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Abstract

Epoxy resins are increasingly used in critical structural components with widespread applications in
the transportation, construction and energy industries. The wind energy sector is one of the fastest
growing commercial markets for epoxy resins, meaning that the structural behaviour of epoxy resins
is becoming a key area of research, especially regarding its application to wind turbines. Wind tur-
bines, particularly those in off-shore installations, are subject to a wide range of environmental con-
ditions, most notably large variations in humidity and temperature. Both moisture and increased
temperatures have been observed to have a significant impact on the stiffness and strength of epoxy
resins. These environment effects, coupled with complex time dependent mechanical behaviour,
means that the accurate prediction of the structural performance of epoxy resins has not yet been
fully described.

This thesis presents a multiphysics framework for the simulation of hygrothermal ageing in
epoxy resins. The constitutive model formulated in this thesis consists of a non-linear viscoelastic
and viscoplastic mechanical model, physically coupled with a Fourier heat conduction model and a
Fickian diffusion model. Degradation based on a glass transition surface is implemented to describe
the multi-state behaviour of epoxy resins. To justify the model assumptions, DMA and creep tests
are performed on epoxy resin specimens and their temperature dependent mechanical behaviour is
established. A number of numerical benchmark tests and case studies are performed using a finite
element implementation of the numerical framework. It is shown that the multiphysics framework
can capture the characteristic mechanical and hygrothermal ageing behaviour exhibited by epoxy
resins. Recommendations are provided for further development of the numerical model and cali-
bration of the material properties. In a secondary study, a mesh sensitivity analysis is performed on
an existing viscoelasitc-viscoplastic-damage model and recommendations for an improved formu-
lation are provided.

R. J. van Leeuwen
Delft, June 2018
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1
Introduction

1.1. General Overview
The use of laminated composites is widespread amongst many industries, notably in the transporta-
tion, construction and energy sectors. Laminated composites provide many advantages over tradi-
tional materials. They are lightweight, have exceptional specific stiffness and strength characteris-
tics and can be easily moulded into complex shapes [1]. Glass/epoxy composites, more commonly
referred to as fibreglass, are one of the most prominent laminated composites and commonly con-
sist of a woven glass fibre sheet thermoset into an epoxy polymer matrix. One of the prevalent
applications of glass/epoxy composites is their use in the construction of wind turbines.

The wind energy sector is experiencing unprecedented growth [12] sparked by policies aimed
towards the reduction of fossil fuel dependency. In Europe alone, the offshore wind energy capacity
is forecast to expand by up to 21% annually [10]. Glass/epoxy composites are becoming a primary
focus for scientific research due to the fact that they are the most common material used in the con-
struction of wind turbine blades. Further, they are also the most expensive component of a wind
turbine [18]. A primary focus of current research in wind turbine development is concerned with
the structural optimisation of the blades, particularly in offshore installations, where increasing the
blade size results in a reduced cost of energy [18]. Further research relating to the micro-mechanical
behaviour of glass/epoxy composites builds on the optimisation philosophy, aiming to reduce the
uncertainty associated with the structural design of these blades. With wind turbine blades de-
signed to be in operation for up to 25 years, the high-cycle fatigue design of glass/epoxy composites
is of particular importance.

In the offshore environment wind turbine blades are subjected to extreme environmental con-
ditions, such as large variations in humidity and temperature as well as other undesirable environ-
mental processes. The combined influence of thermal and moisture ingression has a significant
impact on the fatigue life of glass/epoxy composite materials [5, 13] and is an ongoing area of re-
search in the energy industry. Although this hygrothermal ageing process is a complex interaction
between all the constituents of a laminated composite, understanding the behaviour of each indi-
vidual component is crucial in quantifying fatigue behaviour.

This thesis focuses on the material behaviour of epoxy resin, which forms the matrix that binds
a laminated composite together. Rigorous constitutive modelling of epoxy resins involves consider-
ing a multitude of complex time dependent mechanical and hygrothermal behaviour. While there
have been many attempts to quantify this complex behaviour on an individual level, few have suc-
cessfully unified the time dependent mechanical behaviour with coupled hygrothermal effects.

1
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1.2. Aim of the Research
The intent of this research is to develop a constitutive numerical framework that accurately de-
scribes the physical behaviour of epoxy resins in order to better quantify the process of hygrother-
mal ageing. This thesis seeks to build upon the constitutive model developed by Rocha et al. [23, 24]
by improving and expanding elements of the model that do not accurately represent the physical
behaviour of epoxy resins.

A cursory study of the existing constitutive model by Rocha et al. has identified the following
research questions as a formulaic approach in achieving the numerical aims of this thesis:

Numerical Research Questions

1. How well does the existing damage model address the issue of mesh dependency?

2. How can the existing constitutive model be extended to account for thermal effects?

3. How can the existing constitutive model be improved to better represent the elastic
behaviour at large strains?

4. How well does the new constitutive model capture observed phenomena relating to
the mechanical and hygrothermal ageing behaviour of epoxy resins?

Further to these numerical research questions, the following experimental research questions
were formulated to provide experimental confirmation of the model assumptions and to instigate
calibration of the material parameters:

Experimental Research Questions

5. What effect does temperature have on the stiffness of the epoxy resin system?

6. What are the long term stiffness properties of the epoxy resin system in different mate-
rial states?

1.3. Research Methodology
Numerical Research
The numerical work in this thesis consists of the formulation of a multiphysics constitutive model,
model implementation and model validation. The model formulation is predominantly theoreti-
cally grounded and, therefore, an extensive literature review is first undertaken to examine the be-
haviour of epoxy resins and the mathematical models used to describe this behaviour. The formula-
tion adapts models from the literature describing individual material behaviour and combines them
in an overarching numerical framework. The formulated numerical models are then implemented
in the context of the finite element method and are programmed in C++ using the Jive program-
ming toolkit. In this thesis, an existing finite element framework developed by Rocha et al. [23, 24]
is adapted and new models are programmed to implement the developed constitutive models. Fi-
nally, the model formulation and implementation are validated by undertaking a series of numerical
benchmark tests and case studies. The validation stage verifies the suitability of the implementation
and highlights the capabilities of the formulated constitutive models.
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Experimental Research
To answer the experimental research questions, two different types of tests are undertaken on a
typical epoxy resin system. A dynamic mechanical analysis with a temperature sweep is performed
to investigate the temperature dependent stiffness of the epoxy resin. Numerous creep tests are
carried out to quantify the long term stiffness properties of the epoxy resin.

1.4. Thesis Outline
This thesis is structured such that the research questions are addressed in a logical manner. Section
2 presents a critical review of the literature related to the observed behaviour of epoxy resins and
the numerical tools that can be used to describe this behaviour. This section also assesses some of
the existing numerical frameworks that are used to model epoxy resins and provides an overview of
the theoretical background to the experimental procedures used in this thesis. Section 3 focusses
on the first research questions relating to the mesh dependency of the damage model. Section 4
describes the experiments undertaken in this thesis relating to the fifth and sixth research ques-
tions and presents the results in order to provide context for the model formulation. In Section 5
the new constitutive model is developed, addressing the second and third research questions. The
mathematical and algorithmic aspects of the constitutive model are discussed in detail. Section
6 addresses the fourth research question by presenting and discussing results relating to numerical
model validations and physical case studies. Finally, Section 7 summarises the findings of this thesis
and presents recommendations for further research related to this topic.





2
Literature Review

2.1. Observed Behaviour of Epoxy Resin
In this section, key features of the mechanical behaviour of epoxy resins are described in order to
enable the construction of a realistic constitutive model. The epoxy resin that is studied in this
thesis, as well as by Rocha et al. [22–24], is the Momentive RIMR 135/EPIKURE RIMH 1366, with a
ratio between the monomer and hardener of 100:30 in weight.

2.1.1. Mechanical Behaviour
The mechanical behaviour of epoxy, and polymers in general, is complex due to the fact that its
response is time dependent. Unlike traditional construction materials, such as steel, timber and
aluminium, capturing the time dependent behaviour of epoxy resins plays an important role in
quantifying its material failure. Figures 2.1a and 2.1b show the typical mechanical response of epoxy
resin and highlight its deviation from a traditional elasto-plastic damage (E-P-D) model.

(a) Experimental response of epoxy. (b) Response of a traditional E-P-D model.

Figure 2.1: Experimental and E-P-D model responses to a loading-unloading test with increasing amplitude
[24].

In Figure 2.1b it can be seen that a traditional E-P-D model responds in a linear manner up to
the yield point of the material, Fy. After yield, the plasticity model causes a hardening response
until failure occurs at Ff. Before failure, unloading and reloading occur elastically, with the model
following a path matching the initial elastic stiffness. After reloading, the E-P-D model intersects
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6 2. Literature Review

the load-displacement curve at the point at which unloading began. After this intersection, the
monotonic response is once again followed. It is apparent that the mechanical behaviour of epoxy
resin, summarised in Figure 2.1a, does not exhibit this loading-reloading behaviour and, as such,
cannot be described by a traditional E-P-D model. Because of this, the features that distinguish the
mechanical response of epoxy resin from a traditional E-P-D model are investigated in further detail
below.

Epoxy resins, as well as most thermoset polymers, exhibit a strain rate dependency in their me-
chanical response. Figures 2.2a and 2.2b show that an increase in the strain rate results in an in-
crease in stiffness and failure strength. Figure 2.2a shows that this behaviour is also accompanied
by a reduction in the failure strain. This strain rate dependency of the epoxy resin can be attributed
to its behaviour at polymer level [15].

(a) Response of epoxy to a quasi-static tension
test [24].

(b) Tensile stress-strain response of epoxy at
three different strain rates (thick lines are experi-
mental data) [15].

Figure 2.2: Strain rate dependency behaviour of epoxy resin.

Ratcheting, which relates to strain accumulation during cyclic loading, is a significant, yet com-
plex, phenomenon that occurs in epoxy resins. Ratcheting in traditional materials is generally at-
tributed to the accumulation of plastic strains. However, in the case of materials with significant
time dependent behaviour, a component of ratcheting strains can originate from an elastic source
[24, 28]. While the elastic ratcheting strain component does not have a direct effect on the fatigue
behaviour of epoxy resins [28], isolating the ratcheting component related to plastic strain accumu-
lation is crucial in predicting fatigue failure [32]. Figure 2.3a shows that the non-linear development
of ratcheting strain can occur without any appreciable reduction in elastic stiffness. Figure 2.3b
shows that the ratcheting strain is composed of a recoverable elastic component and an accumulat-
ing, non-recoverable plastic component.

While the phenomenon of ratcheting is observed during load controlled tests, stress relaxation
occurs during displacement controlled testing and relates to the relief of stress under constant
strain. In a cyclic displacement controlled loading of an epoxy resin, it is observed that the mean
stress reduces with time [29]. In a cyclic test that involves only tensile strains, stress relaxation re-
sults in the development of compressive stresses at the end of the unloading cycle, which can occur
without plastic strains. This behaviour is described in Figure 2.4. As with ratcheting, the stress re-
laxation in epoxy resins can be a result of both elastic and plastic behaviour, which must be isolated
in order to quantify its effect of fatigue failure.

Significant hysteresis is observed during the cyclic loading of epoxy resins at high stresses and/or
strains. From Figure 2.1a, it can be seen that the unloading branches form increasingly larger hys-
teresis loops, the concavity of which changes from concave at smaller strains to convex at larger
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(a) Development of ratcheting strain and instan-
taneous elastic modulus during cyclic testing
[24].

(b) Relaxation of ratcheting strain at zero stress
after cyclic stress-controlled deformation [32].

Figure 2.3: Strain rate dependency behaviour of epoxy resin.

Figure 2.4: Evolution of stress-strain loops during cyclic loading highlighting stress relaxation [29].

strains [32]. The size of the hysteresis loop is related to the total amount of dissipation that is caused
by the viscous and plastic mechanical processes. Therefore, correctly quantifying this behaviour is
critical for models in which dissipation is linked to damage [23, 24] or multiphysical processes [32].

The combination of ratcheting and a relatively low elastic modulus means that polymers can
often experience relatively large elastic deformations. As a result, non-linearities in the elastic be-
haviour can become apparent in the material response as the strain level increases [3]. This non-
linear behaviour typically originates above a certain stress level after which the stress-strain curves
begin to deviate from linearity. Figure 2.5 shows the compliance of an epoxy adhesive as a function
of the stress level, for different loading rates. This figure highlights the softening of the epoxy above
a certain stress threshold, which is also dependent on the loading rate.

2.1.2. Hygrothermal Ageing Behaviour
Fatigue failure at relatively low stress levels has been linked to water absorption and large variations
in temperature [5]. This is often referred to as hygrothermal ageing and can affect the glass fibres,
the epoxy matrix and also the fibre-matrix interface in multiple ways. The behaviour of the epoxy
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Figure 2.5: Creep compliance of an epoxy adhesive at different loading rates [3].

polymer matrix in particular, is a result of a diversity of chemical and structural effects, presenting
an array of complex challenges when attempting to understand the degradation behaviour [13]. For
example, an increase in the temperature of the composite tends to soften and weaken its mechan-
ical response [26], while an increase in the moisture content typically plasticises the epoxy matrix,
reducing the observed modulus and strength [13].

Rocha, et al. [22] performed a number of experiments on specimens consisting of a glass/epoxy
composite and a neat epoxy resin, in order to investigate the degradation processes caused by the
ingression of water and variation in temperature. When investigating the effect of moisture ingres-
sion, saturated specimens showed a significant decrease in mechanical strength. The composite
specimens exhibited a 36% loss in shear strength and its fatigue life was reduced by three orders of
magnitude. The neat epoxy resin specimens experienced a less pronounced deterioration, with a
17% reduction in tensile modulus, bending modulus, and strength (see Figures 2.6a and 2.6b). Both
the composite and neat epoxy specimens were also completely redried after saturation and were
retested. The redried composite specimens did not fully recover their shear strength and stiffness.
In contrast, the redried neat epoxy resin specimens experienced a full recovery of both their stiffness
and bending strength, however they experienced a reduction in their failure strain.

It was proposed by Rocha et al. [22] that saturation of composite glass/epoxy specimens re-
sults in the occurrence of significant differential swelling stresses caused by differences in material
behaviour within the composite. Repeated cycles of water absorption and desorption can induce
fatigue damage in laminated composites, greatly reducing the service life of a wind turbine blade
[5]. Further, it was also concluded by Rocha et al. that the moisture induced degradation of the
epoxy matrix further contributed to observed reductions in mechanical and fatigue strengths. This
degradation is the result of the absorbed water acting as a plasticiser, softening the epoxy matrix,
which, in most cases, is a reversible process after drying [13]. Further, the absorption of moisture
acts to reduce the observed glass transition temperature [13], which is the point at which a state
change occurs within a material, resulting in a significant change in its mechanical behaviour [25].
This behaviour was also found in the tests on the epoxy resin by Rocha et al., in which the glass
transition temperature was significantly influenced by the moisture level of the specimen. Rocha et
al. determined the glass transition temperature of the Momentive RIMR 135/EPIKURE RIMH 1366
epoxy resin to be 90.3◦C for dry specimens and 70.0◦C for saturated specimens.
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(a) Static ILSS test on glass/epoxy composite
specimens with varying saturations [22].

(b) Static ILSS test on unaged and saturated neat
epoxy resin specimens [22].

Figure 2.6: Degradation of shear strength with moisture saturation.

The effect of moisture content on the glass transition temperature depends strongly on the
epoxy resin system used. In the study by Choi et al. [5], it was found that the glass transition temper-
ature linearly decreased with increasing moisture content. However, in the experiments performed
by Chen et al. [4], a square root relationship between the degree of glass transition and the moisture
content was adopted.

The thermal testing by Rocha et al. [22] showed that there was a significant change in the me-
chanical response of the neat epoxy resin once the temperature of the specimen approached the
glass transition temperature. Figure 2.7 presents the storage modulus1 of a neat epoxy resin speci-
men as a function of the temperature of the specimen. It is clear that, at elevated temperatures, the
epoxy resin loses a significant portion of its stiffness. Further, Yu et al. note that the yield strength
of polymers is typically degraded by a similar amount [32].

Figure 2.7: DMA results for neat epoxy resin samples showing the dependence of the glass transition on the
moisture concentration and the dependence of the stiffness on the temperature [22].

1The storage modulus is analogous to the elastic modulus, see Section 2.6.1.
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2.1.3. Transport Behaviour

The heat conduction behaviour of epoxy resins is assumed by most authors [8, 32] to be isotropic
and to follow Fourier’s law of heat conduction. Humidity dependent heat transfer was observed in
experiments by Chen et al. [4], in which the thermal conductivity was found to be a linear function of
the moisture content. However, the significance of the effect was found to be quite weak in the work
by Yu et al. [32], in which a 5% increase in the conductivity was modelled from the dry state to the
saturated state. The coupling of heat conduction with mechanical behaviour is also present because
viscous elastic and plastic deformations result in internal energy dissipation [25, 32]. These dissi-
pations can be interpreted as an internal heat source within the material. Chen et al. [4] observed
this phenomenon by measuring the temperature of epoxy resin specimens subjected to increasing
strain rates, observing that a large enough strain rate can induce glass transition. This observed
behaviour significantly accelerates the hygrothermal ageing process, see Figure 2.8.

Figure 2.8: Temperature of epoxy resin specimens during cyclic strain-controlled testing [32]. Note that the
glass transition temperature for the test epoxy was 318 K.

In studying the moisture diffusion behaviour of the Momentive RIMR 135/EPIKURE RIMH 1366
epoxy resin system, Rocha et al. [22] found the saturation moisture content to be approximately
3.94%. It was concluded that the diffusion behaviour of the epoxy could be accurately represented
by Fick’s first and second laws of diffusion. This model has been adopted by others authors for sim-
ilar epoxy resin systems [13]. It was noted, however, that for the current epoxy resin system, part
of the water could not be removed through redrying. This indicates that a proportion of the wa-
ter molecules form chemical bonds with the polymer network. This behaviour is consistent with a
Langmuir type non-Fickian diffusion model, also commonly used for modelling the moisture dif-
fusion behaviour within epoxy resin specimens [5, 32]. In this model, the total moisture content
is decomposed into a component consisting of free water molecules and a component related to
water molecules that are chemically bonded to the polymer network. This diffusion behaviour is
consistent with epoxy resins that show different rates of moisture uptake at different temperatures,
such as in the epoxy studied by Choi et al. [5]. However, the moisture diffusion behaviour at ele-
vated temperatures has not been studied for the current epoxy resin system, and, as such the extent
to which the epoxy resin studied in this thesis is non-Fickian has not been ascertained.
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2.2. Modelling the Mechanical Behaviour of Epoxy
This section introduces the various modelling components that are used to numerically describe the
behaviour of an epoxy resin used in a glass/epoxy composite material. An epoxy resin is a type of
polymer and, as such, exhibits a viscoelastic and viscoplastic response [17, 25]. Both viscoelasticity
and viscoplasticity are crucial elements when quantifying the hygrothermal fatigue behaviour of
a glass/epoxy composite [23]. Further to this, once a particular stress level has been reached, a
continuum damage approach can be used to model the initiation and propagation of micro-cracks
within the epoxy matrix [17, 24]. Finally, degradation of the epoxy due to thermal and moisture
effects can be captured through the incorporation of a glass transition model [32].

2.2.1. Deformation of Polymers
Polymers typically behave through a combination of two different molecular mechanisms: a distor-
tion or stretching of the chemical bonds between the atoms, which is referred to as elastic solidity,
and a larger-scale rearrangement of the molecular chains of the polymer, which relates to viscous
fluidity [25]. These two types of deformation occur at very different time scales. The bond stretch-
ing occurs almost instantaneously, while the molecular rearrangement is a much slower process,
the rate of which depends heavily on the temperature of the polymer. The mechanical behaviour
of any polymer can be described by three main states that relate to these modes of deformation: a
glassy state, which exists at lower temperatures and whose deformation consists only of instanta-
neous elastic solidity; a rubbery state, which exists at higher temperatures and whose deformation
consists solely of slower viscous fluidity; and a leathery or mixed glassy-rubbery state, which exists
close to the glass transition temperature and with a deformation that is a combination of elastic
solidity and viscous fluidity. Refer to Figure 2.9 for a representation of the deformation rates of the
three different material states.

Figure 2.9: Temperature dependence on polymer deformation rate [25].

Epoxy resins used in glass/epoxy composites generally exist in a state relatively close to the glass
transition temperature under typical service conditions. As a result of this mixed state, time effects
can be significant [25] and modelling this time dependent behaviour is critical for the accurate de-
scription of the mechanical deformation of epoxy resins. The modelling approach that is adopted
in this thesis uses viscous mechanical models to describe the elastic and plastic behaviour of epoxy
resins and is described in detail in Sections 2.2.2 and 2.2.3.

An alternative approach that is gaining in popularity owing to increasing computational power,
is the use of multiscale molecular dynamics modelling. In this approach, nano-scale models of
the cross-linked polymer chains are constructed and a molecular dynamics simulation is used to
obtain homogenised continuum mechanical properties [30]. The advantage of these molecular dy-
namics models over the more traditional viscous models is that the physical atomistic behaviour
of the material is captured. As a result, model parameters with seemingly no physical interpreta-
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tion, such as some of the parameters used in non-linear viscoelasticity models, are avoided. An-
other significant advantage is that these models have the ability to inherently capture temperature
dependent behaviour under general stress states. For example, Vu-Bac et al. [30] obtained temper-
ature dependent elastic moduli and yield surfaces from molecular dynamics simulations that were
experimentally validated for temperatures below the glass transition. Further, the use of nanoscale
simulations can allow for model calibration without the need for physical experiments. For exam-
ple, material parameters used in viscous continuum models could be obtained numerically using
a number of multiscale molecular dynamics simulations, significantly improving the speed and re-
ducing the cost of model calibration.

Although the use of molecular dynamics simulations is outside the scope of this thesis, its ap-
plication has the potential to build on the work presented in this thesis and is thus referenced in the
discussion of the numerical results and the recommendations for future work.

2.2.2. Viscoelasticity
To build a viscoelastic model for epoxy resins, first a simple model is considered. One of the most
basic viscoelastic models is the Maxwell element, which consists of a spring and dashpot in series,
see Figure 2.10.

Eη

Figure 2.10: Maxwell element.

After decomposing the strain rate into an elastic and viscous component, and substituting the
relevant constitutive relations, a single order differential equation is obtained in terms of the stress
[7]:

ε̇= σ̇

E
+ σ

η
(2.1)

where E is the stiffness of the spring and η is the viscosity of the dashpot. Given an initial strain ε0,
the resulting stress behaves according to an exponential decay function:

σ(t ) = Eε0 exp

(−t

λ

)
(2.2)

where λ= η
E is defined as the relaxation time. This very simple model captures some of features that

were described in Section 2.1.1, most notably strain-rate dependency and stress relaxation, and, to
a lesser degree, ratcheting and hysteresis. To build upon this model, it should be noted that the
physical behaviour of a polymer consists of many relaxation times. This is because each molecular
chain has a different length within a polymer. As a result, each molecular chain also has its own re-
laxation time, with shorter chains relaxing faster than longer ones [25]. Numerically, this behaviour
can be well represented by a finite number of Maxwell elements in a parallel arrangement, each
with their own stiffness Ei and relaxation time λi [7]. Often, the first element in this chain has an
infinitely large relaxation time, corresponding to a spring which represents the long term stiffness
of the material, E∞, see Figure 2.11.

While Equation 2.2 relates to a single imposed initial strain, a generic numerical model must
consider an arbitrary strain history. Therefore, an integration of all the previous strain states must
be performed to determine the stress at any given time. De Borst et al. [7] explain that this is com-
putationally undesirable because all previous strain increments need to be stored and operated on
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Figure 2.11: Maxwell chain rheological model.

in order to determine the new stress increment. One possible method to avoid this computation in-
volves manipulating the integral such that only a finite number of state variables from the previous
time step need to be stored [7]. This manipulation results in the following expression for the stress
increment ∆σ of a Maxwell chain model:

∆σ= D∞∆εe +
N∑

i=1

[
1−exp

(
−−∆t

λi

)][
λi

∆t
Di∆ε

e −σi (t −∆t )

]
(2.3)

where D∞ and Di are the long term and viscoelastic stiffnesses, ∆εe is the elastic strain increment
and σi (t −∆t ) contains the historical stresses from the previous time step. In Equation 2.3 it can
be seen that the incremental stress consists of an elastic component and a sum of exponentially
decaying viscoelastic components.

In their development of a constitutive model for polymers, Yu et al. [32] present a strain based
non-linear viscoelastic model that is based on the model proposed by Xia et al. [31]. In this model,
the viscoelastic strain is decomposed into a volumetric and deviatoric component. To highlight the
non-linearity, the expression for the volumetric strain εve

v is given in Equation 2.4 below:

εve
v = 1

3

N∑
i=1

∫ t

0

[
1−exp

(
− t −τ

λi

)]
d [gCi (1−2νi )tr(σ)]

dτ
dτ (2.4)

where Ci and νi are the compliance and the Poisson’s ratio of the material relating to the i th relax-
ation time λi , tr(σ) is the trace of the stress vector and g is a function of the material state which
introduces non-linearity into the viscoelastic model. In the model proposed by Yu et al. [32], g takes
the following form:

g = 1+dve〈ξR( f (σ,ζ,εp
eq))+ (1−ξ) f (σ,ζ,εp

eq)−1〉mve (2.5)

In the above equation the degree of non-linearity is prescribed by the function f , which relates
to the onset of non-linear viscoelasticity and is a function of the stress level, the state of the material
and the amount of plastic strain. The parameters dve and mve are material constants controlling the
non-linear softening of the material. The other two parameters of importance are ξ, which changes
the shape of the hysteresis loop as a result of a state transition or excessive plastic straining, and
R( f ), which is a memory function relating to permanent changes in the hysteresis loop.
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2.2.3. Viscoplasticity
Apart from the motivation to include viscous and time-dependent effects provided in Section 2.2.1,
the nature of plasticity further justifies the use of a viscoplasticity model for modelling the yielding
behaviour of epoxy resins. The failure of a material often results in large strain rates that are the
result of the onset of damage or frictional effects [7]. These large strain rates activate an internal
viscous mechanism for carrying increasing loads. This phenomenon is frequently observed in engi-
neering materials, whereby the strength of a material is proportional to the rate at which it is loaded.
The main distinction between inviscid plasticity and viscoplasticity is that, in the latter model, the
stress state is permitted to escape the yield surface. This piercing of the yield surface is time depen-
dent and if the external loading remains constant, the stresses eventually relax until they reach the
yield surface.

A simple elastic-viscoplastic model consists of an elastic spring in series with a Coulomb friction
element and a dashpot [7], see Figure 2.12. In this model, plastic straining in the Coulomb element
begins once the yield stress has been reached and any stresses that develop above the yield stress
are resisted by the dashpot element.

