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Abstract: Scaling up bioprocesses is one of the most crucial steps in the commercialization of
bioproducts. While it is known that concentration and shear rate gradients occur at larger scales, it is
often too risky, if feasible at all, to conduct validation experiments at such scales. Using computational
fluid dynamics equipped with mechanistic biochemical engineering knowledge of the process, it
is possible to simulate such gradients. In this work, concentration profiles for the by-products of
baker’s yeast production are investigated. By applying a mechanistic black-box model, concentration
heterogeneities for oxygen, glucose, ethanol, and carbon dioxide are evaluated. The results suggest
that, although at low concentrations, ethanol is consumed in more than 90% of the tank volume,
which prevents cell starvation, even when glucose is virtually depleted. Moreover, long exposure to
high dissolved carbon dioxide levels is predicted. Two biomass concentrations, i.e., 10 and 25 g/L,
are considered where, in the former, ethanol production is solely because of overflow metabolism
while, in the latter, 10% of the ethanol formation is due to dissolved oxygen limitation. This method
facilitates the prediction of the living conditions of the microorganism and its utilization to address
the limitations via change of strain or bioreactor design or operation conditions. The outcome can
also be of value to design a representative scale-down reactor to facilitate strain studies.

Keywords: scale-up; scale-down; computational fluid dynamics; Saccharomyces cerevisiae; mechanistic
kinetic model; bioreactor; concentration gradients; digital twin; bioprocess engineering

1. Introduction

Bioprocesses are applied for the production of a vast spectrum of commodities, from food and
pharmaceuticals to bioplastic and biofuel. Although different from their chemical counterparts,
transferring promising lab approaches to industrial applications is a major challenge too. The problem
lies within the different scales of lab, pilot, and industrial bioreactors. Whereas, ideally, mixed
homogenous conditions are easily realized at lab scale, economic and physical constraints prevent
the establishment of such ideal conditions in industrial tanks. As a result, gradients of limiting
substrate concentrations, by-products, pH, temperature, and shear rates are formed inevitably.
Circulating microorganisms in stirred and gassed large-scale tanks respond to the permanently
changing microenvironmental conditions, finally causing uncertainty of process performance, possibly
deteriorating key TRY criteria (titer, rate, yield) [1–6].

Different approaches to addressing such issues have been studied by bioreactor design
experts [7–12]. The investigation of cellular interaction with substrate gradients has been the basis
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of numerous studies. Often, deteriorating TRY values have been reported [13,14] but there are also
occasional observations of improved performance values [15]. In particular, Saccharomyces cerevisiae
was found to respond to fluctuating conditions with improved viability [16], adapted cAMP-mediated
metabolism [17–19], and global regulation [20,21]. However, most of these investigations were
performed at laboratory scale, mimicking industrial-scale conditions. Real industrial-scale data,
important for validation, are rare. Accordingly, researchers have been employing computational fluid
dynamics (CFD) combined with metabolic models with different resolutions to shed light on gradients
in the bioreactor that take place at the interface of various physical and biological phenomena [6,22–25].
It is worth mentioning that shear gradients may have a significant effect on shear sensitive hosts.
Simulating shear fields and calculating the frequencies of cellular exposure may be a highly valuable
tool for future applications to investigate this particular large-scale impact [26].

Saccharomyces cerevisiae strains are applied for a wide range of processes, from the food
industry [27–31] and bulk chemical production [32–37] to the pharmaceutical industry [15].
These products are manufactured in large bioreactor scales, where gradients cannot be avoided.
As one of the workhorses of industrial biotechnology, this yeast is well investigated [38,39], and key
traits of the “Crabtree positive” strains [40–45] are thoroughly studied. One feature is the overflow
production of ethanol under aerobic conditions, mirroring how S. cerevisiae consumes more glucose than
it can metabolize. [46–48]. Under anaerobic conditions S. cerevisiae is known to consume ethanol [49].
Apparently, such traits may gain importance under varying microenvironmental conditions affecting
TRY values and effecting population differentiation [50]. Interesting short- and long-term Crabtree
effects have been observed [44] that create population responses at different timescales. Furthermore,
stress exposure may cause growth phenotypes different from the well-reported Monod-type kinetics
using substrate supply as the growth limiting impact. To this end, obtaining information regarding the
surroundings of the cell will help to identify the triggers that could set off the stress responses [51,52],
finally yielding further improved prediction of large-scale performance of the yeast.

