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Editorial

It is our pleasure to present to you the ninth vol-
ume of Selected Topics in Identification, Modelling,
and Control, giving a report of the ongoing research
in our Mechanical Engineering Systems and Control
Group.

The current issue again contains a wide variety of
subjects, and also shows a number of “new” authors
that have contributed to the activities of our re-
search group.

We could like to present Sjirk Koekebakker, who
is a Ph.D.-student, working on the modelling and
control of a Stewart platform for a motion simulator,
in a cooperation project with the SIMONA Research
Institute of Delft University of Technology. Within
the scope of this project a flight simulator motion
system is developed and constructed.

There are two projects in cooperation with the
Aerospace Department, in which Dehlia Willemsen
and Edwin Njio have worked on their M.Sc.-Theses,
dealing with the design of robust control systems for
parametrically varying (flight control) systems.
Tong Zhou is a postdoc researcher from Beijing Uni-
versity of Aeronautics and Astronautics, who has
joined our group for one year, thanks to a research
grant from the Dutch Institute of Systems and Con-
trol (DISC). The contribution of Tong reflects his
work on uncertainty modelling for batches of dy-
namical plant models.

vi

Last but not least, we welcome Michel Gevers from
the University of Louvain-la-Neuve in Belgium, and
Lennart Ljung from Linkdping University in Sweden
for their contribution to the joint work on closed-
loop identification.

This issue is the first one to also contain papers that
describe software tools. Three MATLAB toolboxes
are presented, all within the area of system identifi-
cation. As referred to in the respective papers, the
corresponding software is available through anony-
mous ftp from our ftp-site. Interested readers are
invited to work with our software, and tell us about
their experiences with the tools.

Additional information on the activities of our
group, as well as postscript versions of the
papers in this and previous volume(s) of our
progress report, can be found on our WWW-site:
http://www-mr.wbmt.tudelft.nl/ts.

For any reactions and discussions on the topics pre-
sented, you are welcome to contact one of us.
Finally we would like to wish all our colleagues and
friends a happy and prosperous 1997.

Okko Bosgra o.h.bosgra@wbmt.tudelft.nl
Paul Van den Hof p.m.j.vandenhof@wbmt.tudelft.nl
Carsten Scherer c.w.scherer@wbmt, tudelft.nl
Editors
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Multivariable closed-loop identification: from indirect
identification to dual-Youla parametrization?

Paul M.J. Van den Hof and Raymond A. de Callafon?

Mechanical Engineering Systems and Control Group
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

E-mail: p.m.j.vandenhof@uwbmdt.tudelft.nl

Abstract. Classical indirect methods of closed-loop identification can be applied on the
basis of different closed-loop transfer functions. Here the multivariable situation is con-
sidered and conditions are formulated under which identified approximative plant models
are guaranteed to be stabilized by the present controller. Additionally it is shown in which
sense the classical indirect methods are generalized by the recently introduced identifi-
cation method based on the dual-Youla parametrization. For stable controllers the two
methods are shown to be basically equivalent to each other.

Keywords. System identification; closed-loop identification; prediction error methods;
stability; Youla parametrization; multivariable systems.

1 Introduction

The classical method of indirect identification for
handling a closed-loop identification problem is
based on the idea of first identifying a closed-
loop transfer function, and then calculating the
related plant model by using knowledge of the
present controller in the loop (see Gustavsson, 1977;
Soderstrém and Stoica, 1989). Attractive properties
of this identification scheme are that the method
does not suffer from bias effects due to a noise cor-
relation with the input signal, as the input signal
for identification is taken to be an external refer-
ence signal. The critical part of the indirect identi-
fication is the construction of the (open-loop) plant
model in the second step, based on the estimated
closed-loop transfer. However, if the resulting plant
model is not limited in model order, this construc-
tion can be done exactly provided that the controller
is known and the appropriate closed-loop transfer
function has been identified. In this sense the ques-

+This paper is presented at the 35th IEEE Conference on
Decision and Control, 11-13 December 1996, Kobe, Japan.
Copyright of this paper remain with IEEE.

$The work of Raymond de Callafon is financially sup-
ported by the Dutch Systems and Control Theory Network.

tion which transfer is “appropriate” is determined
- among other things - by the input/output dimen-
sions of the plant, and the location of the external
excitation signal.

In recent years several new ideas concerning closed-
loop identification of approximate models have been
presented, most of them directed towards the abil-
ity to identify approximate models of the open-loop
plant on the basis of closed-loop data, while the
asymptotic bias distribution is not dependent on the
noise and thus explicitly tunable by the designer, see
e.g. Hansen and Franklin (1988), Lee et al. (1992),
Van den Hof and Schrama (1993) and Van den Hof
et al. (1995) as summarized in the survey paper
Van den Hof and Schrama (1995). Most of these
schemes have been developed in view of the abil-
ity to tune the asymptotic bias distribution in order
for the identified models to particularly reflect those
dynamic aspects of the plant that are most relevant
for consecutive model-based control design. One of
the newly handled methods is based on a dual-Youla
parametrization of the open-loop plant (Hansen and
Franklin, 1988; Schrama, 1991; Lee et al., 1992), and
this method is suggested to be particularly attrac-
tive because of its guarantee that identified (approx-
imate) plant models are guaranteed to be stabilized
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Fig. 1: Closed-loop configuration.

by the present controller.

In this paper we start by summarizing some aspects
and results related to the classical indirect identifi-
cation scheme, particularly addressing the question
under which conditions multivariable plant models
can be identified. Next it will be shown under which
conditions identified plant models are guaranteed to
be stabilized by the present controller, and in which
sense this classical scheme can be considered as a
special -simple- case of the recently used identifica-
tion in the dual-Youla parametrization.

2 System configuration

The system configuration that will be considered
in this paper is sketched in figure 1. Py and C
are linear time-invariant finite-dimensional but not
necessarily stable multivariable transfer functions,
The input and output dimensions are determined
by w(t),r1(t) € R™, y(t),r2(t) € IRP. v is a noise
disturbance signal, while ry, 7, are external signals
that can be either reference (tracking) signals or ex-
ternal disturbances, being uncorrelated to eachother
and to v.

A particular combination of external signals will be
denoted by

r(t) := r1(t) + Cg)ra(t). (1)

The relevant closed-loop transfer functions in the
system configuration are reflected by

Py

T(Py,C) = [ &

][I+CP0]‘1 [iesx] =(@)

being the mapping from the signals [ :3 ] — [ g ]
1

For notational purposes the following notation for
the elements of T(FP,, C) will be employed:

(3)

T(P,C) = [ Al ]

Qo So
with

Ty = B[I+CP)™'C

Gy = By[I+CPR?
Qo = [I+ CPQ]_lc
Se = [I+CP0]_1.

It is a standard result from stability theory that the
considered closed-loop system is internally stable if
and only if T(P,,C) € RH,, with IRH, the space
of real rational transfer functions that are analytic
iz

As additional notation, I,,, will refer to the m x m
identity matrix, and detIR(z](‘) is the determinant
over the field of rational functions in z.

3 Indirect Identification
3.1 Standard approach - scalar situation

The classical method of indirect identification is
composed of two steps. For this moment we will
just sketch a particular situation in the scalar case.

(1) Identify the transfer function Gy from r; to
y; this can e.g. be done by applying any of
the standard prediction error methods (Ljung,
1987). Note that this identification problem is
principally an ‘open-loop’ type of problem pro-
vided that the external signal r; is uncorrelated
to the noise disturbance term v. The identified
model of Gy is denoted as G

(2) Reconstruct an open loop plant model from the
estimated closed-loop transfer function G, us-
ing knowledge of the controller C.

The second step of this procedure involves the con-
struction of P from an available estimate G, by solv-
ing the equation:

- P
G = =, (4)
14 CP
An exact solution for P follows by taking
X G
P= (5)

1= CC

which can be calculated when the controller C' is
known.

When the model @ is identified using a least-squares
outpur error criterion, i.e.

£(t,0) = y(t) - G(q,0)r1(t)

and G = G(g,0) with § := argming Ee(t,6)?, the
asymptotic bias-distribution (Ljung, 1987) in the
plant model estimate is characterized by:

§ = ar min1 A
=8 0 27

=1

i e 1\ 4
1+CP, 1+CP(9)

&, dw
(6)




provided that the exact relation (5) is used to con-
struct P on the basis of G.

One of the problems that is known to occur in an
indirect identification approach, is that the order
of the identified plant model is not under control.
This means that when calculating (5), the order of
P will be determined by the order ng of G and the
order ng of C, and will generically equal ng + nc.
Limiting the model order to a prespecified value,
requires either an additional model reduction step,
or the construction of an approximate solution to
the equation (4) where the model order of P is fixed.
However in this latter situation it is not clear how
to “solve” this equation properly.

3.2 Indirect identification from closed-loop
transfer functions - multivariable case

Actually all four different transfer functions that are
present in T(FP,, C) can be used for identification in
the first step of an indirect identification scheme.
Dependent on the particular experimental situation,
an identifier may have preferences of identifying a
particular transfer. This can e.g. be essentially in-
fluenced by the possibility of adding external excita-
tion signals at particular locations in the loop (either
on the setpoint or on the output of the controller).
We will now summarize the possibilities of using any
of the four transfer functions, while considering the
multivariable situation.

Proposition 3.1 Consider any one of the four
transfer functions Tp, Go, Qo, or So to be identified
in the first stage of an indirect identification scheme,
providing identified models ff‘,é. Q, or S. Then

(a) T = P[I,, + CP]™XC implies
P =1(I,-T)*ct (7)

under the condition that p > m and C has a
right inverse C1.

(b) G = P[I, + CP]™* implies
P = G[L,-CG™. (8)
(¢) Q@ = [In + CP]™1C implies that
P=c(QC ) ~ L] (9)

under the condition that p = m and
detp,\C # 0.

(d) 8§ = [I,, + CP]~! implies that
P=Cl$? -1,] (10)

under the condition that p < m and C has a
left inverse C1.

In the above ezpressions it is presumed that T(P,C)
is well defined.

Proof: Follows by straightforward manipulations
of the expressions. ]

It has to be noted that there is only one transfer
function (G) that provides a unique solution for the
related open loop plant model without any condi-
tions on input/output dimensions and controller.
For the other transfer functions restrictions apply.
Note also that in the scalar case m = p = 1, all four
transfers can be used without any restrictions.

When taking a look at the relation with available ex-
ternal excitation signals the following can be stated:

e When r, is available from measurements (addi-
tional to » and y) then one can use § (r; — u)
or G (r; — y) and by choosing G no restrictions

apply.

e When r; is available from measurements, then
one can use T' (r — ) or Q (r2 — u) and one
has to face the restrictions p > m or p = m.

In the second situation considered it can be an alter-
native to first construct the signal r(t) = C(q)r2(t)
and then using »(t) as if it were added to the loop
at the location of 7;. In this way, one can avoid the
dimensional restrictions as mentioned above.

The fact that a unique plant model P can be con-
structed from either of the equations (7)-(10) does
not imply that this plant model will be guaranteed
to be proper. This will depend on the properties of
the estimated closed-loop transfer and of the con-
troller. Properness of P is e.g. guaranteed for (8)
whenever G is proper and lim,|_, o CcG =0, being
the commonly considered situation in indirect iden-
tification.

4 Stability of controlled models

In this section the question will be addressed under
which conditions a plant model P that is identified
by an indirect identification as described before, will
be - a priori - guaranteed to be stabilized by the
controller C. To this end the following standard
results from stability theory will be exploited.

Proposition 4.1 Consider
any linear, time-invariant, finite-dimensional plant
P and controller C.

(a) Let C € RH.,,. Then T(P,C) € RH., if and
only if P(I + CP)™' € RH,,.

(b) Let m = p and let C be invertible and satisfy
C! € RH,. Then T(P,C) € RH,, if and
only if (I + CP)~'C € RH,,.



(c) Let rcmkm(z)(P} = min(m, p), and the Moore-

Penrose inverse P! € RH,,. Then T(P,C) €
IRH., if and only if P(I + CP)~! € RH,,.

Proof: Part (a)is proven in e.g. Zhou et al. (1996).
For parts (b) and (c) necessity is obvious. To prove
sufficiency for (b), consider (I + CP)~'C € RH..,
so (I+CP)™*CC~! = (I+CP)! € RH,. As
P(I +CP)™'C + (I + CP)! = I it follows that
P(I+CP)~1C € RH,, and by postmultiplication of
C~1! also that P(I+CP)~! € RH,,. Sufficiency for
(c) can be shown along similar lines, distinguishing
between the situations p > m, where P! is a left
inverse, and p < m when P! is a right inverse. 0O

When applying these results to identified models ob-
tained from indirect identification the following re-
sults are direct.

Corollary 4.2 Consider identified models G and Q
of the related closed-loop transfer functions Gy and

Qo-

(a) If C is stable then the plant model estimate (8)
is stabilized by C if and only if G is stable.

(b) If m = p and C~! is stable then the plant model
estimate (9) is stabilized by C' if and only if Q
is stable.

Particularly, a plant model obtained by indirect
identification from estimating the closed-loop trans-
fer function Gy, will be guaranteed to be stabilized
by C in the case that C is stable. The only restric-
tion that the estimate G has to satisfy for this result
to hold, is that G should be stable. Since the closed-
loop system is stable, this condition wil be naturally
satisfied by any sensible identification method.

It would be tempting to formulate a result similar
to (a) without any condition on the stability of C or
on input/output dimensions. However this will lead
to more complex restrictions on G as shown next.

Corollary 4.3 Consider a model G of the related
closed-loop transfer function Gy, with

mnkmtz)(fw'} = min(m, p),
and satisfying
[Im — CG|G" is stable (11)

where G1 is the Moore-Penrose inverse. Then the
plant model estimate (8) is stabilized by C if and
only if G 1s stable.

Proof: The result follows by manipulation of the
expressions in Proposition 4.1(c). O

When the controller is not stable an additional
restriction (11) has to be considered. This con-
straint on G can not simply be incorporated in a
parametrization of the closed-loop transfer Gy to be
used during identification. A solution to this prob-
lem does exist, as shown in the forthcomming sec-
tions.

The stability results shown above, suggest that there
is a relationship between these indirect identification
methods, and the approach of using a dual-Youla
parametrization of all plants that are stabilized by
the given controller. This relation is pursued in the
next sections.

5 Identification in the dual-Youla
form

The Youla-parametrization parametrizes for a given
plant Py € IRH,, the set of all controllers C € RH,
that stabilize Py. In the dual-Youla parametriza-
tion, a similar mechanism is used, but now the set
of all plants is considered that is stabilized by a given
controller.

In order to formulate this parametrization, the con-
cept of coprime factorizations over IRH, is required.
A pair of stable transfer functions N, D € RH_, is a
right coprime factorization (rcf) of Py if Py = ND-!
and there exist stable transfer functions X, ¥ ¢
IRH, such that XN + YD = I. This implies that
two factors are coprime if there are no unstable can-
celing zeros in the factorization.

Proposition 5.1 (Desoer et al. (1980)) Let P,
with ref (N, D,) be any auziliary model that is sta-
bilized by the controller C with rcf (N.,D.). Then a
plant Py is stabilized by C if and only if there exists
an R € RH,, such that

Py =[N, + D.R|[D. - N.R ™. (12)

For a given plant Py, the related dual-Youla param-
eter R = Ry is given by

Ry = D7}I + PyC)~ (P — P,)D,. (13)

With this parametrization the original system con-
figuration can be resketched into the alternative
form as presented in figure 2. In this dual-Youla
form the signals z(t) and 2(t) are determined by
2(t) = (Dec+ PoNe) ™ [y(t) — Pa(q)u(t)] (14)
z(t) = (Da+ CN:) ri(t) + Clg)r2(t)] (15)

while K is given by

Ko =D; I+ PsC)™> (16)
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Fig. 2: Dual Youla-representation of the data gen-
erating system.

see e.g. Van den Hof and Schrama (1995). In view
of the identification problem, one is dealing with the
relation

#(t) = Ro(q)x(t) + Ko(g)v(t) (17)

where the important mechanism is that both signals
z and ¢ can be reconstructed from available data
y,u,7 and by using knowledge of the controller C
and of just any auxiliary model P, that is stabilized
by C. Moreover as it appears from (15) the signal
z is uncorrelated with the noise v, and so relation
(17) points to an “open-loop” identification problem
of identifying Ry on the basis of measurement data
Zid-

One of the properties of this identification approach
is that any identified stable model R of Ry will yield
an open-loop plant model

P = [N. + D.R|[D, — N.R|™* \18)

that is guaranteed to be stabilized by C, because of
the dual-Youla parametrization.

A property of this dual-Youla identification method
is - similar to the situation of the indirect approach
- that the model order of the identified open-loop
plant model is not under control. Because of the
relation (18), an identified transfer R with a spe-
cific model order, will lead to an open-loop plant
model that has an increased model order, that in-
corporates the order of the controller and the order
of the auxiliary model P,.

6 Indirect identification as a special
case of the dual-Youla method

The question occurs whether the identification of
Ry in the dual-Youla situation is equivalent to the
identification of a closed-loop transfer function as
present in the first step of an indirect identification
scheme. A number of special cases will be pointed
out.

Proposition 6.1 If C is stable then there exists a
choice for P, and right coprime factorizations of C

and P, such that in the dual-Youla form:

Ry = Go
2(t) = y(t)
2(t) = r(t)

and consequently identification of the dual-Youla pa-
rameter is identical to identification according to the
indirect method (8) on the basis of G.

Proof: Since C is stable, one may choose N, = C,
D. =1, N, =0 and D, = I, taking into account
that the model P, = 0 is stabilized by a stable con-
troller. The result follows by substitution in the
appropriate expressions. a

It appears that for stable controllers, the dual-Youla
identification method is actually equivalent to an
indirect identification on the basis of the transfer
1 — y (Gp). A similar result can be formulated
for the indirect identification through the transfer
ra — y (To).

Proposition 6.2 If C is stable then there ezxists a
choice for P, and right coprime factorizations of C
and P, such that in the dual-Youla form:

Ry = T
z(t) = y(t)
zZ(t) = r(t)

and consequently identification of the dual- Youla pa-
rameter is identical to identification according to the
indirect method (7) on the basis of T'.

Proof: The result follows by choosing N. = C,
D. =1, N, =0 and D, = C, and by substitut-
ing this in the appropriate expressions. 0

The closed-loop transfer functions considered in the
two propositions above are transfers towards the
closed-loop output signal y(t). The question now
occurs whether the two other transfer function (Qq
and Sp) can be considered in a similar way. This ap-
pears to be less trivial than expected, most impor-
tantly because they are transfers towards the closed-
loop input signal u(t). As a consequence, the choices
of particular factorizations should be made in such
a way that this results in z(t) = u(t). Considering
the general expression for z(t) in (14) this seems not
possible. A solution for this problem appears to be
in considering a dual-Youla parametrization based
on the controllers inverse, which is discussed in the
next section.

With respect to the asymptotic bias distribution, as
indicated in (6) for the indirect method, it is shown




in Lee et al. (1992) and Van den Hof and Schrama
(1995) that for the dual-Youla method, the corre-
sponding expression is (for the SISO-case):

6=
1 ™

which is similar to (6), except for an additional
weighting with D., In case C is stable, one can al-
ways choose D, = 1 leading to equal expressions for
both methods. Note that for unstable C the model
sets in the two approaches will be slightly different
if in the indirect method one does not take account
of the parametrization constraint (11).

Busempily_o PB)uo| 185
1+CPy 1+CP()| |DJ?

7 A dual-Youla parametrization on
the basis of C!

In this section attention will be limited to the sit-
uation that m = p and controller and plant can be
inverted, i.e. they have full rank over IR(z).

Lemma 7.1 Consider the situation m = p and Py
and C invertible. Then T(Py,C) € RHy if and
only if T(P;',C~') € RH,,.

Proof: By simple manipulations it can be shown
that T(P;*,C ') is equal to a permuted version of
the original T(P,, C). O

A dual-Youla parametrization can now be formu-
lated on the basis of the inverse controller C 1.

Proposition 7.2 Let P, with rcf (N,,D.) be any
auziliary model that is stabilized by the controller
C~! with ref D.NZ. Then a plant Py is stabilized
by C if and only if there ezists an R € RH, such
that

Py = (D, — D.R][N, + N.R]*. (19)

Proof: The proof follows by parametrizing P; ' in
a dual-Youla parametrization, and applying lemma
71

Under the conditions of the proposition, it follows
that for a given plant P, the related R is given by

R =Ry =D I+ P,C) (D, — PN.) (20)
and the system’s equations become:

y(t) = (D — D.Ro)z(t) + (I + PoC)  u(t)
u(t) (N + N.Rp)z(t) — C(I + PoC) *o(t).

Il

Based on these latter equations one can extract Ry
by:

z(t) = Ro(q)z(t) + Ko(q)v(t) (21)

with
2(t) = (Ne + Po D) [ult) — Po(q)y(t)].  (22)

This alternative structure, will allow to choose par-
ticular factorizations in the scheme in order to re-
alize z(t) = u(t). This is reflected in the following
two results.

Proposition 7.3 Let p=m and let C~* be stable.
Then there exist choices for P, and right coprime
factorizations of C and P, such that in the dual-
Youla form of this section:

either Ry = Qg or Rg =Sy
z(t) = u(t)
z(t)=r(t]

and consequently identification of the dual-Youla pa-
rameter is identical to identification according to the
indirect method (9) on the basis of Q or (10) on the
basis of S.

Proof: The result follows by choosing N, = I,
D. = C', N, = 0 and either D, = I (for the
case of Q) or D, = C~! (for the case of S;), and
by substituting this in the appropriate expressions.

O

This shows that the two closed-loop transfer func-
tions that are related to the input signal u can also
be directly estimated in a dual-Youla framework,
provided that we restrict attention to the square sit-
uation (p = m) and to a stably invertible controller.

8 Conclusions

The classical indirect method for closed-loop identi-
fication and the recently discussed approach based
on the dual-Youla parametrization appear to be
closely related to each other. In the situation of a
stable controller, the two methods are algebraically
equivalent. In the situation of an unstable con-
troller, the dual-Youla method provides models that
are guaranteed to be stabilized by the controller,
which goes beyond the capabilities of a simple in-
direct method. Several relations are given between
the two approaches, showing that the dual-Youla
method is actually a generalization of the classical
indirect approach.

Both approaches share the problem that it is not
simply possible to control the model order of the
identified plant model.
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1 Introduction

When identifying dynamic models for the specific
purpose of subsequent model-based control design
it is argued that a closed-loop experimental setup
during the identification experiments supports the
construction of an identified model that is particu-
larly accurate in that frequency region that is rele-
vant for the control design. This mechanism which
plays a major role in many contributions in the
area of “identification for control”, has been mo-
tivated mainly on the basis of bias considerations in
the form of a “control-relevant” distribution of the
bias over frequency (Schrama, 1992; Gevers, 1993,
Lee et al.,1993; Van den Hof and Schrama, 1995).
Recently it has been shown in Hjalmarsson et al.
(1996), that for a particular class of control design
methods, also from a variance point of view closed-
loop experiments are preferred over open-loop ones.
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Louvain-la-Neuve, Belgium.
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sity, 5-581 83 Linkoping, Sweden.
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In this paper we will first present the asymp-
totic variance expressions for identified models
based on several different closed-loop identification
methods, including the recently introduced indi-
rect methods using a coprime factor model rep-
resentation (Schrama, 1992; Van den Hof et al,
1995) and the method employing a so-called
dual Youla/Kucera parametrization (Hansen and
Franklin, 1988; Schrama, 1992; Lee et al1993).
The results for the classical 'direct’ method (Ljung,
1993) are extended to also include variance expres-
sions for the estimated noise model, while they are
shown to remain the same for the mentioned alter-
native indirect methods.

These variance expressions are compared to related
expressions for the open-loop situation, and con-
sequences are shown for the variance of resulting
model-based controllers for several types of con-
troller designs.

2 Preliminaries

We will consider the closed-loop configuration as de-
picted in Fig. 1, where G and C are linear time-




invariant, possibly unstable, finite dimensional sys-
tems, while C is a stabilizing controller for Gg; e is
a white noise process with variance Ag, and Hp a
stable and stably invertible monic transfer function.
Signals 7, and r, are external reference signals that
are possibly available from measurements. For pur-
pose of efficient notation, we will often deal with the
signal
r(t) := r1(t) + Cq)ra(?)

being the result of external excitation through either
T1 OT T3.

l&'

Hyj

71
v
T2 +l + y
i v L vt

Fig. 1: Closed-loop configuration.

Additionally we will denote:

u(t) = u"(t) + u(t) (1)

with
u’(t) = Solq)r(t), (2)
us(t) = —C(q)So(q)Ho(g)e(?), (3)

where the sensitivity function Sp is given by

1 3 ”
So(g) := ﬂm(-q—). The signals u"(¢) and

u®(t) refer to those parts of the input signal that
originate from, respectively, r and e. For the corre-
sponding spectra it follows that

&, = &7 + B (4)

with
37 = [So|*®, and (5)
3 = |CSy|*®,. (6)

In order to simplify notation the arguments g and
e will be omitted when there is no risk of ambigu-
ity. We will consider parametrized models G(g,0)
for Gy and H(g,8) for Hy with # € ©, and in ac-
cordance with Ljung (1987) we will use the expres-
sions S € M to refer to the situation that there
exists a , € © such that G(q,0,) = Go(g) and
H(q,0,) = Ho(q); Go € G will indicate that there
exists a 8, € ® such that G(g,8,) = Go(q) only.

The variance expressions that are considered in this
paper are asymptotic in both n (model order) and
N (number of data), while n/N is supposed to tend
to 0, as in the standard framework of Ljung (1987).
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3 Direct identification

The direct method of closed-loop identification is
characterized by

N-1
i e t _1_ 5
On = argmin g e(t,0) (7)

with
e(t,0) = H(q,0) '[y(t) — G(g,0)u(t)].  (8)

For this direct identification method, an expression
for the asymptotic variance of the transfer function
estimate can be given for the situation that S € M,
and both plant model and noise are estimated. In
this case (Ljung, 1987):

Glev)) n [ 2u(w) Beu(w)]
“(fr(efwy)”qu’"(‘”’[@uetw) ol
(9)

With the relation ®,. = —CS¢HpA¢ and using the
fact that $,\p — |®.e|? = Ao @], it follows that

6\ ng [ 1 (osym)
ov| 2 | ~—=—" u :
L W e T 7 - A

Ao

e AT
As a result the variance expressions for G and H
become:

: ndé, nd, 3c
cov(G) ~ ﬁ?s?‘;:ﬁ_[”cb'] (11)
- nd e ne &2

The case of an open-loop experimental situation now
appears as a special situation in which &7 = 0, ] =
$,, and C = 0, and thus leading to the well known
open-loop expressions

- n ® - n ®
cov(G) ~ E‘IT: cov(H) ~ NA_:' (13)
As indicated in Ljung (1993), the closed-loop ex-
pressions show that only the noisefree part u, of
the input signal contributes to variance reduction of
the estimates.

The given expressions are restricted to the situa-
tion that § € M and that both G(8) and H(f) are
identified; they do not hold true for the situation

GOEG,SQM.

Remark 3.1 The situation of estimating a plant
model in the situation Go € G and having a fized
and correct noise model H, = Hy is considered in
Ljung (1993). Using the fact that

cov by = RESEWTOI (1)




where (t) is the negative gradient of the prediction
error (8), this leads to

cov(G) ~ ——= (15)
as it is immaterial whether the input spectrum is
a result of open loop or closed loop operation. Note
that this expression gives a smaller variance than the
situation in which both G and H are estimated, and

that in this (unrealistic) case the total input power
contributes to a reduction of the estimate variance.

4 Indirect identification

4.1 Introduction

Recently several different indirect approaches to
closed-loop identification have been presented, see
e.g. Gevers (1993) and Van den Hof and Schrama
(1995). These methods have been introduced from
considerations related to the bias that occurs in
closed-loop identification of approximate models.
Here we will briefly illustrate their properties with
respect to the variance of the estimates.

4.2 Coprime factor identification

Coprime factor identification is treated in detail in
Schrama (1992) and Van den Hof et al. (1995). It is
a scheme that relates to (and generalizes) the classi-
cal joint input/output method of closed-loop identi-
fication as e.g. described in Gustavsson et al. (1977).
It does not require knowledge of the implemented
controller C.

The basic priwciple is that the (two-times-two)
transfer function (r,e)T — (y,u)T is identified,
while the plant models (G, H) are retrieved from
these closed-loop estimates.

Consider the system’s relations:

y(t) = GoSor(t) + SoHoe(t)
u(t) = S[;T‘(t} —CSgHue(t).

(16)
(17)

They are rewritten, by using a filtered signal z(t) :=
F(q)r(t), into the form

= Ny, rz(t) + SoHoe(t)
DQ‘FI(t) = CSque(t]

(18)
(19)

y(t)
u(t) =

with N(‘_IPF = GOS[}F_]' and DD.F = SQFHI, con-
stituting a coprime factor representation of Gy as
Go = No,r Dy p-

The linear and stable filter F' can be chosen by the
user to serve several purposes, like minimal order
properties or normalization of the coprime factor-
ization as discussed in Van den Hof et al. (1995);
this will not be pursued here any further as it is
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immaterial for the variance analysis. The impor-
tant observation here is that the signals  and e are
uncorrelated.

Identification of the 4 transfer functions in (18),(19)
from the signals z(t), y(t), u(¢) therefore corre-
sponds to a one-input two-output open-loop iden-
tification problem. Denote

Wy(2,0) " [u(t) — N(g,0)z(t)] (20)
W.(2,0) " [u(t) — D(g,8)=(t)]; (21)

ey(t:a)
eu(t,0)

Il

Least squares minimization of (e, eu)T provides es-
timated models NV, D, Wy, W,.
Open-loop models G and H are then retrieved by

G =

H =

N(D)™!
W, — GW..

(22)
(23)

In order to guarantee that H is a monic transfer
function, whenever Wy and W, are monic, it will be
assumed that G is strictly proper.

For obtaining variance expressions of these recon-
structed estimates, use can be made of first order
approximations: G = Gg + AG, N = No,r + AN,
D= Dy, r + AD etcetera, leading to

AN Ny rpAD
AG = — 2 24
Do,r D p Sl
AH = AW, - Go(AW,) — (AG)W,. (25)
This leads to the result:
é n '}v 1 (CSDH{]}‘
cov ~ ~—_—— @u
H N &7, CSoHp X7
Ao
(26)

A sketch of the derivation of this result is given in
the Appendix.

Note that the expression (26) is identical to the ex-
pression that was derived for direct identification
(10).

4.3 Identification in a dual Youla-Kucera
parametrization

Another method that has recently been introduced
utilizes a specific parametrization of the plant Gj.
As it is assumed that the controller C stabilizes the
plant, Gy can be parametrized within the class of all
plants that are stabilized by C. This parametriza-
tion involves the relation

_ N. +D.R(6)

¢6) = 5. —N.Rr@) A

where N, /D, =: G, is any (auxiliary) system that
is stabilized by C; N./D. = C, and R(f) ranges



over the class of all stable proper transfer functions.
The different factors that build up the quotient ex-
pressions G, and C are required to be stable and
coprime.

Using an expression like (27) for the plant Gy
with a Youla-Kucera parameter Ry, and substitut-
ing this in the system’s relations, shows -after some
manipulations- that these can be rewritten as

z(t) = Roz(t) + Koe(t) (28)
with
Rn = DzSn(Gﬂ — Gz)/DC (29)
Ko = HUSU/DC (30)
= (Dc+G.Ne) 'y —Gzu)  (31)
& = (D CN)> (32)

Since & is not correlated with e, the identification of
R, and K, can again be considered to be an open-
loop type of identification problem. Note that the
signals z and z can simply be constructed by the
user, as they are dependent on known quantities
and measured signals. Least-squares identification
is performed on the basis of the prediction error

= K(q,g)_I[Z(t) N R(q,G):‘B{t)]

and the estimated transfers are denoted by K and
R.

The open-loop model can then be reconstructed
from these estimates according to

e(t,0)

&= N +D.R
D. - N.R
KD.57! = KD.[1+ CG].

(33)

= (34)
In order to guarantee that H is monic whenever K
is monic, it will assumed that CQG is strictly proper
and D, is monic.

Variance expressions for the estimates R and K
are available through the standard expressions for
(open-loop) identification:

n |Ko|®Xo

m.l(R) ~N 5

and cov(K) ~ %qxuﬁ

(35)
while cov(R, K) = 0. In a similar way as has been
done for the coprime factor identification method,
these results can be utilized to obtain expressions
for the variance of (G,H), relying on first order
approximating expressions. Not surprisingly (see
Appendix) the variance expressions for (G, H ) are
again given by (26).

Further details on this identification method can
be found in Lee et al.(1993) and Van den Hof and
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Schrama (1995). It can be shown that it is a di-
rect generalization of the classical indirect method
of closed-loop identification, see Van den Hof and De
Callafon (1996). It has to be stressed that knowl-
edge of the controller C is assumed to be available.

4.4 Two-stage method

A two-stage method for closed-loop identification
has been introduced in Van den Hof and Schrama
(1993). It operates directly on reference, input and
output data, and does not require knowledge of the
implemented controller. It can best be explained by
considering the system’s relations:

Sor(t) — CSoHe(t)
Gou () + SoHoe(t).

(36)
(37)

u(t) =
y(t) =

In the first step, measured signals r and u are used
to estimate a model S of the sensitivity function S.
Next this model is used to construct (by simulation)
an estimate 4" of u” according to @7 (t) = S(g)r(¢).
In the second stage, the signals &" and y are used
as a basis for the identification of a plant model G
The procedure is very much alike the coprime fac-
tor identification scheme, albeit that the final plant
model is not calculated through division of two iden-
tified models; this division is circumvented by con-
structing the auxiliary simulated signal 4".

If in the first step a consistent estimate of Sp is
obtained, the variance result for G will appear to
be similar to the previously obtained results

2,

n n @,
N |52,

(38)

4.5 Summarizing comments

It has been shown that for the considered indirect
identification methods, the asymptotic variance ex-
pressions for plant and noise model are exactly the
same as the known expressions for direct identifi-
cation. This may not be too surprising, as similar
results for the classical indirect and joint i/o meth-
ods were already available (Gustavsson et al., 1977).
However what has to be stressed here, is that for the
indirect type methods the variance expressions for
G are valid also in the situation that Gy € G but
S ¢ M, while for the direct identification method
the results are only achieved under the stronger con-
dition that § € M. With indirect identification we
can thus e.g. fix the noise model to a predetermined
choice, only identifying the plant model G, and ob-
tain the same asymptotic variance as would be ob-
tained when indeed estimating a noise model.




5 Open-loop versus closed-loop ex-
periments

Considering that the variance expressions are identi-
cal for all closed-loop identification methods, we can
now make a comparison between the variances ob-
tained from open-loop and closed-loop experimental
conditions. The appropriate expressions are sum-
marized in table 1.

| Open-loop Closed-loop
A n o, n ?,
YorlGnm) | g = 105 Nar
. n &, n &, e
Var(Hy) ET{; <5 F‘}: (1‘!'@')

Table 1: Variance expressions under open-loop and
closed-loop conditions.

The results show that for both G and H the vari-
ance obtained under closed-loop identification will
generally be larger than for open-loop identification.
Particularly in a situation where the input power is
limited, the difference will become apparent, as in
that case only part of the actual input spectrum can
be used for variance reduction of G and H. In case
the input power is not restricted, closed-loop iden-
tification can achieve the same results as open-loop
identification, by choosing a reference signal » such
that @" is equal to the input spectrum applied in
the open-loop situation.

The results suggest that in terms of variance of the
model estimates Gy and Hy, open-loop identifi-
cation always has to be preferred over closed-loop
identification. However, perhaps surprisingly, this
is not the case if the objective of the identification
is model-based control design, as is explained in the
next section.

6 Optimal experiments in view of
model-based control

In this section we will consider the situation that the
identified transfer functions Gy and Hy are used as
a basis for model-based control design, and we will
illustrate the effect of the variance of the identified
model on the model application, i.c. the designed
controller,

To this end we will first consider the following result
from Ljung (1987, Theorem 14.3).

Proposition 6.1 Consider the variance-based

identification design criterion

J(D) = f_ " r[P(w, D)T(w)]dw
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where A
G(e™)
P(w,D) = o
(w ) CO’?J (H(e“") ) 1

D denotes the design choices with respect to the
ezperimental conditions, represented by {®., ..},
while T'(w) is @ 2 x 2 Hermitian matriz reflecting
the intended application of the model.

If I'12(w) = 0 and the input power is limited, then

the ezperimental condition D for which J(D) is op-
timized is given by

Qﬁpt = C- l"u(w)'iv(w)

% = 0

(39)
(40)

and ¢ is a constant.

This result shows that open-loop identification is
optimal when the intended application is one for
which I'y3 = 0. The situation I';; = 0, considered
in this proposition, reflects the case that a model
is evaluated -in view of its intended application- by
only considering the variance contributions of G and
H separately, but not penalizing the covariance be-
tween the two. This situation applies e.g. to the
case where a controller is designed on the basis of
G only and not considering H. This situation is
considered in the following corollary.

Corollary 6.2 Consider as model application a
control design scheme based on a frequency weighted
sensitivity minimization:

Cg = argmin [V(1+ 6C) .
Then the optimal ezperiment design in line with the
above proposition is given by

e open-loop experiments (Bt = 0).
o B =c-|CxVSF|V/ B,

Proof: The application-related error criterion can
be written as

IV[(1+CGo)™ - (1 + CG)7Y|;

which can be shown to be equal to (using first order
approximations)

e = .

1+ CG,

An appropriate choice of I'y; for this model appli-
cation would thus be

vel|?
T = e 41
1(w) 1+CG,* (&)
leading to the result presented. O




From the above result one could conclude that -from
a variance point of view- an open-loop configuration
would be the optimal experimental setup for per-
forming identification for this control design objec-
tive in which the controller a function of G only, i.e.
independent of H. It has to be noted, though, that
the required input spectrum in this ‘open-loc)p’ situ-
ation should be proportional to the sensitivity func-
tion Sp of the real plant, being controlled by the yet-
to-be-designed controller. Input shaping with Sy is
exactly what is done when closed-loop identification
is performed, as in that case &, = |So|?®, + ®<.

A second related result is present in the recent work
of Hjalmarsson et al.(1996) on optimal identification
for control. In this work the identification crite-
rion is selected to minimize the control performance
degradation that results from the random errors on
G N and H ~- In solving this problem, the authors
have quantified the variance error on the designed
model-based controller.

Consider a situation where an identified model Gy,
Hy is obtained from a closed-loop experimental
situation with a controller C;; implemented on
the plant. Consider a model-based control design
scheme N b
Cn =c(Gn,Hn)

and let Fg, Fy reflect the derivatives of ¢ with re-
spect to G, H, i.e. the sensitivity of the controller
with respect to changes in G and H. Then the vari-
ance of the controller estimate is (see Hjalmarsson
et al., 1996)

cou(Cn) ~ | Hol

X
{lFffiz + §0|FG + (FeGo + FﬁHo)C.-dfz}

leading to the situation that

e If Fiy # 0, then the controller variance is mini-
mized for models identified in closed-loop with
an implemented controller C7} * unequal to zero,
and the resulting controller variance is

oo(Cw) ~ 3| Hol*|Farl”

By comparison, the controller variance ob-
tained with open-loop identification is

L

[Fa? 2.

CO’U(C‘N) ~ %|Hﬂ|leHi2 (1 +

We observe that the variance obtained under
ideal closed-loop experimental conditions can
only be achieved with open-loop identification
if the input power is made infinite.
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e If Fy = 0, then the variance expression for
closed-loop identification becomes

A n 1+ CiaGol*\
con(C) ~ -IHD|’*|FGF[§#‘“

F 2
=N §,| cl®
The corresponding expression for open-loop
identification is

cov(Cn) ~ E—IF al®.

The situation Fgy = 0 means that the control
design depends only on G and not on the noise
model. This result is therefore consistent with
Proposition 6.1.

We conclude from this analysis that, as far as vari-
ance errors are concerned, for model-based con-
trol design, closed-loop identification is optimal ex-
cept when the controller is independent of the noise
model.

7 Conclusions

Asymptotic variance expressions have been derived
for several closed-loop identification schemes, in-
volving both the (classical) direct method and more
recently introduced indirect identification methods.
It is shown that the several approaches lead to the
same asymptotic variance.

Although asymptotic variance of plant model and
noise model generally will increase when perform-
ing closed-loop identification, in comparison with
open-loop identification, closed-loop identification
can still be preferred when the identified model is
used as a basis for control design. In the case that
a controller is designed on the basis of both plant
model and noise model, closed-loop identification is
shown to lead to better variance results. When a
controller is designed on the basis of a plant model
only, the optimal identification experiment is an
open-loop experiment with an input signal that has
a power distribution that involves the real sensitiv-
ity function of the -yet to be designed- closed-loop
plant.

Appendix

Proof of (26).
Applying the standard variance expressions to the
multivariable situation of (18),(19) it follows that

N\ nlSfPe, [ 1 -c°
""”(ﬁ)“ﬁ 3, [-c |C|2}(‘“)

W, n|So|?® [ 1 —-C*
'“"”(Wu) N % [—c |C|2]{A2)




Since (18),(19) reflect an open-loop situation (as z
and e are uncorrelated) this implies that the cross-
covariance terms between (N,D)T and (W,,W,)
are zero.
Applying the first order approximations in (24) it
follows that:
AN Gy ] [AN Go ]
- —AD - AD
{Do,p Dy, Do,r  Do,r
|AN? | |Gof? 2
= + AD|* +

Dorl T DorP! !
Go(AD)(AN)" }
—Re { ————— .
{ | Do, r|?

Il

|AGT?

Substitution of (A.1) then provides the result for
For H one can similarly write (when neglecting
terms that have expectation 0):

AW, [* + |Go*|AW.[* + [W.[?|AG|?
—2Re Go(AW,) - (AW,)*

AHP? =

and the result for cov(H) follows after substitution
of (A.2). o

The expression for cov(G,H) follows from
cov(G, H) = —W? cov(G).

Variance result for dual Youla-Kucera
method

Using (33),(34) the related expressions for the first

order approximation errors become

AG =
(D, — N.Rg)D.(AR) + (N: + D.Ro)N.(AR)
(Dz — N:.Ro)?
K
AH = &(5‘—) + KoN.(AG). (A.3)
0
For AG this leads to
D, + GoN. D.(AR)
- — " AR=—rvn——
BO= e D.52(1+CG,)
and so
D i
cov(G) = - cov(R).

D,S2(1+ CG.)

Substituting the expression for cov(R) and using the
property that &, = [D (1 + C‘G,)P@, it follows af-
ter some manipulation that cov(G) ~n/N - @, /®],.

For cov(H) it follows from (A.3) that

|D.|*covK

i+ VK[ conC.

cov(H) =
Substituting the known expressions in the right
hand side, will show that cov(H) ~ n/N |Ho|?[1 +
3¢ /27).
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For cov(G, H) it follows from (A.3) that
cov(G, H) = (KoN.)* cov(G)
which leads to the appropriate result.
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Analysis of closed-loop identification with a
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Abstract. An analysis is made of a closed-loop identification scheme in which the pa-
rameters of the (open-loop) model are identified on the basis of input and output signals
of the closed-loop transfer function. A parametrization of the closed-loop transfer in
terms of the parameters of the open-loop plant model is employed, utilizing knowledge
of the implemented feedback controller. This is denoted a tailor-made parametrization
as it is tailored to the specific feedback structure at hand. To obtain an estimate of the
plant model, a dedicated nonlinear optimization algorithm is required as the standard
optimization tools for the situation of open-loop models can not be applied. Consistency
of the estimate is shown to hold under additional conditions on controller and plant model
order. These conditions result from the requirement of a uniformly stable model set. Sim-
ulation examples show both the power and the hazard of closed-loop identification with
a tailor-made parametrization.

Keywords. Closed-loop identification; tailor-made parametrization; indirect identifica-
tion; closed-loop stability.

1 Introduction prime plant factors (Van den Hof et al., 1995). An
overview of these closed-loop identification schemes
can be found in Gevers (1993) and Van den Hof and

Schrama (1995).

System identification from closed-loop data has had
a lot of attention in literature which has resulted in

numerous closed-loop identification schemes. First
of all there are the more classical methods like direct
identification, indirect identification, instrumental
variable methods and joint input/output identifi-
cation, see e.g. Soderstrom and Stoica (1989).
More recently particular versions of these closed-
loop identification schemes have been developed
that are directed towards an explicitly tunable bias
expression, which is aiming for an identified model
that is particularly suitable for use in control de-
sign. Examples of such schemes are the two-stage
method (Van den Hof and Schrama, 1993), iden-
tification in the dual Youla parametrization ((Lee
al., 1993),(Schrama, 1992)) and identification of co-

tThe work of Edwin van Donkelaar is financially sup-
ported by the Dutch Technology Foundation (STW) under
contract DWT55.3618
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In this paper a closed-loop identification method is
discussed that has not had a lot of attention in liter-
ature: closed-loop identification with a tailor-made
parametrization. The basic idea is that the closed-
loop transfer function from excitation signal r to
output signal y (see Figure 1) is identified using an
output predictor

G(g,0)

19 = I oeqe)”

(t)

using the parameters corresponding to the (open-
loop) plant model

bigl 4+ 4 bayg ™®
1+a1g7 1+ +an, g™

G(q, 9) —

with @ = [by+-+bay a1+ an,]-




e kT

Fig. 1: Closed-loop configuration

Using the open-loop plant parameters, and knowl-
edge of the controller C, a prediction error criterion
is used to estimate the plant parameters; this re-
quires a nonlinear optimization procedure.

The parametrization is referred to as a tailor-made
parametrization, as it is specifically directed to-
wards (tailored to) the closed-loop configuration at
hand, including knowledge of the controller.

This identificaiton approach has been mentioned as
an exercise in Ljung (1987). It is also employed in a
recursive version in Landau and Boumaiza (1996).
In this paper, an analysis will be made of the consis-
tency properties of this method, where in particular
we will focus on the connectedness of related param-
eter sets and the uniform stability of corresponding
model sets.

After preliminary notation and the formulation of
the problem, in section 4 it will be made clear that
the need for uniform stability of the model sef,
which is adopted in Ljung (1987) to obtain con-
sistency results, imposes additional conditions on
the parametrization. Sufficient conditions for con-
sistency are derived which results in a condition on
controller and model order. In section 5 compact
expressions for the gradient and Hessian of the cost
function are given, which are useful if a gradient
search method is used for the nonlinear optimiza-
tion. In section 6 two simulations are given to il-
lustrate both the possible problems and the power
of the application of a tailor-made parametriza-
tion. Next, in section 7 the relation between this
and other closed-loop identification methods is dis-
cussed. Finally, section 8 concludes the paper.

2 Preliminaries

Addressed is the problem of obtaining a model of
the linear time-invariant discrete-time single input
single output plant Go(z) from measurements of the
closed-loop configuration given in figure 1.

The controller is denoted with C'(z) and is assumed
to be known. The signal »(¢) is an external excita-
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tion signal, u(t) and y(t) are respectively the plant
input and output. It is assumed that measurements
of 7(t) and y(t) are available. The output noise v(t)
is assumed to be generated by filtering of white noise
signal e(t) with variance ¢ using a stable monic fil-
ter Hy(z). The output noise is assumed to be uncor-
related with the excitation signal r. Lastly, the loop
transfer C(2)Gy(z) is assumed to be strictly proper.
The closed-loop transfer function from measured
reference to measured output can be written as fol-
lows.

Go(q) 1

y(t)= 15C(q)Gola) r(t)+ Fmﬂa(fi’) e(t)
Ro(q) W;?‘i')

where Ro(g) denotes the closed-loop transfer func-
tion and Wy(q) the closed-loop noise filter.

The sensitivity function is denoted by Sy(z) =
(1 + C(z)Go(z))* and the parametrized sensitiv-
ity is denoted with S(z,0) = (1 + C(2)G(z,8))'.

3 Closed-loop identification with a
tailor-made parametrization

Consider a parametrized model of the plant G(q,8)
where the parameter vector lies in a parameter set
6 € ©. This parametrized plant model together
with knowledge of the controller can be used to
parametrize the transfer function between the mea-
sured signals r(¢) and y(¢). This yields the following
prediction of the output in case the parametrized
closed-loop noise filter is set to W(g,#) = 1 (output
error structure)

G(q,0)
1+ C(q)G(g,9)
N, e

R(q,9)

4(t,0) = r(t), 0€® (1)

The corresponding set of closed-loop models is de-
fined as

G(g,9) }
‘P::{R )= ——————,0€0 2
@8 = 1 00)e@0 i
The parameter estimate is found by least squares
minimization of the prediction error by solving
Oy = arg{arggVN(ﬂ), in which the criterion function

is given by V() = & Z:’;l £%(t,0) and the predic-
tion error is defined as e(¢,0) = y(t) — R(q, 8)r(t).
The resulting estimation of the plant model will be
denoted by R(q) = R(q,8y).

