweet spot for the ↑↑ spin configuration. a. 𝐼R vs
𝑉LD,𝑉RD under 𝑉L = 0,𝑉R = 10µV. The spectra in panel b are taken at values of 𝑉LD,𝑉RD marked by corresponding
symbols. The gate vs bias sweeps are taken along the dashed, dotted, dash-dot lines in panels c,d,e respectively.
Data are taken with fixed 𝑉PG = 215.1mV. b. Spectra taken under the values of 𝑉LD,𝑉RD marked in panel a. The
dashed lines are theoretical curves calculated with 𝑡 = Δ = 12µeV, ΓL = ΓR = 4µeV, 𝑇 = 45mK and at QD energies
converted from 𝑉LD,𝑉RD using measured lever arms (see Methods for details). c, d. 𝐺 as a function of the applied
bias and 𝑉RD (c) or 𝑉LD (d), taken along the paths indicated by the dashed blue line and the dotted green line in
panel a, respectively. e. 𝐺 as a function of the applied bias and along the diagonal indicated by the dashed-dotted
pink line in panel a. This diagonal represents 500µV of change in 𝑉LD and 250µV of change in 𝑉RD.

0.3 to 0.4 × 2𝑒2/ℎ, likely owing to a combination of tunnel broadening and finite electron
temperature (Figure 8.6). Figure 8.3b(ii) shows the spectrum when the right QD is moved
away from charge degeneracy while 𝜇LD is kept at 0. The zero-bias peaks persist on both
sides of the device, as expected for a PMM state. In contrast, tuning both dots away from
charge degeneracy, shown in Figure 8.3b(iii), splits the zero-bias peaks.

In Figure 8.3c,d, we show the evolution of the spectrum when varying 𝑉RD and 𝑉LD,
respectively. The vertical feature appearing in both 𝐺LL and 𝐺RR shows correlated
zero-bias peaks in both QDs, which persist when one QD potential departs from zero.
This crucial observation demonstrates the robustness of PMMs against local perturbations.
The excited states disperse in agreement with the theoretical predictions [3]. Nonlocal
conductance, on the other hand, reflects the local charge character of a bound state on
the side where current is measured [28–30]. Near-zero values of 𝐺LR in panel c and 𝐺RL
in panel d are consistent with the prediction that the PMM mode on the unperturbed side
remains an equal superposition of an electron and a hole and therefore chargeless.

Finally, when varying the chemical potential of both dots simultaneously (panel e), we
see that the zero-bias peaks split away from zero energy. This splitting is not linear, in
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Figure 8.4: Calculated conductance andMajorana localization. a. Numerically calculated 𝐺 as a function of
energy𝜔 and 𝜇RD at the 𝑡 = Δ sweet spot. b. Numerically calculated𝐺 as a function of𝜔 and 𝜇LD at the 𝑡 = Δ sweet
spot. c. Numerically calculated 𝐺 as a function of 𝜔 and 𝜇RD, 𝜇LD along the diagonal corresponding to 𝜇LD = 𝜇RD
at 𝑡 = Δ. All of the numerical curves use the same value of 𝑡,Δ,ΓL, ΓR as those in Figure 8.3. d. Illutrations of the
localization of two zero-energy solutions for the following set of parameters: 𝑡 = Δ, 𝜇LD = 𝜇RD = 0 (sub-panel i),
𝑡 = Δ, 𝜇RD = 0, 𝜇LD > 0 (sub-panel ii), 𝑡 < Δ, 𝜇LD = −𝜇RD = √Δ2 − 𝑡2 (sub-panel iii).

contrast to the case when Δ ≠ 𝑡 (see Figure 8.9). The profile of the peak splitting is consis-
tent with the predicted quadratic protection of PMMs against chemical potential fluctua-
tions [3]. This quadratic protection is expected to develop into topological protection in a
long-enough Kitaev chain [2].

8.4 Discussion
To facilitate comparison with data, we develop a transport model (see Methods) and plot
in Figure 8.4a-c the calculated conductance matrices as functions of excitation energy,
𝜔, vs 𝜇RD (panel a), 𝜇LD (panel b), and 𝜇 ≡ 𝜇LD = 𝜇RD (panel c). These conditions are
an idealization of those in Figure 8.3 (a more realistic simulation of the experimental
conditions is presented in Figure 8.10). The numerical simulations capture the main
features appearing in the experiments discussed above.

Particle-hole symmetry ensures that zero-energy excitations in this system always come
in pairs. These excitations can extend over both QDs or be confined to one of them. In
Figure 8.4d we show the calculated spatial extent of the zero-energy excitations for three
scenarios. The first, in Figure 8.4d(i), illustrates Figure 8.3b(i) and shows that the sweet-
spot zero-energy solutions are two PMMs, each localized on a different QD. The second



8

232 8 Realization of a minimal Kitaev chain

scenario in Figure 8.4d(ii), illustrating Figure 8.3b(ii), is varying 𝜇LD while keeping 𝜇RD =
0. This causes some of the wavefunction localized on the perturbed left side, 𝛾1, to leak
into the right QD. Since the right-side 𝛾2 excitation has no weight on the left, it does not
respond to this perturbation and remains fully localized on the right QD. As the theory
confirms [3], it stays a zero-energy PMM state. Since Majorana excitations always come
in pairs, the excitation on the left QD must also remain at zero energy. This provides
an intuitive understanding of the remarkable stability of the zero-energy modes at the
sweet spot in Figure 8.3c,d when moving one of the QDs’ chemical potentials away from
zero. Finally, zero-energy solutions can be found away from the sweet spot, 𝑡 ≠ Δ, as
illustrated in Figure 8.4d(iii). These zero-energy states are only found when both QDs
are off-resonance and none of them are localized Majorana states, extending over both
QDs and exhibiting no gate stability. Measurements under these conditions are shown in
Figure 8.9, where zero-energy states can be found in a variety of gate settings (panels a, c
therein).

8.5 Conclusion
In summary, we realize a minimal Kitaev chain where two QDs in an InSb nanowire
are separated by a hybrid semiconducting-superconducting segment. Compared to past
works, our approach solves three challenges: strong hybridization of QDs via CAR, si-
multaneous coupling of two single spins via both ECT and CAR, and continuous tuning
of the coupling amplitudes. This is made possible by the two QDs as well as the middle
Andreev bound state mediating their couplings all being discrete, gate-tunable quantum
states. The result is the creation of a new type of nonlocal states that host Majorana-type
excitations at a fine-tuned sweet spot. The zero-bias peaks at this spot are robust against
variations of the chemical potential of one QD and quadratically protected against simul-
taneous perturbations of both. This discrete and tunable way of assembling Kitaev chains
shows good agreement between theory and experiment by avoiding the most concerning
problems affecting the continuous nanowire experiments: disorder, smooth gate poten-
tials and multi-subband occupation [31]. The QD-S-QD platform discussed here opens up
a new frontier to the study of Majorana physics. In the long term, this approach can gener-
ate topologically protected Majorana states in longer chains [2]. A shorter term approach
is to use PMMs as an immediate playground to study fundamental non-Abelian statistics,
e.g., by fusing neighboring PMMs in a device with two such copies.

8.6 Methods
8.6.1 Device fabrication
The nanowire hybrid devices presented in this work were fabricated on pre-patterned
substrates, using the shadow-wall lithography technique described in Refs. [32, 33].
Nanowires were deposited onto the substrates using an optical micro-manipulator setup.
8 nm of Al was grown at a mix of 15∘ and 45∘ angles with respect to the substrate. Sub-
sequently, Device A was coated with 2Å of Pt grown at 30∘. No Pt was deposited for
Device B. Finally, all devices were capped with 20 nm of evaporated AlO𝑥 . Details of the
substrate fabrication, the surface treatment of the nanowires, the growth conditions of the
superconductor, the thickness calibration of the Pt coating and the ex-situ fabrication of



8.6 Methods

8

233

the ohmic contacts can be found in Ref. [34]. Devices A and B also slightly differ in the
length of the hybrid segment: 180 nm for A and 150 nm for B.

8.6.2 Transport measurement and data processing
We have fabricated and measured six devices with similar geometry. Two of them
showed strong hybridization of the QD states by means of CAR and ECT. We report on
the detailed measurements of Device A in the main text and show qualitatively similar
measurements from Device B in Figure 8.11 and Figure 8.12. All measurements on
Device A were done in a dilution refrigerator with base temperature 7mK at the cold
plate and electron temperature of 40∼50mK at the sample, measured in a similiar setup
using an NIS metallic tunnel junction. Unless otherwise mentioned, the measurements
on Device A were conducted in the presence of a magnetic field of 200mT approximately
oriented along the nanowire axis with a 3∘ offset. Device B was measured similarly in
another dilution refrigerator under 𝐵 = 100mT along the nanowire with 4∘ offset.

Figure 8.1e shows a schematic depiction of the electrical setup used to measure the devices.
The middle segment of the InSb nanowire is covered by a thin Al shell, kept grounded
throughout the experiment. On each side of the hybrid segment, we connect the normal
leads to a current-to-voltage converter. The amplifiers on the left and right sides of the
device are each biased through a digital-to-analog converter that applies DC and AC bi-
ases. The total series resistance of the voltage source and the current meter is less than
100Ω for Device A and 1.11 kΩ for Device B. Voltage outputs of the current meter are
read by digital multimeters and lock-in amplifiers. When DC voltage 𝑉L is applied, 𝑉R is
kept grounded and vice versa. AC excitations are applied on each side of the device with
different frequencies (17Hz on the left and 29Hz on the right for Device A, 19Hz on the
left and 29Hz on the right for Device B) and with amplitudes between 2 and 6 µV RMS. In
this manner, we measure the DC currents 𝐼L, 𝐼R and the conductance matrix 𝐺 in response
to applied voltages 𝑉L,𝑉R on the left and right N leads, respectively. The conductance
matrix is corrected for voltage divider effects (see Ref. [35] for details) taking into account
the series resistance of sources and meters and in each fridge line (1.85 kΩ for Device A
and 2.5 kΩ for Device B), except for the right panel of Figure 8.1h and Figure 8.2d. There,
the left half of the conductance matrix was not measured and correction is not possible.
We verify that the series resistance is much smaller than device resistance and the voltage
divider effect is never more than ∼ 10% of the signal.

8.6.3 Characterization of QDs and the hybrid segment
To form the QDs described in the main text, we pinch off the finger gates next to the three
ohmic leads, forming two tunnel barriers in each N-S junction. 𝑉LD and 𝑉RD applied on
the middle finger gates on each side accumulate electrons in the QDs. We refer to the
associated data repository for the raw gate voltage values used in each measurement. See
Figure 8.5a-f for results of the dot characterizations.

Characterization of the spectrum in the hybrid segment is done using conventional tunnel
spectroscopy. In each uncovered InSb segment, we open up the two finger gates next to the
N lead and only lower the gate next to the hybrid to define a tunnel barrier. The results of
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the tunnel spectroscopy are shown in Figure 8.5g,h and the raw gate voltages are available
in the data repository.

8.6.4 Determination of QD spin polarization
Control of the spin orientation of QD levels is done via selecting from the even vs odd
charge degeneracy points following the method detailed in Ref. [36]. At the charge tran-
sition between occupancy 2𝑛 and 2𝑛 + 1 (𝑛 being an integer), the electron added to or
removed from the QD is polarized to spin-down (↓, lower in energy). The next level avail-
able for occupation, at the transition between 2𝑛+1 and 2𝑛+2 electrons, has the opposite
polarization of spin-up (↑, higher in energy). To ensure the spin polarization is complete,
the experiment was conducted with 𝐸Z ≈ 400µeV > |𝑒𝑉L|, |𝑒𝑉R| (see Figure 8.5 for deter-
mination of the spin configuration). In the experiment data, a change in the QD spin
orientation is visible as a change in the range of 𝑉LD or 𝑉RD.

8.6.5 Controlling ECT and CAR via electric gating
Ref. [24] describes a theory ofmediating CAR and ECT transitions betweenQDs via virtual
hopping through an intermediate Andreev bound state. Ref. [26] experimentally verifies
the applicability of this theory to our device. To summarize the findings here, we consider
two QDs both tunnel-coupled to a central Andreev bound state in the hybrid segment of
the device. The QDs have excitation energies lower than that of the Andreev bound state
and thus transition between them is second-order. Thewavefunction of an Andreev bound
state consists of a superposition of an electron part, 𝑢, and a hole part, 𝑣 . Both theory and
experiment conclude that the values of 𝑡 and Δ depend strongly and differently on 𝑢,𝑣 .
Specifically, CAR involves converting an incoming electron to an outgoing hole and thus
depends on the values of 𝑢 and 𝑣 jointly as |𝑢𝑣|2. ECT, however, occurs over two parallel
channels (electron-to-electron and hole-to-hole) and its coupling strength depends on 𝑢,𝑣
independently as |𝑢2 −𝑣2|2. As the composition of 𝑢,𝑣 is a function of the chemical poten-
tial of the middle Andreev bound state, the CAR to ECT ratio is strongly tunable by 𝑉PG.
We thus look for a range of 𝑉PG where Andreev bound states reside in the hybrid segment,
making sure that the energies of these states are high enough so as not to hybridize with
the QDs directly (Figure 8.5). Next, we sweep 𝑉PG to find the crossover point between 𝑡
and Δ as described in the main text.

