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Last but not least, we welcome Michel Gevers from
the University of Louvain-la-Neuve in Belgium, and
Lennart Ljung from Linköping University in Sweden
for their contribution to the joint work on closed­
loop identification.
This issue is the first one to also contain papers that
describe software tools, Three MATLAB toolboxes
are presented, all within the area of system identifi­
cation. As referred to in the respective papers, the
corresponding software is available through anony­
mous ftp from our ftp-site. Interested readers are
invited to work with our software, and tell us about
their experiences with the tools.
Additional information on the actrvities of our
group, as well as postscript versions of the
papers in this and previous volume(s) of our
progress report, can be found on our WWW-site:
http://www-mr.wbmt.tudelft.nl/ts.
For any reactions and discussions on the topics pre­
sented, you are welcome to contact one of us.
Finally we would like to wish all our colleagues and
friends a happy and prosperous 1997.

Editorial

It is our pleasure to present to you the ninth vol­
ume of Seleeted Topics in Identification, Modelling,
and Control. giving a report of the ongoing research
in our Mechanical Engineering Systems and Control
Group.
The current issue again contains a wide variety of
subjects, and also shows a number of "new" authors
that have contributed to the activities of our re­
search group.
We could like to present Sjirk Koekebakker, who
is a Ph.D.-student, working on the modelling and
control of a Stewart platform for a motion simulator,
in a cooperation project with the SIMONA Research
Institute of Delft University of Technology. Within
th e scope of this project a flight simulator motion
system is developed and constructed.
There are two projects in cooperation with the
Aerospace Department, in which Dehlia Willemsen
and Edwin Njio have worked on their M.Sc.-Theses,
dealing with the design of robust control systems for
parametrically varying (flight control) systems.
Tong Zhou is a postdoc researcher from Beijing Uni­
versity of Aeronautics and Astronautics, who has
joined our group for one year, thanks to a research
grant from the Dutch Institute of Systems and Con­
trol (DISC). The contribution of Tong reflects his
work on uncertainty modelling for batches of dy­
namical plant models.
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Multivariable closed-Ioop identification: from indirect
identification to dual-Youla parametr-isation!

Paul M.J. Van den Hof and Raymond A. de Callafon!

Mechanical Engineering Systems and Control Group
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
E-mail: p.m.j.vandenhof@wbmt.tudelft.nl

Abstract. Classical indirect methods of closed-loop identification can be applied on the
basis of different closed-loop transfer functions. Here the multivariable situation is con­
sidered and conditions are formulated under which identified approximative plant models
are guaranteed to be stabilized by the present controller. Additionally it is shown in which
sense the classical indirect methods are generalized by the recently introduced identifi­
cation method based on the dual-Youla parametrization. For stabie controllers the two
methods are shown to be basically equivalent to each other.

Keywords. System identification; closed-loop identification; prediction error methods;
stability; Youla parametrization; multivariable systems.

1 Introduction

The classical method of indirect identification for
handling a closed-loop identification problem is
based on the idea of first identifying a closed­
loop transfer function, and then calculating the
related plant model by using knowledge of the
present controller in the loop (see Gustavsson, 1977j
Söderström and Stoica, 1989). Attractive properties
of this identification scheme are that the method
does not suffer from bias effects due to a noise cor­
relation with the input signal, as the input signal
for identification is taken to be an external refer­
ence signal. The critical part of the indirect identi­
fication is the construction of the (open-loop) plant
model in the second step, based on the estimated
closed-loop transfer. However, if the resulting plant
model is not limited in model order, this construc­
tion can be done exactly provided that the controller
is known and the appropriate closed-loop transfer
function has been identified. In this sense the ques-

~This paper is presented at the 35th IEEE Conference on
Decision and Contro!, 11-13 December 1996, Kobe, Japan .
Copyright of this paper remain with IEEE.

§The work of Raymond de Callafon is financially sup­
ported by the Dutch Systems and Contro! Theory Network.
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tion which transfer is "appropriate" is determined
- among ot her things - by the input/output dimen­
sions of the plant, and the location of the external
excitation signal,

In recent years several new ideas concerning closed­
loop identification of approximate models have been
presented, most of them directed towards the abil­
ity to identify approximate models of the open-loop
plant on the basis of closed-loop data, while the
asymptotic bias distribution is not dependent on the
noise and thus explicitly tunable by the designer, see
e.g. Hansen and Franklin (1988), Lee et al. (1992),
Van den Hof and Schrama (1993) and Van den Hof
et al. (1995) as summarized in the survey paper
Van den Hof and Schrama (1995). Most of these
schemes have been developed in view of the abil­
ity to tune the asymptotic bias distribution in order
for the identified models to particularly refiect those
dynamic aspects of the plant that are most relevant
for consecutive model-based control design. One of
the newly handled methods is based on a dual-Youla
parametrization of the open-loop plant (Hansen and
Franklin, 1988j Schrama, 1991j Lee et al., 1992), and
this method is suggested to be particularly attrac­
tive because of its guarantee that identified (approx­
imate) plant models are guaranteed to be stabilized



Po(q) y
Go = Po[I + Cpo r l

Qo = [I + cporlc
So = [I + cpor l

.

2 System configuration

The relevant closed-loop transfer functions in the
system configuration are refiected by

(4)

(5)

A ft
G = A'

I+CP

An exact solution for ft follows by taking

ft= G
I-CG

3.1 Standard approach - scalar situation

The classical method of indirect identification is
composed of two steps. For this moment we will
just sketch a particular situation in the scalar case.

(1) Identify the transfer function Go from Tl to
yj this can e.g, he done by applying any of
the standard prediction error methods (Ljung,
1987) . Note that this identification problem is
principally an 'open-loop ' type of problem pro­
vided that the external signal Tl is uncorrelated
to the noise disturbance term v. The identified
model of Go is denoted as G

(2) Reconstruct an open loop plant model from the
estimated closed-loop transfer function G, us­
ing knowledge of the controller C.

The second step of this procedure involves the con­
struction of ft from an available estimate G, by solv­
ing the equation:

e(t, 0) := y( t) - G(q, O)Tl (t)

and G = G(q,ê) with ê := argminoËe(t,O?, the
asymptotic bias-distribution (Ljung, 1987) in the
plant model estimate is characterized by:

which can be calculated when the controller C is
known.
When the model G is identified using a least-squares
outpur error criterion, i.e.

3 Indirect Identification

It is a standard result from stability theory that the
considered closed-loop system is internally stabie if
and only if T(Po, C) E IRH oo , with IRH oo the space
of real rational transfer functions that are analytic
inz2:1.
As additional notation, I m will refer to the m x m
identity matrix, and detIR(z)(') is the determinant
over the field of rational functions in z.

(3)

(1)

C(q)

[
To Go]

T(Po, C) = Qo So .

Fig. 1: Closed-Ioop configuration.

The system configuration that will be considered
in this paper is sketched in figure 1. Po and C
are linear time-invariant finite-dimensional but not
necessarily stabie multivariable transfer functions.
The input and output dimensions are determined
by U(t),Tl(t) E IRm

, y(t),T2(t) E IRP. v is a noise
disturbance signal, while Tl, T2 are external signals
that can be either reference (tracking) signals or ex­
ternal disturbances, heing uncorrelated to eachother
and to v .
A particular combination of external signals will be
denoted by

by the present controller.
In this paper we start by summarizing some aspects
and results related to the classical indirect identifi­
cation scheme, particularly addressing the question
under which conditions multivarlable plant models
can be identified. Next it will be shown under which
conditions identified plant models are guaranteed to
be stabilized by the present controller, and in which
sense this classical scheme can be considered as a
special -simple- case of the recently used identifica­
tion in the dual-Youla parametrization.

T(Po, C) = [ ~o ] [I + Cpor l [C I] (2)

being the mapping from the signals [ :: ] -4 [ ~ ] .

For notational purposes the following notation for
the elements of T(Po, C) will be employed:

with ê . 1 j1r I Po P(O) 1

2

= argmJn 271" -1r 1 + CPo - 1 + CP(O) Pr,dw
(6)
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(7)

provided that the exact rel ation (5) is used to con­
st ru ct P on the basis of O.
One of the problems that is known to occur in an
indirect identifica t ion approach, is that the order
of t he identified plant model is not under control.
T his means that when calculating (5), the order of
P will be determined by the order nG of a and the
or der nc of C, and will generically equal nG + nc·
Limiting the model order to a prespecified value,
requires either an additional model reduction step,
or t he const ru ct ion of an approximate solution to
the equation (4) where the model order of P is fixed.
However in this latter situation it is not clear how
to "solve" this equation properly.

3.2 Indirect identification from closed-Ioop
transfer functions - multivariabIe case

Actually all four different transfer functions that are
present in T (Po, C) can be used for identification in
the first step of an indirect identification scheme.
Dependent on the partienlar experimental situation,
an identifier may have preferences of identifying a
par ticular transfer. This can e.g. be essentially in­
fluenced by the possibiIity of adding external excita­
tion signals at particular locations in the loop (either
on t he setpoint or on the output of the controller).
We will now summarize the possibiIities of using any
of the four t ransfer functions, while considering the
multivariable situation.

Proposition 3.1 Cons ider any one of the [our
tran sfer funetions Ta, Go, Qo, or Sa to be identified
in the firs t stage of an indirect identification scheme,
providing identified models 1', a, QI or S. Then

(a) 'Î' = P[Im + CPJ-1C implies

P =T(Ip - T)-lCt

In the above expressions it is presumed that T(P, C)
is well defined.

Proof: Follows by straightforward manipulations
of the expressions. 0

It has to be noted that there is only one transfer
function (a) that provides a unique solution for the
related open loop plant model without any con di­
tions on input/output dimensions and controller.
For the other transfer functions restrictions apply.
Note also that in the scalar case m = p = 1, all four
transfers can be used without any restrictions.
When taking a look at the rel ation with available ex­
ternal excitation signals the following can be stated:

• When rl is available from measurements (addi­
tional to u and y) then one can use S (Tl -+ u)
or a (Tl -+ y) and by choosing ano restrictions
apply.

• When T2 is available from measurements, then
one can use l' (T2 -+ y) or Q (T2 -+ u) and one
has to face the restrictions p 2: m or p = m.

In the second situation considered it can be an alter­
native to first construct the signal T(t) = C(q)T2(t )
and then using T(t) as if it were added to the loop
at the location of Tl, In this way, one can avoid the
dimensional restrictions as mentioned above.
The fact that a unique plant model P can be con­
structed from either of the equations (7)-(10) does
not imply that this plant model will be guaranteed
to be proper. This will depend on the properties of
the estimated closed-Ioop transfer and of the con­
t roller. Properness of P is e.g, guaranteed for (8)
whenever G is proper and lim lzl--+oo Ca = 0, being
the commonly considered situation in indirect iden­
tification.

uruler the condition that p ~ mand C has a
lelt inverse ct .

(a) Let C E llllioo ' Then T(P, C) E llllioo if and
only if P(I + CP)-l E llllioo '

(b) Let m = pand let C be inoertible and satisfy
C- l E llllioo ' Then T(P, C) E llllioo if and
only if (I + CP)-lC E llllioo .

4 Stability of controlled models

In this section the question will be addressed under
which conditions a plant model P that is identified
by an indirect identification as described before, will
be - a priori - guaranteed to be stabiIized by the
controller C. To this end the following standard
results from stabiIity theory will be exploited.

Proposition 4.1 Cons ider
any linear, time-in variant, finite-dimensional plant
Pand controller C.

(9)

(8)

(10)

(c) Q = [Im + CPJ-1C implies that

P = C-l [(QC-l)-l - ImJ

under the condition that p 2: mand C has a
right inverse c t.

(b) 0= P [Im + cPj-l implies

P = Olim - cOrl.

under the conditio n that p = mand

det1R(z)C f. O.

(d) S = [Im + CPj-l implies that

P = Ct[S-l - ImJ

3



rankIR(z)(a) = min(m,p),

When applying these results to identified models ob­
tained from indirect identification the following re­
sults are direct.

(c) Let rankIR(z)(P) = min(m,p), and the Moore­

Penrose inverse pt E lRH oo • Then T(P, C) E
lRH oo ij and only ij P(I + CP)-1 E lRH oo •

Proposition 5.1 (Desoer et al. (1980)) Let Pz
with rcf (Nz, D z) be any auxiliary model that is sta­
bilized by the controller C with rcf (Ne, De) . Then a
plant Po is stabilized by C ij and only ij there exists
an R E IRHoo such that

The Youla-parametrization parametrizes for a given
plant Po E m.Hoo the set of all controllers G E m.Hoo

that stabilize Po. In the dual-Youla parametriza­
tion, a similar mechanism is used, but now the set
of all plants is considered that is stabilized by a given
controller.
In order to formulate this parametrization, the con­
cept of coprime factorizations over lRH oo is required.
A pair of stable transfer functions N, D E ffi.Hoo is a
right coprime factorization (rcf) of Po if Po = N D -l
and there exist stable transfer functions X, Y E
lRH oo such that X N + Y D = I . This implies that
two factors are coprime if there are no unstable can­
celing zeros in the factorization.

5 Identification In the dual-Youla
form

For a given plant Po, the related dual-Youla param­
eter R = Ro is given by

When the controller is not stable an addition al
restrietion (11) has to be considered. This con­
straint on G can not simply be incorporated in a
parametrization of the closed-loop transfer Go to be
used during identification. A solution to this prob­
lem does exist, as shown in the forthcomming sec­
tions.
The stability results shown above, suggest that there
is a relationship between these indirect identification
methods, and the approach of using a dual-Youla
parametrization of all plants that are stabilized by
the given controller. This relation is pursued in the
next sections.

With this parametrization the original system con­
figuration can be resketched into the alternative
form as presented in figure 2. In this dual-Youla
form the signals x(t) and z(t) are determined by(11)[Im - Gajat is stabie

and satisfying

Corollary 4.2 Consider identified models a and Q
oj the related closed-loop transfer functions Go and

Qo·

(a) If G is stabie then the plant model estimate (8)
is stabilized by C ij and only ij a is stable.

(b) IJ m = pand C - 1 is stabie then the plant model
estimate (9) is stabilized by C ij and only ij Q
is stabie.

Proof: Part (a) is proven in e.g, Zhou et al. (1996).
For parts (b) and (c) necessity is obvious. To prove
sufficiency for (b), consider (I + CP)-IC E lRH oo ,

so (I + CP)-ICC-1 = (I + CP)-1 E ffi.Hoo ' As
P(I + CP)-lC + (I + CP)-1 = I it follows that
P(I+Cp)-IC E lRH oo and by postmultiplication of
C- 1 also that P(I +GP)-1 E ffi.H oo • Sufficiency for
(c) can be shown along similar lines, distinguishing
between the situations p ;::: m, where pt is a left
inverse, and p ::; m when pt is a right inverse. 0

Particularly, a plant model obtained by indirect
identification from estimating the closed-loop trans­
fer function Go, will be guaranteed to be stabilized
by C in the case that C is stabIe. The only restrio­
tion that the estimate ahas to satisfy for this result
to hold, is that ashould be stable. Since the closed­
loop system is stable, this condition wil be naturally
satisfied by any sensible identification method.
It would be tempting to formulate a result similar
to (a) without any condition on the stability of C or
on input/output dimensions. However this willlead
to more complex restrictions on aas shown next.

Corollary 4.3 Consider a model a of the related
closed-loop transJer function Go, with

where at is the Moore-Penrose inverse. Then the
plant model estimate (8) is stabilized by G if and
only ij a is stable.

z(t)

x(t)

(De + p zNe)-I[y(t) - Pz(q)u(t)j (14)

(D z + GNz) -I[rl(t) + C(q)r2(t)] (15)

Proof: The result follows by manipulation of the
expressions in Proposition 4.1(c) . 0

while K o is given by

(16)

4



Fig. 2: Dual Youla-representation of the data gen­
erating system.

see e.g. Van den Hof and Schrama (1995). In view
of the identification problem, one is dealing with the
relation

z (t ) = Ro(q)x(t) + Ko(q)v(t) (17)

where the important mechanism is that both signals
z and x can be reconstructed from available data
y, u , r and by using knowledge of the controller C
and of just any auxiliary model P;c that is stabilized
by C . Moreover as it appears from (15) the signa!
x is uncorrelated with the noise v , and so relation
(17) point s to an "open-loop" identification problem
of identifying R o on the basis of measurement data
Z,x.
On e of the properties of this identification approach
is that any identified stabie model R of R o will yield
an op en-loop plant model

that is guaranteed to be stabilized by C, because of
the dual-Youla parametrization.
A property of this dual-Youla identification method
is - similar to the situation of the indirect approach
- that the model order of the identified open-loop
plant model is not under control. Because of the
relation (18), an identified transfer R with a spe­
cific model order , will lead to an open-loop plant
mo del that has an increased model order, that in­
corporates the order of the controller and the order
of t he auxiliary model P;c.

6 Indirect identification as a special
case of the dual-Youla method

The question occurs whether the identification of
Ro in the du al-Youla situation is equivalent to the
identification of a closed-loop transfer function as
pr esent in the first step of an indirect identification
scheme . A number of special cases will be pointed
out .

Proposition 6 .1 lf C is stable then there exists a
choi ce for P;c and right coprime factorizations of C

5

and P;c sucii th at in the dual- Youla form:

R o Go

z(t) y(t)

x(t) r(t)

and consequently identification of the duel- Youla pa­
rameter is identical to identification according to the
indirect method (8) on the basis of G.

Proof: Since C is stable, one may choose Ne = C,
De = I , N;c = 0 and D;c = I, taking into account
that the model P;c = 0 is stabilized by a stabie con­
troller. The result follows by substitution in the
appropriate expressions. 0

It appears that for stabie controllers, the dual-Youla
identification method is actually equivalent to an
indirect identification on the basis of the transfer
rl -+ Y (Go). A similar result can be formulated
for the indirect identification through the transfer
r2 -+ u (To).

Proposition 6.2 If C is stable then there ezists a
choice for P;c and right coprime factorizations of C
and P ;c such that in the dual- Youla form:

Ro To
z (t ) = y(t)

x(t) r(t)

and consequently identification of the dual- Youla pa­
rameter is identical to identification according to the
indirect method (7) on the basis of 1'.

Proof: The result follows by choosing Ne = C,
De = I, N;c = 0 and D;c = C, and by substitut­
ing this in the appropriate expressions. 0

The closed-Ioop transfer functions considered in the
two propositions above are transfers towards the
closed-loop output signa! y(t) . The question now
occurs whether the two other transfer function (Qo
and So) can be considered in a similar way. This ap­
pears to be less trivia! than expected, most impor­
tantly because they are transfers towards the closed­
loop input signa! u(t). As a consequence, the choices
of particular factorizations should be made in such
a way that this results in z(t) = u(t). Considering
the genera! expression for z (t ) in (14) this seems not
possible. A solution for this problem appears to be
in considering a dual-Youla parametrization based
on the controllers inverse, which is discussed in the
next section.
With respect to the asymptotic bias distribution, as
indicated in (6) for the indirect method, it is shown



in Lee et al. (1992) and Van den Hof and Schrama
(1995) that for the dual-Youla method, the corre­
sponding expression is (for the SISO-case):

with

z(t) = (Ne + p"De)-l[U(t) - P,,(q)y(t)] . (22)

which is similar to (6), except for an additional
weighting with De. In case C is stable, one can al­
ways choose De = 1 leading to equal expressions for
both methods. Note that for unstable C the model
sets in the two approaches will be slightly different
if in the indirect method one does not take account
of the parametrization constraint (11).

ê =

. 1 111" ' Poar mm-
g 8 27r _11" 1 + CPo

P(O) 1
2

P r ,

- 1 + CP(O) IDe l2dw

This alternative structure, will allow to choose par­
ticular factorizations in the scheme in order to re­
alize z(t) = u(t). This is refiected in the following
two results.

Proposition 7.3 Let p =mand let C - 1 be siable.
Then there exist choices for P" and right coprime
factorizations of C and P" such that in the dual­
Youla form of th is section:

either R o = Qo or R o = So

z(t) = u(t)

x(t) = r(t)

7 A dual-Youla parametrization on
the basis of 0 - 1

In this section attention will be limited to the sit­
uation that m = p and controller and plant can be
inverted, i.e . they have full rank over lR(z).

Lemma 7.1 Consider the situation m = pand Po
and C invertible. Then T(Po, C) E lRH oo if and
only if T(Po-t, C - 1 ) E lRH oo •

Proof: By simple manipulations it can be shown
that T(PO-

1
, C- 1 ) is equal to a permuted version of

the original T(Po, C). 0

A dual-Youla parametrization can now be formu­
lated on the basis of the inverse controller C - 1 •

Proposition 7:2 Let P" with rcf (N" , D,,) be any
auxiliary model that is stabilized by the controller
C - 1 with rcf D eNe-

1 • Then a plant Po is stabilized
by C if and only if there exists an R E lRH oo sucli
that

Po = [D" - DeR][N" + N eR]-l. (19)

Proof: The proof follows by parametrizing PO-
1 in

a dual-Youla parametrization, and applying lemma
7.1.
Under the conditions of the proposition, it follows
that for a given plant Po, the related R is given by

and the system's equations become:

y(t) (D" - DeRo)x(t) + (I + poC) -lv(t)

u(t) (N" + NeRo)x(t) - C(I + POC)-lV(t) .

Based on these latter equations one can extract Ro
by:

z(t) = Ro(q)x(t) + Ko(q)v(t) (21)

6

and consequently identification of the dual- Youla pa­
rameter is identical to identification according to the
indirect method (9) on the basis of Qor (10) on the
basis of S.

Proof: The result follows by choosing N e = I ,
De = C - 1

, N" = 0 and either D" = I (for the
case of Qo) or D" = C-1 (for the case of So) , and
by substituting this in the appropriate expressions.

o

This shows that the two closed-Ioop transfer func­
tions that are related to the input signal u can also
be directly estimated in a dual-Youla framework ,
provided that we restriet attention to the square sit­
uation (p = m) and to a stably invertible controller.

8 Conclusions

The classical indirect method for closed-Ioop identi­
fication and the recently discussed approach based
on the dual-Youla parametrization appear to be
closely related to each other. In the situation of a
stabie controller, the two methods are algebraically
equivalent . In the situation of an unstable con­
troller, the dual-Youla method provides models that
are guaranteed to be stabilized by the controller,
which goes beyond the capabilities of a simple in­
direct method. Several relations are given between
the two approaches, showing that the dual-Youla
method is actually a generalization of the classical
indirect approach.
Both approaches share the problem that it is not
simply possible to control the model order of the
identified plant model.
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Abstract. Asymptotic varianee expressions are analysed for models that are identified
on the basis of closed-loop data. The considered methods comprise the classical 'direct'
and 'indirect' method, as well as the more recently developed indirect methods, employing
coprime factorized models and model parametrizations based on the dual YoulajKucera
parametrization. The varianee expressions are compared with the open-loop situation,
and evaluated in terms of their relevanee for subsequent model-based control design.
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(open-loop or closed-loop), in view ofthe varianee ofthe resulting model-based controller.
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1 Introduction

When identifying dynamic models for the specific
purpose of subsequent model-based control design
it is argued that a closed-loop experimental setup
during the identification experiments supports the
construction of an identified model that is particu­
lady accurate in that frequency region that is rele­
vant for the control design. This mechanism which
plays a major role in many contributions in the
area of "identification for control" , has been mo­
tivated mainly on the basis of bias considerations in
the form of a "control-relevant" distribution of the
bias over frequency (Schrama, 1992j Gevers, 1993;
Lee et al.,1993; Van den Hof and Schrama, 1995).
Recently it has been shown in Hjalmarsson et al.
(1996), that for a particular class of control design
methods, also from a varianee point of view closed­
loop experiments are preferred over open-loop ones.
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§Department of Electrical Engineering, Linköping Univer­
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In this paper we will first present the asymp­
totic varianee expressions for identified models
based on several different closed-loop identification
methods, including the recently introduced indi­
rect methods using a coprime factor model rep­
resentation (Schrama, 1992; Van den Hof et al.,
1995) and the method employing a so-called
dual YoulajKucera parametrization (Hansen and
Franklin, 1988; Schrama, 1992; Lee et al.1993).
The results for the classical 'direct' method (Ljung,
1993) are extended to also include varianee expres­
sions for the estimated noise model, while they are
shown to remain the same for the mentioned alter­
native indirect methods.
These varianee expressions are compared to related
expressions for the open-loop situation, and con­
sequences are shown for the varianee of resulting
model-based controllers for several types of con­
troller designs.

2 Preliminaries

We will consider the closed-Ioop configuration as de­
picted in Fig. 1, where Go and Care linear time-



invariant, possibly unstable, finite dimension al sys­
tems, while C is a stabilizing controller for Go; e is
a white noise process with varianee Ào, and Ho a
stabie and stably invertible monie transfer function.
Signals rl and r2 are external reference signals that
are possibly available from measurements. For pur­
pose of efficient notation, we will often deal with the
signal

r(t) := rl(t) + C(q)r2(t)

being the result of external excitation through either

rl or r2'

r2 Y

+

Fig. 1: Closed-Ioop configuration.

3 Direct identification

The direct method of closed-loop identification is
characterized by

_ 1 N-l

ON = argmJn N L é(t,0)2 (7)
t =O

with

é(t,O) = H(q ,O)-l[y(t) - G(q,O)u(t) ]. (8)

For this direct identification method, an expression
for the asymptotie varianee of the transfer function
estimate can be given for the situation that S E M,
and both plant model and noise are estimated. In
this case (Ljung, 1987):

cov ( ~(ei.W) ) '" ~'Pv(w) . ['Pu(W) 'Peu(W)] -l
H(etW) N 'Pue(w) Ào

(9)
With the relation 'Pue = - C SoHoÀo and using the
fact that 'PuÀo - J'P ue1

2 = Ào'P~ it foIlows that

with

Additionally we will denote:

The case of an open-loop experimental situation now
appears as a special situation in which 'P~ = 0, 'P~ =
'Pu, and C = 0, and thus leading to the weIl known
open-loop expressions

cov(ÎI)

cov ( ~ ) '" ~ 'Pv • [ 1 (CS~~o)* ] .
H N 'P~ CSoHo ~

(10)
As a result the varianee expressions for G and ÎI
become:

cov(G)

(4)

(1)

where the sensitivity function So is given by
1 .

So(q) := 1 + C(q)Go(q)' The signals ur(t) and

ue(t) refer to those parts of the input signal that
originate from, respectively, rand e. For the corre­
sponding spectra it follows that

ur(t) .- So(q)r(t), (2)

ue(t) .- -C(q)So(q)Ho(q)e(t), (3)

In order to simplify notation the arguments q and
eiw will be omitted when there is no risk of ambigu­
ity. We will consider parametrized models G(q,O)
for Go and H(q,O) for Ho with 0 E 0, and in ac­
cordance with Ljung (1987) we will use the expres­
sions S E M to refer to the situation that there
exists a 00 E 0 such that G(q,Oo) = Go(q) and
H(q,Oo) = Ho(q); Go E 9 will indicate that there
exists a 00 E 0 such that G(q,Oo) = Go(q) only.
The varianee expressions that are considered in this
paper are asymptotic in both n (model order) and
N (number of data), while n/N is supposed to tend
to 0, as in the standard framework of Ljung (1987).

Remark 3.1 The situation of estimating a plant
model in the situation Go E 9 and having a fixed
and correct noise model H. = Ho is considered in
Ljung (1993). Using the fact that

- Ào
COV ON = N [E1/J(t)1/JT(t)t l (14)

As indicated in Ljung (1993), the closed-loop ex­
pressions show that only the noisefree part u, of
the input signal contributes to varianee reduction of
the estimates.
The given expressions are restricted to the situa­
tion that S E Mand that both G(O) and H(O) are
identified; they do not hold true for the situation
Go E g, S ~ M .

with

'P~ ISo12'Pr and

'P~ = IC SoI
2 'P v •

(5)

(6)

- n 'Pv
cov(G) '" -­

N 'Pu

- n 'Pv
cov(H) '" N~' (13)

10



4 Indirect identification

where 1/J(t) is the negative gradient of the prediction
error (8), this leads to

as it is immaterial whether the input spectrum is
a result of open loop or closed loop operation. Note
that this expression gives a smaller variance than the
sitsuition in which both G and Hare estimated, and
that in this (unrealistic) case the total input power
contributes to a reduction of the estimate variance.

Wy(q,O) -l[y(t) - N(q,O)x(t)] (20)

Wu(q,O) -l[y(t) - D(q,O)x(t)]j (21)

Least squares minimization of (ey, eu)T provides es­
timated models N,b, Wy , Wu '

Open-loop models aand iI are then retrieved by

immaterial for the varianee analysis, The impor­
tant observation here is that the signals x and e are
uncorrelated.
Identification ofthe 4 transfer functions in (18),(19)
from the signals x(t), y(t), u(t) therefore corre­
sponds to a one-input two-output open-loop iden ­
tification problem. Denote

(15)
• n Pvcau(G) ~-­

N P u

4.1 Introduction

Recently several different indirect approaches to
closed-loop identification have been presented, see
e.g. Gevers (1993) and Van den Hof and Schrama
(1995) . These methods have been introduced from
considerations related to the bias that occurs in
closed-Ioop identification of approximate models.
Here we will briefty illustrate their properties with
respect to the varianee of the estimates.

4.2 Coprime factor identification

Coprime factor identification is treated in detail in
Schrama (1992) and Van den Hof et al. (1995). It is
a scheme that relates to (and generalizes) the classi­
cal joint input/output method of closed-loop identi­
fication as e.g. described in Gustavsson et al. (1977) .
It does not require knowledge of the implemented
controller C .
The basie principle is that the (two-t imes-two)
transfer function (r,e)T --+ (y,u)T is ident ified ,
while the plant models (a, iI) are retrieved from
these closed-Ioop estimates.
Consider the system's relations:

In order to guarantee that iI is a monic transfer
function, whenever Wy and Wu are monie, it will be
assumed that a is strictly proper.
For obtaining varianee expressions of these recon­
structed estimates, use can be made of first order
approximations: a= Go + l1G, N = NO,F + l1N,
b = DO,F + l1D et cetera, leading to

(22)

(23)

(24)

(25)

a = N(b)-l

iI Wy - awu '

l1N No,Fl1D
DO,F - D~,F

= l1Wy - Go(l1Wu) - (l1G)Wu'

l1G

l1H

(a) n Pv [ 1
con iI ~ N P~' CSoHo

This leads to the result:

(CSoHo)* ]
Pu .

..\0
(26)

A sketch of the derivation of this result is given in
the Appendix.
Note that the expression (26) is identical to the ex­
pression that was derived for direct identification
(10).

(16)

(17)

GoSor(t) + SoHoe(t)

Sor(t) - CSoHoe(t) .

y(t)

u(t)

They are rewritten, by using a filtered signal x(t) :=

F (q)r(t) , into the form
4.3 Identification in a dual Youla-Kucera

parametrization

with NO,F := GOSOF- 1 and DO,F := SoF-1
, con­

stituting a coprime factor representation of Go as

Go = NO,FDO:~ '
The linear and stabie filter F can be chosen by the
user to serve several purposes, like minimal order
properties or normalization of the coprime factor­
ization as discussed in Van den Hof et al. (1995)j
this will not be pursued here any further as it is

where N,,/D z =: Gz is any (auxiliary) sys tem that
is st abilized by Cj Ne/De = C, and R(O) ranges

Another method that has recently been introduced
utilizes aspecific parametrization of the plant Go.
As it is assumed that the controller C stabilizes the
plant, Go can be parametrized within the class of all
plants that are stabilized by C. This parametriza­
tion involves the relation

y(t)

u(t)

NO,FX(t) + SoHoe(t)

DO,FX(t) - CSoHoe(t)

(18)

(19)

G(O) = N z + DeR(O)
D'; - NeR(O)

(27)

11



over the class of all stabie proper transfer functions.
The different factors that build up the quotient ex­
pressions Go; and Care required to be stabie and
coprime.
Using an expression like (27) for the plant Go
with a Youla-Kucera parameter Ro, and substitut­
ing this in the system's relations, shows -after some
manipulations- that these can be rewritten as

Schrama (1995). It can be shown that it is a di­
rect generalization of the classical indirect method
of closed-loop identification, see Van den Hof and De
Callafon (1996). It has to be stressed that knowl­
edge of the controller C is assumed to be available.

4.4 Two-stage method

A two-stage method for closed-loop identification
has been introduced in Van den Hof and Schrama
(1993). It operates directly on reference, input and
output data, and does not require knowledge of the
implemented controller. It can best be explained by
considering the system's re1ations:

with

z(t) = Rox(t) + Koe(t)

Ro Do;So(Go - Go;)/De
te; HoSo/De

z (De + Go;Ne)-l(y - Go;U)

X (Do; + CNz)-lr.

(28)

(29)
(30)

(31)

(32)
U(t)

y(t)

Sor(t) - CSoHoe(t)

Gour(t) + SoHoe(t).

(36)

(37)

E:z(t,B) = K(q,B)-l[Z(t) - R(q,B)x(t)]

and the estimated transfers are denoted by K and
R.
The open-loop model can then be reconstructed
from these estimates according to

Since X is not correlated with e, the identification of
Ro and K 0 can again be considered to be an open­
loop type of identification problem. Note that the
signals z and x can simply be constructed by the
user, as they are dependent on known quantities
and measured signals. Least-squares identification
is performed on the basis of the prediction error

(38)
n if>v
N if>r'

u

In the first step, measured signals rand u are used
to estimate a model S of the sensitivity function So.
Next this model is used to construct (by simulation)
an estimate ûr of u" according to ûr(t) = S(q)r(t) .
In the second stage, the signals ii" and y are used
as a basis for the identification of a plant model G.
The procedure is very much alike the coprime fac­
tor identification scheme, albeit that the final plant
model is not calculated through division of two iden­
tified models; this division is circumvented by con­
structing the auxiliary simulated signal û r

•

If in the first step a consistent estimate of So is
obtained, the varianee result for G will appear to
be similar to the previously obtained results

(33)

(34)

No; +DJl
Do; -NcÎl

KDeS- 1 = KDe[1+ CG).

G

ÎI

In order to guarantee that ÎI is monic whenever K
is monic, it will assumed that CG is strictly proper
and De is monic,
Varianee expressions for the estimates Rand K
are available through the standard expressions for
(open-loop) identification:

" n 2
and cov(K),...., NIKol

(35)
while cov(R, K) = O. In a similar way as has been
done for the coprime factor identification method,
these results can be utilized to obtain expressions
for the varianee of (G, ÎI), relying on first order
approximating expressions. Not surprisingly (see
Appendix) the varianee expressions for (G, ÎI) are
again given by (26).

Fluther details on this identification method can
be found in Lee et al.(1993) and Van den Hof and

4.5 Summarizing comments

It has been shown that for the considered indirect
identification methods, the asymptotic varianee ex­
pressions for plant and noise model are exactly the
same as the known expressions for direct identifi­
cation. This may not be too surprising, as similar
results for the classical indirect and joint i]» meth­
ods were already available (Gustavsson et al., 1977).
However what has to be stressed here, is that for the
indirect type methods the varianee expressions for
Gare valid also in the situation that Go E ç; but
S ~ M, while for the direct identification method
the results are only achieved under the stronger con­
dit ion that S E M. With indirect identification we
can thus e.g. fix the noise model to a predetermined
choice, only identifying the plant model G, and ob­
tain the same asymptotic varianee as would be ob­
tained when indeed estimating a noise model.
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5 Open-loop versus closed-Ioop ex­
periments

Considering that the varianee expressions are identi­
cal for all closed-loop identification methods, we can
now make a comparison between the varianees ob­
tained from open-loop and closed-Ioop experimental
conditioris. The appropriate expressions are sum­
marized in table 1.

where

V denotes the design choices with respect to the
experimental conditions, represented by {~u , ~ue} '

while r(w) is a 2 x 2 Hermitian matrix reftecting
the intended application of the model.
If r 12 ( W) == 0 and the input power is limited, then
the experimental condition V for which J(V) is op­
timized is given by

and c is a constant.

Open-loop Closed-Ioop

Var(G N )
n v n v
n «; <

N~~

Var(HN)
n 9->v

< n 9->v (1 9->~ )
N '\0

-- +-
N '\0 ~~

~opt
u

~optue

C· Jr11(W)~V(w)

= 0
(39)
(40)

Table 1: Varianee expressions under open-loop and
closed-loop conditions.

The results show that for both G and H the vari­
ance obtained under closed-Ioop identification will
generally be larger than for open-loop identification.
Particularly in a situation where the input power is
limited, the difference will become apparent, as in
that case only part of the actual input spectrum can
be used for varianee reduction of Gand H. In case
the input power is not restricted, closed-loop iden­
tification can achieve the same results as open-loop
identification, by choosing a reference signal r such
that 9->~ is equal to the input spectrum applied in
the open-loop situation.
The results suggest that in terms of varianee of the
model estimates GN and HN , open-loop identifi­
cation always has to be preferred over closed-Ioop
identification. However, perhaps surprisingly, this
is not the case if the objective of the identification
is model-based control design, as is explained in the
next section.

This result shows that open-loop identification is
optimal when the intended application is one for
which r 12 == O. The situation r 12 == 0, considered
in this proposition, refiects the case that a model
is evaluated -in view of its intended application- by
only considering the varianee contributions of Gand
H separately, but not penallzing the covariance be­
tween the two. This situation applies e.g, to the
case where a controller is designed on the basis of
G only and not considering H. This situation is
considered in the following corollary.

Corollary 6.2 Consider as model application a
control design scheme based on a frequency weighted
sensitivity minimization:

Then the optimal experiment design in line with the
above proposition is given by

• open-loop experiments (~~~t == 0).

• ~~Pt=c 'ICGVS~I~

6 Optimal experiments In view of
model-based control

Proof: The application-related error criterion can
be written as

which can be shown to be equal to (using first order
approximations)

An appropriate choice of r 11 for this model appli­
cation would thus be

VC(Go - G)
I1 (1 + CG o)2 112 .

o

(41)IVCI2

r 11 (w) = 11 + CGol4

leading to the result presented.
J(V) = i: tr[P(w, V)r(w)]dw

Proposition 6.1 Consider the variance-based
identification design criterion

In this section we will consider the situation that the
identified transfer functions GN and HN are used as
a basis for model-based control design, and we will
illustrate the effect of the varianee of the identified
model on the model application, i.c. the designed
controller.
To this end we will first consider the following result
from Ljung (1987, Theorem 14.3).

13



From the above result one could conclude that -from
a varianee point of view- an open-loop configuration
would be the optimal experimental setup for per­
forming identification for this control design objec­
tive in which the controller a function of 0 only, i.e.
independent of H. It has to be noted, though, that
the required input spectrum in this 'open-loop' situ­
ation should be proportional to the sensitivity func­
tion So of the real plant, being controlled by the yet­
to-be-designed controller. Input shaping with So is
exactly what is done when closed-loop identification
is performed, as in that case q>u = ISo12q>r + q>~ .

A second related resu1t is present in the recent work
ofHjalmarsson et al.(1996) on optimal identification
for control. In this work the identification crite­
rion is selected to minimize the control performance
degradation that results from the random errors on
ON and HN. In solving this problem, the authors
have quantified the varianee error on the designed
model- based controller.

Consider a situation where an identified model ON,
HN is obtained from a closed-loop experimental
situation with a controller Cid implemented on
the plant. Consider a model-based control design
scheme

êN = c(ON,HN)

and let FG, FH reflect the derivatives of c with re­
spect to G, H, i.e. the sensitivity of the controller
with respect to changes in G and H. Then the vari­
ance of the controller estimate is' (see Hjalmarsson
et al., 1996)

leading to the situation that

• If FH =1= 0, then the controller varianee is mini­
mized for models identified in closed-loop with
an implemented controller C:t unequal to zero,
and the resulting controller varianee is

By comparison, the controller varianee ob­
tained with open-loop identification is

We observe that the varianee obtained under
ideal closed-loop experimental conditions can
only be achieved with open-loop identification
if the input power is made infinite.

14

• If FH = 0, then the varianee expression for
closed-loop identification becomes

cov(êN ) ~ ;IHo121FG1211 + C~~0 12,\0

= !: q>1I1F. 12•N q>r G
u

The corresponding expression for open-loop
identification is

- n q>1I 2
cov(CN ) ~ --IFGI .

N q>u

The situation FH = °means that the control
design depends only on G and not on the noise
model. This result is therefore consistent with
Proposition 6.1.

We conclude from this analysis that, as far as vari­
ance errors are concerned, for model-based con­
trol design, closed-loop identification is optimal ex­
cept when the controller is independent of the noise
model.

7 Conclusions

Asymptotic varianee expressions have been derived
for several closed-Ioop identification schemes, in­
volving both the (classical) direct method and more
recently introduced indirect identification methods.
It is shown that the several approaches lead to the
same asymptotic varianee.
A1though asymptotic varianee of plant model and
noise model generally will increase when perform­
ing closed-loop identification, in comparison with
open-loop identification, closed-loop identification
can still be preferred when the identified model is
used as a basis for control design. In the case that
a controller is designed on the basis of both plant
model and noise model, closed-loop identification is
shown to lead to better varianee results . When a
controller is designed on the basis of a plant model
only, the optimal identification experiment is an
open-loop experiment with an input signal that has
a power distribution that involves the real sensitiv­
ity function of the -yet to be designed- closed-loop
plant.

Appendix

Proof of (26).
Applying the standard varianee expressions to the
multivariable situation of (18),(19) it follows that

cov ( ~)

cov ( %: )



Since (18),(19) refiect an open-loop situation (as x
and e are uncorrelated) this implies that the cross­
covariance terms between (IV, ÎJ)T and (Wy , Wu )

are zero .
Applying the first order approximations in (24) it
follows that:

Substitution of (A.1) then provides the result for
cov(G).
For Îl one can similarly write (when neglecting
te rms that have expectation 0):

ID.HI 2 = ID.WyI
2 + IGo1

2 1D.Wu 1
2 + IWu 1

21
D.G1

2

-2Re .Go(D.Wu ) . (D.Wy )*

and the result for cov(Îl ) follows after substitution
of (A.2).
The expression for cov(G, H) follows from
cov(G, Îl) = -W~ cov(G ).

Varianee result for dual Youla-Kucera
method
Using (33),( 34) the related expressions for the first
order approximation err ors become
D.G =

(D", - NeRo)De(D.R) + (N", + DeRo)Ne(D.R)
(D", - NeRoF

D.H = De(D.K) + KoNe(D.G). (A.3)
So

For D.G this leads to

D.G = De + GoNe D.R = ~e(D.R)
D", - NeRo D",So(l + CG",)

and so

~ov (G ) = I D ", S~ (~: CG",)rcov(R).

Subs tituting the expression for cov(R) and using the
property that ~ '" = ID", (l + CG",)12~,. it follows af­
ter some manipulation that cov(G) ~ n/N· ~tI/~~.

For cov(Îl) it follows from (A.3) that

2 -- JDel covK 12 -
cov(H ) = ISol 2 + lNeKO covG.

Substituting the known expressions in the right
hand side , will show that cov(H) '" n]N IHo1

2 [1 +
~~ /~~].
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For cov(G,Îl) it follows from (A.3) that

cov(G, H) = (KoNe}*cov(G)

which leads to the appropriate result.
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Abstract. An analysis is made of a closed-loop identification scheme in which the pa­
rameters of the (open-loop) model are identified on the basis of input and output signals
of the closed-Ioop transfer function. A parametrization of the closed-loop transfer in
terms of the parameters of the open-loop plant model is employed, utilizing knowledge
of the implemented feedback controller. This is denoted a tailor-made parametrization
as it is tailored to the specific feedback structure at hand. To obtain an estimate of the
plant model, a dedicated nonlinear optimization algorithm is required as the standard
optimization tools for the situation of open-loop models can not be applied. Consistency
of the estimate is shown to hold under additional conditions on controller and plant model
order. These conditions result from the requirement of a uniformly stabie model set . Sim­
ulation examples show both the power and the hazard of closed-loop identification with
a tailor-made parametrization.

Keywords. Closed-loop identification; tailor-made parametrization; indirect identifica­
tion; closed-loop stability.

1 Introduction

System identification from closed-loop data has had
a lot of attention in literature which has resulted in
numerous closed-loop identification schemes. First
of all there are the more classical methods like direct
identification, indirect identification, instrumental
variabie methods and joint input/output identifi­
cation, see e.g . Söderström and Stoïca (1989).
More recently particular versions of these closed­
loop identification schemes have been developed
that are directed towards an explicitly tunable bias
expression, which is aiming for an identified model
that is particularly suitable for use in control de­
sign. Examples of such schemes are the two-stage
method (Van den Hof and Schrama, 1993), iden­
tification in the dual Youla parametrization ((Lee
al., 1993),(Schrama, 1992)) and identification of co-

~The work of Edwin van Donkelaar is financially sup­
ported by the Dutch Technology Foundation (STW) under
contract DWT55.3618
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prime plant factors (Van den Hof et al., 1995). An
over view of these closed-Ioop identification schemes
can be found in Gevers (1993) and Van den Hof and
Schrama (1995).
In this paper a closed-loop identification method is
discussed that has not had a lot of attention in liter­
ature: closed-loop identification with a tailor-made
parametrization. The basic idea is that the closed­
loop transfer function from excitation signal T to
output signal y (see Figure 1) is identified using an
output predietor

"( ()) G(q, ()) ( )
Y t, = l+C(q)G(q,())T t

using the parameters corresponding to the (open­
loop) plant model

G( ()) = blq-l + + bn B q-nB

q, 1 + alq-l + + a
n A

q -nA

with () = [bI' .. bn B al ... an A J.
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C

+

v

y
tion signal, u( t) and y(t) are respectively the plant
input and output. It is assumed that measurements
ofr(t) and y(t) are available. The output noise v(t)
is assumed to be generated by filtering of white noise
signal e( t) with varianee (7"2 using a stabie monie fil­
ter Ho(z). The output noise is assumed to be uncor­
related with the excitation signal r . Lastly, the loop
transfer C(z)Go(z) is assumed to be strictly proper.
The closed-loop transfer function from measured
reference to measured output can be written as fol­
lows.

The corresponding set of closed-loop models is de­
fined as

_ G(q, 0)
y(t,O) = 1 + C(q)G(q,O) r(t), 0 E 0 (1)

, v '

R(q,8)

Go(q) 1
y(t) = I+C(q)Go(q) r(t)+ I+C(q)Go(q)Ho(q) e(t)

"-v--" v

Ro(q) Wo(q)

where Ro(q) denotes the closed-loop transfer func­
tion and Wo(q) the closed-loop noise filter.
The sensitivity function is denoted by So(z) =
(1 + C(z)GO(z))-l and the parametrized sensitiv­
ity is denoted with S(z,O) = (1 + C(z)G(Z,O)) -l.

(2){
G(q,O) }

'P:= R(q,O) = 1 + C(q)G(q,O) ,0 E 0

3 Closed-Ioop identification with a
tailor-made parametrization

Consider a parametrized model of the plant G(q,O)
where the parameter vector lies in a parameter set
o E e. This parametrized plant model together
with knowledge of the controller can be used to
parametrize the transfer function between the mea­
sured signals r(t) and y(t). This yields the following
predietion of the output in case the parametrized
closed-loop noise filter is set to W( q, 0) = 1 (output
error st ru cture )

The parameter estimate is found by least squares
minimization of the prediction error by solving
ON = argminVN(O), in which the criterion function

8E0

is given by VN(O) = -k 2:~1 e2 (t ,O) and the predie­
tion error is defined as e(t,O) = y(t) - R(q,O)r(t).
The resulting estimation of the plant model will be
denoted by R(q) = R(q, ON)'
For this identification method the following consis­
tency result holds (Ljung, 1987).

Fig. 1: Closed-loop configuration

2 Preliminaries

Using the open-loop plant parameters, and knowl­
edge of the controller C, a prediction error criterion
is used to estimate the plant parameters; this re­
quires a nonlinear optimization procedure.
The parametrization is referred to as a tailor-made
parametrization, as it is specifical1y directed to­
wards (tailored to) the closed-loop configuration at
hand, including knowledge of the controller.
This identificaiton approach has been mentioned as
an exercise in Ljung (1987). It is also employed in a
recursive version in Landau and Boumaïza (1996).
In this paper, an analysis will be made of the consis­
tency properties of this method, where in particular
we will focus on the connectedness of related param­
eter sets and the uniform stability of corresponding
model sets.
After preliminary notation and the formulation of
the problem, in section 4 it will be made clear that
the need for uniform stability of the model set,
which is adopted in Ljung (1987) to obtain con­
sistency results, imposes additional conditions on
the parametrization. Sufficient conditions for con­
sistency are derived which results in a condition on
controller and model order. In section 5 compact
expressions for the gradient and Hessian of the cost
function are given, which are useful if a gradient
search method is used for the nonlinear optimiza­
tion. In section 6 two simulations are given to il­
lustrate both the possible problems and the power
of the application of a tailor-made parametriza­
tion. Next, in section 7 the relation between this
and other closed-loop identification methods is dis­
cussed. Finally, section 8 concludes the paper.

