
Predicting software
vulnerabilities with
unsupervised learning
techniques

Ka-WingMan

Predicting software
vulnerabilities with unsupervised

learning techniques
by

Ka-Wing Man
to obtain the degree of Master of Science in

Computer Science at the Delft University of Technology,

to be defended publicly on Thursday 20 August 2020 at 15:00.

Student number: 4330714
Project duration: 20 May 2019 – 20 August 2020
Thesis committee: Dr. ir. S.E. Verwer, TU Delft, supervisor

Dr. A. Panichella, TU Delft, supervisor
Prof. Dr. R.L. Lagendijk, TU Delft, chair

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

There comes a time when a student has to graduate. For me that time is now, in the middle of the COVID-19
pandemic. It has been more than two years since I could start with my thesis. For most of the first year, I have
struggled to find a professor who would supervise me during my research and a research topic that suits my
interests and ultimately getting accepted into the company I did my thesis internship at. After I finally started
with my thesis officially, little did I know that it would take very long to finally be able to start my research, that
was at the end of my internship of nine months. My family and friends would bug me countless of times, asking
me if I am already finished with my thesis. They can now finally witness this moment in my life. Especially my
parents, they are not the youngest anymore. As education is important in the Chinese culture, they have always
wanted their children to graduate with a master’s degree.

Firstly, I would like to thank the people who helped me throughout this research and who I, without their help,
could not have written the thesis. The first two people are my supervisors Sicco Verwer and Annibale Panichella,
who have given me the opportunity to conduct a research and to write a thesis report under their supervision. They
have taught me how to do research scientifically, but they have also enlightened me with their in-depth knowledge
of this research topic, and have given me mental support when things did not look bright. The meetings with
Sicco and all my fellow thesis students under his supervision, where I could sometimes speak out my heart about
what was bugging me. The meetings with Annibale, where we would start with what pizza my partner and I
ate since the last time we saw him and him telling us that we are eating biscuits, not real authentic Italian pizza
with a fluffy edge. Thank you both for your effort of supervising me, your expertise and your experience in this
research world.

I would also like to thank my partner Dinesh Bisseser, who I started this research together with at the same
company. Our partnership goes back even before this thesis. There were numerous times that we would work
non-stop on our homework through the entire night while sitting together or voice call each other. We both
remember very clearly the time that we worked on some assignment on the campus until midnight, both went
home and continue working on it the entire night while voice calling, finally solving the problem in the early
morning and immediately met in Delft to sign off our work at 09:00. Or that one time that we worked on a
project for a resit, giving up our entire week of spring break to make sure we would pass, just to fail the course
in end the because a group member acted on his own during demo and accidentally broke our code, wasting our
well-deserved spring break. The uncountable times that we ate Kapsalon and pizza during dinner or even after
midnight. Dinesh, I am sure that you will graduate quickly after I do. I hope that our partnership will not end
after these theses. However, I am certain our friendship will definitely last even after we graduate.

Not to forget Hennie Huijgens, who was a guest researcher at the TU Delft but primarily worked at ING. He
arranged an internship for Dinesh and I at ING and guided us during our internship, brainstorming together with
us and taught us how to act professionally in front of other ING employees that we needed to work together with
for this research. Hennie, thank you that you were willing to help us whenever we needed you.

Lastly, I would like to apologize to my uncle for me taking unnecessarily long to finish my thesis and to graduate.
He was fighting against his illness for the past four years and whenever I came across him in the city center of
Rotterdam or whenever I visited him, knowing that he might not make it, every time he would ask me if I could
already graduate, hoping that he could witness my graduation. I, however, had to answer negative every time he
asked. Sadly, he passed away a few months back. My heart goes out to my aunt, his window. I wish that he could
witness this moment, as he had great hopes for me that I will succeed in whatever I will do in the future.

Speaking of the future, I may return to a university to pursue a Doctor of Philosophy (Ph.D.) degree. But those
ambitions rest for a few years first. I have other ambitious plans at this moment.

Ka-Wing Man
Rotterdam, August 2020

Abstract

As software is produced more and more every year, software also gets exploited more. This exploitation can
lead to huge monetary losses and other damages to companies and users. The exploitation can be reduced by
automatically detecting the software vulnerabilities that leads to exploitation. Unfortunately, the state-of-the-art
methods for this automated process are not perfect and thus more research is needed to address this issue.
This research was partly done at ING, one of the banks of The Netherlands, in order to find a software vulnera-
bilities prediction method that is more efficient than their already deployed static code analysis tool Fortify Static
Code Analyzer. This report proposes a method to predict software vulnerabilities in code using unsupervised
learning methods. The data set is comprised of software metrics of code written by developers of ING, in con-
junction with its corresponding label whether the code was vulnerable or non-vulnerable, confirmed by a security
expert. Principal component analysis reduced the dimensions of the data set. From here on, the unsupervised
learning technique k-means was used to build our prediction model and a distance-based anomaly detection
technique was applied to find the software vulnerabilities. This produced poor results. In a final attempt to find
better results, k-nearest neighbor was used to build a new prediction model and another distance-based anomaly
detection technique was applied. The outcome of this latter method was surprisingly good.

Contents

1 Introduction 1
1.1 Introducing problem . 1
1.2 ING, Bank of The Netherlands . 2
1.3 Problem statement . 2
1.4 Research Design . 3

1.4.1 Research process . 3
1.4.2 Research questions . 3
1.4.3 Research scope . 5
1.4.4 Report structure . 5

1.5 Summary. 6

2 Literature review 7
2.1 Related Work. 7

2.1.1 Prediction models . 8
2.1.2 Prediction software metrics . 9

2.2 Background information . 10
2.2.1 McCabe’s cyclomatic complexity . 10
2.2.2 Halstead’s complexity measure . 10
2.2.3 Chidamber and Kemerer’s Object Oriented metrics 11
2.2.4 Curse of dimensionality . 11
2.2.5 k-means . 11
2.2.6 Principal Component Analysis . 12
2.2.7 t-Distributed Stochastic Neighbor Embedding. 13

2.3 Research Gap . 13

3 Data set 15
3.1 Micro Focus® Fortify Static Code Analyzer. 15

3.1.1 Inner workings . 15
3.1.2 Navigating through the app . 16
3.1.3 Data extraction considerations . 19
3.1.4 Files inspection. 19

3.2 Data set creation, cleaning and analysis . 20
3.2.1 Data set cleaning and analysis . 21
3.2.2 Data set features explanation . 21
3.2.3 Data set cleaning . 22
3.2.4 Summary. 23

4 Clustering 27
4.1 Dimensionality Reduction using Principal Component Analysis. 27
4.2 Visualization using t-SNE . 27
4.3 Clustering process . 30

4.3.1 Choice of (unsupervised) algorithm. 30
4.3.2 Application of the k-means algorithm. 30
4.3.3 Finding the reasoning behind clusters . 32
4.3.4 Files in each clusters . 37

4.4 Summary. 38

5 Anomaly detection 47
5.1 An outlier detection method . 47
5.2 Choice of the distance metric . 47
5.3 Validating distances . 48

Contents

5.4 Model evaluation . 48
5.5 Results of its application and its interpretation . 49
5.6 k-nearest neighbor: its application and results. 53
5.7 Summary. 54

6 End 57
6.1 Conclusion . 57

6.1.1 Summary. 57
6.1.2 Answering the research questions. 58

6.2 Discussion and future work . 59
6.3 Reflection . 61

A Appendix 65
Bibliography 71

1
Introduction

1.1. Introducing problem
Software has become an important part of our lives. Nowadays, even the consumers are exposed to software.
Billions of people in the world are using a smartphone, a laptop or some other embedded device. These devices
run on software. For example, users of smartphone take pictures for social media. Laptop users are writing.
Gamers play games on their home console. These software sometimes have features that were not intended by
the developer. If these features are malicious, they can be used to attack a system. Such software vulnerabilities
are a big issue in the software world.

Security is one of the major factors to take into account when developing software. Software is being developed
and released, now more than ever. With more applications comes more users. All of these users generate
vulnerable data. This data is interesting not only for companies and organizations to process and analyze, but
also for adversaries. Security and data breaches happen more often and the impact seems to be bigger every year.
It is clear from the NIST study1 that the amount of vulnerabilities in IT has been increasing the last couple of
years.

Attacks can have different kind of risks. In 2018, Business Insider reports that billions of user accounts have been
compromised in the top 21 biggest data breaches [23]. Adversaries can use these compromised data to sell it on
the black market or blackmail people and companies. In July 2015, for instance, a group of adversaries stole the
user data of dating website Ashley Madison. This website was actually used for having affairs. Adversaries could
use this data to blackmail or publicly shame users, for most users would have their affairs in secret [27]. Another
kind of risk, for example, is ransomware infection. The idea behind ransomware is that computers infected with
a malware, having all its files encrypted in such a way that the files cannot be accessed and decrypted by the
users themselves. If the users would pay the hackers within a time limit, the files would be unencrypted again
and thus releasing the computer as a hostage. If the time limit is expired without payment, the files are destroyed.
In May 2017, a ransomware cryptoworm named WannaCry was released worldwide and targeted computers with
Windows OS [35]. Data, however, is not the only important digital asset. One of the most recent hack with big
monetary losses happened in 2018. 12000 VISA cards were stolen from Cosmos Bank in India, which were used
for 15000 transactions, totaling in a lost of $13.4 million [28]. One of the biggest hacks, concerning banks, is
the Carbanak group. They stole almost $1 billion from over 100 banks around the world [22]. Another hack at a
financial institute happened in February 2016. Hackers issued a fraudulent transfer of almost 1 billion USD from
the Federal Reserve Bank of New York’s account at the Central Bank of Bangladesh. Even though a total of 870
million USD was refused or halted, 81 million USD were successfully transferred2, of which only 18 million
USD has been recovered up until today3.

These attacks are possible due to software vulnerabilities. Adversaries can exploit these vulnerabilities to gain
unauthorized access to applications and data. There are many different definitions for "software vulnerabilities"

1https://nvd.nist.gov/vuln-metrics/visualizations/cvss-severity-distribution-over-time
2https://nypost.com/2016/03/22/congresswoman-wants-probe-of-brazen-81m-theft-from-new-york-fed/
3https://newsinfo.inquirer.net/807690/ex-rcbc-branch-manager-free-on-bail

1

https://nvd.nist.gov/vuln-metrics/visualizations/cvss-severity-distribution-over-time
https://nypost.com/2016/03/22/congresswoman-wants-probe-of-brazen-81m-theft-from-new-york-fed/
https://newsinfo.inquirer.net/807690/ex-rcbc-branch-manager-free-on-bail

2 1. Introduction

[24]. The best definition we found for a software vulnerability according to Liu et al., and also within the scope
of this research is thus:

"An instance of a mistake in the specification, development, or configuration of software such that its execution
can violate the explicit or implicit security policy".

Thus, cybersecurity is becoming more important everyday.

Unfortunately, creating software also means creating vulnerabilities. More and more software is being developed
and thus more vulnerabilities in software exists.4 These vulnerabilities can form risks, some more than others,
when attackers try to exploit them. These risks can harm people and companies.

To overcome these problems, vulnerabilities in software need to be tackled as soon as possible during the devel-
opment of software, as bug fixes become more costly over time [38]. To ensure that most vulnerabilities are not
present after release, developers have to often test and check their code for vulnerabilities. This can be done by
the developers them self or by security experts. However, this process can take a lot of time and can create delays
for the development of the rest of the software.

Predicting vulnerabilities can help developers check for vulnerabilities without the aid of security experts and
help speed up the development process. By training a prediction model into detecting whether a certain deploy-
ment is vulnerable, developers can act accordingly.

1.2. ING, Bank of The Netherlands
This report describes the research that was conducted in collaboration with ING, the biggest bank of The Nether-
lands5. ING is a global bank with 53.000 employees over 40 countries, serving 38,4 million customer. Their
product include savings, payments, investments, loans and mortgages in most of their retail markets. They pro-
vide lending, tailored corporate finance, debt and equity, market solutions, payments & cash management and
trade and treasury for their wholesale banking clients, which are larger customers or organizations such as large
corporate.

ING provided the penetration tests data and the corresponding source code, allowing us to use it for research
purposes. At ING, there are multiple teams developing all kind of software. Whenever a team wants to deploy
their software, the software has to be checked by the penetration testing team for any software vulnerability.
Various tools are used for penetration testing and code reviewing the software. Depending on the risks of the
vulnerabilities, certain actions must be taken before the software can be deployed.

In the previous section is explained what attackers have done in the past and what its impact was. It is needless
to say that no (financial) institutes such as ING can afford such security and data breaches. Therefore, ING needs
to limit the risk of having their digital assets stolen as much as possible. To ensure attackers can not exploit
applications, software vulnerabilities need to be found and taken care of before applications are released. ING
uses penetration testing teams to ensure that their applications does not contain software vulnerabilities.

ING makes use of two automated static code analysis tools such as CheckMarx6 and Fortify7 to find for potential
software vulnerabilities. Usually whenever development teams have static code analysis tools deployed, they run
these tools before the deployment of their software, to see whether their code needs revision because of security
risks.

1.3. Problem statement
As more and more software is developed every year, the created software needs to be tested for vulnerabilities
or the exploitation of such vulnerabilities could probably cost more than the testing of the software. Also, no
software user wants its data to be stolen and sold by hackers on the black market. The testing of the software

4https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today
5Based on total assets:
https://www.banken.nl/nieuws/20909/ranglijst-grootste-nederlandse-banken-2018

6https://www.checkmarx.com/
7https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview

https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today
https://www.banken.nl/nieuws/20909/ranglijst-grootste-nederlandse-banken-2018
https://www.checkmarx.com/
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview

1.4. Research Design 3

is expensive because there are not enough specialized pentesters to hire and testing the software is sometimes
tedious and time-consuming.

To tackle the problem of the lack of enough specialized pentesters, the testing can be partly automated which is
cheaper than pentesters and faster. However, automated testing has its own problem, namely that its results need
to be more reliable and they have to truly find vulnerabilities instead of returning lots of false positives.

While ING has already deployed an automated static code analysis tools, static code analysis tools’ biggest flaw
is the high false positives rate. Fortify is not an exception to this. The ratio of true positives with respect to all
confirmed true positives and false positives, which is called precision (see Appendix A for the formulas of such
classification scores), was calculated to be 0.02. It is again tedious, time-consuming and waste of resources by
validating all the found potential vulnerabilities by static code analysis tools as the false alarm rate is 98%.

Machine learning is one of the methods in finding software vulnerabilities that may give good results. These
results are shown in the related work section. The difference between static code analysis and a machine learning-
based approach is that static code analysis interprets source code like a real compiler and knows what the code
does to analyze different execution paths. A machine learning-based approach, however, does not interpret the
code, but uses meta-data and statistics of the code to find software vulnerabilities.

Formally, the goal of this study is defined as:

Developing a reliable machine learning-based process that finds software vulnerabilities, minimizing
the false positives and false negatives.

1.4. Research Design
The research design is an important part of the entire study, as the design forms the backbone of the research.
First, the process is outlined. Then the research questions are specified, and last, the research scope is de-
scribed.

1.4.1. Research process
The setup of this research is as follows. See figure 1.1

Fortify provides us the code base, what kind of potential vulnerabilities are present and their corresponding label
given by a pentester (or given by a developer but validated by a pentester) whether the potential vulnerability is
truly a vulnerability or a false alarm. This data needs to be extracted. This validation of a pentester is important as
most of the potential vulnerabilities are false positives. With this, each of these possible software vulnerabilities
can now labeled as true positive of true negatives (as they are false positives) in our to be created data set.

This data set is used for applying machine learning techniques. This data set is constructed by software metrics.
Each file extracted from the code base of Fortify is used as input for a software metric calculator tools. This tool
will return a row, with the corresponding software metrics of the code, for in the data set. With each file already
having labels given by the penetration testers, the data set will have columns of data in combination with a label
and will be ready for cleaning and analysis.

The data set needs to be inspected, removing and altering data whenever needed. Then, a thorough analysis is
done to provide us insight of the data set and giving us the opportunity to correctly interpret the data. Afterwards,
we apply a dimensionality reduction technique with PCA. With a reduced data set, we cluster our data using
k-means. With the clusters, we test our method by using a distance-based anomaly detection technique, in which
we predict the labeling given manually by ING employees. Finally, we will discuss our results, possible future
work and reflect on our work.

1.4.2. Research questions
This research is set up to recognize the pattern of the data set in order to predict the label with the data as
input, which in turn helps us to detect any future vulnerable code. To predict the software vulnerabilities in

4 1. Introduction

Figure 1.1: Research flowchart

an unsupervised learning setting, the k-means algorithm is chosen above other algorithms. This choice will be
explained in the clustering chapter. The main research question that this research aims to answer, which is in line
with our research goal, is:

RQ: Can we predict software vulnerabilities, in an unsupervised learning setting, better than the Fortify
by using the k-means algorithm?

To answer the main question of this research, it is broken down into three sub-questions in order to answer the
main research question in a structured manner.

