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Let M = N × [0, 1]. The natural projection π : M → N, which sends (n, x) to 
n, induces a projection mapping π∗ : M∗ → N∗, where M∗ and N∗ denote the 
Čech-Stone remainders of M and N, respectively.
We show that CH implies every autohomeomorphism of N∗ lifts through the natural 
projection to an autohomeomorphism of M∗. That is, for every homeomorphism 
h : N∗ → N∗ there is a homeomorphism H : M∗ → M∗ such that π∗ ◦H = h ◦ π∗. 
This complements a recent result of the second author, who showed that this lifting 
property is not a consequence of ZFC.
Combining this lifting theorem with a recent result of the first author, we also prove 
that CH implies there is an order-reversing autohomeomorphism of H∗, the Čech
Stone remainder of the half line H = [0,∞).

© 2025 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let I denote the unit interval [0, 1], and let M = N × I. Let π : M → N denote the natural projection 
(n, x) ↦→ n. Moving to the Čech-Stone compactifications, π extends to a continuous surjection βπ : βM →
βN. Because π is surjective and π←(n) is compact for every n, the map βπ restricts to a surjection from 
M∗ = βM \ M onto N∗ = βN \ N. Let π∗ = βπ ↾ M∗. In other words, π∗ is the continuous surjection 
M∗ → N∗ induced by π.

This paper is organized around two main theorems. The first states that, assuming the Continuum 
Hypothesis (henceforth CH), every autohomeomorphism of N∗ can be ``lifted'' through π∗ to an autohome
omorphism of M∗:
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Theorem 1. Assuming CH, if h is an autohomeomorphism of N∗, then there is an autohomeomorphism H
of M∗ such that π∗ ◦H = h ◦ π∗.

This theorem complements a recent result of the second author in [3], where he shows that the conclusion 
of Theorem 1 fails consistently. Specifically, this lifting property fails in the model of Veličković from [15] in 
which MAℵ1 holds and N∗ has a nontrivial autohomeomorphism. Theorem 1 and the main theorem of [3], 
taken together, answer Question 2.4 in [4].

It is not difficult to see that all trivial autohomeomorphisms of N∗ lift through π∗. (We give the easy 
argument in Section 2.) Thus the conclusion of Theorem 1 holds if all autohomeomorphisms of N∗ are 
trivial, which is implied by forcing axioms like PFA, or even just OCAT . Thus this lifting property provides 
a rare example of a statement about Čech-Stone remainders that follows from forcing axioms and from CH, 
but not from ZFC.

Our second theorem concerns yet another Čech-Stone remainder. Let H = [0,∞) denote the space of 
nonnegative real numbers, and let H∗ = βH \H. The order on H induces a quasiorder on certain subsets 
of H∗. This is explained further in Section 4 below (see also the survey of H∗ by the third author, [7]). An 
old folklore question about H∗ is whether there is an autohomeomorphism of H∗ that reverses this order. 
Our second theorem shows that, consistently, there is.

Theorem 2. CH implies there is an order-reversing autohomeomorphism of H∗.

On the other hand, a recent result of Vignati (see [16, Theorem C]) states that OCAT + MA implies 
all autohomeomorphisms of H∗ are trivial. An easy argument (which is given in Section 4 below) shows 
that all trivial autohomeomorphisms of H∗ are order-preserving. Thus the existence of an order-reversing 
autohomeomorphism of H∗ is independent of ZFC.

Theorem 2 could really be called a corollary. It follows relatively easily from two other theorems: Theo
rem 1 stated above, and a recent result of the first author in [1], which states that, assuming CH, the shift 
map and its inverse are conjugate in the autohomeomorphism group of N∗.

The next two sections are devoted to M∗ and N∗, and the proof of Theorem 1. The fourth and final 
section of the paper contains some background material on H∗ and a proof of Theorem 2.

2. More on M∗ and N∗

The aim of this section is to introduce some ideas and notation concerning M∗ and N∗, and to prove 
two relatively easy positive results similar to Theorem 1. These two results form part of the motivation for 
proving Theorem 1.

An almost permutation of N is a bijection from one cofinite subset of N to another. A trivial auto
homeomorphism of N∗ is a homeomorphism h induced by an almost permutation f of N, in the sense that 
h = βf ↾ N∗, or equivalently, the action of h on the clopen subsets of N∗ is simply h[A∗] = (f [A])∗, for all 
A ⊆ N. Similarly, if f is a homeomorphism between two co-compact subsets of M then Hf = βf ↾ M∗ is 
an autohomeomorphism of M∗, and any such autohomeomorphism of M∗ is called trivial.

Proposition 3. If h is a trivial autohomeomorphism of N∗, then there is a trivial autohomeomorphism H of 
M∗ such that π∗ ◦H = h ◦ π∗.

Proof. Let h be a trivial autohomeomorphism of N∗. Fix an almost permutation f of N such that h = βf ↾
N∗. Define g : dom(f) × I → M by setting g(n, x) = (f(n), x). Observe that g is a homeomorphism from 
one co-compact subset of M to another, and therefore Hg = βg ↾ M∗ is a trivial autohomeomorphism of 
M∗. Because π ◦ g = f ◦ π, we have βπ ◦ βg = βf ◦ βπ, and then restricting to the Čech-Stone remainders, 
π∗ ◦Hg = h ◦ π∗. □
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The existence of a nontrivial autohomeomorphism of N∗ is independent of ZFC. On the one hand, Walter 
Rudin proved in [11] that CH implies there are 2𝔠 autohomeomorphisms in total, though of course only 𝔠 of 
them can be trivial. On the other hand, Shelah proved in [12, Chapter 4], via an oracle-c.c. iteration, that it is 
consistent to have all autohomeomorphisms trivial. Building on Shelah’s work, Shelah and Steprāns showed 
in [13] that PFA implies all autohomeomorphisms are trivial. Veličković showed in [15] that OCAT + MA
suffices, though it is consistent with MAℵ1 to have nontrivial autohomeomorphisms. (Here OCAT denotes 
Todorčević’s Open Coloring Axiom, defined in [14], now sometimes called OGA.) Building on work of Moore 
in [10], DeBondt, Farah, and Vignati showed in [2] that OCAT alone implies all autohomeomorphisms of 
N∗ are trivial. Combined with Proposition 3, this shows Theorem 1 remains true when CH is replaced with 
OCAT .