Addressed is the problem of obtaining a model of
the linear time-invariant discrete-time single input
single output plant Go(z) from measurements ofthe
closed-loop configuration given in figure 1.
The controller is denoted with C(z) and is assumed
to be known. The signal r(t) is an external excita-
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Proposition 3.1 Get 'P be a uniformly stabie
model set and let the data generating system sai­
isfy the standard conditions in Ljung (1987). Then
ON --.0* w.p. 1 for N --. 00 with

where 0 = [al' .. anA bl ... bnBjT. The controller of
order n c is given by

c _ _N_c _( z_) __n.::..o_+:-.,.n...:l_z--:-,--l_+:....-._._.+----::n~n~c'-z_-_n_c
- Dc(z) - 1 + dlz- l + ... + dncz-nc

where Nc(z), Dc(z) are coprime polynomials. With
this notation the parametrization of the output pre­
dietor is given by

0* = argmin ~ 1'lf IR o(e iw
) - R(ei w,O)1 2ipr(W)dw

BES 271" -'lf
(3)

Whenever there exists a 0 sucli that G(q,O) = Go(q)
th is choice will be a minimizing argument of the in­
tegral expression above which is unique provided that
r( t) is persistently exciting of sufficient high order.

"( 0) Dc(q)B(q,O) ( )
y t, = Dc(q)A(q,O) + Nc(q)B(q,O) r t

(5)

This proposition states that a consistent estimate is
obtained with this parametrization under the condi­
tion that the model set 'P is uniformly stable, This
condit ion is not trivially satisfied in case the tailor­
made parametrization given in (2) is used. There­
fore, in the next section the conditions under which
the model set (2) is guaranteed to be uniformly sta­
ble will be investigated.

All closed-loop models R(q,O) are stabie if the
absolute value of the roots of the denominator
Dc(q)A(q, 0)+Nc(q)B(q, 0) is strictly less than one.
Hence, the parameter set corresponding to closed­
loop stabie models is given by

o = {O E 1R.nA+nB I
Isol{Dc(z)A(z,O) + Nc(z)B(z,O) = O}I < I} .(6)

The corresponding set of plant models is denoted by

It can be verified that the parameter set for
which the polynomial A(q,O) is stable, is pathwise
connectedê. As aresult, connectedness of the pa­
rameter set when using a (standard) numerator­
denominator parametrization of the plant in an
open-loop setting, will not be a problem. However,
in case the tailor-made parametrization (2) is used,
with 0 given by (6), 0 need not be pathwise con­
nected as the following simple example shows.

4 Uniform stability of the model set

In the previous section it is mentioned that, in case
of uniform stability of the model set, a consistent
estimate is obtained with closed-loop identification
using a tailor-made parametrization. Uniform sta­
bility of the model set is defined as follows.

Definition 4.1 (Ljung, 1987) A parametrized
model set 9 is uniformly stabie if

• 0 is a connected open subset of IR(nA+nB)

g:= {G(z,O),O E 0} . (7)

• J.L : 0 --. 'P is a differentiable mapping, and

• the family of transfer functions
{R( z, 0), :BR(z, O)} is uniformly stable.

In this section it will be made clear that in case a
tailor-made parametrization is used, the parameter
set 0 is possibly not connected due to the specific
parametrization of the closed-loop transfer function
R(z ,O). Also a sufficient condition is derived for
guaranteed connectedness of the parameter set.
Let the strictly proper! plant model be
parametrized as

B(z,O)
G( z,O) = A(z,O) =

blz- l + + bnBz -nB

1 + alz- l + + anAz -nA
(4)

Example 4.2 Given the 7th order controller de­
fined by the continuous time transfer function
C(s) =

0.499; +0.715s4 + 2.577; +3.397;' + 2.155s + 2.620
= s7+1.717s6+5.100sS + 8.410s4+ 4.198Sl+ 6.631s2

The plant that is to be identified is parametrized by
a simple constant G = O. The parameter space
o c IR for which the closed-loop system is stable
can be simply derived /rom a root locus plot and is
approximately given by

o = {OIO E (0,1.27) U (2.64,4.69) U (9.98,00)}

This set is a disconnected subset of IR. Therefore the
corresponding model set 'P is not uniformly stable.

1 For simplicity of notation only the case of a strict1y
proper plant and a proper controller is regarded. However,
the case of a strict1y proper controller and a proper plant can
be des cribed similarly.
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A parameter set that is not connected has not only
consequences for the formal proof of consistency as

2 A justification of this claim is added in the appendix.



was mentioned before, but also for the nonlinear op­
timization that has to be performed to obtain an es­
timate. If, for example, a gradient search method is
used and an initial estimate is selected in a region of
the parameter set that is disconnected from the re­
gion where the optimal parameter vector is located,
it will be extremely hard if not impossible to reach
the optimum.
The denominator of the closed-loop transfer func­
tion can be written as a function of the open loop
parameter 8 as

where the closed-Ioop parameter vector is given by
Oe! := S8 + p. The order of the closed-loop poly­
nomial of (8) is given by n = max(nA,nB) + n e,
p = [Pl' ··Pnc 0 . . . O]T E lRn and S = (PD PN] E
lRn x(nA+ns) with PD E lRn xnA,PN E lRnxns are

matrices given by

1 0 0 no 0 0

dl 1 nl no

d2 dl n2 nl

d2 1 n2 no
PD = ,PN =

dnc dl nnc nl

0 d2 0 n2

0 0 s.; 0 0 nnc
(9)

The closed loop parameter can vary over a parame­
ter set

ee! := {Oe! = MO + pl8 E e}

where the aUowable closed loop parameters are re­
stricted by the affine relation given above. Now, de­
fine a parameter set for stabie polynomials of order
n as foUows

Proof: The closed-loop parameter On can vary over
the connected set en' Now define the set

ê d = {ÖetlÖd = On - p, On Een}

This set is a shifted version of en and is therefore
also pathwise connected. An open loop parameter
vector 0 E e and a parameter vector iJd E Ë>d
are related via Öc/ = SO,S E lRn x(nö+nb ) . If S
has fuU row rank it defines a surjective map, hence
image(S) = ê d . In the connected set Ë>d a continu­
ous path can be constructed between two parameter
vectors. This path can he mapped into a continuous
path in e using the inverse mapping of S. Therefore
o is also pathwise connected. 0

This result implies that the parameter set for which
the parametrized transfer function (2) is stable, is
only a connected set in specific cases. Therefore it is
not guaranteed that the model set defined in (2) is
uniformly stabie foUowing the definition of uniform
stability in Definition 4.1. The foUowing lemma
gives an easy test for guaranteed uniform stability of
the model set with a tailor-made parametrization.

Proposition 4.4 Let a model of order n. be
parametrized as

G( 0) = B(z,O) = blz-l + + bn• z-n.
q, A(z,O) l+alz-l+ +an.z- n•

and let the controller of order n e be given by

_ Ne(z) _ no + nlz- l + ... + nncz -nc
C---- 1 d

De(z) 1 + dlz- + ... + ncz-nc

A sufficient condition for connectedness of the pa­
rameter set e for a tailor-made parametrization
given in (2), is given by

Proof: From lemma 4.3 it foUows that fuU row
rank of S is a sufficient condition for connectedness .
By reordering the columns of S a 2 x 2 upper tri­
angular block matrix can be constructed given by

S [
S I S12] h= S w ereo 2

From connectedness of the parameter set for of sta­
ble polynomials (see Appendix) it can be concluded
that the parameter set en is also connected. In the
foUowing theorem a sufficient condition for connect­
edness of the parameter space e is given using the
connected set en as a starting point.

Lemma 4.3 Full row rank of the matrix S =
[PD PN 1 with PD, PN given in (9), is a sufficient
condition for pathwise conneetedness of the param­
eter set e given in (6).
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1 0
dl 1

d2 dl

Sl=
d2

dnc
0 «;

0

o



_ [dnc :. . d2nc~.+1 nnc : .. n2nC~'+I]
Sz- '.: '.:

o dnc 0 nnc

where SI E IR2nc X2nc and S2 E IR(n.-nc) X2(n.-nc).

The matrix S has full row rank if SI and S2 have
full row rank. The first is a Sylvester matrix which
has full row rank if and only if the numerator and
denominator of the controller are coprime (Chen,
1984) . The second has full row rank if dnc =f:. 0 or
nnc =f:. O. This is always the case for a controller
of order n c . The number of rows of S is smaller
than or equal to the number of columns if na + nb 2:
max(na, nb) + n c. This reduces to 2n. 2: n. + n c or
equivalently n. ~ nco 0

From this it can be concIuded that connectedness of
the parameter set e causes no problem if the order
of the controller is smaller than the model order. So
for identification of a simple model based on exper­
iments with a complex controller connectedness of
the parameter set may be aproblem. Note that this
is the case in example 4.2.
Apart from connectedness of the parameter set over
which is optimized, other issues should be inves­
tigated. For example whether local minima and
saddlepoints can occur and if so how many can be
expected and most of all whether this hampers a
good application of this method. To investigate this,
functional analysis can be performed on the basis of
the expressions for the criterion function, its gradi­
ent and the Hessian. In the next section compact
expressions for these functions are given.

5 Gradient expressions

To obtain a parameter estimate the optimization
problem given in the previous section has to be
solved. Due to the used parametrization this is a
nonlinear optimization problem. To find a solution
to this optimization problem gradient search meth­
ods can be used like Newton-Raphson and Gauss­
Newton as suggested in Ljung (1987).
However, the character of the function VN (0) that is
optimized as well as the parameter set 0 over which
is optimized is highly influenced by the controller.
Both the function and the set can be extremely non­
convex which can make it difficult to apply gradient
search methods successfully because the optimiza­
tion can get stuck in a local minimum or at the
boundary of the parameter set. To al1eviate these
problems it is essential that a good initial estimate
is chosen for the iterative search and a good strat­
egy is applied for the choice of the step size.
To apply gradient search methods the gradient of
VN(O) needs to be available and for some methods
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also the Hessian. In this section these derivatives
are derived, where, for convenience of notations,
nA = »» = n. is chosen. The more general case,
however, can be derived similarIy. The derivatives
of the cost function can be expressed as

oV(O)=_~~ (ll)Oy(t,O) IR2n•
00 N LJ et, u 00 E

t=1

02V(0) =2~ oy(t, 0) (Oy(~o))T
002 LJ 00 00

t=1

N 02"( 0)
-2Le(~0) ;0; EIR2n. x2n.

t=1

Hence, these derivatives can be calculated if the first
and second derivative of the output prediction are
known. These can be calculated by differentiating
(5). Differentiating this expression once yields

o
00 {y(t,O)+[y(t-l,O) .. . y(t-n, 8)]([PD PN]8+ p)}=

o
= 00 {[r(t-l) .. . r(t-n][O PD]O}

or equivalently

oy(t,O) I [Oy(t-l,O) oy(t-n,8)] ([P P ]tl..L-.)+
00 00' .. 00 D N VTP

+ [;~] [y(t~I'8)] = [;T].:

N y(t-n,8) D r(t-n)

This can be written more concisely as

F(q,O)OY~~O) = M T1/J(t,O) (10)

with a filter

. M [PD PN ] IR2n x 2n da matrix = 0 P
D

E • an a regres-

sion vector
1/JT(t, 0) =[-y(t-l, 0) . . .-y(t-n, 0) r(t-l) . .. r(t---n) ].
Equation (10) can also be expressed with

OY1~0) = M T1/JF(t, 0) (11)

where 1/JF(t,O) = F - 1(q,0)1/J(t,O) is a filtered ver­
sion of the regression matrix.
The second derivative of the output prediction can
be caIculated by differentiation of (10), which yields

02y(t, 0) F( 0) oF(q,0) (Oy( t, 0)) T
002 q, + 00 00
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Fig. 3: Closed loop transfer function from r(t) to
y( t) (lelt) and open loop transfer [unc­
tion (right): plant (solid), estimation with
tailor-made parametrization (dashed) and
direct identification based on an ARX(331)­
estimation (dotted).

= _ [8 y(t-1,(J) 8y(t-n,(J)] [P P 1
8(J . . . 8(J D N, or

82 y(t , (J) _
8(J2

-2T1( (J)[8y(t-1,(J) 8y(t-n,(J)] ro >.J
q, 8(J" 8(J l' D PNJ

These compact expressions are similar to expres­
sions obtained for nonlinear optimization with a
standard input-output parametrization and can be
fruitfully used in nonlinear optimization routines
for closed-loop identification with a tailor-made
parametrization.

6 Simulation examples

PS

10-2 100

Irequency(rad/sec)

P

10· :1 10°
Irequency(rad/sec)

In this section two simulation examples are given.
One in the case where Go E 9 and the parameter set
is not connected and the other where Go i. 9 with a
connected parameter set but with a very bad signa!
to noise ratio. In the first example the tailor-made
parametrization induces an optimization problem
which is difficult to solve while in the second exam­
ple it is demonstrated that closed-loop identification
with this parametrization can be very powerful.

Simulation 1
In figure 2 the three separate branches of the cost
function VN((J) for the system from Example 4.2 is
depicted for a system Go = 3.5. Here it is assumed
that both model and system are a simple constant
and an output noise which is driven by a white noise
signal e(t) with varianee a = 0.1 has a noise filter
Ho(q) = 1. The.excitation signal r(t) is white noise
with varianee 1. The function is clearly discontin­
uous and has several local minima that are located
at the boundary of the stability area which makes
it difficult to find the optimum with gradient search
methods.

40Q 27,5[2] 200Q
~~ V lW

~: -. ~,: J ':-1° 1223455 10 15
tneta

Fig . 2: Criterion function for controller given in
example 4.1 and plant Go = 3.5 for
closed-loop identification with a tailor-made
parametrization

The global optimum will generally only be found
if an initia! estimate is selected from the middle of
the three branches of the criterion function. In the
other ones the iterative search gets stuck in alocal
optimum which is at the boundary of the stability
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region.
Note that the parameter regions (-00,0], [1.27, 2.64]
and [4.69,9.981 induce an unstable closed loop sys­
tem.

Simulation 2
A simulation is made with a fifth order system,
which is given by the transfer function
Go(z)=

10-6 5.278z- 1 + 126.7 Z-2 + 299.3z--3+ 1l0.8z-4 +404.2z- s

1-4.391z-1 +7.879r2 -7.247z--3 +3.430z-4 -4.391r 5

which is a pure integrator with two resonant modes.
The controller used in the simulation is a PI­
controller which stabilizes the system. The exci­
tation signal r( t) is Gaussian white noise with stan­
dard deviation a; = 1 and the output noise v(t) is
Gaussian white noise with a standard deviation of
a; = 0.5. The data length is N = 500. The open
loop and closed-loop transfer functions are given in
figure 3.
For this system a third order model is estimated
with tailor-made parametrization. The non-linear
optimization is performed using a Gauss-Newton
method where the initia! estimate is obtained with
use of direct identification. The estimated model is
given in figure 3. Also the initia! model is given.
From this it can be seen that the estimation with a
tailor-made parametrization gives a good fit for the
integrator and the first resonant mode, despite the
bad signa!-to-noise ratio and the bad initia! estimate
for the nonlinear optimization.

7 Relation to other closed-Ioop iden­
tification methods

In this section the relation between closed-loop
identification with a tailor-made parametrization
and other closed-loop identification methods is dis-



cussed.
An obvious parametrization making further use of
knowledge of the closed-loop structure, is given by

Least squares minimization of the corresponding
prediction error yields a criterion function VN(O) =
ft 2:~1 H -I(q,O)(y(t) - G(q,O)(r(t) - C(q)y(t)))
which is equal to the cost function for direct identifi­
cation from u(t) = (r(t) - C(q)y(t)) to y(t) which is
known to be only consistent in case both the plant
Go and the noise model Ho can be modelled ex­
actly within the chosen model set . It is important to
note that this inconsistency is due to the dependent
parametrization of the closed-loop transfer and the
closed-loop noise filter. If R(q,O) and W(q,O) are
parametrized independently, the consistency result
given in Proposition 3.1 still holds in case Go Eg.
The specific approximative properties of closed-loop
identification with a tailor-made parametrization
can be obtained from (3). This expression can be
further specified as
{}. . 1
u = argmln-'

/lEe 211"

From this it can be seen that the estimation er­
ror is weighted by both the sensitivity function and
the estimated sensitivity function . Therefore the
crossover region is emphasized in the minimization.
This implies that in the case of approximative mod­
elling, Go f/. g, the undermodelling error is par­
ticularly small in this frequency region which is
favourable in case the identified model is used in
control design as is pointed out in Van den Hof and
Schrama (1995).
Hence , the identification procedure described in the
previous sections obtains a control-relevant model
because of the implicit weighting. In many control­
relevant identification schemes this type of weight­
ing is pursued but can there only be approximated
by use of specific filtering strategies, while by using
a tailor-made parametrization this weighting is in­
herent.
The identification method using a tailor-made
parametrization resembles the indirect identification
method where first the closed-loop transfer func­
tion R(q) is identified with a standard numerator­
denominator parametrization. Next, a plant model
is calculated using knowledge of the controller and

8 Conclusions

In this paper identification of a model from closed­
loop data with a tailor-made parametrization is dis­
cussed. Special attention is given to the possi­
bie occurrence of a non-connected parameter set
which is induced by the structure enforced on the
parametrization.
Suffici ënt conditions are derived for the model order
in terms of the controller complexity such that the
parameter set is connected. These conditions indi­
cate that the parameter set may not be a connected
set in case a low complexity model is identified from
data with a high complexity controller.
From simulations it follows that the approach can
yield very accurate models also in case of approx­
imative modelling with a bad signal-to-noise ratio.
However, complexity of the optimization problem
involved needs to be investigated more thoroughly
to assess the possible problem of local minima and
saddlepoints and the identification of an accurate
initial model.
A compact description of the least squares predic­
tion error criterion function , the gradient and the
Hessian thereof is derived using Sylvester matrices.
This can be used fruitfully in nonlinear optimiza­
tion routines which have to be solved to obtain an
estimate with a tailor-made parametrization.

p(z) = z" + [z"-l Z"-2 . .. 1]0

Lemma 8.1 The parameter set e c IR" with ele­
ments 0 = [PI ... P"JT

, {Pih=I ...." E IR for which all
polynomials
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ful discussions on the results presented.
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the closed-loop structure with
G(q) = R(q,ê)(l- R(q,ê)C(q))-l. In this calcula­
tion the McMillan degree of the model will gener­
al1y be larger than the McMillan degree of the esti­
mated closed-loop transfer function. Hence, estima­
tion of a model of the open loop transfer function
with a prespecified model order is not a trivial task if
the indirect method is used. This same mechanism
holds true also for identification in the dual Youla
parametrization, which is a direct generalization of
the classical indirect method (Van den Hof and de
Callafon, 1996). Using a tailor-made parametriza­
tion a plant model can be estimated with prespeci­
fied complexity.

G(q,O)

1 + C(q)G(q,O)

1 + C(q)G(q,O)
H(q ,O)

R(q,O)

W(q,O) =
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have stabie roots, is a pathwise connected subset of
IRn

.

Proof: First the polynomial p(z) is reparametrized
as a product of first and second order polynomials

( )
_ { rr~~~(z2+alez+ble),Vk neven

p z - ( ) rrn/2 ( 2
Z + C Ie=l Z + alez + bie), Vk n odd

(12)
Stability of the full polynomial is guaranteed if sta­
bility of the second order polynomials and first or­
der polynomial is guaranteed which is guaranteed
if and only if bie < 1, ale < 1 + bie, -ale <
1 + bk, Vk and -1 < c < 1, see e.g. Áström
and Wittenmark (1990) . This stability area for the
quadratic terms describes a triangular area in the
ak, bk-plain which is not only pathwise connected
but also convex. The stability area for the first
order term is also convex. The polynomial coef­
ficients of the original polynomial, {Pih=l,...,n, are
continuous and continuously differentiable functions
in the parameters {ak,bkh=l,oo.,n' Therefore from
pathwise connectedness of the set of admissible co­
efficients {ak, bleh=l,oo. ,n, pathwise connectedness of
the set of admissible parameters {Pih=l,...,n can be
conc1uded. 0
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Abstract. Electro mechanical serve systems, as encountered in consumer electronic
products, have to keep pace with increasingly high performance demands. As the me­
chanical construction is a restricting factor regarding the limits of achievable performance,
model based control design is proposed to enhance the bandwidth. System identification
proves to be an adequate tool to produce nominal models and uncertainty models that
are suitable for control design purposes. A method based on performing identification
and control design in an iterative marmer is proposed in order to systematically enhance
the disturbance attenuation properties of aservo system. The proposed method is exper­
imentally verified via application to a compact disc serve mechanism.

Keywords. Control design, system identification, compact disc player.

1 Introduction

A large number of applications of electro mechanical
serve systems requires tracking with an increasingly
high accuracy at a high speed. Especially in the
field of consumer electronic produets like audio and
video systems the limits of achievable performance
are more and more dictated by the mechanical con­
struction of the servo system. In many cases this
predominantly results in a desired enhancement of
disturbance rejection of the serve system which may
be achieved by control design. Design of control sys­
tems that establish an improved disturbance attenu­
ation for electro mechanical constructions is however
known to be hindered by the presence of resonance
modes that are (in most cases) not exactly known.
An additional aspect regarding consumer electronic
products is the variability of system dynamics due
to tolerances in the mass production process. This

tThis paper is presented at the Philips Conference on Ap­
p1ications of Contro1 Technology, PACT'96, 29~30 October
1996, Epe, The Netherlands.

!The work of Hans Dötsch is financially supported by
Phi1ips Research Laboratories, Eindhoven, The Netherlands.

I Phi1ips Research Laboratories, Prof. Holstlaan 4, 5656
AA, Eindhoven, The Netherlands.
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motivates development of a tool that on one hand es­
tablishes an improved performance of existing con­
structions having variabie dynamical properties and
on the other hand explores the physicallimitations
of electro mechanical constructions in the stage of
product development.

In case knowledge of resonance dynamics is suffi­
ciently accurate a high bandwidth controller, de­
signed based on this knowledge, is likely to provide
a high bandwidth for the system without causing
unstable behaviour. Therefore accurate knowledge
of resonance modes is indispensable in the design of
a high bandwidth control system. This motivates
the use of model based control design as a tool to
achieve an enhanced bandwidth for an electro me­
chanical serve system. Knowledge of resonance dy­
namics can adequately be described by a mathemat­
ical model which serves as a basis for control design.
One way to construct such a model is to use relations
based on first principles. In general these models are
quite elaborate which inevitably leads to a controller
of high dynamical order. If measurements can be
taken from the system, models can also be obtained
from experimental data utilizing system identifica­
tion techniques. As experimental models are not



Fig. 1: Block scheme of an electro mechanical servo
system

in terms of the following specification regarding the
sensitivity function of the closed loop system:

where f3 denotes the minimal disturbance rejection
required for the system. We focus on the design
of a controller C that establishes the specified dis­
turbance rejection. To that end knowledge of Po
as weIl as the disturbance d is indispensable which
motivates the need for accurate models of both the
actuator and the disturbance. Although it is ac­
knowledged that disturbance modelling should be
incorporated in the overall design, here we restriet
attention to data based modelling of the actuator
dynamics.
In literature the problem of identification of mod­
els that are suitable for high performance control
design has received a great deal of attention (a.o.
Gevers, 1993; Van den Hof and Schrama, 1995). It
has been stressed that a model that provides a satis­
factory description of the open loop system dynam­
ics might provide a poor basis for control design, in
the worst case resulting in controllers that destabi­
lize the closed loop system. The main observation
made is that system dynamics that govern the closed
loop dynamics in conjunction with a controller often
only marginally contribute to the open loop dynam­
ics and vice versa.
This observation has resulted in a widely accepted
strategy that identification of models suitable for
control design should be performed in a closed loop
situation, in the presence of a controller. To do
closed loop identification we need a controller that
emphasizes the dynamics that are relevant for con­
trol design. However, in order to find such a con­
troller a model is required that encompasses control
relevant dynamics. Here we are confronted with a
circular reasoning that has motivated the proposi­
tion of algorithms where identification and control
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based on the physical structure of the system, the
order may be kept low in order to describe relations
induced by measured data. Therefore experimental
modelling is employed in this paper.
As the intended use of the model is control design,
the identification problem we are confronted with is
to come up with a low order model such that a re­
suIting controller establishes a high performance for
the true system. In literature (a.o. Gevers, 1993;
Van den Hof and Schrama, 1995) it has been recog­
nized that, in order to establish an enhanced perfor­
mance for the system through model based control
design, identification and control design should be
performed in an iterative manner. The topic of this
paper is to propose an iterative scheme of identi­
fication and control design for systematic enhance­
ment of the closed loop bandwidth and to verify
the method experimentallyon the servo mechanism
of a compact disc (CD) player. A specific feature of
the proposed scheme is the utilization of uncertainty
modeis, that may be obtained through recent1y de­
veloped identification techniques (see a.o. de Vries,
1994).
In section 2 the need for an iterative approach of
identification and control design is illucidated in
view of achieving an enhanced closed loop band­
width. The identification of nominal models and
uncertainty models is the subject of section 3. The
control design method employed is a two-stage pro­
cedure that combines a loop shape design with ro­
bustness in view of resonance modes. This is the
subject of section 4. Results obtained from an ex­
perimental set up of a CD player are presented and
commented upon in section 5. Conclusions and re­
marks conclude the paper.

2 Model based performance en­
hancement

1The frequency argument w is left out for brevity

We consider aservo system consisting of an elec­
tro mechanical actuator, denoted as Po, and a con­
troller C as depicted in the block scheme of figure 1.
In many cases the actuator is marginally stabie and
must therefore operate in closed loop. The signal
d represents a reference signal that is not available
from measurement but is to be tracked by the ac­
tuator output y. As dis presumed to be unknown
it is regarded as a disturbance acting on the servo
system. The servo error is denoted bye.
The desired performance is achieved in case the
tracking error satisfies le(t)1 < Ó, Vt where the value
of Ó is determined by physical system properties. AI­
though the translation is not one-to-one, the perfor­
mance spec is expressed in the frequency domain!
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where

Fig. 3: Experimental configuration of a CD servo
system

forming time domain data to the Fourier domain
prior to identification is the possibility to establish
a considerable compression of the amount of data.
Moreover , a frequèncy domain data representation
is compatible with the performance specification (1).
Two features are characteristic for the identifica­
tion problem addressed. Firstly, a model that is
employed for control design should be obtained
from measurements taken in the presence of a con­
troller, as mentioned in section 2. Secondly, as the
identification has to be performed in closed loop,
straightforward application of open loop identifica­
tion methods is hazardous. To that end the identifi­
cation of a parametrie model is performed following
aso called indirect approach. A parametrie model of
the closed loop transfer Po(I + CPO)-l is estimated
from {r(éWj) ,e(eiwj)} by determining parameters,
denoted 8, that minimize the following least squares
criterion function:

N

L IW(eiwj )[e(eiwj) - R(eiwj ,8)r(eiWj)]
1
2 (2)

j=l

1
ata acquisition

1
Identification

1
Control design

1
Implementation

I

Fig. 2: Iterative approach of model based perfor­
mance enhancement

design are performed in an iterative manner (Gev­
ers, 1993; Van den Hof and Schrama, 1995j Lee
et al., 1995) in order to arrive at an enhanced per­
formance. Basically such a procedure consists of
the following steps: data acquisition, identification,
control design and controller implementation; this
is schematically depicted in figure 2.
In the sequel of this paper the seperate steps of iden­
tification and control design are addressed. As the
procedure is implemented on an experimental set up
of a CD servo mechanism, the elaboration from here
on is directed towards this application.

r u I
I

I
I

Po

C

1
I

I
r

+
d

e

and W is a frequency dependent weighting function.
A model of the system is constructed from R(eiw,8),
utilizing knowledge of the (stabie) controller, as fol­
lows:

P(eiw 8) = R(e
iw

,8) (4)
, 1- CR(eiw , 8)'

It is mentioned that a generalization of this ap­
proach is applied, allowing to deal with marginally
stable controllers, as is indicated by Van den Hof
and de Callafon (1996) . The identification of a (low
order) model P( eiw,8) suitable for control design
in the SISO case amounts to specifying a suitable
weighting W in (2).
In addition to identification of nominal models,
techniques have recently been developed (see a.o.

3 Identification

In figure 3 a block scheme of the experimental CD
player is depicted where time domain signals r, u
and e are available from measurement. The signal
r is used for excitation, u and e are the input resp.
output of the actuator, measured in the presence of
a stabilizing controller.
The identification of a parametrie model is con­
cerned with estimation of parameters in a prede­
termined modelstructure. The data underlying the
identification procedure is a frequency domain rep­
resentation of measured time sequences by means
of a discrete Fourier transform in conjunction with
periodic excitation. The data are available as (com­
plex valued) data points {r(é.'j),u(eiwj),e(é"j)}
at a finite number of user specified frequencies
Wj, j = 1, ... , N. The main motivation for trans-
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de Vries, 1994) to construct a data based measure
of the deviation of a model with respect to the sys­
tem. This results in so called uncertainty bounds
that enable construction of a set of transfer func­
tions to which the true system is presumed to be­
long . In case of identification of Îl according to (2)
a bound 6R (w) is estimated which determines a set
of transfer functions

The final controller is found as the product of the
results of both design stages CoC.
The rationale behind this two-stage design strategy
is that in the loop shape step the presence of res­
onances may be disregarded as the desired robust­
ness with respect to resonances is supposed to be
dealt with in the second step. This may consider­
ably facilitate the loop shape design in the sense
that performance and robustness considerations are
accounted for in separate design steps.

2Note that the sensitivity is the (2, 2)-element of T(P, C).

4 Control design

T(P, C) := [ ~ ] [I + CP] -l [C I]. (8)

5 Application to a CD servo system

The separate steps of one iteration of model based
performance enhancement as proposed in section 2
have been applied to an experimental CD player
servo mechanism. The servo system, as is schemati­
cally depicted in figure 1, establishes track following
of digital information stored on a rotating optical
disco
Attention is restricted to the radial part of the me­
chanism (Single Input Single Output case) . Con­
troller implementation and data acquisition are car­
ried out utilizing a DSP signal processor (dSPACE
GmbH, 1995) at a sample rate of 25 kHz . Mea­
surements are taken of 40 time sequences of {r, u, e}
each containing 4096 data points where the excita­
tion signal r is chosen as a random phased multisine,
exciting the system at 99 logarithmically spaeed fre­
quencies between 100 Hz and 10 kHz. A 4th order
compensator is present in the loop during measure­
ment.
A nominal parametrie model of order 10 is identified
according to (2) together with an upper bound of
model uncertainty. The frequency response and the
nominal model are shown in the Bode diagram of
figure 4. The nominal model seems to provide a
rather poor description of the data in the low and
high frequency region.
Based on this nominal model a 4th order lead-lag
compensator Co is designed on visual inspeetion of
Bode magnitude diagrams of the nomin al sensitivity
and the predicted sensitivity, constructed from un­
certainty bounds. The compensator is adjusted to a
higher bandwidth until the nominal sensitivity func­
tion will (inevitably) peak up at frequencies beyond
the bandwidth. Figure 5 shows the Bode diagram of
the measured sensitivity and the nominally designed
sensitivity.
Besides visual inspeetion of the nominal sensitivity
also the actually achieved sensitivity is evaluated in
terms of lower and upper magnitude bounds of the
sensitivity, constructed from estimated uncertainty
bounds of the model; this is depicted in figure 6 to­
gether with the nominally designed sensitivity func­
tion. The design of the loop shape function is per-

(7)

where T(P, C) is a 2 x 2 matrix that comprises the
closed loop transfer functions from r to [e ujT in the
block scheme of figure 3, defined as2

In this section a nominal control design procedure
is presented that is proposed by McFarlane and
Glover (1990). The design procedure is solely based
on nominal models but has favourable robustness
properties and consists of two consecutive stages.
The first stage is the determination of a loop shape
transfer function Co such that the nominal sensitiv­
ity function satisfies a minimum prespecified mag­
nitude bound:

to which the true transfer function Ra belongs. The
motivation for employing uncertainty models in this
specific model structure is that they are instrumen­
tal in predicting the closed loop dynamics for a set
of systems in conjunction with any (stabilizing) con­
troller, as is elaborated by Van den Hof et al. (1996).
This is a potentially powerful technique to incorpo­
rate the aspect of variabie system dynamics into the
control design.

The determination of Co is done by visual inspeetion
of the Bode diagram and Nyquist contour of CoP
where the structure of Co is predetermined in terms
of a low order lead-lag compensator. Although loop
shaping is an appealing technique due to the fact
that compensators result from visual inspection, it is
not a very robust technique for high bandwidth de­
sign especially in case resonance modes are present
in the model P. Therefore robustness properties
are improved in the second stage which consists of a
norm based control design, where a controller is de­
termined such that the following criterion function
is minimized
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Fig. 4: Measured frequency response (dash-dot)
and lOth order nominal model (solid) of the
radial CD servo mechanism.

formed such that the nominal sensitivity magnitude
remains within the bounds and the bounds are not
too large.
To verify the validity of this closed loop system set
the sensitivity frequency response measured with
the loop shape compensator is added. The mea­
sured sensitivity is predicted quite well by the up­
per and lower magnitude bounds up to 4 kHz, while
the designed sensitivity function is not captured by
the bounds. This can be attributed to the fact that
the (low order) nominal modellacks system dynam­
ics which seem to be relevant in view of the newly
designed controller.
The second stage of the control design is performed
according to (7). The final controller CoC is restrio­
ted to order 6 due to implementation limitations.
This implies that the norm based design step pro­
duces controllers of order 2. To analyse the merits of
the second control design step, the sensitivity func­
tion is measured with the enhanced controller (order
6). The Bode magnitude diagram in figure 8 shows
the initial sensitivity function and the enhanced sen­
sitivity. The loop shape compensator and the cor­
responding final controller are shown in figure 7.
In figure 9 the radial tracking error measured with
the low bandwidth compensator and the enhanced
compensator is shown. It is evident that increasing
the bandwidth is a valid strategy in order to estab­
lish a reduction of the tracking error.
An important observation is that the loop shape de­
sign is a very crucial stage in the iterative approach.
If th e nominal design provides a relatively large in­
crease of the bandwidth in comparison to the con­
troller present during measurement (as is illustrated
figure 5), then the nominal model may not reliably
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Fig. 5: Sensitivity function: enhanced loop shape
design (solid) and measured with low band­
width compensator in the loop (dash-dot) .
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Fig. 6: Magnitude of sensitivity: nominal (solid),
lower and upper bounds (dash) and rnea­
sured (dot) .

predict the actual sensitivity. This is in fact illus­
trated in figure 6 where the nominally designed sen­
sitivity is not completely captured by the magnitude
bounds; the nominal design appears not to be very
robust. In the line of performing several iterations
(here we have only considered one iteration) it is
important to take small steps in the nomina! loop
shape design towards a higher bandwidth in order
to maintain a robust design. This has yet to be
verified.

6 Conclusions

To comply with increasing higher demands of servo
systems as encountered in consumer electronic pro­
ducts, control design is used to obtain a high band­
width. A cru cial issue in designing a high bandwidth
control system for electro mechanical servo systems
is the presence of (unknown) resonance modes. As
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knowledge of resonance dynamics is indispensable
in view of high bandwidth design, model based con­
trol design is pursued. To that end system iden­
tification is employed to provide low order models
that are suitable for control design purposes. In
literature iterative procedures of identification and
model based control design are proposed to establish
an enhanced closed loop performance. Controllers
are designed according to a two stage design proce­
dure where nomina! and robustness considerations
are separated. The method is applied to a com­
pact disc servo mechanism performing one iteration
where the loop shape design appears to be a crucial
step. From experimental results identification as a
modelling tool and subsequent control design ap­
pear to be fruitful in order to arrive at an enhanced
performance of the servo system.
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Fig . 8: Magnitude of sensitivity: initia! com-
pensator (solid) and enhanced compen­
sator(dash).
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Abstract. In this paper an approach is presented to estimate a linear multivariable model
on the basis of (noisy) frequency domain data via a curve fitting procedure. The mul­
tivariable model is parametrized in either a left or a right polynomial matrix fraction
description and the parameters are computed by using a two-norm minimization of a
multivariable output error. Additionally, input-output or element-wise based multivari­
ab Ie frequency weightings can be specified to tune the curve fitting error in a flexible way.
The procedure is demonstrated on experimental data obtained from a 3 input 3 output
Wafer Stepper system.

Keywords. System identification; frequency response; multivariabIe models; frequency
weighting; least squares.

1 Introduction

Formulating a procedure that is able to estimate
a model on the basis of frequency domain data has
gained considerable attention in the resear~h?n S!S­
tem identification. Although the clear distinction
between time and frequency domain data is gen­
erally overestimated (Ljung, 1993), estimation of
models by fitting complex frequency domain data
has several advantages compared to time domain
approaches. Firstly, representing data in the fre­
quency domain domain can yield substantial data
reduction see Pintelon et al. (1994). Secondly, com-, .
pressing a huge amount of time domain data into a
finite number of frequency points facilitates noise re­
duetion directly. Both aspects are used extensively
in commercially available sophisticated test equip­
ment for speetral analysis.
Based on Least Squares (LS) estimation techniques,

tThis paper is presented at the 35th IEEE Conference on
Decision and Contro!, 11-13 December 1996, Kobe, Japan.
Copyright of this paper remains with IEE~. .

§ The work of Raymond de Cal1afon IS financially sup­
ported by the Dutch Systems and Contro! Theory Network.

~ The work of Dick de Roover is financial1y supported by
Philips' Research Laboratories, Eindhoven, the Netherlands.

31

as used in Levi (1959) and further refined in
Sanathanan and Koerner (1963), multivariable fre­
quency domain curve fitters have been formulated in
the literature. One is referred to Lin and Wu (1982),
Dailey and Lukich (1987) and the more recently in­
troduced procedure in Bayard (1994) . Basically, the
procedures differ in the way the multivariable model
is parametrized and whether or not the procedure
allows for a specification of the model order and a
(multivariable) weighting on the curve fit error. As
such, in Lin and Wu (1982) a multivariable model
is found by the composition of scalar subsystems,
while the order of the subsequent transfer functions
is determined by testing the residuals. A similar ap­
proach can be found in Dailey and Lukich (1987) ,
wherein a Chebyshev polynomial basis is used to im­
prove numerical conditioning of the LS-problem. In
Bayard (1994) the model is parametrized directly
by means of a matrix numerator polynomial and
a scalar common denominator polynomial, whereas
only a scalar frequency dependent weighting on the
curve fit error is allowed.

Several alternatives to aLS-approach can also be
found in the literature. In McKelvey (1995) a sub­
space based algorithm in the frequency domain is



presented that allows the user to specify an addi­
tional frequency weighting. In Hakvoort and Van
den Hof (1994) a frequency domain curve fitter
has been developed in which a maximum ampli­
tude of a (weighted) curve fit error is being con­
sidered. Furthermore, so-called 1ioo -ident ification
procedures, currently applicable to scalar frequency
domain data, can guarantee an upper bound on the
additive error , see e.g. Gu and Khargonekar (1992)
and the references therein. Unfortunately, a max­
imum amplitude criterion can be highly sensitive
to noise, whereas the available 1ioo -identification
procedures might yield high order models for mod­
erately damped processes (Friedman and Khar­
gonekar, 1994).
Based on the LS-approach, this paper presents a
multivariable frequency domain curve fitter in which
the aim is to minimize the two-norm on a (weighted)
curve fit error for a model having a limited McMil­
lan degree. The multivariable model is parametrized
by either a left or right polynomial Matrix Fraction
Description (MFD). By use of Kronecker calculus it
will be shown that both a pre, post or element-wise
multivariable frequency weighting on the curve fit
error can handled relatively easily. Furthermore,
it will be shown that the iteration described by
Sanathanan and Koerner (1963), denoted by SK­
iteration, can be generalized to estimate a poly­
nomial MFD. Due to the subsequent convex opti­
mization steps in the SK-iteration, this approach
supports the estimation of models with many pa­
rameters . Similar to the approach followed by Ba­
yard (1994) and supported by the work of Whitfield
(1987), the resulting estimate can be used as an ini­
tial value for a Gauss-Newton optimization.
Although cumbersome iterations can be avoided by
the use of a realization based algorithm as reported
in McKelvey (1995), the possibility to prespecify
the McMillan degree of the model and to introduce
a flexible element-wise frequency weighting on the
multivariable data is quite helpful from a practi­
cal point of view. The procedure will be illustrated
by fitting a multivariable model on the frequency
response obtained from the positioning mechanism
present in a wafer stepper.

variabie model P of limited complexity, having m
inputs and p outputs, that approximates the data 9
in (1).
To address the limited complexity, the model P( B)
is parametrized by a either a left or right polynomial
MFD that depends on a real valued parameter () of
limited dimension. The specific parametrization of
the polynomial MFD of P( B) is discussed in the next
section. The approximation of the data 9 by the
model P( 0) is addressed by considering the following
additive error.

Ea(wj, 0) := [G(Wj) - P(ç(Wj), B)] for j E 1, ... , N
(2)

The complex variabie ç(-) in (2) is used to denote
the frequency dependency of the model P(B). In
this way, ç(Wj) = iWj to represent a continuous time
model, whereas ç(Wj) = eiWjT (shift operator) or
ç(Wj) = (eiWj - 1)/T (8 operator) to represent a
discrete time model with sampling time T.
To tune the additive error Ea in (2), both an input­
output frequency weighted curve fit error E w with

Ew(wj,B) := Wout(Wj)Ea(Wj,B)Win(Wj) (3)

and an elernent-wise frequency weighted curve fit
error E. with

E.(Wj,O) := S(Wj)' * Ea(wj,O) (4)

will be considered in this paper. In (4) .* is used to
denote the Schur product; an element-by-element
multiplication.
Using the notation E to denote the frequency
weighted curve fit error Ew in (3) and E. in (4),
the deviation of the data 9 is characterized by fol­
lowing the norm function J(B).

N

J(B):= Ltr{E(wj,B)E·(wj,O)} = IIE(B)II~ (5)
i =l

In (5) • is used to denote the complex conjugate
transpose, tr{-} is the trace operator and IIE (O)IIF
denotes the Frobenius norm operating on the matrix
E(B) = [E(Wl,lJ) ... E(WN,B)]. Consequently, the
goal of the procedure described in this paper is to
find a real valued parameter ê of limited complexity
that can be formulated by the following minimiza­
tion.

2 Problem formulation ê := arg min J(B)
oE lR.

(6)

To formulate the multivariable frequency domain
identification problem, consider the following set 9
of noisy complex frequency response data observa­
tions G(Wj), evaluated at N frequency points Wj.

g:= {G(Wj) I G(Wj) E <up x m
, for jE 1, ... ,N}

(1)
The aim of the identification problem discussed in
this paper is to find a linear time invariant muiti-
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3 Parametrization

3.1 Polynomial matrix fraction descriptions

The multivariabie model is represented by either a
left or right polynomial MFD, respectively given by

P(ç,O) = A(ç-l, B)-lB(ç-l, B) (7)

P(ç,B) = B(ç-l,B)A(ç-l,B)-l (8)



where A and B denote parametrized polynomial ma­
trices in the indeterminate { -l.
For a model having minputs and p outputs, the the
polynomial matrix B(ç -t, 0) is parametrized by

d+b-l

B(Cl ,0) = :E Bk C
k

k=d
(9)

the multivariabIe transfer function model P(ç, B) ob­
tained by (7) or (8), then

n = deg det{Ä(ç,Bn

if and only if Ä(ç,B) and f3(ç,O) are left coprime
over lR[ç] in case of (7) and right coprime over lR[ç]
in case of (8).

where Bk E lRP x rn , d denotes the number of leading
zero matrix coefficients and b the number of non­
zero matrix coefficients in B(ç-l, 0). For the left
MFD in (7), A(ç -l, 0) is parametrized by

A(Cl,O) = I pxp + Cl LAk C H l (10)
k=l

where A k E lRP x p and a denotes the number of
non-zero matrix coefficients in the monie polyno­
mial A(ç-l, 0). The parameter 0 is determined by
the corresponding unknown matrix coefficients in
the polynomials. Hence,

and 0 E lRP x(rn b+pa) for the left MFD in (7). Dual
results can be formulated for the right MFD in (8).
Additionally to the full polynomial parametrization
presented here, so-called structural parameters dij,
bij and aij with d := min{dij}, b := max{bij}, and
a := max{aij} can be used to specify a none-full
polynomial parametrization. In this way, the pa­
rameter 0 as given in (11) may contain prespecified
zero entries at specific locations. This may occur
in a discrete time model with ç-l = z-l where the
value of dij has a direct conneetion with the number
of time delays from the jth input to the ith output.

3.2 Model order

Due to the indeterminate ç-l, it can be verified that
the MFD of (7) or (8) gives rise to a (strictly) proper
transfer function matrix P( ç, 0), regardless of the
value of the integers di,j, bi,j or ai,j' Hence, there
are no restrictions on the size of the structural pa­
rameters other than a limitation on the McMillan

, A

degree of the resulting model P(ç,O). For the con-
neetion between the structural parameters and the
McMillan degree of P(ç, 0), the following result can
be given.

Lemma 3.1 Consider a parameter ° sucli that
Aa =I- 0 and Bd+b-l =I- O. Define

'TJ := max{a, d + b - I} (12)

and Ä(ç,B) := ç1/A(ç-l,O), f3(ç,B) := ÇTlB(ç-l, 0).
Let n be used to denote the McMillan degree of
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Proof: The proof is given for (8) . With the condi­
tion Aa =I- 0, Bd+b-l =I- 0, it follows that Ä(ç) :=
ç1/A({-l) and f3({) := {1/B(ç-l) are polynomial
matrices in ç. In case of (8), P({) = f3({)Ä({) -l
and a state space realization [A,B,C,Dj for P(Ç) can
be obtained, such that dim A = deg det{Ä(çn and
{A,B} controllabie, see e.g Chen (1984). Further­
~ore, {C,A} is observable if and only if Ä(Ç) and
B(ç) are right coprime over lR[ç], see theorem 6.1
in Chen (1984). Dually, the result can be shown for
(7). 0

Under ~ome mild condition on the polynomials
A(ç-l,O) and B({-l, 0) being estimated, lemma 3.1
gives a direct relation between the deg det{Ä({, Bn
and the McMillan degree of the resulting esti­
mate P({.! 0). A In case of the left MFD (7) ,
deg det{A(ç,On generally will be equal to 'TJp.
Hence, the structural parameters give rise to (an
upper bound) on the McMillan degree of the model
being estimated. For a more detailed discussion on
the exact relat ion between the McMillan degree, the
row degree of the polynomial matrices A(ç-l,O),
B(ç-l,O) and the observability indices of a model
computed by a left polynomial MFD, one is referred
to Gevers (1986) or Van den Hof (1992).
Compared to a parametrization of the multivari­
able model P(ç,O) using a scalar common denom­
inator polynomial d(ç -l, 0) as presented in Bayard
(1994), the parametrization using a (left) MFD is
more fiexible, as a scalar common denominator re­
stricts A(ç-l, 0) to be Ipxpd(ç-l, 0). A model with
one output that is parametrized by the left MFD of
(7) , constitutes a scalar common denominator poly­
nomial A(ç-l, 0).

