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Abstract 
 
The research focuses on a novel measurement-based approach to estimate the farm-specific ammonia 
emission potential (AEP) in the dairy sector. By measuring and evaluating the feed-manure chain, feed 
management strategies and manure parameters influencing AEP can be identified. Ammonia 
emissions from dairy farms are not only considered to be an important driver of biodiversity loss, but 
are also responsible for nutrient losses in the farm cycle. Currently, farm-specific ammonia emissions 
are calculated using the Kringloopwijzer model, which tends to over- or underestimate actual ammonia 
emissions. Therefore, the possibilities of a measurement-based approach are evaluated.  
 
This study analyses the relationships within the feed-manure-AEP sequence. A comprehensive 
approach is used, involving 23 manure parameters and 12 feed management parameters. The most 
important predictors of the AEP include N, TAN, Norg, N90, and the C/N ratio, whilst urea in milk, pH, 
and DS showed low significance. Silage maize and VEM are identified as feed management parameters 
with a positive indirect relationship with the AEP, whereas other roughage and fresh grass exhibit a 
negative indirect relationship. The calculated TAN value plays a central role in the emission calculations 
of the Kringloopwijzer model. There are concerns about the accuracy of this value as well as the 
absence of other manure parameters in the calculation, highlighting the need for further research. 
Currently, it is uncertain whether the AEP measurements will be suitable for an emissions-based policy, 
due to the incapacity to directly represent actual ammonia emissions and the uncertainty regarding 
the interpretation of the results caused by the period prior to the measurements. Nonetheless, the 
measurements are valuable in assessing the influence of the manure composition on the AEP, and how 
it has been affected by feed management strategies.  
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1. Problem introduction 
 

1.1 Ammonia emissions and closing the nutrient cycle 
The agricultural sector is the backbone of our society, providing food for an ever-growing global 
population. However, it also has had a significant negative impact on biodiversity and the natural 
environment. Not only the loss of natural habitats, but also the intensification of land-use, the 
increased use of synthetic chemicals and monoculture cropping practices are some examples of drivers 
of biodiversity loss in the agricultural sector (The Royal Society, 2021). In the Netherlands, 54% of the 
total area (including open and inland water) is used for agricultural land (CBS, 2021), giving farmers an 
important role as stewards of the natural-agricultural environment. 
 
The Dutch nitrogen emissions consist of 60% ammonia (NH3) and 40% of nitrogen oxides (NOx) 
(Schollaardt, 2019). An important driver of biodiversity loss is caused by the deposition of ammonia in 
mature natural areas, resulting in an excess of nitrogen. Fast-growing species thrive much better and 
take over the area, leading to major biodiversity losses (Lu et al., 2008). Research has been carried out 
on ammonia deposition in designated nature areas, known as Natura 2000 areas. It is estimated that 
about 40% originates from the agricultural sector, 10% from transport, 10% from industry, 5% from 
the sea and 35% from neighbouring countries (Schollaardt, 2019). Due to the Habitats Directive (Dutch: 
Habitatrichtlijn), which was agreed upon by European law in 1992, the Netherlands has been obliged 
to preserve the quality of the Natura 2000 areas. The Netherlands encompasses 162 of those areas. 
Many of these areas are in bad condition, with ammonia deposition identified as an important driver 
(Ministerie van Economische Zaken, Landbouw en Innovatie, 2022).  
 
The dairy sector is responsible for about half of the total ammonia emissions caused by the agricultural 
sector (Schollaardt, 2019). Ammonia originates from nitrogen which is introduced into the agricultural 
system by means of fodder and fertilisers. A major part of the nitrogen remains in the nutrient cycle 
of a farm system, as manure is applied to land to stimulate grass and crop growth. It leaves the cycle 
either as losses such as emissions, as products like milk and meat, or by means of exported manure. In 
the agricultural sector, nutrient losses are an indication of a less efficient system. Losses have to be 
compensated by external inputs, reducing the nutrient efficiency and increasing the costs. Therefore, 
the reduction of ammonia emissions is not only an environmentally attractive objective, but it is also 
of economic concern (Ondersteijn, 2002).  
 
The first step in the formation of ammonia takes place when urea and faeces start to interact after 
excretion. Ammonium (NH4

+) is formed when enzymes in manure break down urea in urine (Smits & 
Bokma, 2008), which is called hydrolysis and is described in the following formula:  

 
CO(NH2)2 + 2 H2O   (NH4)2CO3 ↔  2 NH4

+ + CO3
2- 

 

After ammonium is formed, it can convert into ammonia which is able to volatilise under the right 
circumstances:  

 
NH4

+ ↔ NH3 + H+ (liquid) ↔ NH3 (dissolved gas) ↔ NH3 (airborne gas) 
 

The total amount of inorganic nitrogen present in a solution in the form of NH3 and NH4
+ is referred to 

as the total ammonia nitrogen (TAN). The volatilisation potential depends on physical factors 
(airspeed, surface area, temperature, etc.) and chemical factors (NH4

+ concentration, pH, etc.) moving 
the equilibrium of the formula (Velthof et al., 2009). During storage, organically bound nitrogen can 
convert to NH4

+, which is called mineralisation. Mineralisation tends to increase with higher 
temperatures and a higher pH. It is currently very difficult to quantify these processes (Velthof et al., 
2009). With a high C/N ratio (e.g. straw-rich manure), some of the ammonia will be immobilised; it will 
transfer back to organic nitrogen. Inorganic nitrogen is directly available to plants, but it can more 
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easily be leached or volatilised. Plants cannot take up organic nitrogen. Organic nitrogen can be 
converted into soil, where it becomes available only after mineralisation in the soil by soil 
microorganisms (Eghball et al., 2002). 
 
Emissions take place during storage, in the stables, during grazing and during manure applications. 
Therefore, farmers have invested in emission reduction measures such as low-emission housing 
systems, air purifiers (luchtwassers) and low-emission field application techniques. However, recent 
research has shown that current low-emission housing systems do not function as intended (Bremmer 
et al., 2022).  
 

1.2 From a deposition-based towards an emission-based policy 
The Dutch government has been aware of the problems caused by ammonia deposition for a long time, 

and effective measures have been taken since the 90s. However, the emission reduction has come to 

a standstill in the last decade. Therefore, the government introduced Programma Aanpak Stikstof 

(PAS). PAS has not had the desired effect, resulting into a lock-in at national level (Remkes et al., 2019). 

Companies are not able to obtain permits for building projects and uncertainties arise in the agriculture 

sector, making it difficult to make investments and create development perspectives. At the moment, 

the government uses critical deposition loads (KDW) to set deposition targets and to grant building 

permits (Vink et al., 2021). The KDW is the deposition load above which the risk of effects in nature 

areas increase, which is established in the law since 2021. Right now, the government is unable to 

translate the deposition-based policy into management pathways for individual farmers (Erisman et 

al., 2023). Recently, a study from the UvA has put into question the relation between emitted ammonia 

in stables and the deposition in surrounding areas.  It stated that the contribution to the ammonia 

deposition of a farm, outside the range of 500m, is relatively low compared to the contribution of the 

background concentration of NH3 in the air (Dutch: stikstofdeken) (Tietema et al., 2023). In other 

words, the share of the contribution of an individual farm to the deposited NH3 is very difficult to 

determine. To be able to improve this situation in terms of policies, an emission-based policy should 

be considered. The idea of an emission-based policy is to focus on farm and company-specific emission 

reduction goals. Once these goals are set, monitored and enforced, management pathways for farmers 

will be created. Companies will be responsible for their individual goals, whilst the responsibility to 

meet the Nature Conservation Act will remain with the government. This creates a clear action 

perspective for farmers and other stakeholders (Erisman et al., 2023).     

One of the hurdles of such an emission-based policy is the difficulty of measuring and enforcing the 
exact emission values at farm-level. This is important, because the differences between individual 
farms are significant (Mollenhorst & De Haan, 2021). Under current circumstances, farmers 
outperforming the average cannot be rewarded, and those performing below average cannot be 
effectively motivated or steered. (Remkes et al., 2020). Information regarding farm-specific ammonia 
emissions will provide important insights not only into the environmental performance of individual 
farms, but also into their nutrient efficiency. 
 

1.3 Models vs measurements 
The Dutch nitrogen legislation is based on scientific models. These are used to provide insights about 
mineral management, emissions and depositions. On a national level, AERIUS is used to determine the 
location and severity of depositions on national level. In June 2020, the advisory committee 
(adviescollege Meten en Berekenen) concluded that this model is unsuitable for determining farm-
specific depositions with the required accuracy of 0.005 mol/ha (Hordijk et al., 2020). Although not 
used for any regulations, the Kringloopwijzer (KLW model) is used to estimate farm-specific emissions 
(Vellinga & De Haan, 2022). It is beneficial for farmers, as it provides information on mineral efficiency: 
crop yields, mineral losses and mineral cycles (Vellinga & De Haan, 2022). The KLW model is a scientific 
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model, developed under standardized conditions and reviewed within the EU (Netwerk 
Praktijkbedrijven, 2023). Nevertheless, a model will always have its limitations. Like every model, the 
KLW is very prone to ‘the garbage in = garbage out’ principle. Incorrect input values will most likely 
result in output values that do not meet the expectations. The accuracy of the input data of the KLW 
depends on the precision of measured approximations of e.g. silage compositions as well as the 
farmers’ commitment to provide correct values (DMS, personal communication, 12 December, 2023). 
It is impossible to validate all these numbers, making the model unsuitable for (environmental) policies 
(Bestman & Ersiman, 2016). Other input values in the KLW model are based on experimental 
standardized conditions and substitute values, leading to an over- or underestimation of the actual 
situation and ultimately the emission potential (Netwerk Praktijkbedrijven, 2023; Vellinga & De Haan, 
2022). Currently, measuring these farm-specific emissions is simply too complex and expensive 
(Netwerk Praktijkbedrijven, 2023; Van Dijk et al., 2020), let alone monitoring and enforcing the 
correctness of these emission values. Although the KLW model is detailed, it remains to be under 
development. Every year, the model is adjusted and relationships are changed, with the goal to refine 
it (Van Dijk et al., 2022; Velthof et al. 2009).  
 
This research looks into the possibilities of a novel and cost-effective method to monitor on-farm 
ammonia emissions by means of measurements. Meanwhile, the possibilities will be explored to alter 
the measured emissions by influencing the manure composition through feed-management strategies, 
giving individual farmers the perspective to move towards a greener dairy sector.  
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2. Academic knowledge gap 
 
Influencing the measured emissions using the novel measurement approach involves decoupling from 
the annual emission values, as well as taking into account multiple feed management and manure 
parameters. These components are discussed in this chapter, whilst the measurement approach is 
explained in the methods section. 
 