Corollary 4. Assuming OCAT , if h is an autohomeomorphism of N∗, then there is an autohomeomorphism 
H of M∗ such that π∗ ◦H = h ◦ π∗. □
In light of this, the main point of Theorem 1 is not simply that the conclusion is consistent, but specifically 
that it follows from CH. This is good to know for two reasons: because it contributes to the longstanding 
program of understanding the behavior of Čech-Stone remainders under CH, and because it enables us to 
prove Theorem 2. Note that the conclusion of Theorem 2 is not implied by OCAT (see Proposition 12 below), 
and indeed, we do not currently know how to obtain an order-reversing autohomeomorphism of H∗ except 
via CH.

For each n ∈ N, let In = π←(n) = {n} × I. These are the connected components of M. Analogously, for 
each u ∈ N∗ let Iu = (π∗)←(u). Equivalently,

Iu = 
⋂︂
A∈u

(π∗)←
[︁
clβN A

]︁
= 

⋂︂
A∈u

clβM(π←[A]).

These are the connected components of M∗ (see [7, Corollary 2.2]).
In particular, if H is an autohomeomorphism of M∗, then H permutes the set {Iu : u ∈ N∗} of connected 

components of M∗. Let ρH denote the corresponding permutation of N∗, so that H(Iu) = IρH(u) for all 
u ∈ N∗.

If B∗ is clopen in N∗, then (π∗)←[B∗] is clopen in M∗, by the continuity of π∗. But the converse is also 
true: if C is clopen in M∗, then C = (π∗)←[B∗] for some clopen B∗ ⊆ N∗. To see this, note that if C is clopen 
then C and M∗ \C are both compact, so π∗[C] and π∗[M∗ \C] are both compact as well. But these sets are 
disjoint, because (π∗)←(u) = Iu is connected for each u ∈ N∗, which means either Iu ⊆ C or Iu ⊆ M∗ \ C. 
Hence π∗[C] and π∗[M∗ \ C] are complementary closed sets, hence clopen, and C = (π∗)← [π∗[C]] and 
M∗ \ C = (π∗)← [π∗[M∗ \ C]].

Proposition 5. If H is an autohomeomorphism of M∗, then ρH is an autohomeomorphism of N∗ such that 
π∗ ◦H = ρH ◦ π∗.

Proof. That π∗ ◦H = ρH ◦ π∗ follows from the definition of ρH , so we need only show ρH is an autohome
omorphism of N∗. Because ρH is bijective (again, by definition) and N∗ is compact, it suffices to show ρH
is continuous. Let A ⊆ N, so that A∗ is a basic clopen subset of N∗. Then (π∗)←[A∗] is a clopen subset of 
M∗. Because H is a homeomorphism, H←[︁

(π∗)←[A∗]
]︁

is clopen as well. By the paragraph preceding this 
proposition, this means there is some clopen B∗ ⊆ N∗ such that H←[︁

(π∗)←[A∗]
]︁

= (π∗)←[B∗]. But

H←[︁
(π∗)←[A∗]

]︁
= (π∗ ◦H)←[A∗] = (ρH ◦ π∗)←[A∗] = (π∗)←

[︁
ρ←H [A∗]

]︁
,

so (π∗)←
[︁
ρ←H [A∗]

]︁
= (π∗)←[B∗], which implies ρ←H [A∗] = B∗. □



4 W. Brian et al. / Topology and its Applications 373 (2025) 109539 

In other words, this proposition states that autohomeomorphisms of M∗ project downward through π∗

to autohomeomorphisms of N∗. That is, Theorem 1 remains true, without even needing to assume CH, if 
we switch the roles of M∗ and N∗. The opposite direction, lifting upward through π∗ rather than projecting 
downward, is more subtle, and this more difficult direction is the content of Theorem 1.

We would like to thank our anonymous referee for a thoughtful report that helped us to improve the 
paper.

3. A proof of Theorem 1

Proof of Theorem 1: Let h be an autohomeomorphism of N∗. Using CH, we aim to construct an auto
homeomorphism H of M∗ such that π∗ ◦H = h ◦ π∗. Our construction of H needs a few ingredients.

The first is a map h+ : 𝒫(N) → 𝒫(N) with the property that for all subsets A of N we have h[A∗] =
h+(A)∗.

The second is a suitable base for the closed sets of M∗ that is a distributive lattice with respect to ∪
and ∩. We shall describe H dually by specifying an automorphism of that base.

Let ℬ be a countable distributive lattice base for the closed sets of I, say the lattice generated by the 
family of closed intervals with rational end points. We identify members of ℬN with closed subsets of M in 
the obvious way: if B ∈ ℬN then

FB =
⋃︂{︁{k} ×B(k) : k ∈ N

}︁
In this way the power ℬN determines a base for the closed sets of M, and hence also for the closed sets 
of βM, as the following lemma implies.

Lemma 6. If F and G are closed and disjoint subsets of M then there are members B and C of ℬN such 
that F ⊆ FB, G ⊆ FC and FB ∩ FC = ∅. □

Because for closed subsets F and G of M we have clβM F ∩M∗ = clβMG∩M∗ if and only if {n : F ∩In ̸=
G ∩ In} is finite, we see that the reduced power ℬN/fin determines a base for the closed sets of M∗: the 
family {F ∗

B : B ∈ ℬN}. We have F ∗
B ⊆ F ∗

C if and only if {k : B(k) ⊆ C(k)} is cofinite. The latter condition 
also defines a partial order on ℬN/fin, which we denote ≤.