4 Computational procedure

4.1 Iterative minimization

In this section, the minimization of (6) will be dis­
cussed by means of an iterative procedure of con­
vex optimization steps similar to the SK-iteration of
Sanathanan and Koerner (1963). The attention will
be restricted to a parametrization of P(ç, 0) based
on the left MFD (7) as dual results can be obtained
for a right MFD. To extend the SK-iteration to the



multivariabie case, first consider the (unweighted)
additive curve fit error of (2).
For a model P(ç, (J) parametrized by left MFD, (2)
can be written as

where Ë(wj, (J) is the equation error defined by

Ë(Wj, (J) := A(ç(wj )-t, (J)G(Wj) - B(ç(wj )-t, (J).
(14)

Substituting the parametrization (7) for the poly­
nomials A, B, the equation error in (14) can be rep­
resented by

This generalizes the SK-iteration to multivariabie
models parametrized by a left polynomial MFD. A
dual approach can be formulated for a right polyno­
mial MFD.
The estimate obtained from the SK-iteration is not
optimal in the sense of (6) in presence of noise
andj'or incorrect model order, but it does provide a
tooI to find an initial estimate for a GN-optimization
(Whitfield, 1987) . Furthermore, the convex opti­
mization to be solved in each step of the multivari­
able SK-iteration supports the estimation of mod­
els with many parameters. The computational pro­
cedure to obtain the parameter ê in case of the
(weighted) curve fit errors of (3) and (4) is presented
in the subsequent sections.

where (J is given in (11) and
4.2 Input-output weighting

The input-output weighted curve fit error of (3) can
be rewritten into

arg min IIË((J)II~ = arg min liG - (JPII~ (17)
(JEIR (JEIR

where Wout (Wj, (J) := Wout(Wj )A(ç(Wj)-1 , (J) -1 and
Ë(Wj,(J) is given in (14) .
Using a similar approach of iterative minimization
steps as used in section 4.1, the parameter (J in
Wout(Wj, (J) in (18) is fixed to an estimate êt- 1 ob­
tained from the previous ste~ t - 1. Consequently,
the weighted equation error Bw defined by

Ëw(Wj,êt_1,(J) := Wout(Wj, (JdË(wj, (J)Win(Wj)
(19)

again indicates that the parameter (J to be estimated
appears linearly in (19).
Although the free parameter (J appears linearly in
(19), writing down a matrix representation for the
weighted equation error s; similar to (17) would
inevitably lead to additional (large) sparse matrices
that need to be stored in order to compute the least
squares solution. The sparse matrices arise from the
frequency dependent output (and input) weighting
that need to be incorporated (Bayard, 1994). Fur­
thermore, the parameter (J might have a structure
containing zero entries at prespecified locations if a
none-fuIl polynomial parametrization is being used.
To avoid the computational and memory storage is­
sues that arise from dealing with (large) sparse ma­
trices and to be ab Ie to take into account the specific
structure that might be present in the parameter (J,
a fairly simpIe and straightforward computational
procedure based on Kronecker calculus is presented
here. For this purpose consider the foIlowing defini­
tion.

(16)
Im xmç(Wj )-(d+b-1)

G(Wj)ç(Wj)-1

with .p(Wj) E <r:(mb+pa) xm.

A matrix Ë( (J) can be formed by stacking Ë( Wj,(J)
column-wise for j E 1, .. . , N and this yields

where G and P 'are found by stacking the real and
imaginary part of respectively G(Wj) and .p(Wj) for
j E 1, . . . , N. Due to the linear appearance of
the parameter (J, (17) corresponds a standard least
squares problem that can be solved by numerical re­
liable tools as e.g a QR-factorization with (partial)
pivoting (Golub and Van Loan, 1989) .
Due to the fact that A(ç-t, (J) in (13) also depends
on the parameter (J, the linear appearance of the
parameter (J in (13) is violated. In order to fa­
cilitate the convexity in minimizing the two-norm
on the equation error in (17), an iterative proce­
dure similar as in Sanathanan and Koerner (1963)
can be used. An estimate êt in step t is com­
puted by replacing A(ç(Wj)-1, (J) in (13) by a fixed

A(ç(Wj)-1, êt-d based on an estimate êt-1obtained
from the previous step t - 1. In this way the Frobe­
nius norm of an output weighted equation error
Ëw(wj,êt- 1,(J) = A(ç(wj)-t,êt_d-1Ë(wj,(J) needs
to be minimized repeatedly according to

Definition 4.1 Consider two matrices X E <r:n, x n a

and Y E <r:m, x m 2 , then the K ronecker vector
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where Xi,j and Xj for iEl, ... , nl and j E 1, ... , n2
are used to denote respectively the (i,j)th entry in
X and the j th column in X.

vec( X) E CD"I "2 x l and the K ronecker product
X ® Y E CD"I mI X " 2

m
2 are respectively defined by

vec(X) := [Xl . .. X"2]T and

The Kronecker product is a weIl known concept
(Bellman, 1970) and by stacking the columns of a
matrix to obtain the corresponding Kronecker vec­
tor as mentioned in definition 4.1, the following re­
sult can be obtained.

4.3 Schur weighting

pa) entries is the smallest dimension of the regres­
sion matrix Pw in order to compute a least squares
parameter ë that has p(mb + pa) unknown entries
(for a a left full polynomial parametrization) on the
basis of N complex frequency domain points of a
p x m multivariable system. In this way memory
storage problems are avoided directly as much as
possible.

As the parameter 0 is converted into a column pa­
rameter ë = vec(O), any prespecified zero entries in ë
can be incorporated in the estimation of the param­
eter relatively easy. This can be done by omitting
the columns in the regression matrix Pw that corre­
spond to the zero entries in ë and thereby reducing
the size of the parameter to be estimated directly.

X®Y:=

Proposition 4.2 Consider (complex) matrices X,
Y and Z with appropriate dimensions, sucli that the
matrix product C 0_ XY Z is weU defined. Then
vec(C) satisfies

vec(C) = [ZT ® X]vec(Y).

Proof: The proof can be found in Bellman (1970).
o

On the basis of proposition 4.2, the Kronecker vec­
tor of the input/output weighted equation error
Éw(wj,êt- l,{}) in (19) can be written as

Consider the Schur or element-wise frequency
weighted curve fit error in (4) and rewrite this into

where the equation error É(Wj,O) was defined in
(14) . Using a similar approach of iterative mini­
mization steps as used in section 4.1, the parameter
o in A(~(wj )-1,0) -1 in (21) is fixed to an estimate

êt - l obtained from the previous step t - 1. Con­
sequently, the weighted equation error É. defined
by

wherein the arguments Wj, êt - l and 0 are left out,
to avoid notational issues. As the Frobenius-norm
satisfies IIXII~ = IIvec(X)II~ for an arbitrary ma­
trix X, the Frobenius-norm on ë; can be character­
ized by a matrix representation formed by stacking
vec(Éw(wj ,êt_l,O)) row-wisefor jE 1, . .. ,N. This
yields the following estimate

(20)

where ë vec(O) E IRP(mb+pa) x l according to
(11). Furthermore, Gw E IR2pmN x 1 and Pw E
IR2pmN xp(mb+pa) are matrices that can be found by

row-wise stacking of the real and imaginary part of
respectively vec(Wout(wj, êt-dG(wj)Wi,,(Wj)) and

T - ~ .
vec([q;(wj)Wi,,(Wj)] ® Wout(Wj,Ot-d) for J E
1, ... ,N.
The regression matrix Pw in (20) does not exhibit
any sparse matrix structure as occurs e.g , in the
method of Bayard (1994). In fact, 2pmN x p(mb +

again indicates that the parameter 0 to be estimated
appears linearly. Finally, it can be verified (leaving
out the arguments Wj, ~(Wj)-l, êt - l and 0) that
vec(É.) can be rewritten into

vec(S. * [A-lG]) - diag(vec(S))[q;T ® A-l]vec(O)
(22)

by using the result of proposition 4.2. Hence,
stacking vec(É,(wj,êt_l,O)) row wise for each j E
1, ... , N will yield a similar expression for the min­
imizing argument ê as given in (20). However, the
matrix Gw in (20) now contains real and imagi­
nary part of vec(S(wj). * [A(~(Wj)-l,êt_dG(wj)]),

whereas Pw in (20) will consist of the real
and imaginary part of diag(vec(S(wj)))[q;(Wj)T ®

A-l(~(Wj)-\êt_l)] for j E 1, ... ,N. Hence, the
same computational procedure can be used to in­
corporate an element-by-element weighted curve fit
error (4) by a slight modification of the matrices in
(20).
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5 Application to experimental data

5.1 Description of the wafer stepper system

The multivariable curve fit procedure discussed in
this paper is illustrated by curve fitting experimen­
tal data obtained from a positioning system of a
wafer stepper.

Fig. 1: Schematic view of a wafer stage; l:wafer
chuck, 2:laser interferometers, 3:linear mo­
tors.

A wafer stepper is a high accuracy positioning ma­
chine, used in chip manufacturing processes and a
schematic view is depicted in figure 1. The wafer
carries approximately 80 chips and is placed on a
moving table, called the wafer chuck, which needs to
be positioned accurately. The position of the wafer
chuck on the horizontal surface of a granite block
is measured by means of three laser interferometry
measurements, whereas three linear motors are used
to position the wafer chuck. In this way, the posi­
tioning system is considered to be a multivariable
system, having three currants to the linear motors
as inputs and three position measurements as out­
puts of the process.

5.2 Experimental results

Periodic random noise signals of 1024 points are
used to excite the system. Using the resulting aver­
aged time series, aspectral estimate is computed, re­
sulting in a finite number of frequency domain data
points that constitutes a suitable starting point for
the subsequent curve fit procedure.
As the resulting model has to be used for discrete
time control design purposes, the aim is to esti­
mate a possibly low order discrete time multivari­
able model, that describes the dynamical behaviour
of the positioning system in the frequency domain
till approximately 400 Hz. For frequencies smaller
than 100 Hz, the positioning system acts like a dou­
ble integrator. To illustrate the usage of weighting
functions in order to shape the curve fit error, an
output weighting is used that emphasizes the fre­
quency range between 200 and 300 Hz and starts to
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roll off at 300 Hz. The order of the resulting multi­
variabie model (without the 3 double integrators) is
chosen to be 12, represented by a fuIlleft polynomial
matrix fraction description having 81 parameters.
The SK-iteration is started up by first estimating
a high order model to compute an initial value for
the modified output weighting Wout in (19). Af­
ter this initialization, the SK-iteration is invoked 8
times. The Bode amplitude plot and phase plot of
the 18th order estimate (including the 3 double in­
tegrators) is depicted respectively in figure 2 and
figure 3. It should be noted that the multivariable
output weighting applied during the estimation pro­
cedure emphasizes the frequency domain area of in­
terest.

6 Conclusions

An approach is presented to estimate a linear mul­
tivariable model on the basis of noisy frequency
domain data using a two-norm minimization of a
weighted curve fit error. The weighting on the curve
fit error can be specified by either an input/output
or an element-by-element frequency dependent mul­
tivariable weighting function. The multivariable
model is parametrized in either a left or right poly­
nomial matrix fraction description wherein struc­
tural parameters allow the specification of both
full polynomial or none-full polynomial descriptions.
The computational procedure is able to estimate
complex models by using an iterative procedure of
solving weighted multivariable least squares prob­
lems and exploits the structure of the least squares
problem, thereby reducing any computation and
memory requirements directly. The curve is demon­
strated on experimental multivariable frequency do­
main data obtained from a Wafer Stepper system
having 3 inputs and 3 outputs.
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Abstract. This paper investigates the problem of obtaining a nominal model and its error
uncertainty bound when a batch of plant models is provided. While the selection of model
set structure is essential and probably depends on the intended model application, in this
paper, it is assumed that a nominal model is perturbed by its error through a Homographic
transformation. A necessary and sufficient condition is obtained for the existence of a
suboptimal nominal mode!. Moreover, an algorithm is proposed to obtain a nominal
model which is suboptimal and has a low complexity. Furthermore, the extraction of
structured nominal model error is also discussed. The efficiency of the proposed algorithms
is confirmed by a simulation example,

Keywords. Error bound, Homographic transformation, nominal model, robust contro!.

1 Introduction

Robustness is one of the major properties required
for control systems. In control engineering, one chal­
lenging task is to design a controller which performs
satisfactorily when the plant works under different
conditions, or which satisfactorily controls different
plants which have similar but different dynamics.
The former is due to the fact that the dynamics of a
plant usually changes with time, environment, etc.
(Kuraoka, et al., 1990; Zhou, 1996), the latter is
usually met in mass production (Steinbuch, 1996).
While it is desirabie to design a controller which
satisfactorily controls just these different plants, the
model set consisting of the models of these plants
only is highly structured, and controller design is
currently not tractable (Packard and Doyle, 1993).
A pragmatic approach to cope with this controller
design problem is to find a model set which con­
tains all of these plant models and can be handled

~ On leave fr om the Seventh Research Division, Beij­
ing University of Aeronautics and Astronautics, Beijing,
P.R.China.

§The work of Tong Zhou is financially supported by the
Dutch Institute of Systems and Control (DISC).
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by the available robust control theories (Abrisham­
chian and Barmish, 1996; Zhou, 1996).
In the last decade, H 00 control theory has been weIl
developed, in which nominal model errors are re­
garded as unstructured, and Riccati equation or lin­
ear matrix inequality based solutions have been es­
tablished (Packard and Doyle, 1993). In this un­
structured uncertainty setting, additive error, mul­
tiplicative error, relative error, Homographic trans­
formation error, coprime factorization error, linear
fractional transformation error, etc., have been ap­
plied (Packard and Doyle, 1993). The investigation
on the suitability of model set structure is essential
in both identification and robust contro!.
In this research, we deal with the problem of model
set determination when a batch of plant models is
provided. Former results are extended to the case
in which plant nominal model is perturbed by its
error through a Homographic transformation. This
model set structure is one of the most general model
set descriptions utilized in robust control theory,
and additive, multiplicative, relative, etc., model set
structures can be regarded as a special form. It is
proved that this problem can be converted into a
model matching problem. Moreover , an algorithm



based on Hankel norm model reduction is proposed
for the determination of a nominal model which is
suboptimal and has a low complexity.
To reduce the conservatism in controller design,
sometimes, structured error uncertainty bound is
preferable (Packard and Doyle, 1993j Ariaans, et
al. , 1996; Zhou and Kimura, 1994). A necessary
condit ion is obtained for the existence of structured
nominal model errors, and an algorithm is proposed
for their extraction.
The proposed algorithms are illustrated by a sim­
ulation example, and their efficiency is confirmed
through a comparison with the intuitively deter­
mined plant nominal models.

2 Problem formulation

When a nominal model is perturbed by unstruc­
tured errors through a Homographic transforma­
tion, the model set determination problem can be
formulated as follows.

Problem. Assume that plant models GI(s), "',
Gn(s), weighting functions WI(S), "', wn(s), trans­
fer function matrices NI(s), DI(s) and a positive
number f are given. Moreover, assume that Gi(s),
i = 1,"" n, NI(s), DI(s) are stable, while Wi(S),
i = 1,"', n, are both stable and invertibly stable,
Find stable transfer function matrices No(s), Do(s),
such that

(1) No(s), Do(s) are right coprirne;

(2) Do(s)Do(s) = Ij

(3) there exists at least one stable À i (s) satisfying
Gi(s) = [N~(s) + NI(s)Ài(s)][Do(s) + DI(s) x
À'(S)]-l i-I·· · n'.. ,-",

(4) J = Il[wI(S)Àf(S) ... wn(s)À~(s))Tl/oo< f

A nominal model No(s)Döl(s) satisfying these four
conditions is called suboptimal, and it achieves the
optimal one with the diminution of f'
Several remarks on the control engineering signifi­
cance of the above problem are now in order.
Remark 1. When NI(s) - Gi(s)DI(s), i = 1,''',n
is invertibly stable, it will become clear in the subse­
quent discussion that there exists a minimum phase
transfer function w(s), such that all the plant mod­
els G i (s ), i = 1, . .. , n, are included in transfer func­
tion matrix set 9 defined as

9 = {G(s) IG(s) = [No(s) + w(s)NI(s)À(s)] x

[Do(s) + w(s)DI(s)À(S))-I, IIÀ(s)lloo ~ I} (1)

Remark 2. When NI(s) = I, DI(s) = 0, the above
transfer function matrix set 9 can be expressed as

9 = {G(s) I G(s) = [No(s) + w(s)À(s)]DÖI(s),

IIÀ(s)l/oo ~ I} (2)
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That is, in this case, the nominal model is perturbed
by an additive error.
Remark 3. When NI(s) = 0, DI(s) = I, transfer
function matrix 9 has an expression

9 = {G(s) I G(s) = No(s)[1 + w(s)DÖI(s)À(S)] -1

x DÖI(s ), IIÀ(s)lloo ~ I} (3)

which means that the nominal model has a relative
error.
Remark 4. It is a direct result of the small gain
theorem that the transfer function matrix set 9 is
robustly stabilized by a controller C( s) Hf

I/w(s)D ö
l(s){DI(s) + C(s)[1 + No(s)Döl(s)C(s)] -1

x [NI(s) - No(s)Döl(s)DI(s))}lloo < 1 (4)

Based on this condition, a controller can be designed
on the basis of 'Hoo control theory (for robust stabil­
ity and nominal performance) or structured singular
value control theory (for robust stability and robust
performance) .
Remark 5. An essential problem in this model set
determination problem is the selection of transfer
function matrices NI(s) and DI(s). It is NI(s) and
Dl (s) that determine the structure of the model set.
It will become clear in the following discus sion that
to make the resulted model set compatible with the
available robust control theories, it is desirable that
NI(S) , DI(s), (NI(s) - Gi(s)DI(s)) -I, i = 1,'" ,n,
are stable, However, the determination of NI (s) and
Dl (s), needs further investigation.
It is worthwhile to mention that from the viewpoint
of controller design, it is more suitable to minimize
the cost function maxillwi(S)Ài(S)l/oo in the above
model set determination problem. The minimiza­
tion of this cost function, however, is currently not
tractable.

3 Main results

To solve the model set determination problem, some
properties of the cost function Jare investigated
first.

Theorem 3.1 Assume that NI(s)-Gi(s)DI(s) has
no purely imaginary zeros. Then, there ezists a sta­
ble and invertibly stable X i( s), such that (NI (s) ­
Gi(s)DI(s))(NI(s) - Gi(s)Dl(S))~ = Xi(S)Xi~(s).

Moreover,

J = IITI(s) - T2(s)No(s)Dö
l(s)l/oo

in which Tl (s) and T2 (s) respectively represent



Proof: The existence of X; (s) is a direct result of
spectra! factorization theory (Francis, 1987). From

Gi(s) = [No(s)+Nl(S)~i(S)][Do(s)+Dl(S)~i(S)rl

(5)
we have

[NI(s) - Gi(s)DI(s)]Lli(s) = Gi(s)Do(s) - No(s)
(6)

On the other hand, from the definition of Xi(s), the
next relation can be established.

~i(S)~i(S)= [Xi-1(S)(N1(s) - Gi(s)Dl(S))~i(S)r

x [Xi-1(S)(N1(s) - Gi(s)Dl(S))~i(S)] (7)

Hence

n

l: Wi(S)Wi(S)~i'(S)~i(S)
i=I

n

l:Wi'(S)Wi(S)[Xi-1(s)(N1(s) - Gi(s)D1(s)) X

i=l

Lli(S)]~[Xi-I(S)(NI(S)- Gi(s)DI(S))~i(S)]

[

Wl(S)Xll(S)[Gl~S)Do(S) - No(s)] ] ~ X

wn(s)X;I(s)[Gn(s)Do(s) - No(s)]

[

Wl(S)Xll(S)[Gl~S)Do(S) - No(s)] ] (8)

wn(s)X;l(s)[Gn(s)Do(s) - No(s)]

Therefore,

J = [ Wl(S)Xll(S)[Gl~S)Do(S) - No(s)] ]

wn(s)X;l(s)[Gn(s)Do(s) - No(s)] 00
IIT1(s)Do(s) - T2(s)No(s)1100
IITI(s) - T2(s)No(s)Diï1(s)1I00 (9)

This completes the proof. 0

For brevity, define Go(s) = No(s)Diï1(s). Then

On the other hand, let T20 (s) be the square stabie
transfer function matrix which satisfies

and define transfer function matrix T2I(s) as

Then, it is obvious that
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Moreover , there exists a transfer function matrix
T2.L(s), which belongs to 1100 and satisfies (Fran­
cis, 1987)

[T2I(s) T2.L(s)] ~[T2I(s) T2.L(s)] =

[T2I(s) Tu (s)][T2I(s) T2.L(s)]~ = I (14)

Hence

J = II[T2I(s) T2.L(s)l ~ {TI(s) - [T2I(s)

Ta(s)] [T2~(S)] Go(s) }1100

11

T2o(s)[T2ï/(s~T2I(s)Tl(s) - Go(s)] I1 (15)
Ta(s)T1(s) 00

According to Equation (15) and the results in Fran­
cis (1987), the foUowing theorem is established,
which is the main result of this paper.

Theorem 3.2 The cost function J is smaller than
" if and only if

IIT2i (s)T1(s)1100 <,
IIT2o(s)[T2o\s)T2I(s)Tl(s) - Go(s)]R-1(s)1 100 < 1

Here, the transfer function matrix R(s) is both stabie
and invertibly stabie and saiisfies

R~(s)R(s) =,21 - TI~(s)Tu(s)T2J..(s)TI(S)

4 Model set determination algorithm

From Theorem 3.2, it is obvious that Go(s) =
T20

I(s )T2I (s )T1(s) is one of the suboptimal plant
nomina! modeIs. From the viewpoint of control engi­
neering, however, a simple nominal model is prefer­
able. Hence, it is more suitable to select Go(s)
through frequency weighted L OO norm model reduc­
tion of T201(s)T2I(S)Tl(s) . On the other hand, it is
weUknown that model reduction based on the cri te­
rion offrequency weighted Loo norm is currently not
tractable, while Hankel norm model reduction has
been well developed (Glover, et al., 1992). Based on
these arguments, a pragmatic algorithm is proposed
for model set determination.

(1) Compute the Loo norm ofT2J..(s)TI(s). If it is
smaller than " go to the next step; otherwise,
, is not achievable and it must be increased.

(2) Fix the Smith-McMillan degree of Go(s) to be
k. Perform frequency weighted Hankel norm
model reduction IIT2o(s)[T2öI(s)T2I(s)Tl(s) ­
Go(s)]R-1(s)IIH, and obtain a stabie trans­
fer function matrix, say, ëo(s), with Smith­
McMillan degree k (To reduce nomina! model
error bound, convex optimization can be ap­
plied to the determination of the numerator co­
efficient matrices of ë o(s)).



(3) Compute the L'" norm of T20(s)[T2ol(s)T2I(s)
Tl(s) - Go(s))R-l(s). If it is smaller than 1,
let Go(s) = Go(s); Otherwise, let k + 1 -+ k,
repeat step (2) .

(4) Let No(s) = Go(s), Do(s) = I.

(5) Define .D.i(S) [Nl(s) - Gi(s)Dl(s))-l x
[Gi(s)Do(s) - No(s)) , i = 1, " ', n . Find a min­
imum phase transfer function w(s), sueh that
Iw(j w)J2: maxl ~i~n U(.D.i(jW)), w E [0, +00).

In the above model set determination algorithm,
it is also possible to permit Go(s) to be unstable.
In this case, transfer function matrices No(s) and
Do(s) will be obtained as follows.
Assurne that C(sI - A)-lB + D is the minimal re­
alization of transfer function matrix Go(s). Then

No(s) = D + (C - DK)(sI - A + BK)-lB (16)

Do(s) =I-K(sI-A+BK)-lB (17)

are one of the right coprime factorization of Go(s),
provided that K is a stabilizing matrix (Nett, et al.,
1984). Let P be a positive definite matrix which
satisfies the following Lyapunov equation

(18)

Moreover , define K = B TP -l. Then, A - BK is
stabie and Do(s)Do(s) = I.
When Equation (18) has no positive definite solu­
tions, assurne that matrix A has no purely imag­
inary eigenvalues and K is one of its stabiliz­
ing matrices. Then, No(s) = No(s)M -l(s) and
Do(s) = Do(s)M-l(s) are the desirabie transfer
function matrices, in which M(s), M-l(s) E 1i00

and M~(s)M(s) = Do(s)Do(s).

5 Structured error extraction

In the previous sections, we discussed the problem
of determining a nominal model and its error bound
from a batch of plant modeis. A model set has been
obtained which includes all the plant models. In this
transfer function matrix set, nominal model error is
regarded as unstructured. Sometimes, however, it
is preferabie to represent nominal model error as
structured one, in order to reduce the conservatism
in controller design (Packard and Doyle, 1993; Ari­
aans, et al ., 1996; Zhou and Kimura, 1994). Ideally,
it is desirabie to simultaneously obtain the bounds
of structured and unstructured nomin al model er­
rors from the provided plant models. Unfortunately,
this problem is not tractable at the moment. To im­
prove the performance of control systems, a two step
approach is suggested. Firstly, a nominal model is
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obtained, regarding its error as unstructured. Sec­
ondly, the structured information of the nominal
model error is extracted.
Another reason for structured error extraction is as
following.
Generally, the nominal models that respectively
minimize cost functions maxillwi(s).D.i(s) lloo and
I1[Wl (s ).D.f( s) ... wn ( s).D.~ (s)jT 1100 are different.
While the former criterion is more natural for con­
troller design, the latter one is easier to cope with.
In our model set determination problem, the latter
criterion is applied for its mathematical tractabil­
ity. In consequence, structured error is generally
introduced into the obtained model set due to the
selection criterion. To make the unstructured error
bound of the model set as small as possible, one ap­
proach is to suitably adjust the weighting functions
Wl(s), " ', Wn (s), another approach is to extract
the structured error from the nominal model errors.
While the former heavily depends on the provided
plant models, the latter is investigated in this sec­
tion.
To simplify discussion, we assume, without loss of
generality, that the m x p nominal model errors
.D.i(S), i = 1,''',n, satisfy m 2: p. If m < p , the
problem can be solved by just transposing .D.i(S) ,
i=l,·",n.
At first, we have the following results.

Theorem 5.1 Let .D.(s) = [.D. f( s ) ... .D.~(s)jT.

Assume that Wo = argmaxw u(w(jw).D.(jw)) . More­
over, assume that

w(jwo ).D.(jwo)

- [ * *) [diag{O'"ilf=l} ] [- Ul· .. U VI
nm °

in which, 0'"1 2: ... 2: 0'"P 2: 0, and [ui ... U~m],
[VI •.• vp ) are unitary matrices. Then, there ezists
a .D.o(s) E 1i00 and Ói E R , i = 1" .. ,n, sucli that

n

i= l

Ilw(s)[Lif(s) . .. Li~(s))T lloo < Ilw(s ).D.(s)lloo

only i! vector UI can be expressed as

[Ol klOl ... km-lOl 02 k l02 ... k m - l02

03 km-IOn), Oi E R

A proof of this theorem is given in the appendix.
Based on the conclusions of Theorem 5.1, the fol­
lowing algorithm is proposed for structured error
extraction.

(1) Verify whether the conditions of Theorem 5.1
are satisfied. If the answer is negative, stop the
computation; Otherwise, go to the next step.



-

Fig. 1: Frequency response of plant model and
weighting function 's magnitude. -: GI (S);
... : G2(s); -: wa(s); ... : wr(s) and wf(s).
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(2) Define 6i , i = 1, "', n and ~o(s) as

(4) Find a minimum phase transfer function w(s)
satisfying Iw(jw)1 2: maxI :::;i:::;n Ü(~i(jW)
6?~0(jw)) for all wE [0, +00).

(5) Define Ao(s) = (maxl :::;i:::;n 16?!) ~o(s).

(3) Perform convex optimization to find a 6i , i =
1, ... ,n, such that Ilw(S )[~i( s) - 6i~0 (s )]1100 is
minimized. Assume the desirabie B, is 6?

From the above algorithm, it is obvious that all the
nominal model errors, ~i(S), i = 1,· .. ,n, are con­
tained in transfer function matrix set ~ defined as

D. = { ~(s) I~(s) = [In> In>l [ófn> A(s)] x

[ A~~s)] , 6 E 'R, 161 ::; 1, IIA (s )lloo s 1 } (19)

These conclusions can he extended to the case in
which the parametrie perturbation 6 is permitted
to be complex.
While it is possihle to extract the structured error
in A(s) by the proposed algorithm, it is worthwhile
to note that with the increment of the number of
parametrie error blocks, robust controller design will
become difficult (Packard and Doyle, 1993).

6 A simulation example

In this section, a simulation example is provided to
illustrate the proposed model set determination al­
gorithm and structured error extraction algorithm.
With a little abuse of terminology, in this section,
the error bound of a nominal model is referred to
maxiü(~i(jW)) for a specific frequency w.
Assume that we have two poorly damped plants
which are well met in mechanical engineering and
their models are

nl(s) s2+2 xO.l x6s+62

GI(s) = dl(s) = S2 + 2 x 0.1 x 20 + 202

G (s) = n2(s) = S2 + 2 x 0.1 x lOs + 10
2

2 d2(s) s2+2 xO.l x40+402

Moreover, assume that the frequency weighting
functions in the model set determination have been
provided. They may be determined from the re­
quirements on the performance of the closed loop
control systems.
The frequency responses of GI(s) and G2(s) are
shown in Fig.La.

Intuitively, the following methods can he considered
in the determination of a nominal model. One of
them is to select a nominal model such that its fre­
quency response is equal to the center of the fre­
quency responses of the provided plant models at
every frequency. Another method is to select a nom­
inal model such that its coefficients are the same as
the centers of the corresponding coefficients of the
provided plant models. Denote these plant nominal
models by GOI(s) and G02(s). Obviously,

1 nl(s) + n2(s)
GOI(s) = 2[GI(s)+G2(s)] , G02(s) = dl(s) + d

2(s)

When Nl(S) = 1, DI(s) = 0, WI(S) = W2(8) =
W (s) = .' +7.2.+608 according to the algorithm ofa .'+1.4.+48 '
Section 4, the next four plant nominal models are
obtained, which have Smith-McMillan degree as 1,
2, 3, 4, respectively.

( )
__ 6.8950 X 10-3S + 3.2437 x 10- 2

Gal 8 - S + 0.39203

( )
_ 1.4718s2 + 1.1748s + 69.6732

Ga2 S - 82 + 19.65s + 530.96

(
) 2.103183 + 5.373182 + 112.20s + 188.12

Ga3 8 = 83 + 34.733s2 + 631.74s + 5151.2

()
84 + 7.683 + 1076.8s2 + 1704s + 48800

Ga4 8 = 84 + 12s3 + 2032s2 + 96008 + 640000

The frequency responses of these nominal models
and their error bounds are shown in Fig.2.
When N1(s) = 0, DI(s) = 1, WI(S) = W2(S) =
W (8) = .'+128.5.+64 the next four plant nominal

r .'+12.8.+64 '
models are obtained.

( )
__ 3.5232 X 10-2S + 5.2712 x 10- 1

Grl 8 - S + 8.0683

( )
_ 0.522682+ 2.9554s + 59.94

Gr2 8 - s2 + 16.9858 + 1187.7

(
s ) _ 0.555s3 + 24.5s2 + 193s + 2482

Gr3 - S3 + 64.2s2 + 19658 + 53048

0.88s4 + 16s3 + 17382 + 1480s + 4669
Gr4(8) = 84 + 36s3 + 154582 + 20923s + 67190

43



..........
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(b) error bound

Fig. 2: Frequency response of nomina! model and
its error bound...: Ga 1 (s); ...: Ga 2 (s)j
-. : Ga 3 (s)j - -: Ga4(s ).

The frequency responses of these nominal models
and their error bounds are shown in Fig.3.
When N (s) = 0.80t64 D (s) = 40 t1200 . 02 t340 t64

1 ot100' 1 ot1000 o't4.80 t64'

and W (s) = w (s) = W (s) = .2t128.50t64 the
1 2 f .' t12.8. t64 '

following four plant nominal models are obtained.

G (s) = 4.1157 X 1O- 3s + 8.4463 x 10-3

f1 S + 0.12292

G (s) = 1.1704s 2 + 6.2641s + 110 .1
f2 S2 + 51.056s + 1606 .7

G (s) = 0.25s 3 + 4.1s 2 + 28.6s + 118
f3 S3 + 12s2 + 1192s + 1634

G s _ 0.93s 4 + 35s 3 + 738s 2 + 3790s + 22964
f4( ) - S4 + 165s 3 + 2922s 2 + 160910s + 297930

The frequency responses of these nominal models
and their error bounds are shown in FigA.
For comparison, the error bounds of the intuitively
determined nomina! models , G0 1 (s) and G02 (s), are
also shown in Fig.2, Fig.3 and FigA. They are rep­
resented by solid lines.
The magnitude frequency responses of the weight­
ing functions wa(s), wr(s) and wf(s) are shown in
Fig.Lb.
From the simulation results, it is clear that with
the increment of the nomina! model complexity, the
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(a) nominal model

ie"

(b) error bound

Fig. 3: Frequency response of nomina! model and
its error bound. ..: G r 1 (s)j .. .: Gr 2 (s)j
-.: Gr3(s); - -: Gr4(s).

bound of the nominal model error in the interested
frequency range is reduced. Hence, the complexity
of a nominal model can be determined from the re­
quirements on the performance of the closed loop
system.

When nominal models are represented in additive
form, the error bounds of all the nominal models ob­
tained by the proposed algorithm are smaller than
that of G02 (s), in the interested frequency range.
When the Smith-McMillan degree of the plant nom­
ina! model is increased to 4, its error bound equals
that of G01 (s) at every frequency. It is obvious that,
in this case, G01 (s) is the optimal nominal model, in
the sense that at every frequency, the error bound of
a nominal model can not be reduced less than that
of G0 1 (s).
When nominal models are represented in relative
form or Homographic transformation form, the sim­
ulation results show that in the interested frequency
range, almost all the nominal models obtained by
our approach have a smaller error bound than that
of G01 (s) or G02 (s).
It is worthy to point out that although in the inter­
ested frequency range, the Homographic transfor­
mation error bound of a nominal model is smaller
than the relative one , while the relative error bound
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Fig. 5: Frequency response of nominal model error
and unstructured error bound. -. : ~l(S) ;

... : ~2(S)j -: structured error; - -: before
extraction; -: after extraction.

(b) error bound(a) nominal model error

7 Concluding remarks

In this paper, we discussed the problem of model
set determination when a batch of plant models is
provided. Previous results have been extended to
the case in which a plant model is described by a
Homographic transformation. It has been proved
that this model set determination problem can be
reduced to a frequency weighted LCO norm model
reduction problem. An algorithm is proposed to ob­
tain a suboptimal nominal model which has a low
Smith-McMillan degree, as weIl as its error bound.
In addition, a necessary condition is obtained for
the existence of structured nominal model errors ,
and an algorithm is suggested for their extraction.
Simulation results show that the error bound of the
nominal model determined by the proposed algo­
rithm is generally smaller than that of the intuitively
determined one, and the bound of the unstructured
nominal model error can be significantly reduced by
structured error extraction.
Recently, the proposed model set determination al­
gorithm has been successfully applied to the simul­
taneous spiral control of two compact disc players.
The results will be reported in some other places.
However , some important issues concerned with this
model set determination problem, still remain un­
solved. One of them is about the selection of N l (s)
and Dl (s). Another one is to extend the established
results to the case in which a nominal model is per­
turbed by its error through a linear fractional trans­
formation.

Appendix A proof of Theorem 5.1

For brevity, let J = Ilw(s)[.&.[(s) ... .&.~(s)]TIlCO'

Since 8î + ... + 8;' = 1, we have

\JT\J = L; (A.l)

in which, \J = [8lIm 82Im 8nlm jT . As a
consequence, there exists a nm x (n - l)m matrix,

'fZgti ' .':=.. ' .... It ' Ie' M' .. -

EI• .... . .

.:~ --.

.,...
, .. ' 11' 11' It ' 11'
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(a) nominal model

(b) error bound

Fig. 4: Frequency response of nominal model and
its error bound. ..: Gf1(s)j ...: Gf2(s);
-.: G f 3 (s); - -: G f 4 (s).

is smaller than the additive one, it does not imply
that Homographic transformation error representa­
tion will result ·in the best controller design. This
is because different model set descriptions lead to
different conditions for robust stability and robust
performance.

Next, the proposed structured error extraction algo­
rithm is applied to all the obtained nominal models,
using the same weighting functions as those in nom­
inal model determination. The result is that there
does not exist a structured nominal model error.
However, when the weight of the nomin al model er­
ror at low frequencies is reduced, a structured error
appears for nominal model Gf1(s).

In Fig.5.a, the frequency responses of the nominal
model errors and the extracted structured error are
presented, while in Fig.5.b, the frequency responses
of the unstructured error bounds are given. In the
structured error extraction, the weighting function

is selected as w(s) = (.~:pWf(S).

From Fig.5, it is obvious that the unstructured er­
ror bound is significantly reduced at the middle and
high frequencies by structured error extraction.
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such that Then, it is clear that

[V' T]T[V' T] = [V' T][V' Tf = I n m (A.2)

On the other hand, Ai(s) = ~i(S) -Ói~O(S). There­
fore

UI = [Ol klol ... km-lOl 02 kl02 ...

km- l 0 2 03 .. . km-IOn] (A.14)

Multiplying vector UI with I~ : ~fi: 1and define

From Equation (A.2), it is obvious that

Hence, J is smaller than a positive number, say, "
if and only if (Francis, 1987)

o

(A.15)

(A.16)

i=I,"',n
{3l - hl •

O:i = !{3l + i,ll O:i ,

Th '0' 1 d f - {31 - hl hen, O:i E "-, t = ,"', n an UI - 1131 +hl IUI as
the required form. Moreover , it is obvious that

and matrix [ûi u; ... u~m] is unitary.
This completes the proof.
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(A.ll)

(A.12)

(A.13)

Oi = ({3l +hdbi , i = 1, , n

k· = {3i+l + hi+l i = 1 m - 1
t {3l + j,l' "

W(jWO)W·(jWO)TT~(jwo)~ *(jwo)T < ,2 I(n-l)m

(A.6)
From the definition of matrix T, it is obvious that
TTT = I(n-l)m' Hence

Now, assume that there exist Ói E 'R, i = 1,"', n,
and a ~o(s) E 1i00 , such that ~i(S) = bi~o(s) +
-. 2 c2_ dj
~i(S), t = 1,"',n; bI + ... +un -1, an <, <
I lw(s)~(s) l loo' Then, Ilw(s)TT ~(s)lloo < " which
implies that

J II[V' T]Tw(s)[~(s) - V'~o(s)]lIoo

11 [ w(s)[~~~i;~(sto(s)] ] 1100 (A.3)

TT {ï2 i.; -[w(jwo)~(jwo)][w(jwo)~(jwo)]*}T> 0
(A.7)

Define matrix U as U = [ui . .. u~mf. Then,

Since "t < Ilw(s)~(s)lloo = CTl, to guarantee that
Inequality (A.7) is satisfied, it is necessary that

uIT = 0, or TTuf = 0 (A.9)

TTV' = 0, rank(T) = (n - l)m, rank(V') = m
(A.I0)

Hence, there exist real numbers {3i and ,i, i =
1, .. " n, such that

and there is at least one i, 1 ::; i ::; n, such that
{3i + r« =f=. O. Without loss of generality, assume
that {3l + hl =f=. O. Define

Ilw(s)TT ~(s)lloo <, (AA)

Ilw(s)[V'T ~(s) - ~O(S)]b2 lp -

(w(s)TT ~(s))~(w(s)TT~(s))]-t 1100 < 1 (A.5)

TT {ï2I n m - [w(jwo)~(jwo)][w(jwo)~(jwo)]*}T =
(UTt [diag{b

2
- aDlf=l} 2 0 ] UT (A.8)
o , I n m - p
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Abstract. The standard configuration for model-based control design is reformulated
into a twin feedback configuration with the model and controller written in separate
feedback loops. Closed-loop balanced reduction is developed in this framework. A scheme
with alternating model reduction, optimal control synthesis and controller reduction steps
is designed to find high-performance lew-order controllers. CD-player tracking controllers
with orders below ten have been found starting from a 120 t h-order model.

Keywords. Linear dynamic systems; optimal control design; order reduction.

1 Introduction

This paper proposes a tractable iterative procedure
to incorporate order reduction of both the model
and controller ix: the control design.
Consider the optimization-based control design
problem of Fig. 1, where a specific norm is mini­
mized with respect to K, the controller that closes
the lower loop around the so-called standard plant
N . This general representation will be denoted
the Standard Controller Synthesis Configuration
(SCSC).

Fig. 1: Lower feedback configuration

The standard plant N comprises the model (G) of
the system to be controlled and weights that are
used to ensure that minimization of the influence of
w on z leads to the desired controlled behaviour.
Often, the order of the model is high and a reduc­
tion is needed before any controller can be calcu­
lated. Here we assume that the original model has
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high accuracy and is the best we can get: the only
problem is its order. The weights that are involved,
however, are to be created and are auxiliary in ar­
riving at a satisfactory closed-loop behaviour. This
strongly suggests that the dynamics of the real sys­
tem that is given by nature and the weights that are
to be tuned in the control design phase, should be
isolated from one and another. Hence, we introduce
the twin feedback configuration (Wortelboer, 1994).
In the twin feedback configuration the intercon­
necting system matrix M exclusively contains the
weights involved in the controller synthesis problem.
We will call it the master weiglit.
The controller synthesis configuration can be
thought of as the twin feedback configuration with
freedom to choose the controller in the lower feed­
back loop. The performance is related to the norm
of the twin feedback configuration: the lower this
closed-loop system norm, the better the perfor­
mance.
Robustness can be defined in a similar way as (nom­
inal) performance. In this paper, we will not try to
model realistic variations and to achieve robust per­
formance, but merely achieve nominal performance
and some basic robustness property. This is also
motivated by the fact that the robust performance
problem has no straightforward solution.



1.1 Order reduction

Shortcomings

z ---i I(G, M, K) I-- w

an optimal order reduction problem from the opti­
mal control problem. In 1982 it has already been
explained that LQG-controllers can destabilize the
closed-loop (Balas, 1982). This phenomenon is now
known as 'spill-over'. Reduced-order modelling and
control design are strongly coupled problems (Skel­
ton, 1989; Liu and Skelton, 1993). The reduction re­
sults have to be evaluated in the closed-Ioop configu­
ration. Another problem is that there is no method
to find the optimalorder itself.
Since there are no direct methods for this specific
closed-loop reduction problem, our interest is in in­
direct methods exploiting order reduction that work
fast and provide insight into the order selection is­
sue. It will turn out that projection-based reduc­
tion is very efficient and can be applied step by
step to the model or controller. To be more specific,
a closed-loop balanced reduction method (Ceton et
al., 1993), that basically extends frequency weighted
balanced reduction, is adopted as the main order re­
duetion technique.
We refer to (Wortelboer, 1994aj Anderson and Liu,
1989; Zhou et al. , 1996; de Villemagne and Skelton,
1988) and the references therein for more informa­
tion on existing order reduction methods.
The iteration path and the choice of the reduced
orders are the design freedom on ce the SCSC is
fixed. The iteration has to be performed on a com­
puter with st rong numerical and graphical proper­
ties. We developed a user interface in MATLAB to
support this process. Together with the key routines
for closed-loop balanced reduction this interface is
implemented in the so-called WOR-toolbox (which
refers to Weighted Order Reduction (Wortelboer,
1994b). This tooibox is linked to the JL-toolbox
(Balas et al., 1994), and parts of it are used in the
QFT-toolbox (Borghesani et al., 1994). The graphi­
cal input of additional frequency weighting functions
to further direct the reduction process in a promis­
ing direction is not discussed in this paper. For that
part we refer to (Wortelboer, 1994a, 1994b). In the
H 2 control case, we can conclude the iteration with
a final step to converge to an H 2-norm minimizing
low-order controller. It will be shown that the pro­
posed iteration scheme with model and controller
reduction by closed-loop balanced reduction yields
several candidate reduced order controllers (of very
specific order) that form a good starting point for
H 2-norm optimal fixed-order control. The basics of
this method have been published in (Wortelboer and
Bosgra, 1994; Wortelboer , 1994a).

wz

Reduction based on parameter matching A
reduced order model is sought that has some
key parameters in common with the full-order
model.

Projection of dynamics A state-space realiza­
tion of the full-order model is sought that
can be truncated to the desired reduced-order.
Modal reduction and balanced reduction are
the main methods. Interpolation (de Ville­
magne and Skelton, 1987) is also characterized
by a projection. In (Ryland and Bernstein,
1985) it is shown that for the solution ofthe H 2­

norm minimum distance problem it is necessary
to base the reduction on a projection principle.

Norm minimizing model reduction A reduced
order model is sought that is closest to the
original model measured in some system norm.
Only for the optimal Hankel-norrn, a straight­
forward solution is available (Glover, 1984).
For the more important Hoo-norm and H 2­

norm approximation there is no such solution.

Fig. 2: Twin feedback configuration and its sym­
bolie representation (underlined symbols for
lower feedback loop and over-lined symbols
for upper feedback loop)

The reasons for applying order reduction have al­
ready been given. The methods available for doing
this are reviewed briefly and the order reduction ob­
jectives for our control design purpose are explained.
We classify order reduction methods as follows
(Wortelboer, 1994):

None of these methods can be applied safely for the
purpose of low-order control design. Of course the
norm-minimizing method has much in common with
the optimal control objective, but we cannot isolate

1.2 Organisation

After the introduetion of the notation for basic op­
erations (Section 2), the balanced order reduction in
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the twin feedback configuration is introduced in Sec­
tion 3. Section 4 gives a detailed description of the
application of the reduction procedure to a Compact
Disc Mechanism.

A balancing transformation '1' = Rn (with '1'-'
Ln ) satisfies

L~PnLn = R~QnRn = diag(an )

2 Preliminaries
with

2.1 Truncation and projeetion of realiza­
tions

Continuous-time finite-dimensional time-invariant
linear systems can be written in state-space as

the so-called Hankel Singular Value (HSV) vec­
tor. The HSVs are system invariants (realization­
independent). This transformation is exclusively
based on Pn and Qn:

with 0 E IRtx,. a zero matrix, then the truncation
of realization Gn to order ris: 1

For clarity we will write G« for a realization of n t h
•

order.
Truncation of a system realization underlies both
balanced reduction and modal reduction. Let

By definition, Gn = 'R.[T.•,T](Gn ) is a balanced re­
alization, and

IG,. = 'R.,.(Gn ) = 'R[Lr,ll.j(Gn ) ~ bal'R,.(Gn ) I
defines balanced reduction, with R,. = '1'( :,1:,,), L,. =
['1' - -k ,1:7') satisfying L;k = I,..
For frequency-weighted balanced reduction (Enns,
1984), we start from frequency weighted Grami­
ans and perform the balancing and reduction in the
same way as for plain balanced reduction.

{
X = Ax+Bu
y = Cx+Du

G = (A, B, C, D)

1Matrix subscripts between parentheses are index vectors.

In the same format a state transformation can be
written as

G,. = 'R[r .. rr](Gn ) ~ (r;Ar,., r;B, cr,., D)

= (A(1:7',1:7')' B(1:7',:), C(:,I:,.), D) ~ 'R,.(Gn )

2.3 Performance configurations, optimal
control and sensitivity

We use linear fractional transformations (Zhou et
al., 1996) and refer to Fig. 2 for notation.
First let K = 0, then we can use the upper feedback
loop to define the upper linear fractional transfer­
mation:

N = :F",(M, G) ~ Mzw+MzyG(I-MuyG) -1 MITw '

(2)
Next, we use this N in conjunction with K in the
lower feedback loop to define the lower linear frac­
tional transformation:

The theory of optimal control in the H 2 and H oo

case is rather complete now. We refer to (Zhou et
al., 1996) for all details. The state-space approaches
are coded for instanee in the JL-tools for use with
MATLAB (Balas et al., 1994) . As our approach
to low-order control design we use an order reduc­
tion procedure around standard optimal full-order

F = :F1(N,K) ~ Nzw+NzyK(I -NyyKr1Nyw.
- - (3)

From linear fractional transformation theory (Zhou
et al., 1996) we know that

I(G(s), M(s), K(s)) :F1(:F",(M(s), G(s)), K(s))

= :F",(:FI(M(s), K(s)), G(s)).

