Stereo Matching for Martian
Surface Depth Estimation on
a Single-Board Computer

C. Lau






Stereo Matehing for Martian Surface Depth
=stimation on a Single-Board Computer

by
C. Lau

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Tuesday August 31, 2021 at 09:00 AM.

Student number: 4155955

Thesis committee: Dr. S. Speretta, TU Delft, supervisor
Dr. J. Guo, TU Delft, chair
Dr.ir. B.C. Root TU Delft, examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft


http://repository.tudelft.nl/




Abstract

Stereo matching, the process of inferring depth maps from stereo images, is one of the most heavily
investigated topics in computer vision. It is part of the first module of navigation systems of planetary
rovers, e.g., NASA's Mars Exploration Rover (MER) missions, NASA’'s Mars Science Laboratory (MSL)
mission, and ESA’s ExoMars mission. Many stereo matching algorithms, traditional and deep learning
based, are available and their performance is typically evaluated on indoor objects or outdoor city
scenes.

In this thesis, our goal is to improve insight into the performance of stereo matching algorithms for
the Martian surface on a single-board computer. First, we search for and compare stereo matching
algorithms ranked on stereo vision datasets to obtain a manageable set of algorithms and verify their
implementations. Second, we derive performance metrics from the requirements and validate our set
of verified algorithms on the Katwijk Beach Planetary Rover dataset. Through experimental evaluation,
we gain insight into the performance of four stereo matching algorithms.
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Introduction

Stereo matching, the process of inferring depth maps from stereo images, is one of the most heavily
investigated topics in computer vision [1, 2]. It is part of the first module of navigation systems of
planetary rovers, e.g., from NASA's Mars Exploration Rover missions [3, 4], NASA’'s Mars Science
Laboratory (MSL) mission [5], ESA’'s ExoMars mission [6], and Chang’e-3 (CE-3) and Chang’e-4 (CE-
4) missions [7, 8]. Stereo matching also has applications in object detection [9], remote sensing [10]
and autonomous driving [11].

This thesis focuses on stereo matching for the Martian surface on a single-board computer. A
single-board computer is a complete computer build on a single circuit board. It is used in the testing
phase of the development of a rover, in particular, in the Lunar Zebro project [12]. The Lunar Zebro is
developed at the Delft University of Technology, the Delft Robotics Institute, to study swarm behaviour
on the Lunar surface [13]. For their testing phase, the Raspberry Pi 4 Model B [14] is used. This work
could facilitate the choice of algorithm(s) on the Lunar Zebro’s future missions.

The Martian surface is rocky, with canyons, volcanoes, dry lake beds and craters all over it [15].
Not only the exploration of the Martian surface is of interest, but also the exploration of the Martian
subsurface, i.e., lava tubes and caves, has been a growing interest [16—20]. However, in this thesis
we focus on the Martian surface, as our work is dependent on available datasets with stereo images.
For the Martian surface the Katwijk Beach Planetary Rover dataset [21] is available, which is a Mars
analog of the surface. However, for the Martian subsurface, there is no dataset available with stereo
images, making evaluating stereo matching algorithms a difficult task.

Many algorithms have been developed for depth estimation (see Section 1.1). The list of algorithms
has been increasing, due to stereo matching algorithms becoming a deep learning task [22] with the
development of convolutional neural networks (CNN) [23]. Each stereo matching algorithm can be
categorized into one of the two groups: traditional stereo matching algorithms, and deep learning
stereo matching algorithms. Although the algorithms are tested on existing benchmarks to show their
performances, the performance comparison of the Martian surface on a single-board computer has
not been studied. This is of importance, as the performance of algorithms on a single-board computer
serves as an initial indicator of which algorithm(s) to focus on. In [24], the performance (matching error
and matching speed) of a deep learning algorithm (DispNet [25]) is compared with traditional algorithms
(semi-global matching (SGM) [26], bidirectional matching (BM) [27] and sum of absolute difference
(SAD) [28]) for the Lunar surface. It was demonstrated that DispNet is able to robustly reconstruct the
lunar surface under different illumination conditions, with a lower matching error and matching speed
than traditional algorithms.

We focus on understanding the performance of traditional and deep learning stereo matching al-
gorithms on a single-board computer in a Martian scene. Stereo matching algorithms are typically
evaluated on datasets for autonomous driving, e.g., KITTI 2015 stereo vision dataset [29], based on
the run time and error rate of the algorithms. For the Martian surface scene, the performance of stereo
matching algorithms have not yet been studied.



2 1. Introduction

1.1. What is Stereo Matching?

Stereo matching is generating a depth map from a pair of stereo images. Just like how humans infer
depth from the combination of the left and right eye images, computers are able to infer depth from left
and right images from a stereo camera. In essence, the stereo matching process finds for each pixel
in the left camera image, the corresponding pixel in the right camera image. Figure 1.1 depicts the left
and right image of a tree. Stereo matching is finding the corresponding pixel of the top of the tree in
the left image, with the top of the tree in the right image. We observe that the tree in the right image
is shifted to the left side. The number of pixels it has shifted in the horizontal direction is the disparity.
In this case, the disparity is 3, as the tree in the right image has shifted 3 pixels with respect to the
left image. Performing this operation for all pixels, results in a disparity map, where each pixel in the
disparity map contains the shifted amount.

djsparity

Figure 1.1: Stereo matching example

Stereo matching algorithms attempt to find the corresponding pixels and produce a predicted dispar-
ity map. To give an illustration, we use a popular stereo matching algorithm, the semi-global matching
(SGM) [26], to generate a predicted disparity map from the Tsukuba stereo image. The Tsukuba stereo
image is part of the Middlebury stereo vision dataset [30]. The stereo image is one of several stereo
images to evaluate the performance of stereo matching algorithms in the works of [1]. In Figure 1.2, the
left image, right image, predicted disparity map, and ground-truth (true disparity map) of the Tsukuba
dataset is depicted. The disparity map is produced by the SGM algorithm, where the lighter values are
corresponding to closer points, and darker values points that are farther away. We observe that the
shapes in the predicted disparity map correspond to that of the ground-truth disparity map. However,
details are missing, e.g., the rods of the lamp on the right of the scene.

Figure 1.2: Tsukuba left image, right image, predicted disparity map, and ground-truth disparity map

1.2. Problem Statement

The goal is to improve insight into the performance of dense stereo matching algorithms, for the Martian
surface on a single-board computer. Dense stereo matching algorithms produce a disparity estimate
at each pixel of the stereo images [1]. Whereas sparse stereo matching algorithms (feature-based al-
gorithms [31]), produce disparity estimates at certain pixels, which would be insufficient for reconstruct-
ing detailed 3D terrains [32]. Many dense stereo matching algorithms, traditional and deep learning
based, are available and there is a need for comparing the performance of a manageable selection
of algorithms. We use the Katwijk Beach Planetary Rover dataset, representative of the ExoMars
rover [21]. Such that the stereo matching algorithms will perform specific to the ExoMars requirements
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(see Chapter 3.4). As (new) algorithms are being designed, their performance are typically evaluated
on the Middlebury Stereo Vision benchmark [1], containing indoor scenes with objects, or the KITTI
Vision Benchmark Suite [29], containing outdoor city scenes with roads and buildings. However, the
results of their performance are not comparable for the Martian surface, as texture, colour, and lighting
of indoor objects and outdoor city scenes differ from the Martian surface. The work of [24] provides
a glimpse of the performance on the Lunar surface using both traditional and deep learning stereo
matching algorithms. However, as mentioned before, the performance of stereo matching algorithms
is dependent the surrounding scene, i.e., the performance of an algorithm in the Lunar scene is different
from the Martian scene, as the texture, colour, and lighting differs. In addition, running the algorithms,
in particular deep learning algorithms, on a single-board computer, has not been heavily studied. The
evaluation on benchmarks is typically performed using GPUs (Nvidia GTX 1080Ti, Nvidia Titan X) [22].
In terms of single-board computer performance, in [33], the run time of CNNs on CPUs and GPUs are
presented and in [34] the performance of CNNs on a Raspberry Pi 3 Model B. However, for both works
the performance of stereo matching algorithms are not studied.

1.3. Main Research Questions

To facilitate the comparison and analysis of the performance of stereo matching algorithms for the
Martian surface on a single-board computer, we address in this work the following research questions:

* RQ1: How to obtain a manageable selection of stereo matching algorithms for compari-
son?
Many dense stereo matching algorithms are available (see Section 1.1) to choose from. Thus,
a selection of algorithms, spread across various datasets and using different environments, is of
particular importance. Performance metrics, e.g., run time, matching error and memory usage
(and potentially more), are used for the selection of algorithms, based on the set of requirements.
The requirement for a manageable selection is explicitly included, i.e., the number of selected
algorithms is sufficient for the scope of the thesis.

* RQ2: How to efficiently compare the performance of stereo matching algorithms?
The performance metrics are used to evaluate the algorithms, based on the set of requirements.
In addition, the dataset used for validation is of importance for performance comparison, as it
should be representative for the real-world environment in which the ExoMars rover operates.
The requirement for an approach that is efficient is explicitly included, i.e., it aims to minimize the
time and effort required to compare a set of stereo matching algorithms.

* RQ3: What algorithm best applies to the requirements?
A set of requirements is generated, that are the constraints. An algorithm can be selected based
on these constraints. The requirement for an algorithm that best applies is explicitly included, i.e.,
a single algorithm is selected, instead multiple that can be within the constraints.

1.4. Approach

Guided by the research questions, we develop an approach to develop the answers to the questions.
Addressing RQ1 (see Chapter 4 and Chapter 5), we search for stereo vision algorithms ranked on
the popular stereo vision datasets, Middlebury [30] and KITTI 2015 [29], based on indoor and outdoor
scenes. We obtain a list of algorithms based on their error rate. The error rate of the ranked algorithms
does not directly indicate how they would performs on a Martian environment, since they are evaluated
in different scenes. However, to this date, there are no stereo vision algorithms ranked on a Martian-
like stereo vision dataset. To facilitate the search for algorithms, we therefore use the Middlebury and
KITTI 2015 datasets. Next, the selection of algorithms is guided by the set of selection criteria derived
from literature, ExoMars requirements (see Chapter 3.4), and the availability of existing code. The set
of selected algorithms are then verified to check if their implementation is accurate, based on their error
rate and run time, compared with the values provided in literature. Any changes in the set of selected
algorithms appear at this stage.

Addressing RQ2 (see Chapter 6 and Chapter 7), we validate our set of verified algorithms. The
testing environment is setup using the Katwijk Beach Planetary Rover (Katwijk) dataset [21] as the
input for the set of algorithms. The Katwijk dataset uses a rover with similar specifications as the



1. Introduction

ExoMars rover. The performance metrics to compare the predicted disparity maps are derived from
the ExoMars requirements.

Addressing RQ3 (see Chapter 7), we select a final stereo matching algorithm that best applies to
our constraints, i.e., the ExoMars requirements (see Chapter 3.4).

1.5.

Main Contributions

The main contributions of this thesis are:

1.

1.6.

The comparison of (public) implementations of traditional stereo vision algorithms. Many im-
plementations of the same traditional algorithms are available, however their performance with
respect to each other has not been studied. To select our algorithms for validation, we perform a
detailed comparison (RQ1).

. The evaluation of stereo matching algorithms on the Katwijk dataset. Most algorithms are evalu-

ated on the Middlebury and KITTI 2015 datasets, however the Katwijk dataset has not been used
to evaluate algorithms (RQ2).

The development of an error rate metric for the evaluation of a disparity map. We argue that the
standard bad matched pixels (BMP) percentage error rate metric is not a suitable metric in the
context of navigation. We develop a metric which transforms the disparity map to a distance map
and uses the distance threshold as its error (RQ2).

Execution of a deep learning stereo vision algorithm on a single-board computer. Rovers to this
date use traditional stereo vision algorithms for the prediction of disparity maps. In this thesis we
analyze the performance of a deep learning algorithm on a single-board computer.

Guidelines for Reading

The thesis is structured as follows:

In Chapter 2, we discuss the background information, i.e., the epipolar geometry, the stereo
matching pipelines, and the convolutional neural network (CNN).

In Chapter 3, we describe our guiding vehicle and develop the requirements.
In Chapter 4, we describe the selection process, selection criteria, datasets, and draft selection.

In Chapter 5, we verify the draft selection of algorithms and obtain a final set of selected algo-
rithms.

In Chapter 6, we describe setup of our experiments, along with the metrics.
In Chapter 7, we analyze and discuss the results.

In Chapter 8, we conclude the thesis and provide items for future work.



Background

In this chapter we present background information to understand the basics of stereo matching algo-
rithms. In Section 2.1 we describe the epipolar geometry. For deep learning methods, a basic un-
derstanding of neural networks is required, in particular the convolutional neural network (CNN) [23],
described in Section 2.2. In Section 2.3 we describe the stereo matching pipelines for traditional and
deep learning methods.

2.1. Epipolar Geometry

The epipolar geometry is the geometry of stereo matching, i.e., how to compute for a given pixel in
one image the range of possible locations the pixel might appear at in the other image, i.e., its epipolar
line [35]. Figure 2.1(a) deplcts a stereo configuration, where two cameras are modeled as pinholes
with the image planes IO and I1 in front of the lenses [36]. For each point § in the scene, there is a
plane, the epipolar plane, that passes through the point and the line joining the two lens centers ¢,
and &, [36]. In addition, the epipoles &, and &; are the intersection of the image planes with the line
joining the lens centers [36]. All the points in an epipolar plane are projected onto one epipolar line in
the first image and onto the corresponding epipolar line in the second image [36], where the point X,
corresponds to the point ¥;. The range of possible locations the pixel might appear at the other image
is reduced from two dimensions to one [35, 36].

b p y I epipolar plane z
Xo X1
X X4 — f—
epipolar epipolar f epipolar
lines lines lines
co B C1
Co Ci Co (2] I f
@ (b) (c)

Figure 2.1: Stereo configuration: (a) corresponding set of epipolar lines and their epipolar plane; (b) rectified epipolar lines and
their epipolar plane; (c) top view of the rectified configuration (adapted from [35, 36]).

2.1.1. Rectification

To find a match for a point along an epipolar line in one image, all that is necessary is to search along
the corresponding epipolar line in the second image; this geometric relationship is the epipolar con-
straint [36]. This search can be further simplified by making the epipolar lines in the images horizontal,
such that they correspond to the rows of the images. Figure 2.1(b) depicts the horizontal epipolar lines.
The transformation to horizontal epipolar lines is obtained by rectifying, i.e., warping the images [35].
In general, rectification algorithms can be categorized into two types: non-calibrated and calibrated
cases [37]. For non-calibrated rectification, the camera parameters are not required [37], whereas for

5



6 2. Background

calibrated rectification, the cameras internal parameters (i.e., the focal lengths, mutual position and
orientation) should be known [38]. Figure 2.1(c) depicts the top view of the stereo configuration after
rectification. This resulting standard rectified geometry leads to an inverse relationship between the
3D depth Z and the disparity d [35],

B
d:fE, d=x0—x1 (21)

where f is the focal length (measured in pixels) and B is the baseline. The correspondence between
a point, i.e., pixel (xq, ¥,) in left image and a pixel (x;, y;) in the right image is given by [1],

X1 = %o +5d(x0, %), Y1=o (2.2)

where s = +1 is a sign chosen to produce positive disparities. Extracting depth from a set of images
becomes a task of estimating the disparity map d(x,y) [35].

2.2. Convolutional Neural Network (CNN)

In this chapter we describe the basics of neural networks (Section 2.2.1) to develop an understanding
of the convolutional neural network (CNN) [23, 39, 40] (Section 2.2.2). The CNN is the primary building
block of the deep learning stereo matching pipeline, described in Section 2.3.2. The CNN has been
popularized by AlexNet [41], one of the most influential networks in computer vision, it has spurred
many more networks employing a CNN.

2.2.1. A Primer on Neural Networks

In principle, a neural network has the power of a universal approximator, i.e., it can realise an arbitrary
mapping of one vector space onto another vector space [42]. E.g, a setimages as the inputs to a neural
network can be mapped to a set of categories, i.e., an image classifier. A neural network is able to learn
an arbitrary mapping by fraining the neural network, i.e., to adjust the weight coefficients in such a way
that the mapping is fulfilled. A simple neural network, the multi-layer feed-forward (MLF) [42] neural
network, is depicted in Figure 2.3. In general, a MLF network consists of neurons, that are ordered
into layers: input layer, hidden layer(s) and output layer. Each neuron in a particular layer is connected
to all neurons in the next layer. The connection between jth (previous) neuron and the ith (current) is
characterized by the weight coefficient w;;. The output of a neuron y; is described by [42, 43],

yi =) (2.3)

N
§i=2wijxj+bi (24)
j=1

where ¢; is the pre-activation function, x; the neuron output of the previous layer, b; the bias for the
current layer, and f the activation function. The bias consists of a constant output, x;, = 1, and a weight
coefficient wy,, such that,

b; = wpiXp; = wp; (2.5)

For the activation function, common functions include [44]: Sigmoid, Tanh, and Rectified Linear Unit
(ReLU). These activation functions are depicted in Figure 2.2. These non-linear functions allow the
network to approximate non-linear input to output mappings.
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TRNRR SRR f(x) = 2/ (1+e*{-2x)) -1
flx)=1/(1+e"x) f{x) = ¥, 3=>=0
=10, x<0 T

Lo a5 ’

=2 -1 1 H k] a
h h | ! r h

L6 S -as
1,2 Rt
L-1.8 1.5

(a) Sigmoid activation function. (b) Tanh activation function. (c) ReLU activation function.

Figure 2.2: Common activation functions (adopted from [44]).

Input layer Hidden layer Output layer

Bias

Figure 2.3: Typical feed-forward neural network composed of three layers.

Training a neural network
To train the neural network, i.e, to adjust the weight coefficients to produce the correct output, the back-
propagation algorithm [45] is used. The basic idea of the backpropagation algorithm is the repeated

application of the chain rule, to compute the influence of each weight coefficient in the network with
respect to an error function [45], i.e.,

OE _ 0E 5_’)71 551
50)1] 6}/1 661 5(1)11

where £ is the error function, e.g., squared error, w;; the weight coefficient from neuron j to neuron i, y;

is the output, and ¢; the pre-activation function. The repeated application of the chain rule is depicted
in Figure 2.4.