∞E

η
σσ

σ

Figure 2.12: Viscoplastic rheological model.

Similar to Equation 2.1, a single order differential equation can be obtained to describe the be-
haviour of the simple elastic-viscoplastic model:

σ̇+ 1

λ
σ= E ε̇+ 1

λ
σ (2.6)

where λ = η
E is the viscoplastic relaxation time and σ is the yield stress. Similar viscoelasticity, this

simple model captures some of the time dependent behaviour that has been observed for polymers,
such as rate-dependent yielding and the accumulation of plastic strains.

Rocha et al. [24] use a Perzyna-type formulation in their viscoplastic model for epoxy resin. Sim-
ilar to traditional inviscid plasticity, the plastic strain rate in a Perzyna model is written as a function
of the variation of the plastic multiplier and the plastic flow direction [7]. The departure from invis-
cid plasticity into time dependent behaviour occurs in the evolution of the plastic multiplier, which
becomes a function of the time increment. The subsequent relaxation of the Kuhn-Tucker condi-
tions on the yield function allows stresses to develop outside the yield surface.

2.2.4. Continuum Damage Mechanics
While viscoelastic and viscoplastic models can capture most of the complex mechanical behaviour
associated with epoxy resins, neither model is able to describe the onset of failure that is evident in
Figure 2.1a. A continuum damage model can capture behaviour relating to the onset of failure by
relating the degradation of the elastic stiffness of damaging elements to a finite number of scalar
or tensor-valued internal variables (Lemaitre and Chaboche 1990). An elementary damage model
can be derived from a system of parallel elastic-brittle bars, shown in Figure 2.13. Defining d as
the fraction of broken bars, which is a function of the strain, a total stress-strain relation is derived
considering equilibrium of the system:

F = (1−d)E A0ε (2.7)
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Figure 2.13: Elementary damage model.

where A0 is the initial total cross-sectional area of the bars. This elementary damage model can be
extended to an isotropic continuum through the definition of an effective stress σ̃:

σ= (1−d)σ̃ (2.8)

where the constitutive relationship is now defined in terms of the effective stress:

σ̃= Dε (2.9)

The elementary bar model in Figure 2.13 can be expanded such that the bar now consists of m
continuum damage elements in series, each with a linear softening behaviour. If one of these ele-
ments has a marginally lower tensile strength, the damage will be localised within this one element.
De Borst et al. [7] explain that the slope of the response in the post peak regime is given by:

ε̇

σ̇
= 1

E
− n

mE
(2.10)

where n is the ratio between the ultimate strain and the strain at damage initiation. However, an
issue associated with this model and the effective stress model is that the formulation suffers from
severe mesh dependency in the post peak regime. In the case of the simple bar model, global snap-
back occurs when m = n. One approach that remedies this mesh dependency issue is a fracture
energy based approach in conjunction with a crack band model. A fracture energy approach con-
siders the area under the stress-displacement curve for a continuum damage element to be a mate-
rial constant related to the fracture energy of the material, G∗ [7]. The crack band model regularises
the dissipated energy over a defined bandwidth and, in combination with the fracture energy based
approach, results in a mesh independent reformulation of Equation 2.10:

ε̇

σ̇
= 1

E
− 2G∗

Lσd
2 (2.11)

where L is the length of the bar andσd is the stress at the onset of damage. This equation can be used
to derive an expression for the minimum fracture energy that prevents global snapback, ensuring
−ε̇/ σ̇≥ 0:

G∗
min ≥ Lσd

2

2E
(2.12)

In the definition of the damaged constitutive relationship in Equation 2.9, it is possible to either
keep a constant Poisson’s ratio or apply degradation to the Poisson’s ratio. The damage model used
by Rocha et al. [24] does not degrade the Poisson’s ratio because of its loss of explicitness in vis-
coelasticity models. However, a spurious hardening response has been observed in damage formu-
lations where the Poisson’s ratio is not degraded. This is because constraint is provided to softening
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elements by elastically unloading elements [2]. To counter this issue, Melro et al. [17] implement
a compliance matrix in which both the elastic stiffness and the Poisson’s ratio are degraded by the
same amount:

C =



1
E(1−d) − ν

E − ν
E 0 0 0

− ν
E

1
E(1−d) − ν

E 0 0 0
− ν

E − ν
E

1
E(1−d) 0 0 0

0 0 0 1
G(1−d) 0 0

0 0 0 0 1
G(1−d) 0

0 0 0 0 0 1
G(1−d)


(2.13)

where C is the compliance matrix. By maintaining a constant ratio between the Poisson’s ratio and
the elastic stiffness, both parameters are proportionally degraded and the spurious hardening is
prevented.

2.2.5. Glass Transition Behaviour
As outlined in Section 2.2.1, the mechanical behaviour of the epoxy resin depends heavily on its
state. In Section 2.1.2, the temperature and moisture content are identified as the key parameters
relating to state of the epoxy resin.

Yu et al. [32] propose that a single internal state variable relating to the degree of glass transition
ζ can describe the material state of an epoxy resin. In their model, ζ = 0 corresponds to a glassy
state and ζ= 1 corresponds to a rubbery state, with intermediate values representing the transition
between these two states. In their work, Yu et al. only consider the transition from a glassy state to
a rubbery one, even though the glass transitional process is bidirectional, ensuring that the process
is energy dissipative and that ζ̇≥ 0.

Yu et al. define the glass transition surface, which is similar to a yield surface, as the difference
between the thermodynamic driving force of ζ̇, πtr, and a positive constant, πc:

Φtr =πtr −πc (2.14)

In the above equation, πtr is a function of both the temperature and moisture content of the epoxy
resin. At a specific combination of temperature and moisture content,πtr pierces the glass transition
surface and the degree of glass transition ζ is accordingly updated to satisfyΦtr ≤ 0.

2.3. Modelling the Transport Behaviour of Epoxy
In order to better represent the hygrothermal ageing of glass/epoxy composites, thermal and mois-
ture effects should be considered. In this section, numerical models describing these two transport
phenomena are described.

2.3.1. Thermal Conduction
The most commonly used model to represent thermal behaviour is Fourier’s law of heat conduc-
tion, which states that for a given direction, heat flux is proportional to the negative gradient of the
temperature [6]:

q =−κ∇T (2.15)

where q is the heat flux vector, κ is the thermal conductivity matrix and ∇T is the temperature
gradient vector. This relationship has been successfully applied to study thermal conduction in
epoxy resins [8, 32]. In a general sense, the thermal conductivity matrix can be anisotropic and
have a non-linear dependence on temperature. Further, it has also been observed that heat transfer
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is dependent on the moisture level within the epoxy [4, 32]. Therefore, the thermal conductivity
matrix should formally be expressed as κ(T,ω).

The flow of heat resulting from heat flux generates a time rate of change of stored energy, which
is related to the specific heat of the material c [6]:

∆Q = ρcV∆T (2.16)

where ∆Q is the change in internal energy, ρV is the mass of the element in question and ∆T is the
change in temperature of the element.

In order to model the heat exchange between a specimen and its surrounding fluid, a convective
relationship is established [6]. The heat transfer into a body across a fluid boundary is related to the
heat transfer coefficient h. This coefficient is a function of the nature of the fluid and the dynamics
of fluid motion past the surface, and is described by:

q ·n =−h(T −Tf) (2.17)

where q ·n is the flux vector normal to the fluid boundary, T is the temperature of the specimen at
the boundary and Tf is the temperature of the fluid.

2.3.2. Moisture Diffusion
The diffusion of moisture within a material can be modelled with Fick’s first law of diffusion, which
is analogous to Fourier’s law of heat conduction:

j =−Dω∇ω (2.18)

where j is the water flux vector, Dω is the diffusivity matrix and ∇ω is the concentration gradient
vector. As is the case for thermal conduction, the diffusivity matrix can be anisotropic, non-linear
and depend on the temperature of the epoxy resin. As a result, the diffusivity matrix should formally
be expressed as Dω(T,ω).

Fickian diffusion behaviour relates to the take up of water within the free space between the
molecular chains [32] and was observed for the epoxy resin system studied in this thesis during
experiments at room temperature [22]. However, it is possible that at elevated temperatures, the
resin system may exhibit two phase behaviour, whereby water molecules also become bound to the
molecular chains of the epoxy through chemical reaction. In such cases, a Langmuir type diffusion
model can be used, which extends Fickian diffusion behaviour by decomposing the moisture con-
tent into the free moisture concentration and the bound moisture concentration [32]. A description
of the evolution of bound water can be written as follows:

ω̇b =Λfωf −Λbωb (2.19)

where ωb and ωf are the bound and free moisture concentrations respectively, and Λb and Λf

are the chemical moduli related to bound and free moisture concentrations respectively. These
chemical moduli control the evolution of the bound moisture.

2.4. Multiphysics Modelling
Multiphysics modelling involves simultaneously simulating multiple physical processes on the same
domain in order to investigate the effect of complex physical interactions. In its most generic form,
coupling between the physical models occurs through either the bulk domain or an idealised in-
terface [14]. The chosen solution technique for multiphysics modelling must consider the interac-
tions between various the physical models relevant for the given problem. Two such techniques are
the operator split approach or the assumption of strong coupling. In the operator split approach,
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strong couplings between components are ignored. Each physical problem is solved separately and
the analysis proceeds in an uncoupled, sequential manner. On the other hand, strong coupling ap-
proaches modify and combine each physical problem into a single formulation in an attempt to
solve all physical fields in a single iterative method. However, the strong coupling approach often
involves a significantly higher computational cost [14].

The operator split method has been successfully applied to the thermo-mechanical analysis of
heterogenous solids [20] and the diffusion-mechanical analysis of laminated composites [23]. In
both applications, the transport problem was solved first, with the resulting field used as input
for the solution of the mechanical problem. Özdemir et al. [20] note that the resulting numerical
scheme is efficient but only conditionally stable. However, it is noted that if an incremental iterative
scheme is already required for the mechanical analysis, the time step needed to capture the material
non-linearities is often more taxing than that required for the stability of the multiphysics analysis.

2.5. Existing Numerical Frameworks
This thesis builds upon the numerical work by Rocha et al. [23, 24] with the aim of improving their
epoxy resin model for describing the hygrothermal ageing of laminated composites. The consti-
tutive model for polymers formulated by Yu et al. [32] is referenced as a starting point for the de-
velopment of improvements to the framework by Rocha et al. This section briefly describes both
formulations and assesses the suitability and applicability of each model.

2.5.1. Overview of the Yu Model
In their paper ‘A hygro-thermo-mechanical coupled cyclic constitutive model for polymers with
considering glass transition’ [32], Yu et al. describe a thermodynamically consistent mathematical
model founded in experimental observations. The mechanical model incorporates viscoelasticity
and viscoplasticity and is coupled to equations describing Fourier heat conduction and non-Fickian
diffusion. A criterion for the glass transition of a polymer is developed and coupled to the mechan-
ical equations.

Yu et al. perform experiments on simple polymer specimens for calibration and verification of
their model. It is reported that the constitutive model can reasonably predict the temperature, rel-
ative humidity, and rate dependent cyclic deformations of polymer specimens and can also model
the deformation induced temperature gain observed in cyclic tests.

However, in their implementation of the coupled multi-field equations, Yu et al. simplify the do-
main and the model formulation so that the material is described by only one representative point,
see Figure 2.14. As a consequence, the resulting temperature, moisture and stress fields are uniform
and the application of the constitutive model is limited to prismatic one dimensional domains.

2.5.2. Overview of the Rocha Framework
The numerical framework developed by Rocha et al. [23, 24] employs both multiscale and multi-
physics modelling in order to couple macroscale diffusion behaviour and mechanical stresses with
the microscale behaviour of laminated composites. Figure 2.15 summarises the relationship be-
tween the various models in this numerical framework.

2.5.2.1. Macroscale Model
A coupled multiphysics model is implemented at the macroscale involving moisture diffusion and
mechanical stress. The diffusion analysis uses a Fickian model to simulate the moisture concen-
tration field within the domain. The mechanical model uses a small strain assumption, with the
material stiffness inferred from the behaviour of a micromodel at every integration point. Swelling
strains and hygroscopic degradation of the mechanical properties are dependent upon the mois-
ture concentration level obtained in the diffusion analysis. The diffusion analysis is not effected by
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Figure 2.14: Domain simplification used in the implementation by Yu et al. [32].

Figure 2.15: Schematic representation of the multiphysics/multiscale model for hygrothermal ageing [23].

the stress state of the material and, as a result, the operator split approach is utilised. In this mul-
tiphysics model, the macroscale diffusion problem is solved first, followed by the multiscale stress
problem.

2.5.2.2. Microscale Model

The microscale model considers a representative volume element (RVE) consisting of unidirectional
glass fibres embedded in an epoxy resin matrix. Interface elements are employed around each glass
fibre to capture fibre-matrix debonding. The glass fibres are modelled as a linear-elastic material
and failure of the fibres is not considered. The interface elements between the glass fibres and the
epoxy resin matrix incorporate a cohesive zone damage model, in which the onset of damage is
accompanied by jumps in the displacement field.

Most relevant to this thesis, however, is that Rocha et al. simulate the mechanical behaviour of
the epoxy resin matrix with a viscoelastic-viscoplastic-damage (VE-VP-D) model that builds on the
work of Melro et al. [17]. Figure 2.16 schematically describes the VE-VP-D model using rheologi-
cal elements. The elastic response consists of a stiffness that represents the long term response of
the material E∞ and a parallel chain of n Maxwell elements that model the viscoelastic response
of the material. These two elements correspond to a Maxwell chain model highlighted in Section
2.2.2. The viscoplastic component combines a dashpot element in parallel with a Coulomb friction
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element, as described in Section 2.2.3, and allows stresses greater than the yield stress to develop.
Damage is incorporated into the rheological model by defining an effective stress σ̃ and is further
described in Section 3.1.

Figure 2.16: Schematic representation of the VE-VP-D model for epoxy resins [24].

Moisture dependent degradation is incorporated into the epoxy resin and the interface models
by applying a single degradation factor dω to the relevant material properties:

dω = d∞
ω

ω∞
ω (2.20)

whereω∞ is the moisture concentration at saturation and d∞
ω is the experimentally obtained mate-

rial degradation factor at saturation. For example, an increase in moisture concentration results in
the degradation of the elastic stiffness and tensile strength in the following manner:

Eω = (1−dω)E (2.21a)

σωt = (1−dω)σt (2.21b)

2.5.2.3. Assessment of the Epoxy Model
The model formulated by Rocha et al. reasonably predicts both strain-rate and moisture concen-
tration dependent behaviour for monotonic tests [24]. A significant drawback of the model is that
it does not account for the temperature dependence of the mechanical properties highlighted in
Figure 2.7. As a consequence, the significant phenomenon of glass transition is not captured by
the numerical framework. In addition to this, the viscous mechanical models do not successfully
describe the behaviour of the epoxy resin at relatively large strains. Figure 2.17 presents a compari-
son of an experimental loading-unloading-reloading test against the behaviour as predicted by the
calibrated numerical model.

The only way for the linear VE-VP model to capture the non-linearity that is present above
stresses of approximately 50 MPa in Figure 2.17a is through the activation of plasticity. As a result,
softening of the response above this stress in Figure 2.17b is accompanied with accumulated plastic
strain. However, this accumulation of strain is not present in the experimental response. Further,
once the stress in Figure 2.17a is above approximately 70 MPa, significant plastic straining occurs.
This means that, in the region between 50 and 70 MPa, the softening of the response is not related to
plasticity. Thus, the linear viscoelastic model is not able to capture the non-linear elastic behaviour
exhibited by the epoxy resin.

It was noted by Rocha et al. that the damage formulation used in the epoxy model had not been
subject to mesh dependency tests when the damage model was combined with viscoelasticity and
viscoplasticity. Further, many authors [7, 11] have noted that viscous models can play a regularising
role when combined with damage models. As a result, issues relating to the mesh dependency of
the damage model used in the epoxy model formulation are investigated further in Chapter 3.
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(a) Experimental results. (b) Numerical prediction.

Figure 2.17: Comparison of experimental results and numerical simulation for a loading-unloading-reloading
test [24].

2.6. Experimental Procedures
Two types of experiments were performed in this thesis, namely a Dynamic Mechanical Analysis
(DMA) and a creep test. This section briefly describes the theoretical background relating to each
test.

2.6.1. Dynamic Mechanical Analysis
DMA is an experimental technique that is used to measure the behaviour of a material primarily
when subject to variations in stress, temperature and frequency [19, 21]. In a DMA test, a sinusoidal
deformation is applied to a small specimen and the resulting load and displacement is recorded.
The magnitude of the displacement is related to the material stiffness, while the phase shift between
the load and displacement signals relates to energy dissipation. Typically the test is performed at
a number of different loading frequencies and with a constantly varying temperature meaning that
the dependence on these parameters can be investigated.

From the raw load displacement data, the DMA post-processing tool calculates the terms to
related material stiffness and damping. The most frequently interpreted parameters from a DMA
test are the storage modulus E ′, the loss modulus E ′′ and the loss factor tanδ. The storage modulus
is defined as the ratio between the in-phase stress to the strain [25] and represents the elastic portion
of the material response. On the other hand, the loss modulus is defined as the ratio between the
out-of-phase stress to the strain [25] and represents the viscous portion of the material response.
The loss factor is the ratio between the loss and storage moduli, providing a measure for the amount
of dampening in the material. The storage and loss moduli can also be expressed as a function of
the loading frequencyωl and the linear viscoelastic parameters. The following equations summarise
each of the DMA parameters:

E ′ = E∞+
N∑
i

Eiωl
2

λi
−2 +ωl

2
(2.22a)

E ′′ =
N∑
i

Ei
ωl
λi

λi
−2 +ωl

2
(2.22b)

tanδ= E ′′

E ′ (2.22c)
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where E∞ is the long term elastic modulus, Ei are the viscoelastic stiffnesses and λi are the corre-
sponding relaxation times. It is clear from the above expressions that the storage modulus is related
to the elastic stiffness due to the inclusion of the E∞ term, while the loss modulus depends only on
viscous effects.

As a result, the DMA test can be useful for identifying temperature related changes in elastic
stiffness, from which the glass transition temperature can be inferred. Further, if performed at mul-
tiple frequencies, it is possible to use the results to calibrate a linear viscoelasticity model through
the utilisation of Equations 2.22a and 2.22b.

2.6.2. Creep Test
A creep test involves recording the time dependent strain resulting from a constant applied stress
[25]. As the elastic response of epoxy resins consists of viscoelastic stresses, the creep test is used
to allow these viscoelastic stresses to relax over a significant duration of time in order to isolate the
long term elastic modulus of the epoxy resin. For a three point bending test, the elastic modulus
can be determined by assuming that the sample behaves in a linear manner. According to Euler-
Bernoulli beam theory, the deflection of the sample is directly proportional to the applied load and
elastic modulus. This deflection can be calculated from the following expression:

u = F L3

48E I
(2.23)

where u is the bending deflection at the point of load application (mid-span), F is the magnitude
of the force, L is the free bending length and I is the second moment of inertia about the axis of
bending. Further, to ensure the material response remains linear, the maximum fibre stress should
remain a relatively safe distance below the yield stress and the deformation should be limited, such
that second order geometrical effects do not become significant. From Euler-Bernoulli beam theory,
the maximum fibre stress can be calculated by:

σ= M

W
(2.24)

where M is the bending moment resulting from the applied load and W is the elastic section modu-
lus related to the cross-section of the specimen. As a result, a creep test can be used to calibrate the
long term elastic moduli of an epoxy resin specimen at multiple temperatures.

2.7. Conclusions
The important findings from this literature review can be summarised as follows. The mechanical
behaviour of epoxy resins is highly time dependent and exhibits the following features: strain rate
dependency, ratcheting, stress relaxation, hysteresis and non-linear elasticity. An increase in the
temperature and moisture concentration of an epoxy resin results in a degradation of its stiffness
and strength. Further, an increase in the moisture concentration acts to reduce the glass transition
temperature of the epoxy resin. The moisture content of an epoxy resin has an insignificant effect
on thermal conduction behaviour however, the temperature of an epoxy resin can have a significant
impact on diffusivity.

The mechanical behaviour of epoxy resins can be modelled through a combination of viscoelas-
tic, viscoplastic and damage models. An epoxy resin can be described by three material states:
a glassy state at lower temperatures, a rubbery state at higher temperatures and a mixed glassy-
rubbery state during the process of glass transition. Further, the thermal conduction behaviour of
an epoxy resin can be modelled using Fourier’s law of heat conduction. The diffusion behaviour
can be modelled using Fick’s law of diffusion, however, this may not be valid at elevated tempera-
tures. An uncoupled multiphysics framework can be used to combine the aforementioned physical
models in order to describe the complex hygrothermal behaviour of epoxy resin.
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The constitutive model developed by Yu et al. [32] successfully combines glass transition be-
haviour with mechanical behaviour for polymer materials. However, the implementation of the
framework contains simplifications that restrict its applicability. The numerical framework devel-
oped by Rocha et al. [23, 24] captures many of the mechanical aspects exhibited by epoxy resins.
However, thermal dependency and non-linear viscoelasticity is not included in the formulation.

Finally, the DMA and creep test can be performed to investigate the temperature dependent
mechanical behaviour of epoxy resin and can also be used for model calibration.





3
Regularisation of the Damage Model

In this section, a numerical study has been performed on a simple problem to investigate the mesh
dependency of the damage model used by Rocha et al. [24] and to examine the regularising effects
provided by the viscous components of the model.

3.1. Overview of the Damage Model
The damage model employed by Rocha et al. [24] is a linearly softening continuum damage model,
in which stress is a function of a single damage variable d :

σ= (1−d)σ̃ (3.1)

where σ̃ is the effective stress. The fracture surface is pressure dependent and shrinks as the material
dissipates energy. This allows the damage model to capture quasi-static damage initiation and also
low-cycle fatigue failure, which initiates at a lower stress level. The fracture surface is described by:

fd(σ̃,r ) = 3 J̃2

Xc(Ξ)Xt(Ξ)
+ Ĩ1 (Xc(Ξ)−Xt(Ξ))

Xc(Ξ)Xt(Ξ)
− r (3.2)

where the fracture strengths Xc and Xt are functions of the material dissipationΞ and r is an internal
variable relating to the size of the fracture surface.

The linear softening law employs a characteristic length, taken from Bažant’s crack model (Bažant
et al., 1983) in an attempt to regularise the effect that mesh refinement has on damage evolution:

d =


σ̃f(σ̃eq − σ̃d)

σ̃eq(σ̃f − σ̃d)
σ̃eq ≤ σ̃f

1 σ̃eq > σ̃f

(3.3)

where σ̃d = Xt is the uniaxial tensile strength, σ̃eq is an equivalent stress measure that is derived
from a uniaxial stress state and σ̃f is the regularised effective stress at complete failure given by:

σ̃f =
2G∗E

le Xt
(3.4)

where G∗ is related to the material fracture energy and le is the finite element characteristic length
according to Bažant’s crack band model. While there is no direct coupling between plasticity and
damage evolution in the damage formulation, plasticity is still permitted to evolve after the initia-
tion of damage.

25
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It should also be noted that the Poisson’s ratio does not enter this formulation and therefore
remains undamaged in this model. This is in contrast to the formulation by Melro et al. [17], in
which both the elastic stiffness and the Poisson’s ratio are degraded by the same amount, see Section
2.2.4. The motivation behind not including the Poisson’s ratio in the VE-VP-D model is that the
relationship between the bulk and shear moduli loses explicitness when viscoelasticity models are
used [16, 24].

3.2. Mesh Dependency Study
3.2.1. Overview of the Analysis
In order to study the mesh dependency of the damage model, a number of numerical tests were
conducted on the VE-VP-D model. It was hypothesised that the viscous models might introduce
regularising effects. This hypothesis challenges the need for additional regularising models, such
as Bažant’s crack band model. The numerical study was conducted on three-dimensional contin-
uum elements. Two separate geometries were modelled and a tensile force was applied through
displacement control, see Figure 3.1.
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(b) Geometry 2: Tapered bar.

Figure 3.1: Response of the square geometry with the original damage model.

The transverse geometry of the bar was modelled with a single element. Mesh refinement in-
volved the subdivision of the bar in the longitudinal direction only. In the first geometry, a square
bar was studied in which only the central element incorporated the VE-VP-D model. The remaining
elements were assigned the VE-VP model, thus enforcing damage localisation within a single ele-
ment. In the second geometry, a tapered square bar was modelled with the VE-VP-D model assigned
to all elements. This enforced damage initiation in the central element. However, the localisation of
damage in this second geometry was not limited to a single element.

The material properties chosen for the analysis are summarised in Table 3.1 below and represent
typical properties for an epoxy resin.
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Model Material Properties

Viscoelasticity

E∞ = 2900 MPa; ν∞ = 0.35

Ki = [472 MPa, 242 MPa, 111 MPa]; λi ,k = [0.007 s, 0.126 s, 0.216 s]

Gi = [158 MPa, 80 MPa, 37 MPa]; λi ,g = [0.021 s, 0.378 s, 0.648 s]

Viscoplasticity

σt =−14.859exp(−εp
eq/0.0012)−34.1296exp(−εp

eq/0.0057)+71.3997 MPa

σc =−24.1071exp(−εp
eq/0.0097)−10.4262exp(−εp

eq/0.0016)+89.2022 MPa

νp = 0.5; ηp = 205×103 MPa · s; mp = 1.5

Damage

Xt = 100−0.5exp(εp
eq/0.003) MPa

Xc = 120−0.5exp(εp
eq/0.003) MPa

G∗ = 300 N/mm

Table 3.1: Material properties used in the mesh dependency analysis.

Note that the value of the fracture energy G∗ was chosen such that global snapback behaviour
was avoided, while still resulting in a relatively brittle response. The minimum fracture energy for a
bar in tension can be calculated from Equation 2.12:

G∗
min = 100 mm× (100 MPa)2

2×2900 MPa
= 172.4 N/mm (3.5)

which is smaller than the chosen value of G∗ = 300 N/mm. For each numerical analysis, the be-
haviour of the bar in tension was studied with seven different levels of mesh refinement. The num-
ber of Hex-8 elements subdividing the longitudinal domain was chosen to be 1, 3, 5, 11, 21, 51 and
101 elements.

In order to validate the numerical results, the analytical load and displacement at damage initi-
ation, and the displacement at failure are evaluated in Box 3.2.1.