To have an optimal data set, a thorough data set analysis is required. First, cleaning the data set by removing
unwanted data and altering data if needed. With an uncleaned and therefore non-optimal data set, one could
suffer from the noise present in the data set, which is data that is actually not a part of the pattern in the data that
we seek. By having the model also learn the noise, it will make predictions partly based on the noise and our
model will likely overfit and therefore incorrect. By removing this noise, only data that represents the pattern that
we want the model to recognized is left over, thus having the model predict the labels more correctly. Another

1.4. Research Design 5

important part before actually building the model is analyzing the data. This is an important step to knowing
how to interpret the data, that is know what the data means and how to interpret our eventual results. It is also
to find any (unexpected) abnormalities in the data set that needs to be dealt, by understanding it and keeping the
data as it is, altering the data or removing the data from the data set. This analysis include visualization of the
data set and examination of the features. For these important steps, the first sub-question, further divided into
two questions which serve the same purpose namely the analysis of the data set, is:

RQ1(a) What can we learn by analyzing the data set?

RQ1(b) What are the features of the data set and what subset of these features should be used for the
prediction model?

The k-means algorithm produces clusters. These clusters are grouped by similarities in terms of values for
each feature of each data point. This algorithm can produce different outcomes, as this algorithm requires
randomization during initialization. Thus, the similarities on which the clusters are based on may be different
for each executions of the algorithm. The reason why clusters are clustered in the manner that it is clustered may
be wanted or unwanted, expected or unexpected, as the algorithm does not know what each feature means. It
is up to the researcher to check whether the clusters are logical for our given problem, executin the clustering
algorithm multiple times if necessary. Thus, it is essential to validate the produced clusters, before continuing to
using them in our next step. For this problem, we derive the second sub-question as:

RQ2 How good are the clusters produced by k-means?

After clustering our data, we need a method to actually label the (unlabeled) test data in our test set. The
chosen method is a distance-based anomaly detection method. This choice and its process will be explained in
the anomaly chapter. The answer to the main research question lies heavily on the performance of this chosen
method. The performance can be measured by comparing our model’s predictions with the actual label that we
have, ultimately allowing us to answer the final sub-question:

RQ3 To what extent are software vulnerabilities detectable using our distance-based k-means anomaly
detection method?

1.4.3. Research scope
The scope of this project covers only unsupervised machine learning methods and only one such method is
chosen, namely k-means. For supervised machine learning methods, we refer to the parallel study of Dinesh
Bisesser. At the time of submitting this thesis report, his thesis report was not finished yet and is therefore not
submitted to the TU Delft repository8 yet. However, it will be uploaded to the repository as soon as he finished
his research.

1.4.4. Report structure
The structure of the rest of the report is as follows. In chapter 2, the related work of similar researches conducted
by other researchers in the past is described, together with background information needed in this research and the
research gap is identified. In chapter 3, the creation of the data set for this research and its analysis is explained.
In chapter 4, the clustering of the data using the unsupervised learning algorithm k-means is shown. In chapter 5,
the distance-based anomaly detection technique is outlined and its results is discussed. In chapter 6, the answers
to the research questions are given, including a discussion/reflection of this research.

8https://repository.tudelft.nl/

https://repository.tudelft.nl/

6 1. Introduction

1.5. Summary
As software are being exploited more and more, making huge damages to users and companies. This can be
mitigated by removing software vulnerabilities. Trained pentesters are the best suited people to do this job, but
their number on the market are scarce. Finding software vulnerabilities also takes a lot of time. This problem
can be remedied by automating this process. ING has deployed Fortify, a static code analysis tool, but it is very
limited. In order to help ING with their software vulnerabilities problem, we are setting up a research to detect
software vulnerabilities using unsupervised learning techniques. The goal of this study is to goal of this study
is to develop a reliable machine learning-based process that finds software vulnerabilities, minimizing the false
positives and false negatives.

2
Literature review

Software vulnerability detection, also known as software fault prediction is a significant research area within
the software engineering field for over 30 years [37]. These researches apply machine learning techniques, static
code analysis and others. Among the researches that utilizes machine learning techniques, different studies uses
different techniques and different authors argues some techniques are superior to others. For example, there are
studies that use different machine learning models (Random Forest, Naive Bayes, Logistic Regression, Decision
Tree etc.) and there are studies that use different metrics (Halstead, McCabe, Object-oriented etc.). Also, whether
a model is decently trained depends on what performance metrics is chosen e.g. Area Under the Curve (AUC),
precision, recall etc. Therefore, the objective of these researches is to create models with the aforementioned
techniques, using one of multiple of these software metrics and also one of multiple of these performance metrics
to find latent relations and patterns in order to detect software vulnerabilities.

In this chapter, the related work of software vulnerability detection research previously done by other researchers
is outlined. Afterwards, some background information of techniques related to this research is explained.

2.1. Related Work
Software vulnerability detection comes with different approaches. One approach is to approximate the number
of vulnerabilities. For example, Compton et al. make use of statistical analysis of McCabe and Halstead metrics
to calculate the defect density [13]. This research will be based on the classification approach, that is to classify
given certain software modules as vulnerable or non-vulnerable.

As there are many research paper about the topic of software vulnerability detections, there are few literature
review papers about it. Radjenović et al. found 106 papers published between 1991 and 2011 [43]. They found
a software metrics distribution of object-oriented metrics (49%), Halstead and McCabe’s software metrics also
known as traditional software metrics (27%) and process metrics (24%) while Chidamber and Kemerer’s object-
oriented metrics were used the most frequently. They report that the OO-metrics and process metrics were the
most successful metric in finding vulnerabilities.

Catal (et al.) has two review papers on the detection of software vulnerability. In the first paper, published in
2009, they reviewed 74 papers since 2005 up until 2009. [10]. In the second paper, published in 2011, Catal
found 90 papers between 1990 and 2009 [9]. He showed that more and more research is done over the years
on detecting software vulnerabilities. His numbers can be seen in table 2.1. He found that the usage percentage
of using public data sets and the usage percentage of machine learning algorithms both have increased slightly
since 2005, and method-level metrics are still the most dominant metrics, while machine learning algorithms are
still the most popular methods.

Malhotra identified 64 primary studies between 1995 and 2013 [26]. They found papers using various machine
learning algorithms, like decision trees, Bayesian learners, support vector machines, neural networks etc. 49%
of the 64 papers used some kind of feature reduction technique, with co-relation based feature selection as
the most popular technique. 34 papers used traditional software metrics while 18 others used Chidamber and

7

8 2. Literature review

Years Amount of papers found
1990-2000 10
2000-2003 14
2003-2005 15
2005-2007 17
2007-2009 34

Table 2.1: Distribution of papers over the years

Kemerer’s software metrics. They report that Chidamber and Kemerer’s metrics Coupling Between Objects
(CBO), Response For a Class (RFC) and Lines Of Code (LOC) are highly useful, but Number of Children
(NOC) and Depth of Inheritance Tree (DIT) are not. These metrics are further explained in the Background
Information section. They also report that more than 40 papers used recall as their performance metrics, while
30 used accuracy and more than 20 used precision also around 20 used AUC.

Haghighi et al. compared 37 different classification algorithms over 5 public NASA data and figured that Bag-
ging has a best overall performance (measured in ACC and AUC) in fault detection systems than the other tested
classifiers [16].

2.1.1. Prediction models
Different models have been proposed. Each of them have their own advantages and disadvantages. Catal et al.
argued that these machine learning algorithms should continued to be used as they build better fault predictor
[10].

Chowdhury et al. investigated extensively what the relationship is between complexity, coupling and cohesion
(CCC) metrics and software vulnerabilities have [12]. The goal was to investigate whether complex, coupled
and non-cohesive software modules have more software vulnerabilities and which CCC-metrics can be used
to indicate these vulnerabilities in software. Due to different metrics being available at different development
stages, the correlation was further explored to determine whether code-level (available after coding) or design-
level (available after design phase) of CCC-metrics are better indicators of vulnerabilities. A case study was
conducted on software vulnerability data of 52 Mozilla Firefox releases that was developed over a course of
four years. A set of Chidamber-Kemerer metrics that measure complexity, coupling and cohesion was selected
to analyze the correlations with vulnerabilities on design-level while mostly McCabe metrics were selected to
measure the correlation on code-level. Each vulnerable software module, may it be functions, files, classes etc.,
were traced using vulnerability reports, bug repositories and software version archive, and for each of these
modules, the CCC-metrics were calculated. Their results show that complexity, coupling and cohesion all have
a correlation with vulnerabilities at a statistically significant level. Code-level metrics are deemed more strongly
correlated to vulnerabilities due to their belief that code more closely represents the operational behavior of
the software than the design specification, on assumption that programmers do not always follow the design
specification and therefore code sometimes diverges from what is specified in the design.

Tim Menzies et al. concludes that it is irrelevant to debate which static code attributes are most successful as pre-
dictors of software defects [32]. They argue that minor changes in data (such as a slightly different sample used
to learn a predictor) can make different attributes appear most useful for defect prediction. Hence, the so-called
"best attributes" used for defect prediction vary from data set to data set and rather than labeling a particular
subset of possible attributes as the best attributes, one should find a subset of all available attributes that is most
appropriate for a particular domain (e.g. projects). Moreover, they show that the choice of learning method is far
more important than which subset of the available data is used for learning. They have experimented with pre-
diction models such as Naive Bayes (with log filters), J48, a Decision Tree generator developed by Ross Quinlan
[42], and OneR, which builds prediction-rules using one or more values from a single attribute. Results show
that NaiveBayes with log filters have the best average results, namely pd = 0.71 and p f = 0.25.

However, as satisfied as Tim Menzies et al. are with the abovementioned results, Zhang and Zhang argued
that in [32] the models are impractical [49]. While a high pd and a low p f looks fine at first hand, they do not
necessarily lead to accurate models with high precisions due to the data set being highly imbalanced. An accuracy

2.1. Related Work 9

measure widely used in Information Retrieval is precision, which was very low in the models. For one data set
tested by Menzies et al., the precision was 0,2064, meaning if a module is predicted as defective, the probability
of it actually being defective is only 20,64%. The precision of another data set was only 0,0202. According to the
authors, applying such models would defeat the very purpose of defect prediction, which is about allocation of
limited QA resources more efficiently, so that efforts can be concentrated on the potentially problematic modules
and thus the models would not be satisfactory for practical use and should therefore be improved. Tim Menzies
et al responded that precision instability is the reason that they do not assess performance in terms of precision.
[31].

Tim Menzies et al. proposes a method called SEVERIS, which assists a test engineer in assigning severity levels
of risks of defects found [30]. This method is useful for non-experienced test engineers who might assign a lower
severity level than in reality. After an issue has been raised, the test engineer takes notes of the issue and assigns
it some severity level. SEVERIS trains a prediction model from past notes and a human-assigned severity level.
The prediction model generates a score of how much self-confidence a supervisor has in the SEVERIS’ conclu-
sions and determines a second severity level for each issue risen. If SEVERIS’ severity level differs from the test
engineer’s, a human supervisor can decide to review the severity level assignment of the test engineer. To support
this process, the supervisor can review the self confidence score to decide if they trust the SEVERIS’ assignment.

Alves et al. built a data set containing software metrics from functions, classes and files of five projects that
relevant from a security point of view, as they are widely used and exposed to attacks [5]. These five projects are
Mozilla, Linux Kernel, Xen Hypervisor, httpd and glibc. In total, there were 2875 security patches found over
the five projects and 5750 snapshots of the projects were made from the corresponding repository, one commit
immediately before the patch and one commit immediately after the patch. With the obtained code, the commer-
cial software Understand1 was used to compute the software metrics for all elements in the snapshots. The most
relevant conclusions of this research was that software metrics computed by Understand and software vulnerabil-
ities are indeed correlated. However, none of the individual computed software metrics indicate directly which
function will have more vulnerabilities and therefore using predictive models in machine learning that combine
multiple metrics is suggested.

Shin et al. evaluated whether code complexity and developer activity metrics are discriminative metrics that can
be used to prevent software vulnerabilities and evaluated whether code complexity, code churn, developer activity
metrics can predict the location of vulnerable code. Two empirical studies were set up on Mozilla Firefox and
the Linux kernel as distributed of the Red Hat Enterprise Linux. In a time span of four years, 197 vulnerability
reports were collected from 34 releases of Mozilla Firefox, in which a total number of 1197 instances of file
changes to fix vulnerabilities observed. For Red Hat Enterprise Linux, 192 vulnerability reports are collected of
one release, in which a total number of 258 instances of file changes to fix vulnerabilities were found. The code
complexity, code churn, developer activity metrics were computed and analyzed.

Czibula et al. proposes a classification model that is based on mining relational association rules, which are
particular type of association rules that describe numerical orderings between attributes that occur frequently in
a data set [15].

2.1.2. Prediction software metrics
Back in 1970’s, a critical problem software engineering had was how to modularize software such that it would
be easily testable and maintainable [29]. One of the practice used back then was to limit programs by their
physical size in order to ensure modularization. This method does not suffice, as 25 consecutive if-then statements
could result in 225(≈ 33,5 million) distinct control paths. One could imagine that not all of these paths would
be ever tested. Thomas J. McCabe made an effort to develop a mathematical technique that will provide a
quantitative basis for modularization and allows developers to identify software modules that are hard to test or
to maintain. They are explained in the next section, together with Halstead’s complexity measure and Chidamber
and Kemerer’s object oriented metrics.

There are also process metrics, these are code delta (difference between two builds in number of lines), code
churn (sum of lines added, deleted and modified), the number of developers, the number of past faults, the

1https://scitools.com

10 2. Literature review

number of changes, the age of a module and the change set size [43] [4]. Shin et al. evaluated these metrics and
show that their results indicate that they are discriminative and predictive of software vulnerabilities [45].

2.2. Background information
This section described the information needed in our research. Most of these techniques are applied directly

2.2.1. McCabe’s cyclomatic complexity
Let the flow of a program be represented by a control graph G with n vertices, e edges and p connected compo-
nents. The graph is constructed depending on the flow of the program. The cyclomatic complexity V(G) of G is
defined as V (G) = e −n +2p

In general, it holds that a collection C of control graphs with k connected components equals to the summation
of their cyclomatic complexity. This method can be used to calculate the complexity of a collection of programs,
where for example subroutines exists. To prove this, let Ci with 1 ≤ i ≤ k denote the k distinct connected
components, with ni and ei respectively be the number of nodes and edges of the i -th connected component.
Then

v(C) = e −n +2p =
k∑
1

ei −
k∑
1

ni +2k =
k∑
1

(ei −ni +2k) =
k∑
1

v(Ci)

A graph is strongly connected if all nodes can be reached from any other node.

Theorem 1 If a graph is strongly connected then the cyclomatic complexity V(G) equals the maximum
number of linearly independent paths v(G).

McCabe’s experiment had programmers instructed to calculate the complexity as they created software modules.
McCabe noted what when the complexity was greater than 10, the programmers either split their code into sub-
functions or rewrote the code. Some programmers had very distinct coding style, e.g. several loops in sequence,
in which the control flow graph of their programs had similar patterns and also had high complexity. Furthermore,
a close correlation was found by the project members between the ranking of subroutines by complexity and a
ranking by reliability. The conclusion is that a higher complexity results in less reliable code. Therefore, the
strategy to keep programs testable and maintainable is to set an upper limit to the number of linearly independent
paths v(G). McCabe suggested the upper limit to be 10.

2.2.2. Halstead’s complexity measure
Halstead introduced its metrics back in 1977 [17]. Measurable properties of any expression of any algorithm
include the following:

η1 = number of distinct operators
η2 = number of distinct operands
N1 = total number of operators
N2 = total number of operands
Program vocabulary: η= η1 +η2

Program length: N = N1 +N2

Volume: V = N × l og2η

Difficulty = D = η1
2 × N2

η2
Effort = E = D ×V

Halstead came up with an estimate for the number of bugs in an implementation:

Number of delivered bugs = B = E
2
3

3000

2.2. Background information 11

2.2.3. Chidamber and Kemerer’s Object Oriented metrics
Chidamber and Kememrer came up with next software metrics suitable for object oriented programming lan-
guages such as Java in 1994 [11].

Its first proposed metric is the Weighted Methods per Class (WMC). Consider a Class C that has methods
M1, . . . , Mn , let c1, . . . ,cn be the static complexity (it is not defined in the original paper what the static com-
plexity is) of those methods, then the WMC is defined as

W MC =
i=1∑

n
ci

The WMC is a complexity measurement and it indicates how much time and effort it takes to develop and
maintain an object.

Its second proposed metric is the Depth of Inheritance Tree (DIT). This is the number of ancestor classes and
it measures how many of the ancestor classes can potentially affect the class in question as deeper trees have
greater design complexity since more methods and classes are involved.

The third proposed metric is the Number of Children (NOC). This is the number of immediate sub-classes of
the class in question. As the class can affect all its children, a class with large number of children requires more
testing.

The fourth proposed is the Coupling Between Objects (CBO). It counts the number of non-inheritance relations
with other classes. In their viewpoint, excessive coupling between objects outside of inheritance makes the design
less modular and hard to reuse. This measure could be useful in determining how complex testing certain classes
are. The more a class is coupled, the harder it is.

A fifth proposed metric is Response for a Class (RFC) is the set of methods called by any method of a class. The
reasoning behind this is if a larger number of methods are invoked, the higher the complexity is of the object of
that class.