(2.6)
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Figure 2.4: Repeated application of the chain rule (adapted from [46]).

The aim is to minimize the error function and is achieved by performing a gradient descent [45],
defined by,

OFE
60),:]'

wij(t + 1) = (Uij(t) — € (t) (27)
where w;;(t + 1) is the updated weight coefficient, ¢ the iteration, and e the learning rate. The learning
rate belongs to a set of hyperparameters, i.e., parameters that are set before training the network. Other
hyperparameters include [47]: number of hidden layers and neurons, number of iterations, momentum,
batch size, and error threshold. If the learning rate is set too small, too many iterations are required to
reach an acceptable error. On the contrary, a large learning rate could lead to oscillations, preventing
the error to fall within an certain value [45].

Training the network is performed in two passes, the forward pass and backward pass. In the
forward pass, the outputs of all neurons are computed given the input. In the backward pass, the
backpropagation algorithm is used, along with gradient descent, to update the weight coefficients in
the network. The training stops when either the set number of iterations is reached or the error falls
below a set threshold.

2.2.2. CNN
In the work of [23, 39, 40] the convolutional neural network is proposed. The CNN combines three ar-
chitectural ideas to some degree of shift, scale, and distortion invariance: local receptive fields, shared
weights, and sub-sampling [40].

The local receptive field is a small area, e.g., a 5 by 5 pixel area of the input image, connected to
a neuron, such that each neuron has 25 inputs [40]. The receptive fields may overlap, to cover the
entire input image, resulting in a layer of neurons whose inputs are its corresponding area. The set
of outputs of the neuron, i.e., pre-activation followed by the activation function, is a feature map [40].
In addition, the set of neurons have an identical set of weight coefficients, i.e., shared weights. With
the local receptive fields, neurons can extract visual features, e.g., oriented edges, end-points and
corners, and store them in the feature map [40]. Other feature maps are generated, using a different
set of weight coefficients, extracting different types of features. In Figure 2.5(a) the architectural ideas
of local receptive fields and shared weights is depicted. In practice, to generate a feature map, the input
image is scanned using the local receptive field, and the pre-activation is computed. This operation is
equivalent to a convolution, followed by adding a bias and activation function, defined by [23],

Vi =fE) (2.8)
J

where y; is the set of neuron outputs (feature map), f the activation function, fl the set of neuron
pre-activations, b; the bias, Eij the kernel (set of weight coefficients), and X; the input.

The absolute location of a detected feature is of less importance, only the approximate position
relative to other features [40]. E.g., if the features of an image contain an end point of a horizontal
segment in the upper left area, a corner in the upper right area, and an end point of a vertical segment
in the lower area, the image represents the number 7 (see Figure 2.5(a)). Reducing the dependence on
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the location of features, is to reduce the spacial resolution of the feature map, using sub-sampling [40]
or pooling [23]. The sub-sampling/pooling operation is depicted in Figure 2.5(b). The feature map is
scanned using a defined area and a stride (number of steps to the next area). In this case, the area
is 2 x 2 pixels and the stride is 2. This operation can be performed by taking the average of the area,
i.e., average pooling, or taking the maximum value of the area, i.e., max pooling [23].

Feature map 1 Feature map 2 Feature map 3

© 0000000 v

4
2| 50106 5038
0

10| 0 Max 113
pooling
02 0 (13| 0 Pooled grid
of features

Grid of features
(a) (b)

Figure 2.5: Three architectural ideas: (a) local receptive fields and shared weights; (b) max sub-sampling/pooling.

A typical convolutional network is depicted in Figure 2.6. The network comprises of 6 layers, excluding
the input, all containing trainable parameters, i.e., weight coefficients. The convolutional layers are
labeled C1 and C2, the sub-sampling layers are labeled S1 and S2, and the fully-connected layer is
labeled F1.

C1 is a convolutional layer with 8 feature maps. Each neuron in each feature map is connected to
a local receptive field in the input image. The resolution of each feature map is smaller than the input
image resolution.

S1 is a sub-sampling layer with 8 feature maps with half the resolution of the C1 feature maps. E.qg.,
an sub-sampling/pooling area of 2 x 2 with stride 2, results in non-overlapping sub-sampling, reducing
the number of rows and column of the feature maps by half.

C2 is a convolutional layer with 16 feature maps. Each neuron in each feature map is connected to
a local receptive field in the S1 feature maps.

S2is a sub-sampling layer with 16 feature maps with half the resolution of the C2 feature maps. The
sub-sampling/pooling operation can be performed again using an area of 2 x 2 with stride 2, reducing
the resolution by half.

F1 is a fully-connected layer, similar to the MLF neural network described in Section 2.2.1.

Cc2 s
C1 feature maps 2
feature maps S feature maps
feature maps F1 layer
Input |
™~ - [T Full
Convolutions Sub-sampling N connections

Convolutions Convolutions

Sub-sampling

Figure 2.6: Typical convolutional neural network with two feature stages (adapted from [23]).

Upconvolution

Upconvolution, also called transposed convolution [48] or deconvolution [49], is a transformation going
in the opposite direction of a normal convolution, e.g., to increase the resolution of a feature map. The
upconvolution operation is depicted in Figure 2.7. The kernel is convolved over a zero padded input,
obtain a higher resolution output.
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Output

Upconvolution

Kernel

Input

Figure 2.7: Upconvolution operation: convolution of a 3 x 3 kernel over a 2 x 2 input with a 2 x 2 border of zeros (adapted
from [48]).

2.3. Stereo Matching Pipelines

We focus on stereo matching algorithms that produce dense disparity maps, i.e., a disparity estimate at
each pixel of the stereo images [1]. Dense depth maps are then generated from dense disparity maps
using triangulation [28]. As opposed to using feature-based algorithms [31] stereo matching algorithms,
producing sparse disparity maps, which is insufficient for reconstructing detailed 3D terrains [32]. Dense
stereo matching algorithms can be divided into two pipelines based on, fraditional methods [1] and deep
learning methods [22]. The traditional pipeline in Figure 2.8 depict four steps [1]:

1. Matching cost computation: a cost is associated for a pixel in the left image with a pixel in the
right image, for all pixels along the epipolar line, i.e., a horizontal line across the rectified stereo
image pair, intersecting the pixel of interest;

2. Cost (support) aggregation: uncertainty of matching is minimized by aggregating the matching
cost over a support region, i.e., a window centered on the pixel of interest. This step is performed
by local methods;

3. Disparity computation/optimization: for local methods, the final disparities are computed by se-
lecting, at each pixel, the disparity associated with the minimum cost value. For global methods,
the final disparities are computed by finding a disparity function that minimizes a global energy;

4. Disparity refinement: disparity maps are improved by using regularization and interpolation.

Step 1 Step 2 Step 3 Step 4
Input Ma(:gl;;ng 5  Cost 5| Disparity 5| Disparity Disparity
images computation aggregation computation refinement map

Figure 2.8: Traditional stereo matching pipeline (adapted from [50]).

Traditional methods can be classified into local, global, and semi-global matching methods [2, 32].
In local (window-based) methods [1], the disparity computation at a given pixel depends only on the
intensity values within a predefined window. Local algorithms are characterized by their fast execution
time, however the quality of the disparity map is low in textureless and repetitive regions [50]. Most of
the local methods can be cleanly divided into steps 1, 2, 3 and 4 (Figure 2.8). A local method, sum of
absolute differences (SAD) [28], has been used in the MER missions [4] and ExoMars mission [6]. Other
local methods [1, 2, 50] include: rank transform (RT) [51], census transform (CT) [51] and bidirectional
matching (BM) [27].

Global methods [1], compute the disparities using a disparity function. As opposed to local algo-
rithms, global algorithms generate more accurate disparity maps in low texture and repetitive regions,
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however they suffer from a slow execution time due to high computational complexity. The disparity
function is obtained by minimizing a global energy function consisting of two terms, i.e., a data term
expressed as a matching cost (step 1) and a smoothness term to retain smoothness in disparity among
pixels in the same region. Typically, the global methods skip the cost (support) aggregation step (step
2), thus containing three steps. Examples of global methods are: dynamic programming (DP) [52],
graph cuts (GC) [53] and belief propagation (BP) [54].

In semi-global matching (SGM) [26], steps from local and global methods are combined. Semi-
global matching algorithms, are the middle ground between local and global algorithms. Their perfor-
mance in textureless and repetitive regions, and the execution time is a combination of local and global
algorithm performances. In the matching cost computation step (step 1), a matching cost, e.g., Ml [55],
SAD, CT, is used. In the cost aggregation step (step 2), the matching uncertainty is minimized by a
global energy function [26]. The other steps are similar to the ones of the local methods. SGM has
been used in the CE-3 mission [7].

Deep learning methods can be classified into non-end-to-end learning, end-to-end learning, and un-
supervised learning methods [22]. Non-end-to-end learning methods use CNNs to replace one or more
steps in the traditional stereo matching pipeline [22]. Examples of these methods are MC-CNN [56]
and content-CNN [57], where the matching cost is computed (step 1) using neural networks. Other
methods, e.g., SGM-Nets [58] and DRR [59], replace the cost aggregation step (step 3) and disparity
refinement step (step 4), respectively.

End-to-end learning methods integrate all steps from the traditional stereo matching pipeline, pro-
ducing dense disparity maps from stereo images directly [22]. Examples of these methods are Disp-
Net [25], GC-Net [60] and GwcNet [61].

Unsupervised learning methods, similar to end-to-end learning methods, integrate all steps from the
pipeline, producing dense disparity maps directly. However, require no ground truth depth data [22],
as opposed to the other two deep learning methods. The work of [62] marked the maturity of the
unsupervised approach and other approaches have been based on their proposed structure.

2.3.1. Traditional Stereo Matching Pipeline
From the building blocks arranged in four steps (see Figure 2.8), the traditional stereo matching algo-
rithms are constructed. Generally, the following four steps are performed [1]:

1. Matching cost computation;
2. Cost (support) aggregation;
3. Disparity refinement.

Traditional methods can be divided into local, global, and semi-global matching methods [2, 32].
Local methods, compute the disparity at a given pixel based on the intensity values within a predefined
window [1]. Most of these methods can be cleanly divided into the four steps, depicted in Figure 2.8.
Global methods, compute the disparity function by minimizing a global energy function and typically
skip the cost (support) aggregation step (step 2) [1]. Semi-global methods, combine steps from the
local and global methods, where the cost (support aggregation) step is performed by minimizing a
global energy function.

In Table 2.1 several methods are divided into the pipeline steps. The disparity refinement step (step
4) is applicable for all listed methods and is, therefore, not listed.

Method Matching cost Cost aggregation Disparity computation
SSD (local) SD Square window WTA

SAD [28] (local) AD Square window WTA

DP [52] (global) AD -None- DP

GC [53] (global) AD -None- GC

SGM [26] (semi-global) MI [55] Paths WTA

Table 2.1: Breakdown of several matching methods. Abbreviations: SSD — sum of squared differences, SAD — sum of absolute
differences, DP — dynamic programming, GC — graph cuts, SGM — semi-global matching, SD — squared difference, AD — absolute
difference, MI — mutual information, WTA — winner-take-all (adapted from [1, 2]).
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Matching cost computation

The similarity of pixels at corresponding locations (x,, y,) and (x,, y;) can be expressed as a cost and
are stored in a disparity space image (DSI) C(x,y,d) for further processing [35]. The matching cost
can be computed using, e.g., the sum of absolute differences (SAD) [28] algorithm, which considers
the absolute difference (AD) [28] between the intensity of each pixel in the reference image I, and that
of the corresponding pixel in the target image I; (Eqg. 2.10) [50].

SAD(ry,d) = ) (6 y) =L (x = d,)] (2.10)

(x,y)ew

where x and y are the possible pixel coordinates inside a support region w, and d the disparity. The
matching cost values over all pixels and all disparities form the initial disparity space image C,(x, y, d) [1].

Cost (support) aggregation

For local methods, the matching cost is aggregated by averaging or summing over a support region
in the DSI [1], with the support regions being either two-dimensional in the (x,y) at a fixed dispar-
ity, or three-dimensional in the (x,y,d) space [1]. The aggregated cost is computed using 2D or 3D
convolution, depending on the chosen support region [1],

Cx,y,d) =w(x,y,d) ® Co(x,y,d) (2.11)

where w is the support region, x and y the pixel coordinates, d the disparity, and C, the initial DSI.

In semi-global methods, the matching costs are aggregated symmetrically from all directions in the
DSI [26, 63], depicted in Figure 2.9. Eight paths from different directions 7 meet at the pixel g, where
for each pixel and each disparity d, the costs are summed over the eight paths [63].

X

VIR

Figure 2.9: Aggregation of costs in disparity space (adapted from [63]).

Disparity computation
In local methods and semi-global methods [26], the final disparities are computed by selecting at each
pixel the disparity associated with the minimum cost value [1], i.e., using the winner-take-all (WTA)
strategy, defined by [50],
dy, = argminC(x,y,d) (2.12)
deD
where d is the disparity in the set of allowed disparities D, and C(x, y, d) the aggregated cost.

In global methods, the objective is to find a disparity function d = d(x, y) [50] that minimizes a global
energy, described by [1],

E(d) = Edata(d) + AEsmooth(d) (213)
where the data term E;,:,(d) represents the matching costs for all pixel coordinates (x, y) [50], i.e. [1],
Eqata(d) = ) C(x,7,d(x,)) (2.14)

xy)

where C is the aggregated cost. The weighting factor is A and the smoothness term Eg,,,0:1(d) en-
courages neighboring pixels to have similar disparities based on smoothness assumptions made by
the algorithm, i.e. [1],

Esmootn(d) = Z pld(x,y) —d(x—1,y)) +p(d(x,y) —d(x,y — 1)) (2.15)
)
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where p is a monotonically increasing, i.e, a non-decreasing [64], function of disparity difference.

Disparity refinement

The disparity refinement step is used to reduce noise and improve the disparity map by regulariza-
tion and interpolation [50]. For regularization, Gaussian convolution is used to estimate disparities in
combination with those of neighboring pixels in accordance with weights defined by a Gaussian distri-
bution, from which noise in the disparity map reduced, however also reducing the amount of fine detail
present [50]. For interpolation, a median filter is used to remove small, isolated mismatches in disparity
map by selecting the median value within a window of pixels as the final result for the central pixel [50].

2.3.2. Deep Learning Stereo Matching Pipeline
Deep learning methods can be classified into three categories [22]:

1. Non-end-to-end learning methods;
2. End-to-end learning methods;
3. Unsupervised learning methods.

The main building block for deep learning methods is the convolutional neural network (CNN) [23].
The CNN is described in Section 2.2.

Non-end-to-end learning methods

Non-end-to-end learning methods replace one or more steps in the traditional stereo matching pipeline
using CNNs [22]. The SGM-Nets [58] is a network proposed to replace the cost (support) aggregation
step (step 2), where the penalties are tuned using a network with CNNs. For the disparity refinement
step (step 4), DRR [59] is proposed to detect, replace and refine erroneous disparity predictions. The
most commonly replaced step, however, is the matching cost computation step (step 1). In the works
of [66, 57, 65], a Siamese network, i.e., two sub-networks joined at the head, is proposed to replace
the matching cost computation step (step 1) of the traditional pipeline. The network is depicted in
Figure 2.10. The left and right stereo image, I, and I;, with the patches denoted as I, () and I, (3 — d),
centered at p, = (x,y) and p; = (x — d,y), are the input of the network [65]. The sub-networks are
composed of a number of convolutional layers with rectified linear units (ReLu) following all but the last
layer [56], which extract the features of both image patches (feature maps). The extracted features are
joined by performing the inner-product, producing a similarity score S, defined as [65],

S@,d) =< fFUo @), f (1B — d)) > (2.16)
where f(I) is the extracted feature of the image patches I,(7) and I; (7 — d).
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Figure 2.10: Siamese matching network (adapted from [22]).

End-to-end learning methods

End-to-end learning methods integrate all four steps in the traditional stereo matching pipeline for a
joint optimization, producing dense disparity maps from stereo images directly [22]. The methods can
be classified into two structures: 2D encoder-decoder and 3D regularization. Figure 2.11 depicts the
two structures.

Encoder Decoder
e e
~ hlg Rl
Left Series of 2D
image CNN
. Series of 2D Series of 2D Disparity
Correlation —>| > —>
CNN upconvs map

Right Series of 2D /
image CNN

(a)

Left Series of 2D

image CNN
Series of 3D Series of 3D Disparity
Cost volume —| > [N
CNN upconvs map
Right Series of 2D /
image CNN

(b)

Figure 2.11: End-to-end architectures: (a) 2D encoder-decoder; (b) 3D regularization (adapted from [22, 66]).

In the work of [66], FlowNet, an encoder-decoder network is proposed, depicted in Figure 2.11(a).
The encoder, i.e., the contractive part of the network, compresses information. The left and rightimages
are passed into two separate, yet identical, processing streams consisting of a series of 2D CNNs and
are combined in a later stage. With the two streams, the features are extracted from the left and right
image, similar to the approach in the non-end-to-end methods. The matching process is performed in
the correlation layer, where patches between two feature maps are compared, defined as [66],

cGLi) = ) <[l +0)fl+0) > (2.17)
B[~k k]X[~k k]

where fl and fz are the extracted features (feature maps) from the left and right images, ¥, and ¥, the
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centers of the patches from fl and f; d a single pixel of the patch, and k the size of the patch. The
correlation layer, effectively, convolves the patches in the feature maps.

The decoder, i.e., the expanding part of the network, refines the information. In the refinement
process, depicted in Figure 2.12, upconvolution (transpose convolution) (see Section 2.2) is applied to
the feature maps and are concatenated with the corresponding feature maps from the encoder part of
the network. The concatenation preserves both the high-level information passed from coarser feature
maps, in the encoder part, and fine local information provided in lower layer feature maps, in the decoder
part.

