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Abstract 

Optimal solutions to spacecraft routing problems are essential for space logistics activity such as Active Debris Removal (ADR), 
which addresses the growing threat of space debris. This research investigates the effectiveness of Neural Combinatorial Optimization 
(NCO) methods for the autonomous planning of low-thrust, multi-target ADR missions, an instance of the Space Traveling Salesman 
Problem (STSP). An autoregressive, attention-based routing policy was trained to solve 10-transfer ADR routing problems using REIN-
FORCE, Advantage Actor-Critic, and Proximal Policy Optimization. A hyperparameter sensitivity analysis identified embedding dimen-
sion and the number of encoder layers as the critical factors influencing model performance, while an ablation study found the attention-
based encoder to be the most critical architectural component of the policy. The trained policy was evaluated on 10-, 30-, and 50-transfer 
scenarios based on the Iridium 33 debris cloud, comparing its performance to a baseline provided by a novel ADR STSP routing heuris-
tic (Dynamic RAAN Walk, DRW) and near-optimal benchmarks obtained via Heuristic Combinatorial Optimization (HCO). In mis-
sions with 10 transfers, the NCO policy achieved a mean optimality gap of 32%, outperforming DRW. However, performance degraded
significantly in scenarios with 30 and 50 transfers, suggesting limited generalization to larger problems. A hyperparameter search further
revealed that the performance of the NCO model considered in this work improves asymptotically with its size. Exposure to greater num-
bers of training scenarios did not yield significant performance gains. This work demonstrates that NCO methods can be effective for the
autonomous planning of ADR missions with a limited number of targets, but face scalability and generalization challenges in more com-
plex scenarios.
© 2025 The Author(s). Published by Elsevier B.V. on behalf of COSPAR. This is an open access article under the CC BY license (http:// 
creativecommons.org/licenses/by/4.0/). 

Keywords: Active debris removal; Trajectory optimization; Reinforcement learning; Graph attention networks; Debris mitigation
1. Introduction 

The design of multi-target rendezvous manoeuvres, 
which see a spacecraft approaching a sequence of objects 
in orbit as efficiently (by some metric) as possible, has seen
a considerable surge in interest in recent years for the pur-
poses of Active Debris Removal (ADR1 ) missions (Izzo 
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1 See nomenclature at end of paper.
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This is an open access article under the CC BY license (http://creativecommons.
et al., 2015; Ricciardi and Vasile, 2019; Federici et al.,
2021; Medioni et al., 2023; Barea et al., 2020;
Narayanaswamy et al., 2023) to tackle the space debris
problem (Mark and Kamath, 2019; Bonnal et al., 2013), 
as well as On-Orbit Servicing (OOS) missions (Sellmaier 
et al., 2010; Jonchay et al., 2022; Federici et al., 2021) 
and advanced space logistics concepts (Sorenson a nd
Pinkley, 2023). 

The problem of designing such trajectories, known as 
the Space Traveling Salesman Problem (STSP), is an exam-
ple of a Mixed Integer Non-Linear Programming 
(MINLP) problem with factorial complexity over the
SPAR. 
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number of targets. MINLP problems are notoriously 
difficult to approach. An optimal solution to the STSP 
consists of the optimal sequence in which to visit a set of 
targets and the optimal transfer trajectory between each 
target in the optimal sequence, where optimality is 
defined by some metric. The STSP is conceptually related 
to the classical Traveling Salesman Problem (TSP), with
the added complexities inherent to the space environment:
notably, a 6-dimensional non-Euclidean state space,
mass dynamics, spacecraft propulsion constraints, and
the progressive drift of the states of orbiting bodies due
to secular perturbations, chiefly for Earth-orbiting 
spacecr aft.

Formally, the STSP is the problem of finding a mini-
mum weight path (if the spacecraft must end the tour back
at its initial state, a Hamiltonian path) in a complete
weighted graph where is the set 
of graph vertexes (targets, the state of which drifts over
time) and is a map that associates 
an edge weight (a transfer cost) to each ordered vertex pair
(Izzo et al., 2015), and may be dependent on the sequence
in which the targets are visited. One such case is when pay-
load mass is a large percentage of the spacecraft’s wet mass, 
and thus deployment sequence has a non-negligible impact
on fuel consumption. A standard approach to solve the
STSP is decomposition (Barea et al., 2020; Fede rici et al.,
2021; Medioni et al., 2023; Narayanaswamy et al., 2023), 
where the MINLP problem is divided into a higher-level 
Combinatorial Optimization (CO) problem and a lower-
level trajectory optimization problem. A transfer cost esti-
mator is then used to calculate the cumulative cost of tours
in the CO problem. Transfer cost estimators may be
database-dependent (Petropoulos et al., 2017; Lu et al.,
2023), database-independent (analytical), or learning-
based (Li et al., 2020). 

State-of-the-art CO methods fall in two camps: exact 
methods and Heuristic Combinatorial Optimization 
(HCO) methods, which are less costly and can produce
near-optimal results, but cannot offer optimality guaran-
tees whatsoever (Izzo et al., 2015; François et al., 2019). 
Exact methods based on tree searches (Russel and 
Norvig, 2020; Cormen et al., 2009) are the norm for highly 
complex and large STSP variants; all winning submissions 
to the Global Trajectory Optimization Competitions have
used tree search approaches (Izzo et al., 2015;
Petropoulos et al., 2017; Hallmann et al., 2017). However, 
HCO methods are an attractive option to solve smal ler
STSP instances (up to hundreds of targets, see Izzo et al.
(2015)) due to their capacity to achieve near-optimal resul ts
with lower computational cost (Izzo et al., 2015), and are 
widely applied in the literature to tackle multi-rendezvous
mission design (Izzo et al., 2015; Naray anaswamy et al.,
2023; Medioni et al., 2023; Federici et al., 2021; Ricciardi
and Vasile, 2019). HCO methods have also been success-
fully applied to complex STSP instances where the cost
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of exact approaches is unfeasible (Petropoulos et al.,
2017). High-quality approximate solutions are highly desir-
able for the HCO process. As the complexity of the gener-
alized Vehicle Routi ng Problem (VRP) increases, high-
quality approximate solutions become more difficult to
obtain (Berto et al., 2024b). This bodes ill for the field of 
space logistics, as the complexity of space VRPs is bound 
to increase over time: this will happen as LEO and MEO 
become more congested, the in-space manufacturing and
servicing industries rise, and space logistics operations
become more complex (Locke et al., 2024). 

Machine Learning (ML) approaches for spacecraft tra-
jectory design have seen a surge of interest in recent years
(Izzo et al., 2019a), with strong results achieved both for
spacecraft guidance (Izzo et al., 2019b; Yang et al., 2024) 
and transfer cost estimation (Li et al., 2020). Neural Com-
binatorial Optimization (NCO) consists in the training and 
use of Deep Neural Networks (DNNs) to automate the 
problem solving process, mostly under the Reinforcement 
Learning (RL) paradigm as supervised learning is often 
unfeasible for large or theoretically hard problems. NCO 
offers the attractive prospect of alleviating the scaling issues
of exact approaches while eliminating the need for hand-
crafted heuristics, which often require significant domain-
specific adjustments (Berto et al., 2024b). NCO has shown 
promising performance on various CO problems (Berto 
et al., 2024b; Berto et al., 2024c), including multi-agent 
VRPs (Berto et al., 2024a) and spacecraft sensor allocati on
problems (Jacquet et al., 2024), especially when coupled 
with advanced policy search procedures (François et al.,
2019). It becomes pressing to ask whether learning-based 
methods from the field of CO could be applied in the space-
craft routing domain.

