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Abstract

Research and Objective: In the recent years the online grocery sector experienced an enormous
uplift and evolved to a highly competitive business sector. Within this demanding environ-
ment, the need for strategic information has become extremely important, as it greatly en-
hances decision-making processes and the optimisation of the supply chain. In this research,
a novel approach is proposed that is aimed at predicting customers’ daily purchase probabili-
ties, with the goal to improve short-term forecasting accuracy. Besides the well-acknowledged
importance of forecasting practices and customer relationship management, this research is
motivated by three main observations in online grocery retail; short interpurchase times,
consistent shopping patterns and loyal customers.

Methodology: The approach involves the application of binary classification methods to anal-
yse and predict online shopping behaviour. Within this context, two non-parametric learning
algorithms, namely stochastic gradient boosting and random forest, are compared to tra-
ditional logistic regression. Both stochastic gradient boosting and logistic regression are
extended using classifier chains (CC) to handle multiple outputs. Subsequently, the obtained
purchase probabilities are aggregated and compared to the predictions of a univariate Seasonal
Autoregressive Integrated Moving Average Exogenous (SARIMAX) time series model.

Results: The boosted tree CC model was able to achieve an improvement of 1.77% in mean-
absolute-percentage error (MAPE) and 20.95% in mean-squared logarithm of the accuracy
ratio (MSLAR) compared to the predictions of the random forest and an improvement of
1.15% in MAPE and 16.81% in MSLAR compared to the SARIMAX time series model. The
model acquired consistent results for customer groups of different sizes, with prediction errors
that exhibited the lowest bias as well as variance of all models. The analysis of the explanatory
variables indicate that behavioural attributes and variables, that concern interpurchase times
in particular, were most significant of the target variables. Eventually, the application of
calibration methods led to a decrease in forecasting performance rather than improving it.

Conclusion: This research proposes a novel approach for short-term customer demand predic-
tion within the online grocery retail market, which can provide an alternative to conventional
time series forecasting techniques. The obtained results are satisfactory and of value for
management and decision makers.
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Chapter 1

Introduction

This chapter provides an introduction to the research conducted during this master thesis in
the field of electronic commerce, commonly referred to as e-commerce. The research concerns
the analysis, identification, and prediction of customer behaviour in the online grocery retail
sector. A motivation of research within this area is given in section 1-1. Subsequently, a
problem definition along with some research questions are stated in section 1-2. Finally, the
organization of this thesis is outlined in section 1-3.

1-1 Motivation

Over the past years, e-commerce became increasingly popular as a result of today’s knowledge-
based economy and information society. E-commerce includes a variety of services, with
Business-to-Customer trade being the most common. Driven by technological advances, that
mostly concern modern communication systems and the World Wide Web, e-commerce has
enabled customers to make purchases independent of time and location [96]. Retailers expand
their businesses by building online stores, with the result of physical stores being ’displaced’
rapidly. The transition from visiting brick-and-mortar stores to online shopping can be easily
recognized by analysing the growth in terms of turnover. In 2019, for example brick-and-
mortar turnover experienced a growth of 3.8% in the United States, whereas e-commerce
could achieve a growth of almost 14.9% [54]. A few years back, online retailing included
to most extent consumer goods that are related to books, music, electronics and fashion.
However, more recently the online food and grocery market has experienced an enormous
uplift as well. In 2018, 25% of all online orders in Europe were made for food and groceries
[51].

Within the demanding and rapid developing online grocery retail sector, the need for strate-
gic information has become extremely important. Not only accurate forecasts are needed for
the short-term operations and mid-term alignment, but also retail managers need to have
insight in the type of customers they have to supply as a supportive foundation for long-term
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2 Introduction

planning. Demand management and future planning have great impact on overall organi-
zational performance and is one of the key success factors for profitable businesses since it
greatly helps improving decision-making processes and optimising the supply chain [52]. From
strategic to operational areas, such as finance, marketing, recruitment, personnel planning,
logistic planning, inventory management and maintenance, many decisions are supported by
sales (or demand) forecasts [15]. Poor forecasting straight away affects revenue due to un-
necessary high personnel and substantial write-off costs along with customer service issues,
which subsequently harm the competitive position of businesses [2, 9]. Balancing customers
requirements with the capabilities of the supply chain by having the right management in
place, makes it possible to match supply with demand in a proactive manner [43].

In the past decades some major efforts have been done in the field of research, modeling
and forecasting seasonal and trend time series data. A time series is a sequence of obser-
vations taken sequentially in time [19]. The variety of algorithms that have been developed
since then reaches from longstanding best practices to cutting-edge methodologies [47]. Be-
sides commonly used modeling methods, including simple historical averages and exponential
smoothing, machine learning (ML) and artificial intelligence (AI) methodologies have estab-
lished themselves as serious contenders in the area of forecasting [35]. The fast and ever
evolving computing technologies have provided companies with the ability to collect, store
and analyse data of unimaginable size. For each customer, thousands, or even millions of data
objects that enable the analysis of the complete purchasing history are stored. By then, the
methodology extended from analyzing sales data only to more advanced approaches, which
involved the development and application of a wide range of data mining methodologies (e.g.,
pattern extraction from data, model fitting to data etc.), with the goal to identify and predict
customer demand [14]. However, these techniques are not only used for forecasting pur-
poses but also for the analysis of online customer behaviour, which dates back to the early
beginning of e-commerce [11]. Some of the many applications involve the classification of cus-
tomers into categories [94], item recommendation systems [112], customer churn prediction
[42, 86, 141] and purchase probability estimation (propensity models) [84, 136]. Despite their
different applications, all models, are ultimately using customer data, historical purchase and
clickstream data (e.g., data about interactions between customer and website, application,
etc.) to predict future customer behaviour. The rapid growth of e-commerce has changed
the whole way of shopping and with it the traditional relationship between retailer and cus-
tomer. Retailers face challenges like increasing competition and volatile relationships due to
an anonymous shopping experience, resulting in less loyal customers. Therefore, most appli-
cations in the field of e-commerce, and many others (e.g., financial services etc.), have the
goal to improve customer service and build longstanding relationships in order to strengthen
the competitive position of the business and increase its revenue in the long run [97, 137, 141].

In general, demand forecasting and online customer purchase behaviour prediction are two
separate methodologies. Whereas forecasting usually involves the modeling of time series
data to predict future values of the series, customer behaviour prediction aims at the anal-
yses, classification and prediction of individual customers, which suggests the application of
other techniques, such as classification algorithms. The application of time series modeling
and regression techniques in order to predict future values of a time series is quite evident,
however, this thesis aims at using customer behaviour prediction methods to predict future
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1-1 Motivation 3

demand of an online grocer. This approach includes the identification of online customer
behaviour in order to obtain individual purchasing probabilities. Unlike previous applica-
tions, this involves not only the prediction of the probability that a customer will make a
next purchase, but also when. Besides the increasing importance of classifying customer be-
haviour and a large number of possible prediction models and data sources, this research is
motivated by three main observations in online grocery retail; short interpurchase times, con-
sistent shopping patterns and loyal customers. The observed (purchase) penetration rate of
single customers is significantly higher than in ’traditional’ e-commerce, which leads to overall
shorter interpurchase times. This is mainly the result of greater demand of groceries, which
is usually lower for utensils or services that are available via other online services. Moreover,
the observed shopping pattern of individual customers is more consistent and less volatile
in comparison to other services due to weekly shopping routines. Lastly, the relationship
between customer and business is less volatile as well. This is most likely to be explained by
the relatively low density of online suppliers in the field of grocery, and people getting used to
the service, application and the assortment of a single grocer. It is more convenient to stick
with the same store rather than constantly switching between multiple stores.
The observations above motivate the possibility to identify weekly shopping routines of cus-
tomers of an online grocery store and individual trends due to quantitative and qualitative
input data that is available for each customer. It is expected that analysing the online shop-
ping behaviour of individual customers is an effective approach to predict future demand. As
Boone et. al stated: "The better a firm understands its customers’ buying behaviours, the
more accurate its demand forecasts will be, which in turn helps it to plan and execute supply
chain operations more efficiently" [18, page 1].

Besides the established large supermarket chains that provide an online grocery shopping
experience, there are a number of innovative companies trying to compete in the online
grocery market. One of them is Picnic, a data-driven online only grocery store that also
executes the whole logistics for home delivery using their own developed distribution model.
Meanwhile it accounts for about 12% market share in this category since they started in
2015 [127]. The company chooses maximum growth over making profit [26], which made it
possible to grow with an impressive 100% in 2018. In Picnic, accurate forecasting is needed
in order to balance supply with demand, to ensure smooth operations along with waste and
cost minimization. Long-term forecasts are used to plan openings of new facilities such as
distribution and fulfilment centres, and the purchase of new delivery vans. Mid-term forecasts
are used to set targets for recruiting new employees and marketing campaigns. Finally, the
short-term forecast is used for capacity planning, trunking planning, personnel planning and
inbound management purposes.
Currently, Picnic faces some challenges in the field of forecasting. All forecasting in retail
depends on a degree of aggregation, whether it is on product units, location or time instances,
depending on the purpose of the forecasting activity. Due to Picnics’ unique supply chain,
the lowest aggregation of interest is currently based on the delivery areas. Since Picnic is still
growing at rapid pace, opening facilities and extending their service to new delivery areas,
historical data is limited in such areas. However, most forecasting techniques require a certain
amount of input data in order to provide (reasonable) results. At the moment, there is no more
convenient way than applying a default purchase rate to predict future demand within the first
couple of weeks/months of a new delivery area. Another challenge are capacity constraints,
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4 Introduction

which straightaway affect customer behaviour. Constraining regular demand implicitly forces
customer behaviour to change, which subsequently increases uncertainty within forecasting.

Given that customer demand, besides capacity constraints, is the only driver in Picnic sales,
one can think of the potential benefits of an accurate customer demand forecasting tool.
This approach introduces new challenges (e.g., increasing computational complexity), but also
possibilities which have the potential to improve forecasting accuracy, inventory management,
generate additional insights in the customer base and allow for both customized service and
the analysis of predictions on any aggregation level. The belief exists that this approach can
identify customer behaviour during irregular situations (such as constraint capacity), which
in turn can improve predictability in such situations. Since the model is customer based, it
can be implemented fairly quickly in, for example, new delivery areas. The model can be
trained on a representative group of customers and right away applied to new customers with
little purchasing history. Eventually, the possibility to include variables, such as discounts
and free gifts that have an effect on customer demand [34], directly in the model forecast in
a convenient way, makes it a very attractive approach.

1-2 Problem Definition

The focus of this research lies in predicting the daily purchasing probabilities of customers
of an online grocery store, with the final goal to improve aggregated demand forecasting.
This involves the implementation of learning algorithms for the analysis and identification of
customer shopping behaviour based on historical data in order to predict their future actions
in the context of purchases. The problem at hand is a classification problem of binary nature
since the target variable has two categories: purchase and no purchase. The desired output of
the model are individual customer purchase probabilities, which are then aggregated in order
to obtain the demand forecast. The performance of the aggregated forecast is compared
to a top-line time series model. For the sake of this project, it is decided to evaluate the
predictions on individual customer level as well as on a total level. Furthermore, as the daily
operation currently involves many challenges and is an area where still a lot of value can
be accomplished, this thesis is aimed at developing a model that makes predictions on the
short-term demand (e.g., a horizon of 7 days).

Earlier, L. Raasveld [107] conducted some research on Predicting Invites Conversion, in order
to predict first order conversion of Picnic customers. This research will continue on her work
and will consider customers that used the service at least once. Fortunately, this substantially
reduces the amount of input data, which in turn speeds up the whole evaluation procedure.
Deployment is out of scope for this research and can only be regarded as an implication if
one of the models shows promising results.

There is one main research question that results from the points discussed above. Three sub
questions provide guidance on how to answer it.

Research Question:

Can customers’ daily purchasing probability estimates provide an alternative to con-
ventional time series modeling techniques?
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1-3 Outline 5

Sub Questions:

1. How can the daily purchase probability of a customer of an online grocery store be
obtained?

2. Which machine learning model is best suited to solve the prediction problem?

3. How do different explanatory variables influence model performance?

1-3 Outline

The remainder of this report is organized as follows. First, a literature review on customer
behaviour prediction as well as forecasting in general is given in chapter 2, followed by chap-
ter 3 about data exploration and pre-processing. Thereafter, in chapter 4, a methodology
is proposed which includes the modeling procedure as well as the evaluation process of the
models considered in this project. In chapter 5, the performance of the finalized models are
compared for three different cases. Additionally, some intermediate results are given that
are obtained during the modeling procedure. Chapter 6 discusses these findings by relating
them back to the research questions stated above and contextualizing the results within the
literature found in chapter 2. Furthermore, a review concerning limitations of this project is
included and some recommendations for future research are posed. Finally, a conclusion of
this research is given in chapter 7.
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Chapter 2

Literature

This chapter briefly introduces the current state-of-the-art of time series forecasting, while
providing a more detailed view on research that has been done on similar binary classification
problems as the one at hand. Besides reviewing the different learning algorithms that have
been applied within this field, a revision on the type of input data that is used for prediction
is given. Finally, a gap analysis of the reviewed literature is conducted.

2-1 Time Series Forecasting

In the past decades some major efforts have been done in the field of research, modeling and
forecasting seasonal and trend time series data. The variety of algorithms that have been
developed since then, reaches from longstanding best practices to cutting-edge methodologies
[47]. Besides traditional modeling methods, including simple historical averages and expo-
nential smoothing, machine learning (ML) and artificial intelligence (AI) methodologies have
established themselves as serious contenders in the area of forecasting [35]. While each have
their strengths and weaknesses, at their core, every method is ultimately using historical data
to try to predict future demand [47]. The complexity, assumptions, and types of data inputs
used and how they are weighted, depend on the given model type, but the basic ingredients are
similar across the board. There are two types of approaches to statistical analysis, univariate
and multivariate. Univariate involves the analysis of a single variable while multivariate anal-
ysis examines two or more variables. Most multivariate analysis involves a single dependent
variable and multiple independent variables. Whether a given model is better than the other
mainly depends on the time series data itself, the purpose of the model, the domain of the
forecasting problem and the quality of input data. Easy implementation, interpretation and
understanding are all valuable assets in industry that often come in trade-off with accuracy.
Chu and Zhang argue that "one of the major limitations of the traditional methods is that
they are essentially linear methods" and "in order to use them, users must specify the model
form without the necessary genuine knowledge about the complex relationship in the data"
[35, page 2018]. However, if the linear less complex models can capture the underlying char-
acteristics of the data evenly well, they should be preferred over more complicated models as
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they have the important practical advantage of easy interpretation and implementation. If
the linear models fail to perform well in both in-sample fitting and out-of-sample forecasting,
more complex nonlinear models should be considered. Machine learning models do a great job
in discovering nonlinear and complex relationships in the data, not needing to manually select
the exact model type, make assumptions about external factors or pre-defining some sort of
heuristic or logic. Instead of explicitly weighting variables or variable interactions, many of
these algorithms come with built in variable importance. However, this comes at the price of
requiring a lot of input data and a fair amount of investment in setup and maintenance, the
output is often less understandable and models can be prone to overfitting.

2-1-1 Time Series Analysis and Modeling

Time series analysis is the oldest and most widely discussed methodology for predicting future
values of a time series [1, 23, 65, 98, 140, 109]. It is practiced in many ways where each
model represents different stochastic processes of the series. In general, a time series can
be decomposed into four constituent parts: level, trend, seasonality and noise. Where level
embodies the baseline value of the series (as if it were a straight line), trend describes the
optional and often linear increasing or decreasing behaviour of the series over time, seasonality
describes the optional recurrent patterns over time and noise expresses the optional (but often
present) variability in the observations that cannot be modeled by the model.
Three broad classes are considered when modeling variations in time series, that being the
autoregressive (AR) models, the integrated (I) models, and the moving average (MA) models.
All three classes depend linearly on previous data points [59]. Models like the famous univari-
ate ARIMA model, introduced by Box and Jenkins [19], combine these classes into one model.
To handle seasonality in time series, several methods have been developed. They range from
one of the oldest techniques of seasonal decomposition (like the X-11 method and its variants
[45, 53]) over to new methods, such as model-based approaches (like the TRAMO-SEATS
[60]), nonparametric methods (like the STL [37]) and sinusoidal models [119]. Later studies
accounted for the ability to include exogeneous regressors which resulted in various types of
adaptations to the models [40, 76, 134].

2-1-2 Machine Learning

In the past years, further research extended the concept to other models, such as Artificial
Neural Networks (ANNs), Decision Trees (DTs), Ensemble Methods (EMs), Support Vector
Machines (SVMs), and others, that are mutually called machine learning models [6, 55]. The-
oretical understanding and the amount of variations of the models developed have increased
to an impressive extent. Unlike linear statistical techniques, these models are part of a more
flexible class, not explicitly requiring to specify the functional relationship between input
variables and output variable(s). Besides the numerous studies found in literature comparing
various versions of ANNs with traditional approaches, a lot of effort has been done related to
the research of more advanced machine learning models to model time series data. Especially
in the case of modeling nonlinearities in the data, various machine learning approaches have
shown their true potential compared to more conventional approaches that were not able to
adequately capture the evolution of the series [32, 68, 116, 145]. However, not in every situ-
ation all machine learning models work evenly well, as their performance highly depend on
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the nature of the forecasting problem. Ahmed et al. [3] employed an empirical comparison of
eight machine learning models and found significant differences between the models in terms
of performance.

2-2 Customer Behaviour Prediction

In an era of strong customer relationship management (CRM) emphasis, it is becoming more
evident that profitable businesses need to focus on building long-term relationships instead
of being customer-driven only. Web shop visitors leave more traces than ever before, where
any action is recorded and stored for analysis. The retrieved knowledge, in turn can improve
customer satisfaction, by making the shopping process more engaging, personalized and ef-
ficient. In the long run, this can strengthen the competitive position resulting from higher
conversion rates and increased turnover [14]. Therefore, many studies in this field are related
to the research and development of customer behaviour mining models. Such models are
aimed at predicting future behaviour of customers based on explanatory variables, which to
most extent involve past purchasing behaviour and clickstream data. This section will mainly
focus on propensity and partial-defection models, as these come closest to the problem at
hand. The following sections review the application of various machine learning methods in
this field of research, and summarizes the type of explanatory variables that were used for
prediction.

2-2-1 Binary Classification

Classification is probably the most common among data mining applications and is aimed
at predicting a categorical target variable from a set of input variables (also referred to as
independent variables, features or explanatory variables). This target value can be represented
either by multiple categories or, like the task at hand, a binary variable. A learning algorithm
aims to learn a generalized relationship between input and target variables from a labeled
data set in order to predict future target variables. This is called supervised learning [101].
Several machine learning algorithms exist that have different approaches to solve the task.

The most common type of machine learning algorithms for a binary classification task are
vector-based methods. Belonging to this class are Decision Trees (DTs), Ensemble Tree
methods such as Random Forests (RFs) and Gradient Boosted Trees (GBTs), Support Vector
Machines (SVMs), Logistic Regression (LR), and Feed-forward Neural Networks (FNNs).
These models belong to the category of eager learning methods. Given a set of training data,
eager learners construct the model before receiving new (e.g., test) data to predict. The
opposites are lazy learners, such as the K-nearest Neighbor (KNN) algorithm, where training
data is simply stored and test data is awaited for classification [66]. Therefore, lazy learners
take less training time but more time in predicting, while the opposite is the case within eager
learning. All of the algorithms mentioned above, along with some applications, are briefly
explained in the following sections.
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Logistic Regression

Logistic regression (LR), also called logit regression, despite its name, is a linear model for
classification rather than regression. Logistic regression, which first application was intro-
duced by Berkson [13], is a statistical model that uses a logistic function to model the binary
dependent variable. The log-odds (logarithm of the odds) is modeled as a linear combination
of the independent variable(s), which can be both binary or continuous. The logistic function
transforms the log-odds to the corresponding probability that can vary between 0 and 1 using
the sigmoid function. The unit of measurement for the log-odds scale is called a logit (logistic
unit). The generalized logistic model is defined as stated in Equation 4-4.

hθ(X) = 1
1 + e−θTX

= P (Y = 1|X; θ), (2-1)

where Y is the dependent variable, X the design matrix of independent variables and θ
represents the regression coefficients that are estimated based on the mapping between input
variables and the output variable [78]. The parameters of each input vector are estimated
through maximum-likelihood estimation (Equation 4-1).