Box 3.2.1: Verification of the Numerical Damage Results

The force at the onset of damage for the square geometry Fd,s can be determined from the
fracture strength:

Fd,s =σd A = 100 MPa×100 mm2 = 10×103 N (3.6)

The force at the onset of damage for the tapered geometry Fd,t can similarly be determined
from the fracture strength:

Fd,t =σd A = 100 MPa×64 mm2 = 6.4×103 N (3.7)

The displacement at damage initiation for the square geometry ud,s follows from the elastic
modulus:

ud,s =
σdL

E
= 100 MPa×100 mm

2900 MPa
= 3.45 mm (3.8)

The displacement at failure for the square geometry uf,s can be determined by integrating the
stress-displacement curve and equating it with the fracture energy of the material. Assuming
a bilinear response:
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G∗ =
∫
σ(t )du ≈ σd uf,s

2
(3.9)

∴ uf,s =
2G∗

σd
= 2×300 N/mm

100 MPa
= 6 mm (3.10)

The displacement at failure for the tapered geometry uf,t is identical to that of the square
geometry because the fracture energy and the fracture strength are unchanged.

∴ uf,t = 6 mm (3.11)

3.2.2. Study 1: Original Damage Model
The first numerical study utilised the damage model described in Section 3.1 with both viscous
models and the crack band model activated. The mesh dependency results for the square geometry
with the original damage model are summarised in Figure 3.2.
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(a) Load displacement plot.
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(b) Evolution of the damage parameter.

Figure 3.2: Response of the square geometry with the original damage model.

Both Figures 3.2a and 3.2b indicate that damage initiation occurred at the same displacement
of 3.60 mm and at a load of just under 10 kN. This result coincides closely with the analytical predic-
tions presented in Box 3.2.1. However, Figure 3.2a shows that the original damage model exhibited
a mesh dependent response. This is because, as more elements were added to the model, the max-
imum load resisted by the geometry increased. Further, there was a convergence towards a plateau
of 12 kN when more than 21 elements were used to discretise the geometry. Figure 3.2b highlights
that the damage parameter plateaued at a value between 0.25 and 0.40, depending on the number
of elements. The deformation after this plateau largely resulted in plastic strains within the dam-
aged and adjacent elements. As a result, viscoplasticity in the original damage model dominated
the behaviour after damage initiation

The intention of the damage model described in Section 3.1 is to impose linear softening of
the material after the damage initiates. It is apparent from Figure 3.2 that this behaviour is not
achieved, even for the simple case of a square bar loaded in tension. In order to attempt to rectify
this discrepancy between the intent of the damage formulation and the observed response, it was
proposed that the evolution of plasticity be prevented after the initiation of damage. This separation
of the models is, in essence, a practical consideration, restricting the viscoplastic model to describe
plasticity before damage and allowing the damage model to capture all behaviour after damage
initiation.
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3.2.3. Study 2: No Plasticity After Damage
The second numerical study modified the original damage model by disabling viscoplasticity at all
integration points where damage had been initiated. This modification was introduced to prevent
plasticity from dominating the response of the model after damage initiation. The results from the
numerical analysis for the square geometry are summarised in Figure 3.3, while the results for the
tapered geometry are summarised in Figure 3.4.
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(a) Load displacement plot.
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(b) Evolution of the damage parameter.

Figure 3.3: Response of the square geometry with the modified damage model.
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(a) Load displacement plot.
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(b) Evolution of the damage parameter.

Figure 3.4: Response of the tapered geometry with the modified damage model.

Both Figures 3.3 and 3.4 show that preventing plasticity after damage initiation allowed damage
to fully develop in the bar specimens with all test cases experiencing fracture (note that for n = 51
and n = 101 in Figure 3.3, fracture occurred at a displacement greater than 20 mm and is therefore
not visible in the figure). The load-displacement results still show a significant mesh dependency.
For the square geometry, increasing the number of elements resulted in a hardening of the response
after damage initiation, leading to an increase in the peak load for n > 3 elements and a significant
increase in the fracture strain for all mesh subdivisions. Conversely, the peak load obtained for the
tapered geometry, approximately 6.5 kN, was relatively mesh independent and matched the load
derived in Box 3.2.1. However, after damage initiation, the tapered geometry also suffered from
mesh dependency, with a greater number of elements resulting in a larger fracture strain.

An explanation for this mesh dependent behaviour can be drawn from examining the deforma-
tion of the damaging elements. During the localisation of damage, the elements adjacent to the
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damaging elements experience unloading. These unloading elements undergo less lateral contrac-
tion than the damaging elements would if they were to stay in a uniaxial stress state. This is because
the Poisson’s ratio remains constant in the current damage model formulation. Thus, the damaging
elements are constrained in the lateral direction by the unloading elements, resulting in the devel-
opment of a triaxial tensile stress state in the damaging elements. This behaviour is summarised by
Figure 3.5, which shows the tensile stresses developing in the lateral directions. Figure 3.6 presents
these transverse stresses in the central element for both the square and tapered geometry analyses.

Development of transverse 
tensile stresses

Damaging element

Figure 3.5: Constraint from the adjacent unloading elements causes transverse tensile stresses to develop in
the damaging elements.
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(a) Square geometry.
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(b) Tapered geometry.

Figure 3.6: Transverse stresses in the damaged element for modified damage model.

It is apparent from Figure 3.6 that significant transverse tensile stresses develop after damage
initiation. In this current damage formulation, the definition of the equivalent stress in Equation
3.2 is a function of the effective deviatoric stress invariant J̃2 and is derived assuming a uniaxial
stress state. As a result, the development of transverse tensile stress, in conjunction with the im-
posed longitudinal tensile stress, acts to hinder the evolution of the damage parameter. This is be-
cause a triaxial stress state significantly reduces the value of J̃2. It is clear from Figure 3.5 that given
a non-zero and constant Poisson’s ratio, the transverse stresses in the square geometry become a
function of the mesh size because the aspect ratio of the damaged element has a direct effect on
the equilibrating transverse stresses. As a result, the inclusion of a damaging Poisson’s ratio in the
damage model formulation is necessary to prevent the observed spurious hardening induced by the
development of transverse tensile stresses.
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3.2.4. Study 3: Zero Poisson’s Ratio
In the last numerical study, the material properties were modified such that the viscoelastic and
viscoplastic response did not induce any lateral contraction. This was enforced by multiplying the
viscoelastic shear stiffnesses in Table 3.1 by a factor of 1.5 such that, in combination with the vis-
coelastic bulk stiffnesses, a zero Poisson’s ratio was obtained1. To ensure a zero Poisson’s ratio for
viscoelasticity, the shear relaxation times were set to be equal to the bulk relaxation times. On top
of this, both ν∞ and νp were set to zero.

To study the regularising effect of the crack band model and the viscous models, both mod-
els were initially switched off and the resulting load displacement diagram was obtained as a con-
trol. Each model was successively reactivated and the resulting load displacement diagrams are
presented in Figure 3.7 for the square geometry and Figure 3.8 for the tapered geometry.
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(a) Crack band: off; VE-VP: off.
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(b) Crack band: off; VE-VP: on.
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(c) Crack band: on; VE-VP: off.
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(d) Crack band: on; VE-VP: on.

Figure 3.7: Load displacement response of the square geometry with the modified damage model and ν= 0.

Figures 3.7c and 3.8c indicate that, for the geometries studied, the crack band model adequately
regularises the damage model with a zero Poisson’s ratio because a mesh independent response was
obtained. The slight variations in stiffness in Figure 3.8c can be attributed to the discretisation of the
tapered bar, which for a larger number of subdivisions, results in a larger effective cross-sectional
area, see Figure 3.1b. Further, by comparing Figures 3.7b and 3.8b to 3.7c and 3.8c, it is apparent
that, in the absence of the crack band model, the viscous models are not effective at regularising the
damage model.

The mesh independent results presented in Figures 3.7 and 3.8 largely correspond with the an-
alytical results computed in Box 3.2.1. The main difference is apparent in a comparison of Figures
3.7c and 3.8c with Figures 3.7d and 3.8d, which reveals an increased fracture displacement in the

1It holds that ν= 3K −2G

2(3K +G)
, therefore if G = 3

2
K , then ν= 0.
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(a) Crack band: off; VE-VP: off.
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(b) Crack band: off; VE-VP: on.
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(c) Crack band: on; VE-VP: off.
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(d) Crack band: on; VE-VP: on.

Figure 3.8: Load displacement response of the tapered geometry with the modified damage model and ν= 0.

models containing viscous effects. Figure 3.9 summarises the longitudinal strains in the undam-
aged elements for the models with and without viscoplasticity. From this figure, it is clear that there
are no residual strains in the undamaged elements when the VE-VP model is switched off and, as
a result, the final displacement is effected only by the strains developed in the damaged elements.
However, when the VE-VP model is active, each undamaged element has a component of viscoelas-
tic strain, which eventually decays, and a component of unrecoverable plastic strain. As a result,
these extra viscous and plastic strains cause the fracture displacement to be larger when the VE-VP
model is active than when compared to the analytical prediction numerical inviscid results.

3.3. Conclusions and Recommendations
Three numerical studies were conducted on the existing VE-VP-D model to investigate the mesh
dependency of the damage formulation. A modified model was adopted, in which the develop-
ment of plasticity was ceased after the initiation of damage. Materials with a non-zero Poisson’s
ratio suffered from spurious mesh dependent hardening in the current damage formulation, which
was a consequence the development of a triaxial tensile stress state. Conversely, materials with a
zero valued Poisson’s ratio yielded mesh independent results for both a square and tapered geom-
etry, as long as the crack band model was used. The viscous models were found to have negligible
regularising effects.

In order to rectify the mesh dependent hardening observed in the second study, it is recom-
mended that the degradation of the Poisson’s ratio be implemented in the damage formulation.
Further, a reformulation of the definition of the equivalent stress could be required if the degraded
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Figure 3.9: Longitudinal strains in the undamaged elements for models with VE-VP off and VE-VP on.
Square geometry with n = 101.

Poisson’s ratio does not yield mesh independent results alone. It is also recommended that further
mesh sensitivity studies, such as mesh bias and shear tests, be conducted to ascertain the overall
performance of the damage model with respect mesh dependency.





4
Experiments

This section describes the experiments that were undertaken in this thesis and presents the re-
sults. Two types of investigations were performed on the Momentive RIMR 135/EPIKURE RIMH
1366 epoxy resin system in order to investigate its mechanical behaviour at different temperatures.
The first test comprised of a Dynamic Mechanical Analysis (DMA) test, while the second experiment
involved subjecting the epoxy resin to a creep test.

4.1. Dynamic Mechanical Analysis
4.1.1. Experimental Procedure
In this thesis, a DMA test was performed at one loading frequency to investigate the temperature
dependent stiffness and glass transition temperature of the Momentive RIMR 135/EPIKURE RIMH
1366 epoxy resin. This test supplements the experimental results performed by Rocha et al. [22] on
the same epoxy resin system, in which a DMA test was performed on unaged, saturated, dry and
redried epoxy resin samples.

The NETZSCH DMA 242 machine was used to perform the DMA test on a rectangular bar spec-
imen prepared in accordance with ISO 178 for a three point bending test. Table 4.1 presents the
dimensions of the specimen used in this test.

Free Bending Length Average Width Average Depth

50 mm 10.86 mm 2.82 mm

Table 4.1: Dimensions of the epoxy resin specimen used in the DMA test.

Figure 4.1 summarises the experimental apparatus used by the NETZSCH machine to perform
the DMA test. Figure 4.2a is a photograph of an epoxy resin sample in the testing apparatus and
Figure 4.2b is a composite image of an epoxy resin sample used in the experiments. In the NETZSCH
machine, a furnace controls the temperature of the specimen and in this test the temperature of the
specimen is varied from 23◦C to 130◦C with a temperature ramp of 2◦C/min. The DMA machine
loads the sample in a mixed force/displacement control depending on the current stiffness of the
specimen and uses the corresponding force and displacement to compute the storage modulus E ′,
loss modulus E ′′ and the loss factor tanδ. A loading frequency of 1 Hz was used in this experiment

4.1.2. Experimental Results
The NETZSCH analysis software was used to post-process the raw load displacement data to ob-
tain the material parameters relevant to the DMA test. Figure 4.3 presents a graph of the storage

35
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Figure 4.1: Operating principle of the NETZSCH DMA 242 machine [19].

(a) NETZSCH DMA Machine. (b) Composite photograph of an epoxy resin sam-
ple after being subjected to load at an elevated
temperature.

Figure 4.2: Photographs of the experimental setup and specimen.

modulus, loss modulus and loss factor as a function of the temperature for the three specimens.
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Figure 4.3: Plot of the DMA parameters as a function of the temperature for each epoxy resin specimen.
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As the storage modulus in Figure 4.3 is related to the elastic modulus, detailed in Section 2.6.1, a
qualitative analysis of the temperature dependence of the storage modulus provides an insight into
the thermal variation of the material behaviour of an epoxy resin. At temperatures lower than 65◦C,
the epoxy resin was in a glassy state and had a relatively high stiffness. Figure 4.3 indicates that the
temperature dependence of the elastic modulus in the glassy material state may be approximated
by a linear relation. At temperatures higher than 85◦C, the epoxy resin was in a rubbery state and
had a relatively low stiffness. The stiffness in the rubbery regime was more stable than in the glassy
regime and, therefore, can be approximated to be constant.

While there are multiple methods that can be used to characterise the glass transition tempera-
ture, the method used by Yu et al. [32] was adopted for this thesis. Yu et al. take the glass transition
temperature to be the temperature that is centrally located within the glass transition region. Fig-
ure 4.3 shows that this point also approximately coincides with the inflection point on the storage
modulus curve and the peak of the loss modulus curve, conveniently corresponding with alternative
glass transition determination methods.

From the DMA tests performed on the Momentive RIMR 135/EPIKURE RIMH 1366 epoxy resin
samples the glass transition temperature was determined to be Tg = 72.7◦C.

4.2. Creep Test
Initially, a stress relaxation test was performed, in which an imposed displacement was applied
to the epoxy resin specimen and the relaxing resultant load recorded. However, at elevated tem-
peratures, the epoxy resin lost a significant amount of stiffness and the load relaxed to within the
measurement resolution of the load cell, rendering the results unreliable. To counteract this issue,
the imposed displacement was increased in the hope that the relaxed load would be high enough to
record. However, the required increase in displacement resulted in significant deformation of the
epoxy resin sample, with deformations that were in the order of twice the cross-sectional thickness,
see Figure 4.4. The raw data from these invalid tests are presented in Appendix D.

Figure 4.4: Photograph of the a highly deformed epoxy resin specimen after a stress relaxation test.

Deformations of this magnitude result in geometric, and most likely material, non-linearities,
meaning that the interpretation of the results would be highly complex and invalid in the case of
material non-linearites. As a result, an experiment examining the creep behaviour of the epoxy
resin was chosen as the most suitable method for determining long term properties. The advantage
of the creep test over the relaxation test is that the load can be minimised to reduce deflections but
also be kept high enough to ensure measurement accuracy.

4.2.1. Experimental Procedure
Creep tests were performed at three different temperatures to determine the long term elastic stiff-
ness in the glassy, rubbery and mixed states. The creep tests were also undertaken using the NET-
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ZSCH DMA 242 machine, with rectangular bar specimens prepared in accordance with ISO 178 for a
three point bending test. The free bending length used in the creep test was 50 mm, with the cross-
section of the epoxy resin bars approximately 10 mm wide by 3 mm thick. The exact dimensions
of the specimens were recorded with a digital micrometre and are presented in Appendix D. The
apparatus used in this experiment is identical to that used in the DMA test, see Figures 4.1 and 4.2.

The creep tests were performed at temperatures determined from Figure 4.3 to be clearly in
the desired state regimes and were chosen to be 25◦C, 75◦C and 100◦C for the glassy, mixed and
rubbery regimes respectively. A temperature ramp of 2◦C/min was used to preheat the specimens
to the target temperature and an equilibration time of 10 minutes allowed the specimens to reach
a thermal equilibrium before commencing the creep test. A constant load was then applied to the
specimen and the resulting creep deflection was recorded at a sampling rate of 0.25 Hz. The creep
tests were performed for a duration of more than an hour, after which a majority of the short term
viscoelastic stresses had relaxed. Table 4.2 presents the applied load and test duration for each
tested temperature.

Test 1 Test 2 Test 3

Temperature 25◦C 75◦C 100◦C

Applied load 2 N 0.5 N 0.2 N

Test Duration 1 hr 2 hrs 2 hrs

Table 4.2: Temperature, applied load and test duration for the creep tests.

4.2.2. Experimental Results
Figure 4.5 presents the elastic stiffness results for the creep tests at the three different temperatures.
The raw load displacement data from the creep tests can be found in Appendix D. The elastic stiff-
ness E was calculated from Euler-Bernoulli beam theory as per Section 2.6.2. Equation 2.23 can
be rearranged to isolate the elastic stiffness, given the geometry of the specimen, the force and the
displacement:

E = F L3

48uI
(4.1)

Further, to ensure elastic deformation, the maximum fibre stress can be calculated from the
applied load and the geometry of the section as per Equation 2.24. From Rocha et al. [24] the yield

stress of the tested epoxy resin in a glassy state was determined to be σgla
t = 64.8 MPa. Although the

yield stress of the epoxy resin in the rubbery state was unknown at the time of testing, a reference
value was taken from the calibration undertaken by Yu et al., in which σrub

t = 9 MPa.
In Figure 4.5, the initial stiffness for the temperatures of 25◦C and 75◦C was relatively high, af-

ter which significant decay of the elastic modulus occurred over the duration of the test. The test
at 100◦C showed a faster relaxation than the test at 75◦C, however significantly less initial stiffness
than both the 25◦C and 75◦C tests. This response highlights the highly time dependent mechanical
behaviour of the epoxy resin, further adding support for the use of viscous material models. Over-
all, the relaxation times of the epoxy resin when in a glassy state were faster than in the mixed and
rubbery states. Further, the relative degree of viscoelastic stiffness decreased as the temperature in-
creased. Therefore, by modifying both the viscoelastic stiffnesses and relaxation times, the observed
state dependent material response can be captured with a degrading viscoelasticity model.

By the end of the creep tests, the variation in the elastic modulus was relatively small when com-
pared to the initial viscoelastic stiffnesses. Although it appeared that the specimens would continue
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(a) Elastic stiffness for T = 25◦C.
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(b) Elastic stiffness for T = 75◦C.
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(c) Elastic stiffness for T = 100◦C.

Figure 4.5: Calculated elastic stiffness results from the creep test as a function of test time.

to experience minor creep deflections if the load was held for an extended period of time, it is suf-
ficient to encapsulate these small viscoelastic stiffnesses in the long term elastic modulus. From
a modelling perspective, the long term elastic modulus corresponds to a viscoelastic stiffness with
an infinite relaxation time. Thus, if the significant viscoelastic behaviour of the material occurs at



40 4. Experiments

relatively quick relaxation time and the primary loads of interest occur at correspondingly high fre-
quencies, as is the case for most epoxy applications, the long term elastic modulus can be redefined
to include these small viscoelastic stresses with significantly large relaxation times. One drawback
of this approach is that it would not be possible to model long term creep behaviour because longer
duration experiments would need to be carried out to completely isolate the long term stiffness.

The final data points for the creep tests were used to calculate the average long term elastic mod-
ulus of the epoxy resin. Table 4.3 presents the long term elastic modulus for each tested temperature
and the corresponding analytical maximum fibre stress for each experiment. The calculated elastic
moduli are consistent with the trends observed in the DMA test, refer Figure 4.3. Further, the max-
imum fibre stresses were significantly below the yield strengths in the glassy and rubbery regimes
and, thus, it can be assumed that the response of the epoxy resin was elastic for each creep test.

Temperature 25◦C 75◦C 100◦C

Long term elastic modulus E∞ 2843 MPa 51.51 MPa 17.73 MPa

Maximum fibre stress σ 1.88 MPa 0.47 MPa 0.19 MPa

Table 4.3: Long term elastic modulus and maximum fibre stress.
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Methods

In this section, the numerical framework for modelling an epoxy resin is formulated in the context
of the finite element method. The material model has been implemented in C++ using the Jive pro-
gramming toolkit [9] in conjunction with an existing finite element framework developed by Rocha
et al. [24]. As a result, the numerical framework is concerned only with developing the constitutive
laws for an epoxy resin and their implementation in a finite element procedure. A full description
of the constitutive model implemented in Jive can be found in Appendix B.

5.1. Overview of the Framework
The multiphysics numerical framework incorporates three physical models that represent heat con-
duction, moisture diffusion and continuum mechanics respectively. The three models are arranged
in a one-way coupling utilising the operator split method, in which the heat model is solved first,
then followed by the diffusion model and finally the mechanics model, see Figure 5.1. The order of
the coupling is consistent with the assumptions made in the formulation of each model.

Figure 5.1: Overview of the multiphysics numerical framework.

The transport models describing heat conduction and moisture diffusion are based on the clas-
sical Equations described in Section 2.3 and are not modified in this thesis. The finite element
implementation of the heat and diffusion models is briefly described in Sections 5.2 and 5.3 re-
spectively. The formulation of the mechanics model is described in Section 5.4 and addresses the
second and third research questions proposed in Section 1.2. Finally, the details of the multiphysics
framework, in which the three material models are unified, are given in Section 5.5.

41
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5.2. Formulation of the Heat Model
In this section, the finite element formulation for the heat model is derived from the constitutive
relationship described in Section 2.3.1. In this model a linear heat conductivity matrix that is inde-
pendent of the current temperature, the moisture content and the stress state is adopted. Although
humidity dependent heat transfer was observed by some authors, the dependence was found to be
relatively weak and is therefore assumed to be independent in this thesis.

This heat formulation allows for transient behaviour, in which a convective boundary condition
is established and internal heat generation is considered.

Strong Formulation
The formulation begins with Fourier’s law of heat conduction from Equation 2.15:

q =−κ∇T (5.1)

where q is the heat flux vector,κ is the heat conductivity matrix and ∇T is the temperature gradient.
Considering the differential volume element depicted in Figure 5.2, the conservation of heat energy
can be written as:

q
z

 �
dz�z+

q
z

qy

q
x

Q
int

q
z

qy
 �

dy�y+
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Figure 5.2: Heat fluxes acting on a differential element.

(Qint −∇·q)dx dy dz =∆Q (5.2)

where Qint is the internal heat generation from internal dissipative processes, such as viscous de-
formations. The net inflow of heat ∆Q is related to a change in temperature through Equation 2.16,
which is rewritten for the differential element as:

∆Q = ρcṪ dx dy dz (5.3)

where ρ is the density, c is the specific heat and Ṫ is the temperature time derivative. Combining
equations 5.1, 5.2 and 5.3 results in the strong formulation of the heat model:

∇· (κ∇T )+Qint = ρcṪ (5.4)

Boundary Conditions
Three types of boundary conditions are incorporated into the formulation of the heat model, namely
the Dirichlet, Neumann and Robin boundary conditions. The specifics of each boundary condition
acting on surface Γ are elaborated below.
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Dirichlet Boundary Condition:
A fixed temperature Ti is prescribed on the boundary ΓT of the domain:

T
∣∣∣
ΓT

= Ti (5.5)

Neumann Boundary Condition:
A heat flux qi , defined as positive when acting into the body, is prescribed on the boundary of the
domain Γq :

−q ·n
∣∣∣
Γq

= qi (5.6)

where n is an outward facing normal vector.

Robin Boundary Condition:
A thermal interaction between the domain and its surrounding fluid is specified by a Robin bound-
ary condition. In this case, the heat flux is related to the temperature differential between the tem-
perature T on the boundary Γh , and the ambient temperature of the fluid Tf. The heat flux across
the boundary is related to this differential through the coefficient of heat transfer, h:

−q ·n
∣∣∣
Γh

= h(Tf −T ) (5.7)

This boundary condition is the most relevant in the multiphysics framework because it allows the
modelling of the heat transfer between a specimen and its surrounding fluid, such as air or water.

Weak Formulation
To develop the weak form, the strong form is multiplied by a scalar weight function w ∈ V and is
integrated over the domainΩ:∫

Ω
w∇· (κ∇T )dΩ+

∫
Ω

wQint dΩ=
∫
Ω

wρcṪ dΩ ∀w ∈ V (5.8)

Integrating the first term in the above equation by parts yields:∫
Ω

w∇· (κ∇T )dΩ=
∫
Γ
−w q dΓ−

∫
Ω
∇w · (κ∇T )dΩ (5.9)

where q represents the boundary fluxes from the Neumann and Robin boundary conditions. This is
because the boundary Γ consists of Γ≡ ΓT ∪Γq ∪Γh . Substituting the above equation into Equation
5.8 yields:

−
∫
Ω
∇w · (κ∇T )dΩ−

∫
Γq

w q ·n dΓ−
∫
Γh

w q ·n dΓ+
∫
Ω

wQint dΩ=
∫
Ω

wρcṪ dΩ ∀w ∈ V (5.10)

Applying the boundary conditions, −q ·n = qi over Γq and −q ·n = h(Tf −T ) over Γh , results in the
weak formulation of the heat model:

∫
Ω
∇w · (κ∇T )dΩ+

∫
Γh

whT dΓ+
∫
Ω

wρcṪ dΩ=
∫
Γh

whTf dΓ+
∫
Γq

w qi dΓ+
∫
Ω

wQint dΩ ∀w ∈ V

(5.11)



44 5. Methods

Finite Element Formulation
The computational domain is discretised with finite elements that are defined by shape functions N
and their derivatives B, resulting in the following expressions:

T = NTe

∇T = BTe

w = Nwe

∇w = Bwe
(5.12)

where the subscript e denotes element level nodal values. The shape functions are inserted into the
weak form for a single element. The weak form is considered valid for all w ∈ V . The resulting finite
element formulation for the heat model involves the assembly of the element level matrices and
vectors:

A
e

{(
kh,e +hh,e

)
Te +ch,e Ṫe = rh + rq + rQ

}
(5.13)

whereA is the assembly operator and the element matrices and vectors are as follows:

kh,e =
∫
Ωe

BTκBdΩ

hh,e =
∫
Γh,e

NThNdΓ

ch,e =
∫
Ωe

NTρcNdΩ

rh =
∫
Γh,e

NThTf dΓ

rq =
∫
Γq,e

NTqi dΓ

rQ =
∫
Ωe

NTQint dΩ

(5.14)

5.3. Formulation of the Diffusion Model
In this section, the finite element formulation for the heat model is derived from the constitutive
relationship described in Section 2.3.2. Both heat conduction and moisture diffusion are transport
problems and thus have similar governing equations. As a result, a majority of the formulation
presented in the previous section is also valid for the formulation of the diffusion model and thus
only the differences in the two formulations are highlighted in this section.

In this model, a linear diffusivity matrix that is independent of the stress state is adopted. This
diffusion formulation allows for transient behaviour and a diffusivity matrix that is temperature
dependent.