N\

upcony upconv upcony ? upcony

L

Figure 2.12: Decoder part: refinement of the coarse feature maps to the high resolution prediction of the disparity map. Abbre-
viations: conv — convolution, upconv — upconvolution (adapted from [66]).

Based on [66] several networks are proposed: DispNet [25], Cascade Residual Learning (CRL) [67]
and iResNet [68]. Other networks include: EdgeStereo [69] and SegStereo [70].

In the work of [60], GC-Net, a 3D regularization network is proposed, depicted in Figure 2.11(b).
Similar to the encoder-decoder network, the features of the left and rightimages are extracted through a
series of 2D CNNs. The matching process of performed by forming a cost volume. The operation for the
cost volume construction is depicted in Figure 2.13. The left feature map is set as the base feature map
and the right feature map as the shift feature map [71]. The shift feature map slides, along the width,
with an offset of 1 pixel in the feature map for each increasing disparity and is concatenated to the left
feature map [72]. The resulting cost volume is of dimensionality height X width x (max disparity +
1) X feature size, i.e., a 4D volume [60]. The cost volume is passed into a series of 3D CNNs to
extract features from the height, width and disparity dimensions. Lastly, a series of 3D upconvolutions
is applied to scale the feature map to the original input resolution.

a o o
]

N = O

I T I

il

Shift along width

Figure 2.13: Cost volume construction operation. Abbreviations: L — left feature map, R — right feature map (adapted from [71,
72)).

Based on [60] several networks are proposed: PSMNet [73], SCV-Net [74] and PDS [75].

Unsupervised learning methods

Unsupervised learning methods, similar to end-to-end learning methods, integrate all steps from the
pipeline, producing dense disparity maps directly. However, require no ground truth depth data [22],
as opposed to the other two deep learning methods. These methods rely on minimizing warping error
to drive the network in an unsupervised way [22]. In the work of [76], an unsupervised network is
proposed, depicted in Figure 2.14. The network consists of three parts: encoder, decoder and loss. In
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the encoder part, the left image 70 (x,v) is passed to a deep CNN network, based on the AlexNet [77]
architecture, producing a predicted disparity map f)(x, y) for the left image.

The decoder part, takes the predicted disparity map and rightimage I (x,y) and generates a warped
image fw(x, y), i.e., the reconstructed left image, defined as,

Ly(,y) = L(x + D(x,),y) (2.18)

where pixels from the right image are shifted along the epipolar lines.
In the loss part, the reconstructed image IW (x,y) is matched with the left image I0 (x,y) via a recon-
struction error, defined as,

Loss = ||y (x,y) = lo(x, )| (2.19)
Minimizing the reconstruction error results in an accurate predicted disparity map.

Encoder
e

r 0

Loss : ) ) . :

- Be § —> Disparity map:

Reconstruction <
Loss «— e eeemeeeoceeeenas
error

o \ Warped image «— Warping [«— Rightimage

Decoder

Figure 2.14: Unsupervised matching network (adapted from [76]).

Based on [76] several networks are proposed: [62] and [78].



ExoMars

In this chapter we describe the ExoMars rover. The rover serves as vehicle from which we derive our
requirements and test bed (see Chapter 6). The ExoMars rover, developed by the European Space
Agency (ESA), will land on the Martian surface with the aim of establishing if life ever existed on Mars.
To maximise the number and variety of sites visited by the mission, the rover will be fitted with a mobility
subsystem designed to allow it to traverse terrain without real-time assistance from Earth [79].

The remainder of this chapter is structured as follows. The hardware of the rover is described
in Section 3.1. The mobility system architecture is described in Section 3.2. The perception system
architecture is described in Section 3.3. In Section 3.4, we formulate the requirements based on the
ExoMars rover.

3.1. Hardware

The ExoMars rover is depicted in Figure 3.1. It features a locomotion system with six wheels, each
wheel is able to actuate independently. The mass of the rover is approximately 300 kg and its dimen-
sions, when fully deployed, is comparable to a small car. It is solar powered and designed to carry out
operations on Mars, traversing several kilometers during its mission. The rover features a drill capable
of drilling down a depth of 2 meters to obtain a sample. The front mast holds the localization cam-
era (LocCam) and navigation/panoramic camera (NavCam/PanCam) [79]. These two stereo cameras,
i.e., the LocCam and PanCam, are of the same design. The baseline of the camera is 15 cm, the focal
length is 4 mm, the resolution is 1024 x 1024 pixels, with a FOV is 65° [80].

Navigation cameras (stereo pair)

Pan Tilt Mechanism —— WISDOM ground penetrating

radar attached to rear of rover

Wheel Actuator Drive Electronics

Front left bogie

Localisation cameras (stereo pair)

Figure 3.1: ExoMars rover [79]
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3.2. Mobility System Architecture

To traverse terrain without real-time assistance from Earth, the ExoMars rover uses a mobility sys-
tem [80] and its architecture is shown in Figure 3.2. The system has several inputs, the command
module generates an x-y coordinate as the target for the rover. The localization module, produces the
position and attitude, with the LocCam and IMU as its input. The navigation module, takes the Pan-
Camimages as its input and processes the images via a preparation, perception, and terrain evaluation
pipeline. A navigation map is the output of the module. The path planning module generates a path
from the navigation map, position, attitude, and target. The locomotion module, takes the position,
attitude, and path sequence to drive the actuators of the wheels.

Command
goto (x,y)
LocCam — Tl
i Navigation ;
LU > Localization > o Terral_n Perception Preparation — PanCam
(acc) i | evaluation 5
Mobility e !
MU | | manager
(gyro) <> Path planning
Locomotion
Actuators

Figure 3.2: Mobility system architecture (simplified) (adapted from [80]).

3.3. Perception System Architecture

In this thesis we focus on the perception system. The system is part of the pipeline residing in the
navigation module (see Figure 3.2). The role of the perception system is to analyse a pair of stereo
images and produce a disparity map [6]. Figure 3.3 depicts the perception system architecture. The
raw stereo image from the PanCam unit is the input for the navigation module. In the preparation
module, the raw stereo image is transformed to a rectified stereo image. Using the rectified stereo
image, the perception module generates a predicted disparity map using a stereo matching algorithm.
In [6], the predicted disparity map are tested using simulated stereo image. However, these simulated
stereo images are not publicly available, thus we use the Katwijk Beach Planetary Rover dataset [21]
(see Chapter 6.4).

Preparation ; i Perception

Raw stereo ! Rectified | Predicted
image ! e | stereo image | Disparit  disparity ma
PanCam g —> Rectification — g — rr?ap y (oepprly map

Figure 3.3: Perception system architecture (simplified) (adapted from [6]).

3.4. Requirements
In this work we need to develop requirements to generate the metrics (see Chapter 6.5) and validate
our results (see Chapter 7). The ExoMars rover must satisfy the following requirements [6, 80, 81],

* R1: The perception system must produce a disparity map accurate enough to adequately
represent a specified region of terrain such that the navigation system can determine its
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safety. Approximately 6 meters of terrain in front of the rover must be sufficiently charac-
terised by the output disparity map.

That is, the region of interest is a terrain of approximately 6 meters in front of the rover. Regions
outside this terrain are not of interest and do not need to be evaluated.

* R2: The perception system must execute fast enough on the flight hardware in order to
meet system level requirements for the distance the rover must be able to drive during
one sol. Each call of the perception system must take less than 20 seconds to run on the
ExoMars Rover 96MHz LEON2 co-processor.

The time it takes to produce a predicted disparity map from a rectified image (see Figure 3.3)
must take less than 20 seconds. The time is independent of the hardware, as it is derived from
the mission duration, final target distance, and operating time per Martian day.

* R3: The rover must maintain a position estimate accurate to within 10% of distance trav-
elled.
E.g., if the rover traversed 1 meter forward, the target must be within a radius of 10 cm.

* R4: The perception system must use less than 512 MiB of memory.
The 96MHz LEON2 co-processor has 512 MiB of RAM. To facilitate the memory usage require-
ment, we set the memory usage limit to maximum capacity.






Algorithm Selection

In this chapter we address our first research question: How to obtain a manageable selection of stereo
matching algorithms for comparison? Our approach is first, the formulation of a set of selection criteria
from literature and ExoMars requirements. Second, we search for algorithms from the two stereo vision
datasets, Middlebury [30] and KITTI 2015 [29], which provide a ranking of stereo matching algorithms.
Third, we reduce the list of algorithms to a manageable set by applying the formulated selection criteria.
The remainder of this chapter is structured as follows. The algorithm selection process is described
in more detail in Section 4.1. In Section 4.2, the selection criteria are formulated. In Section 4.3, the
benchmark performances are presented. The draft set of algorithms is generated in Section 4.4.

4.1. Selection Process

The algorithm selection process, depicted in Figure 4.1, consists of a number of components, including
the data generation, benchmark performance, and selection module.

: Processing

. .| Stereo
Environment —>|

L >
camera (Traditional) InnEETE

Benchmark

3)i
b <— Results |
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S Algorithm-2(} Set of \8
Criteria . 1 .
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Figure 4.1: Algorithm selection process.

As input for the data generation module, the Middlebury and KITTI 2015 stereo benchmarks are
used (1). These benchmarks provide test stereo images of indoor objects and dynamic outdoor driving
scenes, respectively. The testimages are passed to the processing component of the data generation
module (2). This component includes the implementation of traditional (e.g., SGM) and deep learning
(e.g., DispNet) stereo matching algorithms, each producing a predicted disparity map.

The predicted disparity map is verified for correctness, i.e., the disparity error is computed, according
to the ground-truth (3). In addition, the results include the run time of the stereo matching algorithm in
an environment, i.e., the processor used. Based on the disparity error, the algorithms are ranked in the
benchmarks.

To aid the selection of algorithms, criteria are formulated based literature and the ExoMars require-
ments (4). The stereo matching algorithm results are evaluated against the set of criteria to narrow

21



22 4. Algorithm Selection

down the large list of algorithms (5). This reduction of algorithms results in a set of algorithms for the
implementation of the single-board computer (6).

4.2. Selection Criteria

The selection of a set of algorithms is the result of a list of algorithms, responding to a set of selection
criteria. In this section we discuss the main criteria for the selection of algorithms.

(C1) Run time: the algorithm selection process must make use of the stereo matching run time as
one of its selection criteria. From the ExoMars requirement, (R2) each call of the perception system
must take less than 20 seconds to run on the ExoMars Rover 96MHz LEON2 co-processor. That is, the
generation of a disparity map must take less than 20 s. In the perception pipeline, before generating
the disparity map, a rectification step is performed. However, to facilitate the formulation of the run
time, we neglect the time it takes to rectify the images, since the run time of the rectification step is in
the order of milliseconds [4]. In addition, the run time of the algorithms in the Middlebury and KITTI
2015 stereo benchmarks are based on already rectified images. Thus, we set our maximum run time
to 20 seconds.

(C2) Error rate: the algorithm selection process must make use of the error rate as one of its se-
lection criteria. For the Middlebury and KITTI 2015 stereo benchmarks the bad matched pixels (BMP)
percentage is used as the error measure. In these two datasets a lower BMP percentage increases the
ranking of an algorithm. We set the error rate selection criteria equal to the BMP percentage. From the
works of [1], a BMP < 10% is considered as performing reasonably well. To facilitate the formulation
of the error rate, we use this 10% as our maximum allowable error rate.

(C3) Diverse, representative stereo algorithms: the list of selected algorithms must be broad, cov-
ering most, if not all, categories of each pipeline. In particular, the selection must not only be based on
the lowest C1 and C2, which could be dominated by a single stereo matching category, e.g., a local
stereo matching algorithm. Without representativeness, the list of selected algorithms could bias a sin-
gle category and neglect the advantages of other categories. In the draft set of selected algorithms we
include all three categories of the traditional pipeline, local, semi-global, and global. For deep learning
algorithms we include one of the three categories, non-end-to-end, end-to-end, unsupervised.

(C4) Deep learning library: deep learning algorithms are implemented using a deep learning library.
Various libraries exist, such as Tensorflow [82] (Google), PyTorch (Facebook), Caffe (Berkeley Al Re-
search). TensorFlow achieves a minimum average speedup of 2.87x%, in terms of inference, over Py-
Torch and Caffe on various deep neural network models executed on a Raspberry Pi 3 Model B [83].
We opt to use the TensorFlow library, because of the lowest inference time.

4.3. Benchmark Performances

We make use of two stereo vision benchmarks, the Middlebury and KITTI 2015 stereo benchmarks,
described in Section 4.3.1. These two stereo vision datasets are not representative of the Martian envi-
ronment, however as far as we know, there is no ranking of algorithms based on a (simulated) Martian
dataset, such as the Katwijk Beach Planetary Rover dataset [21] (described in Chapter 6.4.1). For this
reason, we obtain algorithms from these two datasets, even though there is a lack of representative-
ness. The lists of algorithms are presented in Section 4.3.2.

4.3.1. Datasets

The images in the Middlebury dataset are static indoor scenes with varying difficulties. They include
repetitive structures, occlusions, and untextured areas. The Middlebury stereo dataset contains differ-
ent datasets depending on the version. In Section 4.3.2, the 2014 datasets are used for the rankings
on the benchmark (Table 4.1), while in both surveys (Table 4.2) the 2001 datasets are used. The
2001 datasets are depicted in Figure 4.2. On the left, the left stereo pair image, and on the right, the
ground-truth disparity map.
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: N S o e
(c) Venus: (left) reference; (right) ground-truth. (d) Map: (left) reference; (right) ground-truth.

Figure 4.2: Middlebury 2001 stereo datasets.

The KITTI 2015 stereo benchmark is a dataset for 3D depth estimation with an application to au-
tonomous driving. The dataset contains 400 annotated, i.e., with ground-truth, outdoor scenes in a city
setting. An example of outdoor scenes with the ground-truth is depicted in Figure 4.3. On the left, the
left stereo camera image is shown, and on the right, the ground-truth LIDAR scan.

=

(b) Outdoor scene: (left) reference; (right) ground-truth.

Figure 4.3: KITTI 2015 stereo dataset.

4.3.2. Algorithms

The stereo matching algorithms from the Middlebury and KITTI 2015 stereo benchmarks are listed in
Table 4.1 and Table 4.3, respectively. The tables are sorted by BMP in ascending order. The listed
algorithms are published methods with available code. We choose to select algorithms with available
code to reduce the time allocated for the implementation of the algorithms.

In Tables 4.1 and 4.3 we observe for both benchmarks the dominating effect of deep learning meth-
ods, especially end-to-end (deep learning) methods. Traditional stereo matching algorithms are over-
taken by deep learning algorithms, such that the Middlebury and KITTI 2015 benchmarks lack traditional
algorithms, except for a single traditional global method in Table 4.1.

To obtain traditional local, global, and semi-global methods we refer to surveys using the older
Middlebury 2001 benchmark, listed in Table 4.2. The first survey [1], has developed a taxonomy of tra-
ditional stereo matching algorithms, i.e., a local method and several global methods. The benchmark
used is the 2001 version of the Middlebury stereo benchmark, which uses different image sets com-
pared to the recent version. The second survey [2], provides a review of the first survey. The results
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of the second survey are listed in Table 4.2. However, the run time is not provided in the survey and is
therefore left blank.

The tables contain the following information:

* Method: stereo matching algorithm name taken from its corresponding literature or generated
by the benchmark if the name is not given.

» Category: stereo matching pipeline category, described in Section 2.3.

* BMP: error measure used is the bad matched pixels percentage.

* Run time: time required to produce a predicted disparity map from rectified stereo images, mea-
sured in seconds.

* Environment: hardware used to execute the stereo matching algorithm. For deep learning al-
gorithm, this also is the hardware used to train the neural network.

+ Library: deep learning library or stereo vision library used for the implementation of the method.