The probabilistic output of the sigmoid function makes the LR one of the most popular
machine learning algorithms for binary classification. The parametric model has favorable
characteristics such as computational efficiency, easy implementation and interpretability. On
the downside, however, its simplistic modeling assumptions may lead to underfitting for com-
plex nonlinear data sets. Since it uses linear combinations of variables it is not adept at
modeling nonlinear complex interactions between variables [50]. Moreover, LR is sensitive
to model misspecification as well as to noise, which suggests the removal of outliers before
training.

In the context of an online store, Van den Pool and Buckinx [136] evaluate a broad range
of attributes using logit modeling to predict whether or not a purchase is made during the
next visit to the website. In the same year, Van den Pool and Buckinx [141] conducted some
research on predicting partial defection by behaviourally loyal clients at an Fast-Moving Con-
sumer Goods (FMCG) retailer and compared a logit model to Neural Networks and Random
Forests. Their results show no significant differences in terms of performance between all three
models. Despite its popularity and successful implementations, LR has been outperformed by
other machine learning methods in the majority of studies, concerning various applications
[80, 84, 86, 102].

Decision Tree

Due to its ease of use and interpretability, the DT algorithm has evolved to a popular con-
cept among researchers and analysts [84], and comes closest to meeting the requirements for
serving as an off-the-shelf procedure for data mining [55]. DTs use decision rules (or split
conditions) on a set of independent variables in order to partition a heterogeneous popula-
tion of observations into smaller, more homogeneous subgroups. The goal is to obtain the
most homogeneous subgroups possible [55]. One major advantage are the simple classification
rules, which greatly enhance interpretability of single DTs [66]. Comprehensibility decreases
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as the models grow larger and more unbalanced, however, remain easier to interpret than
other, more black box models [110]. Next to that, they usually exhibit short learning and
prediction times. They are robust to outliers and account for interaction effects between
variables. However, DTs have one major flaw - that is - their high variance. They are prone
to overfitting regarding noisy data. A small change in the data can result in a very different
series of splits, hence in a complete different tree with different outcome [55].

Random Forest
Bagging (Bootstrap Aggregation) is a popular ensemble technique and very effective in re-
ducing the variance of a single DT. By training DTs on several random subsets of the data
and averaging the predictions will lead to a more robust result than a single decision tree
[55]. The RF algorithm is an extension over bagging and is aimed at reducing the correlation
between the sampled trees [55]. In addition to taking random subsets of the data, Random
Forest also takes a random selection of features rather than using all features to grow the
trees.

Gradient Tree Boosting
Another ensemble method that experienced great attention in both literature and industry
is Boosting. According to Friedman et al. [55] it is one of the most powerful learning ideas
that has been introduced in the last couple of decades. In boosting, a collection of weak
predictors (DTs) are learned sequentially and trained iteratively on residuals. In other words,
consecutive trees are fitted on random samples and at every step, the goal is to solve for net
error from the prior tree. In case an input is not correctly classified by a hypothesis, its weight
is increased so that the updated hypothesis is more likely to classify it correctly.

Note: The DT algorithm and the ensemble methods are explained in more detail in subsec-
tion 4-1-3.

Throughout the literature, DTs show great results in various applications that are aimed at
predicting customer behaviour. While the results of Van den Pool and Buckinx [141] showed
no significant differences in terms of performance among alternative classification techniques,
other examples of applications for this purpose, including DTs [102] and SVMs [42], suggest
differently. While logistic regression performs slightly better than DTs, it is outperformed
by SVMs, whereas random forests outperform both kinds of models. Similarly, Larivière and
Van den Poels’ [84] findings demonstrate that random forest techniques provide a better fit
for the estimation and validation sample compared to ordinary linear regression and logistic
regression models in the context of a financial services company. Croux and Lemmens [86]
investigated the contribution of bagging and boosting to classification trees in the case of
predicting customer churn and found superiority in terms of performance compared to a binary
logit model. In the same context, Xie et. al [143] obtained superior results of an improved
random forest model over other methods, such as artificial neural networks (ANNs), DTs and
SVMs. In the more recent study of Martinez et al. [91] a gradient tree boosting algorithm
was implemented in order to predict future purchases in the non-contractual setting. The
results indicate its superiority over logistic Lasso and extreme learning machines.
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Support Vector Machine

The goal of the SVM algorithm is to find a hyperplane (as indicated in Figure 2-2) in an
N dimensional space that partitions a heterogeneous population of observations into two,
more homogeneous groups in order to distinctly classify them [41]. The dimension of the
hyperplane depends on the number of independent variables. For example, if the number
of input features is 3, then the hyperplane becomes a two-dimensional plane. By finding
the optimal hyperplane out of all possibilities that maximizes the margin (distance) between
data points of both classes, some reinforcement is achieved concerning the confidence of
future predictions. Support vectors are the data points that are closest to the hyperplane
and influence the position and orientation of the hyperplane. Using these support vectors,
the margin of the classifier is maximized.

Figure 2-1: A simple linear support vector machine (left) [132, Figure 1 (a)].

In case the feature space is not linearly separable, a kernel-function is used to map data on
a higher dimensional feature space where the data becomes linear separable. By mapping
inputs to a high-dimensional feature space, it becomes possible for SVMs to not only model
linear relationships but to also conduct non-linear classification [41].

SVMs are highly preferred by many as they produce significant accuracy with less computa-
tion power. Next to that, they are well suited for high-dimensional input. These advantages
come in trade-off with long training times and being less interpretable. Furthermore, careful
hyperparameter tuning is required, which can be difficult and time-consuming [66]. Another
flaw of SVMs is that they do not directly output probabilities, which would require additional
mapping of the output variable to probabilities.

Most implementations of SVM in customer behaviour prediction concern churn prediction.
For example, Coussement and Van den Poel [42] implemented SVMs for predicting customer
churn in subscription services while comparing two parameter-selection techniques. Both se-
lection techniques led to slightly higher accuracy than achieved by a logit model, however,
were outperformed by a random forest model. Also in the context of customer churn pre-
diction, Xia and Jin [142] build a SVM and compared it with ANNs, DTs, LR, and a naive
bayesian classifier. The results show superior performance of the SVM over the other models.
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Feed-forward Neural Network

The FFN is the most basic class of the artificial neural networks, where information only flows
one-directional from input layer to output layer. A neural network consists of neurons that are
ordered into layers [128]. The first layer is called input layer and the last layer is called output
layer. The layer(s) in between are called hidden layers. Each neuron in a particular layer is
connected with all neurons in the following layer, where each connection is characterized with
an individual weight coefficient. The coefficients are determined during the learning phase, for
example via back-propagation. Back-propagation is the most common used learning method
and uses the steepest-descent minimisation method. With enough hidden units, an FNN can
approximate any function. Output is the probability of each class, which add up to one. From
a statistical point of view, FNNs perform a nonlinear regression.

Figure 2-2: Typical feed-forward neural network composed of three layers [128, Figure 1].

FFN tend to provide good results as they generalize well to unseen data while being fairly
robust to noisy data [66]. On the downside, they have little comprehensibility, model fitting
takes long and hyperparameter tuning is less straightforward.

Suchacka and Templewski [125] succesfully implemented a FNN model to predict purchases
in sessions and obtained good results. However, they provided no performance comparison
with other models. Mozer et al. [97] compared a FNN with a DT algorithm in the context of
subscriber dissatisfaction prediction in the wireless telecommunications industry. The results
indicate that the FNN outperformed the DT. They also applied boosting to both models,
which slightly enhanced performance. In the context of consumer choice prediction, Clemens
et al. [58] implemented two ANN models and achieved superior results than with traditional
logistic models.

K-nearest Neighbor

KNN is a lazy learning algorithm and has been used in statistical estimation and pattern
recognition already in the 1970’s as a non-parametric technique [49]. The KNN algorithm
stores all available data in an N-dimensional feature space and awaits new observations for
classification. An observation is classified by a majority vote of its neighbors, with the obser-
vation being assigned to the class most common amongst its K nearest neighbors measured

Master of Science Thesis R.B. Verbruggen



14 Literature

by a similarity measure or distance metric (e.g., Euclidean distance etc.)[66]. Choosing the
optimal K can reduce the overall noise, which therefore can lead to better results, and is done
via inspection of the data or cross-validation.

Key advantage of the KNN algorithm is the simple and easy implementation, since there is
no need for tuning several parameters or making additional assumptions. Furthermore, KNN
are fairly robust to both noisy data and irrelevant input features, and have very fast training
speed. The latter, however, comes in trade-off with very long prediction times. Another
disadvantage is the computational performance that significantly decreases as the number
of examples or independent variables increase. Similarly, comprehensibility decreases with
high-dimensional input. Like SVMs, KNN models do not output probabilities directly.

In the field of e-commerce, the KNN algorithm has been mainly applied in the context of
recommender systems. Products are recommended to a visitor of a web shop based on similar
preferences of prior visitors (nearest neighbors). Whereas, limited research can be found
concerning customer behaviour prediction. Suchacka et al. [124] implemented a KNN model
that aimed at classifying customers of a web shop into buying or browsing sessions. The
best results were obtained using 11 neighbors and indicate great performance, however no
performance comparison with other models was conducted.

2-2-2 Explanatory Analysis

It is evident that selecting an appropriate model is an important step within predictive mod-
eling, however, it is not the only one. Choosing the right input data to train the models is
evenly, or maybe even more important. On the one hand that involves the quality of the data
and on the other hand the type of data, whereas the latter is closely related to the purpose
of the model. Since learning algorithms aim to learn a generalized relationship between input
and target variables, it is desired to find input variables that are highly predictive of the
target variable(s). Hence, in a binary problem, input variables are desired that maximize the
separability of the samples into the two distinct classes. Some of the studies that are discussed
in the previous sections, have evaluated the effect of different data types on prediction per-
formance. The general consensus is that dynamic session data is more effective in predicting
future behaviour than static customer data, whereas a combination of both leads to the best
results in most of the cases [28, 105, 111, 136, 141]. The next paragraphs review the type of
explanatory variables that is used for various applications concerning the classification and
prediction of customer behaviour.

A widely researched methodology is market or customer segmentation for classifying cus-
tomers into distinct groups. Its objective is to provide better understanding about the overall
composition of customers, including their characteristics and purchase behaviour. The first
step and crucial part of segmentation is to identify attributes that can measure dissimilarities
(known as a distance measure) in order to distinguish customers from each other [27, 69].
Followed by creating analogous segments based on these attributes which is known as the
methodology of clustering. Dividing a market into segments can be done by various ap-
proaches, however at their core, all methods are based either on descriptive or behavioural
attributes [29, 66, 82, 139]. Descriptive attributes (such as age, sex, size or location) are com-
monly used since this type of variables is easy to quantify. Whether segmentation based on
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descriptive attributes is successful, depends to large extent on the relevancy of the attributes
for defining the segments and the availability of supporting data of those attributes [5]. In
customer relationship management, behavioural data is often seen as very effective since it
carries a lot of predictive value [111]. Segmentation based on behavioural attributes not only
requires historical data that describes the behaviour of customers, but also a method for
extracting and identifying it within the data [10, 77]. There are many external factors, such
as seasonality, economy, competitors’ actions, and social perception, that influence customer
behaviour. However, selecting appropriate factors can be challenging [115].

Many customer behaviour studies investigated the application of customer demographic vari-
ables to analyse and predict customer behaviour [103, 122]. Whereas, behavioural variables,
such as recency, frequency, and monetary (RFM), are found to have high value in discriminat-
ing customer contributions to a business [93]. The variables, respectively, measure the recency
of customer purchasing behaviour, the frequency of purchasing, and the average monetary ex-
penditure on purchasing. In literature it is widely observed that the use of the RFM attributes
for customer behavioural analysis can effectively identify customer values and segment mar-
kets [33, 81]. Buckinx and Van den Poel [141] use several classification techniques to build
partial defection models in grocery retail and examine behavioural antecedents, demographics
and perceptions as input variables.

With the ever evolving technologies in data systems another source of information for pre-
dicting purchase behaviour has become available, clickstream data (event data). Bucklin et
al. describe clickstream as the path taken by a user through one or more websites [24]. The
detailed stream of information allows retailers to follow and understand the decision-making
process of their customers in the online environment. Several studies support the findings of
event variables having a positive effect in the context of predicting online purchase behaviour.
Padmanabhan et al. [103] predicted the probability that the remainder of a visit results in
a purchase and if that user would make a purchase in any future session. Additionally, they
demonstrate that including user-centric clickstream data outperforms models that are built
on site-centric data only. Moe and Fader [94] conducted some research on developing a model
for evolving visiting behaviour based on Internet event data. By analysing the conversion of
store visits into purchases based on historical visiting data, for each customer predictions can
be made concerning the probability he or she will make a purchase during the next visit. They
found evidence that supports the notion that people who visit a retail site more frequently
have a greater propensity to buy. In their empirical study, Van den Pool and Buckinx [136]
examine a wide variety of variables, including customer demographics, historical purchase be-
haviour and (detailed) event data. Also included are features such as the number of products
viewed and whether the search engine is used, which both are shown to have a significant
effect on the purchase probability. The results show that predictors from all categories are
retained in the subset of variables with most predictive power. According to Bucklin and
Sismeiro [120], even the sequence of different actions taken by a visitor has some predictive
value about the probability of placing an order. Since most online stores provide a virtual
shopping cart to assist customers to collect items of their interest, such useful information
can be exploited and may be a strong predictor for online-purchasing behaviour. Close and
Kukar-Kinney [38], as well as Tang et al. [130] found supportive results, indicating that on-
line behaviour regarding shopping cart usage significantly increases the probability of a visit
resulting in an actual order. The results of prior research mostly rely on computer-based
features. However, in the recent years mobile commerce is emerging at fast pace and with it
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an even richer data source becomes available, which has the potential to result in new possible
features. Recent research by Cardoso et al. [28] regarding customer lifetime value prediction
based on customer demographics, returns history, purchase history and web/app session logs,
reveals that the latter two among the variables were most successful in predicting customer
behaviour.

2-3 Literature Gap

Even though the general idea of the above-mentioned studies and the problem at hand are
similar, namely the prediction of online customer behaviour, there are some major differences
which will be researched within this thesis study. Whereas most studies are conducted in
the field of conventional e-commerce, this research will focus on the online grocery retail
market. Instead of predicting, for example, the resulting purchase probability of the remainder
of a session based on clickstream data, or the likelihood that a customer will churn based
on their past behaviour, this study aims at the estimation of customers’ daily purchasing
probabilities. Within this application, the effect of different types of explanatory variables
on model performance will be investigated. The objective of all the reviewed studies involves
a single binary target variable, whereas the approach proposed in this thesis requires the
extension to a model that can handle multiple outputs, namely one for each horizon. Finally,
and most importantly, the obtained purchasing probabilities will be evaluated in the context
of aggregated forecasting performance for a group of customers.
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Chapter 3

Data

For the analysis employed in this project, Picnic provided access to their data warehouse.
Picnic stores all sorts of dynamic data, such as transactional data, and static data in tab-
ular format in a relational database. Transactional data is a set of sequential timestamped
events that represent interactions between customers and companies, where most represent
purchases. The data in Picnic’s data warehouse ranges from detailed customer and purchase
data, application and operational systems data, over to demographic and geographic data.
This enables analysis of the complete purchasing history of all customers and any additional
data that is available and may be valuable for this research. At midnight all data of the
previous day is gathered, structured, polished and finally stored in the database, allowing
access to fresh data every day. For the sake of this project, Picnic’s database is used as only
data source for the analysis performed in this project. Therefore, no real time data is fed into
the models.

In section 3-1 the potential explanatory variables are discussed that are considered as an input
for the models. Thereafter, in section 3-2, some necessary pre-processing steps are explained
that are performed before the actual modeling procedure.

3-1 Explanatory Variables

It is investigated whether the different methodologies found in literature, involving various
types of explanatory variables, can be of use in order to form the basis for a propensity model
in the context of an online grocer. Besides analysing customer characteristics and purchase
behaviour to distinguish customer groups and estimate next-buy probabilities, this methodol-
ogy also aims for clear identification of customer (weekly) purchase patterns. The latter is of
great importance, since the goal is to obtain accurate predictions for each customer on a day
level. As in literature suggested, this project will focus on the analysis of historical customer
purchase behaviour data, event data and descriptive customer attributes, to explore their
potential in identifying future purchasing behaviour. For modeling purposes, all information
that is known from the customers’ first purchase on, up to the cutoff (time of performing
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the prediction), is included in a set of independent variables as time in-/variant features (see
Figure 3-1). Note that this only includes data that is gathered till the end of the day prior
to the cutoff date, as following data is not known at that time.

Figure 3-1: Schematic representation of the period of analysis.

Therefore, four main sets are considered for retrieving data that possibly contains explanatory
power. The first set incorporates descriptive information about individual customers includ-
ing the identification (id) number, demographics and a summary of the customers purchase
history. In the second table detailed information about every purchase is stored, such as the
purchase id, customer id, the date of order creation and date of delivery, the time window
of the delivery, the size and value, the satisfaction rating and many more. The third set
captures all kinds of events concerning application usage aggregated to sessions, hence any
interaction between customer and application. It includes information about the type of event
(views, searches, product added etc.), session start and end times and to which customer it
belongs. The final set includes all kind of meta data, such as time dependencies, holiday dates
and meteorology data. The following sections provide explanation of the various explanatory
variables that are used for the analysis.

3-1-1 Customer Demographics

The customer demographics considered in this project include the household composition,
their geographical location and some statistical information regarding the neighbourhood of
a customer. These features are used for heterogeneity purposes, which are supposed to help
identifying different behaviour among customer groups. Subsequently, this is expected to
enhance predictive performance for new customers where little purchase history is available,
by matching their profile with customers of similar type.

At first, the household composition is included as it is known from the data that families show
a different behaviour compared to non-families. Especially during (school) vacations families
are more likely to go on holiday and therefore the probability of them placing an order during
that time decreases. Furthermore, whether a customer owns a pet can tell various things about
his or her personality. Results by James et al. [73] suggest significant differences among those
who own only dogs, only cats, dogs and cats, and non-owners. Furthermore, pet owners are
expected to go less (or for a shorter period of time) on vacation, since they need to take care
of the pet. Hence, the household composition is represented by four variables; the number of
adults, the number of children, the number of dogs and the number of cats. To distinguish
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business users from regular customers, an additional binary variable is introduced. Moreover,
the geographical location is included by the latitudinal and longitudinal coordinates in order to
account for local behavioural trends and customer habits. Finally, attributes concerning some
statistics about the neighbourhood that a customer lives in are also incorporated. These are
expected to contain some information about the type of customer. They embody the number
of households, the average number of cars per household, the average income per inhabitant,
and the number of supermarkets within a range of 1 kilometer.

3-1-2 Customer Purchase behaviour

Customer purchasing behaviour is represented by multiple predictors, that embody recency
and frequency of purchases, amount of money spent, inter-purchase times, length of the rela-
tionship between customer and company, promotional behaviour and customer satisfaction,
as encouraged by many researchers (subsection 2-2-2).

Recency, Frequency and Monetary

At first, the RFM variables are included. The recency variable is a temporal measure that
implies how recently a customer has made a purchase. Among the RFM variables, this is
considered as the most powerful predictor of customer future behaviour [93]. In the case of
partial churn prediction, a lower value corresponds to a higher probability that the customer
will remain using the service [136]. In this study, recency indicates the number of days
between the previous purchase and the time of prediction. It is expected that it carries
strong predictive value regarding the likelihood of a next purchase. Frequency is represented
by the number of purchases pursued within a certain time window and indicates the strength
of the customer relationship with the company. A high frequency of purchases at a particular
company naturally conforms with a high loyalty towards it [133]. Therefore, frequency is
expected to be a predictor of future behaviour, especially in terms of churn prediction [17].
Frequency is included in several ways here; (1) the number of total purchases, (2) the number
of purchases last week, 2, 3, 4, 5 and 6 weeks ago, and (3) the number of purchases per
weekday within the last 8 weeks. The latter two are a measure of recent frequency, which are
more representative for the customer’s current state of interest. Moreover, feature (3) is also
an indicator for the preferred weekday(s) of the customer. Monetary is the amount spent by
the customer and is seen as the least powerful variable of the three, although it is still noticed
as being valuable in cooperation with the others [111]. The variable is covered by the total
and average amount spent.