For this identification method the following consis-
tency result holds (Ljung, 1987).




Proposition 3.1 Get P be a wuniformly stable
model set and let the data generating system sat-
isfy the standard conditions in Ljung (1987). Then
Oy — 0* w.p. 1 for N — oo with

™

. . i fwy 1w 2
f = argmin o v/;#]Rg(e ) — R(e*,0)|* @, (w)dw

(3)
Whenever there exists a 8 such that G(g,8) = Go(q)
this choice will be a minimizing argument of the in-
tegral expression above which is unique provided that
(%) is persistently exciting of sufficient high order.

This proposition states that a consistent estimate is
obtained with this parametrization under the condi-
tion that the model set P is uniformly stable. This
condition is not trivially satisfied in case the tailor-
made parametrization given in (2) is used. There-
fore, in the next section the conditions under which
the model set (2) is guaranteed to be uniformly sta-
ble will be investigated.

4 TUniform stability of the model set

In the previous section it is mentioned that, in case
of uniform stability of the model set, a consistent
estimate is obtained with closed-loop identification
using a tailor-made parametrization. Uniform sta-
bility of the model set is defined as follows.

Definition 4.1 (Ljung, 1987) A parametrized
maodel set G is uniformly stable if

e O is a connected open subset of R(ratns)

e u:©® — P is a differentiable mapping, and

s the family of transfer functions
{R(z,6), & R(z,0)} is uniformly stable.

In this section it will be made clear that in case a
tailor-made parametrization is used, the parameter
set O is possibly not connected due to the specific
parametrization of the closed-loop transfer function
R(z,6). Also a sufficient condition is derived for
guaranteed connectedness of the parameter set.
Let the strictly proper' plant model
parametrized as

be

B(z,60) _ biz7t ...+ bagz ™R
A(2,0)  14a1z71+...4@8p 27 ™

(4)

1For simplicity of notation only the case of a strictly
proper plant and a proper controller is regarded. However,
the case of a strictly proper controller and a proper plant can
be described similarly.

G(Z‘ 9) o
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where 0 = [a1...Gn, b1...bn,]T. The controller of
order n. is given by

C= Ne(z) no+mz'+...4+n, 2z "
D.(z) l+dyz7t +... +dp 27"

where N.(z), D.(z) are coprime polynomials. With
this notation the parametrization of the output pre-
dictor is given by

D.(q)B(q,9)
D.(q)A(q,0) + N.(q)B(q,0)

All closed-loop models R(g,0) are stable if the
absolute value of the roots of the denominator
D.(q)A(q,6)+ N.(¢g)B(g,80) is strictly less than one.
Hence, the parameter set corresponding to closed-
loop stable models is given by

9(¢,0) =

r(t)  (5)

0 ={f e R+
|sol{D.(2)A(z,0) + N.(z)B(z,6) = 0} < 1} (6)

The corresponding set of plant models is denoted by

(7)

It can be verified that the parameter set for
which the polynomial A(q,#) is stable, is pathwise
connected?. As a result, connectedness of the pa-
rameter set when using a (standard) numerator-
denominator parametrization of the plant in an
open-loop setting, will not be a problem. However,
in case the tailor-made parametrization (2) is used,
with © given by (6), © need not be pathwise con-
nected as the following simple example shows.

G = {G(z,0), € O}.

Example 4.2 Given the 7th order controller de-
fined by the continuous time transfer function
C(s) =

0.4995°+0.7155*+2.5775* +3.397 +2.1555 +2.620
8 +1.717845.10085+8.41044+4.1985° +-6.631 52

The plant that is to be identified is parametrized by
a simple constant G = 0. The parameter space
©® C IR for which the closed-loop system is stable
can be simply derived from a root locus plot and is
approzimately given by

© = {6]6 € (0,1.27) U (2.64,4.69) U (9.98, c0)}

This set is a disconnected subset of R. Therefore the
corresponding model set P is not uniformly stable.

A parameter set that is not connected has not only
consequences for the formal proof of consistency as

2 A justification of this claim is added in the appendix.




was mentioned before, but also for the nonlinear op-
timization that has to be performed to obtain an es-
timate. If, for example, a gradient search method is
used and an initial estimate is selected in a region of
the parameter set that is disconnected from the re-
gion where the optimal parameter vector is located,
it will be extremely hard if not impossible to reach
the optimum.

The denominator of the closed-loop transfer func-
tion can be written as a function of the open loop
parameter £ as

D.A(z,0)+N.B(z,0)=1+[z"" z72... 270 (8)

where the closed-loop parameter vector is given by
0. := SO + p. The order of the closed-loop poly-
nomial of (8) is given by n = maz(na,np) + n.,
= T L 0...U]T € R™ and S = [PD Py] €
R"*(r4tn2) with Pp € R™™4, Py € R™*"® are
matrices given by

s g g (ng 0 0 ]
d]_ 1 n1 7Ny
dy dy nz2 M
: dg Lo | : na Mg
PD =5 )PN =
dﬂ, dl Nn, n1
0 ] dz 0 g
[0 e O dy, | | O 0 n,, |
(9)

The closed loop parameter can vary over a parame-
ter set

@1 = {8 = M8 + p|6 € O}

where the allowable closed loop parameters are re-
stricted by the affine relation given above. Now, de-
fine a parameter set for stable polynomials of order
n as follows

O, = {0, € R”| [sol{1+ [z7' ...27™]0, = 0}| < 1}
From connectedness of the parameter set for of sta-
ble polynomials (see Appendix) it can be concluded
that the parameter set ©,, is also connected. In the
following theorem a sufficient condition for connect-
edness of the parameter space © is given using the
connected set ©,, as a starting point.

Lemma 4.3 Full row rank of the matriz S =
[Pp Py] with Pp,Py given in (9), is a sufficient
condition for pathwise connectedness of the param-
eter set © given in (6).
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Proof: The closed-loop parameter #,, can vary over
the connected set ©,. Now define the set

(:)cl = {écllgcl =0, — Py 0, € en}

This set is a shifted version of ©,, and is therefore
also pathwise connected. An open loop parameter
vector # € O and a parameter vector 8, € O,
are related via 0, = 56,85 € R™*("«t™)  If §
has full row rank it defines a surjective map, hence
image(S) = ©.. In the connected set ©,; a continu-
ous path can be constructed between two parameter
vectors. This path can be mapped info a continuous
path in © using the inverse mapping of S. Therefore
© is also pathwise connected. O

This result implies that the parameter set for which
the parametrized transfer function (2) is stable, is
only a connected set in specific cases. Therefore it is
not guaranteed that the model set defined in (2) is
uniformly stable following the definition of uniform
stability in Definition 4.1. The following lemma
gives an easy test for guaranteed uniform stability of
the model set with a tailor-made parametrization.

Proposition 4.4 Let a model of order n, be

parametrized as

B(z,0) bz t4...+by, 2™

R = A(z,0) l+aiz'+...+anz ™

and let the controller of order n. be gien by

_Ne(z) mot+mz l4...4nn 27"
T De(z)  14dizi4...+dnzme

A sufficient condition for connectedness of the pa-
rameter set © for a tailor-made parametrization
given in (2), is given by

g 2 Me

Proof: From lemma 4.3 it follows that full row
rank of S is a sufficient condition for connectedness.
By reordering the columns of S a 2 x 2 upper tri-
angular block matrix can be constructed given by

|81 Si2
S= [ 0 S, ] where
[5E 500 e 0 Vg, VO e 0T
d1 1 m ng
dz d; TNy n1
51: : dg b s | Na Mg
d‘,‘c d]_ '.I'?.n: mn
0 dan, dy 0 ng, ny
L 0 ) d"‘e 0 0 Nn, J




Ay, oo Dann1 T, v MInnail
5= :
0 s ol e
where S]_ € ]R,zn‘xzn‘ and SZ € m(“:—“c}KZ(n.—ncj.

The matrix S has full row rank if S; and S; have
full row rank. The first is a Sylvester matrix which
has full row rank if and only if the numerator and
denominator of the controller are coprime (Chen,
1984) . The second has full row rank if d,,_ # 0 or
nn, # 0. This is always the case for a controller
of order n.. The number of rows of S is smaller
than or equal to the number of columns if n, +n; >
max(nag, ny) + n.. This reduces to 2n, > n, +n. or
equivalently n, > n.. O

From this it can be concluded that connectedness of
the parameter set ©® causes no problem if the order
of the controller is smaller than the model order. So
for identification of a simple model based on exper-
iments with a complex controller connectedness of
the parameter set may be a problem. Note that this
is the case in example 4.2.

Apart from connectedness of the parameter set over
which is optimized, other issues should be inves-
tigated. For example whether local minima and
saddlepoints can occur and if so how many can be
expected and most of all whether this hampers a
good application of this method. To investigate this,
functional analysis can be performed on the basis of
the expressions for the criterion function, its gradi-
ent and the Hessian. In the next section compact
expressions for these functions are given.

5 Gradient expressions

To obtain a parameter estimate the optimization
problem given in the previous section has to be
solved. Due to the used parametrization this is a
nonlinear optimization problem. To find a solution
to this optimization problem gradient search meth-
ods can be used like Newton-Raphson and Gauss-
Newton as suggested in Ljung (1987).

However, the character of the function Vv (6) that is
optimized as well as the parameter set © over which
is optimized is highly influenced by the controller.
Both the function and the set can be extremely non-
convex which can make it difficult to apply gradient
search methods successfully because the optimiza-
tion can get stuck in a local minimum or at the
boundary of the parameter set. To alleviate these
problems it is essential that a good initial estimate
is chosen for the iterative search and a good strat-
egy is applied for the choice of the step size.

To apply gradient search methods the gradient of
Vn(0) needs to be available and for some methods
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also the Hessian. In this section these derivatives
are derived, where, for convenience of notations,
n4 = np = n, is chosen. The more general case,
however, can be derived similarly. The derivatives
of the cost function can be expressed as

6V(6) 2 Z ¢, 9)6y{t ,0) c R*™
%V (6) 6y(t 8) (29(t)
= (T,

9%4(t6)

2n,x2n,
T 802 ek

—22 ()

Hence, these derivatives can be calculated if the first
and second derivative of the output prediction are
known. These can be calculated by differentiating
(5). Differentiating this expression once yields

0,0+ (1,6 .. G(t—n,O)([Po Pxl6 + p))=

1o}
= = {{r(t-1)...r(t—n][0 Pp}6}
or equivalently
9y(t,0) [dy(t—1,0 3 (i
gyt Leet) . SO (15, pyjorsys
- [Pg] g(z—.w) [ . r(t:—l}
pT : —~ pr}
i #(t—n,8) - r(t—n)
This can be written more concisely as
Fa0) 25D = uTy(e0)  (10)
with a filter
F(g,0) = (1+[¢*...¢7"|([Pp Pn]0 +p)),

Pp Py

trix M =
a4 matrix [0 PD

] € R*™*2™ and a regres-

sion vector

YT (t,0)=[9(t-1,6) .. —j(t—n,0) r(t-1)...r(t-n)].
Equation (10) can also be expressed with

ay(t, 0

WD) — MTyr(t,0) (1)

where ¥p(t,0) = F~1(q,0)¥(t,0) is a filtered ver-
sion of the regression matrix.

The second derivative of the output prediction can
be calculated by differentiation of (10), which yields

3F§§’ 9) (aggé 9) ) S

8%y(t,0)




__|%4(t-1,8) Bj(t—n,6)
5 a0 o6

84(t,6) _
96r
W : § aﬁ(t_l’g) aﬁ(t_ns

These compact expressions are similar to expres-
sions obtained for nonlinear optimization with a
standard input-output parametrization and can be
fruitfully used in nonlinear optimization routines
for closed-loop identification with a tailor-made
parametrization.

[Pp Pn], or

9)] [Pp Pn]

6 Simulation examples

In this section two simulation examples are given.
One in the case where Gy € G and the parameter set
is not connected and the other where Gy ¢ G with a
connected parameter set but with a very bad signal
to noise ratio. In the first example the tailor-made
parametrization induces an optimization problem
which is difficult to solve while in the second exam-
ple it is demonstrated that closed-loop identification
with this parametrization can be very powerful.

Simulation 1

In figure 2 the three separate branches of the cost
function V(@) for the system from Example 4.2 is
depicted for a system Gy = 3.5. Here it is assumed
that both model and system are a simple constant
and an output noise which is driven by a white noise
signal e(¢) with variance ¢ = 0.1 has a noise filter
Hy(g) = 1. The.excitation signal r(¢) is white noise
with variance 1. The function is clearly discontin-
uous and has several local minima that are located
at the boundary of the stability area which makes
it difficult to find the optimum with gradient search
methods.

40 215 200
T35 27 150
@
£
530 26.5 100
50
254 [ 1 2 % 3 4 5 5 10 15

theta

Fig. 2: Criterion function for controller given in
ezample 4.1 and plant Go, = 3.5 for
closed-loop identification with a tailor-made
parametrization

The global optimum will generally only be found
if an initial estimate is selected from the middle of
the three branches of the criterion function. In the
other ones the iferative search gets stuck in a local
optimum which is at the boundary of the stability
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Fig. 3: Closed loop transfer function from r(t) to
y(t) (left) and open loop transfer func-
tion (right): plant (solid), estimation with
tailor-made parametrization (dashed) and
direct identification based on an ARX(331)-
estimation (dotted).

region.

Note that the parameter regions (—o0, 0], [1.27, 2.64]
and [4.69,9.98] induce an unstable closed loop sys-
tem.

Simulation 2

A simulation is made with a fifth order system,
which is given by the transfer function

Go(z)=

5.278271 4+126.7224+299.32°+110.827* +404.22°°

107°
1—4.391z2 +7.8792 2 —7.247z°+3.430z 2 —4.39125

which is a pure integrator with two resonant modes.
The controller used in the simulation is a PI-
controller which stabilizes the system. The exci-
tation signal r(t) is Gaussian white noise with stan-
dard deviation o, = 1 and the output noise v(t) is
Gaussian white noise with a standard deviation of
oy, = 0.5. The data length is N = 500. The open
loop and closed-loop transfer functions are given in
figure 3.

For this system a third order model is estimated
with tailor-made parametrization. The non-linear
optimization is performed using a Gauss-Newton
method where the initial estimate is obtained with
use of direct identification. The estimated model is
given in figure 3. Also the initial model is given.
From this it can be seen that the estimation with a
tailor-made parametrization gives a good fit for the
integrator and the first resonant mode, despite the
bad signal-to-noise ratio and the bad initial estimate
for the nonlinear optimization.

7 Relation to other closed-loop iden-
tification methods

In this section the relation between closed-loop
identification with a tailor-made parametrization
and other closed-loop identification methods is dis-




cussed.
An obvious parametrization making further use of
knowledge of the closed-loop structure, is given by

G(q,0)
B39 = 130968
W(g,68) = H(q,0)

1+ C(q)G(g,9)

Least squares minimization of the corresponding
prediction error yields a criterion function Vy(6) =
LN HY(g,0)(y(t) — G(a,0)(r(t) — C()y(?)))
which is equal to the cost function for direct identifi-
cation from u(t) = (r(t) — C(q)y(t)) to y(¢) which is
known to be only consistent in case both the plant
Gy and the noise model Hy can be modelled ex-
actly within the chosen model set. It is important to
note that this inconsistency is due to the dependent
parametrization of the closed-loop transfer and the
closed-loop noise filter. If R(g,0) and W(q,0) are
parametrized independently, the consistency result
given in Proposition 3.1 still holds in case Go € G.
The specific approximative properties of closed-loop
identification with a tailor-made parametrization
can be obtained from (3). This expression can be
further speciﬁfid as

f* = argmin —-
gaee 27

f i |su(e""')[Gu(e*”)—a(e‘”,9)]S(ef“,e)|’§,(u)m.

From this it can be seen that the estimation er-
ror is weighted by both the sensitivity function and
the estimated sensitivity function. Therefore the
crossover region is emphasized in the minimization.
This implies that in the case of approximative mod-
elling, Gy ¢ G, the undermodelling error is par-
ticularly small in this frequency region which is
favourable in case the identified model is used in
control design as is pointed out in Van den Hof and
Schrama (1995).

Hence, the identification procedure described in the
previous sections obtains a control-relevant model
because of the implicit weighting. In many control-
relevant identification schemes this type of weight-
ing is pursued but can there only be approximated
by use of specific filtering strategies, while by using
a tailor-made parametrization this weighting is in-
herent,

The identification method using a tailor-made
parametrization resembles the indirect identification
method where first the closed-loop transfer func-
tion R(q) is identified with a standard numerator-
denominator parametrization. Next, a plant model
is calculated using knowledge of the controller and
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the closed-loop structure with

G(q) = R(q,0)(1 — R(q,0)C(g))". In this calcula-
tion the McMillan degree of the model will gener-
ally be larger than the McMillan degree of the esti-
mated closed-loop transfer function. Hence, estima-
tion of a model of the open loop transfer function
with a prespecified model order is not a trivial task if
the indirect method is used. This same mechanism
holds true also for identification in the dual Youla
parametrization, which is a direct generalization of
the classical indirect method (Van den Hof and de
Callafon, 1996). Using a tailor-made parametriza-
tion a plant model can be estimated with prespeci-
fied complexity.

8 Conclusions

In this paper identification of a model from closed-
loop data with a tailor-made parametrization is dis-
cussed. Special attention is given to the possi-
ble occurrence of a non-connected parameter set
which is induced by the structure enforced on the
parametrization.

Sufficient conditions are derived for the model order
in terms of the controller complexity such that the
parameter set is connected. These conditions indi-
cate that the parameter set may not be a connected
set in case a low complexity model is identified from
data with a high complexity controller.

From simulations it follows that the approach can
yield very accurate models also in case of approx-
imative modelling with a bad signal-to-noise ratio.
However, complexity of the optimization problem
involved needs to be investigated more thoroughly
to assess the possible problem of local minima and
saddlepoints and the identification of an accurate
initial model.

A compact description of the least squares predic-
tion error criterion function, the gradient and the
Hessian thereof is derived using Sylvester matrices.
This can be used fruitfully in nonlinear optimiza-
tion routines which have to be solved to obtain an
estimate with a tailor-made parametrization.
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Appendix

Lemma 8.1 The parameter set © C R" with ele-
ments 6 = [p1 ...pa)T, {pi}i=1,.n € R for which all
polynomials

p(z)=2"+ [z~ 22 ... 1)



have stable roots, is a pathwise connected subset of
R".

Proof: First the polynomial p(z) is reparametrized
as a product of first and second order polynomials
p(z) = n/2 . 2
(z+ ) [1e5:(2% + arz + be), Yk n odd
(12)

Stability of the full polynomial is guaranteed if sta-
bility of the second order polynomials and first or-
der polynomial is guaranteed which is guaranteed
if and only if bp < 1, ar < 1 + by, —ar <
1+ bg, Yk and -1 < ¢ < 1, see e.g. Astrdm
and Wittenmark (1990). This stability area for the
quadratic terms describes a triangular area in the
ag, be-plain which is not only pathwise connected
but also convex. The stability area for the first
order term is also convex. The polynomial coef-
ficients of the original polynomial, {p;}i=1,.. n, are
continuous and continuously differentiable functions
in the parameters {ay,bx}i-1,. n. Therefore from
pathwise connectedness of the set of admissible co-
efficients {a, bx}i=1,....n, pathwise connectedness of
the set of admissible parameters {p;}i=1, .. .» can be
concluded. O

22 (2 + apz + by), Yk n even
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Abstract. Electro mechanical servo systems, as encountered in consumer electronic
products, have to keep pace with increasingly high performance demands. As the me-
chanical construction is a restricting factor regarding the limits of achievable performance,
model based control design is proposed to enhance the bandwidth. System identification
proves to be an adequate tool to produce nominal models and uncertainty models that
are suitable for control design purposes. A method based on performing identification
and control design in an iterative manner is proposed in order to systematically enhance
the disturbance attenuation properties of a servo system. The proposed method is exper-

imentally verified via application to a compact disc servo mechanism.

Keywords.

1 Introduction

A large number of applications of electro mechanical
servo systems requires tracking with an increasingly
high accuracy at a high speed. Especially in the
field of consumer electronic products like audio and
video systems the limits of achievable performance
are more and more dictated by the mechanical con-
struction of the servo system. In many cases this
predominantly results in a desired enhancement of
disturbance rejection of the servo system which may
be achieved by control design. Design of control sys-
tems that establish an improved disturbance attenu-
ation for electro mechanical constructions is however
known to be hindered by the presence of resonance
modes that are (in most cases) not exactly known.
An additional aspect regarding consumer electronic
products is the variability of system dynamics due
to tolerances in the mass production process. This
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Control design, system identification, compact disc player.

motivates development of a tool that on one hand es-
tablishes an improved performance of existing con-
structions having variable dynamical properties and
on the other hand explores the physical limitations
of electro mechanical constructions in the stage of
product development.

In case knowledge of resonance dynamics is suffi-
ciently accurate a high bandwidth controller, de-
signed based on this knowledge, is likely to provide
a high bandwidth for the system without causing
unstable behaviour. Therefore accurate knowledge
of resonance modes is indispensable in the design of
a high bandwidth control system. This motivates
the use of model based control design as a tool to
achieve an enhanced bandwidth for an electro me-
chanical servo system. Knowledge of resonance dy-
namics can adequately be described by a mathemat-
ical model which serves as a basis for control design.
One way to construct such a model is to use relations
based on first principles. In general these models are
quite elaborate which inevitably leads to a controller
of high dynamical order. If measurements can be
taken from the system, models can also be obtained
from experimental data utilizing system identifica-
tion techniques. As experimental models are not



based on the physical structure of the system, the
order may be kept low in order to describe relations
induced by measured data. Therefore experimental
modelling is employed in this paper.

As the intended use of the model is control design,
the identification problem we are confronted with is
to come up with a low order model such that a re-
sulting controller establishes a high performance for
the true system. In literature (a.o. Gevers, 1993;
Van den Hof and Schrama, 1995) it has been recog-
nized that, in order to establish an enhanced perfor-
mance for the system through model based control
design, identification and control design should be
performed in an iterative manner. The topic of this
paper is to propose an iterative scheme of identi-
fication and control design for systematic enhance-
ment of the closed loop bandwidth and to verify
the method experimentally on the servo mechanism
of a compact disc (CD) player. A specific feature of
the proposed scheme is the utilization of uncertainty
models, that may be obtained through recently de-
veloped identification techniques (see a.o. de Vries,
1994).

In section 2 the need for an iterative approach of
identification and control design is illucidated in
view of achieving an enhanced closed loop band-
width. The identification of nominal models and
uncertainty models is the subject of section 3. The
control design method employed is a two-stage pro-
cedure that combines a loop shape design with ro-
bustness in view of resonance modes. This is the
subject of section 4. Results obtained from an ex-
perimental set up of a CD player are presented and
commented upon in section 5. Conclusions and re-
marks conclude the paper.

2 Model based performance en-

hancement

We consider a servo system consisting of an elec-
tro mechanical actuator, denoted as P, and a con-
troller C as depicted in the block scheme of figure 1.
In many cases the actuator is marginally stable and
must therefore operate in closed loop. The signal
d represents a reference signal that is not available
from measurement but is to be tracked by the ac-
tuator output y. As d is presumed to be unknown
it is regarded as a disturbance acting on the servo
system. The servo error is denoted by e.

The desired performance is achieved in case the
tracking error satisfies |e(t)| < §, Vt where the value
of § is determined by physical system properties. Al-
though the translation is not one-to-one, the perfor-
mance spec is expressed in the frequency domain®

!The frequency argument w is left out for brevity
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Fig. 1: Block scheme of an electro mechanical servo
system

in terms of the following specification regarding the
sensitivity function of the closed loop system:

Y w. (1)

5| =1a+cr) <,
where 3 denotes the minimal disturbance rejection
required for the system. We focus on the design
of a controller C' that establishes the specified dis-
turbance rejection. To that end knowledge of P,
as well as the disturbance d is indispensable which
motivates the need for accurate models of both the
actuator and the disturbance. Although it is ac-
knowledged that disturbance modelling should be
incorporated in the overall design, here we restrict
attention to data based modelling of the actuator
dynamics.
In literature the problem of identification of mod-
els that are suitable for high performance control
design has received a great deal of attention (a.o.
Gevers, 1993; Van den Hof and Schrama, 1995). It
has been stressed that a model that provides a satis-
factory description of the open loop system dynam-
ics might provide a poor basis for control design, in
the worst case resulting in controllers that destabi-
lize the closed loop system. The main observation
made is that system dynamics that govern the closed
loop dynamics in conjunction with a controller often
only marginally contribute to the open loop dynam-
ics and vice versa.
This observation has resulted in a widely accepted
strategy that identification of models suitable for
control design should be performed in a closed loop
situation, in the presence of a controller. To do
closed loop identification we need a controller that
emphasizes the dynamics that are relevant for con-
trol design. However, in order to find such a con-
troller a model is required that encompasses control
relevant dynamics. Here we are confronted with a
circular reasoning that has motivated the proposi-
tion of algorithms where identification and control




Data acquisition|

Identification

Control design

Implementation

EN e

Fig. 2: Iterative approach of model based perfor-
mance enhancement

design are performed in an iterative manner (Gev-
ers, 1993; Van den Hof and Schrama, 1995; Lee
et al., 1995) in order to arrive at an enhanced per-
formance. Basically such a procedure consists of
the following steps: data acquisition, identification,
control design and controller implementation; this
is schematically depicted in figure 2.

In the sequel of this paper the seperate steps of iden-
tification and control design are addressed. As the
procedure is implemented on an experimental set up
of a CD servo mechanism, the elaboration from here
on is directed towards this application.

3 Identification

In figure 3 a block scheme of the experimental CD
player is depicted where time domain signals r,u
and e are available from measurement. The signal
r is used for excitation, u and e are the input resp.
output of the actuator, measured in the presence of
a stabilizing controller.

The identification of a parametric model is con-
cerned with estimation of parameters in a prede-
termined model structure. The data underlying the
identification procedure is a frequency domain rep-
resentation of measured time sequences by means
of a discrete Fourier transform in conjunction with
periodic excitation. The data are available as (com-
plex valued) data points {r(e*i),u(e™’),e(e™)}
at a finite number of user specified frequencies
w;,j = 1,...,N. The main motivation for trans-
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C

Fig. 3: Experimental configuration of a CD servo
system

forming time domain data to the Fourier domain
prior to identification is the possibility to establish
a considerable compression of the amount of data.
Moreover, a frequency domain data representation
is compatible with the performance specification (1).
Two features are characteristic for the identifica-
tion problem addressed. Firstly, a model that is
employed for control design should be obtained
from measurements taken in the presence of a con-
troller, as mentioned in section 2. Secondly, as the
identification has to be performed in closed loop,
straightforward application of open loop identifica-
tion methods is hazardous. To that end the identifi-
cation of a parametric model is performed following
a so called indirect approach. A parametric model of
the closed loop transfer Py(I + CP,)~! is estimated
from {r(e*7),e(e’s)} by determining parameters,
denoted #, that minimize the following least squares
criterion function:

N
D W) le(e?) — R(e™, o)r(e“)]*  (2)
where

_ bo+bie™™ + ... 4 bpe~ ™

R(e*,0) := . -
l1+aie ™ +...+aze”"™

(3)

and W is a frequency dependent weighting function.
A model of the system is constructed from R(e'“,8),
utilizing knowledge of the (stable) controller, as fol-
lows: (.0)
R etw,

I - CR(e«,8) )
It is mentioned that a generalization of this ap-
proach is applied, allowing to deal with marginally
stable controllers, as is indicated by Van den Hof
and de Callafon (1996). The identification of a (low
order) model P(e*“,#) suitable for control design
in the SISO case amounts to specifying a suitable
weighting W in (2).

In addition to identification of nominal models,
techniques have recently been developed (see a.o.

P(eiuse) =



de Vries, 1994) to construct a data based measure
of the deviation of a model with respect to the sys-
tem. This results in so called uncertainty bounds
that enable construction of a set of transfer func-
tions to which the true system is presumed to be-
long. In case of identification of R according to (2)
a bound ég(w) is estimated which determines a set
of transfer functions

R={R|R =R+ Ag,|Ag| < ér(w)} (5)
to which the true transfer function Ry belongs. The
motivation for employing uncertainty models in this
specific model structure is that they are instrumen-
tal in predicting the closed loop dynamics for a set
of systems in conjunction with any (stabilizing) con-
troller, as is elaborated by Van den Hof et al. (1996).
This is a potentially powerful technique to incorpo-
rate the aspect of variable system dynamics into the
control design.

4 Control design

In this section a nominal control design procedure
is presented that is proposed by McFarlane and
Glover (1990). The design procedure is solely based
on nominal models but has favourable robustness
properties and consists of two consecutive stages.
The first stage is the determination of a loop shape
transfer function Cy such that the nominal sensitiv-
ity function satisfies a minimum prespecified mag-
nitude bound:

I(I+ CoP)}| <871, V. (6)
The determination of Cy is done by visual inspection
of the Bode diagram and Nyquist contour of CyP
where the structure of Cy is predetermined in terms
of a low order lead-lag compensator. Although loop
shaping is an appealing technique due to the fact
that compensators result from visual inspection, it is
not a very robust technique for high bandwidth de-
sign especially in case resonance modes are present
in the model P. Therefore robustness properties
are improved in the second stage which consists of a
norm based control design, where a controller is de-
termined such that the following criterion function
is minimized

(7)

where T'(P,C) is a 2 x 2 matrix that comprises the
closed loop transfer functions from r to [e u]” in the
block scheme of figure 3, defined as®

free.0l]

T(P,C) := [1;] I+CPIYc 1. (8)

2Note that the sensitivity is the (2, 2)-element of T(P, C).
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The final controller is found as the product of the
results of both design stages CyC.

The rationale behind this two-stage design strategy
is that in the loop shape step the presence of res-
onances may be disregarded as the desired robust-
ness with respect to resonances is supposed to be
dealt with in the second step. This may consider-
ably facilitate the loop shape design in the sense
that performance and robustness considerations are
accounted for in separate design steps.

5 Application to a CD servo system

The separate steps of one iteration of model based
performance enhancement as proposed in section 2
have been applied to an experimental CD player
servo mechanism. The servo system, as is schemati-
cally depicted in figure 1, establishes track following
of digital information stored on a rotating optical
disc.

Attention is restricted to the radial part of the me-
chanism (Single Input Single Output case). Con-
troller implementation and data acquisition are car-
ried out utilizing a DSP signal processor (ASPACE
GmbH, 1995) at a sample rate of 256 kHz. Mea-
surements are taken of 40 time sequences of {r,u, e}
each containing 4096 data points where the excita-
tion signal r is chosen as a random phased multisine,
exciting the system at 99 logarithmically spaced fre-
quencies between 100 Hz and 10 kHz. A 4th order
compensator is present in the loop during measure-
ment.

A nominal parametric model of order 10 is identified
according to (2) together with an upper bound of
model uncertainty. The frequency response and the
nominal model are shown in the Bode diagram of
figure 4. The nominal model seems to provide a
rather poor description of the data in the low and
high frequency region.

Based on this nominal model a 4th order lead-lag
compensator Cy is designed on visual inspection of
Bode magnitude diagrams of the nominal sensitivity
and the predicted sensitivity, constructed from un-
certainty bounds. The compensator is adjusted to a
higher bandwidth until the nominal sensitivity func-
tion will (inevitably) peak up at frequencies beyond
the bandwidth. Figure 5 shows the Bode diagram of
the measured sensitivity and the nominally designed
sensitivity.

Besides visual inspection of the nominal sensitivity
also the actually achieved sensitivity is evaluated in
terms of lower and upper magnitude bounds of the
sensitivity, constructed from estimated uncertainty
bounds of the model; this is depicted in figure 6 to-
gether with the nominally designed sensitivity func-
tion. The design of the loop shape function is per-
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Fig. 4: Measured frequency response (dash-dot)
and 10th order nominal model (solid) of the
radial CD servo mechanism.

formed such that the nominal sensitivity magnitude
remains within the bounds and the bounds are not
too large.

To verify the validity of this closed loop system set
the sensitivity frequency response measured with
the loop shape compensator is added. The mea-
sured sensitivity is predicted quite well by the up-
per and lower magnitude bounds up to 4 kHz, while
the designed sensitivity function is not captured by
the bounds. This can be attributed to the fact that
the (low order) nominal model lacks system dynam-
ics which seem to be relevant in view of the newly
designed controller.

The second stage of the control design is performed
according to (7). The final controller C;C is restric-
ted to order 6 due to implementation limitations.
This implies that the norm based design step pro-
duces controllers of order 2. To analyse the merits of
the second control design step, the sensitivity func-
tion is measured with the enhanced controller (order
6). The Bode magnitude diagram in figure 8 shows
the initial sensitivity function and the enhanced sen-
sitivity. The loop shape compensator and the cor-
responding final controller are shown in figure 7.

In figure 9 the radial tracking error measured with
the low bandwidth compensator and the enhanced
compensator is shown. It is evident that increasing
the bandwidth is a valid strategy in order to estab-
lish a reduction of the tracking error.

An important observation is that the loop shape de-
sign is a very crucial stage in the iterative approach.
If the nominal design provides a relatively large in-
crease of the bandwidth in comparison to the con-
troller present during measurement (as is illustrated
figure 5), then the nominal model may not reliably

10 10 16
Hz

Fig. 5: Sensitivity function: enhanced loop shape
design (solid) and measured with low band-
width compensator in the loop (dash-dot).

10"
traquancy (Hr)

Fig. 6: Magnitude of sensitivity: nominal (solid),
lower and upper bounds (dash) and mea-
sured (dot).

predict the actual sensitivity. This is in fact illus-
trated in figure 6 where the nominally designed sen-
sitivity is not completely captured by the magnitude
bounds; the nominal design appears not to be very
robust. In the line of performing several iterations
(here we have only considered one iteration) it is
important to take small steps in the nominal loop
shape design towards a higher bandwidth in order
to maintain a robust design. This has yet to be
verified.

6 Conclusions

To comply with increasing higher demands of servo
systems as encountered in consumer electronic pro-
ducts, control design is used to obtain a high band-
width. A crucial issue in designing a high bandwidth
control system for electro mechanical servo systems
is the presence of (unknown) resonance modes. As
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knowledge of resonance dynamics is indispensable
in view of high bandwidth design, model based con-
trol design is pursued. To that end system iden-
tification is employed to provide low order models
that are suitable for control design purposes. In
literature iterative procedures of identification and
model based control design are proposed to establish
an enhanced closed loop performance. Controllers
are designed according to a two stage design proce-
dure where nominal and robustness considerations
are separated. The method is applied to a com-
pact disc servo mechanism performing one iteration
where the loop shape design appears to be a crucial
step. From experimental results identification as a
modelling tool and subsequent control design ap-
pear to be fruitful in order to arrive at an enhanced
performance of the servo system.
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Abstract.

In this paper an approach is presented to estimate a linear multivariable model

on the basis of (noisy) frequency domain data via a curve fitting procedure. The mul-
tivariable model is parametrized in either a left or a right polynomial matrix fraction
description and the parameters are computed by using a two-norm minimization of a
multivariable output error. Additionally, input-output or element-wise based multivari-
able frequency weightings can be specified to tune the curve fitting error in a flexible way.
The procedure is demonstrated on experimental data obtained from a 3 input 3 output

Wafer Stepper system.

Keywords. System identification; frequency response; multivariable models; frequency

weighting; least squares.

1 Introduction

Formulating a procedure that is able to estimate
a model on the basis of frequency domain data has
gained considerable attention in the research on sys-
tem identification. Although the clear distinction
between time and frequency domain data is gen-
erally overestimated (Ljung, 1993), estimation of
models by fitting complex frequency domain data
has several advantages compared to time domain
approaches. Firstly, representing data in the fre-
quency domain domain can yield substantial data
reduction, see Pintelon et al. (1994). Secondly, com-
pressing a huge amount of time domain data into a
finite number of frequency points facilitates noise re-
duction directly. Both aspects are used extensively
in commercially available sophisticated test equip-
ment for spectral analysis.

Based on Least Squares (LS) estimation techniques,

!This paper is presented at the 35th IEEE Conference on
Decision and Control, 11-13 December 1996, Kobe, Japan.
Copyright of this paper remains with IEEE.
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!The work of Dick de Roover is financially supported by
Philips’ Research Laboratories, Eindhoven, the Netherlands.

31

as used in Levi (1959) and further refined in
Sanathanan and Koerner (1963), multivariable fre-
quency domain curve fitters have been formulated in
the literature. One is referred to Lin and Wu (1982),
Dailey and Lukich (1987) and the more recently in-
troduced procedure in Bayard (1994). Basically, the
procedures differ in the way the multivariable model
is parametrized and whether or not the procedure
allows for a specification of the model order and a
(multivariable) weighting on the curve fit error. As
such, in Lin and Wu (1982) a multivariable model
is found by the composition of scalar subsystems,
while the order of the subsequent transfer functions
is determined by testing the residuals. A similar ap-
proach can be found in Dailey and Lukich (1987),
wherein a Chebyshev polynomial basis is used to im-
prove numerical conditioning of the LS-problem. In
Bayard (1994) the model is parametrized directly
by means of a matrix numerator polynomial and
a scalar common denominator polynomial, whereas
only a scalar frequency dependent weighting on the
curve fit error is allowed.

Several alternatives to a LS-approach can also be
found in the literature. In McKelvey (1995) a sub-
space based algorithm in the frequency domain is



presented that allows the user to specify an addi-
tional frequency weighting. In Hakvoort and Van
den Hof (1994) a frequency domain curve fitter
has been developed in which a maximum ampli-
tude of a (weighted) curve fit error is being con-
sidered. Furthermore, so-called H . -identification
procedures, currently applicable to scalar frequency
domain data, can guarantee an upper bound on the
additive error, see e.g. Gu and Khargonekar (1992)
and the references therein. Unfortunately, a max-
imum amplitude criterion can be highly sensitive
to noise, whereas the available H . -identification
procedures might yield high order models for mod-
erately damped processes (Friedman and Khar-
gonekar, 1994).

Based on the LS-approach, this paper presents a
multivariable frequency domain curve fitter in which
the aim is to minimize the two-norm on a (weighted)
curve fit error for a model having a limited McMil-
lan degree. The multivariable model is parametrized
by either a left or right polynomial Matrix Fraction
Description (MFD). By use of Kronecker calculus it
will be shown that both a pre, post or element-wise
multivariable frequency weighting on the curve fit
error can handled relatively easily. Furthermore,
it will be shown that the iteration described by
Sanathanan and Koerner (1963), denoted by SK-
iteration, can be generalized to estimate a poly-
nomial MFD. Due to the subsequent convex opti-
mization steps in the SK-iteration, this approach
supports the estimation of models with many pa-
rameters. Similar to the approach followed by Ba-
yard (1994) and supported by the work of Whitfield
(1987), the resulting estimate can be used as an ini-
tial value for a Gauss-Newton optimization.
Although cumbersome iterations can be avoided by
the use of a realization based algorithm as reported
in McKelvey (1995), the possibility to prespecify
the McMillan degree of the model and to introduce
a flexible element-wise frequency weighting on the
multivariable data is quite helpful from a practi-
cal point of view. The procedure will be illustrated
by fitting a multivariable model on the frequency
response obtained from the positioning mechanism
present in a wafer stepper.

2 Problem formulation

To formulate the multivariable frequency domain
identification problem, consider the following set G
of noisy complex frequency response data observa-
tions G(w;), evaluated at IV frequency points w;.

G :={G(w;) | G(w;) € CP*™, for j €1,...,N}
(1)
The aim of the identification problem discussed in
this paper is to find a linear time invariant multi-
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variable model P of limited complezity, having m
inputs and p outputs, that approzimates the data G
in (1).

To address the limited complexity, the model P(6)
is parametrized by a either a left or right polynomial
MFD that depends on a real valued parameter # of
limited dimension. The specific parametrization of
the polynomial MFD of P(6) is discussed in the next
section. The approximation of the data G by the
model P() is addressed by considering the following
additive error.

E,(w;,0) := [G(w;) — P(é(w;),0)] for j € 1,...,(N
2)
The complex variable £(-) in (2) is used to denote
the frequency dependency of the model P(f). In
this way, £{(w;) = iw; to represent a continuous time
model, whereas £(w;) = €*“iT (shift operator) or
£(w;) = (e — 1)/T (6 operator) to represent a
discrete time model with sampling time T'.
To tune the additive error F, in (2), both an input-
output frequency weighted curve fit error E,, with

Ew(wj,ﬂ) = Wau:(Wj)Ea{wjaa}Win(wj) (3)

and an element-wise frequency weighted curve fit
error E, with

E,(w;,0) := S(wj). * Ea(w;,8) (4)

will be considered in this paper. In (4) . is used to
denote the Schur product; an element-by-element
multiplication.

Using the notation E to denote the frequency
weighted curve fit error E, in (3) and E, in (4),
the deviation of the data G is characterized by fol-
lowing the norm function J(8).

N
J(0) = Y tr{B(w;,0)B* (w;,0)} = |E@)[3 (5)
i=1
In (5) * is used to denote the complex conjugate
transpose, tr{-} is the trace operator and ||E(6)|
denotes the Frobenius norm operating on the matrix
E(0) = [E(wy,0) -+ E(wn,0)]. Consequently, the
goal of the procedure described in this paper is to
find a real valued parameter € of limited complexity
that can be formulated by the following minimiza-
tion. y
0 := arg min J(6)

felR ©

3 Parametrization
3.1 Polynomial matrix fraction descriptions

The multivariable model is represented by either a
left or right polynomial MFD, respectively given by

P(£,0) = A(¢71,0)'B(¢7,0) (7)
P(¢,6) = B(¢7",0)A(¢",6) (8)




where A and B denote parametrized polynomial ma-
trices in the indeterminate £,

For a model having m inputs and p outputs, the the
polynomial matrix B(£!,0) is parametrized by

d4-b—1

B(¢7',0)= > But" (9)
k=d

where B;, € IR?*™, d denotes the number of leading
zero matrix coefficients and b the number of non-
zero matrix coefficients in B(£7*,60). For the left
MFD in (7), A(¢7*,0) is parametrized by

A(f‘_lag} = Ipxp + E-—l E A e—k-H. (10)

k=1

where A, € IRP*? and a denotes the number of
non-zero matrix coefficients in the monic polyno-
mial A(¢71,8). The parameter 6 is determined by
the corresponding unknown matrix coefficients in
the polynomials. Hence,

0= [Bs ++» Bagp—1r A1 -+ A, ] (11)
and 6 € RP*(mb+2%) for the left MFD in (7). Dual
results can be formulated for the right MFD in (8).
Additionally to the full polynomial parametrization
presented here, so-called structural parameters dij,
bi; and a;j with d ;= min{d;;}, b := max{b;}, and
a := max{a;;} can be used to specify a none-full
polynomial parametrization. In this way, the pa-
rameter @ as given in (11) may contain prespecified
zero entries at specific locations. This may occur
in a discrete time model with £~1 = z~! where the
value of d;; has a direct connection with the number
of time delays from the jth input to the ith output.

3.2 Model order

Due to the indeterminate £ 1, it can be verified that
the MFD of (7) or (8) gives rise to a (strictly) proper
transfer function matrix P(¢,0), regardless of the
value of the integers d; ;, bi,; or ai;. Hence, there
are no restrictions on the size of the structural pa-
rameters, other than a limitation on the McMillan
degree of the resulting model P(¢,6). For the con-
nection between the structural parameters and the
McMillan degree of P(¢,8), the following result can
be given.

Lemma 3.1 Consider a parameter 6 such that
A, # 0 and Byyp—1 # 0. Define

7 := max{a,d +b—1} (12)

and A(¢,0) = EnA(¢71,0), B(£,0) := £"B(§7%,0).
Let n be used to denote the McMillan degree of

the multivariable transfer function model P(¢,8) ob-
tained by (7) or (8), then

n = deg det{A(¢,6)}

if and only if Ji(ﬁ,é) and B(f,é) are left coprime
over IR[€] in case of (7) and right coprime over R[¢]
in case of (8).

Proof: The proof is given for (8). With the condi-
tion A, # 0, Byip—1 # 0, it follows that A(¢) :=
§7A(¢™) and B(§) = ¢"B(£7) are polynomial
matrices in £. In case of (8), P(¢) = B(£)A(¢) !
and a state space realization [A,B,C,D] for P(¢) can
be obtained, such that dim A = deg det{4(¢)} and
{A,B} controllable, see e.g Chen (1984). Further-
more, {C,A} is observable if and only if A(¢) and
B(¢) are right coprime over IR[¢], see theorem 6.1
in Chen (1984). Dually, the result can be shown for
(7). O

Under some mild condition on the polynomials
A(£71,60) and B(¢1,9) being estimated, lemma 3.1
gives a direct relation between the deg det{A(¢,6)}
and the McMillan degree of the resulting esti-
mate P(éj B)'- In case of the left MFD (7),
deg det{A(,0)} generally will be equal to 7p.
Hence, the structural parameters give rise to (an
upper bound) on the McMillan degree of the model
being estimated. For a more detailed discussion on
the exact relation between the McMillan degree, the
row degree of the polynomial matrices A(£71,6),
B(£7',0) and the observability indices of a model
computed by a left polynomial MFD, one is referred
to Gevers (1986) or Van den Hof (1992).
Compared to a parametrization of the multivari-
able model P(£,6) using a scalar common denom-
inator polynomial d(§*,0) as presented in Bayard
(1994), the parametrization using a (left) MFD is
more flexible, as a scalar common denominator re-
stricts A(£71,6) to be I, ,d(£71,60). A model with
one output that is parametrized by the left MFD of
(7), constitutes a scalar common denominator poly-
nomial A(£71,8).

4 Computational procedure
4.1 TIterative minimization

In this section, the minimization of (6) will be dis-
cussed by means of an iterative procedure of con-
vex optimization steps similar to the SK-iteration of
Sanathanan and Koerner (1963). The attention will
be restricted to a parametrization of P(£,6) based
on the left MFD (7) as dual results can be obtained
for a right MFD. To extend the SK-iteration to the




multivariable case, first consider the (unweighted)
additive curve fit error of (2).

For a model P(£,0) parametrized by left MFD, (2)
can be written as

E,(w;,0) = A(é(w;)™,0) ' E(w;,0)  (13)

where E_}(w,-, ) is the equation error defined by

E(w;,6) := A((w;) 7, 0)G(w;) — B(£(w;) ™", 6).
(14)
Substituting the parametrization (7) for the poly-
nomials A, B, the equation error in (14) can be rep-
resented by

E(w;,6) = G(w;) — 6%(w;) (15)
where 8 is given in (11) and
i Imxm&(wj)—d )
2= | FoptO T e

G(w;)é(w;)?

G(w;)é(w;)™ |
with (w;) € Clmbtre)xm,

A matrix E(f) can be formed by stacking E(w;,8)
column-wise for j € 1,..., N and this yields

arg min ||B()||% = arg min ||G—6P|% (17)
gﬁe]R” Ol EGEIR" 7

where G and P are found by stacking the real and
imaginary part of respectively G(w;) and ®(w;) for
j € 1,...,N. Due to the linear appearance of
the parameter 6, (17) corresponds a standard least
squares problem that can be solved by numerical re-
liable tools as e.g a QR-factorization with (partial)
pivoting (Golub and Van Loan, 1989).

Due to the fact that A(¢71,0) in (13) also depends
on the parameter #, the linear appearance of the
parameter € in (13) is violated. In order to fa-
cilitate the convexity in minimizing the two-norm
on the equation error in (17), an iterative proce-
dure similar as in Sanathanan and Koerner (1963)
can be used. An estimate 6, in step t is com-
puted by replacing A(&(w;)~%,6) in (13) by a fized
A(¢(w;) 7, f;_1) based on an estimate §;_; obtained
from the previous step ¢ — 1. In this way the Frobe-
nius norm of an output weighted equation error
E,(wj,0:-1,6) = A(é(wj)™*,0;—1) 1 E(w;,0) needs
to be minimized repeatedly according to

6, = arggnéir]lR || Ew(Be=1,8)||%-

34

This generalizes the SK-iteration to multivariable
models parametrized by a left polynomial MFD. A
dual approach can be formulated for a right polyno-
mial MFD.

The estimate obtained from the SK-iteration is not
optimal in the sense of (6) in presence of noise
and/or incorrect model order, but it does provide a
tool to find an initial estimate for a GN-optimization
(Whitfield, 1987). Furthermore, the convex opti-
mization to be solved in each step of the multivari-
able SK-iteration supports the estimation of mod-
els with many parameters. The computational pro-
cedure to obtain the parameter 6 in case of the
(weighted) curve fit errors of (3) and (4) is presented
in the subsequent sections.