The sixth and final proposed metric is Lack of Cohesion in Methods (LCOM). Let C be a class with M1, . . . , Mn

methods. Let Ii be the set of instance variables used my method Mi , then the LCOM is defined as the number
of disjoint sets formed by the intersection of I1, . . . , In . Cohesiveness in methods is desired, as it promotes
encapsulation of objects. If there is a lack of cohesion, then the class in question should probably be split into
two or more classes.

2.2.4. Curse of dimensionality
Aggarwal et al. explored the behavior of the LK -norm [3]. Their research suggests that the LK -norm might be
more suitable for k = 1,2, rather than k ≥ 3. It also provide considerable evidence that the higher the dimensions
are, the less meaningful the LK norm is for higher values of k. They concluded that given a problem with a high
dimensionality, a lower k may be preferred, which would be k = 1 (L1-norm aka Manhattan Distance), followed
by k = 2 (L2-norm aka Euclidean Distance). With this idea of preferring a lower k, they presented the fractional
distance metric, for which k < 1. In their results, they have shown that this metric is effective in preserving
meaning when comparing distances. This fractional distance metrics was tested with synthetic and real data.
The chosen dimensionality was 20. Using the k-means algorithm, using the fractional distance metric had a
classification rate of approximately 99% with f=0.3, in contrast to 89% using Euclidean distance.

2.2.5. k-means
k-means is a well-known clustering algorithm that is used since it was independently published by different
researchers. Its popularity is thanks to the algorithm being simple, effective and easy-to-implement [20].

The steps of the algorithm is as follows:

1. Choose of number of k clusters to partition n data points in.

2. Initialize k cluster centroids randomly by selecting points in the space as the data points.

12 2. Literature review

3. For each data point, compute the error to each cluster centroid. Assign the data point to the cluster of the
cluster centroid with the minimum error.

4. For each cluster, compute the mean of all the data points in the cluster. This mean is the new cluster
centroid.

5. Repeat steps 3 and 4 until the new cluster centroids do not change.

Formally speaking, the k-means algorithms minimizes the sum of squared errors

J =
K∑

k=1

n∑
i=1

(xi − ck)2

where c1, ...,ck are the cluster centroids and x1, ..., xn are the data points.

2.2.6. Principal Component Analysis
One of the popular dimensionality reduction techniques is Principal Coponent Analysis (PCA). PCA is a mul-
tivariate analysis method first introduced by Karl Pearson in 1901 ([41]) and then independently developed by
Harold Hotelling in 1933 ([19]) [21]. The idea behind PCA is the reduce the dimensionality of a data set, that
has a high number of correlated features, while preserving as much as possible of the variation of the data set.
This reduction happens by transforming the original data set into a new set of features which are called principal
components. These principal components are linear independent (hence uncorrelated) and are ordered descend-
ing so that the first principal component retains most of the variation present in all of the original features. This
results in the first principal component being the most significant while the last being the least significant.

The principal components transformation can be performed using singular value decomposition (SVD) [48] or
by using the covariance. The covariance method works as follows [46]: Let an n rows ×p columns matrix X
denote the data set. Let row vectors N1, ...,Nn denote each row of X and let column vectors P1, ...,Pp denote each
columns of X

1. Construct X̄ by calculating the mean p̄i of each column Pi with i = 1, ..., p, then subtract each element of
Pi with the mean p̄i

2. Calculate the covariance matrix M of X̄.

The covariance matrix M is a p ×p matrix, where the i -th rows and j -th column denote the covariance
of Pi and Pj with i , j = 1, ..., p.

Let A and B be two column vectors of X̄. Let Ai and Bi be the i -th element and ā and b̄ be the mean
of A and B respectively. Then, the covariance of A and B is calculated with the following formula:

cov(A,B) = 1

n −1

n∑
i=1

(Ai − ā)(Bi − b̄)

3. Calculate the eigenvectors and their corresponding eigenvalues of the covariance matrix M, i.e. find all
vectors v and scalar values λ such that Mv =λv.

4. Order the eigenvalues from highest to lowest. Construct a feature vector E by concatenating of the first d
eigenvectors, with d the dimensions you choose to reduce your original dataset to, i.e. E = (eigenvector1,
..., eigenvectord). Note that E is a p ×d matrix

5. To get the principal components matrix XPC A , multiply the transpose of E with the transpose X̄, i.e.

XPC A = (ET × X̄T)T

By making this transformation, the original data is represented on the eigenvectors instead of their original axes.
The intention of representing it on the eigenvectors is because eigenvectors are orthogonal (perpendicular) if
they exist and the transformation is the most efficient if the eigenvectors are orthogonal. By leaving out the last
principal components, some of the information is lost while most of the information is still kept.

2.3. Research Gap 13

2.2.7. t-Distributed Stochastic Neighbor Embedding
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction technique that is used for
visualizing data sets with high dimensions [25]. It minimizes the divergence between two distributions: a distri-
bution that measures pairwise similarities of the input objects and a distribution that measures pairwise similari-
ties of the corresponding low-dimensional points in the embedding[47]. t-SNE works well at creating a map that
reveals structures at many different scales, the most important one for this research being that data points that are
close to each other in a high dimensional level, can be shown close to each other in a low dimensional level (2D
or 3D). An excellent visualization example with t-SNE can be seen in figure 2.1, while other tested visualization
methods failed to show the clusters grouped together. Its advantage over PCA is that PCA is a linear projection,
while t-SNE can deal with both linear and non-linear data. t-SNE is a rather complex algorithm and we won’t go
into the details of this algorithm. What is important to note is that t-SNE’s main parameter is the perplexity. The
perplexity can be seen as a smooth measure of the effective number of neighbors. The performance of t-SNE
is fairly robust to changes in this parameter. Suggested values of perplexity are between 5 and 50. The original
papers states that t-SNE is suitable for visualization by dimensionality reduction, but it is not clear how the di-
mensionality reduction performs if the goal is to only reduce dimensions. Hence, the purpose of t-SNE in this
research is only visualization.

Figure 2.1: A visualization of 6000 handwritten digits from the MNIST data set from the original paper. Here you can see that clearly that
10 clusters are grouped together.

2.3. Research Gap
As shown in the related work section, lots of research have already been done in the past, different methods have
good results, but the same methods do not necessarily work for different data set than that are described in the re-
search papers, thus the different methods that had good results in the prediction of software vulnerabilities might

14 2. Literature review

not work on the data available at ING. Also, to the best of our knowledge, the software vulnerability data to be
extracted have not been ever (extensively) examined before, how good it works with machine learning techniques
to predict software vulnerabilities. To fill this research gap, we apply known machine learning techniques, which
have worked in the past, to the software vulnerability data available at ING.

3
Data set

3.1. Micro Focus® Fortify Static Code Analyzer
Micro Focus® Fortify Static Code Analyzer, in this report mostly shortened as Fortify, is one of the commercial
static code analysis tools deployed at ING. It is a closed-source software that was acquired by Hewlett-Packard
(HP) and later spun off and merged with a British software and consulting company Micro Focus [44]. Fortify
can be integrated in CI/CD tools, for instance IDE plugins for Eclipse, Virtual Studio etc. and bug tracker tools
such as Jenkins, Jira, Atlassian etc., which is useful for real-time analysis and results when developing. It detects
788 unique categories of vulnerabilities across 25 programming languages (including popular languages like
Java, Python, C/C++ and C#) and spans over 1.007.000 individual APIs. Micro Focus claims that the accuracy
has a true positive rate of 100% in the OWASP 1.2b Benchmark as demonstrated. (Author’s note: yet the false
alarm rate we found for all sorts of vulnerabilities is 98% as stated in chapter 1. It shows that their claim is not
that spectacular.)

3.1.1. Inner workings
Fortify uses multiple algorithms and a knowledge base of secure coding rules to analyze source code for vul-
nerabilities that might be exploited. It analyzes every execution path to identify and rectify vulnerabilities. Its
analysis is done by reading the source code, much like a compiler, and converts them to an intermediate structure,
which is used to locate the vulnerabilities. This fits exactly in the context of a general static code analysis [6, 8].
The exact algorithm and knowledge base is unknown as Fortify is a commercial product [34]. The knowledge
base can be expanded by including custom rules. Fortify consists of eight vulnerability analyzers. Each of these
analyzers evaluate the source code to check whether rules specific to the analyzers are violated. The rules are to
recognize aspects in the source that could follow in a certain security vulnerabilities [33].

The Buffer Analyzer checks the source code and determine using limited interprocedural analysis whether
reading or writing beyond the allocated space of a buffer in the memory, in which the program is loaded, is
possible. If so, the code is vulnerable to buffer overflow attacks, where parts of the memory can be overwritten
to change the flow of the program or to even inject malicious code [14]. The Configuration Analyzer looks
for weak policies in configuration files. The Content Analyzer does in static HTML files and also files that
contains dynamic HTML i.e generates HTML such as PHP, JSP and classic ASP files. Security misconfiguration
is in the top 10 of most critical web application security risks (OWASP Top 10 2017) [40]. The Control Flow
Analyzer searches for possible dangerous sequences of operations and determines whether a set of operations
are executed in the same order as intended. Examples are initializing variables before using them or utilities
such as XML readers are configured correctly before being used. The Dataflow Analyzer searches for potential
vulnerabilities that utilizes tainted data for potentially dangerous use, such as an user-controlled input string of
unbounded length that is copied into a statically sized buffer or a user-controlled input string that is used to inject
SQL code. The Null Pointer Analyzer speaks for itself. In certain programming languages such as C, C++
and Java, the danger of a null pointer is that when a NullPointerException is raised, an attack may be using that
exception to bypass security logic or causing the application in revealing debugging information that might be

15

16 3. Data set

useful in planning the next attack [39]. The Semantic Analyzer finds potentially dangerous uses of methods
and API, such as deprecated methods in Java and the gets() method in C/C++ that can be ussed for buffer
overflows. Last, the Structural Analyzers looks for potentially dangerous flaws in the structure of the code. It
tries to identify violations of secure programming practices and techniques that are too complex to inspect. An
example is searching flags of instances of dead code that is never executed due to some predicated being always
false.

3.1.2. Navigating through the app
After logging in on Fortify, the dashboard is the first thing you see. It has a list of projects that have completed
scans in the past. Each project is displayed with the statistics as shown in figure 3.1

Statistic Meaning
Files Scanned Total number of files scanned to date for this application version.
Lines of Code Total number of lines of code scanned to date for this application version.
Bug Density Number of possible issues found per 10.000 lines of source code scanned.
Open Issues Total number of issues found for this application version that have not been

remediated.
Issues Pending Review Total number of issues for this application version that have not been reviewed.
Avg Days to Review Average number of days it took to review issues found for this application

version.
Avg Days to Remediate Average number of days it took to remediate issues found for this application

version.

Table 3.1: The dashboard statistics on Fortify explained.

Fortify works as follows. See figure 3.2 for a typical flowchart of the usage of a deployed static code analysis
tool. The projects are scanned for vulnerabilities. A project may takes hours depending on the size of the project.
After the scan is complete, a table for each project is set up. Each row represents a project. The columns consists
issue name, the location (i.e. file name and line number), analysis type, criticality and the tag.

Figure 3.2: Typical flowchart of the usage of a static code analysis tool.

Issue name is the type of vulnerability, e.g. SQL injection or usage standard pseudo-random number generators
that are not secure against cryptographic attacks. The primary location consists of a file name and line number
of the vulnerability. Analysis type is mostly SCA, which stands for static code analyzer. A very few of the

3.1. Micro Focus® Fortify Static Code Analyzer 17

Figure 3.1: The dashboard of Fortify with dummy names and numbers. Note: The Todo List and Acitivity Feed on this dashboard page are
removed from this image for readability and scalability purposes.

vulnerabilities are CUSTOM. This is only when vulnerabilities are found manually by an employee and manually
added to the list of vulnerabilities i.e. it is a True Negative vulnerability. CUSTOM-labeled vulnerabilities are
shown in the list of vulnerabilities, but when clicked on, the code1 and comments section won’t show as it
displays the message "Unexpected error has occurred. Please contact your administrator". Ultimately, it was
decided that this data could not be used.

Criticality is an auto-generated label that suggests whether the level of severity of the vulnerability is low,
medium, high or critical, with critical being that the vulnerability needs to be fixed immediately and low be-
ing that the fix can wait. The tag are five possible labels denoted by not an issue, bad practice, reliability issue,
suspicious, exploitable. The tag is set by the users. After the security engineers review the decisions of the
developers, they can either set the vulnerability to approved or not approved, depending on whether they agree
with the developer. Any potential vulnerability that has been reviewed, should be suppressed (see bottom-right
in figure 3.4). Vulnerabilities that are suppressed are not visible on the web app in the list of vulnerabilities
anymore, but they are still in the database and can be retrieved.

When clicked on a row as can be seen in figure 3.3, the code, an explanation of the given vulnerability type and
a general fix of the given vulnerability type is shown. This gives you a possibility to look into the file of the
vulnerable code without having access to the entire project.

1Every mentioning of the code in this chapter means only the file where the supposed vulnerability lies, not the code of the entire project.

18 3. Data set

Figure 3.3: List of vulnerabilities for some project with dummy names and numbers.

Each and every vulnerability needs validation whether it is a true positive or a false positive. Due to the scarcity
of security engineers in general, the vulnerabilities can be first checked by the developers of their respective
projects and then checked by the security engineers so latter’s time. These developers can assign a vulnerability
with approved if it is deemed a false positive, or not approved for a true positive. They can also leave a comment,
explaining their choice. Security engineers double-check the assignment of the vulnerability. As they have more
security knowledge than the average developer, they sometimes overrule the assignment. For example, if they
think the vulnerability is not a false positive, they change the assignment from approved to not approved, and

3.1. Micro Focus® Fortify Static Code Analyzer 19

they will also leave a comment why the assignment is changed. A history of assignments and comments with
their timestamps can be displayed for a single vulnerability or a set of vulnerabilities, if multiple vulnerabilities
have the same issue name and are in the same file.

3.1.3. Data extraction considerations
Unfortunately, any useful insight of the vulnerabilities per project is not available and extracting the data from
these tools on their website is not easy. For example, the dashboard of Fortify does not show any information
to determine the number of the vulnerabilties in the project. Also, Fortify does not seem to have a useful export
feature. Nevertheless, going through all the projects manually is tedious and it might takes weeks to extract the
data.

After speaking with the administrators of Fortify at ING, the data could be exported in two ways. By performing
an SQL export of the data with help of an administrator of Fortify or by using the RestAPI of Fortify. These
methods were only possible in theory, but in practice both were not possible.

Extracting vulnerabilities, comments, code etc. of 930 project with an SQL export uses a significant amount of
resources, especially when code needs to be included. This export process would need to be added as a project to
their Quarterly Business Review (QBR) and be given priority to have a chance to be realized, as their team have
their backlogs full for more than half a year at the time of the export request, with tasks of the new Azure pipeline
and other Fortify tasks (upgrading and transitioning to Checkmarx). Also, extracting data with an SQL export
would probably be without the code because the code might be in their file system and not in their database. This
has not been verified as this SQL export option wasn’t feasible in the first place.

When using the RestAPI of Fortify, .fpr files (actually a renamed .zip file) can be generated (contains all findings,
tags, comments, relevant code etc.), downloaded and unzipped. The needed data can then be extracted by using a
self-written parser to parse the XML files included in the .fpr file. Using this option, there is a choice to include
or not to include the corresponding code in the compressed archive file, which may be useful at first to extract
without code to save time and disk space. The code can be downloaded after manually choosing which project
and its vulnerabilities have enough quality to be a part of the data set. According to the Fortify administrators,
generating these .fpr files is also a heavy load for the Fortify servers, especially projects and are either sizeable
or that are long-running or both. However, after these files are downloaded, parsing the XML files can be done
locally and would not cause any load on the Fortify servers. Nevertheless, this generating and downloading
process moments needs to be aligned with all users using Fortify. This is to reduce load on the server and prevent
denial of service for other users, or to monitor the load if necessary.

A final option was thought by ourselves, that was possible without the help of any administrator, that is to scrape
the data off the web app. The scraping of this website is more feasible than the first two options. A data set can be
constructed with the data seen in figure 3.4. This is less data than what is provided in the .fpr files and thus such
request made to the servers takes less load. There exist a browser automation tool called Selenium WebDriver2.
Selenium’s primary purpose is to automate web applications for testing purposes, but it can also be used for
browsing websites and extracting HTML elements, which fits the goal of data extraction. Selenium available to
multiple programming languages as a library. Working with Selenium as a Python library was already familiar,
so the choice to use Python is quickly made. Usage of Selenium is quite simple. By attaching a web driver, such
as ChromeDriver (Chromium browser) or FirefoxDriver (Firefox browser) to the Selenium object, Selenium can
make use of these actual web browser for automation. Subsequently, Selenium can be made navigating to a given
URL in these web drivers. Here on, to navigate through the website, Selenium uses HTML id’s, class, tags etc.
to find web elements on the website showing on the web browser. These can be buttons (e.g. next page button)
or links (e.g. also a next page button) that can be clicked on by Selenium. Finally, after navigating to the string
that needs to be scraped, Selenium can be programmed to copy strings in a certain HTML tag of the web page,
so the task is to find the HTML tag in which the string is contained in.

3.1.4. Files inspection
After extracting the code, an inspection of the code is done to see what is in our code base. For the biggest part
of the extracted code base, the files are in .java. However, there are also non-Java files, for example .properties,

2https://www.seleniumhq.org/

https://www.seleniumhq.org/

20 3. Data set

.xsd (XML Schema file), .wsdl (Web Service Description Language), .cs (C# programming language) and .scala
files.