Interpurchase Time

There is also evidence that the temporal relation between purchases can provide additional
predictive value in cases where logical orders of purchases exist [117]. From the data analysed
in this study it is found that in the majority of cases customers tend to order in patterns.
Therefore, it is assumed that the period between purchases has high predictive value on when
the next purchase will be, especially in conjunction with the recency variable number of days
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since previous purchase. It is expected that the median of the observed interpurchase times
is more appropriate than the average in this context, as one is interested in the usual period
between purchases. However, irregularities like missing a week out (or more) due to vacations
or other reasons would result in a misleading value. Therefore the variable is represented by
the median of the observed interpurchase times. In order to deal with varying periods (e.g.,
a customer makes a purchase every 3 and 4 days), its standard deviation is incorporated as
a feature as well.

Since for the majority of the customers the shopping behaviour conforms to a noticeable
pattern, the interpurchase time can be viewed as cyclical. In order for a machine learning
algorithm to recognize that a variable is of cyclical nature, its discrete form needs to be
transformed into a continuous form. Using sine and cosine trigonometric functions the inter-
purchase time can be transformed into two continuous periodic variables that indicate whether
the prediction date is close to the expected purchase date, while taking time dependencies
into account. For each customer, the sine and cosine transformations of the interpurchase
time at time t are given by

α(t) = sin
(

2π d
T

)
&

β(t) = cos
(

2π d
T

)
,

(3-1)

where d is equal to the number of days since the previous purchase and T is the interpurchase
time.

Length of Customer Relationship

The length of customer relationship is defined as the number of days since invitation till the
day of prediction. It is used to distinguish new customers from more mature ones.

Promotional behaviour

Many studies investigating the effect of loyalty programs and short-term promotions on cus-
tomer retention found encouraging results [87]. Since Picnic also uses similar tools, it is
interesting to see whether such variables have predictive value on future customer behaviour.
Variables such as average and total discount, total discount in the last 5 weeks, number of
promotions in the most recent order and the number of gifts in the most recent order, are all
included in this study.

Customer Satisfaction

It is evident that customer satisfaction plays a big role in building good relationships with
customers and that it has positive effect on customer retention. Bad experiences result in
less trust towards the company and can finally lead to customer churn [63]. Therefore, it is
assumed to be a predictor for future purchase behaviour. The satisfaction level is represented
by the average rating and the rating of the most recent order on a scale 1 to 10, where 1 is
worst and 10 is best. Additionally, the total number of incidents concerning a delivery (e.g.
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missing products, freshness issues etc.), and number of incidents in the last order are included
as variables. Since one of Picnic trademarks is on time delivery within a small time window,
two more variables are considered regarding the on time of a delivery. The first one covers
the lateness in minutes of the most recent order, whereas the second one covers the average
lateness in minutes up to prediction date.

Placed Purchases

Since customers are able to place orders up to 14 days ahead, a (small) fraction of orders
is already known before time of prediction. In order to incorporate them directly into the
model rather than first excluding them and adding them again to the prediction afterwards,
the number of days till the known date of delivery is included as a feature.

3-1-3 Event Data

In comparison to past research, which is mostly web-based, this study considers mobile appli-
cation data as only source for event related features. While certain features that are shown
to be important for predicting customer purchasing behaviour (such as the total number of
products viewed [136]) are not available, some others still can be implemented. First, it is
desired to incorporate the frequency of visits, like suggested by Moe and Fader [94]. This is
done by counting the total number of unique sessions per customer since the previous purchase
up to the moment of cutoff. Moreover, recency is also included as feature for the event data,
since this is shown to have a significant effect on online purchase probabilities [136]. In this
study, the variable represents the number of days between the date of the last visit and the
cutoff date. Another promising feature noted in those studies, is the time that a customer has
spent during the sessions. Therefore, the variable representing the total number of seconds
spent in the app since the previous purchase, is added to the features as well. Similarly, the
total number of clicks, that also seem to have significant predictive value [136], are covered by
an adjusted feature that counts the total number of events since the previous purchase. As
suggested by Close and Kukar-Kinney [38] and Tang et al. [130], the behaviour concerning
the usage of the virtual shopping cart can tell a lot about future purchasing behaviour. There-
fore, this study incorporates the number of products in the basket as a feature. Finally, since
recency tends to be such a great predictor, all of the variables above are additionally adjusted
to variables that summarise the behaviour of just the day prior to the date of prediction. This
describes the most recent behaviour of the customer that is known at the moment of cutoff.

Since Picnic makes use of designated time slots per delivery area, these are select-able items
in the application. A customer can choose to select it whenever he or she likes but prior to
checkout. Most of the customers do it after they filled the basket with groceries and are ready
to place the order. However, there is a fraction of customers that "reserves" a time slot up
to a couple of days before checkout, as they probably already know when they want to make
the (next) purchase. Therefore, the number of days till the most recent selected time slot is
assumed to be a great predictor of their future purchase behaviour.
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3-1-4 Capacity Constraints

A big challenge in forecasting within Picnic are capacity constraints. Regularly, the capacity
of the supply chain does not meet the actual demand of certain delivery areas or regions,
with the result that the store closes before regular closing time for that specific area or
region. Within Picnic this is defined as a "slot closing", where slot refers to a time slot that is
available dependent on the region a customer lives in. A slot closing can lead to "overflow" of
orders to the following day(s), or may even result in customers placing no order at all that at
first had the intention to. Either way, it forces the behaviour of customers to change, which
can have an one-off effect or an effect that remains for longer period of time. For example, a
customer that orders weekly has decided to place an order for the day after, then could adapt
his or her future behaviour to that new weekday or fall back to the initial day of preference.
Similarly, a customer could decide to simply not order anymore at all, or just not this time
only and order the following week again. There are several possible outcomes to this situation.

The days with slot closings are incorporated for each weekday, for each customer dependent
on their location. Using this, in combination with the daytime that a customer usually orders,
it is attempted to identify whether a customer was likely to be affected by the early closing or
not. It is expected to provide more information for future behaviour. For example, it could tell
the model not to give too much weight on the features concerning customer periodicity in case
a customer was forced to change behaviour due to a slot closing. Hence, the first variable
expresses the average create time of purchases of a customer, by measuring the difference
between the time of purchasing and regular closing time of the store and taking the average.
The other variables embody the minutes that a slot closed before regular closing time per
weekday.

3-1-5 Meta Data

In order to cope with weekly and yearly seasonality some temporal measures are included in
the feature set as well. The first variable that is included represents the weekday at cutoff.
Since customers usually live in weekly routines due to work and other returning activities, they
often have their preferred weekdays for delivery of their groceries. With similar reason the
calendar week is incorporated as well, to account for yearly seasonal effects. Both variables
are transformed into their two periodic variants using Equation 3-1, with t the weekday
and calendar week, and T the number of days in a week and number of weeks in a year,
respectively. Together with two encoded variables that indicate whether the date of prediction
is a (summer) holiday, it is attempted to deal with seasonal trends and changing behaviour.

Furthermore, some meteorological information such as precipitation probability, temperature
and cloud cover on cutoff day are included to investigate whether this affects people’s online
shopping behaviour.

3-2 Pre-Processing

The first and one of the most important steps is to ensure the quality of the data that is
used for analysis [62]. The quality of data is represented by five key characteristics: validity,
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accuracy, completeness, consistency and uniformity. The data should conform to defined
business rules and constraints, and should represent values that are close to reality. If a large
proportion of observations have missing values, it will have a negative effect on the statistical
power. Same holds for inconsistent data sets, e.g. when two or more values in the data set
contradict each other. Finally, the data should contain the same unit of measure across the
board in order to avoid misleading results.

Therefore, pre-processing is often necessary before modeling. Pre-processing involves data
cleansing and transformation. Data cleansing is the methodology of missing value imputa-
tion, outlier detection, and replacement. In many applications, transformation of the data is
necessary as the applied techniques rely on statistical assumptions, like unit variance, zero-
mean and (standard) normal distribution.

3-2-1 Cleansing

At first, internal Picnic customers along with customers that did not place an order yet, are
excluded from the data set. Next, the set is scanned for missing values and outliers. Fortu-
nately Picnic does a great job in keeping the data that they gather clean and as complete as
possible. Therefore, very little cleansing have to be performed. The variables concerning the
household size (e.g. number of adults, children, cats and dogs), however, do contain some
missing values as well as data that seems to be wrongly reported by some customers. Missing
values and outliers are imputed by the value −1 to indicate that the customer did not or
likely not correctly fill in the questions at sign up. For the number of adults a threshold of 20
is chosen; hence for any non-business user a value larger than that is considered as an outlier.
For the other variables a threshold of 10 is considered. This technique is chosen over con-
ventional techniques (e.g. mean imputation or imputation based on feature similarities), as
these techniques are less suitable in this case. Since the main purpose of these attributes is to
distinguish customer groups, mean imputation would naturally work in a contradicting way.
Although, imputation based on feature similarities would be an appropriate approach, the
other features are found not strong enough for proper identification. Therefore the imputed
values would result in biased parameter estimates due to low prediction accuracy. Further-
more, some earlier studies suggest to introduce a (binary) variable that indicates whether
some information (e.g. age, phone number, mailing address, etc.) was provided by the cus-
tomer or not, as this may indicate certain level of trust towards the company [136].

In univariate time series modeling, missing value imputation is required in order to maintain
the temporal relation between observations. Since there are some days for which Picnic does
not deliver any groceries (e.g., Christmas, new years day etc.), there are some dates without
recorded purchases in the data base. Leaving the values at zero would bias the outcome of the
model, which suggests the imputation of the missing values. This can be done in several ways
(e.g., by mean, median, mode, etc. imputation, linear interpolation , etc.), however there is
no good way to deal with them [106]. For the sake of this research it is chosen to predict
the missing values using the model itself and use the predicted values for model training that
follows.
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3-2-2 Transformation

Since in many applications the range of raw data varies widely, the objective function of
many machine learning algorithms would fail in obtaining proper results without scaling the
data first. For example, many classifier models calculate the distance between two points
using some distance metric (e.g., Euclidean distance). If one of the input vectors contains
values with a much broader range than the other vectors, then the resulting distance will be
governed by that particular feature. Hence, in such cases it is favorable to re-scale the data
to unit variance so that each feature contributes approximately proportionately to the final
distance calculated by the objective function. Besides metric-based methods, scaling is also
useful in gradient-based applications as the gradient descent algorithm converges much faster
when features are scaled to unit-variance [72].

When handling data that includes variables with multiple dimensions, feature standardization
should be applied before modeling in order for some machine learning algorithms to properly
work. By subtracting the mean in the numerator and dividing by the variables standard
deviation, it transforms each feature to have zero-mean and unit variance. This method is
widely used for data transformation in many machine learning applications (e.g., support
vector machines, logistic regression and artificial neural networks) as these assume approxi-
mately standard normally distributed data (e.g., Gaussian with zero-mean and unit variance)
[61]. The most common method is the z-score transformation to obtain a variable z′ with
zero mean and unit variance [79]:

z′ = x− x
σ

(3-2)

where x is the variable to be transformed, x the mean of that feature vector, and σ is its
standard deviation.

A notable exception are decision tree-based estimators that are robust to arbitrary scaling
of the data since they rely on rules instead of distances. Any monotonic transformation of
variables would not affect the outcome as the relative order of a variable is maintained post
scaling [55].

In conventional time series modeling, data transformation is required to convert non-stationary
time series into stationary time series. A stationary time series has no seasonality and no
trend, and complies with statistical measures like mean, variance and autocorrelation [65]. A
non-stationary time series can be made stationary by differencing [70].
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Chapter 4

Methodology

As mentioned in the introduction, the interest of this research lies in predicting the daily
purchasing probabilities of each customer, with the final goal to improve aggregated demand
forecasting of an online grocer. In this section, an approach is proposed which implements
three different classification algorithms that map a set of independent variables to a set of
dependent variables in order to make predictions for the future. The dependent variables are
of binary nature that for each customer for each horizon reflect whether a purchase is made
(1) or not (0). The output of the models are individual customer purchase probabilities. For
a group of customers, the obtained probabilities are then aggregated to the total level and
compared to a top-line time series model. Within this research, the top-line model is defined
as a model that is fit to the aggregated time series data of the total number of customers
within a group. For the sake of this research, it is decided to evaluate the predictions on
individual customer level as well as on a total level, within the next week (e.g. a horizon of
7 days). This enables Picnic to use the results for short-term planning purposes.

At first, an explanation of the proposed learning algorithms along with their mathematical
formulations are given in section 4-1. Followed by the extension methods that adapt the single
binary classification models in order to handle multiple labels in section 4-2. Thereafter, the
processes of feature selection as well as hyperparamter tuning are discussed in section 4-3 and
section 4-4, respectively. Then, the final modelling step is explained, namely the methodology
of probability calibration in section 4-5. This chapter comes to an end with topics concerning
model evaluation in section 4-6 and subsection 4-6-4.

4-1 Learning Algorithms

One of the most well-known and widely applied techniques for probability estimation in a
binary choice model is logistic regression [103, 136]. This straightforward parametric model is
known for its easy implementation and interpretability. On the down side, however, its sim-
plistic modeling assumptions may lead to underfitting for rich and complex data sets. The
logit algorithm will be used as a benchmark model for the classification algorithms. Literature
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suggests that there are several other non-parametric approaches which can be used for solving
binary classification problems. In the following sections, two tree-based ensemble methods
are discussed that have proven to be superior over logit regression and other machine learning
methods in the context of various applications in different domains [86, 84, 91, 136, 143]. A de-
tailed explanation of these models, namely the methodology of Random Forest and Stochastic
Gradient Tree Boosting, will be given along with some of their advantages and disadvantages.
The other methods discussed in subsection 2-2-1 are excluded from further analysis, as they
either did not show enough evidence of being fit for the job (KNN), do not directly output
probabilities (SVM and KNN), require careful hyperparameter tuning (SVM and FNN), have
low interpretability (SVM and FNN) or exhibit long training times (SVM and FNN). The
latter is an issue in the context of this research only, as modeling and evaluation of the models
take a considerable amount of time.

At first, however, a general description of the top-line model is given in subsection 4-1-
1. Since e-grocery retail is a ’relatively’ new concept, not much literature is available about
customer demand forecasting in this area. Therefore, the time series at hand is compared with
time series of other problems in the domain of forecasting. Some similarities are recognized
between the series of (short-term) load demand and the demand of an online grocer. In
particular, the daily load pattern show some analogies with the weekly demand pattern at
hand. Accordingly, the model described in subsection 4-1-1 is selected as benchmark model
in the context of forecasting. The model is widely applied to load forecasting problems due to
its accuracy and mathematical soundness [39, 64]. It is fairly easy to implement and provides
good results in case the series does not exhibit any extreme nonlinear, volatile behaviour,
which is not the case. The seasonal adaptation to the model enhances its ability in modeling
any seasonal and recurrent pattern [95, 134]. Additionally, the model has the advantage of
being highly interpretable while not requiring any tedious feature engineering.

4-1-1 Seasonal Autoregressive Integrated Moving Average Exogenous (SARI-
MAX) model

The ARIMA model is among the most applied statistical methods for stationary, univariate
time series problems. The application of the model is straightforward and they usually provide
satisfying results. As the name already suggests, the ARIMA model consists of three parts
in order to model time series data for forecasting (e.g., predicting future points in the series)
[65].

• The auto-regressive (AR) part accounts for a pattern of growth/decline in the data.

• The integrated (I) part accounts for the rate of change of the growth/decline in the data.

• The moving average (MA) part accounts for the noise between consecutive time points.

A time series is stationary if its statistical properties are all constant over time. In other
words, it has no trend and no seasonality, meaning its variations around its mean have a
constant amplitude and its short-term random time patterns resemble in a statistical sense.
The latter condition means that its autocorrelations remain constant over time, or equiva-
lently, that its power spectrum remains constant over time. A random variable can be viewed
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as a combination of signal and noise, where the signal could be a pattern of fast or slow
mean reversion, sinusoidal oscillation or rapid alternation in sign, as well as have a seasonal
component. If a time series is non-stationary, it can be made stationary by differencing, and
if necessary in conjunction with nonlinear transformations such as logging or deflating. An
ARIMA model can be viewed as a filter that tries to separate the signal from the noise, and
the signal is then extrapolated into the future to obtain the predictions [70].

The equation of the ARIMA model for a stationary time series is a linear regression-type
equation, in which the time series can be modeled as a combination of past values Yt and past
errors εt, also known as lags. Lags of the stationarized series in the forecasting equation are
called auto-regressive terms, lags of the forecast errors are called moving average terms, and
a time series which needs to be differenced to be made stationary is said to be an integrated
version of a stationary series.

Let Y = [y1, ..., yn]T be a series of observations, then the differenced ARIMA(p, d, q) model
at time instance t is expressed as

y′t = ζ1yt−1 + ζ2yt−2 + . . .+ ζpyt−p + εt − φ1εt−1 − φ2εt−2 − . . .− φqεt−q,

where ζt and φt are the parameters of interest and p and q the orders of auto-regressive and
moving average polynomials, respectively. The model parameters ζt and φt are estimated
using maximum likelihood estimation (MLE). The goal of MLE is to find the value θ̂ that
maximizes the likelihood function L(θ) over the parameter space Θ (Equation 4-1).

θ̂ = arg max
θ∈Θ

L̂(θ;Y ), (4-1)

with θ = [ζ1, ..., ζp, φ1, ..., φq]. The likelihood function is equal to the joint probability distri-
bution of observations in the series. Typically, the log-likelihood (Equation 4-2) is maximized
which approximates the exact solution while being computationally more efficient.

ln L̂(θ;Y ) = −n2 ln(2π)− 1
2 ln det(Γn)− 1

2Y
TΓ−1

n Y, (4-2)

with Γn the autocovariance matrix.

ARIMA expects data that is either not seasonal or has the seasonal component removed (e.g.,
seasonally adjusted via methods such as seasonal differencing). In order to support time series
data with a seasonal component, the ARIMA model can be extended to a seasonal model [70].
Such a model can be represented as ARIMA (p, d, q) × (P,D,Q)m (SARIMA), where P,D
and Q represent the coefficients for the seasonal part of the time series and m denotes the
number of periods within each season. "The seasonal part of the model consists of terms that
are very similar to the non-seasonal components of the model, but they involve backshifts of
the seasonal period" [70, page 242]. However, the time series exhibits both weekly and yearly
seasonality, which the SARIMA model is not able to account for. Therefore, to incorporate
the double seasonality, additional Fourier terms are added to the SARIMA model in terms of
exogenous regressors (SARIMAX).

Master of Science Thesis R.B. Verbruggen



28 Methodology

y′t =
K∑
k=1

[sin(2φkt
p

) + cos(2φkt
p

)] +Nt, (4-3)

with Nt the SARIMA process, p the period andK the corresponding number of Fourier terms.

4-1-2 Logistic Regression

Logistic regression (or logit regression), despite its name, is a linear model for classification
rather than regression. Logistic regression, which first application was introduced by Berkson
[13], is a statistical model that uses a logistic function to model the binary dependent variable.
The log-odds (logarithm of the odds) is modeled as a linear combination of the independent
variable(s), which can be both binary or continuous. The logistic function transforms the
log-odds to the corresponding probability that can vary between 0 and 1 using the sigmoid
function. The unit of measurement for the log-odds scale is called a logit (logistic unit). The
generalized logistic model is defined as stated in Equation 4-4.

hθ(X) = 1
1 + e−θTX

= P (Y = 1|X; θ), (4-4)

where Y is the dependent variable, X the design matrix of independent variables and θ
represents the regression coefficients that are estimated based on the mapping between input
variables and the output variable [78]. Similar as in the ARIMA case, the parameters are
estimated using MLE (Equation 4-1).

Since Y ∈ {0, 1}, P (y|X; θ) = hθ(X)y(1− hθ(X))(1−y). Then, assuming that all the observa-
tions in the sample are independently Bernoulli distributed, the likelihood function is given
by

L(θ|x) = P (Y |X; θ) (4-5)
=
∏
i=1

P (yi|xi; θ) (4-6)

=
∏
i=1

hθ(xi)yi(1− hθ(xi))(1−yi) (4-7)

In this case, a logit model is implemented that uses the SAGA algorithm for optimisation to
find the optimum of the likelihood function. SAGA is inspired by both SAG [113] and SVRG
[75] and is an incremental gradient algorithm with fast convergence rates, which therefore
makes it a suitable algorithm for large data sets. For more information and the theory behind
the algorithm, this research refers to the work of Defazio et al. [48].