It follows that if we let B∗ denote the equivalence class of B ∈ ℬN in ℬN/fin we get the equivalence

B∗ ≤ C∗ if and only if F ∗
B ⊆ F ∗

C

for B,C ∈ ℬN .
The algebraic structure of the lattice ℬN/fin is determined completely by its partial order, so it will 

suffice to define an automorphism of the partially ordered set (ℬN/fin,≤).
We define this automorphism by defining a partial map φ : ℬN → ℬN with the following properties. (The 

construction is detailed below.)

(1) If B ∈ ℬN then there are unique C ∈ domφ and D ∈ ranφ such that B =∗ C and B =∗ D; this 
uniqueness ensures that φ determines a well-defined surjection from ℬN/fin to itself.

(2) If B and C are in domφ, and if A1 = {k : B(k) ⊆ C(k)} and A2 = {k : C(k) ⊆ B(k)}, then 
{k : φ(B)(k) ⊆ φ(C)(k)} =∗ h+(A1) and {k : φ(C)(k) ⊆ φ(B)(k)} =∗ h+(A2).

In condition (2) the set A3 = N \ (A1 ∪ A2) is the set of k where B(k) and C(k) are incomparable. It 
follows that h+(A3) is mod finite equal to the set of k where φ(B)(k) and φ(C)(k) are incomparable.
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Lemma 7. The conditions above ensure that φ induces an automorphism of the partially ordered set 
(ℬN/fin,≤).

Proof. Since domφ and ranφ intersect every equivalence class in exactly one point we automatically obtain 
a surjective map φ∗ from ℬN/fin to itself.

In order to see that φ∗ is injective assume φ∗(B∗) = φ∗(C∗). This means that {k : φ(B)(k) = φ(C)(k)}
is cofinite, hence so are {k : φ(B)(k) ⊆ φ(C)(k)} and {k : φ(B)(k) ⊆ φ(C)(k)}. But this means, with the 
notation as in condition (2) above, that h+(A1) and h+(A2) are cofinite too. Because h+ represents h the 
sets A1 and A2 must then be cofinite as well, and we conclude that {k : B(k) = C(k)} is cofinite and 
hence that B =∗ C.

Similarly, using that A1 is cofinite if and only if h+(A1) is cofinite, we obtain that B∗ ≤ C∗ iff 
φ(B∗) ≤ φ∗(C∗), and so φ∗ is an automorphism. □

Given A ⊆ N, define M∗
A =

(︁⋃︁
n∈A In

)︁∗ = clβM
(︁⋃︁

n∈A In
)︁ \M.

Lemma 8. The autohomeomorphism H of M∗ determined by φ∗ satisfies h ◦ π∗ = π∗ ◦H.

Proof. To show that π∗ ◦H = h ◦ π∗ we let A ⊆ N and show that

π∗[︁H[M∗
A]
]︁

= h
[︁
π∗[M∗

A]
]︁
.

Define B and I in ℬN by

B(k) =
{︄
I if k ∈ A

∅ if k / ∈ A

and I(k) = I for all k; in our construction we shall have I ∈ domφ and φ(I) = I.
Then A = {k : I(k) ⊆ B(k)} and so

{k : I ⊆ φ(B)(k)} = {k : φ(I)(k) ⊆ φ(B)(k)} =∗ h+(A).

Likewise N \A = {k : B(k) ⊆ ∅} and we obtain

{k : φ(B)(k) = ∅} =∗ h+(N \A) =∗ N \ h+(A).

We deduce that H[M∗
A] = M∗

h+(A) and so

π∗[︁H[M∗
A]
]︁

= π∗[M∗
h+(A)] = h+(A)∗ = h[A∗] = h

[︁
π∗[M∗

A]
]︁
. □

3.1. The construction

Using CH, fix an enumeration ⟨Bα : α ∈ ω1⟩ of ℬN . In a recursion of length ω1 we construct two sequences 
⟨Cα : α ∈ ω1⟩ and ⟨Dα : α ∈ ω1⟩ of members of ℬN . These will be such that

φ =
{︁⟨Cα, Dα⟩ : α ∈ ω1

}︁
is the map that we seek.

To begin the construction we let
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• C0 = D0 = ⟨∅ : n ∈ N⟩, and
• C1 = D1 = ⟨I : n ∈ N⟩.
• C2 = D2 = ⟨[0, 1

2 ] : n ∈ N⟩.

The first two conditions take care of the maximum and minimum of ℬN/fin and facilitate the proof of 
Lemma 8. The third condition ensures that our autohomeomorphism H will preserve the order on each of 
the Iu. We have not yet said what this order is, and that is because one does not need to worry about it 
yet. This third condition does not affect the rest of the proof in this section, but we include it because it 
will be useful in Section 4 when finding an order-reversing autohomeomorphism of H∗.

Next let α ≥ 3 and assume we have φα =
{︁⟨Cβ , Dβ⟩ : β ∈ α

}︁
such that φα satisfies conditions (1) and (2) 

above up to α, that is

(1) If γ < β < α then {k : Cγ(k) ̸= Cβ(k)} and {k : Dγ(k) ̸= Dβ(k)} are infinite; this ensures the 
uniqueness clause in (1).

(2) If γ < β < α and A1 = {k : Cγ(k) ⊆ Cβ(k)} and A2 = {k : Cγ(k) ⊇ Cβ(k)} then {k : Dγ(k) ⊆
Dβ(k)} =∗ h+(A1) and {k : Dγ(k) ⊇ Dβ(k)} =∗ h+(A2).