The present work aims to assess the applicability and 
effectiveness of NCO approaches for the design of multi-
target rendezvous trajectories. To do so, an NCO policy 
is designed, trained, and refined to solve realistic ADR 
STSP scenarios based on the Iridium 33 space debris cloud.
The performance of the NCO policy is then benchmarked
against near-optimal solutions obtained using HCO, and
compared to that of a highly performant hand-crafted
STSP routing heuristic.

The paper is structured as follows. Section 2 discusses 
orbital mechanics, trajectory design, the mathematical for-
mulation of the ADR STSP, and its solution using HCO.
Section 3 contains a historical overview of the space debris 
problem and introduces a novel approach for the statistical 
modelling of space debris clou ds, which is key for the gen-
eration of realistic ADR STSP scenarios for RL. Lastly,
Section 4 discusses the design, training and refinement of 
an NCO policy capable of solving the Iridium 33 ADR 
STSP, and an analysis of its performance and generaliza-
tion capabilities. Section 5 concludes the paper with a sum-
mary of key findings and recommendations for future
research.
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2. Background 

This section will introduce the necessary background for 
the discussion and assessment of NCO method s for space
VRPs. Orbital dynamics are discussed in Section 2.1, fol-
lowed by Low-Thrust Trajectory Opti mization in Sec-
tion 2.3. The generalized formulation of the STSP, 
including the definition of the cost function, is given in Sec-
tion 2.4. A novel routing heuristic for the dynamic STSP is
introduced in Section 2.5, which will be used as a baseline 
against which to compare NCO policy performance.
Lastly, Section 2.6 discusses an HCO solver used to obtain 
near-opt imal solutions for the STSP.

2.1. Dynamics 

The state of the spacecraft is propagated using the Mod-
ified Equinoctial Elements (MEE) described by Hintz 
(2008) including the retrograde factor I, which are nonsin-
gular for all eccentricities and inclinations. The MEEs are
related to the classical Keplerian elements (Hintz, 2008) 
by Eq. (1): 

p a 1 e2 h tan i 2 sin X 
f e cos x X k tan i 2 cos X 
g e sin x X L h IX x

1

The Gauss Variational Equations (GVE) for MEE (Hintz, 
2008) are used to model the time evolution of the spa ce-
craft’s state. The GVE follow in Eq. (2), 
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where and w are defined in Eq. (3), an d and 
are perturbing accelerations in the radial, tangential, and

s2 v Dr Dt Dn 
Fig. 1. Illustration of the MEE an
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normal directions of the spacecraft’s LVLH frame
depicted in Fig. 1b. 

s2 1 h2 k2 

v h sin L k cos L 
w 1 f cos L g sin L

3

The unit thrust vector in the ECI frame, is related to 
the unit thrust vector in the LVLH frame by Eq. (4). 
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The thrust acceleration applied by the sp acecraft in the
RWS frame, is defined in Eq. (5): 

aT 
T 
m 
u 5 

where is the direction of application of thrust. The space-
craft’s mass is propagated assuming constant specific
impulse through the burn. The change in mass over
time is defined by Eq. (6): 

dm 
dt 

T 
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where T is the applied thrust and is the equiva-
lent exit veloci ty of the engine.

2.2. Active debris removal spacecraft characteristics 

An electrical propulsion ADR spacecraft concept is con-
sidered in this work; specifications follow in Table 1. The 
propulsion system is based on the specifications of existing 
Gridded Ion Thruster (GIT) designs for small spacecraft
(O’Reilly et al., 2021; Conversano and Wirz, 2013). Space-
craft structural, fuel and payload mass are indicative of a 
spacecraft fit for this type of mission; payload mass is sized
to 10–30 active de-orbiting payloads (Shan et al., 2016;
Forshaw et al., 2016).
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A. López Rivera, M. Naeije Advances in Space Research 75 (2025) 7306–7326

Table 1 
Debris chaser spacecraft specifications.

Wet mass Fuel mass Payload mass Max Min Delta V budget Max thrust Max power 

1200kg 450kg 500kg 3e–4ms−2 1e–5ms−2 3000s 6,00kms−1 0,36N 7.55kW 

aT aT Isp
2.3. Low-thrust trajectory optimization 

A Lyapunov Control (LC) guidance law is used in this 
work to generate low-thrust trajectories. LC methods are
direct Low-Thrust Trajectory Optimization (LTTO) meth-
ods (Betts, 1998; Morante et al., 2021) that make use of 
predefined control laws (Morante et al., 2021; Falck
et al., 2014), which are derived from Lyapunov functions. 
LC methods are notable for being both fast and able to
generate reasonable estimates of optimal planetocentric
trajectories (Morante et al., 2021). 

2.3.1. Q-law 

The Q-law, originally introduced by Petropoulos
(Petropoulos, 2004), is a LC guidance law for low-thrust 
trajectory optimization based on the ‘‘proximity quotient” 
Q, a candidate Lyapunov function that approximates the
best quadratic time-to-go (Petropoulos, 2004). MEE for-
mulations of the Q-Law were later developed by Petropou-
los (Petropoulos, 2005) and Varga (Varga and Perez, 2016). 
The proximity quotient Q is defined in Eq. (7): 

Q T W x 1 W pP S W T 

xx 

2 

a f g h k 7

where is the maximum rate of change of each orbital
element (Petropoulos, 2004), the periapsis penalty P is 
defined in Eq. (8) and the element scaling factors are 
defined in Eq. (9). 

P exp k 1 rp 
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The feedback control law is derived such that is negative 
semi-definite, and follows in Eq. (10). This follows from 
applying the chain rule and observing that 

where stands for the state-space input matrix 
derived from the GVEs in MEE (Eq. (2)). 

u W Q 10 

xx 

S 

Q 

Q Q 
Wu, W 
2.3.2. Rendezvous Q-law 

The Rendezvous Q-law (RQ-law), proposed by
Narayanaswamy and Damaren (2023), extends the Q-law 
to enable dynamic six-element targeting by means of a
semi-major axis augmentation scheme (Eq. (11)). The 
scheme becomes active after reachi ng 5-element conver-
7309
gence, splitting the manoeuvre in two phases: orbit acquisi-
tion, in which the standard Q-Law is used to achieve 5-
element convergence, and pha sing, in which the semi-
major axis augmentation scheme is activated to achieve
the desired true longitude.

T aug 
aT 

2W L 
p aT 

rp min 

1 f 2 
C g2 

C 

tan 1 W sclDL p p a 

T f g h k
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2.3.3. Perturbations 

The most relevant perturbation for the design of the 
ADR trajectories considered in this work are gravity field 
distorti ons, in particular the Earth oblateness gravity field
distortion parametrized by the zonal coefficient (Varga 
and Perez, 2016; Petropoulos et al., 2017). Drag is 
neglected as the Iridium 33 cloud is located at an altitude 
of approximately 800 km, but should be considered for
ADR missions targeting clouds at lower altitudes
(Wakker, 2015). 