The mathematical framework requires the joint use of CFD with microbial kinetics. Whereas
the first is applied to predict hydrodynamics and mass transfer in large tanks, the latter describes
the cellular phenotype which is dominated by metabolic models [53–57]. The effects interact and are
both needed to predict gradients in large-scale reactors. However, recently, efforts have been made to
integrate multiple levels of cellular regulation linking metabolism with enzyme activities [9] and gene
expression [6]. The integration of these hierarchical control levels expands the timescales of cellular
response severely [6,21,58–61], which causes extra computational burden, challenging conventional
simulation capacities. With this in mind, such biokinetic models should be linked to CFD that describe
the targeted phenotype with the least computational effort.

Nowadays, CFD is one of the must-have tools for process development and
troubleshooting [5,62–65]. It provides the possibility to incorporate the main aspects of the process and
yield further insights into the conditions inside the bioreactor. Because of the dynamic environment
faced by the cells in large-scale bioreactors, different responses of cells will give rise to a heterogeneous
population, which will result in heterogeneities in substrate/by-product gradients and/or in the cell
population [46,48,66,67]. Setting up a simulation by itself needs to be purpose-driven for engineering
applications. The computational resources and strategies should be allocated in a way that contributes
the most to the goal of the project at hand.

Currently, Reynolds-averaged Navier–Stokes (RANS) methods are the most common way to
model hydrodynamics including turbulence. However, more delicate methods are surfacing [68–70],
with drastic changes in software and hardware requirements. Most of the bioproducts are produced in
aerated fermenters. Moreover, multiphase problems are addressed with numerous methods. On the one
hand, Euler–Euler approaches are used for considering the impact of the ever-changing environment
on cells [71]. On the other hand, one may implement the Euler–Lagrange approach [72], for instance,
if individual microorganisms are incorporated, typically as massless particles.
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In this work, CFD is coupled to a mechanistic biokinetic model to predict concentration gradients in
a large-scale bioreactor. The process of interest is the production of baker’s yeast, Saccharomyces cerevisiae.
A detailed assessment in terms of concentration gradients is undertaken. Aspects of biokinetics, mass
transfer, and thermodynamics of the bioreactor are well characterized, and fundamentals are well
established. Together with experimental validation, they prove to be an effective tool to shed light on
the gradients within a bioreactor at industrial scale. By efficiently combining CFD with simple yet
practical models, the assumption of non-limiting dissolved O2 (dO2) is evaluated. In addition to this,
dissolved CO2 (dCO2) inhibition is known to occur at large scales [4,73] and is addressed within this
work. Large-scale processes are suspected to lack real starvation in the case of overflow metabolism
products that are formed near the feeding point and which are then re-consumed at the other end of
the tank [4].

2. Materials and Methods

All pre-processing, solution, and post-processing were carried out with Ansys® Academic
Research Workbench (2019 R1, Ansys, Canonsburg, PA, USA).

2.1. Geometry and Mesh

The reactor dimensions were based on the schematics available in the literature [25,74], as illustrated
in Figure 1. For CFD simulation, a mesh with ~2.5 million hexahedron cells was generated and evaluated
for turbulent kinetic energy (k) and dissipation of turbulent kinetic energy (ε) and velocity profile at
the impeller heights, as discussed in the work of Haringa et al. [25].
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2.2. CFD Setup

A Eulerian model with two phases was used. Turbulence was modeled with realizable k-ε using
mixture formulation for calculating turbulence of the gas phase [75]. To investigate the concentration of
chemical species, namely glucose, O2, CO2, ethanol, every phase was defined as a mixture. The physical
properties of the liquid phase were approximated as water with volume weighted mixing law for
density calculation. The gas phase was assumed as ideal gas considering an average bubble diameter
0.009 m as calculated by Haringa et al. [25]. With this assumption of single bubble size, the swarm
coefficient needed to be set to −1.2 in the grace drag model [76] to reproduce the gas flow regime
at the bottom impeller. Surface tension was set to that of the air–water system and was 0.072 N/m.
Other interphase forces were assumed not to impose significant impacts according to Scargiali et al. [77].