Method Category | BMP (%) | Run time (s) Environment Library
LocalExp [84] TGLO 5.43 881 4 core @ 3.5 Ghz + NVIDIA Titan X | OpenCV
CBMV [85] NETE 7.65 1001 6 core @ 3.0 Ghz OpenCV
SDR [86] NETE 7.69 15.3 1 core @ 2.6 GHz OpenCV
MC-CNN-acrt [56] | NETE 8.08 150 Nvidia GTX Titan X Torch
OVOD [87] ETE 8.87 69.1 - C++
MC-CNN-fst [56] | NETE 9.47 1.69 Nvidia GTX Titan X Torch
LBPS [88] NETE 9.68 1.05 GPU @ 2.5 Ghz PyTorch
HSM [89] ETE 10.2 0.51 Titan X Pascal PyTorch
JMR [90] ETE 12.5 4.46 - OpenCV
FBS [91] NETE 18.1 188 6 core @ 3.2 Ghz Python
PSMNet [73] ETE 28.9 0.64 Nvidia GTX Titan Xp PyTorch
DeepPruner [92] | ETE 30.1 0.13 1 core @ 2.5 Ghz PyTorch
DDL [93] ETE 30.1 112 1 core @ 4.0 Ghz Matlab/C
ELAS [94] ETE 32.3 0.48 1 core @ 2.5 Ghz C++

Table 4.1: Evaluation of stereo matching algorithms using the Middlebury Stereo Version 3 benchmark; retrieved September
2020. Abbreviations: ETE — end-to-end learning method, NETE — non-end-to-end learning method, TGLO — traditional global

method.
First survey [1]
Method | Category BMP (%) Run time (s)
Tsukuba | Sawtooth Venus Map Tsukuba | Sawtooth | Venus Map

SSD Local 5.23® 2210 3.74®@ 0.663 1.1 1.5 1.7 0.8
DP Global 4.12@ 4.840) 10.10® 3.33® 1.0 1.8 1.9 0.8
SO Global 5.08® 4.06™ 9.44® 1.84™® 1.1 2.2 2.3 1.3
GC Global 1.94(0) 1.30(0 1.79( 0.31® 662.0 735.0 829.0 | 480.0
Bay Global 6.490 1.45@2 4.00® 0.20M 1055.0 2049.0 2047.0 | 1236.0

Second survey [2]

SSD Local | 5.3337® | 2.2051®) | 3.7441® [ 0.6638® - - -
DP Global 45472 | 4.3094™ | 8.8257%) | 0.7748™ - - -
SO Global 6.0406™ | 4.4275® | 7.7776™ | 1.1016® - - -
GC Global 1.9184 [ 140490 | 1.8324™M | 0.3103® - - -
Bay Global 6.49240) | 1.4533@ | 4.0044®) | 0.1973D - - -

Table 4.2: Evaluation of traditional stereo matching algorithms from surveys. Ranking of each algorithm is denoted by the

superscript.
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Method Category | BMP (%) | Run time (s) | Environment Library
GA-Net [95] ETE 1.81 1.8 NVIDIA Tesla P40 PyTorch
Stereo expansion [96] ETE 1.81 2.0 NVIDIA GeForce GTX TITAN X | PyTorch
AcfNet [97] ETE 1.89 0.48 NVIDIA GTX 1080Ti PyTorch
CSN [98] ETE 2.00 0.6 NVIDIA GTX 1080Ti PyTorch
HD3-Stereo [99] ETE 2.02 0.14 NVIDIA TITAN Xp PyTorch
AANet [100] ETE 2.03 0.06 NVIDIA Tesla V100 PyTorch
GwcNet [61] ETE 211 0.32 NVIDIA TITAN Xp PyTorch
WSMCnet [101] ETE 213 0.39 NVIDIA GTX 1070 PyTorch
HSM [89] ETE 2.14 0.14 NVIDIA TITAN X Pascal PyTorch
DeepPruner [92] ETE 2.15 0.18 NVIDIA TITAN Xp PyTorch
AutoDispNet [102] ETE 2.18 0.9 NVIDIA GTX 1080Ti TensorFlow
Bi3D [103] ETE 2.21 0.48 NVIDIA Tesla V100 PyTorch
SENSE [104] ETE 2.22 0.32 NVIDIA GeForce RTX 2080 Ti PyTorch
SegStereo [70] ETE 2.25 0.6 NVIDIA GTX TITAN Xp Caffe
CFP-Net [105] ETE 2.31 0.9 NVIDIA GeForce GTX TITAN X | PyTorch
PSMNet [73] ETE 2.32 0.41 NVIDIA TITAN Xp PyTorch
SCV-Net [74] ETE 2.61 0.36 NVIDIA GTX 1080Ti PyTorch
CRL [67] ETE 2.67 0.47 NVIDIA GTX 1080 Caffe
FADNet [106] ETE 2.82 0.05 NVIDIA Tesla V100 PyTorch
MBFNet [107] ETE 2.96 0.05 NVIDIA GTX 2070 PyTorch
Fast DS-CS [108] ETE 3.08 0.02 NVIDIA GTX 1080Ti TensorFlow
RecResNet [109] ETE 3.10 0.3 NVIDIA GeForce GTX TITAN X | TensorFlow
NVStereoNet [110] ETE 3.13 0.6 NVIDIA TITAN Xp TensorFlow
L-ResMatch [111] ETE 3.42 48 1 core @ 2.5 Ghz Torch
Displets [112] NETE 3.43 265 >8 cores @ 3.0 Ghz Matlab
LBPS [88] NETE 3.44 0.39 GPU @ 2.5 Ghz PyTorch
MC-CNN-acrt [56] NETE 3.89 67 Nvidia GTX Titan X Torch
Reversing-PSMNet [113] | UNS 4.06 0.41 1 core @ 1.5 Ghz PyTorch
PRSM [114] ETE 4.27 300 1 core @ 2.5 Ghz Matlab
DispNetC [25] ETE 4.34 0.06 Nvidia GTX Titan X Caffe
MADnet [115] ETE 4.66 0.02 NVIDIA GTX 1080Ti TensorFlow
MC-CNN-WS [116] NETE 4.97 1.35 1 core 2.5 Ghz + K40 NVIDIA Torch
CBMV [85] NETE 4.97 250 6 core @ 3.0 Ghz OpenCV
PWOC-3D [117] ETE 5.13 0.13 NVIDIA GTX 1080Ti TensorFlow
OSF [118] ETE 5.28 390 1 core @ 2.5 Ghz Matlab
SPS-St [119] ETE 5.31 2 1 core @ 3.5 Ghz C++
PR-Sceneflow [120] ETE 6.24 150 4 core @ 3.0 Ghz Matlab
DeepCostAggr [121] ETE 6.34 0.03 GPU @ 2.5 Ghz Lasagne
MeshStereo [122] ETE 8.38 87 1 core @ 2.5 Ghz C++
ELAS [94] ETE 22.16 0.09 NVIDIA GTX 1080 Ti PyTorch
VSF [123] ETE 26.38 7500 1 core @ 2.5 Ghz C++

Table 4.3: Evaluation of stereo matching algorithms using the KITTI 2015 benchmark; retrieved September 2020. Abbreviations:
ETE - end-to-end learning method, NETE — non-end-to-end learning method, UNS — unsupervised learning method.

4.4. Draft Set of Algorithms

In the previous section, we have generated lists of stereo matching algorithm from benchmarks and
surveys. To facilitate the selection of a draft set of algorithms, we narrow down the list to the best
performing algorithms using selection criteria C1, C2, C3, and C4. We call this the draft set of algorithms

instead of the final set, because the set is subject to change.

Traditional Algorithm Selection

For the selection of algorithms from the traditional pipeline, we apply selected criteria C1, C2, and C4.
We select the SSD algorithm as the local algorithm and the DP algorithm as the global algorithm. For
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the semi-global algorithm, we select the semi-global matching [26] (SGM) algorithm, because this is
the only one in its category.

Deep Learning Algorithm Selection

For the selection of algorithms from the deep learning pipeline, we first must normalize the deep learning
algorithms, i.e., evaluate the run time on the same environment using the same library. In Table 4.3,
we observe different environments (e.g., NVIDIA Tesla P40, NVIDIA TITAN Xp, NVIDIA GTX 1080Ti,
etc.) and libraries (e.g., PyTorch, TensorFlow, Caffe, etc.).

From C4, that is using the Tensorflow library, the number of algorithms is reduced to six, focusing
solely on Table 4.3. Two of the six algorithms, Fast DS-CS and MADnet, have the lowest run time in
the list of deep learning algorithms.

To investigate how well each of the six methods performs, the methods should execute on the same
environment, such that there is a fair comparison. Several options are proposed and we discuss the
advantages and disadvantages of each option. (1) Execute the methods on the same environment,
e.g., an NVIDIA TITAN Xp. Advantage: accurate comparison of run times; disadvantage: high cost
to obtain a GPU. (2) Execute the methods on a laptop without GPU support, i.e., only using CPU.
Advantage: accurate comparison of run times, availability; disadvantage: changing the code which
originally supports using a GPU, to executing on a CPU only, is time consuming. (3) Estimate run
times by comparing the inference performance of environments. Advantage: no hardware required,;
disadvantage: rough estimate of the run times.

We use option (3), as it requires no additional hardware purchases. The approach is to compare
the inference run times of neural network models on 3 environments, i.e., NVIDIA GeForce GTX TITAN
X, NVIDIA GTX 1080Ti, and NVIDIA TITAN XP. On the Al-Benchmark [124], 19 neural network models
are run on various environments, including the ones of interest. The inference run times of the models
on the three environments are listed in Table 4.5. For each model, we calculate the inference time of
each environment compared to a reference environment, i.e., an inference scale factor. The reference
environment is set to NVIDIA GTX 1080Ti. In Table 4.6, the scale factors are shown and in the last
column the mean inference scale factors are listed. E.g., the inference scale factor of MobileNet-V2 on
a NVIDIA GeForce GTX TITAN X is g = 0.75. We multiply the run times of the six methods with the
inference mean scale factors to produce the scaled (estimated) run times. In Table 4.7, the resulting
scaled run times are presented. The Fast DS-CS method is selected, since it has a lower matching
error (BMP), 3.08 versus 4.66, compared to the MADnet method with a similar run time.

Draft set of selected algorithms

Applying the selection criteria for diverse, representative stereo algorithms (C3), we select algorithms
from each category to form the draft set of algorithms, i.e., for the traditional pipeline - local, global and
semi-global methods, and for the deep learning pipeline - end-to-end method. Table 4.4 summarizes
the four selected stereo matching algorithms.

Method | Pipeline | Category
SSD Traditional | Local

DP Traditional | Global
SGM Traditional | Semi-global
Fast DS-CS | Deep End-to-end

Table 4.4: Draft set of stereo matching algorithms.



Environment

NVIDIA GeForce GTX TITAN X
NVIDIA GTX 1080Ti
NVIDIA TITAN Xp

Table 4.5: Inference

Environment

Network inference time (ms)

MobileNet-V2 | Inception-V3 | Inception-V4 | Inc-ResNet-V2 \ ResNet-V2-50 ‘ ResNet V2-152 \ VGG-16 | SRCNN 9-5-5 \ VGG-19 Super-Res | ResNet-SRGAN | ResNet-DPED | U-Net | Nvidia-SPADE | ICNet | PSPNet | DeepLab | Pixel-RNN | LSTM | GNMT
64 94 96 129 63 168 131 273 145 319 363 183 21 752 208 579 679 225
48 62 61 81 ‘ 39 ‘ 51 ‘ 104 79 ‘ 158 95 198 207 107 141 441 116 372 430 141
40 62 58 76 37 51 97 78 149 89 182 192 102 168 423 1M1 527 533 218

time (run-time) of various networks on GPUs.

Network inference scale factors Inference mean

| MobileNet-V2 | Inception-V3 | Inception-V4 | Inc-ResNet-V2 | ResNet-V2-50 | ResNet-V2-152 | VGG-16 | SRCNN 9-5-5 | VGG 19 Super-Res | ResNet-SRGAN | ResNet-DPED | U-Net | Nvidia-SPADE | ICNet | PSPNet | DeepLab | Pixel-RNN | LSTM | GNMT | scale factor

NVIDIA GeForce GTX TITAN X
NVIDIA GTX 1080Ti
NVIDIA TITAN Xp

075 0.66 0.64 0.63 0.62 0.6 0.62 0.6 0.66 0.62 057 058 0.67  0.59
1 | 1 1 1 \1 | 1 | 1 \1 | 1 | 1 1 | 1 | 1 | 1

\
1 1.05 1.07 1.05 1.07 1.01 1.06 1.07 1.09 108 1.05 0.84 1.04

0.56 0.64
1 1
1.05 0.71

0.63
1
0.81

0.63
1
0.65

0.62
1
0.99

1.2

Table 4.6: Mean inference scale factors for GPUs with the NVIDIA GTX 1080Ti GPU as reference environment.

Method Run time (s) | Environment Inference mean scale factor | Scaled run time (s)
AutoDispNet | 0.9 NVIDIA GTX 1080Ti 1 0.9

Fast DS-CS | 0.02 NVIDIA GTX 1080Ti 1 0.02

RecResNet 0.3 NVIDIA GeForce GTX TITAN X | 0.62 0.19

NVStereoNet | 0.6 NVIDIA TITAN Xp 0.99 0.59

MADnet 0.02 NVIDIA GTX 1080Ti 1 0.02

PWOC-3D 0.13 NVIDIA GTX 1080Ti 1 0.13

Table 4.7: Scaled run time of stereo matching algorithms using the TensorFlow library.
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Algorithm Verification

We address in this chapter the verification of the selected algorithms, i.e., three traditional and one
deep learning algorithm from Chapter 4. Our approach is executing the algorithms and comparing the
results with literature. This step is necessary, as it verifies the working of the implementation of the
algorithms. We compare the results of each implementation and construct the final set of selected
algorithms for the validation phase in Chapter 7. In addition, it is an important note that the pipeline
of predicting disparity maps is memory-less, i.e., single still stereo images are processed without the
dependence of previous stereo images. We use the memory-less pipeline in Chapter 7 for processing
the video dataset.

The remainder of this chapter is structured as follows. The verification is performed in Section 5.1.
The final set of selected algorithms is presented in Section 5.2.

5.1. Verification

To verify the working of the algorithms, we search for implementations of each algorithm and compare
the error rate and run time with the one provided in literature. This ensures the implementation is correct
(or as close as possible). For the traditional algorithms we have to look for 3rd party implementations,
since the authors have not released their implementation to the public. As opposed to the deep learning
algorithm, where the authors have released their implementation.

Additionally, we take note that our environment (hardware) differs from the ones used in literature.
That is, we assume the traditional algorithms are executed on environments less powerful than our
environment, since the publication date of [1] is in 2002. This means that the run time of the imple-
mentations must be faster than the timings provided in literature. For the deep learning algorithm, the
environment is a NVIDIA GTX 1080Ti, i.e., a more powerful environment. Resulting in a slower run
time on our environment. The environment we use in our verification process can be seen in Table 5.1.

Component | Specification

CPU Intel Core i5-6200U @ 2.30GHz
Cores 4

Memory 8 GiB

Table 5.1: Hardware specifications of our environment.

We have two separate approaches for the verification of traditional and deep learning algorithms.
Traditional algorithms have numerous implementations for the same algorithm, because there is no
single official implementation, various implementations are available. The approach is to generate
predicted disparity maps using the Tsukuba, Sawtooth, Venus, Map, Teddy, and Cones Middlebury
dataset images, depending on the algorithm. Next, we compare the results of the implementations,
in terms of error rate and run time, and select the one with the lowest values. As a pre-validation
check, we pass a sample Katwijk stereo image to each algorithm, in order to determine if the selected
algorithm is usable for validation. Since we do not have the disparity map ground-truth for the sample
stereo image, we compute a noise percentage estimate.

29
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Deep learning algorithms, on the other hand, have official implementations. They are pre-trained on
the FlyingThings3D [25] dataset and from there the pre-trained model is fine-tuned to the KITTI dataset.
The pre-trained model contains the weights to reproduce the predicted disparity maps from the dataset.
Normally, the deep learning algorithms are trained and run on a GPU. To check if the algorithm is able
to run on a CPU we first generate a predicted disparity map using a sample image of the KITTI 2015
dataset. Next, the error rate and run time are computed. Again, as a pre-validation check, we pass a
sample Katwijk stereo image to each algorithm and compute a noise percentage estimate, in order to
determine if the selected algorithm is usable for validation.

Our verification approach for the traditional algorithms will be as follows:

1. Find implementations of the algorithm, e.g., SSD. To facilitate the search of implementations, we
use Github and set the programming language to Python,

2. For each implementation, compare the error rate and run time with literature based on the Mid-
dlebury dataset,

3. Select the implementation with the lowest error rate and run time,

4. Generate a predicted disparity map using a Katwijk sample stereo image and compute a noise
percentage estimatelofi coding.

The approach for the deep learning algorithm will be as follows:
1. Check if the algorithm is able to run on a CPU, using a sample KITTI 2015 stereo image,

2. Compute the error rate and run time, and compare the results with literature based on the KITTI
2015 dataset,

3. Generate a predicted disparity map using a Katwijk sample stereo image and compute a noise
percentage estimate.

5.1.1. SSD
The SSD algorithm is described in Chapter 2.3.1, it differs only from the SAD by squaring the term,
instead of taking the absolute value of the term.

The first step in our approach is finding implementations of the SSD algorithm. The list of imple-
mentations of the SSD algorithm is shown in Table 5.2, with their results on the four test images and
the last row showing the results from literature. The error rate is computed with a disparity threshold
64 = 1, as used in the works of [1]. For the run time, the algorithms are iterated a number of times to
obtain a mean run time with a standard deviation, where the number of iterations N = 10.

In the SSD algorithm, a variable parameter is the window size. To determine the lowest error rate,
we vary the window sizes with the values 3, 5, 7,...29, as in the works of [1]. The results from varying
the window sizes is depicted in Figure 5.1. Selecting the lowest error rate from the figures results in
the error rates listed in Table 5.2. It can be observed that the StereoBM algorithm (Figure 5.1c) starts
with a window size of 5 instead of 3, since this implementation takes a minimum window size of 5.

The Flatscher implementation, takes the SSD equation and implements it one-to-one. Normally,
the five nested for-loops, i.e., loop over the image (takes 2 for-loops), loop over the window (takes 2
for-loops), and loop over all possible disparities (1 for-loop), take a long time to run. In the order of
minutes, instead of seconds, based on our own experiments. This implementation, however, uses the
Numba library [125], which translates the Python code to fast machine code, reducing the run time from
minutes to seconds.

The SSD+MF implementation, is based on the works of [1]. It applies a minimum filter to the resulting
disparity map to smooth out the outliers in the image.

The StereoBM implementation, is contained in the OpenCYV library. The code is optimized and
uses the SAD algorithm instead of the SSD algorithm. SAD takes the absolute value of the difference
between two pixels, and SSD takes the squared value of the difference between two pixels. Since the
results of SAD and SSD are similar [1], we opt not to change the StereoBM source code.

In Figure 5.2, the predicted disparity map on the Tsukuba, Sawtooth, Venus, and Map image using
the three implementation are depicted. We observe that the StereoBM algorithm corresponds the best
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of the three implementations to the ground-truth. This is reflected in the error rate in Table 5.2, and this
implementation has the lowest run time.

Error rate (%) Run time (s)
Implementation Tsukuba | Sawtooth | Venus | Map | Tsukuba Sawtooth Venus Map
Flatscher [126] 22.4 11.8 13.3 12.7 | 1.66 + 0.0440 2.47 +0.0211 2.88 + 0.415 1.08 + 0.0891
SSD+MF [1] 19.7 4.67 4.45 5.60 | 0.168 + 0.00264 | 0.241 + 0.00629 | 0.248 + 0.00351 0.0661 + 0.0115
StereoBM [127] (OpenCV) | 12.8 4.30 4.29 1.49 | 0.0208 + 0.00287 | 0.0334 + 0.00278 | 0.0319 + 0.00435 | 0.0160 + 0.00127
Scharstein & Szeliski [1] 5.23 2.21 3.74 0.66 | 1.1 15 1.7 0.8

Table 5.2: SSD implementations and results on the Middlebury 2001 dataset and results from literature.
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3456 78 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 20
Window size

(a) Flatscher

—e— Tsukuba 60
—e— Sawtooth

—e— Venus

—— Map 50

(b) SSD+MF

3456 78 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Window size

(c) StereoBM

Figure 5.1: Results of the SSD implementations with varying window sizes.
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(a) Ground-truth: Tsukuba, Sawtooth, Venus, Map.