We extend φα to φα+1, as follows.

• If α is even let Cα be the first term of the sequence ⟨Bξ : ξ ∈ ω1⟩ that satisfies Bξ ̸=∗ Cβ for all β < α. 
We show how to determine Dα so as to satisfy the conditions above up to and including α.

• If α is odd let Dα be the first term of the sequence ⟨Bξ : ξ ∈ ω1⟩ that satisfies Bξ ̸=∗ Dβ for all β < α. 
We show how to determine Cα so as to satisfy the conditions above up to and including α.

We shall only deal with the even case; the argument in the odd case is the mirror image of that in the 
even case.

We stop before we start, however. It turns out that the second assumption on the recursion is too weak.
To illustrate the problem, assume that there are γ and β below α such that the set A of k with Cγ(k) ⊆

Cα(k) ⊆ Cβ(k) is infinite. Then we shall need that Dγ(k) ⊆ Dα(k) ⊆ Dβ(k) for all but finitely many k ∈
h+(A). We shall certainly have Dγ(k) ⊆ Dβ(k) for all but finitely many k ∈ h+(A), so there seems to be 
no problem specifying Dα(k) for these values of k.

But it is very well possible that for all k ∈ A (or at least infinitely many) the set Cγ(k) is a subset of 
the interior of Cβ(k). In that case there is a δ such that for all these k we have Bδ(k) ∪ Cβ(k) = I and 
Bδ(k) ∩ Cγ(k) = ∅. (For example, Bδ(k) could be the complement of the interior of Cβ(k) for each k.)

If the first such δ is larger than α, then in our choice of Dα it is certainly possible (under the conditions 
on the recursion as currently stated) that we ensured Dα(k) ⊆ Dβ(k) for enough k ∈ h+(A), but did not 
ensure that Dα(k) is a subset of the interior of Dβ(k).

However ``Cα(k) is in the interior of Cβ(k)'' is expressible in terms of the lattice operations (and is 
witnessed by the later Bδ). Hence we should try to ensure ``Dα(k) is in the interior of Dβ(k)'' often enough 
as well. But the latter is impossible in case we did not ensure enough times that Dγ(k) is in the interior 
of Dβ(k).

To fix this problem we need to find a way to ``look ahead'' to later stages of the construction, but without 
explicitly using ordinals larger than α. That way is via quantifiers and elementarity.

To stay with our example we note that ``B(k) is in the interior of C(k)'' is expressible as (∃x)ψ
(︁
B(k), C(k), x

)︁
, 

where ψ(y, z, x) is ``y ∩ x = ∅ ∧ z ∪ x = I''.
So, given γ, β < α we should also look at A = {k : (∃x)ψ(Cγ(k), Cβ(k), x(k))} and ensure that also 

h+(A) =∗ {k : (∃x)ψ(Dγ(k), Dβ(k), x(k))}. This then will help us build Dα so that Dα(k) is in the interior 
of Dβ(k) often enough.
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We strengthen condition (2) so that it covers all formulas of lattice theory and all finite sets of ordinals.

(∗)α For every formula χ in the language of lattice theory with free variables x1, . . . , xn, and for every 
tuple (β1, . . . , βn) of ordinals below α, the set A =

{︁
k : χ

(︁
Cβ1(k), . . . , Cβn

(k)
)︁}︁

satisfies h+(A) =∗{︁
k : χ

(︁
Dβ1(k), . . . , Dβn

(k)
)︁}︁

.

In the example above we would have χ(x1, x2) equal to (∃x)ψ(x1, x2, x).
For the three base cases of our recursion given above, observe that for β = 0, 1, 2, we have Cβ(k) = Dβ(k)

for all k ∈ ω. Consequently, for any formula χ as above, we have 
{︁
k : χ

(︁
Cβ1(k), . . . , Cβn

(k)
)︁}︁

equal to either 
∅ or ω (since there is no actual dependence on k), and {k : χ

(︁
Dβ1(k), . . . , Dβn

(k)
)︁}︁

equal to the same set. 
In particular, this implies (∗)3 holds, and we have a solid basis for our recursion.

3.2. An application of elementary equivalence and saturation

Before we start to build Dα we need an intermediate result. This will involve some model theory, especially 
elementary equivalence and saturation. The results that we need can be found in [8, Chapter 10] or [9, 
Chapter 8].

We fix u ∈ N∗ for the moment, put v = h(u), and consider the ultrapowers Bu = ℬN/u and Bv = ℬN/v.
The structures (Bu, C̄) and (Bv, D̄) are elementarily equivalent. Here C̄ is the sequence of elements of Bu

determined by the sequence ⟨Cβ : β ∈ α⟩, and likewise D̄ is determined in Bv by ⟨Dβ : β ∈ α⟩.
The reason is that when χ is a formula with free variables x1, . . . , xn and if β1, . . . , βn are members of α

such that Bu |= χ(Cβ1 , . . . , Cβn
) then the set A1 = {k : ℬ |= χ(Cβ1(k), . . . , Cβn

(k))} belongs to u. Then 
h+(A1) belongs to v, and hence so does A2 = {k : ℬ |= χ(Dβ1(k), . . . , Dβn

(k))}. But this then implies that 
Bv |= χ(Dβ1 , . . . , Dβn

).
The ultrapower Bv is saturated and so [8, Lemma 10.1.3] or [9, Lemma 8.1.3] applies, which guarantees 

the existence of an element D of Bv such that (Bu, C̄, Cα) and (Bv, D̄,D) are elementarily equivalent.
This means that a local version of (∗)α+1 holds at the points u and v, with D in place of Dα:

if χ is a formula from the language of lattices with free variables x1, . . . xn, xn+1, and if β1, . . . , βn

are members of α then the two sets A1 = {k : ℬ |= χ(Cβ1(k), . . . , Cβn
(k), Cα(k))} and A2 = {k : ℬ |=

χ(Dβ1(k), . . . , Dβn
(k), D(k))} satisfy A1 ∈ u if and only if A2 ∈ v.