Boundary conditions for walls were set with no-slip conditions for liquid phase and free slip for
gas phase other than the impellers, where the no-slip conditions also apply for the gas phase to improve
the reproduction of the vortices behind the impellers, as suggested by Haringa et al. [25]. Gas enters
the bioreactor via a sparger through a mass flow inlet with 0.231 kg/s and leaves the system on top via a
degassing boundary condition. Operating pressure was set close to the boundary to 130,710 Pa [4,25,74]
and operating density was set to 0, as suggested by the Fluent manual [78]. The rotation of the impeller
was modeled using multiple reference frames (MRF) at 2.22 1/s, as mentioned in previous works on
this bioreactor [25]. The operating conditions are summarized in Table 1.

Table 1. Operating conditions for the fermentation process.

Operation Conditions Description Ref.

Primary phase

~water

• ρ = 1000 kg/m3

• ν = 0.001 kg/m/s
[25]

Secondary phase

~air

• ρ = 1.225 kg/m3

• ideal gas law
• db = 0.009 m

[25]

Inter-phase forces

Drag

• grace
• swarm coefficient −1.2

[76,77]

Aeration rate 0.231 kg/s [74]
Headspace pressure 130,710 Pa [74]
Agitation rate 2.22 s−1 [74]
Glucose feed 52 kg/h [25]

After setting up the phenomena describing the system, the solution methods and strategies were
included. Phase coupled SIMPLE were chosen for pressure-velocity coupling and temporal (transient
formulation) and spatial discretization scheme were set to first-order upwind for the first few hundred
iterations to achieve solution stability and then were set to QUICK for velocity, turbulence, and volume
fraction, and temporal discretization was set to bounded second-order implicit. The residuals were set
to 10−6 and a time step of 0.001 s with 50 iterations was chosen.

Simulations were qualified as “accomplished” once flow velocities and turbulent kinetic energies
converged to pseudo-steady states with ±5% variation. Further validation was achieved by comparing
mixing time (τ95) and integral mass transfer coefficient (kla) with published values. Flow fields served
as basis for implementing mass transfer and biokinetics in subsequent steps.

2.3. Biokinetics

Sonnleitner and Käppeli [39] introduced a black-box model to describe the substrate uptake,
growth, and by-product formation of S.cerevisiae. Glucose is considered as substrate whereas ethanol
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may serve as substrate or product depending on metabolic and environmental conditions. The model
assumes the respiratory capacity of the yeast as key metabolic bottleneck. If glucose uptake exceeds
respiratory limits, remaining electrons are channeled via reductive pathways, leading to the secretion
of ethanol. Notably, the model also allows ethanol uptake under aerobic conditions. Under anaerobic
conditions, ethanol is considered as dominating product. Details are as follows:

1. Aerobic growth on glucose (indexed sae)
2. Anaerobic growth on glucose (indexed san)
3. Aerobic growth on ethanol (indexed eae)

Uptake rates are assumed to follow Monod kinetics (1)–(3).

qs = qs,max
Cs

Ks + Cs
(1)

qo = qo,max
Co

Ko + Co
(2)

qe = qe,max
Ce

Ke + Ce
(3)

To distinguish between these cases, the catabolic capacity to metabolize glucose aerobically serves
as the threshold. In essence, if biomass specific glucose uptake qs exceeds the related oxygen demand
for oxidation, Y s

o
·qo meaning (4):

qs > Y s
o
·qo (4)

Aerobic ethanol formation starts. Acetaldehyde, upstream of ethanol in the fermentation pathway,
serves as electron acceptor under such conditions. Accordingly, “anaerobic” carbon flux occurs and
equals the remainder of the total substrate uptake (5) and (6), which will be metabolized to ethanol.

qsae = min
(
Y s

o
× qo, qs

)
(5)

qsan = qs − qsae (6)

To shed light on ethanol dynamics, its consumption under aerobic conditions is also considered,
prioritizing glucose [79]. Given that (7) holds true, ethanol uptake rates qeae are calculated as shown in
(8). In essence, the min modulator compares whether oxygen demands for ethanol oxidation after

glucose consumption
(qo−Y o

s
·qsae)

Y o
e

exceed the Monod-type ethanol uptake kinetics qe.

qs < Y s
o
qo (7)

qeae = min

 (qo −Y o
s
qsae)

Y o
e

, qe

 (8)

A graphical illustration of respiratory bottleneck is shown in Figure 2. The concentrations are
calculated and, using Equations (1)–(3), the uptake rates are calculated, upon which the rest of the
model is based. Yields for by-products are stoichiometrically approximated for every reaction.