(1.a)
(1.b)

o
o

APn + PnA- + BB­
A-Qn + QnA + CoC

a; = 'R[T··,TJ(Gn )

and a projection of dynamics that is governed by
the projection pair [L,.,R,.] obeying L;R,. = I,. can
be written as

2.2 Balancing

The theory of balancing is now well established: see
for instanee (Moore, 1981; Glover, 1984; Zhou et al. ,
1996). The balancing idea hinges explicitly on the
state coordinates. The system dynamics is analysed
in two parts. The controllability part measures the
influence ofinput u on the state coordinates assum­
ing Xo = 0, and the observability part measures the
influence of Xo on the output y assuming u = O.
The controllability Gramian Pn and observability
Gramian Qn can be solved uniquely for stabie sys­
tems from the following Lyapunov equations
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Define Su(G,K) = Su and Sy(G,K) = Sy. Then

We can also write the twin feedback configuration
in a sensitivity form,

control synthesis. We introduce the following (full­
order) control synthesis operations:

for computing the Hz optimal controller, and the
central H 00 optimal controller respectively.
The output sensitivity function matrix and the in­
put sensitivity function matrix are defined as

3.1 Model reduction in closed-Ioop

As mentioned earlier, model reduction is only an
auxiliary step in low-order control design. It is
needed to enable an optimal controller synthesis
step. The big issue is that there is not a clear
measure, like the performance measure, to quantify
the loss of information by model reduction. Mini­
mizing some open-loop error liG - Gr 11 is not ap­
propriate due to the spill-over problem. A bet­
ter approach is to minimize the closed-loop changes
due to model reduction. This, however, requires
a controller. Although we do not have the con­
troller we are looking for yet, we often do have a
preliminary stabilizing controller. Note that most
servo-systems are designed for feedback operation
with fairly simpIe feedback controllers. Our prob­
lem then is not mere closed-Ioop stability, but per­
formance improvement (often with a limitation on
the controller complexity). We state that model re­
duetion for control design should make a trade-off
between the model order and the change in closed­
loop behaviour (both preferably low) . The change
in closed-loop behaviour can be measured by

(7)

(5)

(6)

(4)

Sy(G,Ko) =

(I - GKO)-l =
K o)(1 - GKO)-l

(I - GKr l

(I - xcv»,
Sy

Su

HzJC(I(G, M,_·_))
HooJC(I(G,M,_·))

Sy(G,K)

(I - GKr l

(I - GKr1G(K

I(G,M,K) = [0zu 1z Ozr] M·

.Sw(M,A) [o!ww ] , (8)
Oyw

(9)

with Gh and Gm the high order and moderate order
model respectively. For ease of interpretation, we
introduce a relative error: with

with (10)

3 Order reduction in a closed-Ioop
setting

Our starting point is the twin feedback configuration
with master weight Mand system model G given.
The aim is to find a low-order controller achieving a
sufficient performance level. The approach is based
on full-order optimal control combined with order
reduction techniques .
First, we con sider the objectives of closed-loop or­
der reduction: in Section 3.1 the model reduction
step is analysed, and in Section 3.2 we take a closer
look at the controller reduction step. The algorithm
that is used for both model and controller reduc­
tion, closed-loop balanced reduction, is explained in
Section 3.3. Section 3.4 discusses the rationale for
using the closed-loop balanced reduction algorithm,
and finally Section 3.5 gives a procedure for using
the new order reduction facility in conneetion with
optimal controller synthesis.

we define

Note that it is also possible to strive to reduced­
order controllers that change the closed-Ioop mini­
mally as in the model reduction case, but this may
resuIt in controllers that have worse performance.

(12)ïr = III(G,M,Kr)l1

s I::. / III(Gh,M,K) -I(Gm,M,K)11
m=C

m ïh= III(Gh, M, K)II
(11)

Note that ïm = III( Gm, M, K) 11 itself is not a good
measure, since minimization of ïm yields the 'best­
controllabie' reduced-order system: a solution might
even be a zeroth order model Go = O.

3.2 Controller reduction in closed-Ioop

Controller reduction in closed-loop has the same ob­
jective as the original control design problem. Given
Mand G, find a Kr that minimizes III(G, M, Kr) ll.
The only difference is that we have a high-order con­
troller available. The assessment of the reduction
result is much easier than in the model reduction
case sin ce we can use the performance criterion di­
rectly:

= diag(G,Owz,K)

(I-AMrl
•

A

Sw(M,A)
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Since the closed-loop balancing of G and K are in­
dependent, we can also balance G and K simulta­
neously. In Fig. 3 the block-diagonal structure of
the similarity transformation group that is allowed
in closed-loop transformation is visualized. G and

3.3 Closed-Ioop balanced reduction

First we derive the algorithm and then we state
some of its properties.

3.3.1 The algorithm

To define balanced reduction within the twin feed­
back configuration, we make a realization F =
I(Gh,M,Kn) in which the state vector is built
from the state veetors of Gh (length h), M,
and K n (length n) in that precise order: x; =
[x~ x~ x~]. Balanced reduction of G within F
follows the standard balanced reduction procedure
with the difference that instead of taking the entire
Gramians of F,

M I

only speeifie parts of these Gramians are used. The
seheme for Gh reduction within I(Gh v M , K) hinges
on taking the left upper parts of the Gramians of
the intereonnected system realization and proeeeds
along classical lines from then on: 2

PG = [P(I(Gh, M, K n))1(l:h,l:h)
~ P(I(Gh, M, K n))

QG = [Q(I(Gh,M,Kn))h:h.l:h)
~ Q(I(Gh,M,Kn))

[Lh, Eh] = T(PG,QG)

t; = [Lhk,l:m)

ti; = [Ehk,l:m)

Om = 'R[L~,R~l(Gh) ~ bal'Rm(I(~,M,Kn))

Exploiting the same notation, the procedure for
closed-loop controller reduction is:

• Take the controller state part of the closed-loop
Gramians, PK = P(I(Gh,M,Kn)) and QK =
Q(I(Gh, M, K n)) -

• Extract a balancing transformation, [Ln , En] =
T(PK,QK},

• Truncate the last n - r columns of Ln and En
yielding Lr and Er, and

• apply a projection of K n by means of Lr, Er

This procedure is summarized as follows:

2the reduction procedure is applied to the underlined
system.
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Fig. 3: Diagonal structure of similarity transforma­
tion group

K are closed-loop balanced if they induce diagonal
blocks in the Gramians ofI(G,M,K):

[

~G

P(I(G,M,K)) =

Q(I(G,M,K)) ~ [ EG

with ~G = diag (y'À(PGQG)) the I(G, M, K)-HSVs

and ~K = diag(y'À(PKQK)) theI(G,M,K)-HSVs.
Note that P(I(G,M,K)) i= Q(I(G,M,K)) generi­
cally.

3.3.2 Properties

First we state a trivial property:

bal'Rm(I(Gh ,M,K) - I (Gh, M , K )) =
bal'Rm(I(Gh,M,K))

This means that closed-loop balanced reduction
does not discriminate between the relative and the
absolute case.
It is important to stress that the result of closed-loop
balanced reduction is not necessarily closed-loop
balanced! This also implies that stepwise closed­
loop balanced reduetion may yield a different result
than direct closed-loop balanced reduction.
Next we analyse the minimality properties. If K n

has n - r uneontrollable state eoordinates then
I(G, M, K n ) has at least n - r uncontrollable state



coordinates and 'P(I(G,M,Kn)) has at most rank
T . The same holds for G. Of course the observability
case is completely dual.
In case G, M, and K are all minimal realizations,
there may still be a chance that I(G,M,K) is not
minimal. This situation is often referred to as 'can­
cellation'. It is widely recognized nowadays that by
using a well-defined sese, the danger of cancella­
tions can be minimized. This is important since
closed-loop balanced reduction of G or K will not
automatically remove dynamics associated with the
cancellation.
Finally, if the sese is asymptotically stabie and
minimal, the Gramians of the sese are both pos­
itive definite. Then, a small [I;K ](n) can only oe­
cur if the coupling of the last (n th) closed-loop bal­
anced controller state coordinate with the other co­
ordinates is sufficiently weak. And this means that
truncation of the closed-loop balanced controller to
order n - 1 in the sese gives almost the same re­
sult as truncation of the sese by plain balanced
reduction.

<Py [:;y] (19)

Ouy

<P- [Iu °uz Ou~ ] (20)u

[Oyy]
<P!! = OW!! (21)

I!!

<P~ [ O~u O~z I~] . (22)

Then we can state that

I(G, M,k) ~ I(G, M, K)+Wc5GóGVc5G+Wc5K öK Vc5K
(23)

with

Wc5G <pzMSW<Py
Vc5G = <puMSw<Pw

Wc5K <pzMSw<P!!

Vc5K ep~MSw<Pw

with

I(G,M,k) -I(G,M,K) ~ Wc5AbA Vc5A (24)

Wc5A = epzM(I - AM)-l (25)

Vc5A M(I - AM) -lepW. (26)

In (Schelfhout, 1996) it is shown that the weights
Vc5A and Wc5A are used implicitly in closed-loop bal­
anced reduction, i.e.

(27)bal'R.(I(G,M,K)) = bal'R.(Wc5KKVc5K)

Thus, if we want to minimize the influence of small
model changes on the closed-loop system, we can
try to minimize IIWc5G öG Vc5GII with öG = Gm - Gh .

We can also write the above as

3.4 Underlying weighted reduction prob­
lems

III(Gh,M,K) -I(Gm,M,K)II·

Next we investigate the relation between closed-Ioop
balanced reduction and the objectives we had for
closed-loop reduction of the model and controller.
Also the relation with frequency-weighted reduction
(Enns, 1984) is established, see also (Schelfhout,
1996).
Reeall that for the controller reduction case we are
interested in minimizing III(G, M, Kr )11, while the
model reductiori case requires small

From (8) we know that closed-loop changes are fully
due to changes in

A = diag(G, Owz, K).

For small perturbations öG = G - G and öK
k - K we have

Sw(M,Ä) ~ Sw +SwbAMSw (13)

Sw (I - AMrl (14)

A diag(G, Owz, K) (15)

bA = diag(óG , Owz, óK). (16)

Define

<Pz [ 0zu I z Oz~ ] (17)

<Pw = [%w] (18)

O!!W

This equivalence does not dep end on öG or óK.
Note, however, that the computational scheme for
closed-loop balanced reduction is more efficient and
that unstable G and K can be reduced as long as
the twin feedback configuration is strictly stable.
So far, we have only considered the case that the
changes in G and K are sufficiently small for first­
order approximations. We refer to (Wortelboer et
al., 1997) for the results concerning larger changes.

3.5 A combined order reduction - control
design strategy

Here we describe the main cycle in obtaining high­
performance low-order control starting from a high­
order model (Fig. 4). the model reduction step can
be repeated a number of times to find an appropriate
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Given: K. and Gh s« h

Start: K n = K.

IModel Reduction I

IController Synthesis I

Such a full-order controller might be a better start­
ing point for reduction than the optimal full-order
one, since the reduction does not necessarily imply
a performance degradation. In computer codes for
H oo controller design using the biseetion principle
we can add a search over specific reduced orders and
keep record of the best controller for each order.
It is once again stressed that balanced reduction is
heuristic in the end and requires a thorough ern­

bedding in an evaluation and manipulation environ­
ment.

Fig. 4:

IController Reduction I t

The iteration scheme for low-order control
design starting from a high-order model us­
ing interactive order reduction

4 Application to a Compact Disc
Mechanism

4.1 Tracking control problem

The control task of a Compact Disc mechanism is
to achieve track following, which basically amounts
to pointing the laser spot to the track of pits on
the CD that is rotating. The reader is referred to
(Steinbuch et al., 1994) and the references therein
for details ab out the principles of CD-player contro!.
The mechanism treated here, consists of a swing arm
on which a lens is mounted, see Fig.5.

m together with Grn • The evaluation of the order
reduction effects is by means of III(Gh, M, K n } ­

iio.; M, Kn}ll.
The control design step can be performed by H 2 or
H oo optimal control if m is sufficiently smal!. With
a new K n we can go back to the model reduction
phase and verify if Grn is still appropriate. If this
iteration has converged we can proceed with the con­
troller reduction iteration. After each step the per­
formance is measured by means ofI(Gh,M,Kr } .

For the H 2 case we end with a search for the optimal
fixed-order controller.

For the H oo case, we do not have a satisfactory algo­
rithm to derive an optimal fixed-order H 00 controller
starting from the optimal full-order controller. Yet,
we can find better performing low-order controllers
by closed-loop balanced reduction of each controller
that is generated by a biseetion type H oo control
algorithm. The idea behind this is to relax the per­
formance requirement deliberately, thus hoping to
find a full-order controller that can be reduced more
easily. For the Hoo-case, we can choose a Î that
is somewhat higher than the optimal performance
level that is attained in the full-order case. To be
more specific, we can exploit the fact that in opti­
mal H oo controller synthesis by bisection, a series
of controllers of full order is generated that achieve
progressively lower Hoo-norms until the optimal Î is
reached. One of these intermediate full-order con­
trollers might induce an Hoo-norm that is close to
the optimal Hoo-norm for a controller of order r < n.
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Fig. 5: Schematic view of a rotating arm Compact
Disc mechanism.

The rotation of the arm in the horizontal plane en­
ables reading of the spiral-shaped disc-tracks, and
the suspended lens is used to focus the spot on the
disco Due to the fact that the disc is not perfectly
fiat, and due to irregularities in the spiral of pits
on the disc, a feedback system is needed. The chal­
lenge is to find a low-cost controller that can make
the servo-system faster and Iess sensitive to external
shocks.
Performance improvements are sought via model­
based control design in the frequency domain. The
time domain specifications that underlie the fre­
quency domain specifications are treated in (Stein­
buch et al., 1994). Robustness is an important issue
in practical control design, in fact, design for robust­
ness against specific variations in the CD-system



has already been achieved (Steinbuch et al., 1994).
Here, we concentrate on low-order control design for
a single high-order model.
A detailed model is needed to describe the vibra­
tional behaviour of the electro-mechanical system
over a large frequency range in order to anticipate
the interaction with a controller of possible high­
bandwidth. A Finite Element Model was built, con­
taining 60 vibration modes (n = 120), and has two
inputs (actuation of arm and of focus lens), and
two outputs (tracking error and focus error). The
model is included in the WOR-toolbox (Wortelboer ,
1994b). With respect to the disc, we can dis cern a
radial (R) part and a focus (F) part of the feedback
loop. Ideally, these parts have no interaction, but in
practice there is (some) mutual interference. From
control design view point, the radial loop poses a
much more difficult problem compared to the focus
loop. This is due to the more pronounced mechani­
cal resonances. Therefore, in this paper, we coneen­
trate our investigation on this loop only.

track en I rad <IJ spot

~

type of order reduction. In the sequel, we show the
effectiveness of our closed-loop reduction strategy in
finding a Kr that gives I(G 12 0 , M, Kr) a favorable
disturbance attenuation behaviour.
As an example we will show results for optimal H 2

control. In (Wortelboer et al., 1997) also the results
for H oo control are shown. The performance objec­
tive is defined in terms of a four-block transfer func­
tion matrix, being the transfer from disturbances on
setpoint (track) and plant input (shocks and vibra­
tion), with weights W r and Wd respectively, to (ra­
dial) error and controller output (current) as signals
to be controlled, with weights W. and W t respec­
tively.
In the sequel we will use the twin-feedback configu­
ration:

F =I(G,M,K)

with the master weight

Note that M can also be written in a matrix product
form with each weight only occurring once.

Fig. 6: Configuration of the radial controlloop
4.2 Iterative model and controller reduc­

tion

K 3 (s ) = - 7.6746 . 104 •

(s + 3.1447 · 10 2 )(s + 8.6207.102 )

s( s + 6.6225 . 103 )( s + 6.2832 . 104 )

Applying closed-loop balanced reduction we can ob­
tain a lew-order model, for which an H 2 optimal
controller can be calculated, which in turn can be
reduced in closed-loop, With this low-order con­
troller the procedure is restarted. As a final step

where W. can be thought of as shaping the perfor­
mance and W t the robustness. Both W r and W d are
chosen equal to 1.
The stabilizing controller K 3 is a PID controller
with first-order lew-pass at high frequencies:

31417

s + 62.832

78.467s2 + 4.7330 . 106s + 1.9826 . 1011

S2 + 1.2566· 106s + 3.9478 . 1011

W.(s)

The procedure for achieving high performance low­
order controllers can be summarized as follows: we
start with the 120t h-order model G120 , a master
weight M, including the weights W.,t,r,d and a sta­
bilizing (PID) feedback K 3 • Fig. 7 shows the mag­
nitudes of the frequency responses of the weights

In Fig. 6 a bleek-diagram of the radial control loop
is shown. The difference between the track position
and the spot position is detected by the optical sys­
tem; it generates a radial error (eR) signal via a gain
Gapt. A controller Kts; feeds the system with the
current I rad. This in turn generates a torque result­
ing in an angular acceleration. The transfer function
from the current I rad to the angular displacement
<IJ of the arm is cal1ed Gact(s). A (nonlinear) gain
Garm relates the angular displacement with the spot
movement in the radial direction. Only the control­
error signal en is available for measurement.
In Fig. 13 the (1,1) element, i.e, the radial transfer
function, of the (magnitude) frequency response of
a Finite Element based 120t h-order model is plot­
ted. At low frequencies the actuator transfer func­
tion from current input I rad to position error output
en is a critically stabie system with a phase lag of
1800 (rigid body mode) . At higher frequencies the
plot shows parasitic dynamics.
Given the model G = GaptGarmGact, the con­
trol design involves the definition of a configuration
I(G, M, K), the choice for a suitable norm, the ere­
ation of relevant frequency weights in M, and finally,
the synthesis of K. The design of a laui-order con­
troller via model-based control design requires some
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the low-order controller is used as starting value in
a non-linear optimization routine to achieve better
performance and possibly obtain the global mini­
mum. In Fig. 8 the procedure for the H 2-synthesis
case is shown.
In the following sectien we will describe all the sub­
sequent steps as mentioned in Fig. 8.

Fig. 7: Magnitude of frequency responses of perfor­
mance and robustness weights

Step 1. Model Reduction:
G20 = bal'R.20(I(G120' Ma, Ka)) (aa)
The criterion in the model reduction step is the rela­
tive change of the closed-loop transfer function ma­
trix measured in H 2-norm:

1. bal'R.2o(I(G12o,Ma,Ka)) aa

2. H2JC2a(I( G20, Ma, _._)) b

3. bal'R.u(I(G20, Ma, K 2a)) cc

4. bal'R.14(I(G20, Ma, K u)) dd

5. H 2JC17 (I (G14 , Ma,_·_)) e

6. bal'R.g(I(G12, Ma, K 17 ) ) ff

Fig. 9 shows this relative error t5(r) as a function of
the order r of the model.
A good approximation is possible with r = 20. Of
course, it is worthwhile to investigate even lower
order approximations. However, in this stage we
should be very carefull about deleting any dynam­
ics in the model which is not excited by the simpIe
controller Ka, but which might become important in
the final stage. So here we will choose a model with
a relatively high-order, and in a second iteration we
will try to further reduce the model, using H 2 opti­
mal controllers in the calculation of the closed-loop
error transfer function.

The new model G20 enables the calculation of an
H 2 optimal controller.

Fig. 8: Reduction scheme for the H 2 case

10- 2 ......-----~----~----~----,

Step 2. Controller Calculation:
K 2a =H 2JC 23 (I (G20, M a, _ '_ )) (b)

10 20 30
Model order r

Fig. 9: H 2-norm of the relative error for model re­
duetion for G12 0
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Step 3. Controller Reduction:
K n = bal'R.n(I(G20 , M3,K23 )) (cc)
In the controller reduc tio n step the cri terion for
choosing an appropria te r is the H 2-norm of the
closed-loop standard plant F = I(G20,M 3 ,K r ) :

'j'(r) = II I(G20, M3, K r) 1I2

In Fig. 10 the H 2-norm of the closed-loop system is
shown, as a function of controller order.

10° r---~----~---~------'-'

111111.
10-8 '--__~ ~ ~ ----..J

Fig. 11: H 2-norm of the relative error for model re­
duetion of G20

1020 - - - - -- -- -
1000 - - - - -- - - - -- - - - -- -

- - - - -
980 - -- - - - -

E - - - - -
0 - -- - - -
c 960 - - - - -
C\J - - - -
I - - - -

940 - - -- - -- - - -- -- -
- - - - -

920 - - - -
- - - - --
- - - - -

900
5 10 15 20

Controller order r

5 10 15
Model order r

20

Fig. 10: H 2-norm of the closed-loop system for re­
due tion of K 23

The figure clearly shows that the reduced-order con­
trollers for r ~ 11 are almost as good as the original
K 23. The ninth-ord er controller would be appropri­
ate and we could stop here, To see how the iteration
proceeds we take the eleventh-order to do a further
model reduction step.

Step 6. Controller Reduction:
Kg = bal'R.g(I(G 14 ,M3,K17 ) ) (ff)
The H 2-norm of the closed-loop standard plant F
is:

In Fig. 12 the H 2-norm of the closed-loop system is
shown, as a function of controller order.

Step 4. Model Reduetion:
G14 = bal'R.14(I(G20,M3,Kn)) (dd)
Again in this model reduction step we use as cri te­
rion the H 2-norm of the relative error , but now with
the 20t h -order model as starting point (and not G120
because of the computational burden involved), and
th e controller K n from the previous step:

I: III(G20, M 3 , K n ) - I (Gr , M 3 , K n )112 1
u(r ) = «

III(G20, M3, K n) 1I2

Figure 11 shows this relative error 8(r) as a function
of the order r of the model.
A very small approximation error is made with a
14t h-order model. Using G14 we can again calculate
an H 2 optimal controller. Note that G14 is unsta­
bIe and that (a) G14 could also have been selected
directly based on Fig. 9.

5 10 15
Controller order r

Fig. 12: H 2-norm of the closed-loop system for re­
duetion of K 17

From the figure the choice for r = 9 is evident. No­
tice that a similar norm would have been obtained
if in step 3 (cc) a ninth-order controller would have
been taken. Hence, steps 5 and 6 could have been
skipped in this case. Since the final reduced-order
controller will be further optimized using fixed-order
H 2 optimization it is only relevant to have a rea­
sonable starting value for the controller parameters.

- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - - •- - - - - - -- - - -

1100

900

950

1050

E

g1000
C\J
I

(e)
Step 5. Controller Calculation:
K 17 = H2lC17(I(G14,M3 , _ ·_ ) )
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Fig. 13: Magnitude of the frequency responses of
the models

23 . 913.76 913 .76
17 913.77 913.77
11 914 .27 914.17
9 946.61 916.63
7 1032.86 no conv .
5 1022.61 920 .56
4 1023.43 979.24

o closed-Ioop balanced IH 2-optimized I

controllers
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Fig. 14: Magnitude of the frequency responses of
the H 2 controllers
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Figure 14 shows the magnitude of the frequency re­
sponses of the controllers.

Nevertheless, t he eleventh-order controller from step
3 still was relevant for the model reduction in step 4,
leading to a low-ord er approximation of the plant ,
enabling a fas ter calculation for the final optimiza­
tion. Besides, the fact that two different roads lead
to approximately the same result is a st rong indica­
tion for the robustness of the proposed scheme.

Frequency Responses
In Fig. 13 the magnitude of the frequency responses
of the model and model-errors are shown.

4.3 Fixed-order H 2 optimization

Using the reduced-order controllers as initial val­
ues , we are now ab Ie to start the fixed-order H 2­

optimization. The results are summarized in Tables
1 and 2 below .
Table 1 shows the results obtained using the
reduced-order model (G20 ) , indicating that further
optimization improves results significantly for T <
10. This also holds for the (computational much
more involved) case with the full120 t h-order model.
It should be noted that the convergence of the al­
gorithm is fast provided the closed-loop balanced
low-order controllers are close to the minimizing
reduced-order controllers. From Table 1 we see that
for T = 7 the closed-loop balanced result is even
worse than the fourth and fifth-order results and not
surprisingly this case does not converge! It is em­
phasized that these results may be only local min-

Table 1: Performance of reduced-order controllers:
III(G2o, M3 , Kr) 112 .

o closed-loop balanced IH 2-optimized I
17 913.80 913.80
9 946.61 916.65
5 1022.54 920.58

Table 2: Performance of reduced-order controllers:
III(G12o, M 3 , K r )112.
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imizers, still the improvement over closed-Ioop bal­
anced results is general.

5 Conclusions

Using modern optimal control schemes and newly
developed reduction schemes it is now possible to
derive controllers of limited complexity that achieve
almost optimal performance. Prerequisites are the
availability of an accurate model and the possibility
to translate the control objectives into a minimiza­
tion problem.
Straightforward extensions of frequency weighted
balanced reduction are very suitable for application
of order reduction within controlled systems. Com­
bined model and controller reduction in a twin feed­
back configuration is ideally suited for model-based
fixed-order con trol design based on high-order mod­
els since the interconnection structure incorporates
the same weighting functions as the standard control
design configuration. The key algorithm for closed­
loop balanced reduction is almost as fast as stan­
dard balanced reduction. The iterative process for
fixed-order control design starting from high-order
models can be executed in an interactive way using
a new tooibox for use with MATLAB.
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Alternative parametrization in modelling and analysis
of a Stewart platform
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Abstract . The fully parallel driven construction of a Stewart platform is often used as
a flight simulator motion system. Higher standards in motion realism imply the use of
advanced model based contro1. This paper considers the modelling and analysis of a
Stewart platform. In general, models of parallel robots result in combined algebraic and
differential equations, which causes difficulties with simulation, analysis and model based
contro1. In this paper it is shown that by making the right choices in parametrization
within a modern modelling method, these difflcnlties are circumvented. As a result an
explicit differential model, in which the different model parameters are clearly separated, is
obtained. This provides a suitable starting point for simulation, analysis, model reduction
and model based contro1.

Keywords. modelling, nonlinear systems, multibody, mechanical systems.

1 Introduction

The use of robot manipulators is widely spread in
industry nowadays. Most of these manipulators
are constructed as a series conneetion of joints and
links . The dual form of these robots, the parallel
manipulator, is less often seen to be applied. In
(fiight)simulation motion systems however, the par­
allel construction is almost invariably in use. The
Stewart platform (see Fig. 1), introduced by Stew­
art (1965) is a 6 degrees-of-freedom (d.o.f.) parallel
manipulator which is applied in most of the current
high fidelity flight simulators. These systems are the
subject of this paper.

There are several advantages in applying a parallel
construction. This kind of manipulators have higher
rigidity and accuracy due to the parallel force path
and averaged link to end-effector error. The inverse
kinematics (from link to end-effector coordinates)
which is a problem in path generation of serial ma­
nipulators is easily solved in parallel robots. There
are also disadvantages. The dual forward kinemat­
ics is a complex algebraic problem and has in general
more than one solution (Rahaven, 1991). Modelling
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the dynamics is also less straight forward .
For several reasons, feedback control of these mo­
tion systems is still decentralized i.e. per actua­
tor without taking mechanical coupling into ac­
count. Setting higher standards of motion realism
in simulation will involve modern control strategies
in order to fully benefit from recent constructional
and computational improvements in flight simula­
tors e.g, light weight, low center-of-gravity (c.o.g.)
platforms, high frequency airplane dynamics simula­
tion (Advani, 1993). This research has been done in
direct interaction with this development within the
Simona institute. Also use of a Stewart platform as
a more general robot (Nguyen and Pooran, 1989)
will require high performance control of motion.
By incorporating more structural system informa­
tion i.e. a model into the controller, it is possible
to achieve higher performance. Most modern con­
trol strategies are therefore model based in some
way (directly, in design or evaluation). In this case
the quality of motion depends on the fidelity of the
model. Deriving a model of the mechanics of the
Stewart platform manipulator for analysis, design
and control will be the subject of this paper. To



Fig . 1: A schematic view of the Stewart platform

2 Notation

X x Y denotes vector wise product of the columns
stacked in the matrices.
The index xn is used for the normalizing operation
xn = xl I x I with 1x 1= JxTx . PZ n denotes the
projector to the (hyper)plane with normal vector Xn

and can be constructed from the vector product ma-
. _ - -T _ - 4 _ - - T _ - 2trix PZ n - (I -XnXn) - (Xn) - XnXn - - (X n) .

(1)

modelled. The actuators are considered ideal force
generators in the direction of the sliding joints. In
practice the dynamics of the actuators e.g. hydraulic
servo systems, has also to be taken into account in
control design.
This paper is organized as follows. After stating
some notation in Section 2 the fundamental formu­
las of mechanics to describe the kinematics and dy­
namics will be introduced in Section 3. Then in Sec­
tion 4 the Stewart platform will be defined in order
to derive a model of its kinematics and dynamics.
After some model analysis in Section 5 with the con­
trol objective in mind, finally some conclusions will
be given in Section 6.

Capital symbols, X are used for matrices, x for vee­
tors, x for scalars. With some scalar (energy) func­
tions X is used. x x y denotes the vector prod­
uct which can also be written as Xy = Cy)Tx
where X is a skew symmetrie (X = _ X T) matrix
parametrized by the vector, xT = [Xl X2 X3]'

such that the result is the vector product.

arrive at a model with structure from which insight
can be gained, modelling laws will be done based on
physicallaws.
Modelling the dynamics of a Stewart platform as a
multibody system has been done in Lee and Geng
(1993) who claim to be the first to present a com­
plete model and with more simplifications in Do and
Yang (1988) and Liu et al. (1991). Modelling the
mechanics of this platform can be done in several
ways and with various objectives in mind. The equa­
tions of motion can be derived by using the classi­
cal approach of Lagrange (Lee and Geng, 1993) or
Newton-Euler (Do and Yang, 1988).
In general , deriving the equations of motion of a
parallel manipulator results in combined differential
and algebraic (constraint ) equations (see e.g. Rober­
son and Schwertassek (1988)). In simulation and
control this formulation can cause difficulties (index
problems etc., Brenan et al. (1989)). In this paper
it is shown that an explicit differential model for
the Stewart platform results if one makes the right
choices in parametrization. Dependent variables are
explicit functions of the integrable differential equa­
tions. In this way index problems, etc. are circum­
vented.
By using a modern method like Kane's (Kane and
Levinson, 1985), which have the advantages of both
the Newton-Euler and Lagrange formulation but
without the corresponding disadvantages (Huston,
1990) , it will be shown that applying this approach
can result in a model from which more insight can
be gained.
Together with the alternative parametrization, this
is advantageousover the models earlier presented in
literature, if one wants to apply a model for both
analysis, simulation and control. Model based feed­
back, however , is still more complex for parallel ma­
nipulators, since the dynamics are only described in
end-effector coordinates and the measured signals
are link related. Next to the fairly low performance
requirements of flight simulator motion systems in
the past, this will probably be the reason that in
most of these motion systems, feedback controllers
are decentralized (one siso loop per link i.e. actua­
tor).
In this paper some of the disadvantages of decentral­
ized control can be shown by analysis of the derived
model. To apply a simple, but accurate model based
controller in practise, one would like to quantify the
errors made by undermodelling, to be able to do ro­
bust analysis of the control scheme. The modelling
approach taken in this paper aims at a model from
which the influences of different system parameters,
like masses, inertias, velocity, gravity can be clearly
separated.
In this paper only the mechanics of the system is
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The position of a point pA in frame A can now be
described in frame B by:

To describe the velocity of this point in the other
frame one can simply differentiate this equation.
Some properties of the time derivative of the ro­
tation matrix can be derived by differentiating (2) .
This results in skew symmetrie matrices which can
be parametrized by the vector product matrix of the
(thereby defined) angular velocity w.

Projection matrices have some nice properties like
p = pT = P",
Motion can be described w.r.t. various frames. A
matrix or vector described in some frame can have a
superscript referring to this frame. For the inertial
frame or ground coordinates the index x9 will be
used. As a function of the moving end-effector or
platform, veetors will be denoted xrn

• If a (rotation)
matrix maps a vector into another frame it will be
denoted as BRA if R maps from A to B.
The subscript index like äi will be used to refer to
the ith-actuator if also non actuator dependent vari­
ables appear in the equation.

(3)

(4)

(5)

3 Fundamental mechanics

The aim of this section is to show how to derive
a limited number of differential, and possibly also
some algebraic, equations, which describe the mo­
tion of a rigid multi body mechanical system. Most
theory described in this section can be found in
Kane and Levinson (1985) as in many ot her text­
books on mechanics.
All mechanics treated here are based on the assump­
tion of a semi-equilibrium given by Newton's second
law f - mp = 0 in an inertial frame for any mass
particle. To describe the acceleration, p, of all parts
in a system as a function of a limited number of
variables some kinematics have to be introduced.
After defining the kinematics of a mechanical sys­
tem, its dynamics can be specified. In the equations
of motion the semi-equilibria are described in a com­
pact form as a function of generalized veloeities or
coordinates. The integrals over the mass-particles
of a body result in inertia matrices and the active
forces are projected along the veloeities by a virtual
work argument.

3.1 Kinematics

The motion of a point (mass particle, joint, etc.)
is usually most conveniently and invariant1y defined
w.r.t . the body frame to whom it's connected. The
motion of a frame put in another frame generally
consists of translation tand rotation R. The ori­
entation of a frame can be described by a rotation
matrix. A rotation matrix consists of perpendicular
unit veetors which describe the basis of the frame
into the other frame. As a result a rotation matrix,
R has the following property:

(2)

Any 3 x 3-matrix with this property and det(R) = 1
is a rotation matrix. With det(R) = -1 also the
mirror operation is included (transformation of right
hand frames to left hand frames and vice versa).
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with

fiA = [~3 -;3 :~l]
-W2 Wl 0

Now with a vector which is rigidly attached to the
·A -frame A, p = 0, hence

were the change of frame for the matrix fi, is given
by fiB = BRA fiA ARB and ARB = (BRA f.
If some variations or veloeities can be described as a
product of a (position-dependent) matrix and vec­
tor of other variations this matrix will be called a
Jacobian matrix. In this case

with 8 denoting the variation.
Although the rotation matrix consists of nine en­
tries, its properties put constraints on these en­
tries. Different parametrizations such as euler an­
gles (three subsequent planar rotations) or euler
parameters (four parameters with one normalizing
constraint to describe one axis of rotation and the
angle of rotation) are possible.
The three euler angles have the disadvantage of a
highly non-linear appearance in both the rotation
matrix and the euler angle velocity to angular ve­
locity transformation. The latter can even become
'singular. The constraint equation with the euler pa­
rameters also imposes extra limitations. The choice
of parametrization can however often be postponed
till after the derivation of the equations of motion.
By differentiating (6) the acceleration of the point

rigidly attached to the frame (1/ = Ö) can be cal­
culated:

pB t + BRA(pA)TQA + BRA(fiA)2pA

t + (pB)TQB + (fi B)2pB (8)



6W = P6Xl = P J"l'''26x2 = (J;' ..,J)T6x2 (16)

The kinetic energy can in general be described by

The driving moments/forces, I, are all the working
forces (non inertial or conservative) projected along
the variations of the generalized coordinates. These
are called the generalized forces.
By observing that the work 6W, done by forces I,
does not change if a change of coordinates x, is ap­
plied, it is easy to show that projecting the forces
along other coordinates is equal to multiplying by
the transpose jacobian.

3.2 Dynamics

The equations of motion can be stated in several
ways. First the Lagrange equations will be given.
Then it will be shown that from these equations the
more simple Newton-Euler equations follow if one
rigid body is considered. Finally the method based
on Kane and Levinson (1985) will be introduced.
With Lagrange the difference between the kinetic
energy, IC, and potential energy, P, of a system is
called the Lagrangian, C: C = IC - P . For an un­
constrained system described by generalized coordi­
nates x the Lagrange equations are given by:

(15)

(17)IC 1 ~TM(-)~= -x x x
2

d (ac) ac ­
dt ai - ax = I

If the point considered is already moving in the
frame A (pA ,vA = pA ,äA = pA) by differentiation of

the coriolis acceleration appears as the third term
in

Tl = ä:.+BRAä:+2BRAnApA = ä:.+ä:+2nBpB
(10)

Wh ere p. is a point connected to A momentarily at
the same position as p. lts acceleration äp • , is given
by (8).
In stating the equations of motion, the state which
describes the orientation, usually only appears in
the rotation matrix. lt is possible to parametrize
the rotation by the unit vector pointing along the
axis of rotation ft p , and the angle JL of rotation.
Parametrization by the four euler parameters l =

[fO lf3] T, given by fO = cos(1/2 JL) and l13 =
sin(1/2 JL)ft p results in very convenient (simple to
calculate) relations of the rotation matrix and the
angular velocity in whieh the euler parameters and
its derivatives play an intermediate role. These re­
lations are extensively dealt with in Nikravesh et al.
(1985) without further derivation they will be given
here,

The rotation matrix can be calculated by taking a
product of two matriees which are linear in l:

R(l) = G(l)L(l)T (11)

With

G(l) = [-ll3 foI + Ë13 ] (12)

and

L(l) = [-l13 EoI + (Ë13 )T ] (13)

Where the mass matrix, M(x), is a symmetrie pos­
itive semi definite matrix. lt can be shown that the
partial derivative of the potential energy like grav­
ity, with respect to the velocity is zero. In that case

.. d ( () . . T (a (»). a (M(x)x+ dt M x x-x aXi M x x+ axP x) = r

(18)

l can be described as a product of wand a matrix
which is a linear function ë.

compactly written as

M(x)f + G(x, i)i + Q(x) = r (19)

From the two blocks two independent equations re­
sult. The impulse law:

with a mass matrix M, a non linear corio­
Iis/centripetal matrix G and a gravity vector Q. If
a rigid body (with mass m, and inertia Ic) is con­
sidered at its center of gravity ë, the Newton-Euler
equations result. The mass matrix is block diagonal
in this case.

(14)

With angles -1r < 1/2JL < 1r, ll3 can be used as
the (orientation) state from whieh EO = VI - lf3l13

is solved. These relations are used to get from the
angular velocity to the rotation matrix with help of
an integration routine and initial conditions on l13 '

The kinematic relations provide means to state the
mot ion of the system as a function of a limited
number of (generalized) variables (coordinates or
velocities). Together with the dynamies l.e, semi­
equilibria of active and inertial forces stated in the
next section the equations of motion result.

1[. ][mI 0] [~ ]ICbod y = 2" ë w 0 i, o

- d d ( » ..'EI = dt(m dt ë = mIë

(20)

(21)
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And the impulse moment law with the generalized
forces lë (moments in this case):

The Newton-Euler equations are easily stated for
each rigid body in a system. Extra equations with
unknown internal forces result , however, in using
this method to state the equations of motion for a
multi body system. Applying Lagrange, results in
taking partial derivatives of complex energy func­
tions if the whole system is considered. These are
disadvantages which can be circumvented by using
Kane's method.
With Kane also generalized variations or veloeities
have to be specified. The general formula

Fig. 2: Stewart platform actuator link construction

(23)i-» =ö

should be added. With a non-holonomic system
these constraint equations cannot he integrated to
constraint position equations.
A parallel manipulator, like the Stewart platform,
is a holonomic system. Since there are kinematic
chains, it is often easier to state the equations of
mot ion of a parallel manipulator by using constraint
equations. In that case the manipulator is descrihed

states the (semi- )~quilibrium of the active forces, I,
and inertial forces, 1-, projected along the direc­
tions of the generalized velocities. To calculate the
over-all inertial forces, as in the Newton-Euler ap­
proach, the specific inertial forces generated in the
frame of each body can be stated. As in the La­
grangian approach, a minimal number of equations
results by writing the motion of the bodies as a func­
tion of the generalized veloeities and projecting each
specific force from its local coordinates to the gener­
alized ones. Also the active forces can first be stated
in an appropriate frame after which projection fol­
lows, The projection in general consists of a change
of coordinates i.e, a multiplication with a jacobian.
This procedure can also be automated (Kane and
Levinson, 1996).
With this method it is possible to start with a
strongly simplified system by calculating part of the
(inertial) forces and separately adding ot her forces if
a more accurate model has to he taken into account.
The amount of generalized veloeities can exceed
the numher of d.o.f. of a system. In that case,
next to the differential equations given hy the semi­
equilibria of the forces (23) constraint equations of
veloeities and position, generally stated as

A(x,t)i + b(x, t) = Ö, (24)

as aserial system (with some of the joints dis­
connected). The parallel connections are incorpo­
rated hy adding constraints. A combined differ­
entialjalgebraic description results. This kind of
description causes difficulties (index problems etc.,
Brenan et al. (1989)) in simulation and model based
control. With these goals in mind during modelling,
it is more convenient to state the model in explicit
differential equations if possihle. In the next section
it is shown that this can he done with the Stewart
platform.

4 Modelling the mechanics of the
Stewart platform

In the previous section the general procedure of stat­
ing the equations of motion was given . In this sec­
tion this will be applied in modelling the Stewart
platform. Kane's method of projecting local semi­
equilibria (equations of motion) will be used to ar­
rive at a compact description. To state the local
equations, both Lagrange and Newton-Euler are ap­
plied wherever either one is most appropriate.

With the choice of platform positionjorientation as
the generalized coordinates, all equilibria can be
written as explicit functions of these coordinates
(and its derivatives).

The parallel manipulator construction of the Stew­
art platform is first defined. To derive the equa­
tions of motion the velocity and accelerations should
he descrihed w.r.t, a limited number of generalized
variations. This defines the kinematics after which
the semi-equilibrium equations of the active and in­
ertial forces can he stated.
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By projecting this velocity, the velocity of the actu­
ator appears.

(26)

(27)

(34)

(32)

Va. = ~ + w X Täi

Z• rr - ZiT z, + ZiT (- T-Tn)i = n iVi = n iC n i W X a.t , t •

- - 1- Tb R T-Vbc = Wa X Tb n = mI" = Jbc,aVa·

The acceleration of the actuators can be ca1culated
by differentiating (28).

and

can be ca1culated from the platform variables ë9 and
the orientation matrix T = 9 RTn which will be the
only rotation matrix used.
The velocity of the length of the actuators can be
ca1culated by projection of the velocity of the upper
gimbal attachment point, Va, in the direction of the

t t . d 111- d !i>rilrrl- - fT;; - lïT - Thac ua or, sm ce di - di V t A t -Iiî - nVa. e
velocity of the upper gimba1 points is given by

With some reordering and written as matrix equa­
tion (e.g, va. stacked in Va) for all the actuators the
jacobian between the actuator and platform veloci­
ties is defined.

I =L~~+ (TATn X Ln)Tw = JI,.,ti = L~Va (28)

_ - Va
Wa = In X m (30)

Now the veloeities of the c.o.g. 's of the actuator bod­
ies vac and Vbc can be stated as a function of Va:

This jacobian matrix is one of the most important
variables in the Stewart platform. The jacobian be­
tween platform and gimbal point velo city is defined
by

va. = [I T(Äi)T] ti = Ja.,.,1i (29)

To determine the inertia1 forces of the actuators the
jacobians from gimbal point to the c.o.g .'s of the
actuators are also important. The angular velocity
of the actuator perpendicular to the actuator W, is
defined by

The derivative of the unit veetors ln i in the direction,
of each actuator can be calculated with:

Vac =Va +wa X (-Taln) = (I - ITi
l
PI" )Va = Jac,aVa ,

(31)

(25)

4.2 Kinernatics

4.1 Definitions

Now the length ofthe actuator, I li 1
2 = l'fli, and the

unit vector in direction of the actuator, ln,i = ~

The Stewart platform (F ig. 1) consists of an end­
effector body with mass , mE , and 3x3 inertia ma­
trix I;' w.r.t. end-effector frame connected to the
c.o.g. of the body which has varying coordinates ë
in the inertial frame. The end-effector body or plat­
form is connected by six parallel actuators at äi to
bi to the inertia1 frame. The length of the six actua­
tors can be varied. In describing a specific actuator
the supscript i for the i t h actuator will be left away.
An actuator (Fig. 4) can be modelled as 2 bodies.
A rotating body, b, with mass mb with a constant
distance of Tb of the c.o.g. bc to the conneetion
of a 2-d .o.f.-rotational gimbal joint to the inertial
frame at b. The moving actuator body, a, with mass
ma with a constant distance of Ta of the c.o.g. ac
is connected with a 3-d.o.f.-rotational gimbal joint
to the platform at ä. With a I-d.o.f. controlled
sliding joint between these two bodies the length of
the actuator can be varied.
The inertia of the actuator bodies is neglected
around the actuator axis, It is assumed to be uni­
form perpendicular to this axis. ia is the inertia of
the moving actuator body at äc and any axis per­
pendicular to the actuator. ib. is the inertia of the
rotating part of the actuator w.r.t. the conneetion
to the inertial frame (b) and any axis perpendicular
to the actuator.
With this assumption a1so the case (often seen in
practise) in which the moving part of the actua­
tor both rotates and slides at the conneetion with
the rotating part, and has only 2-d.oJ. rotation
w.r.t. the platform, results in the same dynamics.
In general [apart from singularities) with the 6­
d.o.f, (one of which is controlled) of each actuator,
the 6-d.o.f. of the platform, freely moving in the in­
ertia1 frame, can be des cribed and vice versa.

The kinematics of the Stewart platform will be de­
scribed by first defining the transformation of the
platform to actuator coordinates. Then by differen­
tiation a1so velocity and acceleration of all relevant
points can be calculated as a function of the plat­
form motion, whose veloeities will be taken as the
generalized speeds.
Almost a11 veetors can be conveniently described
in the inertial frame. Apart from äi whose time
derivative in the moving frame is Ö.
The vector, li, between the two attachment points
of an actuator can be described by
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4.3.2 Influence of the actuator inertial
farces

The inertial forces of the actuators can be split up
in three parts: the gravitational forces, the inertial
mass forces and the influence of its inertia. These
forces will first be projected on the upper gimbal
points. Any force generated at this point is easily
projected at the generalized platform veloeities by

The acceleration of the actuator length consists of
a term which is the projection of the acceleration of
the upper gimbal in the direction of the actuator and
a positive quadratic term which is the centripetal ac­
celeration of the actuator. So the acceleration of the
actuator length is always positive if the platform is
moving with constant speed in any direction. The
acceleration of the upper gimbal can be derived di­
rectly with (8)

äi = c+Q x ai +w x (w x ai) = Ja,:r},-I w 1
2 Pwai

(35)
The acceleration of the c.o.g, of the moving actuator
part also generates inertial forces and can be written
as a function of platform motion.

[ m l O ] [ c] [ 0 ] [ mg ]o t, Q + iu;» Ö

In short

(41)

(43)

So the jacobian needs to be differentiated.

Now

which clearly shows a centripetal and a coriolis term.

The gravitational forces are easily projected along
the platform velocities , the rotating part of the ac­
tuator

-a T _ mbTb _
Ibg = Jbe,am b9 = -1-[-1PI"g (44)

In a position where the gravity vector is directed
along the actuator (Ïn) this force would not con­
tribute. The contribution of the moving part is in
that case maximal at a as is shown by

- T Ta
I:g = Jae ,amag = ma(I - mPI,,)§ (45)

The inertial force generated by the mass at the
c.o.g. of the moving part of the actuator is easily
described in this point.

(39)

Projection of this force at the upper gimbal point
results in

(46)

( (I[ I -Ta? ).:.
maI-~,,+ 111 2 PI"va . .. (47)

(111 - Ta)Ta iT- _
+ 2m a 111 3 (InVa)~" Va +

Ta - -T _
+ ma fTi2lnVa PI" Va

The first term consists of a part in the direction of
the actuator where the mass directly acts on the
gimbal point. Perpendicular to this direction the
influence gets smaller with the squared ratio of dis­
tances to the lower gimbal point. The second and
third term are the coriolis and centripetal force.
The inertial forces generated by the inertias of the
lower and upper part of the actuator can be taken
together since their contribution to the kinetic en­
ergy is equal:

1
JCia,ib = '2W~wa(ia + ib) (48)

l_T (ia + ib) _ l_T a _

'2Va 111 2 PI" Va = '2Va Mia, ibVa

[TArn x Ln] f = IlQ + OIlw (40)

With Ië = T I;'TT. Combining these two results in
the simplified model of the Stewart platform.

4.3 Dynamics

First a simplified model with the platform as the
only (rigid) body, will be derived. Then the influ­
ence of the actuator inertial forces is quantified.

[
i.; ]-

TArn x Ln 1 = .. .

4.3.1 Dynamics of the platform alone

The basic structure of the Stewart platform model
results if one considers the platform alone, not tak­
ing into account the inertial forces of the actuators.
Since the system in this case consists of only one
body, the equations of motion are easily derived
with Newton-Euler taking the velocity of the plat­
form coordinates as the generalized speed. With
(21)

where f are the forces generated by the actuators
and § is the gravity vector. And (22)
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With Lagrange and

the inertial forces at ä result

The contribution to the mass matrix only exists at
motion perpendicular to the direction of the actu­
ator. Next to this, only coriolis and no centripetal
terms appear. The coriolis force is generated as a
result of the inertia points in the opposite direction
as the one generated by the mass. This is due to
the fact that the influence of the inertia decreases
while that of the mass increases as the actuator gets
longer.