4.2 Input-output weighting

The input-output weighted curve fit error of (3) can
be rewritten into

Ew(wj} 9) = Wout(wb B)E(w.‘fl G)Wiﬂ(wj) (18)
where W,ue(w;,0) := Woue(w;)A(€(w;),68)~! and
E(w;,0) is given in (14).
Using a similar approach of iterative minimization
steps as used in section 4.1, the parameter @ in
Wau,(w,-,e) in (18) is fixed to an estimate 6;_, ob-
tained from the previous step ¢t — 1. Consequently,
the weighted equation error E,, defined by

By (wj,0,1,6) = Wout (wj, 0t) B(w;, 0)Win (w;)
(19)
again indicates that the parameter # to be estimated
appears linearly in (19).
Although the free parameter # appears linearly in
(19), writing down a matrix representation for the
weighted equation error E, similar to (17) would
inevitably lead to additional (large) sparse matrices
that need to be stored in order to compute the least
squares solution. The sparse matrices arise from the
frequency dependent output (and input) weighting
that need to be incorporated (Bayard, 1994). Fur-
thermore, the parameter # might have a structure
containing zero entries at prespecified locations if a
none-full polynomial parametrization is being used.
To avoid the computational and memory storage is-
sues that arise from dealing with (large) sparse ma-
trices and to be able to take into account the specific
structure that might be present in the parameter 8,
a fairly simple and straightforward computational
procedure based on Kronecker calculus is presented
here. For this purpose consider the following defini-
tion.

Definition 4.1 Consider two matrices X € ¢M1*™2
and Y € @©™*™  then the Kronecker wvector




vec(X) € C™™*' and the Kronecker product
XQ®Y € Cm™Xn™m2 gre pespectively defined by

vee(X) :=[z1 <+ @n,|T and
$1'1Y $1'ﬂ,Y
XGYu= : :
2PN D SEEEENE Z 4
where x;; and zj fori €1,...,m1 and j €1,...,n3

are used to denote respectively the (i,j)th entry in
X and the jth column in X.

The Kronecker product is a well known concept
(Bellman, 1970) and by stacking the columns of a
matrix to obtain the corresponding Kronecker vec-
tor as mentioned in definition 4.1, the following re-
sult can be obtained.

Proposition 4.2 Consider (complex) matrices X,
Y and Z with appropriate dimensions, such that the
matriz product C i= XY Z is well defined. Then
vee(C) satisfies

vee(C) = [2T ® X]vec(Y).

Proof: The proof can be found in Bellman (1970).
O

On the basis of proposition 4.2, the Kronecker vec-
tor of the input/output weighted equation error

B, (wj,0:-1,0) in (19) can be written as
vee(E,) = vec(WautGW‘-n)—[[@W,‘ﬂ]T@Wou]\rec(ﬂ)

wherein the arguments w;, ég_l and @ are left out,
to avoid notational issues. As the Frobenius-norm
satisfies | X||% = |lvec(X)||% for an arbitrary ma-
trix X, the Frobenius-norm on E,, can be character-
ized by a matrix representation formed by stacking
vec(Ew (wj,ég_l,l?)) row-wise for j € 1,..., N. This
yields the following estimate

6 = arg min [lvec{Ew(ét..;,G)]Hi
(7} E_]R. %2 (20)
= arg min [|G, — Pu8||%
felR
where @ = vec(d) € RP(M*+Pa)X1 40cording to

(11). Furthermore, G, € R*®™M*! and P, €
RPN xp(mb+pa) are matrices that can be found by
row-wise stacking of the real and imaginary part of
respectively vec(Wout(w;, 01—1)G(w;)Win(w;)) and
vec([®(w;)Win(w;)]T ® Wouwr(wj,8_1)) for j €
Lnas ;N

The regression matrix P,, in (20) does not exhibit
any sparse matrix structure as occurs e.g. in the
method of Bayard (1994). In fact, 2pmN x p(mb +
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pa) entries is the smallest dimension of the regres-
sion matrix P,, in order to compute a least squares
parameter 6 that has p(mb + pa) unknown entries
(for a a left full polynomial parametrization) on the
basis of N complex frequency domain points of a
p X m multivariable system. In this way memory
storage problems are avoided directly as much as
possible.

As the parameter 6 is converted into a column pa-
rameter § = vec(@), any prespecified zero entries in 8
can be incorporated in the estimation of the param-
eter relatively easy. This can be done by omitting
the columns in the regression matrix P, that corre-
spond to the zero entries in § and thereby reducing
the size of the parameter to be estimated directly.

4.3 Schur weighting

Consider the Schur or element-wise frequency
weighted curve fit error in (4) and rewrite this into

El(whe) — S(wj)‘*[‘q'(&(wj)_ll9)_1E(wj)9)] (21)

where the equation error E(wj,ﬂ) was defined in
(14). Using a similar approach of iterative mini-
mization steps as used in section 4.1, the parameter
0 in A(&(w;)~1,0)! in (21) is fixed to an estimate
ét_l obtained from the previous step ¢t — 1. Con-
sequently, the weighted equation error E, defined
by

El{wjaéz—q,e) =
S(wj). * [Atf(wj)_lyét—:}_lﬁf(wj,ﬂ)]

again indicates that the parameter @ to be estimated
appears linearly. Finally, it can be verified (leaving
out the arguments w;, &(w;)~%, @;—1 and @) that
vec(E,) can be rewritten into

vec(S. x [A1G]) — diag(vec(S))[@T ® A 1]vec()
(22)
by using the result of proposition 4.2. Hence,
stacking vec(E,(w;,0:—1,6)) row wise for each j €
1,...,N will yield a similar expression for the min-
imizing argument @ as given in (20). However, the
matrix G, in (20) now contains real and imagi-
nary part of vec(S(w;). * [A(€(w;) ™, 6—1)G(w;)]),
whereas P, in (20) will consist of the real
and imaginary part of diag(vec(S(w;)))[®(w;)T ®
AY(f(w;)"Y,6,_1)] for j € 1,...,N. Hence, the
same computational procedure can be used to in-
corporate an element-by-element weighted curve fit

error (4) by a slight modification of the matrices in
(20).




5 Application to experimental data
5.1 Description of the wafer stepper system

The multivariable curve fit procedure discussed in
this paper is illustrated by curve fitting experimen-
tal data obtained from a positioning system of a
wafer stepper.

Fig. 1: Schematic view of a wafer stage; l:wafer
chuck, 2:laser interferometers, 3:linear mo-
tors.

A wafer stepper is a high accuracy positioning ma-
chine, used in chip manufacturing processes and a
schematic view is depicted in figure 1. The wafer
carries approximately 80 chips and is placed on a
moving table, called the wafer chuck, which needs to
be positioned accurately. The position of the wafer
chuck on the horizontal surface of a granite block
is measured by means of three laser interferometry
measurements, whereas three linear motors are used
to position the wafer chuck. In this way, the posi-
tioning system js considered to be a multivariable
system, having three currants to the linear motors
as inputs and three position measurements as out-
puts of the process.

5.2 Experimental results

Periodic random mnoise signals of 1024 points are
used to excite the system. Using the resulting aver-
aged time series, a spectral estimate is computed, re-
sulting in a finite number of frequency domain data
points that constitutes a suitable starting point for
the subsequent curve fit procedure.

As the resulting model has to be used for discrete
time control design purposes, the aim is to esti-
mate a possibly low order discrete time multivari-
able model, that describes the dynamical behaviour
of the positioning system in the frequency domain
till approximately 400 Hz. For frequencies smaller
than 100 Hz, the positioning system acts like a dou-
ble integrator. To illustrate the usage of weighting
functions in order to shape the curve fit error, an
output weighting is used that emphasizes the fre-
quency range between 200 and 300 Hz and starts to
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roll off at 300 Hz. The order of the resulting multi-
variable model (without the 3 double integrators) is
chosen to be 12, represented by a full left polynomial
matrix fraction description having 81 parameters.
The SK-iteration is started up by first estimating
a high order model to compute an initial value for
the modified output weighting W, in (19). Af-
ter this initialization, the SK-iteration is invoked 8
times. The Bode amplitude plot and phase plot of
the 18th order estimate (including the 3 double in-
tegrators) is depicted respectively in figure 2 and
figure 3. It should be noted that the multivariable
output weighting applied during the estimation pro-
cedure emphasizes the frequency domain area of in-
terest.

6 Conclusions

An approach is presented to estimate a linear mul-
tivariable model on the basis of noisy frequency
domain data using a two-norm minimization of a
weighted curve fit error. The weighting on the curve
fit error can be specified by either an input/output
or an element-by-element frequency dependent mul-
tivariable weighting function. The multivariable
model is parametrized in either a left or right poly-
nomial matrix fraction description wherein struc-
tural parameters allow the specification of both
full polynomial or none-full polynomial descriptions.
The computational procedure is able to estimate
complex models by using an iterative procedure of
solving weighted multivariable least squares prob-
lems and exploits the structure of the least squares
problem, thereby reducing any computation and
memory requirements directly. The curve is demon-
strated on experimental multivariable frequency do-
main data obtained from a Wafer Stepper system
having 3 inputs and 3 outputs.
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Abstract.

This paper investigates the problem of obtaining a nominal model and its error

uncertainty bound when a batch of plant models is provided. While the selection of model
set structure is essential and probably depends on the intended model application, in this
paper, it is assumed that a nominal model is perturbed by its error through a Homographic
transformation. A necessary and sufficient condition is obtained for the existence of a
suboptimal nominal model. Moreover, an algorithm is proposed to obtain a nominal
model which is suboptimal and has a low complexity. Furthermore, the extraction of
structured nominal model error is also discussed. The efficiency of the proposed algorithms

is confirmed by a simulation example.

Keywords.

1 Introduction

Robustness is one of the major properties required
for control systems. In control engineering, one chal-
lenging task is to design a controller which performs
satisfactorily when the plant works under different
conditions, or which satisfactorily controls different
plants which have similar but different dynamics.
The former is due to the fact that the dynamics of a
plant usually changes with time, environment, etc.
(Kuraoka, et al., 1990; Zhou, 1996), the latter is
usually met in mass production (Steinbuch, 1996).

While it is desirable to design a controller which
satisfactorily controls just these different plants, the
model set consisting of the models of these plants
only is highly structured, and controller design is
currently not tractable (Packard and Doyle, 1993).
A pragmatic approach to cope with this controller
design problem is to find a model set which con-
tains all of these plant models and can be handled
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Error bound, Homographic transformation, nominal model, robust control.

by the available robust control theories (Abrisham-
chian and Barmish, 1996; Zhou, 1996).

In the last decade, H,, control theory has been well
developed, in which nominal model errors are re-
garded as unstructured, and Riccati equation or lin-
ear matrix inequality based solutions have been es-
tablished (Packard and Doyle, 1993). In this un-
structured uncertainty setting, additive error, mul-
tiplicative error, relative error, Homographic trans-
formation error, coprime factorization error, linear
fractional transformation error, etc., have been ap-
plied (Packard and Doyle, 1993). The investigation
on the suitability of model set structure is essential
in both identification and robust control.

In this research, we deal with the problem of model
set determination when a batch of plant models is
provided. Former results are extended to the case
in which plant nominal model is perturbed by its
error through a Homographic transformation. This
model set structure is one of the most general model
set descriptions utilized in robust control theory,
and additive, multiplicative, relative, etc., model set
structures can be regarded as a special form. It is
proved that this problem can be converted into a
model matching problem. Moreover, an algorithm




based on Hankel norm model reduction is proposed
for the determination of a nominal model which is
suboptimal and has a low complexity.

To reduce the conservatism in controller design,
sometimes, structured error uncertainty bound is
preferable (Packard and Doyle, 1993; Ariaans, et
al., 1996; Zhou and Kimura, 1994). A necessary
condition is obtained for the existence of structured
nominal model errors, and an algorithm is proposed
for their extraction.

The proposed algorithms are illustrated by a sim-
ulation example, and their efficiency is confirmed
through a comparison with the intuitively deter-
mined plant nominal models.

2 Problem formulation

When a nominal model is perturbed by unstruc-
tured errors through a Homographic transforma-
tion, the model set determination problem can be
formulated as follows.

Problem. Assume that plant models G4(s), ---,
G (s), weighting functions w; (8), «++, wa(s), trans-
fer function matrices N;(s), D;1(s) and a positive
number 7 are given. Moreover, assume that G;(s),
i=1,---,n, Ni(s), Dy(s) are stable, while w;(s),
i = 1,--+,n, are both stable and invertibly stable.
Find stable transfer function matrices Ny(s), Do(s),
such that

(1) Ny(s), Do(s) are right coprime;
(2) Dg(s)Do(s) = I;
(3) there exists at least one stable A;(s) satisfying

Gi(s) = [No(s) + N1(s)Ai(s)][Do(s) + D1(s)x

Ai(8) L i=1,,m;
(4) I = ||fwi(8)AT(s) -+ wa(s)AL(8)]T|leo <
A nominal model Ny(s)D;*(s) satisfying these four
conditions is called suboptimal, and it achieves the
optimal one with the diminution of v.
Several remarks on the control engineering signifi-
cance of the above problem are now in order.
Remark 1. When Ni(s) — Gi(s)Di(s), i =1,--,n
is invertibly stable, it will become clear in the subse-
quent discussion that there exists a minimum phase
transfer function w(s), such that all the plant mod-
els Gi(s),i=1,--+,n, are included in transfer func-
tion matrix set G defined as

G ={G(s) | G(s) = [No(s) + w(s)N1(s)A(s)] x
[Do(s) +w(s)Da(s)A(s)] ", ||A(s)|le < 1} (1)
Remark 2. When Ny(s) = I, Dy(s) = 0, the above
transfer function matrix set G can be expressed as
G ={G(s) | G(s) = [No(s)+ w(s)A(s)|D5 " (s),
|A(s)]|e < 1} (2)
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That is, in this case, the nominal model is perturbed
by an additive error.

Remark 3. When Ny(s) = 0, Dy(s) = I, transfer
function matrix G has an expression

G ={G(s) | G(s) = No(s)[I +w(s)Dg*(s)A(s)]™?
xDg*(s), 1A(s)]lee <1} (3)

which means that the nominal model has a relative
error.

Remark 4. It is a direct result of the small gain
theorem that the transfer function matrix set G is
robustly stabilized by a controller C(s) iff

|lw(s)Dg*(s){D1(s) + C(s)[I + No(s)Dg(s)C(s)]~*
x[N1(8) — No(s)Dg *(s)D1(s)]}Hleo < 1 (4)

Based on this condition, a controller can be designed
on the basis of H., control theory (for robust stabil-
ity and nominal performance) or structured singular
value control theory (for robust stability and robust
performance).

Remark 5. An essential problem in this model set
determination problem is the selection of transfer
function matrices Ny(s) and Dy(s). It is N;(s) and
D (s) that determine the structure of the model set.
It will become clear in the following discussion that
to make the resulted model set compatible with the
available robust control theories, it is desirable that
N‘i(a)l Dl(s); (Nl(s) ] Gi(s)Dl(s))_l! t=1,.c0,m,
are stable. However, the determination of IV, (s) and
D, (s), needs further investigation.

It is worthwhile to mention that from the viewpoint
of controller design, it is more suitable to minimize
the cost function maz;||w;(s)A:(s)||e in the above
model set determination problem. The minimiza-
tion of this cost function, however, is currently not
tractable.

3 Main results

To solve the model set determination problem, some
properties of the cost function J are investigated
first.

Theorem 3.1 Assume that N1(8)—Gi(s)Dy(s) has
no purely imaginary zeros. Then, there exists a sta-
ble and invertibly stable X;(s), such that (Ny(s) —
Gi(8)D1(s))(N1(s) — Gi(s)D1(s))™ = Xi(s)X[(s).
Moreover,

J = ||Ta(s) — Ta(s)No(8)Dg ' (s)|]eo
in which T;(s) and T5(s) respectively represent
wi(8) X1 (s)Ga(s) w1 (8) X1 (s)

wa(8)X12)Gn(e) ] L wale)X:2(s)




Proof: The existence of X;(s) is a direct result of
spectral factorization theory (Francis, 1987). From

Gi(s) = [No(s)+N1(s)Ai()][Do(s)+D1(s)Ai(s)]
we have =
[N1(8) — Gi(s)D1(s)]Ai(s) = Gi(s)Do(s) — No(s)
On the other hand, from the definition of X;(s), t(l?g

next relation can be established.

A7 (s)Ai(s) = [X77(s)(Na(s) — Gi(s)D1(s)) Au(s)]™
X[X7 () (Vi (s) = Gi(s)Da(9)Ai(s)]  (7)

Hence

> wi (sywi(s)A7 (5)Ai(s)

Il

3 0 (a)us(o) X (5)(Mi(a) — Gi(e)Ds ()

Bi()]7[X (8)(Na(s) — Gi(s)Da(s))Ai(s)]

~

[ wi(s) X1 (3)[G1(s)Do(s) — No(s)] ]
= F g
| wa(8) X (8)[Gn(s)Do(s) — No(s)] |
[ wi(8)X; " (8)[G1(8)Do(s) — No(s)] ]
: (8)
| wn(8) X7 (8)[Gn(8)Do(s) — No(s)] |
Therefore,
w1 (8) X" (5)[G1(s)Do(s) — No(s)]
J = :
wn(8)X ;1 (8)[Gn(8)Do(s) — No(s)] 1]
= [|T1(s)Do(s) — T2(s)No(s)l|
= |[T1(s) — T2(s)No(s)Dg ' (s)|lo (9)
This completes the proof. O

For brevity, define Go(s) = Ny(s)D;*(s). Then
J = [|T1(s) — T2(s)Go(s)||oo (10)

On the other hand, let T5y(s) be the square stable
transfer function matrix which satisfies

T35(8)T20(s) = T3 (s)Ta(s), T () € Hoo (11)

and define transfer function matrix T5(s) as

Tar(s) = Ta(s)T5' (s) (12)
Then, it is obvious that
Tﬁ(s}Tu(s) = I, Tg(s) = Tz;(s)Tzn(s) (13)
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Moreover, there exists a transfer function matrix
T31(s), which belongs to H., and satisfies (Fran-
cis, 1987)

[Tar(s) Tai(s)]™[Tar(s) T2v(s)] =

[T21(s) Toi(s)][Tor(s) Tou(s)]” =1 (14)
Hence
J = |[[T21(s) Tap(s)]™ {T1(s) — [T21(s)
0N R
| T20(s)[T50" (8)T57(s)T1(s) — Go(s)] ‘ (15)
T31(s)T1(s) g

According to Equation (15) and the results in Fran-
cis (1987), the following theorem is established,
which is the main result of this paper.

Theorem 3.2 The cost function J is smaller than
v, if and only if

1751 (8)T1(8)]|oo < 7
|1 T20(3)[T50" (8)T57(8) T (8) — Go(8)|R™(8)]|eo <

Here, the transfer function matriz R(s) is both stable
and invertibly stable and satisfies

R™(s)R(s) = 7*I — T{"(s)T5 1 (8)T51 (s)Ti (s)

4 Model set determination algorithm

From Theorem 3.2, it is obvious that Go(s) =
Ty (8)T57(8)Ti(s) is one of the suboptimal plant
nominal models. From the viewpoint of control engi-
neering, however, a simple nominal model is prefer-
able. Hence, it is more suitable to select Go(s)
through frequency weighted L° norm model reduc-
tion of Ty (s)T;57(s)T1(s). On the other hand, it is
well known that model reduction based on the crite-
rion of frequency weighted L™ norm is currently not
tractable, while Hankel norm model reduction has
been well developed (Glover, et al., 1992). Based on
these arguments, a pragmatic algorithm is proposed
for mode] set determination.

(1) Compute the L™ norm of T3 (s)T3(s). If it is
smaller than v, go to the next step; otherwise,
« is not achievable and it must be increased.

Fix the Smith-McMillan degree of Gy(s) to be
k. Perform frequency weighted Hankel norm
model reduction ||T0(s)[T5" (s)T57(8)T1(s) —
Go(s)]R*(s)||#r, and obtain a stable trans-
fer function matrix, say, Go(s), with Smith-
McMillan degree k (To reduce nominal model
error bound, convex optimization can be ap-
plied to the determination of the numerator co-
efficient matrices of Gy(s)).

(2)




(3) Compute the L* norm of Tao(s)[T5" (s)T57(s)
Ti(s) — Go(s)|R"*(s). If it is smaller than 1,
let Go(s) = Go(s); Otherwise, let k +1 — k,
repeat step (2).

{4) Let No(s] = Gu(s), Du(s) =1

(5) Define Ai(s) = [Ni(s) — Gi(s)Di(s)]71x
[Gi(s)Do(s) — No(s)],i=1,-:-,n. Find a min-
imum phase transfer function w(s), such that
[w(jw)| = maxj<i<n 7(Ai(jw)), w € [0' +00).

In the above model set determination algorithm,
it is also possible to permit Gy(s) to be unstable.
In this case, transfer function matrices Ny(s) and
Dg(s) will be obtained as follows.

Assume that C(sI — A)~'B + D is the minimal re-
alization of transfer function matrix Go(s). Then

No(s) =D+ (C — DK)(sI - A+ BK)™'B
Do(s)=I-K(sI-A+BK)™'B

are one of the right coprime factorization of Gy(s),
provided that K is a stabilizing matrix (Nett, et al.,
1984). Let P be a positive definite matrix which
satisfies the following Lyapunov equation

AP+ PAT - BBT =0 (18)
Moreover, define K = BTP—1,
stable and Dg (s)Dg(s) = I.
When Equation (18) has no positive definite solu-
tions, assume that matrix 4 has no purely imag-
inary eigenvalues and K is one of its stabiliz-
ing matrices. Then, No(s) = No(s)M~(s) and
Dy(s) = Do(s)M~*(s) are the desirable transfer
function matrices, in which M(s), M~(s) € Heo
and M~ (s)M(s) = Dg (s)Dy(s).

Then, A — BK is

5 Structured error extraction

In the previous sections, we discussed the problem
of determining a nominal model and its error bound
from a batch of plant models. A model set has been
obtained which includes all the plant models. In this
transfer function matrix set, nominal model error is
regarded as unstructured. Sometimes, however, it
is preferable to represent nominal model error as
structured one, in order to reduce the conservatism
in controller design (Packard and Doyle, 1993; Ari-
aans, et al., 1996; Zhou and Kimura, 1994). Ideally,
it is desirable to simultaneously obtain the bounds
of structured and unstructured nominal model er-
rors from the provided plant models. Unfortunately,
this problem is not tractable at the moment. To im-
prove the performance of control systems, a two step
approach is suggested. Firstly, a nominal model is
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obtained, regarding its error as unstructured. Sec-
ondly, the structured information of the nominal
model error is extracted.

Another reason for structured error extraction is as
following.

Generally, the nominal models that respectively
minimize cost functions maz;||wi(s)A;(s)||e and
[|[wi(s)AT (s) wn(8)AT(5)]7||o are different.
While the former criterion is more natural for con-
troller design, the latter one is easier to cope with.
In our model set determination problem, the latter
criterion is applied for its mathematical tractabil-
ity. In consequence, structured error is generally
introduced into the obtained model set due to the
selection criterion. To make the unstructured error
bound of the model set as small as possible, one ap-
proach is to suitably adjust the weighting functions
wy(s), *++, wn(s), another approach is to extract
the structured error from the nominal model errors.
While the former heavily depends on the provided
plant models, the latter is investigated in this sec-
tion.

To simplify discussion, we assume, without loss of
generality, that the m x p nominal model errors
A;(s), 2 = 1,---,n, satisfy m > p. If m < p, the
problem can be solved by just transposing A;(s),
i=1,-,m.

At first, we have the following results.

Theorem 5.1 Let A(s) = [AT(s) -+ AT(s)]T.

Assume that wg = argmax, d(w(jw)A(jw)). More-
over, assume that

w(jwo) A(jwo)
r L diag{o:|"_
= o o) | B
in which, o1 = --- = Tp > 0, and [11.; "'U:‘m],

[v1 -+ vp] are unitary matrices. Then, there exists
aAo(s) E Hoo and é; € R, 2 =1,-+-,n, such that

Ai(s) = 8:A0(s) + Ai(s), zn: 52 =1
i=1

lw(s)[AT(s) -+ AT (8)][|ao < |[w(8)A(8)][mo
only if vector uy can be expressed as

1 k1o <0 km_101 @z kiaz o ki

Qg # km—lan] y O € R

A proof of this theorem is given in the appendix.
Based on the conclusions of Theorem 5.1, the fol-
lowing algorithm is proposed for structured error
extraction.

(1) Verify whether the conditions of Theorem 5.1
are satisfied. If the answer is negative, stop the
computation; Otherwise, go to the next step.




(2) Define §;,i =1, ---, n and Ay(s) as

(243

Ve o :

(3) Perform convex optimization to find a &, i =
1,--+,n, such that [[w(s)[A:(s) —8:80(8)]||co is
minimized. Assume the desirable §; is 7.

8=

(4) Find a minimum phase transfer function w(s)
satisfying [@(jw)] > maxXi<ica7(Ai(jw) —
824 (jw)) for all w € [0, +00).

(5) Define Ag(s) = (maxi<icn [52]) Ao(s).

From the above algorithm, it is obvious that all the
nominal model errors, A;(s), 2 = 1,---,n, are con-
tained in transfer function matrix set A defined as

[ 24|, sem o<1, 1A@IL <1} a9

These conclusions can be extended to the case in
which the parametric perturbation § is permitted
to be complex.

While it is possible to extract the structured error
in A(s) by the proposed algorithm, it is worthwhile
to note that with the increment of the number of
parametric error blocks, robust controller design will
become difficult (Packard and Doyle, 1993).

6 A simulation example

In this section, a simulation example is provided to
illustrate the proposed model set determination al-
gorithm and structured error extraction algorithm.
With a little abuse of terminology, in this section,
the error bound of a nominal model is referred to
maz;5(A;(jw)) for a specific frequency w.

Assume that we have two poorly damped plants
which are well met in mechanical engineering and
their models are

_ny(s)  $?+2x0.1x6s+ 6
T di(s) T s?+2x0.1x 20+ 202

G (s)_nz(s) 8% 42x0.1 x 10s + 102
T (s) ~ s+ 2 x 0.1 x 40 + 407

G(s)

Moreover, assume that the frequency weighting
functions in the model set determination have been
provided. They may be determined from the re-
quirements on the performance of the closed loop
control systems.

The frequency responses of Gi(s) and Gz(s) are
shown in Fig.1.a.
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(a) plant model

W

(b) weighting function

Fig. 1: Frequency response of plant model and
weighting function’s magnitude. —: Gy(s);
oot Ga(8); —: wa(8); -+ wa(s) and wy(s).

Intuitively, the following methods can be considered
in the determination of a nominal model. One of
them is to select a nominal model such that its fre-
quency response is equal to the center of the fre-
quency responses of the provided plant models at
every frequency. Another method is to select a nom-
inal model such that its coefficients are the same as
the centers of the corresponding coefficients of the
provided plant models. Denote these plant nominal
models by Gy1(s) and Ggz(s). Obviously,

1 ni(8) + na(s
Go(s) = 5[G1(5)+Ga(s)], Goa(s) = %ﬁ{s;
When Ni(s) = 1, Dy(s) = 0, wy(s) = wa(s) =
wa(s) = i:ﬁﬂ—t%, according to the algorithm of
Section 4, the next four plant nominal models are
obtained, which have Smith-McMillan degree as 1,
2, 3, 4, respectively.

6.8950 x 10~ 3s + 3.2437 x 102

G =—
a1(8) s + 0.39203

1.4718s2 + 1.1748s + 69.6732
Gag(e}) = 2

32 4+ 19.65s + 530.96
Gus(s) = 2.1031s® 4 5.3731s% 4 112.20s + 188.12
e T T8 1 34.73352 + 631.745 + 5151.2

8% + 7.65% + 1076.8s% + 1704s + 48800

Gm;(s) —

s* + 1253 + 203252 4- 9600s + 640000

The frequency responses of these nominal models
and their error bounds are shown in Fig.2.
When Ni(s) = 0, Dy(s8) = 1, wi(8) = wq(s) =
2
wy(s) = LATRSEEAE the next four plant nominal
models are obtained.
3.5232 x 10725 + 5.2712 x 10!

()= s + 8.0683
Galhy= 0.522632 + 2.9554s + 59.94
82 + 16.9855 + 1187.7
e 0.55583 + 24.55% + 193s + 2482
83 + 64.252 4 19653 + 53048
0.88s* + 165 + 1735% + 14805 + 4669
G,..q, (3) =

84 4 365 + 154552 + 209235 + 67190
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(b) error bound

Fig. 2: Frequency response of nominal model and
its error bound. ee: Gg,i(s); -+ Gaa(8);

—+ Glag(8); — —: Gas(8)-

The frequency responses of these nominal models
and their error bounds are shown in Fig.3.

__ 0.8s+84 _ 4541200 s?+34s+64
When N1 (s) = 35507, Di(s) = 55560 "3714.8:464)
and wi(s) =

. 8
wa(s) = wy(s) = HHGE5Y, the

following four plant nominal models are obtained.

4.1157 x 10~ %3 + 8.4463 x 102

Grley= s +0.12292

1.1704s2 + 6.2641s + 110.1
Gpa(s) = —

52 + 51.056s + 1606.7

0.255% + 4.15% + 28.65 + 118

Grs(s) = —3 2
8 + 122 + 11923 + 1634

0.93s* + 3533 + 73852 + 3790s + 22964

Gya(s) =

s* + 16583 + 292252 + 160910s + 297930

The frequency responses of these nominal models
and their error bounds are shown in Fig.4.

For comparison, the error bounds of the intuitively
determined nominal models, Go1(s) and Gyz(s), are
also shown in Fig.2, Fig.3 and Fig.4. They are rep-
resented by solid lines.

The magnitude frequency responses of the weight-
ing functions w,(s), w.(s) and w¢(s) are shown in
Fig.1.b.

From the simulation results, it is clear that with
the increment of the nominal model complexity, the
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(b) error bound

Fig. 3: Frequency response of nominal model and
its error bound. ee: G,i(s); <::: Gra(s);
—=4Gyg(8); == Gyile):

bound of the nominal model error in the interested
frequency range is reduced. Hence, the complexity
of a nominal model can be determined from the re-
quirements on the performance of the closed loop
system.

When nominal models are represented in additive
form, the error bounds of all the nominal models ob-
tained by the proposed algorithm are smaller than
that of Gyz(s), in the interested frequency range.
When the Smith-McMillan degree of the plant nom-
inal model is increased to 4, its error bound equals
that of Go1(s) at every frequency. It is obvious that,
in this case, Gy (s) is the optimal nominal model, in
the sense that at every frequency, the error bound of
a nominal model can not be reduced less than that
of G01(8).

When nominal models are represented in relative
form or Homographic transformation form, the sim-
ulation results show that in the interested frequency
range, almost all the nominal models obtained by
our approach have a smaller error bound than that
of Go1(s) or Goa(s).

It is worthy to point out that although in the inter-
ested frequency range, the Homographic transfor-
mation error bound of a nominal model is smaller
than the relative one, while the relative error bound
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(b) error bound

Fig. 4: Frequency response of nominal model and
its error bound. ee: Gyy(s); -+ Gya(s);

- Gfs(&); s lee qu,(.‘l).

is smaller than the additive one, it does not imply
that Homographic transformation error representa-
tion will result in the best controller design. This
is because different model set descriptions lead to
different conditions for robust stability and robust
performance.

Next, the proposed structured error extraction algo-
rithm is applied to all the obtained nominal models,
using the same weighting functions as those in nom-
inal model determination. The result is that there
does not exist a structured nominal model error.
However, when the weight of the nominal model er-
ror at low frequencies is reduced, a structured error
appears for nominal model G4, (s).

In Fig.5.a, the frequency responses of the nominal
model errors and the extracted structured error are
presented, while in Fig.5.b, the frequency responses
of the unstructured error bounds are given. In the
structured error extraction, the weighting function

is selected as w(s) = i;‘:%)-f'w‘f(s).
From Fig.5, it is obvious that the unstructured er-

ror bound is significantly reduced at the middle and
high frequencies by structured error extraction.
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(b) error bound

(a) nominal model error

Fig. 5: Frequency response of nominal model error

and unstructured error bound. —-: Ay(s);
--+: Ag(8); —: structured error; — —: before
extraction; —: after extraction.

7 Concluding remarks

In this paper, we discussed the problem of model
set determination when a batch of plant models is
provided. Previous results have been extended to
the case in which a plant model is described by a
Homographic transformation. It has been proved
that this model set determination problem can be
reduced to a frequency weighted L™ norm model
reduction problem. An algorithm is proposed to ob-
tain a suboptimal nominal model which has a low
Smith-McMillan degree, as well as its error bound.
In addition, a necessary condition is obtained for
the existence of structured nominal model errors,
and an algorithm is suggested for their extraction.
Simulation results show that the error bound of the
nominal model determined by the proposed algo-
rithm is generally smaller than that of the intuitively
determined one, and the bound of the unstructured
nominal model error can be significantly reduced by
structured error extraction.

Recently, the proposed model set determination al-
gorithm has been successfully applied to the simul-
taneous spiral control of two compact disc players.
The results will be reported in some other places.
However, some important issues concerned with this
model set determination problem, still remain un-
solved. One of them is about the selection of IV, (s)
and D, (s). Another one is to extend the established
results to the case in which a nominal model is per-
turbed by its error through a linear fractional trans-
formation.

Appendix A proof of Theorem 5.1

For brevity, let J = |[w(s)[AT(s) -+ AT(8)]7|co-
Since 67 +++ + 82 = 1, we have

viv =1, (A1)

in which, V = [§;1,, 621, Sula]®: Asa
consequence, there exists a nm x (n — 1)m matrix,




such that
V TPV T =¥ AN T =L, (A2)
On the other hand, A;(s) = A;(s)—&Ao(s). There-
fore
J = IV T]"w(s)[A(s) — VAo(8)]]loo
= [t ][ @o

Hence, J is smaller than a positive number, say, v,
if and only if (Francis, 1987)
[w()TTAs)||ea <
[[w(s)[VT A(s) = Ao(s)][v* L, —
(w(s)TT A(s))™ (w(s)TTA(s))] " H [l < 1 (A.5)

(A.4)

Now, assume that there exist §; e R, i =1,-:-,n,
and a Ag(s) € Heo, such that A;(s) = §;A0(s) +
Ai(s}, i=1-n 6+ +8 =1l,and <y <
[lw(s)A(8)||eo- Then, ||[w(s)TTA(s)||ee < 7, which
implies that

w(jwo)w” (jwo)TT A(jwo) A% (jwo)T < Y I(n-1)m
(A.6)
From the definition of matrix T', it is obvious that
TTT = Ijn_1ym- Hence

TT{ Lum —~[w(jwo) A(jwo)][w(jwo ) A(jwo)]* }T > 0
(A.7)
-+ ul 17, Then,
A(jwo)]"}T =
UT (A.8)

Define matrix U as U = [uf

TT{‘Tzfnm — [w(jwo)A(jwo)][w(jwo)

. | dia ‘y“’ - ad?)F 0
(UT) g{( . Nizi} -
nm-—p

Since v < ||w(s)A(s)||ec = o1, to guarantee that
Inequality (A.7) is satisfied, it is necessary that

wT=0, or TTul =0 (A.9)

From Equation (A.2), it is obvious that

TTV =0, rank(T) = (n — 1)m, rank(V) =
(A.10)
Hence, there exist real numbers 3; and ~;, i =
1,:-+,n, such that

uy = ([By --- ¥m]) VT

and there is at least one i, 1 < i < n, such that
Bi + 37 # 0. Without loss of generality, assume
that 81 + jy1 # 0. Define

Bn] + slm <+ (A11)

&; = (b1 + in)bi, i=1,--,m (A.12)
kizw'izli...’m_ﬁl (A.13)
Br+im
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Then, it is clear that

© km_161 @2 k1o
]| (424}

Uy = [&1 k1d1
km-163 &3

and define

Multiplying vector u; with i%iﬁ-ﬁ

PREY e BT T

A.15
B+ gl G15)

Then, a; ER,i=1,---,nand @; = rgl"—Jrj—%l—ul has
the required form. Moreover, it is obvious that

w(jwo)A(jwo) = [i] up +- - Upy,] X
[diag{gdf:x]’} [v1 02 -+ v,] (A.16)
and matrix [@#] u} u}..] is unitary.
This completes the proof. O
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Abstract.

The standard configuration for model-based control design is reformulated

into a twin feedback configuration with the model and controller written in separate
feedback loops. Closed-loop balanced reduction is developed in this framework. A scheme
with alternating model reduction, optimal control synthesis and controller reduction steps
is designed to find high-performance low-order controllers. CD-player tracking controllers
with orders below ten have been found starting from a 120**-order model.

Keywords.

1 Introduction

This paper proposes a tractable iterative procedure
to incorporate order reduction of both the model
and controller in the control design.

Consider the optimization-based control design
problem of Fig. 1, where a specific norm is mini-
mized with respect to K, the controller that closes
the lower loop around the so-called standard plant
N. This general representation will be denoted
the Standard Controller Synthesis Configuration
(SCSC).

N
b

Fig. 1: Lower feedback configuration

The standard plant N comprises the model (G) of
the system to be controlled and weights that are
used to ensure that minimization of the influence of
w on z leads to the desired controlled behaviour.
Often, the order of the model is high and a reduc-
tion is needed before any controller can be calcu-
lated. Here we assume that the original model has
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high accuracy and is the best we can get; the only
problem is its order. The weights that are involved,
however, are to be created and are auxiliary in ar-
riving at a satisfactory closed-loop behaviour. This
strongly suggests that the dynamics of the real sys-
tem that is given by nature and the weights that are
to be tuned in the control design phase, should be
isolated from one and another. Hence, we introduce
the twin feedback configuration (Wortelboer, 1994).
In the twin feedback configuration the intercon-
necting system matrix M exclusively contains the
weights involved in the controller synthesis problem.
We will call it the master weight.

The controller synthesis configuration can be
thought of as the twin feedback configuration with
freedom to choose the controller in the lower feed-
back loop. The performance is related to the norm
of the twin feedback configuration: the lower this
closed-loop system norm, the better the perfor-
mance.

Robustness can be defined in a similar way as (nom-
inal) performance. In this paper, we will not try to
model realistic variations and to achieve robust per-
formance, but merely achieve nominal performance
and some basic robustness property. This is also
motivated by the fact that the robust performance
problem has no straightforward solution.




1(G, M, K)

— W

Fig. 2: Twin feedback configuration and its sym-
bolic representation (underlined symbols for
lower feedback loop and over-lined symbols
for upper feedback loop)

1.1 Order reduction

The reasons for applying order reduction have al-
ready been given. The methods available for doing
this are reviewed briefly and the order reduction ob-
jectives for our control design purpose are explained.
We classify order reduction methods as follows
(Wortelboer, 1994):

Norm minimizing model reduction A reduced
order model is sought that is closest to the
original model measured in some system norm.
Only for the optimal Hankel-norm, a straight-
forward solution is available (Glover, 1984).
For the more important H.-norm and H;-
norm approximation there is no such solution.

Reduction based on parameter matching A
reduced order model is sought that has some
key parameters in common with the full-order
model.

Projection of dynamics A state-space realiza-
tion of the full-order model is sought that
can be truncated to the desired reduced-order,
Modal reduction and balanced reduction are
the main methods. Interpolation (de Ville-
magne and Skelton, 1987) is also characterized
by a projection. In (Hyland and Bernstein,
1985) it is shown that for the solution of the H;-
norm minimum distance problem it is necessary
to base the reduction on a projection principle.

Shortcomings

None of these methods can be applied safely for the
purpose of low-order control design. Of course the
norm-minimizing method has much in common with
the optimal control objective, but we cannot isolate
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an optimal order reduction problem from the opti-
mal control problem. In 1982 it has already been
explained that LQG-controllers can destabilize the
closed-loop (Balas, 1982). This phenomenon is now
known as ‘spill-over’. Reduced-order modelling and
control design are strongly coupled problems (Skel-
ton, 1989; Liu and Skelton, 1993). The reduction re-
sults have to be evaluated in the closed-loop configu-
ration. Another problem is that there is no method
to find the optimal order itself.

Since there are no direct methods for this specific
closed-loop reduction problem, our interest is in in-
direct methods exploiting order reduction that work
fast and provide insight into the order selection is-
sue. It will turn out that projection-based reduc-
tion is very efficient and can be applied step by
step to the model or controller. To be more specific,
a closed-loop balanced reduction method (Ceton et
al., 1993), that basically extends frequency weighted
balanced reduction, is adopted as the main order re-
duction technique.

We refer to (Wortelboer, 1994a; Anderson and Liu,
1989; Zhou et al., 1996; de Villemagne and Skelton,
1988) and the references therein for more informa-
tion on existing order reduction methods.

The iteration path and the choice of the reduced
orders are the design freedom once the SCSC is
fixed. The iteration has to be performed on a com-
puter with strong numerical and graphical proper-
ties. We developed a user interface in MATLAB to
support this process. Together with the key routines
for closed-loop balanced reduction this interface is
implemented in the so-called WOR-toolbox (which
refers to Weighted Order Reduction (Wortelboer,
1994b). This toolbox is linked to the u-toolbox
(Balas et al., 1994), and parts of it are used in the
QFT-toolbox (Borghesani et al., 1994). The graphi-
cal input of additional frequency weighting functions
to further direct the reduction process in a promis-
ing direction is not discussed in this paper. For that
part we refer to (Wortelboer, 1994a, 1994b). In the
H, control case, we can conclude the iteration with
a final step to converge to an Hj-norm minimizing
low-order controller. It will be shown that the pro-
posed iteration scheme with model and controller
reduction by closed-loop balanced reduction yields
several candidate reduced order controllers (of very
specific order) that form a good starting point for
Hj-norm optimal fixed-order control. The basics of
this method have been published in (Wortelboer and
Bosgra, 1994; Wortelboer, 1994a).

1.2 Organisation

After the introduction of the notation for basic op-
erations (Section 2), the balanced order reduction in




the twin feedback configuration is introduced in Sec-
tion 3. Section 4 gives a detailed description of the
application of the reduction procedure to a Compact
Disc Mechanism.

2 Preliminaries

2.1 Truncation and projection of realiza-

tions

Continuous-time finite-dimensional time-invariant
linear systems can be written in state-space as

E

For clarity we will write G,, for a realization of n*h-
order.

Truncation of a system realization underlies both
balanced reduction and modal reduction. Let

- [5

with O € IR**" a zero matrix, then the truncation
of realization G, to order ¢ is: !

Ax + Bu
Cx + Du

Il

G = (4, B, C, D)

Il

G. =Rir,r.)(G») £ (TTAT,, I'TB, CT,, D)
= (A(l:r,l:rjl B(l:r,:]1 C(:,l:r]! D) 2 Rr{Gn)

In the same format a state transformation can be
written as
Gn = Ri7-+,1)(Gn)

and a projection of dynamics that is governed by
the projection pair [L., R,] obeying L} R, = I, can
be written as

G'r = R[L..Rr](Gn)

2.2 Balancing

The theory of balancing is now well established: see
for instance (Moore, 1981; Glover, 1984; Zhou et al.,
1996). The balancing idea hinges explicitly on the
state coordinates. The system dynamics is analysed
in two parts. The controllability part measures the
influence of input u on the state coordinates assum-
ing xp = 0, and the observability part measures the
influence of xy on the output y assuming u = 0.
The controllability Gramian P, and observability
Gramian @, can be solved uniquely for stable sys-
tems from the following Lyapunov equations

AP, + P,A" + BB*
A-Qn+QnA+C‘C — O

Il

) (1.a)
(1.b)

!Matrix subscripts between parentheses are index vectors.
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A balancing transformation T' = R, (with T-* =
L.,) satisfies

L:P.L, = R.Q.R, = diag(c,)
with
0n = VA(PrQx)

the so-called Hankel Singular Value (HSV) vec-
tor. The HSVs are system invariants (realization-
independent). This transformation is exclusively
based on P, and @Q,:

[f‘ni Rﬂ] — T‘J-(Pﬂl Qn)

By definition, G, = R[jﬁ_.'f‘]{GnJ is a balanced re-
alization, and

Gr = Re(Gn) =Ry 11(Gn) £ balR,(G,)

defines balanced reduction, with R, = T(:'l:,.), i.=
[f““](,l,:,) satisfying L' R, = I,.

For frequency-weighted balanced reduction (Enmns,
1984), we start from frequency weighted Grami-
ans and perform the balancing and reduction in the
same way as for plain balanced reduction.
2.3 Performance configurations, optimal
control and sensitivity

We use linear fractional transformations (Zhou et
al., 1996) and refer to Fig. 2 for notation.

First let K = O, then we can use the upper feedback
loop to define the upper linear fractional transfor-
mation:

N = Fu(M,G) £ Maw+MygG(I—MgyG) ™ Mgy,
(2)

Next, we use this N in conjunction with K in the
lower feedback loop to define the lower linear frac-
tional transformation:

F = Fi(N,K) = Ngw + NguK (I — NyuK) *Nyw.
(3)

From linear fractional transformation theory (Zhou
et al., 1996) we know that

IZ(G(s), M(s), K (s)) Fi(Fu(M(s),G(s)),K(s))

Fu(Fi(M(s), K(s)),Gls)).

The theory of optimal control in the H, and H,
case is rather complete now. We refer to (Zhou et
al., 1996) for all details. The state-space approaches
are coded for instance in the p-tools for use with
MATLAB (Balas et al., 1994). As our approach
to low-order control design we use an order reduc-
tion procedure around standard optimal full-order




control synthesis. We introduce the following (full-
order) control synthesis operations:

H.K(Z(G,M,_-))

for computing the H; optimal controller, and the
central H,, optimal controller respectively.

The output sensitivity function matrix and the in-
put sensitivity function matrix are defined as

(I-GK)™?
(r-x6)™.

(5)
(6)

Define Su(G, K) = Su and Sy(G,K) = Sy. Then

Sy =
Su=

8y(G,K) = Sy(G,Ku) -
(I-GK)? — (I-GKy)*=
(I-GK)?G(K — Ko)(I—-GKp)™?

(7)

We can also write the twin feedback configuration
in a sensitivity form,

I(G, M,K) = [ Oys Iz Ozy } M-

Oyw
Sw(M,A) | LKy |,(8)
Og_w
with
A = diag(G,Owsz, K)
Sw(M,A) = (I-AM)™.

3 Order reduction in a closed-loop
setting

Our starting point is the twin feedback configuration
with master weight M and system model G given.
The aim is to find a low-order controller achieving a
sufficient performance level. The approach is based
on full-order optimal control combined with order
reduction techniques.

First, we consider the objectives of closed-loop or-
der reduction: in Section 3.1 the model reduction
step is analysed, and in Section 3.2 we take a closer
look at the controller reduction step. The algorithm
that is used for both model and controller reduc-
tion, closed-loop balanced reduction, is explained in
Section 3.3. Section 3.4 discusses the rationale for
using the closed-loop balanced reduction algorithm,
and finally Section 3.5 gives a procedure for using
the new order reduction facility in connection with
optimal controller synthesis.
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3.1 Model reduction in closed-loop

As mentioned earlier, model reduction is only an
auxiliary step in low-order control design. It is
needed to enable an optimal controller synthesis
step. The big issue is that there is not a clear
measure, like the performance measure, to quantify
the loss of information by model reduction. Mini-
mizing some open-loop error |G — G,|| is not ap-
propriate due to the spill-over problem. A bet-
ter approach is to minimize the closed-loop changes
due to model reduction. This, however, requires
a controller. Although we do not have the con-
troller we are looking for yet, we often do have a
preliminary stabilizing controller. Note that most
servo-systems are designed for feedback operation
with fairly simple feedback controllers. Our prob-
lem then is not mere closed-loop stability, but per-
formance improvement (often with a limitation on
the controller complexity). We state that model re-
duction for control design should make a trade-off
between the model order and the change in closed-
loop behaviour (both preferably low). The change
in closed-loop behaviour can be measured by
Cm = "I(Ghle K) _I(GﬂHMlK)“ (9)
with G, and G,,, the high order and moderate order
model respectively. For ease of interpretation, we
introduce a relative error: with
™ = |Z(Gn, M, K, (10)

we define

P = [|Z(Gry M, K) — Z(Gm, M, K)||
> ¥ ”I(GhaM:K)” .
(11)
Note that v, = || Z(Gm, M, K)|| itself is not a good
measure, since minimization of v,, yields the ‘best-
controllable’ reduced-order system; a solution might
even be a zeroth order model Gy = O.