2.1 The ammonia emission potential 
Differences in ammonia emission between farms occur due to two reasons. First of all, the manure 
composition. Parameters such as the amount of dry matter (DS), TAN and pH influence the potential 
emissions of the manure (Hafner et al., 2017; Visser et al., 2005). Secondly, environmental factors 
impact the final emissions. According to the literature, temperature, wind and precipitation are 
considered as influential environmental factors (Hafner et al., 2017; Li et al., 2012). Specific measures 
can be taken to alter the way manure interacts with its environment, such as the use of low-emission 
housing systems or specific field application techniques (Hristov et al., 2011). On the other hand, feed 
management and manure additives can impact the manure composition. This research will look into 
the first aspect: the effect of the manure composition on the measured ammonia emission potential 
(AEP). The AEP does not represent the final emission, but describes how much ammonia could 
potentially be emitted based on the manure composition. Manure with a low AEP provides a good 
foundation for reducing final ammonia emissions as the initial emission potential is lower. The AEP of 
slurry manure in the pit can change over time as the composition changes, either due to biochemical 
processes, the addition of new manure and urine to the existing mix, or due to manure additives. The 
relationship between the manure composition and the AEP is commonly used in the literature (Hristov 
et al., 2011; Lee et al., 2012). The advantage of the AEP is that it is more closely related to the effect 
of feed management choices, whereas the disadvantage is that it does not represent the actual final 
emission.   
 

2.2 The manure-feed cycle 
Currently, the KLW model calculates ammonia emissions based on annual averages. Information is 
collected on, among other things, the annual ransom, digestion coefficients, number of grazing days 
and livestock composition. However, due to seasonal-bound conditions, farmers have to adjust the 
composition of the ransom, as the availability of fresh grass changes. Even the content of grass changes 
throughout the year; for instance, grass is considered more nitrogen-rich in spring (DMS, personal 
communication, 2 October, 2023), which influences the composition of the excreted manure. 
Additionally, farmers are only allowed to apply manure to land from February to August, which affects 
the fullness of the slurry manure pit, affecting its composition and subsequently its emission potential. 
The manure-feed cycle is illustrated in Figure 1.  

Figure 1: The manure-feed cycle shows the yearly pattern of the ransom distribution and the relation between slurry manure 
which is stored in the pit and slurry manure being applied to land (DMS, personal communication, 19 December, 2023).  
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As can be seen in the manure-feed cycle, the measured AEP will most likely be determined by the 
composition and age of the manure, which fluctuates throughout the year. Additionally to grass, the 
supplementary ransom consists of roughage and concentrate, both with enormous variations 
regarding their content. By following the manure-feed cycle, as will be done in this study, more insight 
can be gained regarding the relation between feed management choices and seasonal fluctuation of 
the AEP. This can add more nuance to the currently generated farm-specific emission values. To date, 
limited studies include these annual fluctuations. Lagerwerf et al. (2022) describe the ammonia 
emissions (so not the AEP) together with the TAN excretions of two stables throughout the year. In 
this study, they concluded that the ammonia emission in stables fluctuates throughout the year, being 
slightly correlated with the temperature, but not with the excreted TAN. However, the two farms 
showed large variations in the volatilised TAN, concluding that it is not yet possible to extrapolate the 
results to other farms. 
 
Reducing the emission potential and the related the final ammonia emissions of slurry manure by 
targeting the nitrogen input is considered to be a measure with high potential (Velthof et al. 2009). 
Figure 2 shows the location of such an input measure in a simplified nitrogen cycle of a dairy farm 
system. Feed management decisions can reduce the amount of nitrogen entering the system, resulting 
in less nitrogen leaving the system (Vellinga & De Haan, 2022). Of course, feed management is only 
one of the many possible mechanisms to reduce the final emissions (Mosquera et al., 2017). However, 
this approach still lacks scientific validation, which is crucial for the implementation into the Dutch 
environmental legislation (Vellinga & De Haan, 2022).  
 

Figure 2: A simplified representation of the nitrogen-flow through a dairy farm system, leading to the deposition of 
ammonia (NH3), with input measures and output measures located. The figure is based on Van Dijk et al. (2022). 

 

2.2 The manure composition as an emission predictor 
Manure is a valuable material within the agricultural system. It does not only affects the (potential) 
emission, but is a critical component in the entire nutrient cycle. Within the current KLW model, the 
calculations of the farm-specific ammonia emissions make use of the annually calculated total 
ammonia nitrogen (TAN) of manure, a calculation that includes mineralisation and immobilisation 
constants. All phases in the nutrient cycle where emissions could take place are included in the model: 
grazing, storage, stables and field applications (Van Dijk et al., 2022). The stable emissions are 
determined by multiplying the calculated TAN with emission factors (EFs) which vary depending on the 
stable type. Similar steps are taken to calculate the emissions during field application, as shown in 
Figure 3 on the next page. 
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Figure 3: Visualisation of the calculated ammonia emissions in the KLW model with TAN in central position, based on Van 
Dijk et al. (2022  

 

Although TAN is seen as an important parameter for predicting ammonia emissions, research has 
shown that it is not quite conclusive enough. Statistics Netherlands (CBS) argues that ammonia 
emissions calculated with TAN may underestimate the actual emission (Van Bruggen et al., 2019). 
Therefore, the N/P2O5 ratio is suggested as a more precise indicator of emissions. The ratio is taken at 
the moment of excretion and at the moment after storage. Since phosphate is not able to volatilise, 
the change in ratio indicates the amount of ammonia which has been volatilised. Using this method, 
Van Bruggen et al. (2019) argued that the effect of low-emission housing systems may be 
underestimated, while regular housing systems are less prone to this. Furthermore, the reliability of 
the EFs of these stables has been questioned, as the EFs are only based on a limited number of 
measurements (Ogink et al., 2017). 
 
In addition to TAN and the N/P2O5 ratio, other measurable components in manure but also in milk have 
been identified for their predictive capabilities; e.g. urea in milk, C/N ratio, pH and the amount of dry 
matter (DS) in manure (Table 1). Urea in milk is urea that has diffused through cell walls into the udder 
and is in balance with the amount of urea excreted. (Van Duinkerken et al., 2003). Data of urea in milk 
is easy to obtain and is already part of the data from the Milk Production Registration (MPR). The C/N 
ratio1 in manure can be of predictive value, because it affects the mineralisation process, which 
influences the equilibrium between organic nitrogen and TAN (Zanen et al., 2003). The pH is known to 
increase the conversion of nitrogen into ammonia: a lower pH shifts the equilibrium from ammonium 
to ammonia NH3 ↔ NH4

+ (Bussink et al., 1994; Li et al., 2012), which is why acidification of manure is 
proven to be an effective manure treatment strategy (Park et al., 2015). The amount of dry matter is 
also considered to have a relation with the emissions. A reduced dry matter content indicates a relative 
increase in water content, which reduces the concentration of TAN and the associated emissions (Van 
Dooren et al., 2022).  
 

Table 1: Potential measurable ammonia emission predictors. 
 

Combining these parameters into one predictive set could not only improve the AEP predictions, but 
also improve the overall understanding of variation between AEP values and the ability of farmers to 
act upon it. To facilitate interventions, the next step is to identify feed management strategies which 
influence the manure parameters with a predictive value. This will contribute to a better 
understanding of the overall feed-manure-AEP sequence.  
 

                                                           
1 The C/N ratio is also known to be very important for soil life and a healthy and stable soil (Zanen et al., 2003). 

Parameter Description Source et al. 

TAN NH3 and NH4
+ in the manure (Velthof et al., 2009) 

Milk urea Urea which is able to transfer into milk, in balance with excreted as urea (Van Duinkerken et al., 2003) 
C/N ratio Carbon-nitrogen ratio (Külling et al., 2001) 

pH Acidic/basic state of the solution (Bussink et al., 1994;  Park et al., 2015) 
N/P2O5 ratio Nitrogen-phosphate ratio (Van Bruggen et al.,, 2019) 

DS The concentration of the manure solution (Van Dooren et al., 2022) 
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2.3 Feed management parameters 
Numerous studies describe the positive effect of feed management on ammonia emissions and TAN 
in manure (PBL, 2020; Mollenhorst et al., 2023). However, a more comprehensive feed-manure 
relationship including a wider range of parameters is rarely described. Existing research is limited to 
the nitrogen components in the ransom (e.g. Sørensen et al., 2003; Lagerwerf et al., 2022). The set of 
feed parameters which could influence the emissions might be more diverse, based on the theory that 
the AEP is caused by a more nuanced set of parameters than merely TAN in manure. In addition to 
feed management, manure additives can also influence the manure composition (Van Boxmeer & 
Ogink, 2023). This is beyond the scope of this study. 
 
According to the literature, crude protein (RE) has been identified as a predictive emission parameter 
(Schrade et al., 2023; Lee et al., 2012; Hristov et al., 2011). The amount of crude protein in the ransom 
is the absolute nitrogen intake per cow, and therefore directly affects the ammonia emission. RE is 
critical for milk production, but there is an optimum a cow can process. Another important parameter 
is the RE/kVEM ratio. In the rumen, microbes break down a major part of the proteins. To support the 
process, the microbes need energy. A good ratio is critical for efficient nitrogen utilization. Of course, 
the cow also needs energy for all other internal processes, ensuring the overall health of the cow. 
When the amount of energy is too low compared to the RE, the cow is not able to utilize the proteins 
in the diet. According to multiple studies, the RE/kVEM ratio directly influences TAN and the related 
emission (Plomp et al, 2018; Reijs et al., 2021). According to DMS, the optimal RE/kVEM ratio is 150 to 
160, depending on the milk production and the milk urea level.  
 
Although several manure parameters are known to have a direct effect on AEP, and certain feeding 
parameters have an effect on the TAN and consequently on the AEP, there is still limited knowledge of 
the overall relationship between feed, manure and AEP. In addition, research on the effect of manure 
composition, including more than one manure component, is relatively limited and has therefore not 
been included in the current farm-specific KLW model. 
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3. Research approach and research questions 
 
This study is part of an overarching research, with the ultimate goa to explore the possibilities of 
facilitating an emission-based policy using measured emission data. Subsequently, the influence of 
feed management on the AEP can be determined, with the additional aim to monitor the impact of 
such a strategy. Feed management is considered an easily applicable and cost-effective measure. By 
doing so, farmers are given a wider range of levers to reduce ammonia emissions. Such farm-specific 
management measures will be more viable if a) the AEP is measurable at farm level and b) if the 
emission reduction strategy (influencing the manure composition by means of feed management) is 
effective. Understanding the effect of feed management on manure and the related AEP is essential. 
The reliability of the measurements can be evaluated by comparing them with results from the KLW 
model. This leads to the main research question of this study: 
 

“To what extent can measurements of the slurry manure composition serve as a reliable 
indicator for the ammonia emission potential, and how can we influence it by feed-

management strategies?” 
 

The proposed research has a deductive approach and is predominantly quantitative. Figure 4 locates 
the emphasis of the different sub-questions (numbers) within the feed-manure sequence that help to 
answer the main research question. The upper box displays the measured approach, whilst the lower 
box displays the modelled approach. Regarding the measured approach, AEP data is collected using 
the novel measurement method, which is supplemented with measured feed and manure parameters 
from the same moment in the manure-feed cycle. The modelled approach follows the same sequence, 
as far as the design of the KLW model allows it, using annual data. The relationships in the 
measurement-based sequence are tested by comparing it with the modelled sequence. By doing so, 
the modelled sequence will be automatically reflected upon as well, as both approaches remain to be 
approximations of reality with their own advantages and disadvantages.  
 