The governing constitutive law for diffusion is Fick’s first law of diffusion as outlined in Equation
2.18:

j =−Dω(T )∇ω (5.15)

where j is the moisture flux vector, Dω(T ) is the temperature dependent diffusivity matrix and ∇ω
is the moisture concentration gradient. Considering the differential volume element depicted in
Figure 5.3, the conservation of mass can be written as:

−∇· j =∆ω (5.16)

Combining equations 5.15 and 5.16 results in the strong formulation of the diffusion model:

∇· (Dω(T )∇ω)= ω̇ (5.17)

In contrast with the heat conduction model, only the Dirichlet and Neumann boundary conditions
are considered as the wetting process is modelled by setting the boundary concentrations to be
equal to the saturated moisture content. As a result, the weak formulation can be derived in a similar
manner to the previous section:
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Figure 5.3: Moisture fluxes acting on a differential element.

∫
Ω
∇w · (Dω(T )∇ω)

dΩ+
∫
Ω

wω̇dΩ=
∫
Γ j

w ji dΓ ∀w ∈ V (5.18)

The same shape functions are used to describe the weight function w and the moisture content
ω. The resulting finite element formulation for the diffusion model involves the assembly of the
element level matrices and vectors:

A
e

{
kω,eωe +cω,eω̇e = r j

}
(5.19)

whereA is the assembly operator and the element matrices and vectors are as follows:

kω,e =
∫
Ωe

BTDω(T )BdΩ cω,e =
∫
Ωe

NTNdΩ r j =
∫
Γ j ,e

NT ji dΓ (5.20)

5.4. Formulation of the Mechanics Model
The formulation of the mechanics model begins with the governing equation of equilibrium:

∇·σ+b = 0 (5.21)

where σ is the stress tensor in Voigt notation and b is the vector of body forces. In this thesis, the
small strain relationship is used:

ε= 1

2

(
(∇u)T +∇u

)
(5.22)

where ε is the strain tensor in Voigt notation and u is the displacement vector. A constitutive rela-
tionship between the stress and strain tensors is established and takes the following form:

σ= Dε (5.23)

where D is the mechanical constitutive matrix. In a similar manner to the previous formulations,
the governing equation is multiplied by a weight function and the Dirichlet and Neumann boundary
conditions are applied to arrive at the weak formulation:∫

Ω
∇w · (Dε)dΩ=

∫
Ω

w ·b +
∫
Γt

w · th dΓ= 0 ∀w ∈ V (5.24)
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where th is the external traction vector acting on the boundary Γt. The same shape functions are
used to describe the weight function w and displacement vector u. The resulting finite element for-
mulation for the mechanics model involves the assembly of the element level matrices and vectors:

A
e

{
km,e ue = fb + ft

}
(5.25)

whereA is the assembly operator and the element matrices and vectors are as follows:

km,e =
∫
Ωe

BTDBdΩ fb =
∫
Ωe

NTb dΩ ft =
∫
Γt,e

NTth dΓ (5.26)

5.4.1. Overview of the Mechanical Constitutive Models
The mechanical model of the epoxy resin attempts to capture the various behaviours described in
Section 2.1 through the incorporation of the following material models:

(a) Glass Transition Model: Describes the state of the material as a function of the temperature
and moisture concentration of the epoxy. The state of the epoxy resin can be glassy, rubbery
or a combination of the two.

(b) Degradation Model: Describes how the various material properties change with the state of
the epoxy.

(c) Viscoelasticity Model: Describes the time dependent elastic behaviour.

(d) Viscoplasticity Model: Describes the time dependent plastic behaviour.

In this thesis, two constitutive models are considered, with each model relating to a specific re-
search question outlined in Section 1.2. With reference to the individual material models described
above, the ingredients of each constitutive model are described below:

Constitutive Model 1: Glass Transition Model + Degradation Model + Linear Viscoelasticity
Model + Viscoplasticity Model

Constitutive Model 2: Glass Transition Model + Degradation Model + Non-Linear Viscoelas-
ticity Model + Viscoplasticity Model

In Constitutive Model 1 the mechanical behaviour of the epoxy resin accounts for both moisture
and thermal effects, thus addressing the second research question. Constitutive Model 2 extends
the formulation of Constitutive Model 1 by introducing a non-linear viscoelasticity material model
in order to address the third research question relating to the behaviour of the epoxy resin at large
strains.

The specifics of each material model are described in Sections 5.4.2 to 5.4.5. Section 5.4.6 de-
scribes the formulation and implementation of the computational algorithm required to couple
non-linear viscoelasticity and viscoplasticity in the same constitutive model.

5.4.2. Glass Transition Model
The glass transition model used in the thesis is based on the work by Yu et al. [32], in which a
glass transition surface Φtr that is a function of both the temperature and moisture content of the
epoxy resin is defined. The degree of glass transition is characterised by the scalar parameter ζ and
describes the state of the epoxy resin. Following on from the molecular behaviour of the material,
an epoxy resin can be conceived to exist in three different material states:
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(i) Glassy state, where ζ= 0.

(ii) Mixed glassy-rubbery state, where 0 < ζ< 1.

(iii) Rubbery state, where ζ= 1.

As a result, the glass transition surface describes the transition of an epoxy resin from a glassy
state to a rubbery state and has similar properties to a yield surface used in classical plasticity. This
allows the Kuhn-Tucker conditions to be imposed for glass transition:

ζ̇≥ 0

Φtr ≤ 0

ζ̇Φtr = 0

(5.27)

Yu et al. propose the following expression for the glass transition surfaceΦtr:

Φtr =πtr −πc (5.28)

where πc is a derived constant and πtr is the thermodynamic driving force of ζ̇ and is defined as:

πtr =φT (T −T0)+φω
p
ω−Hζ (5.29)

where φT and φω are material parameters relating to the relative driving forces of temperature and
moisture change on the degree of glass transition, and H describes the temperature range in which
glass transition occurs. Equation 5.29 implies that the rate of glass transitioning is linearly related
to the material temperature and dependent on the square root of the moisture content, the latter of
which is implied from the experimental results of Chen et al. [4].

The expression of Equation 5.29 also allows the πc term to be derived. With the definition of
glass transition occurring at T = Tg, ζ= 0.5 andω= 0, the application of the Kuhn-Tucker conditions
results in:

πc =φT (Tg −T0)− H

2
(5.30)

Combining Equations 5.28, 5.29 and 5.30 with the Kuhn-Tucker conditions for glass transition, al-
lows the degree of glass transition at any point in time to be explicitly expressed as a function of the
temperature and moisture content of the epoxy resin, as well as the degree of glass transition at the
previous time step:

ζ(t +∆t ) =


0 if ζ∗ ≤ 0 and ζ̇< 0

ζ(t ) if ζ̇< 0

ζ∗ if ζ̇≥ 0

1 if ζ∗ ≥ 1

(5.31)

where:

ζ∗ = φT (T −Tg)+φω
p
ω+ H

2

H
(5.32)

Figure 5.4 presents the glass transition diagram, which shows the relationship between the tem-
perature and moisture concentration of an epoxy resin, and its material state, characterised by the
degree of glass transition ζ. The parameters chosen for this representation are as follows: φT = 1
MPa, φω = 500 MPa, H = 20 MPa and Tg = 363.3 K.
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Figure 5.4: Glass transition diagram for an epoxy resin based on the glass transition surface used in this thesis.

5.4.3. Degradation Model
The purpose of the degradation model is to relate the current state of the epoxy resin to its current
material properties. Following on from the work on Yu et al. [32], the relevant material properties
of the epoxy resin are assumed to be constant in the glassy and rubbery states, and are linearly
interpolated based on the degree of glass transition ζ in the mixed state. This is highlighted in Figure
5.5 which is consistent with the experimental behaviour observed in Figure 4.3.

(
)

Model Implementation

Experimental Results

Figure 5.5: Basis of the degradation model used in this thesis. Temperatures and corresponding degrees of
glass transition relate to a dry state.

As a result, the state dependent material properties are described by the single scalar valued
state parameter ζ and the degradation relationship can be generalised as follows:

Θ(ζ) = (1−ζ)Θgla +ζΘrub (5.33)

where Θ(ζ), a function of the degree of glass transition ζ, is the value of an arbitrary material prop-
erty for the current state of the epoxy resin, Θgla is the value of the material property in the glassy
state and Θrub is the value of the material property in the rubbery state. While this method sim-
plifies the material behaviour by imposing a constant property when the epoxy resin is in a glassy
or rubbery state and a linearly interpolated property for the mixed state, this assumption has been
found to give reasonably accurate results [32].
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A departure from the model proposed by Yu et al. is that, in this thesis, a stiffness based ap-
proach to the degradation model was adopted. This is in contrast to the compliance based methods
used by Yu et al. This approach was adopted because it is simpler to implement and more consis-
tent with a strain driven finite element implementation, in which a stiffness is used to derive stresses
from strains. For example, in the work by Yu et al., the expression for the long term elastic modulus
can be established from the compliance relation as:

E∞(ζ) =
(

(1−ζ)
1

E gla
∞

+ζ 1

E rub∞

)−1

(5.34)

However in this thesis, the current elastic modulus is defined as:

E∞(ζ) = (1−ζ)E gla
∞ +ζE rub

∞ (5.35)

Not all material properties require degradation. In the proceeding material models, the degrada-
tion relationship of individual parameters will be defined with reference to the linear interpolation
model described in Equation 5.33.

5.4.4. Viscoelasticity Model
5.4.4.1. Linear Viscoelasticity
The linear viscoelasticity model used in this thesis is based on the model used by Rocha et al. [24],
extending it to incorporate material degradation in line with Section 5.4.3. As outlined in Section
2.2.2, the updated viscoelastic stress consists of a long term elastic component and the summation
of exponentially decaying volumetric and deviatoric viscoelastic components:

σe(ζ, t ) = D∞(ζ)εe(t )+
N∑

i=1
pve

i (ζ, t )δi j +
N∑

i=1
Sve

i (ζ, t ) (5.36)

where D∞(t ) is the long term elastic stiffness matrix, εe is the elastic strain and the volumetric and
deviatoric viscoelastic stress contributions, pve

i and Sve
i respectively, are given by:

pve
i (ζ, t ) = exp

(
− ∆t

λi ,k

)
pve

i (t −∆t )+Ki (ζ)

[
1−exp

(
− ∆t

λi ,k

)]
λi ,k

∆t
∆εe

v (5.37a)

Sve
i (ζ, t ) = exp

(
− ∆t

λi ,g

)
Sve

i (t −∆t )+2Gi (ζ)

[
1−exp

(
− ∆t

λi ,g

)]
λi ,g

∆t
∆εe

d (5.37b)

where λi ,k and λi ,g are the bulk and shear relaxation times for the i th Prony elements, Ki (ζ) and
Gi (ζ) are the bulk and shear stiffnesses of the i th Prony elements, and∆εe

v and ∆εe
d are the volumet-

ric and deviatoric components of the elastic strain increment.
In this linear viscoelastic material model, all stiffness quantities have been extended to be ma-

terial state dependent. In Equation 5.36, D∞(ζ) is constructed from the long term elastic modulus
E∞(ζ) and the long term Poisson’s ratio ν∞(ζ), which are both material state dependent. In Equa-
tions 5.37a and 5.37b, both the bulk and shear moduli have also been made a function of the state
of the material. Box 5.4.1 summarises the degradation relationships for these four parameters.
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Box 5.4.1: Degradation of Linear Viscoelasticity Parameters

The degradation of the long term elastic modulus and the Poisson’s ratio take the same form
as Equation 5.33:

E∞(ζ) = (1−ζ)E gla
∞ +ζE rub

∞ (5.38a)

ν∞(ζ) = (1−ζ)νgla
∞ +ζνrub

∞ (5.38b)

The degradation of the viscoelastic bulk and shear moduli have been formulated to remain
consistent with the degradation of long term elastic modulus and the Poisson’s ratio. First
the equivalent degraded elastic modulus and the Poisson’s ratio for each Prony element are

computed given the glassy and rubbery bulk and shear modulia, that is K gla
i and Ggla

i , and

K rub
i and Grub

i respectively:

E ve
i (ζ) = (1−ζ)

9K gla
i Ggla

i

3K gla
i +Ggla

i

+ζ 9K rub
i Grub

i

3K rub
i +Grub

i

(5.39a)

νve
i (ζ) = (1−ζ)

3K gla
i −2Ggla

i

2
(
3K gla

i +Ggla
i

) +ζ 3K rub
i −2Grub

i

2
(
3K rub

i +Gr
i ub

) (5.39b)

From this, the state dependent bulk and shear moduli can be computedb:

Ki (ζ) = E ve
i

3
(
1−2νve

i

) (5.40a)

Gi (ζ) = E ve
i

2
(
1+νve

i

) (5.40b)

aFor an isotropic linear elastic material: E = 9KG
3K+G ; ν= 3K−2G

2(3K+G)
bFor an isotropic linear elastic material: K = E

3(1−2ν) ; G = E
2(1+ν)

The total elastic stiffness consists of the summation of the long term elastic stiffness and the
viscoelastic stiffness for the time increment:

De(ζ,∆t ) = D∞(ζ)+Dve(ζ,∆t ) (5.41)

The long term elastic stiffness for an isotropic material is given by the following expression:

D∞(ζ) = ν∞(ζ)E∞(ζ)

(1+ν∞(ζ))(1−2ν∞(ζ))
1⊗1+2

E∞(ζ)

2(1+ν∞(ζ))
I (5.42)

where 1 is the second order identity tensor and I is the fourth order identity tensor. Similarly, the
viscoelastic stiffness for an isotropic material is given by:

Dve(ζ,∆t ) =
(
Kve(ζ,∆t )− 2

3
Gve(ζ,∆t )

)
1⊗1+2Gve(ζ,∆t )I (5.43)
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where the bulk and shear viscoelastic stiffnesses are derived from Equations 5.37a and 5.37b:

K ve(ζ,∆t ) = ∂pve

∂∆εe
v
=

N∑
i=1

[
1−exp

(
− ∆t

λi ,k

)](
Ki (ζ)λi ,k

∆t

)
(5.44a)

Gve(ζ,∆t ) = ∂Sve

∂∆εe
d

=
N∑

i=1

[
1−exp

(
− ∆t

λi ,g

)](
Gi (ζ)λi ,g

∆t

)
(5.44b)

Finally, the energy dissipation1 resulting from viscoelasticity can be determined:

Ξve(ζ, t ) =
N∑

i=1

(
pve

i

)2

2Ki (ζ)λi ,k
+

N∑
i=1

Sve
i ·Sve

i

2Gi (ζ)λi ,g
(5.45)

5.4.4.2. Non-Linear Viscoelasticity
The non-linear viscoelasticity model was introduced to capture the non-linear time dependent be-
haviour exhibited by the epoxy resin that did not result in plastic strains, see Section 2.1.1. In this
thesis an approach similar to that of Yu et al. [32] was followed, in which the viscoelastic stiffness
is modified by a scalar function g . Similar to the linear viscoelasticity model, the long term elastic
stiffness E∞(ζ) and bulk and shear viscoelastic moduli, Ki (ζ) and Gi (ζ) respectively, are degraded.
However, for simplicity and to aid integration, these material parameters are expressed as functions
of time, for example D∞(ζ) ≡ D∞(t ), Ki (ζ) ≡ Ki (t ) and Gi (ζ) ≡Gi (t )

Stress Formulation: The non-linear viscoelasticity model begins with a similar decomposition of
the elastic stress into a long term component and a viscoelastic component:

σe(t ) = D∞(t )εe(t )+σve(t ) (5.46)

where the viscoelastic stress is further decomposed into volumetric and deviatoric components:

σve(t ) = pve(t )+Sve(t ) (5.47)

In this thesis, the strain based formulation used by Yu et al. has been modified to a stress based
model, which can be more easily integrated into the current finite element framework. The devel-
opment of viscoelastic stresses in the above equation are therefore based on a chain of Maxwell
elements and are defined as:

pve(t ) =
N∑

i=1

∫ t

0
exp

(
− t −τ
λi ,k

)
d

dτ

[
Ki (t )εe

v(t )

g (σ,ζ,εp
eq)

]
dτ (5.48a)

Sve(t ) =
N∑

i=1

∫ t

0
exp

(
− t −τ
λi ,g

)
d

dτ

[
2Gi (t )εe

d(t )

g (σ,ζ,εp
eq)

]
dτ (5.48b)

In the above set of equations, the non-linearity is introduced through the function g (σ,ζ,εp
eq), which

acts to reduce the viscoelastic stiffnesses and is further elaborated below. The integrals in Equations
5.48a and 5.48b act over the entire loading history 0 < τ < t and thus are computationally undesir-
able. However, through mathematical manipulation, the expression for the viscoelastic stress can
be made more suitable for computational purposes by storing the viscoelastic stress history from
the previous time step and only computing the viscoelastic stress increment for the current time
step. This results in an expression for the viscoelastic stress that takes the following form:

1The classical definition of mechanical energy dissipation is Ξ=σε̇
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σve(t ) =σve(t −∆t )+∆σve

= (
pve(t −∆t )+Sve(t −∆t )

)+ (
∆pve +∆Sve) (5.49)

where the stresses at time t−∆t are known and the incremental volumetric and deviatoric viscoelas-
tic stresses are given by the following expressions:

∆pve =
N∑

i=1

[
1−exp

(
− ∆t

λi ,k

)](
Ki (t )λi ,k∆ε

e
v

g (σ,ζ,εp
eq)∆t

−pve
i (t −∆t )

)
(5.50a)

∆Sve =
N∑

i=1

[
1−exp

(
− ∆t

λi ,g

)](
2Gi (t )λi ,g∆ε

e
d

g (σ,ζ,εp
eq)∆t

−Sve
i (t −∆t )

)
(5.50b)

The full mathematical derivation of this manipulation can be found in Appendix A. As a result, the
stress in Equation 5.46 is computed as the sum of the elastic stress, the viscoelastic stress at the
previous time step and the viscoelastic stress increment:

σe(t ) = D∞(t )εe(t )+σve(t −∆t )+∆σve (5.51)

Tangent Stiffness: Similar to the linear viscoelasticity derivation, the total elastic stiffness is the
sum of the instantaneous elastic stiffness and the viscoelastic stiffness:

De(t ) = D∞(t )+Dve(t ) (5.52)

The expression for Dve(t ) is similar to Equation 5.43. However, the bulk and shear moduli are ad-
justed to include the non-linearity function g :

K ve(t ) = ∂∆pve

∂∆εe
v

=
N∑

i=1

[
1−exp

(
− ∆t

λi ,k

)](
Ki (t )λi ,k

g (σ,ζ,εp
eq)∆t

)
(5.53a)

Gve(t ) = ∂∆Sve

∂∆εe
d

=
N∑

i=1

[
1−exp

(
− ∆t

λi ,g

)](
Gi (t )λi ,g

g (σ,ζ,εp
eq)∆t

)
(5.53b)

Viscoelastic Dissipation: The non-linear viscoelastic dissipation can be expressed as:

Ξve(t ) = g (σ,ζ,εp
eq)

[
N∑

i=1

(
pve

i

)2

2Ki (t )λi ,k
+

N∑
i=1

Sve
i ·Sve

i

2Gi (t )λi ,g

]
(5.54)

Non-Linearity Function: The function g (σ,ζ,εp
eq) introduces non-linearity into the viscoelastic

model and is primarily a function of the current stress levelσ. This function also captures the effect
the material state has on the onset of nonlinearity and the effect accumulated plastic strains have
on viscoelasticity. This non-linearity function is a modified version of the proposed function in the
work by Yu et al. [32] and Xia et al. [31]. In this thesis it is defined as:

g (σ,ζ,εp
eq) = 1+dve

〈
fve(σ,ζ,εp

eq)−1
〉mve

(5.55)

where dve and mve are material parameters. In this formulation the memory surface R( f ) and the
weight function ξ have been omitted to aid implementation. Xia et al. [31] introduced the memory
function and the weight function to allow the model to capture the changing concavity of the hys-
teresis loop due to changes in material state and accumulated viscoplastic deformations. Without
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these parameters, the non-linear viscoelastic model is still able to represent stress and plastic strain
related softening, however the ability to model cyclic induced concavity changes is sacrificed as a
result of this simplification. The function fve(σ,ζ,εp

eq) can be seen as the yield surface for non-linear
viscoelasticity and is defined as:

fve(σ,ζ,εp
eq) = σ

σ0(ζ,εp
eq)

(5.56)

where σ = p
3J2 is the von Mises equivalent stress and σ0(ζ,εp

eq) defines the stress at which non-
linearity begins. In order to account for the state of the material and plastic strains, σ0(ζ,εp

eq) is
written as the product of two functions:

σ0(ζ,εp
eq) =φ1(ζ)φ2(εp

eq) (5.57)

where:

φ1(ζ) = (1−ζ)σgla
0 +ζσrub

0 (5.58a)

φ2(εp
eq) = 1− c2 exp(−c3ε

p
eq) (5.58b)

whereσgla
0 andσrub

0 relate to the stress at the onset of non-linearity for the glassy and rubbery states
respectively, and c2 and c3 are material parameters controlling the effect the equivalent plastic strain
has on non-linear viscoelasticity.

From Equation 5.55 it is apparent that non-linear viscoelasticity is only activated when the value
of fve > 1. When the von Mises stress is below the threshold set by σ0, the non-linear function
evaluates to g = 1 and the linear viscoelasticity model, as described in Section 5.4.4.1, is retrieved.

Because g is a function of the current stress state, an iterative procedure is required to com-
pute the stresses when non-linear viscoelasticity is present, that is when g > 1. This procedure is
described in detail in Section 5.4.6.

5.4.5. Viscoplasticity
The viscoplasticity model used in this thesis is based on the model used by Rocha et al. [24], extend-
ing it to incorporate material degradation in line with Section 5.4.3. In this section, the viscoplas-
ticity model will be briefly described and the degraded material properties highlighted. In Section
5.4.6, the viscoplastic model will be slightly modified so that it can be used in conjunction with a
non-linear viscoelasticity model.

As is the case for the non-linear viscoelasticity model, an iterative scheme is also required to
compute the stress state when in the viscoplastic regime. The viscoplastic model starts with a trial
stress that assumes the strain increment is purely viscoelastic:

σtr(ζ, t ) = D∞(ζ)
(
ε(t )−εp(t −∆t )

)+Dve(ζ,∆t )
(
ε(t )−εp(t −∆t )−εe(t −∆t )

)+σve(t −∆t ) (5.59)

The yield surface fp is pressure dependent and incorporates hardening by defining yield stresses
which are functions of the equivalent plastic strain εp

eq:

fp(σ,ζ,εp
eq) = 6J2 +2I1

(
σc(ζ,εp

eq)−σt(ζ,εp
eq)

)−2σc(ζ,εp
eq)σt(ζ,εp

eq) (5.60a)

∆ε
p
eq =

√
1

1+2νp
2∆ε

p ·∆εp (5.60b)
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where σc and σt are the compressive and tensile yield strengths respectively and νp is the plastic
Poisson’s ratio. Based on the trial stress, the yield function is evaluated and if fp ≤ 0, no further
plastic strain develops and the computed trial stress is correct. However, if fp evaluates to a value
greater than zero, a plastic strain increment occurs in the current time step and the stresses must be
corrected to account for plasticity. In this case, due to the viscous nature of this plasticity model, the
development of plastic strains is delayed and the Kuhn-Tucker conditions are relaxed, allowing the
yield function to obtain positive values. Rocha et al. [24] use a Perzyna type formulation defining
the evolution of the plastic multiplier as:

∆γ=


∆t

ηp

(
fp

σ0
tσ

0
c

)mp

fp > 0

0 fp ≤ 0

(5.61)

where ηp and mp are the viscoplastic modulus and exponent respectively, and σ0
c and σ0

t are the
compressive and tensile yield strengths evaluated at zero equivalent plastic strain. The updated
stress and variation of plastic strain are then related to the plastic multiplier increment:

σ= I tr
1

3ζp
δi j + Str

ζs
(5.62a)

∆εp =∆γ
(
3S+ 2

9
αI1δi j

)
(5.62b)

where the plastic correction factors ζp and ζs , and the plastic flow direction α are defined as:

ζp(ζ, t ) = 1+2(K∞(ζ)+Kve(ζ, t ))α∆γ= 1+2K̂ (ζ, t )α∆γ (5.63a)

ζs(ζ, t ) = 1+6(G∞(ζ)+Gve(ζ, t ))∆γ= 1+6Ĝ(ζ, t )∆γ (5.63b)

α= 9

2

1−2νp

1+νp
(5.63c)

Rocha et al. [24] show that Equation 5.61 is a function of ∆γ only and thus can be solved itera-
tively using the Newton-Raphson method. The function to be solved is:

Φ(∆γ) = ∆γ∆t

ηp

(
fp

σ0
tσ

0
c

)mp

−∆γ= 0 (5.64)

For quadratic convergence of the Newton-Raphson method, the derivative of the above equation
must be computed. The computation of this derivative is presented as derivative number four in
Section 5.4.6.3.

Once the value for the plastic multiplier increment has been determined, all that remains is to
compute to the consistent tangent stiffness matrix. The derivation of this matrix is given in Ap-
pendix A.

It is clear from experimental observations that the yield strength of an epoxy resin is highly de-
pendent on the state of the material. As a result, this viscoplastic model incorporates material degra-
dation by setting the yield strengths of the material to be a function of the degree of glass transition
ζ. The degradation relationships are defined in Box 5.4.2.
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Box 5.4.2: Degradation of Viscoplasticity Parameters

The tensile and compressive yield strengths are provided as functions of the equivalent plas-
tic strain for both the glassy and rubbery state. The yield strengths used in the evaluation of
the viscoplastic model are dependent on the state of the material and take the same form as
the degradation model described by Equation 5.33:

σt(ζ,εp
eq) = (1−ζ)σgla

t (εp
eq)+ζσrub

t (εp
eq) (5.65a)

σc(ζ,εp
eq) = (1−ζ)σgla

c (εp
eq)+ζσrub

c (εp
eq) (5.65b)

The derivative of the yield strength with respect to the equivalent plastic strain is required
in the computation of both the Jacobian of the iterative method and the consistent tangent
stiffness matrix. The degraded derivative can be calculated from the above equations:

∂σt(ζ,εp
eq)

∂ε
p
eq

= (1−ζ)
∂σ

gla
t (εp

eq)

∂ε
p
eq

+ζ∂σ
rub
t (εp

eq)

∂ε
p
eq

(5.66a)

∂σc(ζ,εp
eq)

∂ε
p
eq

= (1−ζ)
∂σ

gla
c (εp

eq)

∂ε
p
eq

+ζ∂σ
rub
c (εp

eq)

∂ε
p
eq

(5.66b)

Once the plastic strain and the stress level have been determined, the total viscoplastic dissipa-
tion for the current time increment can be calculated by:

Ξvp =σ ·∆εp (5.67)

5.4.6. Coupled Non-Linear Viscoelasticity and Viscoplasticity
Constitutive Model 2, as outlined in Section 5.4.1, incorporates both the non-linear viscoelasticity
model and the plasticity model. Because both of these models are dependent on the current stress
state and the degree of plastic strain, a return mapping that incorporates both of these models must
be performed. In this section the formulation of the coupled return mapping algorithm is outlined
and the implementation of the iterative algorithm is explained in further detail.

