
D
el
ft

U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

QPack: A cross-platform quantum
benchmark-suite
Quantitative performance metrics for application-
oriented quantum computer benchmarking

Master Thesis
Huub Donkers

QPack: A cross-platform
quantum benchmark-suite

Quantitative performance metrics for
application-oriented quantum computer

benchmarking

by

Huub Donkers
to obtain the degree of Master of Science
at the Delft University of Technology

to be defended publicly on July 6 at 2 PM

Student number: 4475941
Project Duration: November 8, 2021 - Friday 1st July, 2022
Institution: Delft University of Technology

Faculty Electrical Engineering, Mathematics and Computer Science
Thesis Committee: Dr. ir. Zaid Al-Ars

Dr. rer. nat. Matthias Möller
Ir. Aritra Sarkar
Ir. Koen Mesman

Cover Image: Visualization of the qubit concept - Jackie Niam – stock.adobe.com

Preface
This thesis concludes my journey at the Delft University of Technology, where I have spent seven amaz-
ing years of my life, discovering new challenges and meeting a lot of interesting people along the way.
I enjoyed working on this thesis the past year, as it allowed me to work on state-of-the-art quantum
technologies and to help develop the |Lib⟩ quantum library. Although quantum computing is in its
infancy, I am very excited to see what the new way of computing will bring us in the future. The
outlook for quantum computing is promising, but there is still a long way to go. Hopefully, this work
can contribute to that journey and help in the development of quantum technology in the coming years.

Iwould like to thankZaidAl-Ars andMatthiasMöller for their guidance during this project. I especially
liked the casual style of weekly meetings on Discord, which is a unicum among master students from
what I understand. Also, many thanks to Koen Mesman for introducing me to this project, help along
the way, and discussions about quantum computer benchmarking in general. I would also like to thank
the rest of the quantum team of the research group for the enjoyable weekly meetings and sharing their
interesting topics about quantum computing technology. Lastly, I would like to thank my friends and
family who supported me in other ways, be it by accompanying me during late night study sessions at
the library or allowing me to exploit their coffee machine.

Huub Donkers
Delft, July 2022

i

Abstract
As the technology of quantum computers improves, the need to evaluate their performance also be-
comes an important tool for indexing and comparing of quantum performance. Current benchmark-
ing proposals either focus on gate-level evaluation, are centered around a single performance metric,
or only evaluate in-house quantum computers. This gives rise to the need for a holistic, application-
oriented, and hardware-agnostic benchmarking tool that can provide fair and varied insight into quan-
tum computer performance. This thesis continues the development of the QPack benchmark, which
collects quantum computer data by running noisy intermediate-scale quantum (NISQ)-era applications
and transforms this data into an overall performance score, which is decomposed into four subscores.
These scores are quantitative metrics of quantum performance that allow for easy and quick compar-
isons between different quantum computers.

The QPack benchmark is an application-oriented cross-platform benchmarking suite for quantum com-
puters and simulators, which makes use of scalable Quantum Approximate Optimization Algorithm
and Variational Quantum Eigensolver applications. Using a varied set of benchmark applications, an
insight into how well a quantum computer or its simulator performs on a general NISQ-era applica-
tion can be quantitatively made. QPack is built on top of the cross-platform library |Lib⟩ (pronounced:
libket), which allows for a single expression of a quantum circuit and execution on multiple quantum
computers.

Using the QPack benchmarking scores, a comparison is made between various quantum computer sim-
ulators, running both locally and on vendors’ remote cloud services. Tested local simulators include
Qiskit Aer, Cirq, Rigetti QVM, and QuEST. For remote simulators, the IBMQ, IonQ, and Rigetti simu-
lators have been benchmarked. The QPack benchmark is also executed on the Rigetti Aspen-M-1 and a
selection of available quantum hardware from the IBMQ aviary, namely the Nairobi, Jakarta, Perth, La-
gos, Quito, and Manila processors. For all quantum computers, an analysis is made of their individual
performance in the QPack benchmark, as well as an evaluation of how these simulators or hardware
implementations compare to each other. Based on the results of the QPack benchmark, the local QuEST
simulator, the remote IBMQ QASM simulator and the IBMQ Nairobi and Quito quantum computers
achieve best performance compared to the other tested backends.

This work shows that the QPack benchmark is capable of providing holistic quantum computer perfor-
mance for quantum computers, be it physical implementation or their simulator counterparts. The
latest version of the QPack benchmark and all the results collected can be found in the repository:
https://gitlab.com/libket/qpack/-/tree/stable.

ii

https://gitlab.com/libket/qpack/-/tree/stable

Contents
Preface i

Abstract ii

Nomenclature v

1 Introduction 1

2 Measuring computer performance 3
2.1 Benchmarking for classical computers. 3
2.2 Benchmarking for quantum computers . 6
2.3 Proposed system-level benchmarks . 7

3 Benchmark building blocks 11
3.1 Quantum cross-platform libraries . 11
3.2 Quantum algorithms . 12
3.3 Problem sets . 18
3.4 Classical optimizers . 20

4 Benchmark design & criteria 22
4.1 Benchmark outline . 22
4.2 Quantum execution data . 23
4.3 Score criteria . 25

5 |Lib⟩ VQE implementation 27
5.1 General VQE implementation . 27
5.2 Random diagonal Hamiltonian (RH) . 29
5.3 Ising chain ground state (IC) . 30
5.4 Circuit execution reduction . 31
5.5 Resource comparison . 32

6 |Lib⟩ QAOA implementation 34
6.1 Graphs for QAOA problems . 34
6.2 Maximum cut problem (MCP) . 34
6.3 Dominating set problem (DSP) . 37
6.4 Maximal independent set problem (MIS) . 41
6.5 Traveling salesperson problem (TSP) . 43
6.6 Resource comparison . 47

7 Benchmark scores 49
7.1 Runtime . 49
7.2 Accuracy . 51
7.3 Scalability . 51
7.4 Capacity. 52
7.5 Subscore mapping, balancing & combining . 52
7.6 Overall score . 53
7.7 Synthetic tests. 54

8 Benchmark results 57
8.1 Local simulators . 57
8.2 Cloud-accessible simulators . 59
8.3 Cloud-accessible hardware. 62

iii

Contents iv

9 Discussion 68
9.1 QPack scores . 68
9.2 |Lib⟩ limitations. 69
9.3 Comparison to other benchmarks . 69
9.4 Score criteria . 70

10 Conclusion & recommendations 71

Bibliography 73

A Complexity theory overview 80

B Various quantum algorithms 82

C Overview of benchmarked quantum backends 84

D Collected benchmark data 85
D.1 Local quantum simulators . 85
D.2 Remote quantum simulators . 88
D.3 Remote quantum hardware . 91
D.4 Noisy local simulators . 93

E |Lib⟩ Code: Data collection 95

F Python Code: Data processing 128

Nomenclature
Abbreviations

Abbreviation Definition
#AQ Number of Algorithmic Qubits
CLOPS Circuit Layer Operations Per Second
CPI Clock-cycles Per Instruction
CPU Central Processing Unit
DSP Dominating Set Problem
FLOPS Floating-point Operations Per Second
GPU Graphics Processing Unit
IC Ising Chain
NISQ Noisy Intermediate-Scale Quantum
MCP MaxCut Problem
MIS Maximal Independent Set
QAOA Quantum Approximate Optimization Algorithm or

Quantum Alternating Operator Ansatz
QASM Quantum Assembly Language
QPE Quantum Phase Estimation
QPU Quantum Processing Unit
QV Quantum Volume
RH Random Hamiltonian
TSP Traveling Salesperson Problem
VQA Variational Quantum Algorithm
VQE Variational Quantum Eigensolver

Symbols

Symbol Definition Unit
A Adjacency matrix -
B QAOA mixer Hamiltonian -
C QAOA cost Hamiltonian -
E Edge -
Fp QAOA expectation value for p -
G Graph -
Mp QAOA maximum expectation value for p -
N QPack problem size -
p QAOA iterations -
P QPack problem -
TQE Circuit execution time [s]
TQJob Quantum job time [s]
S Subset -
V Vertex -
W Weights matrix -
α Pauli-base set, α ∈ {x, y, z} -
σα Pauli-operator -

v

1
Introduction

Over the past two decades, quantum computer technology has evolved rapidly. Since the realization of
the first physical quantumgate byNIST in 1995 [1], DiVincenzo’s famous list of criteria to realize a quan-
tum computer proposed in 1996 [2] and the Oxford university’s implementation of a two-qubit quan-
tum computer that solves Deutsch’s problem [3], quantum computers have achieved many milestones.
One such milestone was achieved in 2014 by the Kavli Institute of Nanoscience at the TU Delft. They
teleported information between two qubits separated by 3meters. Although quantum teleportation has
been observed before, the Kavli researchers were able to do so reliably using diamond spin qubits [4].
Another milestone occurred in 2019, when Google claimed that it had achieved quantum supremacy:
the ability of a quantum computer to perform a given task faster than a classical computer [5]. Their
53-qubit system could perform a task in 200 seconds, where today’s classical supercomputers would
need about ten thousand years [6]. However, IBM criticized this claim to actually be 2.5 days [7]. Cur-
rent state-of-the-art quantum computers push quantum technology even further, with systems such
as Google’s 72-qubit Bristlecone [8], Rigetti’s 80-qubit Aspen-M-1 [9] and IBM’s 127-qubit Eagle [10]
quantum processors at the forefront of quantum technology.

Still, despite these advances, the current state of quantum computing is labeled the Noisy Intermediate-
Scale Quantum (NISQ) era [5], emphasizing the fact that although quantum computing is becoming an
important tool to push technological boundaries, it is still in its infancy and many challenges still need
to be solved to scale up quantum computing performance.

It should be noted that the NISQ-era is a term used to describe the current state of universal quantum
computers. Another quantum computing method called quantum annealing, is a technology that can
already operate onmany thousands of qubits. Leading this technology is the companyD-Wave, with its
5000+ qubit Advantage system being the largest quantum computer currently in existence [11]. How-
ever, quantum annealers are mainly used to solve optimization problems. This makes them only useful
for certain problems, whereas the universal quantum computer, as the name suggests, will be able to
run any quantum algorithm. Scaling up these universal quantum computers is currently one of the
most research topics in the field of quantum computing and will therefore also be the type of quantum
computer that this thesis focuses on.

When scaling up quantum computers, increasing the qubit count is often pursued. However, the num-
ber of qubits is not the only important goal. Qubit relaxation and decoherence time, along with gate
fidelity, play an important role in the ability to increase the number of qubits of a quantum processor.
As the number of qubits increases, noise and crosstalk tend to rapidly increase the error rate of un-
wanted qubit rotations [12]. So, a quantum system with a large number of qubits may seem impressive
at first sight, but these error rates deserve extra attention, especially in the NISQ-era. After all, what
is the benefit of a 1000-qubit quantum computer that cannot produce a meaningful output? Thus, it
is important to benchmark this low-level noisy behavior and see where performance gains are feasible.
Much work has been put into Quantum Characterization, Verification, and Validation (QCVV), which
measures the noise behavior of single or dual qubit gates [13]. Although important, these low-level per-
formance characteristics do not capture the quantum computers’ overall performance, giving rise to the
problem that the system-level performance of a quantum computer cannot properly be understood by
only evaluating its individual components. This illustrates the need for holistic quantum benchmarks

1

2

that allow the possibility of comparing the performance of different hardware platforms at the system
level.

There have been multiple proposals for benchmarking applications at the system-level using NISQ-era
quantum applications [14, 15, 16, 17, 18, 19], but most of them focus on a single performance metric (of-
ten evaluation of the quantum computer output), use only a single type of circuit to collect data, or have
different scoring metrics per application circuit. QPack aims to overcome these issues by presenting a
benchmark evaluation approach that is based on multiple aspects of quantum computer performance
and a combination of measurements on a variety of quantum applications.

This thesis presents the QPack cross-platform quantum computer benchmarking suite, which is a con-
tinuation of previous work in which QAOA-based applications were used to benchmark IBMQ quan-
tum computers [20, 21]. This work focuses on the further development of the benchmark, where the
data obtained during the execution of quantum applications is analyzed and transformed into perfor-
mance metrics. The goal of the QPack benchmark is the ability to make a quantitative comparison
between quantum computers (both physical realizations and simulators) by scoring a quantum com-
puter on multiple characteristics, based on quantum runtime, accuracy, scalability and capacity. This
gives insight into the areas where a quantum computer excels and where it can improve performance.
It can also provide a general idea of what type of hardware should be used for a desired application.
For example, an application may require a more accurate result without runtime being a concern or
vice versa. Alternatively, some applications might benefit from a denser connectivity of qubits rather
than a large number of qubits. As such, a quantum computer can be selected on the basis of benchmark
performance.

To access a multitude of quantum computers in a hardware-agnostic approach, QPack is built on top
of the cross-platform library |Lib⟩ (pronounced: libket) [22, 23], which allows for a single implemen-
tation of a quantum circuit and its execution on a variety of quantum computers and simulators. In
this thesis, we consider a quantum computer or backend as a system that takes a quantum instruction
set as input and returns a state distribution histogram as a result. This covers the whole system of the
actual quantum hardware, control system, qubit mapping, and gate scheduling, or simulation thereof.
QPack runs NISQ-era quantum applications to collect execution data during runs of quantum com-
puter applications. In this work, the quantum approximate optimization algorithm (QAOA) [24] and
the variational quantum eigensolver (VQE) [25] are used as quantum applications, as these variational
quantum circuits can already give meaningful results on small and noisy quantum computers. The
measured data is then transformed into quantum performance subscores, and finally an overall score
based on these subscores is computed.

This thesis starts by highlighting some general knowledge about benchmarking in Chapter 2. Here, the
main concept of classical and quantum benchmarking is presented along with some recent proposals
for quantum benchmarking. Chapter 3 follows up with some core concepts and motivation for build-
ing the QPack benchmark. In Chapter 4, an overview of how the QPack benchmark functions, what
quantum execution data is obtained during benchmarking, and the criteria for benchmark scores are
presented. The |Lib⟩ implementations of the VQE and QAOA applications are presented in Chapters 5
and 6, respectively. These chapters now form the foundation for the QPack benchmark scores, which
are defined in Chapter 7. Their application on a selection of seven local and remote quantum simu-
lators is presented in Chapter 8, followed by the results obtained on seven actual quantum hardware
implementations from Rigetti and the IBMQ aviary. The thesis wraps up with a discussion of the work
in Chapter 9 and a conclusion along with some future recommendations in Chapter 10.

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office
of Science User Facility supported under Contract DE-AC05-00OR22725. We also acknowledge the
use of IBM Quantum services for this work and the advanced services provided by the IBM Quantum
Researchers Program. The views expressed are those of the authors, and do not reflect the official policy
or position of IBM or the IBM Quantum team.

2
Measuring computer performance

This chapter presents a theoretical basis for benchmarking for computing systems. An overview of
classical computer benchmarking is given, after which some commonly used benchmarks for classi-
cal computing systems are highlighted. We then shift our focus to quantum computer benchmarking,
where some key similarities but also differences are pointed out. This is then followed up by some re-
cent quantum benchmark proposals, to get a feel of the current state of application-oriented quantum
computer benchmarking.

2.1. Benchmarking for classical computers
In Computer Architecture: A Quantitative Approach [26], benchmarks are described as programs that are
used to establish the relative performance between computers. To evaluate a new system, a user would
simply run the same benchmark program on the new device and compare the results. This is sup-
ported by Kistowsk et al. [27] who defines a benchmark as ”A standard tool for the competitive evalu-
ation and comparison of competing systems or components according to specific characteristics, such
as performance, dependability, and security”. Typically, computer benchmarks fall into three cate-
gories: specification-based, kit-based, and a hybrid method between those two. Specification-based
benchmarks focus on the output of a function for a specified input set without requiring a specific im-
plementation, whereas kit-based benchmarks provide the implementation as a required part of bench-
mark execution. Usually, a benchmark takes characteristics from both methods, making the hybrid
version a more common occurrence in benchmarking. One can also make a distinction in benchmarks
between the levels at which performance is measured, either at the component- or system-level. Here,
as the name suggests, the benchmark focuses on the performance of either a specific component of
a computer (e.g., CPU, GPU, or memory) or the system as a whole. Another way of distinguishing
benchmarks is their composition, referring to either a synthetic or application benchmark. Synthetic
benchmarks are generated by combining basic computer functions that provide an indicative measure
of the performance capacity of the tested machine. Application benchmarks, on the other hand, mea-
sure performance by evaluating real-life user applications, giving a more insightful measure to see how
well a computer performs when handled by a user.

2.1.1. Design
Designing aworkload for hardware can be difficult, as one often has to balance several (often conflicting)
criteria for usable benchmarks [27, 28]. There are several key properties for benchmarking computer
hardware:

1. Relevance: Benchmarks should measure important features.
2. Representativeness: Benchmark performancemetrics should be broadly accepted by industry and

academia.
3. Equity: All systems should be fairly compared.
4. Repeatability: The benchmark results should be verifiable.
5. Cost-effectiveness: Benchmark tests should be economical.
6. Scalability: Benchmark tests should measure from a single server to multiple servers.
7. Transparency: Benchmark metrics should be readily understandable.

3

2.1. Benchmarking for classical computers 4

Standardization of a benchmark must ensure these criteria. However, even if all those criteria can be
balanced, there are some common pitfalls when designing a benchmark [26]:

• Benchmark only runs a small part of a real-life application, making computers appear faster than
they would when running the whole program.

• Unclear benchmark conditions, e.g., improve benchmarkperformance byusing benchmark-specific
compiler flags.

• A benchmark program may not reflect the overall performance of a computer.

To overcome these issues, a collection of benchmark applications called benchmark suites arewidely used
tomeasure performance using a variety of benchmark applications. Designersmust specify benchmark-
ing conditions, and it should also be made clear which modifications to the source code are allowed.

A final fallacy in the design of benchmarks is that benchmarks will remain valid indefinitely. Perfor-
mance metrics may change over time, and as a benchmark becomes more popular, hardware designers
maywant tomodify their systems to performwell on a benchmark, making the benchmark itself a lesser
indicator of overall system performance. Updates are thus an important requirement for the longevity
of a benchmark.

2.1.2. Classical benchmarks
With the commercialization of computing systems, the need for performance measurements also in-
creased due to the need of the customer. Typically, measuring the speed of a computer is a dominant
metric to determine performance. In early computer days, typically the MIPS (Million Instructions
Per Second) was a popular measurement to determine a computer’s performance, but has lost its sig-
nificance with the introduction of reduced instruction set computers (RISC), which could most often
perform the same high-level instruction of a complex instruction set computer (CISC) in a similar time,
but with more instructions. It is only still interesting if you combine this number with the clock-cycles
per instruction (CPI) to determine the total runtime. With this in mind, benchmark applications were
created and the runtime of program execution could be used to compare computing systems [29].

With some basics covered, the rest of this subsection lists some commonly used benchmarks in classical
computing and shows what metrics are used to measure computer performance.

LINPACK
The LINPACK benchmark first appeared in 1979 as an application to measure the number of million
floating-point operations per second (Mflops) [30]. The benchmark was originally used to solve a linear
systemAx = b, for a 100x100 matrixA. With the improvement in computer performance over the years,
larger sizes have been proposed as well [29, 30] (see an overview in Table 2.1) often using giga-flops
(Gflops) as a more convenient unit of measurement.

Benchmark Matrix dimensions Optimization allowed Parallel processing
LINPACK 100 100 Compiler Compiler only
LINPACK 1000 1000 Manual Multi-core only

LINPACK Parallel 1000 Manual Yes
HPLinpack arbitrary Manual Yes

Table 2.1: LINPACK benchmark overview [30]

Manufacturers often refer to the peak performance rate when indexing their systems

Rpeak = N · f (2.1)

where N is the theoretical number of floating-point operations per clock cycle and f the clock rate
of the processor. This is of course a bad indication of the performance of a processor, as the average
Mflops usually do not come close to the peak rate. For the devices tested by Dongarra et al. [30], the
average Mflops were approximately 25% of the peak rate [30]. A later report about the Sunway Taihu-
Light System [31] stated that it was able to achieve a 74.15% rate of it’s 125.4 Pflops peak rate for the
HPL benchmark, but only 1.2% for a real-life application (cloud-resolving atmospheric simulation in

2.1. Benchmarking for classical computers 5

this case). This indicates that the simplicity of the LINPACK benchmark may give a better performance
indication than the theoretical rate, but can also be far from the performance of real-life applications.

LINPACK is currently still used tomeasure computer performance. Its success over the years canmainly
be credited to its large historical database, its simplicity of operation, and its ability to capture the best
and worst of programming in a single number [32].

SPEC
The Standard Performance Evaluation Corporation (SPEC) was founded because many experts felt that
previously developed benchmarks were inadequate and could not be compared with real programs
regarding, for example, testing systemmemory. The goal of SPEC is to distribute and standardize large
programs that can be used as benchmarks [29]. SPEC covers a wide variety of benchmarks, targeting
many computing areas such as CPU performance, graphics, HPC, cloud computing, machine learning,
and more [33]. They have defined two main units of measurement:

• SPECspeed: The time to complete a workload.
• SPECrate: Work completed per time unit; in this case, jobs/hour.

Depending on the chosen benchmark and the targeted area of computing, thesemetrics may havemore
specific definitions to give a better understanding of computing performancewithin certain constraints,
for example, SPECint or SPECfp.

BAPCo
BAPCo takes a more creative approach to determining a system’s performance and is more geared
toward user experience than raw computational metrics [34]. In their main benchmark SYSMark25,
they define an overall benchmark score based on three scenarios, shown in Figure 2.1.

Overall

Productivity

DE SS WB

Creativity

PE PO VE

Responsiveness

RE

Figure 2.1: Sysmark25 model overview [35]

The productivity scenario contains user interaction with a system such as document editing (DE),
spreadsheets (SS), and web browsing (WB). The creativity scenario focuses more on photo editing (PE),
photo organization (PO), and video editing (VE). Responsiveness is a more general scenario that mea-
sures application launches and file openings, taken from the other scenarios. The ratings are based on
the geometric mean of the response times of the subscenarios. Due to the benchmark using industry-
standard programs such as Microsoft Office and Adobe, this benchmark is currently only used for Win-
dows operating systems. BAPCo also provides other benchmarks, such as MobileMark25 and Cross-
Mark, to benchmark Android and iOS devices.

EEMBC
The Embedded Microprocessor Benchmark Consortium (EEMBC) is a non-profit organization that has
developed a variety of benchmark suites to measure the performance of all kinds of embedded proces-
sor implementations, with their ULPMark (ultra low power performance), CoreMark (processor core
functionality), and SecureMark (efficiency of cryptographic solutions) being their most popular bench-
marks [36].

CoreMark aims to provide a simple and standardized benchmark which can reflect meaningful infor-
mation about the CPU, by using common big data structures and algorithms often found in practical
applications: list processing, matrix manipulation, state machines, and cyclic redundancy checks. Core-
Mark not only measures performance during computations, but also verifies that they were completed

2.2. Benchmarking for quantum computers 6

correctly. The CoreMark score is defined as benchmark iterations per second. For a more scalable
metric, CoreMark/MHz is used as well [37].

2.2. Benchmarking for quantum computers
The current state of quantum computing is called the Noisy Intermediate-Scale Quantum (NISQ) era,
where quantum computers have been realized, but can only produce meaningful results for a limited
number of qubits and circuit depth. In order to build a quantum computer, Divicenzo [38] lists five
(plus two) criteria for the physical implementation of quantum computers:

1. A scalable physical system with well characterized qubits.
2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000...⟩.
3. Long relevant decoherence times, much longer than the gate operation time.
4. A “universal” set of quantum gates.
5. A qubit-specific measurement capability.
6. The ability to interconvert stationary and flying qubits.1
7. The ability to faithfully transmit flying qubits between specified locations.1

These requirements will be considered fulfilled for the purpose of benchmarking, as benchmarks are
meant to evaluate the performance of working machines, rather than to test if a system is working at
all. Benchmarking, however, is a very useful tool for finding areas where a quantum computer can
improve performance. For example, benchmarking can be used to see how well qubits are initialized
or if a system is scalable.

2.2.1. Quantum benchmarking levels
Similar to classical benchmarking, quantum benchmarking can be divided into two benchmark levels,
namely component- and system-level benchmarking. The prior focuses mainly on the behavior of indi-
vidual components of the quantum computer, while the latter evaluates the performance of the system
as a whole.

Component-level benchmarking
As the growth of quantum computing hardware accelerates, so does the need to evaluate its components.
Especially in the NISQ-era of quantum computing, gate noise and qubit decoherence time have a large
influence on the capability of quantum systems to handle increasing circuit sizes.

The analysis of these low-level components is performed using quantum characterization, verifica-
tion, and validation (QCVV), which targets measurements of the noise behavior of single or dual qubit
gates [13]. Characterization determines the effect of noise and control on a quantum system and is there-
fore the lowest-level information about a quantum computer on which other information is founded.
Verification concerns itself with how well quantum operations are executed, e.g., how close an experi-
mental operation is to an ideal operation. In practice, verification overlaps much with characterization,
as error rates strongly relate to how well an operation can be executed. Validation methods are used to
confirm that an implementation is executed as designed [39].

Examples of low-level benchmarking methods are state-preparation-and-measurement [40], ran-
domized benchmarking [41] and gate set tomography [42].

System-level benchmarking
System-level benchmarking evaluates the performance of the complete quantum system. In the field of
quantum computing, a well-known system-level performance metric is the Quantum Volume, a term
coined by IBM [43] when they introduced it in 2019. Since then, a variety of other volumetric bench-
marks [14, 15, 16] have been proposed. A volumetric benchmark has the following characteristics [13]:

1. Itmaps thewidth anddepth of the circuit to ensembles of quantum circuitsC(w, d) (single circuits
or a set of (randomly selected) circuits).

2. It rules detailing constraints on how the circuit may be compiled to native gates.
1The last two of Divicenzo’s requirements are not necessarily required for building a quantum computer, but rather for com-

munication between quantum computers.

2.3. Proposed system-level benchmarks 7

3. It defines a measure of ”success”, e.g., at what threshold does a circuit ”pass” a test or how well
does a circuit score.

4. It defines measure of ”overall success” on an ensemble of circuits.
5. Optional: It provides an experimental design of how circuits should be run.

Non-volumetric performance metrics have also been proposed for system-level benchmarking and will
be highlighted in Section 2.3.

2.2.2. Quantum benchmarking types
Blume-Kohout and Young [13], divide benchmark circuits into three classes for volumetric benchmark-
ing: random circuits, periodic circuits, and application circuits.

A random circuit is defined by randomized subroutines that build up larger circuits. For example,
Magesan et al. [44] proposed a sequence ofm+1 quantum operationswith the firstm operations chosen
uniformly at random from a group of unitaries, with the last operation chosen such that the complete
circuit is the identity operation. Other examples of randomized circuits have been proposed by Google
to demonstrate quantum supremacy [45] or by IBM to run their QV benchmark [43].

Periodic circuits lend their name to the fact that they have a periodic, rather than a random structure.
Examples of these are Rabi sequences, gate set tomography [42], and even Grover’s algorithm [46]. The
benefit of periodic circuits is that they amplify coherent errors, which would not be as apparent when
using randomized circuits.

Application circuits are not as clearly defined as random or periodic circuits, but cover the whole
range of circuits that are expected to be used in real-world applications. These circuits are neither
random nor periodic, but are rather formed to fit a required problem solving algorithm. Examples of
such application-oriented circuits used in proposed benchmarks will be given in Section 2.3.

2.3. Proposed system-level benchmarks
This section will cover an overview of some recently proposed benchmarks, both volumetric and non-
volumetric. All benchmarks use application circuits, except for the IBM benchmark which makes use
of randomized circuits, but is included as their system-level benchmarks lay an important foundation
for holistic quantum computer benchmarking. The benchmark proposals covered in this section have
been published in the past three years and are listed in chronological order.

2.3.1. IBM: Quantum Volume
IBM was the first to propose a widely accepted benchmark in October 2019 [43]. They proposed the
QuantumVolume as a single-number performancemetric for near-term quantum computers ofmodest
size (< 50 qubits). Quantum execution data is obtained by running randomized circuits (see Figure 2.2)
with a width ofm qubits and a depth of d.

Figure 2.2: Model circuit with qubit width m and number of layers d

The QV is then defined as 2m for the largest square circuit (m = d) that a quantum computer can
successfully implement. In other words:

log2VQ = argmax
m

min(m, d(m)) (2.2)

2.3. Proposed system-level benchmarks 8

For the QV, success means a probability of sampling heavy output above 2
3 . Heavy output is defined as

the sum of all the state probabilities that are above the median probability of the total state distribution.
In principle, the higher a quantum computer’s quantum volume, the more complex a circuit can be
successfully executed.

2.3.2. Zapata: Fermionic benchmark
In March 2020, Zapata proposed the ground state problem of the Fermi-Hubbard model as a bench-
mark [17]. This model can be solved exactly using the Bethe ansatz [47] for finite and infinite chains.
UsingVQE, the ground state can be obtainedwith quantum computers. As the chain lengthL increases,
the ground energy approaches the infinite chain limit E0. For a NISQ-era quantum computer, an effec-
tive fermionic lengthL∗ is a characterization of a quantum computer’s performance, since at this length
it will diverge from E0. In other words, the benchmark scores a quantum computer on how well it can
simulate one-dimensional fermionic behavior.

2.3.3. Atos: Q-score
In February 2021, Atos Quantum Laboratories proposed a new non-volumetric benchmark, dubbed the
Atos Q-score [14]. The Q-score is defined as themaximumnumber of qubits that can be used effectively
to solve the MaxCut combinatorial optimization problem using the QAOA. The score is computed by
running 100 randomErdös-Renyi graphs [48]G(n, p = 0.5) and seeing for which n the algorithm has an
average energy above a certain threshold β⋆. Here, β⋆, has a value between 0 and 1, where 0 indicates a
random result and 1 the result of an exact solver. The Q-score is then the maximum n qubits for which
this threshold is reached:

n⋆ ≡ max{n ∈ N, β(n) > β⋆} (2.3)

Atos decided on β⋆ = 0.2 for an arbitrary threshold value and the score β(n) is:

β(n) =
C(n)− n2

8

λn3/2
(2.4)

This score depends on the average energy (accuracy) C(n) produced by the QAOA circuit, fitted with
parameter λ = 0.178 such that β(n) is bounded by the average score of the MaxCut problem.

2.3.4. TU Delft: QPack
In a recent paper by Mesman et al. [21] published in 2021, an application-oriented benchmark was
proposed using QAOA applications for the evaluation of quantum performance. A schematic overview
of the benchmark is given in Figure 2.3.

Problem
Instance
Library

Quantum Optimizer

Classical Optimizer

Performance
Evaluation

Hybrid Classical/
Quantum Optimizer

Additional
Measurements

Future Applications

Quantum Algorithm
Applications

Figure 2.3: Overview of the QPack benchmark [21]

2.3. Proposed system-level benchmarks 9

Other than volumetric benchmarks, this benchmark implementation considers metrics more related to
the actual useful aspects of quantum computing hardware, namely runtime, accuracy, and scalability.
Current implementations of the problem set library are themaximum cut, dominating set and traveling
salesperson problem for QAOA. These problems aremapped to a 4-regular graph, which is increased in
size (number of vertices) to scale the QAOA problems for more qubits. The benchmark has presented
runtime and accuracy results for these problems for the IBMQ QASM simulator [49], as well as the
IBMQ Montreal and Nairobi quantum processors [50]. The paper stresses the importance of runtime
as a quantum performance metric, as it will likely become the dominant metric as quantum computing
moves on from the NISQ-era.

2.3.5. QuSoft
An alternative approach to quantum benchmarking was proposed by QuSoft in 2021 [18]. They pro-
posed a hardware-agnostic benchmark using real-worldNISQ applications. QuSoft mainly emphasizes
the interplay between various relevant characteristics of quantum computers, such as qubit count, con-
nectivity, and gate and measurement fidelity. This benchmark defines a different score for each quan-
tum application and takes a mean over normalized scores to present a single-number score. Moreover,
instead of just a one-dimensional number to represent a quantum computer’s performance, QuSoft
also proposes a visual representation of the benchmark outcome, which allows for an unambiguous
and single-glance comparison between quantum computers. These visual representations can also re-
veal interesting features of noise in quantum computers, such as systematic errors in deformed images.

2.3.6. QED-C: Volumetric performance benchmark
Another volumetric benchmark was proposed by the Quantum Economic Development Consortium
(QED-C) in October 2021 [15]. This open-source benchmark probes a quantum backend with small
applications for which the problem sizes are varied, mapping the fidelity of the results as a function
of circuit width and depth, hence making it a volumetric benchmark. QED-C determines the success
of a quantum application by comparing the normalized fidelity of the output distribution Poutput of a
quantum computer with the output distribution Pideal of an ideal quantum computer, defined by:

F (Pideal, Poutput) =
Fs(Pideal, Poutput)− Fs(Pideal, Puni)

1− Fs(Pideal, Puni)
(2.5)

where Puni is the uniform distribution and

Fs(Pideal, Poutput) =

(∑
x

√
Poutput(x)Pideal(x)

)2

(2.6)

where x is the bitstring that encodes the state. An application is then considered successful if F > 1
2 .

In addition to this primary metric, the benchmark also provides insight into runtime and the ratio
between the programmed and transpiled circuit depth. QED-Cmakes the remark that runtimemetrics
are currently rudimentary, as quantum providers can have different definitions of quantum execution
time.

2.3.7. IBM: CLOPS
Stepping away from measuring the performance of the output state of a quantum computer, IBM in-
troduces yet another performance metric based on execution time in October 2021 [51]. The CLOPS
metric (Circuit Layer Operations Per Second) measures how many layers of a QV circuit a quantum
computer can execute per time unit, using Qiskit-runtime [52]. It is defined as the number of QV lay-
ers executed per second using a set of parameterized circuits with log2(QV) layers. The execution
time that is measured includes updating the circuit parameters, submitting the job to the quantum
processing unit (QPU), executing the circuit on the QPU, and sending back the results to be processed.
Circuit compilation is not included in this time measurement, and all sets of parameterized circuits
are already compiled to the target machine’s native gate set before the execution timer is started. This
benchmarking approach may give more insight into how well quantum computers perform in contrast
to classical computers and may identify where performance improvements with respect to runtime
might be gained.

2.3. Proposed system-level benchmarks 10

2.3.8. Super.tech: SupermarQ
Another recent proposal for application-oriented quantum benchmarkingwas published by Super.tech
in April 2022 [19]. Super.tech focuses on applications that are not only chosen based on their real-world
purpose, but also their coverage of the application space, described using feature vectors program com-
munication, critical-depth, entanglement-ratio, parallelism, liveness and measurement. A quantum computer
is then evaluated for each benchmarking applicationwith an application-specific benchmark score. The
SupermarQ benchmark is built upon the cross-platform framework SuperstaQ [53], which allows an ap-
plication written in OpenQASM to be executed on multiple backends that do not support OpenQASM
natively.

2.3.9. IonQ: Algorithmic Qubits
IonQ also joined the pursuit of defining a single performance metric for quantum computing, propos-
ing the Algorithmic Qubits (#AQ) in February 2022 [16]. Taking inspiration from the QED-C work
(discussed in Subsection 2.3.6), it also derives its benchmark metrics from NISQ-executable quantum
applications. IonQ defines #AQ = N for the largest box with N qubits and a circuit depth of N2 in
which all quantum circuits meets a success criterion. The set of algorithms that have been selected for
this benchmark is the same as found in the QED-C repository [54]. The main differences between the
QED-C and IonQ benchmarks are the definition of circuit depth (both single- and two-qubit gates vs.
only two-qubit gates, respectively) and the success criteria of a quantum circuit. For IonQ, success is
also determined using the fidelity as described in Equation 2.6 with

Fs(Pideal, Poutput)− ϵs > t (2.7)

where ϵs is the statistical error based on the number of shots (ϵs =
√

Fs(1−Fs)
#shots) and t = 1

e ≈ 0.37 is the
threshold.

2.3.10. This work
This thesis covers the ongoing work on the QPack benchmark, by implementing the QPack benchmark
on top of the cross-platform library |Lib⟩, expanding the problem library, and a quantitative approach
to score the performance of quantum computers. As covered in this section, most benchmarking pro-
posals focus on a single performance metric (often evaluation of the quantum computer output), use
only a single type of circuit to collect data, or have different scoring metrics per application circuit. A
comparison of the presented benchmark proposals other than QPack is shown in Table 2.2. Here, a
benchmark is checked if it evaluates multiple performance metrics (runtime, output state, etc.), is appli-
cation oriented, uses multiple quantum circuits to make measurements, and if the performance store is
a single figure of merit. It can be observed that no current benchmark proposal ticks off all categories,
which may give a limited view of quantum computer performance. QPack aims to overcome these lim-
itations by presenting a benchmark evaluation approach that is based on multiple aspects of quantum
computer performance and a combination of measurements on a variety of quantum applications.

Table 2.2: Characteristics of presented benchmark proposals

IBM Zapata Atos QuSoft QED-C IBM SupermarQ IonQ
QV L∗ Q-score CLOPS #AQ

Multiple performance metrics 7 7 7 7 3 7 7 7
Application-oriented 7 3 3 3 3 7 3 3

Multiple benchmark circuits 7 7 7 3 3 7 3 3
Single-number benchmark score 3 3 3 3 7 3 7 3

3
Benchmark building blocks

Now that some foundational knowledge about benchmarking and some recently proposed quantum
benchmarks have been highlighted in Chapter 2, we canmove on to constructing the QPack benchmark.
Designing a quantum computer benchmark can be done in various ways. This chapter will focus on
four main building blocks of the QPack benchmark. These are:

1. A cross-platform quantum-programming library to be used for the creation and execution of
hardware-agnostic circuits on multiple quantum computers.

2. Quantum algorithms to be used as benchmarking applications.
3. A set of problems to be solved by these quantum algorithms.
4. A classical optimizer to find the solutions of the chosen problem sets.

For each building block, an overview of its purpose is given, potential implementations are reviewed,
and finally a choice for the selected implementation is motivated.

3.1. Quantum cross-platform libraries
In order for the benchmark to be applicable to a variety of quantum computers, a cross-platform library
for quantum computers is desirable, as a quantum circuit can be built once in the library environment
and executed on multiple quantum computers. This will not only allow for efficient access to current
quantum computers, but for easy integration of future quantum computers as well.

3.1.1. XACC
The Oak Ridge National Laboratory presented XACC in November 2019 [55]. XACC is a framework
for hybrid quantum-classical computing. It allows the user to create quantum expressions or circuits
in their own xasm or Rigetti’s quilc language [56]. The framework features a quantum coprocessor pro-
gramming model, low-level system-software interfaces, cross-platform operation, and supports mod-
ular and extensible functionality. Programs can be written natively in C++ or Python using their API.
XACC currently supports the following quantum backends, listed in Table 3.1.

Table 3.1: XACC supported backends [56]

Provider IBMQ Qiskit Rigetti IonQ Qsim Qpp DWave TNQVM Atos QLM QuaC Qrack
Hardware Yes No Yes Yes No No Yes No No No No
Simulator Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Access Remote Local Local/remote Remote Local Local Remote Remote Remote Local Local

3.1.2. |Lib⟩
A year later in 2020, TU Delft presented a new cross-platform programming framework called |Lib⟩
(pronounced: libket) [22]. This framework uses a CUDA-inspired [57] streaming concept to use quan-
tum hardware as an accelerator, like one would with a GPU. |Lib⟩ is designed based on the principles
of QPU-accelerated computing, concurrent task offloading, single-source quantum-classical program-
ming, using generic expressions, development on top of existing tools, and seamless integration into
the status quo. Programs are written natively in C++, but some early stage Python and C APIs are

11

3.2. Quantum algorithms 12

developed as well. According to the online documentation [23], |Lib⟩ supports both remote quantum
backends as well as local simulators, listed in Table 3.2.

Table 3.2: |Lib⟩ supported backends [23]

Provider IBMQ Qiskit Rigetti IonQ Atos QLM Cirq QuEST QX
Hardware Yes No Yes Yes No No No No
Simulator Yes Yes Yes Yes Yes Yes Yes Yes
Access Remote Local Local/remote Remote Remote Local Local Local

3.1.3. SuperstaQ
In August 2021, Super.tech announced a new cross-platform library: SuperstaQ [53, 58]. SuperstaQ
takes input from Qiskit, Cirq, or OpenAPI environments and can execute data on various quantum
systems, listed in Table 3.3. This platform aims to improve quantum computing performance via opti-
mizations in the entire system stack, down to control pulses that perform quantum operations.

Table 3.3: SuperstaQ supported backends [53]

Provider IBMQ Qiskit Rigetti IonQ Berkeley-AQT
Hardware Yes No Yes Yes Yes
Simulator Yes Yes Yes Yes Yes
Access Remote Local Both Remote Remote

3.1.4. QPack platform of choice
Using a cross-platform library is clearly beneficial when building a universal quantum benchmark. All
highlighted platforms have their own benefits and downsides. ForQPack, |Lib⟩ is the platform of choice.
SuperstaQ is currently limited in the number of quantum computers it can run circuits on and is not
yet available for public use. Although XACC has a larger range of providers than |Lib⟩, the benefit of
using |Lib⟩ is that it is also developed by TU Delft, allowing for customization of the source code which
is necessary to suit the QPack needs for data acquisition.

3.2. Quantum algorithms
In this section, an overview of applications that are suitable for the QPack benchmark is presented.
Specifically, different variations of hybrid classical-quantum algorithms, called variational quantum
algorithms (VQAs), will be highlighted. The reason that we consider VQAs as benchmarking appli-
cations is that they have been proposed as a leading strategy to work within the constraints of the
NISQ-era quantum computers. This makes VQAs an appropriate choice to use as benchmarking ap-
plications in the current state of quantum technology. However, some pure quantum algorithms exist
that could be used for benchmarking, such as quantum phase estimation [59], Shor’s factorization al-
gorithm [60] or Grover’s search algorithm [46] (see Appendix B). However, these were ultimately not
chosen, as they are not suited so produce meaningful results in the NISQ era and can only reach their
full potential when quantum computers become more fault-tolerant [61]. In the following subsections,
a review and main purpose of each VQA are briefly stated.

3.2.1. VQA in general
VQAs use a classical optimizer to train a parameterized quantum circuit (see Figure 3.1). According to
Cerezo et al. [61], these algorithms will pave the way for all applications for which quantum computers
were envisioned. The main idea is that these parameterized circuits are small and thus already give
meaningful results on NISQ-era computers, which can be processed further by a classic computer. The
VQA consists of a classical and a quantum subroutine. The quantum circuit (or ansatz) contains a set
of parameterized gates. A classical optimizer can change the parameters of these gates and evaluate
the change in output. Using a cost function, the cost of the output state of the quantum circuit is
determined. The goal of the optimizer is then to minimize this cost by changing the parameters of the

3.2. Quantum algorithms 13

quantum circuit. When the optimal parameters are found, the optimizer outputs these parameters that
encode the solution to a given problem.

Figure 3.1: Schematic representation of a VQA [61]

VQAs have the advantage that their framework can be used for a variety of tasks. Essentially, all ap-
plications for quantum computing can be performed with VQAs and allow for universal quantum
computing [61]. These other applications can make VQA very useful for many quantum related fields.
VQAs, for example, can be used to perform simulations of a dynamical quantum system (e.g., with
Trotterization [62]). Mathematical applications are also possible. For instance, solving systems of lin-
ear equations or integer factorization. VQAs could also be used for quantum error correction and
compilation, decreasing circuit depth and allowing for a more robust quantum circuit in the NISQ-era.

3.2.2. The variational quantum eigensolver
In April 2013, the first VQA was proposed by Peruzzo et al.; the variational quantum eigensolver
(VQE) [25]. This algorithm can be used to find the ground state of a given Hamiltonian and is mainly
used in quantum chemistry.

The algorithm consists of two main parts. The first part is the quantum subroutine that computes the
(partial) expectation values of the HamiltonianH for a parameterized input state |ψ(θ)⟩. Any Hamilto-
nian may be written as

H =
∑
i,α

hαi σ
α
i +

∑
i,j,α,β

hα,βi,j σ
α
i σ

β
j + ... (3.1)

for real h where i, j denotes the subspace on which the operators act and α, β ∈ {x, y, z} identifies the
Pauli operator (only the first and second order terms are shown in Equation 3.1, but higher order terms
are implied). The expectation value for an arbitrary state |ψ⟩ of this Hamiltonian is then just the sum
of the partial Hamiltonian operators, as

⟨H⟩ = ⟨ψ|H |ψ⟩

=
∑
i,α

hαi ⟨ψ|σα
i |ψ⟩+

∑
i,j,α,β

hα,βi,j ⟨ψ|σα
i σ

β
j |ψ⟩+ ...

=
∑
i,α

hαi ⟨σα
i ⟩+

∑
i,j,α,β

hα,βi,j ⟨σα
i σ

β
j ⟩+ ...

(3.2)

which means that the number of circuits to evaluate scales withK, whereK is the number of terms in
the decomposition of the HamiltonianH . The total expectation value ofH can be found by computing
each partial expectation value and summing them up on a classical computer. In the special case that
|ψ⟩ = |ψmin⟩ (ground state of H), the expectation value ⟨H⟩ is the ground state energy of the Hamil-
tonian H . The main idea behind VQE is to find this ground state energy by tuning a parameterized
unitary to approximate the ground state.

The second part of the VQE consists of a classical optimizer which evaluates the computed expectation
value. Based on this input, the optimizer then alters the input state |ψ(θ)⟩ by varying the vector

3.2. Quantum algorithms 14

θ = (θ0, θ1, ..., θn−1) with n optimization parameters, such that it minimizes the expectation value

⟨H⟩ = ⟨ψ(θ)|H |ψ(θ)⟩ (3.3)

where the state |ψ(θ)⟩ that gives the lowest expectation value is considered the ground state of the
Hamiltonian H . An important aspect of VQE is choosing an appropriate ansatz unitary U(θ) that
creates the parameterized input state

ψ(θ) = U(θ) |ψinit⟩ (3.4)
where ψinit is the initial state of the system (often the zero state |00...0⟩ or superposition |++ ...+⟩). The
choice of ansatz is mainly dependent on the type of Hamiltonian that needs to be evaluated, as it should
be able to cover all eigenstates (or at least the ground state) of the Hamiltonian. Such an ansatz for the
single-qubit gate can be achieved with the U3(λ, ϕ, θ) unitary [63], where

U3(λ, ϕ, θ) =

(
cos(θ/2) −eiλsin(θ/2)
eiϕsin(θ/2) ei(λ+ϕ)cos(θ/2)

)
(3.5)

which rotates a qubit over each axis of the Bloch sphere, covering all possible states. For the two-qubit
case, an entangled circuit was proposed by Shende et al. [63], which uses 8 of these U3 unitaries and 3
CNOT gates to create the ansatz. Other commonly used ansatzes in quantum chemistry are the unitary
coupled cluster (UCC) [64] and hardware-efficient SU2 ansatzes [65].

3.2.3. Quantum approximate optimization algorithm
The quantum approximate optimization algorithm (QAOA) is a method used to find approximate solu-
tions to combinatorial optimization problems, often expressed as a graph-based problems. It is a very
common occurrence in VQAs, which has led to its use by Atos [14] and QPack [21] as a benchmarking
application. QAOA was introduced by Fahri et al. in 2014 [24] and consists of two main parts: a cost
unitary and a mixer unitary, based on cost and mixer Hamiltonians, respectively. The cost Hamilto-
nian C is based on the cost function f of the combinatorial optimization problem, usually as a sum of
m clauses:

f(z) =

m∑
α=1

fα(z) (3.6)

where z = z1z2...zn is the bit string to evaluate, m the number of clauses and fα(z) = 1 if z satisfies
clause α and 0 otherwise. Because a quantum computer works in a 2n-dimensional Hilbert space with
computational basis vectors |z⟩ and the cost function in Equation 3.6 is viewed as an operator that is
diagonal in the computational basis, the cost Hamiltonian C encodes this cost function as:

C |z⟩ = f(z) |z⟩ (3.7)
This cost Hamiltonian is then used as an operator in a unitary operator:

UC(γ) = e−iγC =

m∏
α=1

e−iγCα (3.8)

which depends on angle γ ∈ [0, 2π]. Next, we define the mixer Hamiltonian B. In the original QAOA
algorithm, this a sum of single-qubit σx operators.

B =

n∑
j=1

σx
j (3.9)

where n is the number of qubits and σx
j the Pauli-X operation on qubit j. The unitary can then be

defined as:

UB(β) = e−iβB =

n∏
j=1

e−iβσx
j (3.10)

with β ∈ [0, π]. These unitaries are then applied to an initial state |s⟩ in superposition, i.e.,

|s⟩ = 1√
2n

∑
z

|z⟩ = |+⟩1 |+⟩2 ... |+⟩n (3.11)

3.2. Quantum algorithms 15

The cost and mixer unitary can then be applied p times in alternating order to the initial state. We then
arrive at the characteristic quantum state for QAOA, that is,

|γ,β⟩ = UB(βp)UC(γp)...UB(β2)UC(γ2)UB(β1)UC(γ1) |s⟩ (3.12)

where γ = (γ1, γ2, ..., γp) and β = (β1, β2, ..., βp). This means that the algorithm will always have 2p
parameters, where p ∈ Z+. We can nowuse this parameterized quantum statewith a classical optimizer,
which attempts tomaximize (orminimize) the expectation value ofC by finding the optimal parameters
γ and β. The expectation value of C is then simply:

Fp = (γ,β) = ⟨γ,β|C |γ,β⟩ (3.13)

and the maximum value:
Mp = max

γ,β
Fp(γ,β) (3.14)

Note that
Mp ≥Mp−1 (3.15)

and thus increasing p will generally result in a higher maximum result. However, for NISQ-era quan-
tum hardware, only small values for p are possible to use. Generally, only a few p iterations are used,
because circuits need to be kept small. This results in a rough approximation of the Hamiltonian.

Extended algorithm
Five years after the introduction of QAOA, an extension of the algorithm was proposed, named the
Quantum Alternating Operator Ansatz to keep the abbreviation the same [66]. This extension allows the
algorithm to have a more varied set of states than the original version. The paper takes a more general
approach to optimization. An optimization problem is a pair (F, f), where F is the domain and f : F → R
is the objective function. In quantum terms, this corresponds toF being the Hilbert space of dimension
|F |, with standard basis {|x⟩ : x ∈ F}. The QAOA circuit is then constructed using repeating unitaries:

• Phase separation operators UP (γ), depending on the objective function f
• Mixing operators UM (β), depending on the domain and its structure

The QAOA algorithm then comes down to three parts: The phase separation operator, mixing operator,
and a starting state. This extension allows for more than just Hamiltonian-based cost functions and
mixers and can be useful to map more complex problems to the QAOA algorithm.

3.2.4. Variational quantum linear solver
The variational quantum linear solver (VQLS) was introduced in 2019 by two teams of authors sepa-
rately, Bravo-Prieto et al. [67] and Chen et al. [68]. Both algorithms are used to solve linear systems
of the form Ax = b. This is a more NISQ-era implementation to solve such systems, whereas other
approaches such as the Harrow-Hassidim-Lloyd (HHL) quantum algorithm [69] will need larger and
low-noise quantum computers to realize their full potential.