Figure 3.4: Details of the vulnerability, recommendations for fix and corresponding file and line number and shown when clicked on a
vulnerability. With dummy names and numbers.

The files are diverse in the entire data set. There are the XML parsers, exception files and files that implement
the factory method pattern, but also loggers, decorator, configurators, schedulers, filters, readers, data senders,
adapters, handlers and the list goes on. The code is used for different settings. Some are used as a back-end for
a mobile app, while others are being used as an API etc.

Files also vary in size/lines of code. Some files have hundreds of lines while others have 30 lines. Some files
have tens of imports and methods while others have one import and three empty methods. This shows that there
is a huge variety of code files, which is positive for our data set and hence our prediction model.

What is remarkable is that the exact same files appear in multiple projects. These files are libraries such as
self-written parsers that is used across multiple projects. Not only do they appear in different projects, they also
appear in the same project with just a different version numbers. The latter projects of course scan the same file
as the same library is used.

Some projects have more vulnerabilities and more higher risk than others. Projects with the most critical vulner-
abilities were not fixed as they were being phased out according to the developer teams of ING.

3.2. Data set creation, cleaning and analysis
Using Mauricio Aniche’s open-source code metrics extraction tool for Java code with static code analysis [7],
a class-level metrics data set containing was built using the data from Fortify. This tool is chosen over other
tools because it is non-commercial, compatible with Java files, most complete and easy to use. It extracts the
Chidamber and Kemerer objected oriented software metrics which is a popular and a successful set of metrics
as explained in the literature. Also, some other software metric extraction tools needed the code to be compiled.
This was a problem as we only have certain files of projects and therefore could not compile the code without
the missing dependencies. Luckily, Mauricio Aniche’s tool did not require the code to be compiled.

Our data set is comprised only of Fortify data. Checkmarx data did not have any useful data, as found poten-
tial vulnerabilities did not have a label validated by a pentester whether the potential vulnerability was truly
vulnerable.

3.2. Data set creation, cleaning and analysis 21

3.2.1. Data set cleaning and analysis
The class-level data set has 48 columns and 13647 rows. These exact columns are project file class type cbo
wmc dit rfc lcom totalMethods staticMethods publicMethods privateMethods protectedMethods defaultMethods
abstractMethods finalMethods synchronizedMethods totalFields staticFields publicFields privateFields protect-
edFields defaultFields finalFields synchronizedFields nosi loc returnQty loopQty comparisonsQty tryCatchQty
parenthesizedExpsQty stringLiteralsQty numbersQty assignmentsQty mathOperationsQty variablesQty maxNest-
edBlocks anonymousClassesQty subClassesQty lambdasQty uniqueWordsQty modifiers warningType, lineNum,
nested, vulnerable with the last columns as the target column.

3.2.2. Data set features explanation
There are 48 columns in our data set. All object oriented metrics that Chidamber and Kemerer proposed in their
paper, as explained in the literature, appear in this feature set. Others features have names that speak for itself.
Nevertheless, each of them will be explained.

project is the name of the project, as given in Fortify, that contained the potentially vulnerable file.

file is the complete path of the Java file.

class is the name of the class prepended by the name of the Java package that contains the file.

type is an enumeration of classwhen it is a normal class file, interfacewhen it is an interface, anonymous
when it is an anonymous class or subclass if the class extends another class.

cbo (Coupling between objects) counts the number of classes that the class is dependent on. This can be any
type of dependencies, such as method return type, variable declaration etc. It does ignore dependencies to Java
itself, like Java.lang.String.

dit (Depth Inheritance tree) is the number of parent node a class has, all the way up to Java.lang.Object. Every
class has a DIT of at least one because in Java all classes are decending from Java.lang.Object.

rfc (Response for a Class) is the number of unique method invocation in a class i.e. it measures the number of
distinct methods and constructors that can be executed

wmc (Weight Method Class) is the McCabe’s complexity as explained in the literature. It counts the number of
branch instructions in a class.

totalMethods staticMethods publicMethods privateMethodsprotectedMethods
defaultMethods abstractMethods finalMethods synchronizedMethods denotes the amount
of methods in total methods, static methods, public methods, private methods, protected methods, default meth-
ods (methods with no access level modifier), abstract methods, final methods and synchronized methods of a
class respectively. Constructors are counted as methods too.

totalFields staticFields publicFields privateFields protectedFields
defaultFields finalFields synchronizedFields denotes the amount of fields in total fields,
static fields, public fields, private fields, protected fields, default fields (fields with no access level modifier),
abstract fields, final fields and synchronized fields of a class respectively. A field is a class, interface or enum
with an associated value.

nosi (Number of static invocation) is the number of static methods invoked by the class. Only the static methods
that can be resolved by the JDT (Java development tools) are counted.

loc stands for lines of code, but this metric is actually the source lines of code. The difference is that in the
source lines of code, empty lines and comments are not included.

lcom (Lack of Cohesion of Methods) The number of disjoint sets formed by the intersection of the n sets of
instance variables used by all n methods of some class C.

returnQty loopQty comparisonsQty tryCatchQty parenthesizedExpsQty
stringLiteralsQty numbersQty assignmentsQty mathOperationsQty variablesQty
maxNestedBlocks anonymousClassesQty subClassesQty lambdasQty are the number of re-
turn statements, number of loops, number of comparison operators, number of try-catch statements, number of

22 3. Data set

expressions inside parenthesis, the number of strings, the number of numbers (int, long, double, float), number
of math operations (times ∗, divide /, remainder %, plus +, minus −, left shift << and right shift >>), number of
declared variables, highest number of blocks nested together, number of anonymous classes, number of lambda
expressions and unique words.

uniqueWordsQty is number of unique words in the source code. It uses the entire body of the class and it
basically is the number of words in a method/class after removing Java keywords. Names are split on capital
letters (if they are in camel case) and underscores.

modifiers are the number of public/abstract/private/protective/native modifiers of a class or method.

warningType is the type of vulnerability that is given by Fortify. In the appendix, table A.2, you can find all
the warning types and its number of occurences in the data set.

lineNum is the line number of the potentially vulnerable line according to Fortify.

nested is the the level of parentheses of the vulnerable line.

vulnerable is the label whether the class is vulnerable or not.

Most of these columns are extracted from the tool, while others were manually added. The columns that were
not from the tool were lineNum, nested and vulnerable.

3.2.3. Data set cleaning
In order to do classification efficiently, the data set requires cleaning. This is to reduce problems such as over-
fitting due to for example duplicates and incorrect generalization by the machine learning algorithm because of
null values or impossible negative values.

Some columns had to be removed immediately. These are project, file, class. These three columns
are names and names cannot and should not be used as a feature to predict whether code is vulnerable or not.
linenum is also removed, as, in our opinion, from a line number you cannot deduct whether code is vulnera-
ble.

At this point, a histogram is created for every column to show the distribution of values in the column. See figure
3.5 for a complete overview. The majority of the columns shows that almost all values are 0. We considered
either keeping the values like this, or transform each value of those column to a boolean value, indicating whether
the value was not 0 e.g. 1 for everything greater than 0 and 0 if the value was 0. It was decided to keep the values
as they are, as transforming might change the eventual classification negatively.

When checking the standard deviation of every column of the data set, this column returns a 0. Which means
all values in this column as the same, meaning it does not give any information. The values are inspected
and they are all zero. Apparently, there were no synchronized fields found in the code base. Therefore,
synchronizedFields is removed.

To analyze whether the columns are correlated, a heatmap is produced using Pearson’s correlation matrix. See
figure 3.6. It can be seen that from the coloring that there are some highly correlated columns. For example loc
and variablesQty. This is can logical as more code means more chance there is a vulnerabilitys. Also, none
of the individual columns in the data set have a correlation with the target column. So, the software vulnerability
detection problem on this particular data set is non-trivial. To give a better overview of how many columns are
correlated, the numbers of the heatmap are counted and plotted in a bar chart. See figure 3.7. Each bar represents
a column-pair.

Null values exists in columns vulnerabilityType, lineNum and nested. When one of these columns
have a null value, the values of the other two columns also have null values. The null values exists because
Fortify sometimes did not show a line number. Therefore, nested could not be calculated. The amount of null
value rows is 252. As these null value rows are a small portion of the entire data set and null values cannot be
filled, these rows are simply removed.

Each columns are checked whether it contained negative values, and indeed it does. Negative values are only
found in maxNestedBlock, subClassesQty and modifiers. This might occur only when the type

3.2. Data set creation, cleaning and analysis 23

value is anonymous. All these negative values are all −1, indicating that the value in the column is not applicable.
These 1328 rows are removed.

In the previous section, we mentioned that there are duplicates in our code base. We found out that two thirds
of the left over data set are duplicates. Some files are used in multiple projects as a library and are referenced
in every project that was scanned. Also, some files have multiple potential vulnerabilities. This also creates
duplicates. Our first intuition regarding duplicates is to remove them. The k-means algorithm uses the mean to
calculate centroids. By having duplicates, the mean will change to and the algorithm will be biased. 8298 of
12067 rows are duplicate, leaving 3769 rows. 459 of these 3769 can be counted as duplicate rows if we leave out
the vulnerable column. These 459 rows have at least one TRUE label and at least one FALSE in the data set,
of which 244 are TRUE labels and 215 are FALSE labels. This is possible because for the same file that were
scanned in Fortify, different lines were marked as potential vulnerabilities. While the 8298 rows were removed,
the 459 rows were kept that way, because this rows reflects the real world.

3.2.4. Summary
Fortify is a static code analyzer deployed at ING. It uses a knowledge base to check whether code satisfy a
rule that indicates a vulnerability. Servers running this static code analysis tool keep records of all software
vulnerabilities found in the past with their corresponding code and level of risk. This is useful data concerning
this research. After extracting the code, its vulnerability label and other data from Fortify by scraping the web
app, a data set is created using an open-source tool by Mauricio Aniche. This tool calculates the class-level
metrics in Java projects using static code analysis. The data set started with 48 columns and 13647 rows. In
total have we removed 5 columns. We have removed 3 columns project, file and class as they are just
names. Another column synchronizedFields was removed as it contained only zeroes. The final column
to be remove is linenum, as this indicates on what line number the vulnerable line is located at and it probably
is random. For the rows, 252 null values were removed. Another 1328 rows with negatives values were deleted.
Finally, another 8298 duplicate rows were taken out. This leaves us with a data set of 43 columns and 3769 rows.
We make a distinction between original data set and cleaned data set throughout the rest of this report.

It is important to note that none individual column in the data set is highly correlated with the vulnerable
column. It means that the problem we are addressing is not a trivial one with respect to this data set. Also, some
columns are (highly) correlated. This will be dealt with in the next chapter by applying PCA.

24
3.D

ata
set

Figure 3.5: Histogram overview of columns. X: value, Y: occurences

3.2.D
ata

setcreation,cleaning
and

analysis
25

Figure 3.6: Heatmap from Pearson’s correlation matrix

26
3.D

ata
set

Figure 3.7: Correlation barchart. Each bar represents a column-pair

4
Clustering

Now that the data set has been analyzed. We can start building a prediction model. We can do pre-processing
based on related work and the analysis of our data set.

4.1. Dimensionality Reduction using Principal Component Analysis
As the columns are correlated, some dimensionality reduction technique should be applied. We have chosen to
apply Principal Component Analysis (PCA) to our data set, as an advantage is that PCA also suppresses noise. In
the related work is shown that this could produce better results in software vulnerability detection research. When
applying PCA to our data set, the data needs to be scaled first. This scaling is necessary when applying PCA,
because the magnitude of the data in the every column is different. For example, LOC is usually much higher
than DIT. PCA reduces dimensionality but attempts to keep as much variance as possible to have minimal loss
of information. A column having a higher magnitude results in a higher variance, thus it will give an unwanted
behavior in which PCA will be more biased to the column with the higher magnitude i.e. a higher weight. The
data x is scaled by removing the mean and scaling to unit variance: z = (x - u) / s, where u is the mean of the
training samples, and s is the standard deviation of the training samples [2]. The scaled number means how far
the original value is away from the mean of that column that is being scaled, in terms of the standard deviation
of that column. All columns now have the same potential weight to PCA.

When choosing the number of principal components, a minimum variance of 95% has been selected as a param-
eter for PCA. 5% of the variance is left out to suppress the noise. The PCA algorithm produced 26 principal
components out of the 43 columns of the cleaned data set. See figure 4.3 for the variance distribution and fig-
ure 4.1 for heatmap matrix of the principal components coefficients i.e. the correlation between the principal
components and columns of the cleaned data set.

After the reducing the dimensions, the data set will be divided into a training set and a test set. The training set
is used to train our prediction model while the test set is used to evaluate our prediction model. The division is
applied in such a way that the training set only contains data points with FALSE labels. The reason for this is
to have TRUE-labeled data appear as outliers in our model when predicting the labels of new data. This will be
further explained in the outlier detection section. The test set contains data points with both TRUE and FALSE
in the same ratio of the cleaned data set, which is approximately 43%.

4.2. Visualization using t-SNE
To visualize our PCA’ed data, we use t-SNE as visualization method. This visualization is created on the PCA’ed
data, rather than the cleaned data set, to have the noise removed and it quickens the execution. The aim is to get
insight on how the data points can be divided into groups based on their similarities, and therefore the

27

28
4.C

lustering

Figure 4.1: Heatmap on columns of the cleaned data set vs principal components

(a) p = 10 (b) p = 20 (c) p = 30

(d) p = 40 (e) p = 50 (f) p = 60

(g) p = 70 (h) p = 80 (i) p = 90

(j) p = 100 (k) p = 110 (l) p = 120

(m) p = 130 (n) p = 140 (o) p = 150

(p) p = 160 (q) p = 170 (r) p = 180

Figure 4.2: t-SNE visualizations

30 4. Clustering

Figure 4.3: Variance in each principal components and its accumulation

number of clusters we should use when clustering with k-means. Multiple t-SNE visualizations are created with
a different parameter perplexity. See 4.2. Unfortunately, this graph does not give us any helpful insight if and
how the data points can be divided. Even increasing the perplexity even further, playing with other parameters
such as number of iterations, does not change the graph.

4.3. Clustering process
In this subsection, the choice of the algorithm will be explained and the application of the chosen k-means
algorithm will be described.

4.3.1. Choice of (unsupervised) algorithm
As stated before, the original research was split into two parts. Whereas the parallel study by Dinesh Bisesser
deals with supervised learning algorithms, this research looks into unsupervised learning algorithms. So the
choice of algorithms is narrowed down to only unsupervised algorithms.

A few algorithms were considered for this study. These algorithms were k-means, Agglomerative Hierchical
clustering, DBSCAN and Local Outlier Factor (LOF). The first three algorithms are clustering algorithms and
the last algorithm is a density-based algorithm. The idea of using Local Outlier Factor was dropped quickly, as
it produced bad initial results. Even trying different parameters, the F1-score was a mere 0.40.

As previously mentioned in the literature, k-means is shown to work in conjunction with PCA in software vulner-
ability detection. This could not be said for the other clustering algorithms. As k-means already produced good
clusters with PCA, as described down below, the other clustering algorithms were left out of this study.

Also, other specific types of algorithms were also left out. For example, Neural Network was left out because it
might be hard to train compared to the simpler algorithms mentioned above [18].

4.3.2. Application of the k-means algorithm
With a training set constructed, the prediction model can be created by initializing the k-means algorithm. But
first, an appropriate k needs to be chosen as the k-means algorithm needs this parameter to initialize. The elbow
method (see Intermezzo 1) is a good start for finding the proper k. This elbow method could normally also be
used for choosing the number of principal components, However, in our case the elbow method is deemed a
bad idea. In figure 4.3, there is not really an elbow to choose the number of principal components. Therefore,

4.3. Clustering process 31

Intermezzo: Elbow method

The elbow method is a technique to find an optimal parameter, applicable for algorithms such as k-means
and PCA. This example illustrates a parameter vs error. If chart resembles an arm, then the point of
inflection on the curve (the elbow) is a good indication of what parameter fits the model best. The idea
is that by making the parameter larger, the trade-off with the error is not as big as before and therefore a
larger parameter will not contribute more. In this case, the parameter at the red star is chosen.

Intermezzo 1: Elbow method

keeping an accumulation of 95% variance, while reducing 43 columns to 26 principal components, seems like a
fair choice.

The idea of clustering is to group similar data points together. A trivial cluster example would be to cluster
files with a high lines of code (e.g. 500 lines) together, separate from files with a low lines of code (e.g. 30
lines).

In an attempt to create logical and meaningful clusters, the cluster sizes should not vary extremely i.e. the smallest
clusters having 1% of the data points whereas the largest cluster having 80%. The number of clusters should not
be too large. The clusters should represent a certain or multiple characteristic(s), not represent individual data
points. For our data set, choosing 1000 clusters would be too much, because some clusters would have 5 data
points. A cluster with 5 data points does not represent a generalized and it is also unlikely that there are 1000
generalized characteristics. This kept in mind, the k-means algorithm is applied on our reduced data set for k
ranging from 1 to 50. Due to non-deterministic nature of k-means, the algorithm is also applied 10 times. We
use the average variance per k to determine what a good starting point is choosing the amount of clusters. The
variance is to ensure that the sizes of the clusters do not vary to extreme as mentioned above.