3.2 Controller reduction in closed-loop

Controller reduction in closed-loop has the same ob-
jective as the original control design problem. Given
M and G, find a K, that minimizes ||Z(G, M, K,)||.
The only difference is that we have a high-order con-
troller available. The assessment of the reduction
result is much easier than in the model reduction
case since we can use the performance criterion di-
rectly:

7 = | Z(G, M, K, )|

Note that it is also possible to strive to reduced-
order controllers that change the closed-loop mini-
mally as in the model reduction case, but this may
result in controllers that have worse performance.

(12)




3.3 Closed-loop balanced reduction

First we derive the algorithm and then we state
some of its properties.

3.3.1 The algorithm

To define balanced reduction within the twin feed-
back configuration, we make a realization F =
I(Gn,M,K,) in which the state vector is built
from the state vectors of G (length h), M,
and K, (length n) in that precise order: xI =
[xI xT xI ]. Balanced reduction of G within F
follows the standard balanced reduction procedure
with the difference that instead of taking the entire

Gramians of F',

Py = P(F)
QP = Q(F)v

only specific parts of these Gramians are used. The
scheme for G}, reduction within Z(G}, M, K) hinges
on taking the left upper parts of the Gramians of
the interconnected system realization and proceeds
along classical lines from then on: ?

Py = [P(Z(Gh, M, K,.))](1:h,1:1)

= P(Z(Ghy M, Ko))
Q¢ = [Q(T(Ghy M, K,))|(1:8,1:0)

= Q(Z(Gh, M, K,))

8] = T(Be Q)

f'm = [fm]{:.nm)
R = [Rh]( 1im)
G =Rz, #,)(Gh) = balR(Z(Gh, M, K,))

[

Exploiting the same notation, the procedure for
closed-loop controller reduction is:

e Take the controller state part of the closed-loop
Gramians, Px = P(Z(Gn,M,K,)) and Qx =
Q(Z(Gn, M, K,,))

o Extract a balancing transformation, [Ln, R,] =

f‘(PKs QK)!

® Truncate»the Ia.st“n — 7 columns of f;,, and }-2“
yielding L, and R,, and

e apply a projection of K, by means of L,, R,

This procedure is summarized as follows:

K, = balR.(Z(Gh, M, K..)).

2the reduction procedure is applied to the underlined
system.
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Since the closed-loop balancing of G and K are in-
dependent, we can also balance G and K simulta-
neously. In Fig. 3 the block-diagonal structure of
the similarity transformation group that is allowed
in closed-loop transformation is visualized. G and

G

‘:“3(

M

K

Fig. 3: Diagonal structure of similarity transforma-
tion group

K are closed-loop balanced ifuthey iunduce diagonal
blocks in the Gramians of Z(G, M, K):

{{miil

P(Z(G,M,K)) =

I &2

4
=

IIE T IO O OO
({mlIf

I &

(s
=

with £, = diag (v/A(P:Qc)) the Z(G, M, K)-HSVs
and T, = diag (1/A(PxQx)) the Z(G, M, K)-HSVs.
Note that P(Z(G, M, K)) # Q(Z(G, M, K)) generi-
cally.

—

3.3.2 Properties

First we state a trivial property:

balRm (Z(Gr, M,K) — I(Gh, M, K)) =
balR,(Z(Gh, M, K))

This means that closed-loop balanced reduction
does not discriminate between the relative and the
absolute case.

It is important to stress that the result of closed-loop
balanced reduction is not necessarily closed-loop
balanced! This also implies that stepwise closed-
loop balanced reduction may yield a different result
than direct closed-loop balanced reduction.

Next we analyse the minimality properties. If K,
has n — r uncontrollable state coordinates then
I(G,M,K,) has at least n — » uncontrollable state




coordinates and P(Z(G, M, K,)) has at most rank
7. The same holds for G. Of course the observability
case is completely dual.

In case G, M, and K are all minimal realizations,
there may still be a chance that Z(G, M, K') is not
minimal. This situation is often referred to as ‘can-
cellation’. It is widely recognized nowadays that by
using a well-defined SCSC, the danger of cancella-
tions can be minimized. This is important since
closed-loop balanced reduction of G or K will not
automatically remove dynamics associated with the
cancellation.

Finally, if the SCSC is asymptotically stable and
minimal, the Gramians of the SCSC are both pos-
itive definite. Then, a small [Ex],) can only oc-
cur if the coupling of the last (n**) closed-loop bal-
anced controller state coordinate with the other co-
ordinates is sufficiently weak. And this means that
truncation of the closed-loop balanced controller to
order . — 1 in the SCSC gives almost the same re-
sult as truncation of the SCSC by plain balanced
reduction.

3.4 Underlying weighted reduction prob-
lems

Next we investigate the relation between closed-loop
balanced reduction and the objectives we had for
closed-loop reduction of the model and controller.
Also the relation with frequency-weighted reduction
(Enns, 1984) is established, see also (Schelfhout,
1996).

Recall that for the controller reduction case we are
interested in minimizing ||Z(G, M, K,.)||, while the
model reduction case requires small

IZ(Gn, M, K) = I(Gr, M, K))||.

From (8) we know that closed-loop changes are fully
due to changes in

A = diag(G, Owz, K).

For small perturbations §G = G — G and 6K =
K — K we have

Sw(M,A) ~ Sw + Sw A MSw (13)
Sw = (I-AM)? (14)
A = diag(G,Owsz, K) (15)
6A = diag(6G,Owz,0K).  (16)
Define

¢ =[O Iz Oay | (17)

(5
dw = | Iw (18)

ng
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Iy

‘5? = Ow? (19)
| Ogy

5 = | fa Ouz Oﬁy_] (20)
[ Oyu

®u = | Ownu (21)
L

Then we can state that

I(G,M,K) =~ I(G, M, K)+W;c 6G Vsg+Wix 6K Vix

(23)
with
Wse = @zMSw'iy-
Vigc = egMSwow
Wik = @zMSw®u
Vik = ByMSwow

Thus, if we want to minimize the influence of small
model changes on the closed-loop system, we can
try to minimize ||Wje 6G Vie|| with 6G = G, — G
We can also write the above as

I(G,M,K) - I(G,M,K) ~ Wsn A Vs (24)
with

Wen = @zM{I—AM)_] (25)

Vin = M(I—AM) &y, (26)

In (Schelfhout, 1996) it is shown that the weights
Vsa and Wi, are used implicitly in closed-loop bal-
anced reduction, i.e.

balR(Z(G, M, K)) = balR(Wsk KVsi)  (27)
This equivalence does not depend on 6G or K.
Note, however, that the computational scheme for
closed-loop balanced reduction is more efficient and
that unstable G and K can be reduced as long as
the twin feedback configuration is strictly stable.
So far, we have only considered the case that the
changes in G and K are sufficiently small for first-
order approximations. We refer to (Wortelboer et
al., 1997) for the results concerning larger changes.

3.5 A combined order reduction — control
design strategy

Here we describe the main cycle in obtaining high-
performance low-order control starting from a high-
order model (Fig. 4). the model reduction step can
be repeated a number of times to find an appropriate




Given: K, and G
Start: K, = K,

s<Lh

] Model Reduction |

Gm? 1

m<h
IZ(Ghy M, Kp) — Z(Gm, M, Ky)|| < €

| Controller Synthesis ‘

K.? | ming, |Z(Gm, M, K)|

| Controller Reduction| t

K,?|{

r<n
1Z(Gn, M, K. )|| <

Fig. 4: The iteration scheme for low-order control
design starting from a high-order model us-
ing interactive order reduction

m together with G,,. The evaluation of the order
reduction effects is by means of ||Z(Gy, M, K,,) —
L(Gm, M, Ky)||.

The control design step can be performed by H; or
H_, optimal control if m is sufficiently small. With
a new K, we can go back to the model reduction
phase and verify if G,, is still appropriate. If this
iteration has converged we can proceed with the con-
troller reduction iteration. After each step the per-
formance is measured by means of Z(G, M, K,).
For the H, case we end with a search for the optimal
fixed-order controller.

For the H,, case, we do not have a satisfactory algo-
rithm to derive an optimal fixed-order H,, controller
starting from the optimal full-order controller. Yet,
we can find better performing low-order controllers
by closed-loop balanced reduction of each controller
that is generated by a bisection type H., control
algorithm. The idea behind this is to relax the per-
formance requirement deliberately, thus hoping to
find a full-order controller that can be reduced more
easily. For the H.,-case, we can choose a v that
is somewhat higher than the optimal performance
level that is attained in the full-order case. To be
more specific, we can exploit the fact that in opti-
mal H,, controller synthesis by bisection, a series
of controllers of full order is generated that achieve
progressively lower H,-norms until the optimal + is
reached. One of these intermediate full-order con-
trollers might induce an H_,-norm that is close to
the optimal H ., -norm for a controller of order r < n.
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Such a full-order controller might be a better start-
ing point for reduction than the optimal full-order
one, since the reduction does not necessarily imply
a performance degradation. In computer codes for
H., controller design using the bisection principle
we can add a search over specific reduced orders and
keep record of the best controller for each order.

It is once again stressed that balanced reduction is
heuristic in the end and requires a thorough em-
bedding in an evaluation and manipulation environ-
ment.

4 Application to a Compact Disc
Mechanism

4.1 Tracking control problem

The control task of a Compact Disc mechanism is
to achieve track following, which basically amounts
to pointing the laser spot to the track of pits on
the CD that is rotating. The reader is referred to
(Steinbuch et al., 1994) and the references therein
for details about the principles of CD-player control.
The mechanism treated here, consists of a swing arm
on which a lens is mounted, see Fig.5.

Fig. 5: Schematic view of a rotating arm Compact
Disc mechanism.

The rotation of the arm in the horizontal plane en-
ables reading of the spiral-shaped disc-tracks, and
the suspended lens is used to focus the spot on the
disc. Due to the fact that the disc is not perfectly
flat, and due to irregularities in the spiral of pits
on the disc, a feedback system is needed. The chal-
lenge is to find a low-cost controller that can make
the servo-system faster and less sensitive to external
shocks.

Performance improvements are sought via model-
based control design in the frequency domain. The
time domain specifications that underlie the fre-
quency domain specifications are treated in (Stein-
buch et al., 1994). Robustness is an important issue
in practical control design, in fact, design for robust-
ness against specific variations in the CD-system




has already been achieved (Steinbuch et al., 1994).
Here, we concentrate on low-order control design for
a single high-order model.

A detailed model is needed to describe the vibra-
tional behaviour of the electro-mechanical system
over a large frequency range in order to anticipate
the interaction with a controller of possible high-
bandwidth. A Finite Element Model was built, con-
taining 60 vibration modes (n = 120), and has two
inputs (actuation of arm and of focus lens), and
two outputs (tracking error and focus error). The
model is included in the WOR-toolbox (Wortelboer,
1994b). With respect to the disc, we can discern a
radial (R) part and a focus (F') part of the feedback
loop. Ideally, these parts have no interaction, but in
practice there is (some) mutual interference. From
control design view point, the radial loop poses a
much more difficult problem compared to the focus
loop. This is due to the more pronounced mechani-
cal resonances. Therefore, in this paper, we concen-
trate our investigation on this loop only.

rad SpOt

€R I, (0]
Gopt |-+ K(3) |+Gact(} Carm |——>

track

Fig. 6: Configuration of the radial control loop

In Fig. 6 a block-diagram of the radial control loop
is shown. The difference between the track position
and the spot position is detected by the optical sys-
tem; it generates a radial error (eg) signal via a gain
Gopt- A controller K(s) feeds the system with the
current I,,4. This in turn generates a torque result-
ing in an angular acceleration. The transfer function
from the current I.,q to the angular displacement
¢ of the arm is called G,..(s). A (nonlinear) gain
Garm relates the angular displacement with the spot
movement in the radial direction. Only the control-
error signal eg is available for measurement.

In Fig. 13 the (1,1) element, i.e. the radial transfer
function, of the (magnitude) frequency response of
a Finite Element based 120**-order model is plot-
ted. At low frequencies the actuator transfer func-
tion from current input I,.4 to position error output
er is a critically stable system with a phase lag of
180° (rigid body mode). At higher frequencies the
plot shows parasitic dynamics.

Given the model G = G piGoarmGact, the con-
trol design involves the definition of a configuration
I(G, M, K), the choice for a suitable norm, the cre-
ation of relevant frequency weightsin M, and finally,
the synthesis of K. The design of a low-order con-
troller via model-based control design requires some
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type of order reduction. In the sequel, we show the
effectiveness of our closed-loop reduction strategy in
finding a K, that gives Z(Gyz0, M, K,) a favorable
disturbance attenuation behaviour.

As an example we will show results for optimal H;
control. In (Wortelboer et al., 1997) also the results
for H,, control are shown. The performance objec-
tive is defined in terms of a four-block transfer func-
tion matrix, being the transfer from disturbances on
setpoint (track) and plant input (shocks and vibra-
tion), with weights W, and W respectively, to (ra-
dial) error and controller output (current) as signals
to be controlled, with weights W, and W, respec-
tively.

In the sequel we will use the twin-feedback configu-
ration:

F=I(G,M,K)
with the master weight
o 0 Wa|lIy
W, | W,W, O |0
M = s a ™ 2
ol e ol|w (28)
B RG SHORO

Note that M can also be written in a matrix product
form with each weight only occurring once.

4.2 Iterative model and controller reduc-
tion

The procedure for achieving high performance low-
order controllers can be summarized as follows: we
start with the 120**-order model Giz9, a master
weight M, including the weights W, ; . 4 and a sta-
bilizing (PID) feedback Kj3. Fig. 7 shows the mag-
nitudes of the frequency responses of the weights

31417
W () e
e 3y
78.467s% + 4.7330 - 10%s + 1.9826 - 101!
Wi(s) =

s? 4+ 1.2566 - 10%s + 3.9478 - 10!

where W, can be thought of as shaping the perfor-
mance and W, the robustness. Both W, and W, are
chosen equal to 1.

The stabilizing controller K3 is a PID controller
with first-order low-pass at high frequencies:

Kj(s) = —7.6746 - 10*-
(s +3.1447.10%)(s + 8.6207 - 10%)
s(s + 6.6225 - 103)(s + 6.2832 - 104)

Applying closed-loop balanced reduction we can ob-
tain a low-order model, for which an H, optimal
controller can be calculated, which in turn can be
reduced in closed-loop. With this low-order con-
troller the procedure is restarted. As a final step
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Fig. 7: Magnitude of frequency responses of perfor-
mance and robustness weights

the low-order controller is used as starting value in
a non-linear optimization routine to achieve better
performance and possibly obtain the global mini-
mum. In Fig. 8 the procedure for the H;-synthesis
case is shown.

In the following section we will describe all the sub-
sequent steps as mentioned in Fig. 8.

Step 1. Model Reduction:

Gy = baleu(I(“Gﬂ,Ms,Ka)) (aa.)
The criterion in the model reduction step is the rela-
tive change of the closed-loop transfer function ma-
trix measured in Hj-norm:

- |Z(G120, M3, K3) — Z(G», M3, K3)||2

a(r)
£ Z(G120, M3, K3)[l2

<1

Fig. 9 shows this relative error 4(r) as a function of
the order 7 of the model.

A good approximation is possible with » = 20. Of
course, it is worthwhile to investigate even lower
order approximations. However, in this stage we
should be very carefull about deleting any dynam-
ics in the model which is not excited by the simple
controller K3, but which might become important in
the final stage. So here we will choose a model with
a relatively high-order, and in a second iteration we
will try to further reduce the model, using H; opti-
mal controllers in the calculation of the closed-loop
error transfer function.

The new model G39 enables the calculation of an
H, optimal controller.

Step 2. Controller Calculation:
Ka3 = HyKa3(Z(Gz20, M3, _- ) (b)

¥(23) = || Z(G20, M3, Ka3)||2 = 913.76
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The six steps of model reduction (1,4), controller design

(2,5), and controller reduction (3,6):

1. balR20(Z(G120, M3, K3))
2. Hzxgs(r(cznst;))
3. balR11(Z(G20, Ms, K33))
4. balR14(Z(G20, M3, K11))
5. HoK17(Z(G14, M3, _-_))
6. balRy(Z(G12, Ms, K17))
Fig. 8: Reduction scheme for the H; case
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Fig. 9: Hj-norm of the relative error for model re-

duction for Gy
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Step 3. Controller Reduction:

K11 = balR11(Z(G20, M3, K33)) (ce)
In the controller reduction step the criterion for
choosing an appropriate r is the H;-norm of the
closed-loop standard plant F = Z(Gy9, M3, K, ):

¥(r) = ||Z(G20, Ms, K., )||2

In Fig. 10 the Hy-norm of the closed-loop system is
shown, as a function of controller order.
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Fig. 10: Hj-norm of the closed-loop system for re-
duction of Kjg

The figure clearly shows that the reduced-order con-
trollers for » > 11 are almost as good as the original
K33. The ninth-order controller would be appropri-
ate and we could stop here. To see how the iteration
proceeds we take the eleventh-order to do a further
model reduction step.

Step 4. Model Reduction:

G14 — bal‘R“(I(_an,Mg,Ku)} (dd)
Again in this model reduction step we use as crite-
rion the Hy-norm of the relative error, but now with
the 20*"-order model as starting point (and not G129
because of the computational burden involved), and
the controller Ky from the previous step:

= [|Z(G20, M3, K11) — Z(G,, M3, K11)||2
|Z(G20, M3, K11)||2

Figure 11 shows this relative error é(r) as a function
of the order r of the model.

A very small approximation error is made with a
14*h-order model. Using G4 we can again calculate
an H, optimal controller. Note that G;4 is unsta-
ble and that (a) G14 could also have been selected
directly based on Fig. 9.

<1

é(r)

Step 5. Controller Calculation:
Ki7 = H3K17(Z(G14y M3, - )
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Fig. 11: Hj-norm of the relative error for model re-
duction of Gag

¥1f) = [II(Gl4,M3,K17)||2 =913.77

Step 6. Controller Reduction:

Ky = balRy(Z(G14, M3, K17)) (f)
The Hj-norm of the closed-loop standard plant F
is:

() = || Z(G14, M3, K., )||2

In Fig. 12 the Hy-norm of the closed-loop system is
shown, as a function of controller order.
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Fig. 12: Hj-norm of the closed-loop system for re-
duction of K7

From the figure the choice for r = 9 is evident. No-
tice that a similar norm would have been obtained
if in step 3 (cc) a ninth-order controller would have
been taken. Hence, steps 5 and 6 could have been
skipped in this case. Since the final reduced-order
controller will be further optimized using fixed-order
H; optimization it is only relevant to have a rea-
sonable starting value for the controller parameters.




Nevertheless, the eleventh-order controller from step
3 still was relevant for the model reduction in step 4,
leading to a low-order approximation of the plant,
enabling a faster calculation for the final optimiza-
tion. Besides, the fact that two different roads lead
to approximately the same result is a strong indica-
tion for the robustness of the proposed scheme.

Frequency Responses
In Fig. 13 the magnitude of the frequency responses
of the model and model-errors are shown.

madels
40 ;
— G120
20+ w e G120-G20
== G120-G14
i14% s G20-G14
A A
\,
Y AY
X
o \,
T 5
£ LY
£ R
g —40r \
s N
i S 3
h ‘\ “-
-60F 5 , "
‘\ L "I )
et MR i
-80F ""'f,_ s
-100 : & :
10’ 10’ 10'

Frequency [Hz]

Fig. 13: Magnitude of the frequency responses of
the models

Figure 14 shows the magnitude of the frequency re-
sponses of the controllers.

4.3 Fixed-order H; optimization

Using the reduced-order controllers as initial val-
ues, we are now able to start the fixed-order Hj;-
optimization. The results are summarized in Tables
1 and 2 below.

Table 1 shows the results obtained using the
reduced-order model (G3), indicating that further
optimization improves results significantly for r <
10. This also holds for the (computational much
more involved) case with the full 120**-order model.
It should be noted that the convergence of the al-
gorithm is fast provided the closed-loop balanced
low-order controllers are close to the minimizing
reduced-order controllers. From Table 1 we see that
for » = 7 the closed-loop balanced result is even
worse than the fourth and fifth-order results and not
surprisingly this case does not converge! It is em-
phasized that these results may be only local min-

cantrollers

Magnitude [dB]

T

-15
10

Fig. 14: Magnitude of the frequency responses of
the H; controllers

Table 1: Performance of reduced-order controllers:

Table 2: Performance of reduced-order controllers:

57

Frequency [Hz]

] T ” closed-loop ba.lanced|Hg-optimized

23

*913.76
913.77
914.27
946.61
1032.86
1022.61
1023.43

913.76
913.77
914.17
916.63

no conv.

920.56
979.24

”I(G2|J| MS) K‘f‘]”?-

] r || closed-loop ba.lanced|Hg-optimizeﬂ

9
5

913.80
946.61
1022.54

913.80
916.65
920.58

|Z(G120, M3, K)||2-




imizers, still the improvement over closed-loop bal-
anced results is general.

5 Conclusions

Using modern optimal control schemes and newly
developed reduction schemes it is now possible to
derive controllers of limited complexity that achieve
almost optimal performance. Prerequisites are the
availability of an accurate model and the possibility
to translate the control objectives into a minimiza-
tion problem.

Straightforward extensions of frequency weighted
balanced reduction are very suitable for application
of order reduction within controlled systems. Com-
bined model and controller reduction in a twin feed-
back configuration is ideally suited for model-based
fixed-order control design based on high-order mod-
els since the interconnection structure incorporates
the same weighting functions as the standard control
design configuration. The key algorithm for closed-
loop balanced reduction is almost as fast as stan-
dard balanced reduction. The iterative process for
fixed-order control design starting from high-order
models can be executed in an interactive way using
a new toolbox for use with MATLAB.
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Abstract.

The fully parallel driven construction of a Stewart platform is often used as

a flight simulator motion system. Higher standards in motion realism imply the use of
advanced model based control. This paper considers the modelling and analysis of a
Stewart platform. In general, models of parallel robots result in combined algebraic and
differential equations, which causes difficulties with simulation, analysis and model based
control. In this paper it is shown that by making the right choices in parametrization
within a modern modelling method, these difficulties are circumvented. As a result an
explicit differential model, in which the different model parameters are clearly separated, is
obtained. This provides a suitable starting point for simulation, analysis, model reduction

and model based control.

Keywords.

1 Introduction

The use of robot manipulators is widely spread in
industry nowadays. Most of these manipulators
are constructed as a series connection of joints and
links. The dual form of these robots, the parallel
manipulator, is less often seen to be applied. In
(flight)simulation motion systems however, the par-
allel construction is almost invariably in use. The
Stewart platform (see Fig. 1), introduced by Stew-
art (1965) is a 6 degrees-of-freedom (d.o.f.) parallel
manipulator which is applied in most of the current
high fidelity flight simulators. These systems are the
subject of this paper.

There are several advantages in applying a parallel
construction. This kind of manipulators have higher
rigidity and accuracy due to the parallel force path
and averaged link to end-effector error. The inverse
kinematics (from link to end-effector coordinates)
which is a problem in path generation of serial ma-
nipulators is easily solved in parallel robots. There
are also disadvantages. The dual forward kinemat-
ics is a complex algebraic problem and has in general
more than one solution (Rahaven, 1991). Modelling
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modelling, nonlinear systems, multibody, mechanical systems.

the dynamics is also less straight forward.

For several reasons, feedback control of these mo-
tion systems is still decentralized i.e. per actua-
tor without taking mechanical coupling into ac-
count. Setting higher standards of motion realism
in simulation will involve modern control strategies
in order to fully benefit from recent constructional
and computational improvements in flight simula-
tors e.g. light weight, low center-of-gravity (c.o.g.)
platforms, high frequency airplane dynamics simula-
tion (Advani, 1993). This research has been done in
direct interaction with this development within the
Simona institute. Also use of a Stewart platform as
a more general robot (Nguyen and Pooran, 1989)
will require high performance control of motion.
By incorporating more structural system informa-
tion i.e. a model into the controller, it is possible
to achieve higher performance. Most modern con-
trol strategies are therefore model based in some
way (directly, in design or evaluation). In this case
the quality of motion depends on the fidelity of the
model. Deriving a model of the mechanics of the
Stewart platform manipulator for analysis, design
and control will be the subject of this paper. To




arrive at a model with structure from which insight
can be gained, modelling laws will be done based on
physical laws.

Modelling the dynamics of a Stewart platform as a
multibody system has been done in Lee and Geng
(1993) who claim to be the first to present a com-
plete model and with more simplifications in Do and
Yang (1988) and Liu et al. (1991). Modelling the
mechanics of this platform can be done in several
ways and with various objectives in mind. The equa-
tions of motion can be derived by using the classi-
cal approach of Lagrange (Lee and Geng, 1993) or
Newton-Euler (Do and Yang, 1988).

In general, deriving the equations of motion of a
parallel manipulator results in combined differential
and algebraic (constraint) equations (see e.g. Rober-
son and Schwertassek (1988)). In simulation and
control this formulation can cause difficulties (index
problems etc., Brenan et al. (1989)). In this paper
it is shown that an explicit differential model for
the Stewart platform results if one makes the right
choices in parametrization. Dependent variables are
explicit functions of the integrable differential equa-
tions. In this way index problems, etc. are circum-
vented.

By using a modern method like Kane’s (Kane and
Levinson, 1985), which have the advantages of both
the Newton-Euler and Lagrange formulation but
without the corresponding disadvantages (Huston,
1990), it will be shown that applying this approach
can result in a model from which more insight can
be gained.

Together with the alternative parametrization, this
is advantageous:over the models earlier presented in
literature, if one wants to apply a model for both
analysis, simulation and control. Model based feed-
back, however, is still more complex for parallel ma-
nipulators, since the dynamics are only described in
end-effector coordinates and the measured signals
are link related. Next to the fairly low performance
requirements of flight simulator motion systems in
the past, this will probably be the reason that in
most of these motion systems, feedback controllers
are decentralized (one siso loop per link i.e. actua-
tor).

In this paper some of the disadvantages of decentral-
ized control can be shown by analysis of the derived
model. To apply a simple, but accurate model based
controller in practise, one would like to quantify the
errors made by undermodelling, to be able to do ro-
bust analysis of the control scheme. The modelling
approach taken in this paper aims at a model from
which the influences of different system parameters,
like masses, inertias, velocity, gravity can be clearly
separated.

In this paper only the mechanics of the system is
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Fig. 1: A schematic view of the Stewart platform

modelled. The actuators are considered ideal force
generators in the direction of the sliding joints. In
practice the dynamics of the actuators e.g. hydraulic
servo systems, has also to be taken into account in
control design.

This paper is organized as follows. After stating
some notation in Section 2 the fundamental formu-
las of mechanics to describe the kinematics and dy-
namics will be introduced in Section 3. Then in Sec-
tion 4 the Stewart platform will be defined in order
to derive a model of its kinematics and dynamics.
After some model analysis in Section 5 with the con-
trol objective in mind, finally some conclusions will
be given in Section 6.

2 Notation

Capital symbols, X are used for matrices, & for vec-
tors, z for scalars. With some scalar (energy) func-
tions A is used. & x § denotes the vector prod-
uct which can also be written as X§ = (¥)Tz
where X is a skew symmetric (X = —XT) matrix
parametrized by the vector, 7 = [:::1 Ty T3 ],
such that the result is the vector product.

0 —Z3 T2
Xoies Z3 0 -z
—I2 I 0

(1)

X x Y denotes vector wise product of the columns
stacked in the matrices.

The index &, is used for the normalizing operation
Z, =&/ | Z | with | Z |= V&Ts. P,_ denotes the
projector to the (hyper)plane with normal vector %,
and can be constructed from the vector product ma-
trix P, = (I-2,27) = (X,)* = X . XT = —(X,.)%




Projection matrices have some nice properties like
Pi=P® =P%,

Motion can be described w.r.t. various frames. A
matrix or vector described in some frame can have a
superscript referring to this frame. For the inertial
frame or ground coordinates the index Z? will be
used. As a function of the moving end-effector or
platform, vectors will be denoted z™. If a (rotation)
matrix maps a vector into another frame it will be
denoted as ZR4 if R maps from A to B.

The subscript index like @; will be used to refer to
the #**-actuator if also non actuator dependent vari-
ables appear in the equation.

3 Fundamental méchanics

The aim of this section is to show how to derive
a limited number of differential, and possibly also
some algebraic, equations, which describe the mo-
tion of a rigid multi body mechanical system. Most
theory described in this section can be found in
Kane and Levinson (1985) as in many other text-
books on mechanics.

All mechanics treated here are based on the assump-
tion of a semi-equilibrium given by Newton’s second
law f — mp = 0 in an inertial frame for any mass
particle. To describe the acceleration, p, of all parts
in a system as a function of a limited number of
variables some kinematics have to be introduced.
After defining the kinematics of a mechanical sys-
tem, its dynamics can be specified. In the equations
of motion the semi-equilibria are described in a com-
pact form as a function of generalized velocities or
coordinates. The integrals over the mass-particles
of a body result in inertia matrices and the active
forces are projected along the velocities by a virtual
work argument.

3.1 Kinematics

The motion of a point (mass particle, joint, etc.)
is usually most conveniently and invariantly defined
w.r.t. the body frame to whom it's connected. The
motion of a frame put in another frame generally
consists of translation # and rotation R. The ori-
entation of a frame can be described by a rotation
matrix. A rotation matrix consists of perpendicular
unit vectors which describe the basis of the frame
into the other frame. As a result a rotation matrix,
R has the following property:

RTR=1 (2)
Any 3 x 3-matrix with this property and det(R) = 1
is a rotation matrix. With det(R) = —1 also the

mirror operation is included (transformation of right
hand frames to left hand frames and vice versa).
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The position of a point 54 in frame A can now be
described in frame B by:

f’B = EB iy BRA}T’A (3]
To describe the velocity of this point in the other
frame one can simply differentiate this equation.
Some properties of the time derivative of the ro-
tation matrix can be derived by differentiating (2).
This results in skew symmetric matrices which can
be parametrized by the vector product matrix of the
(thereby defined) angular velocity @.

RTR=-RTR=0Q4 (4)
with
0 —W3 W3
M= wg 0 -w (5)
—Wsz Wy 0

Now with a vector which is rigidly attached to the
LA =
frame A, p = 0, hence

. :B ~ -B ~
=t + BRAQAPA = +08p°

(6)

were the change of frame for the matrix Q, is given
by QB — BpA NA ARB and 4RB = (BRA}T.

If some variations or velocities can be described as a
product of a (position-dependent) matrix and vec-
tor of other variations this matrix will be called a
Jacobian matrix. In this case
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8% = [I BRABA)T ] [Wa ] =Jp202 (7)

with § denoting the variation.

Although the rotation matrix consists of nine en-
tries, its properties put constraints on these en-
tries. Different parametrizations such as euler an-
gles (three subsequent planar rotations) or euler
parameters (four parameters with one normalizing
constraint to describe one axis of rotation and the
angle of rotation) are possible.

The three euler angles have the disadvantage of a
highly non-linear appearance in both the rotation
matrix and the euler angle velocity to angular ve-
locity transformation. The latter can even become
singular. The constraint equation with the euler pa-
rameters also imposes extra limitations. The choice
of parametrization can however often be postponed
till after the derivation of the equations of motion.
By differentiating (6) the acceleration of the point

rigidly attached to the frame (5" = 0) can be cal-
culated:

5 «B o i %

13B e BRA(PA)TE’A + BRA(Q1A)2p4

i+ (P76 + (AP)2° (8)

Il




If the point considered is already moving in the
frame 4 (p4,54 = p” a4 = " ) by differentiation of
. -B o
p° =t + PRAQ)ApA + BRAA  (9)

the coriolis acceleration appears as the third term
in

5% = aB + BRAGAL2 BRAGAGA = a5 138 120557
(10)
Where p* is a point connected to A momentarily at
the same position as p. Its acceleration a,., is given
by (8).
In stating the equations of motion, the state which
describes the orientation, usually only appears in
the rotation matrix. It is possible to parametrize
the rotation by the unit vector pointing along the
axis of rotation 7,, and the angle u of rotation.
Parametrization by the four euler parameters & =
[e & ]T, given by € = cos(1/2 p) and &3 =
sin(1/2 p)n, results in very convenient (simple to
calculate) relations of the rotation matrix and the
angular velocity in which the euler parameters and
its derivatives play an intermediate role. These re-
lations are extensively dealt with in Nikravesh et al.
(1985) without further derivation they will be given
here.
The rotation matrix can be calculated by taking a
product of two matrices which are linear in &

R(&) = G(e)L(e)T (11)
With
G(E) = [ —&13 €l + &3 ] (12)
and
L(E} = [ —&13 €l + (Em)T ] (13)

€ can be described as a product of @ and a matrix
which is a linear function &.

= %GT(€)¢D (14)

With angles —r < 1/2u < m, &3 can be used as
the (orientation) state from which eg = 1/1 — é5,&3
is solved. These relations are used to get from the
angular velocity to the rotation matrix with help of
an integration routine and initial conditions on &3.
The kinematic relations provide means to state the
motion of the system as a function of a limited
number of (generalized) variables (coordinates or
velocities). Together with the dynamics i.e. semi-
equilibria of active and inertial forces stated in the
next section the equations of motion result.
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3.2 Dynamics

The equations of motion can be stated in several
ways. First the Lagrange equations will be given.
Then it will be shown that from these equations the
more simple Newton-Euler equations follow if one
rigid body is considered. Finally the method based
on Kane and Levinson (1985) will be introduced.
With Lagrange the difference between the kinetic
energy, K, and potential energy, P, of a system is
called the Lagrangian, £: £ = IC — P. For an un-
constrained system described by generalized coordi-
nates & the Lagrange equations are given by:

d (L oL -

dt (85:) 5 =7
The driving moments/forces, f, are all the working
forces (non inertial or conservative) projected along
the variations of the generalized coordinates. These
are called the generalized forces.
By observing that the work §W, done by forces f,
does not change if a change of coordinates z, is ap-
plied, it is easy to show that projecting the forces
along other coordinates is equal to multiplying by
the transpose jacobian.

6W = fT68) = FT Juy 0,022 = (JZ, ., F)T622 (16)

(15)

The kinetic energy can in general be described by

i 1) 4
K= E:ETM(:E):E (17)
Where the mass matrix, M (&), is a symmetric pos-
itive semi definite matrix. It can be shown that the
partial derivative of the potential energy like grav-
ity, with respect to the velocity is zero. In that case

on g0 e O Y s 9 < . 9 b "
M(x)z+a(M(m)m—m (—(,EM(::)) a:—i-g’P{z:) =7
(18)

compactly written as
M(2)z + C(z,2)s + G(z) =7 (19)
with a mass matrix M, a non linear corio-
lis/centripetal matrix C and a gravity vector G. If
a rigid body (with mass m, and inertia I;) is con-
sidered at its center of gravity ¢, the Newton-Euler
equations result. The mass matrix is block diagonal

in this case.
3
w

From the two blocks two independent equations re-
sult. The impulse law:

mI 0

0 I (20)

I
K:bady:E[E GJ][

of = %(m%(a)) =mlé (21)




And the impulse moment law with the generalized
forces fz (moments in this case):
f = %(BRAI;QA)=BR*“I;<§:“+BR‘5‘1AI:@A
=T8RP IE P (22)
The Newton-Euler equations are easily stated for
each rigid body in a system. Extra equations with
unknown internal forces result, however, in using
this method to state the equations of motion for a
multi body system. Applying Lagrange, results in
taking partial derivatives of complex energy func-
tions if the whole system is considered. These are
disadvantages which can be circumvented by using
Kane’s method.
With Kane also generalized variations or velocities
have to be specified. The general formula
f+f =0 (23)
states the (semi-)equilibrium of the active forces, f,
and inertial forces, f*, projected along the direc-
tions of the generalized velocities. To calculate the
over-all inertial forces, as in the Newton-Euler ap-
proach, the specific inertial forces generated in the
frame of each body can be stated. As in the La-
grangian approach, a minimal number of equations
results by writing the motion of the bodies as a func-
tion of the generalized velocities and projecting each
specific force from its local coordinates to the gener-
alized ones. Also the active forces can first be stated
in an appropriate frame after which projection fol-
lows. The projection in general consists of a change
of coordinates i.e. a multiplication with a jacobian.
This procedure can also be automated (Kane and
Levinson, 1996).
With this method it is possible to start with a
strongly simplified system by calculating part of the
(inertial) forces and separately adding other forces if
a more accurate model has to be taken into account.
The amount of generalized velocities can exceed
the number of d.o.f. of a system. In that case,
next to the differential equations given by the semi-
equilibria of the forces (23) constraint equations of
velocities and position, generally stated as
A(z,t)% + b(z,t) =0, (24)
should be added. With a non-holonomic system
these constraint equations cannot be integrated to
constraint position equations.
A parallel manipulator, like the Stewart platform,
is a holonomic system. Since there are kinematic
chains, it is often easier to state the equations of
motion of a parallel manipulator by using constraint
equations. In that case the manipulator is described
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Fig. 2: Stewart platform actuator link construction

as a serial system (with some of the joints dis-
connected). The parallel connections are incorpo-
rated by adding constraints. A combined differ-
ential /algebraic description results. This kind of
description causes difficulties (index problems etc.,
Brenan et al. (1989)) in simulation and model based
control. With these goals in mind during modelling,
it is more convenient to state the model in explicit
differential equations if possible. In the next section
it is shown that this can be done with the Stewart
platform.

4 Modelling the mechanics of the
Stewart platform

In the previous section the general procedure of stat-
ing the equations of motion was given. In this sec-
tion this will be applied in modelling the Stewart
platform. Kane’s method of projecting local semi-
equilibria (equations of motion) will be used to ar-
rive at a compact description. To state the local
equations, both Lagrange and Newton-Euler are ap-
plied wherever either one is most appropriate.
With the choice of platform position/orientation as
the generalized coordinates, all equilibria can be
written as explicit functions of these coordinates
(and its derivatives).

The parallel manipulator construction of the Stew-
art platform is first defined. To derive the equa-
tions of motion the velocity and accelerations should
be described w.r.t. a limited number of generalized
variations. This defines the kinematics after which
the semi-equilibrium equations of the active and in-
ertial forces can be stated.




4.1 Definitions

The Stewart platform (Fig. 1) consists of an end-
effector body with mass, mz, and 3x3 inertia ma-
trix I7* w.r.t. end-effector frame connected to the
c.0.g. of the body which has varying coordinates &
in the inertial frame. The end-effector body or plat-
form is connected by six parallel actuators at @; to
b; to the inertial frame. The length of the six actua-
tors can be varied. In describing a specific actuator
the supscript ¢ for the i** actuator will be left away.
An actuator (Fig. 4) can be modelled as 2 bodies.
A rotating body, b, with mass m; with a constant
distance of 7, of the c.0.g. bc to the connection
of a 2-d.o.f.-rotational gimbal joint to the inertial
frame at b. The moving actuator body, a, with mass
m, with a constant distance of r, of the c.0.g. ac
is connected with a 3-d.o.f.-rotational gimbal joint
to the platform at a. With a 1-d.o.f. controlled
sliding joint between these two bodies the length of
the actuator can be varied.

The inertia of the actuator bodies is neglected
around the actuator axis. It is assumed to be uni-
form perpendicular to this axis. i, is the inertia of
the moving actuator body at dc and any axis per-
pendicular to the actuator. ¢, is the inertia of the
rotating part of the actuator w.r.t. the connection
to the inertial frame (b) and any axis perpendicular
to the actuator.

With this assumption also the case (often seen in
practise) in which the moving part of the actua-
tor both rotates and slides at the connection with
the rotating part, and has only 2-d.o.f. rotation
w.r.t. the platform, results in the same dynamics.
In general (apart from singularities) with the 6-
d.of. (one of which is controlled) of each actuator,
the 6-d.o.f. of the platform, freely moving in the in-
ertial frame, can be described and vice versa.

4.2 Kinematics

The kinematics of the Stewart platform will be de-
scribed by first defining the transformation of the
platform to actuator coordinates. Then by differen-
tiation also velocity and acceleration of all relevant
points can be calculated as a function of the plat-
form motion, whose velocities will be taken as the
generalized speeds.

Almost all vectors can be conveniently described
in the inertial frame. Apart from a™ whose time
derivative in the moving frame is 0.

The vector, I;, between the two attachment points
of an actuator can be described by

L=¢+ Ta" - b; (25)
Now the length of the actuator, | [; |*= T‘rl_., and the
unit vector in direction of the actuator, I, ; = Hr,_[
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can be calculated from the platform variables 2 and
the orientation matrix T' = 9R™ which will be the
only rotation matrix used.

The velocity of the length of the actuators can be
calculated by projection of the velocity of the upper
gimbal attachment point, ¥,, in the direction of the
actuator, since £ |1 |= i\/f’r_ T‘ = IT5,. The

velocity of the upper gimbal points is given by

Tp, = c+ @ x Ta™ (26)
By projecting this velocity, the velocity of the actu-
ator appears.

=R o= &+ 8 (0% T (27)
With some reordering and written as matrix equa-
tion (e.g. ¥, stacked in V,) for all the actuators the
jacobian between the actuator and platform veloci-
ties is defined.

[=LTt+ (TA™ x Lp)T& = Ji0% = LTV, (28)
This jacobian matrix is one of the most important
variables in the Stewart platform. The jacobian be-
tween platform and gimbal point velocity is defined
by

W A 1 Ll L (29)

To determine the inertial forces of the actuators the
jacobians from gimbal point to the c.o.g.’s of the
actuators are also important. The angular velocity
of the actuator perpendicular to the actuator @, is
defined by i’
- Va
I, 7]
Now the velocities of the ¢.0.g.’s of the actuator bod-
ies ¥, and 7. can be stated as a function of #,:

(30)

Voe = Ta+ @, X (—Tal_n} = (I" ﬁ_nllpl,, )ﬁa = Jac.af’m
(31)
and
A = i s
Vhe = Wg X Tpln = m-pt.. o ch.aﬁa- (32)

The acceleration of the actuators can be calculated
by differentiating (28).

I=Jiof + Jipf = LIV, + LTV,  (33)

The derivative of the unit vectors I,, ; in the direction
of each actuator can be calculated with:

po_od € I -Tgi|
o ey GRIRY o s
(I =1.0%) 1
= —— 2 F, = — P T, (34)
| 1] [ 1]




The acceleration of the actuator length consists of
a term which is the projection of the acceleration of
the upper gimbal in the direction of the actuator and
a positive quadratic term which is the centripetal ac-
celeration of the actuator. So the acceleration of the
actuator length is always positive if the platform is
moving with constant speed in any direction. The
acceleration of the upper gimbal can be derived di-
rectly with (8)

i=C+0x8+® % (@x%8)=Jo8— | @ |* Poa;

(35)
The acceleration of the c.o0.g. of the moving actuator
part also generates inertial forces and can be written
as a function of platform motion.

- d - A d - . T —
Vae = a?}ac = a‘;(;}uc‘al}u) = Juc,aﬂc"'Jac,a”a (36)

So the jacobian needs to be differentiated.

. d Ta
Ja.c,ﬂ = I Sy
T=17

dt
Yo, -T7 Ta T RS,
= | ] |31'Ja Iﬂ.P(“ -+ W(H“T}a!“ -+ lnﬂa }Jg")

R,) (37)

Now

Ta

jn:,uﬁa = W(l -'Plnﬁn |2 fﬂ + 2(53Fﬂ)ﬁnﬁﬂ) (38)

which clearly shows a centripetal and a coriolis term.

4.3 Dynamics

First a simplified model with the platform as the
only (rigid) body, will be derived. Then the influ-
ence of the actuator inertial forces is quantified.

4.3.1

The basic structure of the Stewart platform model
results if one considers the platform alone, not tak-
ing into account the inertial forces of the actuators.
Since the system in this case consists of only one
body, the equations of motion are easily derived
with Newton-Euler taking the velocity of the plat-
form coordinates as the generalized speed. With
(21)

Dynamics of the platform alone

(39)

where f are the forces generated by the actuators
and g is the gravity vector. And (22)

Lnf + mgﬁ = mgé

[TA™ x L, | f = Lo+ OL.e (40)

With I: = TI*TT. Combining these two results in
the simplified model of the Stewart platform.
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mI 0 é 0 mg
% 2] a] [ ][] e
In short § i)
Jt'{;f = M:& + C:(%) + G- (42)
4.3.2 Influence of the actuator inertial

forces

The inertial forces of the actuators can be split up
in three parts: the gravitational forces, the inertial
mass forces and the influence of its inertia. These
forces will first be projected on the upper gimbal
points. Any force generated at this point is easily
projected at the generalized platform velocities by

e laale (43)
The gravitational forces are easily projected along

the platform velocities, the rotating part of the ac-

tuator
mpTp

[ L]
In a position where the gravity vector is directed
along the actuator (7,) this force would not con-
tribute. The contribution of the moving part is in
that case maximal at @ as is shown by

Foy = e amsd = P.g (44)

= ! Ta :
.fug = Jz::,amng =me(I — —P,)7 {45)

|
The inertial force generated by the mass at the
c.0.g. of the moving part of the actuator is easily

described in this point.
.f_a.c == ma.i-’a.c (46)

Projection of this force at the upper gimbal point
results in

ra l —Ta 2 =
-fm, = ma(I = F’;ﬂ i %H“ ]‘Un : (47)
U= a/la
+ 2m¢————(| || 7 |1; W (IX5,) Py, 5 +
Ta 5+ _7 b
+ mg 7 lzl“”c P, 5,

The first term consists of a part in the direction of
the actuator where the mass directly acts on the
gimbal point. Perpendicular to this direction the
influence gets smaller with the squared ratio of dis-
tances to the lower gimbal point. The second and
third term are the coriolis and centripetal force.
The inertial forces generated by the inertias of the
lower and upper part of the actuator can be taken
together since their contribution to the kinetic en-
ergy is equal:

1 3
Kii = 5@3‘@,,(% + 1) (48)
I_T(tg +1b) A 1_-1'- L
== E'vn I I |2 H“vu E'Ua M::"I& a




With Lagrange and

d
E(Ml.nu“b) 53

ta + 1) o 77 —o3 T o
—(H—lstzvu LBy, + Pyl + TP,

6Ki'¢lib —
6Pa
et 8) (72, 0, + LT B ),

the inertial forces at a result

2(iq + 1p)

| l |3 (Eﬁn)P!..ﬁa-

Fe =M, Vs~ (49)

The contribution to the mass matrix only exists at
motion perpendicular to the direction of the actu-
ator. Next to this, only coriolis and no centripetal
terms appear. The coriolis force is generated as a
result of the inertia points in the opposite direction
as the one generated by the mass. This is due to
the fact that the influence of the inertia decreases
while that of the mass increases as the actuator gets
longer.

4.4 The Stewart platform model

The equation of motion of the Stewart platform in-
cluding the inertia of the actuators can still be put
in form of

Jiof = MiE + Cu(#,2) +Gi(2)  (50)

Where M, C; and G are given by

[
M, = Mz + Z Jz,:(Mm.,.' +Mi¢,.'+ib.-')‘!ni.=§: (51)
i=1

]
Ct = GE + Z Jz:.z(cma.u o C‘:‘,,.i,in'.)Jﬂi,ti e
=

= | w |2 (an,i = Min,ilib.i)Pwﬁi (52)

(]
Go=0e+ 3 IE s (Gmas + O (59)
i=1

This model is parametrized by the platform coordi-
nates only and the effect of each term (mass, coriolis,
centripetal, gravity, driving forces) and parameter
(mass, inertia, centers of gravity, gimbal point) can
be clearly distinguished.
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5 Model analysis

In this section the model of the Stewart platform will
be further analyzed. Three issues, with the control
objective in mind, are treated. The jacobian matrix,
Ji,z, given by (28), plays a central role in the sys-
tem, as will be discussed first. Secondly analyzing a
linearized version of the model reveals some of the
drawbacks of decentralized control. Motivating the
use of model based control. In that case one would
like to use a simplified model as given by (41) in-
stead of a complex model like (50). Quantification of
the differences between these two models should be
possible to justify this simplification. The influence
of the parasatic actuator forces, which quantify this
difference, will be discussed in the third subsection.

5.1 Interpretation and use of the jacobian
matrix, J; .

If the system has to be controlled by the actuators,
the jacobian specifies how the control inputs, the ac-
tuator forces, influence the platform (accelerations)
which are, especially in flight simulation applica-
tions, often the variables to be controlled. Further
the measurable outputs are often only the actuator
lengths. The derivatives (actuator speed) of these
outputs are given by the product of the jacobian and
the platform speed.

There are two interpretations to the jacobian. In the
force interpretation the rows of J;, give the (gen-
eralized) forces in the platform coordinates given a
unit force in an actuator. In the velocity interpre-
tation the columns of J; . specify the velocity of the
actuators to have unit velocity of the platform.