8.6.6 Additional details on themeasurement of the coupled QD spec-
trum

The measurement of the local and nonlocal conductance shown in Figure 8.2g was
conducted in a series of steps. First, the value of 𝑉PG was set, and a charge stability
diagram was measured as a function of 𝑉LD and 𝑉RD. Representative examples of such
diagrams are shown in Figure 8.7. Second, each charge stability diagram was inspected
and the joint charge degeneracy point (𝜇LD = 𝜇RD = 0) was selected manually (𝑉 0

LD,𝑉 0
RD).

Lastly, the values of 𝑉LD and 𝑉RD were set to those of the joint degeneracy point and the
local and nonlocal conductance were measured as a function of 𝑉R.

The continuous transition from 𝑡 > Δ to 𝑡 < Δ is visible in Figure 8.2g via both local and
nonlocal conductance. 𝐺RR shows that level repulsion splits the zero-energy resonance
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peaks both when 𝑡 > Δ (lower values of 𝑉PG) and when 𝑡 < Δ (higher values of 𝑉PG).
The zero-bias peak is restored in the vicinity of 𝑡 = Δ, in agreement with theoretical
predictions [3]. The crossover is also apparent in the sign of 𝐺LR, which changes from
negative (𝑡 > Δ) to positive (𝑡 < Δ).

To better visualize the transition between the ECT- and CAR-dominated regimes, we
extract 𝑉PP, the separation between the conductance peaks under positive and negative
bias voltages, and plot them as a function of 𝑉PG in Figure 8.2h. When tuning 𝑉PG, the
peak spacing decreases until the two peaks merge at 𝑉PG ≈ 210mV. Further increase of
𝑉PG leads to increasing 𝑉PP. In addition, to observe the change in sign of the nonlocal
conductance, we follow ⟨𝐺LR⟩, the value of 𝐺LR averaged over the bias voltage 𝑉R
between −100 and 100 µV at a given 𝑉PG. We see that ⟨𝐺LR⟩ turns from negative to posi-
tive at 𝑉PG ≈ 210mV, in correspondence to a change in the dominant coupling mechanism.

Figure 8.3c-e presents measurements where the conductance was measured against ap-
plied biases along some paths within the charge stability diagram (panel a). Prior to each
of these measurements, a charge stability diagram was measured and inspected, based on
which the relevant path in the (𝑉LD,𝑉RD) plane was chosen. Following each bias spec-
troscopy measurement, another charge stability diagram was measured and compared to
the one taken before to check for potential gate instability. In case of noticeable gate drifts
between the two, the measurement was discarded and the process was repeated. The val-
ues of 𝜇LD and 𝜇RD required for theoretical curves appearing in panel b were calculated
by 𝜇𝑖 = 𝛼𝑖(𝑉𝑖 −𝑉 0𝑖 ) where 𝑖 = LD,RD and 𝛼𝑖 is the lever arm of the corresponding QD. The
discrepancy between the spectra measured with 𝐺LL and 𝐺RR likely results from gate in-
stability, since they were not measured simultaneously. Finite remaining 𝐺LR in panel c
and 𝐺RL in panel d most likely result from small deviations of 𝜇LD, 𝜇RD from zero during
these measurements.

8.6.7 Model of the phase diagrams in Figure 8.1f
To calculate the ground state phase diagram in Figure 8.1f, we write the Hamiltonian in
the many-body picture, with the four basis states being |00⟩ , |11⟩ , |10⟩ , |01⟩:

𝐻mb =
⎛
⎜⎜
⎝

0 Δ 0 0
Δ 𝜀𝐿 + 𝜀𝑅 0 0
0 0 𝜀𝐿 𝑡
0 0 𝑡 𝜀𝑅

⎞
⎟⎟
⎠

(8.2)

in block-diagonalized form. The two 2×2matrices yield the energy eigenvalues separately
for the even and odd subspaces:

𝐸𝑜,± =
𝜀𝐿 + 𝜀𝑅

2 ± √(𝜀𝐿 − 𝜀𝑅2 )
2
+ 𝑡2 (8.3)

𝐸𝑒,± =
𝜀𝐿 + 𝜀𝑅

2 ± √(𝜀𝐿 + 𝜀𝑅2 )
2
+Δ2 (8.4)
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The ground state phase transition occurs at the boundary 𝐸𝑜,− = 𝐸𝑒,−. This is equivalent to

𝜀𝐿𝜀𝑅 = 𝑡2 −Δ2 (8.5)

8.6.8 Transport model in Figure 8.3 and Figure 8.4
We describe in this section the model Hamiltonian of the minimal Kitaev chain and the
methodwe use for calculating the differential conductancematrices when the Kitaev chain
is tunnel-coupled to two external N leads.
The effective Bogoliubov-de-Gennes Hamiltonian of the double-QD system is

𝐻 = 𝜀𝐿𝑐†𝐿 𝑐𝐿 + 𝜀𝑅𝑐†𝑅 𝑐𝑅 + 𝑡𝑐†𝐿 𝑐𝑅 + 𝑡𝑐†𝑅 𝑐𝐿 +Δ𝑐𝐿𝑐𝑅 +Δ𝑐†𝑅 𝑐†𝐿 = 1
2Ψ

†
⎛
⎜⎜
⎝

𝜀𝐿 𝑡 0 −Δ
𝑡 𝜀𝑅 Δ 0
0 Δ −𝜀𝐿 −𝑡
−Δ 0 −𝑡 −𝜀𝑅

⎞
⎟⎟
⎠
Ψ,

(8.6)

where Ψ = (𝑐𝐿, 𝑐𝑅 , 𝑐†𝐿 , 𝑐†𝑅 )⊤ is the Nambu spinor, 𝜀𝐿/𝑅 is the level energy in dot-𝐿/𝑅 relative
to the superconducting Fermi surface, 𝑡 and Δ are the ECT and CAR amplitudes. Here we
assume 𝑡 and Δ to be real without loss of generality [3]. The presence of both 𝑡 and Δ in
this Hamiltonian implies breaking spin conservation during QD-QD tunneling via either
spin-orbit coupling (as done in the present experiment) or non-collinear magnetization
between the two QDs (as proposed in [3]). Without one of them, equal-spin QDs cannot
recombine into a Cooper pair, leading to vanishing Δ, while opposite-spin QDs cannot
support finite 𝑡 . The exact values of 𝑡 and Δ depend on the spin-orbit coupling strength
and we refer to Ref. [24] for a detailed discussion.
To calculate the differential conductance for the double-QD system, we use the 𝑆-matrix
method [37]. In the wide-band limit, the 𝑆 matrix is

𝑆(𝜔) = (𝑠𝑒𝑒 𝑠𝑒ℎ
𝑠ℎ𝑒 𝑠ℎℎ) = 1− 𝑖𝑊 † (𝜔 −𝐻 + 1

2 𝑖𝑊𝑊 †)
−1
𝑊, (8.7)

where 𝑊 = diag{ √Γ𝐿, √Γ𝑅 ,− √Γ𝐿,− √Γ𝑅} is the tunnel matrix, with Γ𝛼 being the tunnel
coupling strength between dot-𝛼 and lead-𝛼 . The zero-temperature differential conduc-
tance is given by

𝐺0
𝛼𝛽 (𝜔) = d𝐼𝛼 /d𝑉𝛽 =

𝑒2
ℎ (𝛿𝛼𝛽 − |𝑠𝛼𝛽𝑒𝑒 (𝜔)|2 + |𝑠𝛼𝛽ℎ𝑒 (𝜔)|2) , (8.8)

where 𝛼,𝛽 = 𝐿/𝑅. Finite-temperature effect is included by a convolution between the zero-
temperature conductance and the derivative of Fermi-Dirac distribution, i.e.,

𝐺𝑇 (𝜔) = ∫𝑑𝐸 𝐺0(𝐸)
4𝑘𝐵𝑇 cosh2[(𝐸 −𝜔)/2𝑘𝐵𝑇]

. (8.9)

The theoretical model presented above uses five input parameters to calculate the
conductance matrix under given 𝜇LD, 𝜇RD,𝑉L,𝑉R. The input parameters are: 𝑡,Δ,Γ𝐿, Γ𝑅 ,𝑇 .
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To choose the parameters in Figure 8.3b(i), we fix the temperature to the measured value
𝑇 = 45mK and make the simplification 𝑡 = Δ, Γ ≡ Γ𝐿 = Γ𝑅 . This results in only two free
parameters 𝑡,Γ, which we manually choose and compare with data. While oversimplified,
this approach allows us to obtain a reasonable match between theory and data taken at
𝜇LD = 𝜇RD = 0 without the risk of overfitting. To obtain the other numerical curves shown
in Figure 8.3, we keep the same choice of 𝑡,Γ and vary 𝜇LD, 𝜇RD,𝑉L,𝑉R along various
paths in the parameter space. Similarly, to model the data shown in Figure 8.9, we keep
𝑇 = 45mK and Γ the same as in Figure 8.3. The free parameters to be chosen are thus 𝑡
and Δ. The theory panels are obtained with the same 𝑡,Δ, and only 𝜇LD, 𝜇RD,𝑉L,𝑉R are
varied in accordance with the experimental conditions.

Finally, we comment on the physical meaning of the theory predictions in Figure 8.4a-c.
Tuning 𝜇RD leads to symmetric 𝐺LL and asymmetric 𝐺RR, as well as zero 𝐺LR and finite
𝐺RL with an alternating pattern of positive and negative values. As discussed in the main
text, these features, also seen in the measurements, stem from the local charge of the sys-
tem: keeping 𝜇LD = 0maintains zero local charge on the left dot, while varying 𝜇RD creates
finite local charge on the right dot. The complementary picture appears when varying 𝜇LD
in panel b. The asymmetry in both 𝐺LL and 𝐺RR and the negative nonlocal conductance
when tuning simultaneously 𝜇LD = 𝜇RD are also captured in the numerical simulation in
panel c. We note that while there is a qualitative agreement between the features in Fig-
ure 8.4c and Figure 8.3e, they were obtained under nominally different conditions. As
mentioned, the theoretical curve follows 𝜇LD = 𝜇RD, while the experimental curve was
taken through a path along which 𝑉LD changed twice as much as 𝑉RD, although the lever
arms of both QDs are similar. In Figure 8.4c, we calculate the conductance along a path
reproducing the experimental conditions. We speculate that the discrepancy between Fig-
ure 8.3e and Figure 8.4c could arise from some hybridization between the left QD and the
superconducting segment as seen in Figure 8.5.

Data Availability and Code Availability
Raw data presented in this work, the data processing/plotting code and code used for the
theory calculations are available at https://doi.org/10.5281/zenodo.6594169.

https://doi.org/10.5281/zenodo.6594169
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8.7 Extended data