4-1-3 Decision Tree Ensemble Methods

Classification and Regression Trees (CART) were first introduced by Breiman et al. [20].
They are based on the Decision Tree (DT) algorithm and form the basis for the ensemble
methods Random Forest and Stochastic Gradient Tree Boosting.

Due to its ease of use and interpretability, the DT has evolved to a popular concept among
researchers and analysts [84], and comes closest to meeting the requirements for serving as an
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off-the-shelf procedure for data mining [55]. As the name already insists, DTs use decision
rules in order to obtain the dependent variable from the set of independent variables. Given
training vectors xi ∈ Rn, i = 1, ..., n and a label vector y ∈ R, a decision tree recursively
partitions the space into a set of rectangles (or their higher dimensional equivalent) such that
the samples with the same labels are grouped together [55]. For example, at its starting point,
the algorithm divides the feature space X into two regions by splitting feature Xj at some
threshold t (splitting point) [55].

R1(j, t) = {X |Xj ≤ t} and R2(j, t) = {X |Xj > t}. (4-8)

This procedure is then repeated for one or both of the resulting regions and continues S times,
until some stopping criterion is satisfied. This will end up in S + 1 = L regions as visualized
in Figure 4-1. A tree consists of multiple nodes that are connected with each other. The
initial node is called root and the terminal nodes are called leaves. The paths from the root
to the individual leaves are known as branches.

Figure 4-1: Schematic Overview of a partitioned two-dimensional feature space (left) and
corresponding decision tree (right) [55, Figure 9.2].

The optimal splitting point tm for variable Xj in node m is found by minimizing the impurity
in both the resulting nodes (child nodes). Impurity simply measures the class distribution
within a node. An equal distribution corresponds to maximum impurity, whereas minimum
impurity occurs when a node contains all samples of a single class. Hence, the objective of the
decision tree is to find the leaves with lowest achievable impurity, indicating that the classes
are well separated. Let the data in node m be represented by Q, then for each candidate split
θ = (Xj , tm) (hypothesis) the data is partitioned into two subsets:

Qleft(θ) = (x, y)|xj <= tm (4-9)
Qright(θ) = Q \Qleft(θ). (4-10)

The weighted impurity (loss function) of the child nodes is computed by

G(Q, θ) = nleft
Nm

H(Qleft(θ)) + nright
Nm

H(Qright(θ)), (4-11)

using some impurity function H(). Then, the optimal parameter is selected by minimizing
the weighted impurity:

θ∗ = arg min
θ

G(Q, θ). (4-12)
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In classification, the two most commonly used measures of impurity are Entropy and Gini
(index). The difference between the two in terms of performance is rather small for tree-
based models [129]. However, since it is computationally faster, the Gini index is selected as
impurity measure in this research. The Gini index is defined as

H(Xm) =
K∑
k=1

pmk(1− pmk), (4-13)

where Xm is the training data in node m with Nm observations and pmk the proportion of
class k observations, given by

pmk = 1
Nm

∑
xi∈Rm

I(yi = k), (4-14)

with I an indicator function, which is 1 when the arguments evaluate to true and 0 otherwise
[55].

In order to estimate the class probabilities of a new sample, one simply has to follow the
branch from the root until the designated leaf is reached. The class probability is then given
by the proportion of that class in the leaf. Finally, the sample is classified (assigned to a
class) using majority voting.

Decision trees, however, have one major flaw - that is - their high variance. A small change
in the data can result in a very different series of splits, hence a complete different tree with
different outcome [55]. This is due to their hierarchical structure, as the effect of an error in the
top split is propagated down to all of the following splits. To overcome this problem, there are
some adaptations to the algorithm while mostly remaining the advantageous characteristics
of the decision tree. Ensemble methods combine the results of several ’weak’ learners into
a more powerful estimator. The idea behind this concept is that, despite the instability of
decision trees they are unbiased predictors [55]. Hence, on average decision trees provide
’correct’ estimations.

Bagging (Bootstrap Aggregation) is a popular ensemble technique and very effective in reduc-
ing the variance of a decision tree. By training a decision tree on several random subsets of
the data and averaging the predictions will lead to a more robust result than a single decision
tree [55]. The Random Forest algorithm is an extension over bagging and is aimed at reducing
the correlation between the sampled trees [55]. In addition to taking random subsets of the
data, Random Forest also takes a random selection of features rather than using all features
to grow the trees.

Another ensemble technique that experienced great attention in both literature and industry
is Boosting. According to Friedman et al. [55] it is one of the most powerful learning ideas
that has been introduced in the last couple of decades. In boosting, a collection of weak
predictors are learned sequentially and trained iteratively on residuals. In other words, con-
secutive trees are fitted on random samples and at every step, the goal is to solve for net error
from the prior tree. In case an input is not correctly classified by a hypothesis, its weight is
increased so that the updated hypothesis is more likely to classify it correctly.
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Figure 4-2: Schematic Overview of a Random Forest Model.

Since tree-based ensemble models are built upon the concept of decision trees, they remain
some of their favorable properties. They are robust to monotonic transformations, which
therefore makes feature scaling redundant (subsection 3-2-2). Furthermore, the models are
fairly resistant to outliers and robust to the inclusion of irrelevant features [55]. Addition-
ally, they are able to model interaction effects between variables without explicitly including
them in the model. Although single decision trees are more easy to interpret, some variable
importance measures for ensemble methods can yet provide some comprehension about the
predictive power of each variable. Therefore, these models are more transparent than most
other machine learning models, like for example Neural Networks.

Yet, compared to logistic regression, ensemble tree models lack interpretability of the rela-
tionship between the independent variables and dependent variabele. However, this issue is
disregarded since the main focus of this study concerns the prediction performance. Like
many other machine learning models, tree-based methods are in need for careful tuning of
the hyperparameters to prevent overfitting (or underfitting). This is especially important in
the case of gradient boosting, whereas this is less an issue for random forests [55].

Random Forest

The random forest algorithm draws D bootstrap samples with replacement from the data and
grows a tree for each sample. The idea is to further improve the variance reduction of bagging
by reducing the correlation between the trees, without increasing the variance too much [55].
This is done by selecting a new set of features nsel ≤ n of the input variables at random
at each split as candidates for splitting. The algorithm works as described in Algorithm 1:
Random Forest [55].

The class probability estimates of the entire random forest are then simply obtained by
averaging all the individual trees. Hence, let p̂d be the probability estimate for the positive
class of a subject of the dth tree, then the class probability estimate of the random forest is
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Algorithm 1: Random Forest

1. For d = 1 to D:

(a) Draw a bootstrap sample Z∗ of size N from the training data.
(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively

repeating the following steps for each terminal node of the tree, until the
stopping criterion is reached.
i. Select nsel variables at random from the n variables.
ii. Pick the best variable/split-point at m.
iii. Split the node into two daughter nodes.

(c) Output the ensemble of trees {Td}D1 .

Let Ĉd(x) be the class prediction of the dth decision tree in the forest with x ∈ Rn
the vector of input variables, then the prediction for a new x is given by

Ĉrf (x) = majority vote
{
Ĉd(x)

}D
1
. (4-15)

given by

p̂Drf (x) = 1
D

D∑
d=1

p̂d(x). (4-16)

Random forests are shown to lead to both improved classification and probability estimates
as compared to single decision trees [55]. They are easy to implement and computationally
fast. Furthermore, random forests are suitable for probability estimation as long as some
tree-building rules are met. For example, the presence of some impurity within the tree must
be guaranteed [90].

Stochastic Gradient Tree Boosting

In the methodology of gradient boosting (GB), additive regression models are constructed by
fitting simple parameterized functions (base learners) sequentially to ’pseudo’-residuals using
a least-squares approach at each step. The residuals are obtained by minimizing the gradient
of the loss function, with respect to the model values at each training data point evaluated
at the current iteration [57]. Since the models are grown in an adaptive manner, gradient
boosting minimizes bias. This is in contradiction to random forests, where only variance is
reduced. The implementation of the algorithm follows the procedure described by Friedman
[57]. In function approximation, the interest lies in finding some function f∗(x) that maps a
vector of independent variables x ∈ Rn to y ∈ R while minimizing the expected value of some
arbitrary loss function Ψ(y, f(x)) over the joint distribution of all (y,x)-values.

f∗(x) = arg min
f(x)

Ey,xΨ(y, f(x)). (4-17)
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In boosting, f∗(x) is approximated by using an ’additive’ expansion of the form

f(x) =
B∑
b=0

βbh(x; ab), (4-18)

where h(x; a) (base learner) are in general basic functions of x with parameters a = {a1, a2, ...}.
The expansion coefficients {βb}B0 and parameters {ab}B0 are mutually fit to the training
data using a forward stage-wise approach. Starting with an initial guess f0(x), then for
b = 1, 2, ..., B

(βb,ab) = arg min
β,a

N∑
i=1

Ψ(yi, fb−1(xi) + βh(xi; a)) (4-19)

and
fb(x) = fb−1(x) + βbh(x; ab). (4-20)

To replace the potentially difficult function optimisation problem in Equation 4-19, the so-
lution can be approximated using a two-step procedure. First, the base learner h(x; a) is
initialized by fitting least-squares

ab = arg min
a,ρ

N∑
i=1

[ỹib − ρh(xi; a)]2 (4-21)

to the current ’pseudo’-residuals

ỹib = −
[
δΨ(yi, f(xi))

δf(xi)

]
f(x)=fb−1(x)

. (4-22)

Then, having h(x; ab), the optimal value of the coefficient βb can be calculated by a single
parameter optimisation

βb = arg min
β

N∑
i=1

Ψ(yi, fb−1(xi) + βh(xi; ab)), (4-23)

based on the general loss criterion Ψ.

In the case of gradient tree boosting, the base learner is an L-terminal node regression tree
that at each iteration partitions the x-space into L-disjoint regions {Rlb}Li=1. In each region
the tree predicts a separate constant value

h(x; {Rlb}L1 ) =
L∑
i=1

ylbI(x ∈ Rlb), (4-24)

where ylb is the mean of the ’pseudo’-residuals (Equation 4-22) in each region Rlb and I the
indicator function. Now the parameters are equal to the splitting variables and corresponding
split points of the bth tree at terminal node l that define the corresponding regions {Rlb}L1 of
the partition. Now, Equation 4-23 can be solved separately within each region, and since the
tree in Equation 4-24 predicts a constant value ylb, its solution can be reduced to a simple
estimate based on the criterion Ψ

γlb = arg min
γ

∑
xi∈Rlb

Ψ(yi, fb−1(xi) + γ), (4-25)
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with γlb = βbylb. Finally, the update of the current approximation fb−1(x) in each corre-
sponding region is given by

fb(x) = fb−1(x) + νγlbI(x ∈ Rlb), (4-26)

where 0 < ν ≤ 1 is the shrinkage parameter that controls the learning rate of the algorithm.
Hence, every update is scaled by the value of this parameter [55].

For a binary classification problem, the deviance is an appropriate choice for the loss function,
which is equal to the binomial log-likelihood:

Ψ(y, f(x)) = log
(
1 + e−2yf(x)

)
, (4-27)

with
f(x) = 1

2 log
[

P (y = 1|x)
1− P (y = 1|x)

]
. (4-28)

According to Friedman [57], the concept of bagging can also be implemented in the boosting
algorithm to incorporate randomness as an integral part of the procedure. Stochastic gradient
(tree) boosting replaces the base learner with the corresponding bagged base learner while
at each iteration substituting the ordinary residuals with out-of-bag residuals. Specifically,
at each step a subsample of training data is drawn at random (without replacement) from
the full training data set, which then is used to train the base learner and compute the
model update. This implementation has shown to lead to both reduced computation time
and improved prediction performance [57].

Given the entire training data sample {π(i)}N1 and {π(i)}N1 a random permutation of the
integers {1, ..., N}, then a random subsample of size Ñ < N is given by {yπ(i),xπ(i)}Ñ1 .
As proposed by Friedman [57], the resulting algorithm can be described as in Algorithm 2:
Stochastic Gradient Tree Boosting.

Finally, by rewriting the log-odds from Equation 4-28 and imputing the final approximation
fB(x), one can obtain the probability estimates [55], given by

P̂ (y = 1|x) = 1
1 + e−2yfB(x) ,

P̂ (y = 0|x) = 1
1 + e2yfB(x) .

(4-29)

4-2 Multi-label Classification

Due to multiple horizons the problem becomes a multi-output (or multi-label) classification
problem. Let L = {1, ...,H} be the output domain of all possible labels, then the output is
represented by an H-vector y = [y1, ..., yH ], where y1 = 1 if and only if label j is associated
with instance x, and 0 otherwise. Hence, for each horizon there is a label with two classes
(0 and 1) that the model must predict. Most traditional learning algorithms, however, are
developed for single-label classification problems. Therefore a lot of approaches in literature
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Algorithm 2: Stochastic Gradient Tree Boosting

1. Let f0(x) = arg min
γ

∑N
i=1 Ψ(yi, γ)

2. For b = 1 to B:

(a) {π(i)}N1 = random_perm {i}N1
(b) ỹπ(i)b = −

[
δΨ(yπ(i),f(xπ(i)))

δf(xπ(i))

]
f(x)=fb−1(x)

, i = 1, ..., Ñ

(c) {Rlb}L1 = L− terminal node tree ({ỹπ(i)b,xπ(i)}Ñ1 )
(d) γlb = arg min

γ

∑
xπ(i)∈Rlb Ψ(yπ(i), fb−1(xπ(i)) + γ)

(e) fb(x) = fb−1(x) + νγlbI(x ∈ Rlb)

3. Output f̂(x) = fB(x)

propose to transform the multi-label problem into multiple single-label problems, hence build-
ing H separate models that each independently predict one of the outputs yj , so that the
existing algorithms can be used. This is known as binary relevance (BR). In case there is
no underlying correlation between the outputs, this would be a valid and simple solution to
the problem. However, since in this case it is most likely that the dependent variables are
somewhat correlated with each other, it is suggested to use algorithm adaptation methods
rather than problem transformation methods, hence build a single model that is capable of
jointly predicting all H outputs.

In this research two approaches for multi-label classification are addressed: the methodol-
ogy of sequentially chaining multiple estimators (e.g., Classifier Chain model [108]) and the
adaptation of single binary classification algorithms.

4-2-1 Classifier Chains

The Classifier Chain (CC) model is a multi-label model that arranges H independent binary
models into a chain, where each model separately makes predictions for one of the outputs
yj in a specified order. The difference compared to a BR model, is that each model that
follows gets the predictions of all the preceding model(s) as an additional input (see Figure 4-
3). Therefore, this model is capable of exploiting correlations among the target values [108].
Clearly the order of the models in the chain is important as the first model in the chain has no
information about the other labels while the last model in the chain has features indicating
the presence of all of the other labels. Therefore, it is especially an interesting methodology
for sequential data (e.g., time series problems). However, extensions to ensembles of classifier
chains (ECC) already have been proposed, which greatly enhance performance when the best
order is not known beforehand [108]. In the context of time series classification, the most
convenient order is straightforward. Namely, the forthright ascending order of horizons (in
this case 1 to 7), as reliability of predictions should decrease with increasing horizon.
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Figure 4-3: Example transformation under BR (left) and CC (right) for (y,x) with binary
attribute space [108, Figure 1].

Given a training sample {y,x}N1 , a BR classifier h = [h1, ..., hH ] learns whether x belongs
to the jth label (1) or not (0) by independently training hj on yj . Hence, the output of h
is a vector ŷ ∈ {0, 1}H for any instance x [108]. The adaptation of the BR model to the
CC model, involves the augmentation of the attribute space for each model by the predicted
labels of all previous estimators. The pseudocode of the algorithm is described in Algorithm
3: Classifier Chain [108]. This methodology is applied to the logistic regression model and
the stochastic gradient boosting model.

Algorithm 3: Classifier Chain (pseudocode)

1. Let D = {(x,y}N1 be the training data set

2. For j = 1, ...L

(a) Do the jth binary transformation and training
D′j ← {}

(b) For (x,y) ∈ D
i. x′ ← [x1, ..., xn, y1, ..., yj−1]
D′j ← D′j ∪ (x′, yj)

(c) train hj to predict binary relevance of yj
hj : D′j → {0, 1}

(d) Classify(x)
i. x′ ← [x1, ..., xn, ŷ1, ..., ŷj−1]
ii. ŷj ← hj(x′)

(e) Output ŷ

4-2-2 Adapted Algorithms

In literature several approaches have been made to adapt various kind of (binary) classifica-
tion algorithms to make them capable of handling multi-output problems. Examples of such
algorithms include decision tree based methods [31] and neural networks [146]. A popular
choice are multi-output ensemble decision tree methods, as they are conceptual ’simple’ but
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have fairly low computation (training) times and competitive accuracy [85]. For example,
Clare et al. [36] proposed an adaptation of the C4.5 algorithm, which modification involves
the calculations of the entropy splitting criterion.

Multi-output decision tree methods can be implemented on the basis of the induction pro-
cedure developed in subsection 4-1-3, by providing two minor changes to the algorithm. At
first, instead of assigning one label to each leaf, like in the single binary classification case,
the leaves are labeled with multiple output vectors yd = (yd,1, ..., yd,H). This is done as pre-
viously, using the assignment rule (indicator function). Secondly, the impurity decrease of a
split is computed by averaging the impurity decrease over the H output variables. Hence,
splits are optimised with respect to all output variables, therefore correlations between the
labels may be exploited [89]. This methodology is applied to adapt the random forest model.

Thus, one major advantage of multi-output decision trees is the capability to take depen-
dencies between output variables into account, whereas H individual models cannot exploit
such correlations. This may result in improving the generalization ability of the model, which
subsequently could lead to more accurate results. Additionally, building a single model is
often less computationally expensive than building H different models, both in terms of time
and space complexity [89].

4-3 Feature Exploration and Selection

Feature selection is considered as one of the core concepts in machine learning that can
have a huge impact on the performance of the learning algorithms. Irrelevant or partially
relevant features can negatively impact model performance. Less redundant data means
less opportunity to make decisions based on noise, which therefore should improve modeling
accuracy. Additionally, due to fewer data points, algorithm complexity reduces which results
in shorter training time. There are a wide range of selection procedures that can be performed
for feature reduction. In this section, a funnel approach is proposed to obtain the final set
of explanatory variables (features) that is used to train the learning algorithms discussed in
chapter 4. The funnel approach consists of three steps and is visualized in Figure 4-4.

Figure 4-4: Feature Selection Funnel Approach.

4-3-1 Variable Statistics

At first, all data that possibly contains predictive power has been extracted from Picnic’s
database and transformed into usable features. An explanation of those features is given
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in section 3-1. Histograms, summary statistics and correlation plots have been created to
explore the data quality. Next, multicollinearity checks, such as analysis of correlation tables
and the variance inflation factor (VIF), were applied to filter out highly correlated features.
In machine learning, variables that are highly correlated, in essence, contain the same in-
formation which therefore makes the other redundant. Especially when estimating linear or
generalized linear models, multicollinearity is a common problem as it can lead to unreliable
and unstable estimates of the regression coefficients [92]. Since a logistic regression model
will be implemented as a benchmark model, all multicollinear features are excluded for which
both correlation with any other feature exceeds 0.75 and the corresponding VIF is higher than
5, which is often considered as the cut-off value according to Seather [118]. The correlation
tables are calculated using the Pearson product-moment correlation coefficient, given by

ρxy = Cov(x, y)
σxσy

, (4-30)

where Cov(x, y) is the covariance, σx and σy the standard deviations of variables x and
y, respectively. The VIF score provides an index that measures how much the variance of
an estimated regression coefficient is increased because of collinearity. It is calculated after
feature reduction based on the correlation tables in a step-wise procedure where one variable
at the time is excluded from the set of features. After exclusion the VIF is again computed
and so on till the VIF of all the remaining features is below 5. For feature Xj , it is given by

V IF (Xj) = 1
1−R2

j

, (4-31)

where R2
j is the coefficient of determination when regressing Xj on all other X ′s [118].