5.4.6.1. Overview of the Algorithm
To give an overview of the return mapping algorithm, the problem description and given variables
are outlined. Before entering the return mapping algorithm the following parameters are given and
remain constant:

(a) ε(t ) & ∆ε - the total strain vector and total strain increment for the current time step.

(b) εp(t −∆t ) & ε
p
eq(t −∆t ) - the plastic strain vector and equivalent plastic strain for the previous

time step.

(c) D∞(t ) - the long term stiffness matrix for the current time step.

(d) Λσve(t −∆t ) - the decayed viscoelastic stress vector from the previous time step, defined be-
low.

(e) ζ(t ) - the degree of glass transition for the current time step.

The goal of the return mapping algorithm is to solve for the two unknown scalar parameters that
define the influence of each viscous model on the stress state:
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(i) g - the degree of non-linear viscoelasticity, g ≥ 1.

(ii) ∆γ - the increment of the plastic multiplier, ∆γ≥ 0.

Both of the unknown parameters in the return mapping algorithm can be cast into two functions
that can to be solved iteratively to determine the currents values of g and ∆γ. These functions are
given below as a coupled set of equations:

Γ(g ,∆γ) = 1+dve
(

fve(σ,ζ,εp
eq)−1

)mve − g = 0 (5.68a)

Φ(g ,∆γ) = ∆t

ηp

(
fp(σ,εp

eq)

σ0
tσ

0
c

)mp

−∆γ= 0 (5.68b)

where σ and εp
eq are a function of both g and ∆γ. Note that Equation 5.68b is identical to Equation

5.64. However, because fp is a function of the current stress σ, Φ is now also a function of g . The
Newton-Raphson algorithm can be applied to the above functions to iteratively solve for the two
unknown coupled variables at integration point level [7]:

[
g k+1

∆γk+1

]
=

[
g k

∆γk

]
−


∂Γ

∂g

∂Γ

∂∆γ

∂Φ

∂g

∂Φ

∂∆γ


−1 [

Γ(g k ,∆γk )
Φ(g k ,∆γk )

]
(5.69)

The determination of the Jacobian matrix (the 2 x 2 matrix in the above equation) is central to the
Newton-Raphson scheme and in the context of this coupled return mapping algorithm, greatly im-
proves convergence speed. Each term in this matrix is derived in Section 5.4.6.3.

5.4.6.2. Detailed Procedure of the Return Mapping Algorithm
In this section, the iterative method for the coupled return mapping algorithm is described in detail
and, for clarity, is summarised in Box B.2.

An approach similar to the return mapping scheme used for viscoplasticity is used for this algo-
rithm, in which a trial stress is computed and later corrected based on the amount of plastic strain.
However, the introduction of a non-linear viscoelasticity model necessitates a key departure from
the procedure used by Rocha et al. Because the viscoelastic stiffness is constantly changing due to
variations in g , the trial stress must be recomputed at the beginning of each iteration within this
return mapping algorithm. Furthermore, as g is a function of the current amount of plastic strain,
the various strains must also be recomputed before each iteration.

In this model, there are three possible outcomes from the combination of non-linear viscoelas-
ticity and viscoplasticity:

1. Linear viscoelasticity with no viscoplasticity, i.e. g = 1 and ∆γ= 0 ⇒ No return mapping algo-
rithm required.

2. Non-linear viscoelasticity with no viscoplasticity, i.e. g > 1 and ∆γ= 0 ⇒ Solve single variable
return mapping algorithm for g .

3. Non-linear viscoelasticity with viscoplasticity, i.e. g > 1 and ∆γ > 0 ⇒ Solve coupled return
mapping algorithm for g and ∆γ.

The fourth option of linear viscoelasticity with viscoplasticity is excluded based on the assump-
tion that non-linear viscoelasticity occurs before the onset of plasticity. This assumption is con-
sistent with the observed material behaviour detailed in Section 2.1.1, in which softening of the
stress-strain response occurred before the development of plastic strains.
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The algorithm begins with the assumption that there is no further plastic strain and that the
stiffness of the non-linear viscoelasticity is unchanged, that is g (t ) = g (t −∆t ) and ∆γ= 0. Based on
this assumption the degree of elastic and plastic strain can be computed. As the algorithm proceeds,
the stresses are updated based on the changing strain state until convergence is achieved.

Strain Update: At the beginning of the algorithm and at the end of each iteration, the elastic and
plastic strain vectors are updated based on the amount of plasticity developed in the current itera-
tion. The strains are updated as follows:

∆εp =∆γ
(
3S+ 2

9
αI1δi j

)
(5.70a)

εp(t ) = εp(t −∆t )+∆εp (5.70b)

∆ε
p
eq =

√
1

1+2νp
2∆ε

p ·∆εp (5.70c)

ε
p
eq(t ) = εp

eq(t −∆t )+∆εp
eq (5.70d)

εe(t ) = ε(t )−εp(t ) (5.70e)

∆εe =∆ε−∆εp (5.70f)

Trial Stress Update: Once the strains have been updated, the new trial stress can be computed.
The trial stress consists of the long term elastic stress, the decayed viscoelastic stress from the pre-
vious time step and the new viscoelastic stress increment. From Equation 5.51, the trial stress can
be written as:

σtr(t ) = D∞(t )εe(t )+σve(t −∆t )+∆σve

where the viscoelastic stress increments are given in Equations 5.50a and 5.50b as:

∆pve =
N∑

i=1

[
1−exp

(
− ∆t

λi ,k

)](
Ki (t )λi ,k∆ε

e
v

g (σ,ζ,εp
eq)∆t

−pve
i (t −∆t )

)

∆Sve =
N∑

i=1

[
1−exp

(
− ∆t

λi ,g

)](
2Gi (t )λi ,g∆ε

e
d

g (σ,ζ,εp
eq)∆t

−Sve
i (t −∆t )

)

The last terms in the above equations represent the exponential decaying of the viscoelastic stresses
from the previous time step t −∆t . It is possible to rearrange the expression for the trial stress and
redefine the viscoelastic stress increments such that this known decay of the previous viscoelastic
stress is no longer part of the stress increment. The new trial stress is defined as:

σtr(t ) = D∞(t )εe(t )+Λσve(t −∆t )+∆σve (5.71)

where the decayed viscoelastic stress from the previous time stepΛσve(t −∆t ) is equal to:

Λσve(t −∆t ) =
N∑

i=1
exp

(
− ∆t

λi ,k

)
pve

i (t −∆t )δi j +
N∑

i=1
exp

(
− ∆t

λi ,g

)
Sve

i (t −∆t ) (5.72)
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and the viscoelastic stress update ∆σve =∆pve +∆Sve is redefined with:

∆pve =
N∑

i=1

[
1−exp

(
− ∆t

λi ,k

)]
Ki (t )λi ,k∆ε

e
v

g (σ,ζ,εp
eq)∆t

(5.73a)

∆Sve =
N∑

i=1

[
1−exp

(
− ∆t

λi ,g

)] 2Gi (t )λi ,g∆ε
e
d

g (σ,ζ,εp
eq)∆t

(5.73b)

As a result, for a given iteration, the trial stress becomes the sum of two constant elastic terms and
a viscoelastic stress increment. Only the viscoelastic stress increment, a function of g , varies within
the return mapping algorithm:

σtr(g ) = D∞(t )εe(t )+Λσve(t −∆t )+∆σve(g ) (5.74)

From this trial stress, the first invariant of the trial stress I tr
1 (g ), the deviatoric trial stress vector Str(g )

and the second invariant of the deviatoric trial stress vector J tr
2 (g ) can be computed.

Current Stress Update: Based on the current value of ∆γ, the values for the trial stress correction
factors ζp and ζs can be computed from Equations 5.63a and 5.63b respectively. Because these
correction factors depend on the viscoelastic stiffness and the amount of plastic strain, they are
functions of both g and∆γ. Using the previously computed trial stress, the current stress vector can
be computed:

σ(g ,∆γ) = I tr
1 (g )

3ζp(g ,∆γ)
δi j + Str(g )

ζs(g ,∆γ)
(5.75)

From this stress, the first invariant of the current stress I1(g ,∆γ), the deviatoric stress vector S(g ,∆γ)
and the second invariant of the deviatoric stress vector J2(g ,∆γ) can be computed.

g & ∆γ Update: To determine whether the iterative scheme has converged, Equations 5.68a and
5.68b are checked against prescribed tolerances. Convergence is satisfied if the following is true:

|Γ(t )| ≤ Γtol ∧|Φ(t )| ≤Φtol (5.76)

If the above inequalities are not satisfied, both g and ∆γ are updated based on Equation 5.69 and
the iterative process continues until the above equation is satisfied. Box B.2 in Appendix B presents
the detailed pseudocode for the coupled non-linear viscoelastic and viscoplastic return mapping
algorithm.

5.4.6.3. Calculation of the Jacobian Matrix:
In order to utilise the fast convergence of the Newton-Raphson method, the Jacobian matrix, which
contains the partial derivatives of each function in Equation 5.69, must be determined.

First, the derivatives of the stress invariants I1 and J2 are determined with respect to both g and
∆γ. Both I1 and J2 can be written as a function of their trial stress counterparts, I tr

1 and J tr
2 :

I1(g ,∆γ) = I tr
1 (g )

ζp(g ,∆γ)
(5.77a)

J2(g ,∆γ) = J tr
2 (g )

ζs(g ,∆γ)2 (5.77b)
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Taking the derivatives of the above equations gives:

∂I1(g ,∆γ)

∂g
= 1

ζp(g ,∆γ)2

(
∂I tr

1 (g )

∂g
ζp(g ,∆γ)− ∂ζp(g ,∆γ)

∂g
I tr

1 (g )

)
(5.78a)

∂I1(g ,∆γ)

∂∆γ
=− I tr

1 (g )

ζp(g ,∆γ)2

∂ζp(g ,∆γ)

∂∆γ
(5.78b)

∂J2(g ,∆γ)

∂g
= 1

ζs(g ,∆γ)4

(
∂J tr

2 (g )

∂g
ζs(g ,∆γ)2 −2

∂ζs(g ,∆γ)

∂g
J tr

2 (g )ζs(g ,∆γ)

)
(5.78c)

∂J2(g ,∆γ)

∂∆γ
=−2

J tr
2 (g )

ζs(g ,∆γ)3

∂ζs(g ,∆γ)

∂∆γ
(5.78d)

The derivatives that remain in the above equations are determined in Appendix A. It should also be
noted that the variation of the equivalent plastic strain is a function of both g and ∆γ, necessitating
its derivative to be taken with respect to both parameters. Rocha et al. [24] present the expression
for the change in equivalent plastic strain as a function of the trial stresses:

∆ε
p
eq(g ,∆γ) =∆γ

√√√√ 18
ζs (g ,∆γ)2 J tr

2 (g )+ 4α2

27ζp(g ,∆γ)2 I tr
1 (g )2

1+2νp
2 =∆γ

√
Â(g ,∆γ)

1+2νp
2 (5.79)

Therefore, its derivative with respect to both g and ∆γ can be determined:

∂∆ε
p
eq(g ,∆γ)

∂g
= ∆γ

2
√

1+2νp
2
√

Â(g ,∆γ)

∂Â(g ,∆γ)

∂g
(5.80a)

∂∆ε
p
eq(g ,∆γ)

∂∆γ
=

√
1

1+2νp
2

√
Â(g ,∆γ)− ∆γ

2
√

Â(g ,∆γ)

(
216Ĝ(g )J tr

2 (g )

ζs(g ,∆γ)3 + 16α3K̂ (g )I tr
1 (g )2

27ζp(g ,∆γ)3

)
(5.80b)

The full derivations of the above equations and the derivative of Â(g ,∆γ) with respect to g can be
found in Appendix A. The derivatives of each term in the Jacobian matrix are derived below.

Derivative 1 -
∂Γ

∂g
: Starting with Equation 5.68a, the derivative with respect to g is taken:

∂Γ

∂g
= mvedve

(
fve(σ,ζ,εp

eq)−1
)mve−1 ∂ fve(g ,∆γ)

∂g
−1 (5.81)

The derivative of fve with respect to g can be written as:

∂ fve(g ,∆γ)

∂g
=

p
3

σ0(εp
eq)

2

(
∂
(√

J2(g ,∆γ)
)

∂g
σ0(εp

eq)− ∂σ0(εp
eq)

∂g

√
J2(g ,∆γ)

)
(5.82)

Using the chain rule, the derivative of the square root of J2 with respect to g can be determined:

∂
(√

J2(g ,∆γ)
)

∂g
= 1

2
√

J2(g ,∆γ)

∂J2(g ,∆γ)

∂g
(5.83)

where the derivative of J2 with respect to g is given in Equation 5.78c. Now, the derivative ofσ0 with
respect to g is elaborated:
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∂σ0(εp
eq)

∂g
= ∂σ0(εp

eq)

∂ε
p
eq

∂∆ε
p
eq(g ,∆γ)

∂g
(5.84)

The first term in the above equation is equal to:

∂σ0(εp
eq)

∂ε
p
eq

=φ1c2c3 exp
(−c3ε

p
eq

)
(5.85)

and the second term has been previously derived in Equation 5.80a.

Derivative 2 -
∂Γ

∂∆γ
: Starting with Equation 5.68a, the derivative with respect to ∆γ is taken:

∂Γ

∂∆γ
= mvedve

(
f (σ,ζ,εp

eq)−1
)mve−1 ∂ fve(g ,∆γ)

∂∆γ
(5.86)

The derivative of fve with respect to ∆γ can be written as:
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(5.87)

Using the chain rule, the derivative of the square root of J2 with respect to ∆γ can be determined:
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J2(g ,∆γ)
)

∂∆γ
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2
√

J2(g ,∆γ)

∂J2(g ,∆γ)

∂∆γ
(5.88)

where the derivative of J2 with respect to ∆γ is given in Equation 5.78d. Now, the derivative of σ0

with respect to ∆γ is elaborated:

∂σ0(εp
eq)

∂∆γ
= ∂σ0(εp

eq)

∂ε
p
eq

∂∆ε
p
eq(g ,∆γ)

∂∆γ
(5.89)

The first term in the above equation is given in Equation 5.85 and the second term has been previ-
ously derived in Equation 5.80b.

Derivative 3 -
∂Φ

∂g
: Starting with Equation 5.68b, the derivative with respect to g is taken:

∂Φ

∂g
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0
tσ

0
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(
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0
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∂ fp(g ,∆γ)
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(5.90)

The derivative of the yield function fp with respect to g can be written as:

∂ fp(g ,∆γ)
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In the above equation, the derivative of fp with respect to εp
eq is:

∂ fp(g ,∆γ)
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p
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Hc(εp

eq)−Ht(ε
p
eq)
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σc(εp
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(5.92)

where Hc(εp
eq) and Ht(ε

p
eq) are the derivatives ofσc(εp

eq) andσt(ε
p
eq) with respect to εp

eq. These deriva-
tives represents the compressive and tensile hardening moduli respectively. The last term in Equa-
tion 5.91 has been previously derived in Equation 5.80a.
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Derivative 4 -
∂Φ

∂∆γ
: Starting with Equation 5.68b, the derivative with respect to ∆γ is taken:
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The derivative of the yield function fp with respect to ∆γ can be written as:
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where the derivative of fp with respect to ε
p
eq is given in Equation 5.92 and the derivative of ∆εp

eq

with respect to ∆γ has been previously derived in Equation 5.80b.

5.5. Multiphysics Framework
This section focuses on how the above models are brought together in the multiphysics framework.
As discussed in Section 5.1, the physical models are solved in an uncoupled one-way manner, with
the heat model solved first, followed by the diffusion model and then the mechanics model. For typ-
ical multiphysics analyses the transport timescales would be larger than required for the mechanics
model. However, in this thesis the same time scale is used to solve all three models for simplicity of
implementation.

As outlined in Figure 5.1, the dissipation field from the previous time step is used as a heat in-
put for the current time step. Because solving the viscous mechanical models requires a relatively
small time step when compared to the heat model, the effect of uncoupling the mechanical dissi-
pation from the current time step is negligible. As a result, a strong coupling does not exist for this
multiphysics problem, allowing the operator split method to be utilised.

In the proceeding sections the multiphysics aspects related to each physical model are described
in detail.

5.5.1. Heat Model
Mechanical viscoelastic and viscoplastic dissipation from the previous time step is used to model
internal heat generation. It is thus hypothesised that the mechanical energy generated by viscous
effects is dissipated through heat energy alone. The viscoelastic and viscoplastic dissipations are
computed in the mechanics model using Equations 5.45, 5.54 and 5.67. This dissipation is com-
puted at each integration point and has a unit of N/(m2 · s). This is equivalent to J/(m3 · s), which
is the required unit for Qint in Equation 5.14. The right hand side vector for the heat model is then
computed by evaluating the integral in Equation 5.14.

Finally, the temperature field is evaluated for the current time step by solving Equation 5.13
subject to the imposed boundary conditions.

5.5.2. Diffusion Model
The next step of the multiphysics coupling involves passing the computed temperature field to the
diffusion model. This temperature field is used to evaluate the temperature dependent diffusivity
matrix in Equation 5.20. The moisture field is then evaluated for the current time step by solving
Equation 5.20, subject to the imposed boundary conditions.

5.5.3. Mechanics Model
The final step in the multiphysics solver involves passing the temperature and moisture fields to the
mechanics model. These fields are used to compute glass transition, material degradation, thermal
expansion and moisture swelling.
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At every integration point in the mechanics model, the degree of glass transition ζ is calculated
from Equation 5.31. The subsequent degradation factors are then applied to each material model
as described in Section 5.4.

In order to account for the expansion of the epoxy resin due to changes in temperature and
moisture content, expansion and swelling strains are subtracted from the total strain vector E at the
start of the time step. The mechanical strain ε used in the mechanics model is computed as:

ε= E −εT −εω (5.95)

where εT and εω are the thermal expansion and moisture swelling strains respectively and are given
by:

εT =αT (T −Tinit) (5.96a)

εω =αωω (5.96b)

where αT is the coefficient of thermal expansion, Tinit is the initial temperature of the material and
αω is the coefficient of moisture expansion.
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Results

In this thesis numerical analyses were performed using a finite element implementation of the con-
stitutive models, as described in Section 5. An overview of the implementation of the material mod-
els can be found in Appendix B. The numerical analyses were performed to validate the constitutive
models and demonstrate the ability of the models to capture the multiphysical and time-dependent
behaviour of epoxy resins.

6.1. Validation of the Transport Model
Two numerical studies were performed on the transport model in order to verify its implementa-
tion. Both analyses were performed with varying levels of mesh refinement and the results were
compared to both a reference solution as well as a commercial finite element solver, Strand7. Both
studies were taken from the Strand7 verification manual [27].

6.1.1. Steady State Analysis
In this steady state analysis a 2D heat transfer problem was modelled with both a fixed temperature
and convective boundary conditions. Figure 6.1 describes the problem, in which a fixed temper-
ature of 100◦C was prescribed to edge AB and edge DA was insulated with zero heat flux. Both
edges BC and CD were subjected to a convective boundary condition with an ambient fluid tem-
perature equal to 0◦C. The material properties and mesh details are given in Table 6.1. Note that
by setting ρ = c = 0, a steady state scheme was obtained in the heat model as the Ṫ term vanished.
The reference solution, as provided by ‘Selected FE Benchmarks in Structural and Thermal Analysis’
(NAFEMS, 1987), is a steady state temperature of 18.3◦C at point E.

Input Properties

Material Properties
κ= 52.0 J/(s ·m ·K); h = 750.0 J/(s ·m2 ·K)

ρ = c = 0.0; Tf = Tinit = 0.0◦C

Mesh Density

Coarse mesh: 0.2 m x 0.2 m

Medium mesh: 0.1 m x 0.1 m

Fine mesh: 0.025 m x 0.025 m

Table 6.1: Input for the steady state heat analysis.

Table 6.2 presents the temperature obtained at point E for varying mesh refinements and ele-

63
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Figure 6.1: Problem description for the steady state heat analysis [27].

ment types from the heat model formulated in Section 5.2. The results from the Strand7 verification
manual [27] are also provided and for each analysis a comparison is made to the solution given
by NAFEMS. Figures 6.2 and 6.3 present plots of the steady state temperature field throughout the
domain for each mesh refinement and element type.

Model Heat Model Results Strand7 Results

QUAD4; Coarse Mesh -0.197◦C (-101%) 8.500◦C (-53.6%)

QUAD4; Medium Mesh 17.979◦C (-1.75%) 17.950◦C (-1.91%)

QUAD8; Coarse Mesh 19.171◦C (4.76%) 17.895◦C (-2.21%)

QUAD8; Medium Mesh 18.865◦C (3.09%) 18.790◦C (2.68%)

QUAD8; Fine Mesh 18.255◦C (-0.25%) N/A

Table 6.2: Comparison of the steady state heat model results with Strand7 and, in parenthesis, NAFEMS.

The implementation of the heat model used in this thesis produced steady state results that are
comparable those of the benchmark and Strand7 results for all models except the coarse mesh with
linear elements. For this exception, the Strand7 analysis also produced results that significantly de-
viate from the benchmark. The Strand7 verification manual [27] notes that linear elements cannot
reproduce the required temperature gradient for coarse elements and therefore this result can be
omitted. This is further highlighted in Figures 6.2 and 6.3, which show that mesh refinement in the
bottom right of the domain is required in order to capture the temperature gradient, which varies in
two directions.

For all other models, the heat model was within a 5% error margin of the benchmark results and
for the fine mesh models was within a 0.5% margin of the Strand7 results. When the mesh was fur-
ther refined, the heat model converged to the benchmark result and produced the expected smooth
temperature gradient as shown in Figure 6.3. These results provided evidence that the implemen-
tation of the heat model for this thesis produces expected results and can be used with confidence
for steady-state transport problems.
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(a) QUAD4; Coarse Mesh (b) QUAD4; Fine Mesh

(c) QUAD8; Coarse Mesh (d) QUAD8; Fine Mesh

Figure 6.2: Steady state heat model results for varying mesh refinement and element type.

Figure 6.3: Heat model temperature field results for the super fine mesh refinement with QUAD8 elements.
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6.1.2. Transient Analysis
In this transient analysis a 2D heat transfer problem was modelled that consisted of both fixed tem-
peratures and a convective boundary condition. Figure 6.4 describes the problem, in which a tem-
perature of 300◦C was prescribed to the edges AC and BD, and edge AB was insulated with zero heat
flux. Edge CD was subjected to a convective boundary condition with an ambient fluid tempera-
ture equal to 50◦C. The initial temperature of the material was 300◦C. The material properties, time
steps and mesh density are given in Table 6.3. The reference solution, as provided by ‘Heat Transfer’
(Holman, 1989), is a temperature of 243.32◦C at point E after 12 seconds.

Figure 6.4: Problem description for the transient heat analysis.

Input Properties

Material Properties

κ= 3.0 J/(s ·m ·K); h = 200.0 J/(s ·m2 ·K)

ρ = 1600 kg/m3; c = 800 J/(kg ·K);

Tf = 50◦C; Tinit = 300◦C

Time Steps
∆t = 2 s

tfinal = 12 s

Mesh Density
QUAD4 Mesh: 2.5×10−3 m x 2.5×10−3 m

QUAD8 Mesh: 5.0×10−3 m x 5.0×10−3 m

Table 6.3: Input for the transient heat analysis.

Table 6.4 presents the temperature obtained at point E for varying element types for the heat
model formulated in Section 5.2. The results from the Strand7 verification manual [27] are also pro-
vided and comparison is made with reference to the solution given by Holman. Figure 6.5 presents
a plot of the temperature field throughout the domain for each element type at t = 12 s. Figure
6.6 presents a plot of the temperature field throughout the domain for a further refined mesh of
2.5×10−4 m x 2.5×10−4 m at various time steps.

From Table 6.4 it is apparent the transient results from the heat model are almost identical to
the results obtained from the Strand7 analysis. The results from all models are within a 2.5% error
margin of the benchmark result. Figure 6.5b shows that the quadratic elements were able to capture
the temperature gradient for this problem, even with a relatively coarse mesh. As a result, there is
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Model Heat Model Results Strand7 Results

QUAD4 237.83◦C (-2.26%) 238.21◦C (-2.10%)

QUAD8 237.25◦C (-2.49%) 237.31◦C (-2.47%)

QUAD8; Refined Mesh 237.94◦C (-2.30%) N/A

Table 6.4: Comparison of the transient heat model results with Strand7 and, in parenthesis, Holman.

(a) QUAD4 (b) QUAD8

Figure 6.5: Transient heat model results at t = 12 s for varying element type.

(a) t = 0.5 s (b) t = 4 s

(c) t = 8 s (d) t = 12 s

Figure 6.6: Transient heat model results for the refined mesh at different time steps.

no significant variation between the temperature fields when the mesh is refined by a factor of 2 and
linear elements are used, which is the difference between the QUAD8 to the QUAD4 models. The
time dependent heat conductivity, depicted from Figure 6.6a to Figure 6.6d, produced temperature
fields that are consistent with the expected smooth gradient between the fixed sides and the cooling
top edge.

When the mesh is further refined, the temperature at point E approaches the benchmark solu-
tion, although there is still a 2.3% difference between the results. This difference can be attributed
to the use of a non-linear thermal analysis used in the benchmark solution, which acts to modify the
constitutive relationship as the temperature field changes, and is not included in the formulation
of the heat model in this thesis. As a result, the transient results produced by the heat model in the
benchmark test can be used to justify the validity of the implementation of the model in this thesis.
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6.2. Constitutive Model 1 - Mechanics Model
A series of benchmark numerical tests were performed on the first constitutive model described in
Section 5.4.1 in order to validate the model and also to highlight the capabilities of the glass transi-
tion and degradation models. In each test the expected analytical results are derived and contrasted
with the numerical results.

These numerical benchmark tests were performed on a one element model with the same ge-
ometry as the square bar used in the mesh dependency tests, described in Section 3.2.1. The mate-
rial properties used in these benchmark tests are summarised in Table 6.5 below.

Model Glassy Properties Rubbery Properties

Viscoelasticity

E gla
∞ = 2900 MPa; νgla

∞ = 0.35

K gla
i = [500 MPa, 250 MPa, 100 MPa]

Ggla
i = [166.7 MPa, 83.3 MPa, 33.3 MPa]

E rub∞ = 1000 MPa; νrub∞ = 0.45

K rub
i = [250 MPa, 125 MPa, 50 MPa]

Grub
i = [51.7 MPa, 25.9 MPa, 10.3 MPa]

λi ,k = [0.01 s, 0.1 s, 0.25 s]

λi ,g = [0.02 s, 0.5 s, 0.75 s]

Viscoplasticity
σ

gla
t = 70 MPa

σ
gla
c = 90 MPa

σrub
t = 20 MPa

σrub
c = 30 MPa

νp = 0.5; ηp = 205×103 MPa · s; mp = 1.5

Glass Transition
Tg = 363.3 K; H = 20 MPa

φT = 1 MPa; φω = 145 MPa

Table 6.5: Material properties used in the mechanics model benchmark tests.