Using the elbow method, a fair starting point of 7 clusters is chosen. See figure 4.4. A fixed seed to chosen for
reproducibility means. To validate the meaning behind the clusters and whether this chosen clustering is logical,
we manually inspect the data points within each clusters. Note that PCA was applied, so the data needs to be
reverted back to the data of the cleaned data set. Luckily, data with PCA applied does not change its order, so
reverting data back was just a matter of using the stored cleaned data set. Attaching the column of assigned
cluster by the k-means algorithm, the data points can now be grouped to their respective assigned cluster.

32 4. Clustering

Figure 4.4: Variance vs cluster sizes. The red star represents the point chosen using the elbow method

4.3.3. Finding the reasoning behind clusters
Inspecting the clusters and finding out what the clusters mean would be easy by comparing the centroids for each
clusters. However, the centroids retrieved from the k-means algorithm is in the form of principal components.
From this data, it is unfortunately not possible to convert it to a representation using the original columns. Using
basic linear algebra, the cleaned data set is multiplied with a transformation matrix to obtain the PCA data. This
transformation matrix is, however, not invertible as it is not a square matrix. This would mean that the PCA
centroids might not have a unique representation using the original columns. Solutions might be found using
Matlab or any similar tool, but it would probably take too long as the transformation matrix has a size of 26
(number of principal components) by 43 (number of columns in cleaned data set).

Instead, to inspect the clusters, we tediously find the minimum value, the maximum value and the average value
of each column in each clusters, then we compare these values for each cluster in order to find out the unique
group of characteristics in terms of values of each columns i.e. what differs one clusters’ values with another
clusters’ value. These minimum and maximum values per column per cluster can be found in table 4.1, 4.2, and
the average values per column per cluster can be found in 4.3, 4.4. Please note that the original value and feature
are shown in the tables, but the principal components and its corresponding values for each data point were used
during clustering.

Clusters 1, 2, 3, 4, 5 were quite easy to determine its unique characteristics. See table 4.5. Cluster 1 had really
low values. Most of them are 0 or some other values that is relatively low compared to all other values in the data
set. for the same column. Cluster 2 has all (extremely) high values compared to all other clusters in the data set.
Cluster 3 is empty for some unknown reason. Every time a clustering is performed with the k-means algorithm
of the Python library scikit-learn on this data set, there seems to be always at least one cluster that is empty. One
of a reason could be that some of the initialized centroids are initialized far from any other points and that these
centroids converges. This is not a big issue and does not have any impact on the clustering, as our elbow method
used is still valid, it is left this way. Cluster 4 have a high amount of methods and lines of code. Cluster 5 have a
high amount of field and lines of code.

Cluster 0 and 6 were not so easy to determine its distinctive characteristics. It looks like that cluster 0 have average
amount of methods, but most of the methods are private and protected methods. The number of private

ty
pe cb
o

w
m

c

di
t

rf
c

lc
om

to
ta

lM
et

ho
ds

st
at

ic
M

et
ho

ds

pu
bl

ic
M

et
ho

ds

pr
iv

at
eM

et
ho

ds

pr
ot

ec
te

dM
et

ho
ds

de
fa

ul
tM

et
ho

ds

ab
st

ra
ct

M
et

ho
ds

fin
al

M
et

ho
ds

sy
nc

hr
on

iz
ed

M
et

ho
ds

to
ta

lF
ie

ld
s

st
at

ic
Fi

el
ds

pu
bl

ic
Fi

el
ds

pr
iv

at
eF

ie
ld

s

pr
ot

ec
te

dF
ie

ld
s

de
fa

ul
tF

ie
ld

s

fin
al

Fi
el

ds

0 min 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
max 0 30 101 4 103 1096 49 9 45 14 15 5 6 13 1 50 15 10 50 10 3 14

1 min 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
max 3 39 35 5 41 433 35 9 35 9 8 9 0 10 2 26 19 19 26 11 15 19

2 min 0 3 30 1 42 0 13 0 4 1 0 0 0 0 0 16 3 0 6 0 0 3
max 0 264 609 2 412 8060 141 33 137 80 14 3 0 3 15 93 91 53 74 33 14 92

3 min
max

4 min 0 6 73 2 34 93 19 1 10 5 0 0 0 0 0 6 1 0 3 0 0 1
max 0 11 94 5 44 351 35 18 14 9 0 15 0 9 0 28 28 7 21 0 5 28

5 min 0 3 19 1 17 0 5 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
max 3 108 142 4 314 3344 96 57 90 31 12 11 1 10 5 66 61 25 66 29 6 54

6 min 0 0 5 1 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
max 3 61 91 13 122 1331 78 19 78 18 10 10 0 10 11 38 19 15 34 13 10 19

Table 4.1: Min and max values of clusters (1/2)

34
4.C

lustering

no
si

lo
c

re
tu

rn
Q

ty

lo
op

Q
ty

co
m

pa
ri

so
ns

Q
ty

tr
yC

at
ch

Q
ty

pa
re

nt
he

si
ze

dE
xp

sQ
ty

st
ri

ng
L

ite
ra

ls
Q

ty

nu
m

be
rs

Q
ty

as
si

gn
m

en
ts

Q
ty

m
at

hO
pe

ra
tio

ns
Q

ty

va
ri

ab
le

sQ
ty

m
ax

N
es

te
dB

lo
ck

s

an
on

ym
ou

sC
la

ss
es

Q
ty

su
bC

la
ss

es
Q

ty

la
m

bd
as

Q
ty

un
iq

ue
W

or
ds

Q
ty

m
od

ifi
er

s

w
ar

ni
ng

Ty
pe

ne
st

ed

0 min 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 1 0 0
max 30 466 26 4 25 10 4 61 16 83 24 51 7 2 2 3 361 1025 60 8

1 min 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
max 13 311 29 5 17 6 14 107 45 45 15 33 5 2 7 5 183 1026 63 8

2 min 3 234 9 0 0 1 0 15 0 23 1 52 1 0 0 0 231 1 0 0
max 352 2955 139 47 182 84 34 440 69 602 113 382 14 5 10 0 538 17 49 4

3 min
max

4 min 1 270 27 6 23 0 66 15 32 56 22 41 5 0 1 0 127 16 8 2
max 15 1041 34 9 32 26 96 29 476 152 81 89 5 0 2 0 530 17 24 5

5 min 0 158 0 0 0 0 0 1 0 18 0 12 0 0 0 0 79 1 0 1
max 102 1079 80 20 97 42 42 210 168 177 82 145 9 12 4 15 559 1025 62 8

6 min 0 32 0 0 0 0 0 0 0 0 0 2 1 0 0 0 25 0 0 0
max 29 612 35 14 27 30 42 136 93 86 37 64 9 4 7 14 295 25 63 8

Table 4.2: Min and max values of clusters (2/2)

4.3.C
lustering

process
35

ty
pe cb
o

w
m

c

di
t

rf
c

lc
om

to
ta

lM
et

ho
ds

st
at

ic
M

et
ho

ds

pu
bl

ic
M

et
ho

ds

pr
iv

at
eM

et
ho

ds

pr
ot

ec
te

dM
et

ho
ds

de
fa

ul
tM

et
ho

ds

ab
st

ra
ct

M
et

ho
ds

fin
al

M
et

ho
ds

sy
nc

hr
on

iz
ed

M
et

ho
ds

to
ta

lF
ie

ld
s

0 0.00 9.71 25.90 1.35 26.39 95.49 12.35 0.88 5.66 2.82 3.71 0.17 1.07 1.39 0.05 6.10
1 0.37 6.60 6.65 1.44 9.63 6.19 3.69 0.42 2.94 0.48 0.19 0.09 0.00 0.06 0.01 2.40
2 0.00 54.57 251.57 1.14 139.50 1825.79 72.93 8.07 53.79 17.36 1.43 0.36 0.00 0.43 1.21 42.71
3
4 0.00 9.23 82.54 2.23 42.46 238.38 32.15 2.31 11.62 7.77 0.00 12.77 0.00 7.69 0.00 9.00
5 0.10 19.36 69.91 1.46 77.33 207.91 23.47 3.79 13.32 8.99 0.85 0.32 0.01 0.28 0.09 17.03
6 0.11 12.63 25.92 1.37 34.18 39.09 10.31 1.24 6.39 3.34 0.37 0.22 0.00 0.12 0.11 6.79

all 0.26 9.72 19.61 1.42 23.31 47.10 8.00 0.98 5.18 2.17 0.43 0.23 0.04 0.19 0.05 5.17

st
at

ic
Fi

el
ds

pu
bl

ic
Fi

el
ds

pr
iv

at
eF

ie
ld

s

pr
ot

ec
te

dF
ie

ld
s

de
fa

ul
tF

ie
ld

s

fin
al

Fi
el

ds

pu
bl

ic
Fi

el
ds

pr
iv

at
eF

ie
ld

s

pr
ot

ec
te

dF
ie

ld
s

de
fa

ul
tF

ie
ld

s

fin
al

Fi
el

ds

no
si

lo
c

re
tu

rn
Q

ty

lo
op

Q
ty

co
m

pa
ri

so
ns

Q
ty

0 2.56 0.29 5.00 0.77 0.04 2.80 0.29 5.00 0.77 0.04 2.80 2.99 149.82 7.88 0.83 4.51
1 0.94 0.14 2.06 0.11 0.10 1.28 0.14 2.06 0.11 0.10 1.28 0.94 42.57 2.57 0.24 0.97
2 26.79 9.00 29.00 2.36 2.36 28.14 9.00 29.00 2.36 2.36 28.14 50.00 1394.50 55.86 13.86 70.50
3
4 3.08 0.54 4.38 0.00 4.08 3.08 0.54 4.38 0.00 4.08 3.08 4.31 406.85 28.77 7.23 26.54
5 11.17 1.51 15.01 0.38 0.13 11.46 1.51 15.01 0.38 0.13 11.46 10.87 413.29 19.10 3.64 17.74
6 2.98 0.36 6.01 0.22 0.20 3.79 0.36 6.01 0.22 0.20 3.79 4.38 159.82 7.75 1.27 5.10

all 2.51 0.37 4.44 0.20 0.17 2.98 0.37 4.44 0.20 0.17 2.98 3.07 118.52 5.98 0.94 4.12

Table 4.3: Average values of clusters (1/2)

36
4.C

lustering

tr
yC

at
ch

Q
ty

pa
re

nt
he

si
ze

dE
xp

sQ
ty

st
ri

ng
L

ite
ra

ls
Q

ty

nu
m

be
rs

Q
ty

as
si

gn
m

en
ts

Q
ty

m
at

hO
pe

ra
tio

ns
Q

ty

va
ri

ab
le

sQ
ty

m
ax

N
es

te
dB

lo
ck

s

an
on

ym
ou

sC
la

ss
es

Q
ty

su
bC

la
ss

es
Q

ty

la
m

bd
as

Q
ty

un
iq

ue
W

or
ds

Q
ty

m
od

ifi
er

s

w
ar

ni
ng

Ty
pe

ne
st

ed

0 2.39 0.48 12.85 2.51 18.62 3.71 15.70 2.37 0.06 0.12 0.10 117.93 1000.01 25.52 2.54
1 0.68 0.30 4.91 1.05 5.93 0.75 5.45 1.22 0.03 0.05 0.08 43.82 5.47 16.90 2.01
2 15.21 12.64 118.43 27.14 271.86 37.00 180.79 5.79 0.36 1.79 0.00 351.86 4.43 13.07 2.14
3
4 2.00 81.77 17.92 71.08 72.38 32.69 52.46 5.00 0.00 1.54 0.00 167.77 16.08 10.54 3.62
5 6.23 4.46 64.78 19.98 74.65 16.41 58.68 3.85 0.32 0.26 0.84 211.28 29.83 20.56 2.98
6 2.93 1.44 18.44 4.65 25.78 4.46 21.41 2.93 0.10 0.16 0.33 120.50 2.96 21.66 3.01

all 1.90 1.52 14.25 4.11 19.27 3.50 15.73 2.01 0.08 0.12 0.20 83.78 45.24 18.82 2.40

Table 4.4: Average values of clusters (2/2)

4.3. Clustering process 37

Cluster #points Characteristics
0 82 Average amount of methods with higher than avg private and protected methods
1 1232 Low values
2 14 Extremely high values
3 0 Empty cluster
4 13 High amount of methods and lines of code
5 149 High amount of fields and lines of code
6 617 Values close to overall average

Table 4.5: Clusters and its characteristics.

and protected methods are higher than the overall average of these two columns. Cluster 6 have mostly values
that are close to the overall average.

To have an even better understanding of the clusters, the data points of every cluster is visualized. For each
cluster, a parallel coordinates graph (see Intermezzo 2) is plotted. See figure 4.5-4.10. Cluster 3 is empty so its
parallel coordinates graph is left out. To have a good overview in the graphs, all data points are standardized, as
we also did before applying PCA.

Cluster 2 has lots of high values. Cluster 4 has a few data points and for every column the values are almost the
same except for one data point, which seems to be an outlier to this cluster (and therefore an outlier to all other
clusters as this data point is the closest to the centroid of cluster 4). For cluster 0, 1, 5 and 6, other than the few
columns named that distinct these clusters from the other clusters in table 4.5, its values are close to each other.
In figure 4.12 and 4.11, the parallel coordinates are combined in one plot, with cluster 0 and cluster 1 switching
from background/foreground. You can see that cluster 5’s values are for most of the columns above cluster 6, and
cluster 6’s values are for most of the columns above cluster 0 and 1. This is rather confusing, giving the intuition
that cluster 6’s average standardized values are higher than 0 and 1.

This is not true. If we split the standardized data set in six subsets by clusters. We then take the average of each
columns, done six times for each of the subsets. We end up have six rows and for every column a value indicating
the average. Afterwards, we calculate the average for each row, doing this six times again for each of the subsets,
ending with six numbers. See table 4.6. These numbers indicate how much per cluster on average the values are
above or below the mean, expressed in terms of standard deviation of the entire set. With these number, you can
conclude that on average the values of cluster 6 are higher than on average the values of cluster 1, but lower than
on average the values of cluster 0. In other words, the clusters are based on how high the standardized values are,
with the exceptions of peaks on some columns explained in table 4.5.

Cluster average of average normalized
0 0.323 0.163
1 -0.252 0
2 3.263 1
4 1.614 0.531
5 0.915 0.332
6 0.131 0.109

Table 4.6: How much on average are the values are above or below the mean, expressed in terms of standard deviation of the entire set, per
cluster

4.3.4. Files in each clusters
Each of these clusters are double-checked whether the files correspond with the metrics. A small sample of 2-3
files of each clusters were checked. And indeed, the code of all samples taken are expected as they should be.
Files of cluster 2 were for example large and seemed complex and files of cluster 1 files with one or two methods
that has a body of just one line, returning something.

It would be interesting to show what kind of files are in each clusters. This is however not possible to show, as
it seem to be random. An example are multiple XML parsers found to be in clusters 0 and 6, different kind of
exception files in clusters 0, 1, 5, 6, files that implement the factory method pattern in clusters 1, 5, 6.

38 4. Clustering

Intermezzo: Parallel coordinates plot

The parallel coordinate plot is a visualization method used for plotting multivariate, numerical data [1].
Each data point is represented by a line, that goes through different axes that in turn represent each
feature of the data set. The different axes of each feature may have its own scale and the line goes
through these axes at the point of the value for that feature in the data point.

Intermezzo 2: Parallel coordinates plot

4.4. Summary
Starting off with a cleaned data set, we first scaled data set by standardization so that there won’t be any bias
when applying PCA. After that, we applied PCA to reduce the dimensions in our data set. PCA also reduced
some noise when it leaved out 5% variance out of the data set. To visualize the data set, we used t-SNE and
unfortunately, that did not give us the wanted insight on the reduced data set. Nevertheless, we went on to the
clustering. As algorithms such as Local Outlier Factor did not suffice, the choice was to cluster using k-means.
It clustered the data points in seven clusters (one empty). To find the logical reason behind the clusters, we
looked at the minimum value, maximum value and average value for each columns of each clusters and deduced
the reasoning behind the clusters. We also used parallel coordinates plots to visualize the data points of each
clusters. There are some overlap in the parallel coordinates. It was expected that the lines would be cluttered
and not completely divided as the software vulnerability detection method is a hard problem. Even so, there are
still some patterns to be seen in the plots, as there are some colors that stick above other colors. The files have
been manually validated to show the same characteristics as the other files in the same clusters. We deem the
data points are well-clustered enough, hereby ending this section of clustering of the training set. The next step
is to assign data points in the the test set to the created clusters and test whether vulnerable data points can be
predicted by using our distance-based anomaly detection method.