4-3-2 Variable Importance

Final feature selection is performed using variable importance measures. Although, interpre-
tation of the relationship between input and output variables of ensemble tree methods is not
as straightforward as with decision trees themselves, an extension to the procedure can pro-
vide some transparency. At each node m, one of the input variables Xv(m) is used to partition
the region associated with that node into two subregions. In the case of single decision trees,
the contribution of an input variable to the prediction of the dependent variable then can be
inferred by assessing the improvement of the splitting criterion at each split. Breiman et al.
[20] proposed

I2
j

(d) =
L−1∑
m=1

î2mI(v(m) = j) (4-32)

as the squared measure of importance for predictor variable Xj of tree d, where îm is equal to
the minimized impurity index in node m. To retrieve the variable importance for the random
forest model, one simply takes the average of the decrease in Gini index (Equation 4-11) for
each variable over all trees:

I2
j = 1

D

D∑
d=1
I2
j

(d)
. (4-33)
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In the case of gradient boosting, a similar approach can be used. By evaluating the effect of
each variable in reducing the loss function and taking the average over all trees, will obtain
the individual variable importance.

However, both variable importance measures suffer from being computed on statistics derived
from the training dataset. Hence, the measured importance of a variable can be high even for
input variables that are not predictive of the dependent variable, as long as the model has the
capacity to use them to overfit. To overcome this problem, the permutation variable impor-
tance measure is introduced. The permutation importance measure evaluates the decrease in
model performance when values of a single feature are randomly shuffled [21]. By permuting
the values of a single predictor variable at the time, the relationship between that variable
and the other predictor variables as well as the dependent variable is broken. Hence, the drop
in the model score after permutation provides a good indication of the model dependency on
that variable. In case the original variable is not associated to the dependent variable in the
first place, the permutation will lead only to a slight random decrease in performance. Or if,
by chance, the permutation happens to be more suited in predicting the dependent variable,
it may even slightly improve performance. The permutation importance can be computed
on any arbitrary data set, such as the training set or a held-out set. By using a held-out set
it is possible to examine which variable contributes the most to the generalization power of
the inspected model [123]. Thus, rather than analysing the importance in constructing the
model, it examines the predictive power of the input variables in relation to unseen data.

In tree ensemble methods, the permutation importance PI of variable Xj can be obtained
by averaging the decrease in model score over all trees D (Equation 4-34) [123].

PI(Xj) = 1
D

D∑
d=1
PI(d)(Xj), (4-34)

where

PI(d)(Xj) = 1
|N (d)|

∑
i∈N (d)

I
(
yi = Ĉd(xi)

)
− 1
|N (d)|

∑
i∈N (d)

I
(
yi = Ĉd(xi,πj )

)
(4-35)

is the importance of variable Xj of each individual tree d, with N d the held-out sample,
Ĉd(xi) the predicted class at observation i before and Ĉd(xi,πj after permutation of Xj , i.e.
with xi,πj = (xi,1, ..., xi,j−1, xπj(i),j , xi,j+1, ..., xi, n).

Next to the advantage of assessing the generalization power of the model, the permutation
measure accounts for multivariate interaction effects with other input variables [123]. How-
ever, one needs to be careful interpreting the results, especially in case the data set contains
highly correlated features. For example, when permuting one of two highly correlated fea-
tures, the performance won’t decrease by much as the other variable will compensate for it
(e.g. for tree-based methods; a similar split is obtained by using the other feature), which
therefore may end up in both features being viewed as irrelevant. Hence, again it is important
to avoid multicollinearity of variables. Furthermore, in contrast to impurity-based variable
importance for trees, the permutation measure does not exhibit a strong bias towards high
cardinality variables in case there are predictor variables of different types [123]. Addition-
ally, it is applicable to any arbitrary (classification) algorithm and provides the possibility to
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use any arbitrary metric for evaluation. Finally, due to permuting the variable rather than
dropping it, the model structure does not change and therefore the model does not need to be
retrained for every iteration (permutation). This safes considerable time during the modeling
process while obtaining similar effects.

For both importance measures, it holds that the higher the value the higher the importance.
Since the permutation variable importance accounts for interaction effects between variables,
it is chosen over other popular (linear) techniques, such as LASSO regression, which do not
posses that characteristic. In case the measure classifies a feature as irrelevant, it is omitted
from the set of input variables.

4-4 Hyperparameter Tuning

After completing the feature selection process, there remains one crucial step in order to boost
performance of the models. By finding the optimal set of hyperparameters, the model gets its
finishing touch which can help prevent the model from overfitting. Overfitting often occurs
in the case of nonparametric and nonlinear models that have more flexibility in learning a
target function. A model is said to overfit when it learns the detail and noise in the training
data to an extent that it negatively affects performance on new data. Random fluctuations
and noise are picked up as concepts that do not apply for new data, thereby decreasing
the generalization ability of the model. Hence, hyperparameters are a kind of regularization
method which even can lead to underfitting (the model is not able to model the training data
at all) when not carefully selected. Therefore, usually a model is preferred that is perfectly
balanced between under- and overfitting.

Hyperparameters are model-specific parameters that are not optimised by the model itself,
but have to be set ’manually’. In practice, there are many ways which involve various dif-
ferent approaches to find the ’optimal’ set of parameters. However, the selecting procedure
can be a tedious process that often is considered as nuisance in machine learning. As Snoek
et al. [121] state, many perceive hyperparameter tuning as a ’black art’ that requires expert
experience, rules of thumb, or sometimes brute-force search. In order to be sure that the
best model parameters are selected, every possible combination has to be tested and properly
evaluated. Thus, the computational complexity increases exponentially with the number of
models, parameters and the range of values. Even with a lot of computing resources, this
task remains nearly impossible. Therefore, an approach is chosen which involves a Bayesian
optimisation to speed up the search process for the best hyperparameters.

Since one does not simply know how well a certain set of hyperparameters will perform,
the search process is similar to finding an unknown function which is expensive to evaluate.
Bayesian optimisation is a sequential design strategy for global optimisation of such objective
functions. By treating them as random functions and using prior probability distributions
it tries to estimate the shape of the function based on Bayes’ theorem. After evaluating
a new data point, the prior is updated to the posterior probability distribution which is
used to construct an acquisition function that determines the next point of search. In other
words, the algorithm starts by randomly selecting some sets of hyperparameters over the
distribution of possible values and makes predictions for each of them. Then, knowing the
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performance for each set, a response surface method (RSM) estimates the shape of the function
including confidence intervals. Subsequently, more sets of hyperparameters that lie in the most
promising areas are sampled for evaluation. At each step the function estimate is updated in
order to find the optimal set of parameters. Therefore, this method often reaches the same or
even better performance than a brute-force search approach, while requiring fewer searches
[121].

The Bayesian optimisation is implemented using the Tree-structured Parzen Estimator (TPE)
algorithm as discussed by Bergstra et al. [12]. For the mathematical formulations and thor-
ough analysis of the algorithm, the study refers to their work since this is beyond the scope
of the research at hand.

The complete parameter search space considered in the hyperparameter tuning process is
given in Table 4-1. The final model configurations along with the AUC scores for different
numbers of trees in the random forest model for each horizon are listed in Appendix B.

4-4-1 SARIMAX

The SARIMAX model consists of multiple order coefficients p, d, q, P, D, Q, which along
with the number of Fourier terms K and an additional controlling parameter τ for the de-
terministic trend form the set of hyperparameters. Parameter τ indicates whether to model
no trend ’n’, constant trend ’c’, linear trend with time ’t’ or both constant and linear trend
with time ’ct’. Since the model is intended for short-term purposes, the weekly seasonality
is incorporated in the SARIMA part of the model and the yearly seasonality is added to the
model as additional regressors.

It is possible to derive the model hyperparameters based on careful analysis and domain ex-
pertise, like for example in the Box-Jenkins approach [19]. In most situations this procedure
leads to satisfying results, however, not necessarily in every case. It does not only require
domain expertise but also can be very time consuming, especially in the case when multi-
ple series have to be predicted. Therefore, Bayesian optimisation is used as an alternative
approach to configure the model. This approach has the potential to reveal non-intuitive
configurations that result in lower forecast error than through careful analysis, like it is the
case in traditional grid search approaches [30], while being considerably faster.

4-4-2 Logistic Regression

For the logistic regression model, the hyperparameters to configure are the type of regular-
ization and the maximum number of iterations that the solver is allowed to take to converge
to its solution. In general, the more iterations are performed by the solver the better the per-
formance, as the solver is more likely to converge. However, this does not necessarily hold for
the out-of-sample prediction. Beyond some threshold, increasing the value has no practical
use or even decreases performance as generalization ability of the model goes down. Thus,
optimising this parameter not just decreases computational complexity but also can improve
model performance. An additional early stopping criterion is introduced which is regulated
using a tolerance parameter tol. When the loss score is not improving by at least tol for two
consecutive iterations, convergence is considered to be reached and training stops.
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Regularization is a common technique in machine learning to improve numerical stability in
ill-posed problems and to prevent overfitting [25]. The logit model considers three options
for regularization. The cost function that is being minimized by a binary class `1 penalized
logistic regression is given by

min
w,c
||w||1 + C

n∑
i=1

log(exp(−yi(XT
i w + c)) + 1), (4-36)

with C the inverse regularization strength. Setting C to a very high value is similar to
applying no regularization. Similarly, `2 regularized logistic regression solves

min
w,c

1
2w

Tw + C
n∑
i=1

log(exp(−yi(XT
i w + c)) + 1). (4-37)

The third method is the Elastic-Net regularization, which is a combination of `1 and `2
(Equation 4-38).

min
w,c

1− ρ
2 wTw + ρ||w||1 + C

n∑
i=1

log(exp(−yi(XT
i w + c)) + 1), (4-38)

where ρ controls the strength of one regularization method versus the other. As setting ρ to 1
or 0 is equivalent to either `1 or `2 regularization, respectively, the Elastic-Net regularization
is selected with C and ρ the hyperparamters to be optimised.

4-4-3 Random Forest

Although hyperparameter tuning is considered not as crucial with random forests as with
other machine-learning algorithms [123], slight performance improvements can be obtained
by selecting the right values. Next to that, making very poor decisions during the selection
process can yet still lead to poor performance of the model.

The number of estimators (trees) D is probably the most important parameter. In general,
the higher the number the higher the reliability of the predictions and interpretability of the
variables [123]. However, at some threshold the performance converges and increasing the
number of trees will not improve the model performance anymore, whereas training time still
does. Therefore, this parameter is not included in the Bayesian optimisation but optimised
separately first. This reduces model complexity and speeds up further (training) processes.
Second important hyperparameter is the maximum number of features nsel that is considered
when searching for the best split. In case the number of variables is large, but the fraction of
relevant variables small, random forests are likely to perform poorly with small nsel. As at each
split the chance can be small that the relevant variables will be selected [55]. However, since a
thorough feature selection is performed beforehand, this is not likely the case here. The other
hyperparameters that are considered for tuning are the maximum tree depth and the terminal
node size (the minimum number of samples required to be at a leaf node). Both of them are
pruning parameters that reduce the size of the trees by removing sections of the tree that
provide little contribution to the classification task. Pruning can be viewed as regularization
which can have a smoothing effect by reducing the model complexity. Hence, pruning can
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lead to improved generalization performance by reducing the chance of overfitting. Whereas
some previous studies suggest that each individual tree should be grown as large as possible,
others show that full grown trees do not always yield the best results [123]. According to Segal
[114], regulating the depth of the tree can slightly improve model performance. Furthermore,
Malley et al. [90] argue that for reliable probability estimation there should be some impurity
in the trees and suggest the minimum terminal node size as an additional stopping criterion.
This notion is supported by Kruppa et al. [80], who explain that a large number of trees are
needed when grown to purity in order to ensure consistency of probability estimates. When
trees are too small, however, probability estimates get also inaccurate.

4-4-4 Stochastic Gradient Boosting

The boosted tree model and the random forest model share some of the same hyperparameters,
however their optimal values can end up being very different from another. For example the
tree size (maximum tree depth) is usually smaller in gradient boosting than compared to
random forests, where large trees are favorable. In many applications, low-order interaction
effects appear to dominate. Hence, models that result in higher-order interaction effects,
such as large decision trees, tend to perform worse [55]. For tree-based approximations, the
interaction level effects are limited by the number of terminal node regions L. According to
empirical studies by Friedman et al. [55], values that lie in the range 4 ≤ L ≤ 8 usually
provide the best results in the context of boosting.

Whereas for random forests holds that using more estimators (trees) leads to better perfor-
mance, this is not necessarily true for gradient boosting. Although the training performance
reduces with each boosting iteration, increasing this number can in the end lead to overfitting.
Hence, setting the number of boosting iterations B is analogous to early stopping strategies
in other machine learning applications. The number of iterations however is not the only
regularization strategy. The shrinkage parameter ν of the boosting model controls the con-
tribution of the consecutive trees to the current approximation. This can be viewed as the
learning rate of the algorithm, where a smaller value results in a larger training risk for the
same number of iterations. Therefore, these parameters are operating dependently on each.
Friedman et al. [55] suggest to jointly optimise both parameters by taking very small values
for ν (≤ 0.1) and select B accordingly. This approach leads to great performance improve-
ments, especially in the case of probability estimation. The minimum loss reduction required
to make a further partition on a leaf node γmin and minimum sum of instance weight needed
in a child node are two additional parameters which can be tuned for pruning. Increasing
these values will make the model more conservative.

The final two hyperparameters that are considered for the boosted tree model, are the subsam-
ple ratio of feature columns χ and subsample ratio of training instances η when constructing
each tree. Subsampling occurs once in every boosting iteration and shows similar effects as
with random forests. Not only does it reduce training time, but often also provides better
generalization performance due to variance-reduction [55].
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Table 4-1: Hyperparamter search space.

Model Parameter Space
SARIMAX

p, q, P, Q [0, 1,..., 6]
d, D [0, 1, 2]
K [0, 1,..., 5]
τ [’n’, ’c’, ’t’, ’ct’]

Logistic Regression
max. iterations [80, 98,..., 800]
tol {1e−5..1e−1}
ρ [0.0, 0.1,..., 1.0]
C {1e−4..1e4}

Random Forest
D {1..300}1

nsel [1, 2,..., 15]
max. tree depth [15, 16,...,25]
terminal node size [1e−6, 1e−5,..., 1e−1]2

Stochastic Gradient Boosting
B [50, 60,...,200]
max. tree depth [3, 4,...,8]
ν [0.02, 0.04,..., 0.2]
χ [0.3, 0.4,...,0.9]
η [0.5, 0.6,...,1.0]
γmin [0.1, 0.2,...,1.0]
min. child weight [1, 2,...,10]

1not included in Bayesian optimisation, 2percentage of all training samples

4-5 Probability Calibration

Ideally, the estimated probabilities of the model reflect the actual purchasing probabilities of
the customers. Calibration is a measure for assessing the reliability of the predicted probability
distribution in relation to the actual observations [88]. For a given sample of observations
with estimated probability p̂N for the positive class, a classifier is said to be well-calibrated,
if the actual proportion of positive observations is equal to that probability. Therefore, the
last step that finalizes the models is to examine the quality of the probability estimates and
adjust if necessary.

Logistic regression usually yields well-calibrated probabilities as it solves directly for log-
loss, whereas probability estimates of decision trees are affected by their high variance [101].
However, due to their statistical properties and variance-reduction, random forests as well
as stochastic gradient boosting models provide overall well-calibrated probability estimates.
Yet, according to Niculescu-Mizil and Caruana [101], both algorithms have troubles predict-
ing probabilities close to 0 and 1 as they average the predictions over all trees. Hence, all
trees have to agree on the probability. However, the high variance of the individual trees
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make that difficult.

To account for possible non-calibrated probability estimates, certain methods have been de-
veloped that can be applied to adjust the output probabilities of the classifiers. In their study,
Niculescu-Mizil and Caruana [101] compared two methods, namely Platt Scaling and Isotonic
Regression, in the context of various learning methods. They showed that Platt Scaling can
improve calibration of boosted trees, while Isotonic Regression can help overcome the vari-
ance issue of decision trees. Both methods seem to mitigate the bias of the output by random
forests. Whereas Platt Scaling appears to be favorable in cases where the calibration curve
is sigmoid and there is limited calibration data, Isotonic Regression seems to perform best
when the opposite is the case. Both methods are prone to overfitting when the same data set
is used for model training and calibration [101]. Therefore, it is suggested to use cross-fold
validation to obtain an independent data set for calibration.

4-5-1 Platt Scaling

Initially, Platt [104] proposed using a sigmoid transformation to obtain calibrated probabilities
for a Support Vector Machine classifier. Niculescu-Mizil and Caruana [101] among others
demonstrated that it can be applied to other binary classification algorithms as well. The
calibrated probabilities are retrieved by passing the output f(x) of any binary learning method
through a sigmoid function

P (y = 1|f) = 1
1 + exp(Af +B) , (4-39)

with A and B parameters that are fitted using maximum likelihood estimation from some
fitting training set {fi, yi}N1 [101]. Accordingly, A and B are found by gradient descent that
solves the following equation

arg min
A,B

{
−
∑
i

yi log(pi) + (1− yi) log(1− pi)
}
, (4-40)

where
pi = 1

1 + exp(Afi +B) . (4-41)

See Platt [104] for more detail and justification of the algorithm, including the out-of-sample
method.

4-5-2 Isotonic Regression

Isotonic Regression, proposed by Zadrozny and Elkan [144], is a more general approach for
probability calibration that lies somewhere between binning and sigmoid-fitting. The method
is a non-parametric form of regression and is shown to be superior when training data is large
enough to avoid overfitting [101].
Assuming the output of the classifier to be ranked correctly, then the mapping m from scores
into probabilities is isotonic (non-decreasing). Therefore, isotonic regression can be applied
to learn the mapping, using

yi = m(fi) + εi. (4-42)
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Then, given a training set {fi, yi}N1 , isotonic regression finds its solution by solving for the
isotonic function

m̂ = arg min
z

∑
(yi − z(fi))2. (4-43)

Niculescu-Mizil and Caruana [101] suggest the use of the pair-adjacent violators (PAV) algo-
rithm proposed by Ayer et al. [8] to solve the isotonic function m̂. The PAV algorithm finds a
stepwise-constant solution to the problem that best fits the data according to a mean-squared
error criterion [144]. Let {xi}N1=1 be the training examples, g(xi) be the value of the function
to be learned for each training example, and g∗ be the isotonic regression. Then the algorithm
replaces all pair-adjacent violaters g(xi−1) ≤ g(xi) by their average, such that xi−1 and xi
comply with the isotonic assumption, until a new isotonic set of values is obtained [144].

4-6 Model Performance Evaluation

The main interest of this research lies in obtaining individual customer purchasing proba-
bilities with the final goal to improve short-term forecasting accuracy of an online grocer.
Therefore, a model is desired that has high discriminative power, meaning that it is able
to separate customers that will place an order for a specific day from those who will not.
There are many different approaches to asses and compare the performance of learning algo-
rithms. The proper selection of evaluation methods depends on the objective and context of
the problem.

4-6-1 Separability and Classification

In many practical applications involving classification tasks, the accuracy score is considered
as evaluation metric for both modeling and testing purposes. The accuracy score is equal
to the fraction of correctly classified observations. The estimated probabilities of the learn-
ing algorithm can be translated to predict the two classes. The default choice is a decision
threshold of 50%, such that ŷ = 1 when p̂ > 0.5 and ŷ = 0 otherwise. However, since the
data set that is used for analysis suffers from a severe imbalance in the class distribution
(more negatives than positives), this may not be the most favorable approach in this case.
In predictive modeling, imbalanced classification problems are challenging as most machine
learning algorithms used for classification were designed based on the assumption of equal
class distributions [126]. Heavily imbalanced sets can lead to implications such as poor pre-
dictive performance, especially for the minority class. In some cases the accuracy measure
indicates excellent performance, although the accuracy is only reflecting the underlying class
distribution. This phenomena is known as the accuracy paradox [135].

One way to deal with this issue is by re-sampling the data to obtain a more balanced set. This
can be done either by deleting instances from the over-represented class (under-sampling) or
adding copies of instances from the under-represented class (over-sampling). Sun et al. [126]
argue that the overall consensus is that a relatively balanced distribution usually leads to
better predictions. However, they follow up that it is not clear where the boundaries lie since
factors such as sample size and separability are also affecting performance. According to Jap-
kowicz and Stephen [74], the imbalanced class distribution may not necessarily burden the
performance if the data set is large enough and assuming computation time is still acceptable.
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Nonetheless, two implications arise when re-sampling training data. Since the classification
problem involves a time series multi-label target space, re-sampling for one target column
would consequently affect all the other labels as well. This makes simultaneous balancing
of all labels (almost) impossible. However, this is necessary for applying the algorithms dis-
cussed in 4-2 and being able to capture possible correlations between the labels. Even more
important, re-sampling modifies the priors of the training set which subsequently biases the
posterior probabilities of the models [46], which is not desired within the application at hand.