In model based control, the inverse information is
of interest. The measured variations of the actuator
have to be put in platform variations to calculate
corrections in a model specified in platform coordi-
nates. Each column of the inverse jacobian, J !,
specifies what velocity (angular velocity included)
of the platform is necessary to have elongation of
just one actuator while the others only rotate,

The correction forces in a model based controller are
also calculated in platform coordinates. Each row of
Jl:: specifies the forces necessary in the actuators to
have unit force correction in platform coordinates.
The inverse jacobian appears in feedback linearizing
structures (like computed torque, etc.) which will
be dealt with in forthcoming contributions.
Another problem of a parallel manipulator with only
the link position measured are the forward kinemat-
ics. It is not known how to analytically calculate the
platform position (without decision making about
roots) from link measurements. The jacobian pro-
vides a way to apply a Newton-Raphson iteration to
calculate the solution provided one starts in a point




sufficiently close to the solution and away from ja-
cobian singularities.

Tiy1 =5 + J;T:’. (I_mecaured 13 TJ) (54)
The condition number of J; . also provides a mea-
sure for the controllability of the platform from the
actuators which becomes uncontrollable at singular-
ities of this matrix.
Further most of the constraints of the platform are
caused by the characteristics of the actuators like
limited stroke, maximum speed and force. The ja-
cobian plays an important role in translating these
limitations into platform coordinates.

5.2 Analysis of a linearized model

If the model of the Stewart platform is linearized at
zero speed in some position with gravity assumed to
be compensated for, the following equation results
from actuator force to actuator acceleration:
=DM 13 F (55)
Consider each actuator provided with a similar com-
pensator, as is often the case in decentralized con-
trol. This compensator feeds back the difference
between the desired and measured actuator length
to the actuator which generates a force. Let the
transfer function from the error length to the ac-
tuator force in the linearized case be given by g(s).
Now some interesting properties of the compensated
system can be derived.
The mass matrix can be decomposed into a singu-
lar value or eigenvalue decomposition (which is the
same for a positive definite symmetric matrix):
IMJT = UAUT (56)
The unimodular matrix, U, can be interpreted as
the interaction matrix. The A-matrix can be seen
as the mass matrix in the decoupled direction. Each
element \; now defines the mass seen in the direction
specified by the i*"-column of U.
The properties of a closed loop transfer function
like the sensitivity from reference length to the error
length, & = S(s)7, are influenced by the system’s
mass matrix, JMJ7, in the following way.

2

ia=+;19idj) 0
S(s)=U =, ur
.3
0 (S O)
(57)

With decentralized control the interaction directions
are specified with the model. In a flight simula-
tor motion system as described in Advani (1993)
e.g. one typically finds interaction of surge/pitch

67

and sway/roll. Further the compensator should be
able to deal with mass variations given by the singu-
lar values of the mass matrix. With a flight simula-
tor the condition number of the mass matrix, which
is a measure of these variations, is given by

/\m azr

Kk(A) = s

(58)
It is already larger than 10 in the favourable neutral
position. One cannot expect high performance from
such a system.

With model based control, unlike decentralized con-
trol, decoupling of the mass matrix is possible and
as a result of this, each 'reflected’ mass, A;, can be
compensated for separately.

5.3 Influence of parasitic actuator forces

Adding the inertial influence of the actuators to the
simplified model did not change the compact form
of six coupled second order differential equations.
The equations, however, became much more com-
plex which is not favourable in model based con-
trol in which the model has to be calculated at high
speed.

In Ji (1994) it is claimed that the actuator inertial
effects can be seen as a change of the platform mass,
inertia and c.o.g. This claim should be carefully
interpreted as this change is not only dependent on
the position, but also on the direction of the motion
i.e. not valid at one operating point. In case of the
flight simulator e.g. the mass of the actuators add
more to the mass matrix of simulator in heave than
in the lateral directions of surge and pitch.

With the equations given, it is possible to give
bounds on the forces not taken into account if the
inertial forces of the actuators would be neglected.
Although with conventional motion systems this is
often justified, the tendency towards light weight
platforms makes the actuator inertial forces more
evidently come into play. Total neglection would
result in a too rough approximation in that case.
Approximation by a constant additive term would
be more convenient.

6 Conclusion

In this paper the dynamics of the Stewart platform
is stated as a set of differential equations without
algebraic constraints resulting from the kinematic
chains in the system. This is possible by writing the
actuator motion explicitly as a function of platform
motion.

By using Kane’s method of projecting forces onto
the generalized velocities, each contribution is quan-
tified separately.




In linearizing the system, it is shown that with a de-
centralized controller the coupling through the joint
mass matrix is not influenced. The singular values
of this mass matrix quantify the mass variations a
decentralized feedback controller has to deal with
(moving in different directions). These variations
appear to be considerable in practise which moti-
vates the use of multivariable, possibly model based,
control.

To apply known non-linear model based control
techniques for the Stewart platform, one needs to
deal with the forward kinematical problem of a par-
allel manipulator which appears in the feedback
path. This will be dealt with in forthcoming contri-
butions.
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Abstract.

This paper shows how, using modern control theory, a high-performance mo-

tion control system is designed for a flexible mechanical servosystem, which shows im-
proved performance compared to a standard motion control system. The design comprises
multivariable feedback control taking modelled dynamic interaction into account, together
with model-based design of reference and command signals which minimize residual vi-
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1 Introduction

In order to be competitive, modern mechanical po-
sitioning devices, are required to perform both fast
and accurately. Due to the inherent flexibility of the
mechanical construction of most positioning devices,
these performance requirements are conflicting, i.e.
the faster the system moves, the less accurate it will
be, due to large vibrations induced by fast move-
ments and large acceleration forces.

One possible solution for this flexibility problem, is
to redesign the positioning mechanism, for exam-
ple by enlarging the stiffness of the flexible compo-
nents. However, besides the fact that this solution
may be rather expensive, it is often impossible to
change only some components without altering the
construction of the machine. Therefore, the goal
of the research reported in this paper, is to find a
solution for the flexibility problem by designing a
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plications of Control Technology, PACT'96, 29-30 October
1996, Epe, The Netherlands.
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high-performance motion control system.

In general, a motion control system of a servo mech-
anism has three degrees of freedom, see Figure 1.
The first degree of freedom is the choice of an out-

® ®T‘
rhe c _E]“u yk

O i 2d

Fig. 1: General 3 degree-of-freedom motion control
system; P,C, f,r,u,y,e, denote the plant,
feedback compensator, force input, output
reference, system input, system output, and
tracking error, respectively.

put reference signal r, i.e. a desired trajectory which
the measured position output y is assumed to fol-
low. The second degree of freedom is the choice of
a feedback compensator C, applied to stabilize the
system at any desired position, to suppress distur-
bance signals acting on the system, and to force the




system output y to follow the desired trajectory r.
The third degree of freedom is the choice of a force
profile f applied to the system input, i.e. a force
generated by an actuator, most times applied as a
feedforward signal of r, in order to speed up the
tracking of 7.

In a recent report, the motion control system of a
flexible zy¢-stage is described, which fits well into
the general configuration of Figure 1, see Bartelings
et al. (1996). In this motion control system, hence-
forth denoted as the standard control system, the
force profile f is chosen as a time-optimal ‘bang-
bang' profile, i.e. first the stage is maximally accel-
erated, whereafter it is maximally decelerated, so as
to reach the desired end position. In practical situ-
ations, also the derivative of the force profile (actu-
ator jerk) and the derivative of the position output
(stage velocity) are limited by physical constraints.
The output reference signal r is obtained by inte-
grating the force profile f twice, and dividing it by
a constant gain corresponding to the mass of the
stage, according to Newton’s law; in this case, the
signal 7 is fed forward by the signal f. The feedback
compensator in the standard control system is ob-
tained by statically decoupling the actuator inputs
from the position outputs, and thereafter placing
the poles and zeros of each single loop at desired
locations. Conform the notion of standard control
system, the techniques used for design of this system
will be denoted as standard control techniques.

At present, modern theory on systems and control
offers a large number of (different) techniques for
designing a high-performance motion control sys-
tem, like H,, feedback control, point-to-point con-
trol, two-degree-of-freedom control, and many oth-
ers. These techniques will be denoted as high-
performance control techniques. Most of these tech-
niques concentrate on only one degree-of-freedom.
The goal of the research presented in this paper, is
to find out whether high-performance control tech-
niques can improve the performance of the zy¢-
stage, compared to standard control techniques, and
to find out whether there exists an optimal combi-
nation of the three degrees of control freedom, so
that a maximum performance of the stage can be
obtained. An important feature of almost any high-
performance control technique, is the use of system
knowledge, for example the use of a linear time-
invariant model of a system. Therefore this aspect
will get much attention.

This paper is organized as follows. In the next sec-
tion the experimental setup, used for the experi-
ments shown in this paper, is described, and system
knowledge is obtained by modelling this setup. In
Section 3, a high-performance multivariable feed-
back controller is presented. Section 4 continues
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Fig. 2: Schematic top-view of an zy¢-stage; the av-
erage value of the measurements y; and y;
is taken as position in y-direction, and the
difference between y; and y; is a measure
for rotation ¢.

with high-performance design of the force and refer-
ence signals f and 7, respectively, known as point-to-
point control. In Section 5 a special type of feedback
scheme is presented, known as iterative learning con-
trol, which iteratively updates the force profile in
case the output of the system has to follow the ref-
erence signal repeatedly. Finally, in Section 6 some
conclusions are drawn.

2 Modelling the experimental setup

Figure 2 shows a schematic top-view of a prototype
xy¢p-stage experimental setup, used for the experi-
ments shown in this paper. The stage, consisting
of airfoot, translator (translating part of a linear
motor), and mirror block, is driven by a linear mo-
tor in z-direction. The stator part of that motor is
fixed to the translator parts of two other linear mo-
tors, which drive the stage in y-direction; by driv-
ing these two motors independently, also a slight
rotation ¢ of the stage is possible. The position of
the stage in the horizontal plane is measured with
three laser interferometers, one in z-direction and
two in y-direction. Therefore, the positioning sys-
tem is multivariable, having three actuators, hence-
forth denoted as inputs, and three sensors, hence-
forth denoted as outputs. Since the dynamics in
rotational direction are of less importance, in this
paper only results in z and y direction are shown.

To gain insight in the dynamic system behaviour,
two different ways of modelling have been followed:
analytic modelling and ezperimental modelling. An-




alytic modelling, also called white boz or physical
modelling, concerns the modelling of a system on
the basis of first principles, like the laws of Newton,
explicitly taking into account the physical structure
of the system, see for example Kane and Levin-
son (1985), Fiihrer and Schwertassek (1990). In de
Roover and van Marrewijk (1995) an analytic model
was derived for the stage, which describes the most
relevant dynamic behaviour of the stage in the hori-
zontal plane. The use of this model is to understand
the physical system behaviour in a qualitative way,
and not to give an exact quantitative description. A
quantitative description of the dynamic system be-
haviour can be obtained by performing experimental
modelling, also called black boz modelling or system
identification. The idea of experimental modelling,
is to excite the system dynamics with some suitable
force profile and/or reference signal, see Figure 1,
and to measure some of the input and output sig-
nals during excitation. Using some realization or op-
timization technique, a model can be derived which
explains the measured data, without a direct phys-
ical interpretation, see for example Ljung (1987),
Soderstrom and Stoica (1989).

In de Callafon et al. (1996) an experimental model
was derived for the stage, using frequency-domain
identification techniques; a linearly parametrized
time-invariant model was fitted to a frequency re-
sponse of the system, computed from sets of time-
domain data. Figure 3 shows the computed fre-
quency response, together with a 30** order model
fitted to this response. In the fit procedure, ex-
tra weights were applied which emphasized the mid-
frequency range, important for control design. This
figure shows a typical response of a general me-
chanical servomechanism: at low frequencies, the
response has the shape of a double integrator, ac-
cording to the law of Newton, and at middle and
high frequencies some resonances furn up, due to
the flexible components. This model is used for all
control design methods in the remainder of this pa-
per.

3 Multivariable feedback control

In the standard control system, the inputs are de-
coupled from the outputs at low frequencies, by mul-
tiplying the system with a static pre-compensator.
In Figure 3 it is seen that at frequencies above ~1250
rad/s (=200 Hz), the dynamic interaction between
inputs and outputs cannot be neglected anymore.
The surplus value of modern high-performance feed-
back control techniques like H, feedback control, p-
synthesis, or Quantitative Feedback Theory (QFT),
is the ability to explicitly cope with the dynamic
interaction of a system.
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zy¢-stage (dashed), together with 30" or-
der model (solid), from inputs z,y to out-
puts z,y.

For the zy¢-stage, feedback controllers have been
designed both with H, and QFT design techniques.
In this paper, only the results of the latter tech-
nique are shown. One of the main objectives of
QFT, is to design simple, low order controllers with
minimum bandwidth, that satisfy a number of per-
formance specifications in the presence of uncertain
system knowledge, see for example Horowitz (1963),
Borghesani et al. (1995). In a first step, perfor-
mance specifications are translated to so-called QFT
bounds in a Nichols chart. In a second step, semi-
automatic shaping of a systems frequency response
is performed using a graphical user interface, to sat-
isfy the QFT bounds. The outcome is a diagonal
controller of any desired order, specified by the user.

A complete QFT design has been performed for the
zy¢-stage. Figure 4 shows a Bode plot of the re-
sulting controller, and Figure 5 a Bode plot of the
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resulting output sensitivity transfer function S, i.e.
the closed-loop transfer function from r to e in Fig-
ure 1, given by S = (I + PC)~!. From the lat-
ter figure it is seen that good performance is ob-
tained, in a sense that dynamic interaction has been
sufficiently suppressed, and peaking of S has been
avoided, while the bandwidth of the closed loop is
pushed to a large value. It should be noted that
in the design, dynamic interaction has been taken
explicitly into account by translating it to a QFT
bound. This interaction was not taken into account
in the standard control system.

Fig. 5: Magnitude Bode figure of output sensitivity
S, from inputs z,y to outputs z,y; solid:
model, dashed: frequency response data,

4 Point-to-point control ! 3 ®)
4.1 Input shaping s i i
o™ =40
To make a comparison between standard and high- £’ % 60
performance control techniques more transparent, = e
in this and the next section, only results are shown : e Y
in one direction of the stage. One of the main top- :':" F’““”*’:‘: Irada]
ics of the research presented in this paper, is the 4000
design of force (acceleration) profiles and position 2000 1%
reference trajectories, that minimize vibration of the % z 5:
system at the end of a transient from one chip posi- 4 el
tion to another. From optimal control theory, it is £ ~100
well known that the shortest transient time is gen- ~4000 = & —==3°£‘ Y ¥
erated by a ‘bang-bang’ force profile, i.e. a profile el el
which first maximally accelerates the system, where- Fig. 6: Command response bang-bang force profile
after it maximally decelerates the system, so as to for 2.5 mm step in z-direction; (a) force pro-
bring it to rest in the desired end-position, see Fig- file, (b) normalized spectrum of force pro-
ure 6 (a). However, 'fvhen applying this signal to file, (c) tracking error, (d) close up tracking
the stage, large vibrations were induced during the error with performance bounds.

transient, originating from the flexible elements, see
Figure 6 (c). Although the step time, defined as
the duration of the force profile, see Figure 6 (a),
is the shortest possible, the settling time, defined as
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Fig. 7: Command response limited slope force pro-
file for 2.5 mm step in z-direction; (a) force
profile, (b) normalized spectrum of force
profile, (¢) tracking error, (d) close up track-
ing error with performance bounds.

the time between the end of the step and the mo-
ment at which the tracking error has settled within a
narrow band surrounding the desired end-position,
is even longer than the step time, see Figure 6 (d).
Hence the resulting cycle time, defined as the sum of
step time and settling time, is rather large. The rea-
son for the excessive settling time is easily explained
from the spectrum of the force profile, shown in Fig-
ure 6 (b). Comparing this figure with Figure 3, it
is seen that the bang-bang force profile contains rel-
atively much energy at the frequency range where
the flexible dynamics are located (=~ 1500 — 3000
rad/s), and has even noticeable energy content for
frequencies above 3000 rad/s.

To reduce the high frequency energy content of the
force profile, the standard control system applies
bang-bang acceleration profiles with limited jerk
(time derivative of acceleration), see Figure 7 (a).
By limiting the slope of the profile, the step time
of the profile increases, but, in general the settling
time decreases, as a result of reduced energy content
of the profile at the locations of the resonant system
poles, see Figure 7 (b). Therefore, an optimal slope
can be determined as that value at which the cy-
cle time, i.e. the sum of step and settling time, is
the shortest. For a 2.5 mm step, a jerk of 500 m/s®
resulted in a minimal cycle time, see Figures 7 (c)
and (d). Clearly, the spectral content at the system
resonant poles has been sufficiently reduced.

The standard technique for minimizing residual vi-
bration is easy to apply, since no knowledge of the
flexible dynamics is required at all. However, a dis-
advantage of this approach might be the fact that all
of the high frequency content of the input signal is
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removed, resulting in relatively slow command sig-
nals. Therefore, two other methods are investigated
which do require some knowledge of the dynamics
of the flexibilities. One method concerns the design
of a finite impulse response (FIR) filter, to preshape
an existing command signal, see for example Singer
and Seering (1990), Singhose et al. (1995). The idea
is to synthesize an FIR filter which removes the en-
ergy contribution of a command signal at the system
resonant frequencies. The FIR filter has to be con-
voluted with an existing command signal, for exam-
ple a time optimal bang-bang input, and preserves
its vibration reducing properties after convolution.
The knowledge required to use this method, is the
location of the natural frequency of the flexibility
together with its damping ratio, i.e. the location
of the complex poles of a 2"? order system describ-
ing the flexibility. In Bhat and Miu (1990) it was
shown that the FIR filter has the Laplace domain
interpretation of placing zeros at the locations of the
resonant poles.

The other method concerns the synthesis of a series
of ‘ramped sinusoids’, which approximate a bang-
bang command signal, see for example Meckl and
Seering (1985), Meckl and Kinceler (1994). The ad-
vantage of using ramped sinusoids, is the fact that
these basis functions have very narrow frequency
spectra, allowing energy removal from the input sig-
nal in a narrow band surrounding the system natural
frequencies. This technique neglects the damping of
the resonant frequencies, hence only minimizing the
energy contribution of the input signal at the natu-
ral frequencies in the Fourier domain; consequently,
the only knowledge of the system required, are the
locations of the natural frequencies of the flexibili-
ties.

Since both methods perform equally well, only the
results of the latter method are shown in Figure 8.
The results are quite appealing. EHspecially Figure
8 (b) shows that fine control over the spectrum of
the force profile is possible; by removing energy from
the command signal only at those frequencies where
this is necessary, a relatively fast command signal is
preserved. Note that robustness to uncertainty in
the location of the system resonant frequencies, can
be tuned by varying the width and the depth of the
notch(es) in the frequency spectrum.

Table 1 quantitatively summarizes the obtained re-
sults, showing that high-performance command gen-
erating techniques allow for an extra 6% reduction
of cycle time, compared to the standard command
generating techniques.
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Fig. 8: Command response ramped sinusoid force
profile for 2.5 mm step in z-direction; (a)
force profile, (b) normalized spectrum of
force profile, (c) tracking error, (d) close up
tracking error with performance bounds.

| bang-bang | lim. slope | sinusoids |
Lgren [s] | 4.26e~* 5.46e* 5.07e?
Tyersie [S] | 4.90e~2 2.73¢2 | 2.59¢7°
Trsotoc) nls] 4/ (9 20em® 8.19¢ 2 | 7.66e2
Ty % 100 128 119
Povate’ . [90] 100 89.4 83.6

Table 1: Experimental results of bang-bang com-
mand signal and two vibration reducing
command signals.

4.2 Closed-loop implementation

Since the zy¢-stage is marginally stable, the force
profiles had to be implemented in a closed loop, ac-
cording to Figure 1, i.e. besides suitable force pro-
files, also suitable reference trajectories had to be
generated. As mentioned in the introduction, the
reference signal in the standard control system was
obtained by integrating the limited slope force pro-
file twice, hence making f a feedforward signal of
r. For the high-performance command generating
technique, a reference signal could also have been
obtained by integrating f twice, see for example
Meckl and Kinceler (1994). However, we prefer to
choose a more general model based feedforward set-
ting. Figure 9 shows two general model based feed-
forward configurations. In Figure 9 (a), a reference
trajectory r is generated, and fed forward by fil-
tering it with the inverse of a nominal model P of
the system P. In Figure 9 (b), the force profile f
is generated, and a corresponding reference trajec-
tory is obtained by filtering f with a nominal model
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Fig. 9: Two general model based feedforward con-
figurations; P denotes a nominal model of
the system P.

P. This latter scheme was used for implementation
of the model-based command generating technique.
Since f is fed both to the system and the nomi-
nal model, the feedback controller C operates only
if there is a difference between the system P and
the nominal model P, or if there are external dis-
turbances acting on the system. That is the reason
why the resulting closed loop system is called a gen-
eral two-degree-of-freedom nominal tracking system,
see for example Vidyasagar (1985), Hara and Sugie
(1988).

5 Iterative learning control

Although high-performance point-to-point control
shows promising results, there is still a noticeable
difference between the reference trajectory and the
system output, according to Figure 8 (¢). The main
reason for this, is a discrepancy between the nom-
inal model P and the system P in the two-degree-
of-freedom nominal tracking structure of Figure 9.
From the theory on systems and control, it is well-
known that robust tracking can be achieved, for ref-
erence and command signals which are persistent
in nature, i.e. signals which are non-decaying in
time, like steps, ramps, undamped sinusoids, etc, see
for example Davison (1972), Francis and Wonham
(1976). Two devices are found in literature, which
solve this so-called robust tracking problem, namely
the servo compensator, see for example Davison
(1975), and the disturbance observer, see for exam-
ple Johnson (1976). In de Roover and Bosgra (1996)
the dual nature of both concepts is explained, and
guidelines are given for a proper choice between the
servo compensator and the disturbance observer in
a multivariable system.

The reference and command signals applied to the
zy¢-stage, are also persistent, because they are re-
peated an indefinite number of times. This repetitive




nature of the process allows the application of iter-
ative learning control techniques, see for example
Moore et al. (1992), Kavli (1992). The main idea of
iterative learning control is to iteratively update the
force profile f, so as to decrease the magnitude of
the tracking error e, after each cycle of the reference
signal . The force profile is updated according to a
general linear update law £, as proposed in Moore
et al. (1992):

L:  ferr = Q(2)fx + L(2)ex, (1)

with k denoting the iteration index, and Q(z), L(z)
being linear filters, designed such that fi and e,
converge to fixed values. A sufficient condition for
convergence of (1) is given by:

1Q —L(I + PC)'P||, < 1, (2)

with [|X||, denoting the gain of X, measured in
some induced p-norm. With update law (1), the
control system of Figure 9 (b) changes to the one
shown in Figure 10.

f r

p = c Yo

+

Fig. 10: Modified control structure with learning
algorithm £

It can be shown that the best choice for the filter Q
would be @ = I. However, it is seen from equation
(2) that, if @ = I, L should be equal to (P~ + C)
for guaranteeing convergence, i.e. the inverse of the
system P should be exactly known, which is impos-
sible in most practical applications. Therefore, the
filter @ is chosen as a low-pass filter with magnitude
equal to 1 at low frequencies, and cut-off frequency
near that frequency point where the knowledge of
P does not allow the determination of an inverse
anymore. In de Roover (1996), a systematic anal-
ysis is proposed for design of the filters @ and L.
Using the model and the controller shown in Figure
3 and 4, respectively, filters @ and L have been de-
signed for the z-direction of the zy¢-stage, shown
in Figure 11. With these filters, a learning itera-
tion was performed for all experiments shown in the
previous section. For each command signal, 10 it-
erations were performed, and each experiment was
repeated 3 times, so as to average out the effect of
random noise. The results are shown in Figures 12,
13 and 14 for the bang-bang, the limited slope, and
the ramped sinusoid command signal, respectively.
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Bode plot of (a): filter @ and (b): filter
L. The cut-off frequency of @Q is approxi-
mately 1000 rad/s, and anti-causal filtering
with @ was applied with net-phase zero.

The results are quite impressive! It is seen that for
each command signal, the tracking error has been
tremendously reduced. Two important comments
have to be made with respect to these results. First,
when comparing Figures 13 and 14, the best results
are obtained for learning control applied to the stan-
dard reference and command signals, see Figure 13;
the tracking error is reduced within a band of 150
nm, and the cycle time has been reduced to 6.23¢ 2
s. The cycle time for the bang-bang and ramped
sinusoid command signal, are 7.45¢=2 s and 6.50e 2
s, respectively. The reason for this, is the fact that
the filter Q has a cut-off frequency at 1000 rad/s,
hence removing energy from the command signals
above 1000 rad/s. However, the nominal ramped si-
nusoid reference and command signal were designed
to have energy content above 1000 rad/s, see Figure
8 (b). Hence, the ramped sinusoid reference signal
is to fast for the learned force profile, resulting in
the showing up of residual vibration in the tracking
error, see Figure 14 (a),(b).

Second, although the residual vibration in the track-
ing error has been removed significantly, the learned
force profiles show unwanted residual behaviour. It
can be shown that this residual behaviour is caused
by badly damped zeros of the system. Especially if
the reference signal is to fast for the learned com-
mand signal, like the bang-bang and the ramped si-
nusoid reference signal, the residual vibration in the
learned force profile is simply a result of excitation
of the inverse system dynamics with a reference sig-
nal that has to much energy content at the locations
of the system zeros, see Figures 12,14 (c),(d).
Regarding these comments, it is worthwhile to put
more effort in the design of learning filters @ and
L, in order to increase the cut-off frequency of @,
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Fig. 12: Learning iteration for bang-bang command
and reference signal; (a) tracking error af-
ter 10 iterations, (b) close up of (a) with
performance bounds, (c), force profile af-
ter 10 iterations, (d) close up of (¢) with
bounds on regulation level.

without destroying the convergence of the learning
iteration, so that fast nominal reference and com-
mand signals can be correctly learned.

6 Conclusions

In this paper, a high-performance motion control
system for a flexible mechanical servosystem has
been designed and implemented, and compared to a
standard motion control system. It was shown that
accurate modelling of the multivariable system, en-
ables the desigmer to reduce both dynamic interac-
tion, and the effect of flexible components, which
limit the performance of the control system. The
high-performance control system showed improved
performance with respect to a standard control sys-
tem, in a sense that motions were performed more
fast and accurate. Exploiting the repetitive nature
of the motion, robustness of the scheme against
modelling errors, could be improved, resulting in
even more fast and accurate movements, which are
close to the maximum obtainable performance for
the system at hand.
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Abstract. This paper reconsiders the concepts of servo compensator and disturbance
observer. Both concepts make use of an internal model representing a general persistent
disturbance. The use of such a model, also known as the Internal Model Principle (IMP),
has been well recognized to be necessary within the servo compensator concept, leading
to general necessary and sufficient conditions for a servo compensator to asymptotically
compensate the disturbance. However, for the disturbance observer concept, no general
existence conditions are present in the literature. In this paper these conditions will be
derived by reformulating the servo compensator and disturbance observer problem in a
general standard plant. Moreover, it is shown that a robust servo compensator, stabilized
with state feedback, is dual to a disturbance observer stabilized with output injection.
Equally important, it is shown that a robust servo compensator, stabilized by an observer
based controller using output feedback, is dual to a disturbance observer in combination
with state feedback and disturbance compensation.

Keywords. asymptotic disturbance rejection, Internal Model Principle (IMP), robust

servo compensator, robust disturbance observer, dualization

1 Introduction

One of the main reasons for adding feedback com-
pensation to a system is the rejection of undesired
signals that disturb the performance of that sys-
tem. In practical situations these disturbance sig-
nals range in nature from purely stochastic to purely
deterministic signals. In this paper we restrict our
attention to purely deterministic signals.

The compensation of deterministic signals has been
explored and developed by several researchers in
the late sixties and early seventies, see Johmson
(1971), Davison (1972a, 1975), Francis and Won-
ham (1976). A breakthrough was the notion of the
Internal Model Principle (IMP), which states that,
in order to compensate a general persistent distur-
bance, a feedback compensator has to include an in-

!The work of Dick de Roover is financially supported by
Philips’ Research Laboratories, Eindhoven, The Netherlands.
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ternal model of the dynamics of that disturbance!,
see Francis and Wonham (1976). The IMP led to the
development of the rather celebrated robust servo
compensator, see Davison (1975), which asymptoti-
cally rejects a general persistent disturbance in the
face of perturbations in the parameters of the un-
compensated system.

Simultaneous to the development of the servo com-
pensator, a Luenberger type of observer was devel-
oped for systems subject to the same general class
of persistent disturbances, by including an internal
model of the disturbance in the observer, see John-
son (1971, 1976), Meditch and Hostetter (1974). In
the most general case, this disturbance observer es-
timates both the system state and the disturbance
state. If the disturbance is assumed to act on the
input of the system, the estimated disturbance can

LA persistent disturbance is a disturbance generated by
an autonomous dynamical system having poles in the closed
right complex half plane.




be used to compensate the real disturbance, see for
example Johnson (1971, 1976) Profeta et al. (1990),
Nagasawa and Yokamada (1993).

Since both the servo compensator and the distur-
bance observer have been used for compensating
the same class of persistent disturbances, several re-
searchers have tried to compare both concepts as if
they were equal to each other, see Johnson (1972),
Davison (1972b), Kwatny and Kalnitsky (1978),
Desoer and Wang (1980). This led to a misunder-
standing of, in particular, the disturbance observer
concept. Although it was recognized that both con-
cepts are not equal but dual, neither general condi-
tions for a disturbance observer to exist, nor general
conditions for such an observer to compensate a per-
sistent disturbance are available. In this paper gen-
eral existence conditions will be derived that turn
out to be dual to conditions obtained in servo com-
pensator theory, by reformulating the servo compen-
sator and disturbance observer problem in a general
standard plant.

The next section starts with an explanation of the
notation used throughout this paper, together with
some fundamental aspects from linear system the-
ory. Then Section 3 describes the theory of the servo
compensator within a general standard plant. In
Section 4 this general theory is dualized to that of
disturbance observer theory. Finally Section 5 ends
up with some conclusions.

2 Notation and fundamentals

Let IR (C) denote the field of real (complex) num-
bers. Let €_ (C,) denote the open left (closed
right) complex half-plane. Let IR™*™ (IR™) be the
set of all n X m matrices (n-vectors) with elements
in JR. Let IR(s) denote the set of all rational func-
tions with real coefficients in s, with s denoting
the Laplace operator. Let IR(s)"*™ be the set of
all n x m matrices with elements in IR(s). Let
A € R™ ™ then ¢4 denotes the minimal polyno-
mial of A and o(A) denotes the spectrum of A. Let
M € R™ ™ then p(M) denotes the rank of M, and
p(M) < min{n, m}. The normal rank p, of a matrix
M(s) € IR(s)™*™ is defined as:

PrtiMi(2)) = maa oM (s))-

Consider a linear time invariant (LTT) system G rep-
resented by:

Ax(t) + Bu(t),
Cz(t) + Du(t),

z(tﬂ) = Zo,

(1)
with z,z9,u and y denoting the state, initial state,
input and output of the system, respectively. The

()
¢l

Il
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system (1) can be written in a more compact matrix

o: [;]=183][:]

The transfer matrix of G from u to y is given by

(zero initial conditons):
A|B
e .

The system G is said to be exponentially stable, if for
any initial state z the zero-input response will tend
to zero exponentially. The system G is exponentially
stable for any zp if and only if o(A4) € C_.

The system G is said to be (state) controllable if
there exists an input u(t) that will transfer the
state ¢y to any state z; in any finite time inter-
val [to,tf]. Otherwise G is said to be uncontrol-
lable. The system G is said to be (state) observable
if for any finite time interval [tg,%s], the state zg
(at time ¢p) can be determined with knowledge of
the input u(t) and the output y() over the inferval
[to,ts]. Otherwise G is said to be unobservable. Let
A [= ]R"n.xn,’B c ]R’n,xnu}cr [ IR.nvxn', th&n the
pair {4, B} ({4,C}) is controllable (observable) if
and only if

G(s)=C(sI - A) ' +D=:

Ar-4B) =n., (o ([ M5 4]) =ni wrce
The system @ is said to be stabilizable if there exists
a state feedback w = Kz such that G is stable, i.e.
A—BK € ©_. The system G is said to be detectable
if there exists a constant matrix L such that 4 —
LC e C_.

Let G(s) € IR(s)™*™ be proper and have normal
rank n, and let {4,B,C,D} be a minimal state
space realization of G(s), then a real or complex
number A is called a transmission zero of G(s) if?:

([P B]) <o ([ B]) men

i.e. if the Rosenbrock system matrix Rosenbrock
(1970) w.r.t. u and y looses rank.

Let D~(s)N(s) (N(s)D~1) be a left (right) co-
prime factorization of G(s). Let G(s) and, con-
sequently, N(s) (N(s)) have rank n, then A is a
transmission zero of G(s) if and only if pN(A) < n
(pN(X) < n).

3 Theory of the servo compensator

3.1 The robust servomechanism problem
(RSP)

Consider the feedback configuration of Figure 1.
The continuous-time LTI generalized system G is

2This definition is due to Davison and Wang (1974)




z w
G

¥ u
C

Fig. 1: Standard feedback configuration.

given by:
@ A B, B z
G: z = Ciy Dy Diy, w |, (2)
v C; Dy Dy u
m(tg) = T,

where z(t) € IR™™ describes the state of the system,
w(t) € R™ represents an exogenous system input,
u(t) € R™ is the control input to the system, z(t) €
IR™ is the output to be regulated, e.g. the differ-
ence between a measured and a desired output, and
y(t) € R™ is the measured output of the system.
The matrices {A,B]_,Bg,Cl,Cg,Dl,Dlz,Dzl,Dg}
are assumed to have appropriate dimensions, i.e.
A e R:52= B e R*™ v By € R™*"= 4 €
R*%% 03 € B™*™. Dy € R™*™ . Dyp €
R™*™ Dy € R™*™ and Dy € R™*™, The
corresponding transfer matrix of G is given by:

The measured system output y is fed to a dynamic
compensator C with transfer matrix:

cw-[442]

and the output of this compensator is fed back to
the control input u of G.

In this paper we consider the situation where w(t)
is assumed to be a persistent signal, generated by
an autonomous system?®:

W []:[g"*]w Zu(to) = Zun,

w

(3)

where z,,(t) € R"™w, 4, € R"=""w and C,, €
IR™*"=w . Without loss of generality it is assumed

3Note that many common signals can be described in this
setup, like steps, ramps, sinusoids, etc.
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that the pair {4,,Cy} is observable, and o(4,,) C
C.l...

Furthermore, we want to construct the compensator
C such that the closed loop is stable, and the reg-
ulated system output z vanishes to zero asymptot-
ically, in the presence of w. Besides, this rejection
property should be robust, i.e. should be maintained
even in case the dynamics of G vary.

More formal, we want to solve the robust servomech-
anism problem, which is defined as:

Definition 3.1 The robust servomechanism prob-
lem (RSP) is to find a feedback compensator C for
the system G such that:

1. The resulting compensated system is exponen-
tially stable.

2. The system output z(t) tends to zero asymptot-
ically, for all xp € IR™ and for all ezogenous
signals w(t) satisfying (3).

3. Properties 1. and 2. are robust, i.e. they also
hold in case the dynamics of the system G are
perturbed.

It was Davison (1972a, 1975) who first solved this
problem, and at present a general solution can be
found in many textbooks. In this paper the solution
to this problem is presented within the general setup
of Figure 1.

3.2 The internal model principle

Before presenting a general solution to the RSP,
some comments have to be made on the compen-
sator structure which, in fact, is not completely free
to choose. In Francis and Wonham (1975) it was
shown that for robust regulation of z in the presence
of w generated by (3), the compensator necessarily
has to incorporate a model of the dynamic system
W. This is known as the Internal Model Principle
(IMP), see Francis and Wonham (1975, 1976), Co-
nant and Ashby (1970). More formal, the matrix
A, of the controller incorporates an internal model
of the dynamic system W, if the minimal polyno-
mial of 4,, divides at least n. invariant factors of
A., with n. the number of independent outputs z;
to be regulated, (Francis and Wonham, 1976).

In Wolovich and Ferreira (1979) it is shown that
such an internal model must make itself present at
the junction where w enters the closed loop from w
to z. Therefore, since the internal model is inside
the compensator C, the structure of C must be such
that it commutes with the open-loop transfer matrix
from w to z. Besides, the internal model must be
observable from the control input u and has to be




controllable from the regulated output z, (Francis
and Wonham, 1976).
A feedback compensator which obeys this specific
structure is given by:

:éac A,c B.c :c":
£ [u] [K ; Hz J (4)
xl’l’.’(tl}) = ZTsc0
where*
A, = block diag[I,T,...,T] € R™<*"e
el
n,—tuple
B,. = block diag[y,7...,7] € R™=*™
ne e
n.—tuple
K, = astabilizing gain matrix € IR™ *™=

with {I',vy} any controllable pair, such that o(T)
equals the roots of ¢, (s), with ¢, (s) being the min-
imal polynomial of 4,,. For example, the pair {T', v}
can be chosen as a controllable canonical pair:

0 1 0 0

I = G : e e e : .
0 0 T | 0
—y —g.g v =0 il

with ¢y (s) = 87 + 18?7 + -+ @18+ aq.
Since the above compensator is fed by the regulated
output z, while the measured output y is available,
an extra restriction is posed on the problem: it is
necessary that z has to be observable from y, i.e.
there exists a nonsingular constant matrix T' such
that z = T'y, (Francis and Wonham, 1975, Davison,
1976). If this is the case, z can be reconstructed
from y. The existence of such a matrix T' is guaran-
teed by:

Lemma 3.2 Consider the system (2). The regu-
lated output z is observable from the measured out-
put y, if and only if:

"([gl 52‘1])=p([0= Dnl). (5)

Proof: (<) If condition (5) holds, there exists a
nonsingular matrix T'* such that for nonzero [z w]T:

[2¥E DY~ e Patl [ ; ] =0.

Thus T*(Cyz2+Dyw) = Cyz+Dy1w, and hence z can
be reconstructed from: z = T*~'(y — Dau) + Diau.

tNote that by construction the pair {Asc,B.c} is
controllable.
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(=) If z is observable from y, there exists a non-
singular constant matrix T' such that z = Ty, i.e.
Ciz + Dyw+ Dygu = T(sz + Doyw + Dzu). ng
choose u = 0. Then for nonzero [¢ w]T we have:

[€1—=TCa Dy =T Dy [:}] =0,

i.e. Cy =TC5 and Dy = T'Dyy. Consequently
D,

p({g: Dzl]) 8 p([Tsz I;lejl})
= p([C2 Da ).

a

3.3 Solution of the RSP using state feed-
back

If the compensator (4) is put inside the feedback
loop of Figure 1, it is likely that the closed loop is
unstable, that is, we need some additional feedback
to stabilize the system G extended with the unstable
dynamic system C,. given by (4). In this subsection
we assume that the state z of G is available for feed-
back. In this case, the problem is reduced to finding
a constant compensator:

C=[K K.], (6)

which stabilizes the extended system G. given by
the series connection of G and C,.:

o]

=
ge: > :C-;'e wcC

s -

v (7)

with

A 0 By B,
_ Blc02 Acc BscD?,l BJ:DRZ
Gc — [ C]_ 0 ] D1 Dm

el ][]

Figure 2 shows the resulting closed loop. The exis-
tence of a constant C' which solves the RSP is given
by: '

Theorem 3.3 Given the system (2) and suppose
the signal w(t) is generated according to (3). The
RSP, defined by Definition 3.1, is solvable using
state feedback, if and only if:

i. C includes an internal model of w,

i, p([g; 3:1 ]) =p([C2 Da ),




z w
— je———————
G.
2 uw
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Fig. 2: Modified feedback which

solves the RSP.

configuration

iti. The pair {A,B,} is stabilizable,
([ M—-A B,
£ —C1 Dy

Proof: See Appendix. m|

- ]) =7, +n;, YAEa(4dy).
(8)

Two remarks regarding this theorem are of impor-
tance:

Remark 3.4 The rank condition (8) implies that
Ny > Mg, 1.e. G has at least as many control inputs
as there are outputs to be regulated, and the sub-
system {A, By,Cy, D12} has no transmission zeros
located at the spectrum of Ay,.

Remark 3.5 The closed loop system of Figure 2 is
robust to parameter variations in the system param-
eters {A., Bh Bz, Cl, Cg, DI, Dlg, Dgl, Dg}, which
do not destabilze the closed loop. However, nei-
ther variations in the parameters of {Aw, A,.}, nor
in the structure of {A,., B,.} are tolerated, as they
might destroy the property of asymptotic disturbance
rejection, or might even result in an unstable closed
loop system. Besides, z must remain observable

from y.
The resulting compensator for the original system
G, given by:

AJC

[B..T 0]

C(s) = ; (9)

Ky

o]

is often referred to as robust servo compensator,
(Davison, 1975). Robust asymptotic disturbance re-
jection of w is achieved by duplicating the dynamics
of w inside the feedback loop, i.e. the servo compen-
sator constitutes an internal model of the unstable
dynamics of w; in the appendix it is shown that
this duplication produces transmission zeros in the
closed loop from w to z, at the spectrum of A4,,
which completely block the transmission from w(t)
to z(t).
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3.4 Solution of the RSP using output feed-
back

If the state z of G is not available, the output y can
be used for stabilization. The existence of a compen-
sator which solves the RSP using output feedback,
is given by:

Corollary 3.6 Given the system (2) and suppose
the signal w(t) is generated according to (8). The
RSP, defined by Definition 3.1, is solvable using out-
put feedback, if and only if:

i. Conditions 1. —iv. of Theorem 3.8 hold,

i. The pair {A,C3} is detectable.

Proof: Condition ii. guarantees the detectability of
the series connection of G and C,.; therefore the re-
sulting closed loop system can be made exponen-
tially stable. The asymptotic rejection and robust-
ness property are guaranteed by the separation prin-
ciple, applied to the servo compensator and any sta-
bilizing compensator. 0

If Corollary 3.6 is true, a control input u can be
designed which solves the RSP, according to:

w(t) = K,z (t) + Kz (t),

with z. € IR™ the state-vector of any stabilizing
compensator. For example, an observer based com-
pensator can be designed, which stabilizes

| A B z

v ¥ C;; .Dg w |
In this case, the resulting compensator, which solves
the RSP, is given by:

A | B,
C(‘g) = [ Cc D: ] ]
with
= Axe 0
¢~ | (Ba+LD3)K,. A+ B:K + L(C: — D:K)
B,.T
B. = [ - ] C.=[K.. L], D=0, (10)

and L denoting an observer gain, designed such that
A+LCy € ©_, and {4, B;,C3,D;} is a duplication
of the system {4, By, Cy, Dy}. According to the sep-
aration principle, L and [ ¥ K ] can be designed
independently.




4 Dualization of the IMP in the the-
ory of disturbance observers

4.1 The robust observation problem

Again consider the system (2):

T A Bl Bz T
G: z|=|C Dy Dy w |,
Yy Cz Dy D, u
where the signals @,w,u,z,y and the tuple

{A, By, B3,C1,C3,Dy, D13, D3y, D} have appropri-
ate dimensions, and again assume w(t) to be gener-
ated according to (3):

.w Aw
w : [ ::U J = [ G'w J Ty zw(tﬂ) = Ty,

where ,,,w, A,, and C,, also have the appropriate
dimensions. Again it is assumed that o(4,) € C,
and the pair {4,,,C,} is observable.

In this section we are considered with finding an ob-
server for the system G, in the presence of w gener-
ated by (3). Consider the following general observer
system:

B,

LT

A. By F
G: = R A ) w | ,(11)
] C; Da D, i
5:(to)=57|].

where # € IR" denotes the difference between
the state and the observed state, w € IR™ rep-
resents the exogenous system input, & € R™® de-
notes the observer input , Z € IR™ is the dif-
ference between the measured system output y
and a reconstructed system output, i.e. the ob-
server output to be regulated, and j € IR™ is
the output of the observer system, available for
compensation of the observer dynamics. The ma-
trices {A,.él,gz,él,éz,f)hﬁu,.ﬁghﬁa} are as-
sumed to have appropriate dimensions.

Next, according to Figure 3, we want to construct
a compensator C, which stabilizes the observer sys-

Z w
G

(] i
- C

Fig. 3: Standard observer configuration

tem G, and brings the reconstruction error % to zero

84

asymptotically, in the presence of w. Again, we re-
quire this property to be robust, i.e. we want to solve
the robust observation problem, which is defined as:

Definition 4.1 The robust observation problem
(ROP) is to find a compensator C for the observer
system G such that:

1. The resulting compensated observer system is
ezponentially stable.

2. The reconstruction error Z(t) tends to zero
asymptotically, for all #o € R™ and all w(t)

satisfying (3).

3. Properties 1. and 2. are robust, i.e. they also
hold in case the dynamics of the observer sys-
tem G are perturbed

In the literature, the ROP can be found under the
name disturbance observer, see for example John-
son (1971, 1976), Meditch and Hostetter (1974),
Levin and Kreindler (1976), Kwatny and Kalnitsky
(1978), Sievers and von Flotow (1989), Profeta et al.
(1990), Nagasawa and Yokamada (1993). However,
non of these references have considered, and solved,
the ROP in its full general form as we stated it in
Definition 4.1.

4.2 Use of the IMP

It can be shown that, in order to solve the ROP, the
compensator C necessarily has to include an internal
model of (3), which is observable from w, and con-
trollable from §. Besides, this internal model must
make itself present at the junction where w enters
the closed loop from w to Z, in order to observe the
actual disturbance w. A compensator with these
commuting properties is given by:

I e :i:d‘-‘ Ado Lda Tdo

L [w] I:Cda 0}[3‘,]’(12)

Tdo(to) = Tao0
where®
As, = block diag [T, 5 SO 7 T] € IR™de X Mda
Ne—

M —tuple

L4, = a stabilizing gain matrix € R4 *"¢

=

block diag [v,v,...,v] € R™ *™de,
ey e’
Ny —tuple

with {Y,v} any observable pair, such that o(7Y)
equals the roots of ¢, (s), with ¢,,(s) being the mini-
mal polynomial of 4,,. For example, the pair {T, v}

SNote that by construction the pair {A4o,Cap} is
observable.




can be chosen as an observable canonical pair:

0...0.—-0_-?

Ty eeo 0 —aig=y
Psh= . v )

0 -1 —m
vz [0 - 0079

with @y (8) = 89 + @187  + -+ + ap_18 + ap.
Since the above compensator has as output w, while
the best we can do is to make a reconstruction % of
w, an extra restriction is posed to the problem: it
is necessary that w is controllable from 4, i.e. there
exists a nonsingular matrix T such that w = T'i.
The existence of such a matrix is guaranteed by:

Lemma 4.2 Consider the observer system (11).
The ezogenous input w is controllable from the re-
constructed input 4, if and only if:

o([5 2a]) -+ (5

Proof: Follows by similar reasoning from the proof
of Lemma 3.2 0

(13)

4.3 Solution of the ROP using output injec-
tion

In this subsection we assume that the observer sys-
tem (11) can be stabilized using output injection,
i.e. we assume to have full access to the observer
state with the measured output y. In this case, we
can reduce the ROP to finding a constant compen-

sator:
= L
Cis [Ldo] '

which stabilizes the ext.g_nded gystem Q-, given by
the series connection of G and Cgy,:

AR ..

2 ] = é, w
n
V2
A B;Cy4 By TR0
2 0 Add 0 0 I"'do

S [6.:1 1?120&0] ?1 [0 0] ?
[C2 D3Cio| Dz [0 0]

(14)

o B

=

and vy, v; being intermediate state variables. Figure
4 shows the resulting closed loop. The existence of

a constant C' which solves the ROP is given by:
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z w
Ge
= U1
Yy v
¢
Fig. 4: Modified observer configuration which

solves the ROP.

Theorem 4.3 Given the observer system (11), and
suppose the signal w(t) is generated according to (3).
The ROP, defined by Definition 4.1, is solvable us-
ing output injection, if and only if:

i. C includes an internal model of w,
B,

([ D)=+ (2])

iti. The pair {A,Cy} is detectable,

1.
M-A B
p ([ Qrgioi ]) =Ng+Ny, YAEo(A4y).
(16)
Proof: See Appendix. ]

Remark 4.4 The rank condition (16) implies that
Ng > Ny, t.e. the number of measured outputs
should be greater than or at least equal to the number
of exogenous inputs, which was already intuitively
noticed in Meditch and Hostetter (1974), pp.478.
Besides, condition (16) implies that the subsystem
{A,Bl,ég,ﬁn} has no transmission zeros located
at the spectrum of A,,.