The VQLS algorithm works as follows. Consider a system of the form A |x⟩ = |b⟩, with known matrix
A and known vector |b⟩, where the latter is the normalized version of b. The VQLS algorithm attempts
to find normalized |x⟩, proportional to x. A given square matrix A can be expressed as a linear combi-
nation of unitary matrices

A =

L∑
l=1

clAl (3.16)

where Al are the unitaries to be implemented with a quantum circuit and cl are complex numbers. It
is assumed that |A| ≤ 1, and that the Al unitaries can be efficiently implemented as quantum circuits.
The VQLS then aims to prepare a quantum state |x⟩, such that A |x⟩ is proportional to |b⟩, i.e.,

|Ψ⟩ ≡ |ψ⟩
⟨ψ|ψ⟩

=
A |x⟩√

⟨x|A†A |x⟩
≈ |b⟩ (3.17)

3.2. Quantum algorithms 16

where |b⟩ = Ub |0⟩, for some unitary Ub that prepares the state |b⟩. The solution |x⟩ of the problem can
be approximated with VQLS with a unitary circuit V , dependent on classical parameters α

|x⟩ = V (α) |0⟩ (3.18)

The resulting state |Ψ⟩ (Equation 3.17) can now be varied to find the minimal value. For this, two
approaches are considered, using a global cost function CG or a local cost function CL. The global
cost function approach considers the maximal overlap of the |Ψ⟩ state with the |b⟩ state, which can be
expressed as

CG = 1− | ⟨b|Ψ⟩ |2 (3.19)

Because we want to minimize the cost, CG approaches zero as the overlap between the |Ψ⟩ and |b⟩
states increases. Using the global cost function can be difficult for optimization if the norm of |ψ⟩ is
small and if a large number of qubits are used, which results in many barren plateaus appearing in the
cost function. To negate this, a local cost function is introduced, as

CL =
⟨x|HL |x⟩
⟨ψ|ψ⟩

(3.20)

where the local Hamiltonian is

HL = A†Ub

1− 1

n

n∑
j=1

|0j⟩ ⟨0j | ⊗ 1j̄

U †
bA (3.21)

Here, |0j⟩ is the zero state on qubit j and 1j̄ the identity operator on all qubits except qubit j. Finding
the expectation value of the cost function CG or CL can be achieved using the Hadamard test [70], as
depicted in Figure 3.2. The Hadamard test finds the expectation value of a unitary U for a state |ϕ⟩.

|0⟩ H S† H

|ϕ⟩ U

Figure 3.2: Hadamard test circuit to find the expectation value of U . The colored phase gate is not included when calculating
the real part of the expectation value and is included when calculating the imaginary part of the expectation value.

For repeatedmeasurements of the first qubit, the probability ofmeasuring 0 and 1 can be estimated. The
probability of these measurements is related to the real and imaginary components of the expectation
value ⟨U⟩:

Re⟨U⟩ = P (0)− P (1) =
1

2
(1 + Re⟨U⟩)− 1

2
(1− Re⟨U⟩) (3.22)

The imaginary part of the expectation value can be found by adding a S† gate to the Hadamard test
circuit (blue gate in Figure 3.2) and applying Equation 3.22 again for the measured probabilities. Using
the Hadamard test is a simple way to compute the expectation value, but needs to have control over
all unitaries V , Al, and Ub. Another method that circumvents this is the Hadamard-Overlap test [67],
which negates the need for control of the V and Ub unitaries at the cost of doubling the number of
qubits.

3.2.5. Variational quantum classifier
A VQA approach is also applicable to perform tasks that are more commonly solved using machine-
learning, such as classification of data points into two distinct sets based on feature vectors [71, 72, 73].
These types of algorithms are known as variational quantum classifiers (VQCs). For this review, we
will follow the implementation by Havileck et al. [73], but others have a similar approach. The VQC
follows the approach of supervised learning. Consider a training data set T and a test data set S. Both
sets contain a set of feature vectors x that are labeled by a mapm : T ∪ S → {+1,−1}, unknown to the
algorithm. When training the algorithm, it only receives labels from T . The goal of the algorithms is
then to find the approximate map m̃ : S → {+1,−1}, such that is agrees with a high probability with

3.2. Quantum algorithms 17

|0⟩

VΦ(x) W (θ)...
...

|0⟩

Figure 3.3: General circuit approach of a VQC

the true map m. Figure 3.3 visualizes the general approach of the VQC, where it can be observed that
the VQC circuit consists of two unitary operators. The first unitary operator VΦ ’loads’ the data set onto
the quantum computer using a quantum feature map:

Φ : x ∈ Ω → |Φ(x)⟩ ⟨Φ(x)| (3.23)

where Ω is the complete data set. For NISQ-era quantum computers, commonly used datasets for
machine-learning (such as MNIST [74], Iris flowers [75], Palmer penguins [76], etc.) contain a vast set
of feature vectors. Since a feature dimension is mapped to a qubit, these datasets need to be reduced
and normalized in order to function within the constraints of NISQ-era quantum computers. Havileck
et al. propose a mapping circuit that is not too deep and works well in their experiments:

VΦ(x) = UΦ(x)H
⊗nUΦ(x)H

⊗n (3.24)

for a circuit of n qubits and

UΦ(x) = exp

i ∑
S⊆[n]

ϕS(x)
∏
i∈S

Zi

 (3.25)

where coefficients ϕS(x) ∈ R encode the data x. The feature state is then obtained as |Φ(x)⟩ =
VΦ(x) |0⟩n. Now, the second unitaryW (θ) is applied to the feature state, which is optimized to fit the
training set T . Havileck et al. use the linear efficient SU2 ansatz [65], but others can be implemented as
well. After applyingW (θ), the state can be measured to determine the classification label y ∈ {+1,−1}.
The probability of outcome y is

py(x) = ⟨Φ(x)|W †(θ)MyW (θ) |Φ(x)⟩ (3.26)

for themeasurement operatorMy = 1
2 (1+yf)with the quantumparity functionf =

∑
z∈{0,1}n f(x) |z⟩ ⟨z|

using f : {0, 1}n → {+1,−1}. The label m̃(x) = y is assigned when the empirical distribution p̂y(x),
obtained after repeated measurement, adheres to

p̂y(x) > p̂−y(x)− yb (3.27)

where b ∈ [−1, 1] is a bias operator that is optimized by the classical optimizer along with the opti-
mization parameters θ. The cost function that the optimizer minimizes is defined by the empirical
risk Remp(θ), given by the probability of assigning an incorrect label to a sample of the training set T ,
defined as

Remp(θ) =
1

|T |
∑
x∈T

Pr(m̃(x) ̸= m(x)) (3.28)

where the probability of assigning thewrong label is given by the binomial cumulative density function
of the empirical distribution p̂y(x) for a large number of shots (≫ 1).

Pr(m̃(x) ̸= m(x)) ≈ sig
(√

shots(12 − (p̂y(x)− yb
2))√

2(1− p̂y(x))p̂y(x)

)
(3.29)

When the VQC has been trained on data set T by finding the optimal parameters θ that minimize the
cost function, the VQC can be used to label the unknown data set S. The achieved cost on the test set
will then indicate how well the algorithm has been trained.

3.3. Problem sets 18

3.2.6. Selected algorithms for QPack
In this section, only a few of the many VQAs that exist were highlighted. It should be noted that there
is a wide range of VQAs that exist or are still being developed, as they can be verified on NISQ-era
quantum computers. Examples are quantum neural networks [77], the variational quantum thermal-
izer [78] or variational quantum factoring [79], to name a few. This promises awide variety of NISQ-era
applicable quantum circuits that can potentially be selected for benchmarking purposes.

The QAOA was already part of the original QPack benchmark [21, 20] and, as such, it is also selected
to be implemented in this |Lib⟩ version. In addition to QAOA, the VQE algorithm is chosen to be used
for benchmarking, as it can be implemented with small circuits of a few qubits. This fills the gap in the
evaluation of functionality of a quantum computer with very small qubit numbers (1, 2, or 3 qubits),
where the current QAOA implementations usually start at 4 or 5 qubits. Other VQA-based applications
have the potential to be included in QPack as well, but generally need a larger number of qubits to
operate. As quantum computers improve and scale up, it could be interesting to implement algorithms
such as VQLS or VQC.

3.3. Problem sets
This section briefly shows what problems are possible to implement as a VQE or QAOA application.
Selecting the right problems to solve is important, as together with the quantum algorithm, it forms a
specific quantum circuit used as the quantum subroutine in the VQA.

3.3.1. VQE problem sets
The VQE can in essence be used to solve any problem, as long as it can be encoded into a Hamiltonian
H and the solution is the ground state of H . Some problem-specific parameterized quantum circuits
are proposed in [80], covering the traveling salesperson [81] and the vertex cover [82] problems.

The main challenge in VQE is to find an appropriate ansatz to approximate the ground state. VQE
ansatzes that approximate a wave function very closely often use many optimization parameters or
gate operations. As the number of optimization parameters increases, a classical optimizer can have
trouble finding the global optimum, needing many optimization iterations and risking getting stuck at
local optima. A large number of gate operations can be undesirable in the NISQ-era, as gate-induced
noise can render the ansatz useless. Finding a good balance between the state approximation and ansatz
resources is thus important to run VQE efficiently.

3.3.2. QAOA problem sets
In the original QAOA paper [24], solving the maximum cut (MaxCut) problem [83] was introduced as
an application for QAOA. In the expansion paper of this algorithm [66], more families of problemswere
introduced. They make a distinction of five different types of QAOA problems, based on their mixer
families. These are X mixers, controlled-X mixers, XY mixers, controlled-XY mixers, and permutation mixers.

X mixers
This mixer family originates from the QAOA proposal by Fahri et al. [24] and is simply an X-rotation
on each qubit in the QAOA circuit, given by mixer Hamiltonian

BX =
∑
j

σx
j (3.30)

Examples of QAOAproblems that use thismixer are the maximum cut [83], max-SAT [84], set splitting [85]
and E3Lin2 [86] problems.

Controlled-X mixers
Similar to the X mixer family, this mixer is also implemented with a single X-rotation on each qubit, but
is now dependent on the state of other qubits. The mixing rule here is that an element i can be swapped
in or out some set V if some predicate χ(xnbhd(i)) is satisfied by the partial state of neighboring qubits.
Here, χ is problem dependent. For each qubit, a partial mixer Hamiltonian is defined as:

BCX,i = Hχ(xnbhd(i)) ⊗Xi (3.31)

3.3. Problem sets 19

with the complete controlled-X mixer BCX =
∑

iBCX,i. The complete mixer can be applied simultane-
ously or in a partitioned manner. Simultaneous mixers are often hard to compile, so using partitioned
mixers can be a simpler option to use. However, partitioned mixers do have the downside that par-
tial mixers do not always commute. Problems in this mixer family are the maximal independent set [87],
maximum clique [88], minimum vertex cover [82], maximum set packing [89] and minimum set cover [90]
problems.

XY mixers
These types of mixer can be used for problems that have been encoded onto a bitstring using the one-
hot encoding scheme, i.e., a bitstring where a single bit is 1 and the rest is 0. The XY mixer that acts
on the qubit state preserves the Hamming weight of the computational basis states. In other words, it
shifts the 1-bit to another place in the bitstring. The mixer Hamiltonian for this operation is

BXY =

d−1∑
a=0

(σx
aσ

x
a+1 + σy

aσ
y
a+1) (3.32)

where d is the number of qubits needed for the one-hot encoding scheme. Problems from thismixer fam-
ily are max-κ-colorable subgraph [91], maximum/minimum bisection [92], and maximum vertex κ-cover [93].

Controlled-XY mixers
This mixer family is very similar to the controlled-X mixer family, but using the aforementioned XY
mixers instead of X mixers. Using this knowledge, we can see that the partial controlled-XY mixer
Hamiltonian can be described as

BCXY,i = Hχ(xnbhd(i)) ⊗BXY,i (3.33)
with the complete controlled-XY mixer BCXY =

∑
iBCXY,i. Problems include the maximum κ-colorable

induced subgraph [94], minimum graph coloring [95], and minimum clique cover [89] problems.

Permutation mixers
This family of mixers does not have a predefined gate operation to describe the mixer operation, unlike
the other mixer families. Rather, it entails all types of mixer that deal with a configuration space that is
a set of orderings, permutations, or schedule of a particular set of items. Problems that are present in
this family are the traveling salesperson problem [81] and single machine scheduling [96] problems.

3.3.3. Selected problems for QPack
Unlike the QAOA problem mappings, selecting some problems for VQE is arbitrary. As any ground
state of a Hamiltonian can be found by selecting the proper ansatz. As mentioned in Subsection 3.2.6,
the VQE problemwill be used to create very small circuit sizes. A very shallow and simple ansatz is the
variable X-rotation on each qubit, such that it can explore the complete computational basis. A useful
Hamiltonian for this is a diagonal matrix containing random variables. This random diagonal Hamil-
tonian (RH) can then be evaluated using this shallow ansatz to find the lowest eigenvalue. Checking
the solution is then simple, as we can easily spot the lowest diagonal value, which corresponds to the
lowest eigenvalue since all matrix columns are orthogonal. Another ansatz for VQE is the hardware-
efficient SU2 ansatz, as it does not use too much resources compared to other commonly used ansatzes.
This ansatz can be used for more complex Hamiltonians. In this case, we will model an Ising chain
(IC) [97], but other Hamiltonians are also viable.

As also mentioned in Subsection 3.2.6, previous work on QPack already included three QAOA prob-
lems: The maximum cut problem (MCP), the dominating set problem (DSP), and the traveling sales-
person problem (TSP). As such, they are also included in the |Lib⟩ version of QPack. These three prob-
lems are part of the X mixer family (MCP and DSP) and the permutation mixer family using XY mixers
(TSP). In order to have a varied set of QAOA applications, it would be beneficial to choose an additional
problem from either the controlled-X or controlled-XY mixer family. Here, the controlled-X family is
preferred, as it will use a less-complicated gate structure than the controlled-XY family, resulting in
shallower circuits better suited for NISQ-era quantum computers. From this controlled-X family, the
maximal independent set (MIS) problem was chosen to be implemented because it was better docu-
mented than the other problems of the mixer family.

3.4. Classical optimizers 20

3.4. Classical optimizers
The success of a VQA is highly dependent on the classical optimization method used [61]. It is impor-
tant that the quantum circuit encodes a good approximation to the solution and that the optimizer can
find the optimal parameters within an acceptable time frame and with sufficient accuracy [98]. Op-
timization is not a quantum-specific technique and is widely used in the classical computation field.
Optimization methods can be divided into two categories, gradient descent and gradient-free meth-
ods. The gradient descent method is generally not used for VQAs, but a brief overview will be given to
motivate the reasons for this. Some gradient-free methods will then be discussed from a comparison
presented by Mesman et al. [21], which is used to choose an optimizer for the QPack benchmark.

3.4.1. Gradient descent method
Optimization using gradient descent uses, the gradient of the cost function to find the minimum value.
In a nutshell, the gradient descent method works by calculating the cost for a set of input optimization
parameters θ, calculating the gradient, and taking a step in the direction of the gradient. Repeat this
process until the minimum cost value has been found, i.e., the point at which the gradient is approxi-
mately zero. Here, selecting an appropriate step value (learning rate) is a trade-off between the speed at
which the optimization algorithm converges and whether the algorithm is able to converge at all. With
this in mind, we can see that gradient descent methods can only work well for smooth cost functions, as
noisy or discontinuous functions could mess with the gradient estimation. Gradient descent methods
can also get stuck in local minima, as the gradient at these points is, of course, also zero. Cost func-
tions encoded in quantum circuits of VQAs often exhibit this non-smooth behavior or have many local
minima, making gradient descent methods not very suited to optimize quantum subroutines [61].

3.4.2. Gradient-free methods
Optimization methods that are better suited to work with the difficulties VQA optimization poses do
not rely on the gradient of the cost function. In earlier work of QPack [21], a comparison of such clas-
sical optimization algorithms was presented, which will be used as a guideline for this work. Each
optimization algorithm will be briefly discussed to give an idea of its approach to finding minimum
values. Compared optimizers fall in either a local or global optimization category. Local optimizers
are used to find the local minimum of a small region close to the evaluated point, but may not be able
to find the global optimum. Global optimizers, as the name implies, look for the global optimum of
the cost function, but can be coarse in the estimation of the optimum [99].

Dual Annealing (DA) [100]
Dual Annealing is a stochastic global optimization algorithm designed for cost functions that have a
nonlinear response surface. It is based on the Simulated Annealing (SA) algorithm that uses a type
of stochastic hill climbing, i.e., candidate solutions are modified in a random manner and replace the
current candidate solutions probabilistically. The probability of replacement is high at the beginning of
the search and decreases with each iteration, controlled by the so-called ’temperature’ parameter. DA
is then a hybrid method between classic simulated annealing (CSA) [101] and fast simulated annealing
(FSA) [102], combined with a strategy to apply a local search for potential solution locations. This
last part is especially desirable, as global optimizers are often good at finding the area for the optimal
solution, and the local optimizer is then able to find the exact location of the optimum [103, 104].

Nelder-Mead simplex (NM) [105]
This method uses the simplex shape in n-dimensional space. The simplex is the shape that consists of
n+1 points. For example, in a 2D space, the simplex is a triangle, and in a 3D space, it is a tetrahedron.
All points x1, x2, ..., xn+1 are evaluated by the cost function f(x). The Nelder-Mead method (NM) then
orders these points from highest (worst) to lowest (best) cost. Then, the centroid of all but the worst
points is computed overwhich the simplex can be transformed, using reflection, expansion, contraction,
or redefinition of the simplex shape. This process is repeated until some convergence or iteration limit
is reached. NM is a very fast and simple method, but tends to get stuck on local minima [106].

Broyden-Fletcher-Goldfarb-Shanno (BFGS) [107]
This optimizationmethod is not gradient-free, but it was included in the optimizer comparison as it can
be useful for certain quantum optimization cases. BFGS is a second-order optimization algorithm that

3.4. Classical optimizers 21

uses the quasi-inverse of the Hessian matrix to determine in which way to move to find local minima.
Without going into too much detail, the BFGS algorithm distinguishes itself by updating the inverse
Hessian in a unique way, rather than every optimization iteration in normal second-order Newton
algorithms [108].

Constraint optimization by linear approximation (COBYLA) [109]
As the name implies, the COBYLA optimization method relies on linear approximation of the objective
function using a simplex of n + 1 points for n dimensions as a constraint [110]. The value of the cost
function is computed for each vertex of the simplex. With this information, an approximate linear rep-
resentation of the cost function is generated. Using this approximation, the optimization problem is
solved over a so-called ’trust’-region. The linear approximation and trust region are updated every op-
timization iteration. The trust region decreases as the algorithm converges to a solution. The COBYLA
method terminates when some tolerance threshold is reached.

Bound optimization by quadratic approximation (BOBYQA) [111]
This iterative algorithm is used to find the minimum value of a function f(x), subject to bounds a ≤
x ≤ b. Similarly to COBYLA, BOBYQA tries to approximate the cost function, but this time by quadratic
approximation. The algorithm uses m interpolation points to make this approximation, which are ad-
justed per optimization iteration. There is no predefined value for m, but m = 2n + 1 is commonly
used for n dimensions [111]. Since BOBYQA constructs a quadratic approximation of the cost function,
it may not be suitable for cost functions that are not twice differentiable [110].

Simplicial homology global optimization (SHGO) [112]
Unlike the name may suggest, the SHGO is a complex global optimization algorithm based on the
application of simplicial integral homology and combinatorial topology. Going further into detail of
how this algorithm functions is beyond the scope of this thesis. SHGO is able to find all local minima
of a cost function and works especially well for applications such as energy landscape exploration.

3.4.3. QPack choice of optimizer
As shown in this section, there are many optimizers to choose from. In previous work on the QPack
benchmark [20], a comparison between the previously mentioned optimizers has been made for their
runtime and accuracy, as depicted in Figure 3.4.

(a) Runtime measurements fitted to exponential functions. Numbers in
legend indicate convergence tolerance. If not stated, default values from

their implementations in the Python libraries SciPy [113] or
NLOpt [110] is used.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problem Size [vertices]

0.6

0.4

0.2

0.0

0.2

0.4

Re
la

tiv
e

Ac
cu

ra
cy Nelder-Mead

BFGS
SHGO
BOBYQA
COBYLA
R COBYLA

(b) Relative accuracy of optimizers compared to the Dual-Annealing
(DA) optimization method [100]. The smaller the value, the closer a

optimizer performs to the DA method. Negative values indicate that an
optimization method outperforms DA.

Figure 3.4: Comparison of different gradient-free optimization methods presented by Mesman et al. [21].

Measurements were obtained by running the QAOA MaxCut problem for 3 to 25 nodes. Here, it was
found that gradient-free optimizers such as COBYLA, BOBYQA, or SHGO have good runtime perfor-
mance as well as accuracy. Especially COBYLA with randomized initialization parameters allows for
a fast and accurate optimization routine. Therefore, in this work, the COBYLA optimization algorithm
will be used, implemented using the open-source library for nonlinear optimization NLopt [110].

4
Benchmark design & criteria

This section covers the structure of the QPack benchmark. It contains an elaboration on how the bench-
mark functions, what data is collected, and the design criteria for a quantum score. The code that im-
plements the VQE functionality in |Lib⟩ can be found in the GitLab repository https://gitlab.com/
libket/qpack/-/tree/stable/Qpack, specifically the files main.cpp, BenchmarkLoops.hpp, and
Optimizers.hpp.

4.1. Benchmark outline
The QPack benchmark determines the performance of quantum backends by collecting quantum exe-
cution data when executing various VQAs. These VQAs are one of the first viable real-life applications
in the NISQ-era of quantum computing [61] and have therefore been chosen as benchmark applications
for QPack. Figure 4.1 shows an overview of the QPack benchmarking process. From here on, the term
quantum computer or quantum backend will be used interchangeably. A quantum computer or back-
end covers the whole system of the actual quantum hardware, control system, qubit mapping, and gate
scheduling, or the simulation thereof.

Select
backend
under test

Set initial
problem Pi

Set initial
problem
size N

Execute VQA,
measure &
store data

N = N + 1

N = Nmax Pi = Pi+1

Pi = Plast

Process data
& compute
benchmark

score

no

no

yes

yes

Figure 4.1: Benchmark process overview

The benchmark starts by selecting a quantum computer to be evaluated. Multiple quantum computers
can be selected for sequential performance evaluation, but this overview will focus only on the evalua-
tion of a single quantum backend. After selecting a backend under test, a problem P from the problem
set can be selected. In the current implementation of QPack, P ∈ {MCP, DSP, MIS, TSP, RH, IC} as

22

https://gitlab.com/libket/qpack/-/tree/stable/Qpack
https://gitlab.com/libket/qpack/-/tree/stable/Qpack

4.2. Quantum execution data 23

will be described in Chapters 5 and 6. This set contains four QAOA problems (MaxCut, dominating
set, maximal independent set, and traveling salesperson problems) and two VQE problems (random
diagonal Hamiltonian, and Ising chain model), respectively. There is no preferred order, so problems
can be freely selected. However, to obtain the best and most varied comparison, QPack attempts to
complete all problems for as large a problem size as possible.

For the selected problem, the initial problem sizeN is set. It should be noted thatN is a symbolic value
and does not represent the number of qubits. The number of qubits used for a given problem size can
differ per benchmark application, hence a selection of problem sizes should be carefully considered.
For example, the MaxCut problem scales qubits linearly with the problem size (i.e., problem size 5
needs 5 qubits), while the traveling salesperson problem scales quadratic (i.e., problem size 4 requires
16 qubits). For this reason, each problem has its own range of problem sizes.

When the problem P and problem size N are set, the VQA can be run on the backend under test. This
entails the optimization of the parameterized quantum circuit by a classical optimizer (COBYLA [109]
is used in this version of QPack). Once the optimizer has found the optimal minimal value, the VQA
execution is finished and the measurement results are saved in JSON format for later use. This step is
repeated multiple times, such that measurements are taken in multitude and outliers can be filtered.
Specific details on what measurement data is collected is elaborated in Section 4.2.

After VQA execution is complete, QPack checks if the maximum problem size has been evaluated. If
not, the problem size is incremented, and the VQA is executed for this new problem size. When all the
problem sizes for a selected problem have finished, QPack checks if all problems have been evaluated.
If not, the next problem is set up, and the VQA evaluation is repeated for this new problem. When all
problems have been solved, QPack evaluates all measured data and calculates the quantum computer’s
benchmark score.

Almost all the steps as depicted in Figure 4.1 are implemented in C++ using the |Lib⟩ library. The last
step, however, processing the benchmark data and computing the benchmark scores, is implemented
using Python, as it is more convenient to handle and visualize data sets. The complete C++ code can
be found in Appendix E and the Python code in Appendix F.

4.2. Quantum execution data
During the execution of a VQA, QPack takes multiple measurements per execution cycle, resulting in
a set of quantum execution data. An example of such data can be found in the JSON snippet below,
which shows the data for the first execution cycle of for P = MCP and N = 5 on the IBMQ QASM
simulator. Descriptions of all quantum execution data can be found in Table 4.1. This raw execution
data forms the basis of the QPack scores to be defined in Chapter 7.

{
"Circuit execution durations [ms]": [10.979981, 10.870313, 10.715547, ...],
"Depth": 95.0,
"Expectation Value": -5.9697265625,
"Optimal Expectation Value": -6.0,
"Optimizer durations [ms]": [6757.02, 8492.6, 8000.625, ...],
"Optimizer iterations": 100,
"Optimizer params": [0.61316016681300, 0.88731605172780, 0.070652242307702, ...],
"P": 3,
"Problem": "MCP",
"QJob durations [ms]": [6590.003728866577, 8407.450675964355, 7919.116973876953, ...],
"QPU": "4010001",
"Qubits": 5,
"Queue durations [ms]": [677.0, 1656.0, 1107.0, ...],
"Shots": 4096,
"Size": 5,
"Total Algorithm duration [s]": 1294.856

}

4.2. Quantum execution data 24

Ta
bl

e
4.

1:
D
at
as

et
sc

ol
le
ct
ed

by
du

rin
g
ex

ec
ut

io
n
of

a
V
Q
A

D
at
as

et
D
es

cr
ip
tio

n
C
irc

ui
te

xe
cu

tio
n
du

ra
tio

ns
D
ur

at
io
n
of

th
e
ci
rc
ui

te
xe

cu
tio

n
tim

e
T

Q
E
of

ea
ch

qu
an

tu
m

jo
b
of

an
op

tim
iz
er

ite
ra
tio

n.
Th

is
is

th
e
tim

e
th

at
th

e
qu

an
tu

m
co

m
pu

te
re

xe
cu

te
st

he
qu

an
tu

m
ci
rc
ui

tf
or

a
gi
ve

n
am

ou
nt

of
sh

ot
s

an
d
do

es
no

ti
nc

lu
de

ci
rc
ui

tt
ra
ns

pi
lin

g,
op

tim
iz
at
io
n
or

ot
he

rl
at
en

ci
es

.
D
ep

th
Th

e
de

pt
h
of

th
e
un

tr
an

sp
ile

d
qu

an
tu

m
ci
rc
ui

ta
si

m
pl

em
en

te
d
in

Q
Pa

ck
.A

lth
ou

gh
th

e
ci
rc
ui

tn
ee

ds
to

be
tr
an

sp
ile

d
to

fit
a
ce

rt
ai
n
qu

bi
tl
ay

ou
t,
Q
Pa

ck
do

es
no

tt
ak

e
th

is
tr
an

sp
ile

d
de

pt
h
in
to

co
ns

id
er
at
io
n

w
he

n
ev

al
ua

tin
g
pe

rf
or

m
an

ce
,a

st
hi
si

sa
jo
b
fo
rt

he
qu

an
tu

m
co

m
pu

te
ru

nd
er

te
st
.

Ex
pe

ct
at
io
n
va

lu
e

Ex
pe

ct
at
io
n
va

lu
e
of

th
e
V
Q
A

pr
ob

le
m

w
ith

th
e
op

tim
iz
ed

pa
ra
m
et
er
s.

O
pt

im
al

ex
pe

ct
at
io
n
va

lu
e

Th
eo

re
tic

al
be

st
ex

pe
ct
at
io
n
va

lu
e
th

at
ca

n
be

ac
hi
ev

ed
fo
ra

gi
ve

n
pr

ob
le
m

an
d
pr

ob
le
m

si
ze

.
Ex

pe
ct
at
io
n
va

lu
e
ba

se
lin

e1
Ex

pe
ct
at
io
n
va

lu
e
of

th
e
Q
uE

ST
[1
14

]n
oi
se

le
ss

si
m
ul

at
or
.T

hi
sd

at
a
se

rv
es

as
a
ba

se
lin

e
fo
rh

ow
w
el
lt
he

cl
as

si
ca

lo
pt

im
iz
er

w
or

ks
on

a
gi
ve

n
pr

ob
le
m

se
t.

O
pt

im
iz
er

du
ra
tio

ns
[m

s]
Ti
m
e
fo
rt

he
op

tim
iz
er

to
fin

is
h
on

e
op

tim
iz
at
io
n
ite

ra
tio

n.
O
pt

im
iz
er

ite
ra
tio

ns
N
um

be
ro

fi
te
ra
tio

ns
th

e
op

tim
iz
er

ne
ed

ed
to

fin
d
th

e
m
in
im

al
va

lu
e.

O
pt

im
iz
er

pa
ra
m
s

O
pt

im
iz
ed

pa
ra
m
et
er
so

ft
he

V
Q
A

by
th

e
cl
as

si
ca

lo
pt

im
iz
er
.

P
Q
A
O
A
p
ite

ra
tio

ns
.D

ef
au

lt:
3
fo
rQ

A
O
A
,0

fo
rV

Q
E
(n

ot
ap

pl
ic
ab

le
).

Pr
ob

le
m

Ta
g
of

th
e
pr

ob
le
m
P

fo
rc

ur
re
nt

be
nc

hm
ar
k
ru

n.
Q
Jo
b
du

ra
tio

ns
[m

s]
D
ur

at
io
ns

of
al
lq

ua
nt

um
jo
bs

(Q
Jo
bs

)T
Q
Jo
b .

A
Q
Jo
b
is

de
fin

ed
as

th
e
po

in
tw

he
re

th
e
un

tr
an

sp
ile

d
ci
rc
ui

ti
s

se
nd

to
to

th
e
qu

an
tu

m
co

m
pu

te
rt

o
th

e
po

in
tw

he
re

th
e
re
su

lts
of

th
e
qu

an
tu

m
jo
b
ar

e
re
tu

rn
ed

.T
hi
s

in
cl
ud

es
co

m
m
un

ic
at
io
n
tim

e,
co

m
pi

la
tio

n,
va

lid
at
io
n
an

d
ci
rc
ui

te
xe

cu
tio

n.
Q
PU

U
ni
qu

e
ta
g
fo
rt

he
qu

an
tu

m
co

m
pu

te
ru

nd
er

te
st
.

Q
ub

its
N
um

be
ro

fq
ub

its
us

ed
fo
rt

hi
sp

ro
bl
em

si
ze

(c
irc

ui
tw

id
th

).
Q
ue

ue
du

ra
tio

ns
[m

s]
Q
ue

ue
tim

es
fo
rr

em
ot
e
qu

an
tu

m
pr

ov
id

er
si

fa
pp

lic
ab

le
.

Sh
ot
s

N
um

be
ro

fs
ho

ts
fo
rc

ur
re
nt

be
nc

hm
ar
k
ru

n
(d

ef
au

lt:
40

96
).

Si
ze

Pr
ob

le
m

si
ze
N

of
fo
rt

he
cu

rr
en

tb
en

ch
m
ar
k
ru

n.
To

ta
la

lg
or

ith
m

du
ra
tio

n
[s
]

To
ta
ld

ur
at
io
n
to

ex
ec

ut
e
th

e
cu

rr
en

tV
Q
A

al
go

rit
hm

.T
hi
si

nc
lu

de
sb

ot
h
cl
as

si
ca

la
nd

qu
an

tu
m

du
ra
tio

ns
.

1 N
ot

in
JS
O
N

sn
ip

pe
t.

Th
is

va
lu

e
is

no
tc

ol
le
ct
ed

du
rin

g
V
Q
A

ex
ec

ut
io
n,

bu
ti
sa

dd
ed

to
th

e
ta
bl
e
fo
rc

om
pl

et
en

es
s

4.3. Score criteria 25

When plotted, the raw quantum execution can already reveal differences in execution characteristics
between quantum backends. For example, consider the plots in Figure 4.2, which depict the execution
data for the MIS problem on three different local quantum simulators. A clear distinction can be made
between different quantum computer qualities. For example, with a growing problem size, it can be
seen that the QuEST simulator has the lowest average QJob and optimizer duration and has the lowest
average error amongst the tested quantum computer simulators. For QPack, the error is defined as the
relative error between the output of a quantum backend and the baseline value of an ideal simulator. In
contrast to the QuEST simulator, the Qiskit Aer simulator has the highest average QJob runtime and the
highest error peaks of all three simulators. The Cirq simulator has performed somewhere in between.
These observations already give a feeling about which backend outperforms the other, but we cannot
yet have a solid foundation to verify this. These observations now need to be processed, such that a
quantitative comparison between quantum computers is possible.

3 4 5 6 7 8 9 101112
Problem size

100

101

102

Ru
nt

im
e

[m
s]

Average QJob
 duration

3 4 5 6 7 8 9 101112
Problem size

100

101

102

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

3 4 5 6 7 8 9 101112
Problem size

101

102

Ru
nt

im
e

[m
s]

Average optimizer
 duration

3 4 5 6 7 8 9 101112
Problem size

3

2

1

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

3 4 5 6 7 8 9 101112
Problem size

0.00

0.01

0.02

0.03

Re
la

tiv
e

Er
ro

r

Error

3 4 5 6 7 8 9 101112
Problem size

80

100

120

Ite
ra

tio
ns

Optimizer iterations

QAOA: Maximum Independent Set Problem

Qiskit Aer Simulator QuEST Simulator Cirq Simulator

Figure 4.2: Quantum execution data from the simulation of the maximal independent set benchmark. (Top left): Average QJob
duration per problem size. (Top center): Average circuit execution duration per problem size. (Top right): Average optimizer
duration per problem size. (Bottom left): Expectation values of the output state per problem size, including baseline values.

(Bottom center): Relative error between the quantum computer’s expectation value and the baseline expectation value. (Bottom
right): Average number of iterations that the classical optimizer needed to find the minimum value.

Notice that in the analysis of the example in Figure 4.2, the focus was mainly on the average duration
of the QJob and the relative error of the simulators. This is because these are the main data points
that are used to compute the QPack scores. However, it should be noted that other characteristics such
as the average circuit execution duration and the number of optimizer iterations can also be relevant
depending on which properties of a quantum computer are of interest.

4.3. Score criteria
Using the measurement data discussed in the previous section, performance scores can be distilled.
For ease of comparison, a performance score should be a single ”figure of merit”, which allows for a
clear distinction between different quantum computers, i.e., a quantum computer with a higher score
is better than a quantum computer with a lower score. Nevertheless, the scores should not become too
abstract as to not properly reflect the characteristics of a quantum computer. For instance, a quantum
computer may be very fast but inaccurate, while another quantum computer may have high accuracy
but takes a long time to execute. Which one is then considered better? Other factors such as scalability,
maximum number of qubits, or serviceability also play a role in defining quantum computer perfor-
mance.

4.3. Score criteria 26

With this in mind, a number of criteria for benchmark scores are defined in the design of QPack:

1. Benchmark score reflects application-level performance of quantum computers (simulators and
hardware implementations).

2. Benchmark score is a composite of measurement data of multiple quantum applications.
3. Benchmark score is a single number (but may be split up into subscores).
4. Benchmark score is proportional to performance, i.e., a higher score means higher performance.
5. Benchmark score are scalable, i.e., score has no upper limit.
6. Benchmark score does not become too abstract from the data it is based on.
7. Subscores should be balanced, such that one sub-score does not become dominant in the overall

score.

5
|Lib⟩ VQE implementation

This chapter describes the general implementation of the VQE algorithm, followed by two applications
of the VQE algorithm in |Lib⟩. Finally, a state-readout approach is presented on how, for these two
specific applications, a benchmarking runtime optimization can be realized. The code that implements
the VQE functionality in |Lib⟩ can be found in the GitLab repository https://gitlab.com/libket/
qpack/-/tree/stable/Qpack/include, specifically the files VQA.hpp, VQE.hpp, VQE_Ansatzes.hpp,
VQE_Hamiltonians.hpp, and VQE_loops.hpp. All quantum gates that are used are defined in the |Lib⟩
documentation [23].

5.1. General VQE implementation
Like any VQA, the variational quantum eigensolver consists of a classical and quantum subroutine. An
overviewof theVQE architecture [25] is presented in Figure 5.1. The first algorithm consists of quantum
circuits that compute the expectation value ⟨H⟩ of Hamiltonian H =

∑K−1
i=0 Hi. This means that K

quantum circuits need to be evaluated to determine the total expectation value ⟨H⟩, which is simply
the addition of the partial expectation values by a classical computer. The second algorithm attempts
to minimize this expectation value by varying the quantum state |ψ(θ)⟩, also called the ansatz.

Figure 5.1: Architecture of the variational quantum eigensolver, modified from Peruzzo et al. [25]

A circuit of L qubits of a quantummodule typically consists of two main parts. The ansatz unitary and
a state basis change before measurement, as shown in Figure 5.2. An optional third step can be applied
as well, which initializes the qubit state before applying the ansatz unitary. This typically consists of
single-qubit Pauli rotations. For example, X-gates are applied to create a Hartree-Fock state [115] when
VQE is used in quantum chemistry.

27

https://gitlab.com/libket/qpack/-/tree/stable/Qpack/include
https://gitlab.com/libket/qpack/-/tree/stable/Qpack/include

5.1. General VQE implementation 28

|0⟩0

Uinit Uanz(θ)

P (Hi)

|0⟩1 P (Hi)

... P (Hi)

|0⟩L−1 P (Hi)

Figure 5.2: Typical VQE circuit. P (Hi) denotes a Pauli operation P ∈ {I,X, Y, Z} based on the i-th partial Hamiltonian basis
set

5.1.1. Ansatz
The Uanz(θ) parameterized unitary consists of single- and multi-qubit gates to alter the wave function
dependent on parameters θ. This unitary can vary from application to application. As such, variation
circuits with amultitude of parameters can be implemented here to change the quantumwave function
ansatz. This problem-specific unitary is defined later in this chapter. Before using the parameterized
Uanz(θ) unitary, an initialization unitary Uinit may be applied to set the inital state of the qubits.

5.1.2. Energy measurements
The measurement step consists of single-qubit rotations to measure the qubit state in the desired Pauli
base before measurement, using a unitary operation Ubasis(Hi). This change in measurement basis
depends on the partial HamiltonianHi that needs to be measured.

Ubasis(Hi) =

L−1⊗
j=0

Pj(Hi) (5.1)

where Pj(Hi) denotes a Pauli operation P ∈ {I,X, Y, Z} based on the i-th partial Hamiltonian basis set
on qubit j. Tomeasure qubits in bases other than the Pauli-Z basis, some single-qubit rotations [116] are
needed to get the rightmeasurements, if a quantum computer is not able tomeasure other bases natively.
The change of basis required for each measurement can be found in Figure 5.3. A measurement in the
I-basis will always yield 1, hence no measurement needs to be taken.

I X

Z Y
= = H

= = S† H

Figure 5.3: Pauli measurement basis circuits

5.1.3. Expectation value from state distribution
Since the measurement result is returned as a set of 2L states, with count Cl for state l. This needs to
be converted to get the expectation value of the state for every partial Hamiltonian Hi. This is simply
the sum of the probability of each state multiplied by its eigenvalue λl. The probability pl is simply
the counts of that state divided by the number of shots. So for every partial Hamiltonian, we find the
expectation value:

Ei =

2L−1∑
l=0

plλl =
1

#shots

2L−1∑
l=0

Clλl (5.2)

where the eigenvalue of the state is an eigenvalue of the Z⊗L space. This coincidentally corresponds to
the parity of the bitstring of the state and can thus be defined as:

λl =

{
1 if state parity is even
−1 if state parity is odd

(5.3)

5.2. Random diagonal Hamiltonian (RH) 29

5.1.4. Hamiltonian energy from expectation value
Now that the expectation value can be extracted from the measured state distribution, the energy of
the Hamiltonian can be estimated. Recall that

H =

K−1∑
i=0

Hi =

K−1∑
i=0

ci

L−1∏
j=0

σα
i,j (5.4)

where the partial Hamiltonian Hi consists of a coefficient ci and a set of Pauli operators σα
i,j for each

particle j of the i-th term described by the Hamiltonian, with α ∈ {x, y, z}. The Pauli-I operator is
left out for readability. The complete energy of the Hamiltonian is thus simply the sum of all the ex-
pectation values of each partial Hamiltonian multiplied by its coefficients. The energy of the complete
Hamiltonian thus becomes

⟨H⟩ =
K−1∑
i=0

⟨Hi⟩ =
K−1∑
i=0

ci ⟨ψ(θ)|
L−1∏
j=0

σα
i,j |ψ(θ)⟩ =

K−1∑
i=0

ciEi (5.5)

Since the ansatz is variational, a classical optimizer can now use this total energymeasurement and use
it to find the minimal eigenvalue of the Hamiltonian.

5.2. Random diagonal Hamiltonian (RH)
The first VQE problem added to QPack is a simple demonstration of the basic functionality of the VQE.
The problem description, Hamiltonian, and ansatz will be highlighted, after which some results on the
Qiskit Aer Simulator will be presented as a proof of implementation.

5.2.1. Problem description
This simple problem consists of a diagonal matrix with random values on the diagonal. The VQE aims
to find the lowest eigenvalue of this matrix, which is trivial to find, since it is simply the lowest diagonal
value, since all eigenvectors are orthogonal.

5.2.2. Hamiltonian
TheHamiltonian for this problem is a set of Pauli Z-rotations, where the number of partialHamiltonians
K is equal to the problem size N :

Hrandom =

N−1∑
i=0

riσ
z
i =


R0 0 0 . . . 0
0 R1 0 . . . 0
0 0 R2 . . . 0
...

...
...

. . .
...

0 0 0 . . . R2N−1

 (5.6)

where ri ∈ [−1, 1] is a random value, Zi is the Pauli Z operator on qubit i and Ri is a random value
based on a sum of ri.

5.2.3. Ansatz
The ansatz used to find the lowest eigenvalue is simply an X-rotation on each qubit for different opti-
mization parameters, shown in Figure 5.4. Since only values on the diagonal of the Hamiltonian are
nonzero, this ansatz covers the complete solution space.

q0 Rx(θ0)

q1 Rx(θ1)

q2 Rx(θ2)

Figure 5.4: Random diagonal Hamiltonian ansatz for 3 qubits

5.3. Ising chain ground state (IC) 30

As the problem size increases, the number of qubits and optimization parameters for this ansatz grow
proportionally. This means that for a problem sizeN , we needN qubits for the ansatz and there areN
optimization parameters.

5.2.4. Simulation results
The VQE algorithm was run on the random Hamiltonian problem, and the results are shown in Figure
5.5. A comparison is made between the exact solution of the RH problem and the approximation of the
solution using the VQE algorithm on the Qiskit Aer simulator.

1 2 3 4 5 6 7 8 9 10
Problem size

6

5

4

3

2

1

Ex
pe

ct
ai

on
 v

al
ue

VQE Solution
VQE
Exact

1 2 3 4 5 6 7 8 9 10
Problem size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Er
ro

r

1e 3 Relative error

Figure 5.5: Results for the random diagonal Hamiltonian. Quantum circuits were run on the Qiskit Aer simulator with 4096
shots

It can be seen that the ansatz performs very well, since the line for the VQE estimation is hidden by
the line of the exact solution. A more insightful graph on the difference between the exact solution
and the VQE estimation is shown in the right figure, where the relative error is plotted, defined as
RE = Eexact−EV QE

Eexact . This also shows that the VQE estimation is very close to the exact solution.

5.3. Ising chain ground state (IC)
A VQE problem with a more interesting Hamiltonian to evaluate is the Transverse Field Ising Model
(TFIM), which also includes XX-interaction along with a Z-component like in the random Hamiltonian
VQE problem.

5.3.1. Problem description
This problem focuses on finding the ground state of a one-dimensional spin system. The model used is
the 1D TFIM. It consists of spin-1/2 particles on a chain, where neighbors interact with each other via
XX-couplings (Figure 5.6). A transversemagnetic field of strength h is applied in the Z-direction, which
alters the spin of the particles in the chain. The goal of the VQE algorithm is to find the lowest energy
state of this system [97]. For this problem, the problem sizeN is equal to the number of particles in the
Ising chain.

↑ ↑ ↑ ↑ ↑ ↑

Figure 5.6: 1D Ising chain model

5.3.2. Hamiltonian
The Hamiltonian of this system is described by the XX-interaction between neighbors with coupling
strength J and the transverse magnetic field of strength h. Since this problem is a chain, the first and
last particle only interact with one neighbor. For this problem, the coupling strength is uniform. The
Hamiltonian can thus be described as presented in Equation 5.7.

HIsing = −J
N−2∑
i=0

σx
i σ

x
i+1 − h

N−1∑
j=0

σz
j (5.7)

5.4. Circuit execution reduction 31

An interesting phenomenon known as a quantum phase transition occurs when J = h [117], which
is the point where the transverse field strength is equal to the coupling strength of the spin particles.
For this problem, the Hamiltonian will be constructed with this feature. The total number of partial
Hamiltonians for a problem size N isK = 2N − 1.

5.3.3. Ansatz
Ansatzes for this problem can become very hardware demanding as the problem size grows. To negate
this, the hardware efficient SU2 [65] will be used with full entanglement, see Figure 5.7. This circuit can
be used tomodel an arbitrarywave function, but also needs significantlymore optimization parameters,
4 for every qubit. This will put more load on the classical optimizer than the other VQE problems.

q0 Ry(θ0) Rz(θ4) Ry(θ8) Rz(θ12)

q1 Ry(θ1) Rz(θ5) Ry(θ9) Rz(θ13)

q2 Ry(θ2) Rz(θ6) Ry(θ10) Rz(θ14)

q3 Ry(θ3) Rz(θ7) Ry(θ11) Rz(θ15)

rep = 0 rep = 1

Figure 5.7: Efficient SU2 ansatz of with full entanglement for 4 qubits for one circuit repetition

Notice that for the IC problem, a better estimate of the ground state is possible by expanding the SU2
ansatz with more repetitions of itself, that is, another block of CNOT gates followed by the single-qubit
Y- and Z-rotations. However, since the number of optimization parameters is already much larger than
that of the RH problem, the ansatz is only constructed for a single repetition to reduce the optimization
time.

5.3.4. Simulation results
The result for the Ising chain VQE problem can be seen in Figure 5.8. The SU2 ansatz does attempt to
get the lowest eigenvalue, but does not perform as well as the simpler ansatz for the random Hamilto-
nian problem. Lower error scores could be achieved by a different ansatz (for example, the U3 ansatz,
as shown in Section 3.3.1), increasing the number of circuit iterations in the SU2 ansatz, or by changing
the classical optimizer. However, for the QPack benchmark, this does not form a problem, as the per-
formance of this ansatz can be used as long as a baseline value is used as a reference point instead of
the exact solution.

1 2 3 4 5 6 7 8 9 10
Problem size

12

10

8

6

4

2

Ex
pe

ct
ai

on
 v

al
ue

VQE Solution
VQE
Exact

1 2 3 4 5 6 7 8 9 10
Problem size

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

r

1e 1 Relative error

Figure 5.8: Results for the TFIM Hamiltonian. Quantum circuits were run on the Qiskit Aer simulator with 4096 shots

5.4. Circuit execution reduction
As the problem size grows, so does the number of partial HamiltoniansK as stated in Section 5.1. The
number of optimization parameters already increases the total runtime of the VQE execution, as it takes

5.5. Resource comparison 32

the optimizer longer to find the best set of parameters. For a given problem size N , the number of cir-
cuitsK to evaluate for the RH problem is N , while for the IC problemK = 2N − 1. If we take a closer
look at the Hamiltonians that are evaluated in the VQE problems, it can be seen that there are only
two bases being measured, the X- and Z-basis, for different subsets as the circuits are measured. If the
ansatz was measured completely in the X- or Z-basis, all information on these subsets would actually
be encoded in the complete measured set. For the RH problem, for example, instead of evaluating 2
circuits for a problem size of 2, all the information from the Z-basis measurements can be done at once,
see Figure 5.9.

q0 Rx(θ0) q0 Rx(θ0)
−→

q0 Rx(θ0)

q1 Rx(θ1) q1 Rx(θ1) q1 Rx(θ1)

Figure 5.9: Z-basis circuit reduction for RH problem (problem size 2)

To extract the data, we need to reduce the complete histogram of themeasured states, the subset of Pauli
terms of each partial Hamiltonian. In the example in Figure 5.9, for the left circuit, a possible output
state (for 1000 shots) could be

Histogram: [00: 450, 01: 550, 10: 0, 11: 0]

and for the right circuit:

Histogram: [00: 100, 01: 0, 10: 900, 11: 0]

However, when both qubits are measured together, the output histogram would look like this:

Histogram: [00: 50, 01: 50, 10: 400, 11: 500]

Looking at these state distributions, it becomes apparent that the measurement set of all qubits can be
reduced to a subset of qubits, by simply summing each term of each subset together. For the above-
mentioned example, to get the first state distribution, the states 00 and 10 are summed to get the 0-
measurement and the states 10 and 11 are summed to get the 1-measurement. In the same way, the
second state distribution can also be reconstructed from the combined state histogram. This way also
works for subsets of multiple Pauli’s, like the XX-term in the IC Hamiltonian.

Using thismethod, only one circuit needs to be evaluated for the RHproblem and two circuits for the IC
problem. Thismethod onlyworks as long as the partial termof theHamiltonian contains the samePauli
operators, i.e., XX, YYY, Z, but not XYX, ZX, etc., as these terms are not encoded in the measurement
of a complete basis. Fortunately, this does not form a problem in the current VQE implementation and
can thus be implemented in QPack to significantly reduce the benchmarking runtime.

5.5. Resource comparison
As discussed previously in this chapter, the resources required to build the VQE ansatzes differ for
the RH and IC problems. In Table 5.1, a comparison is made between the two VQE implementations
for QPack, listing the number of qubits needed, single qubit gates, and multi-qubit gates. All high level
gates are decomposed to standard single-qubit gates (rotation on a single qubit) or standardmulti-qubit
gates (controlled rotations, Toffoli). In addition, the number of optimization parameters is listed as well,
to emphasize that VQE problems become more difficult to optimize as the problem size N increases.

Qubits Single-qubit gates Multi-qubit gates Parameters
RH N N 0 N

IC N 4N N2−N
2 4N

Table 5.1: Required resources for each VQE problem

5.5. Resource comparison 33

These results are visualized in Figure 5.10 to get an understanding of how these problems scale when
N increases.

0 10 20
Problem size

0

5

10

15

20

25

Qu
bi

ts

Qubits

0 10 20
Problem size

0

20

40

60

80

100

Ga
te

s

Single qubit gates

0 10 20
Problem size

0

100

200

Ga
te

s

Multi-qubit gates

0 10 20
Problem size

0

20

40

60

80

100

Pa
ra

m
et

er
s

Optimization parameters

VQE resources

RH IC

Figure 5.10: Scaling of VQE resources for each problem set

Because of the more complex ansatz, the Ising chain problem requires more resources than the random
Hamiltonian problem. This should make the IC problem ’harder’ to solve for a quantum computer and
a classical optimizer, which makes it a good benchmarking application together with the RH problem
and offers some variety in the QPack benchmarking application set. For both problems, the number
of optimization parameters increases proportionally to the problem size. For NISQ-era quantum com-
puters, this does not become a problem as typical circuit sizes will generally be small. However, when
circuits become larger, the number of optimization parameters could increase benchmark runtime due
to the more complex nature of the minimization problem. This could be counteracted by loosening op-
timization constraints, limiting optimizer iterations, choosing a different ansatz, or choosing a different
classical optimizer altogether.