For every u ∈ N∗ we choose Du such that (Bu, C̄, Cα) and (Bv, D̄,Du) are elementarily equivalent.
Now let χ be a formula, with free variables x1, . . . , xn, and let β1, . . . , βn be elements of α + 1. 

By the rules of interpretation we know that for every u ∈ N∗ we have either Bu |= χ(Cβ1 , . . . , Cβn
), or 

Bu |= ¬χ(Cβ1 , . . . , Cβn
).

Then the former implies that Bv |= χ(Dβ1 , . . . , Dβn
), and the latter implies that Bv |= ¬χ(Dβ1 , . . . , Dβn

), 
where, in both cases, we insert Du at the positions where βi = α.

Translated to subsets of N this becomes if A = {k : ℬ |= χ(Cβ1(k), . . . , Cβn
(k))} belongs to u then 

{k : ℬ |= χ(Dβ1(k), . . . , Dβn
(k))} and h+(A) both belong to v.

3.3. Making Dα

We build Dα out of bits and pieces of the elements Du chosen above.
The idea will be to make Dα in a recursion of length ω each time adding finitely many coordinates of 

finitely many Du in such a way that the higher the coordinates the more formulas these decide. In the end 
Dα should then decide every formula almost everywhere.
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We also have to take care of the ordinals below α so we start by fixing an enumeration of the set of pairs 
⟨χ, β̄⟩ of formulas and finite sequences of ordinals in α + 1 as 

⟨︁⟨χm, β̄m⟩ : m ∈ N
⟩︁
. We assume that the 

number of free variables in χm is always equal to the length of the sequence β̄m, call this number pm.
Each pair ⟨χm, β̄m⟩ determines a partition of N into two sets

Am,0 = {k : ℬ |= ¬χm(Cβm,1(k), . . . , Cβm,pm
(k))}

and

Am,1 = {k : ℬ |= χm(Cβm,1(k), . . . , Cβm,pm
(k))}.

Using the enumeration we make a sequence of partitions ⟨𝒫m : m ∈ N⟩ of N, as follows.
For each sequence s ∈ 2m let As =

⋂︁
l<m Al,s(l), and put 𝒫m = {As : s ∈ 2m}. By default we take ⋂︁ ∅ = N, so that 𝒫0 = {N}.

The map h+ transforms these partitions in almost-partitions, that is, the union 
⋃︁𝒫m is cofinite, and if 

s, t ∈ 2m and s ̸= t then h+(As) ∩ h+(At) is finite. This implies that there is a natural number Nm such 
that {h+(A) \Nm : A ∈ 𝒫m} is a partition of N \Nm.

In fact, by raising Nm if necessary we can ensure that the map A ↦→ h+(A) \ Nm is an isomorphism 
between the Boolean algebras generated by {Al,i : l < m, and i ∈ 2} and {h+(Al,i)\Nm : l < m, and i ∈ 2}
respectively.

3.3.1. Other partitions
Let us fix m for the time being.
The definition of h+ implies that for every u ∈ N∗ and s ∈ 2m we have As ∈ u iff h+(As) ∈ h(u).
By the local version of (∗)α+1 above we know that for every u and s we have As ∈ u iff the set Bu,s

belongs to h(u), where Bu,s is the set of those k that satisfy for all l < m:

• ℬ |= χl(Dβl,1(k), . . . , Dβl,pl
(k)) when s(l) = 1, and

• ℬ |= ¬χl(Dβl,1(k), . . . , Dβl,pl
(k)) when s(l) = 0.

In both cases we substitute Du for Dβl,i
whenever βl,i = α.

Note that this implies that h+(As) ∩ Bu,s ∈ h(u) iff As ∈ u. It follows that if s ∈ 2m then the family 
{B∗

u,s : u ∈ A∗
s} covers h[A∗

s], hence there is a finite subset Fs of A∗
s such that {B∗

u,s : u ∈ Fs} covers h[A∗
s]. 

This means that h+(As) \
⋃︁

u∈Fs
Bu,s is finite.

Shrinking the sets Bu,s if necessary, we may (and do) assume

• for each s, if u, u′ ∈ Fs and u ̸= u′ then Bu,s ∩Bu′,s = ∅,
• Bu,s ⊆ h+(As) for all u ∈ Fs, and
• the sets h+(As) \

⋃︁
u∈Fs

Bu,s remain finite.

Recall that {h+(A) \ Nm : A ∈ 𝒫m} is a partition of N. Together with the three just-listed assumptions 
about the Bu,s, this implies that the whole family 𝒬m =

⋃︁
s∈2m{Bu,s \ Nm : u ∈ Fs} is pairwise disjoint, 

and its union is cofinite; we increase Nm if necessary so that the latter union contains N \ Nm. In short, 
the family 𝒬m is a partition of N \Nm that is a refinement of {h+(A) : A ∈ 𝒫m}.

3.3.2. Building Dα

Using the construction above we obtain a sequence ⟨𝒬m : m ∈ N⟩ of almost-partitions and a sequence 
⟨Nm : m ∈ N⟩ of natural numbers such that {Q \Nm : Q ∈ 𝒬m} is a partition of N \Nm and, without loss 
of generality, Nm < Nm+1 for all m.
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As indicated above we build Dα piece by piece: more precisely, for every m we define Dα on the inter
val [Nm, Nm+1) using the Du with u ∈ ⋃︁{Fs : s ∈ 2m}.