Remark 4.5 The resulting compensated observer
system is robust to parameter variations in the
sense that the disturbance state is correctly recon-
structed despite pe_rturbatfonsﬂ in the system param-
eters {A! BI! BR! Cls CB: D,, Dli}D21: Dz}, as Iong
as the compensated observer system remains asymp-
totically stable. Again variations neither in the
structure of the observer system, nor in the param-
eters {Ad4o,Cao} are tolerated, and w has to remain
controllable from 1.

The resulting compensator for the observer system
G is given by:

Ado | L do

o[

(17)




The resulting compensated observer system will be
referred to as disturbance observer.

If we compare the compensators (9) and (17) for the
RSP and ROP, respectively, they have a dual form.
In fact, we can state the following important result:

Theorem 4.6 (Main result I)
The RSP using state feedback is dual to the ROP
using output injection.

Proof: This can be verified by solving an RSP us-
ing state feedback for the transposed system G7,
and transposing the resulting compensator. O

Remark 4.7 Note that conditions i. — iv. of The-
orem 3.3 are indeed dual to conditions i. — iv. of
Theorem 4.3, and that (6), (7) are indeed dual to

(14), (15), respectively.

4.4 Compensation using a disturbance ob-
Server

In most cases, the reconstructed state of G is used
to compensate the system G. Moreover, the recon-
struction of w is always used to cancel the actual
disturbance w, i.e. the observer system is fed by
the system output y, and the control input w is cho-
sen as:

‘b'.(t) = Ki(t) + Cdoxdo(tJi

with K denoting a state feedback gain, designed
such that A + BoK € C_, and & denoting the re-
constructed system state. In this case, the resulting
compensator for G has the following transfer matrix:

ou- ]

with
Ado Lao(C2 + D2K)
. = g ot elge - 08
e [ 0 A+BQK+L(C:‘—D3K) ( )
Ld’n
B, = [_K], Cs= | TCs L |y D=0

According to the separation principle, K and
[L Lao ]T can be designed independently.

The existence of compensator (18), which stabilizes
the system G, and cancels the disturbance w asymp-
totically, is given by:

Corollary 4.8 Given the system (2) and suppose
the signal w(t) is generated according to (3). The
compensator (18) can stabilize G and cancel w
asymptotically, if and only if:

i, Conditions i. — iv. of Theorem 4.3 hold,

it. The pair {A, By} is stabilizable.
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The following result is equally important as Theo-
rem 4.6:

Theorem 4.9 (Main result II)

The RSP using output feedback with an observer
based controller according to (10), is dual to the
ROP with compensation according to (18).

Proof: This can again be verified by solving an
RSP with output feedback, for the transposed ROP
with compensation, and transposing the resulting
compensator; compare (10) with (18). O

5 Conclusions

In this paper the concepts of servo compensator and
disturbance observer have been reconsidered in a
general standard plant framework. Both concepts
use an internal model of a persistent disturbance to
asymptotically attenuate this disturbance. It has
been shown that both concepts are not equal, but
dual to each other, i.e. the servo compensator uses
the internal model to asymptotically compensate the
persistent disturbance, while the disturbance ob-
server uses the internal model to asymptotically ob-
serve the disturbance state, enabling, under certain
conditions, to asymptotically compensate the dis-
turbance using this observation.

Exploiting this duality, it has been shown that a nec-
essary and sufficient condition for the existence of a
general disturbance observer can be derived, that
is dual to the existence condition obtained in servo
compensator theory. The main part of this condi-
tion is a simple rank condition on the Rosenbrock
system matrix with respect to the disturbance in-
puts and system outputs. Besides, a necessary and
sufficient condition was given for a disturbance ob-
server to be able to compensate an observed distur-
bance. These simple conditions may allow a con-
trol system designer to decide upon when to use the
servo compensator concept and when to use the dis-
turbance observer concept.

Appendix

Proof of Theorem 3.3 To proof this theorem, we
need to show that the compensator C,. satisfies the
three properties of Definition 3.1.

1. exponential stability

The compensated system can be made exponen-
tially stable, if and only if the extended system
(7) has a minimal state-space realization, i.e. the

i A 0 Bz E g
e {[Bacca gL ] ’ [B.,CD; ]} is stabilizable




. o 6 A 0 \
and the pair {[ g o ] ! [B“Cg g ]} is de-

tectable. Clearly the latter condition on detectabil-
ity is always met, since we solve the problem with
state feedback. Hence the extended system can be
made exponentially stable if and only if

/(1 [l

Vs € C.(19)
Now for s ¢ o(A,:), condition (19) is true, since
the pair {4, By} is stabilizable by assumption 1. of
Theorem 3.3. Now for s € o(4,.), rewrite:

e 0
= 0 —B,. sI—-A,.
B;

sI—A 0
C 0 —Dyy
DL S 0

L]

sT—-4 0 B,

3 Mo Sl G e - 2 BE=tatss

B,

sI—A 0
Bch:i

—B,.Cz sl — A,

L 0
S [l IR o TR
0 0 I

| oo
where we used the fact that z = T'y by assumption
1i. of Theorem 3.3 and Lemma 3.2. Since the pair
{A,c, B,.} is controllable, the first factor of (20) has
always rank n, +n,.. Clearly the second factor has
full rank, and by assumption #ii. of Theorem 3.3,
the third factor has rank ng +n; +n,.,Vs € o(4,.).
Hence, by Sylvester’s inequality®:

o e

Vs € o(4,.),
i.e. the extended system (7) is stabilizable.

sI — A 0 B,
—-B,.C; sI— A, B,.D;

2. asymptotic rejection of w

Let the extended system (7) be stabilized by the
state feedback (6). Consider the closed-loop transfer
matrix from w to z, given by:

e) =
A+ B;K B:K,. By
Bu(cﬂ s DZK} Asc + B::DZKI-: BchI'.I.
| Ci+ DK DyaK,. | | Dy
(21)

According to Lemma 3.2, there exists a nonsingular
T such that z = T'y, i.e. Cy = TC3,D; = T'Dy; and
Dy; = TD,. Substituting this result in (21), and
premultiplying the Rosenbrock system matrix w.r.t.
w and z with a unimodular matrix yields:

Tag: O 0
O a0 Tay
0 it —R s

8Sylvester’sineq.: Let A € IR7*™ B € IR™*P, then p(A4)+
p(B) —n < p(AB) < min(p(A), p(B)).
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sf-—A——BzK —BzK,c B:
—B.:(C} -+ DZK] sl — A:e — B-cD3K-c B|¢D21
—T(Cc o o DzK) —-TD:K,. TDy
BI — A — BzK —-BzK., E1
= ‘—T(C: + DzK) —TD2K,. TDy

0 sl — A,. 0

Clearly, this matrix looses rank for all s € o(4,,.),
i.e. the roots of the minimal polynomial of 4,. ap-
pear as transmission zeros in the closed loop from
w to z. Since these transmission zeros appear in
every element of T'.,(s), the transmission of all un-
stable dynamics of w to z is blocked in the closed
loop, for any @, # 0. Hence, what remains in 2
is only due to stable dynamics, which goes to zero
asymptotically.

3. robustness

Let the parameters of the system G be perturbed,
jie. A= A+6A,B, = B; + B, etc., and let é(s)
be the transfer matrix of the perturbed system:

If the perturbations 64,08, etc. are sufficiently
small (not equal to zero), the perturbed closed loop
system (G closed with C) remains stable, i.e. prop-
erty 1. of Definition 3.1 is always robust. Suppose
that the perturbed closed loop remains stable, and
that the regulated output Z of the perturbed sys-
tem remains observable from the measured output
i of the perturbed system, then it can be readily
deduced that the roots of the minimal polynomial
of A,. appear also as transmission zeros in the per-
turbed closed loop from w to z, i.e.

sl - A— B.K —BaK,. B,
—B..(C2 + D3K) sl — A,. — B,.D:2K,. B,.Da
—C1 - Duk —DnK,. Dy

looses rank Vs € o(A,.). Hence z of the perturbed
system also goes to zero asymptotically, as long as
the closed loop remains stable. Note that also per-
turbations in K and K,. are allowed, as long as the
system remains stable. (]

Proof of Theorem 4.3 To proof this theorem, we
need to show that the compensator C;, satisfies the
three properties of Definition 4.1.

1. exponential stability

This follows by similar reasoning from part 1. of
the proof of Theorem 3.3, where now stabilizability
is always met, and detectability is guaranteed by
conditions #17. and iv.




2. asymptotic rejection of w
This follows by similar reasoning from part 2. of the
proof of Theorem 3.3, where now T, is given by:

A+ Iién (B2 + Lf)a)cdo By + {:-ﬁzl
LaoC2 Ao + LaoD;Cy, Lyo D2y
| C1 D1aCy | D,

The result now follows by substituting B, =
BzT, D1 = DlgT, Dz; = DgT, and postmu!tiplyiﬂg
the Rosenbrock system matrix w.r.t. w and Z by

the unimodular matrix;

B 0
0 g i
O e e

3. robustness
This follows by similar reasoning from part 3. of the
proof of Theorem 3.3. O
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Abstract. Iterative Learning Control (ILC) is a powerful feedback methodology that
iteratively improves the transient behaviour of processes that are repetitive in nature.
Although most of the published ILC schemes are heuristic in nature, some initial research
has been performed on the formulation of the ILC problem in the H, mathematical
framework. However, so far only the performance and robustness analysis of the ILC
schemes has been performed for a given (heuristically designed) learning controller. In this
paper it is shown how the synthesis of an iterative learning controller can be generalized to
the synthesis of an H, (sub)optimal controller. It is shown how a general learning control
problem can be reformulated in the so-called ‘standard plant’ format, by choosing an
appropriate weighting function for learning performance. Moreover, process uncertainty
can be included explicitly in the ILC design, by choosing appropriate weighting functions
related to this uncertainty. It turns out that convergence and learning performance of this
ILC scheme can be obtained for all systems in the uncertainty set, by solving a u-synthesis
problem. The practical usefulness of the scheme is verified on an zy¢-stage experimental
setup.

Keywords. Iterative Learning Control (ILC), H., control theory, robust learning perfor-
mance, p-synthesis, zy¢-stage experimental setup.

1 Introduction

For control systems that have to perform their tasks
repeatedly, Iterative Learning Control (ILC) has
turned out to be an effective tool for improving
the transient performance. After its introduction in
the systems and control community by Arimoto et
al. (1984), the number of ‘newly’ proposed learning
schemes has become almost as large as the number
of practitioners, see for example Bondi et al. (1988),
Kavli (1992), Liang and Looze (1993), Moore et al.
(1992); the reader is referred to Moore et al. (1992)
for an extensive list of references. Almost all publi-

!This paper is presented at the 35th IEEE Conference on
Decision and Control, 11-13 December 1996, Kobe, Japan.
Copyright of this paper remains with IEEE.

§The work of Dick de Roover is financially supported by
Philips’ Research Laboratories, Eindhoven, the Netherlands.
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cations concern the design of a convergent scheme.
In fact, ILC also has to deal with the well known
trade-off between performance and robustness of the
controller, i.e. the theoretically superb performance
of tracking a transient without error, may have to be
sacrificed in practice, due to the more severe demand
of convergence of the scheme in the face of uncertain
system dynamic knowledge. Although most of the
published ILC schemes are heuristic in nature, some
initial research has been performed on the formula-
tion of the ILC problem in the H., mathematical
framework, references Padieu and Su (1990), Moore
et al. (1992), Liang and Looze (1993). However,
the cited references only considered the performance
and robustness analysis of ILC schemes, based on
heuristically designed learning controllers.

In this paper it is shown that the synthesis of an it-
erative learning controller can be generalized to the




synthesis of an H,, (sub)optimal controller, by re-
formulating the ILC problem in the so-called ‘stan-
dard plant’ format. The key issue of this solution to
the ILC problem, is the specification of an appro-
priate weighting function for learning performance,
and the fact that the delay line, between successive
updates of the forcing function, has magnitude equal
to 1, hence allowing effective use of the small gain
theorem. Moreover, solving the ILC problem in this
format, allows the designer to explicitly trade-off
learning performance and robustness, by incorporat-
ing process uncertainty weighting functions into the
synthesis problem. It is shown that this robust per-
formance problem can be solved using a p-synthesis
approach.

The remainder of this paper is organized as follows.
Section 2 describes the general ILC problem, and
an heuristic solution to it. Section 3 shows how
the ILC problem can be reformulated and solved in
the standard plant format. Furthermore, Section 4
extends the results of Section 3 to the formulation
and solution of a robust ILC problem, by includ-
ing process uncertainty descriptions into the design.
Section 5 verifies the practical usefulness of the pro-
posed scheme on a real life experimental setup of an
zyop-stage, and finally Section 6 ends up with some
conclusions.

2 Heuristic approach to ILC
Problem formulation

2.1

Consider the feedback configuration depicted in Fig-
ure 1. It is assumed that the plant P and the con-

f U

Fig. 1: Feedback configuration of plant P and con-
troller C; the signals f,7,u,y, and e denote
a forcing function, a reference signal, the
plant input, the plant output, and the servo
error, respectively.

troller C' are discrete time, linear, and time invari-
ant. The map from col(r, f) to col(y,e) can be ob-
tained from simple block diagram manipulation:

(I +PC)! [PC P]

— T R
I -p

s —R]‘ 1)

thus: T = (I + PC)"*PC,R = (I + PC)~'P, and
§ = (I+ PC)~'. Suppose the reference signal (t),
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defined on a finite interval [0, AT,..., Tn] with AT
being the sampling time and Ty = NAT with IV the
number of samples, is repeated an indefinite num-
ber of times, each time starting at the same initial
condition; if so, the servo error e(£) will be repeated
too, apart from random noise. The main idea of it-
erative learning control is to iteratively update the
forcing function f, so as to decrease the magnitude
of e, after each cycle of the reference signal ». More
formal, let k denote the number of iterations, then
ILC is about to find an update & of the forcing func-
tion at the k-th iteration, based on the servo error
at the k-th iteration, i.e.:

Fes1(t) = U(Fe(t),ex(t)), te€[0,Tn], ke ]N(, |
2

such that
Jm fi(t) = f.(t)

and lim || ex(t) ||=e.,
k—+oo

(3)
with f,(t) and e, being fixed points, and e, is mini-
mal over the interval [0, Ty], measured in some sig-
nal norm || - ||. Obviously, convergence of an ILC
scheme to fixed points f. and e., depends on the
choice of the update law (2); the great body of lit-
erature on ILC is mainly concerned with ‘newly’
proposed update laws. Roughly speaking, for lin-
ear systems two different types of update laws can
be distinguished: a PID-type of update law and a
model based update law. The most general PID-
type of update law can be found in Arimoto (1985),
which updates the forcing function by:

frsa(t) = fk(t}+ae:.(t)+ﬁé;,(t)+7/e;,(t)dt. (4)

For this type of learning rule, convergence condi-
tions are derived, so as to obtain the gains {a, 3, 7}
The most general model based update law is pro-
posed in Moore et al. (1992), and reads as follows:

fet1(t) = Q(q) fi(t) + L(q)ex(t), (5)

General convergence conditions on the filters Q and
L are derived, based on knowledge of the plant P
and the feedback controller C. In fact, update law
(5) can be seen as a generalization of update law
(4), by making specific choices of the filters Q and
L. Hence, learning rule (5) will be the starting point
for the research presented in this report.

Figure 2 shows how this general learning rule can
be implemented as an offline ad-on device. During
execution of the reference signal r, together with
forcing function fi at the k-th trial (within the setup
of Figure 1), the servo error e; at the k-th trial is
measured and logged in a memory table. After this
reference trial, the logged error is filtered with the




Fig. 2: Offline learning algorithm; 1: logged error
table, 2: feedforward table

L-filter, and added to the Q-filtered forcing function
fx of the k-th trial. The sum of both signals is stored
in another memory table, and constitutes the forcing
function fi1,, to be applied in the next ((k + 1)th)
trial.

2.2 Convergence criterion

In this paper, contraction mapping theory is used
in convergence analysis and synthesis (Moore et al.,
1992). The following convergence result is obtained
for the general update law (5):

Theorem 2.1 (L; convergence) Consider the feed-
back configuration of Figure 1, and suppose f,e €
L3(0,00), then the learning iteration (5) converges
to a fized point f.(t),t € [0,Tn], if

| @(2) — L(2)R(2) ||oo < 1, (6)

with R(z) as defined in (1), and || - ||oo denoting the
matriz co-norm (equal to the induced 2-norm).

Proof: Can be found either in Padieu and Su
(1990) or in Moore et al. (1992). O

If (6) is satisfied, the fixed points f.(t) and e, can be
obtained by substituting the lower part of equation
(1) into equation (5), and using the fact that in the

limit fi11 = fe = fu:
fo(t) = (I - Q + LR)'LSr(¢),
and

e.=|| (I-R(I-Q+LR)7'L)Sr(t) [l (7)

2.3 Design of filters Q(z) and L(z)

Whereas convergence analysis results like Theorem
2.1 have received considerable attention in the liter-
ature, practical guidelines for synthesis of the filters
Q(z) and L(z) are hard to find. In making an ap-
propriate choice for these filters, the following result
is very important:
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Theorem 2.2 Suppose R, L # 0, then for the feed-
back configuration of Figure 1, and the learning it-
eration (5), the fized point e, is zero, if and only if
(6) is true, and Q(z) = 1.

Proof: Trivial, (6) has to be met in order for a fixed
point e, to exist.

(<) This simply follows by substituting @ = I into
equation (7).

(=) Suppose Q(z) = (1 + €)I, and substitute this
into equation (7):

| (I—R(I—(1+e)+ LR]_IL)Sr(t] Il2
[| (I —R(—el+ LR)"‘L]Sr(t) [l2

| (I + R1/eIL)~'87(t) |2

I (=D _(R1/eL)2)Sr(¢) |2

=%

Il

€.

I

Trivial, for R,L # 0, this last term is zero if and
only if e = 0, i.e. Q(2) = 1. |

This result is the main reason why most of the pro-
posed ILC schemes operate with Q(z) = I. In this
case, the convergence criterion of Theorem 2.1 sim-
plifies to:

I I = L(2)R(2) [|lo< 1. (8)

For this criterion to hold true Vz, it can be easily
seen that (8) implies invertibility of the mapping R,
i.e. L(z) should be chosen equal to R~*(z), (Moore
et al., 1992). However, most times in practical situa-
tions it is not possible to obtain an exact description
of the inverse (closed loop) system, either because it
does not exist’ due to strict properness or nonmini-
mum phase behaviour, or because it is too complex
to describe. It was well recognized that the use of
the filter @ in the update law, although destroying
thé perfect tracking property described in Theorem
2.2, robustifies the learning algorithm with respect
to uncertainty in the dynamics of R, (Moore et al.,
1992, Kavli, 1992).

On the basis of the abovementioned arguments, in
Kavli (1992) the following (heuristic) frequency do-
main design procedure was proposed for the filters
Q and L:

Design procedure 2.1

1. Choose L(e™) =~ R '(iw), w € [0,w.], i.e.
choose L to be the best possible (approzimate)
inverse of R, up to some frequency w,.

!Note that in the MIMO case, R should be left invertible,
i.e. the plant P should have at least as many outputs as
inputs!




2. Choose Q(e) to be a low-pass filter with cut-
off frequency near w,, with || Q(e) ||=1,
Yw e [0,w.], and || Q(e*) ||~ 0, Yw > w,.

The idea is, that most real life systems can be de-
scribed rather well at low frequencies, and that the
uncertainty in the description shows up at high fre-
quencies. Now for all frequencies w € [0,w,.] with
| Q(e™) ||= 1, the frequency content of e, will be
zero, according to Theorem 2.2, and for w > w,
the frequency content of e, will be equal to the fre-
quency content of ep, i.e. the servo error without
learned forcing function, (Kavli, 1992).

Although good practical results can be obtained us-
ing this approach, the design procedure is rather ad
lib, in a sense that it is hard to decide at which
frequency w. the uncertainty starts to play a role,
i.e. the trade-off between performance on the one
hand (e. = 0 for Q(z) = I) and robustness on the
other hand (Q(2) ~ 0 Vz for which L(z) # R~1(z)),
is made in a rather heuristic way. In the next two
sections, a novel synthesis procedure for the filters
@ and L is proposed, providing explicit control over
the trade-off between learning performance and ro-
bustness to plant uncertainty.

3 ILC synthesis using an H_, ap-
proach

3.1 Novel design procedure

In this section we propose a slight change to learning
rule (5), without altering its generality:

Frs1(t) = Q(Fr(t) + Lex(t)), (9)

for two reasons. First, due to the strict properness
of most real life systems, in practical applications
the filter L will behave as a differentiator at high
frequencies. Therefore, to avoid differentiating of
high-frequent signals, L is also cut off at some high
frequency.

Second, by choosing the update law equal to (9),
the convergence criterion (6) changes to:

| Q(2)( — L(2)R(2)) [|oo< 1. (10)

From an H.,-controller design point of view, equa-
tion (10) motivates to interpret the filter Q(2) as a
weighting function for learning performance, i.e.:

I = L(2)R(2) lleo<ll @*(2) lleo -

Consistent with Theorem 2.2, it seems fairly natu-
ral to view the filter Q(z) as a measure for learning
performance: the cut-off frequency w. has to be cho-
sen as large as possible, in order to guarantee zero

tracking error up to frequency w.. Now we propose
the following synthesis procedure for the filters Q
and L:

Design procedure 3.1

1. Choose Q(e™) to be a low-pass weighting fil-
ter, with prespecified cut-off frequency We, 8.t
| Q™) lI=1, Vw € [0,w], and || Q(e™) =
0, Yw > w,.

2. For given Q and R, solve L from the following
(sub)optimal H,-synthesis problem:

L(2) = arg min || Q(z)(I - L()R(2)) [l
(11)

In fact, (11) describes the well-known ‘model match-
ing problem’, i.e. for given @, L is matched to the
inverse of R. Obviously, for convergence of the pro-
posed ILC scheme, the minimizing argument L,(z)
of the proposed synthesis procedure should result in

| @(2)( = Lu(2)B(2)) [loo= 7% < 1,

according to (10). Note that the smaller 4., the
faster f and e converge to their fixed points f, and
€., which can be easily seen from:

| fasr = Frlla < 7 ll fio = fra l2< ...
< YN fr = fo ll2 (12)

i.e. by minimizing | Q(f — LR) |, the highest
convergence rate in L, is obtained.

3.2 Workable solution to proposed synthesis

To solve the problem described in Equation (11)
for practical situations, we adopt the approach sug-
gested in Balas et al. (1991), based on Doyle et al.
(1989). Therefore, the ILC synthesis problem is re-
formulated in the standard plant format, depicted
in Figure 3. Within this framework, tools are avail-

z w
‘—-'_| f-—————
G
Yy w
K

Fig. 3: ‘Standard plant’ configuration of general-
ized plant G and controller K, see Balas et
al. (1991).

able for computing a stabilizing K that minimizes
| Tzw ||, (With T}, being the transfer function from




w to z), using a gamma iteration, see for example,
Doyle et al. (1989), Zhou et al. (1996). To formu-
late the ILC synthesis in this standard plant frame-
work, this transfer function from w to z is consid-
ered, given by the lower linear fractional transfor-
mation (LFT) of G and K. Hereto, G is partioned

as:
G1 Gy ]
(&= :
[ Gz G2

according to the inputs {w,u} and the outputs
{y,z}. Now the lower LFT of G and K, denoted
Fi(G, K), is defined as:

F{(G,K) = Gl i G‘j_zK(I = GgK)_IG;u = Tzw.
(13)
Clearly, (11) can be described in this format, by
taking:

h oGy Gl ] 0 @@
K'=T1;-" and G._[Gzl G, ]_[—R 0].
(14)

According to (13), this choice for G and K results
in the computation of a stabilizing L, such that
[| QI — LR) ||oo is minimized. In fact, the signals
z and w represent the signals fi,1 and fi respec-
tively. Moreover, due to the fact that the pure delay
line of length N, between fi;1 and fi, has magni-
tude equal to 1, the small gain theorem, requires
[| Tow |loo =|| QU — LR) || to be less than 1
for guaranteeing stability of the closed loop; not re-
markable, this requirement is precisely the conver-
gence condition (10). Figure 4 shows the ILC design
problem, described in the format of Figure 3.

(@rad wacy® Trate b
ha L owf—omt—
e’%ofﬂtz)J :

R Bee i o
1 L(2)
| |

| S e

Fig. 4: ‘Standard plant’ configuration for ILC syn-
thesis problem.

It should be noted that for solution of the synthesis
problem using the standard plant format, the plant
G is described in state space coordinates:

z = Az + Byw + Bsu

Ciz + Dyw + Disu

Il
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z = Cyz + Dyyw + Dau.

Now solving the ILC synthesis problem using the 2
coupled Riccati equations, see Doyle et al. (1989),
will in general result in a singular H,, synthesis
problem, because the matrices Dy, and D,y do not
have full column and row rank, respectively; this
is due to the fact that the transfer functions Q(z)
and R(z) are not proper, respectively. However, this
problem can be easily cured, by slightly perturbing
the original problem, (Stoorvogel, 1990).

4 Synthesis of a robust learning con-
troller

One advantage of Design Procedure 3.1 with re-
spect to Design Procedure 2.1, is the fact that for
a given filter @, the best possible L,-convergence is
obtained, since (10) is actually minimized, remind
equation (12); hence there is no other filter L that
can obtain a higher convergence rate w.r.t. a given
@. Another advantage of the newly proposed syn-
thesis procedure, is the fact that this setup provides
a suitable framework for designing real multivariable
learning controllers; interaction is explicitly taken
into account in the design of the filters @ and L,
and hence learning performance is guaranteed for
the multivariable system.

Another, even more important, advantage, is the
fact that formulating the ILC synthesis problem in
the H., framework, allows the designer to explic-
itly take uncertainty, with respect to the transfer
function R, into account. For example, suppose the
real closed loop system can be described by some
nominal transfer function Ry(z) and some output
multiplicative uncertainty, specified by a stable and
stably invertible weighting function W,(z):

R(z) == {(I+W,(2)A(2))Ro(2) | || A(2) llo< 1},

(15)
then the newly proposed ILC synthesis procedure
can be easily extended by choosing:

Q 0@
K=L and G=| R, 00|, (06
—Ry W, |0

and solving K by minimizing 7., = F(G,K).
However, taking the lower LFT of these extended
G and K gives:

A(G,K) = [go g] + [cg]L[—Ru W,
_ | QI = LRy) QLW,
= [ Ry 9 . ] (17)
and hence:

" Tow ”oo > ” Ry “m .




Since in practical situations it is likely that || Ry ||
is greater than one, this problem can in general not
be solved using the standard H., synthesis proce-
dure. This is not surprising, since taking robustness
against specified uncertainty into account, turns this
ILC synthesis problem into a robust performance de-
sign problem, which cannot be solved in general.
Still it might be possible to solve the synthesis prob-
lem, using the structured singular value (1), see for
example Balas et al. (1991); exploiting the diago-
nal structure in the mapping from z to w, pu can
be computed of the matrix M, the lower LFT of G
and K given in (17), for a finite number of frequen-
cies. Now a successive iteration can be performed, of
scaling the off-diagonal elements of M (D-scaling by
means of frequency domain curve fitting on p(M))
and solving the (sub)optimal H ., -synthesis problem
for the scaled system. Although convergence of this
so-called D-K iteration is not guaranteed, in a large
number of cases good results are reported, (Zhou et
al., 1996).

Now it is quite natural to proceed with maximizing
the learning performance specified in Theorem 2.2,
by iterating over the bandwidth w. of the filter Q.
Hereto, we propose the following design procedure:

Design procedure 4.1

1. Model the transfer function R as a nominal
model together with an upper bound on the (out-
put multiplicative) model uncertainty, according
to (15).

2. Choose Q(e') to be a low-pass weighting filter,

with cut-off frequency w., s.t. || Q(e*) ||=1,
Yw € [0,w.], and || Q(e') ||~ 0, Yw > w,.

3. For given Q and R, find an L that minimizes
(17) using the proposed p-synthesis.

4. If an L can be found, resulting in || T;y |lo< 1,
increase the bandwidth w. of the filter Q and
again perform step 3; else decrease w.. Perform
steps 2 and 3 iteratively, until the mazimum
obtainable w. has been reached.

5 Application to an zy¢-stage

In this section, the proposed synthesis procedure is
applied to an experimental setup of an zy¢-stage, a
high accuracy positioning mechanism. The stage is
moved repeatedly, according to some smooth trajec-
tory; for the experiments in this paper, a 3"¢ order
polynomial was used, making a lem step in approx-
imately 0.12 seconds, with AT = 3e~*%s.

For this system, two learning controllers have been
designed and implemented: one designed according
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to Design Procedure 2.1, henceforth denoted as the
nominal ILC, and the other designed according to
Design Procedure 4.1, denoted as the robust ILC.

Design of both learning controllers requires knowl-
edge of the transfer function R from f to e. A com-
mon approach for mechanical servo systems to ob-
tain this knowledge is identification in the frequency
domain, see de Callafon et al. (1996). Figure 5
shows a magnitude Bode plot of frequency domain
data, obtained with a Hewlett-Packard signal an-

(a)

10! 10’ 10’
Fraquency (Hz)
(b)
v

—— Multiplic. ditterenca
== Upperbound

10' t;J' 10"
Frequancy [Hz]

Fig. 5: (a) Magnitude Bode plot of frequency re-
sponse data of R with a 4th order nomi-
nal model (b) relative difference between the
frequency response data of R and nominal

model, together with an upper bound.

alyzer, together with a simple 4** order nominal
model fitted to this curve; the lower part of this
figure shows the absolute relative difference between
the complex frequency domain data and a frequency
response of the nominal model, together with an up-
per bound on this output multiplicative error, given
by:

3.422% — 10.32% + 10.3z — 3.42

Wo(z) = 23 —2.2922 + 1.742 — 0.44

The filter @ is chosen as a low-pass 4th order But-
terworth filter with cut-off frequency w. = 100Hz.
According to Design Procedure 2.1, the filter L for
the nominal ILC is simply obtained by inverting the
nominal 4th order model of R, resulting in a conver-
gence rate of 7, =|| Q(I — LR) ||= 0.12; Figure 6
shows a Bode plot of this filter. Also shown in this
figure, is a Bode plot of the robust filter L, obtained
via Design Procedure 4.1; the performed u-synthesis
started with a value v, = 1.38, and converged to a
value v, = 0.98 after 5 iterations. It can be seen
from this Figure that the robust learning filter is
somewhat more ‘cautious’ at all frequencies, in a
sense that it has a smaller gain.




Phasa

—— Nominal

Frequency [Hz]

Fig. 6: Bode plot of nominal learning filter and ro-
bust learning filter L, designed according to
Design Procedures 2.1 and 4.1 respectively.

With these two filters, a learning iteration was per-
formed, according to (5). Figure 7 shows the re-
sulting error signals after convergence of the ILC

600k - ]
— Nominal ILC
_800} - = Robust ILC 1

o 0.05 0.1 0.15 0.2
18]

Fig. 7: Error signals e, (t),t € [0,3e7%,...,0.24], of
nominal and robust ILC, after convergence.

schemes. This figure shows that both the nominal
and the robust ILC tremendously reduce the servo
error to approximately the same level of +£600nm
during the transient, and +100nm thereafter, which
is about 20 times smaller than the error without
ILC. The fact that this result holds for both the
nominal and the robust ILC, is because this reduc-
tion level is mainly determined by the filter @, ac-
cording to Theorem 2.2; apparently, the bandwidth
w, = 100Hz of the filter @ is high enough to give
this large error reduction.

The main difference between the nominal and ro-
bust ILC is the convergence rate of both schemes
(v« = 0.12 v 74, = 0.98); whereas the nominal
ILC converged within 3 iterations, the robust ILC
needed 10 iterations to converge to its fixed point,
clearly showing the trade-off between convergence
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rate and robustness.

Despite its slower convergence, an important advan-
tage of the robust ILC is the fact that it has been
designed for all systems characterized by the 4th
order nominal model and the upper bound on the
multiplicative model uncertainty. Hence, it is likely
that the robust ILC will give the same learning per-
formance for other systems that can be described by
the same class of systems, for example other zy¢-
stages of the same type as the one used for the ex-
periments shown in this paper.

Finally, it was investigated that the bandwidth of
the filter @ could be increased up to w. =~ 170Hz, to
obtain a final value of 4, = 0.99, using Design Pro-
cedure 4.1; for higher values of w., the p-synthesis
did not converge to a value below 1 for the specified
uncertainty set. Not surprisingly, the nominal ILC
diverged for values w. > 170Hz, indicating the re-
liability of the chosen uncertainty set W,, and the
usefulness of the proposed robust synthesis proce-
dure.

6 Conclusions

Since most schemes on iterative learning control an-
alyze their convergence in an L, sense, this paper
has shown how the design of an iterative learning
controller (ILC) can be generalized to the design
of an Ly induced (i.e. an H.), (sub)optimal con-
troller, by choosing an appropriate weighting func-
tion for learning performance, and reformulating the
ILC synthesis problem in the standard plant format.
Besides the advantages of maximizing the L, con-
vergence rate and allowing a real multivariable ILC
design, an important advantage is the fact that un-
certain system knowledge can be incorporated ex-
plicitly into the design procedure, by specifying ap-
propriate uncertainty weighting functions, turning
the nominal ILC synthesis problem into a robust
performance synthesis problem, which is hard to
solve in general. However, using a p-synthesis ap-
proach, most times this robust ILC synthesis prob-
lem can be solved, by performing a so-called D-K
iteration. This allows the designer to maximize the
learning performance for a specified class of systems.
Application of this synthesis procedure on a real life
experimental setup of an zy¢-stage, has shown the
practical ability of the proposed method.
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Abstract.

In this paper we extend known analysis and synthesis results for robust

generalized H, performance to general full block scalings and provide a full solution to
the corresponding linear parametrically varying control problem. This is only possible
if scheduling the controller not just with a copy of the plant uncertainties but with a

nonlinear function thereof.

Keywords.
parametrically varying systems.

1 Introduction
Recently linear systems

& = A(n(t))z + B(r(t))u + G(x(t))w
y = C(n(t)z + D(m(t)w
z = H(n(t))z + E(n(t))u + F(x(t))w

(1)

which depend on a time-varying a priori unknown
but on-line measurable parameter m(¢) which is
contained in some given set II have gained a lot
of interest (Apkarian and Gahinet, 1995; Apkar-
ian et al., 1994; Becker et al., 1993; Becker and
Packard, 1994; Packard, 1994; Scorletti and El
Ghaoui, 1995; Scherer, 1995). These so-called lin-
ear parametrically-varying (LPV) systems appear in
robustness problems, in gain-scheduling techniques
for nonlinear systems, or in synthesis problems for
nonlinear systems that can be described by a differ-
ential inclusion (Boyd et al., 1994). Given an LPV
system, the goal is to construct a controller

g = Ao(m(t))ze + Be(n(t))y
u = Ce(m(t))z. + De(n(t))y

$This paper is presented at the 35th JEEE Conference on
Decision and Control, 11-13 December 1996, Kobe, Japan.
Copyright of this paper remains with IEEE.

§The author would like to thank Samir Bennani, Dehlia
Willemsen and Edwin Njio (all from Delft University of Tech-
nology) for many helpful discussions,

(2)
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Robust Hj control, (integral) quadratic constraints, full block scalings, linear

which not only uses the measured output y but,
in addition, the on-line measured actual parame-
ter m(¢) as its information in order to exponentially
stabilize the system (1) and to provide good per-
formance properties expressed as a property of the
channel w — z. Up to now, the performance objec-
tive was mostly specified as reducing the L,-gain
of the channel w — 2z below a certain a priori
given level v, the so-called H.-problem for LPV
systems (Apkarian and Gahinet, 1995; Apkarian et
al., 1994; Becker et al., 1993; Becker and Packard,
1994; Helmersson, 1995; Packard, 1994; Scorletti
and El Ghaoui, 1995; Wu, 1995). The correspond-
ing problem for the LQG criterion has been dis-
cussed in Wu (1995) and Wu and Packard (1995)
and the mixed Hy/H,., problem is considered in
Scherer (1995).

One of the approaches to solve this problem pro-
ceeds as follows: Represent (1) using a linear frac-
tional transformation as

T T

X Bl

z w (3)
Z3 w3

wy = A(w(t))z2

where A : II — R**! is a possibly nonlinear known




function. Typically, if A(r), B(w), etc. in (1) are
rational functions of m € R™ without pole in 0, one
can obtain this representation with

A(m) = diag(m Iy, ..., Tmdm) (4)
where I; denote identity matrices of varying size.
The description (3) then resembles an uncertain sys-
tem as considered in p-theory with real time-varying
parametric uncertainty. In this case II is often as-
sumed to be a box in R™ centered around 0.

The controller is then assumed to admit the same
structure: It consists of an LTI system

dc = Az +B, Lf J : [”J = C.z+D, B] (5)

(-] c

that is scheduled as

we = A (7(t))ze (6)
with a possibly nonlinear function A, : IT — Rk< >,
The LPV synthesis problem is posed as follows:
Find A,, B., C,, D, and a function

A : I — R

such that, for all parameter curves 7 : [0,00) —
IT, the closed-loop system is exponentially stable
and has a certain desired performance property de-
scribed using the channel w — 2.

Note that the system (3) controlled by (5)-(6) can
be also obtained by connecting

EX "ABUGGng'-a:'
y C 0 0|D D, 0
We = (=50 10N 0 0 Ik¢ Ze
2z - HE 0|F Flg 0 w
22 Hy; E; 0 |Fy; Fa3 0 wy (7)
| 2 | _0 0 4 [0 0 0J | we
wy]  [A(w(t)) 0 [ 22
el = O rent 2]

with the LTI controller (5).

If dealing with the L, gain as a performance mea-
sure, if A(7) admits the special structure (4), and if
choosing A () = A(x), the resulting LPV problem
hence turns out to be a robust H,, problem for static
time-varying uncertainties. The first approaches to
this problem were restricted to solve the correspond-
ing upper bound pu-synthesis problem with block-
diagonal constant D-scales (Packard, 1994; Apkar-
ian and Gahinet, 1995). Recently it has been shown
how to include the block-diagonal G-scales to reflect
the fact that the parameters are real-valued and to
reduce conservatism (Fan et al., 1991; Helmersson,
1995; Scorletti and El Ghaoui, 1995). However, for
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the robust stabilization problem, it has been pointed
out (Rantzer and Megretski, 1994; Iwasaki et al.,
1995) that it is possible to use a much larger class of
scalings defined via (integral) quadratic constraints.

The purpose of this paper is twofold. Firstly we
want to show that it is possible to approach many
other robust performance problems using this gen-
eral class of scalings, including robust H,-criteria
(Iwasaki, 1993; El Ghaoui and Folcher, 1996). Along
the lines as described e.g. in Boyd et al. (1994),
one just needs to combine the Lyapunov shaping de-
sign technique with an uncertainty description using
quadratic constraints. This leads to less conserva-
tive results than those derived in Boyd et al. (1994)
via the S-procedure. As a paradigm example we
choose the L, — L, gain of the channel w — z as
a performance measure which has been called gen-
eralized H; norm (Rotea, 1993). However, the tech-
niques easily extend to the other problems consid-
ered in Boyd et al. (1994) and Scherer et al. (1995).
Similarly as in Iwasaki et al. (1995) for the robust
stabilization problem we derive the corresponding
analysis and synthesis results for uncertain systems.

Secondly, in the spirit of Packard (1994), Apkarian
and Gahinet (1995), Helmersson (1995), and Scor-
letti and El Ghaoui (1995), we will fully solve the
LPV control problem for the general class of scalings
Q, R, S that are simply described by

Q<0 >0, [AM]'[2 5] 18]

for all # € II, and for the generalized H, perfor-
mance measure. We do not need to assume any
additional specific structure on the function A(r)
(such as linearity) or on the scalings Q, R, S (such
as being block-diagonal) as done before. It is not
difficult to see that this set of scalings admits a
nice description in terms of finitely many LMIs if
A(II) is a convex polytope with finitely many ex-
treme points. (Note that this amounts to a specific
structure of the image of II under A and not neces-
sarily of the parameter set II itself.) As an essential
new ingredient it will turn out that the controller
scheduling function A.(7) cannot be chosen equal
to A(w) but, even in the simple case (4) and if IT is
a box, it has to be taken as a nonlinear function of
A(w) that can be explicitly constructed.

Thoroughout the paper system are considered on
the time-interval [0,00). L, denotes L}[0,00) (for
some n) with norm ||z||3 = [[z(t)T2(t)dt and L,
denotes L7 [0, 0) (for some n) with norm ||z||2, =
ess sup,>q 2(t)Tz(t). The function sym(X) = X +
X7 is used to shorten the layout.




2 Analysis for uncertain systems

Suppose that the uncertain system is described as

& A G G, z
Zale == [DHN G 0 w |, wy=A(t)zs (8)
Z Hy Fyy Fop | |ws

with the time-varying (continuous) perturbation
A(t). Here w — z is the performance channel and
wy; — z the uncertainty channel. The class of un-
certainties is specified through a family of quadratic
constraints (Rantzer and Megretski, 1994) defined
by a set P of scalings P that are tacitly assumed to
have the structure

_ mt. el Q5
2= _[STR]’Q<O’R>0
with @Q/R of the size of w; /2, respectively. Indeed,

we just assume that all uncertainties affecting the
plant satisfy the quadratic constraints

T
A(t) A(t)
AR [2A0)0
for all P € P and for all ¢t > 0.

As a typical example we mention polytopic uncer-
tainty. Suppose A(t) is known to be contained in a
convex polytope with finitely many extreme points:

A(t) € conv{A;,...,As} for all ¢t > 0.
Then P is simply described as @ < 0, R > 0 and

T
A; Aj ;.
[I] P[IJ>Dfora]lJ—1,...,6.

Due to @ < 0, it is easily seen that (9) indeed
holds for all uncertainties in the convex hull. Hence,
in this case, the set of scalings P admits a nice
parametrization in terms of finitely many LMIs.
The goal of this section is as follows: Character-
ize whether (8) is robustly exponentially stable and
whether the gain of Ly 3 w — z € L, is robustly
smaller than . If both properties hold we say that
the system has robust generalized H; performance
level 7.

It is very easy to derive the analogue of the con-
stantly scaled bounded real lemma (Rantzer and
Megretski, 1994; Iwasaki, 1993) for the robust gen-
eralized Hj-criterion.

Theorem 1 If there ezist X > 0 and P € P such

that
ATX + XAXG XG,] [0HF] [oHTFY
+|0FE |P|OFf <0,

GTX = )

¢fx o o | lrrr| |rEZ
X HY >0
H I !

(10)

then the system (8) has robust generalized H, per-
formance level ~.

To obtain the results in Section 4 it is crucial to re-
formulate the first inequality in (10) in a symmetric
fashion that seems new and that reveals the relation
of the general scalings to the standard D, G scalings
used in p-theory. Based on the formulas in the ap-
pendix we transform the scalings as

T [ U w] > [Q—SR"lsTSR'l]

wTv Rerg L SR
(11)

and denote the image of P under this bijective

transformation as T'. Then (9) is equivalent to

[ 1 g

and (10) is equivalent to

ATX + XA XG| XG, He

GTX I 0 i
GTX 0 g HEaw| <®
2 22 T
H, Fo|Fa +WT vV
X HT 40
H oI '
(13)

Corollary 2 Suppose there exisis an X > 0 and

some {V:’IT ‘:,f] € T with (13). Then the system

(8) has a robust generalized H, performance level
7.

Note that the inequality (12) describing the uncer-
tainty is affine in 77! and the inequality (13) is
affine in T itself. Hence the proposed scaling trans-
formation has a linearizing effect on these inequal-
ities. Numerical benefits of this transformation for
synthesis (Section 3) remain to be explored.
Similar results can be obtained for the following per-
formance criteria (Boyd et al., 1994; Scherer et al.,
1995):

o General quadratic constraints

[ g8l

2(t)| |SZ R, | | 2(t)

with @, < 0, R, > 0 which includes Lj-gain
and dissipativity requirements.

e A robust bound on the H; norm. Here the
H; norm is defined as follows: Let the distur-
bance w be absent. Moreover, let 27 denote the
output of the system for the initial condition




z(0) = Ge; with the standard unit vectors e;.
Then the squared H; norm is defined as

Z fo b 2(t)T 2 (t)dt.

¢ A robust bound on the Ly, 3 w — 2 € L, gain
of the system.

o Mixed criteria as presented in Boyd et al.
(1994), El Ghaoui and Folcher (1996) and
Scherer et al. (1995).

We have extended the results of Rantzer and
Megretski (1994) and Iwasaki et al. (1995) to ro-
bust performance problems that can be expressed
in terms of time-invariant quadratic Lyapunov func-
tions. Moreover, although in spirit quite similar to
Iwasaki et al. (1995), Boyd et al. (1994), El Ghaoui
and Folcher (1996), it generalizes these results in
two respects: Firstly, we allow for quite general un-
certainty structures not restricted to block-diagonal
matrices. Secondly, even if the uncertainty is block-
diagonal, we allow for full block scalings P. This
avoidance of the channel-wise application of the S-
procedure leads to less conservative analysis results.

3 Synthesis for uncertain systems

Let the system be described by (3) with A(7(t)) re-
placed by A(t). In the synthesis problem we search
for a controller

t. = Az.+ By, u=C.x.+ Dy

to achieve robust generalized H, performance of
level v for the resulting closed-loop system. Only
for notational simplicity we assume that

Dczl]a.ndF:O, F12=0, F21=0, F3=0.

Through a suitable change of the controller pa-
rameters it is immediate to obtain from Corollary
2 the required synthesis inequalities and a recipe
for constructing a controller (Masubuchi et al.,
1995; Scherer et al., 1995).

Theorem 3 Suppose there ezist X, Y, K, L, M

and [ UT W} € T satisfying the two inequalities
wtv
sym(X A+ LC) * * % *
KT + A sym(AY + BM) = | * x
(XG+ LD)T GT =If0 0 | <0,
(XGz + LD,)T G; 0|Uw?*
H, H,Y +E.M 0W V

100

X I HT
I Y (HY + EM)T | > 0.
H HY + EM I

With nonsingular My and My such that I — XY =
M; M,, the controller

Ce=MM;', B.=M'L
A. = M{'[K — XAY — M1 B.CY — XBC.M;|M;™

renders the robust generalized Hy performance level
of the closed-loop system smaller than v.

Contrary to previous results in Iwasaki et al. (1995),
we end up with synthesis inequalities that are affine
in all variables, including the scalings. Nonconvexity
enters the problem via the constraint set T' which
does not admit an nice LMI parametrization.

Due to the specific structure of the synthesis LMIs
one can easily eliminate the parameters K and L
(Scherer, 1995). Let us, instead, briefly turn to the
state-feedback problem C = I, D = 0, D, = 0.
Since, for any X, the left-upper block of the first
synthesis LMI can be arbitrarily assigned, the in-
equalities reduce to

sym(AY + BM) G ‘Gg (HyY + E;M)T

GT Il 0 0 :
GT 0(U wT po
HyY + EsM 0 |W v
(14)
Y (HY +EM)T
[HY+EM ol e

Note that, in this case, the controller can be chosen
as u = MY 'z and is, hence, static.
Dualization (appendix) leads to the inequality

sym(AY + BM) G |« G20 G20 Z
GT —I0|+|00|P| 00| <0
010 01I 017

H,Y + E, M
— (16)
- Q S
703 o Sl [ 3T R
polytopic uncertainties, the set of transformed scal-
ings P admits the LMI description Q@ > 0, R < 0,

] which is equivalent to (14). For

P by
[M] ﬁ[ar} >0forallj=1,...,4.
J a

Hence using (15) and (16), the state-feedback gen-
eralized Hy control problem for uncertain systems
is reduced to solving a genuine LMI problem. This
extends Iwasaki (1993) and El Ghaoui and Folcher
(1996) to general scales and Iwasaki et al. (1995) to
the generalized H;-criterion.




4 Synthesis for LPV systems

With a (compact) set II and a (continuous) function

A : TI — R**! the underlying system is described

as (7) where #(t) is an arbitrary (continuous) curve

with w(¢) € II. The LPV synthesis problem is posed

as follows: Find an LTI controller (2) and a (con-

tinuous) function A, : I — R*<*! such that the
x

system
& AGG.
z = H OO0 )
Ze H.0 0 We

w
b [NE&” Actg(t))] -

that results from (7) controlled with (5) has robust
generalized H, performance level v for all x(t) € II.
We are now ready to formulate the core result of this
paper whose proof cannot be included for reasons of
space.