(b) Flatscher: Tsukuba, Sawtooth, Venus, Map.

--I

(c) SSD+MF: Tsukuba, Sawtooth, Venus, Map.

P

(d) StereoBM: Tsukuba, Sawtooth, Venus, Map.

Figure 5.2: Predicted disparity maps using SSD implementations with optimal window sizes.

The last step in our approach is to generate a predicted disparity map using a Katwijk sample stereo
image. In Appendix A.1, the resulting predicted disparity maps with varying window sizes are shown.
We select the predicted disparity map with the least amount of noise. The noise consists of two parts:
zero value disparities in the ground terrain (y £ 150 pixels), and non-zero value disparities in the sky
region (y £ 150 pixels). Normally, the ground terrain contains disparities that are greater than zero,
as it is a finite distance away. For the sky region, the distance is an ’infinite’ distance away, such that
the disparity is zero. We compute the noise in the ground terrain by counting the number of zero value
disparities, and the noise in the sky region by counting the number of non-zero value disparities. The
noise percentage is equal to the number of erroneous disparities and dividing them by their respective
areas. Next, we select the predicted disparity map with the lowest noise percentage. Figure A.2 shows
the noise percentages with varying window sizes. In Figure 5.3, the left stereo image and the selected
predicted disparity map with a window size of 23 is shown.

5.1.2. DP

The DP algorithm [128] tries to minimize the global energy function, described in Chapter 2.3.1. Instead
of matching each individual pixel, the DP algorithm takes a corresponding row (scanline) in the left and
right stereo image and finds the optimal alignment. By performing the alignment for each row, a disparity
map is obtained. In Figure 5.4, the scanline alignment process is shown. The left and right scanline
are lined up to compare each pixel. If the two scanlines are identical, the path (orange) is a diagonal.
However, in a practical case the scanlines differ from each other. The path is not a diagonal line, which
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Figure 5.3: StereoBM disparity map on a sample Katwijk image using a window size of 23.

means that a pixel in the left scanline has no corresponding adjacent pixel in the right scanline. That
is, the matching pixel in the right image is occluded by other pixels. The DP algorithm associates costs
for pixels that occlude and pixels that match, the occlusion cost and matching cost. The occlusion cost
influences the shape of the path and therefore also the disparity map.
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Figure 5.4: DP scanline alignment.

The list of implementations of the DP algorithm is shown in Table 5.3, with their results on the four
test images and the last row showing the results from literature. The error rate is computed with a
disparity threshold §; = 1, as used in the works of [1]. For the run time, the algorithms are iterated a
number of times to obtain a mean run time with a standard deviation, where the number of iterations
N =10.

In the DP algorithm, a variable parameter is the occlusion cost. To determine the lowest error rate,
we vary the occlusion costs with the values 1, 10, 20, 30,...100, expanding the values compared to
the works of [1]. The results from varying the occlusion costs is depicted in Figure 5.5. Selecting the
lowest error rate from the figures results in the error rates listed in Table 5.3.

The Siddhad implementation, takes the DP pseudo-code from the works of [128], and implements
it one-to-one. Normally, the for-loops slow down the execution of the code, however the Numba library
translates the Python code to fast machine code.

The Hartley implementation, takes the optimized DP pseudo-code from the works of [128]. This op-
timized code improves the matching cost, such that itimproves the provides a better predicted disparity
value. Again, this implementation uses the Numba library to speed up the run time.

In Figure 5.6, the predicted disparity map on the Tsukuba, Sawtooth, Venus, and Map images using
the two implementations are depicted. We observe that the Hartley algorithm corresponds the best.
This is reflected in the error rate in Table 5.3 and this implementation has the lowest run time.
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Error rate (%) Run time (s)
Implementation Tsukuba Sawtooth | Venus | Map | Tsukuba Sawtooth Venus Map
Siddhad [129] [ 42.4 [ 385 49.7 384 (570+0219 [ 854+0.335 8.45 + 0.202 2.09 £+ 0.256
Hartley [130] 21.8 131 16.6 13.4 | 0.455 + 0.0479 0.726 + 0.0354 | 0.706 + 0.0254 | 0.221 + 0.0621
Scharstein & Szeliski [1] 4.12 4.84 10.10 | 3.33 | 1.0 1.8 1.9 0.8

Table 5.3: DP implementations and results on the Middlebury 2001 dataset and results from literature.
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Figure 5.5: Results of the DP implementations with varying occlusion costs.
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(a) Ground-truth: Tsukuba, Sawtooth, Venus, Map.

(b) Siddhad: Tsukuba, Sawtooth, Venus, Map.

(c) Hartley: Tsukuba, Sawtooth, Venus, Map.
Figure 5.6: Predicted disparity maps using DP implementations with optimal occlusion costs.
The last step in our approach is to generate a predicted disparity map using a Katwijk sample stereo

image. In Appendix A.2, the resulting predicted disparity maps with varying window sizes are shown.
The noise consists of two parts: zero value disparities in the ground terrain (y £ 150 pixels), and non-
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zero value disparities in the sky region (y £ 150 pixels). We compute the noise in the ground terrain by
counting the number of zero value disparities, and the noise in the sky region by counting the number
of non-zero value disparities. The noise percentage is equal to the number of erroneous disparities
and dividing them by their respective areas. The resulting noise percentages with varying occlusion
costs is shown in Figure A.4. In Figure 5.7, the left stereo image and the selected predicted disparity
map with an occlusion cost of 40 is depicted.

W
L ST

Figure 5.7: Hartley disparity map on a sample Katwijk image using an occlusion cost of 40.

5.1.3. SGM

The SGM algorithm is described in Chapter 2.3.1. The list of implementations of the SGM algorithm
is shown in Table 5.4, with their results on the Middlebury 2001 and 2003 datasets, and results from
literature. The error rate is computed with a disparity threshold §; = 1, as used in the works of [1]. For
the run time, the algorithms are iterated a number of times to obtain a mean run time with a standard
deviation, where the number of iterations N = 10.

Similar to the SSD algorithm, the SGM makes use of a variable parameter in the matching cost
computation step (we use the SSD algorithm for the cost computation), i.e., the window size. The
results from varying the window sizes is depicted in Figure 5.8. Only the plot of the StereoSGBM
with varying windows sizes is depicted, as the Flatscher implementation takes around 20 minutes per
iteration of the window size. Selecting the lowest error rate from the figures results in the error rates
listed in Table 5.4.

The Flatscher implementation, takes the SGM equations and implements it one-to-one. This im-
plementation uses the Numba library in some parts of the code, where it is possible.

The StereoSGBM implementation, is contained in the OpenCYV library. The code is optimized and
focuses on speed by computing the matching cost in fewer directions, instead of all eight directions,
such that the run time is reduced.

In Figure 5.9, the predicted disparity map on the Tsukuba, Sawtooth, Venus, and Map image using
the three implementation are depicted. We observe that the StereoSGBM algorithm corresponds the
best of the three implementations to the ground-truth. This is reflected in the error rate in Table 5.4,
and this implementation has the lowest run time.

Error rate (%) Run time (s)
Implementation Tsukuba | Venus | Teddy | Cones | Tsukuba Venus Teddy Cones
Flatscher [126] 224 10.3 13.3 12.7 271 + 58.6 [ 310 £7.49 315+ 9.19 313 +£5.49
StereoSGBM [131] (OpenCV) | 8.86 2.83 10.5 6.15 0.123 + 0.0288 0.189 + 0.0227 | 0.188 + 0.0261 | 0.200 + 0.0265
Hirschmuller [26] 3.26 1.00 6.02 3.06 1-2 | 1-2 1-2 1-2

Table 5.4: SGM implementations and results on the Middlebury 2001 & 2003 datasets and results from literature.
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Figure 5.8: Results of the StereoSGBM implementation with varying window sizes.

(b) Flatscher: Tsukuba, Venus, Teddy, Cones.

o sl

(c) StereoSGBM: Tsukuba, Venus, Teddy, Cones.

Figure 5.9: Predicted disparity maps using SGM implementations with window sizes.

The last step in our approach is to generate a predicted disparity map using a Katwijk sample stereo
image. In Appendix A.3, the resulting predicted disparity maps with varying window sizes are shown.
We observe high valued disparity areas in the upper right corner of the predicted disparity maps. These
areas, in addition to the zero valued disparities in the ground terrain (y £ 150 pixels), contribute to the
noise. The noise is computed by summing the occurrences of erroneous high valued disparities and
zero valued disparities in the ground terrain, and dividing by the total number of pixels. The noise
percentages with varying window sizes are shown in Figure A.6. In Figure 5.10, the left stereo image
and the selected predicted disparity map with a window size of 27 is depicted.
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Figure 5.10: StereoSGBM disparity map on a sample Katwijk image using a window size of 27.

5.1.4. Deep Learning
In Chapter 4, the Fast DS-CS algorithm was selected as the deep learning algorithm. In this section
we take a look at the results of Fast DS-CS and explore another algorithm.

Fast DS-CS

We described the fundamentals of neural networks, in particular, the end-to-end deep learning net-
work in Chapter 2.3.2. Figure 5.11 depicts the Fast DS-CS network. The left and right image are
first processed using traditional cost computation. Next, the cost volume is constructed and enters
the encoder-decoder network, which down-samples and up-samples the layers. Performing a last up-
sample operation generates the predicted disparity map.

Y Censu:
Cost Volume Cost Volume Cost Volume

Traditional

- /‘ /I /I
Cost Computation U | ‘ Ll | ‘ |/| |
7 | 4 | v

U Abs-Diff V Abs-Diff

Downsample Learned 2x
2x by Max-Poal Upsampling
.

(Concatenate

3x3 Conv Layers

1x1 Conv Layers

— — —_—
|
Cost Signature Map |
(Hx W x32)

Hx W x 3D Disparity Map
(Half Resolution)

Network

Left Image
(Half Resolution)

Figure 5.11: Fast DS-CS network (adopted from [108]).

The Tensorflow implementation of the Fast DS-CS algorithm is available on Github [108]. The
first step in our approach is to generate a predicted disparity map using the KITTI pre-trained model
using a sample KITTI stereo image. To execute the code, a custom Tensorflow ops, i.e., a custom
function that does not exist in the Tensorflow library needs to be compiled. The custom functions in
the s1ib/slib.cc, computes the census transform and Hamming distance on a GPU. We rewrite
the custom function, such that it compiles on our CPU environment. The predicted disparity map using
a sample KITTI stereo image is depicted in Figure 5.12a. We observe a gradient of disparity values,
such that the cars closer to the camera have a larger disparity (smaller distance), than the ones farther
down. In addition, the predicted disparity map outlines the shape of the cars and other objects in the
scene.

To compute the error rate, we use the metrics function provided in the code repository. This function
transforms the LIDAR scan into a (sparse) ground-truth disparity map and compares it with the predicted
disparity map. The disparity threshold is 2 pixels, i.e., if a value in the predicted disparity map is 2
pixels larger or smaller than the ground-truth value, the incorrect pixels count is incremented. We use
10 training images, instead of the testing images to compute the mean error rate and run time, because
the ground-truth of the testing images are not provided in the KITTI 2015 dataset. The results of the
error rate and run time are listed in Table 5.5. We observe an error rate increase of 2.04% and a run
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(a) KITTI sample image: (left) left stereo image; (middle) predicted disparity map; (right) ground-truth LIDAR scan.
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(b) Katwijk sample image: (left) left stereo image; (right) predicted disparity map.

Figure 5.12: Fast DS-CS predicted disparity maps using sample images of KITTI and Katwijk.

time increase of a factor 130. The error rate reported in literature are from the testing images and are
computed by the KITTI evaluation server. This may explain the increased error rate from our 10 training
images.

Environment | Error rate (%) | Run time (s)
Intel Core i5-6200U | 5.12 + 0.211 | 2.59 + 0.324
NVIDIA GTX 1080Ti | 3.08 0.02

Table 5.5: Fast DS-CS error rate and run time on our and literature’s environment.

The last step of our approach is generating a predicted disparity map using a Katwijk sample stereo
image. In Figure 5.12b, the resulting predicted disparity map can be seen. The noise consists of two
parts: zero value disparities in the ground terrain (y £ 150 pixels), and non-zero value disparities in
the sky region (y £ 150 pixels). We compute the noise in the ground terrain by counting the number
of zero value disparities, and the noise in the sky region by counting the number of non-zero value
disparities. The noise percentage is equal to the number of erroneous disparities and dividing them by
their respective areas. The resulting noise percentage is 15.8%.

MADnet

The Tensorflow implementation of the MADnet algorithm is available on Github [115]. This algorithm
has a similar run time as the previously examined Fast DS-CS algorithm. However, when trying to run
the algorithm we get the following execution error, ZeroDivisionError: division by =zero.
To examine this error, the issues page of the code repository, which lists issues flagged by users, is
consulted. A possible reason for this execution error is provided in [132]. The user running a 4GB GPU
(GTX 1050Ti), states that his environment is not powerful enough run the code. For this reason, our
CPU environment is also not able to run the code.

PWOC-3D

In Figure 5.13 the PWOC-3D network is depicted. The network contains an encoder-decoder network,
the pyramid on the left forms the encoder, and the pyramid on the right forms the decoder. During
the decoding stage, several processes (orange boxes) occur. In order of occurrence the processes
are: warping, occlusion estimation, cost volume computation, and scene flow prediction. Following the
processes generates a predicted disparity map, and is improved using the context network.
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Figure 5.13: PWOC-3D network (adopted from [117]).

The Tensorflow implementation of the PWOC-3D algorithm is available on Github [117]. The first
step in our approach is to generate a predicted disparity map using the KITTI pre-trained model using a
sample KITTI stereo image. The predicted disparity map using a sample KITTI stereo image is depicted
in Figure 5.14a. Similar to the Fast DS-CS algorithm, we observe a gradient of disparity values, such
that the cars closer to the camera have a larger disparity (smaller distance), than the ones farther down.
In addition, the predicted disparity map outlines the shape of the cars and other objects in the scene.

(a) KITTI sample image: (left) left stereo image; (middle) predicted disparity map; (right) ground-truth LIDAR scan.

0

~
o

100

o
o

ol 200

300

u

y (pixel)
»
o
o
w B
(1) Ay fedsip ©

[
=3
Is)

N
o

e N oy 600

<
o 700

=
o

e :;" 0 200 400 600 800 1000
> < x (pixel)
du

(b) Katwijk sample image: (left) left stereo image; (right) predicted disparity map.

Figure 5.14: PWOC-3D predicted disparity maps using sample images of KITTI and Katwijk.

To compute the error rate, we use the metrics function provided in the code repository. This function
transforms the LIDAR scan into a (sparse) ground-truth disparity map and compares it with the predicted
disparity map. The disparity threshold is 2 pixels, i.e., if a value in the predicted disparity map is 2
pixels larger or smaller than the ground-truth value, the incorrect pixels count is incremented. We use
10 training images, instead of the testing images to compute the mean error rate and run time, because
the ground-truth of the testing images are not provided in the KITTI 2015 dataset. The results of the
error rate and run time are listed in Table 5.6. We observe an error rate increase of 2.90% and a run
time increase of a factor 35. The error rate reported in literature are from the testing images and are
computed by the KITTI evaluation server. This may explain the increased error rate from our 10 training
images.
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Environment | Error rate (%) | Run time (s)
Intel Core i5-6200U | 8.03 + 0.112 | 4.48 + 0.603
NVIDIA GTX 1080Ti | 5.13 0.13

Table 5.6: PWOC-3D error rate and run time on our and literature’s environment.

The last step of our approach is generating a predicted disparity map using a Katwijk sample stereo
image. In Figure 5.14b, the resulting predicted disparity map can be seen. We compute the noise in
the ground terrain (y £ 150 pixels) by counting the number of zero value disparities, and the noise
in the sky region (y £ 150 pixels) by counting the number of non-zero value disparities. The noise
percentage is equal to the number of erroneous disparities and dividing them by their respective areas.
The resulting noise percentage is 3.2%.

5.2. Final Set of Algorithms

In Section 5.1.1- 5.1.3, we have examined implementations of the SSD, DP, and SGM algorithms. One
of the SSD implementations, the StereoBM algorithm, implements the SAD algorithm instead of the
SSD algorithm. From the works of [1], the SAD and SSD algorithms have similar performances in
terms of error rate and run time. We select the StereoBM algorithm, as it yields the lowest error rate
and run time compared to the other SSD implementations. The set of traditional algorithms is listed in
Table 5.7.

In Section 5.1.4 we have examined three deep learning algorithms, Fast DS-CS, MADnet, and
PWOC-3D. Fast DS-CS, generates a disparity map with corresponding disparity values and shapes.
However, using the Katwijk sample stereo image, the predicted disparity map contains noise, with
a noise percentage estimate of 15.8%. Because of the noise, we attempt to find an algorithm with
a smooth predicted disparity map. MADnet, has a similar run time, however the execution of the
code returns an error related to our environment. The PWOC-3D algorithm, yields a smooth predicted
disparity map using the Katwijk sample stereo image and a lower noise percentage estimate of 3.2%.
Thus, we select the PWOC-3D algorithm as our deep learning algorithm. The final set of algorithms is
listed in Table 5.7.

Implementation | Method | Pipeline | Category
StereoBM [127] SAD Traditional | Local
Hartley [130] DP Traditional | Global
StereoSGBM [131] | SGM Traditional | Semi-global
PWOC-3D [117] - Deep End-to-end

Table 5.7: Final set of stereo matching algorithms.



Experimental Setup

We address in this chapter our second research question: How to efficiently compare the performance
of stereo matching algorithms? Our approach is to setup experiments to compare the performance of
the algorithms. This thesis contains two experiments. The first experiment evaluates the generated
predicted disparity maps where the sun is positioned behind the rover. The second experiment uses
the dataset where the sun is positioned in front of the rover. The two different sun positions provide a
realistic setting for the rover. As the rover traverses through the scene, the sun can be positioned in
front or behind it.