6.2.1. Monotonic Tension
Three monotonic tension simulations were performed on the first constitutive model. The first two
tests were performed with only the linear viscoelasticity model activated (no viscoplasticity), while
the third test incorporated both linear viscoelasticity and viscoplasticity.

6.2.1.1. Constant Strain Rate (VE):
A constant strain rate of ε̇xx = 0.1/min was used to load the specimen to a final strain of 10% in each
test. The relatively low strain rate effectively removed any viscoelastic effects in this these tests.
Five tests were performed, in which the temperature and moisture concentration of the sample was
varied. The temperature and moisture concentration for each test, as well as the corresponding
degree of glass transition relating to these parameters are presented in Table 6.6.

Test 1 Test 2 Test 3 Test 4 Test 5

Temperature T 298 K 358 K 358 K 358 K 380 K

Moisture Content ω 0.000 0.000 0.005 0.010 0.000

Degree of Glass Transition ζ 0.000 0.235 0.748 0.960 1.000

Table 6.6: Temperature, moisture concentration and resulting ζ used in each constant strain rate tension test.

The analytical results for this benchmark test are derived below in Box 6.2.1.
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Box 6.2.1: Monotonic Tension - Constant Strain Rate (VE): Analytical Results

For each test described in Table 6.6 both the tensile force Ft required to impose a strain
of 10%, and the transverse displacement given a longitudinal displacement of 10 mm are
calculated.

First, the degraded elastic stiffness for each test can be calculated using the degree of glass
transition in Table 6.6:

E∞(ζ) = (1−ζ)E gla
∞ +ζE rub

∞ (6.1)

The force, given a strain of 10%, can now be calculated:

Ft =σA = E∞(ζ)εxx A = E∞(ζ)×0.1×100 mm2 = 10E∞(ζ) (6.2)

In order to calculate the transverse displacement, the degraded Poisson’s ratio must first be
calculated. Similar to the elastic stiffness, the Poisson’s ratio for each test can be calculated
using the degree of glass transition in Table 6.6:

ν∞(ζ) = (1−ζ)νgla
∞ +ζνrub

∞ (6.3)

The transverse displacement can then be calculated from the degraded Poisson’s ratio, the
longitudinal strain and the transverse width of the bar, b = 10 mm:

uy =−ν∞(ζ)εxx b =−ν∞(ζ)×0.1×10 mm =−ν∞(ζ) (6.4)

Using the above equations, the analytical results for each test are summarised below in Table
6.7.

Test 1 Test 2 Test 3 Test 4 Test 5

E∞ 2900 MPa 2454 MPa 1479 MPa 1076 MPa 1000 MPa

ν∞ 0.350 0.374 0.425 0.446 0.450

Ft 29.00×103 N 24.54×103 N 14.79×103 N 10.76×103 N 10.00×103 N

uy -0.350 mm -0.374 mm -0.425 mm -0.446 mm -0.450 mm

Table 6.7: Analytical results for the constant strain rate tension test.

Figure 6.7 presents the numerical results obtained for the constant strain rate monotonic ten-
sion tests. Figure 6.7a presents a load displacement plot for each test and Figure 6.7b presents the
transverse displacement as a function of the longitudinal displacement for each test.

It is clear from Figure 6.7 that the numerical results exactly match the analytical results for long
term mechanical degradation behaviour. Further, both the analytical results and the numerical re-
sults present behaviour that is consistent with the intent of the degradation model. Figure 6.7a
shows that the state transition of the epoxy resin from glassy to rubbery is accompanied by a reduc-
tion in the elastic modulus. Further, Figure 6.7b shows that this transition is also accompanied by an
increase in the Poisson’s ratio. As a result, the model formulation used in this thesis can effectively
relate long term mechanical behaviour with the state of the epoxy resin.
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(a) Load displacement response.
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(b) Transverse displacement.

Figure 6.7: Numerical results for the constant strain rate tension tests.

6.2.1.2. Varying Strain Rates (VE):
Numerical monotonic tension tests were performed at two different temperatures and three differ-
ent strain rates, with a final strain of εxx = 10%. A total of six numerical tests were studied and the
temperature and strain rate for each test is given in Table 6.8.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Temperature 298 K 298 K 298 K 380 K 380 K 380 K

Strain Rate 100/min 103/min 106/min 100/min 103/min 106/min

Table 6.8: Temperature and strain rate used in each varying strain rate tension test. Note that a temperature
of 298 K corresponds to ζ= 0 and a temperature of 380 K corresponds to ζ= 1.

The analytical results for this benchmark test are derived below in Box 6.2.2.

Box 6.2.2: Monotonic Tension - Varying Strain Rate (VE): Analytical Results

For the tests with ε̇= 1/min, the results from the previous test can be used as this strain rate
also results in negligible viscoelastic stresses. For the tests with ε̇= 1×106/min, there is neg-
ligible relaxation of the viscoelastic stresses and thus the viscoelastic stiffness components
can be added to the long term stiffness. The total stiffness for the glassy and rubbery tests is
therefore:

E gla = E gla
∞ + 9

∑
i K gla

i

∑
i Ggla

i

3
∑

i K gla
i +∑

i Ggla
i

= 2900+765 = 3665 MPa (6.5a)

E rub = E rub
∞ + 9

∑
i K rub

i

∑
i Grub

i

3
∑

i K rub
i +∑

i Grub
i

= 1000+247 = 1247 MPa (6.5b)

For the tests with ε̇ = 1×103/min, the relaxation of the viscoelastic stresses affects the total
stiffness and therefore this analytical calculation is not performed. However, the stiffness for
ε̇ = 1×103/min is bounded by the stiffnesses obtained from ε̇ = 1/min and ε̇ = 1×106/min.
As a result, given a strain of 10%, the forces can be calculated using the same method as given
in Box 6.2.1:
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Test 1 Test 2 Test 3

E∞ 2900 MPa 2900 MPa < E∞ < 3665 MPa 3665 MPa

Ft 29.00×103 N 29.00×103 N < Ft < 36.65×103 N 36.65×103 N

Test 4 Test 5 Test 6

E∞ 1000 MPa 1000 MPa < E∞ < 1247 MPa MPa 1247 MPa

Ft 10.00×103 N 10.00×103 N < Ft < 12.47×103 N 12.47×103 N

Table 6.9: Analytical results for the varying strain rate tension test.

Figure 6.8 presents the load displacement response obtained for the varying strain rate mono-
tonic tension tests with only linear viscoelasticity activated. It is apparent from this figure that the
numerical loads at a strain of 10% match the analytical results for ε̇= 1/min and ε̇= 1×106/min as
computed in Table 6.9.
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Figure 6.8: Numerical load displacement response for the varying strain rate linear viscoelasticity tension
tests.

In Figure 6.8 some features of the degraded viscoelastic model are present. First, the stiffness
is clearly dependent on the strain rate. As expected, an increase in the strain rate resulted in an
increased stiffness. Second, as was the case for the previous simulation, the glassy response was
stiffer than that of the rubbery state. Further, the increase in stiffness of the rubbery specimens
was lower than the increases in the glassy specimens due to higher strain rates. This is because the
viscoelastic Prony stiffnesses are also degraded in the viscoelastic degradation model. Because the
glassy Prony stiffnesses provided as input in Table 6.5 are higher than the corresponding rubbery
stiffnesses, the increase in viscoelastic stress resulting from an increased strain rate was lower for
the rubbery specimens. As a result, this set of simulations demonstrates the rate dependency capa-
bilities of the viscoelastic model and show how these properties are also dependent on the state of
the epoxy resin.

6.2.1.3. Varying Strain Rates (VE-VP):
The same monotonic tension tests that were described in the previous section (varying strain rates
with VE) were performed with viscoplasticity activated. The strain rates from the previous test were
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modified and are presented in Table 6.10.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Temperature 298 K 298 K 298 K 380 K 380 K 380 K

Strain Rate 0.1/min 20/min 100/min 0.1/min 20/min 100/min

Table 6.10: Temperature and strain rate used in each varying strain rate tension test. Note that a temperature
of 298 K corresponds to ζ= 0 and a temperature of 380 K corresponds to ζ= 1.

Because the viscoplastic analysis is incremental, there is no simple way to calculate analytical
yield strengths based on a given strain rate. However, two elementary predictions can be made.
The first is that, at low strains rates, the viscoplastic response should coincide with perfectly plas-
ticity because the time increment is large enough to make any delay in plastic strain development
insignificant. Second, higher strain rates should result in a hardening behaviour and a subsequent
increase in the observed yield strength.

Figure 6.9 presents the stress-strain response obtained for the varying strain rate monotonic
tension tests with linear viscoelasticity and viscoplasticity activated.
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Figure 6.9: Numerical stress-strain response for the varying strain rate linear viscoelasticity and viscoplasticity
tension tests.

The numerical results presented in Figure 6.9 match with the expected viscoplastic behaviour,
in which higher strain rates result in a higher yield plateau. The delay of plastic strains caused by
the viscoplasticity model is apparent, and for higher strain rates, there is a larger transition zone be-
tween elastic and perfectly plastic behaviour. The application of the degradation model to the yield
strength is depicted clearly in Figure 6.9, in which the rubbery epoxy resin yields at a significantly
lower stress when compared to the glassy sample. As a result, this numerical simulation highlights
the ability of the constitutive model to capture rate dependent plasticity behaviour as well as mate-
rial state dependent yielding.

6.2.2. Loading-Unloading
Two loading-unloading simulations were performed on the first constitutive model to highlight the
unloading behaviour and the hysteresis caused by viscous dissipations. The first test was performed
with only the linear viscoelasticity model activated, while the second test incorporated both linear
viscoelasticity and viscoplasticity.
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6.2.2.1. Varying Strain Rates (VE):
Numerical loading-unloading tests were performed at two different temperatures and three differ-
ent strain rates, with a maximum strain of εxx = 5%. A total of six numerical tests were studied, in
which the temperature and strain rate for each test were the same as for the monotonic tension VE
tests and are given in Table 6.8.

Figure 6.10 presents the stress-strain response obtained for the varying strain rate loading-unloading
tests with only linear viscoelasticity activated.
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Figure 6.10: Numerical stress-strain response for the varying strain rate linear viscoelasticity loading-
unloading tests.

The loading branches of the simulations in Figure 6.10 are identical to the results presented in
Figure 6.8, with strain rate dependency and material property degradation captured. The unloading
branches highlight some of the observed behaviour discussed in Section 2.1.1, notably hysteresis
and stress relaxation.

The tests with ε̇ = 1/min did not exhibit this behaviour, as the strain rate was too low to acti-
vate significant viscoelastic stresses. However, the tests with ε̇= 1×103/min showed a relaxation of
the viscoelastic stiffness once the unloading commenced, resulting in hysteresis during unloading.
Once the strain was brought back to the initial state, a compressive stress was present within the
specimen. This highlights the stress relaxation behaviour of the viscoelastic model, which mani-
fested in the lowering of the mean cyclic stress. Similar to the monotonic tension tests, the degra-
dation of the viscoelastic stiffnesses is visible in Figure 6.10 because a smaller degree of stress relax-
ation and hysteresis was present in the rubbery sample when compared to the glassy sample.

Although the tests with ε̇= 1×106/min show an increased stiffness resulting from the relatively
high strain rate, no stress relaxation or hysteresis was present in the unloading branch. The loading
and unloading of the specimen in this test occured within a relatively short period of time t = 1×
10−6 s as a result of the high strain rate. Because this time was significantly lower than any of the
relaxation times for the material, as can be seen in Table 6.5, there was no appreciable decay of the
viscoelastic stresses and the unloading branch is identical to the loading branch.

This loading-unloading simulation highlights the ability of the viscoelastic degradation model
to capture significant observed mechanical behaviour of epoxy resins, such as hysteresis and stress
relaxation.

6.2.2.2. Varying Strain Rates (VE-VP):
Numerical loading-unloading tests on the constitutive model with viscoplasticity activated were
performed at two different temperatures and three different strain rates, with a maximum strain of
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εxx = 5%. The strain rates chosen in this test correspond to the rates used in the monotonic VE-VP
tests and are given in Table 6.10.

Figure 6.11 presents the stress-strain response obtained for the varying strain rate loading-unloading
tests with linear viscoelasticity and viscoplasticity activated.
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Figure 6.11: Numerical stress-strain response for the varying strain rate linear viscoelasticity and viscoplas-
ticity loading-unloading tests.

As with the previous test, the loading behaviour observed in Figure 6.11 was identical to the
monotonic tension test presented in Figure 6.9. The tests with ε̇ = 0.1/min exhibited a near per-
fectly elastic-plastic response, due to the fact that time dependent effects were negligible because
of the relatively low strain rate. The tests with ε̇ = 20/min highlight the delay of plastic straining
due to viscoplastic effects, however, also contained minor relaxation of viscoelastic stresses at the
beginning of the unloading branch. It is apparent from Figure 6.11 that a higher strain rate resulted
in a reduction of the residual stress, which can be attributed to the delay in plastic strain develop-
ment. The tests with ε̇ = 100/min contained a larger component of viscoelastic stress due to the
increased strain rate. This viscoelastic stress decayed over a larger portion of the unloading branch
when compared with the branch from the ε̇= 20/min tests.

When comparing Figure 6.11 with Figure 6.10 it is apparent from the hysteresis loops that the
energy dissipation caused by viscoplastic deformation was significantly larger than the dissipation
resulting from viscoelastic deformation. Further, for a given loading-unloading cycle, the energy
dissipated by an epoxy resin in a glassy state was larger than if the epoxy resin were in a rubbery
state. As a result, this simulation shows how the constitutive formulation can capture complex time
and state dependent viscoelastic and viscoplastic behaviour.

6.2.3. Loading-Unloading-Reloading
A loading-unloading-reloading simulation was performed on the first constitutive model in order to
highlight the full linear viscoelastic and viscoplastic behaviour in combination with the glass tran-
sition degradation model for cyclic and fatigue type tests.

6.2.3.1. Constant Strain Rate (VE-VP):
A constant strain rate of ε̇xx = 200/min was used to load and unload the specimen in 1% strain
increments. Three tests were performed in which the temperature of the sample was chosen to
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represent a degree of glass transition of ζ= 0, ζ= 0.5 and ζ= 1 respectively.
Figure 6.12 presents the stress-strain response obtained for the loading-unloading-reloading

tests performed on constitutive model 1.
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Figure 6.12: Numerical stress-strain response for the loading-unloading-reloading linear viscoelasticity and
viscoplasticity tests.

In the results presented in Figure 6.12 capture both viscoelastic and viscoplastic behaviour, as
well as the resulting material degradation effects present in both models. In particular, the long
term and viscoelastic stiffness and the yield strength have been degraded.

In this particular example, the onset of viscoplasticity occured at similar strains for all three tests.
This is because the rubbery yield strength was degraded by a similar factor to the elastic modulus,
see Table 6.11. Given a lower rubbery yield strength, it is possible that the onset of plasticity, as
captured in the numerical model, could occur at a differing strains for different material states.

Also captured in this strain controlled test is the phenomenon of stress relaxation. After each
successive load cycle, an increasing compressive residual stress was developed, which acted to lower
the mean stress of the cycle. It should be noted that if a load controlled test was performed, this
same phenomenon would be present in the form of ratcheting. At the conclusion of each test, the
strain was kept at zero for an extended amount of time, allowing the viscoelastic stresses to re-
lax. This allowed the viscoplastic stresses to be isolated from the viscoelastic stresses for the final
stress state, which can aid model calibration. By examining the final stresses, it was apparent that
the glassy specimen comprised of larger components of both viscoelastic and viscoplastic stresses,
matching the results from the previous simulations.

In conclusion, this simulation, and all the previous simulations, illustrate the ability of the for-
mulated constitutive model to describe the state dependent mechanical behaviour as mentioned in
Section 2.1.1. The only mechanical behaviour not captured by the first constitutive model used in
these simulations was the onset of elastic non-linearity, which is included in the second constitutive
model. As a result, the glass transition, material degradation and viscoplastic models formulated in
this thesis can be used to numerically model the mechanical behaviour of epoxy resins.
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6.3. Multiphysics Model
Two simulations were performed in order to demonstrate the capabilities of the multiphysics model.
Both simulations analysed a dogbone specimen, the geometry of which is described in Figure 6.13.
In these simulations the first constitutive model was used (see Section 5.4.1), which, when used
in a multiphysical sense, incorporates heat conduction, moisture diffusion, linear viscoelasticity,
viscoplasticity, and a degradation model based on the concept of the glass transition surface. The
first simulation focussed on the relationship between the transport behaviour and the degree of
glass transition, while the second simulation investigated the multiphysical aspects of a mechanical
fatigue test.

Y Z
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10mm20mm 20mm10mm
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Γ ,  Γhω

R = 21.3mm

Figure 6.13: Mesh used for the multiphysics model, showing the applied boundary conditions.

6.3.1. Glass Transition Behaviour

In this simulation a multiphysics heat conduction and moisture diffusion problem was modelled
and its effect on the state of an epoxy resin dogbone sample was investigated. Although no me-
chanical restraint was applied to the specimen, this analysis incorporated all three physics models
because the glass transition model required the inclusion of the mechanics model. To simplify the
problem and the interpretation of the results, the 2D plane strain assumption was used to constrain
the transport behaviour to the plane of the dogbone sample.

In this problem, an initially dry epoxy resin sample at room temperature (298 K) was immersed
in water with a temperature of 360 K. The relevant material properties for each physics model are
described in Table 6.11 and the boundary conditions summarised in Figure 6.13. Note that although
not entirely realistic, the conductivity and diffusivity of the heat and diffusion model were chosen
such that moisture ingress into the specimen and eventual saturation occured at a faster rate than
the conduction of heat. This facilitated a more simple interpretation of the degree of glass transition
results.

The simulation was performed with a time increment of 0.05 s and was run for a total simulation
time of 100 s. Three noded triangular elements were used to discretise the domain of the dogbone
and two noded line elements were used to model the convective boundary interface between the
epoxy resin and the surrounding fluid for the heat model.

Figure 6.14 presents contour plots of the temperature, moisture concentration and degree of
glass transition fields within the dogbone specimen at four different time steps. Figure 6.15 presents
the variation of the temperature, moisture concentration and degree of glass transition with time.
Note that in Figure 6.15, each field variable is normalised to a value between 0 and 1 with respect
to the minimum and maximum values obtained in the analysis. The expressions for the normalised
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Model Material Properties

Heat Model
κ= 0.35 J/(s ·m ·K); h = 500 J/(s ·m2 ·K)

ρ = 1250 kg/m3; c = 1000 J/(kg ·K);

Diffusion Model Dω(T ) = Dω = 1×10−6 m2 /s

Mechanics Model

(Glass Transition)

Tg = 363.3 K; H = 20 MPa

φT = 1 MPa; φω = 145 MPa

Table 6.11: Material properties used for the multiphysics simulation investigating glass transition behaviour.

variables are given below:

T = T −298 K

360 K−298 K
(6.6a)

ω= ω

0.02
(6.6b)

ζ= ζ (6.6c)

(a) t = 2 s (b) t = 10 s

(c) t = 50 s (d) t = 100 s

Figure 6.14: Contour plots of the temperature, moisture concentration and degree of glass transition for the
multiphysics analysis.

Figure 6.14 clearly presents the development of glass transition within an epoxy resin dogbone
sample. Figure 6.14b indicates that the glass transition began at the corners of the dogbone, where
convective temperature flux from the ambient fluid is the greatest. The onset of glass transition
can be analytically confirmed through the interpretation of Figure 6.15a, in which the onset of glass
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(a) Maximum values of variables.
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(b) Average values of variables.

Figure 6.15: Variation of temperature, moisture concentration and degree of glass transition with time.

transition occurs at time t = 1.8 s. At this point in time the maximum temperature occured at the
corner of the specimen and is approximately 333 K, see Figure 6.15a. Equation 5.31 can be evaluated
to determine the value of ζ given a moisture concentration of ω= 0.02 and T = 333 K:

ζ= ζ∗ = φt(T −Tg)+φω
p
ω+ H

2

H
(6.7)

= 1(333−363.3)+145
p

0.02+ 20
2

20
(6.8)

= 0.01 (6.9)

thus coinciding with the onset of glass transition. Further, the onset of the rubbery state at ζ= 1 can
also be verified from Figure 6.15a, which occurs at t = 12.7 s. The corresponding maximum temper-
ature at this time, seen in Figure 6.15a, is approximately 353 K. Therefore, evaluating Equation 5.31
results in:

ζ= min(ζ∗,1) = min

(
φt(T −Tg)+φω

p
ω+ H

2

H
,1

)
(6.10)

= min

(
1(353−363.3)+145

p
0.02+ 20

2

20
,1

)
(6.11)

= min(1.01,1) (6.12)

= 1.00 (6.13)

thus coinciding with full development of the rubbery state. Further, from Figure 6.14, there is a
clear correlation between the transport fields from the heat and diffusion models, and the degree
of glass transition field in the mechanics model. As a result, the combination of these analytical
calculations and the numerical results presented in Figures 6.14 and 6.15 validates the link between
the results from the transport model and the glass transition model.

A significant simplification in the formulation by Yu et al. [32] is that their implementation re-
quires a uniform temperature, moisture and strain field over the domain. This numerical simulation
highlights one of the major advantages that the finite element formulation used in this thesis has
over the model used by Yu et al. Figure 6.14 highlights the ability of this formulation to capture
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complex field gradients in the transport models and, in conjunction with the degradation model,
simulate an epoxy resin specimen consisting of varying material states. As an example, if a load
was applied to the specimen from Figure 6.14d at t = 100 s, the mechanics model would be able to
capture the stiffness variation throughout the specimen. In this hypothetical situation the edges of
the specimen would lose a significant amount of stiffness due to the state transition and the load
within the specimen would be redistributed to the glassy region. This phenomenon is studied in
more detail in the next simulation.

The results from this simulation help to validate the sharing of field data between the various
physical models. Further, this simulation highlights the versatility of the numerical framework for-
mulated in this thesis. By utilising the finite element method, the constitutive model can be applied
to simulate the response of composite laminates in complex problems.

6.3.2. Fatigue Test
In this test, simulations similar to the experimental fatigue tests undertaken by Chen et al. [4] and
numerically studied by Yu et al. [32], were investigated using the constitutive model formulated
in this thesis. As detailed in Section 2.1.3, Chen et al. observed cyclic softening of an epoxy resin
sample subjected to a constant strain amplitude at varying strain rates. Chen et al. found that
increasing cyclic softening occurred with larger strain rates and was accompanied by a rise in the
average temperature of the specimen. They also found that the energy dissipated in one cycle does
not monotonically increase with the applied strain rate. As a results, for a given epoxy resin, there
exists a strain rate that maximises the peak energy dissipation.

A sinusoidal imposed tensile strain of 2.5% was applied to a three-dimensional dogbone sample.
The sample remained dry throughout the test and as a result, only the heat model and mechanics
model were used in this simulation. A convective boundary condition was applied to all surfaces
of the dogbone sample in order to model the air surrounding the sample, which remained at room
temperature. The material properties used for each model are given in Table 6.12.

Model Material Properties

Heat Model
κ= 0.035 J/(s ·m ·K); h = 2 J/(s ·m2 ·K)

ρ = 1250 kg/m3; c = 1000 J/(kg ·K);

Mechanics Model
as per Table 6.5, except:

αT = 0.85×10−6 K−1; αω = 2.0×10−3

Glass Transition Model as per Table 6.5

Table 6.12: Material properties used for the multiphysics simulation investigating fatigue behaviour.

Note that some of the material properties have been modified from the previous simulation to
suit this fatigue analysis. The thermal conductivity was reduced by a factor of 10 to reduce the heat
flux, thereby reducing the convective cooling effect. Further, the coefficient of heat transfer h was
reduced from the previous simulation to lower the cooling effect of the surrounding fluid, which
now consists of air instead of water, closely matching the parameter used in the simulations by Yu
et al. [32].

The simulation was performed for a number of different strain rates with a duration of 5000
cycles. The time step was chosen to capture 20 time increments within each cycle. Four noded
tetrahedron elements were used to discretise the three-dimensional domain of the dogbone and
three noded triangular elements were used to model the convective boundary interface between
the epoxy resin sample and the surrounding fluid for the heat model. Figure 6.16 shows the mesh
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used for the fatigue analysis.

Figure 6.16: 3D mesh used for the fatigue analysis. Dimensions are identical to Figure 6.13, with a thickness
of 3 mm. Boundary conditions as per Figure 6.13, except with ωi = 0 and Tf = 298 K.
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Figure 6.17: Maximum temperature within the epoxy resin specimen vs. number of cycles for varying strain
rates.
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Figure 6.18: Total dissipation per cycle vs. number of cycles for varying strain rates.

All strain rates tested in this simulation resulted in an increase in the temperature of the epoxy
resin specimen, see Figure 6.17. For this cyclic multiphysics simulation there are two competing
mechanisms that govern the temperature rise of the specimen.

The first mechanism relates to the mechanical deformation of the specimen, which was accom-
panied by strain rate dependent viscous dissipations. As Figure 6.18 shows, the maximum dissipa-
tion per strain cycle occurred for strain rates between 0.3/s and 0.4/s. This is consistent with the
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experimental results from Chen et al. [4], in which a peak in the cyclic dissipation did not coincide
with the highest strain rate.

In this simulation, strain rates lower than 0.3/s generated a lower amount of dissipation per
cycle. This is mainly because smaller strain rates generate a smaller amount of viscoelastic stress,
meaning that the stress term in the dissipation equation Ξ = σε̇ is reduced. As Figure 6.18 shows,
strain rates above 0.4/s also lead to a reduction in mechanical dissipation per cycle. This is because
the hysteresis loop for larger strain rates is smaller due to the lack of stress relaxation, as evidenced
in Figure 6.8. Therefore, for one strain cycle a smaller amount of energy is dissipated.

The second competing mechanism is related to the heat loss experienced by the specimen to
the surrounding environment. As Figure 6.17 shows, for strain rates below 0.1/s to 0.2/s, a temper-
ature equilibrium is reached. A lower strain rate means that each strain cycle occurs over a longer
period of time, resulting in a larger degree of heat loss to the surrounding environment. Therefore,
for the temperature of the specimen to continue to rise, more heat needs to be generated through
mechanical dissipation than is lost through thermal convection. Even though higher strain rates
generate less energy per cycle, this energy outweighs the heat lost to convection in the shorter cycle
time.