Theorem 4 The nezt two statements are equiva-
lent.
1) There ezist a controller (2), a function A, : II —

k. xle . = Qe Se
R , a scaling P, [SeT Rc], s < 0y He >0
and a matriz X > 0 such that
"A(r) 0 T [A(x) 0
0 A.m) 0 A.(m)
I 0 i 2 I 0 >0 forall ® € II
gL Qul; 0T
(17)
and
FATX + XAXGXG.] [0HT] [oHET
GTx —7 0 6 lond A e [0 0ml==0;
L gTx 0 0 I0 I0
X HY
0.
[H "rf] g
(18)

2) There exist matrices X, Y, L, M and scalings

" Tes] s_[@sS . -
P_{STR],PA STR],Q,R<0,R,Q>O,
with 2,

A(r) A(w)
[ : ] p[ G o,
o (19)
I stk v
laer] #lacr) >
for all m € II and

sym(X A+ LC) x x* 0 HF 0 HF G,

(XG+LD)T -10|+|0 0 [P|0 0 | <0,
(XGy+LDy)T 0 0 I0 | I0
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sym(AY + BM) G * G50 Ga 0

GT 410]+[00ﬁ 00]<0,
[ HY +EM 00 017 01

X I HT

I Y (HY +EM)T:| > 0.

H HY + EM ~I

Let us now comment on how to apply this result for
solving the LPV control problem. Trivially, the set
of all scalings with (19) is convex. In a first step
one has to solve the three synthesis LMIs for X, V',
L, M, P, P over these convex constraints. This is
indeed possible with standard algorithms if A(II)
is a polytope since then the sets of scalings P, P
satisfying (19) admit descriptions in terms of finitely
many LMIs (Section 2). Note that one can even
directly minimize the performance level v (Gahinet
et al., 1994). In particular, this is assured if II itself
is a polytope and A(r) is affine in w. A special case
is (4) where 7 is contained in a box (containing 0).
Compared to Helmersson (1995) and Scorletti and
El Ghaoui (1995), we even then allow for a larger
class of not necessarily block-diagonal scalings. This
reduces conservatism at the expense of increasing
the number of synthesis LMIs due to the implicit
description of the scalings.

Hence one can determine the achievable perfor-
mance level, and it remains to construct a suitable
controller. For this purpose we assume that the syn-
thesis LMIs have been solved for X, Y, L, M, P, P.
Due to Q@ < 0 and R > 0, P is nonsingular, and the
same is true of P. We can as well assume w.l.o.g.
that P — P~ is nonsingular. Let

k. and [,

be the number of negative/positive eigenvalues of
P — P~ respectively. It is possible to prove that
one can construct an extension

Q Q2| § Sz
p. = |9e Se| _ Q21 Q22|52 S
SsT R ST ST R Ri,
87, 5%,|Ra1 Ry

with dimension (k+ k.) x (I +1.) that has the three
R Ry,

. Q sz] [ ]
roperties < 0, > 0, and
RS [Qsz Q22 Ra1 Rap

(The proof of this fact is nontrivial but construc-
tive. It shows that k. and [. are indeed minimal;




there is no smaller extension which has all the de-
sired properties. If the scales are block-diagonal,
this extension can be performed block-wise and is
easier.)

Due to (19), it is then possible to determine a func-
tion A.(7) that satisfies (17). With

Uyr Uiz |Wh Waa

Upp Upa |Way Wy | [ —QT Q'S

Wi Wa | Vin Via | [SeTQe_l R, - SE'Q;-lSJ
Wih Wh|Var Vay

(partitioned in the same way as P.), the function

Ull Wll
*

e A(«)]‘l [w,g
Vi1 Via

[Ua1 Way ] { ] — Wa,

is a possible choice. Note that, in general, and con-
trary to what is done in Packard (1994), Apkarian
and Gahinet (1995), Helmersson (1995), Scorletti
and El Ghaoui (1995), A.() differs from A(r), even
for the standard structure (4)! Once the scaling P,
is constructed it remains to apply Theorem 3 for the
system (7) and the transformed version 7, of the
fixed scaling P, to determine 4., B,, C. by solving
an LMI.

This controller is guaranteed to satisfy (18) for some
X > 0. Since P, satisfies (17), we can finally infer
from Theorem 1 that the closed-loop system has a
robust generalized H; performance level 7 - the LPV
problem is solved.

5 Conclusions

The analysis and synthesis results for achieving ro-
bust generalized H, performance with general scal-
ings are pretty straightforward extensions of well-
established ideas. In this paper we provide a full
solution of the corresponding problem for LPV sys-
tems what extends previous specialized results in
a nontrivial fashion. As a crucial and structurally
interesting step one has to schedule the controller
with a function that is generally different from, and
actually a nonlinear function of, the parameters of
the plant.
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Appendix
Suppose Q,R < 0, Q, R > 0. Then the relations
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Abstract.

This paper discusses an approach to the control of Linear Parametrically

Varying (LPV) systems that can take the rate of parameter variations into account and
also guarantees robustness against parametric and dynamic uncertainties. To illustrate
the technique we consider a missile control problem that has been extensively studied in
the literature. For this highly nonlinear model, the objective is to design a controller with
guaranteed performance robustness over a given operating range.
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1 Introduction

The classical approach to gain scheduling relies on
the interpolation of controllers designed for frozen
parameters as, e.g., the operating conditions. This
procedure, even if seemingly working well in prac-
tice, does not take the time-variations of the in-
volved parameters into account. In particular, one
cannot provide a priori stability and performance
guarantees, as shown in Athans and Shamma (1992)
for linear systems that depend on a time-varying pa-
rameter. Such systems are called linear parametri-
cally varying (LPV). In the early nineties (Packard,
1994; Apkarian and Gahinet, 1995) it has been ob-
served that the techniques of robust control can
be generalized to arriving at a systematic design
procedure for such LPV systems. These solutions,
however, lead to the desired performance guaran-
tees even if the rate of change of the parameters
is unbounded. A refined approach which will be
pursued in this paper takes bounds on this rate of
change into account (Wu, 1995; Apkarian and Ad-
dams, 1995; Willemsen, 1996; Scherer, 1995). In ad-

t Author to whom correspondence should be addressed.

SMechanical Engineering Systems and Control Group,
Delft University of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands.
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dition, our technique allows to incorporate robust-
ness properties into the design procedure.

The paper is structured as follows. We first provide
the description of the uncertain LPV system. Then
it is shown how the structural knowledge about the
uncertainties is reflected in suitable classes of so-
called multipliers or scalings. This leads to the anal-
ysis characterization of stability and robustness of
the LPV systems in terms of a scaled differential
Bounded Real Lemma. For LPV controller synthe-
sis, we apply a linearizing transformation of the con-
troller parameters (Masubuchi et al., 1995; Scherer,
1995). Introducing basis functions and gridding
the parameter set will result, for fixed scalings, in
finitely many linear matrix inequalities that can be
readily solved (Gahinet et al., 1994). If optimizing
as well over the scalings, we have to resort to a D-
K-like iteration (Balas et al., 1993).

The theory is illustrated on a missile benchmark
problem as studied in Rugh et al. (1993) and Wu
(1995). In contrast to Wu (1995), which consid-
ers the nominal performance LPV problem, we also .
address robust performance issues. Starting from
a given nonlinear model, we obtain an uncertain
LPV representation accessible for design. Then
the design specifications are translated into suitable




weighting functions as in the H.-approach. We end
up with an interconnection structure and perform
the iteration that is comparable to the D-K pro-
cedure in p-synthesis (Balas et al., 1993). Finally,
we validate the robust LPV controller by nonlinear
simulations.

2 LPV design

2.1 LPV systems

The uncertain LPV system is described by
& = A(p)z + G(p)w + B(p)u

2z = H(p)z + F(p)w + E(p)u
y = C(p)z + D(p)w

(1)

where, with a suitable partition of the signals w =
Wl wE . reata ] 80d 2 = [2d, 25, ces Zi | 5 D8
uncertainty enters as

=t b (2)
and wg +— 2zp is the channel to describe the per-
formance specification (Figure 1). The parameter
p(t) and its rate of variation p(t) are assumed to be
contained in the a priori given compact sets P and
P, respectively. For controller design the parameter

Uy = N2,

Ay
A
Wk WI Zl Ly
M(p)

Fig. 1: LPV system with uncertainty and a perfor-
mance channel

p(t) is assumed to be on-line measurable. Hence,
LPV controllers take the form

&, = A.(p)z. + B.(p)y (3)

RN cctp)xt + Dc(p)y

such that the resulting closed-loop system is de-
scribed by

§ = A(p)¢ + G(p)w

z = H(p)¢ + F(p)w )

106

together with (2), where

_ | A(p) + B(p)Dc(p)C(p) B(p)Ce(p)
He) [ B.(p)C(p) Ac(p) } :
_ | G(p) + B(p)D:(p)D(p)

H(p) = [H(p) + E(p)Dc(p)C(p) E(p)Ce(p)],
F(p) = [F(p) + E(p)Dc(p)D(p) ] -

2.2 Analysis of uncertain LPV systems

In this section we will provide an analysis result
that characterizes robust stability and robust per-
formance for the uncertain LPV system (4), (2).
For that purpose we need to introduce scalings
that characterize the nature of the uncertainties A;
affecting the plant in terms of integral quadratic
constraints (IQCs) (Rantzer and Megretski, 1994).
Hence, for each channel, we define a collection of
matrices Q;, S;, R; such that the IQC

[ETE)E) e o

holds for T' > 0 and for all signals w;, z; of finite
energy that are related by w; = A;2z;. As examples,
we mention

¢ time-varying parametric uncertainties w;(t) =
[6:(8)X]2:(2), [6:(2)] < 1:

Q:<0 R, =-Q;, S;:+S8F=o.

e dynamic uncertainty A; : Ly[0, 00) — L[0, 00)
with gain not larger than 1:

Qi. = Q’;I < 0) Ri = _Qiu Sl' =)

We take the L,-gain of the channel wg — zp as a
measure for performance. The Ly-gain of this chan-
nel is bounded by the value v if the IQC (5) holds
with the fixed scaling

(o B s e
2

Finally, we collect the scalings into block-diagonal

matrices as Q@ = diag(Qo,Q1,...,Qk), R =
diag(RO;Rls"-)Rk)) and S :—diag(SO,Sl,...,Sk].

Now we are ready to provide the characterization
of robust stability and robust performance in terms
of the solvability of a so-called scaled differential
Bounded Real Lemma whose proof is straightfor-
ward (Helmersson, 1995; Scorletti and El Ghaoui,
1995; Scherer, 1995; Willemsen, 1996). For nota-
tional convenience we define sy(M) := M + M7T.




Theorem 1 Suppose there exist smooth
and bounded functions X(p), Q(p), R(p), S(p) on
P such that

X(p) >0
sy(X(p)A(p)) + X'(p,5) X(p)S(p) +HT(p)S(p) *

g7 (p)X(p) + ST (p)H(p) sy(F*(p)S(p)) + R(p) *
Q(p)H(p) Q(p)F(p) Q(p)

<0

(6)

holds for all p € P and p € P,. Then, for all pa-
rameter curves (p(t),p(t)) € P x P, and for all un-
certainties (2), the system (4) remains stable and
the Ly-gain of the performance channel is bounded

by 7.

Here X'(p,p) is defined as
e i N O
X'(p,p) = ; 3p; PP

Hence we have to find a parameter dependent Lya-
punoyv function and parameter dependent scalings to
satisfy a differential linear matrix inequality (Apkar-
ian and Addams, 1995; Scherer, 1995). This gener-
alizes the idea of using a constant Lyapunov func-
tion (Becker, 1993; Apkarian and Gahinet, 1995)
and constant scalings for arbitrarily fast varying pa-
rameters.

To solve the inequalities numerically we choose con-
tinuously differentiable functions fi(p)... fi(p) and
search for the coefficients in the expansion

1
[X(p) Q(p) R(p) S(p)]=)_ £;(p) [X; Q; R; S;].

J=1

The resulting infinitely many LMIs are reduced to
finitely many inequalities by picking a finite number
of points in P and P,. If P, is described as a con-
vex combination of finitely many vertices, it suffices
to choose the extreme points since the parameter
p appears linearly in (6) (Wu, 1995; Apkarian and
Addams, 1995).

2.3 Controller synthesis

The synthesis problem consists of designing a con-
troller (3) that minimizes the robust performance
level « as characterized in Theorem 1. However, the
inequalities (6) are not linear in all the unknowns,
the Lyapunov function, the scalings, and the con-
troller parameters. It has been shown in Masub-
uchi et al. (1995) and Scherer et al. (1995) how
the inequalities can be linearized, for fixed scalings,
by a suitable nonlinear transformation of the con-
troller parameters as follows: If denoting the first
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block rows of X (p) and X(p)~* as [ X (p) U(p) | and

[Y(p) V(p]] respectively, introduce the new con-
troller parameters

K(p,p) = X(p)[A(p) + B(p)Dc(p)C(p)]Y (p)+
+U(p)B.(p)C(p)Y (p) + X (p)B(p)C.(p)V ™ (p)+
+U(p)A(p)V7 (p) + X'(p,9)Y (p) + U' (2, )V (D)

L(p) = X(p)B(p)D.(p) + U(p)B.(p)

M(p) = D(p)C(p)Y (p) + Ce(p)V” (p)

N(p) = D.(p)
(7)

and transform the blocks in (6) as

XA— XA+ LC K

A+ BNC AY + BM

XG+ LD 7 (H + ENC)T

Xg_’[G+BND]‘ =@y + EM)T
XL i 3, S0l
S PR

where we dropped the dependence on p and p.

As explained for analysis, we can introduce basis
functions and grid the parameter set to end up
with finitely many inequalities. However, the re-
sulting inequalities are still nonlinear in the new
variables and the scalings together. Hence we have
to resort to a D-K-like iteration scheme that pro-
ceeds as follows: Start with the uncertainty scalings
Qi(p) = —1I, Ri(p) = I, Si(p) = 0 and iterate the
following two steps until the performance level can-
not be improved:

1. Fix the scalings and minimize < over
X (p), Y(p) and the transformed controller pa-
rameters K (p, p), L(p), M(p), N(p).

2. Fix the controller parameters K (p,p), L(p),
M(p), N(p) and minimize the performance
level 7 over X(p) and the uncertainty scalings
Qi(p), Ri(p), Si(p) as described for analysis.

Suppose the iteration stops with X(p), Y(p),
K(p,p), L(p), M(p), N(p). Then one simply needs
to choose nonsingular smooth and bounded func-
tions U(p), V(p) satisfying

Y(p)X(p) + V(@)U (p) = I (8)

in order to calculate the controller by solving (7) for
Ac(p,p), Be(p), Ce(p), De(p)-

Since A.(p,p) depends on p, one needs to measure
not only the parameter value p(#) itself but also its




rate of variation p(t) to implement the resulting con-
troller. To avoid this undesired structure, we choose
K (p) independent of p and either X (p) or Y'(p) inde-
pendent of p. Exploiting the freedom in the choice
of U(p) and V(p) allows to construct a controller
that depends on p only:

e If X(p) is parameter dependent and Y is con-
stant, choose U(p) = I — X(p)Y and V = I.
Taking derivatives in (8) reveals

YX'(p,5) +VU'(p,p)" =0 (9)

such that the terms in (7) that depend on p

indeed drop out.

e If X is constant and Y (p) is parameter depen-
dent, choose U = I and V(p) = I — Y (p)X.
This implies X'(p,p) = 0, U'(p,p) = 0 such
that, again, the variable p disappears in (7).

Note that this restriction to constant X (p) or Y (p)
certainly introduces conservatism, with the benefit
of a simpler controller implementation.

To speed up the computation, we finally remark that
we performed all calculations after eliminating the
transformed controller parameters along standard
lines by using the projection lemma and by fixing
S(p) = 0 (Apkarian and Addams, 1995).

3 The missile control problem

For the application we have chosen a missile bench-
mark problem that has been extensively studied in
Packard and Balas (1992), Rugh et al. (1993), Wu
(1995), Helmersson (1995) and is particularly suited
for addressing gain scheduling as well as robustness
issues. The problem is to design a longitudinal au-
topilot for a tail-fin controlled missile providing nor-
mal acceleration tracking over a large range of speed
and angle-of-attack. In order to arrive at a design
model (in section 3.3), the exact problem specifica-
tions are first given in section 3.2. These are based
on the missile model which is defined in section 3.1.

3.1 The missile model
The non-linear state equations of the missile are

cos(a)?

& = fi(a,q,86, M) = F.(a, 6, M)+q(10)

mu

§ = falea,8,M) = (6, M) (11)
v

with
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a angle-of-attack (rad)

q pitch rate (rad/s)

F, Cn(a, 8, M)0.7poM?*S (lbs)

My, Cm(c,8,M)0.7poM2Sd (£t - Ibs)

é tail fin deflection (rad)

po  973.3 1b/ft* (static pressure at 20,000 ft)
S 0.44 ft® (reference area)

d 0.75 ft (diameter)

m 13.98 slugs (mass of missile)

u V cos(a) ft/s (speed along missile center line)
Vv M ss ft/s (velocity of the missile)

M 2 — 4 (Mach number of the missile)

88 1036.4 ft /s (speed of sound at 20,000 ft)
VKR 182.5 slug - ft* (pitch moment of inertia)
g 32.2 ﬂ;/s2 (acceleration due to gravity)
Nz normal acceleration of the missile (per g).

The aerodynamic nonlinearity and parameter de-
pendence in the missile model are reflected in the
normal force and moment coefficients C,(c, 8, M)
and C,(a,8, M) respectively. Taking the missile
symmetry into acount it suffices to consider the pos-
itive values of the angle-of-attack. The aerodymanic
coefficients are then given by

Cn(,8, M) = ana® + bn0? + ca(2 + H)a+ d,é
Cml(a,8, M) = ama® + bna® — e (7 — %M]a + dmé

where the polynomial coefficients are

an = +0.000103 deg™®  am = +0.000215 deg™®
b, = —0.009450 deg™> b, = —0.019500 deg 2
cn = —0.169600 deg™ ¢, = 40.051000 deg™*
d, = —0.034000 deg™*  d,, = —0.206000 deg".

These coefficients are valid for the missile traveling
between Mach = 2 and Mach = 4 at an altitude of
20,000 ft. Typical maneuvers for this missile result
in angle-of-attack values ranging between —20 and
+20 degrees. Hence the approximation cos(a) =~ 1
is legitimate. Then (10) simplifies to

. F.(c,6,M)
= - + q. (12)
One way to obtain an LPV model for the missile is to
parametrize the set of all equilibrium models. For
any angle-of-attack a € [0, 20] and Mach number
M € [2, 4], the fin deflection and pitch rate

é(a, M) = _di 0 + bma® — e (7 = .8_.2_4)(,
= _F;[a,é,M}
gla, M) = =— e

lead to an equilibrium of (10)-(11). The specific
normal force n, is measured by an accelerometer




placed at the the center of gravity of the missile. It
is defined as n, = §3 where W = mg. For conve-

nience we use the shorthands K, = %‘”j‘—f, K, =
H}l"ﬁ K, = % %%95  The Jacobi linearization

of the missile dynamics is then given as

¢ = Ala, M)z + B(a, M)u

y = C(a, M)z + D(a, M)u
where
sty - oo 1
B(a, M) = (Kﬂiﬁgg 00661‘1{4')}//6:366)
Cla, M) = (K“Mﬁac (e, 0, M) /8t tll)

0
DM = ( e, urracy(o,5,M)/6m)

We end up with a family of linearized system that
are parametrized by p = (a, M). For a particular
parameter value p in the allowable parameter set,
the LPV dynamics are called frozen and reflect a
local linearization of the missile dynamics.

3.2 The uncertainty description and perfor-
mance specifications

The specifications to be achieved by the controller
have to hold over the whole Mach range [2, 4].
Therefore, the system should globally provide nor-
mal acceleration command tracking features, with
rise-time not greater than 0.35 s, overshoot not
greater than 10 %, and steady state error not greater
than 1 %. The measurements available for con-
trol are the normal acceleration n., the pitch rate
g and the Mach number M. During a maneuvre,
the angle-of-attack should satisfy || < 20 degrees
while the tail-fin deflection rate should not exceed
25 deg /s per commanded g-level.

As very strong simplifications in the missile mod-
eling have been made, we take the robustness is-
sue originating from the uncertainty in the aerody-
namic coefficients C,, and C,, into account. The
uncertainity levels considered are AC, = +10 %
and AC,, = =25 %.

The controller provides fin commands §. that are
processed through second order actuator dynamics

given by Gue(s) = T’TJE.TJ:?Z' with natural fre-
quency w = 150 rad/s and damping ¢ = 0.7. To
avoid exciting unmodeled high frequency dynam-
ics, the multiplicative input uncertainty weighting

A Sff% is placed at the actuator.
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3.3 Control strategy

To realize the specifications over the prescribed op-
erating range, the missile dynamics are reformulated
into an uncertain parameter varying system repre-
sentation as used in section 2.1. The LPV system
with parameter p = (@, M) has now an uncertain
part arising from the perturbations in the aerody-
namic coefficients. A further strategy is to view the
angle-of-attack in the parameter vector p as uncer-
tain. Hence, the angle-of-attack a and the uncer-
tainties in the aerodynamic coefficients C,, and C,
are pulled out of the system and rescaled to [—1,+1].
The resulting uncertainty structure in the missile
dynamics is then A, = diag (8,12, Ac,, Ac,, )

The control architecture for the missile problem
is depicted in figure 2. The tracking specifica-
tion has been translated into an ideal acceleration
model that the closed loop system should match.
The ideal model comes from Wu (1995) and is

Wia(s) := %ﬁf—% for which the allowable er-
ror is weighted as Wyere(s) 1= 824410321, The low
frequency gain of W,..r is 300 to bound the track-
ing error by 0.33 %. The high frequency gain is
chosen to be 0.5 in order to limit the overshoot to
be less than 5 %. To reflect the tail-fin deflection
and deflection rate limits of 20 degrees and 25 de-
grees/s per g respectively, the filters W; = j; and
W; = ;¢ have been chosen accordingly. Finally,
noise ﬁlters Wa1 = 0.001, and W2 = 0.001 are used
to reflect the measurement imperfections in pitch
rate and normal acceleration.

Kl

_:l::l |‘,

* Sl & f L{__"
Wil

nose

Fig. 2: The controller synthesis interconnection
structure

4 Results

4.1 The design of the LPV controller

In this section we will use the synthesis LMIs (6)
as derived in section 2. Solving the LMIs is done
via basis functions and gridding of the parameter
space. For the missile control problem, the Mach




number M is the remaining parameter for schedul-
ing. The angle-of-attack o, the aerodynamic coef-
ficients C,, and C,, and the actuator were all as-
sumed uncertain. As the Mach number M can be
placed in an LFT linearly, we choose a basis func-
tion as f1(M) = M (see also Apkarian and Addams
(1995)). For the function X (M), e.g., we thus have

X(M) = Xo + X1 M.

The other functions depending on the: parameter M
are Y(M), Q(M), K(M), L(M), M(M), N(M),
and have the same structure as X (M).

The grid of the parameter set M € [2, 4] consisted
of five points equally spaced between Mach = 2
and Mach = 4. As the Mach number will decrease
from M = 4 to M = 2 in five seconds in the non-
linear simulations, the parameter rate was taken
|M| < 0.5/s. Further, we use a block diagonal scal-
ing matrix @ = diag(Qo, ..., Q4) arising from the
uncertainty and the performance channels: the ma-
trix @ of dimension 2 x 2 for the uncertain «, the
two scalar blocks @3, Qg for the uncertainty in Cj,
Cpm, the scalar block Q4 for the dynamic actuator
uncertainty, and the 3 x 3 block @ for the perfor-
mance specification. In the first iteration the scal-
ings are set to unity. Once convergence is achieved,
the large LMIs (6) are solved for the last scaling Q
that was found in the iteration.

In section 2.2 it was explained that choosing either
X or Y constant led to a controller that does not
need a measurement of the parameter rate. For the
missile control problem, both options were tested.
The scheme using X constant and ¥ parameter de-
pendent converged faster than the one where X was
parameter dependent and ¥ constant. In 14 steps
a vy-value of 2.50 was reached whereas the other op-
tion only reached the value of 3.87 after 20 iteration
steps. In figure 3 the achieved 7-value is set out
against the number of iteration steps for both pro-
cesses.,

The final controller synthesis was carried on the
choice (Xo, Y (M)) where v = 2.5 was achieved. The
scaling matrix @ of the last iteration is used to syn-
thesize the controller using the full LMIs (6). The
achieved v-value was 2.51 and the test on a denser
parameter grid (with twice the density) gave « val-
ues between 2.22 and 2.45. Comparing the achieved
performance level with Wu (1995) and Helmersson
(1995), we concluded that the iteration procedure
was successful.

4.2 Simulations

The non-linear simulations of the LPV controlled
missile are depicted in the figures 4 to 7. The ma-
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Fig. 3: Comparing the two options for solving the
synthesis LMIs
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Fig. 4: Normal acceleration n. for the commanded
acceleration scenario n. of the LPV con-
trolled missile.

neuver, during which the Mach number varies as
shown in figure 7, consists of a series of acceleration
step commands as depicted in figure 4. The acceler-
ation command response of the LPV controlled mis-
sile has a rise time that is less than the prescribed
0.35 s. The steady state error is within the required
bounds. Overshoot characteristics are also within
the limits. Only the step command from 30 g to
—15 g causes a 3 % overshoot violation. As a rem-
edy one could try to redesign the weightings. A
possible choice to enhance damping of the acceler-
ation response is to increase the weight on the fin
rate filter W; since maximum fin rate is by far not
reached in the non-linear simulation. Also the per-
formance filter could be adjusted to further punish
the overshoot (increase high frequency gain of the
filter). However, we left the filters Wiq and Wic.r the
same as in Wu (1995) in order to be able to com-
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Fig. 8: Command response for all combination of

Fig. 5: Angle-of-attack « for the commanded accel- 3
perturbed aerodynamics

eration scenario n. of the LPV controlled
missile.

8

pare the results. The LPV controller synthesized
here has a larger overshoot, but it is faster than the
one in Wu (1995). Moreover the LPV controller of
Wu (1995) exceeds the angle-of-attack limit of —20
degrees while also needing much more fin deflection
rate. Figure 5 and 6 shows that our controller re-
mains within the limits. It should be noted that
the missile in Wu (1995) runs along a slightly dif-
ferent Mach trajectory. Finally, to demonstrate the
robustness properties, figure 8 shows the accelera-
tion command responses for all combinations of the
=19r 1 aerodynamic uncertainties. As can be seen from the
e : ) . : : ; . . figure, overshoot in the 45 g step is the most sen-
e e e LTt o sitive to uncertainties, while the other performance
characteristics seem to behave well.

; = -
z ° ) 2 g

fin deflection rate {degress/s)
|

2

Fig. 6: Fin deflection rate é for the commanded ac-
celeration scenario n. of the LPV controlled
missile.
5 Conclusions

-

We have shown a controller synthesis technique for
Linear Parameter Varying (LPV) that takes the
boundedness of the parameter variation rates into
account. This technique gives guaranteed stabil-
ity and performance levels. Moreover, robustness
against uncertainties has been incorporated via the
use of scalings. Using basis functions and gridding,
the synthesis problem is reduced to an iteration of
246} 1 solving finitely many linear matrix inequalities. The
2.4} 1 method was applied and tested on a missile bench-
mark problem. The non-linear simulations have
shown that the proposed method is successful in
AT BET A A F achieving the desired performance and robustness
goals. Further research should be directed towards
finding systematic procedures to choose the basis
functions in the presented approach.

Mach number (-}
@ w ta w
o h = o @
T —

fa
-

2.2¢ 4

0 05 1 15 2 25
time (s)

Fig. 7: The parameter trajectory M(t).
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Abstract.

A systematic procedure for synthesizing a parametrically varying controller

for nonlinear systems is presented and applied to a high performance flight control system.
The strongly nonlinear and parameter dependent system has to be stabilized and must
exhibit. high performance over a large operating range. In contrast to classical gain-
scheduling techniques that do not guarantee stability or performance, we apply a new
technique from robust control to design a parameter dependent nonlinear controller with
assured stability and performance properties.

Keywords. Linear parametrically varying systems, (integral) quadratic constraints, full
block scalings, robust stability and performance, linear matrix inequalities.

1 Introduction

In this paper we discuss a new technique to con-
trol linear parametrically varying (LPV) systems
and apply it to a tail-fin controlled missile. The
model of this system is strongly nonlinear and pa-
rameter dependent as it must operate over a large
range of Mach numbers and angles of attack. Over
the complete operating range the controller must be
stabilizing and give good tracking performance.

The classical approach is to linearize the system
in various operating points and to build a linear
controller for each of these point. Finally, these
controllers are interpolated in an ad-hoc manner.
This so-called gain-scheduling technique is known
to work for slowly varying parameters. For fast pa-
rameter variations, however, it is hard to provide
theoretical guarantees for stability and performance
as shown in e.g. Athans and Shamma (1992).

Another approach is to view the nonlinearities or
the unknown parameters as uncertainties and use
the techniques of robust control. Especially linear

 Author to whom correspondence should be addressed.
$Faculty of Aerospace Engineering, Stability and Control
Group, Delft University of Technology
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matrix inequality (LMI) techniques (Apkarian and
Gahinet, 1995; Becker and Packard, 1994; Boyd et
al., 1994; Helmersson, 1995; Packard, 1994; Scherer,
1995; Scherer, 1996; Scorletti and El Ghaoui, 1995;
Wu, 1995) where stability is guaranteed by search-
ing for a suitable quadratic Lyapunov function, and
uncertainties as well as performance are described
by (integral) quadratic constraints (Rantzer and
Megretski, 1994) are suitable as they can cope with
time-varying uncertainties. The resulting design
scheme involves a nonconvex optimization problem
that is usually approached by a D-K-like iteration.

In gain-scheduling, however, the operating point
and the parameters affecting the plant can be mea-
sured on-line. In designing a robust controller, this
essential information is not taken into account what
might introduce considerable conservatism. This
leads to the idea to design a parametrically vary-
ing controller with similar guarantees on stability
and performance. It turns out that the LMI tech-
niques for uncertain systems not only extend to the
design of such controllers but, in addition, the un-
derlying optimization problem becomes even convex
(Apkarian and Gahinet, 1995; Becker and Packard,
1994; Packard, 1994; Helmersson, 1995; Scorletti




and El Ghaoui, 1995). In this paper we extend the
previous techniques based on block-diagonal scal-
ings to full block scalings (Scherer, 1996).

In the approach presented here the rate of change of
the parameters is not limited what might lead to un-
necessary conservatism since bounds on the param-
eter derivatives are often known in practice. These
bounds can be taken into account by using param-
eter dependent Lyapunov functions (Apkarian and
Addams, 1995; Scherer, 1995). For an application
of one of these alternative techniques to the missile
control problem we refer to Willemsen (1996).

2 Analysis of uncertain systems

Suppose the system is described as

z A G G, z
zi|=|Hi1 F1 Fiz| |w1 |, wa=A(t)zz. (1)
Z3 He Fa1 F2 wq

The channel w; + 2z is used to describe perfor-
mance measured in terms of the Lj-gain. More-
over, wy —+ z is the uncertainty channel and A(t)
is a time-varying parametric uncertainty of which
we only know that it satisfies

A(t) € conv{Al,..., A%} (2)

Hence the values of the uncertainties are simply
specified as the convex hull of finitely many given
extreme points.

The goal is to characterize whether, for this class of
uncertainties, the perturbed system remains stable
and the Ly-gain'of w; — z; does not exceed a given
value v > 0.

The information about the uncertainties is coded
in a set of scalings P that consists of symmetric
matrices

QS

i [STR

] with @ <0, R>0

that satisfy the constraints

o] (B[] sens o

Since the uncertainty is contained in a convex set
with finitely many extreme points (2), we are able
to describe the set of scalings by finitely many linear
matrix inequalities.

The performance specification can be cast in an in-
tegral quadratic constraint (Rantzer and Megretski,
1994) as

[ [ [o]ese
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Now we are ready to state the desired analysis re-
sult to guarantee robust stability and robust perfor-
mance.

Theorem 2.1 (Analysis Result) If there ezists
X > 0 and P € P satisfying

[ATX + XAXG, XG,

GTx 0 0 |+

GF X 0 0
fj;";;. [—wHo 2 G

| L0 2] | MaF F
_0}-{2_ ¥ 117712
—OH;-

QS [o 0 r]

0 F% <0 4
”:’r‘ [STR] Hz Far Fa (4)

then the system (1) is ezponentially stable and has
a robust Ly-gain level of at most ~.

This analysis result involves only finitely many LMIs
whose solvability can be verified by standard soft-
ware (Gahinet et al., 1994).

Note that we use full block scalings that are only
indirectly described by the inequalities (3). In the
literature, analysis results with scalings are usually
provided for block diagonal real repeated uncertain-
ties

A = diag(6, I, . .. Fir ) |(53| <1

Then the scalings are usually restricted to have the
block diagonal structure Q@ = diag(Qi,...,Qm),
R = -Q, § = diag(S1,...,5=) and to satisfy
Q <0, §+ 8T = 0 (Scorletti and El Ghaoui, 1995)
or even @ < 0, § = 0 (Apkarian and Gahinet,
1995). Simple examples reveal that this unneces-
sary restriction of the scalings lead to a larger infi-
mal bound on the robust performance level as guar-
anteed by Theorem 2.1. Note also that the fixed
scalings Q = I, R = —1I, § = 0 lead to the Bounded
Real Lemma.

Finally, we stress that we can extend this result to
parametric or dynamic uncertainties that admit a
description in terms of integral quadratic constraints
(Rantzer and Megretski, 1994).

3 LPYV systems

Consider a nonlinear system that is represented as

& = f(z,p) + 9(z, p)u

y = h(z,p) + k(z,p)u (5)

where x(t) is the state, u(t) is the input, y(t) is the
output, and p(t) is a time-varying parameter. Let




us assume that both the states and the parameters
are on-line measurable and that they are known to
be contained in the given sets @ and P respectively.

If z = 0 is an equilibrium of the system for all pa-
rameters, one can rewrite it as

& = A(z,p)z + B(z, p)u

= é(m, p)x + f)(:r:,p)u. (6)

In order to apply the techniques from linear robust
control theory to analyze and synthesize controllers,
the system (6) is replaced with

e f:l(Q:P)ir + -E?(Q:P)“

y =C(g,p)z + D(g,p)u ()

where ¢(t) € Q and p(t) € P are viewed as time-
varying parameters. We arrive at a so-called linear
parametrically varying (LPV) system. Due to the
decoupling of ¢ and =, the LPV system (7) describes
a larger set of trajectories than the original nonlin-
ear system (6) and is, therefore, potentially harder
to control. This might introduce conservatism. Yet
this is done for two reasons. Firstly, for the LPV sys-
tem we can use linear design techniques to build a
gain-scheduled controller, a controller that depends
on the on-line measurable time-varying parameters.
Secondly, if we have found a controller with the de-
sired properties for the LPV system (7), the con-
troller guarantees the same properties for the non-
linear system (6) as well.

Let us now abbreviate # = (¢,p) and I=Q x P C

IR™. Moreover, we assume that the system (7) can
be represented as a linear fractional transformation

T A G1 Gz B T
z1| |Hi Fy Fia By | |w:
z| |HyFy F3 By | |w;
y C D;[ Dg 0 u

ywe=A(m)za (8)

where A : II — R**! is a possibly nonlinear (contin-
uous) function. Similarly as in Section 2, we assume
that the possible values of the parameter A(7) are
contained in a convex set with finitely many extreme
points:

A(T) C conv{Al,...,A%}).
Morevoer, we have specified an extra channel w; —

71 to characterize performance.

If A(r),... in (7) are rational functions of 7 € II, it
is well-known that one can rescale the parameters

to
O={r||rj|<1forallj=1,...,m}

and that one can obtain this representation with the
linear function

A(r) = diag(mi Ly, ... yTmlm)
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where I; denotes an identity matrix of suitable size.

The controller is assumed to take the same struc-
ture, an LTI part K

:i“"c Ac Br.}. Bcz T
% | = |Ca Dai Deaz y (9)
Ze Ceza Do Deaa | | we
that is scheduled with feedback
We = Ac('ﬂ')zr_ (10)

where A, : IT + Rk-*!e is possibly nonlinear. Due
to this structure we can rewrite the controlled sys-
tem as an augmented LTI system P,

& [A G, G;,0B0] [z
21 Hl F]_ F120E1 0 wy
Z3 Al Hg Fgl Fg OEzO wa (11}
7yt 0 0 080T We
y C DyD000]| | u
| we | |0 0 0 IO 0f [ 2|

interconnected with the LTI controller (9) and
scheduled with the feedback

el = sl [2]- 00

A =
22L| wy zzr_ 5%{&—' Wy
Zqa—] B By %€ o J e

N
—
o0

v

8(8)

Fig. 1: LFT-system with LFT-scheduled controller

4 The LPV-synthesis problem

The LPV synthesis problem is posed as follows:
Find an LTI controller K and a function

A 11— Reexle

such that, for all parameter curves = : [0,00) - II,
the closed-loop system is exponentially stable and
the Ly-gain of w; +— 2; is not larger than +.




If we interconnect the extended system P, and the
LTI controller K (Figure 1), the resulting LTI sys-
tem has the structure of (1) with state [mT :cf] , per-
formance channel wy — z;, and uncertainty channel

[Zg] — [w;] . Let us partition the scalings as

A We

i [51 512]

~ [ Sa1 82

(13)

according to this uncertainty channel. We can now
apply the analysis inequality (4) to the closed-loop
system and dualize it according to the relations
given in the appendix. If we exploit the special
structure of the system (11) and if we eliminate
the controller parameters in the analysis inequali-
ties, we arrive at the following LMI-solution of the
LPV-synthesis problem. As an abbreviation we use
sy(M) := M + M7,

Q1 Q12} R

Ry Rlz}
o
QT Q2

Q:[ =[sz R,

Theorem 4.1 (Synthesis Result) There exists a
controller K (9) and a scheduling function A. (10)
that solve the LPV problem if there exist X,Y with

{'f }{] > 0 and scalings Ql,Rl,S;,él,ﬁl,gl such
that
[sy(XA) XG1 HY|XG2 + HT ST |HT R,
* e F? F;:ST Fg’lRl
KT * * -y Fia 0 |K.<oO
» * * |@1 +sy(S1F1) F?Rl
| * * * * —Ry
[sy(AY) G1 YHT|Y HY + G351 | G201
* -y F{ F3 0
KL * * —7 F125: F12Q:1 | Km <0
* * *x (R +SY(F351) F2Q1
I * * * -
o, [A717 @8] [47] 5
>
Q<O || [sTr] |1 ]
T
~ Tadl Q1 5 I
. el ; >0
Rl <0; [{AJ)T- [S;Rl (AJ)T

hold for all j = 1,...,6, where K,, and K,, are basis
matrices of the kernels of

[BT0ET0ET], [CD,0D;0].

Note that the conditions to be verified take the form
of linear matrix inequalities that can be readily val-
idated. It is even possible to directly minimize this
performance level since v enters the inequalities lin-
early.
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5 Controller construction

Once we have solved the synthesis LMIs in
Theorem 4.1 for X,Y and for the scalings
Ql,Rg,Sl,Ql,}?hgl, we are left with the task to
construct the controller. As a first step we deter-
mine an extension of the scalings to (13) such that
Q<U,R>0,Q > 0, R < 0 and such that the
duality relation (20) holds.

Hence we try to find the unspecified matrices in

Q1 51 |—Qi2 512

[M N] | 8f -Ry ST, —Ria

NT L -Q21 Sa |—Q2 S

SL, —Ra| 5§ -Rp

such that

Ql 51 * ¥
MN—I_ M N ) ST Ryx » 7
NTL TIAINTLT TR e {14)

* * (% %

Since the synthesis inequalities are strict, we can
perturb the scalings such that, in addition to all
inequalities, M, M and (M — M ~') are nonsingular.

With a decomposition (M — M~')"! = VAVT
where V is orthogonal and A = diag(A;, —A;) such
that A; > 0, A; > 0, we define

M VT ] (15)

M N|
NEL| 5 | TFVE TTAT

for some quadratic nonsingular T'. It is easy to see
that relation (14) holds for any T'. If we introduce

0‘!‘1)((3 Il"
= Zipse= 3
2 [ Il:l ] s 3 |:0¢1><|'I:|

where r; /¢; equal the number of rows/columns of
A, it can be shown that the matrices

(A-VTZ,(2TMZ,)2TV) (16)

(A-VTZ(2"M2Z)2ZTV) (17)

have ¢ positive and r; negative eigenvalues respec-
tively, where ¢; is the dimension of A; and 75 is that
of A;. Hence there exists a nonsingular 7' := [T} T3]
where Ty /T, have c3/ra columns respectively such
that 77 (16)T; > 0 and T (17)T2 < 0. Using this
matrix T in (15) then leads to all the required prop-
erties for the full scalings.

Let us then construct A.. With the transformed
scalings U, V, W as in (19) we define

U w

v wl
WT ¥ ] (18)

Z[WTV




and partition them as inherited by (15). Then a
suitable A (7) can be chosen as

Ac(r) == —W, +
=1

~ s ff} W1+A(1T) W‘m
i o5 ]

Once we have constructed the scalings, the LTI part
of the controller K can be computed by solving a
standard H . -like problem: just determine X and a
controller such that (4) holds as described in Scherer
(1996) and Njio (1996). The full parameter depen-
dent nonlinear controller is then described by (9)-
(10). For the justification of Theorem 4.1 and the
steps in the controller computation the reader is re-
ferred to Scherer (1996) and Njio (1996).

In practice, the procedure for controller construe-
tion is found to be numerically delicate. It is im-
proved by fixing v to a larger than the infimal value
and by putting extra constraints on the scalings.
Further reseach is required to systematically im-
prove the numerical conditioning of all the steps in-
volved in the controller design.

6 The missile control problem

The above described gain-scheduling technique has
been applied to a missile control problem. The
model and its objectives are found in many publica-
tions (Rugh et al., 1993; Packard and Balas, 1992;
Helmersson, 1995; Wu, 1995; Willemsen, 1996) and
are restated here for completeness.

6.1 The missile model

The nonlinear state equations for the control prob-
lem are

2
T PN Wiy a0 S0
My(a, 6, M
Q‘Zfz(a,q,E,M) = #
v
_ F.(a, 6, M)
R — mg
where

angle of attack (rad)

pitch rate (rad/s)

Co(a, 6)0.7p1 M2 5 (lbs)

Com(, 8)0.7p1 Sd (ft-Ibs)

tail fin deflection (rad)

973.3 Ib/ft* (static pressure at 20,000 ft)
0.44 ft* (reference area)

0.75 ft (diameter)

Ring o '~
&

m  13.98 slugs (mass of missile)

u V cos(a) ft/s (speed along missile center line)
V  Mss ft/s (velocity of the missile)

M  2-4 (Mach number of the missile)

ss  1036.4 ft/s (speed of sound at 20,000 ft)

I, 182.5 slug — ft* (pitch moment of inertia)

g 32.2 ft/s? (acceleration due to gravity)

n. normal acceleration of the missile (per g).

The aerodynamic coefficients C,, and C,, are given
by the polynomial expressions

Cy =sign(a)[a.|a®| + ba|a?| + cn(2 + £;r-)]ﬂr] + d, 4|

Con =sign(a)[am|a®|+bn|a?|—em(7- %)}aHde].

Typical values for the missile operating between
Mach 2 and Mach 4 with an angle-of-attack between
—20 and +20 degrees at 20,000 ft are

a, = 0.000103 deg™® am = 0.000215 deg 3
bn = —0.00945 deg 2 b = —0.0195 deg >
cn = —0.1696 deg ! Cm = 0.051 deg™*

d, = —0.034 deg ™’ dm = —0.206 deg™".

The fin is driven by an actuator of second order

w?

6=Gb, G(8) = 7—F77>——
(2) 82 + 20w, 8 + w?
with
w, =150 rad/s, (=0.7.
The goal is to track commanded acceleration n,,
maneuvers. The precise objectives are

e rise-time less than 0.35 s. The rise-time is spec-
ified as the time elapsed until the response has
first reached 90 % of the commanded n,_.

e steady state error less than 1 %.

e overshoot less than 10 %.

Because of the physical limitations of the fin actua-
tor, there are extra constraints:

e tail-fin deflection less than 25 degrees.
o tail-fin deflection rate less than 25 degrees/s per
commanded g.

6.2 Control strategy

Because of the symmetry in the aerodynamic model,
synthesis is done for positive o only (Packard and
Balas, 1992). The state equations are then given by

M
a=K.M [(aﬂa2+b“a+cn(2— —3—)) a+dﬂ6] +q




g = K M? [(ama3+bma+cm(—7+ %‘_{)) a+d.m6]

n, = K, M? [(aﬂa2+bna+c"(2-%{)) a+d,,6] :

From these nonlinear equations we arrive at the LET
form (Figure 2) by ‘pulling out the deltas’. The rise-

Mig5 O
qQ -
Nz <-—| P e — d¢
o -
M -

Fig. 2: LFT model of the missile

time and overshoot specifications are captured in
an ideal model W;4, and the response of the closed-
loop model of the missile is compared with the ideal
response (Figure 3). The error e is weighted with
Wierr and the Ly-induced gain n._ — e is minimized
to force the controlled system to resemble the ideal
model as closely as possible.

In order to comply with the extra constraints on the
fin actuator, weighting filters are placed on the ac-
tuator outputs fin deflection (W;) and fin deflection
rate (W;). As a first approach, we used the weight-
ing filters as found in Wu (1995). The ideal model
and weighting filters are given by

_ 144(—0.05s41 — 0.55417.321
Wia(s) = jﬁfﬁm)s Weert(8) = = 50577
Ws(s) = &%, W;(s) = .

In order to compare the results to Apkarian and
Gahinet (1995), the number of external inputs in the
interconnection structure (Figure 3) is made equal
to the number of external outputs by the definition
of extra noise inputs on the measurements ¢ and n.
with weighting filters W,,, = W,,, = 0.001.

nzld -]
o Wi h o W |~

: n!’

z

Fig. 3: The synthesis interconnection structure

118

7 Results

The controller is tested in a nonlinear simulation.
The missile is decelerated in 5 s from Mach 4 to
Mach 2 (Figure 4). To excite the nonlinearities of

4
3.5+
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2

0 0.5 1 1.5 2

25 3 3.5 4 45 5
tima (s)

Fig. 4: Mach number as a function of time

the system, we use a normal acceleration command
profile n._  as shown in Figure 5. The response to
this command is good, although not all specifica-
tions are met. Note that the overshoot decreases for
decreasing Mach numbers (Figure 5). It is suggested

10 % overshoot

:0.35 s nise time

201

] 05 1 1.5 2 25 3 a5 4 45 5
time (s)

Fig. 5: Acceleration command and response

to use a parameter dependent ideal model in order
to improve this acceleration response. The angle of
attack (Figure 6) remains within its bounds (420
degrees). The fin deflection (Figure 7) remains well
within its bounds, such that the weighting W; can
be chosen less restrictive, while the fin rate (Figure
7) is too high, such that the weighting W; should
be increased.

The controller is compared to the technique with
‘partial’ scalings (block-diagonal and S = 0) (Ap-
karian and Gahinet, 1995) in Figure 8. Although
the improvement in performance is small, it is ex-
pected to be better when more parameters and un-
certainties are taken into account since then the con-
servatism due to using partial instead of full block
scalings is larger.




Angle of attack (alpha)

less than 20 degreas

s i i | . i
2 25 3 35 4 4.5 5
time (s)

Pitch rate (q)

1501 i L i i i L F !
0 0.5 1 15 2 25 3 a5 4 45 5
tima (s)

Fig. 6: Angle of attack and pitch

5
S
k-1

rate

Tail fin deflection (delta)

less than 25 degrees

-10 i 1 ) H I L L L L
0 0.5 1 1.5 2 2.5 3 35 4 45 5
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@ 40t .
&
& 20 -
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= -201 lass tan 25 dagreed/s per ges 1
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] 0.5 1 1.5 2 2.5 3 35 4 45 5
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Fig. 7: Tail fin deflection and tail fin deflection rate
per commanded gee

Although easily possible, the presented design pro-
cedure does not account explicitly for dynamic un-
certainty in the actuator or parametric uncertain-
ties in C, (+10%) and C,, (£25%). Nevertheless,
we found that the performance hardly degrades un-
der perturbations in C,, C,, (Figure 9). Even if the
controller is implemented if keeping the parameter
7 in A.(r) at a fixed value, the performance is still
quite good (Figure 9).