6
|Lib⟩ QAOA implementation

This chapter will focus on the implementation of four problems to solve using QAOA implemented in
the |Lib⟩ library. All problemswill be briefly described, afterwhich amapping toQAOAwill be derived.
A proof of implementation will be provided for each problem. All problems are graph-based NP-hard
problems [118, 98]. For a recap on complexity theory, see Appendix A. The code that implements
the QAOA functionality in |Lib⟩ can be found in the GitLab repository https://gitlab.com/libket/
qpack/-/stable/main/Qpack/include, specifically the files VQA.hpp, QAOA.hpp, and QAOA_loops.hpp.
All quantum gates that are used are defined in the |Lib⟩ documentation [23].

6.1. Graphs for QAOA problems
The network topology for a graph problem will be a 4-regular graph, i.e., a connected graph where all
vertices have degree 4. To increase the problem size, the number of vertices in the regular graph can
simply be increased. Thiswill be useful later on, as theQPack benchmarkwillmeasure the performance
of quantum systems by increasing the problem size. For graph sizes smaller than 5, a line, a triangular,
and a square graph are used, as they cannot have a degree of 4. An illustration of such graphs is given
in Figure 6.1. For all QAOA examples in this chapter, the 6-vertex regular graph will be used.

…

Figure 6.1: Procession of increasing graph sizes used for QAOA problems. From a graph size of 5, the graph is 4-regular

6.2. Maximum cut problem (MCP)
The maximum cut problem (MCP or MaxCut) is often used as a benchmark problem for QAOA. Al-
though the problem is classified as NP-hard [118], the problem is simple and straightforward to explain.
The MaxCut problem was also used as an example when Fahri et al. introduced QAOA [24] and was
proven to work well for small graph sizes with low p iterations on NISQ-era quantum computers [119].

6.2.1. Problem description
The MaxCut problem is defined as follows. Given a graph G = (V,E), with V vertices and E edges,
find the subset S of V , such that the number of edges between S and V \S is maximized. In other words,
how can one divide the vertices of the graph into two distinct sets such that if one would cut the edges
between those sets, the amount of cut edges would be the largest possible. For the example graph, for
instance, a possible solution (out of 18) is shown in Figure 6.2.

6.2.2. QAOA mapping
Encoding The set of vertices can be encoded in a single bitstring x = x0x1...x|V |−1 for V vertices,
where xn ∈ [0, 1]. If a vertex is in the first distinct set, its bit will be 0 and if it is in the other set, its bit

34

https://gitlab.com/libket/qpack/-/stable/main/Qpack/include
https://gitlab.com/libket/qpack/-/stable/main/Qpack/include

6.2. Maximum cut problem (MCP) 35

Figure 6.2: Solution of the MaxCut problem of a 6-vertex 4-regular graph. Out of 12 edges, there are 8 edges between the
distinct subsets (red and blue vertices).

will be 1. The QAOA implementation will therefore require V qubits to encode the solution space of
the MaxCut problem.

Initial State Since all possible permutations of bitstringx formvalid potential solutions to theMaxCut
problem, the initial state can be initialized to be an equal superposition of all states. Hence, the initial
state |s⟩ is:

|s⟩ =
∏
i∈V

|+⟩i (6.1)

Cost Hamiltonian The cost function will be the number of cuts a bitstring can make. So, for the set
E of edges {u, v} , the cost Hamiltonian is:

C =
∑

{u,v}∈E

1

2
(1− σz

uσ
z
v) (6.2)

where σz
i denotes the Pauli-Z operator on qubit i (the identity operator is implied when no other Pauli

operator is specified). Since the global phase term can be ignored, the cost Hamiltonian simplifies to:

C =
∑

{u,v}∈E

σz
uσ

z
v (6.3)

The cost unitary then becomes:

UC(γ) = e−iγC =
∏

{u,v}∈E

e−iγσz
uσ

z
v (6.4)

This can be implemented with a ZZ-rotation by angle γ. This ZZ-gate is not a standard gate, but can be
implemented using two CNOT gates and one Rz(γ) gate. This is shown in Figure 6.3.

ZZ(θ) =
Rz(θ)

Figure 6.3: Rzz(θ) gate decomposition

Mixer Hamiltonian In order to mix up the solution space, simple Pauli-X gates can be applied to all
qubits:

B =
∑
i∈V

σx
i (6.5)

Resulting in the unitary:
UB(β) = e−iβB =

∏
i∈V

e−iβσx
i (6.6)

Which can simply be implemented with an Rx(β) gate on each qubit.

6.2. Maximum cut problem (MCP) 36

ZZ(γ)

ZZ(γ) ZZ(γ)

ZZ(γ) ZZ(γ)

ZZ(γ) ZZ(γ) ZZ(γ)

ZZ(γ) ZZ(γ) ZZ(γ) ZZ(γ)

q0 H Rx(β)

q1 H Rx(β)

q2 H Rx(β)

q3 H Rx(β)

q4 H Rx(β)

q5 H Rx(β)

init p = 1

Figure 6.4: Circuit for the 6-vertex 4-regular graph example. The circuit shows the QAOA implementation for p = 1

Complete circuit Using the initial state together with the cost and mixer unitary yields the complete
circuit for the MaxCut problem, as shown in Figure 6.4. Measuring all qubits of this circuit gives a state
distribution of all possible solutions to the MaxCut problem, which can now be used to compute the
expectation value.

6.2.3. Expectation Value
The expectation value of a given output distribution can be computed by taking the score of each indi-
vidual state (bitstring) and multiplying it by the number of counts of that state.

Fp = − 1

#shots

2|V |−1∑
i=0

CiE
cut
i (6.7)

where Ci is the count (number of shots) per state and Ecut
i is the number of edges between two distinct

sets encoded in the bitstring. Notice that the expectation value is a negative value, due to the fact that
the classical optimizer attempts to minimize the expectation value, i.e., the more negative the value, the
better the output distribution encodes the solution to the problem.

6.2.4. Simulation results
To verify the functionality of the MaxCut QAOA circuit in |Lib⟩, a simulation on the Qiskit Aer simu-
lator [120] is run for 4096 shots. The resulting state spectrum is depicted in Figure 6.5. In this figure,
peaks of the optimal solution can be observed, with the highest peak at the state 100101. This indeed
corresponds to one of the 18 optimal solutions for the MaxCut problem for the example graph.

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

State

0

50

100

150

200

C
o
u
n
ts

State distribution MCP for 4096 shots and p=1

Figure 6.5: Simulation results for the MaxCut problem, 4096 shots on the Qiskit Aer simulator

The peaks of the optimal solutions become more distinguished as p increases, as shown in Figure 6.6.
Non-optimal solutions are suppressedmore and the overall score of the optimization result is improved
in accordance with Equation 3.15.

6.3. Dominating set problem (DSP) 37

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

State

0

50

100

150

200

250

300

C
o
u
n
ts

State distribution MCP for 4096 shots and p=3

Figure 6.6: Simulation results for the MaxCut problem, 4096 shots on the Qiskit Aer simulator

6.3. Dominating set problem (DSP)
This problem was already part of QPack [21] and is henceforth also implemented in the |Lib⟩ version.
The circuit of the dominating set problem (DSP) features a more complex cost Hamiltonian with high-
level gates, requiring more gates and qubits than the MaxCut circuit. This nicely varies the type of
benchmark application circuits used in QPack.

6.3.1. Problem description
A dominating set for a graph G(V,E) is defined as the subset S of V such that each member of V \S
is connected to at least one member of S. The dominating set problem aims to find the smallest set
S that satisfies this condition. A common allegory is made with a network of surveillance vertices.
Each surveillance vertex can survey itself and each vertex to which it is connected. The question then
becomes: What is the smallest number of surveillance vertices needed to survey the whole network?
For the example network, a solution (out of 15) to the dominating set problem is shown in Figure 6.7.

Figure 6.7: Solution of the dominating set problem of a 6-vertex 4-regular graph. The minimum number of vertices to survey
all other vertices is 2, marked by the red vertices.

6.3.2. QAOA mapping
The mapping of the dominating set problem to QAOA was presented by Guerrero in 2020 [121]. The
solutionmakes use of the high-level quantumOR-gate to encode the cost function using an ancilla qubit.
For a complete graph, this approach requires 2V qubits. However, QPack uses the 4-regular graph as
the problem input, this is reduced to only needing V + 5 qubits, which will become clear later in this
section as the cost Hamiltonian is elaborated.

Encoding The solution is encoded in a bitstring x = x0x1...x|V |−1, where xn ∈ [0, 1]. If a bit is in
the subset D if it is 1, otherwise it is 0. All possible combinations of the bitstring x are valid (but not
necessarily correct) solutions to the DSP.

Initial state Similar to the MaxCut problem, all possible combinations of bitstring x form valid po-
tential solutions to the dominating set problem. Thus, the initial state can be initialized to be an equal
superposition of all states. Hence, the initial state |s⟩ is

|s⟩ =
∏
i∈V

|+⟩i (6.8)

6.3. Dominating set problem (DSP) 38

Cost Hamiltonian Guerrero splits the cost function into two clauses, Tk(x) andDk(x). The first clause
measures the number of vertices surveyed (including itself) and is defined as

Tk(x) =

{
1 if xk is connected to any xi = 1

0 otherwise
(6.9)

The second clause measures the number of surveillance vertices used, i.e., the number of ones in the
string x:

Dk(x) =

{
1 if xk = 0

0 if xk = 1
(6.10)

Both clauses will be encoded using an ancilla qubit that sums the cost. Implementing these clauses like
this will require an extra qubit along the V qubits that are necessary to encode the solution space.

To implement the Tk(x) clause, a multi-OR-controlled quantum Rz(θ)-gate is required. First, a three-
qubit quantum OR-gate can be constructed out of a Toffoli gate and two CNOT gates, shown in Figure
6.8.

=

Figure 6.8: Quantum OR gate decomposition

The multi-OR-controlled gate is then simply a combination of multiple quantum OR-gates. For every
extra control qubit, an additional ancilla qubit is needed as well. For example, a 3-control OR gate is
decomposed as shown in Figure 6.9.

=

|0⟩

Figure 6.9: Multi-control Quantum OR gate decomposition

Thefinal step is to performaRz(θ)-operation on the cost ancilla qubit, controlled bymulti-OR-controlled
gates. With an extra ancilla qubit, this gate can be decomposed into two multi-OR-controlled gates and
an Rz(θ)-gate, as shown in Figure 6.10.

=

|0⟩

Rz(θ) Rz(θ)

Figure 6.10: Multi-OR-controlled Rz(θ) gate decomposition

6.3. Dominating set problem (DSP) 39

This multi-OR-controlledRz(θ) can now be used to implement the Tk(x) clause. For every vertex in the
graph G(V,E), such a gate is required, with the control qubits being the vertex itself and its neighbors,
targeting the cost ancilla qubit. Since, for a regular graph, a vertex always has 4 neighbors, a 5-OR-
controlled Rz(θ) gate is required, which uses 4 extra ancilla qubits. This makes the total number of
qubits needed for the dominating set circuit equal to V + 5 for a 4-regular graph.

The Dk(x) clause is simpler to implement and can be achieved by a bit flip of all bits in the bitstring.
This can be implemented by inverted controlled Rz(θ)-gates on the cost ancilla qubit. This gate can
simply be implemented by using two X-gates and a controlled Rz(θ)-gate as shown in Figure 6.11.

=
X X

Rz(θ) Rz(θ)

Figure 6.11: Inverted controlled Rz(θ) gate decomposition

Mixer Hamiltonian Similar to theMaxCut problem, themixerHamiltonian can be implementedwith
a Rx(β)-gate on each qubit that encodes the bitstring x, see Equation 6.6.

Complete circuit Combining the initial state generation, the cost and the mixer unitaries give us the
building blocks for the QAOA circuit. For the example graph, the p = 1 circuit is shown in Figure 6.12.

q0 H Rx(β)

q1 H Rx(β)

q2 H Rx(β)

q3 H Rx(β)

q4 H Rx(β)

q5 H Rx(β)

a0 H Rz(γ) Rz(γ) Rz(γ) Rz(γ) Rz(γ) Rz(γ) Rz(γ) Rz(γ) Rz(γ) Rz(γ) Rz(γ) Rz(γ)

init T (x) D(x) p = 1

Figure 6.12: Circuit for the dominating set problem for the 6-vertex 4-regular graph example. The circuit shows the QAOA
implementation for p = 1. Ancilla qubits for the multi-control OR gates are left out (4 in total)

Although the cost function is encoded in the ancilla qubit, only the first six qubits need to be measured
to encode the solution space. This state distribution can then be used to compute the expectation value
for the dominating set problem.

6.3.3. Expectation Value
Using the D- and T -clause functions, the expectation value for the dominating set problem can be
computed from the measured output state distribution.

Fp = − 1

#shots

2|V |−1∑
i=0

Cim(xi)
∑
j∈V

Dj(xi)

 (6.11)

where xi is the bitstring of the i-th state of the output distribution, Ci is the count (number of shots)
per state,

∑
Dj(xi) (see Equation 6.10) sums the number of surveillance vertices, and m(xi) checks if

the solution monitors all vertices. This is the result of a single Tk bit being 0 (not surveyed) and can be
expressed as:

m(xi) =
∏
j∈V

Tj(xi) (6.12)

6.3. Dominating set problem (DSP) 40

6.3.4. Simulation results
Verifying the functionality of the dominating set QAOA implementation is again done by simulation
on the Qiskit Aer simulator [120]. The results for p = 1 can be found in Figure 6.13. Here, a spectrum of
roughly uniform distribution can be observed and no distinguishable solution can be found, in contrast
to the MaxCut problem, where a rough estimate could be found for the same example graph for p = 1.
This can be explained by the fact that the DSP circuit has a larger circuit width and depth, making it
more difficult for the optimizer to find an optimal solution.

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

State

0

20

40

60

80

C
o
u
n
ts

State distribution DSP for 4096 shots and p=1

Figure 6.13: Simulation results for the dominating set problem, 4096 shots on the Qiskit Aer simulator

Increasing p by one gives the results shown in Figure 6.14. Here, more distinguishable peaks are ob-
served, which indeed encode a solution to the dominating set problem. The highest peak can be found
at string 010010, which is one of the optimal solutions for the 6-vertex example graph (for the 4-regular
example graph, any string with 2 ones and 4 zeros is an optimal solution).

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

State

0

25

50

75

100

125

150

C
o
u
n
ts

State distribution DSP for 4096 shots and p=2

Figure 6.14: Simulation results for the dominating set problem, 4096 shots on the Qiskit Aer simulator

Increasing p even further (Figure 6.15) gives an evenmore distinct solution, which is of course expected
behavior as p increases.

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

State

0

50

100

150

200

C
o
u
n
ts

State distribution DSP for 4096 shots and p=5

Figure 6.15: Simulation results for the dominating set problem, 4096 shots on the Qiskit Aer simulator

6.4. Maximal independent set problem (MIS) 41

This gives a good insight into how p needs to be selected for more complex circuits, which will affect
the accuracy and capacity metric of the QPack benchmark scores later on.

6.4. Maximal independent set problem (MIS)
The next problem implemented inQPack uses amore complexmixer family than the previous two prob-
lems. Instead of using simple single-qubit X-rotations, the solution space for the maximal independent
set (MIS) problem is mixed using controlled mixers.

6.4.1. Problem description
Consider a graph G(V,E), the subset S ∈ V is the set of vertices that are not connected to each other.
Find the set of vertices that maximizes the size of S. For the 6-vertex example graph, there are three
solutions. One is shown in Figure 6.16. The other two are similar, but are the other two sets of opposite
vertices in this ring shape. This problem has a similar feel to the dominating set problem. A solution
to the maximal independent set problem is also a solution to the dominating set problem for regular
graphs, but not vice versa.

Figure 6.16: Solution of the maximal independent set problem of a 6-vertex 4-regular graph. The maximal independent set has
two vertices

6.4.2. QAOA mapping
Encoding The vertices are encoded with bitstring x = x0x1...x|V |−1, where a vertex is in V if xi = 1,
otherwise xi = 0.

Initial state The initial qubit state can be any arbitrary state, since all possible states are possible so-
lutions to the MIS problem for any graph. Other than with the MCP and DSP, all qubits are initialized
as the empty set, that is, all qubits are initialized as |0⟩.

|s⟩ =
∏
i∈V

|0⟩i (6.13)

Cost Hamiltonian The cost function is the size of the independent set, which is simply the sum of all
bits xi in the bitstring:

∑
i∈V xi. Using a transformation of the objective function [66], this function can

be translated to cost Hamiltonian

C =
∑
i∈V

σz
i (6.14)

Which can be implemented with a depth-1 circuit of Rz(γ)-gates for each qubit.

Mixer Hamiltonian The maximal independent set QAOA implementation provides a more complex
family of mixers compared to the MaxCut or dominating set problems. This is a set of controlled mixer
operations. For the MIS problem, we only want to mix the solution space (adding or removing a vertex
from the set S) based on its neighboring vertices and whether they are already in the solution space or
not. The mixer Hamiltonian is thus given by

Bi = σx
i HNOR(xneighbor(i)) (6.15)

whereHNOR is the NOR-controller as described in [66]. To build this Hamiltonian, a set of partitioned
controlled mixers is used [66], where

6.4. Maximal independent set problem (MIS) 42

UB,i(β) = ΛNOR(xneighbor(i))(e
−iβσx

i) (6.16)

where the ΛNOR function denotes the NOR-controlled parameterized X-rotation. This is implemented
using a quantum NOR-controlled Rx(θ) operation, described in Figure 6.17. This is the quantum OR
circuit as elaborated in the dominating set problem section, but with two added X gates that function
as a NOT gate.

=
Rx(θ) Rx(θ)

|0⟩ X X

Figure 6.17: NOR-controlled Rx(θ) gate decomposition

It becomes clear that this circuit needs an extra ancilla qubit, as well as two more ancilla qubits for the
multi-controlled quantum NOR gates since the maximum number of neighbors in the 4-regular graph
is 4, similar to the multi-controlled quantum OR gate in Figure 6.10. This requires the MIS circuit to
have V + 3 qubits.

Complete circuit The complete circuit can now be constructed with the aforementioned circuit build-
ing blocks, shown in Figure 6.18. Ancilla qubits are left out, but it should be noted that three more
qubits are used in the decomposed circuit. In order for the solution states of the outcome to be more
balanced, the order of the partial mixers is shifted per p iteration.

q0 Rz(γ) Rx(β)

q1 Rz(γ) Rx(β)

q2 Rz(γ) Rx(β)

q3 Rz(γ) Rx(β)

q4 Rz(γ) Rx(β)

q5 Rz(γ) Rx(β)

init p=1

Figure 6.18: Circuit for the maximal independent set problem for the 6-vertex 4-regular graph example for p = 1. Three ancilla
qubits used by the NOR-controlled gates are not drawn.

6.4.3. Expectation Value
The expectation value for the MIS problem can be calculated by checking each output state to see if it
is a valid set and then giving that set a value of the number of vertices in that set.

Fp = − 1

#shots

2|V |−1∑
i=0

v(xi)Ci

∑
j∈V

xji

 (6.17)

where xi is the i-th state, xji is the j-th bit of the i-th state, Ci is the count (number of shots) and v(xi)
checks if the bitstring xi is a valid independent set, that is, v(xi) = 1 if the set is an independent set and
v(xi) = 0 otherwise.

6.5. Traveling salesperson problem (TSP) 43

6.4.4. Simulation results
The verification of the MIS problem is again done by executing the QAOA on the Qiskit Aer simulator
for 4096 shots. The results for p = 1 are shown in Figure 6.19. Here, it can be seen that, in contrast to
the MCP and DSP implementations, the state distribution is very sparse. This is due to the fact that the
initial state started with the empty set. Although the three solutions (001001, 010010 and 100100) can
be clearly distinguished, other nonsolutions are still a prominent part of the solution space.

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

State

0

200

400

600

800

1000

C
o
u
n
ts

State distribution MIS for 4096 shots and p=1

Figure 6.19: Simulation results for the Max independent set problem, 4096 shots on the Qiskit Aer simulator

If we increase p, these nonsolutions are suppressed, resulting in a cleaner state distribution and a higher
expectation value, see Figure 6.20

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

State

0

250

500

750

1000

1250

C
o
u
n
ts

State distribution MIS for 4096 shots and p=3

Figure 6.20: Simulation results for the Max independent set problem, 4096 shots on the Qiskit Aer simulator

6.5. Traveling salesperson problem (TSP)
The last QAOA problem implemented in QPack differs mainly in the encoding scheme compared to
the previous three problems. Instead of encoding each vertex with a qubit, the adjacency matrix of the
graph is mapped onto the qubits, which allows for encoding paths through network topologies.

6.5.1. Problem description
For a graph G(V,E) and distances d : [V]2 → R+, find an ordering of the vertices that minimizes the
total distance traveled for the corresponding tour. A tour visits each vertex once and returns from the
last vertex to the first [66]. In other words, find the Hamiltonian cycle with the shortest distance.

Since the number of qubits scales quadratic with the size of the problem, due to the encoding of the
problem, the example used for the traveling salesperson problem (TSP) will be a G(3, 3) graph, shown
in Figure 6.21, instead of the previously used 6-vertex 4-regular graph. The solution here is trivial, since
there is only one possible path. For the purpose of scaling the problem size in the future, all edges will
have weight 1. If there is no edge, the connection has weight 10.

6.5. Traveling salesperson problem (TSP) 44

0 1

2

1

11

Figure 6.21: Reduced graph size for the traveling salesperson problem example. Vertices are labeled 0 to 2 and edges all have
weight 1

6.5.2. QAOA mapping
The starting point for the implementation of the traveling salesperson problemwas presented in a blog
by Ceroni [122]. From his work, the problem encoding, cost Hamiltonian and mixer Hamiltonian have
been implemented in the QPack TSP algorithm, with some minor tweaks to the original code. An
improved state initialization using a Dicke state has been implemented for a more uniform distribution
of the solution space, as presented by Mesman et al. [20, 21].

Encoding In order to find a path, the graph will be represented in an adjacency matrix and a corre-
sponding weight matrix, which contains the weights (distances) of each vertex to each other.

A =

0 1 1
1 0 1
1 1 0

 , W =

20 1 1
1 20 1
1 1 20


where a vertex itself has weight 20, to discourage the path to travel to itself. The adjacency matrix is
then mapped onto a qubit string by the matrix index. For instance, the example adjacency matrix can
be encoded into the string x = 011101110.

Initial state Since not all string values are a valid solution to the problem (e.g., only strings that encode
a valid adjacency matrix), initializing all qubits in a uniform superposition over all states would not be
efficient. Instead, all qubits that encode a row of the adjacencymatrix are set to a superposition of states
with Hamming weight 2, known as a Dicke state |Dn

k ⟩ [123], defined as the equal superposition of all
n-qubit states |x⟩with Hamming weight wt(x) = k. For the example graph in Figure 6.21, a row would
be encoded as ∣∣D3

2

〉
=

1√
3
(|011⟩+ |101⟩+ |110⟩) (6.18)

The quantum circuit to encode the row in this way is presented byMukherjee et al. [124]. The resulting
initialization circuit for each row of the TSP example adjacency matrix will thus be

q0
√

2
3

√
1
2

q1 X
√

1
3

q2 X

Figure 6.22: Row initialization for the traveling salesperson problem

where the controlled square root
√

l
n denotes a controlled Ry(2acos(

√
l
n)) gate [124].

Cost Hamiltonian The cost Hamiltonian for the Traveling Salesperson problem consists of two parts,
a soft and a hard constraint. The soft constraint is defined as

Csoft =
∑
i,j

Wij

2
(1− σz

ij) (6.19)

6.5. Traveling salesperson problem (TSP) 45

where Wij is the distance between two vertices i and j, defined by the distance matrix. Dropping the
global phase term results in

Csoft = −1

2

∑
i∈V

∑
j∈V

Wijσ
z
ij (6.20)

This constraint will force the result to provide a solution that encodes the shortest path. The hard
constraint is defined as

Hhard = −
∑

{a,b}∈D

σz
aσ

z
b (6.21)

where a = Aij , b = Aji and D is the set of bit pairs that are a reflection around the diagonal of the
adjacency matrix of eachother. This results in ZZ-rotations for every two qubit pairs that represent the
reflection across the diagonal of the adjacency matrix. This essentially forces the resulting bitstring to
produce a symmetric matrix. The final cost Hamiltonian is then:

C = Csoft + ωChard = −1

2

∑
i∈V

∑
j∈V

Wijσ
z
ij − ω

∑
{a,b}∈D

σz
aσ

z
b (6.22)

where ω must be chosen such that it is relatively large to the soft constraint Hamiltonian. According to
Ceroni, ω = 5 is sufficient [122]. This cost Hamiltonian can then be mapped to a qubit circuit, as seen
in Figure 6.23.

ZZ(ωγ)

ZZ(ωγ)

ZZ(ωγ)

q0 Rz(γ/2)

q1 Rz(γ/2)

q2 Rz(γ/2)

q3 Rz(γ/2)

q4 Rz(γ/2)

q5 Rz(γ/2)

q6 Rz(γ/2)

q7 Rz(γ/2)

q8 Rz(γ/2)

soft hard

Figure 6.23: Cost unitary for the traveling salesperson example network

Mixer Hamiltonian Finally the solution space can be mixed with the mixer Hamiltonian, which can
be achieved with SWAP gates between the adjacent qubits of a row. The SWAP operations conserve the
Hamming weight and thus the solution space is preserved. The mixer Hamiltonian then is

B =
∑
i,j

SWAPi,j =
1

2

∑
i,j

(σx
i σ

x
j + σy

i σ
y
j) (6.23)

which is an XX- and YY-rotation for each adjacent qubits pair encoding a row. For the three-vertex
example, the circuit for a row would then look like the one shown in Figure 6.24.

XX(β) Y Y (β)

XX(β) Y Y (β) XX(β) Y Y (β)

q0

q1

q2

Figure 6.24: Mixer unitary for the traveling salesperson example network for one row

6.5. Traveling salesperson problem (TSP) 46

Complete circuit The complete circuit for the example network is shown in Figure 6.25 for p = 1.
For each row, the Dicke initialization ensures that every row has a Hamming weight of 2 in complete
superposition, resulting in a total of 33 nonzero states. The cost function then applies the soft and hard
constraint, after which the mixer unitary is applied to mix up each row of the solution space. All qubits
are measured and a distribution of 2|V |2 states is obtained.

XX(β) Y Y (β)

XX(β) Y Y (β) XX(β) Y Y (β)

ZZ(ωγ)

XX(β) Y Y (β)

XX(β) Y Y (β) XX(β) Y Y (β)

ZZ(ωγ)

ZZ(ωγ) XX(β) Y Y (β)

XX(β) Y Y (β) XX(β) Y Y (β)

q0
√

2
3

√
1
2

Rz(γ/2)

q1 X
√

1
3

Rz(γ/2)

q2 X Rz(γ/2)

q3
√

2
3

√
1
2

Rz(γ/2)

q4 X
√

1
3

Rz(γ/2)

q5 X Rz(γ/2)

q6
√

2
3

√
1
2

Rz(γ/2)

q7 X
√

1
3

Rz(γ/2)

q8 X Rz(γ/2)

init p = 1

Figure 6.25: Complete circuit for the traveling salesperson example network

6.5.3. Expectation Value
The expectation value for the TSP problem would normally be the sum of the edges in the path (soft
constraint). However, since we want to push the solution space towards valid adjacency matrices, the
hard constraint is also taken into consideration. Then, the following expectation function is obtained:

Fp =
1

#shots

2|V |−1∑
k=0

Ck

∑
i∈V

∑
j∈V

Wijx
ij
k − ω

∑
{a,b}∈D

xabk

 (6.24)

where xijk is a bit of the i-th row and the j-th column of the adjacency matrix A that is encoded by the
k-th state, Ck is the count (number of shots), andWjk the distance matrix.

6.5.4. Simulation results
Before checking the results of the QAOA iterations for different values of p, the Dicke initialization is
evaluated first. This can be seen in Figure 6.26. Because of the large number of states (232), only the
states that have more than 0 counts are shown in this and subsequent TSP figures. As expected, all 27
initial states are represented in the output state distribution at roughly the same amplitudes.

01
10

11
01

1

01
10

11
10

1

01
10

11
11

0

01
11

01
01

1

01
11

01
10

1

01
11

01
11

0

01
11

10
01

1

01
11

10
10

1

01
11

10
11

0

10
10

11
01

1

10
10

11
10

1

10
10

11
11

0

10
11

01
01

1

10
11

01
10

1

10
11

01
11

0

10
11

10
01

1

10
11

10
10

1

10
11

10
11

0

11
00

11
01

1

11
00

11
10

1

11
00

11
11

0

11
01

01
01

1

11
01

01
10

1

11
01

01
11

0

11
01

10
01

1

11
01

10
10

1

11
01

10
11

0

State

0

50

100

150

Co
un

ts

Dicke state for TSP initialisation

Figure 6.26: Simulation results Dicke state initialization, 4096 shots on the Qiskit Aer simulator (zero-count states are left out)

Running the Traveling SalespersonQAOA implementation on theQiskit Aer simulator for p = 1 already
gives useful results, see Figure 6.27. Here, a clear peak at bitstring 011101110 can be observed, which

6.6. Resource comparison 47

indeed encodes the adjacency matrix that is the solution for the triangular graph. Although it is the
only valid adjacency matrix, the QAOA algorithm can clearly find it.

0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
1
1
0

0
0
0
0
1
1
0
1
1

0
0
0
0
1
1
1
1
0

0
0
0
1
0
1
0
0
0

0
0
0
1
0
1
0
1
1

0
0
0
1
0
1
1
0
1

0
0
0
1
0
1
1
1
0

0
0
0
1
1
0
0
1
1

0
0
0
1
1
0
1
0
1

0
0
0
1
1
0
1
1
0

0
1
1
0
0
0
0
1
1

0
1
1
0
0
0
1
0
1

0
1
1
0
0
0
1
1
0

0
1
1
0
1
1
0
0
0

0
1
1
0
1
1
0
1
1

0
1
1
0
1
1
1
0
1

0
1
1
0
1
1
1
1
0

0
1
1
1
0
1
0
0
0

0
1
1
1
0
1
0
1
1

0
1
1
1
0
1
1
0
1

0
1
1
1
0
1
1
1
0

0
1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
1
1

0
1
1
1
1
0
1
0
1

0
1
1
1
1
0
1
1
0

1
0
1
0
0
0
0
1
1

1
0
1
0
0
0
1
0
1

1
0
1
0
0
0
1
1
0

1
0
1
0
1
1
0
0
0

1
0
1
0
1
1
0
1
1

1
0
1
0
1
1
1
0
1

1
0
1
0
1
1
1
1
0

1
0
1
1
0
1
0
1
1

1
0
1
1
0
1
1
0
1

1
0
1
1
0
1
1
1
0

1
0
1
1
1
0
0
1
1

1
0
1
1
1
0
1
0
1

1
0
1
1
1
0
1
1
0

1
1
0
0
0
0
0
1
1

1
1
0
0
0
0
1
0
1

1
1
0
0
0
0
1
1
0

1
1
0
0
1
1
0
1
1

1
1
0
0
1
1
1
0
1

1
1
0
0
1
1
1
1
0

1
1
0
1
0
1
0
0
0

1
1
0
1
0
1
0
1
1

1
1
0
1
0
1
1
0
1

1
1
0
1
0
1
1
1
0

1
1
0
1
1
0
0
0
0

1
1
0
1
1
0
0
1
1

1
1
0
1
1
0
1
0
1

1
1
0
1
1
0
1
1
0

State

0

500

1000

1500

2000

C
o
u
n
ts

State distribution TSP for 4096 shots and p=1

Figure 6.27: Simulation results for the traveling salesperson problem, 4096 shots on the Qiskit Aer simulator

Higher expectation values can be obtained when increasing p further, which reduces the amplitude of
nonsolutions further, see Figures 6.28 and 6.29.

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
1
1
0

0
0
0
0
1
1
1
1
0

0
0
0
1
0
1
0
0
0

0
0
0
1
0
1
0
1
1

0
0
0
1
0
1
1
0
1

0
0
0
1
0
1
1
1
0

0
0
0
1
1
0
1
0
1

0
0
0
1
1
0
1
1
0

0
1
1
0
0
0
0
0
0

0
1
1
0
0
0
0
1
1

0
1
1
0
0
0
1
0
1

0
1
1
0
0
0
1
1
0

0
1
1
0
1
1
0
0
0

0
1
1
0
1
1
0
1
1

0
1
1
0
1
1
1
0
1

0
1
1
0
1
1
1
1
0

0
1
1
1
0
1
0
0
0

0
1
1
1
0
1
0
1
1

0
1
1
1
0
1
1
0
1

0
1
1
1
0
1
1
1
0

0
1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
1
1

0
1
1
1
1
0
1
0
1

0
1
1
1
1
0
1
1
0

1
0
1
0
0
0
1
0
1

1
0
1
0
0
0
1
1
0

1
0
1
0
1
1
0
0
0

1
0
1
0
1
1
1
0
1

1
0
1
0
1
1
1
1
0

1
0
1
1
0
1
0
0
0

1
0
1
1
0
1
0
1
1

1
0
1
1
0
1
1
0
1

1
0
1
1
0
1
1
1
0

1
0
1
1
1
0
0
0
0

1
0
1
1
1
0
1
0
1

1
0
1
1
1
0
1
1
0

1
1
0
0
0
0
0
1
1

1
1
0
0
0
0
1
0
1

1
1
0
0
0
0
1
1
0

1
1
0
0
1
1
0
1
1

1
1
0
0
1
1
1
0
1

1
1
0
0
1
1
1
1
0

1
1
0
1
0
1
0
0
0

1
1
0
1
0
1
0
1
1

1
1
0
1
0
1
1
0
1

1
1
0
1
0
1
1
1
0

1
1
0
1
1
0
0
0
0

1
1
0
1
1
0
0
1
1

1
1
0
1
1
0
1
0
1

State

0

500

1000

1500

2000

2500

C
o
u
n
ts

State distribution TSP for 4096 shots and p=3

Figure 6.28: Simulation results for the traveling salesperson problem, 4096 shots on the Qiskit Aer simulator

0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
1
1
0

0
0
0
0
1
1
0
0
0

0
0
0
0
1
1
0
1
1

0
0
0
0
1
1
1
1
0

0
0
0
1
0
1
0
0
0

0
0
0
1
0
1
0
1
1

0
0
0
1
0
1
1
0
1

0
0
0
1
0
1
1
1
0

0
0
0
1
1
0
1
0
1

0
1
1
0
0
0
0
0
0

0
1
1
0
0
0
0
1
1

0
1
1
0
0
0
1
0
1

0
1
1
0
0
0
1
1
0

0
1
1
0
1
1
0
1
1

0
1
1
0
1
1
1
0
1

0
1
1
0
1
1
1
1
0

0
1
1
1
0
1
0
0
0

0
1
1
1
0
1
0
1
1

0
1
1
1
0
1
1
0
1

0
1
1
1
0
1
1
1
0

0
1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
1
1

0
1
1
1
1
0
1
0
1

0
1
1
1
1
0
1
1
0

1
0
1
0
0
0
1
0
1

1
0
1
0
0
0
1
1
0

1
0
1
0
1
1
0
0
0

1
0
1
0
1
1
0
1
1

1
0
1
0
1
1
1
0
1

1
0
1
0
1
1
1
1
0

1
0
1
1
0
1
0
1
1

1
0
1
1
0
1
1
0
1

1
0
1
1
0
1
1
1
0

1
0
1
1
1
0
0
1
1

1
0
1
1
1
0
1
0
1

1
0
1
1
1
0
1
1
0

1
1
0
0
0
0
0
1
1

1
1
0
0
1
1
0
0
0

1
1
0
0
1
1
0
1
1

1
1
0
0
1
1
1
0
1

1
1
0
0
1
1
1
1
0

1
1
0
1
0
1
0
0
0

1
1
0
1
0
1
0
1
1

1
1
0
1
0
1
1
0
1

1
1
0
1
0
1
1
1
0

1
1
0
1
1
0
0
1
1

1
1
0
1
1
0
1
0
1

1
1
0
1
1
0
1
1
0

State

0

500

1000

1500

2000

2500

C
o
u
n
ts

State distribution TSP for 4096 shots and p=5

Figure 6.29: Simulation results for the traveling salesperson problem, 4096 shots on the Qiskit Aer simulator

6.6. Resource comparison
As mentioned previously in this chapter, some QAOA problems require more complex quantum cir-
cuits and thus require more resources (qubits and quantum gates). In Table 6.1, a comparison is made
between all QAOA implementations for QPack, listing the number of qubits needed, single-qubit gates,

6.6. Resource comparison 48

and multi-qubit gates. All high level gates are decomposed to standard single-qubit gates (rotation on
a single qubit) or standard multi-qubit gates (controlled rotations, Toffoli). Resources are a function of
the 4-regular graph size N and the QAOA iterations p.

Qubits Single-qubit gates Multi-qubit gates
MCP N N(3p+ 1) 4Np
DSP N + 5 N(3p+ 1) 44Np
MIS N + 3 3Np 31Np

TSP N2 2N2 + p 23N2−N
2 4N2 − 6N + p(5N2 −N)

Table 6.1: Required resources for each QAOA problem

These results are visualized in Figure 6.30 for a better insight on how these problems scale when N
increases.

0 5 10 15 20 25
Problem size

100

101

102

Qu
bi

ts

Qubits

0 5 10 15 20 25
Problem size

101

102

103

104

Ga
te

s

Single qubit gates

0 5 10 15 20 25
Problem size

101

102

103

Ga
te

s

Multi-qubit gates

QAOA resources

MCP DSP MIS TSP

Figure 6.30: Scaling of QAOA resources for each problem set (p = 1)

As expected, the resources of the traveling salesperson implementation scale significantly more rapid
than the MCP and DSP implementations, since the TSP qubit encoding scheme scales quadratic with
the problem size, in contrast to the linear relation of the MCP, DSP, and MIS qubit encoding. The MCP
and DSP circuits scale with the same number of single-qubit gates, but the DSP increases more ten time
times faster in multi-qubit gates. The MIS implementation scales similarly in single-qubit gates, but
with an offset of N .

This resource comparison shows that the implemented QAOA programs not only have varied cost and
mixer unitaries, but also have a varied distribution of number of single- and multi-qubit gates. This
variation will provide a solid basis to use QAOA as scalable quantum benchmarking applications.

7
Benchmark scores

Using the measured quantum execution data and benchmark criteria mentioned in Chapter 4, actual
benchmark scores can now be defined. Taking inspiration from BAPCo [34, 35], an overall benchmark
score can be decomposed into multiple subscores. These subscores and the connection between their
quantum execution data (Table 4.1) can be seen in Figure 7.1. The overall score is divided into four
subcategories: runtime, accuracy, scalability and capacity. Runtime will evaluate the time the quantum
computer needs to execute a given circuit. Accuracy reflects the ability of the classical optimizer to
find the optimal solution. Scalability evaluates the capability of the quantum computer to execute
larger quantum circuit sizes. The capacity subscore will reflect the number of qubits of a quantum
computer forwhich the classical optimizer is able to find an optimal value below a predefined threshold.
The script for data processing can be found in https://gitlab.com/libket/qpack/-/blob/stable/
Qpack/data_processing/process_benchmark_data.py

Overall score

Runtime

Accuracy

Scalability

Capacity

Shots

Depth

QJob durations

Problem size

Expectation value

Expectation value baseline

Problem size

Problem size QJob durations

Expectation value

Expectation value baseline

Threshold value

Qubits

Quantum execution dataSubscores

Figure 7.1: Benchmark score decomposition. The overall score is a combination of four subscores, which each are connected to
their relevant quantum execution data. Blue boxes indicate that data is acquired during QPack execution, green boxed indicate
values that have been collected from a separate benchmark run and the red box indicates a static value for all benchmark runs.

For the benchmark subscores, a distinction is made between pure scores Spure and mapped scores
Smapped. The pure scores are the result of the transformed measured data, which provide quantita-
tive score metrics. The mapped scores are obtained by taking these pure scores as input and mapping
them to be proportional to performance and balanced relative to the other subscores.

7.1. Runtime
Perhaps the most straightforward metric to use is the time it takes to execute a quantum circuit, the
quantum computer runtime. After all, quantum computing promises increased runtime performance
of classical computers, so it is a valuable metric to include in the benchmark scores. For the runtime
score, it is assumed that quantum computers can execute gates in parallel where possible. Then, to get

49

https://gitlab.com/libket/qpack/-/blob/stable/Qpack/data_processing/process_benchmark_data.py
https://gitlab.com/libket/qpack/-/blob/stable/Qpack/data_processing/process_benchmark_data.py

7.1. Runtime 50

a fair runtime score for different depths and shots, a score can be defined as the number of gates per
second that a quantum computer is able to execute. The number of gates g to execute a single circuit
depends on the circuit depth and the number of shots, as described by Equation 7.1.

gP,N = DP,NSP,N (7.1)
where DP,N and SP,N are the depth and number of shots for a given VQA problem P and problem
size N , respectively. Here, DP,N is the depth of the untranspiled circuit, that is, the hardware-agnostic
implementation of QPack using the full set of software-visible gates. To ensure fair evaluation, this
depth is the same for every quantum computer. This depth here is defined as the length of the critical
path of the untranspiled QPack circuit. Transpiling the circuit in an efficient manner to fit the qubit
topology and the base gate set of a quantum computer is a job left to the quantum computer provider.
Since this is an application-level benchmark, performance is evaluated on the quantum application that
is executed, which will be reflected in the manner in which a circuit is transpiled by the quantum com-
puter provider.

As seen in Chapter 4 Table 4.1, two types of quantum time durations are being measured, the circuit
execution time TQE and the QJob time TQJob. They time different parts of the quantum computing stack.
An overview of what such a stack looks like is shown in Figure 7.2, with TQE and TQJob specified.

Send job
to provider

Transpile/compile
circuit

Validate
circuit

Reset
qubits

Circuit
execution

Send results
to client

TQJob

TQE

Figure 7.2: Typical quantum job timeline decomposition. Exact steps can vary per quantum provider

From earlier work on QPack [20, 21] and a recent paper on profiling the quantum control stack [125],
it was found that in the current quantum computing era, TQE is not the dominant contributor to the
total QJob time. We can verify this by looking at the MaxCut benchmark data set that has been run on
the IBMQ backend with the Quito quantum processor in Figure 7.3. Here, we see that TQJob is much
larger than TQE, which is only 24.8 % of the total QJob runtime. This makes TQJob more suitable for the
current NISQ-era quantum computers, as overhead still plays an important role in efficient quantum
runtime. Another problem with the TQE duration is that exact definitions may differ per vendor of a
quantum computer, or they are not provided at all. Since TQJob is measured by QPack itself, it is a more
reliable measurement to use for benchmarking.

2 3 4 5
0

5

10

15

20

Problem size

Ti
m
e
(s
)

TQJob

TQE

Figure 7.3: Quantum duration data of the IBMQ Quito quantum processor for the QAOA MaxCut problem.

For a given VQA problem, the runtime score can thus be computed as the average gates per second
over all problem sizes, see Equation 7.2

7.2. Accuracy 51

S
pure
runtime,P =

1

NP,e −NP,s

Ne∑
N=Ns

gP,N

TQJob
P,N

(7.2)

where TQJob
P,N is the average time of quantum jobs for problem P and problem sizeN . NP,s andNP,e are

the smallest and largest problem size for which the problem is evaluated.

7.2. Accuracy
Accuracy of the measured quantum state is an important aspect of quantum computers. Where fidelity
is a common measure of the accuracy of single- or two- qubit gates, such low-level characteristics be-
come more indistinguishable when the circuit size increases. The resulting output state deficiencies
due to gate noise and qubit decoherence and relaxation can be compared to those of an ideal quantum
simulator. For QPack, this entails comparing the performance of the classical optimizer on a perfect
deterministic simulator to its performance on a noisy and nondeterministic quantum computer. In this
case, the QuEST simulator [114] is used as an ideal simulator with a deterministic output state. This
way, the classical optimizer can perform in a noiseless case and find the lowest possible solution for
a given problem. The reason why the theoretical achievable score is not used as a reference is the fact
that not all VQAs optimally encode the solution. For QAOA, the number of circuit iterations p limits
the performance of QAOA. To avoid getting circuits that grow too large, p is static. In the case of VQE,
the ansatz to find the ground-state energy of the Hamiltonian does not always encode the complete
solution space and thus limits the accuracy of the VQE approximation.

The accuracy score is defined as the average relative error between the expectation value of the ideal
simulator (QuEST) and the quantum computer under test. The relative error is simply the absolute
error divided by the ideal expectation value.

S
pure
accuracy,P =

1

NP,e −NP,s

Ne∑
N=Ns

Eideal
P,N − EQ

P,N

Eideal
P,N

(7.3)

where Eideal
P,N and EQ

P,N are the ideal and quantum computer’s minimal optimizer expectation values
over all execution cycles, respectively.

7.3. Scalability
Another performance characteristic is the scalability of quantum circuits. Although a quantum com-
puter has a certain number of qubits to work with, its topology could make the evaluation of larger
circuits more difficult as mapping and transpiling efficiently become more complex. Scalability looks
at the runtime trend of a quantum computer for a growing circuit size.

To quantify the scalability, the exponential growth of the average quantum job time against the problem
size will be evaluated. This is done by fitting the quantum job time TQJob to function:

T̃QJob(N) = Na (7.4)

where N is the problem size of the current problem. To fit this curve, the value of a needs to be deter-
mined. This is done by normalizing the input data and optimizing the value of a with a least-squares
cost function using Nelder-Mead[105]. This way, the best fit for a can be found for the input data, as
shown in Figure 7.4.

The value of a can now be used as a quantification of the scalability score, see Equation 7.5. For example,
if a quantum job time scales linear with the problem size, a = 1 is expected. In the case that a > 1, the
QJob time grows faster than the problem size and vice versa for a < 1.

S
pure
scalability,P = aP (7.5)

7.4. Capacity 52

2 4 6 8 10 12 14 16

0

0.5

1

Problem size
N
or

m
al
iz
ed

Q
Jo
b
tim

e

TQJob

T̃QJob

Figure 7.4: Normalized input data and fitted curve for the QAOA maximum cut problem on Qiskit Aer simulator

7.4. Capacity
The final score metric is the capacity of the quantum computer. This is the number of qubits that a
quantum computer is able to run within a margin of the desired output accuracy. This is a similar
approach to the Atos Q-score [14], but generalized over multiple quantum applications and using the
QuEST simulator with the classical optimizer as a baseline. The capacity score is then the highest num-
ber of qubitsQP,N corresponding to problem P with problem sizeN for which the quantum computer
can achieve a relative error within a set threshold accuracy A∗. The score is thus defined as:

S
pure
capacity,P = max{QP,N where

Eideal
P,N − EQ

P,N

Eideal
P,N

≤ A∗} (7.6)

The main concern of this benchmark score is the value of A∗, which is arbitrarily chosen. Setting A∗ to
a good value is a tricky choice, as choosing this threshold value inherently defines the value at which
the output of a quantum computer is considered acceptable, which could differ from application to
application. By analyzing the obtained data from running the QPack benchmark on local quantum
simulators (see Appendix D.1), it becomes clear that the relative accuracy differs per VQA result, where
the lowest relative error rates are achieved by the RH benchmark and the highest error rates by the TSP
benchmark. Since all simulators operate in a noiseless mode, they should all be able to achieve their
maximum capacity score. This is why, currently, A∗ is implemented as 25% relative accuracy.

7.5. Subscore mapping, balancing & combining
With all pure subscore metrics defined for each problem set, they need to be mapped and balanced to
create scores that operate in a similar range to one another. Mapping transforms the pure score, such
that a better performance in a score category leads to an increased benchmark score. This is then scaled
up or down to get the subscore to be in a similar range relative to the other subscores, which we refer to
as balancing the subscores. Combining then describes the method on which the subscores of different
benchmark applications are merged to form a combined subscore.

For the runtime subscore, the decimal logarithm function is used to scale the pure subscore.

S
mapped
runtime,P = log10(S

pure
runtime,P) (7.7)

which is able to map the whole range of the pure subscore, because Spure
runtime,P > 0.

Then, the accuracy score can be scaled to a range similar to themapped runtime score. However, taking
a log function is not applicable, since Spure

accuracy,P ∈ R, e.g., the possibility that a simulator performs
better than the baseline is allowed. Since a higher subscore should represent a better solution, a lower
S

pure
accuracy,P should produce a higher score. This can be achieved with the mapping function.

fmap(x) =
π

2
− arctan(x) (7.8)

which maps the value x into the range [0, π] as x decreases. Using this mapping function, we can map
and balance the accuracy subscore to

7.6. Overall score 53

S
mapped
accuracy,P = c0fmap(c1S

pure
accuracy,P) (7.9)

where c0 scales the mapping function and c1 adjusts the sensitivity of the mapping function. By trial
and error, c0 = 10 and c1 = 5 were found to be adequate. The same mapping function can be used
for the scalability subscore, because again a lower value of Spure

scalabilty,P should result in a higher score.
Although Spure

scalabilty,P ∈ R, values of Spure
scalabilty,P are generally expected to be larger than one. To account

for this, the mapping function is shifted by one:

S
mapped
scalability,P = c2fmap(c3(S

pure
scalabilty,P − 1)) (7.10)

where c2 scales the mapping function and c3 adjusts the sensitivity of the mapping function. Using
trial and error again, c2 = 10 and c3 = 0.75 were found to be adequate. The capacity score is found
to already be in a similar range to the other performance metrics and reflects the performance of a
quantum computer adequately. The capacity score is then kept as is:

S
mapped
capacity,P = S

pure
capacity,P (7.11)

Now that a mapped and balanced subscore has been defined for each problem, the subscores for
each problem need to be combined. The combined subscore SC for each performance category C ∈
{runtime, accuracy, scalability, capacity} is computed as the arithmetic mean over all problems:

SC =
1

nP

∑
P

S
mapped
C,P (7.12)

where nP is the number of problems for which the quantum computer is evaluated. For every quan-
tum computer, the subscores for each problem in the set of problems are computed, after which the
combined subscores are derived using Equation 7.12. An example of the scores obtained can be seen
in Figure 7.5a. This figure lists all the subscores for each problem, as well as the combined subscore
for each category. Presenting the results of the QPack benchmark in this way gives insight into the
performance of the quantum computer under test for each type of application circuit.