Figure 4: The research flow, with the different sub questions (numbers) localised in the feed-manure-emission chain of both 
the modelled and the measured approach. Double numbers imply that the question relates to both approaches. 
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The first question tests whether TAN in slurry manure in the pit, when approximated either by the KLW 
model or by measurements, will give the same results. In the literature, TAN is identified as the most 
important manure parameter for determining ammonia emissions. Therefore the calculated TAN plays 
a central role in the ammonia emission calculations in the KLW model: 
 

1. To what extent is there a difference between TAN in manure being calculated by the KLW 
model and TAN in manure being obtained from manure samples? 

 
To shed a different light on the TAN comparison, the relationships of both TAN approximations with a 
set of feed management parameters will be analysed: 
 
2. To what extent is there a difference in the relationships between feed parameters and the two 

TAN approaches as proposed in the previous question? 
 
Next, it is desired to gain a better understanding of the measured AEP values. Since these values are 
derived from a novel measurement method, it is meaningful to analyse whether they make sense. 
Based on the data availability, it is most informative to relate the AEP values with related emission 
values derived from the KLW model: 
 
3. To what extent are the measured AEP values in line with emission values derived from the KLW 

model? 
 

As has been mentioned in the literature, TAN alone is not considered sufficient enough as an emission 
predictor. Therefore, it is necessary to find out whether a set of manure parameters covers a larger 
part of the variance. Due to the absence of parameters in the modelled approach, only the measured 
approach will be analysed: 
 
4. Which measured manure parameters have the strongest predictive power to determine the AEP? 
 
At the moment that the AEP and manure parameters are sampled, the feeding parameters of the 
corresponding period within the feed-manure cycle are obtained. To gain a comprehensive overview 
of the feed-manure-emission sequence, the relationships between feed and manure will be analyzed, 
including their indirect relationships: 
 
5. Which measured feed management strategies have the strongest predictive power to determine 

the manure parameters, and indirectly determine the AEP? 
 
Finally, the relationships between feed management strategies and the AEP are tested, using both the 
modelled and the measured approach. Both approximations are based on a different method. The 
extent of the differences can be insightful to better evaluate the meaning of the identified 
relationships: 
 
6. Which measured feed management strategies have the strongest predictive power to determine 

the AEP, and to what extent does this differ from the KLW model?  
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4. Methods 
 
This chapter explains the research methods. Firstly, the general data collection is discussed. Then the 
approach to the measured and modelled feed-manure-AEP sequence is explained, supplemented by 
the justification of the chosen statistical analysis.  
 

4.1 General data collection 
In this study, data from different sources has been used. An overview can be seen in Table 2. For all 
KLW-data, the database of DMS has been used (source: DMS-KLW). DMS is in possession of a large 
database containing many dairy farms throughout the Netherlands. It is a unique database due to its 
richness of data and the quantity of farms being present. Farmers have authorized DMS to use their 
data for, among other things, consultancy purposes. All KLW data is by definition annual data. The 
group of farms where the measurements are made consists of 23 farms spread across the Netherlands 
(the AMMONI group in the DMS database). This group is composed by its characteristics to have an 
expected distribution of ammonia emissions. The manure samples are taken by Vanhoof, Eurofins and 
the MPR-data is derived from the CRV (Coöperatie Rundveeverbetering). Eurofins is a qualified 
biochemical analytical institute and access to MPR-data was possible through authorizations granted 
to DMS. The combination of manure and MPR data is sometimes mentioned as ‘manure data’ or 
‘manure parameters’ in the report. Access to daily feed management data used to analyse the 
measured feed-manure-AEP sequence, taking into account the feed-manure cycle, has been made 
possible by a feeding app developed by DMS. This app allows farmers to fill in their daily ransom. All 
data formats have been converted into Excel files, after which they have been analysed in Python. The 
sample sizes remained low, mainly due to a limited amount of available measured data. Especially data 
from the feeding app was incomplete, as some farmers haven't filled in the app. Additionally, data 
losses occurred due to mismatches in occasions where measured and modelled sets had to be merged.  
 

Research question Description Sample size Source 

RQ1 Measured manure (TAN) data 37 Eurofins 

 Calculated manure data from the KLW model 37 DMS-KLW 

RQ2 Measured manure (TAN) data 25 Eurofins 

 Calculated manure data from the KLW model 25 / 81 DMS-KLW 

 KLW feed management data 25 / 81 DMS-KLW 

RQ3 AEP data 15 Vanhoof 

 KLW emission data 15 DMS-KLW 

RQ4 AEP data 25 Vanhoof 

 Measured manure data 25 Vanhoof 

 Measured manure data 25 Eurofins 

 MPR data 25 CRV  

RQ5 Measured manure data 13 Vanhoof 

 Measured manure data 13 Eurofins 

 Feed management data (feeding-app) 13 DMS 

RQ6 AEP data 13 Vanhoof 

 Feed management data (feeding-app) 13 DMS 

 KLW emission data 4656 DMS-KLW 

 KLW feed management data 4656 DMS-KLW 

Table 2: Data sources and sample sized divided among the sub questions. 

 

4.2 The measured feed-manure-AEP sequence 
The measurements of the ammonia emission potential (AEP) are executed by Peter Vanhoof from 
Organic Forest. In addition, manure parameters and feed parameters are sampled to complete the 
data needs for the comprehensive feed-manure-AEP sequence. The strategy is to measure four times 
a year over a period of two years, following the manure-feed cycle (Figure 5, next page). At the moment 
of this research, only the first sample round (from a total of 8 rounds over 2 years) has taken place. 
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This sample round is indicated by the black vertical line in the Figure. During this moment the slurry 
manure pit is relatively empty. 
 

Figure 5: The manure-feed cycle shows the yearly pattern of the ransom distribution as well as the relation between slurry 
manure being in storage and manure being applied to land (DMS, personal communication, December 19, 2023). The four 

vertical lines indicate the measurements moments. The black line indicate the measuring moment used in this research. 

 
The four measuring moments can be characterised accordingly: 

i. September, during the end of the summer, just before the cows are kept in the stables. 
ii. December, when the manure pit starts to fill. 

iii. February, when the pit is the fullest.  
iv. May/June, when nitrogen-rich spring grass is fed.  

 

AEP and manure parameters 
The day before manure sampling and AEP measurements, the manure is mixed in the pit to create a 
more homogeneous mixture and to obtain a sample that is more representative of the previous period. 
Vanhoof took multiple manure samples on the same farm, as some farmers deal with multiple pits. 
Also, the depth of the pits vary influencing the mixture throughout the pit. These measurement 
locations are recorded to enable identical measurements later in the research. The samples are 
combined and mixed, of which one part is measured by Vanhoof and the other part is sent to Eurofins 
for laboratory analysis. Vanhoof measures the AEP in his ‘driving lab’ in a controlled environment 
(Figure 6). His measuring method is the low-cost method proposed by DMS, which could potentially 
be used in a future emission policies. The measurements on all farms in the AMMONI group are taken 
in the period from 26th September to 3rd October. 
 

Figure 6: Vanhoof measuring the AEP of liquid manure in his ‘driving lab’ (Vanhoof, 2019). 
 
During the measurements of Vanhoof, a more extensive list of manure parameters is examined than 
only the 6 parameters described in Chapter 2. These additional parameters are included into the 
analysis, to obtain a more complete overview of all potential emission drivers in the manure. The whole 
list of manure parameters measured by Vanhoof, Eurofins together with the MPR data are listed in 
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Table 3. Some of these parameters potentially give additional information, while others may create 
noise.  
 
Vanhoof strongly advocates circular agriculture, with high-quality manure consisting of a high C/N ratio 
and organic-rich contents together with a low nitrogen content to support soil life. This could be 
influenced by a relatively nitrogen-poor and carbon-rich diet. Vanhoof also states that emission-rich 
manure not only contains a lot of TAN but also potassium oxide. This results in aggressive and decaying 
manure, which contains less oxygen, being rich in salt and containing a high pH and EC (Vanhoof, 2020; 
Vanhoof, 2019). Although his ideas may lack extensive scientific support, Vanhoof’s reasoning follows 
logic and should be taken into account.  
 

Parameter Abbr. Description Collected by: 

Ammonia emission potential AEP The potential ammonia  Vanhoof 
pH pH The acidity or basicity of manure (measured by Vanhoof) Vanhoof 

Electrical conductivity EC The electrical resistance of manure, describing the amount of dissolved mineral salts Vanhoof 
Redox potential Eh How aerobic the manure is, affecting the conditions for aerobic and anaerobic micro-

organisms. Manure is anaerobic, which mans 
Vanhoof 

Protein content in milk - Nitrogen converted into milk protein (avg. 3,6%) CRV 
Fat:protein ratio in milk - Describes the health (energy and rumen condition) of the cow. <1,1 can mean rumen 

acidosis while higher than 1,5 could mean sickness. Therefore, it can impact the manure 
CRV 

Phosphate content in milk - Strongly related with the protein content in milk, and describes the redundancy of 
phosphate. 

CRV 

Urea in milk - Nitrogen which is not utilized by the cow CRV 
Dry matter DS Liquidity of manure Eurofins 
Rough ash RAS All inorganic material Eurofins 

Organic material OS All organic material Eurofins 
Nitrogen N All forms of nitrogen Eurofins 

Nitrogen (DS=9%) N90 All forms of nitrogen, if DS is set to 9% Eurofins 
Carbon-nitrogen ratio C:N Carbon content over nitrogen content Eurofins 

Total ammonia nitrogen NH3-N + 
NH4-N 

Mineral nitrogen in forms of ammonia or ammonium Eurofins 

Organic nitrogen NORG All organic nitrogen Eurofins 
Phosphorus pentoxide P2O5 Phosphorus pentoxide, when dissolved in water, it forms an acidic solution Eurofins 

Phosphate (DS=9%) P2O590 Phosphate, if DS is set to 9% Eurofins 
Potassium oxide K2O Potassium oxide, when dissolved in water, it forms a basic solution Eurofins 

Magnesium oxide MgO Magnesium oxide, when dissolved in water, it forms a basic solution Eurofins 
Sodium oxide Na2O Sodium oxide, when dissolved in water, it forms a basic solution Eurofins 

pH pHWater The acidity or basicity of manure (measured by Eurofins) Eurofins 
Nitrogen-phosphate ratio N:P2O5 Nitrogen content over phosphate content Eurofins 

Table 3: The selection of all manure and milk parameters, measured by Eurofins, Vanhoof and CRV. 