a b c

fd e

g h

Figure 8.5: Characterization of the QDs. a. Coulomb blockade diamonds of the left QD when right QD is off
resonance. 𝐼L is measured as a function of 𝑉L,𝑉LD. The data is overlaid with a constant interaction model [38]
with 1.8meV charging energy and gate lever arm of 0.32. b. A high-resolution scan of a with a symmetric-
logarithmic color scale to show the presence of a small amount of Andreev current at sub-gap energies. This
is due to the left QD being weakly proximitized by local Andreev coupling to Al. c. Field dependence of the
Coulomb resonances. 𝐼L is measured as a function of 𝑉LD and 𝐵 with a constant 𝑉L = 600µV. The resonances of
opposite spin polarization evolve in opposite directions with a 𝑔-factor of ∼ 35, translating to Zeeman energy of
400 µeV at 𝐵 = 200mT. d-f. Characterization of the right QD, as described in the captions of panels a-c. Overlaid
model in d has charging energy 2.3meV and gate lever arm of 0.33. No sub-gap transport is detectable in e. 𝐵
dispersion in f corresponds to 𝑔 = 40. g, h. Bias spectroscopy results of the proximitized InSb segment under
the thin Al/Pt film. 𝐼L, 𝐼R are measured as a function of 𝑉L,𝑉PG. 𝐺LL,𝐺RL are obtained by taking the numerical
derivative of 𝐼L, 𝐼R along the bias direction after applying a Savitzky-Golay filter of window length 15 and or-
der 1. The sub-gap spectrum reveals discrete, gate-dispersing Andreev bound states. The presence of nonlocal
conductance correlated with the sub-gap states shows that these Andreev bound states extend throughout the
entire hybrid segment, coupling to both left and right N leads [30]. Parts of this dataset are also presented in
Ref. [34] (Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International license
(https://creativecommons.org/licenses/by/4.0). Copyright 2022, The Authors, published by Wiley-VCH).
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Figure 8.6: Theoretical temperature dependence of the height ofMajorana zero-bias conductance peaks.
The height of the Majorana zero-bias peaks is only quantized to 2𝑒2/ℎ at zero temperature. At finite electron
temperature 𝑇 , the peak height is generally lower, with the exact value depending on 𝑇 and tunnel broadening
ΓL, ΓR due to coupling between QDs and N leads. The local zero-bias conductance 𝐺LL at the sweet spot (𝑡 =
Δ,𝜇LD = 𝜇RD = 0) is calculated and shown in this plot as a function of 𝑇 , using the parameters presented in
Figure 8.3: 𝑡 = Δ = 12µeV. Three curves are calculated assuming three different values of tunnel coupling Γ =
ΓL = ΓR. The orange curve assumes a Γ value that matches the experimentally observed peak width (both of the
zero-bias peaks and of generic QD resonant peaks at other conductance features), showing that conductance
approaching quantization would only be realized at electron temperatures < 5mK, unattainable in our dilution
refrigerator. The blue curve, calculated with lower Γ = 2µeV, shows even lower conductance. Increasing Γ
would not lead to conductance quantization either, since the zero-bias peaks would merge with the conductance
peaks arising from the excited states (pink curve). The green dot marks the experimentally measured electron
temperature and peak height (averaged between the values obtained on the left and right leads).
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Figure 8.7: Evolution of the charge stability diagram for the ↓↑ spin configuration. Each panel shows 𝐼L
(nonlocal) and 𝐼R (local) as functions of 𝑉LD,𝑉RD measured under fixed biases 𝑉L = 0,𝑉R = 10µV. 𝑉PG is tuned
from 196.5mV, showing signatures of the 𝑡 > Δ in both local and nonlocal currents, to 220mV, featuring the
opposite 𝑡 < Δ regime.
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Figure 8.8: Evolution of the charge stability diagram for the ↑↑ spin configuration. Each panel shows 𝐼L
(nonlocal) and 𝐼R (local) as functions of 𝑉LD,𝑉RD measured under fixed biases 𝑉L = 0,𝑉R = 10µV. 𝑉PG is tuned
from 210mV, showing signatures of the 𝑡 > Δ in both local and nonlocal currents, to 219mV, featuring the
opposite 𝑡 < Δ regime.
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Figure 8.9: Conductance spectroscopy when 𝑡 < Δ. a. 𝐼R vs 𝜇LD, 𝜇RD with 𝑉R = 10µV. The evolution of the
spectrum with the chemical potential is taken along the dashed, dashed-dotted and dotted lines in panels b,c,d
respectively. Data taken at the ↓↑ spin configurationwith fixed 𝑉PG = 218mV. b. Local conductance spectroscopy
taken at gate setpoints marked by corresponding symbols in panel a. Insets mark schematically the spectrum
of the QDs in the absence (brown dots) and the presence (grey lines) of hybridization via CAR and ECT. c.
Conductance matrix as a function of bias and 𝑉LD, taken along the dashed blue line in panel a, i.e., varying the
detuning between the QDs 𝛿 = (𝜇LD −𝜇RD)/2while keeping the average chemical potential ̄𝜇 = (𝜇LD +𝜇RD)/2 close
to 0. d. Conductance matrix as a function of bias and 𝑉LD, taken along the dotted green line in panel a, keeping
the detuning between the QDs around 0. e. Conductance matrix as a function of bias and 𝑉LD, taken along
the dashed-dotted pink line in panel a, keeping roughly constant non-zero detuning between the QDs. f, g, h.
Numerically calculated 𝐺 as a function of energy 𝜔 and 𝜇LD, 𝜇RD along the paths shown in panel a. All of the
numerical curves assume the same parameters as those in Figure 8.3, except with Δ = 23µeV and 𝑡 = 6µeV.
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Figure 8.10: Calculated conductance matrices at the 𝑡 = Δ sweet spot a. Numerically calculated 𝐺 as a
function of energy 𝜔 and 𝜇LD, 𝜇RD along the path shown in Fig 3c. The presence of finite 𝐺LR and asymmetric
𝐺RL result from a slight deviation from the 𝜇LD = 0 condition which is depicted in Figure 8.4a. These features
appear in the experimental data shown in Figure 8.3c. b. Numerically calculated 𝐺 as a function of energy 𝜔
and 𝜇LD, 𝜇RD along the path shown in Fig 3d. The presence of finite 𝐺RL and asymmetric 𝐺LR result from a slight
deviation from the 𝜇RD = 0 condition which is depicted in Figure 8.4b. These features appear in the experimental
data shown in Figure 8.3d. c. Numerically calculated 𝐺 as a function of energy 𝜔 and 𝜇LD, 𝜇RD along the path
shown in Fig 3e. Since the path does not obey 𝜇LD = 𝜇RD, the calculated spectral lines do not follow parallel
trajectories, in slight disagreement with the experimental data. The conversion from 𝑉LD,𝑉RD to 𝜇LD, 𝜇RD is
done as explained in the Methods section with the measured lever-arms of both QDs.



8

244 8 Realization of a minimal Kitaev chain

ba

c d

Figure 8.11: Reproduction of the main results with Device B. a-c. Conductance matrices measured at
𝑉PG = (976,979.6,990) mV, respectively. d. Conductance matrix as a function of 𝑉L,𝑉R and 𝑉PG while keeping
𝜇LD ≈ 𝜇RD ≈ 0. This device shows two continuous crossovers from 𝑡 > Δ to 𝑡 < Δ and again to 𝑡 > Δ.
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Figure 8.12: Device B spectrum vs gates. a. Charge stability diagram measured via 𝐺RR of another 𝑡 = Δ sweet
spot of Device B, at 𝑉PG = 993mV. Dashed lines mark the gate voltage paths the corresponding panels are taken
along. b-d. Conductance matrices when varying 𝑉RD (b), 𝑉LD (c) and the two gates simultaneously (d), similar
to Figure 8.3 in the main text. The sticking zero-bias conductance peak feature when only one QD potential is
varied around the sweet spot is clearly reproduced in 𝐺RR of panel b. The quadratic peak splitting profile when
both QD potentials are varied by the same amount is also reproduced the panel d. The left N contact of this
device was broken and a distant lead belonging to another device on the same nanowire was used instead. This
and gate jumps in 𝑉RD complicate interpretation of other panels.
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Figure 8.13: CAR- and ECT-induced interactions across multiple QD resonances. a-b. local (𝐼L) and
nonlocal (𝐼R) currents as a function of 𝑉LD and 𝑉RD measured with 𝑉PG = 200mV and fixed 𝑉L. All resonances
show an ECT-dominated structure and a negative correlation between the local and the nonlocal currents. c-d.
local (𝐼L) and nonlocal (𝐼R) currents as a function of 𝑉LD and 𝑉RD measured with 𝑉PG = 218mV and fixed 𝑉L.
Some resonances show the structure associated with the 𝑡 = Δ sweet spot, showing both positive and negative
correlations between the local and nonlocal currents. e-f. local (𝐼L) and nonlocal (𝐼R) currents as a function of 𝑉LD
and 𝑉RD measured with 𝑉PG = 200mV and fixed 𝑉L. All orbitals show a CAR-dominated structure and a positive
correlation between the local and the nonlocal currents. All measurements were conducted with 𝑉L = 10µV,
𝑉R = 0 and 𝐵 = 100mT.
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Figure 8.14: Theoretical effect of tunnel broadening on the charge stability diagrams. In some charge
stability diagrams where level-repulsion is weak, e.g., Figure 8.2a and Figure 8.8, some residual conductance is
visible even when 𝜇LD = 𝜇RD = 0. This creates the visual feature of the two conductance curves appearing to
“touch” each other at the center. In the main text, we argued this is due to level broadening. Here, we plot
the numerically simulated charge stability diagrams at zero temperature under various dot-lead tunnel coupling
strengths. We use coupling strengths 𝑡 = 20µV,Δ = 10µV as an example. From panel a to c, increasing the
tunnel coupling and thereby level broadening reproduces this observed feature. When the level broadening is
comparable to the excitation energy, |𝑡 −Δ|, finite conductance can take place at zero bias. This feature is absent
in, e.g., Figure 8.2c, where |𝑡 −Δ| is greater than the level broadening.
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9
The gate-tunable Josephson diode

Superconducting diodes are a recently-discovered quantum analogueue of classical diodes.
The superconducting diode effect relies on the breaking of both time-reversal and inver-
sion symmetry. As a result, the critical current of a superconductor can become dependent
on the direction of the applied current. The combination of these ingredients naturally
occurs in proximitized semiconductors under a magnetic field, which is also predicted to
give rise to exotic physics such as topological superconductivity. In this work, we use InSb
nanowires proximitized by Al to investigate the superconducting diode effect. Through
shadow-wall lithography, we create short Josephson junctions with gate control of both
the semiconducting weak link as well as the proximitized leads. When the magnetic field
is applied perpendicular to the nanowire axis, the superconducting diode effect depends
on the out-of-plane angle. In particular, it is strongest along a specific angle, which we
interpret as the direction of the spin-orbit field in the proximitized leads. Moreover, the
electrostatic gates can be used to drastically alter this effect and even completely suppress
it. Finally, we also observe a significant gate-tunable diode effect when the magnetic field
is applied parallel to the nanowire axis. Due to the considerable degree of control via elec-
trostatic gating, the semiconductor-superconductor hybrid Josephson diode emerges as a
promising element for innovative superconducting circuits and computation devices.

This chapter appears on arXiv as The gate-tunable Josephson diode, G.P. Mazur†, N. van Loo†, D. van Driel, J.-Y.
Wang, G. Badawy, S. Gazibegovic, E.P.A.M. Bakkers and L.P. Kouwenhoven - arXiv:2211.14283 (2022).
† These authors contributed equally to this work.
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9.1 Introduction
Semiconducting diodes are rectifiers that allow current to flow in only one direction. As
such, they are ubiquitously used in conventional electronics. Recently, superconducting
analogueues of diodes have been realized in V/Nb/Ta superlattices, where the value
of critical current depends on the polarity of the applied current [1]. Consequently, it
has been named the superconducting diode effect (SDE). The simultaneous breaking of
both inversion symmetry and time-reversal symmetry has been identified as the critical
ingredient for achieving the SDE [2, 3]. Time-reversal symmetry is conventionally broken
either through the application of a magnetic field or by using magnetic materials [4].
Similarly, inversion symmetry is broken in systems with spin-orbit interaction (SOI),
either through intrinsic structural asymmetry or via the application of electric fields.
Interestingly, a correction to the critical current of superconducting films in the presence
of an electric field was already proposed in the context of superconductors with an
intrinsic polar axis [2]. It has the form of 𝛼(c ×B) ⋅ J where 𝛼 is the Rashba spin-orbit
constant, the unit vector c points along the electric field, B is an external magnetic field,
and J is the supercurrent density. Such a correction can be obtained purely from the
Ginzburg-Landau theory when both inversion symmetry and time-reversal symmetry
are broken.

In order to give more insight into the microscopic mechanism behind non-reciprocal
critical currents, models that go beyond the Ginzburg-Landau theory have been pro-
posed [5, 6]. These models suggest that a finite Cooper pair momentum is the underlying
physical mechanism. In this picture, the energy of left and right moving carriers develops
a finite Doppler shift ± qvF due to the finite momentum q acquired by the Cooper
pairs[6]. On the other hand, theoretical studies on Josephson Junctions (JJs) based
on semiconducting nanowires predicted direction-dependent critical currents in the
presence of SOI and time-reversal symmetry breaking [7, 8]. In this case, non-reciprocity
of switching currents is caused by the interaction between multiple Andreev levels
in the junction. In addition, the Meissner effect has been proposed [9] to give rise to
non-reciprocal critical current. Finally, a small out-of-plane magnetic field also leads to
an SDE in type-II elemental superconductors [10].

Most of the work to date has observed the SDE in metallic systems or van der Waals ma-
terials with a high electron density [11], which implies that such devices cannot be tuned
electrostatically. In this context, proximitized semiconductors are a convenient platform
onwhich various parameters can be tuned with electrostatic gates. This includes the trans-
parency [12] and the number of active modes in the junction, as well as the density in the
proximitized region [13]. Note that in proximitized semiconductors, superconducting cor-
relations are carried by electron-hole pairs, as opposed to a Cooper pair condensate in reg-
ular metals. These pairs form Andreev bound states which can obtain a finite momentum
due to the interplay between spin-orbit interaction and a Zeeman field [14–16]. The finite-
momentum ABSs can be considered as the proximitized analogue of finite-momentum
Cooper pairs. As a consequence, it is possible for an SDE to exist in a semiconductor in
proximity to a regular superconductor, like Al. Indeed, recent works explored the SDE in
weakly-proximitized InAs [17], either in the form of Josephson junctions [18, 19] or as a
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metallic wire defined on the InAs stack [20]. Planar Josephson junctions based on InSb
nanoflags are also reported to yield an SDE [21]. Most works do not report a strong effect
of electrostatic gating on the SDE [18–21]. As such, superconducting diodes would have
limited use as circuit elements of superconducting computation devices or quantum com-
puters. Instead, a greater degree of control is desired [22, 23], similar to the electrical tun-
ability of state-of-the-art quantum electronics based on semiconductors [24]. In this arti-
cle, we demonstrate the presence and control of the SDE in semiconductor-superconductor
hybrid Josephson junctions by means of electrostatic gating. Separate gate control of the
electron density underneath the proximitized leads as well as in semiconducting weak
link enables us to isolate their contribution to the observed SDE. Furthermore, we show
that the efficiency of the SDE scales with the switching current in the JJ. In addition, we
demonstrate that the SDE can also occur when a magnetic field is applied parallel to the
nanowire axis and hence parallel to the current flow. Dual gating of the semiconducting
weak link and the proximitized leads allows the InSb/Al JJ to act as a Josephson field-effect
transistor as well as a superconducting diode. As such, it emerges as a promising platform
for the development of superconducting circuits.