Fix such an m. If k ∈ [Nm, Nm+1) then there is one pair (s, u) with s ∈ 2m and u ∈ Fs such that k ∈ Bu,s. 
Define Dα(k) = Du(k). Then, by the very choice of Bu,s we get, for all l < m:

• ℬ |= χl(Dβl,1(k), . . . , Dβl,pl
(k)) when s(l) = 1, and

• ℬ |= ¬χl(Dβl,1(k), . . . , Dβl,pl
(k)) when s(l) = 0.

By the choice of Nm above we find that for ⟨l, i⟩ ∈ m × 2 we have h+(Al,i) \ Nm =
⋃︁{Bu,s \ Nm : s ∈

2m, u ∈ Fs, s(l) = i}. It follows that

h+(Al,1) ∩ [Nm, Nm+1) =
{︁
k : ℬ |= χl(Dβl,1(k), . . . , Dβl,pl

(k))
}︁ ∩ [Nm, Nm+1)

and

h+(Al,0) ∩ [Nm, Nm+1) =
{︁
k : ℬ |= ¬χl(Dβl,1(k), . . . , Dβl,pl

(k))
}︁ ∩ [Nm, Nm+1)

3.3.3. Verification of (∗)α+1
Let l ∈ N; we show that (∗)α+1 holds for the pair ⟨χl, β̄l⟩. We have

Al,1 = {k : ℬ |= χl(Cβl,1(k), . . . , Cβl,pl
(k))},

Bl,1 = {k : ℬ |= χl(Dβl,1(k), . . . , Dβl,pl
(k))}.

We must show that Bl,1 =∗ h+(Al,1).
But our construction above ensures Bl,1 ∩ [Nm, Nm+1) = h+(Al,1) ∩ [Nm, Nm+1) whenever m > l. This 

clearly suffices, and this completes the proof. □
Remark 9. The proof above is based on Wallman’s representation theorem for distributive lattices, see [17]. 
That paper established a many-valued duality between certain distributive lattices and compact spaces: 
to every distributive lattice there corresponds a compact space, and to every compact space there may 
correspond various lattices, e.g., the full family of closed sets, or any base for its closed sets that forms a 
lattice.

A true duality for compact spaces is due to Gelfand and Kolomogorov in [6]: here the ring of continuous 
functions is the algebraic counterpart of the compact space. One can give a version of our proof based 
on this duality, where the ring C(M∗) of continuous functions on M∗ is represented as the quotient of 
the ring C∗(M) by the ideal of functions that have limit zero at infinity. That is, one can construct an 
automorphism of C(M∗) whose dual is the desired autohomeomorphism of M∗.

In this ring-theoretic approach, one could take the subring R of the ring C(I) generated by the constant 
functions and the functions dB for B ∈ ℬ, where dB(x) = d(x,B). The power RN represents a subring 
of C(M), and the bounded elements of RN are the analogue of ℬN in the preceding proof.

4. An order-reversing autohomeomorphism of H∗

We begin this section with a description of the standard quasiorder on the connected components Iu of 
M∗.

Given a sequence x̄ = ⟨xn : n ∈ N⟩ ∈ IN and u ∈ N∗, define

x̄u = u-limn(n, xn),
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where the limit is taken in βM. Equivalently, this is the unique element of the set 
⋂︁

A∈u clβM{(n, xn) : n ∈
A}. Let Cu ⊆ Iu denote the set of all points of this form:

Cu = {x̄u : x̄ ∈ IN}.

This is a proper subset of Iu (see [7]). Observe that Cu has a natural linear order:

x̄u ≤u ȳu ⇔ {n : xn ≤ yn} ∈ u.

The fact that this is a total order of Cu can be seen as an instance of Łoś’ Theorem, because Cu is really just 
the ultrapower IN/u. Observe that Cu has a least element 0̄u and a greatest element 1̄u, where 0̄ denotes 
the constant sequence ⟨0, 0, 0, . . . ⟩ and 1̄ the constant sequence ⟨1, 1, 1, . . . ⟩. Recall that a continuum C is 
irreducible between x, y ∈ C if there is no proper subcontinuum of C containing both x and y.

Proposition 10. The set Cu \ {0̄u, 1̄u} is dense in Iu, and its subspace topology is the same as the order 
topology induced by ≤u. Furthermore,

(1) Iu is irreducible between 0̄u and 1̄u, and if p ∈ Cu \{0̄u, 1̄u} then Iu \{p} has two connected components, 
one containing 0̄u and the other 1̄u.

(2) If x, y ∈ Cu and x <u y, then every subcontinuum of Iu that contains y and 0̄u also contains x, and 
inversely, every subcontinuum of Iu that contains x and 1̄u also contains y.

See [7, Section 2] for a proof. This proposition implies that {0̄u, 1̄u} is a topologically definable subset of 
Iu. In particular, any autohomeomorphism H : M∗ → M∗ must map {0̄u, 1̄u} to {0̄ρH(u), 1̄ρH(u)}. (Recall 
from page 3 that ρH is defined so that H(Iu) = IρH(u) for all u ∈ N∗, and if H is an autohomeomorphism 
of M∗ then ρH is an autohomeomorphism of N∗.)

Part (2) of this proposition enables us to extend the total order ≤u on Cu to a quasiorder on Iu, also 
denoted ≤u: for any x, y ∈ Iu, define x ≤u y if and only if every subcontinuum of Iu that contains y and 0̄u
also contains x, if and only if every subcontinuum of Iu that contains x and 1̄u also contains y.