 

Milk parameters 
As mentioned, MPR data is used as well. Every third day, milk which is stored in containers is being 
collected, to be processed centrally and used for consumption. Each batch undergoes sampling, 
including measurements of urea in milk, the fat content, the protein content and the phosphate 
content. This data is primarily used to give farmers a better understanding of the efficiency of their 
feeding strategy. Since MPR data is already being measured, including them into the set requires 
limited effort and it has the potential to be a valuable additional component of AEP prediction. As 
previously explained, urea in milk has already been identified as an emission predictor with a lot of 
potential. Milk protein content is the protein richness of milk (amount of nitrogen converted), 
representing the nitrogen which is utilized into milk production by the cows (Goselink et al., 2016). The 
phosphate content in milk is also included in the analysis. Although it is not expected to be of any 
impact, the data availability justifies its inclusion in the study. The fat-protein ratio indicates whether 
the amount of energy and structure in the ransom is adequate, and therefore may also be informative 
(Smolder & Wagenaar, 2009). The average MPR value from the previous month of manure sampling is 
taken, as it best represents the composition of the manure during that period (DMS, personal 
communication, December 20, 2023). 
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Feed management parameters 
In this study, a set of feed management parameters are proposed, covering a wider range of 
information about the ransom than just the nitrogen components, as has been done in the literature. 
The suggested feed management parameters can be divided into three subcategories: feed content, 
feed type and feed efficiency. The complete list is described in Table 4.  
 
The category feed content consists of VEM, RE, P, RE/kVEM and P/kVEM. The parameters RE, VEM and 
RE/kVEM are included because of their direct link with ammonia emissions, as has been described in 
Chapter 2. The phosphorus-related parameters are not expected to have an impact, but are included 
in the analysis due to their presence in the selected manure parameters set. In case of any significant 
effects, these parameters could be traced back to feed management choices. 
 
The feed type category is based on five ransom categories as is being described by the KLW model: 
fresh grass, grass silage, maize silage, concentrates and other roughage & by-products. The unit is in 
percentage of dry matter of the total ransom (% ds). These feeding types are the tools of farmers to 
optimize i.e. the RE/kVEM ratio, the ransom structure and more (Van Duinkerken et al., 2007). Fresh 
grass contains more protein (and thus nitrogen). Autumn grass in particular is high in protein. The 
quality of grass silage can vary a lot, influencing the feed content. Maize contains more VEM and less 
RE, which is used to balance a predominantly nitrogen-rich grass diet. Grass and silage maize account 
for most of the ransom (Velthof et al., 2020). To complement the ransom, farmers use concentrates 
and by-products, which contain a wide range of nutrients. Literature does not clearly show to what 
extent these ransom categories contribute to the composition of liquid manure and its related AEP.  
 
The remaining two parameters describe the feed efficiency: the amount of produced milk and the 
amount FPCM2 produced, both related to one kg dry matter feed intake. The hypothesis is that an 
increased efficiency correlates with a reduction of all components in manure including nitrogen 
components, resulting in a reduced AEP.  
 

Feed management parameters Description 

Kg milk per kg ds intake Kg milk produced per kg ds feed intake 

Kg FPCM per kg ds intake Kg FPCM produced per kg ds feed intake 

VEM Net energy in all feed 

RE Protein in all feed 

P Phosphor in feed 

RE/kVEM Protein-energy ratio 

P/kVEM Phosphor-energy ratio 

% ds grass silage % ds of total feed accounted to grass silage 

% ds other roughage & by-products % ds of total feed accounted to other roughage and by-products 

% ds silage maize % ds of total feed accounted to silage maize 

% ds concentrates % ds of total feed accounted to concentrates 

% ds grass % ds of total feed accounted to fresh grass 

Table 4: The selected feed parameters for the feed-manure-AEP sequence. 

 
To analyse the relationship between feeding strategies and the manure parameters within the 
measure feed-manure-AEP sequence, feed management data should represent the manure samples 
taken in the period 26 September to 3 October. According to DMS, the manure which is sampled is 
most strongly affected by the feed-management strategy of September. Data from this period can be 
obtained through the feeding app. Not all farmers had filled in the app, resulting into a dataset of only 
12 farmers, as can be seen in Table 5 on the next page.  
 
 

                                                           
2 Fat and protein corrected milk: milk converted to 4% fat and 3.3% proteins, facilitating comparison between milk samples. 
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Farmer code Days of feeding data Completeness of feeding types Sufficient? 

AMMONI-01 1 Incomplete No 

AMMONI-02 0 Incomplete No 

AMMONI-03 45 Complete Yes 

AMMONI-04 3 Incomplete No 

AMMONI-05 0 Incomplete No 

AMMONI-06 1 Complete Yes 

AMMONI-07 0 Incomplete No 

AMMONI-08 7 Complete No 

AMMONI-09 1 Incomplete No 

AMMONI-10 0 Incomplete No 

AMMONI-11 21 Complete Yes 

AMMONI-12 45 Compete Yes 

AMMONI-13 45 Compete Yes 

AMMONI-14 45 Compete Yes 

AMMONI-15 0 Incomplete No 

AMMONI-16 0 Incomplete No 

AMMONI-17 4 Complete Yes 

AMMONI-18 1 Complete Yes 

AMMONI-19 29 Complete Yes 

AMMONI-20 0 Incomplete No 

AMMONI-21 25 Complete Yes 

AMMONI-22 1 Complete Yes 

AMMONI-23 1 Complete Yes 

Table 5: Feed data of the AMMONI-project farms, with farmers with complete data in green. 

 
The initial dataset is increased by allowing feeding data from 1 September up to 15 October. According 
to DMS, the ransom has been very stable for dairy farms during this extended period. After 15 October, 
a lot of precipitation has taken place, causing many farmers to end the grazing season, significantly 
impacting the ransom.  
 
Before the feeding app data can be used, all data had to be converted into a proper format. Data was 
organized per day per farmer. It had to be merged in order to use monthly averages and be able to 
calculate the percentages of the different feeding types. The data conversion was done in Python. 
Lastly, the completeness of the data was verified by checking whether the sum of the percentages of 
the feeding types was 100%. Also, all days were checked for completeness regarding the ransom 
composition. To analyse the relationships between feed management and the manure parameters, 
simple linear regression has been used. The p-values, R-squared values and the direction of the 
relationships were calculated. The complete set of consists of 21 dependent variables (manure 
parameters) and 12 independent variables (feed parameters), resulting in 252 possible relationships. 
The significant relationships are isolated. 
 

4.3 The modelled feed-manure-AEP sequence 
The modelled approach follows the same sequence as the measured approach, as far as the design of 
the KLW model allows it. The exact same feed management parameters can be used. Because TAN is 
the only manure parameter in the emission calculations of the KLW model, no comparison can be 
made between the two approaches regarding the set of manure parameters. Nevertheless, measured 
TAN values are compared with modelled TAN values, which will be elaborated on in chapter 4.4. 
 
To be able to evaluate the measured AEP values by the KLW model, emission values approximating the 
measured AEP are used. The raw output emission values generated by the model cannot simply be 
used for comparison. After all, the AEP is not an emission; the units are different (AEP is measured in 
parts per million [ppm], whilst the KLW model indicates emissions in kilograms [kg] per year), and the 
moment within the manure-feed cycle is different. Therefore, to evaluate the AEP, steps should be 
taken to find a modelled emission value closely related to the measured AEP. The modelled emission 
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used for the comparison is described as NH3-stable emissions in kg/GVE, excluding farms prone to 
stable emission reduction factors. The exclusion is done by only including data of farms with 
'stalemreddrijf = 0', which confirms that no stable EFs have been utilised. By doing so, the size of the 
farm and possible emission factors impacting the emissions are eliminated in the comparison. Only the 
relative order and size of the two approaches will be considered in the evaluation. Because this 
approach has its drawbacks, an additional method is used to evaluate the AEP. TAN from the same 
sample as the AEP is used as an AEP-proxy, since the emissions values in the KLW model are based on 
the calculated TAN.  
 

4.4 The two TAN approximations 
The KLW model calculates annual emission values. A large set of parameters are used to calculate TAN 
within the model (Figure 3, chapter 2.2). The calculation steps are described in the BEA section 
(company-specific ammonia emission) of Rekenregels van de Kringloopwijzer, which has been aligned 
with the NEMA (national emission model for ammonia) (Van Dijk et al., 2022). To make a reliable 
comparison between calculated and measured TAN values, TAN from the same moment in the 
nitrogen cycle within the farm should be taken. After all, TAN represents an equilibrium which can 
change over time. The following requirements are chosen: TAN is from slurry manure in the pit which 
is about to be applied to land, which means the measured TAN should be from manure samples in 
January. The manure composition has been building up for a long time, representing a ransom and 
production period of about 5 months, approximating the annual value. The requirements are 
summarised in Table 6.  
 

  

Manure code 14 (slurry manure) 

Location In the pit 

Time January (Just before being applied to land) 

Years 2018, 2019, 2020, 2021, 2022 

Farmers set AMMONI 

Table 6: Requirements of the measured and calculated TAN 
 

Modelled TAN 

The previously described TAN is not available in the DMS database. The only available value is the gross 
TAN: the TAN in manure directly after excretion. Since there are no measurements available of the 
gross TAN, it cannot be used. The TAN value described in Table 5 is the Net TAN: the remaining TAN 
after volatilisation, mineralisation and immobilisation during storage, representing the TAN content in 
manure before it is being applied to land. Therefore, the Net TAN should be derived from the 
Rekenregels van de Kringloopwijzer (Van Dijk et al., 2022). The model refers to this as 'TAN applied to 
land' (Dutch: TAN-aanwending), which cannot be taken directly from the model and must therefore be 
calculated according to the principles of the model. Some values used to calculate the Net TAN are 
unavailable because they are interim values. These are interim outcomes of the calculation in the 
model. Therefore, these values needed to be copied manually from individual KLW models, restricting 
the dataset to 23 farms of the AMMONI group and restricting the years to 2018-2022 (see table 6). 
Prior to 2018, the required values were not yet available in the KLW model. The formula to determine 
the Net TAN is:  
 

TAN-applied to land = %TAN-manure * kg N manure applied to land 
 

Two values are needed: '%TAN-manure' and 'kg N manure applied to land'. %TAN-manure can be 
deduced from the database, where it is named 'PcTan_uitrmst'. Kg N manure applied to land can be 
calculated using the formula: 
 

Kg N manure applied to land = Net N-excretion + N-manure supplied – N-manure discharged 
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 ‘Kg N manure applied to land’ and ‘Net N-excretion’ cannot be extracted. Kg N manure applied to land 
has four subcategories: applied to cornfield, arable land, natural land, and grassland, of which the kg 
N applied to grassland is an interim value and should be copied manually from the KLW-models. After 
the TAN-applied to land [kg] is defined, the next step is to convert the values into g/kg manure, to be 
able to use the same unit as the measured manure. Because the total amount of liquid manure applied 
to land is an interim value, it should also be added manually to the database. Figure 6 describes a flow 
chart of the calculation based on the KLW model, used to approximate the measured TAN value. 
 

Figure 7: The method used to calculate the TAN value which complies with the measured TAN. The input data is located on 
the far right side. The grey boxes represent the manually added data. The yellow box represent the final TAN value 

complying with the measurements. 
 

Measured TAN 

The measured TAN values originate from samples taken by Eurofins and must comply with Table 6. 
The manure descriptions in the database have been checked to ensure the correctness of the data. 
Instead of the sample year, the 'seizoensjaar' is of the sample is used. This refers to the year prior to 
the year in which the measurements were taken, which better represents the January measurements. 
Once the two datasets are created, the KLW-values of the two datasets were matched according to 
the unique farmer code-year combination, resulting in 37 matches.  
 