0 10 20 30
Benchmark Score

DSP

IC

MCP

MIS

RH

TSP

Combined

6.72

6.09

6.63

6.88

5.59

5.91

6.30

12.30

12.26

14.05

15.19

15.68

24.20

15.61

9.13

9.02

9.36

8.04

8.82

9.27

8.94

15.00

10.00

15.00

15.00

10.00

16.00

13.50

Qiskit Aer Simulator
Runtime
Accuracy

Scalability
Capacity

(a) QPack result for the local
Qiskit Aer simulator

Runtime

Accuracy

Scalability

Capacity

Runtime
2 4 6 8 10 12

Qiskit Aer Simulator

QPack benchmark results

(b) Combined score for the
local Qiskit Aer simulator

Figure 7.5: QPack benchmark result for the local Qiskit Aer simulator

7.6. Overall score
Computing the subscores for a single quantum computer and displaying them like in Figure 7.5a gives
a good insight of the performance of a single computer, but makes comparison between multiple quan-
tum computers cumbersome. A better way to visualize performance differences between quantum

7.7. Synthetic tests 54

computers can be done with radar plots. Such a plot is shown in Figure 7.5b. Using this visualization,
we can provide a single parameter to compare different computing platforms by taking the area of the
four-sided region in Figure 7.5b. This defines the overall score as

S =
1

2
(Sruntime + Sscalability)(Saccuracy + Scapacity) (7.13)

This overall score fulfills the performance proportionality requirement and provides a simple way to
compare between different quantum computers. Although this overall score is more abstract than the
subscores, the advantages of it are its simplicity and general applicability.

7.7. Synthetic tests
Before using the benchmark scores on actual simulator or hardware data, the definition of the bench-
mark scores will first be applied to some synthetic datasets to verify that they indeed follow the desired
behavior mentioned in Chapter 4. This will be done by considering two test cases, one set that has a
linear runtime behavior and a set of differently scaled runtime behaviors.

The first case will analyze the behavior of the QPack scores with three synthetic datasets that scale
linearlywith quantum runtime as the problem sizeN grows (TQJob ∝ N), but differ in average quantum
runtime, i.e., a comparison will be made between slower and faster quantum computers. The sets will
also differ in expectation value. The first set, Linear1, will mirror the baseline expectation value and
thus will always have a relative error of zero. The next set, Linear2, has a standard offset of 0.75 above
the baseline expectation value, and the last set, Linear3, has an increasing relative error rate, which is
something we can expect for NISQ-era quantum computers. The synthesized data of the sets can be
found in Figure 7.6.

2 4 6 8 10 12 14
Problem size

102

103

104

Ru
nt

im
e

[m
s]

Average QJob
 duration

2 4 6 8 10 12 14
Problem size

101

102

103

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

2 4 6 8 10 12 14
Problem size

102

103

104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

2 4 6 8 10 12 14
Problem size

20

10

0

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

2 4 6 8 10 12 14
Problem size

0.0

0.5

1.0

Re
la

tiv
e

Er
ro

r

Error

2 4 6 8 10 12 14
Problem size

100

200

Ite
ra

tio
ns

Optimizer iterations

QAOA: MaxCut problem

Linear1 Linear2 Linear3

Figure 7.6: Data of the synthetic linear data set

In Figure 7.6, the distinction between the three linear data sets can be clearly seen. Each of them shows
identical scaling behavior, offset by their different runtime magnitudes. For the QPack subscores, we
thus expect the scalability subscore to be the same, while the runtime score will be the highest for
Linear1 and the lowest for Linear3. Analyzing the relative error values for the expectation value, we
see that the relative error of Linear2 decreases as the problem size grows, which is to be expected since
the absolute error is constant. Linear3, on the other hand, has an increasing error rate as the problem
size grows. From this it is expected that Linear3 will perform the worst in the accuracy and capacity
subscores. To verify these expectations, let us look at the QPack benchmark results of this synthetic
data set in Figure 7.7.

7.7. Synthetic tests 55

Runtime

Accuracy

Scalability

Capacity

Runtime
2 4 6 8 10121416

Linear1
Linear2
Linear3

Lin
ea

r1

Lin
ea

r2

Lin
ea

r3

Quantum backend

0

100

200

B
e
n
ch

m
a
rk

 S
co

re 239.5

164.9

116.7

QPack benchmark results

Figure 7.7: Benchmark result of the synthetic linear data set

From the radar plot in Figure 7.7, it can be seen that the Linear1 data set achieves the highest radar area
and therefore the highest overall benchmark score. All expectations mentioned earlier are clearly visi-
ble in the radar plot, which gives insight into the performance of each subscore category. Note that the
Linear2 and Linear3 sets have a similar accuracy score, while their error behavior is very different. One
might come to the conclusion that both Linear2 and Linear3 are equally accurate, but when looking at
the capacity subscore, it becomes obvious that Linear2 is able to be more accurate over larger problem
sizes. This may indicate that Linear3 is more suited for small circuit sizes (5 qubits in this case), where
its relative error is small than Linear2, as shown in Figure 7.6.

With data sets of the same scalability verified, we can move to the second test case, where data sets
of different runtime scalability are compared. For this, the synthetic data sets Constant1, Quadratic1,
and Exponential1 will be compared with the Linear1 data set. These data sets will only differ in the
way their runtime scales for increasing problem sizes. The accuracy of these sets will be considered
perfect, i.e., a relative error of 0. Constant1 will simulate a quantum computer with constant runtime
(TQJob ∝ C), Quadratic1 will have a quadratic increase in runtime (TQJob ∝ N2), and Exponential1 has
an exponential increase in runtime (TQJob ∝ 2N). Plots of these data sets can be found in Figure 7.8.

2 4 6 8 10 12 14
Problem size

102

103

Ru
nt

im
e

[m
s]

Average QJob
 duration

2 4 6 8 10 12 14
Problem size

101

102

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

2 4 6 8 10 12 14
Problem size

103

Ru
nt

im
e

[m
s]

Average optimizer
 duration

2 4 6 8 10 12 14
Problem size

20

10

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

2 4 6 8 10 12 14
Problem size

0.05

0.00

0.05

Re
la

tiv
e

Er
ro

r

Error

2 4 6 8 10 12 14
Problem size

60

80

100

120

Ite
ra

tio
ns

Optimizer iterations

QAOA: MaxCut problem

Constant1 Linear1 Quadratic1 Exponential1

Figure 7.8: Data of the synthetic data sets

7.7. Synthetic tests 56

From this figure, we can indeed see that the runtimes are quite different from each other. Exponential1
seems like a reasonable choice over Quadratic1 for small problem sizes, but rapidly increases after a
problem size of 8. For the benchmark scores, we expect all data sets to achieve the same accuracy
and scalability score, as they all have the same expectation value as the baseline expectation value.
For scalability, one would expect the Constant1 data set to be performing best, as it’s runtime does
not increase with the problem size. However, since the scalability score measures the curvature of
the runtime trend, it is actually expected to have the same scalability score as the Linear1 data set.
Exponential1 is expected to have the worst scalability performance, closely followed by the Quadratic1
data set. For the runtime subscore, Constant1 is expected to have the highest score, and the Linear1 data
set is expected to have the second highest score. The difference in the runtime subscore between the
Quadratic1 and Exponential1 should be minor, as they overlap at about halfway in the problem size set.
The results of the QPack benchmark for these four synthetic sets are shown in Figure 7.9.

Runtime

Accuracy

Scalability

Capacity

Runtime
2 4 6 8 10121416

Constant1
Linear1
Quadratic1
Exponential1

Co
ns

ta
nt

1

Lin
ea

r1

Qua
dr

at
ic1

Ex
po

ne
nt

ia
l1

Quantum backend

0

100

200

300

B
e
n
ch

m
a
rk

 S
co

re 248.8 239.5
203.3

133.2

QPack benchmark results

Figure 7.9: Benchmark result of the synthetic data sets

Again, expectations of the second test case are confirmed by the QPack benchmark result. Constant1
outperforms Linear1 solely on its runtime subscore. Quadratic1 and Exponential1 have a similar run-
time score, but Exponential1 has a significantly lower scalability subscore, thus giving it an overall
lower performance score than all other data sets.

With the QPack scoring system behaving as expected on these synthetic data sets, it can now be tested
on some real quantum execution data from a selection of simulators and actual quantum hardware.

8
Benchmark results

The proposed benchmark scores can now be applied to various quantum simulators and actual quan-
tum hardware. This section shows the results for simulators that can be installed on a local machine,
cloud-accessible simulators, and cloud-accessible quantum hardware. The final subscores and overall
scores of the backends under test are shown. A complete overview of the quantum backends that have
been tested can be found in Appendix C and their benchmarking data is listed in Appendix D.

8.1. Local simulators
The first real test case for the QPack benchmark in |Lib⟩ and the QPack scores are some commonly
available quantum computer simulators. These simulators are publicly available and can simply be
installed on client desktop computers. This allows anyone to experiment with quantum computation
on their own machine and provides opportunities for general quantum computing exploration.

8.1.1. Backends under test
The local simulators tested in this work are the Qiskit Aer [120], Cirq [126], Rigetti QVM [127] and
QuEST [114] simulators. Simulators are run on a Windows 10 desktop computer, using an AMD Ryzen
5 3600 6-core CPU [128] with 16 GB RAM in an Ubuntu Windows Subsystem for Linux environment.

Qiskit Aer
The Qiskit Aer simulator [120] is part of the Python-based Qiskit project [129], superseding their pre-
vious QASM simulator. Aer is a high-performance simulator for quantum circuits that includes noise
models to simulate IBMQ backends of different quantum processors and allows GPU-accelerated com-
puting. For this test case, the Aer simulator (version 0.10.2) is working in a basic setup, i.e., no noise
models are applied and GPU-acceleration is disabled.

Cirq
The Cirq Python library [130] comes with its own simulators, a pure state simulator, and a mixed state
simulator, as well as an interface for external simulators, such as the qsim [131] and qFlex [132] simu-
lators. For these results, the pure state simulator is used without noise models from version 0.14.0.

Rigetti QVM
The Rigetti Quantum Virtual Machine (QVM) [127, 133] is part of the PyQuil Python library [134, 135],
for quantum programming using Quil [133]. The QVM is a classical implementation of the Quantum
Abstract Machine (QAM), which is Rigetti’s general-purpose representation of a quantum computer.
To run a quantum program on the QVM, the program needs to be compiled to fit a specified QVM
architecture using the Quilc compiler [133]. After compilation, the quantum program can be executed
on the QVM. The Quilc compiler and QVM can either be run as local servers or a remote QVM can be
accessed using Rigetti’s Quantum Cloud Services (QCS) [136]. For this test case, both Quilc (version
1.23.0) and QVM (version 1.17.1) are run in local mode as a pure state simulator.

QuEST
The Quantum Exact Simulation Toolkit (QuEST) is a high-performance C++ based simulator of quan-
tum circuits, state vectors and density matrices. QuEST promises high performance over competitive

57

8.1. Local simulators 58

quantum computer simulators by using multithreading and GPU acceleration to run lightning fast on
laptops, desktops, and networked supercomputers [114, 137]. To compare local simulators fairly, no
multithreading or GPU acceleration is enabled. We use version 3.5.0 in this test case.

8.1.2. Backend analysis
Before analyzing the QPack benchmark results of each of the tested local simulators, the set of QPack
applications is evaluated. In Table 8.1, an overview of all problem sizes is given for which benchmark
data is collected. Due to a bug in |Lib⟩, most circuits were unable to be evaluated beyond 15 qubits. This
is not that much of an issue, as we can still make an analysis for this limited data set. Moreover, note
that the Rigetti QVM was not always able to reach a problem size as large as the other simulators. This
is because the compiler and simulator had a timeout period of 5 minutes, which caused the QVM to
not be able to complete higher problem sizes. Appendix D.1 lists the complete collected data sets.

MCP DSP MIS TSP RH IC
Problem size Start End Start End Start End Start End Start End Start End
Qiskit Aer simulator 2 15 2 10 3 12 3 4 1 10 1 10
Cirq simulator 2 15 2 10 3 12 3 4 1 10 1 10
QuEST simulator 2 15 2 10 3 12 3 4 1 10 1 10
Rigetti QVM 2 15 2 5 3 8 3 3 1 10 1 10

Table 8.1: Overview of collected data sets for each tested local simulator

With these problem sizes in mind, we can now put the benchmark results in a better perspective. The
QPack results of the local simulators can be found in Figure 8.1. Using these figures, we can see how
well each simulator performed on an application, without having to compare all individual data sets.

0 10 20 30
Benchmark Score

DSP

IC

MCP

MIS

RH

TSP

Combined

6.72

6.09

6.63

6.88

5.59

5.91

6.30

12.30

12.26

14.05

15.19

15.68

24.20

15.61

9.13

9.02

9.36

8.04

8.82

9.27

8.94

15.00

10.00

15.00

15.00

10.00

16.00

13.50

Qiskit Aer Simulator
Runtime
Accuracy

Scalability
Capacity

(a) Qiskit Aer simulator
benchmarking scores

0 10 20 30
Benchmark Score

DSP

IC

MCP

MIS

RH

TSP

Combined

7.20

6.41

7.10

7.20

5.47

6.69

6.68

13.85

12.55

14.55

15.29

15.61

14.67

14.42

6.69

7.81

7.08

5.73

9.28

9.27

7.64

15.00

10.00

15.00

15.00

10.00

16.00

13.50

Cirq Simulator
Runtime
Accuracy

Scalability
Capacity

(b) Cirq simulator
benchmarking scores

0 10 20 30
Benchmark Score

DSP

IC

MCP

MIS

RH

TSP

Combined

8.77

8.28

8.71

8.79

7.88

7.97

8.40

14.14

15.23

15.24

15.63

15.71

8.28

14.04

7.98

7.37

8.29

8.66

9.14

9.27

8.45

15.00

10.00

15.00

15.00

10.00

16.00

13.50

QuEST Simulator
Runtime
Accuracy

Scalability
Capacity

(c) QuEST simulator
benchmarking scores

0 10 20 30
Benchmark Score

DSP

IC

MCP

MIS

RH

TSP

Combined

4.69

4.57

4.93

4.62

3.98

4.50

4.55

13.56

12.50

14.02

15.33

15.69

14.76

14.31

1.50

3.06

1.50

2.82

2.85

0.00

1.95

10.00

10.00

15.00

11.00

10.00

9.00

10.83

Rigetti 16Q L QVM
Runtime
Accuracy

Scalability
Capacity

(d) Rigetti 16-qubit QVM
benchmarking scores

Figure 8.1: QPack benchmarking scores for tested local simulators

All simulators seem to have a similar runtime subscore behavior for each problem, where the TSP, RH,
and IC typically achieve lower scores and the MCP, DSP, andMIS problems score on the high end. This
is to be expected, of course, since all simulators can perform all common quantum operations between
all qubits, i.e. they are not limited to working within a basic gate set and do not need to swap around
qubits to perform the necessary quantumoperations. All simulators seem to achieve the lowest runtime
score for the RH problem. This could be explained by the fact that this is the smallest quantum circuit
that is evaluated and is thus sensitive to any overhead that may exist within the simulation. For all
simulators, they achieve a fairly similar score for each problem, except for the TSP problem, where the
Aer simulator achieves its highest accuracy score and the QuEST simulator achieves its lowest. Since all
simulators operate in a noiseless mode, these scores better reflect the ability of the classical optimizer

8.2. Cloud-accessible simulators 59

to find the VQA solution using the simulated quantum output than the noise in the system. Scalability
behaves fairly constant for the Aer and QuEST simulators, as the scalability subscores for each problem
do not deviate much from their combined scores. For the Cirq simulator, the RH and TSP scale better
than the other problems. The Rigetti QVM shows some interesting scalability results. As it was only
able to evaluate TSP for one data point, it achieves a scalability score of zero. Also, MCP and DSP do
not scale as well as the other problems for the QVM. As expected, all simulators are able to achieve their
maximum capacity scores, as the capacity threshold value was set to give this result by design.

8.1.3. Backend comparison
Using the radar plot in Figure 8.2, a comparison between the tested local simulators can be performed.
The bar graph on the right shows the overall score for each simulator. Here, we see that QPack ranks
the QuEST simulator as the best performing simulator, and the Rigetti QVM as the worst simulator.

Runtime

Accuracy

Scalability

Capacity

Runtime
2 4 6 8 10121416

Qiskit Aer Simulator
QuEST Simulator
Rigetti 16Q L QVM
Cirq Simulator

Qisk
it A

er
Sim

ula
tor

QuE
ST

 Si
mula

tor

Rige
tti

16
Q L Q

VM

Cirq
 Si

mula
tor

Quantum backend

0

100

200

Be
nc

hm
ar

k
Sc

or
e

221.9 232.2

81.8

199.9

QPack benchmark results

Figure 8.2: QPack benchmark result for local simulators

For the runtime subscore, the QuEST performance is the best, which was expected as it is a C++ based
simulator. Aer and Cirq have a very similar runtime behavior, which could be explained because they
both use a Python based internal simulator in their software. The Rigetti QVM is the slowest simulator
of the tested units, indicating that running the Quilc and QVM software in a standalone server mode
on a client may not be an efficient setup or that the programs are inherently inefficient. Accuracy scores
are very similar for all simulators, which can be expected in noiseless operation. The Aer simulator
was able to achieve the highest accuracy subscore, mainly due to the fact that it scored very well on
accuracy for the TSP application. The scalability subscore is more interesting to analyze, as this reflects
the simulator’s efficiency at which it can simulate larger quantum systems. This makes it seem that
the Aer simulator would be more suited for larger quantum systems, followed closely by the QuEST
and Cirq simulators. Although the capacity score for a noiseless simulator would initially not be very
interesting to evaluate, here we see that there is a difference between the Rigetti QVM and the other
simulators. This has not so much to do with the output of the simulator, but rather with the ability to
simulate a quantum circuit of a certain capacity. For the Rigetti, this is around 10 qubits (limited by
time-outs), while for the others, this is around 14.

8.2. Cloud-accessible simulators
If local quantum simulation is not preferred, many providers allow cloud-access to their simulators,
such as IBMQ, IonQ, and Rigetti. These simulators are often designed to test quantum applications
before executing them on real hardware, as the use of quantum hardware is usually charged per time
slot or per number of gates and shots. They can also be an option if a large simulation is required, as
these simulators usually operate on high-performance computers rather than a personal computer.

8.2. Cloud-accessible simulators 60

8.2.1. Backends under test
In this work, a comparison is made between the remote IBMQ QASM simulator [49], the IonQ simula-
tor [138], and the Rigetti QVM [127, 133].

IBMQ QASM simulator
The remote IBMQ QASM simulator (version 0.1.547) is a general-purpose simulator that offers both
ideal and noisy simulations. It is able to simulate up to 32 qubits and supports a wide set of quantum
operations [49]. For this test case, the QASM simulator is run without noise models. IBMQ uses a fair-
share policy, which means that jobs are queued and have to wait for other clients to finish their jobs. To
obtain a fair measurement of TQJob, the queue time is subtracted from the quantum job time.

IonQ simulator
IonQ offers a free-access quantum simulator that is accessible through its API (version 0.3) [138]. The
simulator supports circuits of up to 29 qubits and utilizes the same set of gates that are available on the
IonQ trapped ion hardware [139], but without noise models [140].

Rigetti QVM
The Rigetti QVM is the same simulator as described in Section 8.1, but rather than running services
locally, QVM (version 1.17.2) and Quilc (version 1.26.0) are run on the Rigetti server in pure state mode.

8.2.2. Backend analysis
For the remote simulators, a set of problem sizes similar to those of local simulators was used for bench-
marking. In Table 8.2, an overviewof all problem sizes is given forwhich benchmarking data is collected
(see Appendix D.2). Due to similar reasons as for the local simulators, the Rigetti QVM was not able to
achieve problem sizes as large as the other simulators, due to time-out constraints.

MCP DSP MIS TSP RH IC
Problem size Start End Start End Start End Start End Start End Start End
IBMQ QASM simulator 2 15 2 10 3 12 3 4 1 10 1 10
IonQ simulator 2 15 2 10 3 12 3 4 1 10 1 10
Rigetti QVM 2 13 2 5 3 7 3 3 1 10 1 10

Table 8.2: Overview of collected data sets for each remote simulator under test for each QPack problem

With this setup, the QPack benchmark evaluated each remote simulator; see the results in Figure 8.3.

0 10 20 30
Benchmark Score

MIS

IC

DSP

RH

TSP

MCP

Combined

5.14

3.65

5.13

2.86

4.52

4.71

4.34

14.98

12.66

10.84

15.68

25.25

13.93

15.55

0.67

15.71

4.44

15.71

9.27

5.06

8.48

15.00

10.00

15.00

10.00

16.00

15.00

13.50

IBMQ QASM Simulator
Runtime
Accuracy

Scalability
Capacity

(a) IBMQ QASM simulator
benchmarking scores

0 10 20 30
Benchmark Score

MIS

IC

DSP

RH

TSP

MCP

Combined

5.44

3.95

5.43

3.10

4.54

4.96

4.57

15.11

12.66

11.26

14.81

24.82

13.94

15.43

6.68

7.09

4.49

4.74

9.27

0.51

5.46

15.00

10.00

15.00

10.00

16.00

15.00

13.50

Ionq Simulator
Runtime
Accuracy

Scalability
Capacity

(b) IonQ simulator
benchmarking scores

0 10 20 30
Benchmark Score

MIS

IC

DSP

RH

TSP

MCP

Combined

4.20

4.35

4.21

3.86

4.08

4.63

4.22

15.48

12.99

14.98

15.63

13.97

14.20

14.54

4.39

4.06

1.83

4.52

0.00

1.89

2.78

10.00

10.00

10.00

10.00

9.00

13.00

10.33

Rigetti 16Q R QVM
Runtime
Accuracy

Scalability
Capacity

(c) Rigetti QVM remote simulator
benchmarking scores

Figure 8.3: QPack benchmarking scores for tested remote simulators

8.2. Cloud-accessible simulators 61

The IBMQ QASM simulator seems to achieve higher runtime subscores for applications with large
circuits (DSP, MIS) and low scores for smaller circuits (RH, IC), but its scalability subscores show the
opposite behavior. This indicates that the QASM simulator has a lot of overhead when running small
VQE circuits, but promises good runtime behavior as these problems grow. The larger QAOA circuits
score much lower in scalability, indicating that the computational load to evaluate the circuit is a more
dominant factor in runtime. The IonQ simulator also has better runtime scores for the larger QAOA
circuits than the VQE problems, but its scalability scores do not seem to have a particular correlation
with larger or smaller circuits. The Rigetti remote QVM has a fairly constant runtime score for all
problems, but seems to be better suited for smaller circuits based on its scalability score. Notice that
for the TSP it has a scalability score of 0, due to the fact that it was only able to perform the problems
for problem size 3. For the accuracy subscore, all remote simulators perform similarly, which is to be
expected for noiseless simulators. An interesting peak is the accuracy subscore of the IBMQ and IonQ
simulators for the TSP. They were able to achieve an expectation score lower than the baseline value,
obtaining a high score. All simulators were also able to achieve their maximum obtainable capacity
score. Although this could be expected for noiseless simulators, keep in mind that the threshold value
A∗ was only set based on the results of local simulators. The fact that all remote simulators were able
to stay within this threshold is a sign that the current A∗ is not too strict.

8.2.3. Backend comparison
With the individual analysis of the remote simulators completed, a comparison between the tested
backends can be made. To do so, we will use the QPack results in Figure 8.4. For the bar chart, we see
that QPack ranks the IBMQ QASM simulator as the best performing simulator, followed by the IonQ
simulator, and ranks the remote Rigetti QVM as the worst performing simulator.

Runtime

Accuracy

Scalability

Capacity

Runtime
2 4 6 8 10121416

Ionq Simulator
IBMQ QASM Simulator
Rigetti 16Q R QVM

Ion
q S

im
ula

tor

IBMQ QASM
 Si

mula
tor

Rige
tti

16
Q R QVM

Quantum backend

0

100

200

Be
nc

hm
ar

k
Sc

or
e

145.2

186.2

87.1

QPack benchmark results

Figure 8.4: QPack benchmark result for remote simulators

From the radar chart, it can be seen that all three simulators score similarly in runtime and accuracy.
That the simulators score similarly in accuracy is expected, as they all operate in a noiseless mode.
The runtime scores, on the other hand, seem to be very close to each other as well, although during
benchmarking runs, differences in runtime were clearly noticeable (see Appendix D.2). This can be
explained by looking at the scalability score, where the scores have a more noticeable distinction. The
IBMQ QASM simulator is the best scalable simulator of the three and the Rigetti QVM the worst. Sim-
ilarly to what has been observed in the synthetic tests in Section 7.7, we can conclude that it has better
runtime performance for small problem sizes, but deteriorates more rapid than the other simulators as
the problem size grows. In terms of capacity, all simulators were able to reach their maximum available
capacity score. The Rigetti QVM could not score as high, since it was unable to complete larger prob-
lem sets. In conclusion, the IBMQ QASM simulator would be the simulator of choice for all-purpose

8.3. Cloud-accessible hardware 62

quantum circuits. However, the IonQ simulator could be a faster option for circuits with of modes size
(±15 qubits). For even smaller circuit sizes (± 5 qubits) or very shallow circuits, the Rigetti QVM is still
a valid option.

8.3. Cloud-accessible hardware
With the QPack benchmark tested on quantum computer simulators, we now proceed to evaluate quan-
tum hardware using the QPack benchmark. Evaluating the performance of these hardware quantum
computers will not only allow for a comparison between tested quantum computers, but will also shed
light on the current state of quantum computing.

8.3.1. Backends under test
We will evaluate quantum hardware from the IBMQ family [141] and Rigetti [9]. In contrast to the
benchmarks run on simulators, hardware-based quantum computers need to transpile the provided
QPack circuit to fit to their native gate set and qubit topology. This becomes an important factor for
all subscores, such as gate decomposition, state swapping, and scheduling, increases the total number
of qubit operations and, therefore, introduces more noise in the system. An overview of the backends
under test can be found in Table 8.3, listing some of their low-level characteristics. A visualization of
the qubit topologies of these backends are shown in Figure 8.5.

Hardware Qubits Ave T1 [µs] Ave T2 [µs] Type Topology Native gates
IBMQ Quito 5 121.4 111.3 Superconducting T (Fig 8.5b) CX, ID, RZ, SX, X
IBMQ Manila 5 181.6 57.0 Superconducting L (Fig 8.5c) CX, ID, RZ, SX, X
IBMQ Nairobi 7 133.9 94.9 Superconducting H (Fig 8.5a) CX, ID, RZ, SX, X
IBMQ Perth 7 171.2 128.2 Superconducting H (Fig 8.5a) CX, ID, RZ, SX, X
IBMQ Lagos 7 139.2 89.6 Superconducting H (Fig 8.5a) CX, ID, RZ, SX, X
IBMQ Jakarta 7 148.5 41.4 Superconducting H (Fig 8.5a) CX, ID, RZ, SX, X
Rigetti Aspen-M-1 80 31.2 23.1 Superconducting Octagonal (Fig 8.5d) RX, RZ, CPHASE, CZ, XY

Table 8.3: Hardware-based quantum computers [50, 136] tested by QPack

As becomes clear from Table 8.3, all quantum computers tested are built using superconducting qubit
technology. Superconducting qubits use supercooled Josephson junctions [142, 143] to create a quan-
tum nonharmonic oscillator which is used as the qubit. Interestingly, the relaxation (T1) and decoher-
ence (T2) times seem to be much lower for the Rigetti system than for the IBMQ systems. This could
mean that the Rigetti computer is not able to perform well on quantum circuits with a large depth,
without a type of error-correction scheme. However, the Aspen-M-1 has a lot more qubits to operate
on, with its 80 available qubits compared to the 5- and 7-qubit IBMQ systems. Accessing the Rigetti
systems is done on a pay-per-use basis, and we thank Oak Ridge for the funds to run our experiments
on this state-of-the-art quantum computer. It should be noted that IBMQ does offer larger quantum
computers as well, with its 127-qubit Eagle processor being their current flagship quantum computer.
These systems are generally not accessible by the public, so we also express our gratitude to IBMQ for
giving free access to their 5- and 7-qubit quantum backends.

(a) IMBQ
H-topology

(b) IMBQ
T-topology

(c) IBMQ
L-topology

(d) Rigetti Aspen-M-1 topology

Figure 8.5: Qubit typologies of tested quantum hardwares

8.3. Cloud-accessible hardware 63

8.3.2. Backend analysis
The tested quantum hardware computers can be found in Table 8.4. Due to limited access to these back-
ends, only the MCP, RH, and IC problems were evaluated, as they were able to run for small problem
sizes in a relatively fast time compared to the other QPack problems. We also limit the benchmark ex-
ecution to one VQA repetition per problem to save time. This is also why not all quantum computers
have been evaluated to their maximum number of qubits. Especially the Rigetti Aspen-M-1 has a small
data set, because the available funding allowed access for not more than one hour. The complete data
sets are found in Appendix D.3. Analyzing all quantum computers at once can become a bit convo-
luted, so the analysis of the hardware is split into two parts. The first part covers the analysis of all
7-qubit IBMQ backends with an H-topology and is followed up in the second part with an analysis
of the other hardwares with a different topology. After individual analysis, a comparison between H-
topology quantum computer is made. The best scoring hardware in this set is then compared to the
hardwares with different topologies.

MCP RH IC
Problem size Start End Start End Start End
IBMQ Manila (5-qubits) 2 5 1 2 - -
IBMQ Quito (5-qubits) 2 5 1 5 1 4
IBMQ Nairobi (7-qubits) 2 7 1 7 1 7
IBMQ Perth (7-qubits) 2 5 1 5 1 5
IBMQ Jakarta (7-qubits) 2 5 1 5 1 5
IBMQ Lagos (7-qubits) 2 5 1 5 1 5
Rigetti Aspen-M-1 (80-qubits) - - 1 4 - -

Table 8.4: Overiew of collected data sets for each backend under test for each QPack problem

The backends with the H-topology are those who use the Nairobi, Perth, Jakarta, and Lagos quantum
processors from the IBMQ aviary. Their individual results are depicted in Figure 8.6. Due to limited
access to IBMQ backends, not all backends have been benchmarked to their maximum qubit capacity.
This is why, for a fair comparison, the Nairobi backend will only be evaluated to 5 qubits, to align it
with the other backends.

0 5 10 15 20
Benchmark Score

IC

RH

MCP

Combined

3.22

2.62

3.86

3.23

7.42

13.07

8.69

9.72

10.35

15.71

0.79

8.95

3.00

5.00

5.00

4.33

IBMQ Nairobi
Runtime
Accuracy

Scalability
Capacity

(a) IBMQ Nairobi benchmarking
scores

0 5 10 15 20
Benchmark Score

IC

RH

MCP

Combined

3.14

2.63

3.95

3.24

5.38

13.18

7.89

8.82

2.14

5.00

8.61

5.25

2.00

5.00

5.00

4.00

IBMQ Perth
Runtime
Accuracy

Scalability
Capacity

(b) IBMQ Perth benchmarking
scores

0 5 10 15 20
Benchmark Score

IC

RH

MCP

Combined

3.18

2.58

3.94

3.24

5.80

11.60

7.56

8.32

8.22

9.16

3.32

6.90

3.00

5.00

5.00

4.33

IBMQ Jakarta
Runtime
Accuracy

Scalability
Capacity

(c) IBMQ Jakarta benchmarking
scores

0 5 10 15 20
Benchmark Score

IC

RH

MCP

Combined

2.98

2.52

3.92

3.14

5.18

14.33

8.39

9.30

11.91

0.13

0.13

4.05

5.00

5.00

5.00

5.00

IBMQ Lagos
Runtime
Accuracy

Scalability
Capacity

(d) IBMQ Lagos benchmarking
scores

Figure 8.6: QPack benchmarking scores for tested remote quantum hardware with H-topology

Since these backends all use the same topology, we can see a lot of similarities in their benchmarking
performance. They all see to behave similarly in runtime, achieving best runtime scores for MCP, then
IC, and finally RH. As stated in Section 7.1, current quantum computers suffer from a large overhead
factor in QJob time, and it again shows in the benchmark results, because the runtime score compen-
sates for the depth of the circuit. Similar behavior is also observed in each quantum backend for the
accuracy subscore, with RH ranking highest, MCP middle, and IC ranking lowest. Different behav-

8.3. Cloud-accessible hardware 64

ior in scalability can be observed, where RH is the highest scoring problem for the Nairobi and Jakarta
backends, MCP scales best for the Perth backend and IC best for the Lagos backend. All backends reach
their maximum capacity scores for all problems, apart from the IC problem, where the Perth backend
is usable for two qubits, the Nairobi and Jakarta backends are usable for three qubits and the Lagos
backend for five qubits.

Next, the backends with the IBMQ L- and T-topology and the Rigetti octagonal topology are analyzed.
These are the IBMQ Quito, IMBQ Manila, and the Rigetti Aspen-M-1 backends.

0 5 10 15 20
Benchmark Score

RH

MCP

Combined

2.26

3.95

3.10

12.65

8.72

10.68

9.27

15.71

12.49

2.00

5.00

3.50

IBMQ Manila
Runtime
Accuracy

Scalability
Capacity

(a) IBMQ Manila benchmarking
scores

0 5 10 15 20
Benchmark Score

IC

RH

MCP

Combined

3.21

2.61

3.98

3.27

8.24

11.91

8.78

9.64

15.67

10.37

15.71

13.92

2.00

5.00

5.00

4.00

IBMQ Quito
Runtime
Accuracy

Scalability
Capacity

(b) IBMQ Quito benchmarking
scores

0 5 10 15 20
Benchmark Score

RH

Combined

2.96

2.96

8.90

8.90

15.71

15.71

4.00

4.00

Rigetti Aspen-M-1
Runtime
Accuracy

Scalability
Capacity

(c) Rigetti Aspen-M-1
benchmarking scores

Figure 8.7: QPack benchmarking scores for tested remote quantum hardware with other topologies

Now for these backends, their performance estimate is very rough. Only the Quito backend has been
evaluated for all three selected problems. Unfortunately, limited reservation times and long queue times
only allowed to collect a small data set of RH data for the Aspen-M-1 and only part of the RH data set
for the IBMQ Manila. The small amount of data can still give some indication on their performance in
runtime, accuracy, and capacity, but the scalability subscore is not yet usable, as it will requiremore data
points to fit this subscore metric. We see that the Manila and Quito backends obtain higher runtime
scores for the large MCP than for the smaller RH problems, which could again be an indication of
large overhead in the quantum computing stack. The RH application, however, is able to obtain a high
accuracy subscore compared to the other problem applications. As with the H-topology backends, all
backends are able to achieve their maximum capacity scores for all problems except for IC.

8.3.3. Backend comparison
With the insight into the individual benchmark results completed, the backends can be compared with
each other. Again, this will be split into two parts, where the H-topology backends are compared, after
which the best scoring one is compared to the other topologies. A comparison between the Nairobi,
Perth, Lagos, and Jakarta backends can be found in Figure 8.8. Of the tested backends for the case of
maximum 5 qubits, the IBMQ Nairobi is the best performing.

All backends perform similarly in terms of runtime, which is to be expected from the same topology
backends with the same native gate set. The accuracy subscores show some differences, where the
order of best to worst scoring backend is the Nairobi, Lagos, Perth, and finally Jakarta. These differ-
ences could partly be explained by the small data set and the performance of the classical optimizer,
but could also rise from the fact that the backends have different decoherence times. For example, the
Jakarta backend has an average T2 time of 41.4 µs, while the Nairobi has an average T2 time of 94.9 µs.
This indicates that the Jakarta’s qubits would trail off of their desired states faster than the Nairobi’s
qubits, resulting in a noisier output. However, the Perth backend has an average T2 time of 128.2 µs

8.3. Cloud-accessible hardware 65

Runtime

Accuracy

Scalability

Capacity

Runtime
2

4
6

8
10

IBMQ Nairobi
IBMQ Perth
IBMQ Lagos
IBMQ Jakarta

IBMQ Nair
ob

i

IBMQ Pe
rth

IBMQ La
go

s

IBMQ Ja
kar

ta

Quantum backend

0

50

100

Be
nc

hm
ar

k
Sc

or
e

85.6

54.4 51.5
64.2

QPack benchmark results

Figure 8.8: QPack benchmark result for IBMQ H-topology backends

and does not achieve the highest accuracy score. This highlights the importance of holistic benchmark-
ing, as we observe that the behavior of a quantum computer cannot be properly understood only by
its low-level performance metrics. Larger differences are observed for the scalability subscore, which
is the main contributor to the differences in the overall score. For the limited 5-qubit case, the Nairobi
backend has the best scalability, followed by the Jakarta, Perth, and Lagos backends, respectively. The
capacity subscore is close for all backends as mentioned in their individual analysis, where the Nairobi
and Jakarta backends are usable for 4 to 5 qubits and the Perth and Lagos backends for around 4 qubits,
depending on the type of application.

Now we compare the other topology backends with the best performing H-topology backend; the
IBMQ Nairobi. The overall benchmark results for the IBMQ Nairobi, IMBQ Manila, IBMQ Quito and
Rigetti Aspen-M-1 are depicted in Figure 8.9.

Runtime

Accuracy

Scalability

Capacity

Runtime
2 4 6 8 10121416

IBMQ Nairobi
IBMQ Manila
IBMQ Quito
Rigetti Aspen-M-1

IBMQ Nair
ob

i

IBMQ Man
ila

IBMQ Quit
o

Rige
tti

Aspe
n-M

-1

Quantum backend

0

50

100

150

Be
nc

hm
ar

k
Sc

or
e

85.6
110.6 117.2 120.4

QPack benchmark results

Figure 8.9: QPack benchmark result for quantum hardware with different topologies

Again, no large differences can be observed for the runtime subscores, where the IBMQQuito obtains a
slightly higher score over the other backends. The Aspen-M-1 could potentially be faster, as it achieved

8.3. Cloud-accessible hardware 66

the highest runtime score for the RHproblem, butwas not evaluated for theMCPand ICproblemwhere
higher runtime scores are usually obtained. The differences in accuracy are more apparent. However,
only the Quito and Nairobi can be fairly compared, where the Nairobi backend takes the slight edge
over the Quito. It looks like the Manila is more accurate than the other backends, but remember that
it has not been evaluated for the IC problem, where lower accuracy scores are generally obtained by
other backends. The Aspen-M-1 accuracy subscore is also interesting to analyze, since it has only been
evaluated for the RH problem and yet it obtains the lowest accuracy subscore. Since backends usually
score very well on the accuracy subscore on the RH problem, which would indicate that the Aspen-M-1
is less accurate in general compared to the IBMQ backends. Large differences in the scalability subscore
are also clearly observable. The Aspen-M-1 has the highest scalability subscore, but keep in mind that
this has only been evaluated for the RH problem. The IMBQ Nairobi performs worse than the other
backends, which may indicate that the H-topology is not as scalable as the other available topologies.
For the capacity subscore, the IMBQNairobi performs best, but it could be that the IMBQManila could
achieve similar performance results as it has not been pushed to its maximum qubit capacity in the
benchmark. The same goes for the Aspen-M-1, although it will probably not be able to achieve a maxi-
mum capacity score when evaluated for the MCP and IC problems, based on its accuracy score.

Based on the QPack benchmark result, the IMBQQuito andNairobi are good choices for circuits up to 5
qubits, as scalability is not a very important factor here since both backends can only run small circuits.
For circuits of 6 and 7 qubits, the IBMQ Nairobi would be best to use. The IBMQ Manila also achieves
high scores, but it is not sure if these scores remain as high if the complete data set has been run. The
same can be said for the Rigetti Aspen-M-1, as it theoretically would be capable of running circuits
much larger than the other tested backends. The question remains whether it is capable of producing
usable results, as its accuracy performance on the small RH application did not perform as well as the
other backends. To answer this question, more access to quantum computers is needed so that we can
run more benchmark applications for larger problem sizes and take multiple measurements.

8.3.4. Noisy hardware simulation
As mentioned in the beginning of this section, only a small data set of quantum hardware could be
collected for a single VQA repetition. In order to collect more data on quantum computers, more access
is required from quantum computer providers. However, until this is provided, one might be inclined
not to use the actual quantum hardware at all, but rather to use a simulator with a noise model and
base gate set of the desired quantum computer to get an indication of performance. To see whether this
approach is viable, a comparison is made between the noiseless Aer local simulator, the Qiskit Nairobi
local simulator, and the actual Nairobi Quantum computer for the MCP, RH, and IC problems, for a
maximum problem size of 7. The QPack benchmark result can be found in Figure 8.10.

Runtime

Accuracy

Scalability

Capacity

Runtime
2

4
6

8
10

12
14

16

Qiskit Aer Simulator
Nairobi simulator
IBMQ Nairobi

Qisk
it
Ae

r S
im

ul
at

or

Nai
ro

bi
 si

m
ul
at

or

IB
M
Q N

ai
ro

bi

Quantum backend

0

50

100

150

B
e
n
ch

m
a
rk

 S
co

re 159.8

87.4

46.4

QPack benchmark results

Figure 8.10: Comparison between noiseless simulation, simulation with Nairobi noise model and hardware Nairobi backend

8.3. Cloud-accessible hardware 67

The Aer simulator is obviously expected to have the best performance of the three, but will serve as a
reference for the noisy Nairobi simulator. Even tough simulation of quantum hardware is meant as a
tool for circuit debugging, we can observe significant differences between a simulator and the hardware
implementation.

Instead analyzing each backend sequentially, let us directly go to the comparison between the sim-
ulators and the Nairobi backend. As seen in Figure 8.10, the Aer simulator easily outperforms both
Nairobi implementations. The Nairobi simulator has a runtime score close to that of the Aer simulator,
which is not that surprising, as it is running on the same classical hardware and needs to evaluate a
slightly more complex circuit. More interesting is the comparison between the simulated and physical
implementation of the Nairobi processor. It can be seen that the simulator outperforms the hardware
in this case in all subscores. This could be expected for runtime, of course, as simulation of quantum
systems is often faster than running quantum hardware itself (especially in the NISQ-era). However,
the Nairobi simulator is more accurate than the real Nairobi backend. This indicates that simple noise
models implemented on today’s quantum simulators cannot accurately reflect the actual noise behavior
of a real hardware quantum computer. This also causes the Nairobi simulator to have a higher capac-
ity subscore, though they should model the same behavior. The discrepancy between the simulated
noisy model and the actual noise of a quantum computer is known, as it is difficult to simulate noisy
quantum many-body dynamics [144]. However, it is good to verify this in the QPack context. Also,
for this small data set, the Nairobi simulator has a better scalability subscore than the physical Nairobi
implementation. For the overall score, QPack ranks the Nairobi simulator almost twice has high. This
indicates that, while hardware simulators may be useful for debugging, they say little about the perfor-
mance for any of the QPack subscores.

Results for all noisy simulators of the tested quantumhardwares in this thesis can be found inAppendix
D.4

9
Discussion

This chapter covers the discussion of some important choices that have been made in the design of the
QPack benchmark. First, several points of discussion about the QPack scores are highlighted, as well as
some scalability limitations. After this, the use of the |Lib⟩ library is reviewed. This is followed up by
a comparison of the obtained QPack benchmark results with the QV and CLOPS metric for the tested
IBMQ backends. The chapter ends with a reflection on the design criteria of the QPack benchmark.

9.1. QPack scores
The presented results indicate that the QPack benchmark is capable of providing an easy and insightful
comparison between quantum computers. However, it should be noted that these scores use some ar-
bitrary values. One of these, for example, is the threshold value A∗, which could be chosen to be more
or less tolerant to the achieve relative error. In this implementation, the value of A∗ was chosen such
that all local simulators without noise models would achieve a maximum capacity score for all bench-
marked problem sets to compensate for their nondeterministic behavior. This sets the bar at such a
level that a real quantum computer needs to achieve output state close to that of its simulated noiseless
counterparts for all benchmark applications. This may be too strict for NISQ-era hardware and more
applicable to post-NISQ-era quantum computers. As this threshold is the same for all applications, it
does not necessarily reflect the usability of an output state for each specific problem. Another approach
could be used, where different threshold levels per application are applied and can be set such that the
threshold is themaximum relative error atwhich the output of the benchmark application is still usable.

The balancing parameters c0, c1, c2, c3 are also subject to discussion, as changing their values could sig-
nificantly change the accuracy and scalability subscores. They were chosen such that different scores
of the performance categories fall within a similar range, making comparison and visualization more
practical. Scores are thus not absolute values, but can give a relative difference between two quantum
computers, as long as parameter choices are consistent. Related to this is the combination of the sub-
scores to the overall score. This, again, is a practicality to support the ability of QPack to compare
quantum hardware with a single-number performance metric. Here, consistency is the key to a fair
comparison between quantum computers.

When scaling up benchmark application sizes, comparing the expectation value of a quantum com-
puter to an ideal simulator becomes increasingly difficult. Currently, the QuEST simulator is used to
determine the reference output state used in the accuracy and capacity subscores. From its documen-
tation [137], it is stated that the memory used increased exponentially with the number of qubits, as

memory = b · 2qubits−29 [GiB] (9.1)

where b is the number of bytes used to represent a number, typically b = 8 for double precision. This
means that to simulate 40 qubits, around 16 TiB of memory is needed! To negate this, other references
can be taken to use as a baseline. One option is the theoretical optimal solution for all VQA problems,
which can be easily computed, since both the QAOA and the VQE solutions have a well-defined rela-
tion with the size of the problem. However, this requires the VQA implementation to be able to find
this solution to the problem, which, as seen in this work, is not always the case. This is caused by the

68

9.2. |Lib⟩ limitations 69

fact that QAOA only approximates valid solutions, and, in a similar manner, the VQE solution depends
on the type of ansatz that is used. Another approach is not to use a simulator as a baseline at all, but to
use another quantum computer to get a baseline value, and all other benchmarked units achieve a rela-
tive score to this baseline quantum computer. This would require a very low-noise quantum computer,
and this likely needs to be updated frequently as quantum computers grow in size and this baseline
quantum computer becomes redundant over time.

For the runtime and capacity subscores, TQJob is chosen to measure performance rather than the actual
execution time of the circuit TQE. As mentioned in Section 7, overhead is currently a major factor and,
as such, a more pristine target for quantum job time optimization. However, as quantum computers
leave the NISQ era, TQE could change to be the dominant factor in quantum job time. Nevertheless,
TQJOb would still be the time duration of choice, as this gives a more holistic view of quantum comput-
ing systems and is not dependent on data from quantum providers, but can be timed by QPack itself.

Another impact on the benchmark scores is the set of collected problem data. For example, when com-
paring a 5- and 7-qubit quantum computer, a larger problem set can be run on the 7-qubit quantum
computer. For a fair comparison, both quantum computers should be evaluated on the same prob-
lems for the same problem sizes. However, this could punish the 7-qubit quantum computer, as it is
theoretically capable of achieving a higher capacity score, but as a result its overall accuracy score pos-
sibly decreases. This may be a problem, especially for NISQ-era quantum computers, as differences
between running problem sizes that only differ by a small amount can have a notable impact on the
benchmark performance. As quantum computers become larger, this problem will probably become
less prominent.

9.2. |Lib⟩ limitations
Using |Lib⟩ as a cross-platform library has an obvious benefit when benchmarking different quantum
computers. However, there are some downsides to the current |Lib⟩ version. For example, a bug per-
sists that does not allow for the creation of large quantum circuits. That is, with a certain number of
qubits and/or quantum gates, some memory issues arise when running |Lib⟩. This has led quantum
simulators to only evaluate VQAs to a maximum of around 14 to 16 qubits. Due to time and qubit
constraints on the tested quantum hardware, this did not cause any limits on performance evaluation.
However, as quantum hardware with a larger number of qubits becomes more available, the current
version of QPack is not able to evaluate more than 14-16 qubits until this issue has been resolved. Be-
cause QPack is built on top of the |Lib⟩ library, in order to benchmark new quantum computers, they
first have to be included in |Lib⟩. This means that in order for QPack to be updated, |Lib⟩ has to be up-
dated first. Although this is not a huge barrier to overcome, it does take some extra effort to benchmark
new quantum computers.

9.3. Comparison to other benchmarks
It is interesting to see how the QPack benchmark compares with other commonly used benchmarks.
For this, we will compare the QPack benchmark scores for the tested IBMQ quantum computer with
their own benchmark metrics, the Quantum Volume (QV) and CLOPS metric. The QV relates most to
the accuracy and capacity subscores, as the QV evaluates the output of the quantum computer, while
the CLOPSmetric is more relatable to the runtime subscore. Their scores can be found in Table 9.1. The
IMBQ Manila is not included due to limited acquired data.

Table 9.1: Score metrics for the QPack, QV and CLOPS benchmarks on tested IMBQ backends.

QPack IBM
Hardware Runtime Accuracy Scalability Capacity QV CLOPS

IBMQ Quito 3.27 9.64 13.92 4.00 16 2.5K
IBMQ Nairobi 3.23 9.72 8.95 4.33 32 2.6K
IBMQ Perth 3.24 8.82 5.25 4.00 32 2.9K
IBMQ Lagos 3.14 9.30 4.05 5.00 32 2.7K
IBMQ Jakarta 3.24 8.32 6.90 4.33 16 2.4K

9.4. Score criteria 70

From the table, we would expect that the Nairobi, Perth, and Lagos backends achieve the highest accu-
racy and capacity scores, as their QV is the highest. However, the Quito achieves the second highest
accuracy score, even though it only has aQV of 16. The same goes for the runtime score, where the Perth
backend achieves the highest CLOPS score and also the second highest QPack runtime score, but the
Jakarta gets the lowest CLOPS score and the second highest runtime score in QPack. These differences
again highlight the difference between randomized and application-oriented benchmarking. Some cor-
relation is present, but the QPack benchmark is able to give an insight of quantum performance for
actual applications.

9.4. Score criteria
A reflection can be made on the score criteria as defined in Section 4.3 can be made. Recall that the
criteria are as follows.

1. Benchmark score reflects application-level performance of quantum computers (simulators and
hardware implementations)

2. Benchmark score is a composite of measurement data of multiple quantum applications
3. Benchmark score is a single number (but may be split up into sub-scores)
4. Benchmark score is proportional to performance, i.e., a higher score means higher performance
5. Benchmark score are scalable, i.e., score has no upper limit
6. Benchmark score does not become too abstract from the data it is based on
7. Sub-scores should be balanced, such that one sub-score does not become dominant in the overall

score

Criterion one ensures application-oriented benchmarking, which is achieved by using VQE and QAOA
implementations that have a real-life purpose, either solving a graph problem or finding the lowest
eigenvalue of a quantum system. The second criterion is ensured by combining the subscores of all
individual problems by taking an arithmetic mean. Combining the subscores to an overall score by
taking the area of the four-sided radar plot figure satisfies the third criterion, which enforces a single-
number performance score. By mapping the pure subscores, criteria four is also met, which ensures
proportional performance scores. The fifth criterion is met as well, but is somewhat open to discus-
sion for the accuracy subscore. It is indeed the case that the score has no upper limit (as the smaller
the relative error gets, the higher the score becomes), but as quantum computers become less prone to
noise, this value will likely saturate as we leave the NISQ-era. Criterion six is achieved by using sub-
scores instead of solely using the overall score. Using this method, performance analysis of different
aspects of quantum computers can be achieved. Lastly, balancing the subscores is achieved by tuning
the coefficients c0, c1, c2, and c3. It could be said that the capacity subscore could grow faster than the
other subscores for post-NISQ-era quantum computers. If this becomes the case, the balancing param-
eters could be tuned, or the capacity subscore could be scaled as well. The capacity subscore is not
currently scaled up or down, as the score now nicely reflects the average number of usable qubits on
a quantum computer. With all the criteria covered, it can be concluded that the current version of the
QPack benchmark adheres to all points.

10
Conclusion & recommendations

This thesis has presented a new method to evaluate a quantum computer’s performance using an
application-oriented benchmark approach for holistic performance evaluation for NISQ-era quantum
computers. Running these benchmarking applications on different quantum computers using |Lib⟩ al-
lows the collection of quantum execution data to be used as a quantum performance indicator.