To reveal the stoichiometry between substrates and products, elemental balances are applied to
the process reaction (9), which then results in three different scenarios (10)–(12).

Process reaction

sCH2O + oO2 + nNH3 → CH1.79O0.56N0.15 + eCH3O0.5 + cCO2 + wH2O (9)

Process reaction for aerobic growth on glucose (rsae)

sCH2O + oO2 + nNH3 → CH1.79O0.56N0.15 + cCO2 + wH2O (10)
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Process reaction for anaerobic growth on glucose (rsan)

sCH2O + nNH3 → CH1.79O0.56N0.15 + eCH3O0.5 + cCO2 + wH2O (11)

Process reaction for aerobic growth on ethanol (reae)

eCH3O0.5 + oO2 + nNH3 → CH1.79O0.56N0.15 + cCO2 + wH2O (12)
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The conservation of mass results in (13). Since all underlying phenomena do not disturb mass
or elemental conservation, it is safe to conclude that there is no net conversion of elements. For this
purpose, the matrices for elemental composition “E” (14), stoichiometry coefficients “S.C.” (15), and
reaction rates “r” (16) are set up.

d(E·C·V)

dt
= E·r·V (Volume of the element) + E·MTR (Mass Transfer Rate) (13)Processes 2020, 8, x FOR PEER REVIEW 7 of 20 

 

00015.0100
125.056.0021
20379.1302
0111001

N
O
H
C

wcexnos

E =  (14) 





























=

i

i

i

i

i

i

i

w

c

e

x

n

o

s

r
r
r
r
r
r
r

r   (15) 

eaesansae

eaesansae

eaesan

eaesansae

eaesansae

eaesae

sansae

eaesansae

wwww
cccc
eee
xxxx
nnnn
ooo

sss
CSCSCS

CS

−

−−−
−−

−−

=

0

0
0

...

.

 

(16) 

Elemental conservation results in the following system of Equation (17): 

0=⋅ rE  (17) 

By solving this system based on growth rate and carbon source uptake rate, other rates are 
calculated for each reaction in the models (18)–(21). 

Aerobic growth on glucose: 




−=
−=

saesaesae

saesaesae

xso

xsc

rrr
rrr
05.16

6
 (18) 

Anaerobic growth on glucose: 




−=
−=

sansansan

sansansan

xse

xsc

rrr
rrr

7.0
3.02

 (19) 

Aerobic growth on ethanol: 




−=
−=

eaeeaeeae

eaeeaeeae

xeo

xec

rrr
rrr
05.13

2
 (20) 

The carbon source consumption rate is calculated using Equations (5)–(8) to solve the remaining 
equation for a known biomass concentration. The growth rate is calculated using the yield coefficient 
taken from the literature [80]. 

2.4. Mass Transfer 

The mass transfer coefficient between the two phases was considered for 𝑂 , 𝐶𝑂 , and ethanol 
(21). A common assumption is to estimate the mass transfer close to the equilibrium state. The gas 

(14)



Processes 2020, 8, 1554 7 of 19

r =



rsi

roi

rni

rxi

rei

rci

rwi


(15)

Processes 2020, 8, x FOR PEER REVIEW 7 of 20 

 

00015.0100
125.056.0021
20379.1302
0111001

N
O
H
C

wcexnos

E =  (14) 





























=

i

i

i

i

i

i

i

w

c

e

x

n

o

s

r
r
r
r
r
r
r

r   (15) 

eaesansae

eaesansae

eaesan

eaesansae

eaesansae

eaesae

sansae

eaesansae

wwww
cccc
eee
xxxx
nnnn
ooo

sss
CSCSCS

CS

−

−−−
−−

−−

=

0

0
0

...

.

 

(16) 

Elemental conservation results in the following system of Equation (17): 

0=⋅ rE  (17) 

By solving this system based on growth rate and carbon source uptake rate, other rates are 
calculated for each reaction in the models (18)–(21). 

Aerobic growth on glucose: 




−=
−=

saesaesae

saesaesae

xso

xsc

rrr
rrr
05.16

6
 (18) 

Anaerobic growth on glucose: 




−=
−=

sansansan

sansansan

xse

xsc

rrr
rrr

7.0
3.02

 (19) 

Aerobic growth on ethanol: 




−=
−=

eaeeaeeae

eaeeaeeae

xeo

xec

rrr
rrr
05.13

2
 (20) 

The carbon source consumption rate is calculated using Equations (5)–(8) to solve the remaining 
equation for a known biomass concentration. The growth rate is calculated using the yield coefficient 
taken from the literature [80]. 