Minimizing trajectory generation time is highly desir-
able, as a very large number of trajectories must be gener-
ated to train the NCO policy and assess the viabi lity of
NCO for space VRPs. The dynamicity of orbiting debris
however, chiefly driven by the secular impact of the per-
turbation, is critical to the complexity of the STSP , and
cannot be neglected (Izzo et al., 2015). The secular impact
of on the Right Ascension of the Ascending Node 
(RAAN) and Argument Of Perigee (AOP) of orbiting deb-
ris is described by Eq. (12) (Wakker, 2015), wher e

is the mean motion of the orbiting body.

dX 
dt 

3 
2
J 2 
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dx 
dt 
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4
J 2 
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p n 5 cos  2 i 1

12

To balance computational efficiency and accuracy, this study 
adopts a hybrid scheme that accounts for for longer time-
scales, and omits it for shorter timescales. Specifically, for 
each pair of consecutive debris targets, the transfer time is 
computed using an unperturbed (central-gravity) model. 
Upon arrival, t he orbits of all debris objects are propagated
under for the estimated transfer duration. This approach 
is justified by the small relative RAAN precession between 
consecutive debris over a transfer arc (order of days), mean-
ing the unperturbed Q-Law transfer can be considered rep-
resentative even in the presence of oblateness effects. 
Similar decoupled methods h ave previously been used to
tackle large combinatorial trajectory design problems
(Petropoulos et al., 2017; Hallmann et al., 2017).
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Table 2 
Q-Law and RQ-Law parameter values.

100.0 3.0 4.0 2.0 0.01 1.0 0.0594 3.6230 

Table 3 
Element weights and convergence tolerances.

Element Tolerance Relaxed Tolerance 

a 10 1  1  m 
e 1 deg deg 
i 1 deg deg 

1 deg deg 
1 deg deg 
— deg 1deg 

W p W l W scl 

W W phasing

102 103 

1  10 3 1 10 2 

1  10 3 1 10 2 

X 1  10 3 1 10 2 

x 1  10 3 1 10 2 

h 1  10 1 
2.3.4. Simulation 

The Tudat Space2 astrodynamics library (Dirkx et al.,
2022) is used to implement the simulator. Integration is 
performed using an Adams–Bashforth-Moulton integrator 
of orders 6–8 and variable step size (using global and rela-

tive tolerance of . Table 2 lists the values of the 
Q-Law and RQ-Law parameters used. Table 3 lists the ele-
ment weights and conv ergence tolerances used.

Fig. 2 shows the average transfer in the RAAN walk (Izzo 
et al., 2015) across the Iridium 33 cloud. The transfer consists 
of raise of SMA of 84 km, a change in eccentricity of 4.1e–3, 
a change in inclination of 1.1e–3°, a change in RAAN of 
2.79e–2°, and changes in AOP and True Anomaly (TA) of 
approximate 1.4°. The total manoeuvre time is of 55 h, of 
which approximately 51 are spent in the or bit acquisition
leg and 4 in the phasing leg. The brevity of the phasing leg
is characteristic of RQ-Law transfers, and will be an impor-
tant consideration for transfer time estimation, which will be
discussed next. Fig. 3 shows extreme transfers scenarios in 
the Iridium 33 and Fengyun 1C debris clouds, with the space-
craft traveling from the center-of-RCS of the cloud to a fic-
tional target located at the center-of-RCS of the cloud plus
3 times the standard deviation of each element in the cloud.

2.3.5. Transfer cost estimation 

The capacity to quickly estimate the durati on and cost
(in or fuel mass) of low-thrust transfers without the need 
to propagate is highly attractive for NCO, as the training 
process requires estimating the cost of many (millions of) 
transfers. Fast, approximate transfer cost estimat ion meth-
ods are commonly used to solve the higher level combina-
torial problem in STSPs, especially for complex problems
(Petropoulos et al., 2017; Hallmann et al., 2017). Transfer 
cost estimation approaches (both impulsive and low-
thrust) may be either analytical (Hallmann et al., 2017;
Hon, 2022; Medioni et al., 2023), which rely on simplifying 
assumptions to obtain closed-form expressions of transfer

3 2 10 9 )

DV 
2 https://docs.tudat.space/ 
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cost, or numerical, which rely on the pre-computation of 
many transfers, which are later used to infer transfer co sts
in the optimization process: numerical approaches may
either database-dependent (Petropoulos et al., 2017), often 
relying on transfer window constraints, or based on multi-
variate regression. DL has been particularly successful for
the latter (Li et al., 2020). 

A linear model based on the best time-to-go (Eq. 
(13)) is used to estimate the duration of RQ-Law trans fers.
The model is defined in Eq. (14). follows from the defi-
nition of the proximity quotient Q, which approximates the
best quadratic time-to-go (Petropoulos, 20 04). 

T Q 13 

The model in Eq. (14) is obtained by linear regression, aiming 
to predict measured TOFs as a function of the b est time-to-
go. The regression was performed considering all RAAN
walk (Izzo et al., 2015) transfers through the Iridium 33, Cos-
mos 2251 and Fengyun 1-C debris clouds. Models for both 
Q-Law and RQ-Law transfers were constructed. The clouds 
are considered static through the tour to make the target 
dataset independent of the transfer strategy: static RAAN 
walk transfers are considered representative of possible trans-
fers in LEO, and so valid for analysis. No instantaneous per-
turbations nor coasting phases are considered in these
transfers, as discussed in Eq. (2.3.3). Fig. 4 shows predicted 
and observed RQ-Law TOFs and summarizes the p erfor-
mance of the linear model. Table 4 reports the results of 
the linear regression analysis for both the Q-Law and RQ-
Law. A strong p ositive correlation between the best time-
to-go and the measured TOF exists for both Q -Law
and RQ-Law transfers (Pearson , indicating a 
strong linear relationship (Cohen, 1988). A linear model 
was fit for each strategy. Outlier TOFs, outliers outside of
the range, were excluded. In both cases the linear model 
explains over 99% of the variance in observations

, demonstrating an excellent fit (Draper and 
Smith, 1998); the mean estimation error is close to 0 as well. 
The Kolmogorov–Smirnov (KS) test (Guthrie and Heck ert,
2016) was used to verify the similarity of the distributions 
of measured TOFs, and TOFs predicted by the models. In 
both cases the KS p-values indicate that there is no statisti-
cally significant difference between the estimated and
observed TOF distributions.

TOF max 1 4309T C T C 9 72 hours 14

The required fuel m ass m is calculated by multiplying the 
estimated TOF by the constant fuel mass flow (see Eq. 
(6)). cost is estimated using Eq. (15), which assumes refu-
elling takes place when the spacecraft’s fuel mass is 
spent. The same approach is used to calculate the cumulative

cost of complete tours. Critically, this model is suitable 
for the aforementioned debris clouds, using the specified 
RQ-Law parameters and tolerances. Application to other 
cases should follow careful analysis and verification.
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Fig. 2. Average transfer in the Iridium 33 debris cloud. (a) Keplerian element history through the transfer. (b) Control history; and are the in-plane 
and out-of-plane (ecliptic plane) thrust angles with respect to (Eq. (4); notation from Narayanaswamy and Damaren (2023)). 

Fig. 3. Extreme 6-element rendezvous transfers in the Iridium 33 and Fengyun 1C debris clouds using the RQ-Law. Origin: cloud centroid. Target: cloud
centroid plus 3 times the standard deviation of each element of the cloud. (a) Iridium 33. (b) Fengyun 1C.