After an overview of the current state of quantum benchmarking, opportunities were made clear for a
more holistic and versatile benchmarking approach, using VQAs as benchmark applications to create
a variety of scalable benchmarking circuits using the cross-platform quantum library |Lib⟩.

With this in mind, the QPack benchmarking outline was presented to see what quantum execution
data could be obtained when running these VQA-applications. From this execution data, differences
in some performance could already be observed, which required to be transformed into actual perfor-
mance scores. This led to the definition of the benchmark score criteria, which served as a guide to
form the later defined benchmark scores.

The ability to execute the benchmark applications at all depends on the implementation of the chosen
VQE and QAOA problems in |Lib⟩. For each of the 6 implemented VQA problems, a detailed step-by-
step implementation was given, as well as a proof of implementation by showing some results for each
|Lib⟩ implementation.

The transformation of the raw quantum execution data into the QPack scores provides four perfor-
mance subscores based on runtime, accuracy, scalability, and capacity. Runtime evaluates how fast
a quantum computer can execute a quantum circuit on average. Accuracy then checks how well the
output of a quantum computer performs compared to that of an ideal quantum computer simulator.
Scalability tells us something about howwell the quantum computer is able to handle increasing circuit
sizes. Finally, the capacity subscore indicates what the usable number of qubits on a quantum proces-
sor actually is, regardless of how many qubits a quantum computer can provide. These subscores were
then evaluated on a set of synthetic data sets to verify that they behave as intended.

A proof-of-concept has been provided by running QPack on a set of local and remote quantum com-
puter simulators, as well as a set of available quantum computer hardware. Local simulators from Cirq,
Qiskit, Rigetti and QuEST have been compared to one another, where it was shown that the QuEST sim-
ulator has the best overall performance. In the evaluation of the remote quantum computer simulators
provided by IBMQ, IonQ, and Rigetti, it became clear that the IBMQ QASM simulator had the best
overall performance, but the IonQ and Rigetti simulators could be appropriate choice to use for cer-
tain circuit sizes. A selection of quantum hardware from the IBMQ aviary and the Rigetti Aspen-M-1
have also been benchmarked. This showed that the IBMQ Quito and Nairobi are the better performing
quantum computers of the tested backends. Due to access limits from remote providers, only a small
set of hardware data has been collected. In order to get a better insight into the performance of state-of-
the-art quantum computers, more access time to these backends is required. For this thesis, a total of 7
simulators and 7 hardware quantum computers have been benchmarked.

71

72

In conclusion, the QPack benchmark is able to make a quantitative performance analysis between dif-
ferent quantum computers, be it a physical realization or a simulator. The code for the complete version
of QPack in |Lib⟩ can be found in https://gitlab.com/libket/qpack/-/tree/stable.

There are of course still some improvements to make to the QPack benchmark. Besides the discussed
points in Chapter 9, there are still plenty of improvement opportunities. For example, as shown in
Section 4.2, only a few of the quantum execution data types presented are used to compute the QPack
scores. This indicates that there are possibilities to create more subscores. For example, a comparison
between classical and quantum runtimes could bemade or the serviceability of a remote quantum com-
puter can be quantified in a new sub-score.

An optimization in total benchmark duration is also something that can be a great improvement for the
QPack benchmark. Currently, benchmarking quantum computers or simulators can take a long time,
especially for remote services where resources are shared on a scheduled basis. This currently happens
because QPack sends a circuit to the provider, waits for the results to come back, has the optimizer
tweak the circuit parameters, and sends a new circuit back to the provider. This repeats until the opti-
mizer has found the optimal parameters. This can be improved by sending the optimization program
as a whole to the quantum provider, which IBM allows by using Qiskit Runtime [52] for example. The
current version of |Lib⟩ does not yet offer the ability to send complete quantum programs to a provider.
This way of submitting quantum jobs would offer a speedup of benchmarking quantum computers, as
there is no back-and-forth communication between the client and the provider. When |Lib⟩ supports
this function, it should be a high priority to implement it in QPack.

Further improvements to QPack could be made by implementing more problem sets of different VQAs
or non-VQAs. Algorithms such as VQLS or VQS could be a good addition to the current QPack appli-
cation set. But also non-VQA applications such as HHL [69], hydrogen simulation [115] or Shor’s algo-
rithm [60] could offer viable (post-)NISQ-era quantum applications to use in the further development
of QPack, allowing for an even more varied set of quantum circuits to evaluate quantum performance.
In order to select new applications for QPack, benchmark application circuits should be analyzed on
their characteristics, to find what types of circuit are missing in the current set. The SupermarQ [19]
benchmark, for example, indexes its application circuits based on program communication, critical-depth,
entanglement-ratio, parallelism, liveness and measurement. Such an approach could also be interesting for
QPack, so it can reliably offer a varied set of quantum benchmarking applications.

With this in mind, the question arises as to what quantum applications are actually suitable for bench-
marking in the post-NISQ-era. While VQAs are a good solution for the current state of quantum com-
puting, they may not be as usable for large quantum circuits, as they would likely need a large num-
ber of optimization parameters, which lays more computational stress on the classical optimizer. As
observed for the VQE IC problem, a large number of optimization parameters generally cause the op-
timizer to need many optimization iterations (±1000 for N = 10) to find the optimal parameters. It
would therefore be a good effort to find some pure quantum applications for benchmarking that can
be used as we leave the NISQ-era and the QPack benchmark can remain relevant.

This work has presented results for a small set of quantum computers from Rigetti and IBMQ quan-
tum, but there are many more quantum computers that can be benchmarked. For instance, IonQ [139],
Rigetti [136], IBMQ [50], Honeywell [145], and Quantum Inspire [146] offer a multitude of quantum
computers. Evaluating all of these backends should give an insightful comparison between quantum
computers of different vendors and could showwhat the current state of quantum technology is at this
time.

https://gitlab.com/libket/qpack/-/tree/stable

Bibliography
[1] D. Wineland, J. Bergquist, J. Bollinger, and W. Itano, “Quantum effects in measurements on

trapped ions,” Physica Scripta, 1995-01-01 1995.
[2] D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik,

vol. 48, p. 771–783, Sep 2000. http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-
PROP771>3.0.CO;2-E.

[3] I. L. Chuang, N. Gershenfeld, and M. Kubinec, “Experimental implementation
of fast quantum searching,” Phys. Rev. Lett., vol. 80, pp. 3408–3411, Apr 1998.
https://link.aps.org/doi/10.1103/PhysRevLett.80.3408.

[4] W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J. Tiggelman,
R. N. Schouten, M. Markham, D. J. Twitchen, and R. Hanson, “Unconditional quantum telepor-
tation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014.
https://www.science.org/doi/abs/10.1126/science.1253512.

[5] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018.
https://doi.org/10.22331/q-2018-08-06-79.

[6] F. Arute, K. Arya, Babbush, and R. et al, “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, p. 505–510, 2019.

[7] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta, “On “quantum supremacy”,” Oct 2019.
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/.

[8] J. Kelley, “A preview of bristlecone, google’s new quantum processor,” Mar 2018.
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html.

[9] Rigetti Computing, “Aspen-m-1 quantum processor,” 2020. https://qcs.rigetti.com/qpus.
[10] H. Collins, “Ibm unveils breakthrough 127-qubit quantum processor,” Nov 2021.

https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-
Processor.

[11] D-Wave Systems Inc., “The advantage quantum computer,” 2022.
https://www.dwavesys.com/solutions-and-products/systems/.

[12] Challenge Institute for Quantum Information, “Scaling quantum technologies.”
https://ciqc.berkeley.edu/scaling-quantum-technologies.

[13] R. Blume-Kohout and K. C. Young, “A volumetric framework for quantum computer bench-
marks,” Quantum, vol. 4, p. 362, Nov 2020. http://dx.doi.org/10.22331/q-2020-11-15-362.

[14] S. Martiel, T. Ayral, and C. Allouche, “Benchmarking quantum coprocessors in an application-
centric, hardware-agnostic, and scalable way,” IEEE Transactions on Quantum Engineering, vol. 2,
p. 1–11, 2021. http://dx.doi.org/10.1109/TQE.2021.3090207.

[15] T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise, C. H. Baldwin, K. Mayer, and
T. Proctor, “Application-oriented performance benchmarks for quantum computing,” 2021.

[16] IonQ, Inc, “Algorithmic qubits: A better single-number metric,” Feb 2022.
https://ionq.com/posts/february-23-2022-algorithmic-qubits.

[17] P.-L. Dallaire-Demers, M. Stechly, J. F. Gonthier, N. T. Bashige, J. Romero, and Y. Cao, “An appli-
cation benchmark for fermionic quantum simulations,” 2020.

[18] A. Cornelissen, J. Bausch, and A. Gilyén, “Scalable benchmarks for gate-based quantum comput-
ers,” 2021. https://arxiv.org/abs/2104.10698.

[19] T. Tomesh, P. Gokhale, V. Omole, G. S. Ravi, K. N. Smith, J. Viszlai, X.-C. Wu, N. Hardavellas,
M. R. Martonosi, and F. T. Chong, “Supermarq: A scalable quantum benchmark suite,” 2022.
https://arxiv.org/abs/2202.11045.

[20] K. Mesman, QPack: QAOA as scalable application-level quantum benchmark. PhD thesis,
Delft University of Technology, 2021. http://resolver.tudelft.nl/uuid:cc8d7440-928d-4518-9a91-
14f8770b31e9.

73

Bibliography 74

[21] K. Mesman, H. Donkers, Z. Al-Ars, and M. Möller, “Qpack: Quantum approxi-
mate optimization algorithms as universal benchmark for quantum computers,” 2021.
https://arxiv.org/abs/2103.17193.

[22] M. Möller and M. Schalkers, “Libket: A cross-platform programming framework for quantum-
accelerated scientific computing,” in Computational Science – ICCS 2020 (V. V. Krzhizhanovskaya,
G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and J. Teixeira, eds.), (Cham),
pp. 451–464, Springer International Publishing, 2020.

[23] M. Möller, “Libket,” 2021. https://libket.readthedocs.io/en/latest/.
[24] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” 2014.
[25] A. Peruzzo, J.Mcclean, P. Shadbolt,M.H. Yung, X. Zhou, P. Love, A.Aspuru-Guzik, and J.O’Brien,

“A variational eigenvalue solver on a quantum processor,” Nature communications, vol. 5, 04 2013.
[26] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition: A Quantitative Approach.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 6th ed., 2017.
[27] J. von Kistowski, J. Arnold, K. Huppler, K.-D. Lange, J. Henning, and P. Cao, “How to build a

benchmark,” in ICPE 2015 - Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering, 02 2015.

[28] W. Dai and D. Berleant, “Benchmarking contemporary deep learning hardware and frameworks:
A survey of qualitative metrics,” 2019 IEEE First International Conference on Cognitive Machine In-
telligence (CogMI), Dec 2019. http://dx.doi.org/10.1109/CogMI48466.2019.00029.

[29] R. Weicker, “An overview of common benchmarks,” Computer, vol. 23, no. 12, pp. 65–75, 1990.
[30] J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark: past, present and future,” Con-

currency and Computation: Practice and Experience, vol. 15, pp. 803–820, 08 2003.
[31] J. Dongarra, Report on the Sunway TaihuLight System. University of Tennessee, 2016.
[32] J. Dongarra and T. Haigh, “Oral history interview,” Apr 2005.

http://history.siam.org/oralhistories/dongarra.htm.
[33] “Standard performance evaluation corporation,” Oct 2021. http://www.spec.org/.
[34] BAPCo, “Business applications performance corporation,” Oct 2021. https://bapco.com/.
[35] BAPCo, “Sysmark25 white paper,” Jul 2020. https://bapco.com/products/sysmark-

25/attachment/sysmark25whitepaper/.
[36] EEMBC, “Embedded microprocessor benchmark consortium.” https://www.eembc.org/.
[37] S. Gal-on and M. Levy, “Exploring coremark™ – a benchmark maximizing simplicity and ef-

ficacy,” whitepaper, EEMBC, May 2012. https://www.eembc.org/techlit/articles/coremark-
whitepaper.pdf.

[38] D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik,
vol. 48, p. 771–783, Sep 2000. http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-
PROP771>3.0.CO;2-E.

[39] M. L. Dahlhauser, Characterization and Benchmarking of Quantum Computers. PhD thesis, University
of Tennessee, 2021.

[40] P. Bardroff, C. Leichtle, G. Schrade, and W. Schleich, “Quantum state preparation and measure-
ment,” in Conference Proceedings LEOS’96 9th Annual Meeting IEEE Lasers and Electro-Optics Society,
vol. 2, pp. 347–348 vol.2, 1996.

[41] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R.Ozeri, S. Seidelin,
and D. J. Wineland, “Randomized benchmarking of quantum gates,” Physical Review A, vol. 77,
jan 2008. https://doi.org/10.1103%2Fphysreva.77.012307.

[42] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout, “Gate set
tomography,” Quantum, vol. 5, p. 557, oct 2021. https://doi.org/10.22331%2Fq-2021-10-05-557.

[43] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Validating quan-
tum computers using randomized model circuits,” Physical Review A, vol. 100, Sep 2019.
http://dx.doi.org/10.1103/PhysRevA.100.032328.

Bibliography 75

[44] E. Magesan, J. M. Gambetta, and J. Emerson, “Scalable and robust randomized
benchmarking of quantum processes,” Physical Review Letters, vol. 106, may 2011.
https://doi.org/10.1103%2Fphysrevlett.106.180504.

[45] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Mar-
tinis, and H. Neven, “Characterizing quantum supremacy in near-term devices,” Nature Physics,
vol. 14, pp. 595–600, apr 2018. https://doi.org/10.1038%2Fs41567-018-0124-x.

[46] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC
’96, (New York, NY, USA), p. 212–219, Association for Computing Machinery, 1996.
https://doi.org/10.1145/237814.237866.

[47] H. Bethe, “Zur theorie der metalle,” Zeitschrift für Physik, vol. 71, pp. 205–226, Mar 1931.
https://doi.org/10.1007/BF01341708.

[48] P. Erdös and A. Rényi, “On random graphs i,” Publicationes Mathematicae Debrecen, vol. 6, pp. 290–
297, 1959.

[49] IBM Quantum Services, “Ibm quantum simulators,” 2022. https://quantum-
computing.ibm.com/services/docs/services/manage/simulator/#qasm.

[50] IBM Quantum Services, “Ibm quantum services,” 2022. https://quantum-
computing.ibm.com/services?services=systems.

[51] A. Wack, H. Paik, A. Javadi-Abhari, P. Jurcevic, I. Faro, J. M. Gambetta, and B. R. Johnson, “Qual-
ity, speed, and scale: three key attributes to measure the performance of near-term quantum
computers,” 2021. https://arxiv.org/abs/2110.14108.

[52] Qiskit Development Team, “Qiskit runtime overview,” May 2022.
https://qiskit.org/documentation/partners/qiskit_ibm_runtime/index.html.

[53] Super.tech Labs, “Superstaq,” Sep 2021. https://www.super.tech/about-superstaq/.
[54] T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise, C. Baldwin, K. Mayer, and

T. Proctor, “Application-Oriented Performance Benchmarks for Quantum Computing,” 10 2021.
https://arxiv.org/abs/2110.03137.

[55] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, and T. S. Humble, “Xacc: A system-
level software infrastructure for heterogeneous quantum-classical computing,” 2019.

[56] A. J. McCaskey, “Xacc: Quantum framework,” 2019. https://xacc.readthedocs.io/en/latest/.
[57] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,” 2020.
[58] super.tech, “Super.tech announces quantum software platform superstaq,” Super.tech, Aug 2021.

https://www.super.tech/super-tech-announces-quantum-software-platform-superstaq/.
[59] A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” Electron. Colloquium

Comput. Complex., vol. 3, 1996.
[60] P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings

35th Annual Symposium on Foundations of Computer Science, pp. 124–134, 1994.
[61] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai,

X. Yuan, L. Cincio, and et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3,
p. 625–644, Aug 2021. http://dx.doi.org/10.1038/s42254-021-00348-9.

[62] N. Hatano and M. Suzuki, “Finding exponential product formulas of higher orders,” 2005.
[63] A. J., A. Adedoyin, J. Ambrosiano, P. Anisimov, A. Bärtschi, W. Casper, G. Chennupati, C. Cof-

frin, H. Djidjev, D. Gunter, S. Karra, N. Lemons, S. Lin, A. Malyzhenkov, D. Mascarenas,
S. Mniszewski, B. Nadiga, D. O’Malley, D. Oyen, S. Pakin, L. Prasad, R. Roberts, P. Romero,
N. Santhi, N. Sinitsyn, P. J. Swart, J. G. Wendelberger, B. Yoon, R. Zamora, W. Zhu, S. Eidenbenz,
P. J. Coles, M. Vuffray, and A. Y. Lokhov, “Quantum algorithm implementations for beginners,”
2018. https://arxiv.org/abs/1804.03719.

[64] A. Anand, P. Schleich, S. Alperin-Lea, P. W. K. Jensen, S. Sim, M. Dí az-Tinoco, J. S. Kottmann,
M. Degroote, A. F. Izmaylov, and A. Aspuru-Guzik, “A quantum computing view on uni-
tary coupled cluster theory,” Chemical Society Reviews, vol. 51, no. 5, pp. 1659–1684, 2022.
https://doi.org/10.1039%2Fd1cs00932j.

Bibliography 76

[65] Qiskit Development Team, “Efficientsu2,” Feb 2022. https://qiskit.org/documentation/stubs/
qiskit.circuit.library.EfficientSU2.html.

[66] S. Hadfield, Z. Wang, B. O’Gorman, E. Rieffel, D. Venturelli, and R. Biswas, “From the quan-
tum approximate optimization algorithm to a quantum alternating operator ansatz,” Algorithms,
vol. 12, p. 34, Feb 2019. http://dx.doi.org/10.3390/a12020034.

[67] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, “Variational quantum
linear solver,” 2020.

[68] C.-C. Chen, S.-Y. Shiau, M.-F. Wu, and Y.-R. Wu, “Hybrid classical-quantum linear solver using
noisy intermediate-scale quantum machines,” Scientific Reports, vol. 9, nov 2019.

[69] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for lin-
ear systems of equations,” Phys. Rev. Lett., vol. 103, p. 150502, Oct 2009.
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502.

[70] A. Luongo, “Quantum algorithms for data analysis,” Apr 2022.
https://quantumalgorithms.org/chapter-intro.html#hadamard-test.

[71] E. Farhi and H. Neven, “Classification with quantum neural networks on near term processors,”
2018. https://arxiv.org/abs/1802.06002.

[72] M. Schuld, A. Bocharov, K.M. Svore, andN.Wiebe, “Circuit-centric quantum classifiers,” Physical
Review A, vol. 101, mar 2020. https://doi.org/10.1103%2Fphysreva.101.032308.

[73] V. Havlíček, A. D. Córcoles, K. Temme, A.W.Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta,
“Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, pp. 209–212, mar
2019. https://doi.org/10.1038%2Fs41586-019-0980-2.

[74] L. Deng, “The mnist database of handwritten digit images for machine learning research,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[75] R. A. FISHER, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics,
vol. 7, no. 2, pp. 179–188, 1936.

[76] A. M. Horst, A. P. Hill, and K. B. Gorman, “palmerpenguins: Palmer archipelago (antarctica)
penguin data,” 2020. R package version 0.1.0.

[77] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd,
“Continuous-variable quantum neural networks,” Physical Review Research, vol. 1, oct 2019.
https://doi.org/10.1103%2Fphysrevresearch.1.033063.

[78] G. Verdon, J. Marks, S. Nanda, S. Leichenauer, and J. Hidary, “Quantum
hamiltonian-based models and the variational quantum thermalizer algorithm,” 2019.
https://arxiv.org/abs/1910.02071.

[79] E. R. Anschuetz, J. P. Olson, A. Aspuru-Guzik, and Y. Cao, “Variational quantum factoring,” 2018.
https://arxiv.org/abs/1808.08927.

[80] A. Matsuo, Y. Suzuki, and S. Yamashita, “Problem-specific parameterized quantum circuits of
the vqe algorithm for optimization problems,” 2020.

[81] M. Lavrov, “Lecture 35: The traveling salesman problem,” Math 482: Linear Programming, 05 2020.
https://faculty.math.illinois.edu/ mlavrov/docs/482-spring-2020/lecture35.pdf.

[82] S. Narain, “Lecture notes cs:5350 minimum vertex cover: 2-approximation and lp-based views,”
10 2019. http://homepage.cs.uiowa.edu/ sriram/5350/fall19/notes/10.31/10.31.pdf.

[83] C. Commander, “Maximum cut problem, max-cut,” 01 2008.
[84] P. Sung, “Maximum satisfiability,” 03 2006. https://math.mit.edu/g�oemans/18434S06/max-sat-

phil.pdf.
[85] J. Hartmanis, “Computers and intractability: A guide to the theory of np-completeness (michael

r. garey and david s. johnson),” SIAM Review, vol. 24, no. 1, pp. 90–91, 1982.
[86] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm applied

to a bounded occurrence constraint problem,” 2014.
[87] P. Vigoda, “Lecture notes on a parallel algorithm for generating a maximal independent set,” 03

2010. https://faculty.cc.gatech.edu/ vigoda/7530-Spring10/MIS.pdf.

Bibliography 77

[88] P. Pardalos and J. Xue, “The maximum clique problem,” Journal of Global Optimization, vol. 4,
pp. 301–328, 04 1994.

[89] R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations,
vol. 40, pp. 85–103, 01 1972.

[90] T. Stern, “Seminar in theoretical computer science,” 09 2006.
https://math.mit.edu/ goemans/18434S06/setcover-tamara.pdf.

[91] R. Sotirov, O. Kuryatnikova, and J. Vera, “The maximum k-colorable subgraph problem and re-
lated problems,” 2020.

[92] R. Krauthgamer and M.-Y. Kao, Minimum Bisection, pp. 1294–1297. New York, NY: Springer New
York, 2016.

[93] F. Della Croce and V. Paschos, “On the max k-vertex cover problem,” 03 2011.
[94] R. Sotirov, O. Kuryatnikova, and J. Vera, “The maximum k-colorable subgraph problem and re-

lated problems,” 2020.
[95] A. Mittal, P. Jain, S. Mathur, and P. Bhatt, “Graph coloring with minimum colors: An easy ap-

proach,” Proceedings - 2011 International Conference on Communication Systems and Network Technolo-
gies, CSNT 2011, 06 2011.

[96] E. L. Lawler, J. K. Lenstra, A. H. Rinnooy Kan, and D. B. Shmoys, “Chapter 9 sequencing and
scheduling: Algorithms and complexity,” in Logistics of Production and Inventory, vol. 4 of Hand-
books in Operations Research and Management Science, pp. 445–522, Elsevier, 1993.

[97] T. Gobel, On the physics of Trotterization. PhD thesis, Faculty of Science, 2022.
[98] L. Bittel and M. Kliesch, “Training variational quantum algorithms is np-hard,” Physical Review

Letters, vol. 127, Sep 2021. http://dx.doi.org/10.1103/PhysRevLett.127.120502.
[99] J. Brownlee, “Local optimization versus global optimization,” Oct 2021.

[100] Y. Xiang, S. Gubian, B. Suomela, and J. Hoeng, “Generalized simulated annealing for global opti-
mization: The gensa package,” The R Journal Volume 5(1):13-29, June 2013, vol. 5, 06 2013.

[101] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science,
vol. 220, no. 4598, pp. 671–680, 1983.

[102] H. Szu and R. Hartley, “Fast simulated annealing,” Physics Letters A, vol. 122, no. 3, pp. 157–162,
1987.

[103] J. Brownlee, “Dual annealing optimization with python,” Oct 2021.
https://machinelearningmastery.com/dual-annealing-optimization-with-python/.

[104] The SciPy community, “scipy.optimize.dual_annealing,” 2022.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html.

[105] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The computer journal,
vol. 7, no. 4, pp. 308–313, 1965.

[106] S. Joglekar, “Nelder-meadoptimization,” Jan 2016. https://codesachin.wordpress.com/2016/01/
16/nelder-mead-optimization/.

[107] D. F. Shanno, “Conditioning of quasi-newton methods for function minimization,” Mathematics
of Computation, vol. 24, pp. 647–656, 1970.

[108] J. Brownlee, “A gentle introduction to the bfgs optimization algorithm,” Oct 2021.
https://machinelearningmastery.com/bfgs-optimization-in-python/.

[109] M. Powell, “A view of algorithms for optimization without derivatives,” Mathematics TODAY,
vol. 43, 01 2007.

[110] S. G. Johnson, “The nlopt nonlinear-optimization package,” Dec 2021.
http://github.com/stevengj/nlopt.

[111] M. Powell, “The bobyqa algorithm for bound constrained optimizationwithout derivatives,” Tech-
nical Report, Department of Applied Mathematics and Theoretical Physics, 01 2009.

[112] S. C. Endres, C. Sandrock, and W. W. Focke, “A simplicial homology algorithm for lipschitz op-
timisation,” Journal of Global Optimization, vol. 72, pp. 181–217, Oct 2018.

Bibliography 78

[113] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. May-
orov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore,
J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A.M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–
272, 2020.

[114] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “Quest and high performance simulation of quan-
tum computers,” Scientific Reports, vol. 9, no. 1, 2019.

[115] P. O’Malley, R. Babbush, I. Kivlichan, J. Romero, J. McClean, R. Barends, J. Kelly, P. Roushan,
A. Tranter, N. Ding, and et al., “Scalable quantum simulation of molecular energies,” Physical
Review X, vol. 6, Jul 2016. http://dx.doi.org/10.1103/PhysRevX.6.031007.

[116] Bradben, “Single- and multi-qubit pauli measurement operations,” Jul 2021.
https://docs.microsoft.com/en-us/azure/quantum/concepts-pauli-measurements.

[117] K. Zhang and Z. Song, “Quantum phase transition in a quantum ising
chain at nonzero temperatures,” Physical Review Letters, vol. 126, mar 2021.
https://doi.org/10.1103%2Fphysrevlett.126.116401.

[118] M. Pokharel, “Computational complexity theory(p,np,np-complete and np-hard problems),” Re-
searchGate, 06 2020.

[119] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum approximate optimization
algorithm: Performance, mechanism, and implementation on near-term devices,” Physical Review
X, vol. 10, jun 2020. https://doi.org/10.1103%2Fphysrevx.10.021067.

[120] Qiskit Development Team, “Aer simulator,” Dec 2021. https://qiskit.org/documentation/stubs/
qiskit.providers.aer.AerSimulator.html.

[121] N. J. Guerrero, Solving Combinatorial Optimization Problems using the Quantum Approxima-
tion Optimization Algorithm. PhD thesis, Air Force Institute of Technology, Mar 2020.
https://scholar.afit.edu/etd/3263.

[122] J. Ceroni, “Funwith graphs and qaoa,”Mar 2020. https://lucaman99.github.io/new_blog/2020/
mar16.html.

[123] A. Bärtschi and S. Eidenbenz, “Deterministic preparation of dicke states,” Lecture Notes in Com-
puter Science, p. 126–139, 2019. http://dx.doi.org/10.1007/978-3-030-25027-0_9.

[124] C. S. Mukherjee, S. Maitra, V. Gaurav, and D. Roy, “On actual preparation of dicke state on a
quantum computer,” 2020.

[125] K. Mesman, F. Battistel, M. Tiggelman, J. Gloudemans, J. van Oven, and C. C. Bultink, “Bench-
marking and profiling quantum control stacks,” Under review, 05 2022.

[126] Cirq Development Team, “Simulation,” Apr 2022. https://quantumai.google/cirq/simulation.
[127] Rigetti Computing, “The quantum virtual machine (qvm),” 2021. https://pyquil-

docs.rigetti.com/en/latest/qvm.html.
[128] Advanced Micro Devices, Inc, “Amd ryzen™ 5 3600,” AMD.com, 2022.

https://www.amd.com/en/product/8456.
[129] M. Treinish and et. al., “Qiskit: An open-source framework for quantum computing,” 2021.
[130] Cirq Developers, “Cirq,” Aug. 2021. https://doi.org/10.5281/zenodo.5182845.
[131] QuantumAI teamand collaborators, “qsim,” Sept. 2020. https://doi.org/10.5281/zenodo.4023103.
[132] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R. Biswas, and S. Mandrà, “A flexible

high-performance simulator for verifying and benchmarking quantum circuits implemented on
real hardware,” npj Quantum Information, vol. 5, oct 2019. https://doi.org/10.1038%2Fs41534-019-
0196-1.

[133] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum instruction set architecture,” 2016.
[134] Rigetti Computing, “Pyquil: Quantum programming in python.” https://github.com/

rigetti/pyquil, 2022.

https://github.com/rigetti/pyquil
https://github.com/rigetti/pyquil

Bibliography 79

[135] Rigetti Computing, “Welcome to the docs for pyquil!,” 2021. https://pyquil-
docs.rigetti.com/en/latest/.

[136] P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan, M. P. da Silva, and R. S. Smith, “A quantum-
classical cloud platform optimized for variational hybrid algorithms,” Quantum Science and Tech-
nology, vol. 5, p. 024003, apr 2020. https://doi.org/10.1088%2F2058-9565%2Fab7559.

[137] T. Jones, B. Koczor, R. Meister, and S. Benjamin, “Quantum exact simulation toolkit,” Jul 2019.
https://quest.qtechtheory.org/.

[138] IonQ, Inc, “Documentation,” 2022. https://ionq.com/docs.
[139] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N. C. Pisenti,

M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-Campos, S. Allen, J. Apisdorf,
P. Solomon, M. Williams, A. M. Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin, M. Keesan,
C. Monroe, and J. Kim, “Benchmarking an 11-qubit quantum computer,” Nature Communications,
vol. 10, p. 5464, Nov 2019. https://doi.org/10.1038/s41467-019-13534-2.

[140] S. L. Bravo, “Ionq provider - azure quantum,” 2022. https://docs.microsoft.com/en-
us/azure/quantum/provider-ionq.

[141] IBM Quantum, “Ibm quantum,” 2021. https://quantum-computing.ibm.com/.
[142] B. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters, vol. 1, no. 7,

pp. 251–253, 1962.
[143] P. W. Anderson and J. M. Rowell, “Probable observation of the josephson superconducting tun-

neling effect,” Phys. Rev. Lett., vol. 10, pp. 230–232, Mar 1963.
[144] X. Gao and L. Duan, “Efficient classical simulation of noisy quantum computation,” 2018.
[145] Honeywell International Inc., “Honeywell system model h1,” 2022.

https://www.honeywell.com/us/en/company/quantum/quantum-computer.
[146] Quantum Inspire, “Available quantum processors,” 2022.
[147] W. Dean, “Computational Complexity Theory,” in The Stanford Encyclopedia of Philosophy (E. N.

Zalta, ed.), Metaphysics Research Lab, Stanford University, Fall 2021 ed., 2021.
[148] S. Huang, “What is big o notation explained: Space and time complexity,” Jun 2021.

https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-
1674cfa8a23c/.

[149] E. Roswell, “Know thy complexities!.” https://www.bigocheatsheet.com/.
[150] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by adiabatic evolu-

tion,” arXiv: Quantum Physics, 02 2000.
[151] M. Born and V. Fock, “Beweis des Adiabatensatzes,” Zeitschrift fur Physik, vol. 51, pp. 165–180,

Mar. 1928.
[152] E. Crosson, E. Farhi, C. Y.-Y. Lin, H.-H. Lin, and P. Shor, “Different strategies for optimization

using the quantum adiabatic algorithm,” 2014.
[153] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge

University Press, 2000.

A
Complexity theory overview

Computational complexity theory is a field of computer science that classifies and compares the diffi-
culty of solving problems [147]. A problem X is considered more complex or harder than problem Y
if Y possesses a more efficient decision algorithm than the most efficient algorithm to solve X. A more
decisive definition to compare these problems can be made with computational conventions, such as
the Big-O notation.

Big-O Notation
The Big-O notation is a measure of how quickly an algorithm solves a problem and gives an upper
bound to the input [148, 118]. The following Big-O values can be found commonly in the literature:

• O(1): Constant-time - Time to solve is independent on problem size
• O(log(n)) : Logarithmic-time - Good complexity, less complex than O(

√
(n))

• O(n): Linear-time - Time to solve scales linearly with problem size
• O(n2): Quadratic-time - Time to solve scales quadratic with problem size
• O(nk): Polynomial-time - Same idea, O(n4) is less complex than O(n5)

• O(kn): Exponential-time - More complex than Polynomial time
• O(n!): Factorial-time - Even more complex than exponential time

In Figure A.1, a comparison of different complexity classes can be found, as indexed by Roswell [149].

Figure A.1: Big-O notation efficiency indexing [149]

80

81

Problem classification
Computable problems (unlike their suggested counterpart non-computable problems) have an existing
algorithm that can solve that problem, e.g., there exists a Turing machine that can compute the answer
to that problem [118]. From easy to hardest, they are classified into separate classes:

P: Polynomial problems
The set of problems that can be solved in polynomial time, i.e., all problems have:

T (n) = O(C ∗ nk)

where constants C, k > 0. Examples of P problems are mathematical operations, sorting problems,
shortest path problems and table lookups.

NP: Non-deterministic Polynomial problems
This class of problems cannot be solved in polynomial time, but can be verified in polynomial time.
These algorithms have an expected exponential or factorial time complexity, defined as:

T (n) = O(C1 ∗KC2∗n)

where constants C1, C2, k > 0. T (n) is of exponential time if C1 = C2 = 1.

NP-Complete:
This is a subset of NP, with the additional property that they are complete. This means that there ex-
ists a polynomial-time algorithm that can reduce a certain problem into another NP-complete problem.
Examples of these problems are the traveling salesman, the knapsack, and the graph coloring problem.

NP-Hard:
The hardest class of problems to solve. They cannot be solved in polynomial time and cannot be veri-
fied in polynomial time. However, they can be reduced to any other NP problem.

The relation of these problem classes can be found in Figure A.2, assuming P ̸= NP.

Figure A.2: Complexity classes [118]

B
Various quantum algorithms

These sets of algorithms consist of pure quantum algorithms, which, in the NISQ-era, may not be as
effective as VQAs for larger problem sets, but are interesting to list as benchmark opportunities as well.
Some of the more well-known quantum algorithms are briefly described in this subsection.

Quantum Adiabatic Algorithm
In 2000, theQuantumAdiabaticAlgorithm (QAA)was proposed by Fahri et al. [150], using the adiabatic
theorem [151] to find the eigenstate of a Hamiltonian that encodes the solution for a given problem. The
algorithm starts with a simple HamiltonianHB , of which the ground state is known. This Hamiltonian
is then slowly evolved over time to the problem encoded HamiltonianHP according to:

H(t) = (1− t/T)HB + (t/T)HP (B.1)

If one then starts to evolve the system at t = 0, i.e. H(0) = HB , and stops at t = T , then the ground
state |ψ(T)⟩ will be very close to the ground state of HP . One should be careful to pick a long enough
time T as a too fast evolution will cause the ground state to cross with higher level energy states and
the resulting eigenstate will no longer be the ground state.

Strategies for more efficient use of QAA are possible, such as decreasing the Hamiltonian evolution
time, using initial excited states instead of ground states, and adding a random local Hamiltonian as
an additional step [152]. These strategies have the potential to increase the success probability of QAA,
but have only been tested with a small number of qubits in simulations.

Quantum Phase Estimation
The Quantum Phase Estimation introduced by Kitaev [59] is a key algorithm that finds the phase of
an eigenvalue of a unitary operator U . This unitary has an eigenvector |u⟩, with eigenvalue e2πiϕ. The
estimation is performed by using so-called black boxes (oracles) capable of preparing state |u⟩ and
performing controlledU2j operations [153]. By applying these a qubit register with t qubits as a control
to these unitaries, the value of ϕ can be estimated. A higher number t will give a more accurate result.
The QPE circuit can be found in figure B.1.

|j⟩
|0⟩ H QFT †

|u⟩ U j |u⟩

Figure B.1: Quantum Phase Estimation Circuit

Shor
A famous algorithm that uses QPE as a subroutine is the quantum factor finding algorithm, better
known as Shor’s algorithm, who first proposed it in 1994 [60]. Although, many others have improved
the algorithm since [153]. The algorithm promises speedup over its classical counterpart to find the
factors of an integer N , by finding the power r using an oracle function for an input value x. If

82

83

xr/2 ̸= −1(mod N) and gcd(xr/2 ± 1, N) are non-trivial factors, then the factors of N can be found.
This problem on a quantum computer takes O(b3) time, compared to the classic O(bk) time, where no
algorithm is known to solve these complex problems in polynomial time.

Grover
The Grover search algorithm is used to find a certain element in an array of items [46]. The procedure
classically takes O(N) operations, but the quantum search algorithm requires only O(

√
N) [46, 153],

which is a substantial speedup, certainly for large N . The algorithm consists of multiple Grover itera-
tions. A Grover iteration can be broken down into four steps:

1. Apply the oracle function, which ’tags’ the correct element in the list by shifting its phase.
2. Apply a Hadamard gate to each of the n input qubits
3. Perform a coniditonal phase shift: |0⟩ → |0⟩ and |x⟩ → − |x⟩
4. Apply a Hadamard gate again to each of the n input qubits

The number of these Grover operations scales with O(
√
N). The final output is then measured, where

the desired element (bit-string) has the highest probability amplitude.

C
Overview of benchmarked quantum

backends
Table C.1: Overview of collected data sets for each quantum computer under test for each QPack problem

MCP DSP MIS TSP RH IC
Problem size Start End Start End Start End Start End Start End Start End

local
simulators

Qiskit Aer simulator 2 15 2 10 3 12 3 4 1 10 1 10
Cirq simulator 2 15 2 10 3 12 3 4 1 10 1 10
QuEST simulator 2 15 2 10 3 12 3 4 1 10 1 10
Rigetti QVM 2 15 2 5 3 8 3 3 1 10 1 10

remote
simulators

IBMQ QASM simulator 2 10 2 10 3 10 3 4 1 10 1 10
IonQ simulator 2 10 2 10 3 10 3 4 1 10 1 10
Rigetti QVM 2 13 2 5 3 7 3 3 1 10 1 10

remote
hardware

IBMQ Manila (5-qubits) 2 5 - - - - - - 1 2 - -
IBMQ Quito (5-qubits) 2 5 - - - - - - 1 5 1 4
IBMQ Nairobi (7-qubits) 2 7 - - - - - - 1 7 1 7
IBMQ Perth (7-qubits) 2 5 - - - - - - 1 5 1 5
IBMQ Jakarta (7-qubits) 2 5 - - - - - - 1 5 1 5
IBMQ Lagos (7-qubits) 2 5 - - - - - - 1 5 1 5
Rigetti Aspen (80-qubits) - - - - - - - - 1 4 - -

84

D
Collected benchmark data

D.1. Local quantum simulators
The local simulators tested in this work are the Qiskit Aer [120], Cirq [126], Rigetti QVM [127] and
QuEST [114] simulators. Data was collected using a Windows 10 desktop computer, utilizing an AMD
Ryzen 5 3600 6-core CPU [128] with 16 GB RAM in an Ubuntu Windows Subsystem for Linux environ-
ment.

2 4 6 8 10 12 14
Problem size

101

103

105

Ru
nt

im
e

[m
s]

Average QJob
 duration

2 4 6 8 10 12 14
Problem size

101

103

105

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

2 4 6 8 10 12 14
Problem size

102

104
Ru

nt
im

e
[m

s]

Average optimizer
 duration

2 4 6 8 10 12 14
Problem size

20

10

0

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

2 4 6 8 10 12 14
Problem size

0.00

0.05

0.10

Re
la

tiv
e

Er
ro

r

Error

2 4 6 8 10 12 14
Problem size

80

100

Ite
ra

tio
ns

Optimizer iterations

QAOA: MaxCut problem

Qiskit Aer Simulator QuEST Simulator Rigetti 16Q L QVM Cirq Simulator

Figure D.1: Result of the MCP benchmark on local simulators

85

D.1. Local quantum simulators 86

2 3 4 5 6 7 8 9 10
Problem size

101

103

105
Ru

nt
im

e
[m

s]

Average QJob
 duration

2 3 4 5 6 7 8 9 10
Problem size

101

103

105

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

2 3 4 5 6 7 8 9 10
Problem size

102

104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

2 3 4 5 6 7 8 9 10
Problem size

6

4

2

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

2 3 4 5 6 7 8 9 10
Problem size

0.1

0.0

0.1

0.2

Re
la

tiv
e

Er
ro

r

Error

2 3 4 5 6 7 8 9 10
Problem size

100

150

Ite
ra

tio
ns

Optimizer iterations

QAOA: Dominating set problem

Qiskit Aer Simulator QuEST Simulator Rigetti 16Q L QVM Cirq Simulator

Figure D.2: Result of the DSP benchmark on local simulators

3 4 5 6 7 8 9 101112
Problem size

101

103

105

Ru
nt

im
e

[m
s]

Average QJob
 duration

3 4 5 6 7 8 9 101112
Problem size

101

103

105

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

3 4 5 6 7 8 9 101112
Problem size

102

104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

3 4 5 6 7 8 9 101112
Problem size

3

2

1

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

3 4 5 6 7 8 9 101112
Problem size

0.00

0.01

0.02

0.03

Re
la

tiv
e

Er
ro

r

Error

3 4 5 6 7 8 9 101112
Problem size

80

100

120

Ite
ra

tio
ns

Optimizer iterations

QAOA: Maximal independent set problem

Qiskit Aer Simulator QuEST Simulator Rigetti 16Q L QVM Cirq Simulator

Figure D.3: Result of the MIS benchmark on local simulators

D.1. Local quantum simulators 87

3 4
Problem size

102

104

Ru
nt

im
e

[m
s]

Average QJob
 duration

3 4
Problem size

102

104

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

3 4
Problem size

102

103

104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

3 4
Problem size

10.0

7.5

5.0

Ex
pe

ct
at

io
n

va
lu

e

Output state

baseline

3 4
Problem size

0.50

0.25

0.00

0.25

Re
la

tiv
e

Er
ro

r

Error

3 4
Problem size

90

100

110

120

Ite
ra

tio
ns

Optimizer iterations

QAOA: Traveling salesperson problem

Qiskit Aer Simulator QuEST Simulator Rigetti 16Q L QVM Cirq Simulator

Figure D.4: Result of the TSP benchmark on local simulators

1 2 3 4 5 6 7 8 9 10
Problem size

100

102

Ru
nt

im
e

[m
s]

Average QJob
 duration

1 2 3 4 5 6 7 8 9 10
Problem size

100

102

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

1 2 3 4 5 6 7 8 9 10
Problem size

101

102

103

Ru
nt

im
e

[m
s]

Average optimizer
 duration

1 2 3 4 5 6 7 8 9 10
Problem size

6

4

2

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

1 2 3 4 5 6 7 8 9 10
Problem size

0.000

0.005

0.010

Re
la

tiv
e

Er
ro

r

Error

1 2 3 4 5 6 7 8 9 10
Problem size

0

200

400

600

Ite
ra

tio
ns

Optimizer iterations

VQE: Random Hamiltonian

Qiskit Aer Simulator QuEST Simulator Rigetti 16Q L QVM Cirq Simulator

Figure D.5: Result of the RH benchmark on local simulators

D.2. Remote quantum simulators 88

1 2 3 4 5 6 7 8 9 10
Problem size

100

102

Ru
nt

im
e

[m
s]

Average QJob
 duration

1 2 3 4 5 6 7 8 9 10
Problem size

100

102

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

1 2 3 4 5 6 7 8 9 10
Problem size

102

104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

1 2 3 4 5 6 7 8 9 10
Problem size

10

5

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

1 2 3 4 5 6 7 8 9 10
Problem size

0.00

0.05

0.10

0.15

Re
la

tiv
e

Er
ro

r

Error

1 2 3 4 5 6 7 8 9 10
Problem size

0

500

1000

Ite
ra

tio
ns

Optimizer iterations

VQE: Ising chain

Qiskit Aer Simulator QuEST Simulator Rigetti 16Q L QVM Cirq Simulator

Figure D.6: Result of the IC benchmark on local simulators

D.2. Remote quantum simulators
Benchmark results for the IBMQ QASM simulator [49], IonQ simulator [138] and Rigetti QVM [127,
133].

2 4 6 8 10 12 14
Problem size

103

104

105

Ru
nt

im
e

[m
s]

Average QJob
 duration

2 4 6 8 10 12 14
Problem size

102

104

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

2 4 6 8 10 12 14
Problem size

103

104

105

Ru
nt

im
e

[m
s]

Average optimizer
 duration

2 4 6 8 10 12 14
Problem size

20

10

0

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

2 4 6 8 10 12 14
Problem size

0.00

0.05

0.10

Re
la

tiv
e

Er
ro

r

Error

2 4 6 8 10 12 14
Problem size

90

100

Ite
ra

tio
ns

Optimizer iterations

QAOA: MaxCut problem

Ionq Simulator IBMQ QASM Simulator Rigetti 16Q R QVM

Figure D.7: Result of the MCP benchmark on remote simulators

D.2. Remote quantum simulators 89

2 3 4 5 6 7 8 9 10
Problem size

104

105
Ru

nt
im

e
[m

s]

Average QJob
 duration

2 3 4 5 6 7 8 9 10
Problem size

102

104

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

2 3 4 5 6 7 8 9 10
Problem size

104

105

Ru
nt

im
e

[m
s]

Average optimizer
 duration

2 3 4 5 6 7 8 9 10
Problem size

6

4

2

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

2 3 4 5 6 7 8 9 10
Problem size

0.0

0.1

0.2

Re
la

tiv
e

Er
ro

r

Error

2 3 4 5 6 7 8 9 10
Problem size

80

90

100

Ite
ra

tio
ns

Optimizer iterations

QAOA: Dominating set problem

Ionq Simulator IBMQ QASM Simulator Rigetti 16Q R QVM

Figure D.8: Result of the DSP benchmark on remote simulators

3 4 5 6 7 8 9 101112
Problem size

104

105

Ru
nt

im
e

[m
s]

Average QJob
 duration

3 4 5 6 7 8 9 101112
Problem size

102

104

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

3 4 5 6 7 8 9 101112
Problem size

104

105

Ru
nt

im
e

[m
s]

Average optimizer
 duration

3 4 5 6 7 8 9 101112
Problem size

3

2

1

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

3 4 5 6 7 8 9 101112
Problem size

0.00

0.02

0.04

0.06

Re
la

tiv
e

Er
ro

r

Error

3 4 5 6 7 8 9 101112
Problem size

85

90

95

Ite
ra

tio
ns

Optimizer iterations

QAOA: Maximal independent set problem

Ionq Simulator IBMQ QASM Simulator Rigetti 16Q R QVM

Figure D.9: Result of the MIS benchmark on remote simulators

D.2. Remote quantum simulators 90

3 4
Problem size

104

2 × 104
Ru

nt
im

e
[m

s]

Average QJob
 duration

3 4
Problem size

102

103

104

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

3 4
Problem size

104

2 × 104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

3 4
Problem size

8

6

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

3 4
Problem size

0.50

0.25

0.00

Re
la

tiv
e

Er
ro

r

Error

3 4
Problem size

85.0

87.5

90.0

92.5

Ite
ra

tio
ns

Optimizer iterations

QAOA: Traveling salesperson problem

Ionq Simulator IBMQ QASM Simulator Rigetti 16Q R QVM

Figure D.10: Result of the TSP benchmark on remote simulators

1 2 3 4 5 6 7 8 9 10
Problem size

103

104

Ru
nt

im
e

[m
s]

Average QJob
 duration

1 2 3 4 5 6 7 8 9 10
Problem size

101

102

103

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

1 2 3 4 5 6 7 8 9 10
Problem size

104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

1 2 3 4 5 6 7 8 9 10
Problem size

6

4

2

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

1 2 3 4 5 6 7 8 9 10
Problem size

0.00

0.05

0.10

0.15

Re
la

tiv
e

Er
ro

r

Error

1 2 3 4 5 6 7 8 9 10
Problem size

0

100

200

Ite
ra

tio
ns

Optimizer iterations

VQE: Random Hamiltonian

Ionq Simulator IBMQ QASM Simulator Rigetti 16Q R QVM

Figure D.11: Result of the RH benchmark on remote simulators

D.3. Remote quantum hardware 91

1 2 3 4 5 6 7 8 9 10
Problem size

103

104
Ru

nt
im

e
[m

s]

Average QJob
 duration

1 2 3 4 5 6 7 8 9 10
Problem size

101

102

103

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

1 2 3 4 5 6 7 8 9 10
Problem size

104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

1 2 3 4 5 6 7 8 9 10
Problem size

10

5

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

1 2 3 4 5 6 7 8 9 10
Problem size

0.00

0.05

0.10
Re

la
tiv

e
Er

ro
r

Error

1 2 3 4 5 6 7 8 9 10
Problem size

250

500

750

Ite
ra

tio
ns

Optimizer iterations

VQE: Ising chain

Ionq Simulator IBMQ QASM Simulator Rigetti 16Q R QVM

Figure D.12: Result of the IC benchmark on remote simulators

D.3. Remote quantum hardware
This section lists the results of quantum hardware from the IBMQ family [141, 50] and Rigetti [9].

2 3 4 5 6 7
Problem size

2 × 104

3 × 104
4 × 104

6 × 104

Ru
nt

im
e

[m
s]

Average QJob
 duration

2 3 4 5 6 7
Problem size

4 × 103

5 × 103

6 × 103

7 × 103

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

2 3 4 5 6 7
Problem size

105

Ru
nt

im
e

[m
s]

Average optimizer
 duration

2 3 4 5 6 7
Problem size

10.0

7.5

5.0

2.5

Ex
pe

ct
at

io
n

va
lu

e

Output state

baseline

2 3 4 5 6 7
Problem size

0.2

0.4

Re
la

tiv
e

Er
ro

r

Error

2 3 4 5 6 7
Problem size

80

90

Ite
ra

tio
ns

Optimizer iterations

QAOA: MaxCut problem

IBMQ Nairobi
IBMQ Perth

IBMQ Lagos
IBMQ Jakarta

IBMQ Manila IBMQ Quito

Figure D.13: Result of the MCP benchmark on remote hardware

D.3. Remote quantum hardware 92

1 2 3 4 5 6 7
Problem size

104

105

106
Ru

nt
im

e
[m

s]

Average QJob
 duration

1 2 3 4 5 6 7
Problem size

2 × 103

3 × 103
4 × 103

6 × 103

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

1 2 3 4 5 6 7
Problem size

105

106

107

Ru
nt

im
e

[m
s]

Average optimizer
 duration

1 2 3 4 5 6 7
Problem size

4

2

Ex
pe

ct
at

io
n

va
lu

e

Output state

baseline

1 2 3 4 5 6 7
Problem size

0.0

0.1

0.2

0.3

Re
la

tiv
e

Er
ro

r

Error

1 2 3 4 5 6 7
Problem size

50

100

Ite
ra

tio
ns

Optimizer iterations

VQE: Random Hamiltonian

IBMQ Nairobi
IBMQ Perth

IBMQ Lagos
IBMQ Jakarta

IBMQ Manila
IBMQ Quito

Rigetti Aspen-M-1

Figure D.14: Result of the RH benchmark on remote hardware

1 2 3 4 5 6 7
Problem size

2 × 104

3 × 104
4 × 104

6 × 104

Ru
nt

im
e

[m
s]

Average QJob
 duration

1 2 3 4 5 6 7
Problem size

4 × 103

5 × 103

6 × 103

7 × 103

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

1 2 3 4 5 6 7
Problem size

105

106

Ru
nt

im
e

[m
s]

Average optimizer
 duration

1 2 3 4 5 6 7
Problem size

7.5

5.0

2.5

Ex
pe

ct
at

io
n

va
lu

e

Output state

baseline

1 2 3 4 5 6 7
Problem size

0.00

0.25

0.50

0.75

Re
la

tiv
e

Er
ro

r

Error

1 2 3 4 5 6 7
Problem size

200

400

Ite
ra

tio
ns

Optimizer iterations

VQE: Ising chain

IBMQ Nairobi
IBMQ Perth

IBMQ Lagos IBMQ Jakarta IBMQ Quito

Figure D.15: Result of the IC benchmark on remote hardware

D.4. Noisy local simulators 93

D.4. Noisy local simulators
This section lists the noisy simulation of the IMBQ Quito, Manila, Perth, Nairobi, Jakarta and, Lagos
backends and the Rigetti Aspen-M-1.