9.2 Methods
We study a Josephson junction made from an InSb nanowire coupled to an Al shell.
Fig. 9.1A shows a schematic of such a device together with the measurement circuit. The
InSb nanowire is placed on a HfO2 dielectric, which separates the device from a set of
local bottom gates. The device features two distinct gates: A voltage on the tunnel gate
𝑉TG is used to control the semiconducting weak link, where it affects both the number
of active modes as well as their transparency. On the other hand, a voltage on the
super gates 𝑉SG controls the electron density in the proximitized leads (that is, the InSb
segments underneath the Al). In a recent work [13] we have shown that this gate can also
be used to adjust the semiconductor-superconductor coupling, resulting in gate-tunable
properties such as the induced gap and 𝑔-factor. A current-bias 𝐼 is applied through
the junction, and the resulting voltage drop 𝑉 is measured. The sample is fabricated by
means of our shadow-wall lithography technique[12, 25]. This fabrication method allows
us to create semiconducting weak links as short as 50 nm [26] such that the device is
expected to be in the short junction limit. Since the length of the semiconducting weak
link is shorter than the coherence length, transport is dominated tunnel processes via
Andreev bound states. In short junctions, transport is also sensitive to properties of the
proximitized leads [27, 28]. Fig. 9.1B illustrates the cross-section of the hybrid together
with the coordinate system used throughout this work.

To investigate the SDE, we apply a current bias to the sample and look for a difference
in the detected critical current between the forward-bias and reverse-bias measurements.
In Fig. 9.1C, we show an example 𝐼 -𝑉 curve under conditions where an SDE should be
observed (i.e. a finite magnetic field perpendicular to the nanowire axis). As 𝐼 is swept
from negative to positive (blue curve), the measured voltage first drops to zero at the
retrapping current 𝐼+rt . At the positive switching event 𝐼+, the measured voltage jumps
again to a finite value. Similarly, the negative retrapping and switching events 𝐼−rt and 𝐼−
can be obtained by reversing the current bias polarity (red curve). In this case, a small
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Figure 9.1: Illustration of the device and measurement technique. (A) Schematic of the measurement
circuit, depicting a Josephson Junction in the current-bias configuration. The InSb nanowire (green) is covered
by an Al shell (blue), which forms a connection to the film on the substrate. The electronic density underneath
the shell is controlled via the super gates (red), and the junction transparency is tuned with the tunnel gate
(orange). (B) Illustration of the hybrid cross-section. The magnetic field angle 𝜃 is defined as the angle in the
plane perpendicular to the nanowire axis, starting at 𝜃 = 0∘ when the applied magnetic field is along 𝐵x. (C)
Example of 𝐼 -𝑉 curves showing non-reciprocal behavior. Blue and red curved display forward and reverse
current bias, respectively. Positive and negative switching current (𝐼 +,𝐼 −) and retrapping current (𝐼 +rt ,𝐼 −rt) are
marked with dashed lines. (D) Example of switching current histograms, each consisting of switching events
(𝐼 +,𝐼 −) from 200 𝐼 -𝑉 curves. The average value of the distributions is labelled |𝐼 −SW | and 𝐼 +SW for the negative and
positive switching currents, respectively.

difference between 𝐼+ = 18.4nA and |𝐼−| = 17.7nA is observed, evidencing the SDE. As the
switching current in Josephson junctions is stochastic [29, 30], we employ a fast-switching
detection method [20, 31] in order to accurately resolve its value (see Section 1.3 of the
supplemental information). An example of a switching current distribution obtained with
this method is shown in Fig. 9.1D, where histograms for 200 switching events (𝐼+,𝐼−) are
plotted. From these distributions, the average switching currents for the forward-bias 𝐼+SW
and reverse-bias |𝐼−SW| are estimated. These values of the switching current are then used
for calculating the SDE efficiency 𝜂 = (𝐼+SW − |𝐼−SW|)/(𝐼+SW + |𝐼−SW|).

9.3 Results
We start the investigation of the SDE in our system by rotating the magnetic field
(𝐵 = 12mT) in the plane perpendicular to the nanowire axis, so that the direction of
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Figure 9.2: Dependence of superconducting diode effect on super gate voltage. (A) Top: 𝜂 as a function of
super gate voltage 𝑉SG and 𝜃 , taken with 𝑉TG = 3.61V and 𝐵 = 12mT. Middle: Estimation of 𝜃m𝑎𝑥 . Bottom: 𝜂m𝑎𝑥
as a function of 𝑉SG. The dashed black line indicates that the diode effect is suppressed below 𝑉SG < 1.15V. (B)
Top: lack of an SDE below 𝑉SG < 1.15V. Bottom: presence of an SDE above 𝑉SG > 1.15V. Linecuts taken from (A)
top, at locations indicated by the colored bars. In the bottom panel, the dashed pink line specifies 𝜃m𝑎𝑥 , whereas
𝜂m𝑎𝑥 is depicted by the dashed purple lines. (C) 𝜂m𝑎𝑥 as a function of average switching current, taken along
𝜃 = 105∘. In all panels, grey data points correspond to a poor sinusoidal fit (𝑅2 < 0.85) of 𝜂 as a function of 𝜃 .

the current remains perpendicular to the applied field. We set the tunnel gate voltage
to a high 𝑉TG = 3.61V, which ensures that the junction has around 5-10 active modes
with a high transparency (see Fig. 9.18). Consequentially, this maximizes the switching
current in the semiconducting weak link. The dependence of the diode efficiency on
the magnetic field angle and super gate voltage is shown in Fig. 9.2A. In the top panel,
we identify two distinct behaviors of the SDE. Above 𝑉SG > 1.15V we observe a finite
diode efficiency which exhibits a sinusoidal dependence on the angle of the magnetic
field. A line cut in this regime taken at 𝑉SG = 1.61V is shown in the bottom panel of
Fig. 9.2B. A sinusoidal fit of 𝜂(𝜃) allows us to extract the angle with a maximum efficiency
𝜃max as well as the efficiency 𝜂max at that angle (see supplemental information). From
the fit for this particular line cut, we estimate 𝜃max = 105∘ and 𝜂max = 0.08. In contrast,
the SDE is diminished and the field-angle dependence is almost absent for 𝑉SG below
𝑉SG < 1.15V. This is emphasized in the top panel of Fig. 9.2B, which shows a line cut
taken at 𝑉SG = 0.72V. We execute the fitting procedure for all values of 𝑉SG in order
to determine 𝜃max and 𝜂max as we vary the gate voltage. These are presented in the
middle and bottom panels of Fig. 9.2A, respectively. We see that the estimated 𝜃max angle
remains roughly constant above 𝑉SG > 1.15V at 𝜃max ≈ 105∘. We interpret this angle to
be the direction of the spin-orbit field in the proximitized leads 𝜃max = 𝜃SO, which we
elaborate on in the discussion section. In contrast, 𝜂max is modulated between ∼ 1% up to
∼ 8% and does not simply increase with 𝑉SG. We note that in both panels, the grey data
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points correspond to a poor sinusoidal fit of 𝜂(𝜃) with a R-squared value of 𝑅2 ≤ 0.85. We
refer to Fig. 9.8 in the supplemental information for the underlying switching current
maps and the estimation of the fitting error. As 𝑉SG also modulates the magnitude of the
switching current, we plot the maximum diode efficiency versus the average switching
current in Fig. 9.2C. Interestingly, an increase in 𝜂max appears to correlate to higher
switching currents. This observation naturally raises the question whether the observed
SDE can be attributed to the contribution from the proximitized leads of the device or to
the increasing transparency of the junction due to capacitive coupling between the gates.

To answer this question, we note that the transparency of the junction can be adjusted
directly through the use of the tunnel gate. We proceed by fixing the super gate voltage to
𝑉SG = 2V, above the previously-identified threshold of 𝑉SG = 1.15V. Next, the tunnel gate
voltage 𝑉TG is varied such that switching current is being modulated from |𝐼SW| = 5nA
up to |𝐼SW| = 25nA. We again vary the angle 𝜃 of the perpendicular magnetic field with
an amplitude of 𝐵 = 12mT, while measuring the diode efficiency. The results of this
experiment are presented in the left panel of Fig. 9.3, where in panel A we show the
evolution of the SDE. The effect is present for almost all gate values, while 𝜂 is modulated
with 𝑉TG. Interestingly, the extracted 𝜃max remains constant as a function of the junction
transparency around 𝜃max = 105∘. In particular, 𝜂 remains sinusoidal in 𝜃 (see, for
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(A). (C) 𝜂m𝑎𝑥 as a function of average switching current, taken along 𝜃 = 105∘. (D-F) Dependence on 𝑉TG at a
low super gate voltage 𝑉SG = 0.8V. (D) Top: 𝜂 as a function of 𝑉TG and 𝜃 . Middle: Estimation of 𝜃m𝑎𝑥 . Bottom:
𝜂m𝑎𝑥 as a function of 𝑉TG. (E) Example of 𝜂 taken at the location indicated by the colored bar in panel (D). (F)
𝜂m𝑎𝑥 as a function of average switching current, taken along 𝜃 = 105∘. In all panels, grey data points correspond
to a poor sinusoidal fit (𝑅2 < 0.85) of 𝜂 as a function of 𝜃 . Data taken at 𝐵 = 12mT.
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example, Fig. 9.3B), and adjustments in 𝑉TG only affect the amplitude. The scaling of
𝜂max with 𝐼𝑆𝑊 is no longer monotonic, while the highest efficiency is still observed for
high switching currents in the range of |𝐼SW| = 15-20nA (Fig. 9.3 C). Moreover, we are
able to measure an appreciable SDE even at very low switching currents on the order of
|𝐼SW| = 5nA. This confirms that the observed transition in Fig. 9.2 cannot be attributed
to a reduced switching current as a result of, for example, capacitive coupling between
the tunnel gate and the super gate. The situation is drastically different for 𝑉SG = 0.8V,
which we present in the right panel of Fig. 9.3. Here, we adjust the tunnel gate voltage
range such that it covers a similar range of switching currents, between |𝐼SW| = 5nA up
to |𝐼SW| = 25nA. In Fig. 9.3D, we see that the efficiency of the SDE is generally weaker.
It is often non-sinusoidal in 𝜃 and 𝜃max varies strongly with 𝑉TG. An example is shown
in Fig. 9.3E, where the angle with a maximum SDE is close to 𝜃max = 0∘. The observed
𝜂max is mainly below 1%, even for the highest switching current values shown in Fig. 9.3F.

Next, we turn our attention to the dependence of the SDE on the magnitude of the
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Figure 9.4: Evolution of the superconducting diode effect as a function of magnetic field perpendicular
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reaches a maximum at 𝐵 = 10mT.



9.3 Results

9

259

magnetic field. The results are shown in Fig. 9.4A, where the polar axis is the field angle 𝜃
and the radial axis represents the field magnitude 𝐵. Line cuts at various angles are shown
in Fig. 9.4B-D. In the majority of the experiments to date, the efficiency of the diode does
not simply increase linearly with magnetic field. Instead, the linear dependence only
holds for low values of 𝐵, after which it peaks at a particular field value before it decays
to zero as can be seen in Fig. 9.4D, where the field is applied along previously identified
𝜃max = 105∘. In our device, we also find an unexpected deviation from that behavior
when the magnetic field is applied along 𝜃 = 65∘ (see Fig. 9.4C). Here, 𝜂 increases linearly
before saturating around 𝐵 = 10mT (see Fig. 9.16 for an extended magnetic field range).
In addition, we note that the SDE is negligible whenever the magnetic field is applied
perpendicular to 𝜃max at 𝜃 = 15∘, as shown in Fig. 9.4B.