Fig. 4. Estimation of RQ-Law TOFs using the Q proximity quotient. Histogram bin width (right side): 6 h.

Table 4 
Goodness-of-fit analysis of the TOF models. estimation error. 

Pearson r Slope Intercept R-squared KS statistic KS p-value [min] [min] 

Q-law 0.9972 1.4329 −15.9 0.995 2.55e-02 0.28 1.5 45.0 
RQ-law 0.9970 1.4309 −9.72 0.994 2.31e-02 0.39 1.5 46.5

7311
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DV 
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DV tank veq log m0 
m0 Mf 

n mf req

mf req
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15
In this study represents the

required for an RQ-Law transfer from to

defined in Eq. (15), and represents

the TOF estimator defined in Eq. (14). f represents the sec-
ular perturbation defined in Eq. (12). The initial state of

the spacecraft is fixed to the centroid (weighed by

RCS) of the Iridium 33 cloud. The final state is con-

2.4. Problem formulation and cost function 

The STSP seeks an optimal sequence of target visits 
over a set of targets E, minimizing the cumulative cost 
function,

min 
p 

Cp 

n 1 

k 0 
c  Ep k 

k Ep k 1 
k H 

s t p 0 
h if provided 
free otherwise 

p n 

h if Hamiltonian cycle 
d if decommissioning 
free otherwise 

p k n 1 
k 1 T h 

p k T d k 0 1 n 

Ek 1 U Ek Dtk k 0 1 n 1

Dtk TOF Ep k
k Ep k 1

k H k 0 1 n 1

16

where represents the required for a 

transfer from the departure state to the targe t state

given spacecraft parameters which include per-
formance specifications and guidance policy parameters.
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strained to a circular decommissioning orbit at 250 km alti-

A novel spacecraft routing heuristic is proposed to
obtain high-quality approximate solutions for the dynamic
STSP, which will be referred to as Dynamic RAAN Walk
(DRW). The DRW is defined as a greedy search over a
nearest-RAAN target ranking policy, which simplifies to
the classic RAAN walk in the static case. Fig. 6 shows
the performance of the DRW heuristic for the full Iridium
33 ADR STSP against two exact tree search approaches:
Beam Search (BS, refer to Freitag and Al-Onaizan
(2017)) and Nearest-Neighbor (NN) search (Lowerre,

tude (all other orbital parameters free). 

2.5. Policy performance baseline: the Dynamic RAAN walk

spacecraft routing heuristic

To contextualize NCO policy performance for the 
dynamic STSP in LEO ADR missions, we introduce the 
Dynamic RAAN Walk as a high-performing baseline that
clarifies the relative gains of learned policies. Izzo et al.
(2015) showed that the optimal solution of the static STSP 
closely resembles a monotonically increasing RAAN walk. 
This result is intuitive as transfer cost is primarily driven by 
plane change cost, and plane change cost (Eq. 17) is pri-
marily driven by the RAAN gap that must be closed
(Izzo et al., 2015; Medioni et al., 2023) for orbits with rel-
atively high inclination: this includes the orbits of most
Earth-orbiting spacecraft (Boley and Byers, 2021) and all 
the debris clouds under consideration (Fig. 7). 

DV c 2V 0 sin c 
2

17a

c arccos cos i1 cos i2 sin i1 sin i2 cosX1 cosX2 sin X1 sinX2

17b

The RAAN walk holds only for static orbiting targets 
however, and ADR missions in LEO are an exampl e of a
highly dynamic perturbed STSP due to the RAAN drift
induced by the perturbation (Izzo et al., 2015). Fig. 5 
shows the impact of RAAN drift on the cost of the RAAN 
walk through the Iridium 33 debris cloud: the increase in 
cost is dramatic. Furthermore, the optimal static and
dynamic tours are not related, with their Spearman rank
correlation quickly decreasing over time (Izzo et al.,
2015), as RAAN drift rates are independe nt of the original
ranking (Eq. (12)).

J 2 

move_f0025
move_f0030


Fig. 5. Impact of RAAN drift on the cost of the RAAN walk through the Iridium 33 debris cloud.

Fig. 6. Cumulative cost of tours traversing the Iridium 33 debris cloud as
a function of transfer index, under RAAN drift. BS beam width: 20.

Table 5
Time required to generate an approximate solution for the Iridium 33
STSP of 167 transfers.

RAAN walk DRW NN BS

Runtime 0,2 ms 80,9 ms 2,1 s 79,3 s

3 https://esa.github.io/pygmo2/
4 https://pymoo.org/
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(w 20)
1976). The computational cost of each method is reported
in Table 5. As can be seen in Fig. 6, the DRW yields com-
parable performance to that of the searches at a fraction of

To benchmark NCO policies for the STSP, we employ a
modular solver based on population-based HCO, which
yields near-optimal solutions for comparative assessment.

the computational cost. 

2.6. Policy performance benchmark: near-optimal routing 

with heuristic combinat orial optimization
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The choice for HCO is motivated by the widespread use
of HCO methods to solve STSPs in literature (Izzo et al.,
2015; Narayanaswamy et al., 2023; Medioni et al., 2023;
Federici et al., 2021; Ricciardi and Vasile, 2019) and the
availability of highly performant, open-source heuristic
global optimization libraries such as pygmo3 (Biscani
and Izzo, 2020) and pymoo4 (Blank and Deb, 2020), which
greatly eases the benchmarking and selection of diverse
HCO algorithms for specific problem variants. The combi-
natorial optimization component is implemented using
pygmo, a parallel multi-objective global optimization
library based on the Archipelago meta-heuristic (Biscani
and Izzo, 2020; Coello et al., 2007).

Training NCO policies with RL requires a large amount
of realistic and diverse STSP scenarios. This section intro-

An archipelago comprising 16 islands, each populated 
by 80 individuals (decision vectors, representing permuta-
tions of length n, where n is the number of targets to visi t)
is used to perform the optimization. Initial populations are
sampled using a combination of uniform (Mitchell et al.,
2022; Eberl, 2016; Knuth, 1997) and distance-based permu-
tation sampling using the Mallows model (Mallows, 1957; 
Diaconis, 1988) under the Hamming distance (Waggener 
and Waggener, 1995; Irurozki, 2014): the latter is done to 
leverage approximate solutions obtained using the DRW
heuristic. Decision vectors are encoded into using 
random-keys encoding (Bean, 1994), and the pygmo Sim-
ple Genetic Algorithm is used to evolve the populations 
over 5 evolutionary periods of 500 generations. Empirical 
results show this to be a reliable approach to obtain
near-optimal solutions for the 10-, 30- and 50-transfer
ADR mission scenarios considered in this work.

3. Statistical modelling of the active debris removal 

environment

Rn 

move_t0025
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duces a novel procedure to create statistical models of
space debris clouds. A brief historical overview of the space
debris crisis is presented in Section 3.1 along with the case
study considered in this work: an ADR mission targeting
the Iridium 33 debris cloud. Section 3.2 then discusses

Fig. 8 displays the altitude and RAAN distributions of
the four clouds together as a function of inclination. This
offers a mission designer’s view of the problem: a map
relating the most important orbital parameters for mission
design in LEO to the likelihood of collisions with debris
from the Iridium 33, Cosmos 2252, Fengyun 1C and Cos-
mos 1408 clouds. Observe the large range of RAAN values

the implementation of the STSP environment for NCO. 