4.4 The Stewart platform model

The equation of motion of the Stewart platform in­
cluding the inertia of the actuators can still be put
in form of

Where M t, Ct and 9 are given by

6

Mt = Me+L J';; ,'" (Mm Q,. +MiQ.•+ib,.) Ja.,,,, :f (51)
i=l

- Iw 1
2 (Mm . + Mi . ib . )Pwäi (52)d..' Cl ," ,I

6

9t = ge + L J';;,,,, (9mQ • • + 9mb,i) (53)
i=l

This model is parametrized by the platform coordi­
nates only and the effect of each term (mass, coriolis,
centripetal, gravity, driving forces) and parameter
(mass, inertia, centers of gravity, gimbal point) can
be clearly distinguished.
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5 Model analysis

In this section the model of the Stewart platform will
be further analyzed. Three issues, with the control
objective in mind, are treated. The jacobian matrix,
J/,,,,, given by (28), plays a central role in the sys­
tem, as will be discussed first. Secondly analyzing a
linearized version of the model reveals some of the
drawbacks of decentralized control. Motivating the
use of model based control. In that case one would
like to use a simplified model as given by (41) in­
stead of a complex modellike (50) . Quantification of
the differences between these two models should be
possible to justify this simplification. The influence
of the parasatic actuator forces, which quantify this
difference, will be discussed in the third subsection.

5.1 Interpretation and use of the jacobian
matrix, J/,,,,

If the system has to be controlled by the actuators,
the jacobian specifies how the control inputs, the ac­
tuator forces, influence the platform (accelerations)
which are, especially in flight simulation applica­
tions, often the variables to be controlled. Further
the measurable outputs are often only the actuator
lengths. The derivatives (actuator speed) of these
outputs are given by the product of the jacobian and
the platform speed.
There are two interpretations to the jacobian. In the
force interpretation the rows of J/,,,, give the (gen­
eralized) forces in the platform coordinates given a
unit force in an actuator. In the velocity interpre­
tation the columns of J/,,,, specify the velocity of the
actuators to have unit velocity of the platform.
In model based control, the inverse information is
of interest. The measured variations of the actuator
have to be put in platform variations to calculate
corrections in a model specified in platform coordi­
nates. Each column of the inverse jacobian, J/- 1

,,'"
specifies what velocity (angular velocity included)
of the platform is necessary to have elongation of
just one actuator while the others only rotate.
The correction forces in a model based controller are
also calculated in platform coordinates. Each row of
J/-",l specifies the forces necessary in the actuators to
h~ve unit force correction in platform coordinates.
The inverse jacobian appears in feedback linearizing
structures (like computed torque, etc.) which will
be dealt with in forthcoming contributions.
Another problem of a parallel manipulator with only
the link position measured are the forward kinemat­
ics. It is not known how to analytically calculate the
platform position (without decision making about
roots) from link measurements. The jacobian pro­
vides a way to apply a Newton-Raphson iteration to
calculate the solution provided one starts in a point



sufficiently close to the solution and away from ja­
cobian singularities.

5.2 Analysis of a linearized model

Ir the model of the Stewart platform is linearized at
zero speed in some position with gravity assumed to
be compensated for, the fo11owing equation results
from actuator force to actuator acceleration:

(58)K(A) = Àm a
.,

À m i n

and sway Iro11. Further the compensator should be
able to deal with mass variations given by the singu­
lar values of the mass matrix. With a flight simula­
tor the condition number of the mass matrix, which
is a measure of these variations, is given by

6 Conclusion

5.3 Influence of parasitic actuator forces

Adding the inertial influence of the actuators to the
simplified model did not change the compact form
of six coupled second order differential equations .
The equations, however, became much more com­
plex which is not favourable in model based con­
trol in which the model has to be calculated at high
speed.
In Ji (1994) it is claimed that the actuator inertial
effects can be seen as a change of the platform mass,
inertia and c.o.g, This claim should be carefu11y
interpreted as this change is not only dependent on
the position, but also on the direction of the motion
i.e. not valid at one operating point. In case of the
flight simulator e.g. the mass of the actuators add
more to the mass matrix of simulator in heave than
in the lateral directions of surge and pitch.
With the equations given, it is possible to give
bounds on the forces not taken into account if the
inertial forces of the actuators would be neglected. .
Although with conventional motion systems this is
often justified, the tendency towards light weight
platforms makes the actuator inertial forces more
evidently come into play. Total neglection would
result in a too rough approximation in that case.
Approximation by a constant additive term would
be more convenient.

It is already larger than 10 in the favourable neutral
position. One cannot expect high performance from
such a system.
With model based control, unlike decentralized con­
trol, decoupling of the mass matrix is possible and
as a result of this, each 'reflected' mass, À i , can be
compensated for separately.

(55)

(56)

.-'. -1 T ­
1= Jl,.,M Jl,., !

The condition number of Jl ,., also provides a mea­
sure for the contro11ability of the platform from the
actuators which becomes uncontro11able at singular­
ities of this matrix.
Further most of the constraints of the platform are
caused by the characteristics of the actuators like
limited stroke, maximum speed and force . The ja­
cobian plays an important role in translating these
limitations into platform coordinates.

Consider each actuator provided with a similar com­
pensator, as is often the case in decentralized con­
trol. This compensator feeds back the difference
between the desired and measured actuator length
to the actuator which generates a force. Let the
transfer function from the error length to the ac­
tuator force in the linearized case be given by g(s).
Now some interesting properties of the compensated
system can be derived.
The mass matrix can be decomposed into a singu­
lar value or eigenvalue decomposition (which is the
same for a positive definite symmetrie matrix):

The unimodular matrix, U, can be interpreted as
the interaction matrix. The A-matrix can be seen
as the mass matrix in the decoupled direction. Each
element À i now defines the mass seen in the direction
specified by the ith-column of U .
The properties of a closed loop transfer function
like the sensitivity from reference length to the error
length, El = S(s)fz, are influenced by the system's
mass matrix, J M JT, in the fo11owing way.

(57)
With decentralized control the interaction directions
are specified with the model. In a flight simula­
tor motion system as described in Advani (1993)
e.g. one typica11y finds interaction of surge/pitch

In this paper the dynamics of the Stewart platform
is stated as a set of differential equations without
algebraic constraints resulting from the kinematic
chains in the system. This is possible by writing the
actuator motion explicitly as a function of platform
motion.
By using Kane's method of projecting forces onto
the generalized velocities, each contribution is quan­
tified separately.
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In linearizing the system, it is shown that with a de­
centralized controller the coupling through the joint
mass matrix is not influenced. The singular values
of this mass matrix quantify the mass variations a
decentralized feedback controller has to deal with
(moving in different directions). These variations
appear to be considerable in practise which moti­
vates the use of multivariable, possibly model based,
contro1.
To apply known non-linear model based control
techniques for the Stewart platform, one needs to
deal with the forward kinematical problem of a par­
allel manipulator which appears in the feedback
path. This will be dealt with in forthcoming contri­
butions.
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Abstract. This paper shows how, using modern control theory, a high-performance mo­
tion control system is designed for a flexible mechanical servosystem, which shows im­
proved performance compared to a standard motion control system. The design comprises
multivariable feedback control taking modelled dynamic interaction into account, together
with model-based design of reference and command signals which minimize residual vi­
bration at the end of a movement. As a consequence of repeating the applied reference
and command signais, robustness of the scheme against modelling errors can be improved
by iteratively learning the reference and command signals.

Keywords. flexible mechanical servomechanism, multivariable feedback control, point­
tc-point control, model-based feedforward control, iterative learning contral.

1 Introduction

In order to be competitive, modern mechanical po­
sitioning devices, are required to perform both fast
and accurately. Due to the inherent flexibility of the
mechanical construction of most positioning devices,
these performance requirements are conflicting, i.e,
the faster the system moves, the less accurate it will
be, due to large vibrations induced by fast move­
ments and large acceleration forces.
One possible solution for this flexibility problem, is
to redesign the positioning mechanism, for exam­
ple by enlarging the stiffness of the flexible compo­
nents. However, besides the fact that this solution
may be rather expensive, it is often impossible to
change only some components without altering the
construction of the machine. Therefore, the goal
of the research reported in this paper, is to find a
solution for the flexibility problem by designing a
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high-performance motion control system.

In general, a motion control system of aservo mech­
anism has three degrees of freedom, see Figure 1.
The first degree of freedom is the choice of an out-

Cf) CID- j

r e ++ u y

cb+- c P

Fig. 1: General 3 degree-of-freedom motion contral
system; P, C, i, r, u, y, e, denote the plant,
feedback compensator, force input, output
reference, system input, system output, and
tracking error, respectively.

put reference signal r, i.e. a desired trajectory which
the measured position output y is assumed to fol­
low. The second degree of freedom is the choice of
a feedback compensator C, applied to stabilize the
system at any desired position, to suppress distur­
bance signals acting on the system, and to force the



2 Modelling the experimental setup

Fig. 2: Schematic top-view of an xyfjrstage; the av­
erage value of the measurements Yl and Y2
is taken as position in y-direction, and the
difference between Yl and Y2 is a measure
for rotation tIJ.

with high-performance design of the force and refer­
ence signals f and T, respectively, known as point-to­
point control. In Section 5 a special type of feedback
scheme is presented, known as iterative learning con­
trol, which iteratively updates the force profile in
case the output of the system has to follow the ref­
erenee signal repeatedly. Finally, in Section 6 some
conclusions are drawn.

Figure 2 shows a schematic top-view of a prototype
xyfjrstage experimental setup, used for the experi­
ments shown in this paper. The stage, consisting
of airfoot, translator (translating part of a linear
motor), and mirror block, is driven by a linear mo­
tor in x-direction. The stator part of that motor is
fixed to the translator parts of two other linear mo­
tors, which drive the stage in y-direction j by driv­
ing these two motors independently, also a slight
rotation t/J of the stage is possible. The position of
the stage in the horizontal plane is measured with
three laser interferometers, one in x-direction and
two in y-direction. Therefore, the positioning sys­
tem is multivariable, having three actuators, hence­
forth denoted as inputs, and three sensors, hence­
forth denoted as outputs. Since the dynamics in
rotational direction are of less importance, in this
paper only results in x and y direction are shown.

To gain insight in the dynamic system behaviour,
two different ways of modelling have been followed:
analytic modelling and experimental modelling. An-

o

o

Yl Y2

-, r +-- - ----l
I I

...J L +-- - ----J

x

o

o

system output y to follow the desired trajectory T.

The third degree of freedom is the choice of a force
profile f applied to the system input, i.e. a force
generated by an actuator, most times applied as a
feedforward signal of T, in order to speed up the
tracking of T.

In a recent report, the motion control system of a
flexible xyfjrstage is described, which fits well into
the general configuration of Figure 1, see Bartelings
et al. (1996). In this motion control system, hence­
forth denoted as the standard control system, the
force profile f is chosen as a time-optimal 'bang­
bang' profile, i.e. first the stage is maximally accel­
erated, whereafter it is maximally decelerated, 50 as
to reach the desired end position. In practical situ­
ations, also the derivative of the force profile (actu­
ator jerk) and the derivative of the position output
(stage velo city) are limited by physical constraints.
The output reference signal T is obtained by inte­
grating the force profile f twice, and dividing it by
a constant gain corresponding to the mass of the
stage, according to Newton's law; in this case, the
signal T is fed forward by the signal f. The feedback
compensator in the standard control system is ob­
tained by statically decoupling the actuator inputs
from the position outputs, and thereafter placing
the poles and zeros of each single loop at desired
locations. Conform the notion of standard control
system, the techniques used for design of this system
will be denoted as standard control iechniques.
At present , modern theory on systems and control
offers a large number of (different) techniques for
designing a high-performance motion control sys­
tem, like H oo feedback control, point-to-point con­
trol, two-degree-of-freedom control, and many oth­
ers. These techniques will be denoted as high­
performance control techniques. Most of these tech­
niques concentrate on only one degree-of-freedom.
The goal of the research presented in this paper, is
to find out whether high-performance control tech­
niques can improve the performance of the xyfjr
stage, compared to standard control techniques , and
to find out whether there exists an optimal combi­
nation of the three degrees of control freedom, 50

that a maximum performance of the stage can be
obtained. An important feature of almost any high­
performance control technique, is the use of system
knowledge, for example the use of a linear time­
invariant model of a system. Therefore this aspect
will get much attention.
This paper is organized as follows. In the next sec­
tion the experimental setup, used for the experi­
ments shown in this paper, is described, and system
knowledge is obtained by modelling this setup. In
Section 3, a high-performance multivariable feed­
back controller is presented. Section 4 continues
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Fig. 3: Bode figure of computed frequency response
xylj>-stage (dashed), together with 30 t h or­
der model (solid), from inputs x, y to out­
puts x,y.

For the xylj>-stage, feedback controllers have been
designed both with Hoc and QFT design techniques.
In this paper, only the results of the latter tech­
nique are shown. One of the main objectives of
QFT, is to design simple, low order controllers with
minimum bandwidth, that satisfy a number of per­
formance specifications in the presence of uncertain
system knowiedge, see for example Horowitz (1963),
Borghesani et al. (1995). In a first step, perfor­
mance specifications are translated to so-called QFT
bounds in a Nichols chart. In a second step, semi­
automatic shaping of a systems frequency response
is performed using a graphical user interface, to sat­
isfy the QFT bounds. The outcome is a diagonal
controller of any desired order, specified by the user.

A complete QFT design has been performed for the
xylj>-stage. Figure 4 shows a Bode plot of the re­
sulting controller, and Figure 5 a Bode plot of the

3 Multivariable feedback control

alytic modelling, also called white box or physical
modelling, concerns the modelling of a system on
the basis of first principles, like the laws of Newton,
explicitly taking into account the physical structure
of the system, see for example Kane and Levin­
son (1985), Führer and Schwertassek (1990). In de
Roover and van Marrewijk (1995) an analytic model
was derived for the stage, which describes the most
relevant dynamic behaviour of the stage in the hori­
zontal plane. The use of this model is to understand
the physical system behaviour in a qualitative way,
and not to give an exact quantitative description. A
quantitative description of the dynamic system be­
haviour can be obtained by performing experimental
modelling, also called black box modelling or system
identification. The idea of experimental modelling,
is to excite the system dynamics with some suitable
force profile and/or reference signal, see Figure 1,
and to measure some of the input and output sig­
nals during excitation. Using some realization or op­
timization technique, a model can be derived which
explains the measured data, without a direct phys­
ical interpretation, see for example Ljung (1987),
Söderström and Stoica (1989).
In de Callafon et al. (1996) an experimental model
was derived for the stage, using frequency-domain
identification techniques; a linearly parametrized
tim e-invariant model was fitted to a frequency re­
sponse of the system, computed from sets of time­
domain data. Figure 3 shows the computed fre­
quen cy response, together with a 30 t h order model
fitt ed to this response. In the fit procedure, ex­
t ra weights were applied which emphasized the mid­
frequency range, important for control design. This
figure shows a typical response of a general me­
chanical servomechanism: at low frequencies, the
response has the shape of a double integrator, ac­
cording to the law of Newton, and at middle and
high frequencies some resonances turn up, due to
the flexible components. This model is used for all
control design methods in the remainder of this pa­
per.

In the standard control system, the inputs are de­
coupled from the outputs at low frequencies, by mul­
tiplying the system with a static pre-compensator.
In Figure 3 it is seen that at frequencies above ~1250
rad /s (~200 Hz), the dynamic interaction between
inputs and outputs cannot be neglected anymore.
The surplus value of modern high-performance feed­
back control techniques like Hoc feedback control, j.L­

synthesis, or Quantitative Feedback Theory (QFT),
is the ability to explicitly cope with the dynamic
interaction of a system.
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resulting output sensitivity transfer function S , i.e.
the closed-loop transfer function from r to e in Fig­
ure 1, given by S = (1 + PC) -l. From the lat­
ter figure it is seen that good performance is ob­
tained, in a sense that dynamic interaction has been
sufficiently suppressed, and peaking of S has been
avoided, while the bandwidth of the closed loop is
pushed to a large value. It should be noted that
in the design, dynamic interaction has been taken
explicitly into account by translating it to a QFT
bound. This interaction was not taken into account
in the standard control sys tem.
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Fig. 5: Magnitude Bode figure of output sensitivity
S, from inputs x , y to outputs x ,Yi solid :
model, dashed: frequency response data.
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Fig. 6: Command response bang-bang force profile
for 2.5 mm step in z-direction; (a) force pro­
file, (b) normalized spectrum of force pro­
file, (c) tracking error, (d) close up tracking
error with performance bounds.

To make a comparison between standard and high­
performance control techniques more transparent,
in this and the next section, only results are shown
in one direction of the stage. One of the main top­
ics of the research presented in this paper, is the
design of force (acceleration) profiles and position
reference trajectories , that minimize vibration of the
system at the end of a transient from one chip posi­
tion to another . From optimal control theory, it is
well known that the shortest t ransient time is gen­
erate d by a 'bang-bang' force profile , i.e . a profile
which first maximally accelerates the system, where­
after it maximally decelerates the system, so as to
bring it to rest in the desired end-position, see Fig­
ure 6 (a). However, when applying this signal to
the stage, large vibrations were induced during the
transient , originating from the flexible elements, see
Figure 6 (c). Although the step time, defined as
the duration of the force profil e, see Figure 6 (a),
is the shortest possible, the settling time, defined as

4 Point-tc-point control

4.1 Input shaping
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Fig. 7: Command response limited slope force pro­
file for 2.5 mm step in z-direction; (a) force
profile, (b) normalized spectrum of force
profile, (c) tracking error, (d) close up track­
ing error with performance bounds.

(al

removed, resulting in relatively slow command sig­
nals. Therefore, two ot her methods are investigated
which do require some knowledge of the dynamics
of the flexibilities. One method concerns the design
of a finite impulse response (FIR) filter, to preshape
an existing command signal, see for example Singer
and Seering (1990), Singhose et al. (1995). The idea
is to synthesize an FIR filter which removes the en­
ergy contribution of a command signal at the system
resonant frequencies. The FIR filter has to be con­
voluted with an existing command signal, for exam­
ple a time optimal bang-bang input, and preserves
its vibration reducing properties after convolution.
The knowledge required to use this method, is the
location of the natural frequency of the flexibility
together with its damping ratio, i.e. the location
of the complex poles of a 2n d order system describ­
ing the flexibility. In Bhat and Miu (1990) it was
shown that the FIR filter has the Laplace domain
interpretation of placing zeros at the locations of the
resonant poles .
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the time between the end of the step and the mo­
ment at which the tracking error has settled within a
narrow band surrounding the desired end-position,
is even longer than the step time, see Figure 6 (d).
Hence the resulting cycle time, defined as the sum of
step time and settling time, is rather large. The rea­
son for the excessive settling time is easily explained
from the spectrum of the force profile, shown in Fig­
ure 6 (b). Comparing this figure with Figure 3, it
is seen that the bang-bang force profile contains rel­
atively much energy at the frequency range where
the flexible dynamics are located (;::::: 1500 - 3000
rad /s), and has even noticeable energy content for
frequencies above 3000 radj's.

To reduce the high frequency energy content of the
force profile, the standard control system applies
bang-bang acceleration profiles with limited jerk
(time derivative of acceleration), see Figure 7 (a).
By limiting the slope of the profile, the step time
of the profile increases, but, in general the settling
time decreases, as a result ofreduced energy content
of the profile at the locations of the resonant system
poles, see Figure 7 (b). Therefore, an optimal slope
can be determined as that value at which the cy­
cle time, i.e. the sum of step and settling time, is
the shortest. For a 2.5 mm step, a jerk of 500 m/s3

resulted in a minimal cycle time, see Figures 7 (c)
and (d), Clearly, the speetral content at the system
resonant poles has been sufficiently reduced.

The standard technique for minimizing residual vi­
bration is easy to apply, since no knowledge of the
flexible dynamics is required at all. However, a dis­
advantage of this approach might be the fact that all
of the high frequency content of the input signal is

The other method concerns the synthesis of a series
of 'ramped sinusoids', which approximate a bang­
bang command signal, see for example Meckl and
Seering (1985), Meckl and Kinceler (1994) . The ad­
vantage of using ramped sinusoids, is the fact that
these basis functions have very narrow frequency
spectra, allowing energy removal from the input sig­
nal in a narrow band surrounding the system natural
frequencies. This technique neglects the damping of
the resonant frequencies, hence only minimizing the
energy contribution of the input signal at the natu­
ral frequencies in the Fourier domain; consequently,
the only knowledge of the system required, are the
locations of the natural frequencies of the flexibili­
ties.

Since both methods perform equally well, only the
results of the latter method are shown in Figure 8.
The results are quite appealing. Especially Figure
8 (b) shows that fine control over the spectrum of
the force profile is possible; by removing energy from
the command signal only at those frequencies where
this is necessary, a relatively fast command signal is
preserved. Note that robustness to uncertainty in
the location of the system resonant frequencies, can
be tuned by varying the width and the depth of the
notch(es) in the frequency spectrum.

Table 1 quantitatively summarizes the obtained re­
sults, showing that high-performance command gen­
erating techniques allow for an extra 6% reduction
of cycle time, compared to the standard command
generating techniques.
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5 Iterative learning control

ft. This latter scheme was used for implementation
of the model-based command generating technique.
Since f is fed both to the system and the nomi­
nal model, the feedback controller C operates only
if there is a difference between the system Pand
the nominal model ft, or if there are external dis­
turbances acting on the system. That is the reason
why the resulting closed loop system is called a gen­
eral two-degree-of-freedom nominal tracking system ,
see for example Vidyasagar (1985 ), Hara and Sugie
(1988).

Fig. 9: Two general model based feedforward con­
figurations; ft denotes a nominal model of
the system P .

(a)

~P _ C P
+

(b)

(b)la)

T. t e p [sj 4.26e 2 5.46e 2 5.07e 2

T s ett1e [sj 4.90e- 2 2.73e- 2 2.5ge - 2

Tc y cl e [s] 9.16e- 2 8.1ge- 2 7.66e-2

T. t ep [%] 100 128 119
Tc y cl e [%] 100 89.4 83.6

Fig. 8: Command response ramped sinusoid force
profile for 2.5 mm step in z-direction; (a)
force profile, (b) normalized spectrum of
force profile, (c) tracking error, (d) close up
tracking error with performance bounds.

Table 1: Experimental results of bang-bang com­
mand signal and two vibration reducing
command signals.

4.2 Closed-Ioop implementation

Since the xyif>-stage is marginally stable, the force
profiles had to be implemented in a closed loop, ac­
cording to Figure 1, i.e. besides suitable force pro­
files, also suitable reference trajectories had to be
generated. As mentioned in the introduction, the
reference signal in the standard control system was
obtained by integrating the limited slope force pro­
file twice, hence making f a feedforward signal of
r . For the high-performance command generating
technique, a reference signal could also have been
obtained by integrating f twice, see for example
Meckl and Kinceler (1994). However, we prefer to
choose a more general model based feedforward set­
ting. Figure 9 shows two general model based feed­
forward configurations. In Figure 9 (a), a reference
trajectory r is generated, and fed forward by fil­
tering it with the inverse of a nominal model ft of
the system P. In Figure 9 (b), the force profile f
is generated, and a corresponding reference trajee­
tory is obtained by filtering f with a nominal model

Although high-performance point-to-point control
shows promising results , there is still a noticeable
difference between the reference trajectory and the
system output, according to Figure 8 (c). The main
reason for this, is a discrepancy between the nom­
inal model ft and the system P in the two-degree­
of-freedom nominal tracking structure of Figure 9.
From the theory on systems and control, it is well­
known that robust tracking can be achieved, for ref­
erenee and command signals which are persistent
in nature, i.e. signals which are non-decaying in
time, like steps, ramps, undamped sinusoids, etc , see
for example Davison (1972), Francis and Wonham
(1976). Two devices are found in literature, which
solve this so-called robust tracking problem, namely
the servo compensator, see for example Davison
(1975) , and the disturbance observer, see for exam­
ple Johnson (1976). In de Roover and Bosgra (1996)
the dual nature of both concepts is explained, and
guidelines are given for a proper choice between the
servo compensator and the disturbance observer in
a multivariable system.
The reference and command signals applied to the
xyif>-stage, are also persistent, because they are re­
peated an indefinite number of times. This repetitive
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<alnature of the process allows the application of iter­
at ive learning control techniques, see for example
Moore et al. (1992) , Kavli (1992) . The main idea of
iterative learning control is to iteratively update the
force profile i , so as to decrease the magnitude of
the tracking error e , after each cycle of the reference
signal r. The force profile is updated according to a
gener al linear update law L, as proposed in Moore
et al. (1992) :

with k denoting the iteration index, and Q(z), L( z)
being linear filters, designed such that iT. and ek

converge to fixed values. A sufficient condition for
convergence of (1) is given by:

L: (1)
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j of----------J
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j 500
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IIQ - L(J + PC)-lPllp < 1, (2)

with IIXl lp denoting the gain of X , measured in
some induced p-norm. With update law (1) , the
cont rol system of Figure 9 (b) changes to the one
shown in Figure 10.

Fig. 10: Modified control structure with learning
algorithm L

It can be showrr that the best choice for the filter Q
would be Q = J. However, it is seen from equation
(2) that, if Q = J , L should be equal to (P-l + C)
for guaranteeing convergence, i.e. the inverse of the
syst em P should be exactly known, which is impos­
sible in most practical applications. Therefore, the
filter Q is chosen as a low-pass filter with magnitude
equal to 1 at low frequencies , and cut-off frequency
near that frequency point where the knowledge of
P does not allow the determination of an inverse
anymore. In de Roover (1996), a systematic anal­
ysis is proposed for design of the filters Q and L .
Using the model and the controller shown in Figure
3 and 4, respectively, filters Q and L have been de­
signed for the x-direction of the xylj>-stage, shown
in Figure 11. With these filters , a learning itera­
tion was performed for all experiments shown in the
previous section. For each command signal, 10 it­
erations were performed, and each experiment was
repeated 3 times, so as to average out the effect of
random noise. The results are shown in Figures 12,
13 and 14 for the bang-bang, the limited slope, and
the ramped sinusoid command signal, respectively.

Fig. 11: Bode plot of (a): filter Q and (b): filter
L. The cut-off frequency of Q is approxi­
mately 1000 rad/s, and anti-causal filtering
with Q was applied with net-phase zero.

The results are quite impressive! It is seen that for
each command signal, the tracking error has been
tremendously reduced. Two important comments
have to be made with respect to these results. First,
when comparing Figures 13 and 14, the best results
are obtained for learning control applied to the stan­
dard reference and command signals, see Figure 13;
the tracking error is reduced within a band of 150
nm, and the cycle time has been reduced to 6.23e- 2

s. The cycle time for the bang-bang and ramped
sinusoid command signal, are 7.45e - 2 s and 6.50e - 2

s, respectively. The reason for this , is the fact that
the filter Q has a cut-off frequency at 1000 rad /s,
hence removing energy from the command signals
above 1000 rad/s. However, the nominal ramped si­
nusoid reference and command signal were designed
to have energy content above 1000 rad/s , see Figure
8 (b) . Hence, the ramped sinusoid reference signal
is to fast for the learned force profile, resulting in
the showing up of residual vibration in the tracking
error, see Figure 14 (a),(b) .
Second, although the residual vibration in the track­
ing error has been removed significantly, the learned
force profiles show unwanted residual behaviour. It
can be shown that this residual behaviour is caused
by badly damped zeros of the system. Especially if
the reference signal is to fast for the learned com­
mand signal, like the bang-bang and the ramped si­
nusoid reference signal, the residual vibration in the
learned force profile is simply a result of excitation
of the inverse system dynamics with a reference sig­
nal that has to much energy content at the locations
of the system zeros, see Figures 12,14 (c) ,(d).
Regarding these comments, it is worthwhile to put
more effort in the design of learning filters Q and
L , in order to increase the cut-off frequency of Q,
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Fig. 12: Learning iteration for bang-bang command
and reference signal; (a) tracking error af­
te r 10 iterations, (b) close up of (a) with
performance bounds, (c), force profile af­
ter 10 iterations, (d) close up of (c) with
bounds on regulation level.

without destroying the convergence of the learning
iteration, so that fast nominal reference and com­
mand signals can be corrèctly learned.

6 Conclu sions

In th is paper , a high-performance motion control
system for a flexihle mechanical servosystem has
been designed and implemented, and compared to a
standard motion control system. It was shown that
accurate modelling of the multivariable system, en­
ables the designer to reduce both dynamic interac­
tion, and the effect of flexible components, which
limit the performance of the control system. The
high-performance control system showed improved
performance with respect to a standard control sys­
tem, in a sense that motions were performed more
fast and accurate. Exploiting the repetitive nature
of the motion, robustness of the scheme against
modelling errors, could be improved, resulting in
even more fast and accurate movements, which are
close to the maximum obtainable performance for
the system at hand.
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Abstract . This paper reconsiders the concepts of servo compensator and disturbance
observer. Both concepts make use of an internal model representing a general persistent
disturbance. The use of such a model, also known as the Internal Model Principle (IMP),
has been wen recognized to be necessary within the servo compensator concept, leading
to general necessary and sufficient conditions for a servo compensator to asymptotically
compensate the disturbance. However, for the disturbance observer concept, no general
existence conditions are present in the literature. In this paper these conditions will be
derived by reformulating the servo compensator and disturbance observer problem in a
general standard plant. Moreover, it is shown that a robust servo compensator, stabilized
with state feedback, is dual to a disturbance observer stabilized with output injection.
Equally important, it is shown that a robust servo compensator, stabilized by an observer
based controller using output feedback, is dual to a disturbance observer in combination
with state feedback and disturbance compensation.

Keywords. asymptotic disturbance rejection, Internal Model Principle (IMP), robust
servo compensator, robust disturbance observer, dualization

1 Introduction

One of the main reasons for adding feedback com­
pensation to a system is the rejection of undesired
signals that disturb the performance of that sys­
tem. In practical situations these disturbance sig­
nals range in nature from purely stochastic to purely
deterministic signals. In this paper we restriet our
attention to purely deterministic signals.

The compensation of deterministic signals has been
explored and developed by several researchers in
the late sixties and early seventies, see Johnson
(1971), Davison (1972a, 1975), Francis and Won­
ham (1976). A breakthrough was the notion of the
In ternal Model Principle (IMP), which states that,
in order to compensate a general persistent distur­
bance, a feedback compensator has to include an in-

tThe work of Dick de Roover is financially supported by
Philips ' Research Laboratories, Eindhoven, The Netherlands.
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ternal model of the dynamics of that disturbancel ,
see Francis and Wonham (1976). The IMP led to the
development of the rather celebrated robust servo
compensator, see Davison (1975), which asymptoti­
cally rejects a general persistent disturbance in the
face of perturbations in the parameters of the un­
compensated system.
Simultaneous to the development of the servo com­
pensator, a Luenberger type of observer was devel­
oped for systems subject to the same general class
of persistent disturbances, by including an internal
model of the disturbance in the observer, see John­
son (1971, 1976), Meditch and Hostetter (1974). In
the most general case, this disturbance observer es­
timates both the system state and the disturbance
state. If the disturbance is assumed to act on the
input of the system, the estimated disturbance can

1 A persistent disturbance is a disturbance generated by
an autonomous dynamical system having poles in the closed
right complex half plane.



system (1) can be written in a more compact matrix
form:

p ([ )"J_~A ~]) < Pn ([ sI_~A ~]) = n , +n,

i.e, if the Rosenbrock system matrix Rosenbrock
(1970) w.r.t. u and y looses rank.
Let D- 1 (s )N(s) (N( S )b- 1 ) be a left (right) co­
prime factorization of G(s). Let G(s) and, con­
sequently, N(s) (N(s)) have rank n, then >. is a
transmission zero of G(s) if and only if pN(>') < n
(pN(>') < n).

The transfer matrix of 9 from u to y is given by
(zero initial conditons):

G(s) = C(sI - A) -l + D =: [*J .
The system 9 is said to be exponentially stabie, if for
any initial state Xo the zero-input response will tend
to zero exponentially. The system 9 is exponentially
stabie for any Xo if and only if u(A) E (:_ .
The system 9 is said to be (state) controllabie if
there exists an input u(t) that will transfer the
state Xo to any state x f in any finite time inter­
val [to,tf]' Otherwise 9 is said to be uncontrol­
leble. The system 9 is said to be (state) observabie
if for any finite time interval [to , tf], the state Xo
(at time to) can be determined with knowledge of
the input u(t) and the output y(t) over the interval
[to,t f] . Otherwise 9 is said to be unobservabie. Let
A E ffin. xn·,B E lRn. xnu,C E ffiny xn., then the

pair {A, B} ({A, C}) is controllable (observable) if
and only if

p([,\f-A Bl) = n.,, (p ([ )"Jc A ]) = n,) V>' E e.

The system 9 is said to be stabilizabie if there exist s
a state feedback u = K x such that 9 is stable, i.e.
A-BK E (:_ . The system 9 is said to be detectabie
if there exists a constant matrix L such that A ­
LC E c..
Let G(s) E ffi(s)ny xnU be proper and have normal
rank n, and let {A, B, C, D} be a minimal state
space realization of G(s), then a real or complex
number >. is called a transmission zero of G(s) if'2 :

be used to compensate the real disturbance, see for
example Johnson (1971, 1976) Profeta et al. (1990),
Nagasawa and Yokamada (1993).
Since both the servo compensator and the distur­
bance observer have been used for compensating
the same class of persistent disturbances, several re­
searchers have tried to compare both concepts as if
they were equal to each other, see Johnson (1972),
Davison (1972b), Kwatny and Kalnitsky (1978),
Desoer and Wang (1980). This led to a misunder­
standing of, in particular, the disturbance observer
concept. Although it was recognized that both con­
cepts are not equal but dual, neither general condi­
tions for a disturbance observer to exist, nor general
conditions for such an observer to compensate a per­
sistent disturbance are available. In this paper gen­
eral existence conditions will be derived that turn
out to be dual to conditions obtained in servo com­
pensator theory, by reformulating the servo compen­
sator and disturbance observer problem in a general
standard plant.
The next section starts with an explanation of the
notation used throughout this paper, together with
some fundamental aspects from linear system the­
ory. Then Section 3 describes the theory of the servo
compensator within a general standard plant. In
Section 4 this general theory is dualized to that of
disturbance observer theory. Finally Section 5 ends
up with some conclusions.

2 N otation and fundamentals

Let ffi «(:) denote the field of real (complex) num­
bers. Let c., .( (:+) denote the open left (closed
right) complex half-plane. Let ffin xTn (ffin) be the
set of all n x m matrices (n-vectors) with e1ements
in ffi. Let ffi(s) denote the set of all rational func­
tions with real coefficients in s, with s denoting
the Laplace operator. Let ffi(s)n xTn be the set of
all n x m matrices with elements in lR(s). Let
A E ffinxn then 4>A denotes the minimal polyno­
mial of A and u(A) denotes the spectrum of A. Let
ME ffinxTn then p(M) denotes the rank of M, and
p(M) ::; minin, m}. The normal rank Pn of a matrix
M(s) E ffi(s)n xm is defined as:

Pn(M(s)) := maxp(M(s)).
, E(:

g: [~] [~~] [:].

Consider a linear time invariant (LTI) system 9 rep­
resented by:

(1)
with X, xo, u and y denoting the state, initial state,
input and output of the system, respectively. The

g: x(t) Ax(t) + Bu(t), x(to) = xo,
y(t) = Cx(t) + Du(t),
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3 Theory of the servo compensator

3.1 The robust servomechanism problem
(RSP)

Consider the feedback configuration of Figure 1.
The continuous-time LTI generalized system 9 is

2This definition is due to Davison and Wang (1974)



Fig. 1: Standard feedback configuration.
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that the pair {Aw, Cw} is observable, and u( Aw) c
c. .
Furthermore, we want to construct the compensator
C such that the closed loop is stable, and the reg­
ulated system output z vanishes to zero asymptot­
ically, in the presence of w. Besides, this rejection
property should be robust, i.e. should be maintained
even in case the dynamics of 9 vary.
More formal, we want to solve the robust servomech­
anism problem, which is defined as:

where x(t) E m.n. describes the state of the system,
w(t) E m.nu represents an exogenous system input,
u(t) E m.nuis the control input to the system, z(t) E
m.n, is the output to be regulated, e.g. the differ­
ence between a measured and a desired output, and
y(t) E m.n. is the measured output of the system.
The matrices {A, BI, B 2, Cl, C2 , Dl, D 12, D 2l, D 2}

are assumed to have appropriate dimensions, i.e.
A E m.n. x n . , BI E m.n. Xnu , B 2 E m.n. xnu , Cl E
m.n, x n . , C2 E m.n. x n . , Dl E m.n, xnu , D 12 E
m.n, xnu , D 2l E m.n. xn... , and D 2 E m.n. xnu • The

corresponding transfer matrix of 9 is given by:

given by:

9: = [~l ~: ~:2] [:u] , (2)
C2 D 2l D 2

x(to) = xo,

Definition 3.1 The robust servomechanism prob­
lem (RSP) is to find a feedback compensator C for
the system 9 such that:

1. The resulting compensated system is exponen­
tially stabie.

2. The system output z(t) tends to zero asymptot­
ically, for all Xo E m.n. and for all exogenous
signals w( t) satisfying (3).

3. Properties 1. and 2. are robust, i.e. they also
hold in case the dynamics of the system 9 are
perturbed.

It was Davison (1972a, 1975) who first solved this
problem, and at present a general solution can be
found in many textbooks. In this paper the solution
to this problem is presented within the general setup
of Figure 1.

The measured system output y is fed to a dynamic
compensator C with transfer matrix:

C(s) = [ ~: I~: ],
and the output of this compensator is fed back to
the control input u of 9.

In this paper we con sider the situation where w(t)
is assumed to be a persistent signal, generated by
an autonomous system":

w:
(3)

where xw(t) E m.n•u, Aw E m.n•uxn.u, and Cw E
m.n... xn.u. Without loss of generality it is assumed

3Note that many common signals can be described in this
setup, like steps, ramps, sinusoids, etc.
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3.2 The internal model principle

Before presenting a general solution to the RSP,
some comments have to be made on the compen­
sator structure which, in fact, is not completely free
to choose. In Francis and Wonham (1975) it was
shown that for robust regulation of z in the presence
of w generated by (3), the compensator necessarily
has to incorporate a model of the dynamic system
W. This is known as the Internal Model Principle
(IMP), see Francis and Wonham (1975, 1976), Co­
nant and Ashby (1970). More formal, the matrix
Ae of the controller incorporates an internal model
of the dynamic system W , if the minimal polyno­
mial of Aw divides at least n z invariant factors of
Ae , with n z the number of independent outputs z,
to be regulated, (Francis and Wonham, 1976).
In Wolovich and Ferreira (1979) it is shown that
such an internal model must make itself present at
the junction where wenters the closed loop from w
to z. Therefore, since the internal model is inside
the compensator C, the structure of C must be such
that it commutes with the open-loop transfer matrix
from w to z , Besides, the internal model must be
observable from the control input u and has to be



controllable from the regulated output z, (Francis
and Wonham, 1976).
A feedback compensator which obeys this specific
structure is given by:

(~) Ir z is observable from y, there exists a non­
singular constant matrix T such that z = Ty, i.e.
Clx + Dlw + D 1211. = T(C2x + D 2lw + D 211. ). W .l.g
choose 11.= O. Then for nonzero [x wIT we have:

i.e, Cl = TC2 and Dl = T D 2l. Consequently

where"

block diag [I', I', ... .T'] E lRn
.. X n ..

~

n. -tuple

= p ( [TC2 T D 2l
])

C2 D 2l

= P ([ C2 D 2 l ]) .

(6)

(7)

which stabilizes the extended system ge given by
the series conneetion of 9 and C.c :

o

with

3.3 Solution of the RSP using state feed-
back

Ir the compensator (4) is put inside the feedback
loop of Figure 1, it is likely that the cIosed loop is
unstable, that is, we need some additional feedback
to stabilize the system 9 extended with the unstable
dynamic system C.c given by (4). In this subsection
we assume that the state x of 9 is available for feed­
back. In this case, the problem is reduced to finding
a constant compensator:o

1

with {I', 'Y} any controllable pair, such that a(r)
equals the roots of <Pw(s), with <Pw(s) being the min­
imal polynomial of A w . For example, the pair {r, 'Y}
can be chosen as a controllable canonical pair:

K oc = a stabilizing gain matrix E lRn u x n .. ,

with <Pw(s) = sq + OlSq-l + ... + 0q_lS + Oq .
Since the above compensator is fed by the regulated
output z, while the measured output y is available,
an extra restrietion is posed on the problem: it is
necessary that z has to be observable from y, i.e.
there exists a nonsingular constant matrix T such
that z = Ty, (Francis and Wonham, 1975, Davison,
1976) . Ir this is the case, z can be reconstructed
from y . The existence of such a matrix T is guaran­
teed by:

Lemma 3.2 Consider the system (2). The regu­
lated output z is observable [rotri the measured out­
put y, if and only if:

block diag [" 'Y •.• ,'Yl E lRn ec x n ,

~

n. - t u p le

Proof: ({::) Ir condition (5) holds, there exists a
nonsingular matrix T· such that for nonzero [x wIT:

Thus T·(Clx+Dlw) = C2x+D2l w, and hence z can
be reconstructed from: z =T· -l(y - D 211. ) + D 1211. .

Figure 2 shows the resulting cIosed loop. The exis­
tence of a constant ë which solves the RSP is given
by: .

Theorem 3.3 Given the system (2) and suppose
the signal w(t) is generated according to (3). The
RSP, defined by Definition 3.1, is solvable using
state feedback, if and only if:

i. C includes an internal model of w,

4 Note that by construction the pair {A. c I B.c } is
controllabie.
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z w 3.4 Solution of the RSP using output feed­
back

If the state x of 9 is not available, the output y can
be used for stabilization. The existence of a compen­
sator which solves the RSP using output feedback,
is given by:

Fig. 2: Modified feedback configuration which
solves the RSP.

Corollary 3.6 Given the system (2) and suppose
the signal w(t) is generated according to (3). The
RSP, defined by Definition 3.1, is solvable using out­
put feedback, if and only if:

iii. The pair {A, B 2 } is stabilizable, i. Conditions i. - ivo of Theorem 3.3 hold,

Two remarks regarding this theorem are of impor­
tance:

C(s) =

[
A.e 0]

(Ë 2 + LÏJ 2)K.c Ä + Ë 2 K + L(ë2 - ÏJ2K)

[ B-;/ ] I Ce = [K. e -L], De = 0, (10)

with Xe E IRne the state-vector of any stabilizing
compensator. For example, an observer based com­
pensator can be designed, which stabilizes

Proof: Condition ii. guarantees the detectability of
the series conneetion of 9 and C.e ; therefore the re­
sulting closed loop system can be made exponen­
tially stable, The asymptotic rejection and robust­
ness property are guaranteed by the separation prin­
ciple, applied to the servo compensator and any sta­
bilizing compensator. 0

u. The pair {A, C2 } is detecioble.

with

In this case, the resulting compensator, which solves
the RSP, is given by:

If Corollary 3.6 is true, a control input u can be
designed which solves the RSP, according to:

and L denoting an observer gain, designed such that
Á+ LC\ E (L, and {Á, .82 , ë2,D2 } is a duplication
of the system {A, B 2 , C2 , D2 } . According to the sep­
aration principle, Land [K K.e ] can be designed
independently.

o

(9)

ivo

Proof: See Appendix.

Remark 3.4 The rank condition (8) implies that
nu :2: n z , i.e, 9 has at least as many control inputs
as there are outputs to be regulated, and the sub­
system {A, B 2 , Cl> D 12 } has no transmission zeros
located at the spectrum of Aw •

Remark 3.5 The closed loop system of Figure 2 is
robust to parameter variations in the system param­
eters {A, BI' B 2 , Cl, C2 , Dl, D 12 , D 21 , D 2 } , which
do not destabilze the closed loop. However, nei­
ther variations in the parameters of {A w , A. e } , nor
in the siructure of {A.e,B.e} are tolerated, as they
might destroy the property of asymptotic disturbance
rejection, or might even result in an unstable closed
loop system. Besides, z must remain observable
/rom y.

The resulting compensator for the original system
Q, given by:

is often referred to as robusi servo compensator,
(Davison, 1975). Robust asymptotic disturbance re­
jection of wis achieved by duplicating the dynamics
of w inside the feedback loop, i.e. the servo compen­
sator constitutes an internal model of the unstable
dynamics of Wj in the appendix it is shown that
this duplication produces transmission zeros in the
closed loop from w to z, at the spectrum of Aw ,

which completely block the transmission from w(t)
to z(t) .
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where the signals x, W, u, z, y and the tuple
{A ,n.,B2, Cl I C2, Dl , D12, D2l, D2} have appropri­
ate dimensions, and again assume wet) to be gener­
ated according to (3):

4 Dualization of the IMP in the the­
ory of disturbance observers

4.1 The robust observation prob1em

Again consider the system (2):

asymptotically, in the presence of w. Again, we re­
quire this property to be robust, i.e. we want to solve
the robust observation problem, which is defined as:

Definition 4.1 The robust observation problem
(ROP) is to find a compensator ë for the observer
system 9 such that:

1. The resulting compensated observer system is
exponentially stable .

2. The reconstruction error i(t) tends to zero
asymptotically, for all i o E IRn

• and all wet)
satisfying (3).

3. Properties 1. and 2. are robust, i.e. they also
hold in case the dynamics of the observer sys­
tem gare perturbed

w:

W

[
Ado L d O

] [X~o] , (12)
es: 0 y

Xdo (to) = XdoO

block diag [T, T, ... , T] E IRndo xndo
~

nu -tuple

a stabilizing gain matrix E IRndo X nl1

block diag [v,v, ... ,V] E IRnw x n d o ,

'---v----'
nw -tuple

4.2 Use of the IMP

In the literature, the ROP can be found under the
name disturbance observer, see for example John­
son (1971, 1976), Meditch and Hostetter (1974) ,
Levin and Kreindler (1976), Kwatny and Kalnitsky
(1978), Sievers and von Flotow (1989), Profeta et al.
(1990), Nagasawa and Yokamada (1993). However,
non of these references have considered, and solved,
the ROP in its fuIl general form as we stated it in
Definition 4.1.

It can be shown that, in order to solve the ROP, the
compensator ë necessarily has to include an internal
model of (3), which is observable from w, and con­
troIlable from fj. Besides, this internal model must
make itself present at the junction where wenters
the closed loop from w to i, in order to observe the
actual disturbance w. A compensator with these
commuting properties is given by:

where''

Ad o --

L d o --

c.. --

with {T,v} any observable pair, such that u(T)
equals the roots of cPw (s), with cPw (s) being the mini­
mal polynomial of Aw • For example, the pair {T, v}

ü

Fig. 3: Standard observer configuration

where xw,w , Aw and Cw also have the appropriate
dimensions. Again it is assumed that u( Aw ) E q::+
and the pair {Aw , Cw } is observable.
In this section we are considered with finding an ob­
server for the system 9, in the presence of w gener­
ated by (3). Consider the foIlowing general observer
system:

where i E IRn
• denotes the difference between

the state and the observed state, W E IRnw rep­
resents the exogenous system input, ü E IRn

" de­
notes the observer input , i E IRnv is the dif­
ference between the measured system output y

and a reconstructed system output, i.e. the ob­
server output to be regulated, and fj E IRn

l1 is
the output of the observer system, available for
compensation of the observer dynamics. The ma­
trices {Ä, iJl! iJ2,c; ë2, Dl, Ïh2' D2l, D2} are as­
sumed to have appropriate dimensions.
Next , according to Figure 3, we want to construct
a compensator ë, which stabilizes the observer sys-

[

Ä iJl iJ2 ]

~l Ï!l Ï!12
C2 D 21 D 2

iCto) = i o,

tem g, and brings the reconstruction error i to zero
6Note that by construction the pair {A do l Cdo} is

observable.
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can be chosen as an observable canonical pair: w

[j
... 0

-a ]... 0 -~:-,T -- ,

... 1 -al

v= [0 ... 01],

with 4Jw(s) = sq + al Sp-l + ... + ap-ls + apo
Since the above compensator has as output w, while
the best we can do is to make a reconstruction ü of
w, an extra restrietion is posed to the problem: it
is necessary that w is controllabie from U, i.e. there
exists a nonsingular matrix 1.' such that w = 1.'ü.
The existence of such a matrix is guaranteed by:

Lemma 4.2 Consider the observer system (11).
The exogenous input w is conirollable from the re­
constructed input U, if and only if:

Fig. 4: Modified observer configuration which
solves the ROP.

Theorem 4.3 Given the observer system (11), and
suppose the signalw(t) is generated according to (3).
The ROP, defined by Definition 4.1, is solvable us­
ing output injection, if and only if:

i. ë includes an internal model of w,

iii . The pair {Ä, é2 } is deiectoble,

ivo

4.3 Solution of the ROP using output injec­
tion

V>' E u(Aw ) .

(16)

oProof: See Appendix.