Lastly, we examine the impact of a parallel magnetic field on the SDE in our system. The
results of this experiment are presented in Fig. 9.5. At zero magnetic field (top panel in
Fig. 9.5B), the SDE is predominantly absent with occasional spikes at conductance reso-
nances. Upon increasing 𝐵z, the SDE becomes more pronounced and 𝜂 exhibits multiple
changes of sign as a function of 𝑉SG, as shown in the bottom panel of Fig. 9.5B. Strikingly,
our experimental data can once again be split into two different characteristic regimes.
For the low super gate region below 𝑉SG < 1.15V, the SDE exhibits frequent polarity flips
as well as a high efficiency. At voltages above that threshold, the SDE is still present, how-
ever, in general with smaller intensity and with fewer polarity switches. This is best seen
by comparing top and bottom panel of Fig. 9.5C. The top panel shows a line cut around
𝑉SG = 1.1V, which exhibits a large 𝜂 as well as a polarity switch. The bottom panel on the
other hand presents a line cut along 𝑉SG = 1.3V, where the SDE is strongly quenched.
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9.4 Discussion
One of the primary findings of our experimental work is a sinusoidal angle dependence
of the SDE over a large range of positive 𝑉SG. Such dependence can be interpreted by
taking into account the role of spin-orbit interaction proposed in Edelstein’s model for
polar superconductors [2], which predicts a correction to the critical current in the form
of 𝛼(c ×B) ⋅ J. From this prediction we expect a diode efficiency of 𝜂 ∝ cos(𝜃) that is
accompanied by a maximum diode efficiency whenever the magnetic field aligns with the
direction of the spin-orbit field. The spin-orbit interaction in our devices likely originates
from the electric field applied on the super gates. As the Al film covers three facets of the
hexagonal nanowire and extends onto the substrate (Fig. 9.1B), the electric field lines are
expected to bend towards the metallic half-shell [33]. This agrees well with the observed
maximum-efficiency angle of 𝜃max = 105∘. On a second device (device B, see supplemental
information), the extracted 𝜃max is similar at 𝜃max = 110∘. This is also in agreement with
previous results, which studied the dependence of spin-orbit interaction on the induced
superconducting gap [33] for devices in the same geometry.

A related observation is the dependence of the SDE on the value of the super gate voltage
𝑉SG. As depicted in Fig. 9.2A, we notice a sharp onset in the SDE efficiency 𝜂 and the
sinusoidal angular dependence. There is a striking similarity between this sharp onset of
the SDE and the tunable semiconductor-superconductor coupling observed for InSb/Al
hybrids [13]. The tunable coupling is reflected in a strong gate-tunability of the induced
gap size as well as the 𝑔-factor. As the SOI is expected to be modulated by the coupling
as well [34, 35], it may explain the difference between the low and high super gate
regimes. We interpret our observations as follows. For high 𝑉SG the system can be seen
as S-S’-N-S’-S, where S is the Al shell, S’ is the proximitized semiconductor, and N is the
semiconducting weak link. In this regime, the hybrid inherits semiconducting properties
such as a high 𝑔-factor and appreciable SOI. The presence of a finite SOI in addition to
a Zeeman field results in a finite momentum of the ABSs that form in the proximitized
leads [14–16]. In contrast, for low 𝑉SG the hybrid can be seen as S-N-S where S represents
the metallic (Al-like) leads with weak SOI. In the absence of SOI, the ABSs in the leads
do not obtain a finite momentum - resulting in the suppression of the SDE. Still, the
semiconducting weak link itself also possesses a strong SOI which can also lead to finite
SDE. In this scenario, conductance resonances originating from confinement near the
semiconducting weak link [36] yield a fluctuating spin-orbit direction [37]. Thus, we
interpret the existence of erratic SDE in the low 𝑉SG regime as originating from SOI in
the semiconducting weak link.

It is worth to mention that recently, it was shown that the SDE can also arise in systems
without SOI [9]. In this framework, screening currents present in the superconducting
shell due to the Meissner effect lead to a spatially varying order parameter. This can
equally well result in a formation of finite-momentum ABSs in proximitized material. In
the case of our study, the maximum contribution from orbital effects in the Al shell is
expected for a magnetic field direction perpendicular to the middle facet of the nanowire
at 𝜃 = 30∘ (see Fig. 9.1B). Yet, we observe a maximum 𝜂 for a magnetic field angle
𝜃max = 105∘, almost perpendicular to this direction. Moreover, 𝜂 measured along 𝜃 = 15∘
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is close to zero in a magnetic field range of ±𝐵 = 100mT. Relating to those observations,
we cannot identify the Meissner effect in the Al shell as the dominant mechanism
explaining our results. Orbital effects might also have a direct effect on ABSs formed in
the semiconductor, however it is presently unclear how this might influence the SDE.

The SDE dependence on the magnetic field magnitude (as shown in Fig. 9.4) is also point-
ing towards the presence of finite-momentum ABSs. In particular, the dependence of 𝜂 on
𝜃 evolves from 𝜂 ∝ sin(𝜃) to 𝜂 ∝ sin(𝜋 ⋅ sin(𝜃)) as the magnetic field amplitude is increased
(see also supplemental information Fig. 9.12). The angular dependence of the diode
efficiency measured as a function of the magnitude of the magnetic field looks nearly
identical compared to the results reported for NiTe2 [16]. There, this behavior was directly
attributed to the presence of finite-momentum Cooper pairing. This observation suggests
that the phenomenological theory of finite-momentum Cooper pairing can be universally
applied to different material systems and may help to discriminate between various physi-
cal origins of the observed SDE. Proximitized InSb is particularly appealing in this context,
as it has a fairly simple Fermi surface [38] and the proximity effect has been widely
studied in this material [13, 39] which should lead to a simplification of theoretical studies.

Most of the models to date require the applied magnetic field to be parallel to the spin-
orbit axis and perpendicular to the current flow [2, 6], with finite-momentum Cooper
pairing as the microscopic origin. However, there are also several predictions regarding
an SDE with the magnetic field applied parallel to the current flow. We will discuss
applicability of those models to the experiment presented in Fig. 9.5. Short nanowire
Josephson junctions with SOI in the presence of a Zeeman field were theoretically studied
by Yokoyama et al. [7, 8]. When multiple conduction channels are formed within the
semiconducting weak link, the Andreev levels interact and hybridize with each other
due to interplay between disorder and SOI. Upon the application of an external magnetic
field, they also become subject to a Zeeman splitting. As a result, time-reversal symmetry
is broken and the energy of these levels is no longer equal with respect to sign inversion
of the phase 𝐸N(−𝜑) ≠ 𝐸N(𝜑), where 𝐸N is the energy of the Andreev levels and 𝜑 is a
phase difference across the junction. This inequality also leads to an SDE. Similarly, a
recent model [5] predicted that in the presence of a finite out-of-plane component, an
in-plane Zeeman field is expected to drive subband transitions which should manifest
as an enhancement of the SDE efficiency as well as inversion of the polarity. It is of
particular interest for the study of topological superconductivity, as this information
could be used to identify regions in parameter space where topological superconductivity
is predicted to emerge.

We suspect that the SDE in a parallel magnetic field (as shown in Fig. 9.5) primarily orig-
inates from interaction between ABSs in the semiconducting weak link. To understand
why, we note that the data can once again be divided into two sections. In contrast to
the case of a perpendicular magnetic field, the SDE efficiency is the strongest at low 𝑉SG
while it remains strongly modulated with 𝑉TG (see Fig. 9.21). In this regime, the electron
density in the hybrid segments of the nanowire is expected to be low [13, 40, 41]. Con-
versely, we keep 𝑉TG = 3.615V which ensures a high density in the InSb weak link. The
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corresponding potential profile (e.g. a low 𝑉SG in combination with a high 𝑉TG) can re-
sult in additional confinement for the Andreev levels formed in the semiconducting weak
link. A change in the confinement has been shown to change the magnitude and direc-
tion of the SOI [37], and also affects the scattering between different levels. Together,
the interplay between these effects can modify the Andreev level spectrum in the weak
link and, as a consequence, also affect the SDE. In particular, a phase shift 𝜑 ≈ 𝜋 in the
current-phase relation of the Andreev levels can generate a switch in the polarity of the
SDE, as predicted by Yokoyama et al [8]. Such a phase shift can either originate from the
changing confinement or Zeeman splitting of the Andreev levels in a magnetic field. On
the other hand, Legg et al. [5] also predicted sign changes in the SDE polarity as the result
of subband crossings in the hybrid. However, in this proposal a magnetic field component
perpendicular to the nanowire axis is also required, which we do not apply in the current
experiment. Thus, we cannot attribute our observations to subband physics. Furthermore,
the addition of a small out-of-plane component does not significantly alter the picture (see
supplemental information Fig. 9.19).

9.5 Conclusions
In conclusion, we have demonstrated the existence and gate-tunability of the Josephson
diode effect in proximitized InSb nanowires. We have identified that it has a strong
dependence both on the electronic density in the leads, as well as in the semiconducting
weak link. For a high density in the leads, the angle for which diode efficiency is
maximized is fixed. We interpret this angle as the direction of the spin-orbit field in the
proximitized leads, which is in agreement with previous work on devices with similar
geometry [33]. Likewise, the semiconducting weak link can give rise to the SDE, albeit
with much weaker efficiency. There, the maximum angle is strongly modulated by the
tunnel gate voltage, which we assign to a modification of the confinement potential. Our
measurements at high magnetic fields point to finite-momentum Andreev bound states
as a microscopic mechanism for the observed diode effect, in accordance with recent
theoretical proposals and experiments [9, 16]. Finally, we show that the superconducting
diode effect is also present when the field is applied parallel to the nanowire axis.

This work for the first time demonstrates the impact of the electronic density in the leads
and semiconducting weak link on the SDE. As a consequence, gate-tunable superconduct-
ing diodes can be utilized as a building block of superconducting quantum devices. For
example, proposals already exist which envision the use of these devices as on-chip gy-
rators and circulators [22]. Moreover, the gate-tunable switching current allows the InS-
b/Al JJ to act as a Josephson field-effect transistor - establishing it as a highly versatile and
promising circuit element for superconducting electronics. In addition, this system can be
readily used to create superconducting quantum interference devices (SQUIDs), in order
to investigate the current-phase relation of a Josephson diode. In this case, one arm of
the loop is tuned to the regime with a strong SDE and well defined maximum SDE angle,
while the reference arm can be tuned to a trivial regime without any SDE. As theoretically
proposed, gate-tunable junctions can also be embedded in many-loop interferometers to
achieve unprecedentedly high efficiencies [42]. Further improvements to the circuits can
be made through embedding quantum dots in the junction, which may allow for achieving
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the SDE at zero magnetic field [43].

Data Availability and Code availability
Raw data presented in this work and the data processing/plotting codes are available at
https://doi.org/10.5281/zenodo.7351273.

9.6 Supplemental information
9.6.1 Device fabrication
The InSb/Al hybrids presented in this work are fabricated on pre-patterned substrates,
following the shadow-wall lithography technique described in [12, 25]. Specific details of
the substrate fabrication, nanowire oxide removal and superconductor deposition can be
found in the supplementary information of [13, 44].

9.6.2 Measurements setup
Samples are measured in a dilution refrigerator with a base temperature of ∼ 20mK,
equippedwith a three-axis vector magnet. We note that the switching current measured in
a Josephson junction has a stochastic nature. As we are looking for quite small switching
currents, a single 𝐼 -𝑉 curve is not enough to systematically investigate the superconduct-
ing diode effect. Instead, we employ a setup which allows us to record a large number of
switching events and look for the average of the obtained distributions. The circuit used
for this is shown in Fig. 9.6A, together with a false-color scanning electron micrograph in
Fig. 9.6B. We apply a current bias 𝐼 with a triangular waveform and a frequency of 20Hz.
In Fig. 9.6C, we show a cartoon of a single period of this wave in the bottom panel, and
the resulting voltage drop on the sample in the top panel. During the first half-period of
the wave, the current is swept from negative to positive bias. The junction goes from a
resistive state into the superconducting state, where the voltage drop 𝑉 = 0𝜇V. As the bias
is increased, the junction switches again to the normal state which causes the voltage to
jump to a finite value. Throughout the measurement, we employ a threshold voltage 𝑉 +

th
(light blue line). The circuit detects the voltage drop on the sample surpassing the thresh-
old voltage, and sends an optical trigger to the current meter at that time 𝑡+ (dotted dark
blue line). The current meter records the current bias value 𝐼+ (dashed dark blue line). In
the second half of the wave’s period, the situation is reversed. The bias now sweeps from
positive to negative, and at some point the junction switches from the superconducting
state to normal state. At this time 𝑡− the voltage drop on the sample drops below the
negative threshold 𝑉 −

th, and the current meter records the current bias value 𝐼−. For each
data point (𝑉SG,𝑉TG,𝐵,𝜃 ,𝐵z) presented in this work, 200 periods of the waveform are swept
resulting in 200 recorded values of 𝐼+ and 𝐼− each. In Fig. 9.7, four examples of resulting
switching current distributions are shown for various values of the magnetic field. The
reported switching current values 𝐼+SW and |𝐼−SW| in this work are calculated as the mean
of each 200−datapoint distribution. We note that at low values of 𝐵, the switching current
distributions are typically broader as evidenced by their standard deviation 𝜎 (Fig. 9.7A,
bottom panel). We suspect this is the result of heating of the mixing chamber due to the
presence of magnetic components in the sample puck.

https://doi.org/10.5281/zenodo.7351273
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Figure 9.6: Measurement circuit and technique. (A) Electrical circuit used to measure switching current
distributions. (B) False-color scanning electron micrograph of a Josephson junction which is lithographically
identical to the measured devices. The junction is on the order of ∼ 55nm short, and the hybrid segments are on
the order of ∼ 1𝜇m long. (C) Illustration of the acquirement of a single switching current event. Top: resulting
voltage drop 𝑉 on the junction. Bottom: applied triangular wave with a frequency of 20Hz. On the up sweep, the
circuits detects the surpassing of the threshold voltage 𝑉 +

th by the sample voltage. This sends an optical trigger
to the current meter, which records the switching current event 𝐼 +. Similarly, 𝐼 − is recorded on the down sweep
of the wave.