Let us note that ≤u is not a partial order. Let us write x ≡u y to mean that x ≤u y and y ≤u x. For 
each x ∈ Iu, the set Lx = {y ∈ Iu : y ≡u x} is called the layer of x in Iu. If x ∈ Cu, then it turns out 
Lx = {x}. For points x ∈ Iu \ Cu there are two possibilities: Lx = {x} or |Lx| = 2𝔠. There are always x
for which the second possibility obtains; under CH there are points outside Cu that have a one-point layer, 
but in the Laver model all points outside Cu have non-trivial layers, see [5]. The layers of Iu can be quite 
large, and topologically complex: all are indecomposable continua for example. The quotient of Iu by ≡u is 
the Dedekind completion of (Cu,≤u), with its usual order topology. So one may think of Iu as something 
like the Dedekind completion of Cu, but where some of the gaps have been filled not with single points, but 
with complicated compacta.

An autohomeomorphism H : M∗ → M∗ is order-preserving if

if x, y ∈ Iu and x ≤u y, then H(x) ≤ρH(u) H(y),

and H is order-reversing if

if x, y ∈ Iu and x ≤u y, then H(y) ≤ρH(u) H(x).

Equivalently, H is order-preserving if H(0̄u) = 0̄ρH(u) and H(1̄u) = 1̄ρH(u) for all u ∈ N∗, and it is order
reversing if H(0̄u) = 1̄ρH(u) and H(1̄u) = 0̄ρH(u) for all u.
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Observe that an autohomeomorphism H of M∗ need be neither order-preserving nor order-reversing: it 
may have H(0̄u) = 0̄ρH(u) for some u and H(0̄u) = 1̄ρH(u) for other u. For example, given A ⊆ N, consider 
the homeomorphism flipA : M → M that flips the intervals in A× I:

flipA(n, x) = 

{︄
(n, 1 − x) if n ∈ A,

(n, x) if n / ∈ A.

The trivial autohomeomorphism of M∗ induced by flipA is order-preserving if A is finite, it is order-reversing 
if A is cofinite, and it is neither order-preserving nor order-reversing if A and N \A are both infinite.

Lemma 11. Assuming CH, if h is an autohomeomorphism of N∗, then there is an order-preserving auto
homeomorphism H of M∗ such that π∗ ◦H = h ◦ π∗. □
This lemma merely re-states Theorem 1, but with the added requirement that H be order-preserving. To 
prove the lemma, simply note that our proof of Theorem 1 in the previous section already produces an 
order-preserving map. (The construction ensures that H maps K =

(︁
N × [0, 1

2 ]
)︁∗ to itself, which means 

that for every u, 0̄u ∈ K cannot map to 1̄ρH(u) / ∈ K, and therefore must map to 0̄ρH(u).)

Observe that H is obtained naturally as a topological quotient of M: just glue the rightmost point of 
each connected component In to the leftmost point of the next component In+1. More precisely, define an 
equivalence relation ∼ on M by setting (n, 1) ∼ (n+ 1, 0) for all n ∈ N (and of course (n, x) ∼ (n, x) for all 
(n, x) ∈ M). The quotient space M/ ∼ is H.

One can obtain H∗ as a quotient of M∗ in a similar fashion. First, let σ denote the autohomeomorphism 
of N∗ induced by the successor map n ↦→ n+1 (which is an almost permutation of N). Explicitly, if u ∈ N∗

then σ(u) is the ultrafilter generated by {A + 1 : A ∈ u}. Next, like with M and H, our quotient mapping 
M∗ → H∗ is defined by gluing the rightmost point of each connected component Iu to the leftmost point of 
the ``next'' component, Iσ(u). More precisely, define an equivalence relation ∼ on M∗ by setting 1̄u ∼ 0̄σ(u)
for all u ∈ N∗ (and of course x ∼ x for all x ∈ M∗). Then the quotient space M∗/ ∼ is H∗ (see [7, 
Theorem 2.4]). Let Q : M∗ → H∗ denote this quotient mapping.

For each u ∈ N∗, our quotient mapping Q : M∗ → H∗ restricts to an injection on Iu. Because Iu is 
compact and Q continuous, this means Q ↾ Iu is an embedding Iu → H∗. In other words, we may (and 
do) think of the Iu as subspaces of H∗. For each u ∈ N∗, let IQu = Q[Iu] denote this copy of Iu in H∗. 
Alternatively,

IQu =
⋂︂
A∈u

clβH
⋃︂

{[n, n + 1] : n ∈ A}.

Via this identification of Iu with IQu , each IQu ⊆ H∗ has a natural quasi-order, the push-forward of the 
quasi-order ≤u on Iu, which we still denote by ≤u in IQu .

Let us note that the IQu are examples of what are called standard subcontinua of H∗. These are special 
connected subsets of H∗ whose structure and interrelationships determine much about the topology of H∗

(see [7, Section 5]). It is not difficult to see that the ordering ≤u described above for IQu matches the usual 
quasi-order defined on a standard subcontinuum of H∗.

Let us say that a homeomorphism H : H∗ → H∗ is order-reversing if there is a permutation ρ of N∗ such 
that

◦ H[IQu ] = IQρ(u) for all u ∈ N∗, and
◦ if x ≤u y in IQu , then H(y) ≤ρ(u) H(x) in IQρ(u).



12 W. Brian et al. / Topology and its Applications 373 (2025) 109539 

In other words, an order-reversing autohomeomorphism of H is one that permutes the IQu while reversing 
their order.

Proposition 12. No trivial autohomeomorphism of H∗ is order-reversing.

Proof. Let H be a trivial autohomeomorphism of H∗. We aim to show H is not order-reversing. Because 
H is trivial, there is a homeomorphism f : C → D, where C and D are co-compact subsets of H, such that 
H = βf ↾H∗. Observe that f must be order-preserving on a tail of H: i.e., if a < b and a, b are sufficiently 
large, then f(a) < f(b).

For each n ∈ N, fix an, bn such that n ≤ an < bn ≤ n + 1. Let ā = ⟨an : n ∈ N⟩ and b̄ = ⟨bn : n ∈ N⟩, 
and let f(ā) = ⟨f(an) : n ∈ N⟩ and f(b̄) = ⟨f(bn) : n ∈ N⟩.