Remark 4.4 The rank condition (16) implies that
nji ~ n w , i.e. the number of measured outputs
should be greater than or at least equal to the number
of exogenous inputs, which was already intuitively
noticed in Meditch and Hostetter (1974), pp.478.
Besides, condition (16) implies that the subsystem
{Ä, BI, o.. D2d has no transmission zeros located
at the spectrum of Aw •

Remark 4.5 The resulting compensated observer
system is robusi to parameter variations in the
sense that the disturbance state is correctly recon­
structed despite perturbations in the system param­
eters {Ä, BI, B2, é l , é2,Dl, D12 , D2l,D2}, as long
as the compensated observer system remains asymp­
totically stable. Again variations neither in the
structure of the observer system, nor in the param­
eters {Ada, Cda} are tolerated, and w has to remain
controllabie from U.

The resulting compensator for the observer system
g is given by:

(14)

(15)= Ge [ [.~.] I,
[:~ ]

and VI, V2 being intermediate state variables. Figure
4 shows theresulting closed loop. The existence of
a constant é which solves the ROP is given by:

Proof: Follows by similar reasoning from the proof
of Lemma 3.2 0

s= [L~J,
which stabilizes the extended system ge given by
the series conneetion of g and o.:

with

In this subsection we assume that the observer sys­
tem (11) can be stabilized using output injection,
i.e. we assume to have full access to the observer
state with the measured output y. In this case, we
can reduce the ROP to finding a constant compen­
sator:
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The resulting compensated observer system will be
referred to as disturbance observer.
If we compare the compensators (9) and (17) for the
RSP and ROP, respectively, they have a dual form,
In fact , we can state the following important result:

Theorem 4.6 (Ma in result I)
The RSP using state feedback is dual to the ROP
using output injection.

Proof: This can be verified by solving an RSP us­
ing state feedback for the transposed system gT ,
and transposing the resulting compensator. 0

Remark 4.7 Note that conditions i. - ivo of The­
orem 3.3 are in deed dual to conditions i. - ivo of
Theorem 4.3, and that (6), (7) are indeed dual to
(14), (15), respectively.

4.4 Compensation using a disturbance ob­
server

In most cases, the reconstructed state of 9 is used
to compensate the system g. Moreover , the recon­
struction of w is always used to cancel the actual
disturbance w, i.e. the observer system is fed by
the system output y, and the control input u is cho­
sen as:

u(t) = Kx(t) + GdoXdo(t),

with K denoting a state feedback gain, designed
such that A + B 2K E <L, and x denoting the re­
constructed system state. In this case, the resulting
compensator for 9 has the following transfer matrix:

'o(s) = [ ~: I~: ],
with

[
AdO Ldo(é2+D2K) ]
o Ä + Ë 2K + L(é2 _ D2K) , (18)

[ :~ ], Cc = [TCdo L], De = O.

According to the separation principle, K and

[ L L do ]T can be designed independently.
The existence of compensator (18), which stabilizes
the system g, and cancels the disturbance w asymp­
totically, is given by:

Corollary 4.8 Given the system (2) and suppose
the signal w(t) is generated according to (3). The
compensator (18) can stabilize 9 and cancel w
asymptotically, if and only if:

i. Conditions i. - ivo of Theorem 4.3 hold,

ii. The pair {A, B 2 } is stabilizable.
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The following result is equally important as Theo­
rem 4.6:

Theorem 4.9 (Ma in result 11)
The RSP using output feedback with an observer
based controller according to (10) , is dual to the
ROP with compensation according to (18).

Proof: This can again be verified by solving an
RSP with output feedback, for the transposed ROP
with compensation, and transposing the resulting
compensator; compare (10) with (18). 0

5 Conclusions

In this paper the concepts of servo compensator and
disturbance observer have been reconsidered in a
general standard plant framework. Both concepts
use an internal model of a persistent disturbance to
asymptotically attenuate this disturbance. It has
been shown that both concepts are not equal, but
dual to each other, i.e. the servo compensator uses
the internal model to asymptotically compensate the
persistent disturbance, while the disturbance ob­
server uses the internal model to asymptotically ob­
serve the disturbance state, enabling, under certain
conditions, to asymptotically compensate the dis­
turbance using this observation.
Exploiting this duality, it has been shown that a nee­
essary and sufficient condition for the existence of a
general disturbance observer can be derived, that
is dual to the existence condition obtained in servo
compensator theory. The main part of this condi­
tion is a simple rank condition on the Rosenbrock
system matrix with respect to the disturbance in­
puts and system outputs. Besides, a necessary and
sufficient condition was given for a disturbance ob­
server to be ab Ie to compensate an observed distur­
bance. These simple conditions may allow a con­
trol system designer to decide upon when to use the
servo compensator concept and when to use the dis­
turbance observer concept.

Appendix

Proof of Theorem 3.3 To proof this theorem, we
need to show that the compensator Coc satisfies the
three properties of Definition 3.1.

1. exponential stability
The compensated system can be made exponen­
tially stable, if and only if the extended system
(7) has a minimal state-space realization, i.e. the

pair {[ Bo~G2 A~c]' [B~~2 ]} is stabilizable



and the pair { [I~. 1
0 l [B AC A

O
]} is de-

n. c .c 2 .c

tectable. Clearly the latter condition on detectabil­
ity is always met, since we solve the problem with
state feedback. Hence the extended system can be
made exponentially stabie if and only if

-B2K.c

s I - A.c - B.cD2K.c

-TD2K.c

[

sI - A - B2K - B 2K .c

-T(C2+ D2K) -TD2K.c

o sI - A.c

[

sI - A - Ê2K -Ê2K .c

-B'c.(ê2 1.:" D2K) sI - A.c . - B.cD2K.c

-Cl - D 12K -D12K.c

If the perturbations 6A, 6B l , etc. are sufficiently
small (not equal to zero), the perturbed closed loop
system (0 closed with C) remains stable, i.e. prop­
erty i. of Definition 3.1 is always robust. Suppose
that the perturbed closed loop remains stable, and
that the regulated output z of the perturbed sys­
tem remains observable from the measured output
y of the perturbed system, then it can be readily
deduced that the roots of the minimal polynomial
of A oc appear also as transmission zeros in the per­
turbed closed loop from w to z, i.e,

Clearly, this matrix looses rank for all s E u( A oc ) ,

i.e. the roots of the minimal polynomial of A oc ap­
pear as transmission zeros in the closed loop from
w to z , Since these transmission zeros appear in
every element of T"w(s), the transmission of all un­
stabie dynamics of w to z is blocked in the closed
loop, for any ZwO t= o. Hence, what remains in z

is only due to stabie dynamics, which goes to zero
asymptotically.

3. robustness
Let the parameters of the system 9 be perturbed,
i.e, A = A + 6A, ë, = B l + 6B l , etc., and let O(s)
be the transfer matrix of the perturbed system:

looses rank "Is E u(Aoc). Hence z of the perturbed
system also goes to zero asymptotically, as long as
the closed loop remains stable, Note that also per­
turbations in K and K oc are allowed, as long as the
system remains stable. 0

Proof of Theorem 4.3 To proof this theorem, we
need to show that the compensator ëdo satisfies the
three properties of Definition 4.1.

1. exponential stability
This fellows by similar reasoning from part 1. of
the proof of Theorem 3.3, where now stabilizability
is always met, and detectability is guaranteed by
conditions iii. and ivo

o 0]
-Boc .1 - A.c

A+B2K

B.c(C2 + D2K)
Cl + D 12K D 12K••

Now for s rt. u(Aoc ), condition (19) is true, since
the pair {A, B 2 } is stabilizable by assumption i. of
Theorem 3.3. Now for s E u(Aoc ) , rewrite:

x [I~. T~l ~] [.1;" A ~
o 0 In.. 0 In oe

where we used the fact that z = Ty by assumption
ii. of Theorem 3.3 and Lemma 3.2. Since the pair
{Aoc, Boc} is controUable, the first factor of (20) has
always rank n", + noc. Clearly the second factor has
full rank, and by assumption iii. of Theorem 3.3,
the third factor has rank n",+n" +noc,"Is E u(Aoc).
Hence, by Sylvester's inequality":

"Is E CD. (19)

6Sylvester's ineq.: Let A E IRq xn, B E IRn xp, then p(A)+
p(B) - n ~ p(AB) ~ min(p(A), p(B».

i.e. the extende~ system (7) is stabilizable.

2. asymptotic rejection of w
Let the extended system (7) be stabilized by the
state feedback (6). Consider the closed-loop transfer
matrix from w to z, given by:

[~~~]
(21)

According to Lemma 3.2, there exists a nonsingular
T such that z = Ty, i.e, Cl = TC2 , Dl = T D 2l and
D l 2 = T D 2. Substituting this result in (21), and
premultiplying the Rosenbrock system matrix w.r.t.
wand z with a unimodular matrix yields:
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Ë1 + LD21
LdoD21

Dl

Ä + Lë2 (Ë 2 + LD2)Cdo
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Abstract. Iterative Learning Control (ILC) is a powerful feedback methodology that
iteratively improves the transient behaviour of processes that are repetitive in nature.
Although most of the published ILC schemes are heuristic in nature, some initial research
has been performed on the formulation of the ILC problem in the H oo mathematical
framework. However, so far only the performance and robustness analysis of the ILC
schemes has been performed for a given (heuristically designed) learning controller. In this
paper it is shown how the synthesis of an iterative learning controller can be generalized to
the synthesis of an H 00 (sub)optimal controller. It is shown how a generallearning control
problem can be reformulated in the so-called 'standard plant' format, by choosing an
appropriate weighting function for learning performance. Moreover , process uncertainty
can be included explicitly in the ILC design, by choosing appropriate weighting functions
related to this uncertainty. It turns out that convergence and learning performance of this
ILC scheme can be obtained for all systems in the uncertainty set, by solving a JL-synthesis
problem. The practical usefulness of the scheme is verified on an xyifrstage experimental
setup.

Keywords. Iterative Learning Control (ILC), H oo control theory, robust learning perfor­
mance, JL-synthesis, xyifrstage experimental setup.

1 Introduction

For control systems that have to perform their tasks
repeatedly, Iterative Learning Control (ILC) has
turned out to he an effective tool for improving
the transient performance. After its introduetion in
the systems and control community by Arimoto et
al. (1984), the number of 'newly' proposed learning
schemes has become almost as large as the number
of practitioners, see for example Bondi et al. (1988),
Kavli (1992), Liang and Looze (1993), Moore et al.
(1992); the reader is referred to Moore et al. (1992)
for an extensive list of references. Almost all publi-
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Decision and Control, 11-13 December 1996, Kobe, Japan.
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cations concern the design of a convergent scheme.
In fact, ILC also has to deal with the weIl known
trade-off between performance and robustness of the
controller, i.e. the theoretically superb performance
of tracking a transient without error, may have to he
sacrificed in practice, due to the more severe demand
of convergence of the scheme in the face of uncertain
system dynamic knowiedge. Although most of the
published ILC schemes are heuristic in nature, some
initial research has been performed on the formula­
tion of the ILC problem in the H oo mathematical
framework, references Padieu and Su (1990), Moore
et al. (1992), Liang and Looze (1993). However,
the cited references only considered the performance
and robustness analysis of ILC schemes, based on
heuristically designed learning controllers.
In this paper it is shown that the synthesis of an it­
erative learning controller can be generalized to the



2.1 Problem formulation

2 Heuristic approach to ILC

tE [O,TNJ, k E lN,
(2)

ik+1(t) = U(h(t),edt)),

such that

lim ik(t) = i.(t) and lim I1 ek(t) 11= e.,
k-+oo k-+oo

(3)
with i.(t) and e, being fixed points, and e, is mini­
mal over the interval [0,TN ] , measured in some sig­
nal norm I1 . 11. Obviously, convergence of an ILC
scheme to fixed points i. and e., depends on the
choice of the update law (2); the great body of lit­
erature on ILC is mainly concerned with 'newly'
proposed update Iaws, Roughly speaking, for lin­
ear systems two different types of update laws can
be distinguished: a PID-type of update law and a
model based update law. The most general PID­
type of update law can be found in Arimoto (1985),
which updates the forcing function by:

defined on a finite interval [0, LlT, ... ,TN] with ti.T
being the sampling time and TN =N LlT with N the
number of samples, is repeated an indefinite num­
ber of times, each time starting at the same initial
condition; if 50, the servo error e( t) will be repeated
too, apart from random noise. The main idea of it­
erative learning control is to iteratively update the
forcing function i, 50 as to decrease the magnitude
of e, after each cycle of the reference signal r . More
formal, let k denote the number of iterations, then
ILC is about to find an update U of the forcing func­
tion at the k-th iteration, based on the servo error
at the k-th iteration, i.e.:

For this type of learning rule, convergence condi­
tions are derived, 50 as to obtain the gains {o:,,B,')'}.
The most general model based update law is pro­
posed in Moore et al. (1992), and reads as follows:

y
P

C

uf

synthesis of an Hoc (sub)optimal controller, by re­
formulating the ILC problem in the so-called 'stan­
dard plant' format. The key issue of this solution to
the ILC problem, is the specification of an appro­
priate weighting function for learning performance,
and the fact that the delay line, between successive
updates of the forcing function, has magnitude equal
to 1, hence allowing effective use of the small gain
theorem. Moreover ,solving the ILC problem in this
format, allows the designer to explicitly trade-off
learning performance and robustness, by incorporat­
ing process uncertainty weighting functions into the
synthesis problem. It is shown that this robust per­
formance problem can be solved using a j.L-synthesis
approach.
The remainder of this paper is organized as follows.
Section 2 describes the general ILC problem, and
an heuristic solution to it. Section 3 shows how
the ILC problem can be reformulated and solved in
the standard plant format. Furthermore, Section 4
extends the results of Section 3 to the formulation
and solution of a robust ILC problem, by includ­
ing process uncertainty descriptions into the design.
Section 5 verifies the practical usefulness of the pro­
posed scheme on a reallife experimental setup of an
xy(j>-stage, and finally Section 6 ends up with some
conclusions.

Consider the feedback configuration depicted in Fig­
ure 1. It is assumed that the plant Pand the con-

thus: T = (I + PC)-1 PC, R = (I + PC)-1 P, and
S = (I + PC)-1. Suppose the reference signal r(t),

trolIer C are discrete time, linear, and time invari­
ant . The map from col(r, f) to col(y, e) can be ob­
tained from simple block diagram manipulation:

Fig. 1: Feedback configuration of plant Pand con­
troller Cj the signals t. r, u, y, and e denote
a forcing function, a reference signal, the
plant input, the plant output, and the servo
error, respectively.

-1 [PC P ] [ T R ](I + PC) I _P =: S -R ' (1)

General convergence conditions on the filters Q and
L are derived, based on knowledge of the plant P
and the feedback controller C. In fact, update law
(5) can be seen as a generalization of update law
(4), by making specific choices of the filters Q and
L. Hence, learning rule (5) will be the starting point
for the research presented in this report.
Figure 2 shows how this general learning rule can
be implemented as an offline ad-on device. During
execution of the reference signal r, together with
forcing function ik at the k-th trial (within the setup
of Figure 1), the servo error ek at the k-th trial is
measured and logged in a memory table, After this
reference trial, the logged error is filtered with the
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2

1

L I

Fig. 2: amine learning algorithm; 1: logged error
table, 2: feedforward table

L-filter, and added to the Q-filtered forcing function
Ik ofthe k-th trial. The sum ofboth signals is stored
in another memory table, and constitutes the forcing
function Ik+l' to be applied in the next «k + l)th)
trial.

2.2 Convergence criterion

Theorem 2.2 Suppose R, L =f; 0, then lor the feed­
back configuration ol Figure 1, and the learning it­
eration (5), the fixed point e, is zero, il and only il
(6) is troe, and Q( z) = 1.

Proof: Trivial, (6) has to be met in order for a fixed
point e, to exist.
(.ç:::) This simply follows by substituting Q =1 into
equation (7).
(:=» Suppose Q(z) = (1 + f)1, and substitute this
into equation (7):

e, 11 (1 - R(1 - (1 + f)1 + LR)-lL)Sr(t) 112

= I1 (1-R(-û+LR) -lL)Sr(t) 112

11 (1 + R1jûL)-lSr(t) 112
oo

= I1 (- :~:)R1 jfL) -j ) Sr (t ) 112
j =l

Trivial, for R, L =f; 0, this last term is zero if and
only if f = 0, i.e. Q(z) = 1. 0

This result is the main reason why most of the pro­
posed ILC schemes operate with Q(z) = 1. In this
case, the convergence criterion of Theorem 2.1 sim­
plifies to:

For this criterion to hold true Vz, it can be easily
seen that (8) implies invertibility of the mapping R,
i.e. L(z) should be chosen equal to R-1(z), (Moore
et al., 1992). However, most times in practical situa­
tions it is not possible to obtain an exact description
of the inverse (closed loop) system, either because it
does not exist! due to strict properness or nonmini­
mum phase behaviour, or because it is too complex
to describe. It was weIl recognized that the use of
the filter Q in the update law, although destroying
thé perfect tracking property described in Theorem
2.2, robusiifies the learning algorithm with respect
to uncertainty in the dynamics of R, (Moore et al.,
1992, Kavli, 1992).
On the basis of the abovementioned arguments , in
Kavli (1992) the following (heuristic) frequency do­
main design procedure was proposed for the filters
Q and L:

In this paper, contraction mapping theory is used
in convergence analysis and synthesis (Moore et al.,
1992). The following convergence result is obtained
for the general update law (5):

Theorem 2.1 (L 2 convergence) Gonsider the feed­
back configuration of Figure 1, and suppose I, e E
L 2 (0, oo), then the learning iteration (5) converges
to a fixed point I.(t), tE [0,TN ], il

11 Q(z) - L(z)R(z) 1I<Xl< 1, (6)

with R(z) as defined in (1), and 11 . 11<Xl denoting the
matrix oo-norm [equal to the induced 2-norm).

Proof: Gan be [ound either in Padieu and Ss:
(1990) or in Moore et al. (1992). 0

If (6) is satisfied, the fixed points I.(t) and e, can be
obtained by substituting the lower part of equation
(1) into equation (5), and using the fact that in the
limit Ik+l = Ik = I.:

I.(t) = (1 - Q + LR)-lLSr(t),

and

e, = 11 (1 - R(1 - Q + LR)-lL)Sr(t) 112 (7)

11 1 - L(z)R(z) 1I<Xl< 1. (8)

2.3 Design of filters Q(z) and L(z)

Whereas convergence analysis results like Theorem
2.1 have received considerable attention in the liter­
ature, practical guidelines for synthesis of the filters
Q( z) and L(z) are hard to find. In making an ap­
propriate choice for these filters, the following result
is very important:
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Design procedure 2.1

1. Ghoose L(eiw ) ~ R -1(iw), w E [O,wc] , i.e.
choose L to be the best possible (approximate)
inverse of R, up to some frequency wc'

lNote that in the MIMO case, R should be left invertible,
i.e. the plant P should have at least as many outputs as
inputs!



2. Choose Q( é") to be a low-pass filter with cut­
oIJ frequency near Wc, with I1 Q(eiw

) 11= 1,
\fw E [O,wcJ, and I1 Q(eiw

) II~ 0, \fw > Wc'

The idea is, that most real life systems can be de­
scribed rather well at low frequencies, and that the
uncertainty in the description shows up at high fre­
quencies. Now for all frequencies w E [0,wc] with
11 Q(eiw

) 11= 1, the frequency content of e, will be
zero, according to Theorem 2.2, and for w > Wc

the frequency content of e, will he equal to the fre­
quency content of eo, i.e. the serve error without
learned forcing function, (Kavli, 1992).
Although good practical results can he ohtained us­
ing this approach, the design procedure is rather ad
lib, in a sense that it is hard to decide at which
frequency Wc the uncertainty starts to play a role,
i.e. the trade-off hetween performance on the one
hand (e, = 0 for Q(z) = 1) and robustness on the
other hand (Q(z) ~ 0 \fz for which L(z) =I R-1(z)),
is made in a rather heuristic way. In the next two
sections, a novel synthesis procedure for the filters
Q and L is proposed, providing explicit control over
the trade-off between learning performance and ro­
bustness to plant uncertainty.

3 ILC synthesis uamg an H oo ap­
proach

3.1 Novel design procedure

In this section we propose a slight change to learning
rule (5), without altering its generality:

tracking error up to frequency Wc' Now we propose
the following synthesis procedure for the filters Q
and L:

Design procedure 3.1

1. Choose Q(eiw ) to be a low-pass weighting fil­
ter, with prespecified cut-off frequency Wc, s.t.
11 Q(eiw

) 11= 1, \fw E [O,wc ], and I1 Q(eiw
) II~

0, \fw > Wc'

2. For given Q and R, solve L from the following
(sub )optimal H 00 -synthesis problem:

L(z) = arg min 11 Q(z)(I - L(z)R(z)) 1100
LEH~

(11)

In fact, (11) describes the well-known 'model match­
ing prohlem', i.e. for given Q, Lis matched to the
inverse of R. Ohviously, for convergence of the pro­
posed ILC scheme, the minimizing argument L.(z)
of the proposed synthesis procedure should result in

11 Q(z)(I - L.(z)R(z)) 1100= ,. < 1,

according to (10). Note that the smaller '., the
faster f and e converge to their fixed points i, and
e., which can be easily seen from:

11 fk+l - h. 112 :::; ,. I1 fk - fk-l 112:::; ...
:::; ,: 11 h - fo 112, (12)

i.e. by minimizing I1 Q(I - LR) 1100, the highest
convergence rate in L 2 is obtained.

-

3.2 Workable solution to proposed synthesis

To solve the problem described in Equation (11)
for practical situations, we adopt the approach sug­
gested in Balas et al. (1991), based on Doyle et al.
(1989). Therefore, the ILC synthesis problem is re­
formulated in the standard plant format, depicted
in Figure 3. Within this framework, tools are avail-

(9)

for two reasons. First, due to the strict properness
of most real life systems, in practical applications
the filter L will behave as a differentiator at high
frequencies. Therefore, to avoid differentiating of
high-frequent signals, L is also cut off at some high
frequency.
Second, by choosing the update law equal to (9),
the convergence criterion (6) changes to: z w

11 Q(z)(I - L(z)R(z)) 1100< 1. (10)

From an Hoo-controUer design point of view, equa­
tion (10) motivates to interpret the filter Q(z) as a
weighting function for learning performance, i.e.:

u u

111- L(z)R(z) 1100<11 Q-l(z) 1100 .

Consistent with Theorem 2.2, it seems fairly natu­
ral to view the filter Q(z) as a measure for learning
performance: the cut-off frequency Wc has to he cho­
sen as large as possihle, in order to guarantee zero
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Fig. 3: 'Standard plant' configuration of general­
ized plant G and controller K, see Balas et
al. (1991).

able for computing a stabilizing K that minimizes
11 Tz w 11 00 (with Tz w being the transfer function from



W to z), using a gamma iteration, see for example,
Doyle et al. (1989), Zhou et al. (1996) . To formu­
lat e the ILC synthesis in this standard plant frame­
work, this transfer function from w to z is consid­
ered, given by the lower linear fractional transfor­
mation (LFT) of G and K. Hereto, Gis partioned
as:

G := [GI GI2 ] ,
G2I G2

according to the inputs {w, u} and the outputs
{y , z }. Now the lower LFT of G and K, denoted
Fl (G,K), is defined as :

FI(G,K) := GI + G12K(l - G2K)-IG21 = Tz w '

(13)
Clearly, (11) can be described in this format, by
taking:

K = Land G := [~:I ~:2] = [_~ ~] .
(14)

According to (13), this choice for G and K results
in the computation of a stabilizing L, such that
11 Q(I - LR) 1100 is minimized. In fact, the signals
z and w rep resent the signals 1k+1 and i» respec­
tively. Moreover , due to the fact that the pure delay
line of length N, between 1k+1 and Ik, has magni­
tude equal to 1, the small gain theorem, requires
11 Tz w 1100 =11 Q(l - LR) 11 00 to be less than 1
for guaranteeing stability of the closed loop; not re­
markable, this requirement is precisely the conver­
gence condition (10). Figure 4 shows the ILC design
problem, described in the format of Figure 3.

~G- - - - - - - - - ~

1k+1 I I Ik
I I

I I
I I
I I

e k I I

I I
I I

f[- - - - ~

L-----:--+lL (z)~----'

L J

Fig. 4: 'Standard plant' configuration for ILC syn-
thesis problem.

It should be noted that for solution of the synthesis
problem using the standard plant format, the plant
G is described in state space coordinates:

z = G2x + D 2I W + D 2u.

Now solving the ILC synthesis problem using the 2
coupled Riccati equations, see Doyle et al. (1989) ,
will in general result in a singular H 00 synthesis
problem, because the matrices D I2 and D 2I do not
have full column and row rank, respectively; this
is due to the fact that the transfer functions Q( z)
and R( z ) are not proper, respectively. However, this
problem can be easily cured, by slightly perturbing
the original problem, (Stoorvogel, 1990) .

4 Synthesis of a.robust learning con-
troller

One advantage of Design Procedure 3.1 with re­
spect to Design Procedure 2.1, is the fact that for
a given filter Q, the best possible L2-convergence is
obtained, since (10) is actually minimized, remind
equation (12); hence there is no other filter L that
can obtain a higher convergence rate w.r .t. a given
Q. Another advantage of the newly proposed syn­
thesis procedure, is the fact that this setup provides
a suitable framework for designing real multivariable
learning controllers; interaction is explicitly taken
into account in the design of the filters Q and L ,
and hen ce learning performance is guaranteed for
the multivariable system.
Another, even more important, advantage, is the
fact that formulating the ILC synthesis problem in
the H oo framework, allows the designer to explic­
itly take uncertainty, with respect to the transfer
function R, into account. For example, suppose the
real closed loop system can be described by some
nominal transfer function Ro(z) and some output
multiplicative uncertainty, specified by a stabie and
stably invertible weighting function Wo (z):

R(z) := {(l +Wo(z)D.(z))Ro( z) 1 11 D.(z) 1 1 00~ I},
(15 )

then the newly proposed ILC synthesis procedure
can be easily extended by choosing:

K = Land G = [ R~ ~ ~] , (16)
- Ro Wo

and solving K by mmmusmg Tz w = FI(G,K ).
However, taking the lower LFT of these extended
G and K gives:

F/(G,K) = [~o ~] + [~] L[-Ro Wol

= [Q(l ~oLRo) QLoWo ] , (17)

y

Ax + BIw + B 2u

GIx + DIw + D I2U
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and hence:

11 r.; 1100 2: I1 Ro 1100 .
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to Design Procedure 2.1, henceforth denoted as the
nominal ILC, and the ot her designed according to
Design Procedure 4.1, denoted as the robust ILC.
Design of both learning controllers requires knowl­
edge of the transfer function R from f to e. A com­
mon approach for mechanical servo systems to ob­
tain this knowledge is identification in the frequency
domain, see de Callafon et al. (1996). Figure 5
shows a magnitude Bode plot of frequency domain
data, obtained with a Hewlett-Packard signa! an-

10'

10'
Frequency(Hz]

(b)

Since in practical situations it is likely that 11 Ra 1100
is greater than one, this problem can in general not
be solved using the standard H oo synthesis proce­
dure. This is not surprising, sin ce taking robustness
against specified uncertainty into account, turns this
ILC synthesis problem into a robusi performance de­
sign problem, which cannot be solved in general.
Still it might be possible to solve the synthesis prob­
lem, using the struciured singular value (J.L), see for
example Balas et al. (1991); exploiting the diago­
na! structure in the mapping from z to w, J.L can
be computed of the matrix M, the lower LFT of G
and K given in (17), for a finite number of frequen­
cies. Now a successive iteration can be performed, of
sealing the off-diagonal elements of M (D-scaling by
means of frequency domain curve fitting on J.L(M))
and solving the (sub)optima! H oo-synthesis problem
for the scaled system. Although convergence of this
so-called D-K iteration is not guaranteed, in a large
number of cases good results are reported, (Zhou et
al., 1996).
Now it is quite natural to proceed with maximizing
the learning performance specified in Theorem 2.2,
by iterating over the bandwidth Wc of the filter Q.
Hereto, we propose the following design procedure:

Design procedure 4.1

1. Model the transfer function R as a nominal
model together with an upper bound on the (out­
put multiplicative) model uncertainty, according
to (15).

2. Choose Q( eiw ) to be a low-pass weighting filter,
with cut-off frequency Wc, s.i. 11 Q(eiw ) 11= 1,
'</w E [O,weJ, and 11 Q(eiw

) II~ 0, '</w > Wc'

3. For given Q and R, find an L that minimizes
(17) using the proposed u-sunthesis.

4· If an L can be found, resulting in 11 T z w 11 00 < 1,
increase the bandwidth Wc of the filter Q and
again perform step 3; else decrease Wc' Perform
steps 2 and 3 iteratively, until the maximum
obtainable Wc has been reached.

5 Application to an xyc/>-stage

In this section, the proposed synthesis procedure is
applied to an experimental setup of an xytP-stage, a
high accuracy positioning mechanism. The stage is
moved repeatedly, according to some smooth trajec­
tory; for the experiments in this paper, a 3r d order
polynomial was used, making a lcm step in approx­
imately 0.12 seconds, with t!.T = 3e-4 s,
For this system, two learning controllers have been
designed and implemented: one designed according

Fig. 5: (a) Magnitude Bode plot of frequency re­
sponse data of R with a 4th order nomi­
na! model (b) relative difference between the
frequency response data of Rand nominal
model, together with an upper bound.

alyzer, together with a simpIe 4t h order nomina!
model fitted to this curve; the lower part of this
figure shows the absolute relative difference between
the complex frequency domain data and a frequency
response of the nominal model, together with an up­
per bound on this output multiplicative error, given
by:

()
3.42z3 - 10.3z2 + 10.3z - 3.42

Wo z = 3 •
Z - 2.29z2 + 1.74z - 0.44

The filter Q is chosen as a low-pass 4th order But­
terworth filter with cut-off frequency Wc = 100Hz.
According to Design Procedure 2.1, the filter L for
the nomina! ILC is simply obtained by inverting the
nominal 4th order model of R, resulting in a conver­
gen ce rate of -r. =11 Q(I - LR) 1100= 0.12; Figure 6
shows a Bode plot of this filter. Also shown in this
figure, is a Bode plot of the robust filter L, obtained
via Design Procedure 4.1; the performed J.L-synthesis
started with a value -r. = 1.38, and converged to a
value -r. = 0.98 after 5 iterations. It can be seen
from this Figure that the robust learning filter is
somewhat more 'cautious ' at all frequencies, in a
sense that it has a smaller gain.
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rate and robustness .
Despite its slower convergence, an important advan­
tage of the robust ILC is the fact that it has been
designed for all systems characterized by the 4th
order nominal model and the upper bound on the
multiplicative model uncertainty. Hence, it is likely
that the robust ILC will give the same learning per­
formance for other systems that can be described by
the same class of systems, for example other xyf/>­
stages of the same typ e as the one used for the ex­
periments shown in this paper.
Finally, it was inves tigated that the bandwidth of
the filter Q could be increased up to W c ~ 170Hz , to
obtain a final value of "I. = 0.99, using Design Pro­
cedure 4.1; for higher values of Wc , the JL-synthesis
did not converge to a value below 1 for the specified
uncertainty set. Not surprisingly, the nominal ILC
diverged for values W c > 170Hz, indicating the re­
liability of the chosen uncertainty set Wo, and the
usefulness of the proposed robust synthesis proce­
dure.

10'

10'

".
" .

' .
_.-.-._.-.-

10'
Frequency [Hz]

10'
Frequency {Hz]

10-' '-;-- - - - - - -----'-;;--- - - - - - ......J
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100
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10'

-100

Fig. 6: Bode plot of nominallearning filter and ro­
bust learning filter L, designed according to
Design Procedures 2.1 and 4.1 respectively.

With these two filters , a learning iteration was per­
form ed, according to (5) . Figure 7 shows the re­
sulting error signals aft er convergence of the ILC

200,--- - - - - - - .......,- - - - - - - - .......,

1 000r---~-----,----.___ --~--__,
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600
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Since most schemes on iterative learning control an­
alyze their convergence in an L 2 sense, this paper
has shown how the design of an it erative learning
controller (ILC) can be generalized to the design
of an L 2 induced (i.e. an H oo ) , (sub)optimal con­
troller, by choosing an appropriate weighting func­
tion for learning performance, and reformulating the
ILC synthesis problem in the standard plant format.
Besides the advantages of maximizing the L2 con­
vergence rate and allowing a real multivariable ILC
design, an important advantage is the fact that un­
certain system knowledge can be incorporated ex­
plicitly into the design procedure, by specifying ap­
propriate uncertainty weighting functions, turning
the nominal ILC synthesis problem into a robust
performance synthesis problem, which is hard to
solve in general. However, using a JL-synthesis ap­
proach, most times this robust ILC synthesis prob­
lem can be solved, by performing a so-called D-K
iteration. This allows the designer to maximize the
learning performance for a specified class of systems.
Application of this synthesis procedure on a reallife
experimental setup of an xyf/>-stage, has shown the
practical ability of the proposed method.

0.2

- NominallLC
. _ . - Robust ILC

0.150.1. 0 .05

-600

- 800

_1000 l.---:-'-,-----~--__:_'_::_--_:'::--.....J
o

Fig . 7: Error signals e. (t ), t E [0,3e- 4 , •• • , 0.24], of
nominal and robust ILC, after convergence.

The main difference between the nominal and ro­
bust ILC is the convergence rate of both schemes
h. = 0.12 v "I. = 0.98); whereas the nominal
ILC converged within 3 iterations, the robust ILC
needed 10 iterations to converge to its fixed point ,
clearly showing the t rade-off between convergence

-400

200

schemes. This figure shows that both the nomin al
and th e robust ILC tremendously reduce the servo
error to approximately the same level of ±600nm
during the transient, and ±100nm thereafter , which
is about 20 times smaller than the error without
ILC . The fact that this result holds for both the
nominal and the robust ILC, is because this reduc­
tion level is mainly determined by the filter Q, ac­
cording to Theorem 2.2; apparently, the bandwidth
Wc = 100Hz of the filter Q is high enough to give
this large error reduction.
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discussions on the ILC subject.
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Robust generalized H 2 control for uncertain and linear
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Abstract. In this paper we extend known analysis and synthesis results for robust
generalized H 2 performance to general full block scalings and provide a full solution to
the corresponding linear parametrically varying control problem. This is only possible
if scheduling the controller not just with a copy of the plant uncertainties but with a
nonlinear function thereof.

Keywords. Robust H 2 control, (integral) quadratic constraints, full block scalings, linear
parametrically varying systems.

(2)

1 Introduction

Recently linear systems

x = .4(7r(t))x + Ê(7r(t))u + G(7r(t))w
y = ê(7r(t))x + D(7r(t))w (1)
Z = H(7r'(t))x + Ê(7r(t))u + F(7r(t))w

which dep end on a time-varying a priori unknown
but on-line measurable parameter 7r(t) which is
contained in some given set TI have gained a lot
of interest (Apkarian and Gahinet, 1995; Apkar­
ian et al., 1994; Becker et al., 1993; Becker and
Packard, 1994; Packard, 1994; Scorletti and El
Ghaoui, 1995; Scherer, 1995). These so-called lin­
ear parametrically-varying (LPV) systems appear in
robustness problems, in gain-scheduling techniques
for nonlinear systems, or in synthesis problems for
nonlinear systems that can be described by a differ­
ential inc1usion (Boyd et al., 1994). Given an LPV
system, the goal is to construct a controller

Xc = .4c(7r(t))xc + Êc(7r(t))y

U = ê c(7r(t))xc + Dc(7r(t))y

~This paper is presented at the 35th IEEE Conference on
Decision and Control, 11-13 December 1996, Kobe, Japan.
Copyright of this paper remains with IEEE.

SThe author would like to thank Samir Bennani, Dehlia
Willemsen and Edwin Njio (all fr om Delft University of Tech­
nology) for many helpful discussions.
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which not only uses the measured output y but,
in addition, the on-line measured actual parame­
ter 7r(t) as its information in order to exponentially
stabilize the system (1) and to provide good per­
formance properties expressed as a property of the
channel w -+ z. Up to now, the performance objec­
tive was mostly specified as reducing the L2-gain

of the channel w -+ z below a certain a priori
given level ""t, the so-called Hoo-problem for LPV
systems (Apkarian and Gahinet, 1995; Apkarian et
al ., 1994; Becker et al., 1993; Becker and Packard,
1994; Helmersson, 1995; Packard, 1994; Scorletti
and El Ghaoui, 1995; Wu, 1995). The correspond­
ing problem for the LQG criterion has been dis­
cussed in Wu (1995) and Wu and Packard (1995)
and the mixed H2/H oo problem is considered in
Scherer (1995) .
One of the approaches to solve this problem pro­
ceeds as follows: Represent (1) using a linear frac­
tional transformation as

(3)

where .6. : TI -+ R/< xl is a possibly nonlinear known



-=

the robust stabilization problem, it has been pointed
out (Rantzer and Megretski, 1994; Iwasaki et al.,
1995) that it is possible to use a much larger class of
scalings defined via (integral) quadratic constraints .

The purpose of this paper is twofold. Firstly we
want to show that it is possible to approach many
other robust performance problems using this gen­
eral class of scalings, including robust H 2-criteria
(Iwasaki, 1993 ; El Ghaoui and Folcher, 1996). Along
the lines as described e.g. in Boyd et al. (1994),
one just needs to combine the Lyapunov shaping de­
sign technique with an uncertainty description using
quadratic constraints. This leads to less conserva­
tive results than those derived in Boyd et al. (1994)
via the S-procedure. As a paradigm example we
choose the L 2 -t L oo gain of the channel w -t Z as
a performance measure which has been called gen­
eralized H 2 norm (Rotea, 1993). However, the tech­
niques easily extend to the other problems consid­
ered in Boyd et al. (1994) and Scherer et al. (1995).
Similarly as in Iwasaki et al. (1995) for the robust
stabilization problem we derive the corresponding
analysis and synthesis results for uncertain systems .

Secondly, in the spirit of Packard (1994), Apkarian
and Gahinet (1995), Helmersson (1995), and Scor­
letti and El Ghaoui (1995), we will fully solve the
LPV control problem for the general class of scalings
Q, R , S that are simply described by

for all 7T E II, and for the generalized H 2 perfor­
mance measure. We do not need to assume any
additional specific structure on the function L\(7T)
(such as linearity) or on the scalings Q, R, S (such
as being block-diagonal) as done before. It is not
difficult to see that this set of scalings admits a
nice description in terms of finitely many LMIs if
ti.(II) is a convex polytope with finitely many ex­
treme points. (Note that this amounts to aspecific
structure of the image of II under L\ and not neces­
sarily of the parameter set II itself.) As an essential
new ingredient it will turn out that the controller
scheduling function L\e (7T) cannot be chosen equal
to L\(7T) but, even in the simple case (4) and if II is
a box, it has to be taken as a nonlinear function of
L\(7T) that can be explicitly constructed.

Thoroughout the paper system are considered on
the time-interval [0,00). L2 denotes L2'[O, 00) (for
some n) with norm IIxll~ = foOOx(t)Tx(t)dt and L oo

denotes L~[O, 00) (for some n) with norm Ilxll~ =
esssuPt>ox(t)Tx(t). The function sym(X) = X +
X T is used to shorten the layout.

(6)

X A B 0 G G2 0 X

Y C 0 0 D D 2 0 U

We 0 0 0 0 0 Ikc Ze

Z HE 0 F F12 0 W

Z2 H 2 E 2 0 F2 1 F22 0 W2
(7)

Ze 0 o Ilc 0 0 0 We

such that, for all parameter curves 7T : [0, 00) -t

II , the closed-loop system is exponentially stabie
and has a certain desired performance property de­
scribed using the channel W -t z.
Note that the system (3) controlled by (5)-(6) can
be also obtained by connecting

that is scheduled as

function. Typically, if A(7T), Ê(7T), etc. in (1) are
rational functions of 7T E Rm. without pole in 0, one
can obtain this representation with

where Ij denote identity matrices of varying size.
The description (3) then resembles an uncertain sys­
tem as considered in JL-theory with real time-varying
parametrie uncertainty. In this case II is often as­
sumed to be a box in R"' centered around O.
The controller is then assumed to admit the same
structure: It consists of an LTI system

with a possibly nonlinear function ti.e : II -t R k c x Ic.

The LPV synthesis problem is posed as follows:
Find A e , Be, Ce, De and a function

with the LTI controller (5).
If dealing with the L 2 gain as a performance mea­
sure, if L\(7T) admits the special structure (4), and if
choosing L\e(7T) = L\(7T), the resulting LPV problem
hence turns out to be a robust H 00 problem for static
time-varying uncertainties. The first approaches to
this problem were restricted to solve the correspond­
ing upper bound JL-synthesis problem with block­
diagonal constant D-scales (Packard, 1994; Apkar­
ian and Gahinet, 1995). Recently it has been shown
how to include the block-diagonal G-scales to refiect
the fact that the parameters are real-valued and to
reduce conservatism (Fan et al ., 1991; Helmersson,
1995; Scorletti and El Ghaoui, 1995). However, for
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, W2 = À(t)Z2 (8)

2 Analysis for uncertain systems

Suppose that the uncertain system is described as

[ ~] = [~ ~ ~2] [:]
Z2 H 2 F21 F22 W2

with the time-varying (continuous) perturbation
À(t) . Here w -+ z is the performance channel and
W2 -+ Z2 the uncertainty channel. The class of un­
certainties is specified through a family of quadratic
constraints (Rantzer and Megretski, 1994) defined
by a set P of scalings P that are tacitly assumed to
have the structure

P = p T = [~ ~] , Q < 0, R> 0

with Q / R of the size of W2 / Z2 respectively. Indeed,
we just assume that all uncertainties affecting the
plant satisfy the quadratic constraints

[À;t)]T p [ÀY)] > 0 (9)

for all PEP and for all t ~ O.
As a typical example we mention polytopic uncer­
tain ty. Suppose À(t) is known to be contained in a
convex polytope with finitely many extreme points:

À(t) E conv{À1 , ... , À e5 } for all t ~ O.

Then 'P is simply described as Q < 0, R > 0 and
T[~j] P [ ~j] > 0 for all j = 1, ... , 8.

Due to Q < 0, it is easily seen that (9) indeed
holds for all uncertainties in the convex hull. Hence,
in this case, the set of scalings Padmits a nice
parametrization in terms of finitely many LMIs.
The goal of this section is as follows: Character­
ize whether (8) is robustly exponentially stabie and
whether the gain of L 2 3 w -+ Z E L co is robustly
smaller than I' Ir both properties hold we say that
the system has robust generalized H 2 performance

level I '
It is very easy to derive the analogue of the con­
stantly scaled bounded real lemma (Rantzer and
Megretski, 1994; Iwasaki, 1993) for the robust gen­
eralized H 2-crit erion .

Theorem 1 lf there exist X > 0 and PEP such
that

[
ATX + XA XG XG2] [0 Hf] [0 Hf]T

GT X -I 0 + 0 Fit P 0 Fit < 0,
Gr X 0 0 I F~ I F~

[~~;] > 0,

(10)
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then the system (8) has robust generalized H 2 per­
formance level I'

To obtain the results in Section 4 it is crucial to re­
formulate the first inequality in (10) in a symmetrie
fashion that seems new and that reveals the relation
of the general scalings to the standard D, G scalings
used in JL-theory. Based on the formulas in the ap­
pendix we transform the scalings as

_ [ U W] _ [Q - SR-
1ST

SR-I]
P -+ T - WT V - R-1ST _R-1

(11)
and denote the image of P under this bijective
transformation as T. Then (9) is equivalent to

[ UW]-1 [ 0 À(t)] < 0 (12)
W T V - À(t)T 0

and (10) is equivalent to

(13)

Corollary 2 Suppose there exists an X > 0 and

some [:T~] E T with (13). Then the system

(8) has a robusi generalized H 2 performance level

I'

Note that the inequality (12) describing the uncer­
tainty is affine in T - 1 and the inequality (13) is
affine in T itself. Hence the proposed sealing trans­
formation has a linearizing effect on these inequal­
ities. Numerical benefits of this transformation for
synthesis (Section 3) remain to be explored.
Similar results can be obtained for the following per­
formance criteria (Boyd et al., 1994; Scherer et al. ,
1995):

• General quadratic constraints

(CO [W(t)] [Qp Sp] [w(t)] dt < 0
Jo z(t) S~ s, z(t) -

with Qp s 0, n, ~ 0 which includes L2-gain

and dissipativity requirements.

• A robust bound on the H 2 norm. Here the
H 2 norm is defined as follows: Let the distur­
bance w be absent. Moreover, let zj denote the
output of the system for the initial condition
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x(O) = Gei with the standard unit vectors ei'
Then the squared H 2 norm is defined as

~ lOC zi(tf zi(t)dt.
1

• A robust bound on the Loc :1 w -. Z E Loc gain
of the system.

• Mixed criteria as presented in Boyd et al.
(1994) , El Ghaoui and Folcher (1996) and
Scherer et al. (1995).

We have extended the results of Rantzer and
Megretski (1994) and Iwasaki et al. (1995) to ro­
bust performance problems that can be expressed
in terms of time-invariant quadratic Lyapunov func­
tions. Moreover , although in spirit quite similar to
Iwasaki et al. (1995), Boyd et al. (1994), El Ghaoui
and Folcher (1996), it generalizes these results in
two respects: Firstly, we allow for quite general un­
certainty structures not restricted to block-diagonal
matrices. Secondly, even if the uncertainty is block­
diagonal, we allow for full block scalings P. This
avoidanee of the channel-wise application of the S­
procedure leads to less conservative analysis results.

[~ ~ (HY :~Mf] > o.
H HY +EM "11

With nonsingular M l and M 2 sucti that I - XY =
M, M 2 , the controller

Cc = MM;l, Be = MilL

Ac = Mil [K - X AY - MlBeCY - X BCeM2]M2-
l

renders the robusi generali zed H 2 performance level
of the closed-loop system smaller than "I.

Contrary to previous results in Iwasaki et al. (1995) ,
we end up with synthesis inequalities that are affin e
in all variables, includinç the scalings. Nonconvexity
enters the problem via the constraint set T which
does not admit an nice LMI parametrization.
Due to the specific structure of the synthesis LMIs
one can easily eliminate the parameters K and L
(Scherer, 1995). Let us, instead, briefly turn to the
state-feedback problem C = I, D = 0, D 2 = O.
Since, for any X, the left-upper block of the first
synthesis LMI can be arbitrarily assigned, the in­
equalities reduce to

Note that, in this case, the controller can be chosen
as u = My-lx and is, hence, statie.
Dualization (appendix) leads to the inequality

[ SYm(A~/ BM) ~I ~] + [~2 ~] ft [~2 ~]T< 0

H2Y + E 2M 0 0 0 I 0 I
(16)

- [Q S]for P = ST R which is equivalent to (14) . For

polytopic uncertainties, the set of transformed scal­
ings ft admits the LMI description Q> 0, R < 0,

(14)

(15)

< 0,

[
Y (HY + EM)T]

I
> O.

HY+EM "I

De = 0 and F = 0, F12 = 0, F 2 l = 0, F2 = O.

3 Synthesis for uncertain systems

Let the system be described by (3) with tl.(-rr(t)) re­
placed by tl.(t). In the synthesis problem we search
for a controller

to achieve robust generalized H 2 performance of
level "I for the resulting closed-loop system. Only
for notational simplicity we assume that

Through a suitable change of the controller pa­
rameters it is immediate to obtain from Corollary
2 the required synthesis inequalities and a recipe
for constructing a controller (Masubuchi et al.,
1995; Scherer et al., 1995).

Theorem 3 Suppose there exist X, Y, K , L, M

and [:T ~] E T satisfying the two inequalities

sym(X A + LC) * * * *
KT + A sym(AY + BM) * * *

(XG + LD)T GT -I 0 0 < 0,
' (X G2 + LD2 ):l G~ 0 U W 1

H 2 H 2Y + E2M 0 W V

[
I ]T _ [ I ] .tl.f P tl.f > 0 for all J = 1, ... ,8.

Hence using (15) and (16), the state-feedback gen­
eralized H 2 control problem for uncertain systems
is reduced to solving a genuine LMI problem. This
extends Iwasaki (1993) and El Ghaoui and Folcher
(1996) to general scales and Iwasaki et al. (1995) to
the generalized H 2-cri terion.
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4 Synthesis for LPV systems

With a (compact) set Il and a (continuous) function
D.. : Il -+ n lex l , t he underlying system is described
as (7) wher e 7l" (t ) is an arbitrary (continuous) cur ve
wit h 7l"(t) E Il. The LPV synthesis problem is posed
as follows: Find an LTI controller (2) and a (con­
tinuous) function D.. c : Il -+ nlec xlc such that the
syste m

[
X] [ A 9 ge] [X]Z = 1t00 w,
Ze 1te 0 0 We

that results from (7) controlled with (5) has robust
generalized H 2 performance level "I for all 7l"(t) E Il.
We are now ready to formulate the core result of this
paper whose proof cannot be included for reasons of
space.