9.6.3 Data analysis
Whenever the magnetic field is applied in the plane perpendicular to the nanowire axis,
the diode efficiency is modulated. The angle with a maximum SDE efficiency can be de-
termined by fitting the diode efficiency 𝜂(𝜃);

𝜂(𝜃) = 𝑎 sin (𝜃 + 𝑐)+𝑑
𝜃max = −𝑐 +90∘ (9.1)

Here the amplitude (𝑎), phase (𝑐) and offset (𝑑) are free fitting parameters while the period
of the sine is fixed to 360∘. The fitting procedure is applied to various 2D maps of 𝜂 versus
𝜃 and either 𝑉SG or 𝑉TG, notably in main text 9.2, main text 9.3, Fig. 9.14 and Fig. 9.23.
In each figure, the typically-small offset is subtracted from the raw data. From the fits we
also obtain the 𝑅2 value, and set a threshold of 𝑅2 > 0.85 for a good fit. In addition, we
get the standard deviation of the three fitting parameters 𝜎a, 𝜎c and 𝜎d. Analysis and raw
switching current maps of the four aforementioned figures is shown in Fig. 9.8, Fig. 9.9,
Fig. 9.10, Fig. 9.15 and Fig. 9.24.
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Figure 9.7: Examples of switching current distributions at variousmagnetic field values. (A) Top: Switch-
ing current 𝐼 +SW, |𝐼 −SW | as a function ofmagnetic field 𝐵, taken at𝑉SG = 2.21V,𝑉TG = 3.60V and 𝜃 = 67∘ (see alsomain
text Fig. 9.4). Middle: SDE efficiency 𝜂 as a function of B. Bottom: Standard deviation 𝜎 of the switching current
distributions as a function of magnetic field. Below |𝐵| < 30mT, the distributions have a larger spread. We pre-
sume this results from heating of the mixing chamber near 𝐵 = 0T due to the presence of magnetic components
in the sample puck. (B) Switching current distributions at 𝐵 = 0T. Despite the large spread of the distributions,
the average switching current for both current bias polarities is the same. (C) At 𝐵 = 10mT, 𝐼 +SW and |𝐼 −SW | differ
significantly which results in a diode efficiency of almost 𝜂 = 0.1. (D) At 𝐵 > 30mT, heating effects are diminished
which results in sharper distributions. Also displayed in main text 9.1. (E) At higher fields, the distributions
remain sharp but move closer together as the SDE is diminished.
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9.6.4 Additional data
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𝑅2 = 0.85, indicating a poor sinusoidal fit. (D) Standard deviation 𝜎a of the amplitude of the sine fits. (E) Standard
deviation 𝜎c of the phase of the sine fits. Below 𝑉SG < 1.15V, the phase becomes poorly defined. (F) Standard
deviation 𝜎d of the offset of the sine fits. In panels (D,F), the dashed grey line corresponds to a change in the
measurement setup where we switched from sequential detection of 𝐼 +SW and |𝐼 −SW | to simultaneous detection.
As a result, the measurement time is halved and the thermal stability of the device improved, creating a more
accurate fit of the amplitude and offset of the sine functions.



9.6 Supplemental information

9

267

2.1 2.2 2.3 2.4 2.5
VTG (V)

0.000

0.001

0.002

0.003

σ a

2.1 2.2 2.3 2.4 2.5
VTG (V)

0.00

0.25

0.50

0.75

1.00

R
2

2.1 2.2 2.3 2.4 2.5
VTG (V)

0

10

20

30

σ c
 (
∘

)

2.1 2.2 2.3 2.4 2.5
VTG (V)

0.000

0.001

0.002

0.003

σ d

2.1 2.2 2.3 2.4 2.5
VTG (V)

0

120

240

360

θ 
(∘

)

2.1 2.2 2.3 2.4 2.5
VTG (V)

0

120

240

360

θ 
(∘

)

0 10 20 30
I+SW (nA)

0 10 20 30
|I−SW| (nA)

⋅ sin(θ+ c) + da

a ⋅ sin(θ+ )+ dc a ⋅ sin(θ+ c) +d

A B

C D

E F

Figure 9.9: Switching current and analysis underlyingmain text 9.3A-C at VSG = 2.0V (A,B) 𝐼 +SW and |𝐼 −SW |
versus 𝑉TG and 𝜃 . (C) 𝑅2 of the sinusoidal fit to the data. 𝑅2 remains above 𝑅2 > 0.85 over a large range of tunnel
gate voltages and corresponding junction transmission, indicating a good sinusoidal fit. (D) Standard deviation
𝜎a of the amplitude of the sine fits. (E) Standard deviation 𝜎c of the phase of the sine fits. (F) Standard deviation
𝜎d of the offset of the sine fits.
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Figure 9.10: Switching current and analysis underlying main text 9.3D-F at VSG = 0.8V (A,B) 𝐼 +SW and
|𝐼 −SW | versus 𝑉TG and 𝜃 . (C) 𝑅2 of the sinusoidal fit to the data. 𝑅2 often drops below 𝑅2 < 0.85, indicating a
non-sinusoidal SDE resulting from junction physics. (D) Standard deviation 𝜎a of the amplitude of the sine fits.
(E) Standard deviation 𝜎c of the phase of the sine fits. (F) Standard deviation 𝜎d of the offset of the sine fits.
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Figure 9.11: Switching current and analysis underlying main text 9.4. (A) Polar plot of 𝐼 +SW, with 𝜃 on the
polar axis and 𝐵 on the radial axis. (B) Polar plot of |𝐼 −SW |, with 𝜃 on the polar axis and 𝐵 on the radial axis.
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Figure 9.12: Regular plot of the diode efficiency versus field magnitude, same data as main text 9.4. (A)
Regular plot of 𝜂 as a function of rotating field with increasing magnitude. (B) Line cuts of 𝜂 as a function of 𝜃 at
various magnetic field values taken at the locations indicated by the colored bars in panel A. At 𝐵 = 0mT (light
blue), the SDE is absent. At 𝐵 = 12mT (light green), the SDE is sinusoidal 𝜂 ∝ sin(𝜃). At 𝐵 = 41mT (purple), the
SDE becomes proportional to 𝜂 ∝ sin(𝜋 ⋅ sin(𝜃)), as predicted by [16].
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Figure 9.13: Switching current and analysis underlying main text 9.5. (A,B) 𝐼 +SW and |𝐼 −SW | versus 𝑉SG and
𝐵z. (C) 𝜂 versus 𝑉SG and 𝐵z. Same plot as main text 9.5A, with the difference that 9.5A uses the absolute value
of 𝐵z presented here and is cropped at 𝐵z = 0T.
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Figure 9.14: Additional data: SDE dependence on tunnel gate voltage. (A) Top: Diode efficiency 𝜂 versus
𝑉TG and 𝜃 . Taken at a low super gate voltage 𝑉SG = 0.7V and 𝐵 = 12mT. Middle: Estimation of the maximum
efficiency angle 𝜃m𝑎𝑥 . Bottom: Maximum diode efficiency 𝜂m𝑎𝑥 . (B) Example of the SDE taken at the location
indicated by the colored bar in panel (A). The SDE is proportional to 𝜂 ∝ sin(𝜋 ⋅ sin(𝜃)). (C) 𝜂m𝑎𝑥 as a function of
average switching current, taken along 𝜃 = 105∘. In all panels, grey data points correspond to a poor sinusoidal
fit (𝑅2 < 0.85) of 𝜂 as a function of 𝜃 .
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Figure 9.15: Additional data: Switching current and analysis underlying Fig. 9.14. (A,B) 𝐼 +SW and |𝐼 −SW |
versus 𝑉TG and 𝜃 . (C) 𝑅2 of the sinusoidal fit to the data. 𝑅2 mostly stays below 𝑅2 < 0.85, indicating a non-
sinusoidal SDE resulting from junction physics. (D) Standard deviation 𝜎a of the amplitude of the sine fits. (E)
Standard deviation 𝜎c of the phase of the sine fits. (F) Standard deviation 𝜎d of the offset of the sine fits.
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Figure 9.16: Additional data: Persistent SDE at high field perpendicular to the nanowire axis. (A) 𝐼 +SW
and |𝐼 −SW | versus 𝐵, taken at 𝑉SG = 2.21V, 𝑉TG = 3.61V and 𝜃 = 65∘. (B) 𝜂 versus 𝐵. The SDE persist up to a high
perpendicular magnetic field 𝐵 = 140mT, above which the switching current cannot be reliable detected.
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Figure 9.17: Additional data: SDE at high field perpendicular to the nanowire axis. (A,B) 𝐼 +SW and |𝐼 −SW |
versus 𝑉SG and 𝜃 , taken at 𝑉TG = 3.61V and 𝐵 = 60mT. (C) 𝜂 versus 𝑉SG and 𝜃 . (D) 𝐼 +SW, |𝐼 −SW | and 𝜂 taken at the
maximum efficiency angle 𝜃 = 105∘. The SDE frequently inverts sign as the super gate voltage is changed.
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Figure 9.18: Additional data: cross-capacitance between tunnel gate and super gates. (A,B) 𝐼 +SW and |𝐼 −SW |
versus 𝑉TG and 𝑉TG, taken at 𝐵 = 12mT and 𝜃 = 105∘. (C) 𝜂 versus 𝑉TG and 𝑉SG. Below 𝑉SG < 1.15V (dashed
line), the SDE is strongly reduced. (D) Device conductance as a function of 𝑉TG and 𝑉SG, showing a minimal
cross-capacitance between the gates. Data taken by applying a small bias voltage 𝑉dc = 1mV across the device
and measuring the resulting current 𝐼 , such that 𝐺 = 𝐼 /𝑉dc.
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Figure 9.19: Additional data: Evolution of the superconducting diode effect as a function of magnetic
field parallel to thenanowire axis. (A-C) Diode efficiency 𝜂 as a function of super gate voltage𝑉SG and parallel
magnetic field 𝐵z without any magnetic field component perpendicular to the nanowire axis. (B) Examples of 𝜂
as a function of 𝑉SG taken at locations indicated by the colored bars in panel (A). (C) Examples of 𝜂 as a function
of 𝐵z taken at locations indicated by the colored bars in panel (A). (D-E) Diode efficiency 𝜂 as a function of super
gate voltage 𝑉SG and parallel magnetic field 𝐵z with a small field applied along the maximum efficiency angle,
𝐵 = 12mT and 𝜃 = 105∘. (E) Examples of 𝜂 as a function of 𝑉SG taken at locations indicated by the colored bars
in panel (D). (F) Examples of 𝜂 as a function of 𝐵z taken at locations indicated by the colored bars in panel (D).
A perpendicular component of the magnetic field does not alter the observed SDE significantly. Thus, we do not
attribute the observations to subband physics as predicted by [5].
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Figure 9.20: Additional data: Switching current maps underlying Fig. 9.19. (A,B) 𝐼 +SW and |𝐼 −SW | versus 𝑉SG
and 𝐵z corresponding to Fig. 9.19A-C. (C,D) 𝐼 +SW and |𝐼 −SW | versus 𝑉SG and 𝐵z corresponding to Fig. 9.19D-F.
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Figure 9.21: Additional data: Rapid sign inversion under a high parallel Zeemanfield. (A,B) 𝐼 +SW and |𝐼 −SW |
versus 𝑉TG and 𝐵z. The tunnel gate voltage sweeps across many resonances in the junction, causing amodulation
in the switching current. Taken at 𝑉SG = 0.7V. (C) 𝜂 versus 𝑉TG and 𝐵z. As the tunnel gate sweeps across junction
resonances, the diode efficiency frequently inverts its sign and its magnitude is strongly modulated. (D) 𝐼 +SW, |𝐼 −SW |
and 𝜂 as a function of 𝑉TG at 𝐵z = −0.5T.
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Figure 9.22: SDEmeasured in a DC setup. (A,B) 𝐼 -𝑉 curves taken as a function of 𝜃 at 𝑉SG = 3.0V, 𝑉TG = 2.0V
and 𝐵 = 30mT. Data is taken in a 2-terminal geometry and corrected for a series resistance of 5815Ω. Dashed
green lines indicate the extracted switching current values. Curves shown inmain text 9.1C are taken from these
maps at the locations indicated by the colored bars (𝜃 = 174∘). (C) Diode efficiency 𝜂 taken from the DC maps in
panel (A). The DC setup only takes a single switching current value, such that the stochastic nature of switching
current results in a large spread in 𝜂 as a function of 𝜃 . Moreover, the 𝜂(𝜃) appears to be non-sinusoidal, in
agreement with the high-field data shown in 9.4 and Fig. 9.12.
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Figure 9.23: Reproduction of the dependence of superconducting diode effect on super gate voltage
on a second device. (A) Top: Diode efficiency 𝜂 as a function of super gate voltage 𝑉SG and 𝜃 , taken with
𝑉TG = 4.5V and 𝐵 = 12mT. Middle: Estimation of the maximum efficiency angle 𝜃m𝑎𝑥 underneath the hybrid.
Bottom: Maximum diode efficiency 𝜂m𝑎𝑥 as a function of 𝑉SG. The dashed black line indicates that the diode
effect is suppressed below 𝑉SG < 1.15V. (B) Top: lack of an SDE. Bottom: Presence of an SDE. Linecuts taken
from (A) top, at locations indicated by the colored bars. In the bottom panel, the dashed pink line specifies the
maximum efficiency angle, whereas the maximum diode efficiency is depicted by the dashed purple lines. (C)
𝜂m𝑎𝑥 as a function of average switching current, taken along 𝜃 = 105∘. In all panels, grey data points correspond
to a poor sinusoidal fit (𝑅2 < 0.85) of 𝜂 as a function of 𝜃 .
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Figure 9.24: Additional data: Switching current and analysis underlying the reproduction device,
Fig. 9.23. (A,B) 𝐼 +SW and |𝐼 −SW | versus 𝑉SG and 𝜃 . (C) 𝑅2 of the sinusoidal fit to the data. 𝑅2 oscillates around
𝑅2 = 0.85, indicating an SDE due to a mix of junction and lead physics. (D) Standard deviation 𝜎a of the amplitude
of the sine fits. (E) Standard deviation 𝜎c of the phase of the sine fits. (F) Standard deviation 𝜎d of the offset of
the sine fits.
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10
Conclusion and Outlook