2 3 4 5 6 7
Problem size

102

103

104

Ru
nt

im
e

[m
s]

Average QJob
 duration

2 3 4 5 6 7
Problem size

102

103

104

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

2 3 4 5 6 7
Problem size

103

104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

2 3 4 5 6 7
Problem size

10.0

7.5

5.0

2.5

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

2 3 4 5 6 7
Problem size

0.0

0.1

0.2

Re
la

tiv
e

Er
ro

r

Error

2 3 4 5 6 7
Problem size

80

85

90

Ite
ra

tio
ns

Optimizer iterations

QAOA: MaxCut problem

Nairobi simulator
Jakarta simulator

Lagos simulator
Manila simulator

Quito simulator
Perth simulator

rigetti_aspen_M1_simulator

Figure D.16: Result of the MCP benchmark on simulated hardware

1 2 3 4 5 6 7
Problem size

102

103

Ru
nt

im
e

[m
s]

Average QJob
 duration

1 2 3 4 5 6 7
Problem size

4 × 101

6 × 101

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

1 2 3 4 5 6 7
Problem size

103

Ru
nt

im
e

[m
s]

Average optimizer
 duration

1 2 3 4 5 6 7
Problem size

4

2

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

1 2 3 4 5 6 7
Problem size

0.00

0.05

0.10

Re
la

tiv
e

Er
ro

r

Error

1 2 3 4 5 6 7
Problem size

50

100

Ite
ra

tio
ns

Optimizer iterations

VQE: Random Hamiltonian

Nairobi simulator
Jakarta simulator

Lagos simulator
Manila simulator

Quito simulator
Perth simulator

rigetti_aspen_M1_simulator

Figure D.17: Result of the RH benchmark on simulated hardware

D.4. Noisy local simulators 94

1 2 3 4 5 6 7
Problem size

102

103

Ru
nt

im
e

[m
s]

Average QJob
 duration

1 2 3 4 5 6 7
Problem size

102

3 × 101
4 × 101

6 × 101

Ru
nt

im
e

[m
s]

Average circuit
 execution duration

1 2 3 4 5 6 7
Problem size

103

104

Ru
nt

im
e

[m
s]

Average optimizer
 duration

1 2 3 4 5 6 7
Problem size

7.5

5.0

2.5

Ex
pe

ct
at

io
n

va
lu

e

Output state
baseline

1 2 3 4 5 6 7
Problem size

0.0

0.2

0.4

Re
la

tiv
e

Er
ro

r

Error

1 2 3 4 5 6 7
Problem size

100

200

300

400

Ite
ra

tio
ns

Optimizer iterations

VQE: Ising chain

Nairobi simulator
Jakarta simulator

Lagos simulator
Manila simulator

Quito simulator
Perth simulator

rigetti_aspen_M1_simulator

Figure D.18: Result of the IC benchmark on simulated hardware

E
|Lib⟩ Code: Data collection

1 /** @file Qpack/src/main.cpp
2
3 @brief Qpack main source file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 //#define OUTPUT_DIR "/qpack/qpack_output/baseline_new/"
11 #define OUTPUT_DIR "/qpack/qpack_output/benchmark_new/"
12 #define QUEST_ENABLE false
13
14 #include <iostream>
15 #include <LibKet.hpp>
16 #include "../include/Optimizers.hpp"
17 #include "../include/QAOA.hpp"
18 #include "../include/VQE.hpp"
19 #include "../include/BenchmarkLoops.hpp"
20
21 using namespace LibKet;
22 using namespace LibKet::circuits;
23 using namespace LibKet::filters;
24 using namespace LibKet::gates;
25
26
27 //Pack benchmark data
28 struct AlgData{
29
30 static constexpr int reps = 10; //Set number of repetions for VQA to run
31 static constexpr int P = 3; //Set QAOA iterations
32 static constexpr int shots = 4096; //Set QPU shots
33 static constexpr vqa_problems problems[] = {MCP, DSP, MIS, TSP, RH, IC}; //Set problem sets to be

evaluated
34 static constexpr QDeviceType qpuIDs[] = {//QDeviceType::ibmq_qasm_simulator //Select units under

test
35 QDeviceType::qiskit_aer_simulator
36 //QDeviceType::ionq_simulator
37 //QDeviceType::quest
38 //QDeviceType::cirq_simulator
39 //QDeviceType::rigetti_16q_simulator
40 //QDeviceType::ibmq_nairobi,
41 //QDeviceType::ibmq_quito
42 //QDeviceType::ibmq_manila
43 //QDeviceType::ibmq_jakarta
44 //QDeviceType::ibmq_perth
45 //QDeviceType::ibmq_lagos
46 };
47
48 static constexpr std::array<int, 3> graph_loop_params(vqa_problems problem){ //Select problem sizes

for each problem
49 std::array<int, 3> MCPparams = {2, 12, 1}; //Start, End, Step
50 std::array<int, 3> MISparams = {3, 9, 1};
51 std::array<int, 3> DSPparams = {2, 7, 1};
52 std::array<int, 3> TSPparams = {3, 4, 1};
53 std::array<int, 3> RHparams = {1, 12, 1};
54 std::array<int, 3> ICparams = {1, 12, 1};
55 std::array<int, 3> ones = {1, 1, 1};
56 return problem == MCP ? MCPparams :
57 problem == MIS ? MISparams :
58 problem == DSP ? DSPparams :
59 problem == TSP ? TSPparams :
60 problem == RH ? RHparams :

95

96

61 problem == IC ? ICparams : ones;
62 };
63 } algData;
64
65
66 int main(int argc, char *argv[]) {
67
68
69 //Determine problem sizes
70 constexpr auto problemSize = sizeof(AlgData::problems)/sizeof(vqa_problems);
71
72 //Run Qpack for selected QPUs
73 int status = utils::static_for<0, problemSize-1, 1, benchmark_loops::problem_loop >(0, algData);
74
75 //Finishing message
76 std::cout << "=============================\n"
77 << " \n"
78 << " Q Pack \n"
79 << " \n"
80 << " \n"
81 << " Benchmarking Completed ! \n"
82 << " \n"
83 << "=============================\n"
84 << std::flush;
85
86 return 0;
87 }

Listing E.1: main.cpp code of the QPack benchmark in LibKet.

1 /** @file Qpack/include/BenchmarkLoops.hpp
2
3 @brief Qpack BenchmarkLoops header file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 #pragma once
11 #ifndef BENCHMARKLOOPS_HPP
12 #define BENCHMARKLOOPS_HPP
13
14 #include "../include/Optimizers.hpp"
15 #include "../include/QAOA.hpp"
16 #include "../include/VQE.hpp"
17
18
19 namespace benchmark_loops{
20
21 //Struct to pass constexpressions in function parameters (indices in this case)
22 template<int index>
23 struct IndexPass{
24 static constexpr const int getIndex(){return index;}
25 };
26
27 //Function to create multiple from path
28 void mkdirs(const char* path){
29
30 //Decompose path in a folder vector
31 int index = 0;
32 std::vector<int> dir_index = {};
33 while(path[index] != '\0'){
34 if(path[index] == '/'){
35 dir_index.push_back(index);
36 }
37 index++;
38 }
39
40 //Loop over path, add subfolder each loop
41 for(int i = 0; i < dir_index.size()-1; i++){
42 char output_path[256] = "";
43 char sub_path[256] = "";
44
45 memcpy(sub_path, &path[0], dir_index[i+1]);
46
47 std::strcat(output_path, std::getenv("HOME"));
48 std::strcat(output_path, sub_path);
49
50 if(mkdir(output_path, 0777) != 0){
51 char buffer[256];
52 char * errorMsg = strerror_r(errno, buffer, 256); // GNU-specific version, Linux default
53 if(std::string(errorMsg).compare("File exists") != 0)

97

54 std::cout << "Error: " << errorMsg << std::endl; //return value has to be used since buffer
might not be modified

55 }
56 }
57 }
58
59 //Repeat QAOA measurements
60 template<typename Optimizer>
61 void repeat_execution(Optimizer&& optimizer, int reps, const char* output_path){
62
63 //Create ouput folder to save results
64 mkdirs(output_path);
65
66 //Execute VQA repeatedly
67 for(int index=0; index < reps; index++){
68
69 //Create JSON object to store results
70 nlohmann::json result;
71
72 //Generate output file path
73 char output_file[256] = "";
74 std::strcat(output_file, std::getenv("HOME"));
75 std::strcat(output_file, output_path);
76 std::strcat(output_file, "dataset");
77 std::strcat(output_file, index < 10 ? ("0"+std::to_string(index)).c_str() : std::to_string(index).

c_str());
78 std::strcat(output_file, ".json");
79
80 //Execution message
81 std::string message = "(" + std::to_string(index + 1) + "/" + std::to_string(reps) + ")";
82 std::cout << message << std::flush;
83 for(int i = 0; i < message.size(); i++){
84 std::cout << "\b";
85 }
86
87 //Check if data is already available
88 if(access(output_file, F_OK) != 0){
89
90 //Reset optimizer data
91 optimizer.resetData();
92
93 //Run optimizer
94 arma::vec opt_params = optimizer.COBYLA();
95
96 //Store optimizer results in JSON format
97 result = optimizer.getData();
98
99 //Save result in file

100 std::ofstream output(output_file);
101 output << std::setw(2) << result << std::endl;
102
103 }
104 }
105 }
106
107
108 //Loop over graph sizes
109 template<index_t start, index_t end, index_t step, index_t index>
110 struct graphSize_loop
111 {
112 template<typename ProblemIndex, typename QpuIndex, typename AlgData>
113 inline constexpr auto operator()(int status, ProblemIndex, QpuIndex, AlgData) noexcept
114 {
115
116 //Setup QAOA object
117 constexpr int problemSize = index;
118 constexpr int P = AlgData::P;
119 constexpr int shots = AlgData::shots;
120 constexpr vqa_problems problem = AlgData::problems[ProblemIndex::getIndex()];
121 constexpr QDeviceType qpuID = AlgData::qpuIDs[QpuIndex::getIndex()];
122 constexpr int repetitions = AlgData::reps;
123
124 //Execution message
125 std::cout << "\t\tProblem Size: " << std::to_string(problemSize) << " " << std::flush;
126
127 //Set name buffers for this problem, concatenate
128 char qpu_buffer [16] = {};
129 char size_buffer [8] = {};
130 char p_buffer [8] = {};
131 char shots_buffer [8] = {};
132 std::sprintf(qpu_buffer, "%X", static_cast<int>(qpuID));
133 std::sprintf(size_buffer, "%d", problemSize);
134 std::sprintf(p_buffer, "%d", P);
135 std::sprintf(shots_buffer, "%d", shots);

98

136
137 //Concat ouput path
138 char output_path[256] = "";
139 std::strcat(output_path, OUTPUT_DIR);
140 std::strcat(output_path, qpu_buffer);
141 std::strcat(output_path, "/");
142 std::strcat(output_path, vqa_names[problem].c_str());
143 std::strcat(output_path, "/N");
144 if(problemSize < 10){
145 std::strcat(output_path, "0");
146 }
147 std::strcat(output_path, size_buffer);
148 std::strcat(output_path, "/");
149
150 //Select QAOA or VQE problem optimizer and repeat execution
151 switch(problem){
152
153 //QAOA
154 case MCP :
155 case MIS :
156 case DSP :
157 case TSP :
158 {
159 QAOA<problemSize, problem, P, shots, qpuID> qaoa;
160 Optimizer<QAOA<problemSize, problem, P, shots, qpuID>> qaoa_optimizer(&qaoa);
161
162 //Repeat execution
163 repeat_execution(qaoa_optimizer, repetitions, output_path);
164
165 }
166 break;
167
168 //VQE
169 case RH :
170 case IC :
171 {
172 VQE<problem, problemSize, shots, qpuID> vqe;
173 Optimizer<VQE<problem, problemSize, shots, qpuID>> vqe_optimizer(&vqe);
174
175
176 //Repeat execution
177 repeat_execution(vqe_optimizer, repetitions, output_path);
178 }
179 break;
180
181 //Unknown problem selected
182 default:
183 std::cout << "QPack error: Unknown problem!" << std::endl;
184
185 }
186
187 //Message signalling all repetions have been completed
188 std::cout << "DONE " << std::endl;
189
190 //Return status
191 return 1;
192
193 }
194 };
195
196 //Loop over graph sizes
197 template<index_t start, index_t end, index_t step, index_t index>
198 struct qpu_loop
199 {
200 template<typename ProblemIndex, typename AlgData>
201 inline constexpr auto operator()(int status, ProblemIndex, AlgData) noexcept
202 {
203 //Set current qpu loop index
204 IndexPass<index> qpuIndex;
205
206 //Print execution message
207 std::cout << "\tQPU: " << AlgData::qpuIDs[index] << std::endl;
208
209 //Get graph loop parameters bases on problem set
210 constexpr auto graph_loop_params = AlgData::graph_loop_params(AlgData::problems[ProblemIndex::

getIndex()]);
211
212 //Loop over graph sizes
213 int graph_status = utils::static_for<graph_loop_params[0],
214 graph_loop_params[1],
215 graph_loop_params[2],
216 benchmark_loops::graphSize_loop >(0, ProblemIndex{}, qpuIndex, AlgData{});
217
218 //Return status

99

219 return 1;
220
221 }
222 };
223
224 //Loop over graph sizes
225 template<index_t start, index_t end, index_t step, index_t index>
226 struct problem_loop
227 {
228 template<typename AlgData>
229 inline constexpr auto operator()(int status, AlgData) noexcept
230 {
231
232 //Set current problem loop index
233 IndexPass<index> problemIndex;
234
235 //Starting message
236 switch(AlgData::problems[index]){
237 case MCP :
238 case MIS :
239 case DSP :
240 case TSP :
241 std::cout << "Running QAOA " << vqa_names[AlgData::problems[index]] << ":" << std::endl;
242 break;
243
244 case RH :
245 case IC :
246 std::cout << "Running VQE " << vqa_names[AlgData::problems[index]] << ":" << std::endl;
247 break;
248
249 default:
250 std::cout << "Unknown Algorithm!" << std::endl;
251 }
252
253
254 //Loop over problem set
255 constexpr auto qpuSize = sizeof(AlgData::qpuIDs)/sizeof(QDeviceType);
256 int qpu_status = utils::static_for<0,
257 qpuSize - 1,
258 1,
259 benchmark_loops::qpu_loop>(0, problemIndex, AlgData{});
260
261 //Return status
262 return 1;
263
264 }
265 };
266 }
267
268 #endif //BENCHMARKLOOPS_HPP

Listing E.2: BenchmarkLoops.hpp code of the QPack benchmark in LibKet.

1 /** @file Qpack/include/Optimizers.hpp
2
3 @brief Qpack Optimizers header file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 #pragma once
11 #ifndef OPTIMIZER_HPP
12 #define OPTIMIZER_HPP
13
14 #define OPTIM_ENABLE_ARMA_WRAPPERS
15 #include "../include/QAOA.hpp"
16 #include "../include/VQE.hpp"
17 #include <math.h>
18 #include <iomanip>
19 #include <iostream>
20 #include <vector>
21 #include <chrono>
22 #include <nlopt.hpp>
23
24 //Optimizer class which runs a VQA circuit and uses an optimizer to find the minimum score
25 template<typename vqaType>
26 class Optimizer{
27 private:
28 double _minf;
29 std::vector<double> _opt_params;
30 double _totalDuration; //Total optimizer duration in seconds

100

31
32 struct OptData{ //VQA
33 vqaType* _algorithm_ptr;
34 std::vector<double> _execDurations;
35 std::vector<double> _queueDurations;
36 std::vector<double> _jobDurations;
37 std::vector<double> _optDurations;
38 std::chrono::steady_clock::time_point _itTime;
39 } optData;
40
41 //NLOpt optimization function
42 static double vqa_opt(const std::vector<double> ¶ms, std::vector<double> &grad, void *func_data)
43 {
44 if (!grad.empty()) {
45 grad[0] = 0.0;
46 grad[1] = 0.5 / sqrt(params[1]);
47 }
48
49 //Recast data
50 OptData* optData = (OptData*) func_data;
51 auto vqa = optData->_algorithm_ptr;
52
53 //Execute quantum circuit
54 vqa->run(params, false);
55
56 //Retrieve expectation value
57 double score = vqa->getExpectation();
58
59 //Append Q-job time to data struct
60 optData->_execDurations.push_back(vqa->getExecDuration()*1000); //Convert s to ms
61 optData->_jobDurations.push_back(vqa->getJobDuration()*1000); //Convert s to ms
62 optData->_queueDurations.push_back(vqa->getQueueDuration()*1000); //Convert s to ms
63
64 //Append iteration ducatrion to data struct
65 optData->_optDurations.push_back((double)std::chrono::duration_cast<std::chrono::microseconds >(std::

chrono::steady_clock::now() -optData->_itTime).count()/1000); // us to ms
66 optData->_itTime = std::chrono::steady_clock::now(); //Reset startime
67
68 return score;
69 }
70
71 public:
72 //Constructor
73 template<typename algType>
74 Optimizer(algType algorithm_ptr){
75 optData._algorithm_ptr = algorithm_ptr;
76 }
77
78 //Reset data
79 void resetData(){
80 optData._jobDurations.clear();
81 optData._optDurations.clear();
82 optData._execDurations.clear();
83 optData._queueDurations.clear();
84 _totalDuration = 0.0;
85 _minf = 0.0;
86 _opt_params.clear();
87 }
88
89 //Return optimizer iterations
90 unsigned long getIterations(){
91 return optData._jobDurations.size();
92 }
93
94 //Return vector of circuit execution durations in ms
95 std::vector<double> getQueueDurations(){
96 return optData._queueDurations;
97 }
98
99 //Return vector of circuit execution durations in ms

100 std::vector<double> getExecDurations(){
101 return optData._execDurations;
102 }
103
104 //Return vector of qjob durations in ms
105 std::vector<double> getJobDurations(){
106 return optData._jobDurations;
107 }
108
109 //Return vector of optimizer durations in ms
110 std::vector<double> getOptDurations(){
111 return optData._optDurations;
112 }
113

101

114 //Return total job duration in ms
115 double getTotalJobDuration(){
116 double totalJobDuration = 0.0;
117 for(double i : optData._jobDurations){
118 totalJobDuration += i;
119 }
120 return totalJobDuration;
121 }
122
123 //Return optimal score
124 double getOptimalScore(){
125 return optData._algorithm_ptr->getOptimalScore();
126 }
127
128 //Return average job duration in ms
129 double getAverageJobDuration(){
130 return getTotalJobDuration()/optData._jobDurations.size();
131 }
132
133 //Return number of qubits
134 int getNumQBits(){
135 return optData._algorithm_ptr->getNumQubits();
136 }
137
138 //Return (average) circuit depth
139 double getDepth(){
140 return optData._algorithm_ptr->getCircuitDepth();
141 }
142
143
144 //Return all data
145 nlohmann::json getData(){
146 char qpu_buffer [16] = {};
147 std::sprintf(qpu_buffer, "%X", static_cast<int>(optData._algorithm_ptr->getQpuID()));
148
149 nlohmann::json data;
150 data["QPU"] = qpu_buffer;
151 data["Problem"] = vqa_names[optData._algorithm_ptr->getProblem()];
152 data["Size"] = optData._algorithm_ptr->getSize();
153 data["P"] = optData._algorithm_ptr->getP();
154 data["Shots"] = optData._algorithm_ptr->getNumShots();
155 data["Qubits"] = getNumQBits();
156 data["Depth"] = getDepth();
157 data["Optimizer iterations"] = getIterations();
158 data["QJob durations [ms]"] = getJobDurations();
159 data["Queue durations [ms]"] = getQueueDurations();
160 data["Circuit execution durations [ms]"] = getExecDurations();
161 data["Expectation Value"] = _minf;
162 data["Optimal Expectation Value"] = getOptimalScore();
163 data["Optimizer params"] = _opt_params;
164 data["Optimizer durations [ms]"] = getOptDurations();
165 data["Total Algorithm duration [s]"] = _totalDuration;
166 data["Total Quantum duration [s]"] = getTotalJobDuration()/1000; // ms to s
167 data["Total Classic duration [s]"] = _totalDuration - getTotalJobDuration()/1000; //ms to s
168
169 return data;
170 }
171
172 //Run VQA with COBYLA
173 arma::vec COBYLA(){
174
175 //NLopt optimizer initialisation
176 int numParams;
177 std::vector<double> lb;
178 std::vector<double> ub;
179 std::vector<double> params;
180 float tol;
181
182 //Fill in parameters based on algorithm
183 switch(optData._algorithm_ptr->id){
184 case 0 : //QAOA
185 numParams = optData._algorithm_ptr->getNumParams();
186 for(int i=0; i < numParams; i++){
187 lb.push_back(0.0); //Set lower bounds to 0.0
188 ub.push_back(1.0); //Set upper bounds to 1.0
189 float r = static_cast <float> (rand()) / static_cast <float> (RAND_MAX);
190 params.push_back(r); //Set random initial parameters
191 tol = 1e-4; //Set tolerance
192 }
193 break;
194
195 case 1 : //VQE
196 numParams = optData._algorithm_ptr->getNumParams();
197 for(int i=0; i < numParams; i++){

102

198 lb.push_back(0.0); //Set lower bounds to 0.0
199 ub.push_back(1.0); //Set upper bounds to 1.0
200 float r = static_cast <float> (rand()) / static_cast <float> (RAND_MAX);
201 params.push_back(r); //Set random initial parameters
202 tol = 1e-3; //Set tolerance
203 }
204 break;
205
206 default :
207 std::cout << "Algorithm not recognized" << std::endl;
208 }
209
210 //Set parameters
211 nlopt::opt opt(nlopt::LN_COBYLA, numParams);
212 opt.set_lower_bounds(lb);
213 opt.set_upper_bounds(ub);
214 opt.set_min_objective(vqa_opt, &optData);
215 opt.set_xtol_rel(tol);
216
217
218 try{
219 //Set timer and begin optimization
220 std::chrono::steady_clock::time_point startTime = std::chrono::steady_clock::now();
221 optData._itTime = startTime;
222 nlopt::result result = opt.optimize(params, _minf);
223 _opt_params = params;
224 _totalDuration = (double)std::chrono::duration_cast<std::chrono::milliseconds >(std::chrono::

steady_clock::now() - startTime).count()/1000; //ms to s
225 }
226 catch(std::exception &e) {
227 std::cout << "nlopt failed: " << e.what() << std::endl;
228 }
229
230 return params;
231 }
232 };
233
234 #endif //OPTIMIZER_HPP

Listing E.3: Optimizers.hpp code of the QPack benchmark in LibKet.

1 /** @file Qpack/include/VQA.hpp
2
3 @brief Qpack VQA header file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 #pragma once
11 #ifndef VQA_HPP
12 #define VQA_HPP
13
14 /*
15 @brief: Base class for the QAOA and VQE classes. Holds shared variables and return fuctions
16 for Variatonal Quantum Algorithms in Qpack
17 */
18
19 /*
20 Declare VQA problems and their names:
21 MaxCut problem (MCP): Find maximum cuts for bipartioned graph
22 Dominating Set Problem (DSP): Find minium number of survailance nodes in a network
23 Maximum Independent Set problem (MIS): Find maximum set of disconnected nodes
24 Traveling Salesperson problem (TSP): Find shortest path in network
25 Random Haltonian (RH): A diagonal hamiltonian with random coefficients
26 Ising Chain (IC): Simulations of the 1-D Ising chain
27 */
28 enum vqa_problems {MCP, DSP, TSP, MIS, RH, IC};
29 std::vector<std::string> vqa_names = {"MCP", "DSP", "TSP", "MIS", "RH", "IC"};
30
31 class VQA
32 {
33 protected:
34 //Variables to store qpu results
35 int _numParams;
36 double _execDuration;
37 double _queueDuration;
38 double _jobDuration;
39 double _expectation;
40
41 public:
42 //Constants

103

43 int id = 9999;
44 std::string name = "Generic VQA";
45
46 //Constructor
47 VQA(){};
48
49 //Placeholder functions
50 void run(std::vector<double> params, bool printCircuit){};
51
52 //Return number of parameters
53 int getNumParams(){
54 return _numParams;
55 };
56
57 auto getExecDuration(){
58 return _execDuration;
59 }
60
61 //Return job duration
62 auto getJobDuration(){
63 return _jobDuration;
64 }
65
66 //Return job duration
67 auto getQueueDuration(){
68 return _queueDuration;
69 }
70
71 //Return expectation value for problem based on graph and qpu results
72 auto getExpectation(){
73 return _expectation;
74 }
75 };
76
77 #endif //VQA_HPP

Listing E.4: VQA.hpp code of the QPack benchmark in LibKet.

1 /** @file Qpack/include/CircuitsQAOA.hpp
2
3 @brief Qpack networks class header file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 #pragma once
11 #ifndef QAOA_HPP
12 #define QAOA_HPP
13
14 #include<cmath>
15 #include <LibKet.hpp>
16 #include "../include/QAOA_Loops.hpp"
17 #include "../include/VQA.hpp"
18
19 using namespace LibKet;
20 using namespace LibKet::circuits;
21 using namespace LibKet::filters;
22 using namespace LibKet::gates;
23
24 /*
25 @brief: This class implements all necessary functionalities of the QAOA algorithm, such
26 as determining the amount of qubits and statespace for a given problem. The class
27 is able to generate QAOA circuits, execute these circuits and give an expectation
28 value for each problem.
29 */
30 template <int graphSize, vqa_problems problem, int P, int shots, QDeviceType qpuID>
31 class QAOA : public VQA{
32 public:
33
34 //Return QPU ID
35 static QDeviceType getQpuID(){
36 return qpuID;
37 }
38
39 //Return problem
40 static vqa_problems getProblem(){
41 return problem;
42 }
43
44 //Return number of shots
45 static int getNumShots(){

104

46 return shots;
47 }
48
49 //Return P for QAOA
50 static int getP(){
51 return P;
52 }
53
54 //Return problem size
55 static int getSize(){
56 return graphSize;
57 }
58
59
60 //Returns the number of qubits based on selected problem
61 static constexpr auto getNumQubits(){
62 return problem == MCP ? graphSize :
63 problem == DSP ? (graphSize == 2 ? 4 :
64 graphSize == 3 ? 6 :
65 graphSize == 4 ? 7 :
66 graphSize+5
67) :
68 problem == TSP ? graphSize*graphSize :
69 problem == MIS ? (graphSize == 3 ? 4 :
70 graphSize == 4 ? 5 :
71 graphSize+3
72) : 0;
73 }
74
75 private:
76
77 //Returns the size of the histogram based on selected problem
78 static constexpr auto getHistSize(){
79 return problem == MCP ? 2 << (graphSize -1) :
80 problem == DSP ? 2 << (graphSize -1) :
81 problem == TSP ? 2 << (graphSize*graphSize -1) :
82 problem == MIS ? 2 << (graphSize -1) : 1;
83 }
84
85 //Variable to store qpu result
86 QArray<getHistSize(), unsigned long> _hist;
87
88 //Function to generate maxcut QAOA circuit. Returns quantum expression
89 template <typename graphType, typename paramType>
90 auto genCircuitMCP(graphType graph, paramType params){
91
92 //Set inital state to superposition
93 auto s0 = h(range<0,graphSize-1>(init()));
94
95 //QAOA iterations
96 auto step = utils::static_for<0, P-1, 1, QAOAGates::maxcut_step >(tag<0>(s0), graph, params);
97
98 return step;
99 }

100
101 //Function to generate DSP QAOA circuit. Returns quantum expression
102 template <typename graphType, typename paramType>
103 auto genCircuitDSP(graphType graph, paramType params){
104
105 //Set inital state to superposition
106 auto s0 = all(h(range<0,graphSize-1>(init())));
107
108 //QAOA iterations
109 auto step = utils::static_for<0, P-1, 1, QAOAGates::dsp_step>(tag<1>(s0), graph, params);
110
111 return step;
112 }
113
114 //Static for loop over graph edges for DMatrix construction.
115 template<index_t start, index_t end, index_t step, index_t index>
116 struct D_Matrix_Loop
117 {
118 template<typename DMatrix, typename Graph>
119 inline constexpr auto operator()(DMatrix&& dmatrix, Graph) noexcept
120 {
121 //Get link
122 int i_index = Graph::template from<index>();
123 int j_index = Graph::template to<index>();
124
125 //Copy matrix information
126 std::array<std::array<int, graphSize>, graphSize> new_matrix = {0};
127 for(int i = 0; i < graphSize; i++){
128 for(int j = 0; j < graphSize; j++){
129 new_matrix[i][j] = dmatrix[i][j];

105

130 }
131 }
132
133 //Set distance in matrix for connected links
134 new_matrix[i_index][j_index] = 1;
135 new_matrix[j_index][i_index] = 1;
136
137 return new_matrix;
138 }
139 };
140
141 //Function to generate distance matrix for TSP. Returns 2D array
142 template <typename graphType>
143 auto genDMatrix(graphType graph){
144 std::array<std::array<int, graphSize>, graphSize> init_matrix;
145 for(int i = 0; i < graphSize; i++){
146 for(int j = 0; j < graphSize; j++){
147 if(i == j){
148 init_matrix[i][j] = 20; //Diagonal elements have higher penalty
149 }else{
150 init_matrix[i][j] = 10; //All items have default penalty
151 }
152
153 }
154 }
155 auto matrix = utils::static_for<0, graph.size()-1, 1, D_Matrix_Loop >(init_matrix, graph);
156
157 return matrix;
158 }
159
160 //Function to generate TSP QAOA circuit. Returns quantum expression
161 template <typename graphType, typename paramType>
162 auto genCircuitTSP(graphType graph, paramType params){
163
164 //Set inital state to superposition
165 auto s0 = utils::static_for<0, graphSize*graphSize-1, graphSize, QAOAGates::tsp_init>(tag<2>(init()));
166
167 //QAOA iterations
168 auto fullGraph = utils::make_full_graph<graphSize >();
169 std::array<std::array<int, graphSize>, graphSize> D_matrix = genDMatrix(graph);
170
171 auto step = utils::static_for<0, P-1, 1, QAOAGates::tsp_step>(tag<2>(s0), graph, fullGraph, D_matrix,

params);
172
173 return step;
174 }
175
176 //Function to generate MIS QAOA circuit. Returns quantum expression
177 template <typename graphType, typename paramType>
178 auto genCircuitMIS(graphType graph, paramType params){
179
180 //Set inital state to all zeros
181 auto s0 = init();
182
183 //QAOA iterations
184 auto step = utils::static_for<0, P-1, 1, QAOAGates::mis_step>(tag<3>(s0), graph, params);
185
186 return step;
187 }
188
189 //Loop to determine number of shared edges
190 template<index_t start, index_t end, index_t step, index_t index>
191 struct shared_edge_loop
192 {
193 template<typename Shared, typename Graph, typename BitString>
194 inline constexpr auto operator()(Shared&& shared, Graph, BitString bitString) noexcept
195 {
196 if(bitString[Graph::template from<index>()] != bitString[Graph::template to<index>()]){
197 shared -= 1;
198 }
199
200 return shared;
201 }
202 };
203
204 //Computes expectation value for MCP problem
205 template <typename graphType, typename histType>
206 float expectationMCP(graphType graph, histType hist) {
207
208 static constexpr const std::size_t numEdges = graph.size();
209 static constexpr const std::size_t numStates = hist.size();
210 static constexpr const std::size_t numBits = graphSize;
211
212 int average = 0;

106

213 int total_count = 0;
214 //Loop over all output states
215 for(int i = 0; i < numStates; i++){
216
217 //Convert state number to bitstring
218 std::string bitString = std::bitset<numBits>(i).to_string();
219
220 //Loop over all egdes
221 int shared = 0;
222 int shared_edges = utils::static_for<0, numEdges-1, 1, shared_edge_loop >(shared, graph, bitString);
223
224 //Sum shared edges with histogram weight
225 average += shared_edges * hist[i];
226 total_count += hist[i];
227 }
228
229 //Return average result
230 return (float)average / (float)total_count;
231 }
232
233 //Static for loop for expectation function
234 template<index_t start, index_t end, index_t step, index_t index>
235 struct T_loop
236 {
237 template<typename TBits, typename Graph, typename Bits>
238 inline constexpr auto operator()(TBits&& tBits, Graph, Bits bits) noexcept
239 {
240 int e0 = Graph::template from<index>();
241 int e1 = Graph::template to<index>();
242 int end_index = graphSize -1;
243
244 //index reverse because of bitsting indexing
245 if(bits[end_index - e0] == 1 or bits[end_index - e1] == 1){
246 tBits[end_index - e0] = 1;
247 tBits[end_index - e1] = 1;
248 }
249
250 return tBits;
251 }
252 };
253
254 //Computes expectation value for DSP problem
255 template <typename graphType, typename histType>
256 float expectationDSP(graphType graph, histType hist) {
257
258 static constexpr const std::size_t numEdges = graph.size();
259 static constexpr const std::size_t numStates = hist.size();
260
261 int average = 0;
262 int total_count = 0;
263 //Loop over all output states
264 for(int i = 0; i < numStates; i++){
265
266 //Convert state number to bitstring
267 std::bitset<graphSize> bits(i);
268
269 //Cost of this state
270 int cost = 0;
271 std::bitset<graphSize> tBits(0);
272 tBits = utils::static_for<0, numEdges-1, 1, T_loop>(tBits, graph, bits);
273
274 //Check if solution monitors all nodes
275 bool valid = true;
276 for(int j = 0; j < graphSize; j++){
277 if(!tBits[j]){
278 valid = false;
279 }
280 }
281
282 //If solution is valid, compute solution cost
283 if(valid){
284 for(int j = 0; j < graphSize; j++){
285 cost -= !bits[j]; //Subtract to get best score be most negative
286 }
287 }
288
289 //Sum cost with histogram weight
290 average += cost * hist[i];
291 total_count += hist[i];
292 }
293
294 //Return average result
295 return (float)average / (float)total_count;
296 }

107

297
298 //Computes expectation value for TSP problem
299 template <typename graphType, typename histType>
300 float expectationTSP(graphType graph, histType hist) {
301
302 int average = 0;
303 int total_count = 0;
304 static constexpr const std::size_t numStates = hist.size();
305 std::array<std::array<int, graphSize>, graphSize> D_matrix = genDMatrix(graph);
306
307 for(int state = 0; state < numStates; state++){
308
309 //Create adjacency matrix from bitstring
310 std::bitset<graphSize*graphSize> bits(state);
311 auto A_matrix = [] (std::bitset<graphSize*graphSize> bits) {
312 std::array<std::array<int, graphSize>, graphSize> matrix {0};
313 for(int bit = 0; bit < graphSize*graphSize ; bit++){
314 matrix[bit/graphSize][bit%graphSize] = bits[graphSize*graphSize-bit-1];
315 }
316 return matrix;
317 }(bits);
318
319 //Compute score for valid adjacency matrices
320 float score = 0.0;
321 for (int i = 0; i < graphSize; i++){
322 for (int j = 0; j < graphSize; j++){
323 if(A_matrix[i][j] == 1){
324 score += D_matrix[i][j];
325 }
326 if((A_matrix[i][j]*A_matrix[j][i] == 1) && (i != j)){
327 score += -5.0;
328 }
329 }
330 }
331 score /= 2.0;
332
333 //Sum cost with histogram weight
334 average += score * hist[state];
335 total_count += hist[state];
336 }
337
338 //Return average result
339 return (float)average / (float)total_count;
340 }
341
342 //Static for loop for expectation function
343 template<index_t start, index_t end, index_t step, index_t index>
344 struct check_IS
345 {
346 template<typename Valid, typename Graph, typename Bits>
347 inline constexpr auto operator()(Valid&& valid, Graph, Bits bits) noexcept
348 {
349 int e0 = Graph::template from<index>();
350 int e1 = Graph::template to<index>();
351 int end_index = graphSize -1;
352
353 //index reverse because of bitsting indexing
354 if(bits[end_index - e0] == 1 and bits[end_index - e1] == 1){
355 valid = false;
356 }
357
358 return valid;
359 }
360 };
361
362 //Computes expectation value for MIS problem
363 template <typename graphType, typename histType>
364 float expectationMIS(graphType graph, histType hist) {
365
366 static constexpr const std::size_t numEdges = graph.size();
367 static constexpr const std::size_t numStates = hist.size();
368
369 int average = 0;
370 int total_count = 0;
371 //Loop over all output states
372 for(int i = 0; i < numStates; i++){
373
374 //Convert state number to bitstring
375 std::bitset<graphSize> bits(i);
376
377 //Cost of this state
378 int cost = 0;
379
380 //Check if bitstring is an independent set

108

381 bool valid = utils::static_for<0, numEdges-1, 1, check_IS>(true, graph, bits);
382
383 //If solution is valid, compute solution cost
384 if(valid){
385 for(int j = 0; j < graphSize; j++){
386 cost -= bits[j]; //Subtract to get best score be most negative
387 }
388 }
389
390 //Debug message
391 //std::cout << "State:" << bits << ": valid=" << valid << ", Score: " << cost << std::endl;
392
393 //Sum cost with histogram weight
394 average += cost * hist[i];
395 total_count += hist[i];
396 }
397
398 //Return average result
399 return (float)average / (float)total_count;
400 }
401
402 //Functions to select which QAOA circuit to generate based on problem
403 template<typename graphType, typename paramType>
404 auto genCircuit(std::integral_constant<vqa_problems, MCP>, graphType graph, paramType params){
405 return genCircuitMCP(graph, params);
406 }
407
408 template<typename graphType, typename paramType>
409 auto genCircuit(std::integral_constant<vqa_problems, DSP>, graphType graph, paramType params){
410 return genCircuitDSP(graph, params);
411 }
412
413 template<typename graphType, typename paramType>
414 auto genCircuit(std::integral_constant<vqa_problems, TSP>, graphType graph, paramType params){
415 return genCircuitTSP(graph, params);
416 }
417
418 template<typename graphType, typename paramType>
419 auto genCircuit(std::integral_constant<vqa_problems, MIS>, graphType graph, paramType params){
420 return genCircuitMIS(graph, params);
421 }
422
423 //Functions to select which expectation function to use based on problem
424 template<typename graphType>
425 auto expectation(std::integral_constant<vqa_problems, MCP>, graphType graph){
426 return expectationMCP(graph, _hist);
427 }
428
429 template<typename graphType>
430 auto expectation(std::integral_constant<vqa_problems, DSP>, graphType graph){
431 return expectationDSP(graph, _hist);
432 }
433
434 template<typename graphType>
435 auto expectation(std::integral_constant<vqa_problems, TSP>, graphType graph){
436 return expectationTSP(graph, _hist);
437 }
438
439 //VQE problems TODO: FIND GENERAL DEFAULT
440 template<typename graphType, typename paramType>
441 auto genCircuit(std::integral_constant<vqa_problems, RH>, graphType graph, paramType params){
442 return init();
443 }
444
445 template<typename graphType, typename paramType>
446 auto genCircuit(std::integral_constant<vqa_problems, IC>, graphType graph, paramType params){
447 return init();
448 }
449
450 template<typename graphType>
451 auto expectation(std::integral_constant<vqa_problems, MIS>, graphType graph){
452 return expectationMIS(graph, _hist);
453 }
454
455 template<typename graphType>
456 auto expectation(std::integral_constant<vqa_problems, RH>, graphType graph){
457 return 0.0;
458 }
459
460 template<typename graphType>
461 auto expectation(std::integral_constant<vqa_problems, IC>, graphType graph){
462 return 0.0;
463 }
464

109

465 public:
466 //Information constants
467 const int id = 0; //QAOA
468 const std::string name = "QAOA";
469
470 //Constructor
471 QAOA() {}
472
473 //Run QAOA circuit
474 template <typename paramType>
475 void run(paramType params, bool printCircuit) {
476
477 //Create Graph
478 auto graph = utils::make_regular_graph<graphSize >();
479
480 //Generate quantum circuit
481 auto expr = genCircuit(std::integral_constant<vqa_problems, problem>{}, graph, params);
482
483 //Execute circuit on quantum backend
484 QDevice<qpuID, getNumQubits()> qpu;
485
486 if(qpuID != QDeviceType::quest and
487 qpuID != QDeviceType::qx){
488
489 //Retrieve results
490 qpu(measure(range<0, problem == TSP ? graphSize*graphSize -1 : graphSize-1>(expr)));
491 auto job = qpu.execute(shots);
492 utils::json result = job->get();
493
494 //std::cout << result << std::endl;
495 //std::cout << qpu.print_circuit() << std::endl;
496
497 //Store results
498 _execDuration = qpu.template get<QResultType::duration>(result).count();
499 _jobDuration = qpu.template get<QResultType::jobDuration >(result).count();
500 _queueDuration = qpu.template get<QResultType::queueDuration >(result).count();
501 auto full_hist = qpu.template get<QResultType::histogram>(result);
502 for(int i=0; i < getHistSize(); i++){ //Store only qubit measurents in histogram
503 _hist[i] = full_hist[i];
504 }
505
506 } else{
507
508 qpu(expr);
509 auto job = qpu.execute(shots);
510
511 #if QUEST_ENABLE
512 _execDuration = qpu.duration_s();
513 _jobDuration = qpu.duration_s();
514 _queueDuration = 0.0;
515 auto probs = qpu.probabilities();
516
517
518 for(int i=0; i < getHistSize(); i++){
519 _hist[i] = 0;
520 }
521
522 for(int i=0; i < (1 << getNumQubits()); i++){
523
524 _hist[i % getHistSize()] += shots*probs[i];
525 }
526 #else
527 std::cout << "\nPlease enable QuEST macro. Exiting..." << std::endl;
528 std::exit(0);
529 #endif
530
531 }
532 //Print circuit if enabled (with Qiskit)
533 if(printCircuit){
534 QDevice<QDeviceType::qiskit_aer_simulator , getNumQubits()> qiskit;
535 qiskit(expr);
536 std::cout << qiskit.print_circuit() << std::endl;
537 }
538
539 _expectation = expectation(std::integral_constant<vqa_problems, problem>{}, graph);
540 }
541
542 //Return histogram results
543 auto getHist(){
544 return _hist;
545 }
546
547 //Returns number of parameters needed for optimization
548 int getNumParams(){

110

549 return 2*P;
550 }
551
552 //Returns optimal score
553 int getOptimalScore(){
554 int MCP_scores[] = {0, 0, 1, 2, 4, 6, 8, 10, 12, 12, 14, 16, 18, 18, 20, 22, 24, 24, 26, 28, 30, 30,

32, 34, 36, 36, 38, 40, 42, 42, 44, 46, 48, 48, 50, 52, 54, 54, 56, 58, 60, 60, 62, 64, 66, 66, 68,
70, 72, 72};

555 return problem == MCP ? -MCP_scores[graphSize] :
556 problem == DSP ? -(graphSize -((graphSize -1)/5 + 1)) :
557 problem == TSP ? -5*graphSize*(graphSize -1)/2+graphSize :
558 problem == MIS ? -graphSize/3 : 0;
559 }
560
561 //Return circuit depth
562 double getCircuitDepth(){
563
564 //Get QPU
565 QDevice<QDeviceType::qiskit_aer_simulator , getNumQubits()> qiskit;
566
567 //Create Graph
568 auto graph = utils::make_regular_graph<graphSize >();
569
570 //Generate quantum circuit
571 arma::vec params = arma::ones<arma::vec>(2*P);
572 auto expr = genCircuit(std::integral_constant<vqa_problems, problem>{}, graph, params);
573
574 //Load expression into qiskit backend
575 qiskit(expr);
576
577 return std::stoi(qiskit.circuit_depth()) + 1;
578 }
579
580 };
581
582 #endif //QAOA_HPP

Listing E.5: QAOA.hpp code of the QPack benchmark in LibKet.