4.4.Sum
m

ary
39

Figure 4.5: Parallel coordinates plot for cluster 0

40
4.C

lustering

Figure 4.6: Parallel coordinates plot for cluster 1

4.4.Sum
m

ary
41

Figure 4.7: Parallel coordinates plot for cluster 2

42
4.C

lustering

Figure 4.8: Parallel coordinates plot for cluster 4

4.4.Sum
m

ary
43

Figure 4.9: Parallel coordinates plot for cluster 5

44
4.C

lustering

Figure 4.10: Parallel coordinates plot for cluster 6

4.4.Sum
m

ary
45

Figure 4.11: Parallel coordinates plot for cluster 0, 1, 5, 6 with cluster 0 on the foregrond

46
4.C

lustering

Figure 4.12: Parallel coordinates plot for cluster 0, 1, 5, 6 with cluster 1 on the foregrond

5
Anomaly detection

5.1. An outlier detection method
The assumption of the data set is that (1) different groups of FALSE-labeled data are similar to other FALSE-
labeled data within the same group and (2) TRUE-labeled data are different from FALSE-labeled data. In other
words, FALSE-labeled data should be clustered together and TRUE-labeled data should be outliers to those
clusters.

If (1) would be false, having good quality clustering of these groups of non-vulnerable data points would not
be possible. Supposing that (2) is false, then any detection method could not distinct vulnerable data points
with non-vulnerable data points, rendering machine learning useless in this situation. Keep in mind that bad end
results do not necessarily mean these assumptions do not hold.

With those assumptions kept in mind, predicting whether a new data point should be labeled as TRUE or FALSE
is straight-forward. After training the model with the training set, the k-means algorithm has assigned all data
points of the training set to a cluster. For each of these clusters, we calculate the distance from the centroid of the
cluster to every point in the same cluster. Take the maximum distance of the calculated distances. This distances
now defines the radius of that cluster. Every single cluster now has a radius.

5.2. Choice of the distance metric
The distances between data points play an important part in this outlier detection method. The choice for the
distance metric is coherent with the curse of dimensionality problem, as the distance metric might bring the curse
into play or even intensify the curse. As stated in the literature by Aggarwal et al., the Manhattan distance is a
more meaningful distance metric than the Euclidean distance is the dimensions are too high. To test whether the
distances make any differences in terms of prediction score, an initial prediction is done to compare the usage of
the L1-norm and the L2-norm. Luckily, no major change in terms of recall, prediction and F1-score can be seen.
The L2-norm performs minimally better than the L1-score.

Another interesting distance metric is suggested, namely the Mahalanobis distance. This distance metric would
allegedly work better than any Lk -norm distance and was worth it to test it. This idea was dropped for two
reasons. First of all, no literature was found regarding a study in which the Mahalanobis worked better than
any L-norm distance (or at least the L2-norm) in a high dimensional setting. The assessment of this distance
metric was still worth the try. Nevertheless, the Mahalanobis distance requires the inverse of the covariant matrix
of point A and B. The inverse could not always be calculated because the covariant matrix of A and B was
sometimes singular whereas calculating an inverse would require a non-singular matrix.

As the Manhattan distance and Euclidean distance do not produce different results. The Euclidean distance was
chosen as the distance metric for this experiment, because the Euclidean distance is the ’normal’ distance metric
used in mathematics.

47

48 5. Anomaly detection

5.3. Validating distances
To test whether assumption (2) is true, the entire data set, including the training set used to create the clusters,
is used to calculate the average distance from each data point to its cluster centroid per cluster per label. See
table 5.1. The average distance from the data point to its cluster centroid for TRUE-labeled data is greater than
the average distance from the data point to its cluster centroid for FALSE-labeled data. Thus, in some way,
assumption (2) is true because vulnerable data points are farther away from the centroid than non-vulnerable
data points. If this assumption is true, it is more likely that this distance-based anomaly detection method would
produce good prediction results.

Cluster TRUE FALSE Combined
0 7.378 5.983 6.425
1 3.443 2.596 2.757
2 44.492 22.145 32.661
3 123.935 0 61.967
4 29.454 6.405 11.643
5 9.265 7.978 8.548
6 4.09 3.902 3.964
all 5.758 3.652 4.215

Table 5.1: The distance per label per cluster

It should be pointed out that the average distance for FALSE-labeled data in cluster 3 is 0. This cluster was empty
after fitting the training data to the model. However, a FALSE-labeled data point that was not in the training set
but in the entire data set is assigned to cluster 3. The distance from the centroid to this data point is 0. Also, same
holds for one TRUE-labeled data point. The distance from this data point to the centroid was 123.935.

5.4. Model evaluation
To evaluate the prediction model, use the k-means algorithm to assign the data points of the test set to one of the
clusters mentioned above. Now, If the data point of the test set is within the radius of the assigned cluster i.e. the
distance of the new data point to the centroid of the assigned cluster is equal or less than the radius of that same
cluster, then the new data point is an inlier and should be labeled as FALSE. In the case that the distance is greater,
then the dissimilarity between the new data point and the data points within the assigned cluster is sufficiently
high, that the new data point should be labeled as TRUE. Figure 5.1 illustrates this idea with an example.

For a performance metric, we have chosen both recall and precision, as we think it is important to find find all
vulnerabilities and to raise as less as possible false alarms. We also look at score that combines the two, namely
F1-score.

Figure 5.1: A k-means distance based outlier detection. In this example, P1, P2 and P3 are three new data points. P1 is an inlier while P2
and P3 are outliers [36].

5.5. Results of its application and its interpretation 49

5.5. Results of its application and its interpretation
In the previous section, we have described our clustering based on our training set. To evaluate this model, we use
our test set to test whether vulnerable and non-vulnerable data points can be distinguished based on similarity.
The training set and test set is a 80-20 split. The test set contains 752, from which 526 are non-vulnerable and
226 are vulnerable. See Appendix A for a list of formulas classification scores. See figure 5.2 and 5.3 for the
results.

cluster accuracy recall precision f1-score tn fp fn tp total data points
0 0.659 0.000 0.000 0.000 29 0 15 0 44
1 0.795 0.000 0.000 0.000 321 1 82 0 404
2 0.571 0.000 0.000 0.000 4 0 3 0 7
3 1.000 * 1.000 * 0 0 0 1 1
4 1.000 * * * 1 0 0 0 1
5 0.525 0.067 0.667 0.121 30 1 28 2 61
6 0.594 0.000 0.000 0.000 139 0 95 0 234

overall 0.701 0.600 0.013 0.026 524 2 223 3 752

(a) Test set results. Note that some results cannot be calculated as it requires to divide by zero.
cluster accuracy recall precision f1-score tn fp fn tp total data points

0 0.665 0.017 1.000 0.034 112 0 57 1 170
1 0.772 0.000 0.000 0.000 1554 1 458 0 2013
2 0.553 0.105 1.000 0.190 19 0 17 2 38
3 1.000 1.000 1.000 1.000 1 0 0 1 2
4 0.826 0.200 1.000 0.333 18 0 4 1 23
5 0.551 0.032 0.833 0.062 180 1 150 5 336
6 0.638 0.000 0.000 0.000 757 0 430 0 1187

overall 0.703 0.009 0.833 0.018 2641 2 1116 10 3769

(b) Entire data set results. Note that the training set data is processed in these numbers.

Table 5.2: Anomaly detection results with 7 clusters.

cluster max radius to centroid training set
data points amount

0 18.138 82
1 14.842 1232
2 42.109 14
3 0.000 0
4 35.743 13
5 26.614 149
6 23.213 617

Table 5.3: Clusters meta-data

The anomaly detection method produced awful results. Our first hypothesis is that the number of clusters is not
optimal. After attempting the same steps with k = 8 and k = 15, the results do not improve substantially. To see
what k produces good results, we train the k-means model iteratively starting from k = 25, increasing the number
of clusters by 25. Afterwards, we proceed with the anomaly detection step. Note that maximum K cannot exceed
the number of data points in the training set (2114) and therefore the maximum is chosen as k = 2100. This
heuristic approach was not chosen before as we thought it was better to reason first what K to choose instead of
deriving it from and being independent of the results. This iterative model training is run 10-fold.

From figure 5.2, we derive that the best amount of clusters is K = 900 in terms of F1-score. We can also see that
the less clusters you have, with respect to the top at k = 900, the worse the performance is. Higher than k = 900

50 5. Anomaly detection

does not give you any better results, but slightly worse. The F1-score starts to converge at k = 1950, the results
do not change anymore. Looking at how many are labeled positive and negative by the algorithm in figure 5.3
and 5.4, we can see that the larger the amount of clusters, the less negatives we have. The opposite is true for
positives, the larger the amount of clusters, the more are labeled positive.

This observation can easily be explained. Starting from k = 25, each clusters will have a certain amount of data
points. As the number of clusters grow, the average amount of data points in each cluster drops. This will lower
the radius of each clusters. This in turn will label more data points as anomaly, as the area of the circle around the
centroid (which is created by the radius) shrinks and therefore more data points from the test set will fall outside
of the circle. See figure 5.5. To support this claim, the average radius and the average amount of data points in
each cluster are shown in figure 5.6.

It can be seen that almost all data points are labeled negative at k = 25. At k = 1950, from this k is where all data
points from the test set is labeled as positive. This is due to all clusters having one or two data points while the
rest are empty. Clusters with one data point have a radius of either 0 or a number raised to the power of -16 or
higher, which is practically 0. Of course, any data points assigned to this cluster will be labeled as vulnerable,
as the data points are distinct and therefore the distance must be higher than the zero radius. Clusters with two
data points have a small radius too, as these points are really close to each other and accordingly any other points
assigned to this cluster will fall outside the circle created by the radius and will be labeled as vulnerable.

Figure 5.2: Clusters vs accuracy, recall, precision and F1-score.

5.5. Results of its application and its interpretation 51

Figure 5.3: Clusters vs true negatives, false positives, false negatives and false positives.

Figure 5.4: Clusters vs negatives and positives

52 5. Anomaly detection

Figure 5.5: Clusters vs average radius

Figure 5.6: Clusters vs the average amount of data points per clusters. When non-empty clusters do not count, the average does not change
considerably.

5.6. k-nearest neighbor: its application and results 53

5.6. k-nearest neighbor: its application and results
As all attempts with k-means failed, our initial conclusion to the experimentation of clustering and detecting
anomalies was that either these methods are deemed not trustworthy with respect to this data set, or the features
of the data set were not distinctive enough to build a prediction model with. However, the idea of using another
algorithm arose when looking at the figure 5.2. As can be seen, the F1-score becomes higher when the amount
of clusters becomes higher. When the amount of clusters is approaching the amount of data points, every data
point becomes a cluster on its own. This makes k-means look similar to the k-nearest neighbor algorithm (See
Intermezzo 3). Thus, in an attempt to have better results, we use the k-nearest neighbor algorithm.

Intermezzo: k-nearest neighbor algorithm

The k-nearest neighbor (often shortened as k-NN) is a simple classification algorithm. In its simplest
form, the k-nearest neighbor algorithm finds k data points that are the closest to the data point in
question, where k is the parameter of the algorithm. It then classifies the data point by giving it the class
of the majority of its k-nearest neighbors. In the example, the starred point is given the color red as the
majority of its nearest neighbors are also red.

Intermezzo 3: k-nearest Neighbor

The distance-based anomaly detection method is optimized for k-nearest neighbor and it works as follows. For
each data point in the test set, we find its nearest neighbors. If the average distance from the data point in question
to its neighbors is higher than a certain threshold, then we label the point as vulnerable. There are two parameters
for this method, the amount of neighbors k and the distance threshold d .

To find the best scores, we find the best combination of k and d heuristically again, from k = 1 to k = 99
inclusive and from d = 0.1 to d = 2.0 inclusive with steps of 0.1. By running it ten-fold, the F1-score has, to

54 5. Anomaly detection

our surprise, risen immensely from 0.026 (k = 7)/0.506(k = 900) using k-means, to 0.820 (k = 19, d = 1). As
there are 99× 20 = 1980 outcomes, only the most interesting ones are shown in table 5.4. These results are
quite surprising, as, at the time of writing this part nearing the end of this research, the best results of k-means
and several of the explored supervised learning methods by Dinesh Bisesser1 did not exceed an F1-score of
0.62.

k d accuracy recall precision f1 tn fp fn tp comment
19 1 0.717 0.965 0.713 0.820 101 365 33 908 highest F1-score
53 1.6 0.727 0.916 0.739 0.818 161 305 79 862 highest accuracy
3 1.7 0.600 0.578 0.766 0.659 300 166 397 544 highest precision
1 1.8 0.523 0.414 0.765 0.538 346 120 551 390 highest precision with k = 1

and second highest precision
1 0.1 0.690 0.973 0.690 0.808 55 411 25 916 highest F1-score and highest

accuracy with k = 1

Table 5.4: k-nearest neighbors results

To make sure that this new method is properly implemented, we manually verify multiple instances whether the
labeling step was correct. To show this verification, for convenience by not comparing with too many neighbors,
we use k = 1 and d = 0.1 (see table 5.4). In table 5.5, you can find two examples, one for a correctly labeled
non-vulnerable data point and one for a correctly labeled vulnerable data point. The euclidean distance between
the training data point and test data point is calculated by d =

√∑n
i=0 (Xi −Yi)2. The distances returned are 3.532

and 0.071 for the true negative and true positive respectively, where the former is greater than d = 0.1 and the
latter is less or equal than d = 0.1. The other data points for which their distances are calculated, but are not
shown is this report, were also correctly labeled. This shows that the method is correctly implemented and that
the labeling is free from error.

5.7. Summary
Assuming that different groups of FALSE-labeled data are similar and can therefore be clustered together, and
that TRUE-labeled data have different characteristics that FALSE-labeled data, we label our test data with an
anomaly detection technique with the Euclidean distance. If a data point falls outside of the cluster’s maximum
radius, defined by the distance to the farthest point of that cluster, then the data point should be labeled as
vulnerable.

The results were terrible. By changing the number of clusters in k-means does not change the results. Figure 5.2
shows a range of clusters and their score. It seems that any amount of clusters shows poor scoring. Using the
maximum amount of clusters, that is the number of data points in the training set, shows an F1-score that is close
to the maximum F1-Score at k = 900. When all data points are a cluster of its own, the k-means algorithm does
not differ much from the nearest neighbor algorithm.

In a last effort to get good results, the nearest neighbor algorithm was used. Whenever the average distance
from a data point to its nearest neighbors is greater than a certain threshold, we would label that data point as
vulnerable. We tried different numbers of nearest neighbors and distance. When the optimal number of nearest
neighbors and distance is chosen, it surprisingly shows an amazing F1-score of 0.82.

1Parallel research, see research scope in Chapter 1

5.7. Summary 55

train test
0 2.654092 3.148353
1 -0.184283 -1.398478
2 1.855938 2.048891
3 -0.471544 -0.431013
4 0.625968 0.335766
5 0.172038 -1.718505
6 -0.812569 -0.382974
7 -1.199861 -0.566007
8 0.868695 -0.566791
9 -0.639004 0.106911

10 0.308658 0.74148
11 -0.200696 -1.131402
12 -0.574335 -0.22328
13 0.071989 -0.251046
14 -1.42926 -0.351019
15 0.695024 0.928444
16 0.395405 -0.084388
17 -0.431766 -0.19156
18 -0.645027 -0.306464
19 0.004216 -0.277832
20 0.522976 -0.081982
21 -0.686034 -1.27753
22 -0.746211 -0.367443
23 -0.376604 -0.461889
24 -0.983789 -0.943492
25 0.061999 -0.039764

(a) true negative: 3.532 > 0.1

train test
0 -1.202651 -1.155791
1 0.405258 0.442477
2 0.423843 0.399467
3 -0.248024 -0.240175
4 -0.172702 -0.185062
5 0.34141 0.347261
6 0.275438 0.271968
7 -0.401277 -0.402339
8 0.066992 0.070529
9 -0.387046 -0.379732
10 0.223239 0.226352
11 0.382169 0.380036
12 -0.477463 -0.480214
13 0.300985 0.306468
14 -0.187795 -0.195942
15 0.031003 0.032885
16 -0.07114 -0.057502
17 0.325793 0.325064
18 -0.202915 -0.200145
19 0.132238 0.125033
20 0.06242 0.057106
21 0.211161 0.203346
22 0.056429 0.050589
23 0.382387 0.378597
24 0.073666 0.068738
25 0.053764 0.060805

(b) true positive: 0.071 < 0.1

Table 5.5: Example of two correctly labeled data points with k-nearest neighbor

6
End

In this chapter, the final conclusion is given together with the discussion about this research, its future work and
a reflection part of the main author of this report.

6.1. Conclusion
In this section, a summary of the experiment is given, the interpretation of the results is described and the research
questions are answered.

6.1.1. Summary
In the literature section, it is shown that quite some researchers are experimenting on how software vulnerabilities
can be detected in an automated fashion using machine learning on software metrics. The methods of these
researches are shown to be successful. We applied some of these techniques to this research, like Principal
Component Analysis, k-means clustering, anomaly detection and so on.

Code was extracted from Fortify, a static code analysis tool where potential vulnerabilities have been investigated
by a pentester whether it is truly a vulnerability. The code consists of meta-data, namely the vulnerability type,
the exact line of code of the potential vulnerability, the risk level etc. Using an open-source tool, each of the files
that contained code was used to calculate the corresponding software metrics. A data set was then created by
combining these metrics and the meta-data.

The data set was cleaned by removing what was not useful to our machine learning algorithm used later on, and
analyzed to get more insight of the data itself. The results of the analysis was that the problem is non-trivial, two
thirds of the data are duplicates and some features are (highly) correlated. To avoid the curse of dimensionality
problem as discussed in the literature section, the Principal Component Analysis was applied on our data set,
resulting in a reduction from 43 features to 26 principal components, while keeping 95% of the variance of our
cleaned set. These 26 principal components was used to do our clustering.