2.4. Mass Transfer 

The mass transfer coefficient between the two phases was considered for 𝑂 , 𝐶𝑂 , and ethanol 
(21). A common assumption is to estimate the mass transfer close to the equilibrium state. The gas 

(16)

Elemental conservation results in the following system of Equation (17):

E·r = 0 (17)

By solving this system based on growth rate and carbon source uptake rate, other rates are
calculated for each reaction in the models (18)–(21).

Aerobic growth on glucose :
{

rcsae = 6rssae − rxsae

rosae = 6rssae − 1.05rxsae

(18)

Anaerobic growth on glucose :
{

rcsan = 2rssan − 0.3rxsan

resan = rssan − 0.7rxsan

(19)

Aerobic growth on ethanol :
{

rceae = 2reeae − rxeae

roeae = 3reeae − 1.05rxeae

(20)

The carbon source consumption rate is calculated using Equations (5)–(8) to solve the remaining
equation for a known biomass concentration. The growth rate is calculated using the yield coefficient
taken from the literature [80].

2.4. Mass Transfer

The mass transfer coefficient between the two phases was considered for O2, CO2, and ethanol
(21). A common assumption is to estimate the mass transfer close to the equilibrium state. The gas
phase is considered well mixed (zero resistance); hence, using the film theory, one can assume the mass
transfer resistance to be on the liquid side of the interface. Moreover, for dilute gases in liquid, Henry’s
law (22) is implemented to calculate the equilibrium concentration “C*” on the interface [81,82].

MTR = kla ∆C (21)

C∗i =
Pi
H

(22)

H is Henry’s constant for the gas component at fermentation temperature (30 ◦C). kl is modeled
by the surface renewal approach [83], a is the bubble surface, and both are known to be dependent on
flow characteristics [84]. Mass transfer driving force (∆C) differs for O2 and CO2 since the direction of
the transport is different, which leads to (23) and (24).
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∆Cc =
(
Ccliq −C∗c

)
(23)

∆Co =
(
C∗o −Coliq

)
(24)

For ethanol stripping, an approach by Löser et al. [85] is implemented in which ethanol transfer to
gas phase is investigated. In this way, a partition coefficient (25) linking ethanol concentration in both
phases to each other is available, which allows calculation of the mass transfer driving force for ethanol.

K L
G
=

Celiq

Cegas

(25)

3. Results

3.1. Flow Field Validation

For the validation of the represented flow field, several criteria were evaluated. τ95 was reproduced
with a virtual pulse of glucose above the top impeller and by reading its concentration at the probe
location, as disclosed in [74], at 0.97 m distance from the bottom. The estimated value in the current
work is 186 s, which is in agreement with the results of previous investigations [4,25,74].

The simulated gas holdup of 19% slightly overpredicts experimental measurements (17.1%) [86]
and previous numerical studies (17.6%) [25] but still falls within an acceptable range. In addition to
the average holdup, gas distribution of the gas phase plays a crucial role in kla calculations (Figure 3).Processes 2020, 8, x FOR PEER REVIEW 9 of 20 
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3.2. Scenario I: Experimental Fermentation

For this scenario, conditions are considered as explained by previous investigations [25,86].
Accordingly, model suitability could be checked. dO2 concentrations are expected to show high values
at the bottom of the tank for mainly three reasons: first, higher hydrostatic pressure increases the
solubility of dO2. Second, lower metabolic activity of cells should occur due to substrate scarcity, and
third, higher fraction of O2 in gas phase close to the bottom should be observed. In contrast, opposite
trends are found close to the feeding point, where the lowest dO2 of ~3.7 × 10−5 M (~1.2 ppm) is
estimated (Figure 4a). This is an order of magnitude larger than the critical value of ~4.6 × 10−6 M [87].
Furthermore, the related volume is only a negligible fraction of the entire stirred tank reactor, which
gives rise to the fair assumption of “no oxygen limitation” in the bioreactor for given conditions [4,25,86].Processes 2020, 8, x FOR PEER REVIEW 10 of 20 
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dCO2 concentrations are represented in Figure 4b. Interestingly, only minor dCO2 gradients occur,
varying no more than ±5% from average. Notably, CO2/HCO3

− creates a buffering system that consists
of around 99% CO2 at the operational pH 5 [73,88]. Accordingly, the simplifying assumption was
made that inorganic carbon only encompasses dCO2. The current study snapshots a pseudo-steady
state of late phase yeast fermentation [82,89]. Consequently, the reasonable postulation was made that
the liquid phase is saturated with respect to dCO2. In the gas phase, CO2 is estimated to reach mole
fractions between 2.1 and 2.9%.