Therefore, it is suggested to use a different scoring metric rather than modifying the data.
The Receiver Operating Characteristic (ROC) curve parametrically plots the true positive rate
(TPR) against the false positive rate (FPR) at various decision thresholds. By computing
the area under the ROC curve (AUC), these metric measures the separation performance of
the model rather than the accuracy. The true and false positive rates are given by

TPR =
∑

True positive∑
Condition positive = TP

P
, (4-44)

FPR =
∑

False positive∑
Condition negative = FP

N
. (4-45)

The class prediction for each instance is made based on the estimated probability p̂ by the
model. Given a decision threshold parameter 0 ≤ Tr ≤ 1, the instance is classified as positive
if p̂ > Tr, and negative otherwise. Probability p̂ follows a density f1(x) if the instance actually
belongs to class positive, and f0(x) if otherwise. Therefore, the true positive rate at threshold
Tr is given by

TPR(Tr) =
∫ ∞
Tr

f1(x)dx (4-46)

and the false positive rate is given by

FPR(Tr) =
∫ ∞
Tr

f0(x)dx. (4-47)

By varying the decision threshold between 0 and 1, the AUC measures the models’ perfor-
mance across all possible decision thresholds. If the AUC takes on a value close to 1, the
model is able to almost perfectly classify the samples given a certain threshold, whereas a
value close to 0.5 indicates that the model makes predictions more or less at random. Accord-
ing to Hanley and McNeill [67], the area under the ROC curve can be interpreted as measuring
the probability of ranking a random pair of observations correctly. Since the measure is scale
invariant, it does not provide any information about the probability distribution but rather
about the consistency of ordering.

Precision and recall are two other classification metrics that are closely related to the ROC.
They evaluate the class prediction performance based on measuring relevance. Whereas
recall expresses the ability to find all relevant instances in a data set, precision expresses the
proportion of observations the model classified as relevant actually were relevant. Recall is
known as the sensitivity and is given in Equation 4-44. Precision, also known as positive
predictive value (PPV) is defined as

PPV =
∑

True positive∑
True positive +

∑
False positive = TP

TP + FP
(4-48)
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In general, there is a trade-off between the two. By varying the decision threshold, one of
them increases while the other decreases and vice versa. For the main purpose of the model,
neither high recall nor high precision are demanded, but the aggregated probabilities should
conform with the actual purchasing behaviour of a group of customers. However, although
the actual class predictions are less relevant, yet they can provide additional insights in the
behaviour of the classifier as well as serve as an input for various business decisions. For
example, identifying customers that are not likely to make a purchase could be useful as it
would make them great candidates for some marketing campaign to increase sales. Using
the precision score, one could select only the group of customers that can be identified with
a probability above some specified threshold in order to optimise budgeting. Similarly, the
group of customers which are very likely to make a purchase could be excluded from any
promotional activities to save costs.

4-6-2 Calibration Performance

One way to assess the quality of probability estimates is by creating reliability plots [101].
This is done by first discretizing the probability space into several equal sized bins, computing
the mean value of all predicted probabilities in each bin, and then plot them against the actual
proportion of positive observations in each corresponding bin. A classifier is said to be well-
calibrated, if the plotted line lies close to the diagonal. The Expected Calibration Error
(ECE) empirically measures the calibration relative to the diagonal by

ECE =
K∑
i=1

P (i)|oi − ei|, (4-49)

where P (i) is the fraction of all observations that fall into bin i, oi the actual fraction of
positive instances in bin i, and ei the mean of the predicted probabilities in bin i. A lower
ECE corresponds to a better calibration.

Another metric for evaluating class membership probability estimates, that is frequently used
in past literature, is the Brier score [144, 80]. The score, proposed by G.W. Brier [22], is a
proper score function for mutually exclusive discrete outcomes. It measures the accuracy of
probabilistic predictions by computing the mean squared difference of the predicted proba-
bilities p̂ and the actual outcomes y. There are some decompositions of the Brier score that
provide additional insights in the behaviour of the classifier. For example, the two-component
decomposition that generates a calibration term and a refinement term is given by [16]

BS = 1
N

K∑
k=1

nk(p̂k − yk)2 + 1
N

K∑
k=1

nkyk(1− yk). (4-50)

Here N is the number of total observations, K the number of unique observations, nk the
number of observations occupying the same probability value p̂k, and yk the observed fre-
quency for the event to occur. "The refinement component measures the extent to which each
group of indicators assessed with the same probability is uniform in exhibiting occurrence
or no occurrence among its members" conforming to Blattenberger and Lad [16, page 26].
Hence, the refinement score for a group of observations k with the same probability predic-
tion decreases when the frequency of occurrence yk is close to zero or one. Again, a lower
value for the Brier score corresponds to better calibration, and refinement.

R.B. Verbruggen Master of Science Thesis



4-6 Model Performance Evaluation 49

4-6-3 Forecasting Accuracy

Although assessing separability and calibration are important elements in the context of
evaluating probability estimation methods, the models should ultimately be evaluated in the
domain that the model is intended for. Since the main goal is to improve short-term demand
forecasting, the output of the models is first aggregated to obtain the predicted number of
daily purchases and then compared to the actual number of daily observations. One key
benefit of obtaining individual purchasing probabilities is that they can be aggregated to any
desired level (e.g., delivery area, total, household type, etc.). For each horizon, the aggregated
forecast for a group of G customers at day t is given by

Ft =
G∑
i=1

p̂t,i. (4-51)

Similarly, the actual number of purchases of that group is given by

At =
G∑
i=1

yt,i. (4-52)

Currently, forecasting is done for every delivery area separately as it is the lowest granular-
ity of interest. To compare the forecasting performance of the classification models to the
performance of a top-line model, relatively small groups of customers are considered that
are similar to the size of common delivery areas. In general, larger groups of customers are
easier to predict as behaviour of individual customers averages out. Therefore, predictions
are generated for three groups of different sizes in order to investigate the effect of sample
size on the performance.

In literature, several error metrics have been proposed to evaluate the performance of forecast-
ing methods. Generally there are four types of forecast-error metrics, namely scale-dependent
metrics, percentage-error metrics, relative-error metrics and scale-free error metrics (e.g.,
mean absolute scaled error (MASE) [71]).

For assessing accuracy on a single series, usually scale-dependent metrics are a good choice
as they are easiest to understand and compute [71]. The mean-absolute deviation (MAD),
defined as

MAD = 1
n

n∑
t=1
|At − Ft|, (4-53)

measures the size of the error in units and is probably the most popular among them. Using
the same equation without taking the absolute value of the deviance obtains the mean-signed
deviation (MSD) that can be used to measure bias. Note that the sign of the outcome depends
on whether the At is subtracted from Ft or the other way around. It is chosen to use the
former, in order to obtain a minus sign in case a model tends to underestimate.

However, since they are scale-dependent, these measures are less appropriate to compare
models across different series. In that case, the use of one of the other metrics is preferred.
According to Armstrong [7], the root-mean-squared deviation (RMSD) metric has been su-
perseded by the mean-absolute-percentage error (MAPE) as being the most frequently used
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error metric to evaluate forecasting performance. The MAPE is a percentage based metric
that it is easy interpretable and can be used to evaluate across series. It is defined as

MAPE = 100%
n

n∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ , (4-54)

with n the number of fitted instances (days). However, in cases the series is strictly positive,
the MAPE tends to favor models that underestimate the actual values as positive errors are
bound by 100 percent, whereas this value can be exceeded for negative errors [71]. Next to
that, it has the disadvantage of being undefined or infinite for actual values that are zero.
Although, the latter is not likely to occur in the context of this research. Usually, this is only
the case when the store is not open for purchases at all, like for example during Christmas.
Hence, these particular days are not included in the evaluation anyways.

A more recent measure, the logarithm of the accuracy ratio, has been proposed by Tofallis
[131]. As it measures the relative accuracy, the range of possible values are equal for both
positive and negative values. Therefore, this method embodies valuable symmetry and avoids
the bias of the MAPE. By computing the mean-squared logarithm of the accuracy ratio
(MSLAR) this measure is appropriate for evaluating the relative performance of competing
methods across series [131].

MSLAR = 1
n

n∑
i=1

(
log Ft

At

)2
, (4-55)

The study of Tofallis [131] shows the superiority of the MSLAR over the MAPE in terms of
performance in various cases where the data is strictly positive. Additionally, Tofallis proves
that the resulting predictions comply with the geometric mean when the measure is used in
constructing forecasting models.

4-6-4 Training, Validation and Testing

Since it is a time series problem, particular care must be taken when splitting the data in
order to prevent data leakage. All data about events that occur chronologically after time of
fitting the model (cutoff) need to be withhold from the training data in order to simulate a
real world forecasting environment. Furthermore, to avoid overfitting and account for time
dependencies, the models are evaluated using a cross-validation (CV) procedure where the
training data is partitioned into k sample folds. Subsequently, each fold is split into a training
and testing set. By averaging the error on each partition a robust estimate of the model error
can be computed. This is equal to the outer loop of a method called nested CV. For the inner
loop, the training set is again partitioned into a training and validation set. The inner loop
is used for both feature selection and hyperparamter tuning purposes. Similarly, all results
are averaged over all folds for robustness. The advantage of the nested CV method is that
it provides an almost unbiased estimate of the true error [138]. A schematic overview of the
method is given in Figure 4-5.

All modeling procedures are evaluated using a 21-fold cross-validation (CV). The 21 cutoff
dates are picked uniformly over a whole year, where every weekday is chosen three times as
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Figure 4-5: k-fold nested cross-validation for time series.

the cutoff date in order to reduce bias towards particular weekdays. The models are fitted to
the training set and for each configuration validated on the validation set. In the context of
feature selection, the variable importance is obtained by computing the average importance
for each variable over all folds. Similarly, each hyperparameter configuration is evaluated
by minimizing the average error over all folds. In the context of the classification models,
both the AUC and the Brier score are valid candidates for being used as evaluation metric.
Both metrics are scale-invariant which is a desirable property when comparing multiple series
(e.g., 21 folds) in order to ensure equally weighting of the results. However, since the main
interest of this research lies in obtaining accurate predictions by aggregating the estimated
probabilities of the models, the Brier score is chosen as evaluation metric to be minimized.
The Brier score measures directly the calibration of the probabilities, whereas the AUC just
measures the correct ranking of the predictions. For the SARIMAX model, the best set of
hyperparameters is obtained by minimizing the MSLAR. This metric is chosen due to its
properties of being scale invariant and complying with the geometric mean as discussed in
subsection 4-6-3. In all cases the mean loss over all horizons are considered. Hence, all labels
are treated equally during the optimisation procedure.

After having obtained the model configurations that yield the best results, the final step
is to evaluate and compare the performance of all models. In order to properly asses the
performance of the finalized models for in the long run, the models are evaluated on a full
year of data. Hence, a 365-fold day forward-chaining CV is used, which is also known as
rolling forecast. After each prediction the cutoff date shifts by one day, then the model is
re-trained on all historical data and new predictions are produced for 7 days ahead. Finally,
the error measures discussed in the previous sections are computed for each horizon using the
average values over all folds.
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Chapter 5

Results

In accordance to section 4-6, the model performance is evaluated in terms of separability,
probability calibration and forecasting accuracy. Section 5-1 first discusses the intermediate
results that are obtained during the modeling procedure, including some insights on the
importance of the explanatory variables. Followed by section 5-2 with a summary of the
performance prior and post calibration to discuss the quality of the estimated probabilities.
In section 5-3 the performance of the finalized propensity models is evaluated and their
aggregated output compared with the top-line SARIMAX model.

The final model configurations obtained by the TPE bayesian optimisation discussed in sec-
tion 4-4 along with the Brier scores (BS) for different numbers of trees in the random forest
model for each horizon can be found in Appendix B. For the number of trees parameter B of
the random forest, a value of 90 is chosen in order to ensure the best results while remaining
computational efficiency.

5-1 Feature Importance

After assessing multicollinearity (see section 4-3), some of the initial explanatory variables
are omitted from the set of features. For the resulting set of 63 variables it is attempted to
gain insights on their value in predicting future shopping behaviour using the permutation
importance (see Equation 4-34). The permutation importance measures the mean increase in
the BS after the values of a single feature are randomly shuffled. Each variable is shuffled 10
times to increase statistical robustness of the prediction results. Note, that the smaller the BS
the better the predictions. As mentioned in subsection 4-6-4, the measure is computed over
21 folds. The twenty variables that contribute the most to the overall prediction performance
in terms of the BS are listed in Table 5-1.

As expected, the variables that embody recency and frequency are very strong predictors and
among the top listed in all cases. Especially, the number of days since the previous purchase as
well as the number of purchases per weekday in the last 8 weeks seem to be the most important
predictors. Additionally, the median of the observed interpurchase times as well as the sine
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cosine encoded periodicity of customers have proven to be important as well. Although the
fraction of customers that order more than one day in advance is relatively small, the number
of days till the known date of delivery still has significant impact on the overall prediction
performance, at least for the tree based models. Similarly, the slot reservation feature seems
to contain a lot of predictive power for these two models. Furthermore, the number of days
since previous activity in the application can be found high in the ranking as well, whereas
other event data still can add some value to that. Other variables such as the number of
purchases one or two weeks ago, the total amount spent, the purchase rank as well as well as
the standard deviation of the interpurchase times all show positive effect on the prediction
performance. Remarkably, the features that embody the number of purchases per weekday
in the last 8 weeks seem to be almost the only features that matter in the context of the
logistic regression CC model. Finally, it can be noticed that mainly behavioural attributes
and event data contribute the most to the final prediction, whereas customer demographics
and satisfaction, promotional activities and meta data seem to be less relevant in this context.

Table 5-1: Permutation importance of the 20 most important variables.

Logistic Regression CC Random Forest Stochastic Gradient Boosting CC

Rank Variable ↑ BS1 Variable ↑ BS1 Variable ↑ BS1

1 NrWeekdayPurchasesH72 0.00169 NrDaysSPD3 0.00164 NrDaysTillKnownDelDate5 0.00198
2 NrWeekdayPurchasesH42 0.00169 NrDaysTillKnownDelDate5 0.00133 NrWeekdayPurchasesH42 0.00143
3 NrWeekdayPurchasesH52 0.00168 NrDaysTillReservedSlot 0.00076 NrWeekdayPurchasesH72 0.00140
4 NrWeekdayPurchasesH62 0.00167 NrWeekdayPurchasesH42 0.00070 NrWeekdayPurchasesH32 0.00134
5 NrWeekdayPurchasesH12 0.00165 NrWeekdayPurchasesH52 0.00069 NrWeekdayPurchasesH62 0.00131
6 NrWeekdayPurchasesH22 0.00165 NrWeekdayPurchasesH32 0.00068 NrWeekdayPurchasesH52 0.00128
7 NrWeekdayPurchasesH32 0.00162 NrWeekdayPurchasesH62 0.00065 NrWeekdayPurchasesH22 0.00127
8 NrDaysSPD3 0.00025 NrWeekdayPurchasesH22 0.00062 NrDaysSPD3 0.00119
9 NrPurchases1WeekAgo 0.00025 SinCustPeriodicity4 0.00059 NrWeekdayPurchasesH12 0.00077
10 NrDaysSinceLatestActivity 0.00025 TotalSpent 0.00055 MedianInterpurchaseTime 0.00052
11 SinCustPeriodicity4 0.00017 NrWeekdayPurchasesH72 0.00053 NrDaysTillReservedSlot 0.00043
12 NrProductsAddedPriorDay 0.00017 MedianInterpurchaseTime 0.00053 CosCustPeriodicity4 0.00020
13 NrUniqueSessionsPriorDay 0.00016 CosCustPeriodicity4 0.00051 SinCustPeriodicity4 0.00019
14 CosCustPeriodicity4 0.00015 NrWeekdayPurchasesH12 0.00045 NrDaysSinceLatestActivity 0.00018
15 NrPurchases2WeeksAgo 0.00011 NrDaysSinceLatestActivity 0.00041 NrProductsInBasket 0.00009
16 NrDaysTillKnownDelDate5 0.00009 NrPurchases1WeekAgo 0.00038 TotalSpent 0.00008
17 MedianInterpurchaseTime 0.00009 NrPurchases2WeeksAgo 0.00020 StDvInterPurchaseTime 0.00005
18 NrUniqueSessionsSPD3 0.00006 NrProductsInBasket 0.00016 NrProductsAddedPriorDay 0.00005
19 AvgPurchaseCreationTime 0.00006 StDvInterPurchaseTime 0.00009 PurchaseRank 0.00005
20 PurchaseRank 0.00003 NrPurchases3WeeksAgo 0.00008 SinWeekPeriodicity 0.00004

1Mean increase in BS after permutation, 2H: Horizon, 3SPD: SincePreviousPurchase, 4Cust: Customer, 5Del: Delivery

To highlight some of the features that are ’new’, interesting or have proven to be important
in the context of this project, a summary of their relative performance is listed in Table 5-
2. The relative performance is calculated based on the permutation importance using the
corresponding metric for evaluation. The importance is evaluated on individual customer
level by comparing the AUC and BS as well as on the aggregated day level by comparing
the MAD, MAPE and MSLAR. Since the AUC is the only metric where a higher score
corresponds to better performance, its negative equivalent is given for visualization purposes.
Some features are grouped together in case there exists a logical connection. If the scores are
not listed, this means that the feature(s) were not adding any value to the prediction at all.

The average of the interpurchase times is included in order to compare its predictive value
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Table 5-2: Summary of feature impact on performance prior and post variable permutation.

Features
Metric -AUC BS MAD MAPE MSLAR

Logistic Regression CC

Number of purchases per weekday -11.25% -28.21% -37.45% -27.84% -53.86%
Number of days since previous purchase -1.18% -0.61% -5.81% -0.25% -7.40%
Sin Cos customer periodicity -0.63% -0.78% -2.39% -0.17% -2.67%
Median interpurchase time -0.46% -0.22% -0.88% -0.75% -1.23%
Average interpurchase time1 -0.13% -0.03% -0.08% -0.14% -0.11%
Slot closings -0.02% -0.01% -0.73% -0.76% -0.64%
Average purchase create time -0.13% -0.13% -1.66% -0.86% -2.11%
Incidents -0.01% -0.02% -0.02% -0.09% -0.09%
Last order promotions - - - - -
Event data -1.66% -1.62% -7.26% -6.77% -9.31%
Slot reservation -0.09% -0.04% -0.05% -0.01% -0.02%

Random Forest

Number of purchases per weekday -4.13% -9.90% -28.18% -39.25% -42.24%
Number of days since previous purchase -2.02% -4.17% -14.57% -18.58% -20.69%
Sin Cos customer periodicity -1.16% -2.79% -10.73% -10.99% -14.26%
Median interpurchase time -0.60% -1.36% -3.81% -2.57% -3.30%
Average interpurchase time1 -0.09% -0.16% -0.76% -0.56% -0.98%
Slot closings -0.02% -0.04% -0.79% -0.64% -1.05%
Average purchase create time -0.06% -0.06% -0.55% -2.06% -2.13%
Incidents -0.04% -0.06% -0.43% -0.82% -0.96%
Last order promotions -0.01% -0.01% -0.01% -0.12% -0.16%
Event data -1.13% -2.22% -6.02% -8.91% -10.95%
Slot reservation -0.40% -1.95% -0.88% -0.84% -1.21%

Stochastic Gradient Boosting CC

Number of purchases per weekday -9.35% -18.26% -44.63% -35.08% -40.29%
Number of days since previous purchase -1.88% -2.94% -16.24% -10.47% -12.07%
Sin Cos customer periodicity -0.26% -1.02% -5.70% -2.15% -2.72%
Median interpurchase time -0.86% -1.33% -11.15% -5.34% -9.02%
Average interpurchase time1 -0.05% -0.13% -1.49% -0.86% -1.05%
Slot closings -0.23% -0.16% -1.68% -1.51% -1.75%
Average purchase create time - - - - -
Incidents -0.01% -0.02% -0.08% -0.82% -0.38%
Last order promotions -0.00% -0.01% -0.03% -0.04% -0.06%
Event data -0.97% -0.89% -6.02% -3.29% -5.91%
Slot reservation -0.28% -1.08% -0.92% -0.82% -2.67%
1Used instead of the median for comparison purposes
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to that of the median. As expected, the median of the interpurchase times outperformed the
average value by many times over. Interestingly, it seems that the sine and cosine customer
periodicity have more positive impact than the median of the interpurchase time in both the
logistic regression CC model and the random forest model, whereas for the gradient boost-
ing CC model the opposite is the case. However, for logistic regression CC the difference
between the two values is rather small. Remarkably, the logistic regression CC model is
not able to translate the slot reservation feature very well in order to enhance predictions,
whereas the other two models tend to do better. As seen earlier, features that contain event
data have considerable impact on the prediction as well. The contribution of information
about recent promotions seem to carry little to no predictive power, while information about
incidents can improve predictions slightly. Last but not least, it is interesting to see that
the average purchase create time has quite some positive effect in both the logistic regres-
sion CC and the random forest model whereas none in the gradient boosted tree CC model.
However, the features concerning slot closings contribute to the prediction in all three models.