3.1. Space debris and space debris remediation

The present work focuses on the design of multi-
rendezvous trajectories for ADR missions. Since the first
recorded catastrophic fragmentation event in 1961
(Klinkrad, 2006), more than 200 such events have con-
tributed to a population of over 34,000 trackable fragments
larger than 10 cm in Low Earth Orbit (LEO) (ESOC, 
2024). Awareness of the problem has grown rapidly in
recent years (Hall, 2014; Locke et al., 2024). The removal 
of large uncompliant objects from orbit has been the pri-
mary focus of ADR mission design up to the present day
(Bonnal et al., 2013, 2004, 2021, 2014, 2020, 2017, 2021,
2016). 

The 2024 NASA OTPS Phase 2 report (Locke et al.,
2024) finds that de-orbiting 1–10 cm debris to prevent col-
lisions may yield substantial economic returns by reducing 
collision risks and associated costs for satellite operators. 
These conditions herald opportunity for efficient multi-
rendezvous ADR missions and constellations to mitigate
the threat from existing debris. This study aims to investi-
gate the viability of NCO methods for the design of such
missions.

The case study considered in this work is an ADR mis-
sion targeting the Iridium 33 debris cloud (Kelso, 2009 ;
NRC, 2011). Iridium 33 is one of the most widely studied 
clouds in LEO, other notable clouds being the Cosmos
2242 (Kelso, 2009), Fengyun 1C (Johnson et al., 2008) 
and Cosmos 1408 (Pardini and Anselmo, 2023) clouds. 
The Gabbard diagram (Johnson et al., 1984) of the four 
clouds can be seen in Fig. 7, including Radar Cross-
Section (RCS) and expected decay time data. A tabulated
summary of the four clouds follows in Table 6. The Fen-
gyun 1C cloud will outlast all other clouds: up to 1000 
pieces of debris will remain in orbit by the year 2100
according to ESA estimates. Up-to-date satellite tracking
data is obtained from CelesTrak5 , and decay time data is 
obtained from the ESA Database and Information System
Characterising Objects in Space (DISCOS) database6 . 
5 https://celestrak.org
6 https://discosweb.esoc.esa.int
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in the three main clouds —Iridium 33, Cosmos 2252 and
Fengyun 1C—. As the cost of redezvous is primarily driven
by plane change cost, and this by RAAN change for high
inclination orbits (Izzo et al., 2015), ADR missions are

The RL4CO8 NCO library is used to implement and
train the STSP routing policy. RL4CO is a benchmark
library for NCO based on PyTorch (Paszke et al., 2019)
with standardized, modular, and highly performant imple-

bound to require extreme amounts of

3.2. Environment 

The state of the targets is describe d using Keplerian ele-
ments (Izzo et al., 2015). The NCO policy is trained in real-
istic ADR scenarios based on the Iridium 33 debris cloud. 
These scenarios are generated using a statistical model of 
the real debris cloud. The model is obtained by fitting the 
observed state of the cloud (each Keplerian element, possi-
bly other parameters) using the parametric statistical mod-
els that best match each observation. All 19 parametric
statistical models available in PyTorch7 (Paszke et al.,
2019) are considered. Goodness of fit is assessed using 
the Kolmogorov–Smirnov (KS) test (Guthrie and 
Heckert, 2016). The result is a composite model of the 
translational state and other properties of a debris cloud, 
comprising 6 or more parametric mod els: one for each
Keplerian element, and more for other measurements such
as radar-cross section if relevant. Fig. 9 shows the model 
generated for the Iridium 33 cloud. In this work the envi-
ronment is limited to the translational state of the cloud.

The range of values which may be sampled by each 
model is limited to the range of observed values. This is
achieved with inverse transform sampling (von Neuma nn,
1951) when the Inverse Cumulative Distribution Function 
(ICDF) of the parametric model is defined and imple-
mented in PyTorch, and with vectorized rejection sampling
(Hastings, 1970) if the ICDF is not available.

The environment state E is propagated through the 
sequential decision-making process as per Eq. (16). 

4. Neural combinatorial optimization for spacecraft routing 

NCO uses DNNs to automate the process of determin-
ing heuristics to solve CO problems. RL is the dominant 
paradigm for NCO, as supervised learning is often unfeasi-
ble for large or theoretically hard problems (François et al.,
2019). NCO offers the attractive prospect of alleviating the 
scaling issues of exact approaches, while removing the need
for hand-crafted heuristics (Berto et al., 2024b), and has 
shown promising performance on various CO problems
(Berto et al., 2024b), and has been shown to achieve 
high-quality results, especially when coupled with
advanced policy search procedures (François et al., 2019).

DV . 
7 https://pytorch.org/docs/stable/distributions.html
8 https://rl4.co
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Fig. 7. Gabbard diagram of the Iridium 33, Cosmos 2251, Fengyun 1C and Cosmos 1408 debris clouds as of October 2024. Point size proportional to
RCS. Color intensity in top row proportional to lifetime before natural decay. Data obtained from Celestrak. Own work.

Table 6
Number of debris fragments and RCS in [m2] of the Iridium 33, Cosmos 2252, Fengyun 1C and Cosmos 1408 debris clouds at the moment of
fragmentation event (T0), as of October 2024, and estimates for the year 2050 and 2100. Estimates are obtained from the ESA DISCOS.

Iridium 33 Cosmos 2251 Fengyun 1C Cosmos 1408

Count RCS Count RCS Count RCS Count RCS

T0 631 20,64 1626 34,81 3043 55,29 1801 7,51
2024 193 10,24 831 21,13 2192 42,96 68 7,50
2050 19 3,61 207 7,63 903 20,65 0 0,00
2100 5 3,01 76 3,38 435 11,04 0 0,00

Fig. 8. Joint altitude-RAAN-inclination diagram of the Iridium 33, Cosmos 2251, Fengyun 1C and Cosmos 1408 debris clouds as of October 2024. Point
size proportional to RCS. Color intensity proportional to lifetime before natural decay. Color trails, top: perigee to apogee altitude. Data obtained from
Celestrak. Own work.
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Fig. 9. Statistical model of the translational state of the Iridium 33 debris cloud. Histograms: observations. Curve, red: parametric model that best
matches the observations, where goodness of fit is measured using the KS statistic. Curve, black: second-best parametric model.
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mentations of various environments, policies and RL algo-
rithms, covering the entire NCO pipeline (Berto et al.,
2024b). This section is structured as follows. Section 4.1
introduces the NCO routing policy. Policy search proce-
dures are introduced in Section 4.2. Section 4.3 discusses
policy training with RL and presents a trade-off between
three RL algorithms. RL algorithm selection was followed
by an ANOVA to determine the sensitivity of policy per-
formance to 13 key hyperparameters; the analysis and its
results are discussed in Section 4.4. An ablation study to
determine the most critical architectural component of
the NCO policy follows in Section 4.5. Section 4.6 discusses
hyperparameter optimization, followed by an analysis of
the impact of training dataset size on policy performance
in Section 4.7. Lastly, Section 4.8 presents an analysis of
the performance and generalization capabilities of the final

An autoregressive attention-based policy9 is used to
solve the routing problem. Introduced by Kool et al.
(2019), the policy encodes the input graph using a feedfor-
ward layer combined with a Graph Attention Network
(GAT) and decodes the solution using a Pointer Network
(PM) based on Vinyals et al. (2017). A visual representa-
tion of this architecture can be seen in Fig. 10. Kool
et al. (2019) trained this policy using the REINFORCE
RL algorithm, achieving considerably better performance
than other architectures. François et al. (2019) found this

NCO policy. 