Fix u ∈ N∗ and suppose H[IQu ] = IQv for some v ∈ N∗. (Otherwise H is not order-reversing.) Let 
x = Q(āu) and y = Q(b̄u). Because an < bn for all n, we have āu <u b̄u in Iu, which means x = Q(āu) <u

Q(b̄u) = y in IQu .
Now H(x) = βf(Q(āu)) = Q(f(ā)v), and similarly H(y) = Q(f(b̄)v). But because f is order-preserving 

on a tail, we have f(an) < f(bn) for all sufficiently large n, and therefore f(ā)v ≤v f(b̄)v. Hence H(x) =
Q(f(ā)v) ≤v Q(f(b̄)v) = H(y) in IQv , and this means that H is not order-reversing. □
Corollary 13. It is consistent that no autohomeomorphism of H∗ is order-reversing.

Proof. As we mentioned already in Section 2, a recent result of Vignati in [16] states that OCAT +MA implies 
all autohomeomorphisms of H∗ are trivial. The corollary follows from this and the previous proposition. □
Proof of Theorem 2. As before, let σ denote the trivial autohomeomorphism of N∗ induced by the successor 
function n ↦→ n + 1 on N. By a recent theorem of the first author (the main theorem of [1]), CH implies 
σ and σ−1 are conjugate in the autohomeomorphism group of N∗. In other words, CH implies there is an 
autohomeomorphism f of N∗ such that f ◦σ = σ−1 ◦ f . Fix some such f and, using CH again and applying 
Lemma 11, fix an order-preserving autohomeomorphism F of M∗ such that π∗ ◦ F = f ◦ π∗.

Recall the homeomorphism flipN : M → M is defined by

flipN(n, x) = (n, 1 − x)

for all (n, x) ∈ M. Let flip∗N = β flipN ↾ M∗ denote the trivial autohomeomorphism of M∗ induced by flipN . 
Clearly flip∗N is order-reversing on each Iu, and in particular,

flip∗N(1̄u) = 0̄u and flip∗N(0̄u) = 1̄u

for every u ∈ N∗.
Because flip∗N is an order-reversing autohomeomorphism of M∗ and F is an order-preserving autohome

omorphism of M∗, their composition

H = F ◦ flip∗N

is an order-reversing autohomeomorphism of M∗. In particular, observe that

H(1̄u) = F ◦ flip∗N(1̄u) = F (0̄u) = 0̄f(u)

and

H(0̄u) = F ◦ flip∗N(0̄u) = F (1̄u) = 1̄f(u)
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for every u ∈ N∗.
Recall the equivalence relation ∼ on M∗ described earlier in this section, whose non-singleton equivalence 

classes are the sets of the form {1̄u, 0̄σ(u)} for u ∈ N∗. By our choice of f , for any given u ∈ N∗ we have

H(1̄u) = 0̄f(u) and H(0̄σ(u)) = 1̄f(σ(u)) = 1̄σ−1(f(u)).

In particular, H maps the ∼-equivalence class {1̄u, 0̄σ(u)} to the ∼-equivalence class {1̄σ−1(f(u)), 0̄f(u)} (i.e., 
the class {1̄v, 0̄σ(v)} where v = σ−1(f(u))). In other words, H respects the equivalence classes of the relation 
∼. Consequently,

[x]∼ ↦→ [H(x)]∼

is a well-defined mapping M∗/ ∼ → M∗/ ∼. Let h denote this mapping. Recalling that Q denotes the 
quotient mapping from M∗ to M∗/ ∼, we have Q ◦H = h ◦Q.

We claim h is an order-reversing autohomeomorphism of H∗ ∼ = M∗/ ∼. The fact that h is an autohome
omorphism follows from the fact that H is, and that h ◦Q = Q ◦H. Next, recall that for every u ∈ N∗, the 
quotient mapping Q restricts to a homeomorphism Iu → IQu . Because the sets of the form Iu are the con
nected components of M∗, the homeomorphism H maps each Iu homeomorphically to IρH(u) = If(u). Thus, 
for each u ∈ N∗, the map h = Q ◦H ◦Q−1 is a composition of homeomorphisms IQu → Iu → If(u) → IQf(u). 
Thus, setting ρ = f , h satisfies the first clause in the definition of an order-reversing autohomeomorphism 
of H∗.

Finally, we wish to show that if x, y ∈ IQu and x ≤u y then h(y) ≤f(u) h(x). Fix u ∈ N∗ and x, y ∈ IQu
with x ≤u y. As in the previous paragraph, h = Q ◦ H ◦ Q−1 is a composition of homeomorphisms 
IQu → Iu → If(u) → IQf(u). Both Q and Q−1 preserve the order of x and y, while H reverses it, so 
h(y) ≤f(u) h(x). □
Remark 14. Peter had a knack of coming up with colorful descriptions of various constructions. We thought 
it apt to give a Peter-esque description of the order-reversing homeomorphism in this fashion.

One can think of M as a sequence of domino tiles. One obtains the map Q : M → H, described above by 
tipping all tiles over to the right so that for every n the top of In touches the bottom of In+1; after some 
welding the map Q is done.

If one tips all tiles over to the left and again does some welding to join the bottom of In and the top 
of In+1 one obtains another map from M onto H: the composition Q ◦ flip.

Both maps yields maps from M∗ onto H∗ that may be interpreted as tipping over the domino tiles Iu, 
either all to the right, or all to the left, and doing the analogous welding.

Our results show that under CH there is an autohomeomorphism of H∗ that rearranges the components Iu
and flips them all over.

Clearly there is no autohomeomorphism of H itself that does this for the tiles In, hence this autohome
omorphism is non-trivial.
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