After assessment of the individual variable importance, all features that do not (or barely not)
contribute to the prediction are omitted from the set of features. For the logistic regression
CC model that leaves 23 features, for the random forest 31 features and for the stochastic
gradient boosting CC model 26 features that are used as an input for the final models. A
performance comparison prior and post the selection process, in order to ensure no valuable
predictors were excluded, is listed in Table 5-3. Again, the negative AUC is used for better
visualization. The absolute values of the MSD are compared in order to see whether the bias
of the predictions increases or decreases. It can be noticed that in all cases the in-sample
performance decreases while the predictions get more accurate on the test sets.

Table 5-3: Performance comparison prior and post feature selection.

Logistic Regression CC Random Forest Gradient Boosting CC

Metric
Sample Training Test Training Test Training Test

-AUC +0.09% -0.01% +0.06% -0.15% +1.06% -0.10%
BS +0.29% -0.25% +0.44% -0.47% +0.18% -0.13%

MAD +6.50% -6.03% +1.66% -0.93% +69.80% -5.95%
|MSD| +19.31% -3.11% +5.34% -73.50% +281.65% -76.13%
MAPE +5.63% -3.65% +1.51% -1.16% +71.59% -0.99%
MSLAR +8.78% -3.41% +2.64% -0.56% +181.10% -50.10%

5-2 Calibration

In order to asses the quality of the probability estimates, for each classification model relia-
bility curves are created which are visualized in Figure 5-1. The probability estimates of all
horizons are considered simultaneously to create the plots. To investigate whether calibra-
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(a) Logistic Regression CC (b) Random Forest

(c) Stochastic Gradient Boosting CC

Figure 5-1: Reliability curves.

tion improves the performance, the reliability plots after applying Platt Scaling and Isotonic
regression are included as well (section 4-5). In general, it can be noticed that for all three
models the plotted reliability curves prior to the application of any calibration method are
close to the diagonal, implying that they already provide reasonable well-calibrated prob-
abilities. For the logistic regression CC model, it can be inferred that the probabilities in
the lower and higher bins are very close to the diagonal, whereas some deviations occur in
the midsections where the classifier tends to slightly overestimate. The reliability curve of
the random forest model shows deviations almost across all probabilities with a bias towards
underestimation. In comparison to the random forest, the boosted CC model seems to be
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better calibrated except for the probabilities that are part of the sixth bin. Interestingly, the
boosted CC model seems to underestimate slightly in the lower and upper midsections, while
overestimating probabilities that lie around 0.5 and 0.6.

As no sigmoidal shape is noticeable in the reliability plots of any model prior to calibration,
Platt scaling is not expected to lead to much improvement. The plots confirm this. Actually,
it even seems to worsen the situation in all of them. In the case of logistic regression CC it
leads to underestimation across all bins except the first and last one. In the first bin there
is almost no visible change whereas for the last one the model slightly overestimates. In
both the random forest and the boosted tree CC model the curves take on a sigmoidal shape
after applying Platt’s method, where the models tend to underestimate in the lower range
of the probabilities and overestimate even more in the higher range. In the case of isotonic
regression, not much improvement can be recognized either. It seems that it mitigates the
slight bias of the logistic regression CC in the midsections, however leads to underestimation
in the higher bins but the last one. Similarly, the method mitigates the bias of the logis-
tic regression CC which however leads to overestimation in two bins of the midsection. In
the case of the boosting CC model, almost no change is visible compared to the original curve.

In Table 5-4 the performance prior and post the application of calibration methods is given
in the context of different metrics. According to the expected calibration error (ECE), the
methods do not improve the quality of the probability estimates at all. Only exception
is the logistic regression CC model, where the output is scaled using isotonic regression.
However, although the ECE is decreased by almost a half, investigating the other metrics
shows that it has neither positive effect on the discriminative power (AUC), calibration and
refinement (BS) nor on the aggregated forecasting performance. Just in the random forest
case, using isotonic regression can slightly improve performance on individual customer level,
however still hurts aggregated forecasting performance. In all other situations either the
improvement is negligible or the performance decreases. The negative effect is more significant
after applying Platt scaling than applying isotonic regression. Since both calibration methods
do not provide any improvement in forecasting performance, neither is used to obtain the final
results described in section 5-3.

Table 5-4: Performance comparison prior and post calibration.

Model
Metric ECE -AUC BS MAD |MSD| MAPE MSLAR

Logistic Regression CC
+ Isotonic regression -46.34% +0.14% +0.00% +5.32% +25.98% +4.46% +12.53%
+ Platt scaling +34.14% +0.12% +0.24% +7.33% +46.56% +9.41% +17.97%

Random Forest
+ Isotonic regression +8.00% -0.23% -1.01% +1.99% -13.88% +1.18% +2.62%
+ Platt scaling +42.00% +0.56% +1.26% +9.97% +17.55% +11.63% +34.50%

Gradient Boosting CC
+ Isotonic regression -0.00% -0.02% +0.00% +8.81% +0.00% +8.02% +5.24%
+ Platt scaling +140.74% +1.15% +3.08% +28.30% +186.66% +28.61% +51.31%
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5-3 Final Model Performance Comparison

After the feature selection procedure, configuration of the models and assessment of the cal-
ibration performance, the models are finally evaluated on a full year of data in order to
investigate their true performance. Since features that concern holidays and yearly season-
ality are acknowledged as irrelevant in all three models, only historical data between cutoff
and four month before cutoff is used as an input for training. This substantially reduces
training computation time while achieving similar performance. As discussed in section 5-2,
neither Platt Scaling nor Isonotonic Regression are applied to obtain the final results. The
performance of the classification models is compared with the performance of the top-line
SARIMAX model described in subsection 4-1-1. Predictions are made for three customer
groups of different sizes to simulate different delivery areas. For each group size, 10 groups of
customers are randomly sampled from the data base in order to obtain a representative sub
sample of the customer base and increase statistical reliability of the results. The average
results of the 10 samples for 3250 customers are summarized in Table 5-5. Similarly, the
results for 6500 and 13000 customers are listed in Appendix C-1 in Table C-2 and Table C-3,
respectively. A comparison of the prediction errors using histogram plots is given in in Ap-
pendix C-2.

In general, all tables carry the same message. The stochastic gradient boosting CC model
achieves the highest performance across the board. Next to that, it is the only method, out
of the classification techniques that are considered in this project, that beats the top-line
benchmark SARIMAX model in terms of forecasting performance. The results of the ran-
dom forest model, however, come fairly close and show a little less bias than the predictions
of the SARIMAX model. Logistic regression CC, the benchmark model in the context of
the classification techniques, performs the worst. Remarkably, the gap between the logistic
regression CC model and the rest is quite large. For example in Table 5-5, it scores about
40% worse in MAD and about 80% worse in MSLAR compared to the random forest model.
This gap slightly decreases with growing number of customers, however remains significant.
The standard deviation of the MSLAR shows reasonable deviations across the results of all
samples, which suggests the statistical consistency of the results.

Generally all models perform better when predicting a larger group of customers. This can
be inferred by investigating both the MAPE and the MSLAR, which decrease with a greater
number of customers. On individual customer level there is not much noticeable deviation,
just a marginal increase in the Brier score loss. Moreover, the standard deviation of the
MSLAR slightly decreases, suggesting that the results get more stable when predicting larger
customer groups. Furthermore, from the MSD values it can be seen that all models tend
to underestimate the target values in all situations. After logistic regression CC, SARIMAX
exhibits the most bias, followed by the random forest model. For each model it holds that the
bias gradually increases when predicting more customers. By analysing the histogram plots
in Appendix C-2, it can be observed that the logistic regression CC and the random forest
model actually tend to "slightly" over predict in most of the cases for larger customer groups,
while exhibiting some larger under predictions. The prediction errors of the stochastic gradi-
ent boosting CC model show an evenly, around the mean distributed bell shape, indicating
less bias as well as variance. Interestingly, the bias of the SARIMAX model increases even
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Table 5-5: Model performance evaluation - 3250 customers.

Model Horizon AUC BS MAD MSD MAPE MSLAR StDv1

SARIMAX
1 - - 10.25 -2.48 10.79 0.0204 4.16
2 - - 10.73 -2.79 11.27 0.0225 4.14
3 - - 10.81 -2.86 11.28 0.0233 4.29
4 - - 10.82 -2.86 11.31 0.0235 4.24
5 - - 10.85 -2.88 11.32 0.0236 4.38
6 - - 10.87 -2.90 11.36 0.0236 4.35
7 - - 10.96 -2.97 11.41 0.0237 4.42

Logistic Regression CC
1 0.8345 0.0489 16.18 -3.99 16.22 0.0419 5.24
2 0.7759 0.0490 16.31 -4.01 16.35 0.0423 5.23
3 0.7665 0.0491 16.35 -4.03 16.36 0.0424 5.12
4 0.7660 0.0491 16.38 -4.11 16.36 0.0424 5.34
5 0.7658 0.0491 16.40 -4.13 16.39 0.0424 5.32
6 0.7657 0.0491 16.41 -4.13 16.39 0.0424 5.31
7 0.7652 0.0491 16.41 -4.16 16.46 0.0427 5.42

Random Forest
1 0.9050 0.0299 10.96 -2.17 11.18 0.0236 3.67
2 0.8579 0.0389 11.51 -2.20 11.81 0.0237 3.74
3 0.8331 0.0418 11.56 -2.36 11.97 0.0237 3.62
4 0.8220 0.0429 11.62 -2.40 12.01 0.0238 3.63
5 0.8166 0.0430 11.64 -2.49 12.02 0.0240 3.89
6 0.8140 0.0430 11.66 -2.70 12.02 0.0241 4.01
7 0.8121 0.0431 11.76 -2.84 12.11 0.0261 3.99

Gradient Boosting CC
1 0.9081 0.0292 8.74 -0.12 9.13 0.0178 3.41
2 0.8612 0.0382 9.47 -0.20 10.05 0.0186 3.31
3 0.8380 0.0411 9.53 -0.41 10.16 0.0188 3.38
4 0.8275 0.0421 9.64 -0.42 10.21 0.0189 3.30
5 0.8231 0.0424 9.69 -0.68 10.21 0.0197 3.86
6 0.8218 0.0425 9.69 -0.88 10.32 0.0198 3.79
7 0.8209 0.0426 10.04 -1.13 10.66 0.0200 3.84

1Standard deviation (×10−4) of the MSLAR

faster than for the rest and ends up taking on values that are close to the values of the logistic
regression CC model. Hence, for a group of around 13000 customers the stochastic gradient
boosting CC model not just performs best in terms of all metrics, but also exhibits a bias
that is way lower than that of the top-line model (see Table C-3).

As expected, the prediction performance of the models decreases with increasing number of
horizons. However, there are some differences between the models. For example, both the
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SARIMAX and the random forest model provide one-day ahead predictions with a dispropor-
tional lower deviation compared to the horizons that lie further in the future. In other words,
there is a larger gap in performance between horizon 1 and 2 than between the other labels.
The same holds for the stochastic gradient boosting CC model when predicting demand of
3250 customers, while the performance gradually decreases over all labels for larger customer
groups. The performance of the logistic regression CC model nearly stays the same for all
labels in all situations, just a slight decrease is noticeable.

Finally, the the average computation times per iteration for all four models are given in
Table 5-6. By comparing the results, it can be noticed that the computation time increases
with increasing number of customers for both fitting (training) and prediction. In general,
the computational complexity of the propensity models is greater than of the top-line model,
which is as expected due to the size of input data. Note that, although the SARIMAX
model includes the complete purchase history of the customers within a group, whereas the
propensity models include only four month of historical input data, the latter still have to
handle substantially more input data than the SARIMAX. Next to that, the computation
time of the CC models is greater than the adapted random forest model, which coincides
with the expectations as well. Interestingly, the training time of the logistic regression CC
model increases rapidly for more input data (larger customer groups), such that it, at some
point, takes longer to fit the model than for the stochastic gradient boosting CC. Despite
some noticeable differences, the prediction times of all model configurations are reasonably
quick.

Table 5-6: Model computation time comparison.

SARIMAX Logistic Regression Random Forest Gradient Boosting Customers
CC CC

Fit
16.05s 14.21s 27.29s 76.48s 3250
26.99s 204.65s 73.16s 144.21s 6500
34.44s 380.09s 163.39s 297.20s 13000

Predict
0.04s <0.00s 0.11s 0.11s 3250
0.05s 0.01s 0.21s 0.24s 6500
0.07s 0.02s 0.41s 0.44s 13000

5-4 Classification

In order to evaluate the class prediction performance of the models, precision and recall curves
are created. The curves are plotted for both the positive (purchase) as well as the negative (no
purchase) class for each horizon. They visualize the precision and recall scores under varying
decision thresholds. In general a larger decision threshold conforms with high precision,
whereas a lower threshold conforms with high recall. As it is the best performing model, the
precision versus recall plots of the gradient boosted tree CC model for 3250 customers are
included in this section in Figure 5-2. The plots for the logistic regression CC and random
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forest model along with the plots regarding the prediction of larger customer groups can be
found in Appendix C.

(a) Purchase (1)

(b) No Purchase (0)

Figure 5-2: Precision and Recall curves of the stochastic gradient boosting CC model (3250
customers).

As expected, class prediction performance decays when predicting days that lie further in the
future, which is in line with the results found in section 5-3. For example, from Figure 5-2 (a)
it can be inferred that for horizon 1 around 35% of the positive class can be classified correctly
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with 100% precision, whereas for horizon 2 and 3 this number goes down to approximately
10% and 5%, respectively. Additionally, it can be noticed that the relative performance for
the negative class is significantly better than for the positive class, which is as expected due
to the heavy class imbalance. As indicated in Figure 5-2 (b), approximately 95% of the
negative class can be classified correctly with a precision greater than 97.5% in all the cases.
By comparing the plots with Figure C-4 and Figure C-5, it can be observed that the random
forest model shows slightly worse performance than the gradient boosted CC model, whereas
the logistic regression CC performs quite poorly. A noticeable difference is, that the random
forest for a horizon greater than 2 is not able to classify even a small portion of the positive
class with a precision of 100%. Similar to the results obtained in section 5-3, the performance
of the logistic regression CC model in terms of class prediction lies closely together for all
horizons. By comparing the plots of the class predictions regarding larger customer groups,
no major differences are noticeable. Only exception are the results of the logistic regression
CC model, that show an significant increase in class prediction performance for both the
positive and negative class of horizon 1 (see Figure C-7 and Figure C-10).
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Chapter 6

Discussion

This chapter discusses the results, examines the limitations of this research and states direc-
tions for future research and practical actions.

6-1 Principal Findings

In this section the major findings are discussed as illustrated in chapter 5. The debated topics
concern the performance results in terms of forecasting and probabilistic modeling, as well as
the analysis of the explanatory variables.

6-1-1 Model Performance

The model performance can be decomposed into three subtopics; separability, calibration and
forecasting, as discussed in section 4-6. The latter being the most important, as it conforms
with the main goal of this research. In general, the obtained performance results are very
satisfactory. The proposed approach yields good results that are of value for management
and decision makers. The results suggest that similar approaches as found in online customer
behaviour studies can be used for obtaining customers’ daily purchase probabilities of an
online grocer. Within this context, it is shown that these predictions indeed have the potential
to enhance short-term aggregated forecasting accuracy.

The tree-based models outperform the logistic regression model in terms of customer be-
haviour prediction, which coincides with the results of previous studies concerning various
applications [80, 84, 86, 103, 136]. Furthermore, the stochastic gradient boosting model
achieves better results than the random forest model which supports the findings of the re-
search conducted by L. Raasveld [107]. While the results show little difference in performance
between the tree-based models in the context of invites conversion rate prediction, the boosted
tree model was able to improve by about 1.77% in MAPE and 20.95% in MSLAR compared
to the random forest in the application at hand. This improvement led to the superiority of
the boosted tree CC model in terms of both classification and forecasting.
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Despite the fact that the time series benchmark model uses all historical data as an input and
zero-order days are imputed, the aggregated predictions of the stochastic gradient boosting
CC model resulted in higher accuracy (e.g., an improvement of 1.15% in MAPE and 16.81%
in MSLAR). The predictions of both the logistic regression CC model and the random forest
are less accurate than the top-line model. However, the difference between the latter two
is marginal and the predictions of the random forest even exhibit less bias. Therefore, the
stochastic gradient boosting CC model is the only model that beats the top-line model in
terms of all forecasting metrics. The model provides consistent results for different customer
groups of different sizes, with prediction errors that exhibit less bias as well as variance com-
pared to all the other models.

The results support the notion that the logistic regression model is not able to model in-
teractions between variables very well [50], which could be among the reasons for its bad
performance. For example, the low permutation importance of features that concern cus-
tomer purchase periodicity, indicate that the logistic regression CC model lacks the ability on
generalizing very well on such input data. Surprisingly, the model does not even pick up the
input feature number of days till a known date of delivery, which can be inferred by analysing
the corresponding precision and recall curve for the positive class, where the graph should
indicate a precision of 100% for at least a fraction of samples (see Figure C-4). In contrary,
the results of the tree based models demonstrate their ability to capture interaction effects
between variables without needing to specify them.
Although tree-based models are quite robust to the inclusion of irrelevant features, filtering
these out can still lead to slight improvements in performance. The results post the selection
procedure indicate that the stochastic gradient boosting CC model needs fewer features in
order to achieve better results than the random forest model. The logistic regression CC
model mainly bases its predictions on a few features, which suggests that the overall gener-
alization power of the logit model is lower than of the tree-based models. The performance
gap between horizon 1 and 2 that is observed within the tree-based models, probably is the
result of exploiting event data along with purchases that are already known, as the impact of
these features is expected to be most significant for one-day ahead predictions. This would
also explain why no analogous gap is noticeable in the results of the logistic regression CC
model.

Eventually, the application of calibration methods, namely Platt scaling and Isotonic regres-
sion, did not lead to much improvement which also coincides with the results obtained by L.
Raasveld [107]. The low value in Brier score of the stochastic gradient boosting CC model
without the application of these methods, along with the low bias when aggregating the prob-
abilities, suggests that it already provides reasonably well-calibrated probabilities, which is
not in line with previous research [100]. Friedman, Hastie, and Tibshirani [56] argue that
boosting can be viewed as an additive logistic regression model, with the result that the pre-
dictions are trying to fit a logit of the true probabilities, as opposed to the true probabilities
themselves. To obtain the true probabilities, the logit transformation must be inverted first.
A possible reason for the disparate outcome, could lie in the nature of the data at hand. Most
classification problems do not represent time series and involve re-sampling of the training
set in order to obtain an equal class distribution. As a consequence, the basic assumption
in machine learning that both training and testing sets are drawn from the same underlying
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distribution is violated [46]. Within the application at hand the underlying distribution is
maintained, which suggests that the posterior probabilities approximate the true probabili-
ties. Subsequently, this would be a reason why the application of calibration methods does
actually hurt the forecasting performance rather than improving it. By applying calibration
methods, the posterior probabilities are modified such that their aggregated values happen
to be less accurate than the initial values.

6-1-2 Explanatory Variables

The results demonstrate that variables regarding behavioural attributes and event data con-
tain most predictive value when estimating customers’ daily purchase probabilities based on
their online shopping behaviour, which is in line with the research concerning various other
applications that concern customer behaviour prediction [28, 83, 141, 136]. Within the ap-
plication at hand, especially the temporal aspects of purchases (e.g., interpurchase times)
are significant of the target variables. This differentiates from the above-mentioned research,
where these variables either were of low importance or not considered at all. Eventually, fea-
tures that embody past shopping behaviour and are related to the recency and frequency of
both purchases and visits, the day of purchasing and the interpurchase times, were most sig-
nificant in this context. This outcome is as expected, since it was one of the main motivations
for this research. Moreover, the encoded purchase periodicity feature that was introduced in
section 3-1-2, has led to compelling improvement in prediction performance.