The bulk of this thesis investigated the properties of semiconductor-superconductor hy-
brid nanowires, in an attempt to create Majorana zero modes following the Lutchyn-Oreg
approach. Time and effort, however, have taught us that this is not a simple task. In this
chapter, we will reflect on what was learned during this endeavor. Although the approach
as mentioned above turned out to not be feasible, we have demonstrated the creation of
PoorMan’s Majorana zeromodes in an artificial Kitaev chain. While these are not topolog-
ically protected, they are predicted to possess all of the other Majorana properties - most
notably the non-abelian exchange statistics. The way forward thus seems unmistakably
clear: Focusing efforts on the development of quantum information based on the imple-
mentation of a Kitaev chain, rather than sticking to the continuous nanowire approach.
This chapter will briefly discuss future prospects for both.
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10.1 Beyond-beyond Lutchyn-Oreg
10.1.1 Resolving the Majorana paradox
In the initial stages of this Ph.D. project, the state-of-the-art semiconductor-
superconductor hybrids were grown by depositing aluminum films on the InSb nanowire
growth chip [1]. These nanowires had two major downsides: The superconducting shell
could not be grounded, and the unstable interface between InSb and Al put constraints
on the lifetime of the growth chip and the thermal budget of the device fabrication. We
have thus developed shadow-wall lithography to counter these effects. On the one hand,
moving the superconductor deposition to be one of the last fabrication steps allows the
bulk of the device fabrication to be done as pre-fabrication without any limiting thermal
budget or time constraints. This enabled low-quality fabrication steps, such as room-
temperature sputtering of the gate dielectric, to be replaced with high-quality processes
like atomic layer deposition of Al2O3 and HfO2 at elevated temperatures. Indeed, both
the quality and reproducibility of these devices improved tremendously as a result. On
the other hand, the superconductor deposition at an angle while the nanowire is already
placed on a substrate opens up the ability to connect the superconductor to the film on
the substrate - thereby creating a ground connection. Crucially, this allowed the hybrid
section of the nanowire to be probed from both sides. All in all, shadow-wall lithography
has provided a major breakthrough in the fabrication of semiconductor-superconductor
hybrids.

One of the main drawbacks of the relatively-thick aluminum as the superconductor is
the poor field compatibility of the devices. This naturally led to the question if we could
reach sufficiently high Zeeman energies in our hybrids. Moreover, the superconducting
gap would have shrunk significantly in a typical magnetic field for which zero-energy
states form in the hybrid. We have consequently reduced the thickness of the aluminum
film in combination with spin-mixing provided by platinum adatoms. This allowed us to
increase the field compatibility of the hybrid devices drastically.

Utilizing the technique of radio-frequency reflectometry, we have done extensive studies
of zero-energy states in semiconductor-superconductor hybrids. We found that such
states can evolve with elaborate patterns, all of which compatible with the behavior
of Majorana zero modes. These include stable zero-bias peaks over large values of
the parameter space, parabolic patterns in the parameter space, and oscillations with
increasing amplitude as a function of the magnetic field. However, the ability to observe
the other side of the hybrid showed a remarkable lack of end-to-end correlation. This
implies that the observations can not be attributed to a topological phase transition of the
hybrid nanowire segment.

Around the same time, we have implemented the technique of nonlocal conductance
spectroscopy to investigate the bulk properties of hybrid nanowires. Even though we did
observe a reopening of the induced gap in a single nanowire, it was not accompanied by
the formation of zero-bias peaks. Hence, we do not believe this reopening was associated
with a topological phase transition. Instead, it is more likely the result of a relatively
short wire with a low carrier density, where a handful of discrete states are crossing
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zero energy due to a combination of the Zeeman effect and the orbital effect of the
magnetic field. Our investigation of the superconducting properties at zero magnetic
field, however, turned out to be more fruitful, as we were able to show that the coupling
between the semiconductor and the superconductor could reproducibility be tuned
between strong-coupling and weak-coupling regimes. This turned out to be especially
important because near the crossover between these regimes, there is the possibility to
generate individual Andreev bound states in the hybrid segment. Indeed, this was a
critical development that enabled the creation of a minimal Kitaev chain. The same effect
also enables control over the superconducting diode effect in nanowire-based Josephson
junctions.

Our observations demonstrate that there is a fundamental issue when the hybrids are
relatively long. The absence of end-to-end correlation and the observation of discrete
states, even in long nanowires, suggests that strong disorder is present in these samples.
In fact, it seems that the disorder potential is large compared to the inter-subband spacing
in these hybrids [2]. A pristine sample should indeed exhibit specific features as the
result of subband physics, such as a discrete reduction of the induced gap [3]. While we
did observe a reduction of the induced gap in the experiments of chapter 7, the stepwise
features that should accompany the transition between subbands were not present. Thus,
it seems that the disorder is strong enough to cause a mixing of the subbands and a
resulting absence of a subband structure.

The works in this thesis have shown that through a combination of improved fabrication,
improved materials, and new detection methods, the created devices exhibit a reduction
of signatures of Majorana zero modes. This indeed contradicts the expectation that with
better samples, one would see an improvement in the observed Majorana signatures.
We can then only conclude that the observation of Majorana signatures in the past was
unrelated to a topological phase transition - thereby resolving the Majorana paradox¹
introduced in chapter 1.

10.1.2 The need for better materials
The idea that disorder limits the observation of a topological phase transition was also
explored in theory quite recently [4, 5]. These works put an upper limit on the density of
charge impurities in the material of ∼ 1015 cm−3, which corresponds to a mobility on the
order of 300000cm2/V⋅s. The InSb nanowires used in this work are obtained from growth
chips where the nanowires have mobilities around 40000cm2/V⋅s [6]. However, the
wires used for that mobility characterization have a substantially larger diameter. As the
mobility is limited by scattering on the surface and hence the surface-to-volume ratio, it is
more likely that the actual mobility of the nanowires used in this work is lower, maybe as
low as 20000cm2/V⋅s. Also note that the required mobility number is given for a hybrid
nanowire, whereas the measured mobility is actually for the semiconductor nanowire

¹The Majorana paradox: There exists an abundance of experimental work which claims to have observed Ma-
jorana zero modes. Yet, not a single lab has demonstrated a qubit or any experiment more advanced than the
demonstration of zero-bias peaks.
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only. This number is only expected to worsen due to the fabrication of the samples, which
removes the native nanowire oxide and replaces it with a polycrystalline metal. Yet, it is
not known how much worse it gets - experiments that measure the mobility can not be
executed on the structures once the superconductor is deposited. It is safe to say that even
order of magnitude improvement to the semiconductor mobility would be insufficient to
allow topological superconductivity to arise in the hybrid structures. Other materials,
like shallow 2-dimensional electron gases in InSb, InAs, or InAsSb, are likely to suffer the
same fate as their mobility numbers before nanofabrication are comparable [7–9]. Thus,
dramatic improvements in the base quality of the semiconductors are needed as a start.

The optimization of hybrid structures may also include a barrier material between the
semiconductor and superconductor. Such a barrier would decouple the semiconductor
and the superconductor, where the thickness of the barrier material provides an addi-
tional tuning knob to control the electronic density and semiconductor-superconductor
coupling. The inclusion of such a layer is also expected to increase the mobility of the
hybrid structure in proportion to the thickness of the barrier material. This has been well
established for InAs-based hybrids [10, 11] through the use of an InGaAs barrier material.
For InSb, the natural material of choice is CdTe, as it is nearly lattice matched to InSb.
Developments of these heterostructures is still in an early stage, however, as field-effect
transistors have not yet shown an enhanced mobility and exhibit hysteretic voltage
thresholds [12]. In addition, induced superconductivity has yet to be demonstrated in
InSb hybrids with a CdTe barrier. Here, too, the burden lies in improving the material
stack quality.

In addition, it is currently unknown what is the electronic density at which the InSb/Al
nanowires in this work operate. Under the assumption that these hybrids form a band
structure that is discretized in one-dimensional subbands, this means that it is yet un-
known how many of these are active for a given gate voltage. This could, in principle,
be estimated through simulations [3], although this does require information on the band
offset between InSb and Al (and potentially including any barrier material) - information
that is currently not known. Thus, it would be beneficial to first estimate this band off-
set through angle-resolved photoemission experiments, as was done for the InAs/Al sys-
tem [13]. This input can then be used to design hybrid structures with the optimal geom-
etry to realize a topological phase [3]. Any such hybrids will then have to be subjected
to the same three-terminal experiments presented in chapter 7 in order to investigate the
properties of the induced superconductivity, which in turn provides feedback for the de-
sign of the next generation of devices. Finally, reproduction and large-scale mapping of
the phase diagrams of such devices as we did in chapters 5 and 7 can provide valuable
information to calibrate how much disorder is present in the hybrid devices [5].

10.2 Beyond Poor Man’s Majorana zero modes
The realization that Andreev bound states in short hybrid segments can be used to medi-
ate coherent transport between the two ends of the hybrid has proven to be quintessential.
It directly enabled a different approach to the formation of Majorana zero modes, which
we demonstrated with the realization of an artificial Kitaev chain. With the prospects
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for the continuous nanowire approach being so inconceivably unfavorable, the artificial
Kitaev chain will likely revolutionize the research into Majorana zero modes and topolog-
ical superconductivity. While the Majorana zero modes demonstrated in chapter 8 are
not topologically protected, this can be achieved by making the chain sufficiently long.
Yet, the size of the topological gap that would emerge in a long chain is of the size of
the interaction strength between the coupled quantum dots - in our case, on the order of
2Δ ∼ 25𝜇eV. This value is indeed relatively small and will need to be improved. Finally,
we note that the Poor Man’s Majorana zero modes in a chain with only two dots already
possess non-abelian exchange statistics and can readily be used for the development of
qubits.

10.2.1 Majorana parity readout and fusion
As we have seen in section 2.2.1, the presence of Majorana zero modes in a topological
superconductor introduces a degeneracy in the ground state. The two degenerate
states only differ in the occupation number of the nonlocal fermion comprised of the
two Majoranas. Quantum information can be encoded in the parity of the pair of
Majoranas 𝑝12 = 𝑖𝛾1𝛾2, using the even and odd occupation of the nonlocal fermion
as the two basis states. Thus, the key challenge is to be able to read out the parity
of a pair of Majoranas. Fortunately, a decade of research into Majorana zero modes

a b

Figure 10.1: Parity readout andMajorana fusion in the Kitaev chain. a. Parity readout of a minimal Kitaev
chain through a joint quantum capacitance measurement on both quantum dots. 𝛼1 and 𝛼2 represent the lever
arms to the quantum dots. In particular, when either is zero, we have 𝜃 = 0 or 𝜃 = 𝜋/2, resulting in a loss of the
quantum capacitance signal. b. Fusion protocol using a Kitaev chain with four sites. Depending on the order of
various operations, in this case, the cutting of the chain and the initialization of the chain, one expects different
outcomes of the parity measurement 𝑝12. Adapted from [14].
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has resulted in ample theoretical proposals on how to do this in the generic case
of continuous wires. These proposals typically rely on coupling the pair of Majoranas
to a common quantum dot [15, 16], or embed both in the arm of an interferometer [17, 18].