1 /** @file Qpack/include/QAOA_loops.hpp
2
3 @brief Qpack QAOA_loops header file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 #pragma once
11 #ifndef QAOA_LOOPS_HPP
12 #define QAOA_LOOPS_HPP
13
14 #include <LibKet.hpp>
15 #include <math.h>
16
17 using namespace LibKet;
18 using namespace LibKet::circuits;
19 using namespace LibKet::filters;
20 using namespace LibKet::gates;
21
22 #define PI 3.14159265358979323846 /* pi */
23
24 namespace ct_math{
25 //Function to take a compile time square root (only for integer squares)
26 static constexpr std::size_t ct_sqrt(std::size_t res, std::size_t l, std::size_t r){
27 if(l == r){
28 return r;
29 } else {
30 const auto mid = (r + l) / 2;
31
32 if(mid * mid >= res){
33 return ct_sqrt(res, l, mid);
34 } else {
35 return ct_sqrt(res, mid + 1, r);
36 }
37 }
38 }
39
40 static constexpr std::size_t ct_sqrt(std::size_t res){
41 return ct_sqrt(res, 1, res);
42 }
43 } //ct_math
44

111

45 namespace QAOAGates{
46
47 //CNOT RZ CNOT Maxcut
48 template<index_t start, index_t end, index_t step, index_t index>
49 struct maxcut_cost_function
50 {
51 template<typename Expr, typename Graph, typename Gamma>
52 inline constexpr auto operator()(Expr&& expr, Graph, Gamma) noexcept
53 {
54 auto cnot1 = cnot(sel<Graph::template from<index>()>(gototag<0>()),
55 sel<Graph::template to<index>()>(gototag<0>(expr))
56);
57
58 auto rot_z_gamma = rz(Gamma{}, sel<1>(cnot1));
59
60 auto cnot2 = cnot(sel<Graph::template from<index>()>(gototag<0>()),
61 sel<Graph::template to<index>()>(gototag<0>(rot_z_gamma))
62);
63
64 return gototag<0>(cnot2);
65 }
66 };
67
68 //Maxcut p iteration
69 template<index_t start, index_t end, index_t step, index_t index>
70 struct maxcut_step
71 {
72 template<typename Expr, typename Graph, typename Params>
73 inline constexpr auto operator()(Expr&& expr, Graph, Params&& params) noexcept
74 {
75
76 //Set circuits parameters
77 QVar_t<2*index,1> beta(2*PI*params[2*index]);
78 QVar_t<2*index+1,1> gamma(2*PI*params[2*index+1]);
79
80 //Cost unitaries
81 auto cost = utils::static_for<0,Graph::size() -1,1,maxcut_cost_function >(tag<0>(expr), Graph{},

gamma);
82
83 //Mixer unitaries
84 auto mixed = rx(beta, gototag<0>(cost));
85
86 return gototag<0>(mixed);
87 }
88 };
89
90 //Inverted CRZ DSP
91 template<index_t start, index_t end, index_t step, index_t index>
92 struct dsp_inv_cphase
93 {
94 template<typename Expr, typename A_filter, typename Gamma>
95 inline constexpr auto operator()(Expr&& expr, A_filter&& a_filter, Gamma) noexcept
96 {
97 auto x1 = x(sel<index>(gototag<1>(expr)));
98 auto crz_gate = crz(Gamma{},
99 sel<index>(),

100 a_filter(gototag<1>(x1)));
101 auto x2 = x(sel<index>(gototag<1>(crz_gate)));
102
103 return gototag<1>(x2);
104 }
105 };
106
107 template<int index>
108 struct data{
109 static constexpr const int _index = index;
110 };
111
112 //Find neigbours
113 template<index_t start, index_t end, index_t step, index_t index>
114 struct get_neighbour_filter
115 {
116 template<int node, int e0, int e1>
117 auto getNeighbour(std::false_type){
118 return sel<>();
119 }
120
121 template<int node, int e0, int e1>
122 auto getNeighbour(std::true_type){
123 return sel<node == e0 ? e1 : e0>();
124 }
125
126 template<typename Q_filter, typename NodeIndex, typename Graph>
127 inline constexpr auto operator()(Q_filter&& q_filter, NodeIndex, Graph) noexcept

112

128 {
129 constexpr auto e0 = Graph::template from<index>();
130 constexpr auto e1 = Graph::template to<index>();
131 constexpr bool hasNeighbour = NodeIndex::_index == e0 || NodeIndex::_index == e1;
132
133 return q_filter<<getNeighbour<NodeIndex::_index, e0, e1>(std::integral_constant<bool, hasNeighbour

>{});
134
135 }
136 };
137
138 //Arbitrary OR cphase for all connected nodes
139 template<index_t start, index_t end, index_t step, index_t index>
140 struct dsp_arb_OR_cphase
141 {
142 template<typename Expr, typename A_filter, typename AA_filter, typename Graph, typename Gamma>
143 inline constexpr auto operator()(Expr&& expr, A_filter&& a_filter, AA_filter&& aa_filter, Graph,

Gamma) noexcept
144 {
145 //Loop over graph to find connection for this node
146 constexpr auto nodeIndex = data<index>();
147 auto q_filter = utils::static_for<0, Graph::size()-1,1, get_neighbour_filter >(sel<index>(),

nodeIndex, Graph{});
148
149 //Reduce number of ancillas based on q_filter size
150 constexpr auto size = q_filter.size();
151 auto new_aa_filter = range<0,size-2>(aa_filter);
152
153 //Apply OR cphase to selected qubits
154 auto arb_OR_cphase = arb_OR<>(crz(Gamma{}),
155 q_filter(),
156 a_filter(),
157 new_aa_filter(gototag<1>(expr))
158);
159
160 return gototag<1>(arb_OR_cphase);
161 }
162 };
163
164 //DSP p iteration
165 template<index_t start, index_t end, index_t step, index_t index>
166 struct dsp_step
167 {
168 template<typename Expr, typename Graph, typename Params>
169 inline constexpr auto operator()(Expr&& expr, Graph, Params&& params) noexcept
170 {
171
172 //Set circuits parameters
173 QVar_t<2*index,1> beta(2*PI*params[2*index]);
174 QVar_t<2*index+1,1> gamma(2*PI*params[2*index+1]);
175 constexpr auto numQubits = Graph::size() == 1 ? 2 :
176 Graph::size() == 3 ? 3 :
177 Graph::size() == 4 ? 4 : Graph::size()/2; //For regular graphs
178
179 //Set ancilla filters
180 auto cost_ancilla = QFilterSelect<numQubits >();
181 auto ctrl_anchillas = QFilterSelectRange<numQubits+1, numQubits+4>();
182
183 //Inverted CRZ for each qubit on ancilla
184 auto inv_cphase = utils::static_for<0,numQubits-1,1, dsp_inv_cphase >(tag<1>(expr), cost_ancilla,

gamma);
185
186 //Logical OR for each qubit on ancilla
187 auto cost = utils::static_for<0,numQubits-1,1, dsp_arb_OR_cphase >(tag<1>(inv_cphase), cost_ancilla

, ctrl_anchillas, Graph{}, gamma);
188
189 //Mixer unitaries
190 auto mixed = rx(beta, range<0,numQubits-1>(gototag<1>(cost)));
191
192 return gototag<1>(mixed);
193 }
194 };
195
196 /* Implementation of CRY gate
197
198
199 Ry(0.5) = Ry(0.25) X Ry(-0.25) X
200
201 */
202 template<typename AnglePos, typename AngleNeg, typename CFilter, typename TFilter, typename Expr>
203 auto cry(AnglePos, AngleNeg, CFilter&& cFilter, TFilter&& tFilter, Expr&& expr){
204
205 auto RyPos = ry(AnglePos{}, tFilter(all(expr)));
206

113

207 auto cnot1 = cnot(cFilter(),
208 tFilter(all(RyPos)));
209
210 auto RyNeg = ry(AngleNeg{}, tFilter(all(cnot1)));
211
212 auto cnot2 = cnot(cFilter(),
213 tFilter(all(RyNeg)));
214
215 return all(cnot2);
216 }
217
218 /* Implementation of CCRY gate
219
220
221 =
222
223 Ry(0.5) Ry(0.25) X Ry(-0.25) X
224
225 */
226 template<typename AnglePos, typename AngleNeg, typename C0Filter, typename C1Filter, typename TFilter,

typename Expr>
227 auto ccry(AnglePos, AngleNeg, C0Filter&& c0Filter, C1Filter&& c1Filter, TFilter&& tFilter, Expr&& expr

){
228
229 auto RyPos = ry(AnglePos{}, tFilter(all(expr)));
230
231 auto ccnot1 = ccnot(c0Filter(),
232 c1Filter(),
233 tFilter(all(RyPos)));
234
235 auto RyNeg = ry(AngleNeg{}, tFilter(all(ccnot1)));
236
237 auto ccnot2 = ccnot(c0Filter(),
238 c1Filter(),
239 tFilter(all(RyNeg)));
240
241 return all(ccnot2);
242 }
243
244 //TSP inital state encoding: Dicke state with Hamming weight 2
245 //Implemenation by Mukherjee et. al. (2020)
246 template<index_t start, index_t end, index_t step, index_t index>
247 struct tsp_scs
248 {
249 template<typename Expr, typename RowFilter>
250 inline constexpr auto operator()(Expr&& expr, RowFilter&& rowFilter) noexcept
251 {
252 //Setup filters for SCS iteration (three qubits for Hamming weight 2)
253 auto q0filter = QFilterSelect<end-index>()(rowFilter);
254 auto q1filter = QFilterSelect<end-index+1>()(rowFilter);
255 auto q2filter = QFilterSelect<end-index+2>()(rowFilter);
256
257 //Select angles for SCS iteration
258 double angle0 = 2*std::acos(std::sqrt(1.0/(end+3-index)));
259 double angle1 = 2*std::acos(std::sqrt(2.0/(end+3-index)));
260
261 //Set angles to QVars with unique index (divided by 2 for CRY and CCRY gates)
262 QVar_t <300+index*4+0> angle0pos(angle0/2);
263 QVar_t <300+index*4+1> angle0neg(-angle0/2);
264 QVar_t <300+index*4+2> angle1pos(angle1/2);
265 QVar_t <300+index*4+3> angle1neg(-angle1/2);
266
267 //Add mu block
268 auto mu = gototag<2>(cnot(q1filter(),
269 q2filter(gototag<2>(cry(angle0pos,
270 angle0neg,
271 q2filter(),
272 q1filter(),
273 gototag<2>(cnot(q1filter(),
274 q2filter(expr)
275)
276)
277)
278)
279)
280)
281);
282
283 //Add M block
284 auto M = gototag<2>(cnot(q0filter(),
285 q2filter(gototag<2>(ccry(angle1pos,
286 angle1neg,
287 q2filter(),
288 q1filter(),

114

289 q0filter(),
290 gototag<2>(cnot(q0filter(),
291 q2filter(mu))
292)
293
294)
295)
296)
297)
298);
299
300 return gototag<2>(M);
301 }
302 };
303
304 //TSP inital state encoding
305 template<index_t start, index_t end, index_t step, index_t index>
306 struct tsp_init
307 {
308 template<typename Expr>
309 inline constexpr auto operator()(Expr&& expr) noexcept
310 {
311
312 auto rowFilter = QFilterSelectRange<index, index+step-1>();
313
314 auto flipFilter = QFilterSelect<step-2, step-1>()(rowFilter);
315
316 //Dicke state of k = 2: Flip bottom two qubits
317 auto flips = gototag<2>(x(flipFilter(expr)));
318
319 //Execute SCS blocks
320 auto scs = utils::static_for<0, step-3, 1, tsp_scs>(flips, rowFilter);
321
322 //Add final SCS block
323 double angle = 2*std::acos(std::sqrt(1.0/2));
324 QVar_t <400+index*2+0> anglepos(angle/2);
325 QVar_t <400+index*2+1> angleneg(-angle/2);
326 auto scs_final = gototag<2>(cnot(sel<0>(rowFilter()),
327 sel<1>(rowFilter(gototag<2>(cry(anglepos,
328 angleneg,
329 sel<1>(rowFilter()),
330 sel<0>(rowFilter()),
331 gototag<2>(cnot(sel<0>(rowFilter

()),
332 sel<1>(rowFilter(

scs))
333)
334)
335)
336)
337))
338)
339);
340
341 return gototag<2>(scs_final);
342 }
343 };
344
345 //Struct to pass constexpressions in function parameters (indices in this case)
346 template<int index>
347 struct IndexPass{
348 static constexpr const int getIndex(){return index;}
349 };
350
351 //TSP: loop over all qubits
352 template<index_t start, index_t end, index_t step, index_t index>
353 struct tsp_qubit_loop
354 {
355 template<typename Expr, typename D_Matrix, typename NumCities, typename Gamma>
356 inline constexpr auto operator()(Expr&& expr, D_Matrix&& D_matrix, NumCities&& numCities, Gamma&&

gamma) noexcept
357 {
358 //Set Rz angle bases on D_matrix weights
359 QVar_t <100+index,1> angle(gamma/(2*PI)*D_matrix[index/numCities][index%numCities]);
360
361 return gototag<2>(rz(angle, sel<index>(gototag<2>(expr))));
362 }
363 };
364
365 //TSP: loop over all couplings
366 template<index_t start, index_t end, index_t step, index_t index>
367 struct tsp_coupling_loop
368 {
369 template<typename Expr, typename FullGraph, typename Gamma>

115

370 inline constexpr auto operator()(Expr&& expr, FullGraph, Gamma&& gamma) noexcept
371 {
372 //RZZ angle is 5 gamma
373 QVar_t<200,1> angle(5*gamma/PI);
374
375 //Link all qubits that are symmetrically opposite of the matrix diagonal
376 constexpr int e0 = FullGraph::template from<index>();
377 constexpr int e1 = FullGraph::template to<index>();
378 constexpr int numCities = (1+ct_math::ct_sqrt(1+8*FullGraph::size()))/2;
379 constexpr int q0 = e0*numCities + e1;
380 constexpr int q1 = e1*numCities + e0;
381
382 return gototag<2>(rzz(angle, sel<q0>(gototag<2>()), sel<q1>(gototag<2>(expr))));
383 }
384 };
385
386 //TSP: rxx loop
387 template<index_t start, index_t end, index_t step, index_t index>
388 struct tsp_rxx_loop
389 {
390 template<typename Expr, typename Beta>
391 inline constexpr auto operator()(Expr&& expr, Beta&& beta) noexcept
392 {
393 constexpr int N = end-start+1;
394 constexpr int q0 = index;
395 constexpr int q1 = index-start == N-1 ? start : index+1;
396 return rxx(beta,
397 sel<q0>(gototag<2>()),
398 sel<q1>(gototag<2>(expr)));
399
400 }
401 };
402
403 //TSP: ryy loop
404 template<index_t start, index_t end, index_t step, index_t index>
405 struct tsp_ryy_loop
406 {
407 template<typename Expr, typename Beta>
408 inline constexpr auto operator()(Expr&& expr, Beta&& beta) noexcept
409 {
410 constexpr int N = end-start+1;
411 constexpr int q0 = index;
412 constexpr int q1 = index-start == N-1 ? start : index+1;
413 return ryy(beta,
414 sel<q0>(gototag<2>()),
415 sel<q1>(gototag<2>(expr)));
416 }
417 };
418
419
420 //TSP: loop over all nodes
421 template<index_t start, index_t end, index_t step, index_t index>
422 struct tsp_node_loop
423 {
424 template<typename Expr, typename Beta>
425 inline constexpr auto operator()(Expr&& expr, Beta&& beta) noexcept
426 {
427 //Decomposed SWAP gate (SWAP_{ij} = e^{X_i X_j + Y_i Y_j})
428 constexpr int N = end+1;
429 auto rxx1 = utils::static_for<N*index, N*index+N-1, 1, tsp_rxx_loop >(gototag<2>(expr), beta);
430 auto ryy1 = utils::static_for<N*index, N*index+N-1, 1, tsp_ryy_loop >(gototag<2>(rxx1), beta);
431
432 return gototag<2>(ryy1);
433 }
434 };
435
436 //TSP p itersation
437 template<index_t start, index_t end, index_t step, index_t index>
438 struct tsp_step
439 {
440 template<typename Expr, typename Graph, typename FullGraph, typename D_Matrix, typename Params>
441 inline constexpr auto operator()(Expr&& expr, Graph, FullGraph fullGraph, D_Matrix&& D_matrix,

Params&& params) noexcept
442 {
443 //Set circuits parameters
444 QVar_t<2*index,1> beta(-(params[2*index]-0.5));///(end+1));
445 auto gamma = (2*PI*(params[2*index+1]-0.5));///(end+1));
446 constexpr auto numCities = Graph::size() == 3 ? 3 :
447 Graph::size() == 4 ? 4 :
448 Graph::size()/2; //For regular graphs
449
450 //Cost hamiltonians
451 //Soft constraint, enforcing minimal travel distance
452 auto cost_soft = utils::static_for<0,

116

453 numCities*numCities-1,
454 1,
455 tsp_qubit_loop >(gototag<2>(expr), D_matrix, numCities, gamma);
456
457 //Hard constraint, enforcing a symmetric adjacency matrix
458 auto cost_hard = utils::static_for<0, FullGraph::size()-1, 1, tsp_coupling_loop >(gototag<2>(

cost_soft), FullGraph{}, gamma);
459
460 //Mixer hamiltonian: Mixes the solution space
461 auto mixer = utils::static_for<0, numCities-1, 1, tsp_node_loop >(gototag<2>(cost_hard), beta);
462
463 return gototag<2>(mixer);
464 }
465 };
466
467 //Arbitrary NOR X-rotation for all connected nodes
468 template<index_t start, index_t end, index_t step, index_t index>
469 struct mis_NOR_rotX
470 {
471 template<typename Expr, typename Ancillas, typename Graph, typename Beta, typename P>
472 inline constexpr auto operator()(Expr&& expr, Ancillas&& ancillas, Graph, Beta, P) noexcept
473 {
474 //Loop over graph to find connection for this node
475 constexpr size_t current_node = (index + P::_index) % (end+1);
476 constexpr auto nodeIndex = data<current_node >();
477 auto c_filter = utils::static_for<0,Graph::size()-1,1, get_neighbour_filter >(sel<>(), nodeIndex,

Graph{});
478 auto t_filter = sel<current_node >();
479
480 //Reduce number of ancillas based on q_filter size
481 constexpr auto size = c_filter.size();
482 auto new_ancillas = range<0,size-2>(ancillas);
483 auto c_last_filter = sel<size-2>(new_ancillas);
484
485 //Apply OR cphase to selected qubits
486 auto x1 = x(c_last_filter(gototag<3>(expr)));
487 auto arb_OR_crz= arb_OR<>(crx(Beta{}),
488 c_filter(),
489 t_filter(),
490 new_ancillas(gototag<3>(x1))
491);
492 auto x2 = x(c_last_filter(gototag<3>(arb_OR_crz)));
493
494 return gototag<3>(x2);
495 }
496 };
497
498 //MIS p iteration
499 template<index_t start, index_t end, index_t step, index_t index>
500 struct mis_step
501 {
502 template<typename Expr, typename Graph, typename Params>
503 inline constexpr auto operator()(Expr&& expr, Graph, Params&& params) noexcept
504 {
505
506 //Set circuits parameters
507 QVar_t<2*index,1> beta(PI/2*params[2*index]);
508 QVar_t<2*index+1,1> gamma(2*PI*params[2*index+1]);
509 constexpr auto numQubits = Graph::size() == 1 ? 2 :
510 Graph::size() == 3 ? 3 :
511 Graph::size() == 4 ? 4 : Graph::size()/2; //For regular graphs
512
513 //Set ancilla filters
514 auto ancillas = QFilterSelectRange<numQubits, numQubits+3>();
515
516 //Cost Hamiltonian
517 auto cost = rz(gamma, range<0,numQubits-1>(gototag<3>(expr)));
518
519 //Mixer unitaries
520 constexpr auto P = data<index>();
521 auto mixed = utils::static_for<0,
522 numQubits-1,
523 1,
524 mis_NOR_rotX >(gototag<3>(cost), ancillas, Graph{}, beta, P);
525
526 return gototag<3>(mixed);
527 }
528 };
529
530 }
531
532 #endif //QAOA_LOOPS_HPP

Listing E.6: QAOA_Loops.hpp code of the QPack benchmark in LibKet.

117

1 /** @file Qpack/include/VQE.hpp
2
3 @brief Qpack VQE header file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 #pragma once
11 #ifndef VQE_HPP
12 #define VQE_HPP
13
14 #include <LibKet.hpp>
15 #include "../include/VQA.hpp"
16 #include "../include/VQE_Loops.hpp"
17 #include "../include/VQE_Hamiltonians.hpp"
18 #include "../include/VQE_Ansatzes.hpp"
19
20 using namespace LibKet;
21 using namespace LibKet::circuits;
22 using namespace LibKet::filters;
23 using namespace LibKet::gates;
24
25 #define PI 3.14159265358979323846 /* pi */
26
27
28 /*
29 @brief: This class implements all necessary functionalities of the VQE algorithm, such
30 as determining the amount of qubits and statespace for a given problem. The class
31 is able to generate VQE circuits, execute these circuits and give an expectation
32 value for each problem.
33 */
34 template <vqa_problems problem, int problem_size, int shots, QDeviceType qpuID>
35 class VQE : public VQA{
36
37 public:
38
39 //Return QPU ID
40 static QDeviceType getQpuID(){
41 return qpuID;
42 }
43
44 //Return problem
45 static vqa_problems getProblem(){
46 return problem;
47 }
48
49 //Return number of shots
50 static int getNumShots(){
51 return shots;
52 }
53
54 //Return P for VQE (not applicable)
55 static int getP(){
56 return 0;
57 }
58
59 //Return problem size
60 static int getSize(){
61 return problem_size;
62 }
63
64 //Returns the number of qubits based on selected problem
65 static constexpr auto getNumQubits(){
66 return problem == RH ? problem_size :
67 problem == IC ? problem_size :
68 1;
69 }
70
71 private:
72 //Returns the size of the histogram based on selected problem
73 static constexpr auto getHistSize(){
74 return 2 << getNumQubits();
75 }
76
77 //Variable to store qpu result
78 QArray<getHistSize(), unsigned long> _hist;
79 int _numParams = 1;
80
81 //Struct containing QPU info to pass as constexpr function parameter
82 struct QPU_Info{
83 static constexpr const int _qubits = getNumQubits();
84 static constexpr const int _shots = shots;

118

85 static constexpr const QDeviceType _qpuID = qpuID;
86 };
87
88 //Static for loop to retreive Hamiltonian terms
89 template<index_t start, index_t end, index_t step, index_t index>
90 struct term_loop
91 {
92 template<typename Vec, typename H_mol>
93 inline constexpr auto operator()(Vec&& vec, H_mol) noexcept
94 {
95 vec[index] = H_mol::_terms[index];
96 return vec;
97 }
98 };
99

100 //Converts a Qpack Hamiltonian to an armadillo hamiltonian.
101 //Returns real value of Hamiltonian.
102 template<typename H_mol>
103 arma::cx_mat arma_hamiltonian(H_mol h_mol){
104
105 //Complex contants (0, i, 1)
106 std::complex<double> c_0(0,0);
107 std::complex<double> c_i(0,1);
108 std::complex<double> c_1(1,0);
109
110 //Pauli matrices
111 arma::cx_mat I = {{c_1, c_0}, {c_0, c_1}};
112 arma::cx_mat X = {{c_0, c_1}, {c_1, c_0}};
113 arma::cx_mat Y = {{c_0, -c_i}, {c_i, c_0}};
114 arma::cx_mat Z = {{c_1, c_0}, {c_0, -c_1}};
115
116 //Create an char array that read the terms of the Qpack Hamiltonian
117 char empty_vec[H_mol::_numTerms*H_mol::_qubits];
118 auto P = utils::static_for<0, H_mol::_numTerms*H_mol::_qubits-1, 1, term_loop>(empty_vec, h_mol);
119
120 //Loop oper all Hamiltonian terms and create armadillo hamiltonian with kronecker products
121 int mat_size = 2<<(getNumQubits()-1);
122 arma::cx_mat H(mat_size, mat_size);
123 for(int t=0; t < H_mol::_numTerms; t++){
124
125 arma::cx_mat kronecker;
126 for(int q=0; q < H_mol::_qubits; q++){
127
128 arma::cx_mat pauli;
129 switch(P[t*H_mol::_qubits+q]){
130 case 'I':
131 pauli = I;
132 break;
133 case 'X':
134 pauli = X;
135 break;
136 case 'Y':
137 pauli = Y;
138 break;
139 case 'Z':
140 pauli = Z;
141 break;
142 }
143 if(q == 0){ //First product is the first pauli matrix
144 kronecker = pauli;
145 }
146 else{ //Tensor with previous pauli
147 kronecker = arma::kron(kronecker, pauli);
148 }
149 }
150
151 //Scale by term coefficient and sum to total Hamiltonian
152 H += h_mol._coeffs[t]*kronecker;
153 }
154
155 return H;
156
157 }
158
159 //Functions to return ansatz and Hamiltonian based on problem set
160 template< typename paramType>
161 auto genAnsatz(std::integral_constant<vqa_problems, RH>, paramType params){
162 return Ansatzes::genRandomAnsatz<problem_size >(params);
163 }
164
165 template< typename paramType>
166 auto genAnsatz(std::integral_constant<vqa_problems, IC>, paramType params){
167 return Ansatzes::genIsingAnsatz<problem_size >(params);
168 }

119

169
170 //Functions to select which Hamiltonian to use based on problem
171 auto genHamiltonian(std::integral_constant<vqa_problems, RH>){
172 return Hamiltonians::genDiagonalHamiltonian <problem_size >();
173 }
174
175 //Functions to select which Hamiltonian to use based on problem
176 auto genHamiltonian(std::integral_constant<vqa_problems, IC>){
177 return Hamiltonians::genIsingHamiltonian<problem_size >();
178 }
179
180 //QAOA functions (TODO: Fix general default)
181 template< typename paramType>
182 auto genAnsatz(std::integral_constant<vqa_problems, MCP>, paramType params){ return init(); }
183
184 template< typename paramType>
185 auto genAnsatz(std::integral_constant<vqa_problems, MIS>, paramType params){ return init(); }
186
187 template< typename paramType>
188 auto genAnsatz(std::integral_constant<vqa_problems, DSP>, paramType params){ return init(); }
189
190 template< typename paramType>
191 auto genAnsatz(std::integral_constant<vqa_problems, TSP>, paramType params){ return init(); }
192
193 auto genHamiltonian(std::integral_constant<vqa_problems, MCP>){ return Hamiltonians::

genDiagonalHamiltonian <1>();}
194 auto genHamiltonian(std::integral_constant<vqa_problems, MIS>){ return Hamiltonians::

genDiagonalHamiltonian <1>();}
195 auto genHamiltonian(std::integral_constant<vqa_problems, DSP>){ return Hamiltonians::

genDiagonalHamiltonian <1>();}
196 auto genHamiltonian(std::integral_constant<vqa_problems, TSP>){ return Hamiltonians::

genDiagonalHamiltonian <1>();}
197
198 public:
199 //Information constant
200 const int id = 1; //VQE ID
201 const std::string name = "VQE";
202
203 //Constructor
204 VQE(){}
205
206 //Run VQE circuits
207 template <typename paramType>
208 void run(paramType params, bool printCircuit) {
209
210 //Generate ansatz circuit
211 auto ansatz = genAnsatz(std::integral_constant<vqa_problems, problem>{}, params);
212
213 //H2 coefficients and Hamiltonian gates
214 auto H_mol = genHamiltonian(std::integral_constant<vqa_problems, problem >{});
215
216 //Run VQE circuits and get expecation value
217 constexpr auto qpu_info = QPU_Info();
218 std::vector<float> execDurations = {};
219 std::vector<float> jobDurations = {};
220 std::vector<float> queueDurations = {};
221
222 float expectation = utils::static_for<0, 0, 1, VQE_Loops::pauli_measurements >(0.0, ansatz, H_mol,

qpu_info, &execDurations, &jobDurations, &queueDurations, printCircuit);
223
224 //Store measurements (average of all circuits)
225 _execDuration = 0.0;
226 _jobDuration = 0.0;
227 _queueDuration = 0.0;
228
229 for(int i=0; i < execDurations.size(); i++){
230 _execDuration += execDurations[i];
231 }
232 _execDuration /= execDurations.size();
233
234 for(int i=0; i < jobDurations.size(); i++){
235 _jobDuration += jobDurations[i];
236 }
237 _jobDuration /= jobDurations.size();
238
239 for(int i=0; i < queueDurations.size(); i++){
240 _queueDuration += queueDurations[i];
241 }
242 _queueDuration /= queueDurations.size();
243
244 _expectation = expectation;
245 }
246
247 //Compute classical solution

120

248 float classicalExpectation(){
249
250 //Check classical solution
251 auto H_mol = genHamiltonian(std::integral_constant<vqa_problems, problem >{});
252 arma::cx_mat H_BK = arma_hamiltonian(H_mol);
253 arma::vec eigval = arma::sort(arma::eig_sym(real(H_BK)));
254
255 //arma::cout << eigval << std::endl;
256
257 return eigval[0];
258 }
259
260 //Return histogram results
261 auto getHist(){
262 return _hist;
263 }
264
265 //Return number of optimizer parameters
266 int getNumParams(){
267 return problem == RH ? problem_size :
268 problem == IC ? problem_size*4 :
269 0;
270 }
271
272 float getOptimalScore(){
273 return classicalExpectation();
274 }
275
276 //Return circuit depth
277 double getCircuitDepth(){
278 return problem == RH ? 2.0 :
279 problem == IC ? 4.0 + 2*(problem_size -1) + 0.5:
280 0;
281 }
282 };
283
284 #endif //VQE_HPP

Listing E.7: VQE.hpp code of the QPack benchmark in LibKet.

1 /** @file Qpack/include/VQE_Loops.hpp
2
3 @brief Qpack VQE_Loops header file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 #pragma once
11 #ifndef VQE_LOOPS_HPP
12 #define VQE_LOOPS_HPP
13
14 #include <LibKet.hpp>
15 #include <math.h>
16
17 using namespace LibKet;
18 using namespace LibKet::circuits;
19 using namespace LibKet::filters;
20 using namespace LibKet::gates;
21
22 namespace VQE_Loops{
23
24 //Struct to pass constexpr as function parameter
25 template<int I>
26 struct static_int{
27 static constexpr const int _I = I;
28 };
29
30 //VQE Pauli measurement loop
31 template<index_t start, index_t end, index_t step, index_t index>
32 struct pauli_measurement_gates
33 {
34
35 //Functions to select which expectation function to use based on problem
36 template<typename Expr>
37 auto pauli_measure(std::integral_constant<char, 'I'>, Expr&& expr){
38 return all(expr);
39 }
40
41 template<typename Expr>
42 auto pauli_measure(std::integral_constant<char, 'Z'>, Expr&& expr){
43 return all(expr);

121

44 }
45
46 template<typename Expr>
47 auto pauli_measure(std::integral_constant<char, 'Y'>, Expr&& expr){
48 return all(h(sdag(expr)));
49 }
50
51 template<typename Expr>
52 auto pauli_measure(std::integral_constant<char, 'X'>, Expr&& expr){
53 return all(h(expr));
54 }
55
56
57 template<typename Expr, typename H_mol, typename TermIndex>
58 inline constexpr auto operator()(Expr&& expr, H_mol, TermIndex) noexcept
59 {
60 constexpr char pauli = H_mol::_terms[TermIndex::_I*H_mol::_qubits + index];
61 return pauli_measure(std::integral_constant<char, pauli>{}, sel<index>(expr));
62 }
63 };
64
65 //Convert Histogram output to expectation value
66 template<typename HistType>
67 float histToExp(HistType hist){
68
69 //Initialize expectation value an total number of shots to zero
70 long expectation = 0;
71 long shots = 0;
72
73 //Loop over all states
74 for(int state = 0; state < hist.size(); state++){
75 std::bitset<ct_math::ct_sqrt(hist.size())> bits(state); //Get bitset based on hist index
76
77 //Add expectations bases on bitset parity
78 if(bits.count() % 2 == 0){ //Even
79 expectation += (long)hist[state];
80 }else{ //Odd
81 expectation -= (long)hist[state];
82 }
83 shots += hist[state];
84 }
85 //Return expecation over all shots
86 return (float)expectation/(float)shots;
87 }
88
89 template<typename HistType, typename H_mol>
90 auto reduced_hist(int index, HistType hist, H_mol h_mol){
91
92 //std::cout << "Terms: " << h_mol._numTerms << std::endl;
93 //std::cout << "Qubits: " << h_mol._qubits << std::endl;
94
95 std::vector<int> measure_base = {};
96 QArray<1 << h_mol._qubits, unsigned long> reducedHist;
97
98 for(int i=0; i < h_mol._qubits; i++){
99 char pauli = h_mol._terms[index*h_mol._qubits + i];

100 if(pauli != 'I'){
101 measure_base.push_back(i);
102 }
103 }
104
105 for(int i=0; i < hist.size(); i++){
106
107 //Convert state number to bitstring
108 std::bitset<H_mol::_qubits> bits(i);
109 std::bitset<H_mol::_qubits> subset(0);
110
111 for(int j=0; j < measure_base.size(); j++){
112 std::bitset<H_mol::_qubits> mask(bits[measure_base[j]] << measure_base[j]);
113 subset = subset | mask;
114 }
115
116 //std::cout << subset << std::endl;
117 reducedHist[subset.to_ulong()] += hist[i];
118 }
119
120 return reducedHist;
121 }
122
123 //VQE Pauli measurement loop
124 template<index_t start, index_t end, index_t step, index_t index>
125 struct pauli_measurements
126 {
127 template<typename Expectation, typename Ansatz, typename H_mol, typename QPU_Info>

122

128 inline constexpr auto operator()(Expectation&& expectation,
129 Ansatz&& ansatz,
130 H_mol& h_mol,
131 QPU_Info,
132 std::vector<float>* execDurations,
133 std::vector<float>* jobDurations,
134 std::vector<float>* queueDurations,
135 bool printCircuit) noexcept
136 {
137 //Append pauli measurement gates based on Hamiltonian
138 constexpr auto termIndex = static_int<index>();
139 auto expr = utils::static_for<0, H_mol::_qubits-1, 1, pauli_measurement_gates >(ansatz, H_mol{},

termIndex);
140
141 //Execute circuit on quantum backend
142 QDevice<QPU_Info::_qpuID, QPU_Info::_qubits> qpu_z;
143 QDevice<QPU_Info::_qpuID, QPU_Info::_qubits> qpu_x;
144 QArray<1 << QPU_Info::_qubits, unsigned long> hist_z;
145 QArray<1 << QPU_Info::_qubits, unsigned long> hist_x;
146
147
148 if(QPU_Info::_qpuID != QDeviceType::quest and
149 QPU_Info::_qpuID != QDeviceType::qx){
150
151 //Retrieve Z-basis results
152 qpu_z(measure_z(ansatz));
153 auto job_z = qpu_z.execute(QPU_Info::_shots);
154
155 //Store results
156 execDurations->push_back(qpu_z.template get<QResultType::duration>(job_z->get()).count());
157 jobDurations->push_back(qpu_z.template get<QResultType::jobDuration >(job_z->get()).count());
158 queueDurations->push_back(qpu_z.template get<QResultType::queueDuration >(job_z->get()).count());
159 auto _hist_z = qpu_z.template get<QResultType::histogram>(job_z->get());
160
161 for(int i=0; i < (1 << QPU_Info::_qubits); i++){
162 hist_z[i] = _hist_z[i];
163 }
164
165 //Retrieve X-basis results
166 qpu_x(measure_x(ansatz));
167 auto job_x = qpu_x.execute(QPU_Info::_shots);
168
169 //Store results
170 execDurations->push_back(qpu_x.template get<QResultType::duration>(job_x->get()).count());
171 jobDurations->push_back(qpu_x.template get<QResultType::jobDuration >(job_x->get()).count());
172 queueDurations->push_back(qpu_x.template get<QResultType::queueDuration >(job_x->get()).count());
173 auto _hist_x = qpu_x.template get<QResultType::histogram>(job_x->get());
174
175 for(int i=0; i < (1 << QPU_Info::_qubits); i++){
176 hist_x[i] = _hist_x[i];
177 }
178
179
180 } else{
181
182 qpu_z(ansatz);
183 auto job_z = qpu_z.execute(QPU_Info::_shots);
184
185 qpu_x(h(ansatz));
186 auto job_x = qpu_x.execute(QPU_Info::_shots);
187
188 #if QUEST_ENABLE
189 execDurations->push_back(qpu_z.duration_s());
190 jobDurations->push_back(qpu_z.duration_s());
191 queueDurations->push_back(0.0);
192 auto probs_z = qpu_z.probabilities();
193
194 for(int i=0; i < (1 << QPU_Info::_qubits); i++){
195 hist_z[i] = 0;
196 }
197
198 for(int i=0; i < (1 << QPU_Info::_qubits); i++){
199
200 hist_z[i] += QPU_Info::_shots*probs_z[i];
201 }
202
203 execDurations->push_back(qpu_x.duration_s());
204 jobDurations->push_back(qpu_x.duration_s());
205 queueDurations->push_back(0.0);
206 auto probs_x = qpu_x.probabilities();
207
208 for(int i=0; i < (1 << QPU_Info::_qubits); i++){
209 hist_x[i] = 0;
210 }

123

211
212 for(int i=0; i < (1 << QPU_Info::_qubits); i++){
213
214 hist_x[i] += QPU_Info::_shots*probs_x[i];
215 }
216 #else
217 std::cout << "\nPlease enable QuEST macro. Exiting..." << std::endl;
218 std::exit(0);
219 #endif
220 }
221
222 //Print circuit if enabled (with Qiskit)
223 if(printCircuit){
224 QDevice<QDeviceType::qiskit_aer_simulator , QPU_Info::_qubits> qiskit;
225 qiskit(expr);
226 std::cout << qiskit.print_circuit() << std::endl;
227 }
228
229 //Loop over all Hamiltonian terms
230 for(int i = 0; i < H_mol::_numTerms; i++){
231
232 bool z_flag = false;
233 bool x_flag = false;
234
235 for(int j = 0; j < H_mol::_qubits; j++){
236 char term = H_mol::_terms[i*H_mol::_qubits + j];
237
238 if(term == 'Z'){
239 z_flag = true;
240 }
241
242 if(term == 'X'){
243 x_flag = true;
244 }
245 }
246
247 //Reduce histogram
248 QArray<1 << QPU_Info::_qubits, unsigned long> reducedHist;
249 if(z_flag){
250 reducedHist = reduced_hist(i, hist_z, h_mol);
251 } else if(x_flag){
252 reducedHist = reduced_hist(i, hist_x, h_mol);
253 }
254
255 //Add partial expectation to total
256 expectation += h_mol._coeffs[i]*histToExp(reducedHist);
257 }
258
259 //Debugging
260 //std::cout <<"Histogram: " << hist << std::endl;
261 //std::cout <<"Reduced histogram: " << reduced_hist<index>(hist, h_mol) << std::endl;
262 //std::cout << "Partial expectation: " << h_mol._coeffs[index]*histToExp(hist) << std::endl;
263
264 return expectation;
265 }
266 };
267 }; //namespace VQE_LOOPS
268
269 #endif //VQE_LOOPS_HPP

Listing E.8: VQE_Loops.hpp code of the QPack benchmark in LibKet.

1 /** @file Qpack/include/VQE_Ansatzes.hpp
2
3 @brief Qpack VQE_Ansatzes header file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 #pragma once
11 #ifndef VQE_ANSATZES_HPP
12 #define VQE_ANSATZES_HPP
13
14 namespace Ansatzes{
15
16 ///////Random Anzats//////////////////////////////
17
18 //Applies Rx gate for all indices with indexed parameter values
19 template<index_t start, index_t end, index_t step, index_t index>
20 struct rotX_loop
21 {

124

22 template<typename Expr, typename Params>
23 inline constexpr auto operator()(Expr&& expr, Params&& params) noexcept
24 {
25 QVar_t <100+index, 1> angle(2*PI*params[index]);
26 return all(rx(angle, sel<index>(expr)));
27 }
28
29 template<typename Expr, typename Params, typename Offset> //Overload function that adds an offset
30 inline constexpr auto operator()(Expr&& expr, Params&& params, Offset) noexcept
31 {
32 QVar_t <200+index+Offset::_I, 1> angle(2*PI*params[index+Offset::_I]);
33 return all(rx(angle, sel<index>(expr)));
34 }
35 };
36
37 //Generate ansatz for random diagonal hamiltonian
38 template <int size, typename paramType>
39 constexpr auto genRandomAnsatz(paramType params){
40
41 auto s0 = init();
42
43 //RotX gates on all qubits for different parameters
44 auto RotX = utils::static_for<0, size-1, 1, rotX_loop>(s0, params);
45
46 return RotX;
47 };
48
49 ///////Ising chain Ansatz//////////////////////////////
50
51 template<index_t start, index_t end, index_t step, index_t index>
52 struct rotY_loop
53 {
54 template<typename Expr, typename Params>
55 inline constexpr auto operator()(Expr&& expr, Params&& params) noexcept
56 {
57 QVar_t <300+index, 1> angle(2*PI*params[index]);
58 return all(ry(angle, sel<index>(expr)));
59 }
60
61 template<typename Expr, typename Params, typename Offset>
62 inline constexpr auto operator()(Expr&& expr, Params&& params, Offset) noexcept
63 {
64 QVar_t <400+index+Offset::_I, 1> angle(2*PI*params[index+Offset::_I]);
65 return all(ry(angle, sel<index>(expr)));
66 }
67 };
68
69 template<index_t start, index_t end, index_t step, index_t index>
70 struct rotZ_loop
71 {
72 template<typename Expr, typename Params>
73 inline constexpr auto operator()(Expr&& expr, Params&& params) noexcept
74 {
75 QVar_t <500+index, 1> angle(2*PI*params[index]);
76 return all(rz(angle, sel<index>(expr)));
77 }
78
79 template<typename Expr, typename Params, typename Offset>
80 inline constexpr auto operator()(Expr&& expr, Params&& params, Offset) noexcept
81 {
82 QVar_t <600+index+Offset::_I, 1> angle(2*PI*params[index+Offset::_I]);
83 return all(rz(angle, sel<index>(expr)));
84 }
85 };
86
87 template<index_t start, index_t end, index_t step, index_t index>
88 struct CNOT_inner_loop
89 {
90 template<typename Expr>
91 inline constexpr auto operator()(Expr&& expr) noexcept
92 {
93 return all(cnot(sel<start>(), sel<index+1>(expr)));
94 }
95
96 };
97
98 template<index_t start, index_t end, index_t step, index_t index>
99 struct CNOT_outer_loop

100 {
101 template<typename Expr>
102 inline constexpr auto operator()(Expr&& expr) noexcept
103 {
104 return utils::static_for<index, end, 1, CNOT_inner_loop >(expr);
105 }

125

106
107 };
108
109 template <int size, typename paramType>
110 constexpr auto genIsingAnsatz(paramType params){
111
112 //Initialize zeros
113 auto s0 = init();
114
115 //Parameter offsets
116 auto offset1 = VQE_Loops::static_int<size>();
117 auto offset2 = VQE_Loops::static_int <2*size>();
118 auto offset3 = VQE_Loops::static_int <3*size>();
119
120 //Linear efficient anzats (Qiskit)
121 auto RotY1 = utils::static_for<0, size-1, 1, rotY_loop>(s0, params);
122 auto RotZ1 = utils::static_for<0, size-1, 1, rotZ_loop>(RotY1, params, offset1);
123 auto cnots = utils::static_for<0, size-2, 1, CNOT_outer_loop >(RotZ1);
124 auto RotY2 = utils::static_for<0, size-1, 1, rotY_loop>(cnots, params, offset2);
125 auto RotZ2 = utils::static_for<0, size-1, 1, rotZ_loop>(RotY2, params, offset3);
126
127 return RotZ2;
128 };
129
130 }; //namespace Anzatses
131
132 #endif //VQE_ANSATZES_HPP

Listing E.9: VQE_Ansatzes.hpp code of the QPack benchmark in LibKet.

1 /** @file Qpack/include/VQE_Hamiltonians.hpp
2
3 @brief Qpack VQE_Hamiltonians header file
4
5 @author Huub Donkers
6
7 @defgroup qpack libket
8 */
9

10 #pragma once
11 #ifndef VQE_HAMILTONIANS_HPP
12 #define VQE_HAMILTONIANS_HPP
13
14 namespace Hamiltonians{
15
16 //Struct that containt Hamiltonian of Pauli matrices
17 template<int numTerms, int numQubits, char... terms>
18 struct Hamiltonian{
19 static constexpr const int _numTerms = numTerms;
20 static constexpr const int _qubits = numQubits;
21 static constexpr const char _terms[] = {terms...};
22 float _coeffs[numTerms] = {};
23
24 // Creates a new Hamiltonian with additional pauli operator
25 template<char pauli>
26 using add_pauli = Hamiltonian<numTerms, numQubits, terms..., pauli>;
27
28 };
29
30
31 ////////////Random Hamiltonian//////////////////////////////////////
32
33 //Loops over all qubits and assigns Z or I gate bases on qubit index and term index
34 template<index_t start, index_t end, index_t step, index_t index>
35 struct z_loop_inner
36 {
37 static constexpr auto pauli_mat(std::integral_constant<bool, false>){ return 'I';}
38 static constexpr auto pauli_mat(std::integral_constant<bool, true>){ return 'Z';}
39
40 template<typename H, typename TermIndex>
41 inline constexpr auto operator()(H&& h, TermIndex) noexcept
42 {
43 //Get pauli char based on index
44 constexpr char pauli = pauli_mat(std::integral_constant<bool,index==TermIndex::_I>{});
45
46 //Return new Hamiltonian with added pauli gate
47 return typename std::decay<H>::type::template add_pauli<pauli> {};
48 }
49 };
50
51 //Loops over all Hamiltonian terms
52 template<index_t start, index_t end, index_t step, index_t index>
53 struct z_loop_outer

126

54 {
55 template<typename H, typename size>
56 inline constexpr auto operator()(H&& h, size) noexcept
57 {
58 constexpr auto termIndex = VQE_Loops::static_int<index>();
59 return utils::static_for<0, size::_I-1, 1, z_loop_inner >(H{}, termIndex);
60 }
61 };
62
63 template<int size=1>
64 constexpr auto genDiagonalHamiltonian(){
65
66 //Random constant floats (100)
67 float random_floats[] = {-0.5744, 0.8371, -0.3355, 0.5271, 0.4706, -0.8478, 0.6888, 0.3292, -0.9607,

0.3222, -0.5105, -0.9897, -0.7715, 0.7951, 0.9434, -0.4727, 0.9197, 0.4264, -0.4883, 0.621, 0.4916,
0.1467, 0.0373, -0.28, -0.7621, 0.2613, 0.5845, -0.1643, -0.3134, -0.7457, -0.0752, 0.3431, 0.3516,
-0.2646, -0.2114, -0.4217, 0.3649, -0.3971, 0.9196, 0.2383, -0.6071, -0.939, 0.6689, -0.2127,
-0.3769, 0.1525, -0.088, 0.2868, 0.8808, -0.0309, -0.4611, 0.1063, -0.6852, 0.4813, -0.2738, 0.2184,
0.9295, 0.9794, -0.5543, 0.156, -0.9739, 0.6748, 0.5962, -0.2649, -0.3602, 0.4841, 0.3065, -0.2893,
0.1669, -0.2922, 0.6322, 0.9242, -0.7872, -0.0055, 0.4468, -0.3218, 0.9994, -0.4223, 0.3314, 0.1887,
-0.242, -0.3767, -0.9138, 0.8556, -0.3891, -0.004, -0.1904, 0.3853, 0.1728, 0.8095, 0.4985, -0.5314,
-0.0891, 0.5509, -0.2526, 0.1154, 0.1072, -0.3161, 0.2092, 0.8787};

68
69 //Static constexpressions
70 constexpr auto static_size = VQE_Loops::static_int<size>(); //Size of the size by size Hamiltonian
71 constexpr auto neg_index = VQE_Loops::static_int <-1>(); //Negative index for only I loop
72
73 //Append pauli Z operators on each diagonal;
74 using Ham_Z = decltype(utils::static_for<0, size-1, 1, z_loop_outer >(Hamiltonian<size, size>(),

static_size));
75
76 //Declare Hamiltonian H
77 Ham_Z H;
78
79 //Load coeffients to hamiltonian (op to 100)
80 for(int i = 0; i < size; i++){
81 H._coeffs[i] = random_floats[i];
82 }
83
84 return H;
85 };
86
87 /////////////////Ising Chain Hamiltonian///////////////////////////////
88
89 //Loops over all qubits and assigns ZZ or I gate bases on qubit index and term index for neighbouring

qubits
90 template<index_t start, index_t end, index_t step, index_t index>
91 struct zz_loop_inner
92 {
93 static constexpr auto pauli_mat(std::integral_constant<bool, false>){ return 'I';}
94 static constexpr auto pauli_mat(std::integral_constant<bool, true>){ return 'X';}
95
96 template<typename H, typename TermIndex>
97 inline constexpr auto operator()(H&& h, TermIndex) noexcept
98 {
99 //Get pauli char based on index (neighbours)

100 constexpr char pauli = pauli_mat(std::integral_constant<bool,index==TermIndex::_I or index==
TermIndex::_I+1>{});

101
102 //Return new Hamiltonian with added pauli gate
103 return typename std::decay<H>::type::template add_pauli<pauli> {};
104 }
105 };
106
107 //Loops over all Hamiltonian terms
108 template<index_t start, index_t end, index_t step, index_t index>
109 struct zz_loop_outer
110 {
111 template<typename H, typename size>
112 inline constexpr auto operator()(H&& h, size) noexcept
113 {
114 constexpr auto termIndex = VQE_Loops::static_int<index>();
115 return utils::static_for<0, size::_I-1, 1, zz_loop_inner >(H{}, termIndex);
116 }
117 };
118
119 //Loops over all qubits and assigns X or I gate bases on qubit index and term index
120 template<index_t start, index_t end, index_t step, index_t index>
121 struct x_loop_inner
122 {
123 static constexpr auto pauli_mat(std::integral_constant<bool, false>){ return 'I';}
124 static constexpr auto pauli_mat(std::integral_constant<bool, true>){ return 'Z';}
125
126 template<typename H, typename TermIndex>

127

127 inline constexpr auto operator()(H&& h, TermIndex) noexcept
128 {
129 //Get pauli char based on index
130 constexpr char pauli = pauli_mat(std::integral_constant<bool,index==TermIndex::_I>{});
131
132 //Return new Hamiltonian with added pauli gate
133 return typename std::decay<H>::type::template add_pauli<pauli> {};
134 }
135 };
136
137 //Loops over all Hamiltonian terms
138 template<index_t start, index_t end, index_t step, index_t index>
139 struct x_loop_outer
140 {
141 template<typename H, typename size>
142 inline constexpr auto operator()(H&& h, size) noexcept
143 {
144 constexpr auto termIndex = VQE_Loops::static_int<index>();
145 return utils::static_for<0, size::_I-1, 1, x_loop_inner >(H{}, termIndex);
146 }
147 };
148
149 //Generate hamiltonian describing the energies of a 1-D Ising chain
150 template<int size>
151 constexpr auto genIsingHamiltonian(){
152
153 //Constexpr terms based on chain size
154 constexpr auto static_size = VQE_Loops::static_int<size>();
155 constexpr int numTerms = 2*size-1;
156 constexpr int numQubits = size;
157
158 //Create hamiltonian with ZZ terms for neighbouring qubits
159 using Ham_ZZ = decltype(utils::static_for<0, size-2, 1, zz_loop_outer >(Hamiltonian<numTerms, numQubits

>(), static_size));
160
161 //Append pauli X operators on each qubit
162 using Ham_X = decltype(utils::static_for<0, size-1, 1, x_loop_outer >(Ham_ZZ(), static_size));
163
164 //Declare Hamiltonian H
165 Ham_X H;
166
167 //Load coefficients in H
168 float h = 1.0; //Tranverse field
169 float J = 1.0; //Interaction strength
170 for(int i = 0; i <= size-2; i++){ H._coeffs[i] = -J; }
171 for(int i = 0; i <= size-1; i++){ H._coeffs[i+size-1] = -h; }
172
173 return H;
174 };
175
176 }; //namespace Hamiltonians
177
178 #endif //VQE_HAMILTONIANS_HPP

Listing E.10: QAOA_Hamiltonians.hpp code of the QPack benchmark in LibKet.