The remainder of this chapter is structured as follows. An overview of the experiments is presented
in Section 6.1. The design of the experiments is described in Section 6.2. The experimental environ-
ment is presented in Section 6.3. In Section 6.4, the Katwijk dataset is described and its setup. Finally,
the metrics are formulated in Section 6.5.

6.1. Experiments Overview

In our work we present two experiments, shown in Table 6.1. The section column refers to in which
chapter the experiment is described. The dataset column indicates the dataset used for the experi-
ments. The dataset is described in Section 6.4. The traverse column indicates which traverse of the
dataset is used. The position column refers to sunlight position, influencing the captured stereo images.
The algorithms column indicates the algorithms used to generate predicted disparity maps, these algo-
rithms are established in Chapter 5. The metrics column lists the metrics used to evaluate the predicted
disparity maps. The metrics for the experiments are described in Section 6.5.

Section | Traverse| Dataset | Position | Algorithms | Metrics

71 1 Katwijk | sunlight behind the | SAD, DP, SGM, | error rate, run time,
rover PWOC-3D memory usage

7.2 2 Katwijk | sunlight in front of | SAD, DP, SGM, | error rate, run time,
the rover PWOC-3D memory usage

Table 6.1: Summary of the two experiments presented in our work.

6.2. Experiment Design

Our goal is to evaluate the predicted distance measurements from the four stereo matching algorithms.
In Figure 6.1, the experiment design is shown. The design consists of four modules. The Katwijk
dataset module (Section 6.4), processes the raw stereo image (Section 6.4.1) of the LocCam in the
rectification block to generate the rectified stereo image (Section 6.4.2). The algorithms module (Chap-
ter 5), takes the rectified stereo image and passes it to the four algorithms, i.e., SAD, DP, SGM, and
PWOC-3D. The algorithm output is a predicted disparity map. In addition, from the execution of each
algorithm the run time and memory usage is computed. The error rate metric module (Section 6.5.1),
computes two distances, the ground-truth distance to a rock (Section 6.5.2) and the predicted distance

41
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to a rock (Section 6.5.3), to obtain the distance error. The ground-truth distance is obtained by trans-
forming the rover GPS coordinates and rock(s) coordinates to Cartesian and computing the distance
between them. The predicted distance is computed by transforming the predicted disparity map to
a U-disparity map, followed by an edge detector, Hough line transform, and a Hough to Cartesian
transform. The metrics module (Section 6.5), contains the metrics for our experiments, i.e., run time,
memory usage, and error rate.

Katwijk dataset . . Algorithms________ . Metrics
. - ‘| Algorithm [} >Run time
{Raw stereo image —>| Rectification Mg% Ean) e Gl [ >Memory usage
: ]
Predicted disparity map
L elesi Edge detector Hough line Hough. to | Predicted distance ;
: transform Cartesian :

= Error
. —~—>Error rate
computation | :

Rover GPS coordinates —| Coordinates to

Cartesian Ground-truth distance

Rock(s) coordinates — |

Figure 6.1: Experiment design.

6.3. Environment
We perform our experiments on the Raspberry Pi 4 Model B [14], a commercial off-the-shelf single-
board computer. The hardware specifications of the environment are listed in Table 6.2.

The environment we use in our experiments is not representative of the ExoMars rover environment,
a 96MHz LEON2 processor with 512 MiB of RAM [81, 133]. However, the Raspberry Pi 4 Model B is
used, as it is the single-board computer on the Lunar Zebro [12] during the testing phase. The Lunar
Zebro is developed at the Delft University of Technology, the Delft Robotics Institute, to study swarm
behaviour on the Lunar surface [13]. This indicates that this environment is a suitable option for our
purpose.

Component \ Specification
CPU Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
Memory 8 GiB

Table 6.2: Hardware specifications of the Raspberry Pi 4 Model B.

6.4. Katwijk Beach Planetary Rover Dataset
Validation of the algorithms requires a dataset that is representative of Martian surface. For the ex-
periments we use the Katwijk Beach Planetary Rover Dataset [21]. Other datasets have presented
Mars-like terrains, such as the Devon Island rover navigation dataset [134] and the Canadian Plane-
tary Emulation Terrain Energy-Aware Rover Navigation Dataset [135]. However, they are not based on
a real planetary rover, from which no requirements can be derived.

The remainder of this section is structured as follows. In Section 6.4.1 an overview of the Katwijk
dataset is presented. The rectification process of raw stereo images is described in Section 6.4.2. The
ground-truth data is developed in Section 6.4.3.

6.4.1. Overview

The Katwijk beach planetary rover dataset [21] is a large dataset collected on a section of beach near
Katwijk, The Netherlands. The beach is selected as a Mars analog since it is a natural, unstructured,and
sandy terrain. The dataset contains two separate test runs, depicted in Figure 6.2. Traverse 1, com-
prises of two long traverses of >1km each, where the rover traversed through a boulder field. It is made
up of 212 artificial boulders that were custom made and carefully distributed to resemble boulders of a
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typical boulder field. The sunlight position is in the back of the rover. Traverse 2, is a shorter traverse
of 200 m, where the artificial boulders were placed such that the density is approximately twice that of
the previous traverse. The sunlight position is facing the rover.

The dataset serves to build up and evaluate capabilities for future field experiments at analog sites.
The sensors on the rover are configured to emulate the ExoMars rover, including stereo cameras. An
overview of on-board sensors are listed in Table 6.3.

The sensors can be divided into two groups, input and output. Input sensors are used for navigation,
i.e., the LocCam and PanCam. The LocCam is mounted at the same height and angle as the ExoMars
rover, at 1 meter height. Its primary use is for visual odometry. The PanCam is mounted on a pan-tilt
unit at the same height and angle as the ExoMars rover, at 2 meters height. It is intended for scene
reconstruction and images are taken at varying pan angles throughout the traverses. Even though
PanCam images are used for scene reconstruction, the images acquired from the stereo LocCam
are used as the raw stereo images, as they are non-blurry and are acquired at a consistent interval.
Whereas the PanCam stereo images are blurry due to a different kind of stereo camera, and the interval
is inconsistent, where in some parts a 4 second stereo image sequence is missing. Additionally, the
specifications of the LocCam of the Katwijk dataset (baseline 12 cm, focal length 4 mm) are comparable
with the PanCam and LocCam of the ExoMars rover (see Chapter 3.1), whereas the Katwijk PanCam'’s
baseline is significantly larger, i.e., 50 cm.

Output sensors are used for depth extraction of the scene, i.e., the ToF camera, 3D LiDAR, and
RTK GPS. The time-of-flight (ToF) camera and the three-dimensional (3D) scanning light detection and
ranging (LiDAR) sensor are active sensors. These two sensors generate a sparse ground-truth of the
objects in the scene, i.e., a limited number of data points are extracted. We select the RTK GPS as our
output sensor, since it gives a rover position estimate with an accuracy of 2 mm. Combining this with
the geo-referenced image, gives us our ground-truth, described in Section 6.4.3.

Sensor Description Data logged Measurements | Capture rate
LocCam PointGrey Bumblebee2 (BB2- | Color 1024x768 images 20,000 pairs | 3.75Hz
08S2C-38) 12 cm baseline
stereo camera
PanCam PointGrey GrassHopper2 | Color 1280x960 images 12,000 pairs | 3.75 Hz
(GS2-FW-14S5C-C) x2 cus-
tom 50 cm baseline stereo
camera
ToF cam- | MESA SwissRanger 4500 Depth and intensity 176x144 | 47,000 pairs 10 Hz
era images
3D LiDAR | Velodyne VLP-16 Range, azimuth, intensity | 33,000 triples | 10 Hz
1808x%16 images
RTK GPS | Trimble BD 970 receiver with | Latitude, longitude and altitude | 1790 sets 0.3 Hz
Zephyr Model 2 antenna | expressed on WGS 84 ellip-
(rover) Trimble BX 982 Re- | soid
ceiver with Zephyr Geodetic
antenna (base station)

Table 6.3: Overview of sensors [21].
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File name Description Format
LocCam_YYYY_MM_DD_hh_mm_ss_fff {0,1} Color, 1024x768 raw

stereo image pairs
PanCam_YYYY_MM DD hh_mm_ss_ fff {0,1} Color, 1280x960 raw

stereo image pairs
ToF_YYYY_MM_DD_hh_mm_ss_fff_{range, inten- | 16-bit grayscale,
sity} 176x144 raw images
Velodyne YYYY_MM_DD hh_mm_ss_fff {range, | 16-bit grayscale,
intensity} 1808%16raw images

(note: intensity images

gps-latlong.txt

imu.txt

odometry.txt

ptu.txt

{small, medium, large}-rocks-traverse{12,3}.txt
{small, medium, large}-rock.{sldprt,step}
dsm.tif

mosaic.tif

are 8-bit)

GPS measurements of
latitude, longitude and al-
titude expressed on WGS
84 ellipsoid

Accelerometer, gyro-
scope and inclinometer
measurements

Wheel and steering an-
gular displacement and
rocker-bogie potentiome-
ter measurements

Pan-tilt unit orientation

Artificial rock coordinates
Artificial rock 3D models
Digital elevation model
Georeferenced image

Timestamp, signal qual-
ity, latitude (), longitude
(), altitude (m), latitude
standard deviation (m),
longitude standard devia-
tion (m), altitude standard
deviation (m)

Timestamp, x,y,z, ac-
celeration (m/s?), x,y,z,
angular velocity (rad/s),
x,y, z, acceleration (m/s?)

Timestamp, front left,
front right, center left,
center right, back left,

back right wheel angular
displacement (rad), front
left, front right, back left,
back right steering angu-
lar displacement (rad),
rocker, left bogie, right
bogie orientation (rad)

Timestamp, pan (rad), tilt

(rad)

Northing (m), easting (m)
.sldprt, .step

tif

tif

Table 6.4: Overview of the file formats for all data collected. In stereo images, 0,1 corresponds to the left and right images

respectively [21].

In Figure 6.3a, a scene from traverse 1 with several boulders is depicted. The sunlight positioned
in the back of the rover is depicted in Figure 6.4a, where the shadow of the rover and a large boulder

can be seen.
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Figure 6.2: Overview of the traverse 1 and 2.

6.4.2. Rectification

The dataset contains raw stereo images, while the stereo matching process requires rectified stereo
images as the input. The dataset provides a Matlab script, image2points.m, that calls the rec-
tifyStereoImages function to rectify the raw stereo images. This function takes the left and right
images, and the stereo calibration data from the LocCam calibration.mat data file.

In Figure 6.3a, the left and right stereo image pair of terrain 1 (traverse 1) is depicted with matching
lines to show the matching points are not along the same horizontal scanline. The raw image shows a
slight upward slope, from the left to right matching point (zoom in to observe the slope). In Figure 6.3b,
the rectified image pair is depicted. The matching points lie on the same horizontal scanline, i.e., the
epipolar line. The same procedure is depicted in Figure 6.4a, raw stereo image pair with matching
lines, and Figure 6.4b, rectified stereo image pair with matching lines, for terrain 2 (traverse 1).
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(a) Raw image pair

(b) Rectified image pair

Figure 6.3: Terrain 1 (traverse 1) image pair with matching lines.

(a) Raw image pair

(b) Rectified image pair

Figure 6.4: Terrain 2 (traverse 1) image pair with matching lines.
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6.4.3. Ground-truth

The ground-truth is used to evaluate the predicted disparity map. Unlike the Middlebury and KITTI
2015 dataset, the Katwijk dataset does not contain ground-truth disparity maps. The dataset contains
other sensors, that actively capture the scene, those are the ToF camera and 3D LiDAR. In Figure 6.5a,
a left LocCam image of traverse 1 is shown. The corresponding ToF camera and 3D LiDAR outputs
are depicted in Figure 6.5b and 6.5c. We attempt to identify the rocks in the sensor outputs. For the
ToF camera, blue points represent closer points to the camera, with gradually increasing distances
represented by a gradient to yellow points. We observe no resemblance of rocks or other elements
in the scene for the ToF camera output. For the 3D LiDAR, again, the coloured points represent the
distances. We observe some resemblance of rocks in the scene, bounded by a red box. However,
identifying rocks in the 3D LiDAR output is an inaccurate process as the scanlines of the sensor are
sparse. To generate an accurate ground-truth we explore another sensor listed in Table 6.3, the RTK
GPS, in Section 6.5.2.

(b) ToF camera output.

(a) LocCam left image.

(c) 3D LiDAR output.

Figure 6.5: Active sensor outputs.

6.5. Metrics

In this section we develop metrics to evaluate the predicted disparity maps. In addition to the run time
of generating disparity maps and the memory usage, we develop an error rate metric to evaluate the
quality of the disparity maps. In Section 6.5.1, we discuss the pitfall of using the BMP metric. The
ground-truth distance computation is described in Section 6.5.2. The predicted distance computation
is described in Section 6.5.3. In Section 6.5.4, the ground-truth and predicted distance are combined
to form a metric.

6.5.1. Pitfall of the BMP metric
As far as we know, the standard metric to evaluate the predicted disparity maps is using the bad
matched pixel (BMP) metric. This metric essentially counts how many pixels in the predicted disparity
map are not the same as the ground-truth disparity map, with a threshold of how much it may vary. We
argue that the BMP metric is not a metric which is representative of how well the rover performs the
traverse. To show this, let us have two algorithms with a BMP of 5% and 50%, respectively. A lower
BMP would indicate a better predicted disparity map, as used in literature. However, in our case, the
BMP does not tell anything about how well it measures the distance of rocks in the scene. It could even
be that the algorithm with a 50% BMP performs better, if the errors are located at uninteresting places,
such as on the edges of the disparity map. The 5% BMP algorithm could have errors at important
places, such as on rocks, which affects the rover navigation. Thus, a lower BMP of an algorithm, i.e.,
a more accurate disparity map, does not correspond directly to a better algorithm.

This applies to the algorithm selection process (Chapter 4), where we use the Middlebury and
KITTI 2015 datasets and base our algorithm selection on the BMP (and run time). One could argue
that because of this pitfall the selection based on the BMP is not valid, i.e., an algorithm with a higher
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BMP than 10% could perform better than one with a lower BMP. However, to facilitate the algorithm
selection process we opt to use the BMP as a selection criteria.

We need to develop a metric which is based on a physical parameter, instead of the percentage
of bad matched pixels in the disparity map. When taking a closer look at path planning, it is crucial to
determine the distance of obstacles in the scene. From this we can base our metric on the quality of the
distance computation of obstacles. To determine the distance of obstacles in the scene some options
are possible. The ToF camera and LIDAR scans are used to determine the distance of obstacles,
however the ToF camera output is unclear and the LIDAR scans in the dataset are sparse and would
not be sufficient (see Section 6.4.3).

We develop a metric which computes the difference between the ground-truth distance and the
predicted distance to rocks in the scene. In Section 6.5.2, the ground-truth distance computation is
described. In Section 6.5.3, the predicted distance computation is described. These two distances are
used to form a metric, described in Section 6.5.4.

6.5.2. Ground-truth distance

To determine the ground-truth distances to rocks in the scene, we use the geo-referenced image,
mosaic.tif (see Table 6.4), in the dataset. A Sensefly eBee unmanned aerial vehicle (UAV), a
fixed-wing aircraft with a camera mounted to its belly, was flown before each traverse to capture geo-
referenced images with a resolution of approximately 2 cm. By imaging multiple overlapping areas,
the UAV bundles the images to create a geotiff, a single image that covers the entire area of the tra-
verse [21], resulting in a large geotiff file of 2.4 GiB. Each pixel has a corresponding 2D position in the
global UTM 31 N reference system. In Figure 6.6a, a portion of the mosaic, of traverse 1, is depicted.
The mosaic is processed using the Rasterio [136] library. The artificial rocks in three sizes, small,
medium, and large can be seen. We are unable to render the entire mosaic, as processing the large
geotiff file uses the maximum memory capacity of our environment, i.e., 8 GiB.

To obtain the positions of the small, medium, and large rocks, we extract the northing and easting,
i.e., UTM 31 N coordinates, from the {small, medium, large}-rocks-traverse{1l2}.txt text
file (see Table 6.4), where each row in the file corresponds to a rock position. Using the Rasterio
transform function we obtain an affine transformation matrix that maps pixel locations to UTM 31 N
spatial positions. The inverse of the affine transformation matrix maps the reverse, i.e., the UTM 31 N
spatial positions to pixel locations. This transformation is described in Eq. 6.1.

(xp,¥p) = [0.00 —0.02 5786848.79||yyrm (6.1)

0.02 0.00 595591.45 | [xyru
0.00  0.00 1.00 1

Where (x,, y,) are the pixel coordinates, the left matrix the affine transformation matrix, x,7y and yyry
the UTM 31 N spatial positions. The three sizes of rocks are plotted in the mosaic using the inverse
affine transformation matrix, depicted in Figure 6.6b.

The GPS measurements of the rover are found in the gps-1latlong. txt text file (see Table 6.4),
where each row contains a timestamp, with an interval of 3 seconds, the latitude, and longitude. To plot
the rover positions onto the mosaic we have to transform the latitude and longitude to pixel coordinates.
The transform consists of two steps: (1) latitude and longitude to UTM 31 N coordinates; (2) UTM
31 N coordinates to pixel coordinates. The first step is performed using the Proj function from the
pyproj [137] library, which takes the latitude and longitude coordinates as the input and outputs the
UTM 31 N coordinates. The second step is performed using Eq. 6.1, to transform the UTM 31 N
coordinates to pixel coordinates. In Figure 6.6c, the GPS measurements of the rover are depicted,
where the red dot represents the current location centered in the mosaic.line We observe a sparse
path, as the time between each GPS measurement is 3 seconds, while LocCam images are taken
every 250 milliseconds. To obtain a rover position for every LocCam image, we linearly interpolate
between each two GPS measurements to generate a GPS measurement for every LocCam image.