8 Conclusions

In this paper we have extended an existing design
technique for LPV systems that is based on block-
diagonal scalings to full block scalings described by
suitable linear matrix inequalities. Using a richer
class of scalings not only reduces conservatism but
allows to apply the technique to parameter struc-
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X — full scales
“r\"‘ T ~ - partial scales
] 05 1 e T T -G U e

time (s}

Fig. 8: Acceleration for a controller with full and
partial scalings

40 T T T T T T T T T

Fig. 9: Acceleration with perturbed C,, and C,
and controller implemented with fixed pa-
rameter

tures that are not necessarily block-diagonal. As a
new structural ingredient, the controller scheduling
function cannot be chosen identical to but has to be
nonlinear function of the parameter structure of the
LPV system.

The approach has been successfully applied to a
nonlinear control problem for a missile model as con-
firmed by nonlinear simulations.
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Appendix: Duality relations

Under the assumptions @ < 0, R > 0 or Q >

0,ﬁ<00r[UW

wT V] < 0 and under the follow-

ing relations

UWw ~ SR1S* SR
[WTV} = [Q R—ls'f‘ _R—I] (19)
vUw] [-@* Q'5
WTV] - [STQ-= R-8%Q-1§
=~ = a-—1
s @GS
[SQT R] e [sg -r| ° ()

the following equivalences hold (Scherer, 1996):

0] + [75e] [52] [o0] <o
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Abstract. A closed-loop system identification toolbox for MATLAB is presented, includ-
ing a user-friendly graphical user interface, that communicates with MathWork’s System
Identification Toolbox (SITB), version 4.0. With the CLOSID toolbox it is possible to
identify linear (parametric) models on the basis of experimental data obtained from a
plant that is operating under the presence of a controller. The toolbox is designed par-
tially as a shell around the SITB, and has been given a similar setup. It comprises several
closed-loop identification methods (both classical and more recent ones), and includes
tools for evaluation of closed-loop model properties.

1 Introduction

Nowadays there are well-supported and user friendly
tools available for the identification of (linear) sys-
tems on the basis of experimental data. See in par-
ticular the Mathwork’s System Identification Tool-
box SITB, version 4.0, which is equipped with a
graphical user interface. This enables the user to
identify and validate models in different types of
model structures by mouse-clicking, rather than by
entering (complex) commands. Additionally there is
users’ support in terms of graphical tools for model
evaluation as well as support for e.g. bookkeeping
of identified models.

In the tools that are currently available, there are
only limited possibilities to identify models on the
basis of data that is obtained under closed-loop ex-
perimental conditions. This particular experimental
situation - which often occurs in practical situations

¥MATLAB is a registered trademark of the Mathworks, Inc.

iThe software described in this paper is available through
anonymous ftp at: ftp-mesc.wbmt.tudelft.nl, directory
/pub/matlab/closid.

#The work of Raymond de Callafon is financially sup-
ported by the Dutch Institute of Systems and Control
(DISC).

*The work of Edwin van Donkelaar is financially sup-
ported by the Dutch Technology Foundation (STW) under
contract DWT55.3618
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- requires a special treatment, in the sense that be-
sides input and output signals of a plant, measured
external excitation signals can be involved, as well
as some (possibly known) controller that is imple-
mented on the system.

The current toolbox CLOSID offers an extension to
the open-loop toolbox SITB, in the sense that

e It provides a graphical user interface supported
tool for identification of models from closed-
loop observations;

o It enables the use of external excitation signals
as well as a (possibly) known controller in the
loop;

e It communicates with the SITB, meaning that
for the actual estimation part of the closed-loop
identification methods, SITB is automatically
opened and applied, while in the CLOSID tool
the data processing and the (closed-loop) model
processing is performed. Therefore full perfor-
mance and flexibility of the estimation methods
in SITB is retained.

e It provides evaluation of models in terms of
their closed-loop properties, as e.g. sensitivity
functions, complementary sensitivities, closed-
loop poles, etcetera.




Options  Exit

CLOSID

[ Time-plot
[ Spectium

contioller E

identificalion

identification
Iwo-stage
indirect

C1 tailor-made
copnme facltors

dual-Youla
non-parametinc

[] Frequency rezponse

[ closed-loop transfers
[ clozed-loop poles

[ input/output zimulation

[ comelation test
D step rezponze
O open-loop transfer

(] open-loop pole-zetos

Fig. 1: CLOSID main window

In the current version, the graphical user interface
of CLOSID is able to deal with SISO models only.

2 Main CLOSID-window

The graphical user interface of the CLOSID tool-
box is opened by entering closid in the MATLAB
command window. This opens the main window as
shown in Figure 1.

The main window shows the following basic parts:

e a data board on the left upper part, where
imported data sets are represented by colored
line-icons, that can be selected by a mouse ac-
tion.

¢ a controller board on the left lower part,
where imported controllers are represented by
colored line-icons, with similar selection op-
tions.

e an identification menu in the middle; this
pop-up menu provides the user with a list of
identification methods that can be applied.

¢ a model board on the right upper part, show-
ing identified or imported models of the plant
to be identified.

¢ a model evaluation area, containing check
boxes for the application of several (closed-
loop) evaluation procedures for the models on
the model board.

Besides the controller board, the composition of
the CLOSID main window is very similar to the
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main window of the SITB. This controller board is
required, as some of the closed-loop identification
methods need the a priori knowledge of the con-
troller.

Additionally, this enables the user to evaluate the
models in the presence of a (user-chosen) feedback
controller.

Data sets, controllers and models can be imported
from the MATLAB workspace, through selecting the
respective pop-up menus for data, controller and
model.

The closed-loop configuration that is considered all
through the toolbox is depicted in Figure 2. It is
also displayed in the data import window.

|e
H

L

T2
+_.

Fig. 2: Closed-loop system configuration

G *Jiy

A data set is composed of experimental data {u,y}
over a given time horizon, together with either one
of the external excitation signals r; and/or r,. Data
sets can be viewed on screen in terms of time se-
quences and power spectra, by clicking on the cor-
responding check boxes under the data board.
Models, as well as controllers, can be imported from
and exported to the MATLAB workspace, in different
formats:




o [num;den]: polynomial coefficients of numera-
tor and denominator, in descending powers of
z, stacked in a matrix with height 2.

» [A B;C DJ: state space matrices (A,B,C,D)
placed in a system matrix.

e theta: theta-format as used in the SITB.

The particular model import window is depicted in
Figure 3.

Model import

MODEL

Format

Fig. 3: Model import window

3 Closed-loop identification

The CLOSID toolbox contains five identification
methods for parametric model identification, and
one nonparametric method. The methods are de-
noted by

1. two-stage method,
2. indirect identification,

3. identification with a tailor-made parametriza-
tion,

4. coprime factor identification,

5. identification in the dual-Youla parametriza-
tion,

6. non-parametric (spectral) estimation.

For details on the different methods, one is referred
to the references, in particular the survey paper Van
den Hof and Schrama (1995).

The methods are all characterized by three steps,
focussed on a specific closed-loop object that is go-
ing to be identified. E.g. in the indirect method,
this closed-loop object is the plant-times-sensitivity
G/(1+ CG), that is identified on the basis of mea-
sured signals 7; and y. The three steps are clearly
indicated in the several identification windows and
are characterized as follows.
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» Construction of auxiliary i/o signals.
A first step of choosing/constructing appropri-
ate auxiliary input and output signals, that are
going to be used to identify a particular transfer
function object.

e Identification.
A second step of actual identification of the
considered object, by estimating parameters
through a least-squares identification criterion.

e Calculate plant model.
From the identified object a plant model is con-
structed and this plant model is copied to the
CLOSID model board.

By choosing one of the identification methods from
the identification pop-up menu, a particular win-
dow is opened, displaying the three steps mentioned
above.

The first step is trivial for some methods, but re-
quires a separate identification for some others, as
e.g. the identificaiton of the sensitivity function for
the two-stage method. In these latter cases, quick-
start options provide a simple means to construct
the appropriate signals.

Apart from the “tailor-made” approach, all iden-
tification methods will perform the second step by
opening MATLAB’s SITB automatically, copying the
appropriate signals from the CLOSID tool to the
data board of SITB, allowing the user to identify
the required transfer function object in the open-
loop toolbox. In all of these situations, the second
step is an identification problem that can be handled
by the (open-loop) tools in hte SITB.

When an appropriate model is identified and vali-
dated in SITB, it can be copied to the CLOSID tool,
by pushing the Calculate and copy plant model
in the CLOSID identification window. This third
step then transfers the plant model to the CLOSID
model board.

As an illustration the coprime factor identification
window is shown in Figure 4

The nonparametric identification method identifies
spectral models for the one input, two output trans-
fer from r to col(y,u), and constructs a plant model
by taking the quotient of the two scalar nonpara-
metric estimates.

4 Parametric methods

A brief overview is given of the characteristics of the
different parametric methods. In the descriptions it
is specified which data and priors are required (mea-
sured signal and/or knowledge of the controller),
and which auxiliary information needs to be speci-
fied before the actual identification in step 2 can be
performed.
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Fig. 4: Window for coprime factor identification

4.1 Two-stage method

Approach

In the first stage the transfer function between ref-
erence signal 71 and input signal u (sensitivity func-
tion) is estimated, possibly with a high-order model.
With this estimate a noise-free input signal is sim-
ulated, which is used in the second stage together
with the measured output signal, to identify a plant
model.

Required data and priors

® T,u,Y

Auxiliary information

An estimate is required of the sensitivity function
So, i.e. the transfer between 7, and %. This is ob-
tained in the first stage of the identification proce-
dure, by

N
By = axgmin = > u(t) — S(a, B)r(t)?
=1

An accurate (high-order) model is obtained and de-
noted as

S(q) = S(a,Bn).
A quick-start option for this estimation is available.

Signal construction
The input and output signal for final estimation are
constructed by

z(t) = S(a)r(t)
2(t) = y(t)
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Estimation (in SITB)
Parameters are estimated according to (e.g.)

N
Oy = arg mgn % Z[z(t] — G(q,0)z(t)).
t=1

Plant model
A model of the plant is obtained as

G(q) = G(g,0n).

Comments
This method will generally not be able to provide
unstable models of an unstable plant.

4.2 Indirect method

Approach

The closed-loop transfer function between r; and y
is estimated, and by using information on the im-
plemented controller C, an open-loop plant model
is reconstructed from this estimate.

Required data and priors
* 7,y

o C

Auxiliary information
none.
Signal construction

The input and output signal for final estimation are
constructed by

(t) = ri(t)
z(t) = y(t)

Estimation (in SITB)
The exact transfer function between z and 2z, i.e.
the object of identification, is given by

B Col i
* T 1466,
Parameters are estimated according to e.g.

N
O = argmin = 3 [z(t) - Rlg,O)a(0)f,
=1

leading to the identified transfer function
R(q) = R(q,0n).

Plant model
A model of the plant is obtained as

. R
Glq) = i
() ey

Comments

If the controller is stable, then G is guaranteed to be
stabilized by C. The model order of G will gener-
ically be equal to model order of R plus order of
C.




4.3 Identification with tailor-made parame-
trization

Approach

The closed-loop transfer function between r; and
y is estimated, using a dedicated parametrization
in terms of the parameters of the open-loop plant
model and the known controller C.

Required data and priors

® TL,Y

o C

Auxiliary information
none.

Signal construction
The input and output signal for final estimation are
constructed by

.’B(t) = T](l‘-)
z(t) = y(?)

Estimation (in CLOSID)
The exact transfer function between 2 and z, i.e.
the object of identification, is given by

G,
R, = 14+ CG;

Parameters are estimated according to

G(q,9)

TGP

N
x b b
Oy = arg min < glz(t) -

leading to the identified transfer function

G(q) = G(g,0n).

Plant model
A model of the plant is obtained as

G(q).

Comments

The parameter set that corresponds to stable closed-
loop systems may be disconnected in the case that
the model order of G(g, ) is smaller than the order
of C. In this case inaccurate models can result.

4.4 Coprime factor method

Approach

The closed-loop transfer functions between r (as in-
put) and (y,u) are estimated, and an open-loop
plant model is obtained by taking the quotient of
the two estimates.
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Required data and priors
s uy
e C,r; and/or

Auxiliary information
Any auxiliary system G, with a factorization

Gy = —
D,

that is stabilized by C.

Signal construction
The input and output signals for final estimation
are constructed by

2(t) = m1(t) + C(g)ra(t)
_{ ()
“”‘(Ma)

Estimation (in SITB)
The exact transfer function between z and z, i.e.
the object of identification, is given by

(n:)-

with F~1 = D, + CN,.
Parameters are estimated according to

G F?
14+ CG,
F-1
1+CG,

N
- a3
Oy = argmin = Z tr [z(t) —

t=1

(e )=

D(q,9)

leading to the identified transfer functions

il

hl= .
Plant model
A model of the plant is obtained as

N(Q: éN}
D(Ql GN)

Comments

By using a normalization procedure, and a common
denominator parametrization in the identification,
the model order of G will be equal to the maximum
model order of N and D.




Identification Auxiliary Signals for Estimated Exported
method Data information estimation object model
(z: ) T — 2z
Two-step T1,%, Y s z = Sr G, G
2=y
G, - R
Indirect T, Y T o= m G= O
C z=y
Tailor-made 1, z=8(0)r G, G
(@ 2=1
. - 2 A PR
a — dVg o e 0100 ==
Coprime factors | r,u,y | G, = N,D_ z D. F CN. (N, ) G=ND
c z = (y,u)
1 C=ND! |g=v
Dual Youla T, U, Y g T D. 1 CN.
—Gyu ~_N.+D.R
¢\ i@, =NBrt | s =Yl R, i ieine g
Ml =" D. - N.R

Table 1: Synopsis of closed-loop identification methods

4,5 Dual-Youla method

Approach

A particular closed-loop transfer function is esti-
mated, and by using knowledge of the controller an
open-loop plant model is reconstructed. The plant
model is guaranteed to be stabilized by the imple-
mented controller. This method is a generalization
of the Indirect method.

Required data and priors
* u,y

e C,r; and/or rp

A uxiliary information
The controller C is required to be known in a co-
prime factor representation
o
=D
as well as any auxiliary system G, with a factoriza-
tion

z(t) = ri(t) + C(q)ra(t)

z(t) = m[ym — Ga(q)u(t)].

Estimation (in SITB)
The exact transfer function between 2 and z, i.e.
the object of identification, is given by

. (Go == Ga }Dz
* = DA% CG)

Parameters are estimated according to

N
by = argm&n % Z[z(t} — R(g,0)z(t)]?,

leading to the identified transfer function

‘R(Q) — R(Q! éN)

Plant model
A model of the plant is obtained as

. -
Ge = = - N, +D.R
D. Glg) = =L
D, — N.R
that is stabilized by C.
Signal construction Comments

The input and output signals for final estimation
are constructed by
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The model order of G will generically be equal to
the sum of the model orders of G, C and R.




Synopsis of parametric methods

In Table 1 a synopsis is given of the parametric iden-
tification methods. In this table the signal r is used
as an abbreviation for r; + Cry.

5 Model evaluation

Once a model is estimated and made available on
the model board, several open-loop and closed-loop
model properties can be evaluated. This is done
using the seven Model evaluation options at the
bottom of the main Closid window:

1. closed-loop transfer functions. The fre-
quency responses of the four transfer functions
from col(rz, 1) to col(y,u), are shown in a sepa-
rate window, using the current models from the
model board and the current controller C' from
the controller board. In the window the ampli-
tude of the frequency responses are shown, see
Figure 5.

Closed-loop transfer functions
T2>y

GS->y

10° 10°

10° sl
frequency {rad/sec) frequency (rad/sec)

C8: |"J >u

-amplitude

Fig. 5: Closed-loop frequency responses

2. closed-loop poles. When clicking this option,
the poles of the closed-loop transfer functions
are plotted in a separate window, also showing
the stability region (unit circle). Thus a simple
check is executed showing the (in)stability of
the closed-loop system.

3. input/output simulation. Using the avail-
able reference signal(s) in the current data set,
a plant input signal u and plant output signal
y are simulated (noisefree), employing the cur-
rent model and controller. These simulated sig-
nals are plotted together with the actual (mea-
sured) input and output signals from the cur-
rent data set.
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4. correlation test. The sample cross-covariance
function is shown between the external refer-
ence signal » in the current data set, and the
output simulation error (top) and the input
simulation error (bottom). This test indicates
whether there is still reference signal informa-
tion in the output and/or input residual, see
Figure 6.

Residual tests ﬂil

Cross corr. function between r and residual output y

=]

-5 —
50
Cross coir. function betwaen r and residual |r|put u

0.5

Fig. 6: Closed-loop correlation test

5. step responses. This option displays the step
responses of the four closed-loop transfer func-
tions from col(73,71) to col(y,u), for the cur-
rent models on the model board and the current
controller on the controller board.

6. open-loop transfer. The (open-loop) Bode
diagram is displayed of the current plant mod-
els on the model board. This reflects the esti-
mated transfer function between plant input u
and output y.

7. pole-zero plot of the estimated transfer func-
tion between the plant input % and output y.

Selecting one or several of these evaluation tools will
open a figure with a plot of the evaluation result for
the current models from the model board; where
appropriate the current data and current controller
will also be employed. A zoom option is available in
each figure. By selecting multiple models from the
model board, evaluation results of several models
can be compared in one figure.

6 Summary

A MATLAB toolbox has been presented for closed-
loop system identification on the basis of time do-
main data. It has been designed as a “shell”




around Mathworks’ “open-loop” System Identifica-
tion Toolbox (SITB). A graphical user interface con-
structed similar to the SITB supports the user, and
facilitates exchange of models between the SITB and
the current tool. In its current version the graphi-
cal user interface supports the identification of SISO
models; the provided MATLAB m-files are imple-
mented to handle also multivariable models.
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Abstract.

This paper presents a new MATLAB toolbox, called FREQID. FREQID is an

abbreviation of FREQuency domain IDentification and can be used to estimate linear
(multivariable) discrete or continuous time models on the basis of frequency response data.
Within FREQID, a model is being estimated by applying a (frequency weighted) curve fit
procedure on the available frequency response. To simplify the operations involved with
choosing frequency dependent weightings, model order selection and model evaluation,
FREQID is equipped with a Graphical User Interface (GUI). The usage of the cur and the
way in which models can be estimated within FREQID is the core of this paper.

Keywords. system identification; frequency domain; multivariable systems; curve fitting

1 Introduction

The availability of measured frequency responses
as a commencement to estimate linear models has
gained considerable attention in the research on sys-
tem identification. First of all this is due to the fact
that estimating a model on the basis of a frequency
response has several advantages compared to a time
domain approach, see e.g. Ljung (1993) or Pintelon
et al. (1994). Additionally, many engineers have a
strong inclination towards a frequency domain re-
lated identification procedure, as the “shape” or
quality of the model can be influenced directly in
the frequency domain by the usage of so-called fre-
quency dependent weightings.

This paper describes the usage of FREQID, a tool-
box for use with MATLAB (version 4.2¢) for perform-
ing identification on the basis of frequency response
measurements. FREQID is an abbreviation of FRE-
Quency domain IDentification, which is supposed to

I MATLAB is a registered trademark of the MathWorks, Inc.

$The software described in this paper is available through
anonymous ftp at: ftp-mesc.wbmt.tudelft.nl, directory
/pub/matlab/freqid.

¥The work of Raymond de Callafon is sponsored by the
Dutch Institute of Systems and Control (DISC)
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cover the main purpose of this software: it can han-
dle the estimation of both discrete and continuous
time (multivariable) models on the basis of a fre-
quency response in which the frequency vector can
be arbitrarily spaced.

Estimating a model in FREQID is done by a curve
fitting procedure. In such a procedure, a model is
being estimated by fitting the frequency response
of the model on a measured frequency response.
Within the curve fitting a frequency dependent
weighting can be used to emphasize specific parts of
the frequency response, so as to influence the quality
or "shape” of the model being estimated.

Compared to the frequency domain identifcation
toolbox of Kollar (1994), FREQID focuses solely on
frequency response curve fitting. To simplify the op-
erations involved with the estimation and validation
of a model, FREQID is equipped with a Graphical
User Interface (Gur). This GUI is meant to sim-
plify both the manipulation of frequency domain
measurements, the shaping of frequency dependent
weightings and the model order selection during the
estimation of a model. Furthermore, the GUI serves
as a bookkeeper of the models being estimated and
enables the user to validate and compare various




models relatively easily. As the Gul is designed to
be user friendly, most of the information described
in this paper is apparent from the GUI of FREQID.
By pushing the various help-buttons present in the
cul of FREQID, additional information is displayed.
Therefore, this paper will only focus on the main
elements present in the GUI of FREQID.

For notational convenience and reasons of clarity,
different fonts are used to indicate different objects
in this paper. Text in various windows of the GUI of
FREQID like titles and text on buttons are typeset in
this font. Names of files or directories, commands to
be typed and editable text in the GUI of FREQID are
typeset in this font. Finally, most abbreviations
will be typeset IN THIS FONT. In this way, the differ-
ence between freqid in a title, the command freqid
to be typed and FREQID as an abbreviation will be
unambiguous.

First in section 2, the main window of FREQID will
be discussed. This section also shows the possibili-
ties and bookkeeping facilities of the main window
and how frequency responses (the data) and models
can be imported. Section 3 describes the possibil-
ity to estimate a model on the basis of a frequency
response using the GUI of FREQID. Subsequently,
section 4 presents the available procedures to evalu-
ate the models being estimated. Finally, the paper
is ended by a short summary.

2 The main window
2.1 Overview

If the PREQID toolbox has been installed properly,
typing the command

>> freqid

in the MATLAB command window, will invoke the
GUI of FREQID. First a small message window will
be opened, that contains information on FREQID and
the authors who wrote the software. By clicking the
continue-button, the main window of FREQID will be
opened. This main window is depicted in Figure 1
and consists of the following distinguishable parts.

o At the top of the window a menu bar can be
found. Via the options on the menu bar, session
files can be loaded or saved, different MATLAB
windows can be accessed and the layout of the
FREQID windows can be modified.

e At the left top part of the window one can find
the Data Board. This is used to store and ma-
nipulate the frequency domain measurements
and/or frequency dependent weights used for
estimating a model. It also contains a data-
popup menu.
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Fig. 1: Main window of FREQID

e The right part of the window contains the
Model Board. Similar to the Data Board, this is
used to store and manipulate models and con-
tains a model-popup menu.

e The left bottom part of the main window is re-
served for Estimation (and evaluation) of mod-
els.

e Finally, at the bottom of the window the sta-
tus line is displayed. This is used to display
all kinds of messages to the user. In Figure 1
the user is notified of the fact that Data and/or
models have been loaded..., just after a session
file called DEMO.FQD was loaded.

A more detailed description on importing data,
models and mouse actions defined within the main
window of FREQID can be found in the following sec-
tions.

2.2 Importing data

The starting point for estimating models within
FREQID is the availability of a frequency response
that needs to be fitted. Subsequently, the Data
Board can be used to store and manipulate the fre-
quency response and/or frequency domain weights
used for estimating a model. For this purposes, a
data-popup menu and specific mouse actions (click-
ing, drag & drop) are defined within the Data Board
depicted in Figure 1.

Frequency responses (or frequency dependent weight-
ings) can be imported from a file or from the MAT-
LAB workspace onto the Data Board in three differ-
ent formats:

¢ MVFR matrix (MFD tools) In such a MultiVari-
able Frequency Response (MVFR) matrix, a




frequency domain measurement (single- or mul-
tivariable) is stacked columnwise for each fre-
quency point separately. The frequency vector
(always in [rad/s]) corresponding to it, must be
specified separately. This format is also sup-
ported by the Multivariable Frequency Domain
(MFD) toolbox, (Maciejowski, 1990).

e FREQFUNC matrix (IDENT tools) This is a for-
mat to store frequency domain data supported
by the System Identification ToolBox (SITB),
(Ljung, 1995). Such a matrix already contains
the corresponding frequency vector.

L ]

Varying matrix (MU tools) This is the format
supported by the p-analysis and synthesis tool-
box, (Balas et al., 1995). Such a matrix already
contains the frequency vector.

To import frequency responses on the Data Board,
the import data option of the data-popup menu can
be used. Invoking this menu option yields the win-
dow depicted in Figure 2. From Figure 2 the three

= FREQID - import data
Select frequency data format
@ MVFR matrix (MFD tools)

O FREQFUNC matrix (IDENT tools)
O Varying matrix (MU-tools)

=iz

Location of variables
First load [file]:
clear after import

Modify variable names

MVFR matrix: hat
Dimega

frequency vector:

cf_tex1

Optional information

CD-data’
Frequency response of radial loop

data name:
additional info:

n a CDMO CD-player mechanism’

| nelp | import cancel

Fig. 2: Import data window.

different formats discussed above can be recognized,
whereas for bookkeeping purposes, the name of the
data and some additional information can be speci-
fied.

2.3 Obtaining models

Quite similar to the Data Board, the Model Board
has been defined on the main window of FREQID.
Importing a model on the Model Board can be done
by estimating a model on the basis of a frequency
response available on the Data Board. However, the
discussion of this option is postponed until section 3.
Additionally, a model can be imported by the im-
port model option of the model-popup menu. Invok-
ing this menu option yields the window depicted in
Figure 3. Three different formats are supported to
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Fig. 3: Import model window.

import a model (discrete or continuous time) from a
file or the MATLAB workspace onto the Model Board
of FREQID:

e State space matrix In this format the state space
matrices A, B, C and D of a model (single- or
multivariable) are stacked in a system matrix
S=[A B;C D]. In order to be able to re-extract
the state space, the size of the matrix A (state
space dimension) must be given too.

e THETA matrix. This is a format to store a
model as supported by the System Identifica-
tion toolbox, (Ljung, 1995).

e mu-tools matrix. This is the format supported
by the p-analysis and synthesis toolbox, (Balas
et al., 1995).

To import a model, a frequency vector must be
added in order to evaluate the frequency response of
the model. Finally, the name of the model and some
additional information can be specified for book-
keeping purposes, see also Figure 3.

2.4 Mouse actions

Once some frequency response (data) or a model has
been loaded successfully, it will appear as an icon in
one of the boxes present in the main window de-
picted in Figure 1. This icon is formed by plotting
the Bode amplitude diagram of the first element of
the (multivariable) frequency response of either the
data or the model. The icon can now be selected
simply by clicking on the corresponding box. If the
icon has been selected, a fat line will be drawn in
the corresponding box, see e.g. the second box in
Figure 1. Information on the icon can also be ac-
cessed by a simple click on the name. By a simple
drag & drop action, an icon can also be copied.




3 Estimating a model

The estimation of a model is done by performing
a curve fit on a frequency response available on
the main window of FREQID. Depending on the
parametrization of the model, the curve fitting gen-
erally involves a non-linear optimization that needs
to be solved. Currently, two different curve fitting
routines are implemented within FREQID. These
routines are available by invoking the estimation-
popup menu present in the main window of FRE-
QID. A short summary of the two methods is listed
below.

least squares estimation

The least-squares estimation routine implemented
aims to minimize the 2-norm of a (weighted) differ-
ence between the frequency response of the model
and the data. A frequency dependent weighting
is a so-called Schur-weighting in which the weight-
ing is specified for each transfer function sepa-
rately. The (multivariable) model is parametrized
by either a left or right Matrix Fraction De-
scription (MFD), which reduces to a simple nu-
merator/denominator representation for estimating
scalar models. For a more detailed discussion on
the procedure, one is referred to de Callafon et al.
(1996).

maximum amplitude

The maximum amplitude routine implemented
aims at minimizing the (weighted) maximum dif-
ference between the frequency response of the
model and the data, element wise. Again the
weighting can be specified for each transfer func-
tion separately. The (multivariable) model is
parametrized by a combined diagonal left and
right Matrix Fraction Description (MFD), which
reduces to a simple numerator/denominator rep-
resentation for estimating scalar models. For
a more detailed discussion on the procedure,
one is referred to Hakvoort and Van den Hof
(1994).

For both the methods discussed above, an itera-
tion based on the Sanathanan-Koerner procedure
(Sanathanan and Koerner, 1963) is used to tackle
the non-linear minimization involved. Although
there is no direct guarantee of convergence, the
method generaly leeds to usefull models. Further-
more it is reasonably fast and due to the subsequent
convex optimization steps it supports the estima-
tion of relatively high order models. The proce-
dure to estimate a model using the Gul of FREQID
is nearly the same for both methods. Furthermore,
the least squares estimation routine is included in
FREQID, whereas for the maximum amplitude cri-
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terion the installation of the MATLAB optimization
toolbox, version 1.0c, is a prerequisite (Hakvoort,
1994). Therefore, only the least squares estimation
routine will be illustrated here.

3.1 Least squares estimation

Once data has been loaded and selected, invoking
the least squares option from the estimation-popup
menu in the main window of FREQID will present
the least squares estimation window on the screen.
An overview of this window is depicted in Figure 4.
In the least squares estimation algorithm, a multi-

Info on estimation data
CD-data: 1 output, 1 input, 200 frequency points.

FREQID - least squares estimation

Time format
® discretatime

Model parametrization

(3 continuous time
Equation: inviA(z))"B(z) Sampling time:

Model estimation options

Model orders:
Frequency weighting: LGt Aut it i

mmm estimate m

Fig. 4: Least squares estimation window

variable model is parametrized by a Matrix Fraction
Description (MFD), using the inverse of a square and
monic A-polynomial and a B-polynomial. Before
starting up the estimation of a model, the user can
specify the time format (discrete or continuous time)
and the parametrization of the model (left or right
MFD). For the left MFD, the inverse of the monic
A-polynomial appears at the output of the model,
whereas for the right MFD, the inverse appears at
the input. For a scalar system, both parametriza-
tions are the same and reflect an ordinary numer-
ator/denominator parametrization. Subsequently,
the model orders or number of parameters to be es-
timated can be specified, for which a separate order
editor is available.

Finally, the weighting to be used during the estima-
tion (curve fitting) of the model can be specified in
the frequency weighting-popup menu. Default, the
weighting is chosen to be the inverse of the data,
so as to minimize a relative error instead of an ab-
solute error. Additional choices include none (unit
weighting to minimize an unweighted, absolute er-
ror) or advanced. The advanced weighting option
enables the user to load and/or modify frequency
domain weightings relatively easily. One is referred
to section 3.2 for a more detailed discussion on the
usage of advanced weightings.




A simple click on the estimate button will start the
minimization. Progress on the iteration to fit the
frequency response is displayed in the MATLAB com-
mand window. Some options associated with the
Sanathanan-Koerner iteration are available under a
control-button, see also Figure 4. If the minimiza-
tion has been completed successfully, the model can
be imported on the Model Board. Before importing
the model, options associated to the frequency range
for evaluation purposes, the name of the model and
the additional information on the model being esti-
mated can be modified.

3.2 Advanced weightings

The weighting used in the least squares estimation
can be any frequency dependent weighting, having
the same size as the frequency response used for
curve fitting. It is applied element wise in case
of multivariable frequency response. The Gcul of
FREQID allows the import and/or modification of
a weighting relatively easily by opening a weighting
window, in which each element of a (multivariable)
weighting can be edited.

The weighting window can be opened by select-
ing the advanced weighting option in the frequency
weighting-popup menu depicted in Figure 4. The
weighting window will start up with the default
weighting: inverse of data, so as to minimize rel-
ative errors during curve fitting. However, any
weighting can be imported and edited elementwise
in the weighting window. A snap shot of the
weighting window for editing an element is depicted
in Figure 5. The vertical dashed-dotted lines in

|_ FREQID - weighting of element [1,1) ﬂ : |
| Undo Replace Slope Shape Dala J
T T
I I
[ ; :
| . | I
107} :
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Fig. 5: Editable weighting per element

Figure 5 are used to select the frequency range to

be edited for the specific element. These lines can
be moved by a simple drag & drop mouse action.
The different options on the menu bar of the win-
dow depicted in Figure 5 can be used to modify the
weight. In this way, the frequency weighting can
for example be smoothed, integrated and differenti-
ated. Additionally, the weighting between the two
vertical dash-dotted lines can also be modified by a
drag & drop mouse action, as indicated in Figure 5.
The shape of the weighting caused by this drag &
drop action can be influenced by the different op-
tions available under the Shape option on the menu
bar. In this way, FREQID offers the possibility to
tune the frequency dependent weighting in a very
flexible way.

4 Evaluation of models

As a final step in estimating models, the possibility
to evaluate a model on the basis of its frequency re-
sponse or pole/zero plot is available within FREQID.
This can be done by using either the frequency resp.
or the poles/zeros check-boxes available in the main
window of FREQID, see Figure 1. Turning the fre-
quency resp. check-box on, will open the frequency
response window, as depicted in Figure 6. The fre-

FREQID - frequency response
LCUN Axis Grid Zoom Data Model
amplitude
wrapped phase
‘3’!— unwrapped phase ||
nyquist
v nichols

10’[—

o'y

Fig. 6: Frequency response window

quency response window enables the user to view
and compare both the measured frequency response
and the frequency response of different models in
various ways, as indicated by Figure 6. The menu
balk offers the possibility to change the axis, add a
grid, enable zooming and to plot various measured
frequency responses (data) and/or model frequency
responses in the same plot.




Next to the frequency domain evaluation of the
model, the poles and zeros of the models being es-
timated can be computed. Turning the poles/zero
check-box on in the main window of FREQID,
will open the poles/zero window, as depicted in
Figure 7. In Figure 7, poles of a model are indicated

FREQID - polesjzeros ﬁﬁ
Axis Zoom Model |

| Windows Poles Zeros Grid Circle

Q

Fig. 7: poles and zeros window

by crosses, whereas zeros are plotted by circles. The
pole/zero window enables the user to compare the
poles and zeros of different models being estimated.
For discrete time models a unit circle is displayed
to evaluate stability conditions. The menu balk of-
fers the possibility to toggle pole and/or zero loca-
tion plot, add a grid, toggle unit circle plot, tog-
gle real /imaginary axis plot, enable zooming and to
plot poles/zero locations of different models. As a
final remark it can be said here that the stability
of a model can also be evaluated by by simple click
on the name of the model in the main window of
FREQID, see also section 2.4. This will display some
additional information on the model, including the
stability of the model.

5 Summary

A MATLAB toolbox called FREQID has been pre-
sented for estimating discrete or continuous time
linear (multivariable) models on the basis of (mea-
sured) frequency responses. Within FREQID, a
model is being estimated by performing a curve fit
routine on the available frequency domain measure-
ment. In the current version of FREQID, this curve
fit routine can be either a least-squares or a maxi-
mum amplitude criterion.

To simplify the operations involved with choosing
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frequency dependent weightings, model order selec-
tion and model evaluation, FREQID is equipped with
a user friendly Graphical User Interface (cur). Ad-
ditionally, the GUI serves as bookkeeper of the avail-
able frequency domain measurements and the differ-
ent models being estimated. ,

The software of FREQID is written for MATLAB ver-
sion 4.2¢ and the standard signal and control MAT-
LAB toolboxes are required only. In addition, the
optimization toolbox is needed only if the maximum
amplitude routine is being used too.
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Abstract.

A system identification toolbox for MATLAB is presented, for estimating linear

time invariant models using generalized orthonormal functions. The toolbox is supported
by a user-friendly graphical user interface and communicates with MathWorks’ System
Identification toolbox (SITB), version 4.0. With ORTTOOL it is possible to identify linear
parametric SISO models on the basis of experimental data (open loop identification),
using basis functions that can be flexibly chosen by the user. The tool has options for
input of data and basis functions, settings of order, initial conditions, number of iterations,
model reduction algorithms, a number of simple validation tests and various graphics.

1 Introduction

ORTTOOL is a graphical user interface written in
the MATLAB interpreter language. It is intended
to accommodate identification of single input-single
output systems, using orthonormal basis functions.
For specifics about the theory behind this method
and the properties of the basis functions, see the
references. This document merely discusses aspects
concerning practical application of the method.
The basic idea of the tool is to let the user specify
input /output data (say u(t),y(t),t=1---N), a set
of basis functions (say {fx(z),k =1---00}) and the
number of basis functions to be actually used, which
is the state space order of the resulting model (say
n). With these specifications the tool can estimate
parameters {a;} and a model H(z),

H(z) =ao+ Y awfi(z)

k=1

(1)

YMATLAB is a registered trademark of the Mathworks, Inc.

§The software described in this paper is available through
anonymous ftp at: ftp-mesc.wbmt.tudelft.nl, directory
pub/matlab/orttool.

¥The work of Peter Heuberger is financially supported
by the Dutch Technology Foundation (STW) under contract
DWT55.3618. He is on partial leave from the Dutch National
Institute of Public Health and the Environment (RIVM).
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by minimizing in least square sense the prediction
error :

e(t) = y(t) — H(q)u(t) (2)

Since the parameters {a)} appear quadratic in the
resulting least squares optimization problem there
exists a unique analytic solution.

The basis functions {fi(2)} are created from a set
of stable poles and the crux of the method is that
a well-chosen set of poles will reduce the number of
parameters that are significant. In particular if the
set of poles coincides with the actual poles of the
system at hand, then -under white noise conditions
and N — oo - the parameters ay = 0,k > p, where
p is the number of poles of the system.

It is helpful to keep in mind that the most straight
forward example of the basis functions is the set of
pulse functions {z*}, in which case the method is
equivalent to the standard estimation of FIR (finite
impulse response) models. See section 2 for the con-
struction of the set of basis functions. The tool is
built up in one main window, in which at all times
4 so called frames are visible. In total there are 7
frames, one of which is the so-called Message frame.
This frame is used for intermediate messages, warn-
ings and error messages. It is always visible. The
other 6 frames are divided in 3 groups:




1. Basis frame and Data frame.
2. Order frame and Reduction frame.
3. Initial frame and Iteration frame.

Of each group only one frame is visible at a time.
Each frame has a button to toggle the visibility.
This set-up was taken to reduce the amount of
screen space, while keeping as much information at
hand as possible. In Figure 1 the primary frames
are displayed.

Next to these frames the tool has a number of pull-
down menu buttons at the top, as shown in Figure
2. In the next sections all the frames and menu but-
tons will be discussed in detail.

The tool keeps track of all the results created and
bases used. These are stored in memory and can
be saved in files or copied to SiTB. The undertaken
actions can be logged in a log-file,

2 Background

In this section a short explanation is given on the
construction of the basis functions for the SISO case.
This concept has a straightforward multivariable ex-
tension. See the references for details.

The sets of functions used in this approach are based
on the fact that each inner (i.e. stable all-pass)
transfer function gives rise to a basis for H; in the
following way.

Let [A, B,C, D] be a balanced realization of an in-
ner transfer function Gy(z), with McMillan degree
m. Define Vi(z) := [2I — A]7*B. Then the set of
functions defined by the scalar elements of

Vi(2) := Va(2)GE Y (2) Vi(z) eR™  (3)

forms a basis for the strictly proper transfer func-
tions in H,.

Hence for every transfer function H(z) € H, there
exist unique parameters ag and {L; € R™ k =
1,:-+,00} such that

H(z) = ap + iLf‘Vh(»’«'}
k=1

(4)

Well known examples of this concept are the cases
Gy = z7! and Gy(z) = 1=2% which result in the

-
basis of pulse functions {z~*} respectively the basis

of Laguerre functions {v/1 — azr(:_;:)ﬂhﬁ}.

When applying this expansion formulation to sys-
tem identification it is assumed that H(z) can be
adequately approximated with a finite number of
basis functions

H(z) =ap+ Y L{Vi(2)

k=1

(5)
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Rewriting the vector functions {Vi(z)} and vectors
{L:} in scalar functions {fi(z)} and scalars {o;}
gives the expression (1).

In the SISO case an inner function is completely
parametrized by it's poles {a;}, since every inner
function Gp(z) can be written as the Blaschke prod-

uct
P

Gy(z) = :i:H

s=i

l—a;z

(6)

Z— a;

The approach is motivated by the fact that -if the
inner function c.q. the set of poles is well chosen-
the number of significant parameters will be small,
where well chosen indicates that the poles of the in-
ner function are close to the poles of the actual sys-
tem at hand. This implies that a-priori knowledge
about major time-constants can be directly used in
this approach. In practical situations such knowl-
edge is often available. See the references for an
analysis of the bias and variance of the resulting es-
timates.

3 Utilities

In order to apply the method the following steps
have to be performed:

e specification of input/output data

¢ choice of basis, in terms of the poles of the inner
function

e the number of basis functions to incorporate

There are however a number of practical issues to
be considered. These are reflected upon in the next
paragraphs.

3.1 Data

The frame titled DATA is meant for importing in-
put/output data. The variable(s) can be located in
3 different locations denoted by:

Workspace MATLAB’s main level storage space.
File A file in MATLAB's .mat format.
Ident Copy the ONLY data set selected

in the SITB board(s).

The name of the input and output variable have to
be entered in text fields labeled Input respectively
Output. Furthermore one can specify a range to
be used. In order to preprocess the data there is an
option to remove means from the data on the chosen
range.




Help Save

Options Validation Redu

Help Save

DAT]

I From Workspacd

Irpust

Oider Frame

Clear all imported bases
Ciear last imported basis
Clear all resuits

4 reduchon ﬁ

Clear last results
Close secondary windows

Fig. 2: ORTTOOL main window: pulldown menu’s.

3.2 Basis

The frame titled BASIS FUNCTIONS is meant for
importing the characteristics of the system based
orthonormal basis. As stated these basis functions
are completely determined by a set of stable poles
(SISO). The program offers 4 different ways to en-
ter the characteristics, but these are all converted
to poles before processing. The variable(s) can be
located in 4 different locations denoted by:

Workspace =~ MATLAB’s main level storage space.

File A file in MATLAB’s .mat format.

Iterate Convert the last created results
into basis functions.

Ident Copy the ONLY model selected

in the SITB board(s).

3.3 Model order

As stated, the resulting model order is equal to the
number of basis functions used. However this num-
ber is limited in 2 ways. The first limitation comes
from the number of data points N. This number
should be larger than the number of functions n,
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to ensure the existence of a unique solution, i.e. to
keep an overdetermined set of equations. The sec-
ond limitation comes from the dynamic character
of the basis functions. The basis functions should
have damped out sufficiently in the interval [t;, ty].
If this is not the case the optimization problem may
become badly conditioned, but also the resulting
model can inhibit undesired behavior. Consider for
example the basis functions depicted in Figure 3,
when N = 100. Such situations should be avoided.
The Model Order frame, used to specify the number
of basis functions, includes an option to calculate the
maximum number of functions (given a basis).

3.4 Initial conditions

Especially if the number of measurements is rela-
tively small, the effect of initial conditions on the
output data may be substantial. This effect strongly
depends on the underlying system, since slow poles
may cause slow damping of the effect. The total
number of initial conditions is equal to the number
n of orthogonal functions used. Since this would al-
most double the number of parameters, the tool has
an option in the Initial Condition frame to check




wether and which initial conditions are of impor-
tance.

The check is based on the regression matrix used in
the estimation procedure. This regression matrix R
consists of 2 parts R = [Ry|R.] where R, depends
solely on the input data and R, solely on the initial
conditions. The mutual importance of the initial
conditions is determined by a singular value decom-
position of the matrix R.. Initial conditions with
small singular values are discarded. The importance
of the initial conditions on the estimated coefficients
is determined by evaluating the norm of the projec-
tion R, of the matrix R, on R,. This norm should
neither be large nor small, since a large norm (=~ 1)
implies that the initial condition is independent of
R,, while a small norm (=~ 0) shows it is dependent
of R,. In both cases the initial condition will not
influence the estimation result. With the aid of a
graphics window the user can specify which initial
conditions have to be incorporated. See Figure 4 for
an example.

3.5 Uncertainty

Analogous to SITB, ORTTOOL calculates the uncer-
tainty in the estimation result in the form of a co-
variance matrix for the estimated parameters and
the variance of the error signal. To this end a third
order prewhitening filter is applied to the prediction
error signal. The resulting uncertainty bounds can
be visualized in SI1TB.

3.6 Iterations

The theory behind this tool encourages an iterative
procedure, improving the a-priori knowledge (i.e the
poles of the basis) by each estimation step, by adap-
tation of the basis. Although there is yet no con-
vergence result to support such a set-up, it would
heuristically be the 'way to go’ (i.e. try to force as
much knowledge as possible into the basis in order

first 3 % 1 lunctions

-0.04 ]
-0.06 i
-0.08
-01

20 10 % 80 10 120 10 180

Fig. 3: Example of 3 basis functions.
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to facilitate the estimation). The tool has the op-
tion to iterate a number of times, where in each step
a large order model is estimated, which after reduc-
tion leads to a new set of basis functions, that are
used in the next estimation step. This number can
be set in the Iteration frame.

3.7 Model reduction

In general the estimation result will be a (relatively)
large order model, which has to be reduced in order
for further use, for instance when using an itera-
tive set-up. To this end the tool features a model
reduction option, where a choice from 4 model re-
duction methods can be made. Three of these are
based on so called balanced realizations and the last
one is an approximate realization method. The user
can specify the reduction order on the basis of a
(Hankel) singular value plot. See Figure 4 for an
example.

4 Top-menu choices

Next to the frames the tool offers a number of but-
tons in the form of top-menu choices. An overview
of the main options is displayed in table 1.

4.1 Help

Pressing the Help button invokes MATLAB’s
HTHELP, a hypertext utility for MATLAB help and
HTML viewing, with links to various subjects. This
utility is part of the MATLAB toolbox UITOOLS.

4.2 Save

Currently the toolbox has only options to save the
data and the created results (estimation and reduc-
tion). Results can either be saved to files in the stan-
dard MATLAB binary format or copied directly to
SiTB. The data can only be copied to SITB. When
saving results, the user can choose between saving
only the last created result or all results. Further-
more the format can be specified, either the state
space format or the Theta format as used by SITB.

4.3 Options

o Log-file
With the options of this menu a file can be
opened in which the most important actions are
saved. It can be closed, re-opened, viewed and
deleted.

e Uncertainty
In the current version of ORTTOOL, only un-
certainty for the estimated parameters is calcu-
lated. The uncertainty in the initial conditions
is not calculated.




Clse Plot p__'f '

Fig. 4: Example of initial condition window and singular values window.

Help | Save Options Validation Reduction Arx
all in A,B,C,D Log-file Simulation+Impulse resp. | Last created model
all in THETA Uncertainty | Bode plots Last Full order model
last in A\B,C,D | Clear Prediction error Compare with Full model
last in THETA | Defaults Coefficients
all to IDENT Plot Format | Poles+zeros
last to IDENT
Data to IDENT

Table 1: Orttool Top-menu

e Clear
The tool keeps all bases and results in memory.
With the clear option these may be removed
from memory. Furthermore an option is in-
cluded to delete all extra graphics (’secondary’)
windows.

e Defaults
With the Default button the user can change
the default parameters and filenames used by
the tool.

e Plot Format
This option is used for the default type of hard-
copy files. The user can choose between a num-
ber of Postscript and Windows formats.

4.4 Validation

The validation option offers a number of plot
choices, to display characteristics of the created
model, where possible together with results ob-
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tained directly from the data. To this end several
SITB functions are used.

4.5 Reduction

With this button a reduced order model is created,
based on the settings in the Reduction frame. The
user can choose between the last created model or
the last created full order model.

4.6 Arx

This button can be used to create an initial model
guess, applying an Arx model. The order of the
model must be specified in the Model Order frame.
This option uses the S1TB function ARX.

5 Remaining Options

¢ Exit button
This option quits ORTTOOL. Be sure to save
your results before issuing this command. A




question dialog box is used to confirm this ac-
tion.

e Run button
The Run button starts the estimation, using
the settings in the various frames, i.e.

— Imported basis

— Imported data

— Model order

— Iteration number

— Reduction method (if iterating)
— Reduction order (if iterating)
— Initial condition settings

e Graphics
ORTTOOL can create secondary graphics win-
dows at various instances, e.g. to display val-
idation results, basis functions, data, singular
values etc. Each window has a button to create
a hard-copy.

e Message frame
The Message frame is used to display interme-
diate steps, warnings and errors. The errors are
also included in the log-file.

e Help buttons
Each of the frames has a HELP button to dis-
play specific information.

6 Future extensions

In the near future the choice of the poles and the
number of functions will become more flexible in
order to avoid problems as expained in section 2.1.
Furthermore the tool will be expanded to include
the estimation of MIMO (p x m) systems. This will
offer two possible approaches to estimate a model

H(z)= Y arfu(2)
1. Mimo basis functions:
af € R? and fT(2)T e R™
2. Scalar basis functions:

ar € RP*™ and fi(z) e R

7 Summary

A MATLAB toolbox has been presented for open-
loop system identification on the basis of orthonor-
mal basis functions. It is operated through a graph-
ical user interface, that facilitates exchange of mod-
els and data with SITB. The current version only
supports the estimation of SISO models. The tool
includes options for the estimation of initial condi-
tions, model reduction and an iterative approach.
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