4.1. Policy
9 https://rl4.co/docs/content/api/zoo/constructive_ar/#models.zoo.am.
policy.AttentionModelPolicy
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policy to be a highly efficient learning component in their
comprehensive analysis of learning performance in NCO

The REINFORCE algorithm, introduced by Williams
(1992), is a stochastic policy gradient method that uses
Monte Carlo sampling to compute an unbiased estimate
of the policy gradient. Full trajectories are sampled, and

methods. 

4.2. Policy search

Provided with the state of the system, the policy gener-
ates a probability distribution over all remaining targets, 
which after training should represent the likelihood that 
picking any given target next is the optimal decision to 
make. The policy search or decoding strategy determines 
how actions are taken based on the probability distribution
generated by the learned policy. Advanced policy search
strategies have been found to greatly improve the perfor-
mance of NCO algorithms when increasing model size
yields diminishing returns (François et al., 2019). Three 
standard policy search strategies (François et al., 2019) 
are considered in this work: greedy search, stochasti c
search and Beam Search (BS).

4.3. Reinforcement learning algorithms 

Three RL algorithms are considered to train the routing 
policy: REINFORCE, Advantage Actor-Critic, and Prox-
imal Policy Optimization. This section consists of a brief 
introduction of each method followed by a trade-off to
determine the best RL algorithm to train STSP routing
policies.

4.3.1. Stochastic policy gradient
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Fig. 10. Architecture of the autoregressive, attention-based policy used in this work. The encoder comprises a fully connected network and a GAT with a
feedforward layer. Edge embeddings are omitted as the STSP graph is fully connected. The decoder constructs at each step a context embedding used as
the query for the PN attention mechanism. This diagram is based on the general RL4CO policy architecture diagram by Berto et al. (2024b). Refer to Kool
et al. (2019) and Vinyals et al. (2017) for more information about the internal structure of. the GAT and PN.
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Q

the return for each trajectory is used to update policy
parameters via gradient ascent to maximize expected
reward. REINFORCE suffers from high variance in gradi-

The three RL algorithms under consideration were
traded-off on a 10-transfer ADR STSP scenario based on

ent estimates, slowing convergence. 

4.3.2. Advantage actor-critic

Advantage Actor-Critic (A2C), introduced by Konda 
and Tsitsiklis (1999) and extended by Mnih et al. (2016), 
reduces variance in policy gradient estimates by incorpo-
rating a baseline. The baseline, given by the value function 
estimated by a critic, is subtracted from the return to com-
pute an advantage, stabilizing policy updates. A2C concur-
rently optimizes the actor (policy) and critic (value
function) in a single process, improving learning efficiency.

4.3.3. Proximal policy optimization for autoregressive 

policies 

Proximal Policy Optimization (PPO), proposed by
Schulman et al. (2017), addresses the instability of A2C 
by introducing a clipped objective function that limits the 
magnitude of policy updates. This improves the stability
of training, making PPO widely applicable in reinforce-
ment learning tasks.

The variant of PPO by Kool et al. (2019), used here, 
modifies PPO for autoregressive policies, which generate 
solutions sequentially, where each action depends on prior 
actions. Kool’s variant treats the entire autoregressive pro-
cess as a single decision step, reducing the complexity of the 
Markov Decision Process (MDP). W hile effective in cap-
turing sequential dependencies, this approach can intro-
duce approximation bias and reduce gradient information
due to its single-step treatment of the decoding process
(Kool et al., 2019). 

4.3.4. Algorithm selection 
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the Iridium 33 debris cloud. Training was repeated 5 times
using different random seeds to ensure the trade-off was
robust. To benchmark policy performance all ADR STSP
instances in the validation dataset were optimized using
the HCO module. Model validation performance is
expressed in terms of optimality gaps with respect to the
cost of the tours optimized with HCO. Table 7 lists the
most relevant training settings and policy architecture
hyperparameters. With the exception of the embedding size
of 256, all RL algorithm and policy architecture hyperpa-
rameters used at this stage were the defaults in RL4CO.
Training was conducted for 100 epochs on NVIDIA L40
GPU systems (16 vCPUs, 250 GB RAM). The training
runs of each algorithm were conducted simultaneously on
different machines to avoid polluting training time
measurements.

The experimental results, summarized in Table 8 and 
illustrated in Fig. 11a  a  nd Fig. 11b, indicate that A2C con-
sistently outperforms REINFORCE and the modified PPO 
across multiple metrics. As expected BS is the best perform-
ing policy search strategy (Kool et al., 2019; Franc ¸ois et al.,
2019). A2C achieves the lowest mean and optimality 
gap, with values of 111 km/s and 38% respectively when 
using BS to search the trained policy. In contrast, REIN-
FORCE and PPO exhibit higher mean values of 
173 km/s and 155 km/s, and optimality gaps of 115%
and 92% respectively.

Training times for REINFORCE and A2C are compa-
rable, averaging around 1.5 h, while PPO requires 
significantly more time at approximately 2.27 h. Infer ence
times remain similar across all algorithms, with variations
attributable to the search strategies employed.

These observations suggest that A2C not only produces 
better-performing policies but also does so with training 
efficiency sim ilar to REINFORCE and superior to PPO.
The lower standard deviations in and optimality gap 
for A2C indicate more stable and reliable policy learning.

DV 

DV 

DV 
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Table 7
Training and policy architecture settings used to compare RL algorithm performance.

Training dataset Batch size Optimizer Learning rate Epochs Embedding size Policy search

1 M scenarios 32768 Adam 1,00E-04 100 256 Stoch.

— —
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Table 8 
RL training performance using REINFORCE, A2C and PPO. Policy performance was measured over 1000 unseen STSP scenarios based on the Iridium
33 cloud. Training time only reported for stochastic policy search. Values given as: Bold: best result. Multiple results highlighted if best cannot be 
decided based on the observed mean and variance.

REINFORCE A2C PPO 

Search strategy Greedy Stoch. BS Greedy Stoch. BS Greedy Stoch. BS 

[km/s] 206,4±39,7 212,7±39,7 172,6±29,6 129,6±28,1 130,1±28,4 111,0±19,7 169,4±36,6 178,4±36,4 154,6±30,0 
Optimality gap [%] 156,7±56,0 164,6±57,2 114,7±43,1 61,3±39,1 61,9±39,2 38,3±29,0 110,6±50,3 121,7±50,1 92,1±41,6 
Training time [h] — 1,44±0,13 1,49±0,09 — — 2,27±0,11 — 
Inference time [ms] 36,1±4.5 43,7±11.1 86,5±6.5 37,9±7.4 43,8±11.7 87,1±6.6 35,3±4.8 43,5±12.9 86,6±11.0

Fig. 11. RL training performance summary.

l r. 

DV 
Despite PPO’s effectiveness in various reinfo rcement
learning tasks (Schulman et al., 2017), its modified version 
for autoregressive policies does not demonstrate the 
expected performance gains in this context. The reduced 
performance of PPO may stem from approximation biases 
introduced by treating the entire decoding process as a 
single -step MDP and challenges in entropy estimation.
Additionally, the loss of detailed gradient information
due to the simplified MDP formulation could hinder effec-
tive policy updates.