From RQ1 (see Section 3.4), the rover characterises approximately 6 meters of terrain in front of
it, such that we can create a region of interest. In combination with the horizontal FOV of the LocCam
stereo camera, a wedge shaped region of interest can be created. The horizontal FOV of the LocCam
stereo camera, i.e., PointGrey Bumblebee2 (BB2-08S2C-38), is 66° [138]. In Figure 6.6d, the wedge
shaped region of interest is depicted. The observable range is set to 6 meters and rocks inside of this
region are marked with a cross.
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Now we have all elements to determine the ground-truth distance to rocks in the scene. That are,
the rock positions, rover position, and region of interest. When a rock or multiple rocks enter the wedge,
the distance to the rock from the rover is computed using,

distyrye = \/(xc %)%+ (Ve — ¥ )2 — dgl -7 (6.2)

Where dist;. is the ground-truth distance from the rover to the rock in meters, x. and y. the UTM 31 N
coordinates of the rover, x,- and y, the UTM 31 N coordinates of the rock, d; the distance between the
GPS antenna and LocCam stereo camera on the rover (0.40 m), and r. the radius of the detected rock;
small rock: 0.37 m; medium rock: 0.66 m; large rock: 0.95 m. Because the center point coordinates of
the rocks are given, the radius is subtracted to determine the distance to the outer surface of the rocks.

(b) Mosaic with labeled rocks.

o » P J
\ . 5 g . 7 2 e 4
9 i 4 4 % 4 e 457 3
PF ok ' : ¥ ok
- L ‘
£ 2 -' ® Large rocks
Medium rocks
> x; A Small rocks
i A :
4 S A & n
4 S o 7
‘J‘ :/
1250 - 500 &x‘l ’DD' :

& X
% e % e
. 7 .
> L d
L - @
o 1‘ Large rocks s ® Large rocks
{ {0 ) 7 2T .
‘e Medium rocks v.,' Medium rocks
Y : Small rocks o : A Small rocks
: P x : A 4
4 7 A Rover path , N o 2 s Rover path ,
o e Current location s e ® Current location
=il e o
¢ 7 A 4 % A
' s T 7. ) e Yo EA
e " ¥ :
A ® 5 A e
. < h: s
S | St
) S ) 0 e
e = e -

(c) Mosaic with labeled rocks, path, and current location. (d) Mosaic with labeled rocks, path, current location, and FOV wedge.

Figure 6.6: Mosaic

6.5.3. Predicted distance

To determine the predicted distances to rocks in the scene, we process the predicted disparity maps
and extract the distances. We make use of the U-disparity concept, transforming the predicted disparity
map to a top-view map. Followed by extracting the rocks using edge detection and Hough lines. Finally,
the Hough lines are transformed to Cartesian coordinates. These steps are described in more detail in
the following sections.

U-Disparity Map

To transform the predicted disparity map to a top-view map, we make use of the U-disparity con-
cept [139]. The U-disparity map counts the appearances of disparity values in a column wise manner.
Meaning that a column in the U-disparity map is the histogram of disparity values, on the corresponding
disparity image column. The number of rows correspond to the number of disparity bins, while the num-
ber of columns equals the disparity image width. Constructing the U-disparity map consists of iterating
through the disparity image and for each pixel disparity image, increment the pixel in the U-disparity
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map, where the intensity of the disparity map image corresponds to the U-disparity map row position,
and the x-location of the disparity image pixel corresponds to the U-disparity map column position. In
Figure 6.7c, the U-disparity map of a sample predicted disparity map (see Figure 6.7b), using the SAD
algorithm, is depicted. We observe a horizontal line (u = 850, d = 13) corresponding to a rock in the
scene, with additional vague horizontal lines due to imperfect stereo matching and a bumpy terrain.

Edge detection

To filter out the vague horizontal lines in the U-disparity map, we apply edge detection on the U-disparity
map. We use the Canny edge detector [140] in OpenCV. The edge detector transforms the U-disparity
map to a binary map, where detected edges of rocks are labeled with a value of 1, and the rest with
a 0 value. In Figure 6.7d the result of the edge detector applied to the U-disparity map is shown. We
observe the detected edges of rocks in the scene, along with edges near disparity values of 0. Since the
predicted disparity map contains numerous disparity values of zero, these show up as brighter regions
in the U-disparity map, thus are detected as edges.

Hough line transform
The Hough line transform [141] is applied to the edge detected image, such that straight lines are
extracted. These each extracted line is represented by a start coordinate (u,, d;) and an end coor-
dinate (u,, d;). The Hough line transform can detect detect disconnected and distorted lines in the
edge detected image. In Figure 6.7¢e, the Hough lines are depicted. We observe two straight lines
corresponding to the top and bottom edge of the horizontal line in the U-disparity map.

The correct line corresponding to the horizontal line in the U-disparity map is between the top and
bottom Hough lines. In Figure 6.7f, the correct Hough line is shown.

y (pixel)

0 200 400 600 800
u (pixel)

(a) Left stereo image. (b) Predicted disparity map. (c) U-disparity map.

200 400 600 200 400 600 800 1000 0 200 400 600 800
u (pixel) u (pixel) u (pixel)

(d) Edge detection. (e) Hough lines. (f) Filtered Hough lines.

Figure 6.7: Transformation of a sample predicted disparity map to filtered Hough lines.

U-D space to Cartesian

The Hough lines in the U-D space are transformed, such that the predicted distances are in Cartesian
coordinates, i.e., X-Z space. In Figure 6.8, the left stereo camera geometry for the transformation from
U-D space to X-Z space is depicted. Where I, is the left image plane, c, the left camera center, p the
object in the scene, f the focal length in pixels , u the x-coordinate in the image plane in pixels, dist’
the distance from the camera center to the image plane, z the perpendicular distance to the point in
meters, x the x-coordinate in the Cartesian plane in meters, and dist the distance to the point in meters.
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Two similar triangles, with sides (z, x, dist) and sides (f, u, dist’), can be seen. Such that the following
holds,

z X z Bu h 6.3)
—_——= - e d = —_ Ed = — . = — .
f u X uf X d , where z d
Where the focal length f is 834 pixels (from the LocCam calibration.mat datafile) and the baseline
of the stereo camera is 0.12 meters (see Table 6.3).

Figure 6.8: Geometry for the transformation from U-D space to X-Y space. The left stereo camera is depicted.

The predicted distance is described as,
distyreq = Vx?% + 22 (6.4)

6.5.4. Error rate metric
Combining the true distance and predicted distance, we develop the following error rate metric,

e= |distpred — disterye| (6.5)

Where disty,.q is formulated in Eq. 6.4 and dist;,. in Eq. 6.2. From R3 (see Chapter 3.4), the rover
must maintain a position estimate accurate to within 10% of distance travelled, we can formulate the
following,

e <0.10 - distyrye (6.6)

For example, if the rover transverses 1 meter to a target, the target must lie within a radius of 0.1 meter
of the rover.






Experimental Results

We address in this chapter the results of our experiments to address our second research question.
The setup of our two experiments is described in detail in Chapter 6. We use the metrics developed
in Chapter 6 to evaluate the results. Our approach to analyze the distance estimation error rate is
inspecting the maps generated from the stereo image, i.e., the predicted disparity map, U-disparity
map, edge detection map, and (filtered) Hough line transform maps.

The remainder of this chapter is structured as follows. In Section 7.1, we perform the first experiment
and analyze the results of the error rate. In Section 7.2, we perform the second experiment and analyze
the results of the error rate. The run time of the four algorithms during the two traverses are presented
in Section 7.3. The memory usage of the four algorithms to produce a single predicted disparity map is
presented in Section 7.4 The results of the first and second experiment are combined and discussed
in Section 7.5.

7.1. Experiment 1

The first experiment evaluates the predicted disparity maps in a scene where the sun is positioned
behind the rover. During the traverse of the rover, it encounters small, medium, and large rocks within
its detection region, i.e., a wedge shape with a range of 6 meters and a FOV of 66° as described in
Chapter 6.5.2. To accommodate requirements R1 and R3, we developed an error rate metric (see
Chapter 6.5.1). In the following figures, we depict the time-distance plots of each algorithm during
traverse 1, with separate small, medium, and large plots. The horizontal axes depicts the timestamp
in hh:mm:ss:fff format, that is hours, minutes, seconds, and milliseconds. The vertical axes depicts
the distance to the rock in meters. The true distance curve is marked in green, the predicted distance
from the algorithm is marked in blue, and points outside the error band (light red) are marked in red.
Different encounters of rocks are separated by a vertical dashed black line, we should ignore the line
connecting the two different rock encounters.

It is important to mention again, that the pipeline of predicting disparity maps is memory-less, i.e.,
single still stereo images are processed without the dependence of previous stereo images. This means
that the predicted distance of each single stereo image is not dependent on the previous predicted
distance(s).

For the StereoBM (SAD) and StereoSGBM (SGM) algorithms, the window size is the variable pa-
rameter. We use a window size of 23 and 27, respectively, determined in Chapter 5.1.1 and Chap-
ter 5.1.3 by selecting the lowest noise percentage estimate of the disparity maps. For the Hartley (DP)
algorithm, the occlusion cost is the variable parameter. We use an occlusion cost of 40, determined in
Chapter 5.1.2 by selecting the lowest noise percentage estimate of the disparity maps.

In Section 7.1.1, the results of the StereoBM (SAD) algorithm are analyzed, where we present
the analysis of erroneous points in detalil, i.e., showing the U-disparity map, edge detection map, and
(filtered) Hough line transform map. In the following sections the maps are omitted to improve read-
ability and are referred to in Appendix B.1. The results of the Hartley (DP) algorithm are analyzed
in Section 7.1.2. The results of the StereoSGBM (SGM) algorithm are analyzed in Section 7.1.3. In
Section 7.1.3, results of the PWOC-3D algorithm are analyzed.

53
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7.1.1. StereoBM (SAD)

Figure 7.1 shows the true and predicted distance points of small rock encounters. Overall, we observe
9 erroneous points over a total of 55 points. We inspect the erroneous points by looking at the U-
disparity map, edge detection map, and (filtered) Hough line transform map. In Figure B.1 the maps
are shown. Figure 7.2d shows the edge detection map with two detected rocks, at (u = 226, d = 8) and
(u=1032, d = 19). However, in the Hough line transform map in Figure 7.2e the rock the right side is
not detected by the Hough transform. Such that the left rock is taken as the predicted distance. We
compute the distance of the rock on the right side, which is 6.00 meters. This means that if the right
rock would be detected, the predicted distance would be within the error band. For the same reason,
the other erroneous points can be explained. The point at time 12:56:19:924 seems to be detected
correctly and the error could be attributed to a stereo matching error, however upon closer inspection
we find that it also is a point corresponding to a wrong rock (see Figure B.1). The correct rock at (u =
532, d = 17) in the edge detection map, results in a predicted distance of 5.90 meters, which is within
the error band.
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Figure 7.1: Small rocks.
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Figure 7.2: First erroneous point analysis of the small rocks.

Figure 7.3 shows the true and predicted distance points of medium rock encounters. Overall, we
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observe 8 erroneous points over a total of 107 points. Using the same procedure as before we analyze
the erroneous points. The four erroneous points in the third medium rock encounter can be attributed
to the stereo matching performance of the StereoBM algorithm. The rock is detected (see Figure B.2),
however the disparity value is larger than expected, resulting in a smaller predicted distance. In the
fourth and seventh medium rock encounter the errors are due to undetected rocks in the scene, this
causes the predicted distance to be set to the rock farther away.
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Figure 7.3: Medium rocks.

Figure 7.4 shows the true and predicted distance points of large rock encounters. Overall, we
observe 1 erroneous point over a total of 14 points. Using the same procedure as before we analyze
the erroneous point. In Figure B.3, we observe the detected rock, however we attribute the error due
to the stereo matching performance.
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Figure 7.4: Large rocks.

Combining Figures 7.1, Figure 7.3 and Figure 7.4 shows that the error rate is (18/176) - 100% =
10.2%.

7.1.2. Hartley (DP)

Figure 7.5 shows the true and predicted distance points of small rock encounters. Overall, we observe
50 erroneous points over a total of 55 points. The last five points are within the error band, however
the rest is outside the error band. We compare the maps of the points where the predicted distance is
within the error band and points where they are outside the error band. Figure B.4 shows the maps of a
predicted distance within the error band, i.e., one of the last five points. We observe the detected small
rock in the disparity map, U-disparity map, edge detection map, and (filtered) Hough line transform
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map. Figure B.5 shows the maps of an erroneous point. The small rock in the middle of the scene is
not visible in the predicted disparity map, because of the matching performance. It leads to the rock
is not being present in the U-disparity map and following maps. We attribute the erroneous points due
to the lighting conditions in the scene. Comparing the left stereo image of both figures, we observe a
high contrast between the rock and the ground in Figure B.4a, while in Figure B.5a a shadow is cast
over the rock because of the angle of the light hitting the camera, such that the contrast is reduced.
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Figure 7.5: Small rocks.

Figure 7.6 shows the true and predicted distance points of medium rock encounters. Overall, we
observe 57 erroneous points over a total of 107 points. Again, we compare the maps of the points
where the predicted distance is within the error band and points where they are outside the error band.
Figure B.6 shows the maps of a predicted distance within the error band. We observe the detected
medium rock in the disparity map, U-disparity map, edge detection map, and (filtered) Hough line
transform map. Figure B.7 shows the maps of an erroneous point. The medium rock on the left of the
scene is not visible in the predicted disparity map and instead the middle rock is detected. Comparing
the left stereo image of both figures, we observe a high contrast between the rock (a bright area on the
rock) and the ground in Figure B.6a, while in Figure B.7a a shadow is cast over the rock because of
the angle of the light hitting the camera, such that the contrast is reduced.
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Figure 7.6: Medium rocks.
Figure 7.7 shows the true and predicted distance points of large rock encounters. Overall, we

observe 2 erroneous points over a total of 14 points. Figure B.8 shows the detected rock in all maps
of an erroneous point, however the stereo matching process did not infer the correct disparities.
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Figure 7.7: Large rocks.

Combining Figures 7.5, Figure 7.6 and Figure 7.7 shows that the error rate is (109/176) - 100% =
61.9%.

7.1.3. StereoSGBM (SGM)

Figure 7.8 shows the true and predicted distance points of small rock encounters. Overall, we observe
13 erroneous points over a total of 55 points. Figure B.9 shows the maps of an erroneous predicted
distance during the first rock encounter. The U-disparity map contains indistinct lines corresponding to
the small rock, such that the following maps do not detect the small rock. Another prominent erroneous
point is during the fourth rock encounter with the maps shown in Figure B.10. The small rock is detected,
however during filtering of the Hough line transform map, the lines are removed. This is because the
line corresponding to the rock in the U-disparity map is not completely detected.
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Figure 7.8: Small rocks.

Figure 7.9 shows the true and predicted distance points of medium rock encounters. Overall, we
observe 5 erroneous points over a total of 107 points. Figure B.11 shows the maps of an erroneous point
during the fifth rock encounter. The edge detection map contains a large amount of edges, however in
the Hough line transform map the line corresponding to the rock is not detected.
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Figure 7.9: Medium rocks.

Figure 7.10 shows the true and predicted distance points of large rock encounters. Overall, we
observe 1 erroneous points over a total of 14 points. Figure B.12 shows the maps of the erroneous
point. It can be observed that the large rock is detected in the maps, however due to the stereo matching
performance the predicted distance is closer than the true distance.
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Figure 7.10: Large rocks.

Combining Figures 7.8, Figure 7.9 and Figure 7.10 shows that the error rate is (19/176) - 100% =
10.8%.

7.1.4. PWOC-3D

Figure 7.11 shows the true and predicted distance points of small rock encounters. Overall, we observe
19 erroneous points over a total of 55 points. Figure B.13 shows the maps of an erroneous point
during the third encounter. Inspecting the U-disparity map, edge detection map, and (filtered) Hough
line transform, we observe the detection of additional rocks not present in the scene. This is caused by
the stereo matching performance to generate a smooth disparity map, i.e., without unmatched areas.
The filled in areas can lead to the addition of rocks. The small rock in the scene is detected, however
disparities from stereo matching are too high.
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Figure 7.11: Small rocks.

Figure 7.12 shows the true and predicted distance points of medium rock encounters. Overall, we
observe 9 erroneous points over a total of 107 points. Figure B.14 shows the maps of an erroneous point
during the third encounter. Inspecting the U-disparity map, edge detection map, and (filtered) Hough
line transform, we observe the detection of the medium rock, however due to the stereo matching
performance the predicted distance of the rock is closer than the true distance.
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Figure 7.12: Medium rocks.

Figure 7.13 shows the true and predicted distance points of large rock encounters. Overall, we
observe 0 erroneous points over a total of 14 points.
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Figure 7.13: Large rocks.
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Combining Figures 7.11, Figure 7.12 and Figure 7.13 shows that the error rate is (28/176)-100% =
15.9%.

7.2. Experiment 2
The second experiment evaluates the predicted disparity maps in a scene where the sun is positioned
in front of the rover. Similar to the first experiment, the following figures depict the encounter of small,
medium, and large rocks. The general description of the figures are described in Section 7.1. We
use the same parameters for the window sizes, for the StereoBM and StereoSGBM algorithms, and
occlusion cost, for the Hartley algorithm. This is because we assume the parameters are hard-coded.
In Section 7.2.1, the results of the StereoBM (SAD) algorithm are analyzed. The results of the
Hartley (DP) algorithm are analyzed in Section 7.2.2. The results of the StereoSGBM (SGM) algorithm
are analyzed in Section 7.2.3. In Section 7.2.3, results of the PWOC-3D algorithm are analyzed. In the
following sections the maps are omitted to improve readability. They are referred to in Appendix B.2.