Feed management parameters related to the two TAN approximations 
To shed a different light on the TAN comparison, the relationships of both TAN approximations with a 
set of feed management parameters are analysed. The feed management data consists of 12 
parameters divided into three sub-categories as explained in chapter 4.2. To analyse the differences in 
relationships, the matching feed data obtained from the KLW model is merged with the two TAN 
approximations according to their unique year-farmer code combination. This results in a list of 25 
feed parameter sets matching 25 modelled TAN values and an equal amount of measured TAN values. 
The three sets contain identical year-farmer code combinations. The analysis is done in Python and 
consists of a simple linear regression, resulting in p-values, R-squared and direction of the relationship. 
 
Not all farmers took a manure sample in January as it is not mandatory. This is the limiting factor for 
the size of the dataset in the comparison, reducing the sample size to 25 farmers. If the requirement 
for the comparison that both TAN approaches contain the same year-farmer code combination was 
ignored, the sample size of the modelled approach could easily be increased. This was therefore done 
in addition, as it may improve the results of the analysis of the modelled approach. 
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4.5 Manure parameters to predict the AEP 
As has been shown in Table 3 of Chapter 4.2, manure and MPR data originating from different sources 
have to be collected and merged. Once the dependent variable (AEP) and the independent variables 
(manure and MPR parameters) are obtained, statistical analysis can be conducted. Finding the 
parameters with the strongest predictive power is done in three steps, as described below. The 
overview of the method is visualised in Figure 8. 
  

i. Data exploration: By means of a simple linear regression, an overview of the different 
parameters and their individual relationships (p-value, R-squared and direction) with the 
AEP was made. A linear relationship is assumed. Due to the possible presence of 
multicollinearity, a correlation matrix and a VIF analysis were applied. Multicollinearity 
means that independent parameters can also interact with each other e.g. more RAS 
automatically means more nutrients, and more N means more Norg. An increase in AEP 
might seem to be caused by an increase in variable X and Z, but the increase in X might not 
be related to the AEP but only with variable Z. In other words, multicollinearity creates 
noise in the results. Additionally, analysing multicollinearity it is insightful to better 
understand the interactions within manure. A correlation matrix is a visual representation 
of two-sided interaction between independent variables, while VIF (Variance Inflation 
Factor) indicates the amount of variance of a regression coefficient that is affected by 
multicollinearity (Shrestha, 2020).  

ii. Data analysis: By means of ridge regression. The findings of the first two steps lead to the 
following conclusions: There exists high multicollinearity, making the results of the simple 
linear regression less reliable. The chosen statistical analysis is ridge regression. This 
analysis is effective for addressing multicollinearity. Also, it is suitable in situations when 
datasets contain a higher number of independent variables than observations (which is 
the case). Also can penalize less important parameters without completely removing them 
(Schreiber-Gregory, 2018). Another option would be to remove parameters responsible 
for multicollinearity in the dataset. It was decided not to do so, as it could lead to a loss of 
information. The design decisions regarding the ridge regression analysis are described in 
Appendix A. 

iii. Sensitivity analysis: The analysis is prone to the chosen statistical analysis as well as the 
settings within the analysis. The sensitivity analysis is three-folded: 1) a regression analysis 
with two reduced sets of parameters, of which the new set is based on literature and a 
combination of results from the simple linear regression and multicollinearity analysis. 3) 
Lasso regression with the reduced sets of parameters. Lasso regression is an analysis which 
can also deal with highly correlated values. The difference between Lasso and ridge 
regression is that Lasso can shrink coefficients of parameters to zero, completely excluding 
certain parameters. 

 

Figure 8: The research method used to analyse the relationship between manure parameters and the AEP 
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4.6 Feed management parameters to predict the two emission approximations 
To determine the relationships between feed-management strategies (independent variable) and the 

AEP (dependent variable), and thus excluding manure in the analysis, feed management and emission 

parameters are required. The modelled and measured approaches are compared. This results in a 

dataset of 13 farms due to the limited availability of the feeding app data. For the modelled approach, 

there is an abundance of data. This dataset contains data from the years 2018 to 2022, resulting in a 

maximum of 5 data points per farm. This resulted in a dataset of n = 4656 for the modelled approach. 

Using simple linear regression, the p-values, R-squared values and the direction of the relationships 

were calculated.   
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5. Results 
 
In this chapter, the results of all sub questions are reported. For the regression analyses, the R-squared 
represents the proportion of the variance which is predicted by the independent variable. The P-value 
explains the statistical significance of an independent variable. The direction indicates whether an 
independent variable positively (+) or negatively (-) affects the dependent variable. Commonly, a 
higher significance (lower p-value) results in an increase in the explained variance (higher R-squared). 
 

5.1. The two TAN approximations 
Figure 9 shows the distances of the matching farmer code-year combinations (n = 37) of the two TAN 
approximations. Every combination is connected with a grey line. Large distances are visible 

 Figure 9: The distance between the two TAN approaches per farmer code-year combination. The grey line indicates 
connects the matching values. 

 

Table 7 shows the distances between the two TAN approaches. A positive distance indicates a higher 
calculated value (blue) and a negative distance indicates a higher measured value (orange). Only the 
largest 11 values are shown in this table, because the distances are significantly smaller from the 12th 
place onwards. The complete list can be seen in Appendix B. The relative spacing, considering the size 
of the TAN values is very large. As shown in the table, three farmers (AMMONI-05, -07 and -21) account 
for a total of 9 outliers in the group of 11 largest outliers. Plots of the two complete datasets of TAN 
values, before the two datasets were merged, can also be found Appendix B.  
 

Nr. Farmer code  Year Distance 

1. AMMONI-07  2019 1,04 
2. AMMONI-07  2021 1,03 
3. AMMONI-05  2019 0,99 
4. AMMONI-07  2019 -0,96 
5. AMMONI-18  2019 -0,94 
6. AMMONI-21  2021 0,83 
7. AMMONI-05  2018 0,83 
8. AMMONI-05  2021 0,82 
9. AMMONI-23  2018 -0,81 
10. AMMONI-05  2019 0,79 
11. AMMONI-21  2018 0,78 

Table 7: List of largest differences between measured and calculated TAN values, including the farmer codes and years. 

 

5.2 Feed management parameters related to modelled and measured TAN 
To analyse whether there is a difference between the relationships of annual feed management 
strategies and modelled or measured TAN approximations, two linear regression analyses were done 
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(n = 25). Table 8 shows the relationships using the measured TAN and Table 9 shows the relationships 
using the calculated TAN. Table 10 shows an additional analysis with the relationships using modelled 
values with an extended dataset (n = 81).  The independent variables displayed in bold are the feeding 
parameters with a significant relationship with the used TAN approximation (p-value < 0.05). 
 

Independent Variable P-Value R-squared Direction 

RE 0,000 0,452 + 

VEM 0,021 0,211 + 

Fresh grass 0,026 0,197 - 

Kg milk per kg ds intake 0,030 0,188 + 

REkVEM 0,032 0,186 + 

Kg FPCM per kg ds intake 0,068 0,138 + 

Concentrates 0,162 0,083 + 

Other roughage 0,411 0,030 + 

Grass silage 0,427 0,028 + 

P 0,485 0,021 + 

Silage maize 0,856 0,001 + 

PkVEM 0,937 0,000 - 

Table 8: The relationship between measured TAN and yearly feed parameters. 
 

According to Table 8, the relationships between measured TAN and the feed parameters RE, VEM, 
fresh grass and RE/kVEM are significant, of which fresh grass has a negative relationship. The explained 
variance is only moderate for RE. 
 

Feed parameters P-Value R-squared Direction 

RE 0,12 0,10 + 

P/kVEM 0,20 0,07 - 

RE/kVEM 0,25 0,06 + 

Grass silage 0,29 0,05 + 

P 0,38 0,03 - 

VEM 0,39 0,03 + 

Fresh grass 0,47 0,02 - 

Kg FPCM per kg ds intake 0,59 0,01 - 

Silage maize 0,72 0,01 - 

Concentrates 0,76 0,00 + 

Kg milk per kg ds intake 0,93 0,00 + 

Other roughage 0,97 0,00 + 

Table 9: The relationship between calculated TAN and yearly feed parameters. 
 

According to Table 9, no significant relationships can be found between calculated TAN and the feed 
parameters. Two parameters show a different direction in relationship compared to the measured 
TAN. Additionally, the order of parameters differs according to their magnitude. 
 

Independent Variable P-Value R-squared Direction 

RE/kVEM 0,00000 0,23822 + 

Silage maize 0,00002 0,20677 - 

RE 0,00002 0,20410 + 

Grass silage 0,00003 0,19792 + 

P 0,00225 0,11212 + 

P/kVEM 0,00340 0,10351 + 

Other roughage 0,01184 0,07752 - 

Fresh grass 0,02674 0,06060 + 

Concentrates 0,14903 0,02618 + 

VEM 0,85658 0,00042 - 

Kg milk per kg ds intake 0,95013 0,00005 + 

Kg FPCM per kg ds intake 0,95226 0,00005 - 

Table 10: The relationship between calculated TAN and yearly feed parameters, using the extended dataset. 
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According to Table 10, the significant relationships between calculated TAN and the feed parameters 
using the extended dataset are: RE/kVEM, silage maize, RE, silage grass, phosphorus, P/kVEM, other 
feed types and fresh grass are significant, of which silage maize and other feed types have a negative 
relationship. The maximum explained variance is 0.2, which is low. 
 
There are large differences in results between the three approaches, when looking at the order of 
magnitude, significant relationships and directions. With a smaller dataset, the relationships between 
measured TAN and feed parameters are stronger than the relationships between the calculated TAN 
and feed parameters. When the dataset is increased for the calculated approach, the significance 
improves. For all approaches, RE and RE/kVEM score relatively high, which matches with the literature.  
 

5.3 Evaluation of the measured AEP-values  
The measured AEP value is evaluated by means of two approaches. For the first approach AEP is 
compared to NH3 emissions generated by the KLW model (Figure 10). For the second approach, TAN is 
used as a proxy of the AEP, derived from the same measurement set (Figure 11). The values are scaled, 
enabling a comparison between the relative magnitudes per farm as well as the order of magnitude. 
The scaling factors are chosen with the aim to equalise the maximum values of both approaches, 
assigning less weight to the outliers. For both Figures, the farms are ordered according to the order of 
magnitude of the calculated NH3 emissions.  

 

Figure 10: The comparison between measured AEP and NH3 emissions calculated by the KLW. 

Figure 11: The comparison between measured TAN and NH3 emissions calculated by the KLW. 
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For both approaches, a large difference between measured and calculated emission values can be 
identified. Furthermore, the order of magnitude shows a large variance. The two measured 
approaches (light grey bars) follow a more similar trend. 
 

5.4 Manure parameters: strongest predictors of the AEP 
In this chapter, the results of the relationship between manure parameters and AEP (n = 23) are shown. 
Firstly, the results of the data exploration are show, secondly the data analysis, and finally the 
sensitivity analysis. 
 