Figure 6.19 presents the average temperature in the specimen as a function of the number of
strain cycles. A notable feature in this figure is the reduction in the temperature gain seen for the
strain rates between 0.3/s and 1/s, after approximately 3500 to 4000 cycles. At this stage, the maxi-
mum temperature within the sample for these strain rates is well above the glass transition temper-
ature, meaning that a state change has occurred within the material. As a result, this phenomenon
coincided with the onset of rubbery behaviour in the centre of the dogbone specimen, resulting in
a degradation of the stiffness properties. This degradation of stiffness is consistent with the cyclic
softening behaviour observed by Chen et al. and Yu et al. A lower stiffness results in a reduction
in mechanical dissipation, explaining the drop in the dissipation per cycle in Figure 6.18 and the
reduction in temperature gain in Figure 6.19.
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Figure 6.19: Average temperature within the epoxy resin specimen vs. number of cycles for varying strain
rates.

To examine the cyclic softening behaviour of the epoxy resin dogbone sample, the results for
the strain rate ε̇ = 0.4/s are studied in closer detail. Figure 6.20 presents the load displacement
response of the epoxy resin specimen for selected load cycles. Figure 6.21 presents the maximum
and average values of the temperature and degree of glass transition within the sample as a function
of the number of cycles. Figure 6.22 presents contour plots of the temperature, axial stress and
degree of glass transition fields within the epoxy resin specimen for selected load steps.

Within the first load cycle the specimen was stressed beyond the yield strength and, as a result,
developed plastic strains. This can be seen in the load displacement response in Figure 6.20, as a
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Figure 6.20: Load displacement response of the epoxy resin specimen for ε̇= 0.4/s.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Cycles

280

300

320

340

360

380

400

420

T
em

p
er

at
u
re

 [
K

]

0

0.2

0.4

0.6

0.8

1

D
eg

re
e 

o
f 

G
la

ss
 T

ra
n
si

ti
o

n
 [

-]

Figure 6.21: Maximum and average values of temperature and degree of glass transition within the epoxy
resin specimen vs. number of cycles for ε̇= 0.4/s.

significant residual compressive stress was present when the specimen was brought back to a zero
displacement for the first time. This plastic strain results in a considerable amount of dissipation
within the first few load cycles, see Figure 6.18, which explains the initial fast gain in temperature
that can be seen in Figure 6.21. The longitudinal stress distribution during the first cycle is charac-
terised by a stress concentration within the throat of the dogbone sample, see Figure 6.22a.

After the first few cycles, there was almost no further plastic straining and the response was
dominated by viscoelasticity, which resulted in a significant stress relaxation until cycle 1500. As
Figures 6.21 and 6.22b show, the average temperature of the specimen increased by approximately
25 K, with a temperature increase at the edge of the dogbone of approximately 50 K. As per the
provided material properties, the onset of glass transition began at Tg−0.5H = 353.3 K, meaning that
the entire specimen was characterised by glassy behaviour. By cycle 1500, the stress concentration
that was present in the first cycle expanded to the entire width of the narrowed section, see Figure
6.22b. This was caused by the accumulation of plastic strain at the edges of the section, resulting in
a reduction of stiffness in this region.

By cycle 2500, a rubbery state change was well developed at the edges of the dogbone, with the
temperature in this region above the glass transition temperature. Figure 6.20 shows no appreciable
loss of stiffness at this point. However, from Figure 6.22c it is clear that a redistribution of longitu-
dinal stress has commenced. As the edges of dogbone transition into a mixed glassy-rubbery state
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(a) Cycle 1. (b) Cycle 1500.

(c) Cycle 2500. (d) Cycle 3000.

(e) Cycle 3500. (f) Cycle 5000.

Figure 6.22: Top surface contour plots of the temperature, longitudinal stress σy y and degree of glass transi-
tion for the fatigue analysis.

they lost a significant amount of long term elastic and viscoelastic stiffness. This caused the central
region of the dogbone, which was still in a glassy state, to resist a higher proportion of the axial load.

At cycle 3000, the edges of the specimen had completed their transition to a rubbery state and
the entire central cross-section of the dogbone was no longer in a glassy state. As Figure 6.21 shows,
the average degree of glass transition for the entire specimen was almost 20% resulting in a loss of
global structural stiffness. This loss of stiffness can be seen in the load displacement response in
Figure 6.20. At this point, the rate of temperature gain began to decrease, due to the reduction in
total dissipation seen in Figure 6.18. This reduction of dissipation was caused by the degradation of
the viscoelastic stiffnesses, resulting in a diminishing dissipation.

Cycle 3500 saw the entire central cross-section transition to a rubbery state. From Figure 6.22e
it is clear that a new stress redistribution was underway as the degraded material properties across
the central cross-section approached a new homogenous state. Figure 6.20 shows that the structural
stiffness experienced a further reduction and that there occurred a significant stress relaxation be-
tween cycle 3000 and 3500. Further, Figure 6.21 shows that the rate of maximum temperature gain
within the specimen increased when compared to cycle 3000. This stress relaxation and increase in
temperature can be attributed to the development of a local band of plastic strain across the centre
of the specimen, see Figure 6.23. The development of plastic strain during this point of the cyclic
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test was caused by the significant degradation of the yield strength of the material across the entire
width of the section. This stage of the test is the culmination of the cyclic softening effect, which, in
reality, may result in structural failure of the specimen. However, as a damage model has not been
included in this framework the onset of failure cannot yet be captured.

Figure 6.23: Equivalent plastic strain for cycle 3000 and cycle 3500.

By cycle 5000, the rubbery region encapsulated almost the entire throat of the dogbone spec-
imen, resulting in pronounced cyclic softening. This also resulted in a relatively uniform longitu-
dinal stress distribution within the throat of the dogbone specimen. The scattered stress profile in
Figure 6.22f can be attributed to the fact that only the top surface of the three dimensional stress
field is displayed. Because the mesh consisted of four noded tetrahedron elements, the top surface
is made up of both element faces and the apices of other elements, meaning that the interpolated
stress field presented at the top surface is impacted by the distribution of elements. The continually
declining cyclic energy dissipation led to the development of a plateau in the average temperature
of the specimen, see Figure 6.21. If the test were continued further, the degree of glass transition
would continue to rise, following the trend in Figure 6.21 and resulting in further reductions in en-
ergy dissipation. Eventually, an equilibrium thermal state would be reached in which the dissipated
energy balances the heat lost to convection. This would also coincide with an equilibrium in the
material state, in which no further glass transitioning would occur.

This fatigue type simulation demonstrates the ability of the developed numerical framework
to describe the relevant multiphysical aspects related to the structural performance of epoxy resin.
Through an imposed cyclic loading, the numerical model was able to capture the experimentally
observed strain rate dependent rise in specimen temperature and resulting cyclic softening. Thus,
the numerical framework developed in this thesis has the capacity to model complex problems re-
lating to structural epoxy resins.
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6.4. Constitutive Model 2
Two simulations were performed in order to demonstrate how the second constitutive model ex-
tends the viscoelasticity model with non-linear effects and how this can be applied to model the
observed behaviour of an epoxy resin sample. Both simulations were performed on a three dimen-
sional prismatic model consisting of a single finite element. The first simulation highlights the non-
linearity in the viscoelastic model while the second simulation shows how the second constitutive
model can be calibrated to experimental data.

6.4.1. Loading-Unloading-Reloading
In this simulation, the response of the first constitutive model is compared to that of the second con-
stitutive model, highlighting the non-linear viscoelastic behaviour. A loading-unloading-reloading
test identical to the one performed in Section 6.2.3 was analysed with both constitutive models. The
same material properties were used in the Section 6.2.3 are used for this test. However, an extra vis-
coelastic stiffness was added to emphasise the non-linear behaviour. The material properties used
for each constitutive model are described in Table 6.13 below.

Model Material Properties

Constitutive Model 1

as per Table 6.5 except:

K4 = 1000 MPa; λ4,k = 10 s

G4 = 333.3 MPa; λ4,g = 20 s

Constitutive Model 2

as per Table 6.5 except:

K4 = 1000 MPa; λ4,k = 10 s

G4 = 333.3 MPa; λ4,g = 20 s

σ0 = 45 MPa; dve = 500; mve = 8

c2 = c3 = 0

Table 6.13: Material properties used in the non-linear viscoelastic loading-unloading-reloading tests.

Figure 6.24 presents the stress-strain response to the loading-unloading-reloading test for both
constitutive models 1 and 2. The response of these models was identical until the stress reached
45 MPa, which coincided with the onset of non-linear viscoelasticity σ0, defined in the second
constitutive model. After this point, the non-linear model proceeded to soften without develop-
ing additional plastic strain. This response matches the observed mechanical behaviour discussed
in Section 2.1.1. This reduction in plasticity is evident after the last unloading cycle in which the
linear viscoelasticity model displayed a larger residual stress and hence experienced a larger degree
of plastic strain.

As a result, this simulation demonstrates the ability of the non-linear viscoelasticity model to
overcome the drawback of the linear model, notably the observed softening behaviour that oc-
curs without accompanying plastic strains. When used in conjunction with the glass transition,
degradation and multiphysics transport models, the second constitutive model provides a numeri-
cal framework that can be used to model the complex behaviour of epoxy resins at both small and
large material strains.
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Figure 6.24: Stress-strain response of an epoxy resin sample modelled with constitutive model 1 (linear vis-
coelasticity) and constitutive model 2 (non-linear viscoelasticity).

6.4.2. Capturing Experimental Behaviour
Results from an experimental loading-unloading-reloading test on an epoxy resin specimen from
Rocha et al. [24] were used in this simulation to demonstrate how the second constitutive model
can capture the complex material behaviour at larger strains. The experimental data used for this
simulation is presented in Figure 6.25. Note that only the data before the peak load was used for
the calibration because, after this point, geometrical non-linearity in the form of necking developed
during the experimental test.
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Figure 6.25: Experimental stress-strain response of an epoxy resin sample used for model calibration [24].

The finite element model consisted of a three dimensional single element model loaded in dis-
placement control using the strain values and corresponding time steps from Figure 6.25. Two sep-
arate approaches were used to attempt to fit the numerical model to the experimental data. Both
approaches attempted to determine the non-linear viscoelastic and viscoplastic parameters that
minimised the difference between the experimental data and the corresponding numerical simu-
lation. The following objective function was defined, consisting of a least squares fit between the
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numerical results and experimental data:

fobj(Θ) =∑
i

(
σexp,i −σnum,i (Θ)

)2 (6.14)

where fobj is the objective function to be minimised by the optimisation algorithm,Θ represents the
set of relevant material parameters used in the calibration and σexp,i and σnum,i are the experimen-
tal and numerical stresses at time increment i respectively.

In the first approach, a global optimisation algorithm from the MATLAB optimisation toolbox,
patternsearch, was used in an attempt to find the global minimum of the objective function, given
a reasonable initial starting point. In the second approach, the same optimisation algorithm was
used, however, the objective function was evaluated only for specific stress values. Further details
regarding the MATLAB optimisation scripts are presented in Appendix C.

The material properties that minimised the least squares error between the experimental and
numerical results for the first global optimisation method are presented in Table 6.14 and the re-
sulting stress-strain curve is shown in Figure 6.26.

Model Property

Viscoelasticity

E∞ = 1535 MPa; νgla
∞ = 0

Ki = [82.38 MPa, 160.1 MPa, 142.4 MPa]

Gi = [123.6 MPa, 240.2 MPa, 213.6 MPa]

λi = [52.44×103 s, 8.414×103 s, 4.906×103 s]

σ0 = 23.96 MPa; dve = 1.881; mve = 4.798

c2 = 0.125; c3 = 10.51

Viscoplasticity
σt =σc = 96.72−24.27exp(−εP

eq/0.0405) MPa

ηp = 0.0294 MPa · s; mp = 6.625

Table 6.14: Calibrated non-linear viscoelastic material properties using the first optimisation algorithm.
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Figure 6.26: Experimental stress-strain response and calibrated numerical model using the first optimisation
algorithm.
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Figure 6.26 shows that the calibrated model was able to capture the initial elastic behaviour and
subsequent softening response above a stress of approximately 40 MPa. Further, it is clear that this
softening occured without any plastic strains and that the only residual strain left at the end of each
cycle was due to viscoelastic ratcheting.

However, the model was unable to capture the increasing hysteresis loops that developed after
the onset of non-linear viscoelasticity. As a result, the optimisation procedure deferred to an aver-
aging of the loading and unloading responses, meaning that the amount of non-linearity was over-
compensated for in the calibration. Further, after the development of plasticity at a stress of 72.5
MPa, the calibrated model curve overshot the experimental curve. It can therefore be concluded
that plasticity did not develop at a fast enough rate.

The second optimisation algorithm was limited to loading branches and stresses above 50 MPa
in order to obtain a better fit of the non-linear viscoelastic and viscoplastic parameters. This pro-
cedure also better highlights the discrepancy between the numerical and experimental unloading
branches because the algorithm was no longer attempting to average the loading and unloading
branches. The material properties that minimised the least squares error between the experimental
and numerical results for the second global optimisation method are presented in Table 6.15 and
the resulting stress-strain curve is shown in Figure 6.27.

Model Property

Viscoelasticity

E∞ = 1535 MPa; νgla
∞ = 0

Ki = [82.38 MPa, 160.1 MPa, 142.4 MPa]

Gi = [123.6 MPa, 240.2 MPa, 213.6 MPa]

λi = [53.47×103 s, 9.059×103 s, 5.455×103 s]

σ0 = 23.96 MPa; dve = 1.000; mve = 3.100

c2 = 0.125; c3 = 11.00

Viscoplasticity
σt =σc = 82.00−20.00exp(−εP

eq/0.0397) MPa

ηp = 0.0294 MPa · s; mp = 19.21

Table 6.15: Calibrated non-linear viscoelastic material properties using the second optimisation algorithm.

When compared to the first optimisation procedure, the second optimisation procedure, as
summarised in Figure 6.27, showed a much improved fit between the experimental and numeri-
cal results. In particular, the loading branches of the numerical simulation almost exactly followed
the experimental loading behaviour. Further, there was a good agreement between the experimen-
tal and numerical unloading behaviour above the non-linear threshold stress. However, the most
significant deviation in the numerical results occured during unloading, after the stress level fell
below the non-linear threshold stress. In the current numerical model, viscoelastic stiffness is re-
gained as g resets to a value of one, below the threshold stress. When this behaviour was compared
to the experimental response, it was apparent that the epoxy resin did not completely regain all
of its viscoelastic stiffness during unloading. A further complication was that upon reloading, the
viscoelastic stiffness appeared to be instantly regained. As a result, the discrepancy between the ex-
perimental and numerical behaviour clearly demonstrates the necessity for a non-linear viscoelas-
tic model for epoxy resin to distinguish between loading and unloading behaviour.

The unique unloading behaviour could be attributed to the complex molecular response of the
cross-linked polymer chains that are present in epoxy resins. It is clear that, when loaded above a
certain stress level, a recoverable softening phenomenon occurs in the deformation of the polymer
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Figure 6.27: Experimental stress-strain response and calibrated numerical model using the second optimisa-
tion algorithm.

chains. This softening phenomenon influences the mechanical behaviour of the epoxy resin upon
further loading and also during the entire unloading phase. An alternative approach to using a non-
linear viscoelastic model to capture this behaviour would be to incorporate a multiscale molecular
dynamics model, such as that used by Vu-Bac et al. [30]. Although the scheme would be successful
in accurately modelling the complex time and temperature dependent behaviour of epoxy resins, it
would also suffer from a significant increase in the computational cost and thus be unfeasible for
more complex simulations.

Numerically, the deviation between the non-linear viscoelastic model and the experimental re-
sults in the non-linear elastic zone could be attributed to the omission of the memory surface R( f )
in the numerical formulation used in this thesis. The memory surface was recommended by Xia et
al. [31] to capture the proper hysteresis behaviour. Developed by Xia et al. and implemented by
Yu et al. [32], this memory surface is able to distinguish between loading and unloading and thus
can better represent hysteresis effects. It is therefore recommended that the variable unloading be-
haviour of epoxy resins should be included in further developments of the model used in this thesis.
Some recommendations for the implementation of this behaviour are presented in Section 7.2.





7
Conclusions and Recommendations

7.1. Conclusions
The objective of this thesis was to better quantify the process of hygrothermal ageing in epoxy resins
through the development of a constitutive numerical framework. Existing models describing epoxy
behaviour by Rocha et al. [24] and Yu et al. [32] were critically analysed and areas for improvement
were identified. To further motivate the choices made in the development of the numerical frame-
work, experiments were performed to better ascertain the temperature dependent behaviour of an
epoxy resin system. A numerical framework was developed drawing on the work by Rocha et al. and
Yu et al. and incorporated thermal and moisture effects, as well as a method to describe non-linear
elastic behaviour. Finally, numerical tests were performed using the new model in order to validate
the implementation and illustrate the potential of the framework to capture realistic hygrothermal
behaviour.

The main findings for each research question are briefly described below.

1. How well does the existing damage model address the issue of mesh dependency?

Three mesh dependency studies were performed on the damage model used by Rocha et al. In
the original formulation, the effect of plasticity after damage initiation was excessively large.
An alternative formulation was therefore pursued in which plasticity was deactivated after
damage initiation. The formulation suffered from spurious hardening when a non-zero Pois-
son’s ratio was modelled. However, when a zero Poisson’s ratio was modelled, the formulation
produced mesh independent results. Further, it was found that a crack band model was re-
quired to regularise the damage formulation due to the fact that the viscous components of
the model did not provide any significant regularising effects.

2. How can the existing constitutive model be extended to account for thermal effects?

A multiphysics framework was developed with the aim of capturing hygrothermal effects.
This numerical framework incorporates a heat conduction model, a diffusion model and a
mechanics model. The mechanics model implements a glass transition model in order to de-
scribe the state of the epoxy resin depending on its temperature and moisture content. The
material properties of the epoxy resin are then degraded based on the state of the material.
Viscoelasticity and viscoplasticity were also included in the mechanics model in order to cap-
ture the time dependent behaviour of epoxy resins.
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3. How can the existing constitutive model be improved to better represent the elastic behaviour at
large strains?

A non-linear viscoelasticity model was formulated to better described the softening behaviour
observed in the elastic range of epoxy resins. The non-linear viscoelasticity model captures
effects relating to the stress level, the state of the material and the amount of plastic strain.
Further, a return mapping algorithm, integrating coupled non-linear viscoelasticity and vis-
coplasticity, was developed in order to enable finite element implementation with quadratic
convergence.

4. How well does the new constitutive model capture observed phenomena relating to the me-
chanical and hygrothermal ageing behaviour of epoxy resins?

Numerical benchmark tests were performed to validate the individual components of the
multiphysics framework, as well as the entire framework as a whole. These tests also served
to demonstrate the capabilities of the numerical model in capturing the observed behaviour
of epoxy resins. Notably, a fatigue test was performed that illustrated many aspects of the
multiphysical behaviour of epoxy resins, such as time dependent mechanical effects, cyclic
relaxation and softening, and deformation induced glass transition. Further, the non-linear
viscoelastic model was calibrated to experimental data through an optimisation process. Al-
though the non-linear viscoelastic model was able to capture the global experimental be-
haviour, the precise behaviour could not be fully captured.

5. What effect does temperature have on the stiffness of the epoxy resin system?

DMA tests were performed on epoxy resin samples and it was found that the temperature had
a significant effect on the stiffness of the material. Three distinctive regimes were identified
that relate to a glassy state, a rubbery state and a mixed glassy-rubbery state. The glass transi-
tion temperature for the epoxy resin system was determined to be Tg = 72.7◦C.

6. What are the long term stiffness properties of the epoxy resin system in different material states?

Creep tests were performed on epoxy resin samples in order to determine the long term elastic
moduli at three different temperatures that correspond to the three state regimes. It was found
that the long term elastic modulus at a temperature of 25◦C was 2843 MPa, at 75◦C was 51.51
MPa and at 100◦C was 17.03 MPa.
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7.2. Recommendations
In this section, recommendations for future research and development related to the work in this
thesis are discussed.

Damage Model
Although the model produced mesh independent results for materials with a zero Poisson’s ratio,
spurious hardening was observed for non-zero Poisson’s ratios. The inclusion of a degradation of
the Poisson’s ratio in the damage formulation is therefore recommended in order to obtain a mesh
independent model. To further verify the mesh independency of the damage model, additional
mesh sensitivity studies are recommended that cover a broader range of mesh dependency issues.
Further possible mesh sensitivity studies might include a shear test, an open hole tension test and
mesh bias tests.

Multiphysics Model Calibration and Verification
While the developed numerical framework represents a solid foundation for describing the hy-
grothermal ageing behaviour of epoxy resins, the numerical model still needs to be calibrated with
a chosen epoxy resin system in order to properly verify its validity. The experimental work in this
thesis has started this process of calibration by determining the dry glass transition temperature
and the long term elastic moduli. Further work is required to calibrate the following aspects of the
model:

• Thermal conduction properties: Material properties related to thermal conduction for the
epoxy resin require calibration. Notably the thermal conductivity κ, the coefficient of heat
transfer h for different configurations and the specific heat c.

• Moisture diffusion properties: Material properties related to moisture diffusion for the epoxy
resin require calibration. Notably the diffusivity Dω and its dependence on temperature.

• Non-linear viscoelastic properties: This consists of the most involved part of the calibration
process owing to the large number of parameters and complexity in behaviour. The non-
linear viscoelasticity calibration will require a large number of tests owing to the different
deformation time scales and multitude of mechanical effects it captures. Further, its coupling
with plasticity means that it will be necessary to isolate viscoelastic strains from viscoplastic
strains in some of the calibration tests. Therefore, it is recommended that the viscoelastic
strains be allowed to relax after unloading in order to determine the viscoplastic strain. As a
result, it is likely that an optimisation procedure similar to the one described in Section 6.4.2,
will prove to be the most suitable method for obtaining the material parameters.

• Viscoplastic properties: Although calibration of the viscoplastic parameters has already been
undertaken by Rocha et al. [24], it will need to be confirmed that these parameters are still
valid with the adoption of a coupling non-linear viscoelasticity model.

• Glass transition properties: The relative driving force of the moisture content on the glass tran-
sition behaviour needs to be determined. The square root relationship between the degree of
glass transition and the moisture content should also be verified.

Once model calibration is complete, it is recommended that further tests be performed to verify
the results from the calibrated model. The recommended tests will expose the multiphysical and
time dependent behaviour of epoxy resins. Possible verification tests include fatigue tests at vary-
ing temperatures and moisture contents in order to verify the degraded material properties, cyclic
softening and internal heat dissipation. It would be ideal to perform a test that is able to capture
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deformation induced glass transition, similar to the numerical study performed in Section 6.3.2.
Further, once the model is calibrated it would also be possible to simulate a DMA test, in which the
temperature and frequency of the loading is varied.

Currently, the transport and mechanics components of the multiphysics solver are evaluated at
every time step. However, in reality the mechanical time scales are often significantly smaller than
the transport time scales. In particular, the diffusion of moisture occurs in the order of hours and
days, whereas heat conduction and, more significantly, cyclic deformation, operate at time scales
of less than a second. This separation of time scales lends itself well to performance improvement
techniques such as time homogenisation, which, when implemented, can significantly reduce the
computation time for a fatigue analysis.

Finally, it is recommended that this constitutive model be implemented in a multiscale frame-
work incorporating glass fibres and fibre/epoxy interfaces, similar to that developed by Rocha et al.
[23]. By improving and expanding the numerical constitutive model for epoxy resins, the hygrother-
mal behaviour of glass/epoxy composites could thus be better described.

Non-Linear Viscoelasticity Model
While the non-linear viscoelasticity model is currently able to capture non-linear elastic behaviour,
it is unable to accurately describe the unloading observed in the experimental data. In the formula-
tion of the non-linear viscoelastic model, the memory surface recommended by Xia et al. [31] was
omitted for simplicity. In combination with implementing this feature, it is also proposed to inves-
tigate other non-linear viscoelastic formulations in order to ascertain whether or not any improved
model behaviour can be integrated into the current numerical framework for epoxy resins.

Some basic modifications to the non-linear viscoelasticity model were made in order to attempt
to capture the observed unloading behaviour. Although these attempts were unsuccessful, the fol-
lowing recommendations can be drawn from the lessons learned during this process:

• The original assumption that the non-linear stiffness g was the same for loading and unload-
ing produced unloading behaviour that was too stiff. This approach can be thought of as an
upper bound for the unloading stiffness behaviour.

• The simple approach of maintaining a constant value for g during the entire unloading branch
does not produce desirable results, as the resulting unloading stiffness was too soft. From
examining the experimental behaviour, it is clear that the unloading response is not linear
and therefore a linear approximation method cannot sufficiently describe the unloading be-
haviour. This approach can be thought of as a lower bound for the unloading stiffness be-
haviour.

• One approach that may yield suitable results would be the definition of a new lower non-
linear viscoelastic threshold stress for material unloading. This would delay the onset of stiff-
ening occurring in the unloading behaviour and perhaps produce numerical results that more
closely match the experimental response. However, this approach would add another mate-
rial parameter to an otherwise already complex set of material properties.

• Another possible approach, which does not require the introduction of any further material
parameters, would be to define a bilinear unloading response. The proposed response would
keep g constant while unloading above the non-linear threshold stress, and then set g = 1 for
stresses below the non-linear threshold stress. While this model would not be able to repre-
sent the exact behaviour of the epoxy resin, it is possible that this approach may give relatively
suitable results.