To cluster our data in distinct groups, k-means was used to divide our data into clusters. The k-parameter was
chosen by using the elbow method on the variance of the created clusters. These data turned out to be good
enough clustered. By choosing k = 7, the data was divided in a logically. For example, data with relatively
extremely high values are clustered together, while data with mostly zeroes were put in a cluster. This clustering
was validated by manually inspecting the data of the clusters and the source code represented by the data.

The anomaly detection step consisted the following. For each cluster, find the maximum distance from the cen-
troid to each data point. This distance was defined as the radius of the centroid. Because the training set consisted
only FALSE-labeled data, each data point that was within the cluster’s radius is considered not vulnerable. When
testing the model, the test set consisted both TRUE-labeled and FALSE-labeled data. All data point was assigned
to one of the clusters created during the clustering step. They were assigned based on their similarity with the
centroid of the cluster and therefore all other points in the same cluster. Still, if a data point fell outside of the

57

58 6. End

radius of its assigned cluster i.e. the distance from the data point to the cluster is greater the radius, it meant that
the distance from the data point is greater than any other distance from the centroid to any other data point of the
same cluster. In other words, the data point was more dissimilar than any other data point in the same cluster.
In chapter 5, an assumption based on a initial intuition was made, that TRUE-labeled data are different (dissim-
ilar) to FALSE-labeled data. Under this assumption, the data points that fell outside of the radius of its cluster
should’ve been labeled vulnerable (TRUE), while data points that was inside of the radius of its cluster should’ve
be labeled as non-vulnerable (FALSE). Using this outlier detection technique, however, gave us unquestionably
poor results.

What falls outside the scope of answering the research questions was the usage of the k-nearest neighbors algo-
rithm. The best results when using k-means was when the number of clusters was almost the number of data
points. This behavior would be similar to k-nearest neighbor, hence we used that algorithm. The labeling worked
as follows. If the average distance from the data point in question to its k-nearest neighbors was higher than a
certain threshold, that data point was labeled as vulnerable, otherwise it was labeled as non-vulnerable. This
method produced an F1-score of 0.82.

6.1.2. Answering the research questions

RQ1(a) What can we learn by analyzing the data set?

RQ1(b) What are the features of the data set and what subset of these features should be used for the
prediction model?

• We learned from analyzing the data set that the problem is non-trivial, as there was not one column that has
a high enough correlation to predict the label. There were also some columns that are (highly) correlated, so
applying PCA afterwards was a good idea. We also learned that two thirds of the data set were duplicates
because potential vulnerable library files, used across multiple projects, were extracted multiple times.
Some rows also were also vulnerable en non-vulnerable at the same time. This was possible was Fortify
would find multiple potential vulnerabilities within the same file, where the pentesters have validated at
least one of them were truly vulnerable while at least one of them were not.

• The 48 features we started with were project file class type cbo wmc dit rfc lcom totalMethods staticMeth-
ods publicMethods privateMethods protectedMethods defaultMethods abstractMethods finalMethods syn-
chronizedMethods totalFields staticFields publicFields privateFields protectedFields defaultFields final-
Fields synchronizedFields nosi loc returnQty loopQty comparisonsQty tryCatchQty parenthesizedExpsQty
stringLiteralsQty numbersQty assignmentsQty mathOperationsQty variablesQty maxNestedBlocks anony-
mousClassesQty subClassesQty lambdasQty uniqueWordsQty modifiers warningType, lineNum, nested,
vulnerable. The features were described in chapter 3 and also in appendix A.1. We have removed 5 of
these features, namely project, file, class, synchronizedFields and linenum. The other
43 features was used for our prediction model. As PCA was applied, each of these features have a share in
the principal components.

RQ2 How good are the clusters produced by k-means?

• Initially, the k = 7 clusters described in chapter 4 were good, as each cluster are manually validated to be
logical and reasonable. This was further confirmed by producing a parallel coordinates plot where you
saw a pattern that some color would stick above others, indicating that the data points were divided by
how high the numbers were. Though, it was shown that the results for this instance of clustering does not
produce the best results. Even so, bad results does not necessarily mean that the clusters were not good.

RQ3 To what extent are software vulnerabilities detectable using our distance-based k-means anomaly
detection method?

• As shown above in the results interpretation subsection, if the number of clusters was sufficiently high

6.2. Discussion and future work 59

enough, the threshold of average radius would be optimal such that the F1 score was maximized. However,
this F1-score was at 0.50 at maximum. The recall and precision for this F1 score was 0.87 and 0.35
respectively. It means that for every true vulnerability, there is a probability of 0.87 it would be found and
for every data point labeled as vulnerable, there was a probability of 0.35 that it is correctly labeled. The
recall was high enough, but the precision was too low, rendering this method overall as bad.

RQ: Can we predict software vulnerabilities, in an unsupervised learning setting, better than the Fortify
by using the k-means algorithm?

• Using k-means in how it was described in our report, the answer is probably. The k-means method sure was
too unreliable, either the precision was high but the recall too low or the recall was high but the precision
was too low. As there was only a precision score available for the Fortify results, only the precision scores
could be compared. For all numbers of k in k-means, the precision was always higher than 0.28, while the
precision of Fortify was 0.02 as stated in the problem statement section in chapter 1. It means that in terms
of precision, our method works better than Fortify.

However, this does not mean that our method performs better than Fortify overall. For instance, there is no
recall to compare. But do note at k = 950, when the F1-score is the highest, our recall was 0.88. That is an
astounding recall and not easily to be exceeded.

6.2. Discussion and future work
The conclusion of the main research question was that our method using k-means works better than Fortify in
one aspect. However, judging our method overall, the k-means method was not that good either. This conclusion
came to be due to the observation that the radii of each cluster decreases as the amount of clusters were larger,
so that means data points are more likely to be labeled a vulnerable. This does not seem to good logic behind it,
as clusters should have generalized characteristics that you group the data points into. The highest F1-score we
got was when we initialized k-means with 950 clusters. That is too many and we doubt that it is logical to group
clusters into at least 950 characteristics. Even so, the highest F1-score was still to low. This gave us a reason to
think the features were faulty.

This reasoning was further ’confirmed’ by the parallel research done by Dinesh Bisesser, who is doing the same
research with multiple supervised machine learning algorithms, shows that his results were also unsatisfactory
(maximum 0.61 F1-score). We took his research results into account and concluded that the features of the data
set are not distinctive enough to do any machine learning predictions, as multiple supervised or unsupervised
algorithm fail doing so.

But after using the nearest neighbor method, it showed that using the right amount of nearest neighbor and dis-
tance threshold, the F1-score was a 0.82, higher than any F1-score that we or Dinesh Bisesser could score. If the
F1-score could be this high, then it probably is not that the features are too faulty, rather it is the method/techniques
that were applied that was faulty. The k-means algorithm and the distance-based anomaly detection technique
used were chosen due to its popularity and to its simplicity, but its simplicity might be the reason that the results
were unsatisfactory.

There is quite some part of this research that needs further exploration.

First, the K -means algorithm is, as stated in the literature section, the most popular yet one of the simplest
clustering algorithm. It was chosen due to its simplicity. The k-means algorithms produced to the human eye
seemingly good results, as mentioned in chapter 4 and here above again. However, it does not mean that the
algorithm clustered the data in the best way possible. To test this, multiple clustering methods are required
to be used and compared. Such clustering methods are DBSCAN, Hierarchical clustering and so on. Testing
different clustering methods can show which clustering methods work the best with the data set provided in this
research. Because using clustering algorithms other than k-means falls outside of the scope of this research,
testing different clustering methods is left for future work.

Another technique to evaluate is the anomaly detection technique. For each centroid of the cluster, define the
radius of a cluster as the the max distance from the centroid to the data points in the cluster. Every new data
point appointed to this cluster, but falls outside this radius will be marked as an anomaly. This technique is also

60 6. End

chosen for its simplicity, but unfortunately, this technique is maybe also too simple. One of the reason is that
the direction from centroid to data point was not taken into account. In other words, how the data points differ
from each other is irrelevant. The distance between two data points with 100 and 200 lines of code and both
1 return statement, might be the same distance as two points both with 100 lines of code where one point has
1 return statement and the other one has 2 return statements, if we assume that all other numbers are the same.
In the end, the euclidean distance is taken so the outcome of distance is the same for both the examples. The
scaling is dependent on other points in the same column. But when assuming the scaling is done such that these
two examples have the same distance, this will create a problem as lines of code might be a more useful feature
than the number of return statements in terms of labeling the data. This is further shown by the conclusion stated
above that there there exist a correlation between lines of code and the probability that code is vulnerable.

There was a long discussion about how to handle duplicates. Duplicates existed because for the same file,
multiple potential vulnerability were found by Fortify. These potential vulnerabilities were sometimes vulnerable
and non-vulnerable for the same file. This produced duplicates in the data set with a different label. Due to it
being contradicting, it was a reason to change all these non-vulnerable labels to a TRUE-labeled data point if
there would exist a vulnerable data point for the same numbers. Then, it was also possible that duplicates existed
for files in different projects. At first, these duplicates were kept in the data set because we thought it was merely
a coincidence that different projects have files with the same (generic) name and same row. During the phase
of testing our model, the duplicate problem was discussed again. By removing the duplicates, the recall and
precision would significantly drop. This was not desired so the duplicates were kept. After testing all our models
and getting more and more inconsistent results, the code represented by these duplicate data points were further
inspected to determine whether a mistake have been made by keeping them in the model. It turned out to be
that different projects uses the exact same code (as code from the same library), therefore it had the exact same
file name and numbers in the data set. Duplicates with 157(!) same instances were found in our data set. As
mentioned before, the results were inconsistent due to the fact that the more clusters the data points were divided
into, the better the results. These best results in terms of recall and precision were produced with k = 1500, It
was illogical to have this many clusters by not being able to explain what each cluster mean as we did in the
clustering section of this report. Also, by having too many clusters in contrast to the amount of data points in the
data set, the model would not capture the patterns of our data set. This would contradict the essence of machine
learning to capture patterns in a data set, hence it would not be useful to have such a model. It had us thinking
that these results that improves with a larger k was because the centroids compared with the same data points
over and over (we kept in mind that we had these duplicates in the data set). These duplicates were ultimately
removed. For a long time no progress had been made due to this problem. This could all have been avoid at the
beginning if more attention had been paid to this matter.

Days before submitting this report, when generating certain plots again to put into the report, the t-SNE plots
were generated again. To our surprise, this time the t-SNE plots showed something else than what we had before.
The data points were grouped together this time. See figure 6.1. Though there is no time to find out what went
wrong now, what can be concluded is that the clusters can be grouped into 8 clusters, this can be seen from
p = 70 on. After quickly clustering using k-means with k = 8, you can see that the clustering inconsistent with
the t-SNE graphs as, some lines have multiple colors. See figure 6.2. After executing k-means for a hundred
times, the clustering stays inconsistent. This makes us think that k-means is not clustering these data points
optimally and hence it could be the reason why the k-means method failed. Maybe with a little bit more data
pre-processing will get k-means to work better. Otherwise, clustering the data according to the t-SNE graphs,
can be done manually or choosing an algorithm that is consistent with these t-SNE graphs.

As for the results, the k-means scores is unsatisfactory, but the k-nearest neighbors score on the other hand is
much better. It has an excellent recall of 0.965 and a good precision of 0.713. The precision could be better
though. It means that 28.7% of all positives found is a false alarm, which is still a lot. Another thing to mention
is that the amount of neighbor and distance threshold chosen for the optimal results (k = 19, d = 1) might only
work on these particular set of data points. It might not work if the data set is extended with new data. There has
yet to be a reason given why exactly these number of neighbors and distance threshold give such good results
and also why this method works in general, but that also can be done in the future.

Aside from that, there are also other limitations to this research. The data set could be inconsistent. As we ex-
tracted the code from Fortify and checked whether potential vulnerabilities were set to approved or not approved,
we saw comments attached to it that were posted by employees of ING. We saw their corporate key (personal
identifier) as identification, but we did not see any names, nor did we see whether they were developers or pen-

6.3. Reflection 61

testers. It could be the case that a developer gave it some tag, but it was incorrect and it had yet to be approved
by a pentester.

Also, we only have a small portion extracted of all potential vulnerabilities shown in Fortify. There were 930
projects at that time, but most of the potential vulnerabilities within those 930 projects did not have approved
or a not approved tags. It could be the case that we did not capture enough the potential vulnerabilities to have
the pattern in our data set that we would like to our model find. The captured file were not random, in a sense
that they are scattered across all projects. Projects that were chosen to be extracted, had all their code extracted,
where most of the other projects have nothing extracted from. It would be better if we had files from all projects.
Then our data set would have more chance to have this pattern we are trying to find. But this was not possible as
only a few number of projects had someone validate if it was vulnerable.

6.3. Reflection
For the entire report, I, the main author of this report, have used ’we’ to describe our work as myself and
everybody who has helped me. For this section, I will explicitly talk about only myself, as part of the a reflection
on myself.

As this experience is quite new for myself, many mistakes were made by myself throughout the research. Though
my code works, it is written very bad and monolithic. When I wanted to execute code from months ago with a
slight modification, It would take very long sometimes to change code. It took me a very long time to realize
that the duplicate in the data set come from exactly the same code. At the beginning, it was chosen to keep the
duplicates, but that was before realizing the code was exactly the same, as already mentioned in the discussion
section above. Also, documenting what I did would be a good idea, as I could not find files or what I have done in
the past. If the t-SNE graphs were good at the beginning, the process of the report would probably be different as
the k-means does not cluster the data point in line with the t-SNE graphs. Though this might not change the end
results, but as said before, this can be found out in future work. I also needed a lot of help from my supervisors
in my opinion. Conducting this research would be a lot more difficult without their help, describing to me how
I should outline my research and this report to begin with, how to prove my thinking and so on. As this is my
first huge report, the writing could probably be better so the reader can read my report more comfortable. What
I would have done differently is also not to rely too much on others and take more time to study so you can
make the decisions yourself. Look more at the work of other people (in this situation it would be thesis reports
of other students) so you have a general idea of what you should do yourself. Though I have done it, I did not do
it enough.

(a) p = 5 (b) p = 10 (c) p = 15

(d) p = 20 (e) p = 25 (f) p = 30

(g) p = 35 (h) p = 40 (i) p = 45

(j) p = 50 (k) p = 55 (l) p = 60

(m) p = 65 (n) p = 70 (o) p = 75

(p) p = 80 (q) p = 90 (r) p = 90

Figure 6.1: Another t-SNE visualizations

(a) p = 5 (b) p = 10 (c) p = 15

(d) p = 20 (e) p = 25 (f) p = 30

(g) p = 35 (h) p = 40 (i) p = 45

(j) p = 50 (k) p = 55 (l) p = 60

(m) p = 65 (n) p = 70 (o) p = 75

(p) p = 80 (q) p = 90 (r) p = 90

Figure 6.2: t-SNE with coloring based on clustering using k-means with k = 8

A
Appendix

Appendix A

Accuracy (percentage of correct labeling):

T P +T N

T N +F P +F N +T P

Recall (percentage of all positive examples found):

T P

T P +F N

Precision (percentage of correctly labeled positives):

T P

T P +F P

F1-score (weighted average of recall and precision):

F 1 = 2 · (precision · recall)
(precision+ recall)

Figure A.0: Classification scores

65

66 A. Appendix

Appendix B

Metric Description
CBO Coupling between objects: Counts the

number of dependencies a class has.
DIT Depth Inheritance Tree: it counts the number of parent a class has.

Number of fields Counts the number of fields.
Number of methods Counts the number of methods. Specific numbers for

total number of methods, static, public, abstract, pri-
vate, protected, default, final, and synchronized methods

NOSI Number of static invocations: Counts the
number of invocations to static methods.

RFC Response for a Class: Counts the num-
ber of unique method invocations in a class.

WMC or Mc-
Cabe’s complexity

Weight Method Class: It counts the num-
ber of branch instructions in a class.

LOC Lines of code: it counts the lines of code, ignoring empty lines.
LCOM Lack of Cohesion of Methods.

Quantity of returns The number of return instructions
Quantity of loops The number of loops (i.e., for, while, do while, enhanced for)

Quantity of comparisons The number of comparisons (i.e., == and !=).
Quantity of trycatches The number of trycatches

Quantity of paren-
thesized expressions

The number of expressions inside parenthesis

String literals The number of string literals (e.g., "John Doe"). Re-
peated strings count as many times as they appear

Quantity of Number The number of numbers (i.e., int, long, double, float) literals
Quantity of

Math Operations
The number of math operations (times, di-

vide, remainder, plus, minus, left shit, right shift)
Quantity of Variables Number of declared variables k

Max nested blocks The highest number of blocks nested together
Quantity of Anonymous
classes, subclasses, and

lambda expressions

Number of anonymous classes, subclasses and lambda expression.

Number of unique words Number of unique words in the source code.
Modifiers public/abstract/private/protected/native modifiers of classes/methods.

Usage of each variable How much each variable was used inside each method.
Usage of each field How much each field was used inside each method.