Data exploration 
Table 11 shows the p-value, R-squared and direction, as result of a linear regression analysis, with the 
significant parameters in bold. Figure 12 shows a more visual representation. The significant 
parameters (in bold) are TAN, N, with K2O, N/P2O5, Norg and DS being slightly less significant. They all 
have a positive relationship. The explained variance of TAN and N are significantly higher. K2O scores 
high as well. Urea in milk is not identified as significant. Two pH measurement have been taken: pH1 
and pH2. pH1 (Vanhoof) has a higher significance compared to pH2 (Eurofins). The direction of pH1 is 
positive which matches with the literature, while pH2 is negative. More information regarding the two 
pH values can be found in Appendix C. The direction of C/N ratio and the redox potential are negative, 
which matches with the literature. The related scatter plots can be seen in Appendix D.  
 

Manure parameter P-value R-squared Direction 

TAN 0,0007 0,399 + 

N 0,0018 0,351 + 

K2O 0,0150 0,231 + 

N:P2O5 0,0173 0,222 + 

NORG 0,0218 0,208 + 

DS 0,0385 0,173 + 

OS 0,0688 0,137 + 

RAS 0,0716 0,134 + 

Redox potential 0,1529 0,087 - 

Phosphate content milk 0,1844 0,075 + 

pH1 0,1897 0,074 + 

P2O5 0,1907 0,073 + 

NA2O 0,2718 0,052 + 

Electical conductivity 0,2962 0,047 + 

C:N 0,3533 0,038 - 

MGO 0,4278 0,028 + 

P2O590 0,4522 0,025 - 

pH2 0,5775 0,014 - 

Urea milk 0,6453 0,009 + 

Fat:protein ratio milk 0,6500 0,009 - 

N90 0,6584 0,009 + 

Protein content milk 0,7154 0,006 + 

Table 11: List of P-values and R-squared values of all independent variables resulting from the simple linear regression, listed 
from strongest to weakest. 
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Figure 12: Bar chart showing the parameters in order of magnitude according to the R-squared multiplied with the direction. 
 
Table 12 on the next page shows the VIF values. If the value of VIF is 1 with no correlation, 1 < VIF < 5 
shows a moderate correlation and a VIF value higher than 10 indicates a high degree of correlation 
(Shrestha, 2020). All parameters deal with a high up to a very high degree of correlation, of which RAS, 
DS and OS have an infinitely high VIF score. The correlation matrix (Figure 13, next page), shows 
relationships between two independent parameters. Darker blue indicates a negative relationship and 
darker red shows a positive relationship. Interesting observations are: 

- The MPR parameters have weak correlations among themselves and with other parameters. 
- The redox potential and the electrical conductivity both have opposing strong relationships 

with TAN, K2O and MgO, but also with urea in milk. Their mutual relation is negative. This can 
also explain the high ranking of K2O in the simple linear regression analysis. 

- K2O, P2O5 and MgO behave similarly. K2O and MgO are expected to increase the pH while P2O5 
would decrease the pH. This is faintly noticeable. 

- DS, RAS and OS behave almost identically and are strongly correlated with each other. 
- The nitrogen components (N, TAN and Norg) behave similarly. TAN is strongly correlated with 

K2O. According to DMS, this might be due to the richness of both nitrogen and K2O in grass. 
- The C/N ratio has a very strong negative relation with N90 and a moderate negative relation 

with TAN. 
- N90 is strongly negatively related with DS, RS and OS, which is in contrast with its relation with 

N. The same contrast can be seen between P2O5 and P2O590 
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Manure parameter VIF 

NA2O 34 

MGO 69 

Urea milk 188 

Redox potential 578 

Electical conductivity 1,E+03 

C:N 2,E+03 

K2O 2,E+03 

P2O590 3,E+03 

Fat:protein ratio milk 3,E+03 

N:P2O5 7,E+03 

TAN 7,E+03 

Protein content milk 8,E+03 

N90 9,E+03 

NORG 1,E+04 

Posphate content milk 1,E+04 

P2O5 2,E+04 

pH1 3,E+04 

N 4,E+04 

pH2 6,E+04 

RAS inf 

DS inf 

OS inf 

Table 12: The correlation matrix of all manure parameters 

Figure 13:  The VIF values of all manure parameters. 

Data analysis 
Before performing ridge regression, choices were made. Based on the results of the simple regression 
analysis, the pH measured by Eurofins was excluded. No other parameters were excluded, to prevent 
a loss of information. To perform a ridge regression, a set of choices have been made which impact 
the analysis: the regularization parameter (alpha) and the relation ratio between training set and 
testing set. These are further elaborated in Appendix A. 
 
The results of the ridge regressions are displayed in Table 13 and Figure 14. The five strongest 
parameters resulted to be: N, TAN, Norg, N90 and the C/N-ratio. N, TAN and Norg were also present 
in the top 5 strongest parameters of the simple linear regression (bold in the table). Urea in milk, pH 
and DS score very low. The direction of C/N is negative. K2O, RAS, redox potential and OS are identified 
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as less important compared to the simple linear regression. According to DMS, K2O and nitrogen 
components in manure are both related to a plant-based ransom. K2O scored significantly lower after 
the ridge regression, because multicollinearity is dealt with. The mean squared error (MSE) indicates 
how well the model preforms on the test-set. The MSE is 1154, indicating a poor performance. This 
can be a result of a high alpha-value, which has been chosen to prevent overfitting which is important 
when using a small dataset. 
 

Manure parameters Coefficient 

N  2,41 

TAN  2,35 

NORG  2,04 

N90  1,99 

C:N  -1,84 

NA2O  1,62 

N:P2O5  1,51 

MGO  -1,48 

P2O5  1,43 

Posphate content milk 1,30 

K2O  1,27 

pH1  1,09 

OS  0,91 

Protein content milk 0,88 

DS  0,81 

Electical conductivity -0,76 

P2O590  0,36 

Protein:fat ratio milk -0,24 

RAS  0,23 

Urea milk  -0,10 

Redox potential 0,09 
Table 13: The numerical list of coefficients. 

 

Figure 14: The list of coefficients displayed in a bar chart, in order of magnitude. 
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Sensitivity analysis 
The sensitivity analysis is three-folded: 1) Regression analysis with two reduced sets of parameters. 
The reduced set is based on literature and a combination of results from the simple linear regression 
and multicollinearity analysis. 2) Lasso regression analysis with the full set of parameters. 3) Lasso 
regression with the reduced sets of parameters. 
 

i. The regression analysis performed with a reduced set of parameters 
 
The first reduced set of parameters consists of: pH, DS, N, C/N, TAN, N/P2O5 and K2O (Figure 15). As 
Norg is closely related to N, the second reduced set of parameters consists of the same set but replaces 
N with Norg (Figure 16). 

Figure 15: The reduced coefficient set (with N) displayed in a bar chart using ridge regression. 
 

Figure 16: The reduced coefficient set (with Norg) displayed in a bar chart using ridge regression. 
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ii. Lasso regression analysis with the full set of parameters (Figure 17). 

Figure 17: The list of the coefficient based on Lasso regression. 

 
iii. Lasso regression with the reduced set of parameters (Figure 18 & 19).  

 

Figure 18 (left): The list of reduced coefficient (with N, without Norg) based on Lasso regression. 
Figure 19 (right): The list of reduced coefficient (with Norg, without Norg) based on Lasso regression. 

 
The results of the reduced regression analysis are similar to the original ridge regression analysis with 
the full set of parameters. However, DS, pH and N/P2O5 are assigned a higher value. The magnitude 
and order do not differ significantly. In both cases, TAN is considered the second strongest 
independent variable. According to the Lasso regression, TAN stands out as the most dominant 
parameter. The C/N ratio is excluded by the analysis and the N/P2O5-ratio together with pH are 
identified as much more important. This corresponds slightly to the ride regression analysis with the 
reduced set of parameters. 
 

5.5 Measured feed management strategies related to manure parameters 
All the feed parameters (12 independent variables) are linked to the complete set of manure 
parameters (21 dependent variables) for the 13 farms of the AMMONI-project (n=13) which had 
sufficient data regarding their feed management strategies. A linear regression analysis is performed 
resulting in 273 relationships. All the significant relationships (p-value < 0.05) are displayed in Table 14 
on the following page. The top 5 manure parameters which are identified by the regression analysis to 
be the strongest predictors of the AEP are displayed in bold. The complete matrices with all 
relationships can be found in Appendix E. 
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Feed_Parameter Manure_Parameter P_Value R_Squared Direction 

RE/kVEM Urea milk 0,004 0,538 + 

Silage maize NORG 0,006 0,506 + 

Silage maize Urea milk 0,009 0,473 - 

Other roughage N 0,010 0,469 - 

RE Urea milk 0,010 0,463 + 

Other roughage NORG 0,012 0,450 - 

RE/kVEM Redox potential 0,017 0,417 - 

Silag emaize Fat:protein ratio milk 0,018 0,412 + 

Fresh grass NORG 0,022 0,393 - 

RE Redox potential 0,025 0,378 - 

P/kVEM N 0,026 0,375 - 

Concentrates Redox potential 0,029 0,364 + 

 Concentrates Urea milk 0,031 0,358 - 

Fresh grass OS 0,031 0,358 - 

Grass silage K2O 0,031 0,356 + 

Silage maize N 0,032 0,353 + 

VEM N 0,032 0,353 + 

Grass silage OS 0,033 0,352 + 

Other roughage OS 0,033 0,349 - 

Fresh grass Fat:protein  ratio milk 0,034 0,347 - 

Other roughage K2O 0,037 0,338 - 

Silage maize Posphate content milk 0,047 0,312 + 

Other roughage TAN 0,049 0,308 - 

Other roughage P2O5 0,050 0,306 - 

Table 14: All significant food-manure relationships, with the top 5 manure parameters from the ridge regression in bold. 

 
RE/kVEM and RE are strongly positively related to urea in milk, whilst maize silage has a negative 
relationship. Silage Maize and VEM are positively related to the manure parameters and therefore 
positively related to the AEP. P/kVEM, fresh grass and other roughage are negatively related to the 
manure parameters and therefore negatively related to the AEP. RE/kVEM and RE are not significantly 
correlated with the Nitrogen components in manure. They do show a significant relationship with urea 
in milk. Figure 20 on the next page shows the cascading effect of the feed management parameters 
with the strongest indirect predictive value for the AEP. The selection is based on their relationships 
with the top 5 important manure parameters identified by the ridge regression. The significance of 
fresh grass can be tricky, because fresh grass can either be taken up by the cow during grazing, or the 
farmer has chosen to mow the grass and bring it into the stables. These management choices have 
large effect on the actual relationship with manure parameters, and should be considered. This 
distribution can be seen in Table 15. It shows that 5/12 have a grass intake which is purely based on 
grazing, 3/12 is purely based on mowing, 1/6 has a marginal percentage of grass intake via grazing and 
1/6 has nog grass intake. 
 