Ethanol gradients are more pronounced than those of dCO2 but less so than dO2. The highest
values are observed proximate to the feeding point, reflecting the highest cellular product formation
and reduced stripping. The lowest titer is found at the bottom of the tank (3.25 × 10−5 M, Figure 4c,d).

3.3. Scenario II: Protein Production

To place the model into a more industrially relevant context, biomass was increased to 25 g/L to
imitate protein production [15]. For simplification, putative impacts of increased biomass concentration
on the viscosity were neglected [90]. The scenario shows that a significant volume is exposed to
oxygen limitation (approximately 0.37 m3) above the top impeller, considering that 10% of saturation
dO2. dO2 levels below 4.6 × 10−6 M were observed in a volume of 0.04 m3, which is below the dO2,crit
according to the available literature [87] (Figure 5a). Notably, elevated viscosity values would have
even deteriorated the oxygen supply. Increasing biomass concentrations also increased microbial
substrate consumption and product formation rates. As aeration and the energy input of the bioreactor
remained equal, gradients for substrates and by-products became more pronounced.
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In turn, this affected the ethanol gradient twofold. First, the drop in dO2 resulted in higher
production of ethanol around the feeding point. Second, higher biomass concentration in the tank
increased the volumetric ethanol consumption, causing lower ethanol concentrations at the bottom of
the tank, as observed in Figure 5b.
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4. Discussion

4.1. Glucose Gradient

Figure A1 (Appendix A) shows the anticipated heterogeneous glucose distribution, disclosing a
hotspot of high glucose concentrations close to the inlet and low values at the bottom of the bioreactor.
As expected, the resulting gradients are more pronounced for the “25 g/L biomass” case than for
10 g/L. Interestingly, studies [4,73] provided experimental values sampled from the top, middle, and
bottom regions of the bioreactor (Table A1). Notably, sampling was performed at the wall of the
bioreactors, only giving a very restricted resolution of local conditions. On the contrary, simulated
values of scenario I and II indicate average concentrations of total reactor slices calculated at the same
height. Consequently, the comparison of simulated predictions with experimental values is intrinsically
biased. Nevertheless, the comparison shows that scenario II comes closest to the measurements.
At the top, high glucose levels were equally predicted by simulation and measurements. Notably,
each value indicates saturated glucose uptake. The strongest deviations are found for the bottom
region, where simulations overestimate the glucose consumption. Consequently, model refinements
should be considered in the next generation of metabolic models by implementing the co-consumption
of intracellular buffers (such as trehalose) as an additional, not yet considered, carbon source in
nutrient-limiting regions.

4.2. Ethanol Gradient

To the best of our knowledge, this study represents the first example of considering ethanol
formation and re-consumption in a CFD-linked large-scale bioreactor simulation. Figure 4c indicates
the well-distributed presence of ethanol in the entire reactor, giving rise to the assumption that
ethanol-based growth should be possible in large parts of the bioreactor. Based on the results, growth
on ethanol is expected to take place in 97% bioreactor. The conclusion is in accordance with the work of
Noorman [4], who anticipated that no real “starvation” zone might exist because of the occurrence of
ethanol. The finding does have implications for the design of proper scale-down approaches [63,65,91]
as suitable settings ideally should consider the co-substrate ethanol too. For scenario II, the average
ethanol concentration was approximately 26% lower (3.17× 10−5 M) compared to scenario I (5× 10−5 M).
Nevertheless, more than 90% of the tank may offer sufficient ethanol uptake within seconds according
to a radiocarbon study [92]. Such levels might be enough to prevent an actual starvation scenario.

4.3. Oxygen Gradient

A conventional approach for estimating the occurrence of gradients is the comparison of critical
timescales τ for substrate supply τssupply versus substrate consumption τscons . Whereas the first may be
approximated by the mixing time τmix or circulation time τcirculation, the latter resembles the quotient of
average substrate concentration divided by volumetric substrate consumption rates (26). Regarding
dO2, scenarios 1 and 2 anticipate the occurrence of gradients because τocons,1 and τocons,2 showing ~28 s
and ~30 s are smaller than τcirculation ≈ 47 s (τmix = 186 s). Indeed, the expectation is met by the
CFD simulations.