In general, a pair of Majoranas in a topological superconductor forms a delocalized
fermionic mode. The consequence of their spatial separation is that local perturbations
do not affect the system, which both protects the system and simultaneously complicates
the readout of its properties - such as the parity of the Majorana pair. In the minimal
Kitaev chain, this is reflected as stability against changes in the chemical potential of one
of the two quantum dots. The implication is that measurements on one of the quantum
dots, like a measurement of the charge, cannot distinguish between the two parity ground
states of the chain [19]. Fortunately, however, the chain is not stable against variations
of the chemical potential of both quantum dots. This instability can indeed be used
to read out the parity of the Majorana pair. One way to do this is to simultaneously
apply a perturbation of the chemical potential on both quantum dots and look at the
fluctuations of the combined charge, using joint quantum capacitance measurements or
shared coupling to a single-electron transistor [14, 19] as shown in figure 10.1a.

Once parity measurements have been realized, the road seems paved for the real break-
through experiments: demonstration of the non-abelian exchange statistics. This can be
pursued through fusion or braiding experiments, both of which require a setup with at
least four Majorana zero modes. Many proposals for either type of experiment have been
done over the last decade for continuous nanowires [15, 16, 18, 20], of which the same
ideas apply to the Kitaev chain system. In particular, the Kitaev-chain adaptation of a
fusion proposal, as depicted in figure 10.1b, seems the most viable in the near future. In
such an experiment, one attempts to sequentially fuse different pairs of Majorana modes.
Such a fusion is equivalent to a measurement of the parity of that Majorana pair: Fusing
them either yields the vacuum state or a single fermion, indeed corresponding to the even
and odd parity states. Like braiding, the order in which various operations are carried
out influences the final result. Demonstrating such fusion rules would be an important
stepping stone towards braiding experiments.

One of the things to consider is the time scale of such a fusion protocol. In order to
avoid diabatic errors, the operations need to be executed sufficiently slowly [20]. The
timescale 𝜏 = ℎ̄/Δ for such errors is set by the induced gap of the system - that is, our
value of the coupling parameter Δ. Depending on the exact experimental implementation
of the protocol, different fusion outcomes could be distinguishable if the operations are
on the order of 𝜏 = 25ℎ̄/Δ ∼ 1ns or slower [14]. On the other hand, the dephasing of the
system puts an upper bound on the allowed time scale. Any deviations or fluctuations
from the exact sweet spot in a minimal chain effectively couple the two Majorana modes,
which results in fluctuations of their parity. Finally, flips in the parity can also be caused
by quasiparticle poisoning. The time scale associated with this is not yet known, yet it
plays a crucial role in the viability of future fusion and braiding experiments. Once parity
readout has been demonstrated, the quasiparticle poisoning time can be readily obtained
by executing time-resolved parity measurements.
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10.2.2 Kitaev chains and Majorana qubits protected by a charging
energy

The realization that quasiparticle poisoning is the main threat to the operation of
Majorana-based quantum processors [21, 22] in fact inspired the latest generation of
qubit designs [15, 20]. Such designs typically employ a charging energy in order to
suppress quasiparticle poisoning of the qubit. Therefore, adapting the minimal Kitaev
chain to use a floating superconductor [23] instead of a grounded superconductor could
help incorporate a charging energy and thereby suppress quasiparticle poisoning. In
addition, this would make it compatible with the many proposals for the continuous
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Josephson
junction

Superconducting
lead

Superconducting
bridge

Kitaev chain 
gates

Josephson 
junction

gates

Figure 10.2: Design for a Kitaev chain with tunable charging energy. To study the emergence of Majorana
zeromodes in a floating Kitaev chain, this design can be used. The Kitaev chain is still formed out of two quantum
dots separated by a narrow superconductor. The dots are formed with an array of gates underneath, and a
gate for the hybrid segment can be used to tune its chemical potential. Normal leads can be used to perform
spectroscopy on the two quantum dots. The superconducting segment is connected to a Josephson junction
via the superconducting bridge. Gates underneath the Josephson junction can be used to tune the connection
between the Kitaev chain and the grounded superconducting lead, resulting in a gate-tunable charging energy
of the chain.
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nanowire approach, which rely on a finite charging energy for the operations - such
as the conversion of parity to charge [20, 24, 25]. Instead of simply interrupting the
superconducting lead, it may be advantageous to replace it with a gate-tunable junction
so that the device can be operated either with or without an charging energy [26]. An
example of such a device is shown in figure 10.2. The minimal Kitaev chain is still
formed using two quantum dots connected by a superconducting segment. However,
the superconducting segment in this design loops around to a different part of the
nanowire. There, a Josephson junction is formed with a second connecting piece of
superconductor, while a narrow gate is used to deplete the part of the semiconducting

Quantum 
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Majoranas
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leads

Kitaev chain 
gates

Gate-tunable
Josephson
junction

Superconducting
lead

Quantum dot
for readout

Loop for 
flux control

Josephson 
junction

gates

Figure 10.3: Design for a loop qubit realizedwith two short Kitaev chains and a tunable charging energy.
A prototypical loop qubit requires the presence of four Majorana modes and can be realized using two minimal
Kitaev chains. The gate-tunable Josephson junction can be used to adjust the charging energy of the qubit. A
central dot can be used to detect the parity of the two inner Majorana modes. The two normal leads can be used
to perform spectroscopy on the two outer dots in order to tune up the system. Otherwise, tuning of the quantum
dots and readout of arbitrary pairs of Majoranas may be implemented via charge sensing of individual or pairs
of quantum dots. In addition, the loop provides an additional knob to control the qubit via tuning of the flux
with an external magnetic field.
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wire which connects the Josephson junction and the right Ohmic contact. A large gate
underneath the Josephson junction can be used to control its transmission, acting similar
to those with a global back gate, as presented in chapter 4. If the junction is fully open,
a supercurrent effectively connects the superconducting bridge to the superconducting
lead without any additional resistance. On the other hand, the junction can be fully
depleted, which disconnects the Kitaev chain from the electrical ground, so that it attains
a finite charging energy. Combined with parity readout, the tunable junction can thus be
used to determine the relation between the quasiparticle poisoning time and the charging
energy.

It is straightforward to extend the design in order to form a prototypical Majorana qubit, as
shown in figure 10.3. As a Majorana qubit requires at least four Majorana zero modes, this
can be realized with two copies of a minimal Kitaev chain. Connecting them via a shared
superconductor effectively realizes the Majorana box qubit [15, 18], which can be used to
demonstrate measurement-based qubit operations. In such a qubit, parity measurements
of different pairs of Majoranas act as the various qubit gates, depending on which pair is
measured. This can be implemented using the joint readout of a pair of quantum dots via
quantum capacitance measurements or shared coupling to a single-electron transistor.

10.2.3 Majoranas in longer Kitaev chains
As we have seen, the minimal Kitaev chain lacks stability against variations of system
parameters and only hosts well-separated Majorana zero modes at a specific sweet
spot. It is for this reason that the Poor Man’s Majorana zero modes are said to be
non-topological [19], despite exhibiting non-abelian exchange statistics. The minimal
Kitaev chain does not really have a bulk excitation gap to protect it. However, this
changes as more sites are added to the chain. Already for a chain with three sites, the
central quantum dot should exhibit a quasiparticle gap whenever the chain is tuned
near the sweet spot while the outer two dots again host the Majorana zero modes. In a
nanowire geometry, however, it will be challenging to show such a bulk gap because its
one-dimensional nature does not allow to fabricate an additional probe for the central
quantum dot. Instead, one can look to measure the supercurrent between the two
superconducting leads surrounding the dot. As an indirect measure, the absence of
states near zero energy when the chain is tuned near the sweet spot should alter the
supercurrent [27]. To obtain a direct observation of the bulk gap, it may be advantageous
to switch to a different material platform. Two-dimensional electron gases in InAsSb
have already demonstrated to possess the necessary ingredients for creating artificial
Kitaev chains [28], so extending it into a three-site chain with an additional probe for the
central dot should be well within reach.

Longer chains will also benefit any potential qubit designs in the future. The minimal
chain does not possess any stability against variations in the ratio of Δ/𝑡 , and indeed this
may be the main cause for the dephasing of any Majorana qubit. Fortunately, stability
against these fluctuations is already gained for a three-site chain and only improves as
the chain becomes longer. In figure 10.4, we calculated the energy spectrum of the Kitaev
chain Hamiltonian 2.17. Figures 10.4a-d depict the spectrum as a function of the chemical
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Figure 10.4: Spectrum and zero-energy stability in longer Kitaev chains. a-d. Energy spectrum of the
Kitaev chain Hamiltonian 2.17 for 𝑁 = 2 sites (a), 𝑁 = 3 sites (b), 𝑁 = 4 sites (c) and 𝑁 = 26 sites (d). e-h. Energy
splitting of the lowest energy state as the ratio of the couplings Δ/𝑡 , and the chemical potential, are varied. Near
the sweet spot Δ/𝑡 = 1 and 𝜇/𝑡 = 0, the zero energy modes are well-separated Majoranas. Their stability is visible
as an increasingly large region with a small energy splitting as the length of the chain is increased. However, for
small values of Δ there may also exist unstable modes near zero energy which do not represent Majoranas.

potential 𝜇/𝑡 with Δ = 𝑡 , where we see that the stability of the zero-bias peak becomes
enhanced with each added site - extending all the way up to 𝜇 = 2𝑡 for the long reference
chain with 𝑁 = 26 sites. In figures 10.4e-h, the energy splitting of the lowest energy state
𝛿𝐸/𝑡 is shown as a function of the chemical potential and coupling are changed. As the
number of sites is increased, the region for which the zero-energy modes are stable grows
surrounding the Δ/𝑡 = 1, 𝜇/𝑡 = 0 sweet spot - signaling an enhanced dephasing time for
potential qubits made with the longer chains.

One of the main critiques on the use of artificial Kitaev chains in contrast to long contin-
uous nanowires is that it seems challenging to be able to tune up a longer chain. Each
additional site comes with three additional gates for the quantum dot, one additional lead
for the connecting superconductor, and an additional gate to tune that superconducting
segment. Such challenges, however, are not unlike those seen in the spin qubit commu-
nity, where quantum dot arrays as large as sixteen quantum dots have been successfully
controlled [29]. Indeed, learning from the advances in that research field will significantly
aid the development of longer Kitaev chains. Similarly, autonomous tuning based on ma-
chine learning may prove to be of paramount importance [30, 31].

10.2.4 Increased strength of the interaction between coupled quan-
tum dots

Any attempt to do quantum information with Majorana zero modes would require the
operations to be adiabatic. This means that the time of the operations should be large
compared to the relevant energy scale, that is 𝜏 ≫ℎ̄/Δ. The values of Δ ∼ 12𝜇eV obtained in
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Figure 10.5: Enhanced Majorana zero modes using proximitized quantum dots. a. Charge stability dia-
gram of two proximitized quantum dots near the sweet spot. b. Stability of the Majorana zero mode against
fluctuations of the left quantum dot chemical potential. c. Stability of the Majorana zero mode against fluctua-
tions of the right quantum dot chemical potential. d. Quadratic splitting of the zero-energy mode when both
chemical potentials are varied simultaneously. Borders of panels b,c, and d indicate the variation of the chemical
potential across the charge stability diagram indicated by the colored lines in a.

chapter 8 are indeed rather small, so there is a need for improvement. Since the number is
determined by the coupling between the quantum dots, the most obvious way to do this is
to simply lower the tunnel barriers leading to the central superconductor. However, this
has the side effect of generating a superconducting pairing on the quantum dot, which
effectively transforms the quantum dot levels into Andreev bound states, as described
in section 2.3.2. In this form, the Kitaev chain can still be formed despite not having
normal quantum dot levels [32]. Experiments are already progressing in this direction, as
shown in figure 10.5. In figure 10.5a, the charge stability diagram of such a sweet spot is
shown. Figures 10.5b and c show the stability against fluctuations of one of the quantum
dot chemical potentials, exhibiting a dispersing excited state but a stable zero-bias peak.
Variation of both chemical potentials, as shown in figure 10.5d, quadratically splits the
zero-bias peak as expected. Notably, at the sweet spot, the spectrum has a quadruple
increase in the energy gap, on the order of 2Δ ∼ 80𝜇eV. The deterministically increased
coupling between the quantum dots and the superconductor automatically results in a
stronger inter-dot coupling. At the same time, that increased coupling also makes it signif-
icantly easier to reproduce and tune the quantum dots to the Majorana sweet spot. With
the normal dots we could only reproduce a strong-enough coupling in 2 out of 6 devices,
whereas this type of chain with an enhanced coupling can be reproducibly be created in
every device. Finally, the sweet spot is also significantly more stable against fluctuations
of the gate voltage, being able to tolerate an order of magnitude larger voltage fluctuations.

The observable coupling in such systems is limited by the energy of the Andreev bound
state mediating the coupling between the quantum dots. This energy is determined both
by the coupling of the state to the superconductor and the value of the Zeeman energy.
In general, larger magnetic fields result in a better polarization of the quantum dots but
also reduce the ABS energy. Thus, it may be advantageous in the long term to investigate
materials with a larger superconducting gap instead of aluminum, such as lead or niobium.
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