 

Farmer code 03 06 11 12 13 14 17 18 19 21 22 23 

% Grazing  0 - 100 - 0 11 100 0 100 100 100 14 

Table 15: The percentage of fresh grass intake via grazing. The symbol (-) means an absence of fresh grass in the ransom. 
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Figure 20: The significant feed parameters which are related to the strongest manure parameters influencing the AEP. 

 

5.6 Feed parameters related to modelled and measured emission values 
Two identical linear regression analyses are performed. One following the measured data from the 
feed-AEP sequence (n=13) and one following modelled sequence (n=4656). The linear regression 
analysis resulted into p-values, R-squared values and directions of every feed-emission relationships. 
The results of the measured approach are presented in Table 16. The calculated approach is presented 
in Table 17. The independent variables displayed in bold are the feeding parameters with a significant 
relationship with the emission values (p-value < 0.05). Appendix F illustrates the regression plots for 
all individual relationships. 
 

Independent Variable P-Value R-squared Direction 

P/kVEM 0,20 0,14 - 

P 0,24 0,13 - 

Grass silage 0,31 0,09 + 

VEM 0,35 0,08 + 

Other roughage 0,49 0,04 - 

Kg FPCM per kg ds intake 0,52 0,04 - 

Fresh grass 0,53 0,04 - 

Kg milk per kg ds intake 0,53 0,04 - 

Concentrates 0,77 0,01 + 

RE 0,89 0,00 + 

Silage maize 0,91 0,00 - 

RE/kVEM 0,94 0,00 - 

Table 16: The feed – AEP relationships according to the measured approach 
 
 

Independent Variable P-Value R-squared Direction 

RE 0,00E+00 0,48 + 

RE/kVEM 0,00E+00 0,33 + 

Kg FPCM per kg ds intake 1,70E-199 0,18 + 

Fresh grass 1,85E-186 0,17 - 

Kg milk per kg ds intake 5,22E-171 0,15 + 

Concentrates 1,75E-123 0,11 + 

VEM 1,77E-76 0,07 + 

P 4,00E-43 0,04 + 

Grass silage 1,19E-33 0,03 + 

P/kVEM 2,17E-14 0,01 + 

Silage maize 0,13 0,00 + 

Other roughage 0,29 0,00 + 

Table 17: The feed- NH3 relationships, according to the modelled approach. 
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Conclusively, there is a large difference between the results of the measured and calculated approach. 
None of the feed parameters in the measured approach show a significant relationship, which is in 
contrast with the KLW model approach, showing a very high significance for almost all relationships. 
Also, the explained variance of RE and RE/kVEM are large. Only silage maize and other roughage are 
considered significant. Finally, there is also a difference in direction and order of magnitude of the 
relationships. 
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6. Discussion 
 
Following the results in Chapter 5, this section reflects on the key findings and discusses the limitations 
and recommendations of this study. 
 

6.1 The identified relationships in the measured feed-manure-AEP sequence 
When analysing the measured feed-manure-AEP sequence, several findings stand out. Literature 
describes TAN, the N/P2O5 ratio, urea in milk, C/N ratio, pH and DS as manure parameters with the 
most potential to predict the emission potential of manure, with TAN as the most important predictor. 
According to the ridge regression analysis, N, TAN, Norg, N90 and the C/N ratio have been identified 
as the five most important predictors, in the aforementioned order. All these manure parameters are 
N-related components. In contrast to the literature, urea in milk, pH, and DS score were surprisingly 
low. As TAN alone did not emerge as the sole primary predictor parameter, it raises further questions 
whether the KLW model can sufficiently cover the variance when including only one manure parameter 
(TAN) in its emission calculations, as argued by Van Bruggen et al. (2019). However, the sensitivity 
analysis showed a strong dependence on the chosen statistical method, which reduces the robustness 
of the results. 
 
Furthermore, only a very limited number of relationships between feed management parameters and 
manure parameters are observed to be significant. Of those relationships, only ten feed-manure 
relationships include the five strongest predicting manure parameters, as identified by the ridge 
regression analysis. The most important feed parameters impacting the AEP positively are maize silage 
and VEM. Feed parameters with a negative relationship are other roughage, P/kVEM, and fresh grass. 
The direct effect of these feed management parameters on the AEP remains small; the feed 
management parameters only explain a part of the variation in the manure parameters, which only 
partly explains the AEP. According to the literature, the important feeding parameters are RE and 
RE/kVEM, which are not confirmed by the results of the sequence analysis. It is difficult to evaluate 
these indirect relationships by the model, due to the absence of additional manure parameters in the 
KLW model. When comparing the direct relationships of the feed management parameters with both 
the measured AEP and the modelled emission approximation, large differences can be noted. The 
direct relationship with the measured AEP is not significant, whereas the modelled approach showed 
very strong significance. This could be due to the size of the dataset, but also due to the embedded 
relationships in the KLW model; it is notable that almost all feed parameters show a relationship with 
extremely high significance, in stark contrast to the insignificance of silage maize and other roughage. 
 

6.2 Evaluation of the measured feed-manure-AEP sequence using the KLW model 
The measured feed-manure-AEP sequence is analysed using the KLW model. However, as the KLW 
model is also an approximation to the truth, the model will also be evaluated. To begin with, TAN 
derived from the KLW model is evaluated by means of measured TAN values. After all, the calculated 
TAN is an important parameter in the model to determine the ammonia emission values. This resulted 
in large differences between the two approaches, possibly due to several reasons. Firstly, the 
measurements might insufficiently fit the comparison, as the manure samples were not taken to serve 
the purpose of this particular comparison. A single sample might not represent the composition of the 
entire pit, as a farmer often deals with multiple pits. Also, TAN samples from January are taken, whilst 
February 16th is the first day farmers are permitted to apply manure on land. On the other hand, it is 
possible that the model has failed to capture the TAN values due to generalisations in the model, i.e. 
mineralisation, immobilisation and digestion constants. It is noteworthy that not only one type of TAN 
approach scores systematically higher or lower than the other. This may indicate that there is no 
constant over- or under-fitting, supporting the calculation method used in this study. In addition, the 
TAN approximations are evaluated by examining their corresponding relationships with feed 
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management parameters. This evaluation also resulted in limited similarities. Whether this is due to 
limitations of the model or the samples remains to be seen and should be further assessed in future 
studies. Both methods did show a significant relationship between TAN and both RE and RE/kVEM, 
aligning with the literature. 
 
The measured AEP was evaluated through the KLW model. There were significant differences in the 
relative magnitudes per farm, as well as the order of magnitude of the compared emission values. 
These differences could be due to the fact that neither the AEP nor its proxy reflects the annual 
modelled emission value with enough accuracy. The moment within the feed-manure cycle in 
September might be too far off compared to the annual data. Nevertheless, at least a similar trend in 
the order of magnitude would be expected, because the modelled value does approximate the AEP. If 
both the measured AEP and the KLW model would be taken as true, the results would indicate that 
high annual emitters can perform relatively well in September probably having their emission peak at 
a different time of year. It cannot mean that the higher emitters have very effective emission reduction 
strategies, because the EFs responsible for emission reductions in the model are excluded in the 
emission values used in this specific comparison. Possibly, the KLW model might be too generalized, 
not being able to capture the variance in emissions which characterizes the AMMONI group, an 
argument based on the criticism made earlier in this chapter. Since the AEP measurements are also 
criticised (next section), the truth may lie somewhere in between. 
 

6.3 Evaluation of the measured AEP for an emission-based policy 
It is important to critically assess whether the AEP measurements are an appropriate tool in an 
emissions-based policy. This remains questionable as the AEP doesn't represent the actual ammonia 
emission. Instead, it indicates whether the composition of the manure sample has a relatively high or 
low potential to emit ammonia at the moment of measuring. The AEP can vary over time as the manure 
composition changes due to added manure and biochemical processes in the mixture. Furthermore, 
ammonia which was emitted in the period prior to the measurements affects the measured AEP as 
well. A low AEP value could mean that the manure has a very low emitting potential, but it could also 
mean that a major part of the ammonia has already been volatilised, which introduces uncertainty into 
the conclusions drawn from the measurements. The extent of this uncertainty is currently unclear. 
Moreover, it is challenging to determine how well the specific manure sample(s) represents the 
emission potential of the entire slurry manure composition of the pit. Even if the method is validated 
and standardized, additional procedures will still be needed to limit the uncertainty introduced by the 
period prior to the measurements. When comparing the results to other farms, exported manure, 
external storages but also the number of days the pit is being filled can influence the interpretability. 
Also, if such measurement were to be applied in an emission-based policy, additional steps would need 
to be taken to identify the gap between the AEP and the final ammonia emissions. Lagerwerf et al. 
(2022) already showed large fluctuations between the excreted TAN and the actual ammonia emission. 
 
Nevertheless, the measurements can be useful for evaluating the effect of the manure composition on 
the AEP, and how it has been influenced by feed management strategies. Feed management, manure 
and the AEP are directly linked. The reliability of the results will improve if measurements are taken 
immediately after excretion, thus removing the impact of the period prior to the measurements. 
However, this will limit the applicability of the results to merely the feed management strategies of 
the specific day. Nonetheless, information regarding the manure composition and the AEP will be 
useful for farmers, as it will improve their understanding of the nutrient efficiency of their livestock. 
Currently, the AEP measurement method is at its starting phase. The method will continue to improve 
and the measurements themselves still need to be validated by TNO. 
 
As has been stated, measuring is not by definition better than modelling. The full potential of both the 
measured and modelled approaches should be considered when assessing their applicability to an 
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emissions-based policy. Disadvantages of using a model such as the KLW model are based on the 
dependence on reliable input data, the use of standardised values and, in addition, the use of TAN as 
the only manure component in the model. Therefore, the model may not be able to account for 
farmers who exceed average emission levels. On the other hand, the applicability of the AEP 
measurements has also been questioned. If the ‘relatively cheap’ measurements were validated, the 
correctness of such measurement method would still be prone to human error. Furthermore, it would 
remain very costly to be able to measure systematically and correctly on all dairy farms in the 
Netherlands.  
 
Continuing from the previous paragraphs, it is reasonable to ask whether we actually want to use such 
emission approximations to establish a boundary indicating whose emissions are acceptable and 
whose emissions are unacceptable. It remains very difficult to either correctly model or measure a 
complex farm system, as there are numerous factors influencing the system and its related emission 
values. Potentially, it is fairer to set boundaries based on (emission) values which cannot be 
questioned. For example, an undisputable number related to the intensity of a farm could offer such 
boundary. However, guaranteeing a fair transition based on such numbers would still need larger 
system change. Large emitters form other sectors should be included, but also retailers, banks and 
other stakeholders linked to the dairy sector. As the political events in the Netherlands have proven, 
this remains to be very challenging. 
 

6.2 Recommendations and limitations 
The results of the feed-manure-AEP sequence are based on the first measurement round of a total of 
eight measurements over a period of two years. As the research continues, the dataset will be 
increased, giving more reliable results regarding the set of most predictive manure parameters and 
the related feed management parameters. Measurements of one year will not only show possible 
fluctuation linked to the manure-feed cycle, but will also the comparison with results from the KLW 
model. Nevertheless, it will remain to be tricky to compare the AEP with the ammonia emission 
calculated by the KLW model.  
 