τocons =
Co(

Y o
s
·qsae + Y o

e
·qeae

)
×Cx

(26)

Assuming average values, this approach theoretically indicates that assuming the non-limiting
role of dO2 for scenario I is a reasonable approximation for the whole tank, other than a small region
around the feeding point, where the dO2 concentration is slightly above 3.67× 10−5 M. The threshold for
aerobic growth dO2,crit for S. cerevisiae is given as 4.6 × 10−6 M [87]. This allows us to make a distinction
between the ethanol production caused by overflow metabolism or dO2 limitation. Accordingly, no
dO2 limitation is observed in scenario I as mentioned; hence, all ethanol production in this case is
attributed to overflow metabolism, which occurs in 1.63 m3 of the fermenter. However, this is not the
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case for scenario II, where 10% of the ethanol production takes place in regions with dO2 below the
critical value. The total volume associated with ethanol production in scenario II is 0.3 m3.

4.4. Carbon Dioxide Gradient

Although the dCO2 gradient is practically absent when compared to those for dO2, ethanol, and
glucose (Appendix A), the key observation is the generally high level inside the bioreactor due to
overpressure applied in the headspace plus the hydrostatic pressure from the liquid column. This
should be accounted for in experimental scale-down. It should be noticed that by using a black-box
model, some inherent flaws of such models affect the results. While such models could prove to be
insightful for a specific case, the assumptions upon which the model is founded limit the generalization.
In this case, the process reaction (6) considers dCO2 only as a product of a single reaction. However,
multiple decarboxylating reactions exist in the cellular metabolism, showing variable activity [93,94].
This intrinsic feature needs to be included if one wishes to reproduce the respiratory quotient (RQ).
Despite this, the average ethanol consumption rate is an order of magnitude smaller than the average
glucose consumption rate and, as a result, an RQ value of around 1.1 is achieved. Adding another
layer of detail to the biokinetic model by including lumped reactions and metabolite pools [95] might
be an interesting step forward. This might be possible by combining multi-reaction models like
the one used in this work with lumped metabolic models [95,96]. From another perspective, dCO2

creates a carbonate system in the fluid and within the cell which alters the cytosolic pH and hence
induces stress and increases the cellular maintenance [64,73,97] or alters the metabolism based on gas
composition [98]. Based on the actual process, one can decide to include some or all of the equilibrium
reaction, but this does not fall within the scope of this work since, at pH 5, more than 99% is in the
form of dCO2. Nevertheless, using a comparatively simple approach, the results indicate that the
dCO2 gradient is rather weak compared to other species. At such levels, dCO2 inhibition inevitably
takes place at industrial scale and impacts the transcription according to recent findings [37]. Our
results indicate that while fluctuations in other concentrations might be experienced by cells on short
timescales, the same does not hold true for dCO2, where cells are exposed to high dCO2 for long
timescales. The latter requires different experimental set-ups for scale-down tests.

5. Conclusions

This work suggests that in the case of baker’s yeast production, ethanol production is inevitable
around the feeding point—in this case, positioned at the top of the vessel. This causes lower growth
rates above the top impeller and hence hinders the overall growth rate over the bioreactor volume and
is not desirable when the final product is the biomass itself. It is possible to distinguish the ethanol
production due to overflow metabolism (Crabtree effect) from dO2 limitation (Pasteur effect). Such
information can prove crucial for process optimization. dCO2 gradients might not be as pronounced
as the other species, but the fact that, in both scenarios, it reaches saturation levels hints at CO2

stripping under real industrial conditions [4]. This points out the fact that, unlike glucose, ethanol,
and dO2, where fluctuations might trigger a stress response, dCO2 stress is different in nature and
should be evaluated by long-term scale-down experiments. The results further suggest that a real
starvation region in the lower parts of the tank might not exist because of the presence of ethanol
compensating for glucose shortage. Accordingly, scale-down experiments should consider this impact,
even investigating the putative benefits for long-term protein formation [15].
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Nomenclature