It is recommended that the above modifications be implemented and their suitability assessed
with regard to their ability to capture the observed non-linear behaviour of epoxy resins and their
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capacity to be calibrated to experimental results.
Further, in the current implementation of the return mapping algorithm viscoplasticity is pro-

hibited from occurring before non-linear viscoelasticity. While this is typically a physically consis-
tent assumption, due to the differing forms of the yield functions it is possible that, in a numerical
model, a stress state can exist in which plasticity occurs before the onset of non-linear viscoelastic-
ity. As a result, it is also recommended that the return mapping algorithm be extended to include
this possibility.
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A
Material Model Mathematical Derivations

Derivation of the Non-Linear Viscoelastic Stress Update
The expressions for the volumetric and deviatoric viscoelastic stresses take the following form:

σve(t ) =
N∑

i=1

∫ t

0
exp

(
− t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ (A.1)

where f (ε(τ),τ) is defined differently for the volumetric and deviatoric stresses:

fv(ε(τ),τ) = Ki (τ)

g (τ)
εv(τ) (A.2a)

fd(ε(τ),τ) = 2Gi (τ)

g (τ)
εd(τ) (A.2b)

Equation A.1 involves an integral over the entire loading history and therefore is computationally
cumbersome. This expression for the viscoelastic strain can be elaborated to arrive at a discretised
expression for the viscoelastic strain increment. First, the integration limits are divided into two
parts, the first from τ= 0 to τ= t −∆t and the second from τ= t −∆t to τ= t :

σve(t ) =
N∑

i=1

{∫ t−∆t

0
exp

(
− t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ+

∫ t

t−∆t
exp

(
− t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ

}
(A.3)

Subtracting an expression for the viscoelastic stress at the previous time step,

σve(t −∆t ) =
N∑

i=1

∫ t−∆t

0
exp

(
− t −∆t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ (A.4)

from both sides of Equation A.3 results in the following viscoelastic stress increment:

∆σve =
N∑

i=1

{∫ t−∆t

0

[
exp

(
− t −τ

λi

)
−exp

(
− t −∆t −τ

λi

)]
d f (ε(τ),τ)

dτ
dτ+∫ t

t−∆t
exp

(
− t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ

}
(A.5)
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∴∆σve =
N∑

i=1

{∫ t−∆t

0

[
exp

(
− t −∆t −τ

λi

)
exp

(
−∆t

λi

)
−exp

(
− t −∆t −τ

λi

)]
d f (ε(τ),τ)

dτ
dτ+∫ t

t−∆t
exp

(
− t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ

}
(A.6)

∴∆σve =
N∑

i=1

{
−

(
1−exp

(
−∆t

λi

))∫ t−∆t

0
exp

(
− t −∆t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ+∫ t

t−∆t
exp

(
− t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ

}
(A.7)

Noting that:

N∑
i=1

∫ t−∆t

0
exp

(
− t −∆t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ=σve(t −∆t ) (A.8)

Equation A.7 becomes:

∆σve =
N∑

i=1

{∫ t

t−∆t
exp

(
− t −τ

λi

)
d f (ε(τ),τ)

dτ
dτ−

[
1−exp

(
−∆t

λi

)]
σve

i (t −∆t )

}
(A.9)

Assuming that the function f (ε(τ),τ) is constant over the time step:

d f (ε(τ),τ)

dτ
≈ ∆ f (ε(t∗), t∗)

∆t
(A.10)

with t −∆t ≤ t∗ ≤ t , the integral in Equation A.9 can be evaluated in a semi-analytical manner:

∆σve =
N∑

i=1

{
∆ f (ε(t∗), t∗)λi

∆t
exp

(
− t −τ

λi

)∣∣∣∣τ=t

τ=t−∆t
−

[
1−exp

(
−∆t

λi

)]
σve

i (t −∆t )

}
(A.11)

∴∆σve =
N∑

i=1

[
1−exp

(
−∆t

λi

)](
∆ f (ε(t∗), t∗)λi

∆t
−σve

i (t −∆t )

)
(A.12)

Viscoplastic Consistent Tangent Stiffness Matrix
The derivation of the viscoplastic algorithmic tangent is based on the procedure detailed by Rocha
et al. [24] and is briefly reproduced here. The derivation begins by differentiating the expression for
the stress in Equation 5.62a with respect to the strain:

∂σ

∂ε
= 1

ζs

∂Str

∂ε
− 6Ĝ

ζs
2 Str ∂∆γ

∂ε
+ 1

3ζp
δi j

∂I tr
1

∂ε
− 2K̂αI tr

1

∂ε
δi j

∂∆γ

∂ε
(A.13)

where δi j is the Kronecker delta. The derivatives of the trial deviatoric stress vector and the first trial
stress invariant are given by:

∂Str

∂ε
= Ĝ

(
I− 2

3
1⊗1

)
(A.14a)

∂I tr
1

∂ε
= 3K̂δi j (A.14b)
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where I is the fourth order identity tensor and 1 is the second order identity tensor. The variation of
plastic multiplier with respect to the strain comes from the definition of the return mapping func-
tion in Equation 5.64:

δΦ= ∂Φ

∂ε
δε+ ∂Φ

∂∆γ
δ∆γ= 0 ⇒ ∂∆γ

∂ε
=− ∂Φ

∂∆γ

∂Φ

∂ε
=µ∂Φ

∂ε
(A.15)

where the derivative ofΦwith respect to∆γ has been determined for the return mapping algorithm,
see Section 5.4.6.3. Differentiation of Φ with respect to the strain takes a form similar to Equation
5.93:

∂Φ

∂ε
= mp∆t

ηpσ
0
tσ

0
c

(
fp

σ0
tσ

0
c

)mp−1
∂ fp

∂ε
= V̂

∂ fp

∂ε
(A.16)

where the derivative of fp with respect to the strain is given by:

∂ fp

∂ε
= 6

ζs
2

∂J tr
2

∂ε
+ 2(σc −σt

ζp

∂I tr
1

∂ε
+ ∂ fp

∂ε
p
eq

∂ε
p
eq

∂ε
(A.17)

where the derivative of fp with respect to the equivalent plastic strain is given in Equation 5.92 and
redefined here as Ĥ . The derivative of the first invariant with respect to the strain is given in Equa-
tion A.14b and the derivative of J tr

2 is given by:

∂J tr
2

∂ε
= Str Str

∂ε
= 2ĜStr (A.18)

The last term to evaluate is the derivative of the equivalent plastic strain with respect to the strain:

∂ε
p
eq

∂ε
= 1

1+2νp
2

(
∆γ

)2

∆ε
p
eq

(
3Str

ζs
+ 2αI tr

1 δi j

9ζp

)(
Ĝ

ζs
(3I−2 ·1⊗1)+ 2K̂α

3ζp
1⊗1

)
= Ê (A.19)

As a result, the consistent tangent stiffness matrix can be written as:

∂σ

∂ε
=βI+

(
φ− β

3

)
1⊗1−ρStrδi j −χStrStr −ψStrδi j −ωStrÊ−ξÊδi j (A.20)

where the following coefficients are defined for this section only as:

β= 2Ĝ

ζs
φ= K̂

ζp
− 4αI tr

1 (σc −σt)V̂ K̂ 2

µζp
3

ρ = 36(σc −σt)V̂ K̂ Ĝ

µζpζs
2 χ= 72V̂ Ĝ2

µζs
4

ψ= 8αI tr
1 V̂ K̂ Ĝ

µζp
2ζs

2 ω= 6V̂ Ĝ Ĥ

µζs
2 ξ= 2αI tr

1 V̂ K̂ Ĥ

3µζp
2

(A.21)



104 A. Material Model Mathematical Derivations

Coupled Return Mapping Algorithm Derivatives
In this section, derivatives further to those derived in Section 5.4.6 are computed.

The following relates to the derivatives of the first stress invariant calculated in Equations 5.78a
and 5.78b:

∂I tr
1 (g )

∂g
= 3

∂∆pve(g )

∂g
=−3

N∑
i=1

[
1−exp

(
−∆t

λi

)](
Ki (t )λi∆ε

e
v

g (σ,ζ,εp
eq)

2
∆t

)
(A.22a)

∂ζp(g ,∆γ)

∂g
= 2α∆γ

∂Kve(g )

∂g
=−2α∆γ

N∑
i=1

[
1−exp

(
−∆t

λi

)](
Ki (t )λi

g (σ,ζ,εp
eq)

2
∆t

)
(A.22b)

∂ζp(g ,∆γ)

∂∆γ
= 2K̂ (g )α (A.22c)

The following relates to the derivatives of the second deviatoric stress invariant calculated in Equa-
tions 5.78c and 5.78d:

∂J tr
2 (g )

∂g
= ∂J tr

2

∂Str ·
∂Str(g )

∂g
= ∂J tr

2

∂Str ·
∂∆Sve(g )

∂g
=−Str ·

N∑
i=1

[
1−exp

(
−∆t

λi

)](
2Gi (t )λi∆ε

e
d

g (σ,ζ,εp
eq)

2
∆t

)
(A.23a)

∂ζs(g ,∆γ)

∂g
= 6∆γ

∂Gve(g )

∂g
=−6∆γ

N∑
i=1

[
1−exp

(
−∆t

λi

)](
Gi (t )λi

g (σ,ζ,εp
eq)

2
∆t

)
(A.23b)

∂ζs(g ,∆γ)

∂∆γ
= 6Ĝ(g ) (A.23c)

The following relates to the derivatives of the equivalent plastic strain calculated in Equations 5.80a
and 5.80b.

∂Â(g ,∆γ)

∂g
= 18

ζs(g ,∆γ)2

∂J tr
2 (g )

∂g
−216∆γJ tr

2 (g )

ζs(g ,∆γ)3

∂Gve(g )

∂g
+ 8α2I tr

1 (g )

27ζp(g ,∆γ)2

∂I tr
1 (g )

∂g
−16α3∆γI tr

1 (g )2

27ζp(g ,∆γ)3

∂Kve(g )

∂g
(A.24)

∂∆ε
p
eq(g ,∆γ)

∂∆γ
=

√
1

1+2νp
2

[√
Â(g ,∆γ)+∆γ ∂

∂∆γ

(√
Â(g ,∆γ)

)]
(A.25)

=
√

1

1+2νp
2

√
Â(g ,∆γ)+ ∆γ

2
√

Â(g ,∆γ)

∂Â(g ,∆γ)

∂∆γ

 (A.26)

with:

∂Â(g ,∆γ)

∂∆γ
= 18J tr

2 (g )
−2

ζs(g ,∆γ)3

∂ζs(g ,∆γ)

∂∆γ
+ 4α2I tr

1 (g )2

27

−2

ζp(g ,∆γ)3

∂ζp(g ,∆γ)

∂∆γ
(A.27a)

=−216Ĝ(g )J tr
2 (g )

ζs(g ,∆γ)3 − 16α3K̂ (g )I tr
1 (g )2

27ζp(g ,∆γ)3 (A.27b)



B
Jive Implementation of the Constitutive

Model

Constitutive Model

The update method used by the finite element implementation to form the constitutive matrix D
and internal force vector f, and calculate the mechanical dissipation Ξ, is presented in Algorithm 1.

Box B.1: Constitutive Model Update Method

Algorithm 1 Constitutive Model Update Method

Require: E (t ), T (t ), ω(t ), ∆t
1: ζ← COMPUTEZETA(T , ω) . Equation 5.31

2: D∞(ζ) ← COMPUTELONGTERMD(E gla
∞ , E rub∞ , νgla

∞ , νrub∞ , ζ) . Equation 5.42

3: Ki (ζ), Gi (ζ) ← COMPUTEVESTIFFS(K gla
i , K rub

i , Ggla
i , Grub

i , ζ) . Equations 5.40a and 5.40b
4: ε← COMPUTEMECHSTRAIN(E , T , αT , ω, αω) . Equation 5.95
5: Λσve(t −∆t ) ← DECAYVESTRESS(σve(t −∆t ), ∆t ) . Equation 5.72
6: g , ∆γ← COUPLEDRM . Algorithm 2
7: σ← EVALUATESTRESS . Equation 5.75
8: D ← EVALUATETANGENT . Equation A.20
9: Ξ← EVALUATEDISSIPATION . Equations 5.54 and 5.67

Coupled Return Mapping Algorithm

The main function used to solve the coupled non-linear viscoelasticity and viscoplasticity problem
is presented in Algorithm 2. The return mapping algorithms that solve the single variable problem
and the coupled problem are presented in Algorithms 3 and 4 respectively.
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Box B.2: Coupled Return Mapping Algorithm

Algorithm 2 Return Mapping Function

Require: ε(t ), ∆ε, εp(t −∆t ), εp
eq(t −∆t ), D∞(t ),Λσve(t −∆t ), ∆t

1: Compute initial elastic strains: εe
0(t ), ∆εe

0 . Equations 5.70e and 5.70f
2: Compute the initial trial stress: σtr

0 . Equation 5.74
3: Evaluate fve . Equation 5.56

4: if fve ≤ 1 then
5: Evaluate fp . Equation 5.60a
6: if fp > 0 then
7: return Error: Plasticity occurs before non-linear viscoelasticity.
8: else
9: return g = 1; ∆γ= 0

10: else
11: gk ← SOLVEG . Algorithm 3
12: Evaluate fp . Equation 5.60a
13: if fp > 0 then
14: gk ,∆γk ← SOLVECOUPLED . Algorithm 4
15: return g = gk ; ∆γ=∆γk

16: else
17: return g = gk ; ∆γ= 0

Algorithm 3 Non-Linear Viscoelasticity Return Mapping Algorithm

1: function SOLVEG
2: for k = 1 to maxIt do
3: Evaluate Γk . Equation 5.68a
4: if |Γk | < Γtol then
5: return g = gk

6: else
7: Evaluate ∂Γk

∂g . Equation 5.81

8: gk+1 = gk −
(
∂Γk
∂g

)−1
Γk

9: Update strains: εp
k+1, εp

eq,k+1, εe
k+1, ∆εe

k+1 . Equations 5.70a to 5.70f

10: Update trial stress: σtr
k+1 . Equation 5.74



107

Algorithm 4 Non-Linear Viscoelasticity and Plasticity Return Mapping Algorithm

1: function SOLVECOUPLED

2: for k = 1 to maxIt do
3: Evaluate Γk andΦk . Equations 5.68a and 5.68b
4: if |Γk | < Γtol and |Φk | <Φtol then
5: return g = gk ; ∆γ=∆γk

6: else
7: Evaluate Jacobian Matrix . Equation 5.69
8: Update gk+1 and ∆γk+1 . Equation 5.69

9: Update strains: εp
k+1, εp

eq,k+1, εe
k+1, ∆εe

k+1 . Equations 5.70a to 5.70f

10: Update trial stress: σtr
k+1 . Equation 5.74

11: Update current stress: σk+1 . Equation 5.75





C
MATLAB Optimisation Script for Model

Calibration

This section presents the MATLAB scripts used for the calibration of experimental results to the
couple non-linear viscoelastic and viscoplastic model. The relevant properties used by the finite
element implementation are also presented.

First Global Optimisation Method
Listing C.1 presents the MATLAB script used for the first global optimisation method. First, the ex-
perimental data is loaded and the parameters for the optimisation set. Note that a Poisson’s ratio
of ν∞ = 0 and correspondingly, Gi = 1.5Ki and λi ,k = λi ,g were used for the calibration in order to
reduce the number of unknowns. The function loadMaterialProperies sets the user defined initial
value x0, lower bound lb and upper bound ub. This function is presented in Listing C.3. The con-
straints A and b are set to ensure that non-linear viscoelasticity occurs before viscoplasticity. This
inequality constraint ensures that the yield stress is always above the upper bound of the onset of
non-linear viscoelasticity. The patternsearch algorithm then begins, using the objective function
objFun, which is presented in Listing C.2. Note that the function defined as myOutputFunction is
used to write the minimised material property for each iteration to a .mat file so that the algorithm
can be terminated at any point without losing the results.

The finite element program is run with a time increment of ∆t = 0.1 s and with imposed dis-
placements based on the strains recorded from the experimental data. One eight noded hexahedron
element is used to model the bar. Only one Gauss point is required for numerical integration due to
the constant strain state within the element. This greatly improves the computational performance
of the algorithm.

Listing C.1: First Global Optimisation Script

1 %% Load experimental data and set initial properties and bounds
2 clear; clc; close all;
3
4 % load raw experimental data
5 data = dlmread('3352 _45_prepeak.plot',' ' ,1,0);
6
7 % define the experimental range over which calibration occurs
8 endIndex = 512;
9 nu = 0.0; % poissons ratio

10
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11 t_exp = data (:,1); % experimental times
12 tmax = t_exp(endIndex); % final time
13 stry_exp = data (:,3); % experimental strains
14 sigy_exp = data (:,4); % experimental stresses
15
16 % define initial point , lower bound and upper bound
17 [x0,lb,ub] = loadMaterialProperties ();
18
19 % set the constraints
20 A = [0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 -ub(8) 0];
21 b = -ub(8);
22
23 %% Optimisation algorithm
24 options = psoptimset('Display ','iter','OutputFcns ',...
25 {@ myOutputFcn},'SearchMethod ',@MADSPositiveBasis2N ,...
26 'CompleteSearch ','on','MaxFunEvals ' ,100000,...
27 'MaxIter ' ,10000,'Cache','on');
28
29 [x,fval ,exitflag ,output] = patternsearch (@(x) objFun(x,...
30 sigy_exp ,t_exp ,tmax ,nu),x0,A,b,[],[],lb,ub ,[], options);
31
32 save('results.mat');

The objective function script begins by writing the current value of the material properties to a
data file so that it can be read by the finite element implementation of the constitutive model. The
writeMaterialData function can be found in Listing C.4 The finite element program is then run by
MATLAB and the stress strain results read. The numerical data is then linearly interpolated at the
corresponding time values from the input experimental data using the built in MATLAB function
interp1. Finally, the objective function is evaluated as per Equation 6.14 and its value returned to
the optimisation function.

Listing C.2: Objective Function Script

1 function f = objFun(x,sigy_exp ,t_exp ,tmax ,nu)
2 % write current material properties to data file
3 writeMaterialData(x,nu,tmax);
4
5 % run the analysis
6 cmd = './vevpd -opt *.pro';
7 [status ,~] = system(cmd);
8
9 % load the analysis results

10 try
11 resultData = dlmread('curve.dat');
12 dataRead = true;
13 catch
14 disp('Could not read data');
15 dataRead = false;
16 end
17
18 if dataRead
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19 % extract result points
20 sigy_num = interp1(resultData (:,1),resultData (:,3),t_exp)

/ 1e6;
21
22 % set value for least squares to zero
23 f = 0;
24
25 % loop through time values up to tmax
26 for i = 1:find(t_exp >tmax ,1) -1
27 % ensure the data point was interpolated properly
28 % first value (NaN) is zero stress
29 if isnan(sigy_num(i))
30 x = 0;
31 else
32 x = sigy_num(i);
33 end
34
35 % compute square of difference
36 f = f + (sigy_exp(i) - x) * (sigy_exp(i) - x);
37 end
38 else
39 f = Inf;
40 end
41 end

Listing C.3: Load Material Properties Script

1 function [x0,lb,ub] = loadMaterialProperties ()
2 % initial optimisation properties
3 x0 = zeros (17,1); % preallocate initial vector
4 x0(1) = 1.53515e+09; % long term elastic modulus;
5 x0(2) = 8.23828e+07; % VE bulk stiffness 1
6 x0(3) = 1.60115e+08; % VE bulk stiffness 2
7 x0(4) = 1.42421e+08; % VE bulk stiffness 3
8 x0(5) = 5.24370e+04; % VE bulk time 1
9 x0(6) = 8.41436e+03; % VE bulk time 2

10 x0(7) = 4.90550e+03; % VE bulk time 3
11 x0(8) = 2.39632e+07; % sigma0
12 x0(9) = 1.88111e+00; % d_ve
13 x0(10) = 4.79789e+00; % m_ve
14 x0(11) = 9.67221e+07; % sigmaT factor 1
15 x0(12) = 2.42679e+07; % sigmaT factor 2
16 x0(13) = 4.05178e-02; % sigmaT factor 3
17 x0(14) = 2.93554e+04; % eta_p
18 x0(15) = 6.62500e+00; % m_p
19 x0(16) = 1.25000e-01; % c2
20 x0(17) = 1.25000e-01; % c3
21
22 % lower bound
23 lb = zeros (17,1); % preallocate initial vector
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24 lb(1) = 1000e6; % long term elastic modulus;
25 lb(2) = 1e6; % VE bulk stiffness 1
26 lb(3) = 1e6; % VE bulk stiffness 2
27 lb(4) = 1e6; % VE bulk stiffness 3
28 lb(5) = 1e-3; % VE bulk time 1
29 lb(6) = 1e-3; % VE bulk time 2
30 lb(7) = 1e-3; % VE bulk time 3
31 lb(8) = 5e6; % sigma0
32 lb(9) = 1; % d_ve
33 lb(10) = 0.1; % m_ve
34 lb(11) = 20e6; % sigmaT factor 1
35 lb(12) = 0; % sigmaT factor 2
36 lb(13) = 1e-8; % sigmaT factor 3
37 lb(14) = 1e3; % eta_p
38 lb(15) = 0.1; % m_p
39 lb(16) = 0; % c2
40 lb(17) = 10; % c3
41
42 % upper bound
43 ub = zeros (17,1); % preallocate initial vector
44 ub(1) = 3500e6; % long term elastic modulus;
45 ub(2) = 2e9; % VE bulk stiffness 1
46 ub(3) = 2e9; % VE bulk stiffness 2
47 ub(4) = 2e9; % VE bulk stiffness 3
48 ub(5) = 1e6; % VE bulk time 1
49 ub(6) = 1e6; % VE bulk time 2
50 ub(7) = 1e6; % VE bulk time 3
51 ub(8) = 60e6; % sigma0
52 ub(9) = 1000; % d_ve
53 ub(10) = 20; % m_ve
54 ub(11) = 200e6; % sigmaT factor 1
55 ub(12) = 200e6; % sigmaT factor 2
56 ub(13) = 0.1; % sigmaT factor 3
57 ub(14) = 1e9; % eta_p
58 ub(15) = 20; % m_p
59 ub(16) = 0.7; % c2
60 ub(17) = 1e4; % c3
61 end

Listing C.4: Write Material Properties Script

1 function writeMaterialData(x,nu,tmax)
2 fout = fopen('material.dat', 'w'); % open a file for output
3
4 % print maximum analysis time
5 fprintf(fout , ['control.runWhile = t<’,num2str(tmax),’;\n']);
6
7 % print long term properties
8 fprintf(fout , ['model.model.bulk.material.eInfGlass = ', ...
9 num2str(x(1),'%.5e'),';\n']);
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10 fprintf(fout , ['model.model.bulk.material.nuInfGlass = ', ...
11 num2str(nu,'%.5e'),';\n']);
12
13 % print viscoelastic properties
14 fprintf(fout ,'model.model.bulk.material.kStiffsGlass = [ ');
15 for i = 1:3
16 fprintf(fout ,num2str(x(1+i),'%.5e'));
17 if i == 3
18 fprintf(fout ,' ];\n');
19 else
20 fprintf(fout ,', ');
21 end
22 end
23
24 fprintf(fout ,'model.model.bulk.material.kTimes = [ ');
25 for i = 1:3
26 fprintf(fout ,num2str(x(4+i),'%.5e'));
27 if i == 3
28 fprintf(fout ,' ];\n');
29 else
30 fprintf(fout ,', ');
31 end
32 end
33
34 fprintf(fout ,'model.model.bulk.material.gTimes = [ ');
35 for i = 1:3
36 fprintf(fout , num2str(x(4+i),'%.5e'));
37 if i == 3
38 fprintf(fout ,' ];\n');
39 else
40 fprintf(fout ,', ');
41 end
42 end
43
44 % compute shear stiffnesses
45 gFac = 3 * (1 - 2 * nu) / (2 * (1 + nu));
46
47 fprintf(fout ,'model.model.bulk.material.gStiffsGlass = [ ');
48 for i = 1:3
49 fprintf(fout ,num2str(x(1+i)*gFac ,'%.5e'));
50 if i == 3
51 fprintf(fout ,' ];\n');
52 else
53 fprintf(fout ,', ');
54 end
55 end
56
57 % print nlve properties
58 fprintf(fout ,['model.model.bulk.material.sigma0Glass = ', ...
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59 num2str(x(8),'%.5e'),';\n']);
60 fprintf(fout ,['model.model.bulk.material.d = ', ...
61 num2str(x(9),'%.5e'),';\n']);
62 fprintf(fout ,['model.model.bulk.material.mve = ', ...
63 num2str(x(10),'%.5e'),';\n']);
64
65 % print vp properties
66 fprintf(fout ,['model.model.bulk.material.sigmaTGlass =

’,formatExp(x(11)),’-’,formatExp(x(12)),’*exp(-x/’,formatExp(x(13)),’);\
n']);

67 fprintf(fout ,['model.model.bulk.material.sigmaCGlass =
’,formatExp(x(11)),’-’,formatExp(x(12)),’*exp(-x/’,formatExp(x(13)),’);\
n']);

68 fprintf(fout ,['model.model.bulk.material.eta = ', ...
69 num2str(x(14),'%.5e'),';\n']);
70 fprintf(fout ,['model.model.bulk.material.mp = ', ...
71 num2str(x(15),'%.5e'),';\n']);
72
73 % print remaining nlve properties
74 fprintf(fout ,['model.model.bulk.material.c2 = ', ...
75 num2str(x(16),'%.5e'),';\n']);
76 fprintf(fout ,['model.model.bulk.material.c3 = ', ...
77 num2str(x(17),'%.5e'),';\n']);
78
79 fclose(fout); % close file
80 end

Second Global Optimisation Method
The second global optimisation method is identical to the first method apart from a few exceptions.
To distinguish loading from unloading, the gradient of the experimental stress curve is evaluated
with the gradient function. Further, the objective function in Line 36 in Listing C.2 is modified to
limit the optimisation to stresses above 50 MPa and the loading brances. The changes are sum-
marised in Listing C.5 below.

Listing C.5: Modified Objective Function Script

1 % evaluation of gradient for distinguishing loading from
unloading

2 grad_sig_y = gradient(sigy_exp);
3
4 % Modified objective function
5 if grad_sig_y(i) > 0 && sigy_exp(i) > 50
6 f = f + (sigy_exp(i) - x) * (sigy_exp(i) - x);
7 end



D
Experimental Data

In this appendix, the dimensions of the experimental specimens and the raw load displacement
data for the creep tests are presented.

Creep Test Specimen Dimensions
Table D.1 presents the dimensions for each specimen used in the creep tests.

Temperature T = 25◦C Average Width Average Thickness

Specimen 1 9.173 mm 2.872 mm

Specimen 2 9.670 mm 2.840 mm

Specimen 3 9.553 mm 2.860 mm

Temperature T = 75◦C Average Width Average Thickness

Specimen 1 9.287 mm 2.928 mm

Specimen 2 9.610 mm 2.860 mm

Specimen 3 9.593 mm 2.867 mm

Temperature T = 100◦C Average Width Average Thickness

Specimen 1 9.943 mm 2.853 mm

Specimen 2 9.017 mm 2.873 mm

Specimen 3 9.393 mm 2.860 mm

Table D.1: Dimensions of the epoxy resin specimens used in the creep test.
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Raw Creep Data
Figure D.1 presents the raw load displacement data obtained from the creep test. This data is used
to determine the elastic modulus through the application of Equation 4.1.
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(a) Raw load and displacement data for T = 25◦C.
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(b) Raw load and displacement data for T = 75◦C.
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(c) Raw load and displacement data for T = 100◦C.

Figure D.1: Raw experimental data from the creep test.
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Raw Stress Relaxation Data
Figure D.2 presents the raw load displacement data obtained from the failed stress relaxation tests
at a temperature of 75◦C.
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Figure D.2: Raw experimental data from the failed stress relaxation tests at 75◦C.

Figure D.2 shows that the chosen displacements in the first two tests resulted in forces that were
too small to be accurately recorded by the DMA machine after relaxation of the stress. The third
test was performed at an increased imposed displacement and resulted in a force that was higher
than the resolution of the DMA machine so could be recorded with confidence. However, upon
inspection of the sample it was clear that significant plastic deformation had occurred at the chosen
imposed displacement, see Figure 4.4. As a result, it was determined that the stress relaxation test
was not the most suitable test for determining the long term elastic properties of epoxy resins at
elevated temperatures and as such, a creep test was performed.
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