F
Python Code: Data processing

1 import json
2 from os import listdir, remove, makedirs
3 import matplotlib.pyplot as plt
4 from math import log10, atan, pi
5 from matplotlib.ticker import MaxNLocator
6 from statistics import mean
7 from qpu_names import qpu_names
8 import numpy as np
9 from scipy.optimize import minimize

10 from matplotlib import gridspec
11
12 problem_names = {'MCP' : 'QAOA: MaxCut problem',
13 'DSP' : 'QAOA: Dominating set problem',
14 'MIS' : 'QAOA: Maximal independent set problem',
15 'TSP' : 'QAOA: Traveling salesperson problem',
16 'RH' : 'VQE: Random Hamiltonian',
17 'IC' : 'VQE: Ising chain'}
18
19 def loadBenchmarkData(data_dir):
20 '''
21 @brief Function to load in QPack benchmark data from selected data path
22
23 @params data_dir : Path to data directory of QPack benchmark files
24
25 @return Dictionary of relevant benchmark parameters used to compute
26 benchmark scores
27 '''
28
29 benchmark_data = {}
30 for qpu in listdir(f'{data_dir}'):
31 benchmark_data[qpu] = {}
32 for problem in listdir(f'{data_dir}/{qpu}'):
33 benchmark_data[qpu][problem] = {}
34 for size in listdir(f'{data_dir}/{qpu}/{problem}'):
35 benchmark_data[qpu][problem][size] = {}
36
37 benchmark_data[qpu][problem][size]['qjob average'] = 0
38 benchmark_data[qpu][problem][size]['exec average'] = 0
39 benchmark_data[qpu][problem][size]['cjob average'] = 0
40 benchmark_data[qpu][problem][size]['exp val'] = 100
41 benchmark_data[qpu][problem][size]['opt iterations'] = 0
42 benchmark_data[qpu][problem][size]['total alg time'] = 0
43 benchmark_data[qpu][problem][size]['total q time'] = 0
44 benchmark_data[qpu][problem][size]['total c time'] = 0
45
46 numReps = 0
47 for rep in listdir(f'{data_dir}/{qpu}/{problem}/{size}'):
48 file = open(f'{data_dir}/{qpu}/{problem}/{size}/{rep}')
49 data = json.load(file)
50
51 #Add queue zeroes if missing
52 if 'Queue durations [ms]' not in data:
53 data['Queue durations [ms]'] = [0.0]
54
55 #Filter missing queue data
56 missing_idx = []
57 for index, queue_time in enumerate(data['Queue durations [ms]']):
58 if queue_time < 0:
59 missing_idx.append(index)
60
61 for idx in reversed(missing_idx):
62 data['Queue durations [ms]'].pop(idx)
63 data['QJob durations [ms]'].pop(idx)

128

129

64
65 #Load data into dict
66 benchmark_data[qpu][problem][size]['qjob average'] += mean(data['QJob durations [ms]'

]) - mean(data['Queue durations [ms]'])
67 benchmark_data[qpu][problem][size]['exec average'] += mean(data['Circuit execution

durations [ms]'])
68 benchmark_data[qpu][problem][size]['cjob average'] += mean(data['Optimizer durations [

ms]'])
69 benchmark_data[qpu][problem][size]['qubits'] = data['Qubits']
70 benchmark_data[qpu][problem][size]['depth'] = data['Depth']
71 benchmark_data[qpu][problem][size]['shots'] = data['Shots']
72 benchmark_data[qpu][problem][size]['num params'] = len(data['Optimizer params'])
73 if data['Expectation Value'] is None:
74 print(f'{data_dir}/{qpu}/{problem}/{size}/{rep}')
75 if data['Expectation Value'] < benchmark_data[qpu][problem][size]['exp val']:
76 benchmark_data[qpu][problem][size]['exp val'] = data['Expectation Value']
77 benchmark_data[qpu][problem][size]['opt exp val'] = data['Optimal Expectation Value']
78 benchmark_data[qpu][problem][size]['opt iterations'] += data['Optimizer iterations']
79 benchmark_data[qpu][problem][size]['total alg time'] += data['Total Algorithm duration

[s]']
80 benchmark_data[qpu][problem][size]['total q time'] += data['Total Quantum duration [s]

']
81 benchmark_data[qpu][problem][size]['total c time'] += data['Total Classic duration [s]

']
82 numReps += 1
83
84 if numReps > 0:
85 benchmark_data[qpu][problem][size]['qjob average'] /= numReps
86 benchmark_data[qpu][problem][size]['exec average'] /= numReps
87 benchmark_data[qpu][problem][size]['cjob average'] /= numReps
88 benchmark_data[qpu][problem][size]['opt iterations'] /= numReps
89 benchmark_data[qpu][problem][size]['total alg time'] /= numReps
90 benchmark_data[qpu][problem][size]['total q time'] /= numReps
91 benchmark_data[qpu][problem][size]['total q time'] /= numReps
92
93 return benchmark_data
94
95 def plotData(QPack_data, qpus = [], reduce=False, subdir=None):
96 '''
97 @brief Plots raw data metrics from QPack benchmark for each problem
98 '''
99

100 #Get all available QPU data if no subset is provided
101 if not qpus:
102 qpus = list(QPack_data.keys())
103
104 #Set problems to process
105 problems = []
106 for qpu in qpus:
107 for problem in list(QPack_data[qpu].keys()):
108 if problem not in problems:
109 problems.append(problem)
110
111 #Get QueST data
112 file = open("QuEST_Scores.json")
113 QuEST_data = json.load(file)
114
115 #Loop over all problems
116 for problem in problems:
117
118 #Create figures
119 if reduce:
120 fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3)
121 fig.set_size_inches(8, 5)
122 else:
123 fig, ((ax1, ax2, ax3), (ax4, ax5, ax6), (ax7, ax8, ax9)) = plt.subplots(3, 3)
124 fig.set_size_inches(8,8)
125
126
127 legend = []
128
129 #Set maximum and minimum problem size variables
130 minSize = float('inf')
131 maxSize = 0
132
133 #Loop over all selected qpus
134 for qpu in qpus:
135
136 #If a qpu has not evaluated a problem, skip this qpu
137 if problem not in list(QPack_data[qpu].keys()):
138 continue
139
140 #Add current QPU to legend
141 legend.append(str(qpu_names[int(qpu, base=16)]))

130

142
143 #Get problem sizes for this qpu
144 sizes = list(QPack_data[qpu][problem].keys())
145
146 #Retrieve data from JSON object
147 qjob_average = [QPack_data[qpu][problem][size]['qjob average'] for size in sizes]
148 exec_average = [QPack_data[qpu][problem][size]['exec average'] for size in sizes]
149 cjob_average = [QPack_data[qpu][problem][size]['cjob average'] for size in sizes]
150 numQubits = [QPack_data[qpu][problem][size]['qubits'] for size in sizes]
151 part_speed = [QPack_data[qpu][problem][size]['depth']*QPack_data[qpu][problem][size]['shots'

]/(QPack_data[qpu][problem][size]['qjob average']/1000) for size in sizes]
152 part_acc = [(QuEST_data[problem]['exp val'][QuEST_data[problem]['sizes'].index(int(size[1:]))

]-QPack_data[qpu][problem][size]['exp val'])/QuEST_data[problem]['exp val'][QuEST_data[problem]['
sizes'].index(int(size[1:]))] for size in sizes]

153 exp_val_average = [QPack_data[qpu][problem][size]['exp val'] for size in sizes]
154 opt_iterations = [QPack_data[qpu][problem][size]['opt iterations'] for size in sizes]
155 ttime = [QPack_data[qpu][problem][size]['total alg time'] for size in sizes]
156 qtime = [QPack_data[qpu][problem][size]['total q time'] for size in sizes]
157 ctime = [QPack_data[qpu][problem][size]['total c time'] for size in sizes]
158
159 int_sizes = [int(size[1:]) for size in sizes]
160
161 #Sort data and plot on axes
162 zipped = sorted(zip(int_sizes, qjob_average, exec_average, cjob_average, numQubits, part_speed

, part_acc, exp_val_average, opt_iterations, ttime, qtime, ctime))
163
164 ax1.plot(list(item[0] for item in zipped), list(item[1] for item in zipped), marker = 'o',

markersize=3)
165 ax2.plot(list(item[0] for item in zipped), list(item[2] for item in zipped), marker = 'o',

markersize=3)
166 ax3.plot(list(item[0] for item in zipped), list(item[3] for item in zipped), marker = 'o',

markersize=3)
167 ax4.plot(list(item[0] for item in zipped), list(item[7] for item in zipped), marker = 'o',

markersize=3)
168 ax5.plot(list(item[0] for item in zipped), list(item[6] for item in zipped), marker = 'o',

markersize=3)
169 ax6.plot(list(item[0] for item in zipped), list(item[8] for item in zipped), marker = 'o',

markersize=3)
170
171 if not reduce:
172 ax7.plot(list(item[0] for item in zipped), list(item[9] for item in zipped), marker = 'o',

markersize=3)
173 ax8.plot(list(item[0] for item in zipped), list(item[10] for item in zipped), marker = 'o'

, markersize=3)
174 ax9.plot(list(item[0] for item in zipped), list(item[11] for item in zipped), marker = 'o'

, markersize=3)
175
176 #Find smallest and largest problem size
177 if zipped[0][0] < minSize:
178 minSize = zipped[0][0]
179
180 if zipped[-1][0] > maxSize:
181 maxSize = zipped[-1][0]
182
183 #Plot QuEST baseline
184 quest_zip = sorted(zip(QuEST_data[problem]['sizes'], QuEST_data[problem]['exp val']))
185 quest_sizes = list(item[0] for item in quest_zip)
186 quest_exps = list(item[1] for item in quest_zip)
187 start = quest_sizes.index(minSize)
188 end = quest_sizes.index(maxSize)
189 ax4.plot(quest_sizes[start:end+1], quest_exps[start:end+1] , color='red', marker = '', label="

baseline")
190
191 # Force x-axis integers
192 ax1.xaxis.set_major_locator(MaxNLocator(integer=True))
193 ax2.xaxis.set_major_locator(MaxNLocator(integer=True))
194 ax3.xaxis.set_major_locator(MaxNLocator(integer=True))
195 ax4.xaxis.set_major_locator(MaxNLocator(integer=True))
196 ax5.xaxis.set_major_locator(MaxNLocator(integer=True))
197 ax6.xaxis.set_major_locator(MaxNLocator(integer=True))
198 if not reduce:
199 ax7.xaxis.set_major_locator(MaxNLocator(integer=True))
200 ax8.xaxis.set_major_locator(MaxNLocator(integer=True))
201 ax9.xaxis.set_major_locator(MaxNLocator(integer=True))
202
203 #y-axis scale
204 ax1.set_yscale("log")
205 ax2.set_yscale("log")
206 ax3.set_yscale("log")
207 if not reduce:
208 ax7.set_yscale("log")
209 ax8.set_yscale("log")
210 ax9.set_yscale("log")
211

131

212 # Add titles and lables
213 fig.suptitle(problem_names[str(problem)])
214 ax1.set_title('Average QJob \n duration')
215 ax1.set_xlabel("Problem size")
216 ax1.set_ylabel("Runtime [ms]")
217
218 ax2.set_title('Average circuit \n execution duration')
219 ax2.set_xlabel("Problem size")
220 ax2.set_ylabel("Runtime [ms]")
221
222 ax3.set_title('Average optimizer \n duration')
223 ax3.set_xlabel("Problem size")
224 ax3.set_ylabel("Runtime [ms]")
225
226 ax4.set_title('Output state')
227 ax4.set_xlabel("Problem size")
228 ax4.set_ylabel("Expectation value")
229 ax4.legend()
230
231 ax5.set_title('Error')
232 ax5.set_xlabel("Problem size")
233 ax5.set_ylabel("Relative Error")
234
235 ax6.set_title('Optimizer iterations')
236 ax6.set_xlabel("Problem size")
237 ax6.set_ylabel("Iterations")
238
239 if not reduce:
240 ax7.set_title('Total runtime')
241 ax7.set_xlabel("Problem size")
242 ax7.set_ylabel("Runtime [s]")
243
244 ax8.set_title('Total Quantum runtime')
245 ax8.set_xlabel("Problem size")
246 ax8.set_ylabel("Runtime [s]")
247
248 ax9.set_title('Total Classic runtime')
249 ax9.set_xlabel("Problem size")
250 ax9.set_ylabel("Runtime [s]")
251
252 #Add legend
253 fig.legend(legend, loc='upper center', bbox_to_anchor=(0.5, 0.01), fancybox=True, shadow=True,

ncol=4)
254
255 #Set tick marks
256 ax1.get_xaxis().tick_bottom()
257 ax1.get_yaxis().tick_left()
258
259 #Save result in plots directory
260 fig.tight_layout()
261 if subdir:
262 plt.savefig(f'plots/{subdir}/{str(problem)}.pdf', bbox_inches='tight')
263 else:
264 plt.savefig(f'plots/{str(problem)}.pdf', bbox_inches='tight')
265
266 plt.close()
267
268 def computeScores(QPack_data, qpus=[]):
269 '''
270 @brief Computes sub-scores for selected QPUs
271
272 @param Qpack_data : Dataset containing all relevant benchmark data
273 per QPU per problem
274
275 @param qpus : Optional subset of qpus
276
277 @return QPack Scores for each QPU and problem set
278
279 '''
280
281 #Get all available QPU data if no subset is provided
282 if not qpus:
283 qpus = list(QPack_data.keys())
284
285 #Get QueST data
286 file = open("QuEST_Scores.json")
287 QuEST_data = json.load(file)
288
289 #Create struct to store score resutls for all QPUs
290 scores = {}
291
292 for qpu in qpus:
293 scores[qpu] = {}
294

132

295 problems = list(QPack_data[qpu].keys())
296
297 for problem in problems:
298
299 scores[qpu][problem] = {}
300
301 #Get problem sizes for this qpu
302 sizes = list(QPack_data[qpu][problem].keys())
303
304 #Runtime sub-score
305 ave_troughput = mean([QPack_data[qpu][problem][size]['depth']*QPack_data[qpu][problem][size]['

shots']/(QPack_data[qpu][problem][size]['qjob average']/1000) for size in sizes])
306 scores[qpu][problem]['runtime'] = log10(ave_troughput)
307
308 #Accuracy sub-score
309 rel_errors = []
310 for size in sizes:
311 QuEST_score = QuEST_data[problem]['exp val'][QuEST_data[problem]['sizes'].index(int(size

[1:]))]
312 abs_error = QuEST_score-QPack_data[qpu][problem][size]['exp val']+10e-10
313 rel_errors.append(abs_error/QuEST_score)
314 ave_error = mean(rel_errors)
315
316 #Accuracy score mapping
317 a_acc = 10
318 b_acc = 5
319 scores[qpu][problem]['accuracy'] = a_acc*(pi/2 - atan(b_acc*(ave_error)))
320
321 #Scalability sub-score
322 qjob_averages = [QPack_data[qpu][problem][size]['qjob average'] for size in sizes]
323 int_sizes = [int(size[1:]) for size in sizes]
324 zipped = sorted(zip(int_sizes, qjob_averages, rel_errors))
325
326 if(len(sizes) > 1):
327
328 #Normalise qjobtimes
329 qjob_array = np.array([item[1] for item in zipped])
330 if(np.amax(qjob_array) != np.amin(qjob_array)):
331 qjob_array[-1] += 0.001
332 norm_in = (qjob_array - np.amin(qjob_array))/(np.amax(qjob_array)-np.amin(qjob_array))
333
334 def min_func(a):
335 x = np.array([item[0] for item in zipped])
336 y = x**a
337 norm_y = (y - np.amin(y))/(np.amax(y)-np.amin(y))
338 sq_diff = (norm_in-norm_y)**2
339 err = sum(sq_diff)
340 return err
341
342 fit = minimize(min_func, 1, method='Nelder-Mead')
343
344 a_scale = 10
345 b_scale = 0.75
346 scores[qpu][problem]['scalability'] = a_scale*(pi/2 - atan(b_scale*fit.x[0]))
347
348 else:
349 scores[qpu][problem]['scalability'] = 0
350
351 #Capacity score
352 max_size = 0
353 threshold = 0.25
354 for i in range(len(sizes)):
355 if(zipped[i][2] < threshold and zipped[i][0] > max_size):
356 max_size = zipped[i][0]
357
358 if(max_size):
359 scores[qpu][problem]['capacity'] = QPack_data[qpu][problem][f'N{max_size:02d}']['qubits']
360 else:
361 scores[qpu][problem]['capacity'] = 0
362
363 #Overall sub-scores
364 scores[qpu]['Overall'] = {}
365 scores[qpu]['Overall']['runtime'] = mean([scores[qpu][problem]['runtime'] for problem in problems

])
366 scores[qpu]['Overall']['accuracy'] = mean([scores[qpu][problem]['accuracy'] for problem in

problems])
367 scores[qpu]['Overall']['scalability'] = mean([scores[qpu][problem]['scalability'] for problem in

problems])
368 scores[qpu]['Overall']['capacity'] = mean([scores[qpu][problem]['capacity'] for problem in

problems])
369
370 return scores
371
372 def plotQPUScores(qpu_scores, qpus=[], subdir=None, xlimit=None):

133

373 '''
374 @brief Creates plot for all QPU benchmark sub-scores
375
376 @param qpu_scores : Dictionary containing QPack scores for each QPU
377
378 @param qpus : Optional subset of qpus
379 '''
380
381 #Get all available QPU data if no subset is provided
382 if not qpus:
383 qpus = list(qpu_scores.keys())
384
385 #Loop over all selected qpus
386 for qpu in qpus:
387
388 #Get problems for this QPU
389 problems = list(qpu_scores[qpu].keys())
390
391 #Set bar axis
392 X = np.arange(len(problems))
393 fig = plt.figure()
394 ax = fig.add_axes([0,0,1,1])
395 ax.set_yticks(X, problems)
396 ax.set_title(str(qpu_names[int(qpu, base=16)]))
397
398 #Create plotting data lists
399 plot_speed = []
400 plot_accuracy = []
401 plot_scale = []
402 plot_cap = []
403 for problem in problems:
404 plot_speed.append(qpu_scores[qpu][problem]['runtime'])
405 plot_accuracy.append(qpu_scores[qpu][problem]['accuracy'])
406 plot_scale.append(qpu_scores[qpu][problem]['scalability'])
407 plot_cap.append(qpu_scores[qpu][problem]['capacity'])
408
409 #Plot all scores with some offset
410 speed_bar = ax.barh(X + 0.20, plot_speed, 0.20)
411 acc_bar = ax.barh(X + 0.00, plot_accuracy, 0.20)
412 scale_bar = ax.barh(X - 0.20, plot_scale, 0.20)
413 cap_bar = ax.barh(X - 0.40, plot_cap, 0.20)
414 ax.legend(['Runtime', 'Accuracy', 'Scalability', 'Capacity'])
415
416 #Add labels and score values
417 ax.bar_label(speed_bar, fmt='%.2f',size= 10)
418 ax.bar_label(acc_bar, fmt='%.2f', size= 10)
419 ax.bar_label(scale_bar, fmt='%.2f', size= 10)
420 ax.bar_label(cap_bar, fmt='%.2f', size= 10)
421 ax.set_xlabel('Benchmark Score')
422 if xlimit:
423 ax.set_xlim(0, xlimit)
424
425 #Save figure
426 if subdir:
427 plt.savefig(f'plots/{subdir}/benchmark_{str(qpu_names[int(qpu, base=16)])}.pdf', bbox_inches='

tight')
428 else:
429 plt.savefig(f'plots/benchmark_{str(qpu_names[int(qpu, base=16)])}.pdf', bbox_inches='tight')
430
431 plt.close()
432
433 def plotRadar(qpu_scores, qpus=[], reduce=False, subdir=None):
434 '''
435 @brief Creates plots for final benchmark scores on radar charts
436
437 @param qpu_scores : Dictionary containing QPack scores for each QPU
438
439 @param qpus : Optional subset of qpus
440 '''
441
442 #Get all available QPU data if no subset is provided
443 if not qpus:
444 qpus = list(qpu_scores.keys())
445
446 #Setup radar plot
447 categories = ['Runtime', 'Accuracy', 'Scalability', 'Capacity']
448 categories = [*categories, categories[0]]
449 label_loc = np.linspace(start=0, stop=2 * np.pi, num=len(categories))
450
451 if not reduce:
452 fig = plt.figure(figsize=(8, 4.5))
453 gs = gridspec.GridSpec(ncols=19, nrows=10, figure=fig)
454 ax1 = fig.add_subplot(gs[0:9, 0:9], projection = 'polar')
455 ax2 = fig.add_subplot(gs[2:6, 13:18])

134

456
457 else:
458 fig = plt.figure(figsize=(4.5, 4.5))
459 gs = gridspec.GridSpec(ncols=10, nrows=10, figure=fig)
460 ax1 = fig.add_subplot(gs[0:9, 0:9], projection = 'polar')
461
462
463 #Compute total QPU score
464 max_score = 0
465 max_subscore = 0
466 for i, qpu in enumerate(qpus):
467 total_score = 0.5*(qpu_scores[qpu]['Overall']['runtime']+qpu_scores[qpu]['Overall']['scalability'

])*(qpu_scores[qpu]['Overall']['accuracy']+qpu_scores[qpu]['Overall']['capacity'])
468 ax1.plot(label_loc, [qpu_scores[qpu]['Overall']['runtime'], qpu_scores[qpu]['Overall']['accuracy'

], qpu_scores[qpu]['Overall']['scalability'], qpu_scores[qpu]['Overall']['capacity'], qpu_scores[qpu
]['Overall']['runtime']], label=str(qpu_names[int(qpu, base=16)]))

469 ax1.fill(label_loc, [qpu_scores[qpu]['Overall']['runtime'], qpu_scores[qpu]['Overall']['accuracy'
], qpu_scores[qpu]['Overall']['scalability'], qpu_scores[qpu]['Overall']['capacity'], qpu_scores[qpu
]['Overall']['runtime']], alpha=0.25)

470 if not reduce:
471 ax2.bar_label(ax2.bar(i, total_score, 0.35), fmt='%.1f',size= 8)
472 if total_score > max_score:
473 max_score = total_score
474 subs = [qpu_scores[qpu]['Overall']['runtime'], qpu_scores[qpu]['Overall']['scalability'],

qpu_scores[qpu]['Overall']['accuracy'], qpu_scores[qpu]['Overall']['capacity']]
475
476 if max(subs) > max_subscore:
477 max_subscore = max(subs)
478 #Set figure titles and legends
479 fig.suptitle('QPack benchmark results', size=13)
480 ax1.set_thetagrids(np.degrees(label_loc), labels=categories)
481 ax1.tick_params(axis='y', labelsize=8)
482 #ax1.legend(prop={'size': 10}, loc='upper right', bbox_to_anchor=(1.3, 1.07))
483 ax1.legend(prop={'size': 9}, loc='lower left', bbox_to_anchor=(0.6, 0.8))
484 ax1.set_ylim(0, 1.1*max_subscore)
485
486
487 if not reduce:
488 ax2.xaxis.set_major_locator(MaxNLocator(integer=True))
489 ax2.set_xticklabels([' ', *[qpu_names[int(qpu, base=16)] for qpu in qpus]], rotation=45, ha="right

", rotation_mode="anchor")
490 ax2.set_ylabel('Benchmark Score')
491 ax2.set_xlabel('Quantum device')
492 ax2.set_ylim([0, 1.25*max_score])
493
494 #Save figure
495 if subdir:
496 plt.savefig(f'plots/{subdir}/benchmark_result.pdf', bbox_inches='tight')
497 else:
498 plt.savefig('plots/benchmark_result.pdf', bbox_inches='tight')
499
500 plt.close()
501
502 def main():
503 '''
504 @brief Main function of QPack data processing
505 '''
506 #Set path benchmark data
507 data_dir = "/home/huub/qpack/qpack_output/benchmark_new"
508
509 #Select subset of qpus
510 #qpus = []
511 qpus = [
512 ['3010008', '7000000', '6010013', '9000001'], #local ideal simulators
513 ['300001B', '3000010', '3000013', '3000017', '3000020', '300002E'], #local noisy simulators
514 ['10000001', '4010001', '6010030'], #remote ideal simulators
515 ['402001B', '402002E', '4020020', '4020013', '4020010', '4020017'] #remote hardware
516]
517
518 #Process benchmark data
519 sub_dirs = ['loc_sims', 'loc_sims_noisy', 'rem_sims', 'rem_qpu']
520 limits = [26, 17, 26, 17] #Max scores
521 QPack_data = loadBenchmarkData(data_dir)
522
523 for i, sub_dir in enumerate(sub_dirs):
524 makedirs(f"plots/{sub_dir}", exist_ok = True)
525 plotData(QPack_data, qpus=qpus[i], reduce=True, subdir=sub_dir)
526 scores = computeScores(QPack_data, qpus=qpus[i])
527 plotQPUScores(scores, subdir=sub_dir, xlimit=limits[i])
528 plotRadar(scores, qpus=qpus[i], reduce=False, subdir=sub_dir)
529
530 return 0
531
532

135

533 if __name__ == "__main__":
534 main()

Listing F.1: Process QPack data & compute benchmark scores

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Feb 9 21:57:05 2022
4
5 @author: huub
6 """
7
8 #Name lib:
9 qpu_names = { 'Constant1' : 0xAAA,

10 'Constant2' : 0xAAB,
11 'Constant3' : 0xAAC,
12 'Linear1' : 0xBBA,
13 'Linear2' : 0xBBB,
14 'Linear3' : 0xBBC,
15 'Quadratic1' : 0xCCA,
16 'Quadratic2' : 0xCCB,
17 'Quadratic3' : 0xCCC,
18 'Exponential1' : 0xDDA,
19 'Exponential2' : 0xDDB,
20 'Exponential3' : 0xDDC,
21 'generic' : 0x00000000,
22 'pyquil_visualizer' : 0x00000001,
23 'qasm2tex_visualizer' : 0x00000002,
24 'qiskit_visualizer' : 0x00000003,
25 'atos_qlm_feynman_simulator' : 0x01000001,
26 'atos_qlm_linalg_simulator' : 0x01000002,
27 'atos_qlm_stabs_simulator' : 0x01000003,
28 'atos_qlm_mps_simulator' : 0x01000004,
29 'qi_26_simulator' : 0x02000001,
30 'qi_34_simulator' : 0x02000002,
31 'qi_spin2' : 0x02010001,
32 'qi_starmon5' : 0x02010002,
33 'qiskit_almaden_simulator' : 0x03000001,
34 'qiskit_armonk_simulator' : 0x03000002,
35 'qiskit_athens_simulator' : 0x03000003,
36 'qiskit_belem_simulator' : 0x03000004,
37 'qiskit_boeblingen_simulator' : 0x03000005,
38 'qiskit_bogota_simulator' : 0x03000006,
39 'qiskit_brooklyn_simulator' : 0x03000007,
40 'qiskit_burlington_simulator' : 0x03000008,
41 'qiskit_cairo_simulator' : 0x03000009,
42 'qiskit_cambridge_simulator' : 0x0300000A,
43 'qiskit_casablanca_simulator' : 0x0300000B,
44 'qiskit_dublin_simulator' : 0x0300000C,
45 'qiskit_essex_simulator' : 0x0300000D,
46 'qiskit_guadalupe_simulator' : 0x0300000E,
47 'qiskit_hanoi_simulator' : 0x0300000F,
48 'qiskit_jakarta_simulator' : 0x03000010,
49 'qiskit_johannesburg_simulator' : 0x03000011,
50 'qiskit_kolkata_simulator' : 0x03000012,
51 'qiskit_lagos_simulator' : 0x03000013,
52 'qiskit_lima_simulator' : 0x03000014,
53 'qiskit_london_simulator' : 0x03000015,
54 'qiskit_manhattan_simulator' : 0x03000016,
55 'qiskit_manila_simulator' : 0x03000017,
56 'qiskit_melbourne_simulator' : 0x03000018,
57 'qiskit_montreal_simulator' : 0x03000019,
58 'qiskit_mumbai_simulator' : 0x0300001A,
59 'qiskit_nairobi_simulator' : 0x0300001B,
60 'qiskit_ourense_simulator' : 0x0300001C,
61 'qiskit_paris_simulator' : 0x0300001D,
62 'qiskit_peekskill_simulator' : 0x0300001E,
63 'qiskit_poughkeepsie_simulator' : 0x0300001F,
64 'qiskit_quito_simulator' : 0x03000020,
65 'qiskit_rochester_simulator' : 0x03000021,
66 'qiskit_rome_simulator' : 0x03000022,
67 'qiskit_rueschlikon_simulator' : 0x03000023,
68 'qiskit_santiago_simulator' : 0x03000024,
69 'qiskit_singapore_simulator' : 0x03000025,
70 'qiskit_sydney_simulator' : 0x03000026,
71 'qiskit_tenerife_simulator' : 0x03000027,
72 'qiskit_tokyo_simulator' : 0x03000028,
73 'qiskit_toronto_simulator' : 0x03000029,
74 'qiskit_valencia_simulator' : 0x0300002A,
75 'qiskit_vigo_simulator' : 0x0300002B,
76 'qiskit_yorktown_simulator' : 0x0300002C,
77 'qiskit_washington_simulator' : 0x0300002D,
78 'qiskit_perth_simulator' : 0x0300002E,

136

79 'qiskit_pulse_simulator' : 0x03010001,
80 'Qiskit QASM Simulator' : 0x03010002,
81 'qiskit_statevector_simulator' : 0x03010003,
82 'qiskit_unitary_simulator' : 0x03010004,
83 'qiskit_aer_density_matrix_simulator' : 0x03010005,
84 'qiskit_aer_extended_stabilizer_simulator' : 0x03010006,
85 'qiskit_aer_matrix_product_state_simulator' : 0x03010007,
86 'Qiskit Aer Simulator' : 0x03010008,
87 'qiskit_aer_stabilizer_simulator' : 0x03010009,
88 'qiskit_aer_statevector_simulator' : 0x0301000A,
89 'qiskit_aer_superop_simulator' : 0x0301000B,
90 'qiskit_aer_unitary_simulator' : 0x0301000C,
91 'ibmq_almaden_simulator' : 0x04000001,
92 'ibmq_armonk_simulator' : 0x04000002,
93 'ibmq_athens_simulator' : 0x04000003,
94 'ibmq_belem_simulator' : 0x04000004,
95 'ibmq_boeblingen_simulator' : 0x04000005,
96 'ibmq_bogota_simulator' : 0x04000006,
97 'ibmq_brooklyn_simulator' : 0x04000007,
98 'ibmq_burlington_simulator' : 0x04000008,
99 'ibmq_cairo_simulator' : 0x04000009,

100 'ibmq_cambridge_simulator' : 0x0400000A,
101 'ibmq_casablanca_simulator' : 0x0400000B,
102 'ibmq_dublin_simulator' : 0x0400000C,
103 'ibmq_essex_simulator' : 0x0400000D,
104 'ibmq_guadalupe_simulator' : 0x0400000E,
105 'ibmq_hanoi_simulator' : 0x0400000F,
106 'ibmq_jakarta_simulator' : 0x04000010,
107 'ibmq_johannesburg_simulator' : 0x04000011,
108 'ibmq_kolkata_simulator' : 0x04000012,
109 'ibmq_lagos_simulator' : 0x04000013,
110 'ibmq_lima_simulator' : 0x04000014,
111 'ibmq_london_simulator' : 0x04000015,
112 'ibmq_manhattan_simulator' : 0x04000016,
113 'ibmq_manila_simulator' : 0x04000017,
114 'ibmq_melbourne_simulator' : 0x04000018,
115 'ibmq_montreal_simulator' : 0x04000019,
116 'ibmq_mumbai_simulator' : 0x0400001A,
117 'ibmq_nairobi_simulator' : 0x0400001B,
118 'ibmq_ourense_simulator' : 0x0400001C,
119 'ibmq_paris_simulator' : 0x0400001D,
120 'ibmq_peekskill_simulator' : 0x0400001E,
121 'ibmq_poughkeepsie_simulator' : 0x0400001F,
122 'ibmq_quito_simulator' : 0x04000020,
123 'ibmq_rochester_simulator' : 0x04000021,
124 'ibmq_rome_simulator' : 0x04000022,
125 'ibmq_rueschlikon_simulator' : 0x04000023,
126 'ibmq_santiago_simulator' : 0x04000024,
127 'ibmq_singapore_simulator' : 0x04000025,
128 'ibmq_sydney_simulator' : 0x04000026,
129 'ibmq_tenerife_simulator' : 0x04000027,
130 'ibmq_tokyo_simulator' : 0x04000028,
131 'ibmq_toronto_simulator' : 0x04000029,
132 'ibmq_valencia_simulator' : 0x0400002A,
133 'ibmq_vigo_simulator' : 0x0400002B,
134 'ibmq_yorktown_simulator' : 0x0400002C,
135 'ibmq_washington_simulator' : 0x0400002D,
136 'ibmq_perth_simulator' : 0x0400002E,
137 'IBMQ QASM Simulator' : 0x04010001,
138 'ibmq_almaden' : 0x04020001,
139 'ibmq_armonk' : 0x04020002,
140 'ibmq_athens' : 0x04020003,
141 'ibmq_belem' : 0x04020004,
142 'ibmq_boeblingen' : 0x04020005,
143 'ibmq_bogota' : 0x04020006,
144 'ibmq_brooklyn' : 0x04020007,
145 'ibmq_cairo' : 0x04020008,
146 'ibmq_burlington' : 0x04020009,
147 'ibmq_cambridge' : 0x0402000A,
148 'ibmq_casablanca' : 0x0402000B,
149 'ibmq_dublin' : 0x0402000C,
150 'ibmq_essex' : 0x0402000D,
151 'ibmq_guadalupe' : 0x0402000E,
152 'ibmq_hanoi' : 0x0402000F,
153 'IBMQ Jakarta' : 0x04020010,
154 'ibmq_johannesburg' : 0x04020011,
155 'ibmq_kolkata' : 0x04020012,
156 'ibmq_lagos' : 0x04020013,
157 'ibmq_lima' : 0x04020014,
158 'ibmq_london' : 0x04020015,
159 'ibmq_manhattan' : 0x04020016,
160 'IBMQ Manila' : 0x04020017,
161 'ibmq_melbourne' : 0x04020018,
162 'ibmq_montreal' : 0x04020019,

137

163 'ibmq_mumbai' : 0x0402001A,
164 'IBMQ Nairobi' : 0x0402001B,
165 'ibmq_ourense' : 0x0402001C,
166 'ibmq_paris' : 0x0402001D,
167 'ibmq_peekskill' : 0x0402001E,
168 'ibmq_poughkeepsie' : 0x0402001F,
169 'IBMQ Quito' : 0x04020020,
170 'ibmq_rochester' : 0x04020021,
171 'ibmq_rome' : 0x04020022,
172 'ibmq_rueschlikon' : 0x04020023,
173 'ibmq_santiago' : 0x04020024,
174 'ibmq_singapore' : 0x04020025,
175 'ibmq_sydney' : 0x04020026,
176 'ibmq_tenerife' : 0x04020027,
177 'ibmq_tokyo' : 0x04020028,
178 'ibmq_toronto' : 0x04020029,
179 'ibmq_valencia' : 0x0402002A,
180 'ibmq_vigo' : 0x0402002B,
181 'ibmq_yorktown' : 0x0402002C,
182 'ibmq_washington' : 0x0402002D,
183 'IBMQ Perth' : 0x0402002E,
184 'openql_cc_light_compiler' : 0x05000001,
185 'openql_cc_light17_compiler' : 0x05000002,
186 'openql_qx_compiler' : 0x05000003,
187 'rigetti_aspen_8_simulator' : 0x06000001,
188 'rigetti_aspen_9_simulator' : 0x06000002,
189 'rigetti_aspen_10_simulator' : 0x06000003,
190 'rigetti_9q_simulator' : 0x06010001,
191 'rigetti_9q_square_simulator' : 0x06010002,
192 'Rigetti 16Q L QVM' : 0x06010013, # (local opt)
193 'Rigetti 16Q R QVM' : 0x06010030, # (remote)
194 'rigetti_16q_square_simulator' : 0x06010004,
195 'rigetti_aspen_8' : 0x06020001,
196 'rigetti_aspen_9' : 0x06020002,
197 'rigetti_aspen_10' : 0x06020003,
198 'QuEST Simulator' : 0x07000000,
199 'QX' : 0x08000000,
200 'Cirq Simulator' : 0x09000001,
201 'cirq_bristlecone_simulator' : 0x09000002,
202 'cirq_foxtail_simulator' : 0x09000003,
203 'cirq_sycamore_simulator' : 0x09000004,
204 'cirq_sycamore23_simulator' : 0x09000005,
205 'Ionq Simulator' : 0x10000001,
206 'ionq_qpu' : 0x10000002}
207 qpu_names = {value: key for key, value in qpu_names.items()}

Listing F.2: Dict with QPU IDs and names

1 import json
2 import matplotlib.pyplot as plt
3 from statistics import mean
4 from os import listdir, remove
5
6 #Custom JSON encoder, lists have no line breaks
7 class MyJSONEncoder(json.JSONEncoder):
8
9 def iterencode(self, o, _one_shot=False):

10 list_lvl = 0
11 for s in super(MyJSONEncoder, self).iterencode(o, _one_shot=_one_shot):
12 if s.startswith('['):
13 list_lvl += 1
14 s = s.replace('\n', '').rstrip().replace(" ", "")
15 elif 0 < list_lvl:
16 s = s.replace('\n', '').rstrip().replace(" ", "")
17 if len(s) > 1:
18 s = s[0] + " " + s[1:]
19 if s and s[-1] == ',':
20 s = s[:-1] + self.item_separator
21 elif s and s[-1] == ':':
22 s = s[:-1] + self.key_separator
23 if s.endswith(']'):
24 list_lvl -= 1
25 yield s
26
27 #Find available qpu's and problems
28 data_dir = "/home/huub/qpack/qpack_output/baseline_new"
29
30 #Data file
31 QuEST_dict = {}
32 qpu = '7000000'
33
34 for problem in listdir(f'{data_dir}/{qpu}'):
35 QuEST_dict[problem] = {}

138

36 QuEST_dict[problem]['sizes'] = []
37 QuEST_dict[problem]['exp val'] = []
38 QuEST_dict[problem]['opt exp val'] = []
39
40 for size in listdir(f'{data_dir}/{qpu}/{problem}'):
41 QuEST_dict[problem]['sizes'].append(int(size[1:]))
42
43 exp_val = float('inf')
44 for rep in listdir(f'{data_dir}/{qpu}/{problem}/{size}'):
45 file = open(f'{data_dir}/{qpu}/{problem}/{size}/{rep}')
46 data = json.load(file)
47 if data['Expectation Value'] is None:
48 print(f'Null... Removing {data_dir}/{qpu}/{problem}/{size}/{rep}')
49 remove(f'{data_dir}/{qpu}/{problem}/{size}/{rep}')
50 continue
51
52 if data['Expectation Value'] < exp_val:
53 exp_val = data['Expectation Value']
54
55 QuEST_dict[problem]['exp val'].append(exp_val)
56 QuEST_dict[problem]['opt exp val'].append(data['Optimal Expectation Value'])
57
58 #Store new result file
59 json.dump(QuEST_dict, open("QuEST_Scores.json", "w"), indent=2, cls=MyJSONEncoder)
60
61 #Plot baseline result
62 fig, axs = plt.subplots(2, 3)
63 fig.set_size_inches(8,8)
64
65 problems = ['MCP', 'DSP', 'MIS', 'TSP', 'RH', 'IC']
66
67 for i, r_ax in enumerate(axs):
68 for j, ax in enumerate(r_ax):
69 problem = problems[i*3+j]
70 ax.set_title(f'{problem} score')
71 ax.set_xlabel("Nodes")
72 ax.set_ylabel("Score")
73 zipped = sorted(zip(QuEST_dict[problem]['sizes'], QuEST_dict[problem]['exp val'], QuEST_dict[

problem]['opt exp val']))
74
75 ax.plot(list(item[0] for item in zipped), list(item[1] for item in zipped), marker = 'o')
76 ax.plot(list(item[0] for item in zipped), list(item[2] for item in zipped), marker = 'o')
77
78 #Add legend
79 fig.suptitle("QuEST Simulator score results")
80 fig.legend(["VQA", "Optimal"], loc='upper center', bbox_to_anchor=(0.5, 0.01), fancybox=True, shadow=True,

ncol=5)
81
82 fig.tight_layout()
83
84 plt.savefig('plots/QuEST_scores.png', bbox_inches='tight')

Listing F.3: Parse QuEST baseline data

1 import json
2 from random import random
3 from statistics import mean
4 from os import makedirs
5
6 #Custom JSON encoder, lists have no line breaks
7 class MyJSONEncoder(json.JSONEncoder):
8
9 def iterencode(self, o, _one_shot=False):

10 list_lvl = 0
11 for s in super(MyJSONEncoder, self).iterencode(o, _one_shot=_one_shot):
12 if s.startswith('['):
13 list_lvl += 1
14 s = s.replace('\n', '').rstrip().replace(" ", "")
15 elif 0 < list_lvl:
16 s = s.replace('\n', '').rstrip().replace(" ", "")
17 if len(s) > 1:
18 s = s[0] + " " + s[1:]
19 if s and s[-1] == ',':
20 s = s[:-1] + self.item_separator
21 elif s and s[-1] == ':':
22 s = s[:-1] + self.key_separator
23 if s.endswith(']'):
24 list_lvl -= 1
25 yield s
26
27 #Set mock data path
28 data_dir = "/home/huub/qpack/qpack_output/mock_data"
29

139

30 #Set some MCP parameters
31 MCP_scores = [0, 0, 1, 2, 4, 6, 8, 10, 12, 12, 14, 16, 18, 18, 20, 22, 24, 24, 26, 28, 30, 30, 32, 34, 36,

36, 38, 40, 42, 42, 44, 46, 48, 48, 50, 52, 54, 54, 56, 58, 60, 60, 62, 64, 66, 66, 68, 70, 72, 72]
32 mcp_depth = [0, 0, 14, 32, 41] + [95+18*i for i in range(20)]
33
34 #Open QuEST baseline
35 file = open("QuEST_Scores.json")
36 QuEST_data = json.load(file)['MCP']
37
38 #Generate data parameters
39 noise = False
40 start = 2
41 end = 15
42
43 #Constant function 1
44 for size in range(start, end):
45 data = {}
46
47 iters = 50 + 5*size
48 q_job_times = [(20 + noise*random()-0.5)*1 for i in range(iters)]
49 c_job_times = [q_time + 100 for q_time in q_job_times]
50
51 data['Average job duration [ms]'] = mean(q_job_times)
52 data['Depth'] = mcp_depth[size]
53 data['P'] = 3
54 data['Shots'] = 4096
55 data['QJob durations [ms]'] = q_job_times
56 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
57 data['Optimal Expectation Value'] = -MCP_scores[size]
58 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
59 data['Optimizer durations [ms]'] = c_job_times
60 data['Optimizer iterations'] = iters
61 data['Qubits'] = size
62 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)] + noise*random()
63 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
64 data['Total Classic duration [s]'] = sum(c_job_times)
65 data['Total Quantum duration [s]'] = sum(q_job_times)
66
67 #create directories if non-existant
68 makedirs(f'{data_dir}/AAA/MCP/N{size:02d}', exist_ok = True)
69
70 with open(f'{data_dir}/AAA/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
71 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
72
73 #Constant function 2
74 for size in range(start, end):
75 data = {}
76
77 iters = 50 + 10*size
78 q_job_times = [(20 + noise*random()-0.5)*10 for i in range(iters)]
79 c_job_times = [q_time + 100 for q_time in q_job_times]
80
81 data['Average job duration [ms]'] = mean(q_job_times)
82 data['Depth'] = mcp_depth[size]
83 data['P'] = 3
84 data['Shots'] = 4096
85 data['QJob durations [ms]'] = q_job_times
86 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
87 data['Optimal Expectation Value'] = -MCP_scores[size]
88 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
89 data['Optimizer durations [ms]'] = c_job_times
90 data['Optimizer iterations'] = iters
91 data['Qubits'] = size
92 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)] + noise*random() +

1
93 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
94 data['Total Classic duration [s]'] = sum(c_job_times)
95 data['Total Quantum duration [s]'] = sum(q_job_times)
96
97 #create directories if non-existant
98 makedirs(f'{data_dir}/AAB/MCP/N{size:02d}', exist_ok = True)
99

100 with open(f'{data_dir}/AAB/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
101 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
102
103
104 #Constantfunction 3
105 for size in range(start, end):
106 data = {}
107
108 iters = 50 + 15*size
109 q_job_times = [(20 + noise*random()-0.5)*100 for i in range(iters)]
110 c_job_times = [q_time + 100 for q_time in q_job_times]
111

140

112 data['Average job duration [ms]'] = mean(q_job_times)
113 data['Depth'] = mcp_depth[size]
114 data['P'] = 3
115 data['Shots'] = 4096
116 data['QJob durations [ms]'] = q_job_times
117 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
118 data['Optimal Expectation Value'] = -MCP_scores[size]
119 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
120 data['Optimizer durations [ms]'] = c_job_times
121 data['Optimizer iterations'] = iters
122 data['Qubits'] = size
123 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)]*(1-0.4*(size/end))

+ noise*random()
124 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
125 data['Total Classic duration [s]'] = sum(c_job_times)
126 data['Total Quantum duration [s]'] = sum(q_job_times)
127
128 #create directories if non-existant
129 makedirs(f'{data_dir}/AAC/MCP/N{size:02d}', exist_ok = True)
130
131 with open(f'{data_dir}/AAC/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
132 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
133
134 #Linear function 1
135 for size in range(start, end):
136 data = {}
137
138 iters = 50 + 5*size
139 q_job_times = [(10 + noise*random()-0.5)*size for i in range(iters)]
140 c_job_times = [q_time + 100 for q_time in q_job_times]
141
142 data['Average job duration [ms]'] = mean(q_job_times)
143 data['Depth'] = mcp_depth[size]
144 data['P'] = 3
145 data['Shots'] = 4096
146 data['QJob durations [ms]'] = q_job_times
147 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
148 data['Optimal Expectation Value'] = -MCP_scores[size]
149 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
150 data['Optimizer durations [ms]'] = c_job_times
151 data['Optimizer iterations'] = iters
152 data['Qubits'] = size
153 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)] + noise*random()
154 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
155 data['Total Classic duration [s]'] = sum(c_job_times)
156 data['Total Quantum duration [s]'] = sum(q_job_times)
157
158 #create directories if non-existant
159 makedirs(f'{data_dir}/BBA/MCP/N{size:02d}', exist_ok = True)
160
161 with open(f'{data_dir}/BBA/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
162 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
163
164 #linear function 2
165 for size in range(start, end):
166 data = {}
167
168 iters = 50 + 10*size
169 q_job_times = [(10 + noise*random()-0.5)*10*size for i in range(iters)]
170 c_job_times = [q_time + 100 for q_time in q_job_times]
171
172 data['Average job duration [ms]'] = mean(q_job_times)
173 data['Depth'] = mcp_depth[size]
174 data['P'] = 3
175 data['Shots'] = 4096
176 data['QJob durations [ms]'] = q_job_times
177 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
178 data['Optimal Expectation Value'] = -MCP_scores[size]
179 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
180 data['Optimizer durations [ms]'] = c_job_times
181 data['Optimizer iterations'] = iters
182 data['Qubits'] = size
183 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)] + noise*random() +

1
184 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
185 data['Total Classic duration [s]'] = sum(c_job_times)
186 data['Total Quantum duration [s]'] = sum(q_job_times)
187
188 #create directories if non-existant
189 makedirs(f'{data_dir}/BBB/MCP/N{size:02d}', exist_ok = True)
190
191 with open(f'{data_dir}/BBB/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
192 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
193

141

194
195 #linear function 3
196 for size in range(start, end):
197 data = {}
198
199 iters = 50 + 15*size
200 q_job_times = [(10 + noise*random()-0.5)*100*size for i in range(iters)]
201 c_job_times = [q_time + 100 for q_time in q_job_times]
202
203 data['Average job duration [ms]'] = mean(q_job_times)
204 data['Depth'] = mcp_depth[size]
205 data['P'] = 3
206 data['Shots'] = 4096
207 data['QJob durations [ms]'] = q_job_times
208 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
209 data['Optimal Expectation Value'] = -MCP_scores[size]
210 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
211 data['Optimizer durations [ms]'] = c_job_times
212 data['Optimizer iterations'] = iters
213 data['Qubits'] = size
214 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)]*(1-0.4*(size/end))

+ noise*random()
215 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
216 data['Total Classic duration [s]'] = sum(c_job_times)
217 data['Total Quantum duration [s]'] = sum(q_job_times)
218
219 #create directories if non-existant
220 makedirs(f'{data_dir}/BBC/MCP/N{size:02d}', exist_ok = True)
221
222 with open(f'{data_dir}/BBC/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
223 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
224
225 #quadratic function 1
226 for size in range(start, end):
227 data = {}
228
229 iters = 50 + 5*size
230 q_job_times = [(10 + noise*random()-0.5)*(size**1.5) for i in range(iters)]
231 c_job_times = [q_time + 100 for q_time in q_job_times]
232
233 data['Average job duration [ms]'] = mean(q_job_times)
234 data['Depth'] = mcp_depth[size]
235 data['P'] = 3
236 data['Shots'] = 4096
237 data['QJob durations [ms]'] = q_job_times
238 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
239 data['Optimal Expectation Value'] = -MCP_scores[size]
240 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
241 data['Optimizer durations [ms]'] = c_job_times
242 data['Optimizer iterations'] = iters
243 data['Qubits'] = size
244 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)] + noise*random()
245 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
246 data['Total Classic duration [s]'] = sum(c_job_times)
247 data['Total Quantum duration [s]'] = sum(q_job_times)
248
249 #create directories if non-existant
250 makedirs(f'{data_dir}/CCA/MCP/N{size:02d}', exist_ok = True)
251
252 with open(f'{data_dir}/CCA/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
253 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
254
255 #quadratric function 2
256 for size in range(start, end):
257 data = {}
258
259 iters = 50 + 10*size
260 q_job_times = [(10 + noise*random()-0.5)*(size**2) for i in range(iters)]
261 c_job_times = [q_time + 100 for q_time in q_job_times]
262
263 data['Average job duration [ms]'] = mean(q_job_times)
264 data['Depth'] = mcp_depth[size]
265 data['P'] = 3
266 data['Shots'] = 4096
267 data['QJob durations [ms]'] = q_job_times
268 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
269 data['Optimal Expectation Value'] = -MCP_scores[size]
270 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
271 data['Optimizer durations [ms]'] = c_job_times
272 data['Optimizer iterations'] = iters
273 data['Qubits'] = size
274 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)] + noise*random() +

1
275 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)

142

276 data['Total Classic duration [s]'] = sum(c_job_times)
277 data['Total Quantum duration [s]'] = sum(q_job_times)
278
279 #create directories if non-existant
280 makedirs(f'{data_dir}/CCB/MCP/N{size:02d}', exist_ok = True)
281
282 with open(f'{data_dir}/CCB/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
283 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
284
285 #quadratic function 3
286 for size in range(start, end):
287 data = {}
288
289 iters = 50 + 15*size
290 q_job_times = [(10 + noise*random()-0.5)*(size**3) for i in range(iters)]
291 c_job_times = [q_time + 100 for q_time in q_job_times]
292
293 data['Average job duration [ms]'] = mean(q_job_times)
294 data['Depth'] = mcp_depth[size]
295 data['P'] = 3
296 data['Shots'] = 4096
297 data['QJob durations [ms]'] = q_job_times
298 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
299 data['Optimal Expectation Value'] = -MCP_scores[size]
300 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
301 data['Optimizer durations [ms]'] = c_job_times
302 data['Optimizer iterations'] = iters
303 data['Qubits'] = size
304 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)]*(1-0.4*(size/end))

+ noise*random()
305 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
306 data['Total Classic duration [s]'] = sum(c_job_times)
307 data['Total Quantum duration [s]'] = sum(q_job_times)
308
309 #create directories if non-existant
310 makedirs(f'{data_dir}/CCC/MCP/N{size:02d}', exist_ok = True)
311
312 with open(f'{data_dir}/CCC/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
313 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
314
315
316 #exponential function 1
317 for size in range(start, end):
318 data = {}
319
320 iters = 50 + 5*size
321 q_job_times = [(10 + noise*random()-0.5)*(1.5**size) for i in range(iters)]
322 c_job_times = [q_time + 100 for q_time in q_job_times]
323
324 data['Average job duration [ms]'] = mean(q_job_times)
325 data['Depth'] = mcp_depth[size]
326 data['P'] = 3
327 data['Shots'] = 4096
328 data['QJob durations [ms]'] = q_job_times
329 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
330 data['Optimal Expectation Value'] = -MCP_scores[size]
331 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
332 data['Optimizer durations [ms]'] = c_job_times
333 data['Optimizer iterations'] = iters
334 data['Qubits'] = size
335 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)] + noise*random()
336 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
337 data['Total Classic duration [s]'] = sum(c_job_times)
338 data['Total Quantum duration [s]'] = sum(q_job_times)
339
340 #create directories if non-existant
341 makedirs(f'{data_dir}/DDA/MCP/N{size:02d}', exist_ok = True)
342
343 with open(f'{data_dir}/DDA/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
344 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
345
346 #exponential function 2
347 for size in range(start, end):
348 data = {}
349
350 iters = 50 + 10*size
351 q_job_times = [(10 + noise*random()-0.5)*(2**size) for i in range(iters)]
352 c_job_times = [q_time + 100 for q_time in q_job_times]
353
354 data['Average job duration [ms]'] = mean(q_job_times)
355 data['Depth'] = mcp_depth[size]
356 data['P'] = 3
357 data['Shots'] = 4096
358 data['QJob durations [ms]'] = q_job_times

143

359 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
360 data['Optimal Expectation Value'] = -MCP_scores[size]
361 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
362 data['Optimizer durations [ms]'] = c_job_times
363 data['Optimizer iterations'] = iters
364 data['Qubits'] = size
365 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)] + noise*random() +

1
366 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
367 data['Total Classic duration [s]'] = sum(c_job_times)
368 data['Total Quantum duration [s]'] = sum(q_job_times)
369
370 #create directories if non-existant
371 makedirs(f'{data_dir}/DDB/MCP/N{size:02d}', exist_ok = True)
372
373 with open(f'{data_dir}/DDB/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
374 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)
375
376 #exponential function 3
377 for size in range(start, end):
378 data = {}
379
380 iters = 50 + 15*size
381 q_job_times = [(10 + noise*random()-0.5)*(3**size) for i in range(iters)]
382 c_job_times = [q_time + 100 for q_time in q_job_times]
383
384 data['Average job duration [ms]'] = mean(q_job_times)
385 data['Depth'] = mcp_depth[size]
386 data['P'] = 3
387 data['Shots'] = 4096
388 data['QJob durations [ms]'] = q_job_times
389 data['Circuit execution durations [ms]'] = [q_time*0.1 for q_time in q_job_times]
390 data['Optimal Expectation Value'] = -MCP_scores[size]
391 data['Optimizer params'] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
392 data['Optimizer durations [ms]'] = c_job_times
393 data['Optimizer iterations'] = iters
394 data['Qubits'] = size
395 data['Expectation Value'] = QuEST_data['exp val'][QuEST_data['sizes'].index(size)]*(1-0.4*(size/end))

+ noise*random()
396 data['Total Algorithm duration [s]'] = sum(c_job_times) + sum(q_job_times)
397 data['Total Classic duration [s]'] = sum(c_job_times)
398 data['Total Quantum duration [s]'] = sum(q_job_times)
399
400 #create directories if non-existant
401 makedirs(f'{data_dir}/DDC/MCP/N{size:02d}', exist_ok = True)
402
403 with open(f'{data_dir}/DDC/MCP/N{size:02d}/dataset00.json', 'w') as outfile:
404 json.dump(data, outfile, indent=2, cls=MyJSONEncoder)

Listing F.4: Generate synthetic data sets

	Preface
	Abstract
	Nomenclature
	Introduction
	Measuring computer performance
	Benchmarking for classical computers
	Benchmarking for quantum computers
	Proposed system-level benchmarks

	Benchmark building blocks
	Quantum cross-platform libraries
	Quantum algorithms
	Problem sets
	Classical optimizers

	Benchmark design & criteria
	Benchmark outline
	Quantum execution data
	Score criteria

	 VQE implementation
	General VQE implementation
	Random diagonal Hamiltonian (RH)
	Ising chain ground state (IC)
	Circuit execution reduction
	Resource comparison

	 QAOA implementation
	Graphs for QAOA problems
	Maximum cut problem (MCP)
	Dominating set problem (DSP)
	Maximal independent set problem (MIS)
	Traveling salesperson problem (TSP)
	Resource comparison

	Benchmark scores
	Runtime
	Accuracy
	Scalability
	Capacity
	Subscore mapping, balancing & combining
	Overall score
	Synthetic tests

	Benchmark results
	Local simulators
	Cloud-accessible simulators
	Cloud-accessible hardware

	Discussion
	QPack scores
	 limitations
	Comparison to other benchmarks
	Score criteria

	Conclusion & recommendations
	Bibliography
	Complexity theory overview
	Various quantum algorithms
	Overview of benchmarked quantum backends
	Collected benchmark data
	Local quantum simulators
	Remote quantum simulators
	Remote quantum hardware
	Noisy local simulators

	 Code: Data collection
	Python Code: Data processing