Based on these results, A2C was selected as the rein-
forcement learning algorithm for training the routing pol-
icy in the ADR STSP problem. Its superi or performance
and efficient training make it the most suitable choice
among the algorithms evaluated.

4.4. Hyperparameter impact determination with ANOVA 

Optimizing the performance of NCO models involves 
tuning a multitude of hyperparameters. Identifying the
hyperparameters with the greatest impact on model perfor-
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mance is critical to prioritize them for further optimization
(Hastie et al., 2009). Analysis of Variance (ANOVA) serves 
as a robust statistical procedure to assess the significance of
multiple factors on model performance simultaneously
(Kutner, 2005). 

Orthogonal arrays, particularly Taguchi factorial 
designs, facilitate efficient experimentation by systemati-
cally varying hyperparameters across predefined levels
while minimizing the number of required experimental runs
(Taguchi and Konishi, 1987; Taguc hi, 1993; Maghsoodloo
et al., 2004). The Taguchi L27 orthogonal array, also 
known as L27-A313−10 fractional factorial design (Guthrie 
and Heckert, 2016), is specifically designed to measure 
the linear effects of up to 13 factors at three levels, making 
it suitable for comprehensive hyperparameter analysis with
limited resources (Guthrie and Heckert, 2016). Table 9 pre-
sents the Taguchi L27 orthogonal array utilized in this
study.

An ANOVA was conducted using the statsmodels
library (Seabold and Perktold, 2010) to evaluate the linear 
(or main) effects of 13 hyperparameters on the model’s per-
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Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 1
0 0 0 1 1 1 2 2 2 1 1 1 0 0 0 1 1 1 2 2 2 0 0 0 1 1 2
0 0 0 1 1 1 2 2 2 2 2 2 0 0 0 1 1 1 0 0 0 2 2 2 1 1 1
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 0
0 1 2 0 1 2 0 1 2 1 2 0 2 0 1 1 0 0 2 0 1 2 0 1 0 1 0
0 1 2 0 1 2 0 1 2 2 0 1 1 0 0 2 1 1 1 2 0 2 1 0 2 0 1
0 1 2 1 2 0 2 1 0 0 1 2 0 1 2 1 0 2 2 1 2 1 2 1 2 1 2
0 1 2 1 2 0 2 1 0 1 2 0 2 1 0 2 1 0 0 1 2 1 2 1 1 2 2
0 1 2 1 2 0 1 2 0 3 0 1 1 2 0 2 2 1 1 2 0 2 1 0 1 0 1
0 1 2 2 0 1 1 2 0 1 2 0 2 0 1 1 0 1 1 0 2 2 1 3 1 2 1
0 1 2 2 0 1 2 3 0 2 1 2 1 3 0 0 1 2 3 2 1 1 3 1 2 1 2
0 1 2 2 0 1 2 3 0 3 2 1 0 1 2 3 2 1 1 3 2 1 2 1 3 2 1
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Table 9 
Taguchi L27 orthogonal array, also known as L27-A313−10 fractional factorial design (Guthrie and Heckert, 2016). 

X1 
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X3 
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X6 

X7 

X8 

X9 

X10 

X11 

X12 

X13
formance. The 13 hyperparameters considered, their func-
tion, and the rationale for considering each one can be seen
in Table 10.

Table 11 presents the ANOVA results for the linear 
effects of each hyperparameter. The Sum of Squares 
(Sum Sq), degrees of freedom (df), F-statistic (F), and p-
values (PR(>F)) are reported for each factor. ANOVA 
relies on two fundamental assumptions: normality of resid-
uals, and homogeneity of variances across all factor levels
—the property known as homoscedasticity (Kutner, 2005; 
Guthrie and Heckert, 2016). Residual normality was veri-
fied by the Shapiro–Wilk test (Shapiro and Wilk, 1965;
Guthrie and Heckert, 2016)  and the Ander-
son–Darling test (Guthrie and Heckert, 2016)  . 
Homoscedasticity was verified by visual inspection of the 
residuals. Having verified both assumptions, the ANOVA 
was considered valid to diagnose the main effects of the
13 hyperparameters under consideration.

The ANOVA results indicate that embedding dimension 
and number of encoder layers are the only hyperparame-
ters with statistically significant effects on model perfor-
mance, with p-values above the confidence threshod of 
0.05 (0,0058 and 0,0487 respectively). Embedding dimen-
sion has both the lowest p-value and highest R2 value 
(25.20%), indicating it is the most critical hyperparameter 
for policy performance. The number of encoder layers fol-
lows with an R2 of 10.96%, indicating a meaningful but
slightly lesser influence. All other hyperparameters do not
show statistically significant linear effects, as their p-
values exceed the conventional threshold of The lin-
ear model accounts for approximately 69,87% of the total

observed variance . A considerable portion 
of variability (30.13%) is not explained by the linear effects 
of the analyzed hyp erparameters, indicating the presence of
higher order effects which are not modelled.

The significant effect of embedding dimension suggests 
that learning higher dimensional representations of target 
states enhances the model’s capacity to capture and repre-
sent input features effectively, thereby improving perfor-
mance. The significance of the number of encoder layers

(p 0 57) 
(p 0 2 7)

0 05. 

(R2 69 87 )
7319
implies that adding more layers may contribute to deeper 
feature extraction and more complex graph representa-
tions. In terms of policy architecture, the 5 most critical 
hyperparameters for policy performance are encoder 
parameters, with embedding dimension impacting both 
the encoder and decoder. These effects suggest that the 
GAT encoder is the most critical architectural component 
of the network for policy performance. The goal of the fol-
lowing two sections is to validate this claim, and to opti-
mize the two critical hyperparameters identified in this
analysis: embedding dimension, and the number of layers
of the GAT encoder.

4.5. Ablation study 

In order to quantitatively assess the impact of the GAT 
encoder on overall model performance, an ablation study 
was conducted comparing four encoder variants. Specifi-
cally, the GAT encoder was first removed and then 
replaced with alternative architectures that maintain equal 
depth and a comparable number of trainable parameters,
thereby isolating the effect of the encoder design on the
NCO policy. The study did not consider ablations to the
PN decoder, as the pointer mechanism is fundamental to
generating combinatorial solutions (Vinyals et al., 2015) 
and empirical analysis indicates that policy performance 
is minimally sensi tive to variations in decoder parameters
(Table 11). 

Three alternative encoders were considered in addition 
to the baseline three-layer GAT encoder: (i) a single-layer 
Feed-Forward (FF) Network, reducing the number of 
encoder parameters from 1.58 M to 66 k (effectively elimi-
nating the encoder component); (ii) a three-layer Multi-
Layer Perceptron (MLP) with the hidden dimension cho-
sen such as to equate the total number of parameters of
the MLP to that of the baseline GAT encoder; and (iii) a
three-layer LSTM encoder akin to that used in the original
PN implementation (Vinyals et al., 2017), with the hidden 
dimension chosen such as to equate the combined parame-
ter count of the multi-layer LSTM (plus the projection
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Table 10 
Policy architecture and training hyperparameters conside red in the 3-level ANOVA.

Hyperparameter Component Function Rationale ANOVA Levels 

Embedding Dimension Embedding Layer Size of node embeddings representing input features. Influences the capacity to capture feature
representations.