Theorem 4 Th e next two statements are equiva­
lent.
1) There exist a controller (2), a funct ion D.. c : Il -+

n lec Xlc , a sealing e; = [~f ~:], a. < 0, Re >0,

and a matrix X > 0 such that

> 0 lor all 7l" E Il

(17)
and

T

[
Sym(AY + BM) G *] [G20] _ [G 20]

GT - 1 0 + 0 0 P 0 0 < 0,
H 2Y + E2M 0 0 0 I 0 I

[
; ~ (HY ~:M)T] > o.
H HY +EM "IJ

Let us now comment on how to apply this result for
solving the LPV control problem. Trivially, the set
of all scalings with (19) is convex. In a first step
one has to solve the three synthesis LMIs for X, Y,
L, M, P, P over these convex constraints. This is
indeed possible with standard algorithms if D..(Il)
is a polytope since then the sets of scalings P, P
satisfying (19) admit descriptions in terms offinitely
many LMIs (Section 2). Note that one can even
directly minimize the performance level "I (Gahinet
et al., 1994) . In particular, this is assured if Il itself
is a polytope and D.. (7l") is affine in 7l". A special case
is (4) where 7l" is contained in a box (containing 0) .
Compared to Helmersson (1995) and Scorletti and
El Ghaoui (1995), we even then allow for a larger
class of not necessarily block-diagonal scalings. This
reduces conservatism at the expense of increasing
the number of synthesis LMIs due to the implicit
description of the scalings.
Hence one can determine the achievable perfor­
mance level, and it remains to construct a suitable
controller. For this purpose we assume that the syn­
thesis LMIs have been solved for X, Y, L, M , P, P.
Due to Q < 0 and R > 0, P is nonsingular , and the
same is true of P. We can as weIl assume w.l.o.g.
that P - p -I is nonsingular. Let

[

Sym(X A + LC ) **] [OH!] [OH!]T
(XG+LD)T - 1 0 + 0 0 P 0 0 <0,

(XG 2 + LD 2 ) T 0 0 I 0 I 0

(18)
2) There exist matrices X , Y , L , Mand scalings

P = [~ ~], P= [t~] ,Q,R <O,R,Q >O,

T

[
ATX + XA X9 Xge] [01t;] [01t;]

9T X - I 0 + 0 0 r, 0 0 < 0,
9'[ X 0 0 I 0 I 0

[X1tT]1t "11 > o.

[

- Q*S *]* * * *
ST * -R * .
* * * *

p - I =e

kc and Ic

with dimension (k + kc) x (I + Ic) that has the three

properties [ Q Q12] < 0 [R R12] > 0, and
Q2I Q22 ' R 2 I R 22

be the number of negativejpositive eigenvalues of
P - p -I respectively. It is possible to prove that
one can construct an extension

(The proof of this fact is nontrivial but construc­
tive. It shows that kc and Ic are indeed minimal;

(19)

T

[D..~7l")] P [D..~7l")] > 0,

[D..(~f]T P[D..(~)T] >0

with

lor all 7l" E Il and
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there is no smaller extension which has all the de­
sired properties. If the scales are block-diagonal,
this extension can be performed block-wise and is
easier.)
Due to (19), it is then possible to determine a func­
tion Ä e ( 11") that satisfies (17) . With

(partitioned in the same way as Pe ) , the function

[u w ] [Uu Wu+ Ä(1I")] - 1 [W12] _W
21 21 * Vu V12 22

is a possible choice. Note that, in general, and con­
trary to what is done in Packard (1994), Apkarian
and Gahinet (1995), Helmersson (1995), Scorletti
and El Ghaoui (1995), Äe(1I") differs from Ä(1I"), even
for the standard structure (4)! Once the sealing P,
is constructed it remains to apply Theorem 3 for the
system (7) and the transformed version Te of the
fixed sealing P; to determine Ac, Be, Cc by solving
an LM1.
This controller is guaranteed to satisfy (18) for some
X > O. Since Pe satisfies (17), we can finally infer
from Theorem 1 that the c1osed-Ioop system has a
robust generalized H 2 performance level Î - the LPV
problem is solved.

5 Conclusions

The analysis and synthesis results for achieving ro­
bust generalized H 2 performance with general scal­
ings are pretty straightforward extensions of well­
established ideas. In this paper we provide a fuH
solution of the corresponding problem for LPV sys­
tems what extends previous specialized results in
a nontrivial fashion. As a crucial and structurally
interesting step one has to schedule the controller
with a function that is generally different from, and
actually a nonlinear function of, the parameters of
the plant.
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Appendix

Suppose Q, R < 0, ij, R > o. Then the relations

. [Q S] [_ij S ]-1
imply ST R = ST - R and

[ AB] [0 CT] [Q S] [0 I] < 0,B T 0 + I DT ST R C D

{::::::::}

[~
B CT]
U DT+W < 0,

D+WT V
{::::::::}

[ A CT] [ B 0] [9 ~] [B
T

D
T]

< 0,
C 0 +. D I ST R 0 I

as well as

[~r[~~][~]>o
{::::::::}

[ U wr 1

[0 ~] < 0W T V + ~T 0
{::::::::}

[ I r [ij S] [ I ] >o.
~T ST R ~T
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Abstract. This paper discusses an approach to the control of Linear Parametrically
Varying (LPV) systems that can take the rate of parameter variations into account and
also guarantees robustness against parametrie and dynamic uncertainties. To illustrate
the technique we consider a missile control problem that has been extensively studied in
the literature. For this highly nonlinear model, the objective is to design a controller with
guaranteed performance robustness over a given operating range.
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1 Introduetion

The classical approach to gain scheduling relies on
the interpolation of controllers designed for frozen
parameters as, e.g., the operating conditions. This
procedure, even if seemingly working well in prae­
tice, does not take the time-variations of the in­
volved parameters into account. In particular, one
cannot provide a priori stability and performance
guarantees, as shown in Athans and Shamma (1992)
for linear systems that depend on a time-varying pa­
rameter . Such systems are called linear parametri­
cally varying (LPV). In the early nineties (Packard,
1994; Apkarian and Gahinet, 1995) it has been ob­
served that the techniques of robust control can
be generalized to arriving at a systematic design
procedure for such LPV systems. These solutions,
however , lead to the desired performance guaran­
tees even if the rate of change of the parameters
is unbounded. A refined approach which will be
pursued in this paper takes bounds on this rate of
change into account (Wu, 1995; Apkarian and Ad­
dams, 1995; Willemsen, 1996; Scherer, 1995). In ad-

tAuthor to wh om correspondence should be addressed.
§Mechanical Engineering Systems and Control Group,

Delft University of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands.
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dition, our technique allows to incorporate robust­
ness properties into the design procedure.

The paper is structured as follows. We first provide
the description of the uncertain LPV system. Then
it is shown how the structural knowledge about the
uncertainties is refiected in suitable classes of so­
called multipliers or scalings. This leads to the anal­
ysis characterization of stability and robustness of
the LPV systems in terms of a scaled differential
Bounded Real Lemma. For LPV controller synthe­
sis, we apply a linearizing transformation of the con­
troller parameters (Masubuchi et al., 1995; Scherer,
1995) . Introducing basis functions and gridding
the parameter set will result, for fixed scalings, in
finitely many linear matrix inequalities that can be
readily solved (Gahinet et al ., 1994). If optimizing
as well over the scalings, we have to resort to a D­
K -like iteration (Balas et al. , 1993) .

The theory is illustrated on a missile benchmark
problem as studied in Rugh et al. (1993) and Wu
(1995). In contrast to Wu (1995), which consid­
ers the nomin al performance LPV problem, we also .
address robust performance issues. Starting from
a given nonlinear model, we obtain an uncertain
LPV representation accessible for design. Then
the design specifications are translated into suitable



weighting functions as in the H",,-approach. We end
up with an interconnection structure and perform
the iteration that is comparable to the D-K pro­
cedure in jL-synthesis (Balas et al., 1993). Finally,
we validate the robust LPV controller by nonlinear
simulations.

2 LPV design

together with (2), where

A(p) = [A(P) + B(p)Dc(p)C(p) B(P)Cc(P)] ,
Bc(p)C(p) Ac(p)

g( ) = [G(P) +B(P)Dc(P)D(P)]
p Be(P)D(p) ,

1t(p) = [H(p) + E(p)Dc(p)C(p) E(p)Cc(p) ] ,

F(p) = [F(p) + E(p)Dc(p)D(p) ] .

2.1 LPV systems

The uncertain LPV system is described by 2.2 Analysis of uncertain LPV systems

where, with a suitable partition of the signals w =
[ T T T]T d _ [T T T]T thWo ,WI , ... ,wk an Z - Zo, Zl , ... 'Zk , e
uncertainty enters as

x = A(p)x + G(p)w + B(p)u
Z = H(p)x + F(p)w + E(p)u (1)
y = C(p)x + D(p)w

and Wo f-+ Zo is the channel to describe the per­
formance specification (Figure 1). The parameter
p(t) and its rate of variation p(t) are assumed to be
contained in the a priori given compact sets Pand
P; respectively. For controller design the parameter

Wi = Llizi, i = 1, ... ,k, (2)

In this section we will provide an analysis result
that characterizes robust stability and robust per­
formance for the uncertain LPV system (4), (2).
For that purpose we need to introduce scalings
that characterize the nature of the uncertainties Lli
affecting the plant in terms of integral quadratic
constraints (IQCs) (Rantzer and Megretski, 1994).
Hence, for each channel, we define a collection of
matrices Qi, Si, n, such that the IQC

fT [w~]T [Q~ S~] [w~] dt ~ 0 (5)
Jo z, S, R, z,

holds for T ~ 0 and for all signals Wi, z, of finite
energy that are related by Wi = Llizi. As examples,
we mention

,..-----1 ~ k f4--------,
• time-varying parametrie uncertainties Wi(t) =

[ói(t)I]zi(t), IÓi(t)! s 1:

r---~I
• dynamic uncertainty Llj : L2[0, 00) f-+ L2[O, 00)

with gain not larger than 1:

Qi = q;J < 0, R; = -Qi, Si = O.

I---_ZO

Fig. 1: LPV system with uncertainty and a perfor­
mance channel

p(t) is assumed to be on-line measurable. Hence,
LPV controllers take the form

We take the L2-gain of the channel Wo -4 Zo as a
measure for performance. The L2-gain of this chan­
nel is bounded by the value "I if the IQC (5) holds
with the fixed sealing

1
Qo = --I, Ro = 'YI, So = O.

"I

Finally, we collect the scalings into block-diagonal
matrices as Q = diag(Qo,Qll ... ,Qk), R =
diag(Ro, Rl,"" R k), and S = diag(So, SI,"" Sk)'

Now we are ready to provide the characterization
of robust stability and robust performance in terms
of the solvability of a so-called scaled differential
Bounded Real Lemma whose proof is straightfor­
ward (Helmersson, 1995; Scorletti and El Ghaoui,
1995; Scherer, 1995; Willemsen, 1996) . For nota­
tional convenience we define sy(M) := M + M T .

(4)

(3)

~ = A(p)ç + Q(p)w
Z = 1l(p)ç + F(p)w

Xc = Ac(p)xc + Bc(p)y
u = Cc(p)xc + Dc(p)y

L.-" I--

M(p)

such that the resulting c1osed-loop system is de­
scribed by
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Theorem 1 Suppose there exist smooth
and bounded functions X(p), Q(p), R(p), S(p) on
P sucli that

X(p) > 0

[

sy(X(p)A(p» + X'(p,p) X(p)Q(p) + 1iT(p)S(p). ]
gT(p)X(p) + ST(p)1i(p) sy(J"T(p)S(p» + R(p). < 0

Q(p)1i(p) Q(p)J"(p) Q(p)
(6)

holds for all pEP and p E Pç. Then, for all pa­
rameter curves (p(t), p(t)) E P x P; and for all un­
certainties (2), the system (4) remains stabie and
the L 2 -gain of the performance channel is bouruled
by, .

Here X' (p,p) is defined as

m ax
X'(p,p) = L --g-:(P)Pi.

j =l p,

Hence we have to find a parameter dependent Lya­
punov function and parameter dependent scalings to
satisfy a differentiallinear matrix inequality (Apkar­
ian and Addams, 1995; Scherer, 1995). This gener­
alizes the idea of using a constant Lyapunov func­
tion (Becker, 1993; Apkarian and Gahinet, 1995)
and constant scalings for arbitrarily fast varying pa­
rameters .

To solve the inequalities numerically we choose con­
tinuously differentiable functions h (p) ... h (p) and
search for the coefficients in the expansion

I

[X(p) Q(p) R(p) S(p)] =L h(p) [X j Qj R j Sj] .
j =l

The resulting infinitely many LMIs are reduced to
finitely many inequalities by picking a finite number
of points in Pand Pro If P; is described as a con­
vex combination of finitely many vertices, it suffices
to choose the extreme points sin ce the parameter
p appears linearly in (6) (Wu, 1995; Apkarian and
Addams, 1995).

2.3 Controller synthesis

The synthesis problem consists of designing a con­
troller (3) that minimizes the robust performance
level, as characterized in Theorem 1. However, the
inequalities (6) are not linear in all the unknowns ,
the Lyapunov function, the scalings, and the con­
troller parameters. It has been shown in Masub­
uchi et al. (1995) and Scherer et al. (1995) how
the inequalities can be linearized, for fixed scalings,
by a suitable nonlinear transformation of the con­
troller parameters as follows: If denoting the first
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block rows of X(p) and X(p)-l as [X(p) U(p)] and

[Y(p) V(p)] respectively, introduce the new con­
troller parameters

K(p,p) = X(p)[A(p) + B(p)Dc(p)C(p)]Y(p)+

+U(p)Bc(p)C(p)Y(p) + X(p)B(p)Cc(p)VT(p)+

+U(p)Ac(p)VT(p) + X'(p,p)Y(p) + U'(p,p)VT(p)

L(p) = X(p)B(p)Dc(p) + U(p)Bc(p)

M(p) = Dc(p)C(p)Y(p) + Cc(p)VT(p)

N(p) = Dc(p)
(7)

and transform the blocks in (6) as

[
X A + LC K ]

XA--t A+BNC AY + BM

xg --t [XG + LD] 1tT --t [(H + ENC)T]
G +BND ' (HY +EM)T

X --t [~ ~] , X' --t [~' _~,]

where we dropped the dependenee on pand p.
As explained for analysis, we can introduce basis
functions and grid the parameter set to end up
with finitely many inequalities. However, the re­
sulting inequalities are still nonlinear in the new
variables and the scalings together. Hence we have
to resort to a D-K-like iteration scheme that pro­
ceeds as follows: Start with the uncertainty scalings
Qi(p) = -I, Ri(p) = I, Si(p) = 0 and iterate the
following two steps until the performance level can­
not be improved:

1. Fix the scalings and mnumize , over
X(p), Y(p) and the transformed controller pa­
rameters K(p,p) , L(p), M(p), N(p).

2. Fix the controller parameters K(p, p), L(p),
M(p), N(p) and minimize the performance
level, over X(p) and the uncertainty scalings
Qi(p), Ri(p), Si(p) as described for analysis.

Suppose the iteration stops with X(p), Y(p),
K(p,p) , L(p), M(p), N(p). Then one simply needs
to choose nonsingular smooth and bounded func­
tions U(p), V(p) satisfying

Y(p)X(p) + V(p)UT(p) = I (8)

in order to calculate the controller by solving (7) for
Ac(p,p), Bc(p), Cc(p), Dc(p).

Since Ac(p,p) depends on p, one needs to measure
not only the parameter value p(t) itself but also its



lead to an equilibrium of (10)-(11). The specific
normal force n z is measured by an accelerometer

One way to obtain an LPV model for the missile is to
parametrize the set of all equilibrium models. For
any angle-of-attack a E [0, 20] and Mach number
M E [2, 4], the fin defiection and pitch rate

Cn(a, 8, M) = ana 3 + bna 2 + cn(2 + Af)a + dn8
Cm(a, 8, M) = ama 3 + bma 2

- cm(7 - Sf)a + dm8

where the polynomial coefficients are

(12)

am = +0.000215 deg- 3

bm = -0.019500 deg - 2

Cm = +0.051000 deg - 1

dm = -0.206000 deg - 1
.

. F z (a ,8, M )
a= mV +q.

an = +0.000103 deg - 3

b., = -0.009450 deg - 2

Cn = -0.169600 deg-1

ä« = -0.034000 deg - 1

These coefficients are valid for the missile traveling
between Mach = 2 and Mach = 4 at an altitude of
20,000 ft. Typical maneuvers for this missile result
in angle-of-attack values ranging between -20 and
+20 degrees. Hence the approximation cos(a) ~ 1
is legitimate. Then (10) simplifies to

The aerodynamic nonlinearity and parameter de­
pendenee in the missile model are refiected in the
normal force and moment coefficients Cn(a, 8, M)
and Cm(a, 8, M) respectively. Taking the missile
symmetry into acount it suffices to consider the pos­
itive values of the angle-of-attack. The aerodymanic
coefficients are then given by

a angle-of-attack (rad)
q pitch rate (rad/s)
r, c; (a, 8, M)O.7poM2 S (Ibs)
My Cm(a, 8, M)0.7poM

2 Sd (ft - Ibs)
8 tail fin defiection (rad)
Po 973.3Ib/fe (static pressure at 20,000 ft)
S 0.44 fe (reference area)
d 0.75 ft (diameter)
m 13.98 slugs (mass of missile)
u V cos(a) ft / s (speed along missile center line)
V Mss ft/s (velocity ofthe missile)
M 2 - 4 (Mach number of the missile)
ss 1036.4 ft/s (speed of sound at 20,000 ft)
I y 182.5 slug - fe (pitch moment of inertia)
9 32.2 ft/s2 (acceleration due to gravity)
n z normal acceleration of the missile (per g) .

with

3.1 The missile model

The non-linear state equations of the missile are

. cos(a)2
a = h(a,q,8,M) = Fz(a,8,M)+q(10)

mu

Ij = h(a,q,8,M) = ~Y(a,8,M) (11)
y

Note that this restrietion to constant X(p) or Y(p)
certainly introduces conservatism, with the benefit
of a simpler controller implementation.

To speed up the computation, we finally remark that
we performed all calculations after eliminating the
transformed controller parameters along standard
lines by using the projection lemma and by fixing
S(p) = 0 (Apkarian and Addams, 1995).

3 The missile control problem

• If X(p) is parameter dependent and Y is con­
stant, choose U(p) = I - X(p)Y and V = I.
Taking derivatives in (8) reveals

• If X is constant and Y(p) is parameter depen­
dent, choose U = I and V(p) = I - Y(p)X.
This implies X'(p,p) = 0, U'(p,p) = 0 such
that , again, the variabIe p disappears in (7).

such that the terms in (7) that depend on p
indeed drop out.

YX'(p,p) + VU'(p,p)T = 0 (9)

rate of variation p(t) to implement the resulting con­
trolIer. To avoid this undesired structure, we choose
K(p) independent ofp and either X(p) or Y(p) inde­
pendent of p. Exploiting the freedom in the choice
of U(p) and V(p) allows to construct a controller
that depends on p only:

For the application we have chosen a missile bench­
mark problem that has been extensively studied in
Packard and Balas (1992), Rugh et al. (1993), Wu
(1995), Helmersson (1995) and is particularly suited
for addressing gain scheduling as weIl as robustness
issues. The problem is to design a longitudinal au­
topilot for a tail-fin controlled missile providing nor­
mal acceleration tracking over a large range of speed
and angle-of-attack. In order to arrive at a design
model (in section 3.3), the exact problem specifica­
tions are first given in section 3.2. These are based
on the missile model which is defined in section 3.1.
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placed at the the center of gravity of the missile. It
is defined as n .. = ~ where W = mg. For conve­
nience we use the shorthands Ka = 0.7pos, K q =

m "
0.7}oSd, te; = 1;0 o.'~os. The Jacobi linearization

v
of the missile dynamics is then given as

x = A(a,M)x +B(a,M)u

y = C(a ,M)x + D(a,M)u

where

A(a,M) = (Ka~8Cn(a,0,M)/8a 1)
KqM 8Cm(a, 0, M)/8a °

B(a,M) = ( Ka~8Cn(0,8,M)/88 )
KqM 8Cm(0,8,M)/88

C(a, M) = (KnM28Cn(oa, 0, M)/8a ~)

D(a,M) = (KnM28C}0,8,M)/8a)'

We end up with a family of linearized system that
are parametrized by p = (a, M). For a particular
parameter value p in the allowable parameter set,
the LPV dynamics are called frozen and refiect a
local linearization of the missile dynamics.

3.2 The uncertainty description and perfor­
mance specifications

The specifications to be achieved by the controller
have to hold over the whole Mach range [2, 4].
Therefore, the system should globally provide nor­
mal acceleration command tracking features, with
rise-time not greater than 0.35 s, overshoot not
greater than 10 %, and steady state error not greater
than 1 %. The measurements available for con­
trol are the normal acceleration n.., the pitch rate
q and the Mach number M. During a maneuvre,
the angle-of-attack should satisfy lal ::; 20 degrees
while the tail-fin defiection rate should not exceed
25 deg /s per commanded g-level.

As very st rong simplifications in the missile mod­
eling have been made, we take the robustness is­
sue originating from the uncertainty in the aerody­
namic coefficients O« and Cm into account. The
uncertainity levels considered are ACn = ±10 %
and ACm = ±25 %.

The controller provides fin commands 8c that are
processed through second order actuator dynamics

2

given by Gaet(s) = 2+2ta + 2, with natural fre-
• Wa. Wa

quency w = 150 rad/s and damping ( = 0.7. To
avoid exciting unmodeled high frequency dynam­
ics, the multiplicative input uncertainty weighting
Win = 1.5 .':;0 is placed at the actuator.
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3.3 Contro1 strategy

To realize the specifications over the prescribed op­
erating range, the missile dynamics are reformulated
into an uncertain parameter varying system rep re­
sentation as used in section 2.1. The LPV system
with parameter p = (a, M) has now an uncertain
part arising from the perturbations in the aerody­
namic coefficients. A further strategy is to view the
angle-of-attack in the parameter vector p as uncer­
tain. Hence, the angle-of-attack a and the uncer­
tainties in the aerodynamic coefficients Cm and Cn
are pulled out ofthe system and rescaled to [-1, +1].
The resulting uncertainty structure in the missile
dynamics is then Au = diag (8aI2 , Acn , Acm ) .

The control architecture for the missile problem
is depicted in figure 2. The tracking specifica­
tion has been translated into an ideal acceleration
model that the closed loop system should match.
The ideal model comes from Wu (1995) and is
UT () 144( - o.os. +1) t: hi h h all bl
Hid S := ,2 +19.2.+144 lor w 1C t e owa e er-
ror is weighted as W (s) ·- 0.S. +17.321 The lowperf .- . +O.OS77 •

frequency gain of Wp er f is 300 to bound the track-
ing error by 0.33 %. The high frequency gain is
chosen to be 0.5 in order to limit the overshoot to
be less than 5 %. To refiect the tail-fin defiection
and defiection rate limits of 20 degrees and 25 de­
grees/s per g respectively, the filters W5 = io and
Wi = 2

1S have been chosen accordingly. Finally,
noise filters Wn 1 = 0.001, and Wn 2 = 0.001 are used
to refiect the measurement imperfections in pitch
rate and normal acceleration.

,..--------i W ó" f---------,

Fig. 2: The controller synthesis interconnection
structure

4 Results

4.1 The design of the LPV controller

In this section we will use the synthesis LMIs (6)
as derived in section 2. Solving the LMIs is done
via basis functions and gridding of the parameter
space. For the missile control problem, the Mach



Fig. 3: Comparing the two options for solving the
synthesis LMIs

Fig. 4: Normal acceleration n z for the commanded
acceleration scenario n c of the LPV con­
trolled missile.

neuver, during which the Mach number varies as
shown in figure 7, consists of a series of acceleration
step commands as depicted in figure 4. The acceler­
ation command response of the LPV controlled mis­
sile has a rise time that is less than the prescribed
0.35 s. The steady state error is within the required
bounds. Overshoot characteristics are also within
the limits. Only the step command from 30 g to
-15 g causes a 3 % overshoot violation. As a rem­
edy one could try to redesign the weightings. A
possible choice to enhance damping of the acceler­
ation response is to increase the weight on the fin
rate filter Wt since maximum fin rate is by far not
reached in the non-linear simulation. Also the per­
formance filter could be adjusted to further punish
the overshoot (increase high frequency gain of the
filter). However, we left the filters Wid and Wp erf the
same as in Wu (1995) in order to be able to com-
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4.2 Simulations

number M is the remaining parameter for schedul­
ing. The angle-of-attack a, the aerodynamic coef­
ficients Cn and Cm and the actuator were all as­
sumed uncertain. As the Mach number M can be
placed in an LFT linearly, we choose a basis func­
tion as h(M) = M (see also Apkarian and Addams
(1995)). For the function X(M), e.g., we thus have

X(M) = Xo + X1M.

The other functions depending on the parameter M
are Y(M), Q(M), K(M), L(M), M(M), N(M),
and have the same structure as X(M).

The grid of the parameter set M E [2, 4) consisted
of five points equally spaeed between Mach = 2
and Mach = 4. As the Mach number will decrease
from M = 4 to M = 2 in five seconds in the non­
linear simulations, the parameter rate was taken
IMI < 0.5/s. Further, we use a block diagonal seal­
ing matrix Q = diag (Qo, ... , Q4) arising from the
uncertainty and the performance channels: the ma­
trix Ql of dimension 2 x 2 for the uncertain a, the
two scalar blocks Q2, Q3 for the uncertainty in Cn ,

Cm, the scalar block Q4 for the dynamic actuator
uncertainty, and the 3 x 3 block Qo for the perfor­
mance specification. In the first iteration the scal­
ings are set to unity. Once convergence is achieved,
the large LMIs (6) are solved for the last sealing Q
that was found in the iteration.

In section 2.2 it was explained that choosing either
X or Y constant led to a controller that does not
need a measurement of the parameter rate. For the
missile control problem, both options were tested.
The scheme using X constant and Y parameter de­
pendent converged faster than the one where X was
parameter dependent and Y constant. In 14 steps
a -y-value of 2.50 was reached whereas the other op­
tion only reached the value of 3.87 after 20 iteration
steps. In figure 3 the achieved -y-value is set out
against the number of iteration steps for both pro­
cesses.

The final controller synthesis was carried on the
choice (Xo, Y(M)) where -y = 2.5 was achieved. The
sealing matrix Q of the last iteration is used to syn­
thesize the controller using the full LMIs (6). The
achieved -y-value was 2.51 and the test on adenser
parameter grid (with twice the density) gave -y val­
ues between 2.22 and 2.45. Comparing the achieved
performance level with Wu (1995) and Helmersson
(1995), we concluded that the iteration procedure
was successful.

The non-linear simulations of the LPV controlled
missile are depicted in the figures 4 to 7. The ma-

110



~----------

40
15

30

10

20

I 5 'ij;

go î 10
:E.

2~
"

0 ~
~ ~ 0I

~1
f -5 - 10

-1 0 -20

-30
0 0.5 1.5 2.5 3.5 4.5

1.5 2.5 3.5 4.5 time (s)
lime(s)

Fig. 5: Angle-of-attack a for the commanded accel­
eration scenario n c of the LPV controlled
missile.

Fig. 8: Command response for all combination of
perturbed aerodynamics

200

150

100

Is 50
e
:E.
~

1.! 0

~
ij

-50
~
c
~

-100

- 150

-200
0 0.5 1.5 2.5 3.5 4.5

tlme (s)

Fig. 6: Fin deflection rate 6for the commanded ac­
ce1eration scenario n c of the LPV controlled
missile .

pare the results. The LPV controller synthesized
here has a larger overshoot, but it is faster than the
one in Wu (1995). Moreover the LPV controller of
Wu (1995) exceeds the angle-of-attack limit of -20
degrees while also needing much more fin deflection
rate. Figure 5 and 6 shows that our controller re­
mains within the limits. It should be noted that
the missile in Wu (1995) runs along a slightly dif­
ferent Mach trajectory. Finally, to demonstrate the
robustness properties, figure 8 shows the accelera­
tion command responses for all combinations of the
aerodynamic uncertainties. As can be seen from the
figure, overshoot in the 45 g step is the most sen­
sitive to uncertainties, while the other performance
characteristics seem to behave well.

5 Conclusions

Fig. 7: The parameter trajectory M(t).
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We have shown a controller synthesis technique for
Linear Parameter Varying (LPV) that takes the
boundedness of the parameter variation rates into
account . This technique gives guaranteed stabil­
ity and performance levels. Moreover , robustness
against uncertainties has been incorporated via the
use of scalings. Using basis functions and gridding,
the synthesis problem is reduced to an iteration of
solving finitely many linear matrix inequalities. The
method was applied and tested on a missile bench­
mark problem. The non-linear simulations have
shown that the proposed method is successful in
achieving the desired performance and robustness
goals. Further research should be directed towards
finding systematic procedures to choose the basis
functions in the presented approach.
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Parametrically varying flight control system design
with full block scalings
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Abstract. A systematic procedure for synthesizing a parametrically varying controller
for nonlinear systems is presented and applied to a high performance flight control system.
The strongly nonlinear and parameter dependent system has to be stabilized and must
exhibit high performance over a large operating range. In contrast to classical gain­
scheduling techniques that do not guarantee stability or performance, we apply a new
technique from robust control to design a parameter dependent nonlinear controller with
assured stability and performance properties.

Keywords. Linear parametrically varying systems, (integral) quadratic constraints, full
block scalings, robust stability and performance, linear matrix inequalities.

1 Introduction

In this paper we discuss a new technique to con­
trol linear parametrically varying (LPV) systems
and apply it to a tail-fin controlled missile. The
model of this system is strongly nonlinear and pa­
rameter dependent as it must operate over a large
range of Mach numbers and angles of attack. Over
the complete operating range the controller must be
stabilizing and give good tracking performance.

The classical approach is to linearize the system
in various operating points and to build a linear
controller for each of these point . Finally, these
controllers are interpolated in an ad-hoc marmer.
This so-called gain-scheduling technique is known
to work for slowly varying parameters. For fast pa­
rameter variations, however, it is hard to provide
theoretical guarantees for stability and performance
as shown in e.g . Athans and Shamma (1992) .

Another approach is to view the nonlinearities or
the unknown parameters as uncertainties and use
the techniques of robust control. Especially linear

tAuthor to whom correspondence should be addressed.
§Faculty of Aerospace Engineering, Stability and Control

Group, Delft University of Technology
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matrix inequality (LMI) techniques (Apkarian and
Gahinet, 1995; Becker and Packard, 1994; Boyd et
al., 1994; Helmersson, 1995; Packard, 1994; Scherer,
1995; Scherer, 1996; Scorletti and El Ghaoui, 1995;
Wu, 1995) where stability is guaranteed by search­
ing for a suitable quadratic Lyapunov function, and
uncertainties as weIl as performance are described
by (integral) quadratic constraints (Rantzer and
Megretski, 1994) are suitable as they can cope with
time-varying uncertainties. The resulting design
scheme involves a nonconvex optimization problem
that is usually approached by a D-K-like iteration.

In gain-scheduling, however, the operating point
and the parameters affecting the plant can be mea­
sured on-line. In designing a robust controller, this
essential information is not taken into account wh at
might introduce considerable conservatism. This
leads to the idea to design a parametrically vary­
ing controller with similar guarantees on stability
and performance. It turns out that the LMI tech­
niques for uncertain systems not only extend to the
design of such controllers but, in addition, the un­
derlying optimization problem becomes even convex
(Apkarian and Gahinet, 1995; Becker and Packard,
1994; Packard, 1994; Helmersson, 1995; Scorletti



(1)

Consider a nonlinear system that is represented as

(4)

(5)
:i; = f(x,p) + g(x,p)u
y = h(x,p) + k(x,p)u

3 LPV systems

Ll = diag(61I1, ... ,.6mIm ) , 16j l S' 1.

Then the scalings are usually restricted to have the
block diagonal structure Q = diag(Q1" '" Qm),
R = -Q, S = diag(Sl"'" Sm) and to satisfy
Q < 0, S + ST = 0 (Scorletti and El Ghaoui, 1995)
or even Q < 0, S = 0 (Apkarian and Gahinet,
1995). Simple examples reveal that this unneces­
sary restrietion of the scalings lead to a larger infi­
mal bound on the robust performance level as guar­
anteed by Theorem 2.1. Note also that the fixed
scalings Q = I, R = - I, S = 0 lead to the Bounded
Real Lemma.

Finally, we stress that we can extend this result to
parametrie or dynamic uncertainties that admit a
description in terms of integral quadratic constraints
(Rantzer and Megretski, 1994).

This analysis result involves only finitely many LMIs
whose solvability can be verified by standard soft­
ware (Gahinet et al. , 1994).

Note that we use full block scalings that are only
indirectly described by the inequalities (3). In the
literature, analysis results with scalings are usually
provided for blo ck diagonal real repeated uncertain­
ties

then the system (1) is exponentially stable and has
a robust L 2 -gain level of at most 'Y.

Theorem 2.1 (Analysis Result) If there exists
X > 0 and P E 'P satisfying

Now we are ready to state the desired analysis re­
sult to guarantee robust stability and robust perfor­
mance.

(2)

[~ ] = [~ ~: i:2] [:1] ,w2=Ll(t)Z2'
z2 1i2 :F21 :F2 w2

The channel W1 1-+ Zl is used to describe perfor­
mance measured in terms of the L 2-gain . More­
over, W2 1-+ Z2 is the uncertainty channel and Ll(t)
is a time-varying parametrie uncertainty of which
we only know that it satisfies

and El Ghaoui, 1995). In this paper we extend the
previous techniques based on block-diagonal scal­
ings to full block scalings (Scherer, 1996).

In the approach presented here the rate of change of
the parameters is not limited what might lead to un­
necessary conservatism since bounds on the param­
eter derivatives are often known in practice. These
bounds can be taken into account by using param­
eter dependent Lyapunov functions (Apkarian and
Addams, 1995; Scherer, 1995). For an application
of one of these alternative techniques to the missile
control problem we refer to Willemsen (1996).

p= [$~] with Q<O, R>O

that satisfy the constraints

[~jr [$~] [~j] > 0 for allj = 1, .. . ,6. (3)

2 Analysis of uncertain systems

Suppose the system is described as

Hence the values of the uncertainties are simply
specified as the convex hull of finitely many given
extreme points.

The goal is to characterize whether, for this class of
uncertainties, the perturbed system remains stabie
and the L 2-gain' of W1 1-+ Zl does not exceed a given
value v > O.

The information about the uncertainties is coded
in a set of scalings 'P that consists of symmetrie
matrices

Since the uncertainty is contained in a convex set
with finitely many extreme points (2), we are able
to describe the set of scalings by finitely many linear
matrix inequalities.

The performance specification can be cast in an in­
tegral quadratic constraint (Rantzer and Megretski,
1994) as

where x(t) is the state, u(t) is the input, y(t) is the
output, and p(t) is a time-varying parameter. Let
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us assume that both the states and the parameters
are on-line measurable and that they are known to
be contained in the given sets Q and P respectively.

Ir x = 0 is an equilibrium of the system for all pa­
rameters, one can rewrite it as

where Ij denotes an identity matrix of suitable size.

The controller is assumed to take the same struc­
ture, an LTI part K

x =A(x,p)x + Ê(x,p)u
y = ê(x,p)x + ÎJ(x,p)u.

(6) [Zl (9)

(7)

In order to apply the techniques from linear robust
control theory to analyze and synthesize controllers,
the system (6) is replaced with

x =A(q,p)x + Ê(q,p)u
y = ê(q,p)x + ÎJ(q,p)u

that is scheduled with feedback

(10)

where Ac : IT f-> Rkc x lc is possibly nonlinear. Due
to this structure we can rewrite the controlled sys­
tem as an augmented LTI system P,

(11)

u

Ze

z2 w2

ze we

z1 w1

y u

we ze

A G l G2 0 B 0

Hl r, F12 OEl 0
H 2 F2 l F2 OE2 0
000001
C Dl D 2 0 0 0
000100

u
Wc

interconnected with the LTI controller (9) and
scheduled with the feedback

Fig. 1: LFT-system with LFT-scheduled controller

where A: IT f-> R k x l is a possibly nonlinear (contin­
uous) function. Similarly as in Section 2, we assume
that the possible values of the parameter A(1I') are
contained in a convex set with finitely many extreme
points:

where q(t) E Q and p(t) E Pare viewed as time­
varying parameters. We arrive at a so-called linear
parametrically varying (LPV) system. Due to the
decoupling of q and x, the LPV system (7) describes
a larger set of trajectories than the original nonlin­
ear system (6) and is, therefore, potentially harder
to control. This might introduce conservatism. Yet
this is done for two reasons, Firstly, for the LPV sys­
tem we can use linear design techniques to build a
gain-scheduled controller, a controller that depends
on the on-line measurable time-varying parameters.
Secondly, if we have found a controller with the de­
sired properties for the LPV system (7), the con­
troller guarantees the same properties for the non­
linear system (6) as well,

Let us now abbreviate 11' = (q,p) and IT = Q x P C
JRm. Moreover , we assume that the system (7) can
be represented ~s a linear fractional transformation

Morevoer, we have specified an extra channel Wl f->

Z l to characterize performance.

Ir A(1I') , ... in (7) are rational functions of 11' E IT, it
is well-known that one can rescale the parameters
to

4 The LPV-synthesis problem

The LPV synthesis problem is posed as follows:
Find an LTI controller K and a function

IT = {11' I 11I'j I ::; 1 for all j = 1, ... ,m}

and that one can obtain this rep resentation with the
linear function such that, for all parameter curves 11' : [0,00) f-> IT,

the closed-loop system is exponentially stabie and
the L2-gain of Wl f-> Zl is not larger than 'Y.
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5 Controller construction

for some quadratic nonsingular T . It is easy to see
that relat ion (14) holds for any T. If we introduce

(15)

(14)
[

Ql SI **]
[

M N] -1 = [J! il]:= Sr Rl * *
NT L NT L * * * *

* * * *
Since the synthesis inequalities are strict, we can
perturb the scalings such that, in ad dition to all
inequalities, M, iiI and (M - iiI -1) are nonsingular.

With a decomposition (M - iiI-l)-l = VAVT

where V is orthogonal and A = diag(A1 , -A2 ) such
that Al > 0, A2 > 0, we define

Once we have solved the synthesis LMIs in
Theorem 4.1 for X, Y and for the scalings
a;Rl, SI, Ql' Rl, SI, we are left with the task to
construct the controller. As a first step we deter­
mine an extension of the scalings to (13) such that
Q < 0, R > 0, Q > 0, R < 0 and such that the
duality relation (20) holds.

Hence we try to find the unspecified matrices in

such that

Theorem 4.1 (Synthesis Result) There exists a
controller K (9) and a schedulin9 function Ä c (10)
that solve the LPV problem if there exist X, Y with

[XI yI] > 0 and scalings o-; Rl, SI, Ql' Rl, SI such

that

[

SY(X A ) X GI Hi XG2+H!si H'fRl]
* -"I Fi F'flSi F'flRl

K~ * * -"I F 12 0 K; < 0
* * * Ql + sy(SlFI) F'fRl

* * * * -Rl

If we interconneet the extended system Fe and the
LTI controller K (Figure 1), the resulting LTI sys­
tem has the structure of (1) with state [xT xn, per­
formance channel Wl f-t Zl, and uncertainty channel

[ ::] f-t [::]. Let us partition the scalings as

[
SI S12]
S2l S2

(13)
according to this uncertainty channel. We can now
apply the analysis inequality (4) to the closed-loop
system and dualize it according to the relations
given in the appendix. If we exploit the special
structure of the system (11) and if we eliminate
the controller parameters in the analysis inequali­
ties, we arrive at the following LMI-solution of the
LPV-synthesis problem. As an abbreviation we use
sy(M):= M + M T.

where rl/cl equal the number of rows/columns of
Ä, it can be shown that the matrices

(A - VTZ.L(ZIMZ.L)-lZIV) (16)

(A-VTZ(ZTMZ)-lZTV) (17)

(18)[
Û w] [U W]-l

WTV = WTV

have C2 positive and r2 negative eigenvalues respec­
tively, where C2 is the dimension of Al and r2 is that
of A2 • Hence there exists a nonsingular T := [Tl T21

where Tl/T2 have C2/r2 columns respectively such
that T[(16)Tl > 0 and T[(17)T2 < o. Using this
matrix T in (15) then leads to all the required prop­
erties for the fuIl scalings.

Let us then construct Ä c • With the transformed
scalings U, V, W as in (19) we define

Note that the conditions to be verified take the form
of linear matrix inequalities that can be readily val­
idated. It is even possible to directly minimize this
performance level since "I enters the inequalities lin­
early.

hold for all j = 1, ... ,8, where K Tn and K n are basis
matrices of the kemels of
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m 13.98 slugs (mass of missile)
u V cos(a) ft / s (speed along missile center line)
V M ss ft/ s (velocity of the missile)
M 2-4 (Mach number of the missile)
ss 1036.4 ftl s (speed of sound at 20,000 ft)
I y 182.5 slug - ft 2 (pitch moment of inertia)
9 32.2 ftI s2 (acceleration due to gravity)
n z normal acceleration of the missile (per g).

The aerodynamie coefficients C; and Cm are given
by the polynomial expressions

c; = sign(a)[anla
31+ bn ia 21+ cn (2 + ~ )Ial + dn8]

Cm =sign(a)[amla31+bmla21-Cm(7- 8~ )Ial+dmój.

Typieal values for the missile operating between
Mach 2 and Mach 4 with an angle-of-attack between
-20 and +20 degrees at 20,000 ft are

and partition them as inherited by (15). Then a
suitable D.cCrr) can be chosen as

Once we have constructed the scalings, the LTI part
of the controller K can be computed by solving a
standard Hoc-like problem: just determine X and a
controller such that (4) holds as described in Scherer
(1996) and Njio (1996). The full parameter dep en­
dent nonlinear controller is then described by (9)­
(10) . For the justification of Theorem 4.1 and the
steps in the controller computation the reader is re­
ferred to Scherer (1996) and Njio (1996).

In practiee, the procedure for controller construc­
tion is found to be numerically delicate. It is im­
proved by fixing I to a larger than the infimal value
and by putting extra constraints on the scalings.
Further reseach is required to systematically im­
prove the numerical conditioning of all the steps in­
volved in the controller design.

an = 0.000103 deg- 3

bn = -0.00945 deg- 2

Cn = -0.1696 deg- i

d.; = -0.034 deg- i

am = 0.000215 deg- 3

bm = -0.0195 deg-2

Cm = 0.051 deg- i

dm = -0.206 deg- i
.

6 The missile control problem

The above described gain-scheduling technique has
been applied to a missile control problem. The
model and its objectives are found in many publica­
tions (Rugh et al., 1993; Packard and Balas, 1992;
Helmersson, 1995; Wu, 1995; Willemsen, 1996) and
are restated here for completeness.

6.1 The missile model

The nonlinear state equations for the control prob­
lem are

. cos(a)2
a = ft(a, q, Ó, M) = Fz(a, Ó,M) + q

mu

. - f ( C M) _ My(a,ó,M)
q - 2 a, q, u, - 1

u

where

a angle of attack (rad)
q pitch rate (rad/s)
r, Cn(a,ó)0.7PiM

2S (Ibs)
M y Cm(a,ó)0.7piSd (ft-Ibs)
Ó tail fin deflection (rad)
Pi 973.3 lb /ft2 (statie pressure at 20,000 ft)
S 0.44 ft2 (reference area)
d 0.75 ft (diameter)
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The fin is driven by an actuator of second order

with
Wa = 150 rad/s, (= 0.7.

The goal is to track commanded acceleration n z•

maneuvers. The precise objectives are

• rise-time less than 0.35 s, The rise-time is spec­
ified as the time elapsed until the response has
first reached 90 % of the commanded n z . '

• steady state error less than 1 %.

• overshoot less than 10 %.

Because of the physicallimitations of the fin actua­
tor, there are extra constraints:

• tail-fin deflection less than 25 degrees.

• tail-fin deflection rate less than 25 degrees/sper
commanded g.

6.2 Control strategy

Because of the symmetry in the aerodynamic model,
synthesis is done for positive a only (Packard and
Balas, 1992). The state equations are then given by

à: = KaM [(ana 2 + bna + cn(2- ~)) a+dnó] +q



Ij = K qM
2

[(aTn o? + bTna + cTn (- 7+ 8~)) a+dTnb]

n z = K nM
2

[(ana 2 + bna + cn(2- ~)) a+dnb] .

7 Results

The controller is tested in a nonlinear simulation.
The missile is decelerated in 5 8 from Mach 4 to
Mach 2 (Figure 4). To excite the nonlinearities of

Fig. 4: Mach number as a function of time
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the system, we use a normal acceleration command
profile n z c as shown in Figure 5. The response to
this command is good, although not all specifica­
tions are met. Note that the overshoot decreases for
decreasing Mach numbers (Figure 5). It is suggested

..
g: 1

'"

q
nz ~----j

ex
M

Fig. 2: LFT model of the missile

W:. (8) - 144( -0.050+1) w: (8) - 0.50+11.321
id - 02+19 .20+144' perf - 0+0.0511

W 5 (8) = 119, W6(8) = 2
15'

time and overshoot specifications are captured in
an ideal model W i d , and the response of the closed­
loop model of the missile is compared with the ideal
response (Figure 3). The error e is weighted with
Wp erf and the L2-induced gain n zc 1-+ eis minimized
to force the controlled system to resembie the ideal
model as closely as possible.

In order to comply with the extra constraints on the
fin actuator, weighting filters are placed on the ac­
tuator outputs fin deflection (W5 ) and fin deflection
rate (W6). As a first approach, we used the weight ­
ing filters as found in Wu (1995). The ideal model
and weighting filters are given by

From these nonlinear equations we arrive at the LFT
form (Figure 2) by 'pulling out the deltas'. The rise-

In order to compare the results to Apkarian and
Gahinet (1995), the number of external inputs in the
interconnection structure (Figure 3) is made equal
to the number of external outputs by the definition
of extra noise inputs on the measurements q and n z

with weighting filters W n • = W n 2 = 0.001.

Fig. 3: The synthesis interconnection structure

Fig. 5: Acceleration command and response

to use a parameter dependent ideal model in order
to improve this acceleration response. The angle of
attack (Figure 6) remains within its bounds (±20
degrees). The fin deflection (Figure 7) remains well
within its bounds, such that the weighting W5 can
be chosen less restrictive, while the fin rate (Figure
7) is too high, such that the weighting W6 should
be increased.

The controller is compared to the technique with
'partial' scalings (block-diagonal and S = 0) (Ap­
karian and Gahinet, 1995) in Figure 8. Although
the improvement in performance is small, it is ex­
pected to be better when more parameters and un­
certainties are taken into account since then the con­
servatism due to using partial instead of full block
scalings is larger.
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Fig. 9: Acceleration with perturbed Cm and Cn
and controller implemented with fixed pa­
rameter

tures that are not necessarily block-diagonal. As a
new structural ingredient , the controller scheduling
function cannot be chosen identical to but has to he
nonlinear func tion of the parameter structure of the
LPV system.

The approach has been successfully applied to a
nonlinear cont rol probl em for a missile model as con­
firmed by nonlinear simulations.
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Fig . 7: Tail fin deflection and tail fin deflection rate
per commanded gee

8 Conclusions

Although easily possible, the presented design pro­
cedure does not account explicitly for dynamic un­
certainty in the actuator or parametrie uncertain­
ties in O« (±10%) and Cm (±25%). Nevertheless,
we found that th e performance hardly degrades un­
der perturbations in Cn, Cm (Figure 9). Even if th e
controller is implemented if keeping the parameter
1r in Ó-c (n ) at a fixed value, the performance is still
quite good (Figure 9).

In this paper we have extended an existing design
technique for LPV systems that is based on block­
diagonal scalings to full block scalings described by
suitable linear matrix inequalities. Using a richer
class of scalings not only reduces conservatism but
allows to apply th e technique to parameter struc-
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the following equivalences hold (Scherer, 1996):

Appendix: Duality relations

(20)

(19)

<0

<0

[
Q S] [-Q S ]-1
ST R = ST-R

[AB] [0 CT] [Q S] [0 I]
B T 0 + I D T ST R CD

[~]T [~~] [~] > 0

[
A CT] [B 0] [9 ~] [BT DT

]
C 0 + DI ST ROl

[ I ] T [ Q S ] [ I ]À T ST R ÀT > O.

scalings. Proc. 35th IEEE Conf. Decision Contr.,
Kobe, Japan. (See also this issue, pp. 97-103).