7.2.1. StereoBM (SAD)

Figure 7.14 shows the true and predicted distance points of small rock encounters. Overall, we observe
109 erroneous points over a total of 176 points. Figure B.15 shows the maps of a correctly predicted
distance during the fourth rock encounter. The disparity map are mostly unmatched due to the shad-
ows cast on the rocks, i.e., it contains zero valued disparities. In general the edges of the rocks are
matched, because of the contrast between the rock and ground, however the regions within the edges
are unmatched. In points where the predicted distance is close to the true distance, the line in the
Hough line transform corresponding to a rock is not fully present, such that the predicted distance is
off.
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Figure 7.14: Small rocks.
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Figure 7.15 shows the true and predicted distance points of medium rock encounters. Overall, we
observe 109 erroneous points over a total of 109 points. We observe intervals during the encounters
where the predicted distance is close to the true distance. Because the rock in the predicted disparity
map is not fully matched, the predicted distance is off.
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Figure 7.15: Medium rocks.
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Combining Figures 7.14 and Figure 7.15 shows that the error rate is (218/285) - 100% = 76.5%.

7.2.2. Hartley (DP)

Figure 7.16 shows the true and predicted distance points of small rock encounters. Overall, we observe
162 erroneous points over a total of 176 points. Figure B.16 shows a correct predicted distance, while
Figure B.17 shows an incorrect predicted distance. Comparing the disparity maps of the two points,
we observe that the rock in correct predicted case is fully matched, whereas in the erroneous case the
sunlight obstructs the rock. This results in the rock not being visible in the U-disparity map.
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Figure 7.16: Small rocks.

Figure 7.17 shows the true and predicted distance points of medium rock encounters. Overall, we
observe 101 erroneous points over a total of 109 points.

15 Frr-HUAUE
. —— predicteg
S .
<10 error
o
o
c
©
@ 5
©

0

time (hh:mm:ss:fff)

Figure 7.17: Medium rocks.

Combining Figures 7.16 and Figure 7.17 shows that the error rate is (263/285) - 100% = 92.3%.

7.2.3. StereoSGBM (SGM)

Figure 7.18 shows the true and predicted distance points of small rock encounters. Overall, we observe
139 erroneous points over a total of 176 points. Figure B.18 shows the maps of an erroneous point
during the second encounter. We observe the small rock is not clearly visible in the U-disparity map,
due to inaccurate stereo matching.
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Figure 7.18: Small rocks.

Figure 7.19 shows the true and predicted distance points of medium rock encounters. Overall, we
observe 98 erroneous points over a total of 109 points.
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Figure 7.19: Medium rocks.
Combining Figures 7.18 and Figure 7.19 shows that the error rate is (218/285) - 100% = 83.2%.

7.2.4. PWOC-3D
Figure 7.20 shows the true and predicted distance points of small rock encounters. Overall, we observe
111 erroneous points over a total of 176 points. We observe no errors during the fourth encounter.
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Figure 7.20: Small rocks.

Figure 7.21 shows the true and predicted distance points of medium rock encounters. Overall, we
observe 103 erroneous points over a total of 109 points. The predicted distances are mostly following
the true distances, however they are on average 0.90 meters less than the true distances.
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Figure 7.21: Medium rocks.
Combining Figures 7.14 and Figure 7.15 shows that the error rate is (214/285) - 100% = 75.1%.

7.2.5. Discussion

The error rate is determined during two experiments for each algorithm, listed in Table 7.1. In the first
experiment, where the sun is behind the rover, the algorithm with the lowest error rate is StereoBM
(SAD) with an error rate of 10.2%. The StereoBM (SAD) algorithm, leaves parts of the terrain un-
matched, however the rocks are matched and are visible in the predicted disparity map. The Hartley
(DP) algorithm, performs different depending on the lighting condition, which affects the contrast. A
high contrast between the rock and the ground, allows for better stereo matching. The StereoSGBM
(SGM) algorithm performs similar to the StereoBM algorithm. The predicted disparity map is more
smooth, however there are incorrectly matched areas where the disparity value is near maximum. The
PWOC-3D algorithm, provides a full predicted disparity map, however this leads to additional rocks in
the scene that are not present.

In the second experiment, where the sun is in front of the rover, the algorithm with the lowest er-
ror rate is PWOC-3D, with an error rate of 75.1%, followed by StereoBM (SAD) with an error rate of
76.5%. The StereoBM (SAD) algorithm, generates the edges of the rock, however leave the area in-
side unmatched causing the predicted distance to be off. The Hartley (DP) algorithm, performs different
depending on the lighting condition, which affects the contrast. The StereoSGBM (SGM) algorithm per-
forms similar to the StereoBM algorithm. The predicted disparity map is more smooth, however there
are incorrectly matched areas where the disparity value is near maximum. The PWOC-3D algorithm,
computes predicted distances which follow the shape of the true distances, with an offset.

In general, we observe a high error rate for all algorithms during the second traverse, compared to
the first traverse. This is because of the harsh lighting conditions, where the sun is facing the front of
the rover. Looking at each erroneous predicted distance, the errors originate from one of two sources.
(1) The stereo matching performance of the algorithm, which contributes to smaller errors. (2) Line
detection in the U-disparity map, edge detection map, and (filtered) Hough line transform map. This
is because of the variable parameters in the generation of these maps, and contribute to large errors.
Tweaking these variable parameters would improve the line detection in the maps.

Implementation | Method | Traverse | Error (%)
StereoBM SAD 1 10.2
StereoBM SAD 2 76.5
Hartley DP 1 61.9
Hartley DP 2 92.3
StereoSGBM SGM 1 10.8
StereoSGBM SGM 2 83.2
PWOC-3D - 1 15.9
PWOC-3D - 2 75.1

Table 7.1: Error rates of the algorithms on traverse 1 and 2.
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7.3. Run time

The run time of the algorithms on our experimental environment, i.e., the Raspberry Pi 4 Model B, is
listed in Table 7.2. The table lists the implementation, method, traverse, and the run time in seconds. To
compute the mean run time and standard deviation, the algorithms are iterated for 10 times on different
input images. We observe that for traverse 1 and 2, the run time is similar. This is expected behaviour,
as it depends on the resolution of the input image, which is 1155 x 813 for both traverses.

To accommodate with requirement R2, i.e., each call of the perception system must take less than
20 seconds on our environment, we select the StereoBM and StereoSGBM algorithms. The algorithms
are part of the OpenCV library and are optimized for speed. The Hartley and PWOC-3D algorithm have
a run time larger than 20 seconds. The Hartley code is not optimized and thus is slow compared to the
OpenCV algorithms. The PWOC-3D code uses a neural network typically run on a GPU, the larger run
time is explained by the use of the less powerful processor of our experimental environment.

Implementation | Method | Traverse | Run time (s)
StereoBM SAD 1 0.142 + 0.00591
StereoBM SAD 2 0.136 + 0.00509
Hartley DP 1 21.2+1.57
Hartley DP 2 21.5 + 1.59
StereoSGBM SGM 1 2.04 + 0.0341
StereoSGBM SGM 2 2.00 + 0.0146
PWOC-3D - 1 30.1 +£1.72
PWOC-3D - 2 30.3 + 1.65

Table 7.2: Run time of the algorithms on traverse 1 and 2.

7.4. Memory Usage

To compute the memory usage of the algorithms we use the memory_profiler [142] Python module.
This module reports the memory usage as a function of time. In Figure 7.22, the memory usage plots
are depicted of the algorithms during both traverses. The horizontal axes shows the time in seconds
and the vertical axes shows the memory used in MiB. The vertical dashed red line shows the time at
which the maximum memory is used. In Table 7.3, the maximum memory usage of each algorithm is
listed.

Implementation | Method | Memory usage (MiB) |

StereoBM SAD 90
Hartley DP 166
StereoSGBM SGM 85
PWOC-3D - 1428

Table 7.3: Maximum memory usage of the algorithms.

Figure 7.22a and Figure 7.22b show the memory usage of StereoBM (SAD). The maximum memory
used during traverse 1 and 2 is 88 MiB and 90 MiB, respectively, at time 1.6 seconds. Figure 7.22c and
Figure 7.22d show the memory usage of Hartley (DP). The maximum memory used during traverse 1
and 2is 151 MiB and 166 MiB, respectively, at time 2.8 seconds and 8.0 seconds. The difference in time
is explained by the loading time of the libraries. Figure 7.22e and Figure 7.22f show the memory usage
of StereoSGBM (SGM). The maximum memory used during traverse 1 and 2 is 85 MiB and 85 MiB,
respectively, at time 3.5 seconds. Figure 7.22g and Figure 7.22h show the memory usage of PWOC-
3D. The maximum memory used during traverse 1 and 2 is 1428 MiB and 1316 MiB, respectively, at
time 50 seconds and 49 seconds. The difference in time is explained by the loading time of the libraries.

To accommodate with requirement R4, the perception system must use less than 512 MiB of mem-
ory, the StereoBM, Hartley, and StereoSGM implementations are selected. Both OpenCV implemen-
tations, i.e., StereoBM and StereoSGM, are optimized and run efficiently. The Hartley implementation
uses the third most memory, while the PWOC-3D implementation uses the most memory. Since the
PWOC-3D code uses convolutional neural networks, it needs to store a number of large matrices.
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Figure 7.22: Memory usage of a single disparity map computation.

7.5. Discussion

In this section we address our third research question: What algorithm best applies to the requirements?
In this chapter we analyzed the error rate, run time, and memory usage of four algorithms during two
traverses. In the error rate section, we determined that the StereoBM performs best (lowest error
rate) during the first traverse, and PWOC-3D during the second traverse. We observe a degrading
quality in the predicted distances during the second traverse, due to the harsh lighting conditions,
compared to the first traverse. The errors are traced back to their sources, which are either from the
stereo matching performance or the variable parameters in the generation of the maps. In the run time
section, we found that the StereoBM and StereoSGBM algorithms accommodate with requirement R2.
In the memory usage section, we determined that StereoBM, Hartley, and StereoSGBM accommodate
with requirement R4. Overall, the StereoBM algorithm best applies to the requirements in terms of

error rate, run time, and memory usage.






Conclusion and Future Work

Stereo matching is part of the first module of navigation systems of planetary rovers, e.g., from NASA’s
Mars Exploration Rover missions [3, 4], NASA's Mars Science Laboratory (MSL) mission [5], ESA’s
ExoMars mission [6], and Chang’e-3 (CE-3) and Chang’e-4 (CE-4) missions [7, 8]. As (new) algo-
rithms are being designed, their performance are typically evaluated on the Middlebury Stereo Vision
benchmark [1], containing indoor scenes with objects, or the KITTI Vision Benchmark Suite [29], con-
taining outdoor city scenes with roads and buildings. However, the results of their performance are not
comparable for the Martian surface, as texture, colour, and lighting of indoor objects and outdoor city
scenes differ from the Martian surface.

In this thesis, our goal is to improve insight into the performance of dense stereo matching algo-
rithms, for the Martian surface on a single-board computer. To realise this goal, we searched for and
compared stereo matching algorithms ranked on stereo vision datasets to obtain a manageable set
of algorithms and verified their implementations. Next, we derived performance metrics from the Exo-
Mars requirements and validated our set of verified algorithms on the Katwijk Beach Planetary Rover
dataset [21]. A final stereo matching algorithm is selected that best applies to the requirements.

In this chapter we conclude the thesis (see Section 8.1) by presenting our contributions to address
the research questions posed in Chapter 1. We discuss directions for future work in extending this work
(see Section 8.2).

8.1. Conclusion
In this section we provide our answers to the three main research questions:

RQ1: How to obtain a manageable selection of stereo matching algorithms for comparison?
Obtaining a manageable selection of stereo matching algorithms is crucial for the comparison of algo-
rithms. We have obtained a list of algorithms from the Middlebury and KITTI 2015 datasets, as there
are algorithms ranked on the Katwijk dataset. We have developed selection criteria to reduce the list to
a manageable size, i.e., to four algorithms (three traditional algorithms, one deep learning algorithm);
SSD (local traditional), DP (global traditional), SGM (semi-global traditional), and Fast DS-CS (end-
to-end deep learning). The set of algorithms were then verified by executing several implementations
of the same algorithm and comparing them with values listed in literature. We made changes to the
selected set, as the StereoBM (SAD) outperforms other SSD implementations and PWOC-3D gener-
ates a better disparity map for a sample Katwijk stereo image compared to the Fast-DS-CS algorithm.
We have obtained a final set of algorithm implementations, i.e., StereoBM (SAD), Hartley (DP), Stere-
0SGBM (SGM), and PWOC-3D (end-to-end deep learning).

RQ2: How to systematically compare the performance of stereo matching algorithms?

Comparing the selected algorithms using metrics and requirements gives us insight into the perfor-
mance of each algorithm. We have presented the requirements of the ExoMars rover and developed
a new practical error rate metric that is not based on the bad matched pixels percentage, as used in
other datasets. We used the Katwijk dataset for our two experiments, which differ in sunlight position,
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as the dataset used by ESA for the ExoMars rover is not publicly available. Additionally, the run time
and memory usage are metrics for each algorithm during the two experiments.

RQ3: What algorithm best applies to the requirements?

We analyzed the results of each algorithm during the experiments and found that the StereoBM (SAD)
algorithm best applies to the requirements in terms of error rate, run time, and memory usage. In
general, the four stereo matching algorithms have degrading results in the second traverse, where
the sun is in front of the rover, compared to the first traverse, where the sun is behind the rover. The
harsh lighting conditions affect the stereo matching performance of all algorithms. Looking at each
erroneous predicted distance from both traverses, the errors originate from either the stereo matching
performance, contributing to small errors, or the variable parameters in the generation of the U-disparity
map, edge detection map, and (filtered) Hough line transform map, contributing to large errors.

8.2. Future Work

This thesis presents promising results of the performance of stereo matching for the Martian surface
on a single-board computer. Building on these results, we suggest three research directions that can
be investigated.

Determine optimal parameters

The transform from a predicted disparity map to a predicted distance contains a number of variable
parameters. The variable parameters are in the edge detection map, and (filtered) Hough line trans-
form map process. However, several erroneous predicted distances are caused by not detecting the
lines corresponding to the rocks in the U-disparity map. Tweaking the parameters would allow for the
detection of the rocks and correct predicted distances.

Fine-tune the weights of the deep learning algorithm

We have used the PWOC-3D [117] deep learning stereo matching algorithm without fine-tuning the
weights. The weights used are obtained from pre-training the deep learning network on the FlyingTh-
ings3D dataset [25]. However, the stereo matching performance would increase by fine-tuning the
weights on a Martian-like dataset containing the ground-truth disparity maps.

Use TensorFlow Lite for the deep learning algorithm

We have used the TensorFlow library for the implementation of the PWOC-3D algorithm in the Rasp-
berry Pi 4 Model B [14]. However, the TensorFlow [82] library is not optimized for the Raspberry Pi
and results in more memory usage and slower execution times. The TensorFlow Lite [143] library is
optimized for devices such as the Raspberry Pi and reduces the memory usage and results in faster ex-
ecution times of the deep learning algorithm. In this thesis, the combined effect of the previous research
direction and this direction could be a deep learning algorithm that complies with the requirements.
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Predicted disparity maps parameters

A.1. StereoBM (SAD)
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Figure A.1: Predicted disparity map of the sample Katwijk stereo using the StereoBM algorithm with varying window sizes.
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Figure A.2: StereoBM noise with varying window sizes.

A.2. Hartley (DP)
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Figure A.3: Predicted disparity map of the sample Katwijk stereo using the Hartley algorithm with varying occlusion costs.



A.3. StereoSGBM (SGM) 79

45

Noise (%)
w w S
o ol o

N
o1

N
o

O 10 20 30 40 50 60 70 80 90 100
Occlusion cost

Figure A.4: Hartley noise with varying occlusion costs.

A.3. StereoSGBM (SGM)
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Figure A.5: Predicted disparity map of the sample Katwijk stereo using the StereoSGBM algorithm with varying window sizes.
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Figure A.6: StereoSGBM noise with varying window sizes.



Predicted distance analysis

B.1. Experiment 1
B.1.1. StereoBM (SAD)
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Figure B.1: Erroneous point analysis of the small rocks at time 12:56:19:924.
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Figure B.2: Erroneous point analysis of the medium rocks at time 12:55:14:593.
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Figure B.3: Erroneous point analysis of the large rocks at time 12:57:50:379.

B.1.2. Hartley (DP)
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Figure B.4: Correct point analysis of the small rocks at time 12:58:06:543.
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Figure B.5: Erroneous point analysis of the small rocks at time 12:56:22:711.
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Figure B.6: Correct point analysis of the medium rocks at time 12:54:01:798.
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Figure B.7: Erroneous point analysis of the medium rocks at time 12:55:09:547.
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Figure B.8: Erroneous point analysis of the large rocks at time 12:57:50:123.
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Figure B.9: Erroneous point analysis of the small rocks at time 12:54:54:894.
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Figure B.10: Erroneous point analysis of the small rocks at time 12:56:59:469.
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Figure B.11: Erroneous point analysis of the medium rocks at time 12:55:40:104.
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Figure B.12: Erroneous point analysis of the large rocks at time 12:57:50:379.

300
400
500
600

0 200 400 600 800 1000
X (pixel) x (pixel)

B.1.4. PWOC-3D

Small rocks

¥ (pixel)

y (pixel)
d (pixel)

u (pixel)

(a) Left stereo image.
0

(b) Predicted disparity map.

(c) U-disparity map.

0

600

600 600
u (pixel) u (pixel) u (pixel)
(d) Edge detection. (e) Hough lines. (f) Filtered Hough lines.

Figure B.13: Erroneous point analysis of the small rocks at time 12:56:21:167.
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Figure B.14: Erroneous point analysis of the medium rocks at time 12:55:10:987.

B.2. Experiment 2
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Figure B.15: Correct point analysis of the small rocks at time 13:39:56:704.
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B.2.2. Hartley (DP)

Small rocks

d (pixel)

600 600
x (pixel) x (pixel) u (pixel)
(a) Left stereo image.
0

(b) Predicted disparity map.

(c) U-disparity map.

600 600 600
u (pixel) u (pixel) u (pixel)

(d) Edge detection. (e) Hough lines. (f) Filtered Hough lines.

Figure B.16: Correct point analysis of the small rocks at time 13:39:57:770.
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Figure B.17: Erroneous point analysis of the small rocks at time 13:39:57:770.
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Figure B.18: Erroneous point analysis of the small rocks at time 13:39:34:837.
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