The results indicate that the impact of customer demographic variables on prediction per-
formance is negligible in the context of this research. This is in contrast to various research,
concerning customer churn [84, 86, 141], estimating next-buy probabilities [84, 136] and con-
sumer credit risk prediction [80], which all found demographic attributes among the top
ranked variables. This suggests that the customer groups at hand either do not exhibit differ-
ent behaviours, that the difference is not significant enough or that the features do not lead to
the "right" segmentation. Another possibility could be that their behaviour is to most extent
covered by the behavioural features, which is a reasonable explanation since these features
are most related to the target variables. The past behaviour of an individual does tell much
more about its future behaviour than, for example, its household composition. Next to that,
the fraction of new customers without much purchasing history is quite small, which suggests
that the impact of customer characteristics (to classify a new customer with the hope to
enhance predictability) on overall performance will be fairly low. Similar reasoning can be
used regarding the meta data features. The behavioural features (e.g., the number of past
purchases per weekday) already implicitly contain information about the day of week, such
that the weekday features barely add any value to the prediction.

6-2 Business Implications

The obtained short-term purchase probabilities of individual customers are valuable for an
online grocer in several ways. First of all, the results suggest that the predictions can be
used as an alternative to conventional time series and regression techniques in the context
of short-term forecasting with the potential to improve accuracy. Improving forecasting of
future demand is of great value for any kind of business, since it can substantially increases
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the competitive advantage by reducing waste and saving costs. The ability in early adopting
the model in new delivery areas makes it even more attractive.

Besides providing the demand in total number of customers, the obtained individual prob-
abilities can serve as valuable input to inbound forecasting practices. By combining the
probabilities with the product purchasing history of individual customers, it has the potential
to improve inbound forecasting accuracy as well.

Another great advantage of obtaining predictions on individual customer level, is the abil-
ity to gain additional knowledge. The estimated probabilities can be exploited for various
analysis purposes to retrieve information that was not available before. For example, the
possibility to aggregate to any level that is desired, provides a tool for analysts to analyse
the obtained predictions, not just on delivery area level, but also on any other segmentation
of customers, without the need of building separate models. Similarly, this provides the pos-
sibility to evaluate the predictions on a more detailed level. In case there happens to be a
(surprisingly) large deviation between the actual purchases and the predicted purchases, the
model can be used to identify the customers that did not act as expected. Subsequently,
this information can give some valuable insights in the behaviour of certain customer groups.
Hence, next to short-term forecasting, this model could be deployed to detect deviations in
customer behaviour and may even be used as a basis for a customer churn model.

The information that comes available through the analysis of (changing) customer behaviour
is helpful from a marketing perspective as well. The individual purchasing probabilities can
facilitate companies to make decisions on how to execute marketing strategies in order to
increase sales. The strategy to apply may depend on the type of customer and the probability
of him/her making a purchase. Tracking the purchasing probabilities of individual customers
allows companies to immediately take action in case a decrease in interest in the service of
certain customers is recognized. Targeted marketing is acknowledged as one of the most
important steps to increase online conversion rates [24].

6-3 Limitations

Although the analysis conducted in this research confirms that predictions on customer level
have the potential to improve aggregated forecasting accuracy, the outcome of this research
may would have been different if some other type of model was chosen as top-line model
for comparison. As argued before, this does not weaken the relevance of the findings. The
SARIMAX model that is chosen as a benchmark, is acknowledged as suitable method for
similar time series problems. The performance is expected to be in line with other (machine
learning) methods, such that the results are representative and provide a relevant benchmark.

Another limitation concerns the generalisability of the results. For example, as zero-order
customers were excluded prior to the analysis, the results cannot tell whether a similar out-
come would be obtained in case all customers, including customers with no purchase history,
were included during model training.
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Moreover, the research within this study is restricted to the data of a single online grocer,
which questions the applicability at other companies in both e-grocery retail and e-commerce.
In the context of e-grocery retail, the results are expected to be generalisable to other com-
panies as well, since most predictive variables that were used should be available there as
well. On the other hand, it is not expected that the implementation of a similar approach in
conventional e-commerce would be quite successful. As discussed in the introduction to this
research, the interpurchase times in e-commerce are of more volatile nature than in online
grocery retail. However, the results indicate that variables concerning interpurchase times, in
particular, are most significant of the target variables.

Since the models were evaluated on a prediction horizon of 7 days only, the results cannot tell
whether the proposed approach can be used to obtain reasonable predictions for on a longer
term as well.

6-4 Recommendations and Future Research

For Picnic it is recommended to deploy the model in the daily operation and compare its
performance with the models that are currently in use. Before that, an adjustment to the
model is required, since in the current state the model does not take zero-order customers
into account. This can be realized by adding the predictions of a conversion model to the
output of the probability model, for example, by using the model developed by L. Raasveld
[107] or just a simple model based on average conversion rates.

Another possibility would be, to first investigate whether zero-order customers can be in-
cluded directly in the proposed propensity model. This subsequently introduces the second
recommendation of this research. Since information about application usage is included, the
model is expected to have some capacity to predict zero-order customers as well. This ap-
proach would provide the advantage of having just a single model in use, but would result in
substantially more memory usage and longer training times. However, neither of them should
be a limitation for practical usage. To minimize input data, one could choose to only include
the data of new customers that were recently active in the application.

Since it is beyond the scope of this research to perform feature engineering for the top-
line model as well, it would be interesting to extend the analysis to other (machine learning)
models, that provide the possibility to include explanatory variables. Similarly, future studies
could asses other propensity models for obtaining individual purchase probabilities. For
example, recurrent neural networks (RNNs) and Long-Short-Term-Memory (LSTMs) models
are applied to many sequence modeling tasks, such as natural language processing, as they
are able to model time dependencies in the input data. These stateful methods can be used
for both time series and classification problems, and are recently applied in the context of
consumer behaviour prediction as well [44, 83, 99]. Since consumer behavior is inherently
sequential, the above-mentioned models provide a perfect fit.

Future research should consider the validation of the obtained results using data of other
companies. Further research is needed to investigate if the results are generalizable to other
fields of industry as well.
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Future studies should establish the extension of the propensity model to investigate the evo-
lution of performance for larger horizons and its effect on individual feature importance.

For future research, it is recommended to focus mainly on behavioural features that best
describe the weekly purchasing behaviour of customers. An extensive feature exploration,
investigating different variants of behavioural variables in this context, is expected to further
improve the performance of the short-term propensity model. In case the model is adapted to
larger horizons, it is recommended to invest in further research concerning yearly seasonality
features, as these are expected to become more relevant.

Adjusting some of the features that are used within this study, could yield better results
as well. For example, the encoded variables that account for summer and regular holidays
could be replaced by dedicated variables for each horizon for each specific holiday separately.
Similarly, all other features that could be expressed in more detail (e.g., type of promotions,
gifts, incidents, clickstream/event data, etc.) could be assessed in terms of predictive value
in future research. Since both slot closings and slot reservations features contribute to the
predictive power of the models, it is recommended, at least for Picnic, to further explore
possible variations of these features.

Future research should experiment with different evaluation metrics during the modeling pro-
cess to investigate what the effect is on performance. During this study it is chosen to optimise
the propensity model configurations based on the quality of individual probability estimates,
whereas it may be favourable to optimise directly on (aggregated) forecasting performance
(e.g., by using the MSLAR for evaluation).

The possible correlations between labels motivated the use of a "single" model (e.g., adapted al-
gorithms, classifier chains (CCs) etc.) that simultaneously predicts all labels. Future research
is needed to verify whether this motivation is justified. One approach could be, to provide a
thorough comparison of binary relevance models, where the hyperparameter configuration is
optimised for each horizon separately, with adapted propensity models and propensity models
that are extended using CCs. Ideally, such studies include a comparison of the same learning
algorithm in all three variations and an evaluation of the features that are introduced by the
CC model.

While it is beyond the scope of this research, future studies should establish the implemen-
tation of outlier detection and imputation, as it is expected to greatly enhance prediction
performance [4]. For the propensity model it is not as straightforward as for an univariate
time series model. Questions arise on how to identify an outlier and how to impute it in order
to keep the relationship between input and output variables. The challenge of imputation in
a propensity model is that multiple features need to be imputed instead of a single regression
variable.

Finally, future research should establish an detailed assessment of the performance over time.
This includes model prediction performance as well as measurement of the variable impor-
tance. During this research, all explanatory variables are evaluated based on the overall
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performance. To gain additional insights for further analysis, it would make sense to evaluate
variables on their specific use cases. For example, evaluating holiday features only during
holidays would prevent skewing their importance due to the prevalence of regular days.
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Chapter 7

Conclusion

This research proposes a novel approach for short-term customer demand prediction within
the e-grocery retail market, which can provide an alternative to conventional time series
forecasting techniques. The results show that the stochastic gradient boosting CC model
outperformed the other propensity models and was able to achieve a significant improvement
compared to the performance of the top-line benchmark model. The model acquired consistent
results for customer groups of different sizes, with prediction errors that exhibited the lowest
bias as well as variance of all models. The analysis of the explanatory variables indicate
that behavioural attributes and variables, that concern interpurchase times in particular,
were most significant of the target variables. To validate the obtained results, future studies
should extend the analysis to other time series benchmark models. Further research is needed
to investigate the generalisability of the results to zero-order customers, other companies and
fields of industries. Based on the promising results of this research, it is recommended to
focus on further improvement of the proposed methodology, which concerns both the quality
of explanatory variables and the learning algorithms.
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Figure A-1: Heatmap correlation matrix.
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B-1 Final Model Configurations

Table B-1: Final model configurations.

Model Parameter Space
SARIMAX

p 1
d 1
q 4
P 3
D 0
Q 1
τ ’n’
K 3

Logistic Regression CC
max. iterations 296
tol 0.0006
ρ 0.6
C 0.006

Random Forest
D 90
nsel 8
max. tree depth 16
terminal node size 0.0001%1

Stochastic Gradient Boosting CC
B 120
max. tree depth 5
ν 0.1
χ 0.8
η 0.9
γmin 0.7
min. child weight 6

1percentage of all training samples

R.B. Verbruggen Master of Science Thesis



B-2 Hyperparameter: Number of Trees (Random Forest) 79

B-2 Hyperparameter: Number of Trees (Random Forest)

(a) Horizon 1 (b) Horizon 2

(c) Horizon 3 (d) Horizon 4

Figure B-1: Brier score per horizon for different number of trees in the random forest model.
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(e) Horizon 5 (f) Horizon 6

(g) Horizon 7

Figure B-1: Brier score per horizon for different number of trees in the random forest model.
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C-1 Forecasting

Table C-1: Model performance evaluation - 3250 customers.

Model Horizon AUC BS MAD MSD MAPE MSLAR StDv1

SARIMAX
1 - - 10.25 -2.48 10.79 0.0204 4.16
2 - - 10.73 -2.79 11.27 0.0225 4.14
3 - - 10.81 -2.86 11.28 0.0233 4.29
4 - - 10.82 -2.86 11.31 0.0235 4.24
5 - - 10.85 -2.88 11.32 0.0236 4.38
6 - - 10.87 -2.90 11.36 0.0236 4.35
7 - - 10.96 -2.97 11.41 0.0237 4.42

Logistic Regression CC
1 0.8345 0.0489 16.18 -3.99 16.22 0.0419 5.24
2 0.7759 0.0490 16.31 -4.01 16.35 0.0423 5.23
3 0.7665 0.0491 16.35 -4.03 16.36 0.0424 5.12
4 0.7660 0.0491 16.38 -4.11 16.36 0.0424 5.34
5 0.7658 0.0491 16.40 -4.13 16.39 0.0424 5.32
6 0.7657 0.0491 16.41 -4.13 16.39 0.0424 5.31
7 0.7652 0.0491 16.41 -4.16 16.46 0.0427 5.42

Random Forest
1 0.9050 0.0299 10.96 -2.17 11.18 0.0236 3.67
2 0.8579 0.0389 11.51 -2.20 11.81 0.0237 3.74
3 0.8331 0.0418 11.56 -2.36 11.97 0.0237 3.62
4 0.8220 0.0429 11.62 -2.40 12.01 0.0238 3.63
5 0.8166 0.0430 11.64 -2.49 12.02 0.0240 3.89
6 0.8140 0.0430 11.66 -2.70 12.02 0.0241 4.01
7 0.8121 0.0431 11.76 -2.84 12.11 0.0261 3.99

Gradient Boosting CC
1 0.9081 0.0292 8.74 -0.12 9.13 0.0178 3.41
2 0.8612 0.0382 9.47 -0.20 10.05 0.0186 3.31
3 0.8380 0.0411 9.53 -0.41 10.16 0.0188 3.38
4 0.8275 0.0421 9.64 -0.42 10.21 0.0189 3.30
5 0.8231 0.0424 9.69 -0.68 10.21 0.0197 3.86
6 0.8218 0.0425 9.69 -0.88 10.32 0.0198 3.79
7 0.8209 0.0426 10.04 -1.13 10.66 0.0200 3.84

1Standard deviation (×10−4) of the MSLAR
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Table C-2: Model performance evaluation - 6500 customers.

Model Horizon AUC BS MAD MSD MAPE MSLAR StDv1

SARIMAX
- - 19.76 -4.75 9.86 0.0183 3.58
- - 20.96 -5.32 10.37 0.0184 3.43
- - 20.97 -5.42 10.39 0.0184 3.56
- - 21.13 -5.64 10.40 0.0184 3.46
- - 21.14 -5.64 10.41 0.0185 3.66
- - 21.22 -5.70 10.44 0.0186 3.37
- - 21.26 -5.76 10.44 0.0191 3.42

Logistic Regression CC
1 0.8360 0.0445 30.14 -6.34 14.26 0.0323 4.75
2 0.7664 0.0467 30.26 -6.42 14.46 0.0327 4.66
3 0.7651 0.0468 30.36 -6.57 14.46 0.0328 4.91
4 0.7642 0.0469 30.47 -6.57 14.48 0.0329 4.83
5 0.7637 0.0469 30.58 -6.60 14.52 0.0329 4.83
6 0.7635 0.0469 30.60 -6.66 14.53 0.0330 4.65
7 0.7631 0.0469 30.66 -6.73 14.58 0.0332 4.71

Random Forest
1 0.9049 0.0313 21.76 -2.11 10.43 0.0178 3.23
2 0.8579 0.0405 24.48 -2.24 11.85 0.0215 3.07
3 0.8347 0.0433 24.55 -2.33 11.97 0.0217 3.02
4 0.8230 0.0443 24.75 -2.33 12.03 0.0220 3.06
5 0.8181 0.0445 25.03 -2.60 12.23 0.0226 3.94
6 0.8157 0.0445 25.15 -2.92 12.29 0.0229 3.08
7 0.8138 0.0445 25.50 -4.17 12.42 0.0231 3.17

Gradient Boosting CC
1 0.9083 0.0306 15.03 -0.36 7.51 0.0119 2.96
2 0.8622 0.0398 17.38 -0.54 8.80 0.0140 2.83
3 0.8387 0.0427 18.08 -1.03 9.06 0.0149 2.91
4 0.8273 0.0437 18.51 -1.12 9.33 0.0154 2.92
5 0.8216 0.0441 19.14 -1.93 9.58 0.0157 2.86
6 0.8211 0.0442 19.50 -2.09 9.91 0.0168 2.76
7 0.8190 0.0442 20.15 -2.19 9.98 0.0177 2.90

1Standard deviation (×10−4) of the MSLAR
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Table C-3: Model performance evaluation - 13000 customers.

Model Horizon AUC BS MAD MSD MAPE MSLAR StDv1

SARIMAX
1 - - 30.08 -9.16 7.65 0.0151 2.23
2 - - 32.83 -10.48 8.27 0.0151 2.38
3 - - 33.17 -10.86 8.31 0.0152 2.54
4 - - 33.40 -10.98 8.33 0.0152 1.95
5 - - 33.44 -11.03 8.35 0.0152 2.14
6 - - 33.55 -11.14 8.36 0.0156 2.14
7 - - 33.63 -11.22 8.38 0.0160 2.49

Logistic Regression CC
1 0.8397 0.0426 48.53 -9.91 11.57 0.0213 3.57
2 0.7808 0.0454 48.86 -10.04 11.61 0.0215 3.71
3 0.7795 0.0455 48.89 -10.28 11.66 0.0215 3.58
4 0.7770 0.0456 49.05 -10.62 11.67 0.0216 3.05
5 0.7745 0.0456 49.10 -11.13 11.67 0.0216 3.30
6 0.7723 0.0457 49.55 -11.25 11.76 0.0219 3.25
7 0.7658 0.0428 49.55 -11.52 11.78 0.0220 3.37

Random Forest
1 0.9053 0.0310 39.38 -4.15 9.50 0.0148 2.92
2 0.8584 0.0401 42.32 -4.59 10.20 0.0166 2.65
3 0.8356 0.0429 42.50 -4.70 10.29 0.0168 2.13
4 0.8249 0.0438 42.70 -4.81 10.35 0.0172 2.96
5 0.8196 0.0441 42.85 -4.81 10.45 0.0175 2.49
6 0.8174 0.0441 43.54 -5.49 10.61 0.0178 2.66
7 0.8156 0.0441 44.32 -6.89 10.75 0.0180 2.36

Gradient Boosting CC
1 0.9100 0.0301 23.25 -1.87 5.94 0.0083 1.93
2 0.8636 0.0392 26.17 -2.07 6.63 0.0107 2.16
3 0.8406 0.0421 26.51 -2.13 6.70 0.0109 2.05
4 0.8299 0.0431 28.77 -2.68 7.26 0.0129 2.29
5 0.8239 0.0435 28.79 -3.83 7.31 0.0141 1.99
6 0.8222 0.0437 30.26 -4.07 7.71 0.0146 1.95
7 0.8214 0.0437 32.42 -4.34 8.07 0.0151 2.25

1Standard deviation (×10−4) of the MSLAR
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C-2 Prediction Errors

C-2-1 Comparison of the prediction errors (3250 customers)

(a) Horizon 1 (b) Horizon 2

(c) Horizon 3 (d) Horizon 4

(e) Horizon 5 (f) Horizon 6

Figure C-1: Histogram plots of the prediction errors.
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(g) Horizon 7

Figure C-1: Histogram plots of the prediction errors.

C-2-2 Comparison of the prediction errors (6500 customers)

(a) Horizon 1 (b) Horizon 2

(c) Horizon 3 (d) Horizon 4

Figure C-2: Histogram plots of the prediction errors.
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(e) Horizon 5 (f) Horizon 6

(g) Horizon 7

Figure C-2: Histogram plots of the prediction errors.

C-2-3 Comparison of the prediction errors (13000 customers)

(a) Horizon 1 (b) Horizon 2

Figure C-3: Histogram plots of the prediction errors.
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(c) Horizon 3 (d) Horizon 4

(e) Horizon 5 (f) Horizon 6

(g) Horizon 7

Figure C-3: Histogram plots of the prediction errors.
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C-3 Classification

C-3-1 Precision and Recall plots (3250 customers)

(a) Purchase (1)

(b) No Purchase (0)

Figure C-4: Precision and Recall curves of the logistic regression CC model.
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(a) Purchase

(b) No Purchase

Figure C-5: Precision and Recall curves of the random forest model.
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(a) Purchase (1)

(b) No Purchase (0)

Figure C-6: Precision and Recall curves of the stochastic gradient boosting CC model.

Master of Science Thesis R.B. Verbruggen



92 Model Performance

C-3-2 Precision and Recall plots (6500 customers)

(a) Purchase (1)

(b) No Purchase (0)

Figure C-7: Precision and Recall curves of the logistic regression CC model.
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(a) Purchase

(b) No Purchase

Figure C-8: Precision and Recall curves of the random forest model.
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(a) Purchase (1)

(b) No Purchase (0)

Figure C-9: Precision and Recall curves of the stochastic gradient boosting CC model.
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C-3-3 Precision and Recall plots (13000 customers)

(a) Purchase (1)

(b) No Purchase (0)

Figure C-10: Precision and Recall curves of the logistic regression CC model.
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(a) Purchase

(b) No Purchase

Figure C-11: Precision and Recall curves of the random forest model.
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(a) Purchase (1)

(b) No Purchase (0)

Figure C-12: Precision and Recall curves of the stochastic gradient boosting CC model.
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