Scorletti, G. and L. El Ghaoui (1995). Improved
linear matrix inequality conditions for gain­
scheduling. Proc. 34th IEEE Conf. Decision and
Control, New Orleans, LA, pp. 3626-3631.

Willemsen, D.M.C. (1996). Linear Matrix Inequal­
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Under the assumptions Q < 0, R > 0 or Q >
- [ UW]0, R < 0 or wT V < 0 and under the follow-
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Abstract. A closed-loop system identification tooibox for MATLAB is presented, includ­
ing a user-friendly graphical user interface, that communicates with MathWork's System
Identification Tooibox (SITB), version 4.0. With the CLOSID tooibox it is possible to
identify linear (parametric) models on the basis of experimental data obtained from a
plant that is operating under the presence of a controller. The tooibox is designed par­
tially as a shell around the SITB, and has been given a similar setup. It comprises several
closed-Ioop identification methods (both classical and more recent ones), and includes
tools for evaluation of closed-loop model properties.

1 Introduction

Nowadays there are well-supported and user friendly
tools available for the identification of (linear) sys­
tems on the basis of experimental data. See in par­
ticular the Mathwork's System Identification Tool­
box SITB, version 4.0, which is equipped with a
graphical user interface. This enables the user to
identify and validate models in different types of
model structures by mouse-clicking, rather than by
entering (complex) commands. Additionally there is
users' support in terms of graphical tools for model
evaluation as well as support for e.g, bookkeeping
of identified models.
In the tools that are currently available, there are
only limited possibilities to identify models on the
basis of data that is obtained under closed-loop ex­
perimental conditions. This particular experimental
situation - which often occurs in practical situations

t MATLAB is aregistered trademark of the Mathworks, Inc.
§The software described in this paper is available through

anonymous ftp at : ftp-mllsc.vbmt.tudlllft .nl, directory
/pub/matlab/closid.

I The work of Raymond de Callafon is financially sup­
ported by the Dutch Institute of Systems and Control
(DISC).

•The work of Edwin van Donkelaar is financially sup­
ported by the Dutch Technology Foundation (STW) under
contract DWT55.3618
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- requires a special treatment, in the sense that be­
sides input and output signals of a plant, measured
external excitation signals can be involved, as well
as some (possibly known) controller that is imple­
mented on the system.
The current tooibox CLOSID offers an extension to
the open-loop tooibox SITB, in the sense that

• It provides a graphical user interface supported
tooI for identification of models from closed­
loop observations;

• It enables the use of external excitation signals
as well as a (possibly) known controller in the
loop;

• It communicates with the SITB, meaning that
for the actual estimation part of the closed-loop
identification methods, SITB is automatically
opened and applied, while in the CLOSID tool
the data processing and the (closed-loop) model
processing is performed. Therefore full perfor­
mance and flexibility of the estimation methods
in SITB is retained.

• It provides evaluation of models in terms of
their closed-loop properties, as e.g, sensitivity
functions, complementary sensitivities, closed­
loop poles, etcetera.



dala IJ.,
DO
o Time-plot

o Spectrum

model IJ

centteller IJ--DO
o Frequency response

identilicerion g
idenllficahon
Iwo-stage
indnect
tailor-made
coprime factoJs
dual -Youla
non -pa. ametrie

o closed-Ioop transfers

o closed-tocp poles

D input/output simulation

o correletion le.l

o step response

Dopen-loop trander

o open-loop pare -zero.

Fig. 1: CLOSm main window

In the current version, the graphical user interface
of CLOSm is able to deal with SISO models only.

2 Main CLOSID-window

The graphical user interface of the CLOSm tool­
box is opened by entering closid in the MATLAB

command window. This opens the main window as
shown in Figure l.
The main window shows the following basic parts:

• a data boar-d on the left upper part, where
imported data sets are represented by colored
line-icons, that can be selected by a mouse ac­
tion.

main window of the SITB. This controller board is
required, as some of the closed-loop identification
methods need the a priori knowledge of the con­
troller.
Additionally, this enables the user to evaluate the
models in the presence of a (user-chosen) feedback
controller.
Data sets, controllers and models can be imported
from the MATLAB workspace, through selecting the
respective pop-up menus for data, controller and
model.
The closed-loop configuration that is considered all
through the tooibox is depicted in Figure 2. It is
also displayed in the data import window.

• a controller board on the left lower part,
where imported controllers are represented by
colored line-icons, with similar selection op­
tions.

• an identification menu in the middle; this
pop-up menu provides the user with a list of
identification methods that can be applied.

+
y

• a model board on the right upper part, show­
ing identified or imported models of the plant
to be identified.

• a model evaluation area, containing check
boxes for the application of several (c1osed­
loop) evaluation procedures for the models on
the model board.

Besides the controller board, the composition of
the CLOSm main window is very similar to the
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Fig. 2: Closed-Ioop system configuration

A data set is composed of experimental data {u, y}
over a given time horizon, together with either one
of the external excitation signals Tl and/or T2. Data
sets can be viewed on screen in terms of time se­
quences and power spectra, by clicking on the cor­
responding check boxes under the data board.
Models, as well as controllers, can be imported from
and exported to the MATLAB workspace, in different
formats:



• [numj den]: polynomial coefficients of numera­
tor and denominator , in deseending powers of
z , stacked in a matrix with height 2.

• [A B; CD]: state space matrices (A,B,C,D)
placed in a system matrix.

• theta: theta-format as used in the SITB.

The particular model import window is depicted in
Figure 3.

Fig. 3: Model import window

3 Closed-Ioop identification

The CLosm tooibox contains five identification
methods for parametrie model identification, and
one nonparametrie method. The methods are de­
noted by

1. two-stage method,

2. indirect identification,

3. identification with a tailor-made parametriza­
tion,

4. coprime factor identification,

5. identification in the dual-Youla parametriza­
tion,

6. non-parametric (spectral) estimation.

For details on the different methods, one is referred
to the references, in particular the survey paper Van
den Hof and Schrama (1995).
The methods are all characterized by three steps,
focussed on aspecific closed-loop object that is go­
ing to be identified. E.g. in the indirect method,
this closed-loop object is the plant-times-sensitivity
G /(1 + CG), that is identified on the basis of mea­
sured signals Tl and y. The three steps are clearly
indicated in the several identification windows and
are characterized as follows.
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• Construction of auxiliary ij0 signais.
A first step of choosing/constructing appropri­
ate auxiliary input and output signals, that are
going to be used to identify a particular transfer
function object.

• Identification.
A second step of actual identification of the
considered object , by estimating parameters
through a least-squares identification criterion.

• Calculate plant model.
From the identified object a plant model is con­
structed and this plant model is copied to the
CLOSm model board.

By choosing one of the identification methods from
the identification pop-up menu, a particular win­
dow is opened, displaying the three steps mentioned
above.
The first step is trivial for some methods, but re­
quires a separate identification for some others, as
e.g. the identificaiton of the sensitivity function for
the two-stage method. In these latter cases, quick­
start options provide a simpIe means to construct
the appropriate signals.
Apart from the "tailor-made" approach, all iden­
tification methods will perform the second step by
opening MATLAB's SITB automatical1y, copying the
appropriate signals from the CLOSm tooI to the
data board of SITB, allowing the user to identify
the required transfer function object in the open­
loop tooibox. In all of these situations, the second
step is an identification problem that can be handled
by the (open-loop) tools in hte SITB.
When an appropriate model is identified and vali­
dated in SITB, it can be copied to the CLOSm tooI,
by pushing the Calculate and copy plant model
in the CLOSm identification window. This third
step then transfers the plant model to the CLOSID
model board.
As an illustration the coprime factor identification
window is shown in Figure 4
The nonparametrie identification method identifies
speetral models for the one input, two output trans­
fer from T to col(y, u), and constructs a plant model
by taking the quotient of the two scalar non para­
metric estimates.

4 Parametrie methods

A brief overview is given of the characteristics of the
different parametrie methods. In the descriptions it
is specified which data and priors are required (mea­
sured signal and/or knowledge of the controller),
and which auxiliary information needs to be speci­
fied before the actual identification in step 2 can be
performed.



CONSTRUCT AUXILIARY INPUT SIGNAL

Conslluct aux lhary signal IJ
Construcl aUKlharv signal
quick -slaf'
import Gx
impolt signal

ESTIMATE PLANT FACTORS

Estimate

COPV TO MODELBOARD

I.'. Calc~l ale a~d copy pl~nt model

Estimation (in SITB)
Parameters are estimated according to (e.g.)

_ 1 N

ON = argmjn N 2:[z(t) - G(q,8)x(t)]2.
t =l

Plant model
A model of the plant is obtained as

G(q) = G(q, ON)'

Comments
This method will generally not be able to provide
unstable models of an unstable plant.

4.2 Indirect method

Required data and priors

Fig. 4: Window for coprime factor identification

4.1 Two-stage method

Approach
In the first stage the transfer function between ref­
erenee signal Tl and input signal u (sensitivity func­
tion) is estimated, possibly with a high-order model.
With this estimate a noise-free input signal is sim­
ulated, which is used in the second stage together
with the measured output signal, to identify a plant
model.

I1 HELP 11 CLOSE
Approach
The closed-loop transfer function between Tl and y
is estimated, and by using information on th e im­
plemented controller C, an open-loop plant model
is reconstructed from this estimate.

Required data and priors

• C

Auxiliary information
none.

Signal construction
The input and output signal for final estimation are
constructed by

x(t) = TI(t)
z(t ) = y(t)

Auxiliary information
An estimate is required of the sensitivity function
So, i.e. the transfer between Tl and u. This is ob­
tained in the first stage of the identification proce­
dure, by

_ 1 N

f3N = argmin N 2:[u(t) - S(q ,f3)T(tW
t =l

An accurate (high-order) model is obtained and de­
noted as

A quick-start option for this estimation is available.

Signal construction
The input and output signal for final estimation are
constructed by

x(t) = S(q)T(t)
z(t) = y(t)
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Estimation (in SITB)
The exact transfer function between x and z, i.e .
the object of identification, is given by

Go
Ra = 1 + CGo

Parameters are estimated according to e.g.

. 1 N

ON = argmjn N 2:[z(t) - R(q ,O)x(t) ]2,
t=l

leading to the identified transfer function

Îl(q) = R(q,BN).

Plant model
A model of the plant is obtained as

- ÎlG(q) = _.
I-CR

Comments
If the controller is stabie, then Gis guaranteed to be
stabilized by C. The model order of G will gener­
ically be equal to model order of Îl plus order of
C.



4.3 Identification with t ailor-rnade pararne­
trization

Approach
The closed-loop transfer function between Tl and
y is estimated, using a dedicated parametrization
in terms of the parameters of the open-loop plant
model and the known controller C.

Required data and priors

• TI,y

• C

Auxiliary information
none.

Signal construction
The input and output signal for final estimation are
constructed by

x(t) = TI(t)
z(t) = y(t)

Estimation (in CLOSID)
The exact transfer function between x and z, i.e.
the object of identification, is given by

Go
Ra = 1 + CGo

Parameters are estimated according to

N. . 1" G(q,8) 2
ON = argmtn N ~[z(t) - 1 + C(q)G(q,O)x(t)] ,

leading to the identified transfer function

Plant model
A model of the plant is obtained as

G(q).

Comments
The parameter set that corresponds to stabie closed­
loop systems may be disconnected in the case that
the model order of G(q,O) is smaller than the order
of C. In this case inaccurate models can result.

4.4 Coprime factor method

Approach
The closed-loop transfer functions between T (as in­
put) and (y,u) are estimated, and an open-loop
plant model is obtained by taking the quotient of
the two estimates.
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Required data and priors

• u,y

• C, Tl andj'or T2

Auxiliary Infor-mat.ion
Any auxiliary system Gz with a factorization

G _ N z
z - D

z

that is stabilized by C.

Signa! construction

The input and output signals for final estimation
are constructed by

x(t) = TI(t) + C(q)T2(t)

z(t) = ( y(t) )
u(t)

Est.imat.ion (in SITB)
The exact transfer function between x and z, i.e.
the object of identification, is given by

with F-I = D z + CNz.
Parameters are estimated according to

_ 1 N (N( 0))
ON = argrnjn N ~ tr [z(t) - D(:: 0) x(t)][y

leading to the identified transfer functions

Plant model

A model of the plant is obtained as

G( ) = ~(q) .
q D(q)

Comments
By using a normalization procedure, and a common
denominator parametrization in the identification,
the model order of Gwill be equal to the maximum
model order of fir and b.



Identification Auxiliary Signals for Estimated Exported
method Data information estimation object model

(x,z) x-+z

Two-step rl,u,y S x = Sr Go G
z=y

Indirect R _ Go G=
R

ri,» x=r
0- 1 + CGo I-CR

C z=y

Tailor-made rl, Y x = S(O)r Go G
C z=y

Coprime factors Gz = NzD;1
r

(No, Do) G= Nb -lr,u,y x=
û; + CNz

C z=(y,u)

Dual Youla C = s.o;: r
r,u,y x= o, + CNz

C Gz = n.o;: Y - Gzu
R o G= s. + DeR

z=
D z - NeRDe + GzNe

Table 1: Synopsis of closed-loop identification methods

4.5 Dual-Youla method

Approach
A particular closed-loop transfer function is esti­
mated, and by using knowledge of the controller an
open-loop plant model is reconstructed. The plant
model is guaranteed to be stabilized by the imple­
mented controller. This method is a generalization
of the Indirect method.

Required data and priors

• u,y

• C, rl and/or r2

A uxiliary information
The controller C is required to be known in a co­
prime factor representation

C= Ne
De'

as weIl as any auxiliary system Gz with a factoriza­
tion

G _ N z
z - D

z

that is stabilized by C.

Signa! construction
The input and output signals for final estimation
are constructed hy
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x(t) = rl(t) + C(q)r2(t)
1

z(t) = D G N [y(t) - Gz(q)u(t)].
e + z e

Estimation (in SITB)
The exact transfer function between x and z, i.e,
the object of identification, is given by

R _ (Go - Gz)Dz
o - De(I + CGo) '

Parameters are estimated according to

. 1 N
ON = argmjn N L[z(t) - R(q,O)x(tW,

t =l

leading to the identified transfer function

Plant model
A model of the plant is obtained as

G(q) = N z + De~
D'; - NeR

Comments
The model order of G will generically he equal to
the sum of the model orders of Gz , C and R.



Synopsis of parametrie methods

In Table 1 a synopsis is given of the parametrie iden­
tification methods. In this table the signal T is used
as an abbreviation for Tl + CT2'

5 Model evaluation

Once a model is estimated and made available on
the model board, several open-loop and closed-Ioop
model properties can be evaluated. This is done
using the seven Model evaluation options at the
bottom of the main Closid window:

1. closed-Ioop transfer functions. The fre-
quency responses of the four transfer functions
from col (T2 , Tl) to col (y, u), are shown in a sepa­
rate window, using the current models from the
model board and the current controller C from
the controller board. In the window the ampli­
tude of the frequency responses are shown, see
Figure 5.

Fig. 5: Closed-loop frequency responses

2. closed-Ioop poles. When clicking this option,
the poles of the closed-Ioop transfer functions
are plotted in a separate window, also showing
the stability region (unit circle). Thus a simpIe
check is executed showing the (in)stability of
the closed-Ioop system.

3. input/output simulation. Using the avail­
able reference signal(s) in the current data set,
a plant input signal u and plant output signal
y are simulated (noisefree), employing the cur­
rent model and controller. These simulated sig­
nals are plotted together with the actual (mea­
sured) input and output signals from the cur­
rent data set.

127

4. correlation test. The sample cross-covarianee
function is shown between the external refer ­
ence signal T in the current data set, and the
output simulation error (top) and the input
simulation error (bottom). This test indicates
whether there is still reference signal informa­
tion in the output and/or input residual, see
Figure 6.

Fig. 6: Closed-loop correlation test

5. step responses. This option displays the step
responses of the four closed-Ioop transfer func­
tions from col (T2, Td to col (y, u), for the cur­
rent models on the model board and the current
controller on the controller board.

6. open-loop transfer. The (open-loop) Bode
diagram is displayed of the current plant mod­
els on the model board. This refiects the esti­
mated transfer function between plant input u
and output y.

7. pole-zero plot of the estimated transfer func­
tion between the plant input u and output y.

Selecting one or several of these evaluation tools will
open a figure with a plot of the evaluation result for
the current models from the model board; where
appropriate the current data and current controller
will also be employed. A zoom option is available in
each figure. By selecting multiple models from the
model board, evaluation results of several models
can be compared in one figure.

6 Summary

A MATLAB tooibox has been presented for closed­
loop system identification on the basis of time do­
main data. It has been designed as a "shell"



around Mathworks' "open-loop" System Identifica­
tion Tooibox (SITB). A graphical user interface con­
structed similar to the SITB supports the user, and
facilitates exchange of models between the SITB and
the current tool. In its current version the graphi­
cal user interface supports the identification of SISO
models; the provided MATLAB m-files are imple­
mented to handle also multivariable models.
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Abstract. This paper presents a new MATLAB tooibox, called FREQID. FREQID is an
abbreviation of FREQuency domain IDentification and can be used to estimate linear
(multivariable) discrete or continuous time models on the basis offrequency response data.
Within FREQID, a model is being estimated by applying a (frequency weighted) curve fit
procedure on the available frequency response. To simplify the operations involved with
choosing frequency dependent weightings, model order selection and model evaluation,
FREQID is equipped with a Graphical User Interface (GUl). The usage of the GUl and the
way in which models can be estimated within FREQID is the core of this paper.

Keywords. system identification; frequency domain; multivariable systems: curve fitting

1 Introduction

The availability of measured frequency responses
as a commencement to estimate linear models has
gained considerable attention in the research on sys­
tem identification. First of all this is due to the fact
that estimating a model on the basis of a frequency
response has several advantages compared to a time
domain approach, see e.g, Ljung (1993) or Pintelon
et al. (1994). Additionally, many engineers have a
st rong inclination towards a frequency domain re­
lated identification procedure, as the "shape" or
quality of the model can be influenced directly in
the frequency domain by the usage of so-called fre­
quency dependent weightings.

This paper describes the usage of FREQID, a tool­
box for use with MATLAB (version 4.2c) for perform­
ing identification on the basis of frequency response
measurements. FREQID is an abbreviation of FRE­
Quency domain IDentification, which is supposed to

tMATLAB is aregistered trademark ofthe MathWorks, Inc.
5The software described in this paper is available through

anonymous ftp at : ftp-mesc.'Il'bmt.tudelft .nl, directory
/pub/matlab/freqid.

dThe work of Raymond de Callafon is sponsored by the
Dutch Institute of Systems and Control (DISC)
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cover the main purpose of this software: it can han­
dle the estimation of both discrete and continuous
time (multivariable) models on the basis of a fre­
quency response in which the frequency vector can
be arbitrarily spaced.

Estimating a model in FREQID is done by a curve
fitting procedure. In such a procedure, a model is
being estimated by fitting the frequency response
of the model on a measured frequency response.
Within the curve fitting a frequency dependent
weighting can be used to emphasize specific parts of
the frequency response, so as to influence the quality
or "shape" of the model being estimated.

Compared to the frequency domain identifcation
tooibox of Kollár (1994), FREQID focuses solely on
frequency response curve fitting. To simplify the op­
erations involved with the estimation and validation
of a model, FREQID is equipped with a Graphical
User Interface (GUl). This GUl is meant to sim­
plify both the manipulation of frequency domain
measurements, the shaping of frequency dependent
weightings and the model order selection during the
estimation of a model. Furthermore, the GUl serves
as a bookkeeper of the models being estimated and
enables the user to validate and compare various



• MVFR matrix (MFD toois) In such a MultiVari­
able Frequency Response (MVFR) matrix, a

• The left bottom part of the main window is re­
served for Estimation (and evaluation) of mod­
els.

A more detailed description on importing data,
models and mouse actions defined within the main
window of FREQID can be found in the following sec­
tions.

• The right part of the window contains the
Model Board. Similar to the Data Board, this is
used to store and manipulate models and con­
tains a model-popup menu.

all

l_ót;11~

fREOID (DEMO faO)

Fig. 1: Main window of FREQID

,
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welght: lxl, 200 points DDDEstimation __
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CD-model: lxl, 8 states

~ata and /or models have been loaded...

• FinaIly, at the bottom of the window the sta­
tus line is displayed. This is used to display
all kinds of messages to the user. In Figure 1
the user is notified of the fact that Data and j'or
models have been loaded ... , just after asession
file called DEMO. FQD was loaded.

2.2 Importing data

The starting point for estimating models within
FREQID is the availability of a frequency response
that needs to be fitted. Subsequently, the Data
Board can be used to store and manipulate the fre­
quency response and/or frequency domain weights
used for estimating a model. For this purposes, a
data-popup menu and specific mouse actions (click­
ing, drag & drop) are defined within the Data Board
depicted in Figure l.
Frequency responses (or frequency dependent weight­
ings) can be imported from a file or from the MAT­
LAB workspace onto the Data Board in three differ­
ent formats:

» freqid

2.1 Overview

• At the top of the window a menu bar can be
found. Via the options on the menu bar, session
files can be loaded or saved, different MATLAB
windows can be accessed and the layout of the
FREQID windows can be modified.

• At the left top part of the window one can find
the Data Board. This is used to store and ma­
nipulate the frequency domain measurements
and/or frequency dependent weights used for
estimating a model. It also contains a data­
popup menu.

2 The main window

models relatively easily. As the GUl is designed to
be user friendly, most of the information described
in this paper is apparent from the GUl of FREQID.
By pushing the various help-buttons present in the
GUl of FREQID, ad ditional information is displayed.
Therefore, this paper will only focus on the main
elements present in the GUl of FREQID.
For notational convenience and reasons of clarity,
different fonts are used to indicate different objects
in this paper. Text in various windows of the GUl of
FREQID like titles and text on buttons are typeset in
th is font. Names of files or directories, commands to
be typed and editable text in the GUl of FREQID are
typeset in this font. FinaIly, most abbreviations
will be typeset IN THIS FONT. In this way, the differ­
ence between freqid in a title, the command freqid
to he typed and FREQID as an ahbreviation will be
unambiguous.
First in section 2, the main window of FREQID will
he discussed. This section also shows the possibili­
ties and bookkeeping facilities of the main window
and how frequency responses (the data) and models
can be imported. Section 3 describes the possibil­
ity to estimate a model on the basis of a frequency
response using the GUl of FREQID. Subsequently,
section 4 presents the available procedures to evalu­
ate the models being estimated. FinaIly, the paper
is ended by a short summary.

Ir the FREQID tooibox has heen installed properly,
typing the command

in the MATLAB command window, will invoke the
GUl of FREQID. First a small message window will
be opened, that contains information on FREQID and
the authors who wrote the software. By clicking the
continue-button, the main window of FREQID will be
opened. This main window is depicted in Figure 1
and consists of the following distinguishable parts.
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frequency domain measurement (single- or mul­
tivariable) is stacked columnwise for each fre­
quency point separately, The frequency vector
(always in [rad/sj) corresponding to it, must be
specified separately. This format is also sup­
ported by the Multivariabie Frequency Domain
(MFD) tooibox, (Maciejowski, 1990).

• FREQFUNC matrix (IDENT tools) This is a for­
mat to store frequency domain data supported
by the System Identification ToolBox (SITB),
(Ljung, 1995). Such a matrix already contains
the corresponding frequency vector.

Fig. 3: Import model window.

• Varying matrix (MU tools) This is the format
supported by the JL-analysis and synthesis tool­
box, (Balas et al., 1995). Such a matrix already
contains the frequency vector.

L -rmM,UiUh- ,' i lii3A'!J

Fig. 2: Import data window.

different formats discussed above can be recognized,
whereas for bookkeeping purposes, the name of the
data and some additional information can be speci­
fied.

To import frequency responses on the Data Board,
the import data option of the data-popup menu can
be used. Invoking this menu option yields the win­
dow depicted in Figure 2. From Figure 2 the three

import a model (discrete or continuous time) from a
file or the MATLAB workspace onto the Model Board
of FREQID:

• State space matrix In this format the state space
matrices A, a, C and D of a model (single- or
multivariable) are stacked in a system matrix
s= [A a; C D]. In order to be able to re-extract
the state space, the size of the matrix A (state
space dimension) must be given too .

• THETA matrix. This is a format to store a
model as supported by the System Identifica­
tion tooibox, (Ljung, 1995).

• mu-tools matrix. This is the format supported
by the JL-analysis and synthesis tooibox, (Balas
et al., 1995).

To import a model, a frequency vector must be
added in order to evaluate the frequency response of
the model. Finally, the name of the model and some
additional information can be specified for book­
keeping purposes, see also Figure 3.

2.4 Mouse actions

Once some frequency response (data) or a model has
been loaded successfully, it will appear as an icon in
one of the boxes present in the main window de­
picted in Figure 1. This icon is formed by plotting
the Bode amplitude diagram of the first element of
the (multivariable) frequency response of either the
data or the model. The icon can now be selected
simply by clicking on the corresponding box. Ir the
icon has been selected, a fat line will be drawn in
the corresponding box, see e.g. the second box in
Figure 1. Information on the icon can also be ac­
cessed by a simple click on the name. By a simple
drag & drop action, an icon can also be copied.

aa

location of variables

Flrst load [fiIel: ..
~"MTfHMi!d ,f,j,

N@_ Uhm- -;ii14Y'!J

CD·data'

frequency response of radial loop
na CDM9 CD'lllayer mechamsm'

MVmmatrix (MFD tools) .

fREQfUNC matrix (IDENT tools)

Varyino matrix (MU.tools)

Select frequency data format

Optlonal information

data name:

additional info:

Modify variabie names

MVFR matrix: •
frequency vector: ".

11I FREalD - import data

2.3 Obtaining models

Quite similar to the Data Board, the Model Board
has been defined on the main window of FREQID.

Importing a model on the Model Board can be done
by estimating a model on the basis of a frequency
response available on the Data Board. However, the
discussion of this option is postponed until section 3.
Additionally, a model can be imported by the im­
port model option of the model-popup menu. Invok­
ing this menu option yields the window depicted in
Figure 3. Three different formats are supported to
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3 Estimating a model

The estimation of a model is done by performing
a curve fit on a frequency response available on
the main window of FREQID. Depending on the
parametrization of the model, the curve fitting gen­
erally involves a non-linear optimization that needs
to be solved. Currently, two different curve fitting
routines are implemenred within FREQID. These
routines are available by invoking the estimation­
popup menu present in the rnain window of FRE­

QID. A short summary of the two methods is listed
below.

least squares estimation

The least-squares estimation routine implemented
aims to minimise the 2-norm of a (weighted) differ­
ence between the frequency response of the model
and the data. A frequency dependent weighting
is a so-called Schur-weighting in whieh the weight­
ing is specified for each transfer function sepa­
rately. The [multivariable) model is parametrized
by either a left or right Matrix Fraction De­
scription (MFD), whieh reduces to a simpIe nu­
merator j denominator representation for estimating
scalar models. For a more detailed diseussion on
the procedure, one is referred to de Cal1afon et al.
(1996).

maximum amplitude

The maximum amplitude routine implemented
aims at minimizing the (weighted) maximum dif­
ference between the frequency response of the
model and the data, element wise. Again the
weighting can he specified for each transfer func­
tion separately. The (multivariable) model is
parametrized by a combined diagonal left and
right Matrix Fraction Description (MFD), which
reduces to a simple numeratorjdenominator rep­
resentation for estimating scalar models. For
a more detailed discussion on the procedure,
one is referred to Hakvoort and Van den Hof
(1994) .

For both the methods discussed above, an itera­
tion based on the Sanathanan-Koerner procedure
(Sanathanan and Koerner, 1963) is used to tackle
the non-linear minimization involved. Although
there is no direct guarantee of convergence, the
method generaly leeds to usefull models. Further­
more it is reasonably fast and due to the subsequent
convex optimization steps it supports the estima­
tion of relatively high order models. The proce­
dure to estimate a model using the GUl of FREQID

is nearly the same for both methods. Furthermore,
the least squares estimation routine is included in
FREQID, whereas for the maximum amplitude cri-
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terion the instal1ation of the MATLAB optimization
toolbox, version 1.0c, is a prerequisite (Hakvoort,
1994). Therefore, only the least squares estimation
routine will be illustrated here.

3.1 Least squares estimation

Once data has been loaded and selected, invoking
the least squares option from the estimation-popup
menu in the main window of FREQID will present
the least squares estimation window on the screen.
An overview of this window is depicted in Figure 4.
In the least squares estimation algorithm, a multi-

Windows

Info on estimation data

CD-data: 1 output, 1 input, 200 frequency points.

Model parametrization Time format

rol ,',

Equation: inv(A(z))*O(z)

Model estimation options

Model orders:

Frequency weighting:

L __ ;g.iiltti1_.mm6l ..,'®pw mmmM Mufi!!tJ

Fig. 4: Least squares estimation window

variabie model is parametrized by a Matrix Fraction
Description (MFD), using the inverse of a square and
monic A-polynomial and a B-polynomial. Before
starting up the estimation of a model, the user can
specify the time format (discrete or continuous time)
and the parametrization of the model (left or right
MFD). For the left MFD, the inverse of the menie
A-polynomial appears at the output of the model,
whereas for the right MFD, the inverse appears at
the input. For a scalar system, both parametriza­
tions are the same and refiect an ordinary numer­
ator j denominator parametrization. Subsequently,
the model orders or number of parameters to be es­
timated can be specified, for whieh a separate order
editor is available.
Finally, the weighting to be used during the estima­
tion (curve fitting) of the model can be specified in
the frequency weighting-popup menu. Default, the
weighting is chosen to be the inverse of the data,
so as to minimize a relative error instead of an ab­
solute error. Additional choiees include none (unit
weighting to minimize an unweighted, absolute er­
ror) or advanced. The advanced weighting option
enables the user to load andjor modify frequency
domain weightings relatively easily. One is referred
to section 3.2 for a more detailed discussion on the
usage of advanced weightings.
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4 Evaluation of models

As a final step in estimating models, the possibility
to evaluate a model on the basis of its frequency re­
sponse or pole/zero plot is available within FREQID.

This can be done by using either the frequency resp.
or the poles/zeros check-boxes available in the main
wind ow of FREQID, see Figure 1. Turning the fre­
quency resp. check-box on, will open the frequency
response window, as depicted in Figure 6. The fre-

be edited for the specific element. These lines can
be moved by a simple drag & drop mouse action.
The different options on the menu bar of the win­
dow depicted in Figure 5 can be used to modify the
weight. In this way, the frequency weighting can
for example be smoothed, integrated and differenti­
ated. Additionally, the weighting between the two
vertical dash-dotted lines can also be modified by a
drag & drop mouse action, as indicated in Figure 5.
The shape of the weighting caused by this drag &
drop action can he influenced by the different op­
tions available under the Shape option on the menu
bar. In this way, FREQID offers the possibility to
tune the frequency dependent weighting in a very
flexible way.

3.2 Advanced weightings

The weighting used in the least squares estimation
can be any frequency dependent weighting, having
the same size as the frequency response used for
curve fitting. It is applied element wise in case
of multivariable frequency response. The GUl of
FREQID allows the import and /or modification of
a weighting relatively easily by opening a weighting
window , in which each element of a (multivariable)
weighting can be edited.
The weighting window can be opened by select­
ing the advanced weighting option in the frequency
weighting-popup menu depicted in Figure 4. The
weighting window will start up with the default
weighting: inverse of data, so as to minimize rel­
ative errors during curve fitting. However, any
weighting can be imported and edited elementwise
in the weighting window. A snap shot of the
weighting window for editing an element is depicted
in Figure 5. The vertical dashed-dotted lines in

A simple click on the estimate button will start the
minimization. Progress on the iteration to fit the
frequency response is displayed in the MATLAB com­
mand window. Some options associated with the
Sanathanan-Koerner iteration are available under a
control-button, see also Figure 4. If the minimiza­
tion has heen completed successfully, the model can
be imported on the Model Board. Before importing
the model, options associated to the frequency range
for evaluation purposes, the name of the model and
the additional information on the model being esti­
mated can be modified.

"------·-·-------------------·--·--------------a----~

lil FREalD - welghting of element (1.1) ... I1
I

l "1Zl'lmII1mB J- ---------------_._- -----_.._--_.._..._-- ---- -------- ---- --_.__._-----_.__...._--_...;,...

Fig. 6: Frequency response window

Fig. 5: Editable weighting per element

Figure 5 are used to select the frequency range to

quency response window enables the user to view
and compare both the measured frequency response
and the frequency response of different models in
various ways, as indicated by Figure 6. The menu
balk offers the possibility to change the axis, add a
grid, enable zooming and to plot various measured
frequency responses (data) and/or model frequency
responses in the same plot.
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Next to the frequency domain evaluation of the
model, the poles and zeros of the models being es­
timated can be computed. Turning the polesjzero
check-box on in the main window of FREQID,

will open the polesjzero window, as depicted in
Figure 7. In Figure 7, poles of a model are indicated

FREOID - poles/zeros ----aa

frequency dependent weightings, model order selec­
tion and model evaluation, FREQID is equipped with
a user friendly Graphical User Interface (GUl). Ad­
ditionally, the GUl serves as bookkeeper of the avail­
able frequency domain measurements and the differ­
ent models being estimated. •
The software of FREQID is written for MATLAB ver­
sion 4.2c and the standard signal and control MAT­
LAB toolboxes are required only. In addition , the
optimization tooibox is needed only if the maximum
amplitude routine is being used too.
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Fig. 7: poles and zeros window

by crosses, whereas zeros are plotted by circles. The
polejzero window enables the user to compare the
poles and zeros of different models being estimated.
For discrete time models a unit circle is displayed
to evaluate stability conditions. The menu balk of­
fers the possibility to toggle pole andjor zero loca­
tion plot, add a grid, toggle unit circle plot, tog­
gle realjimaginary axis plot, enable zooming and to
plot polesjzero locations of different models. As a
final remark it can be said here that the stability
of a model can also be evaluated by by simple click
on the name of the model in the main window of
FREQID, see also section 2.4. This will display some
additional information on the model, including the
stability of the model.

5 Summary

A MATLAB tooibox called FREQID has been pre­
sented for estimating discrete or continuous time
linear (multivariable) models on the basis of (rnea­
sured) frequency responses. Within FREQID, a
model is being estimated by performing a curve fit
routine on the available frequency domain measure­
ment. In the current version of FREQID, this curve
fit routine can be either a least-squares or a maxi­
mum amplitude criterion.
To simplify the operations involved with choosing
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Abstract. A system identification tooibox for MATLAB is presented, for estimating linear
time invariant models using generalized orthonormal functions. The tooibox is supported
by a user-friendly graphical user interface and communicates with MathWorks' System
Identification tooibox (SITB), version 4.0. With ORTTOOL it is possible to identify linear
parametrie SISO models on the basis of experimental data (open loop identification),
using basis functions that can be flexibly chosen by the user. The tooI has options for
input of data and basis functions, settings of order, initial conditions, number of iterations,
model reduction algorithms, a number of simpIe validation tests and various graphics.

1 Introduction

t MATLAB is aregistered trademark of the Mathworks, Inc.
§The software described in this paper is available through

anonymous ftp at : ftp-mosc."bmt.tudolft .nl, directory
pub/matlab/orttool.

'The work of Peter Heuberger is financially supported
by the Dutch Technology Foundation (STW) under contract
DWT55.3618. He is on partialleave from the Dutch National
Institute of Public Health and the Environment (RIVM).

ORTTOOL is a graphical user interface written in
the MATLAB interpreter language. It is intended
to accommodate identification of single input-single
output systems,. using orthonormal basis functions.
For specifics about the theory behind this method
and the properties of the basis functions, see the
references. This document merely discusses aspects
concerning practical application of the method.
The basic idea of the tooI is to let the user specify
input/output data (say u(t), y(t), t = 1··· N), a set
ofbasis functions (say {J,.(z), k = 1 .. · oo}) and the
number of basis functions to be actually used, which
is the state space order of the resulting model (say
n). With these specifications the tool can estimate
parameters {Ok} and a model H(z),

by minimizing in least square sense the prediction
error:

(2)e(t) := y(t) - H(q)u(t)

Since the parameters {Ok} appear quadratic in the
resulting least squares optimization problem there
exists a unique analytic solution.
The basis functions {Ik (z)} are created from a set
of stabie poles and the crux of the method is that
a well-chosen set of poles will reduce the number of
parameters that are significant. In particular if the
set of poles coincides with the actual poles of the
system at hand, then -under white noise conditions
and N -+ 00 - the parameters Ok = 0, k > p, where
p is the number of poles of the system.
It is helpful to keep in mind that the most straight
forward example of the basis functions is the set of
pulse functions {Z-k}, in which case the method is
equivalent to the standard estimation of FIR (finite
impulse response) models. See section 2 for the con­
struction of the set of basis functions. The tool is
built up in one main window, in which at all times
4 so called frames are visible. In total there are 7
frames, one of which is the so-called Message frame.
This frame is used for intermediate messages, wam­
ings and error messages. It is always visible . The
ot her 6 frames are divided in 3 groups:

(1)
n

H(z) = 00 + L okfk(Z)
k =l

135



- - -- - --- - -~- -

1. Basis frame and Data frame.
2. Order frame and Reduction frame.
3. Initial frame and Iteration frame.

Rewriting the vector functions {Vdz)} and veetors
{Lk} in scalar functions {/i(z)} and scalars {ai}
gives the expression (1).

2 Background

The tooI keeps track of all the results created and
bases used. These are stored in memory and can
be saved in files or copied to SITB. The undertaken
actions can be logged in a log-file.

forms a basis for the strictly proper transfer func­
tions in ?t2 •

Hence for every transfer function H (z) E ?t2 there
exist unique parameters 00 and {Lk E IRm

, k =
1" .. ,oo} such that

(6)

The frame titled DATA is meant for importing in­
put/output data. The variable(s) can be located in
3 different locations denoted by:

3.1 Data

In order to apply the method the following steps
have to be performed:

3 Utilities

There are however a number of practical issues to
be considered. These are refiected up on in the next
paragraphs.

• the number of basis functions to incorporate

• choice of basis, in terms of the poles of the inner
function

• specification of input/output data

In the SISO case an inner function is completely
parametrized by it's poles {ai} , since every inner
function Gb(z) can be written as the Blaschke prod­
uct

The approach is motivated by the fact that -if the
inner function c.q, the set of poles is well chosen­
the number of significant parameters will be small,
where well chosen indicates that the poles of the in­
ner function are close to the poles of the actual sys­
tem at hand. This implies that a-priori knowledge
ab out major time-constants can be directly used in
this approach. In practical situations such knowl­
edge is often available. See the references for an
analysis of the bias and varianee of the resulting es­
timates.

(4)
00

H(z) = 00 +I: LrVk(Z)
k=1

In this section a short explanation is given on the
construction of the basis functions for the SISO case.
This concept has a straightforward multivariable ex­
tension. See the references for details.
The sets of functions used in this approach are based
on the fact that each inner [i.e. stabie all-pass)
transfer function gives rise to a basis for 11.2 in the
following way.
Let [A, B, C, DJ be a balanced realization of an in­
ner transfer function Gb(z), with McMillan degree
m. Define V1(z) := [zI - Aj-l B . Then the set of
functions define.d by the scalar elements of

Vk(z) := Vl(Z)G~-I(z) Vk(z) E IRm (3)

Of each group only one frame is visible at a time.
Each frame has a button to toggle the visibility.
This set-up was taken to reduce the amount of
screen space, while keeping as much information at
hand as possible. In Figure 1 the primary frames
are displayed.
Next to these frames the tool has a number of pull­
down menu buttons at the top, as shown in Figure
2. In the next sections all the frames and menu but­
tons will be discussed in detail.

Well known examples of this concept are the cases
Gb = Z-l and Gb(z) = I-az which result in thez-a

basis of pulse functions {z -k} respectively the basis

of Laguerre functions {~g~aî~~'}.
When applying this expansion formulation to sys­
tem identification it is assumed that H(z) can be
adequately approximated with a finite number of
basis functions

The name of the input and output variabie have to
be entered in text fields labeled Input respectively
Output. Furthermore one can specify a range to
be used. In order to preprocess the data there is an
option to remove means from the data on the chosen
range.

,.
H(z) = 00 +I: LrVk(Z)

k=l

(5)

Workspace
File
Ident

MATLAB's main level storage space.
A file in MATLAB'S .mat format.
Copy the ONLY data set selected
in the SITB board(s).
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BASIS FUNCTIONS
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IFIOmWorkspöce 11I

Help Save Options

Fig. 1: ORTTOOL main window: primary frames.

MESSAGE WINDOW

Input 0

It

Fig. 2: ORTTOOL main window: pulldown menu's.

3.2 Basis

3.3 Model order

As stated, the resulting model order is equal to the
number of basis functions used. However this num­
ber is limited in 2 ways. The first limitation comes
from the number of data points N. This number
should be larger than the number of functions n,

The frame titled BASIS FUNCTIONS is meant for
importing the characteristics of the system based
orthonormal basis. As stated these basis functions
are completely determined by a set of stabie poles
(SISO). The program offers 4 different ways to en­
ter the characteristics, but these are all converted
to poles before processing. The variable(s) can be
located in 4 different locations denoted by:

3.4 Initial conditions

Especially if the number of measurements is rela­
tively small, the effect of initial conditions on the
output data may be substantia1. This effect strongly
depends on the underlying system, sin ce slow poles
may cause slow damping of the effect. The total
number of initial conditions is equal to the number
n of orthogonal functions used. Since this would al­
most double the number of parameters, the tooI has
an option in the Initial Condition frame to check

to ensure the existence of a unique solution, i.e. to
keep an overdetermined set of equations. The sec­
ond limitation comes from the dynamic character
of the basis functions. The basis functions should
have damped out sufficiently in the interval [tl, tN J.
Ir this is not the case the optimization problem may
become badly conditioned, but also the resulting
model can inhibit undesired behavior. Consider for
example the basis functions depicted in Figure 3,
when N = 100. Such situations should be avoided.
The Model Order frame, used to specify the number
of basis functions, includes an option to calculate the
maximum number of functions (given a basis).

MATLAB'S main level storage space.
A file in MATLAB'S .ma t format.
Convert the last created results
into basis functions.
Copy the ONLY model selected
in the SITB board(s) .

Ident

Workspace
File
Iterate
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wether and which initial conditions are of impor­
tance.
The check is based on the regression matrix used in
the estimation procedure. This regression matrix R
consists of 2 parts R = [RuiR., ] where Ru depends
solely on the input data and R., solely on the initia!
conditions. The mutual importance of the initial
conditions is determined by a singular value decom­
position of the matrix R.,. Initial conditions with
smal! singular values are discarded. The importance
of the initial conditions on the estimated coefficients
is determined by evaluating the norm of the projec­
tion R p of the matrix R., on Ru. This norm should
neither be large nor small, since a large norm (~ 1)
implies that the initial condition is independent of
Ru, while a smal! norm (~ 0) shows it is dependent
of Ru . In both cases the initia! condition wil! not
influence the estimation result. With the aid of a
graphics window the user can specify which initial
conditions have to be incorporated. See Figure 4 for
an example.

3.5 Uncertainty

Analogous to SITB, ORTTDDL calculates the uncer­
tainty in the estimation result in the form of a co­
varianee matrix for the estimated parameters and
the varianee of the error signal, To this end a third
order prewhitening filter is applied to the prediction
error signal. The resulting uncertainty bounds can
be visualized in SITB.

3.6 Iterations

The theory behind this tool encourages an iterative
procedure, improving the a-priori knowledge (i.e the
poles of the basis) byeach estimation step, by adap­
tation of the basis. Although there is yet no con­
vergence result to support such a set-up, it would
heuristically be the 'way to go' (i.e, try to force as
much knowledge as possible into the basis in order

li rst 3 x 1 funct ions

0.04

0.02

-0.02

-0.04

-D.06

-0 .08

to facilitate the estimation). The tool has the op­
tion to iterate a number of times, where in each st ep
a large order model is estimated, which aft er redu c­
tion leads to a new set of basis functions , that ar e
used in the next estimation step. This number can
be set in the Iteration frame.

3.7 Model reduction

In general the estimation result wil! be a (rela tively)
large order model, which has to be reduced in ord er
for further use, for instanee when using an ite ra­
tive set-up. To this end the tool features a model
reduction option, where a choice from 4 model re­
duetion methods can be made. Three of these ar e
based on so called balanced realizations and the last
one is an approximate realization method. The user
can specify the reduction order on the basis of a
(Hankel) singular value plot. See Figure 4 for an
example.

4 Top-menu choices

Next to the frames the tool offers a number of bu t­
tons in the form of top-menu choices. An overview
of the main options is displayed in table 1.

4.1 Help

Pressing the Help button invokes MATLAB 'S
HTHELP, a hypertext utility for MATLAB help and
HTML viewing, with links to various subjects. This
utility is part of the MATLAB tooibox UITDDLS.

4.2 Save

Currently the tooibox has only options to save the
data and the created results (estimation and reduc­
tion). Results can either be saved to files in the stan­
dard MATLAB binary format or copied directly to
SITB. The data can only be copied to SITB. When
saving results, the user can choose between saving
only the last created result or all results . Further­
more the format can be specified, either the state
space format or the Theta format as used by SITB.

4.3 Options

• Log-file
With the options of this menu a file can be
opened in which the most important actions are
saved. It can be closed, re-opened, viewed and
deleted.

Fig. 3: Example of 3 basis functions.

20 "0 ~ ~ 100 1W 1~ 160
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• Uncertainty
In the current version of ORTTDDL, only un­
certainty for the estimated parameters is calcu­
lated. The uncertainty in the initial conditions
is not calculated.



Fig. 4: Example of initial condit ion window and singular values window.

Help Save Options Validation Reduction Arx
all in A,B,C,D Log-file Simulation+lmpulse resp. Last created model
all in THETA Uncertainty Bode plots Last Full order model
last in A,B,C,D Clear Prediction error Compare with Full model
last in THETA Defaults Coefficients
all to IDENT Plot Format Poles+zeros
last to IDENT
Data to IDENT

Table 1: Orttooi Top-menu

• Clear
The tooI keeps all bases and results in memory.
With the clear option these may be removed
from memory. Furthermore an option is in­
cluded to delete all extra graphics ('secondary')
windows.

• Defaults
With the Default button the user can change
the default parameters and filenames used by
the tooI.

• Plot Format
This option is used for the default type of hard­
copy files. The user can choose between a num­
ber of Postscript and Windows formats.

4.4 Validation

The validation option offers a number of plot
choices, to display characteristics of the created
model, where possible together with results ob-
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tained directly from the data. To this end several
SITB functions are used.

4.5 Reduction

With this button a reduced order model is created,
based on the settings in the Reduction frame. The
user can choose between the last created model or
the last created full order model.

4.6 Arx

This button can be used to create an initial model
guess, applying an Arx model. The order of the
model must be specified in the Model Order frame .
This option uses the SITB function ARX.

5 Remaining Options

• Exit button
This option quits ORTTOOL. Be sure to save
your results before issuing this commando A



question dialog box is used to confirm this ac­
tion.

• Run button
The Run button starts the estimation, using
the settings in the various frames, i.e.

- Imported basis

- Imported data

- Model order

- Iteration number

- Reduction method (if iterating)

- Reduction order (if iterating)

- Initial condition settings

• Graphics
ORTTOOL can create secondary graphics win­
dows at various instances, e.g. to display val­
idation results, basis functions, data, singular
values etc. Each window has a button to create
a hard-copy.

• Message frame
The Message frame is used to display interme­
diate steps, warnings and errors. The errors are
also included in the log-file.

• Help buttons
Each of the frames has a HELP button to dis­
play specific information.

6 Future extensions

In the near future the choice of the poles and the
number of functions will become more fiexible in
order to avoid problems as expained in section 2.1.
Furthermore the tooI will be expanded to include
the estimation of MIMO (p x m) systems. This will
offer two possible approaches to estimate a model

1. Mimo basis functions:

2. Scalar basis functions:

7 Summary

A MATLAB tooibox has been presented for open­
loop system identification on the basis of orthonor­
mal basis functions. It is operated through a graph­
ical user interface, that facilitates exchange of mod­
els and data with SITB. The current version only
supports the estimation of SISO models. The tooI
includes options for the estimation of initial condi­
tions, model reduction and an iterative approach.
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