C Concentration matrix
C∗i Concentration at the interface mol/L
Ce Ethanol concentration mol/L
Ciliq Concentration of component “i” in liquid phase mol/L
Co Oxygen concentration mol/L
Cs Glucose concentration mol/L
Cx Biomass concentration g/L
db Bubble diameter m
dCO2 Concentration of dissolved carbon dioxide mol/L
dO2 Concentration of dissolved oxygen mol/L
dO2crit Critical concentration of dissolved oxygen mol/L
E Elemental composition matrix
H Henry coefficient l·atm/mol
k Turbulent kinetic energy m2/s2

KL/G Partition coefficient -
Ke Monod constant for ethanol mol/L
kla Mass transfer coefficient 1/h
Ko Monod constant for oxygen mol/L
Ks Monod constant for glucose mol/L
MTR Mass transfer rate mol/L/s
Pi Partial pressure of the component “i” in gas phase atm
qe Specific ethanol uptake rate mol/gx/s
qeae Specific ethanol uptake rate under aerobic conditions mol/gx/s
qemax Maximum specific ethanol uptake rate mol/gx/s
qo Specific oxygen uptake rate mol/gx/s
qomax Maximum specific oxygen uptake rate mol/gx/s
qs Specific glucose uptake rate mol/gx/s
qsae Specific glucose uptake rate for aerobic metabolism mol/gx/s
qsan Specific glucose uptake rate for anaerobic metabolism mol/gx/s
qsmax Maximum specific glucose uptake rate mol/gx/s
r Reaction rate matrix
rieae Reaction rate of component “i” when growing aerobically on ethanol mol/L/s
risae Reaction rate of component “i” when growing aerobically on glucose mol/L/s
risan Reaction rate of component “i” when growing anaerobically on glucose mol/L/s
S.C. Stoichiometry coefficients matrix
τcirc Circulation time s
τmix Mixing time s
τicons Consumption timescale of component “i” s
τisupply Supply timescale of component “i” s
V Volume m3

Y c
s ae

Carbon dioxide yield (aerobic) per mole substrate mol/mol
Y c

e ae
Carbon dioxide yield (aerobic) per mole ethanol mol/mol

Y c
s an

Carbon dioxide yield (anaerobic) per mole substrate mol/mol
Y e

s an
Ethanol yield (anaerobic) per mole substrate mol/mol

Y o
e

Oxygen yield per mole ethanol mol/mol
Y o

s
Oxygen yield per mole glucose mol/mol

Y s
o

Substrate yield per mole oxygen mol/mol
Y x

e ae
Biomass yield (aerobic) per mole ethanol mol/mol

Y x
s ae

Biomass yield (aerobic) per mole glucose mol/mol
Y x

s an
Biomass yield (anaerobic) per mole glucose mol/mol

∆C concentration driving force mol/L
ε dissipation rate of turbulent kinetic energy m2/s3

ν Kinematic viscosity m2/s
ρ Density kg/m3
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Abbreviations

cAMP Cyclic adenosine monophosphate
CFD Computational fluid dynamics
MRF Multiple reference frames
QUICK Quadratic Upstream Interpolation for Convective Kinematics
RANS Reynolds-averaged Navier–Stokes
RQ Respiratory quotient
SIMPLE Semi-Implicit Method for Pressure Linked Equations
TRY Titer, rate, yield
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As expected, a strong gradient for glucose as the main substrate exists in both cases, as shown in Figure A1,
and also aligned with previous efforts [4,25,74]. Using a similar approach to Section 4.2. for glucose (A1) gives a
timescale for substrate consumption of 7 and 17 s for 25 /L and 10 g/L biomass concentration, respectively. This still
falls short of the circulation time τcirculation of approximately 47 s, meaning that supply is slower than the demand.

τscons =
Cs

(qsae + qsan) ×Cx
(A1)

It is worth noticing the glucose concentration predicted in this work is in the same order of magnitude
(Table A1), but it drops to concentrations that are below measured quantities. This could be an interesting topic
for further investigations.
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Table A1. Comparison of glucose concentration at probe location (Top: 6.35 m, Mid.: 3.9 m, Bot.: 0.97 m
from the bottom) from experimental (light blue 10 g/L biomass concentration) and simulation (light
orange 10 g/L biomass concentration, orange 25 g/L biomass concentration) results from the literature
and this work.

Glucose Concentration (µmol/L)
This Work

[4] [74] [25] Scenario I Scenario II

Probe location
Top 199 222 455 356 250
Mid. 91.6 62.2 97 32.6 56
Bot. 40 28.3 23.8 4.15 2.55
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