The slurry manure samples were measured by Eurofins and Vanhoof. When comparing the two results, 
there was a remarkable difference between the pH values, as the pH values of Eurofins are consistently 
higher. This may be due to the fact that Vanhoof's measurements were taken when the AEP was also 
sampled, whereas it took several days before Eurofins measured the samples. According to literature, 
an increase in pH would mean an increase in TAN, creating a mismatch between the AEP and the 
manure parameters measured by Eurofins. It is recommended to use only one method to measure the 
manure parameters, preferably as close in time as possible to the AEP measurements. The difference 
in the results highlights the dependence of the results on the chosen measurement method. 
 
This study only briefly touches on feed parameters and their effects. A more extended analysis of how 
feed management influences the manure composition will be insightful to better understand the feed-
manure relationship. Not only VEM and RE should be included, but also other components that 
influence the internal system of a cow, such as OEB, DVE and NDF. The current analysis showed 
surprising results regarding the effect of fresh grass and silage maize. These components account for 
most of the ransom, and also highly impact the agricultural-natural landscape in the Netherlands. 
Maybe, the effect of a more grass-rich diet is more nuanced than just the fact that the diet is more 
protein-rich. The relationship between fresh grass and manure composition can be particularly tricky, 
as fresh grass from grazing would automatically be linked with manure excreted outside the stables. 
Finally, ensuring a complete feeding dataset for the remaining rounds of measurements is of great 
value. The size of the current dataset was very small. 
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The measuring method used to sample the AEP with the novel measuring technique was already 
decided on and was beyond the scope of this study. The chosen method did have its limitations. The 
measurements were not conducted in a controlled experimental environment, in which the majority 
of the conditions are regulated. As this was not the case, it will be challenging to conduct identical 
measurements during the remaining measurement rounds. Also, it is more difficult to be certain about 
the observed relationships, as other factors which do not take part in the measurements could have 
an influence on the results. On the other hand, a controlled environment is very difficult to regulate in 
a stable.  
 
In order to critically assess the TAN values used in the KLW model, it is recommended to use manure 
samples that have been specifically measured to facilitate the comparison between measured and 
calculated TAN values. This may lead to a strong confirmation or rejection of the ability of the KLW to 
calculate the TAN values of slurry manure, and automatically the associated emission values. Possibly, 
the results will strengthen the tendency to support a measurement-based approach used to determine 
the ammonia emissions. Additionally, a more in-depth analysis of the reasons for the differences found 
is needed, an aspect that was not extensively addressed in this study. Depending on these results, a 
new method of calculating the gross TAN in the KLW model can be considered. This could be achieved 
by developing a model, based on the measured feed-manure-AEP sequence.  
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7. Conclusion 
 
In this study, the aim was to answer the following research question: 
 
“To what extent can measurements of the slurry manure composition serve as a reliable indicator for 
the ammonia emission potential, and how can we influence it by feed-management strategies?” 
 
By following measurements of the feed-manure-AEP sequence of a selected group of farms, the 
relationships in the sequence were analysed. A set of 23 manure parameters and 12 feed management 
parameters are used. Literature described TAN, the N/P2O5 ratio, urea in milk, C/N ratio, pH and DS 
as manure parameters with most potential to predict the emission potential of manure, with TAN as 
the most dominant predictor. In this study, N, TAN, Norg, N90, and the C/N ratio are identified as the 
most important predictors. Urea in milk, pH and DS score score surprisingly low. The sensitivity analysis 
revealed some uncertainty in the results. The most important feed parameters positively impacting 
the AEP are maize silage and VEM. Feed parameters with a negative relationship are P/kVEM, other 
roughage, and fresh grass. The direct effect of these feed management parameters on the AEP remains 
small. Since fresh grass and silage maize account for most of the ransom and impact the agricultural-
natural landscape in the Netherlands, it is recommended to conduct additional research regarding 
these parameters. The direct relationship with the measured AEP showed no significant relationships, 
which is in contrast with the results of the modelled approach. The results of the feed-manure-AEP 
sequence are based on the first measurement round of a total of eight measurements over a period 
of two years. As the research continues, the dataset will be increased, giving more reliable results. 
 
The measured feed-manure-AEP sequence is evaluated using the KLW model. To begin with, measured 
TAN is evaluated by comparing it with modelled TAN values. This resulted in large differences between 
the two approaches. Consequently, it is recommended to repeat the comparison with manure samples 
which have been measured to facilitate the comparison. Evaluating the AEP using the KLW model 
resulted in large differences regarding the relative magnitudes per farm as well as the order of 
magnitude of the compared emission values. Nevertheless, a similar trend in order of magnitude was 
expected. It remains challenging to determine whether the model or the measurements are incorrect.  
 
It is questionable whether the AEP measurements will be an appropriate tool in an emissions-based 
policy, due to the inability to directly represent the final ammonia emissions. AEP values can fluctuate 
over time due to changes in manure composition and prior ammonia emissions, introducing 
uncertainty into their interpretation. Nevertheless, the measurements are suitable for assessing the 
effect of the manure composition on the AEP, and how it has been influenced by feed management 
strategies. The reliability of the results will be improved when the measurements are taken 
immediately after excretion. The information regarding the manure composition and the AEP will 
remain to be useful for farmers, as it will improve their understanding regarding the nutrient efficiency 
of their livestock.  
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Appendices 
The appendices referred to in the text are located on the next pages.   
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Appendix A. Ridge regression: design choices 
 
Performing ridge regression requires multiple design choices impacting the analysis. Influential 
parameters are: The regularization parameter, the ratio between training-set and testing-set and the 
number of cross-validations. 
 

Regularization parameter 
The regularization parameter (in the code = alpha) creates bias in the data. The alpha influences the 
mean squared error (MSE) on the testing set: how well the combination of coefficients fit the data. 
Since the dataset is limited (n=23), it is likely that the coefficient will over fit the data without including 
a regularization parameter. The regularization parameter creates a deviation from the sum of the 
squared residuals (the minimum sum of the total distances of all data points to the created 
regularization line). The hypothesis is that an increase in data points will lead to a change in results. 
The goal is that the regression line will not change too much if extra data would have been added in 
the future. Choosing the alpha can be tricky as it highly influences the results. The following choices 
have been made 
 

1. In the code, 1000 possible alphas are chosen within the range of 10^-3 – 10^3.  
2. Cross-validation is a machine learning method and is used to identify the best fitting alpha: 

the data is split into a training set and a test set. The part of the data which is the test-set 
is changes every time, looking for the optimum alpha. Finally, the optimum alpha turned 
out to be 31.6. 

 

Ratio training-set and testing-set 
The ratio is based on prior knowledge about the manure parameters. According to literature and the 

simple linear regression, a relatively high scoring TAN would indicate a logical ratio. By trial and error, 

the ratio training: testing turned out to be 70:30. 30% considers of testing data. 

Cross-validation 
The amount of cross-validation is set to 10, due to the same trial-and-error method as explained above. 

Evaluating the model using negative mean squared error 
In the code, it can be seen that the model uses the negative mean squared error. Normally, a measure 
of a well performing regression model aims to find a low mean squared error (MSE). Scikit-learn (a 
library used) is looking for maximizing scoring function, which would be in conflict with the goal. By 
doing so, lower negative values indicate a better performance. Therefore, a negative MSE is used to 
find the best alpha. 
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Appendix B. The two TAN-approaches: the complete dataset 
 
Figure B1 shows the two complete datasets of TAN. The two graphs on the left-side display the 
measured set, the right side shows the more calculated set. The colour codes define the different 
farms. The vertical line in the two upper graphs visualise the connected points, which means they 
derive from the same farm. The lines in the lower to graph visualise the TAN values of the same farm 
within the same year, using a colour code. This is why there are no lines the graph on the right-bottom 
corner, since the calculated TAN values are annual. On the left-bottom side, it is visivle that one farm 
has 4 slurry manure samples in the same year in January, complying with the requirements. 

Figure A1: The comparison between measured AEP and NH3 calculated by the KLW. 

 
From Figure B1, several conclusion can be made. First of all, there is a large spread in measured TAN 
values taken within the same year within the same farm. Secondly, there are some outliers visible in 
the calculated set, but the majority is located between a value of 1.5 and 2.0. At last, without directly 
comparing individual values, the magnitude of the values seem to match well. 
 
Table B1 (next page) shows the complete lists of distances from the different TAN combinations. The 
top 11 is made bold. 
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Nr. Farmer code Year Distance 

1. AMMONI-07  2019 1,04 
2. AMMONI-07  2021 1,03 
3. AMMONI-05  2019 0,99 
4. AMMONI-07  2019 -0,96 
5. AMMONI-18  2019 -0,94 
6. AMMONI-21  2021 0,83 
7. AMMONI-05  2018 0,83 
8. AMMONI-05  2021 0,82 
9. AMMONI-23  2018 -0,81 

10. AMMONI-05  2019 0,79 
11. AMMONI-21  2018 0,78 
12. AMMONI-21  2018 1,04 
13. AMMONI-07  2021 1,03 
14. AMMONI-03  2020 0,99 
15. AMMONI-05  2019 -0,96 
16. AMMONI-05  2019 -0,94 
17. AMMONI-23  2021 0,83 
18. AMMONI-05  2018 0,83 
19. AMMONI-15  2021 0,82 
20. AMMONI-15  2018 -0,81 
21. AMMONI-18  2019 0,79 
22. AMMONI-17  2019 0,78 
23. AMMONI-20  2018 1,04 
24. AMMONI-19  2019 1,03 
25. AMMONI-15  2019 0,99 
26. AMMONI-02  2021 -0,96 
27. AMMONI-23  2020 -0,94 
28. AMMONI-19  2018 0,83 
29. AMMONI-03  2018 0,83 
30. AMMONI-02  2019 0,82 
31. AMMONI-05  2019 -0,81 
32. AMMONI-20  2021 0,79 
33. AMMONI-04  2020 0,78 
34. AMMONI-22  2018 1,04 
35. AMMONI-05  2021 1,03 
36. AMMONI-11  2021 0,99 
37. AMMONI-05  2020 -0,96 

Table A1: The list of distances from between the two TAN approximations. 
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Appendix C. pH comparison: Vanhoof and Eurofins 
Figure C1 visualizes the difference between the two pH measurements, with the measurements of 
Eurofins systematically giving higher values.  This might be caused by the fact that the manure sample 
has aged before it has sampled. It could potentially mean an increase in the TAN values as well, which 
is also measured by Eurofins. Additionally, pH measurements by Eurofins are more expensive. 
Therefore, it could be economically interesting to continue with only the pH measurements of 
Vanhoof. 

Figure C1: The comparison between the two measured pH values. 
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Appendix D. Regression lines of the manure-AEP relationship 
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Appendix E. Manure-feed relationship matrices 
 

The matrices placed on the next three pages.  

Primary page: P-value 

Secondary page: R-squared 

Tertiary page: Directional R-squared 
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Appendix F Regression lines of relationship between feed parameters and emission 

values 



56 
 

 