Table A.1: Description of each column in the data set

67

Appendix C

Warning type Occurences
System Information Leak: Internal 4627

J2EE Bad Practices: Threads 1615
Log Forging 627

Password Management: Hardcoded Password 480
Path Manipulation 335

Race Condition: Singleton Member Field 310
Unreleased Resource: Streams 265

Dynamic Code Evaluation: Unsafe Deserialization 192
System Information Leak 185
Missing XML Validation 185

Mass Assignment: Insecure Binder Configuration 178
XML External Entity Injection 164

Code Correctness: Byte Array to String Conversion 131
Access Specifier Manipulation 125

Insecure Randomness 125
Missing Check against Null 107

J2EE Bad Practices: Leftover Debug Code 105
Access Control: Database 90

Code Correctness: Non-Static Inner Class Implements Serializable 88
Cookie Security: Cookie not Sent Over SSL 87

J2EE Bad Practices: Sockets 86
Header Manipulation * 81

Portability Flaw: Locale Dependent Comparison 80
XML Entity Expansion Injection 66

Unsafe Reflection 65
System Information Leak: External 63

Dynamic Code Evaluation: JNDI Reference Injection 63
Code Correctness: Double-Checked Locking 62

Weak Cryptographic Hash 61
Insecure SSL: Overly Broad Certificate Trust 54

Denial of Service 52
Resource Injection 51

JSON Injection 50
SQL Injection 49

Key Management: Hardcoded Encryption Key 49
Potential for Unsafe Deserialization 47

Often Misused: Authentication 45
Null pointer dereference 43
Assignment to parameter 39

Object Model Violation: Just one of equals() and hashCode() Defined 38
Dubious method used 37

Unchecked Return Value 36
Insecure Randomness: Hardcoded Seed 35

Privilege Management: Overly Broad Access Specifier 34
Race Condition: Format Flaw 32

Unused field 31
Cookie Security: HTTPOnly not Set 30

Questionable Boxing of primitive value 29
Cross-Site Scripting: Reflected 27

SQL Wildcards 27
Unread field 25

Insecure Transport 20

68 A. Appendix

Incorrect definition of Serializable class 20
Setting Manipulation 18

Inner class could be made static 18
Unreleased Resource: Database 18

Problems with implementation of equals() 17
Cross-Site Scripting: Persistent * 15

Redundant comparison to null 14
Mutable static field 14

Code Correctness: Erroneous String Compare 13
RuntimeException capture 13

Password Management: Null Password 13
SQL Injection: Persistence 12

System Information Leak: Incomplete Servlet Error Handling 12
Insecure Transport: Mail Transmission 10

Code Correctness: Non-Synchronized Method Overrides Synchronized Method 10
Weak SecurityManager Check: Overridable Method 9

Access Control: LDAP * 9
HTTP Parameter Pollution 9

JavaScript Hijacking 9
Code Correctness: Hidden Method 9

Password Management 8
Misuse of static fields 8

Server-Side Request Forgery 8
Weak Encryption: Insecure Mode of Operation * 8

Cross-Site Scripting: Content Sniffing 8
Privacy Violation 8

File Disclosure: Struts 7
J2EE Bad Practices: getConnection() 7

Header Manipulation: Cookies 7
J2EE Bad Practices: JVM Termination 7

Unreleased Resource: Sockets 7
Access Control: SecurityManager Bypass * 7

SQL Injection: Hibernate 6
Naming of command class 6
Switch case falls through 6

Password Management: Weak Cryptography 6
Suspicious use of non-short-circuit boolean operator * 6

Command Injection 5
Useless control flow 5

Dead local store 5
Inefficient Map Iterator 5

Race Condition: Class Initialization Cycle * 4
Key Management: Empty Encryption Key 4
Password Management: Empty Password 4

Encoded Data Validation 4
Open Redirect * 4

Session Puzzling: Spring 4
Bad use of return value from method 4

HTML5: Overly Permissive CORS Policy 4
Cross-Site Request Forgery * 4

Missing Check for Null Parameter * 4
Types: Using class Double 4

69

LDAP Injection 4
Code Correctness: Erroneous Class Compare 4

String concatenation in loop using + operator * 3
Code Correctness: Multiple Stream Commits * 3

Often Misused: File Upload * 3
Often Misused: Boolean.getBoolean() 3

Weak Encryption: Insecure Initialization Vector 3
Static: Static members in Servlets must be final * 3

EJB Bad Practices: Use of Sockets 3
Weak Encryption: Inadequate RSA Padding * 3

Weak Encryption: Byte Array to String Conversion 3
Weak Cryptographic Hash: User-Controlled Algorithm 2

Denial of Service: Regular Expression 2
Inconsistent synchronization 2

Key Management: Null Encryption Key 2
Casting from integer values 2

Questionable use of reference equality rather than calling equals 2
Unsynchronized Lazy Initialization 2

Poor Logging Practice: Logger Not Declared Static Final * 2
Useless code 2

Denial of Service: Format String 2
Uncallable method of anonymous class 2

Unsatisfied obligation to clean up stream or resource * 2
Weak Encryption: Missing Required Step * 2

Code Correctness: Call to Thread.stop() 2
File Disclosure: J2EE 2

Double check pattern * 2
Regular expressions 1

Format string problem 1
Duplicate Branches * 1

HTTP Response splitting vulnerability * 1
Do not use a CallableStatement * 1

Cross-Site Scripting: Poor Validation 1
Information Disclosure 1

Synchronization on java.util.concurrent objects 1
Dubious method invocation 1

Unwritten field 1
Bad casts of object references 1

Unsafe Mobile Code: Unsafe Public Field * 1
Unsafe Mobile Code: Access Violation 1

Server Misconfiguration: HTTP Basic Authentication 1
Header Manipulation: SMTP 1

Uninitialized read of field in constructor 1
Serializable class with no Version ID * 1

Code Correctness: Class Does Not Implement Cloneable * 1
Code Correctness: null Argument to equals() 1

Object Model Violation: Erroneous clone() Method 1
Formula Injection * 1

Useless/non-informative string generated 1
Poor Error Handling: Program Catches NullPointerException * 1

Dead Code: Empty Try Block * 1
LDAP Entry Poisoning 1

Cookie Security: Persistent Cookie 1

Table A.2: Warning types and their occurences in the data set.
* Rows with these warning types all have the vulnerable column as TRUE

Bibliography

[1]

[2] sklearn.preprocessing.standardscaler¶. URL https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.
preprocessing.StandardScaler.

[3] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising behavior of distance met-
rics in high dimensional space. In International conference on database theory, pages 420–434. Springer,
2001.

[4] Samuel Ajila and Razvan Dumitrescu. Experimental use of code delta, code churn, and rate of change to
understand software product line evolution. Journal of Systems and Software, 80:74–91, 01 2007. doi:
10.1016/j.jss.2006.05.034.

[5] H. Alves, B. Fonseca, and N. Antunes. Software metrics and security vulnerabilities: Dataset and ex-
ploratory study. In 2016 12th European Dependable Computing Conference (EDCC), pages 37–44, Sep.
2016. doi: 10.1109/EDCC.2016.34.

[6] Paul Anderson. The use and limitations of static-analysis tools to improve software quality. CrossTalk: The
Journal of Defense Software Engineering, 21(6):18–21, 2008.

[7] Maurício Aniche. Java code metrics calculator (CK), 2015. Available in
https://github.com/mauricioaniche/ck/.

[8] Alexandru G Bardas et al. Static code analysis. Journal of Information Systems & Operations Management,
4(2):99–107, 2010.

[9] Cagatay Catal. Software fault prediction: A literature review and current trends. Expert Systems with
Applications, 38(4):4626 – 4636, 2011. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2010.10.024.
URL http://www.sciencedirect.com/science/article/pii/S0957417410011681.

[10] Cagatay Catal and Banu Diri. A systematic review of software fault prediction studies. Expert Systems with
Applications, 36(4):7346 – 7354, 2009. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2008.10.027.
URL http://www.sciencedirect.com/science/article/pii/S0957417408007215.

[11] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493, June 1994. ISSN 0098-5589. doi: 10.1109/32.295895.

[12] Istehad Chowdhury and Mohammad Zulkernine. Can complexity, coupling, and cohesion metrics be used
as early indicators of vulnerabilities? In SAC, 2010.

[13] B.Terry Compton and Carol Withrow. Prediction and control of ada software defects. Journal
of Systems and Software, 12(3):199 – 207, 1990. ISSN 0164-1212. doi: https://doi.org/10.1016/
0164-1212(90)90040-S. URL http://www.sciencedirect.com/science/article/pii/
016412129090040S. Oregon Workshop on Software Metrics.

[14] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, Qian Zhang, and Heather Hinton. Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In USENIX security symposium, volume 98, pages 63–78. San Antonio, TX, 1998.

[15] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Software defect prediction using re-
lational association rule mining. Information Sciences, 264:260 – 278, 2014. ISSN 0020-0255. doi:
https://doi.org/10.1016/j.ins.2013.12.031. URL http://www.sciencedirect.com/science/
article/pii/S0020025513008876. Serious Games.

71

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
http://www.sciencedirect.com/science/article/pii/S0957417410011681
http://www.sciencedirect.com/science/article/pii/S0957417408007215
http://www.sciencedirect.com/science/article/pii/016412129090040S
http://www.sciencedirect.com/science/article/pii/016412129090040S
http://www.sciencedirect.com/science/article/pii/S0020025513008876
http://www.sciencedirect.com/science/article/pii/S0020025513008876

72 Bibliography

[16] AA Shahrjooi Haghighi, M Abbasi Dezfuli, and SM Fakhrahmad. Applying mining schemes to software
fault prediction: a proposed approach aimed at test cost reduction. In Proceedings of the World Congress
on Engineering, volume 1, pages 4–6, 2012.

[17] Maurice H. Halstead. Elements of Software Science (Operating and Programming Systems Series). Elsevier
Science Inc., New York, NY, USA, 1977. ISBN 0444002057.

[18] D. Hammerstrom. Working with neural networks. IEEE Spectrum, 30(7):46–53, 1993.

[19] Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
educational psychology, 24(6):417, 1933.

[20] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters, 31(8):651–666, 2010.

[21] I.T Jolliffe. Principal Component Analysis - Second Edition. Springer-Verlag, 2002.

[22] Kaspersky Lab. Carbanak apt: The great bank robbery. Securelist, 2015.

[23] Paige Leskin. The 21 scariest data breaches of 2018, Dec 2018. URL https://www.
businessinsider.nl/data-hacks-breaches-biggest-of-2018-2018-12/.

[24] Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. Software vulnerability discovery techniques: A survey.
In 2012 Fourth International Conference on Multimedia Information Networking and Security, pages 152–
156. IEEE, 2012.

[25] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[26] Ruchika Malhotra. A systematic review of machine learning techniques for software fault predic-
tion. Applied Soft Computing, 27:504 – 518, 2015. ISSN 1568-4946. doi: https://doi.org/10.
1016/j.asoc.2014.11.023. URL http://www.sciencedirect.com/science/article/pii/
S1568494614005857.

[27] Steve Mansfield-Devine. The ashley madison affair. Network Security, 2015(9):8–16, 2015.

[28] Trust Tshepo Mapoka, Keneilwe Zuva, and Tranos Zuva. Hack the bank and best practices for secure bank.

[29] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):308–320, Dec
1976. ISSN 0098-5589. doi: 10.1109/TSE.1976.233837.

[30] T. Menzies and A. Marcus. Automated severity assessment of software defect reports. In 2008 IEEE
International Conference on Software Maintenance, pages 346–355, Sep. 2008. doi: 10.1109/ICSM.2008.
4658083.

[31] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald. Problems with precision: A response to "com-
ments on ’data mining static code attributes to learn defect predictors’". IEEE Transactions on Software
Engineering, 33(9):637–640, Sep. 2007. ISSN 0098-5589. doi: 10.1109/TSE.2007.70721.

[32] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering, 33(1):2–13, Jan 2007. ISSN 0098-5589. doi: 10.1109/TSE.2007.
256941.

[33] MicroFocus. About the analyzers. URL https://www.microfocus.com/documentation/
fortify-static-code-analyzer-and-tools/2010/SCA_Help_20.1.2/index.htm#
Introduction/Analyzers.htm. Accessed on 3rd August 2020.

[34] Microfocus. Fortify static code analyzer (sca) static application security testing datas sheet.
URL https://www.microfocus.com/media/data-sheet/fortify_static_code_
analyzer_static_application_security_testing_ds.pdf. Accessed on 3rd August
2020.

[35] Savita Mohurle and Manisha Patil. A brief study of wannacry threat: Ransomware attack 2017. Interna-
tional Journal of Advanced Research in Computer Science, 8(5), 2017.

https://www.businessinsider.nl/data-hacks-breaches-biggest-of-2018-2018-12/
https://www.businessinsider.nl/data-hacks-breaches-biggest-of-2018-2018-12/
http://www.sciencedirect.com/science/article/pii/S1568494614005857
http://www.sciencedirect.com/science/article/pii/S1568494614005857
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2010/SCA_Help_20.1.2/index.htm#Introduction/Analyzers.htm
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2010/SCA_Help_20.1.2/index.htm#Introduction/Analyzers.htm
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/2010/SCA_Help_20.1.2/index.htm#Introduction/Analyzers.htm
https://www.microfocus.com/media/data-sheet/fortify_static_code_analyzer_static_application_security_testing_ds.pdf
https://www.microfocus.com/media/data-sheet/fortify_static_code_analyzer_static_application_security_testing_ds.pdf

Bibliography 73

[36] Gerhard Münz, Sa Li, and Georg Carle. Traffic anomaly detection using k-means clustering. In GI/ITG
Workshop MMBnet, pages 13–14, 2007.

[37] J. Murillo-Morera, Christian Quesada-López, and Marcelo Jenkins. Software fault prediction: A systematic
mapping study. pages 446–459, 04 2015.

[38] National Institute of Standards & Technology. The economic impacts of inadequate infrastructure for soft-
ware testing, may 2002. Accessed: 27th July 2019.
Available at: https://www.nist.gov/sites/default/files/documents/director/
planning/report02-3.pdf.

[39] OWASP. Null dereference. URL https://owasp.org/www-community/vulnerabilities/
Null_Dereference. Accessed on 3rd August 2020.

[40] OWASP. Owasp top ten, 2017. URL https://github.com/OWASP/Top10/raw/master/
2017/OWASPTop10-2017(en).pdf. Accessed on 3rd August 2020.

[41] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

[42] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993. ISBN 1-55860-238-0.

[43] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Software fault prediction metrics:
A systematic literature review. Information and software technology, 55(8):1397–1418, 2013.

[44] Paul Sandle. Hp enterprise strikes $8.8 billion deal with micro focus for
software assets, Sep 2016. URL https://www.reuters.com/article/
us-hpenterprise-software-microfocus-idUSKCN11D2EU. Accessed on 5th October
2019.

[45] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. Evaluating complexity, code churn, and developer
activity metrics as indicators of software vulnerabilities. IEEE Transactions on Software Engineering, 37
(6):772–787, Nov 2011. ISSN 0098-5589. doi: 10.1109/TSE.2010.81.

[46] Lindsay I Smith. A tutorial on principal components analysis. Technical report, 2002.

[47] Laurens Van Der Maaten. Accelerating t-sne using tree-based algorithms. The Journal of Machine Learning
Research, 15(1):3221–3245, 2014.

[48] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular value decomposition and principal
component analysis. In A practical approach to microarray data analysis, pages 91–109. Springer, 2003.

[49] H. Zhang and X. Zhang. Comments on "data mining static code attributes to learn defect predictors". IEEE
Transactions on Software Engineering, 33(9):635–637, Sep. 2007. ISSN 0098-5589. doi: 10.1109/TSE.
2007.70706.

https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://github.com/OWASP/Top10/raw/master/2017/OWASP Top 10-2017 (en).pdf
https://github.com/OWASP/Top10/raw/master/2017/OWASP Top 10-2017 (en).pdf
https://www.reuters.com/article/us-hpenterprise-software-microfocus-idUSKCN11D2EU
https://www.reuters.com/article/us-hpenterprise-software-microfocus-idUSKCN11D2EU

	Introduction
	Introducing problem
	ING, Bank of The Netherlands
	Problem statement
	Research Design
	Research process
	Research questions
	Research scope
	Report structure

	Summary

	Literature review
	Related Work
	Prediction models
	Prediction software metrics

	Background information
	McCabe's cyclomatic complexity
	Halstead's complexity measure
	Chidamber and Kemerer's Object Oriented metrics
	Curse of dimensionality
	k-means
	Principal Component Analysis
	t-Distributed Stochastic Neighbor Embedding

	Research Gap

	Data set
	Micro Focus® Fortify Static Code Analyzer
	Inner workings
	Navigating through the app
	Data extraction considerations
	Files inspection

	Data set creation, cleaning and analysis
	Data set cleaning and analysis
	Data set features explanation
	Data set cleaning
	Summary

	Clustering
	Dimensionality Reduction using Principal Component Analysis
	Visualization using t-SNE
	Clustering process
	Choice of (unsupervised) algorithm
	Application of the k-means algorithm
	Finding the reasoning behind clusters
	Files in each clusters

	Summary

	Anomaly detection
	An outlier detection method
	Choice of the distance metric
	Validating distances
	Model evaluation
	Results of its application and its interpretation
	k-nearest neighbor: its application and results
	Summary

	End
	Conclusion
	Summary
	Answering the research questions

	Discussion and future work
	Reflection

	Appendix
	Bibliography