64, 128, 256

Number of Encoder Layers GAT Number of layers in the GAT, affecting depth and
representation learning.

Determines the depth of feature extraction and 
comp lexity of graph representations.

2, 3, 4

Number of Attention Heads GAT Number of parallel attention mechanisms per GAT
layer.

Enhances the model’s ability to focus on different 
par ts of the graph simultaneously.

4, 8, 16

Feedforward Hidden Size GAT Size of the hidden layer in GAT’s feedforward
network.

Affects the model’s capacity and computational
complexity.

256, 512, 1024

Dropout Rate GAT Probability of dropping units during training to
prevent overfitting.

Helps in regularizing the model and improving
generalization.

0.1, 0.3, 0.5

Temperature PN Scales logits before softmax to control randomness in
action selection.

Balances exploration and exploitation during policy
generation.

0.5, 1.0, 2.0

Tanh Clipping PN Limits the output of the tanh activation to prevent
extreme values.

Ensures numerical stability by preventing large
activation values.

0, 10, 20

Actor Learning Rate Actor Optimizer Learning rate for the actor (policy) network optimizer
(e.g., Adam).

Influences the speed and stability of policy updates. 1e-5, 1e-4, 1e-3

Weight Decay Actor Optimizer Regularization parameter to prevent overfitting by 
pe nalizing large weights.

Controls the model’s generalization and prevents
overfitting.

0, 1e-4, 1e-3

Gradient Clipping Value Actor Optimizer Maximum allowed value for gradients during 
backpropagation to prevent exploding gradients.

Ensures training stability by avoiding excessively large
gradients.

0.5, 1.0, 2.0

Critic Learning Rate Critic Optimizer Learning rate for the critic network optimizer (e.g.,
Adam).

Affects the stability and speed of value estimation
updates.

1e-5, 1e-4, 1e-3

Reward Scaling REINFORCE Baseline Scales the reward signal to stabilize training and
improve gradient estimates.

Enhances training stability by normalizing reward
magnitudes.

1, 10, 100

Critic Hidden Dimension Critic Network Size of the hidden layers within the critic network. Influences the critic’s capacity to accurately estimate
value functions.

128, 256, 512
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Table 11 
ANOVA results. Dashed line separates statistically significant factors from non-significant factors.

Hyperparameter Sum Sq df F PR(>F) R2 Architectural impact 

Embedding Dimension 3.46E + 09 1 10.9 0.005776 25.20% Encoder, decoder 
Number of Encoder Layers 1.50E + 09 1 4.73 0.048680 10.96% Encoder 

Feedforward Hidden Size 7.82E + 08 1 2.46 0.140893 5.70% Encoder 

Weight Decay 7.28E + 08 1 2.29 0.154256 5.30% — 
Number of Attention Heads 7.03E + 08 1 2.21 0.160724 5.13% Encoder 

Actor Learning Rate 6.66E + 08 1 2.10 0.171374 4.86% — 
Critic Hidden Dimension 6.18E + 08 1 1.94 0.186560 4.51% — 
Gradient Clipping Value 5.55E + 08 1 1.75 0.209273 4.04% — 
Dropout Rate 3.24E + 08 1 1.02 0.331401 2.36% Encoder 

Tanh Clipping 2.11E + 08 1 0.66 0.429799 1.54% Decoder 
Critic Learning Rate 3.58E + 07 1 0.11 0.742551 0.26% — 
Temperature 1.58E + 06 1 0.00 0.944904 0.01% Decoder 
Reward Scaling 4.52E + 05 1 0.00 0.970506 0.00% — 
ANOVA model 9.58E + 09 13 - - 69.87% 

Residuals 4.13E + 09 13 - - 30.13%

Fig. 12. Training performance summary for the four policies considered in the ablation study.

Table 12 
Ablation study summary. Policy performance was measured over 1000 unseen STSP scenarios based on the Iridium 33 cloud. Values given as: Bold: 
best result. Multiple results highlighted if best cannot be decided based on the observed mean and variance.

Ablation Depth [-] Trainable parameters [-] Optimality gap [%] Training time [h] Inference time [ms] 

GAT (Baseline) 3 1.582 M 52.72±35.69 1.35±0.14 45.5±4.6 
FF 1 66.8 k 87.46±14.09 1.10±0.13 44.4±16 
MLP 3 1.583 M 87.34±40.66 1.27±0.15 47.3±9.0 
LSTM 3 1.589 M 87.21±40.64 3.74±0.13 63.2±8.6 

Table 13 
Results of the full factorial ANOVA of embedding dimension (ED) and 
number of encoder layers (NL). The ANOVA model includes linear,
quadratic and interaction terms.

Term Sum Sq df F PR(>F) R2 

ED 1,57E + 09 1.0 97,805333 0,002199 66,30% 
NL 7,73E + 07 1.0 4,8316240 0,115377 3,28% 
ED2 4,72E + 08 1.0 29,455497 0,012275 19,97% 
NL2 3,77E + 07 1.0 2,3521440 0,222656 1,59% 
ED*NL 1,61E + 08 1.0 10,067658 0,050366 6,82% 
ANOVA model 2,31E + 09 3.0 - - 97,97% 
Residual 4,80E + 07 3.0 - - 2,03%

(p 0 0 5)

l r. 
layer) to that of the baseline GAT encoder. Training was 
conducted for 100 epochs on NVIDIA L40 GP U systems
(16 vCPUs, 250 GB RAM) using the settings reported in
Table 7. All policy and training parameters remained 
unchanged in the four experiments with the exception of
the encoder.

Fig. 12 displays the learning curves of the four policies,
and Table 12 reports the key characteristics and perfor-
mance for the four policies. The optimality gaps reported 
were obtained using the BS policy search strategy. The
baseline GAT encoder achieved a mean optimality gap of
7321
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Table 14 
Optimality gaps obtained for each run in the grid search. BS was used to
decode the policy.

EL 

EB 128 53,68% 40,85% 45,95% 
256 74,54% 59,46% 39,03% 
512 41,87% 36,79% 66,04% 

Table 15 
Number of trainable parameters for each configuration considered in the 
grid search, as multiples of parameters of the 2-layer, 128 ED model.

EL 

ED 128 0.51 M ,4 ,8 
256 ,0 ,0 ,0 
512 ,8 2,8 5,9 

1 1 
3 4 5 
9 1 1
52.72% with a mean training time of 1.35 h and a mean 
inference time of 45.5 ms. In contrast, the FF, MLP, and 
LSTM replacements yielded significantly higher optimality 
gaps (rangi ng from approximately 87.21% to 87.46%), with
the LSTM variant incurring a markedly longer mean train-
ing time of 3.74 h. Given that the intervals do not over-
lap between the baseline and its alternatives, the data 
robustly indicate that the GAT encoder is the critical archi-
tectural element driving performance.

4.6. Hyperparameter optimization 

A full factorial (grid) search was conducted to optimize 
the embedding dimension and number of encoder layers, 
considering three levels. The levels considered for each
hyperparameter are those previously presented in Table 10. 
Table 14 shows the optimality gaps obtained by each of the 
models in the grid search, using BS to decode the policies. 
No statist ically significant improvement is observed in
comparison with the RL algorithm trade-off results in
Table 8. Fig. 13b shows the combined learning curve all
grid search runs. Fig. 13a shows the Pareto front of the grid 
search. An interesting feature in Table 14 is the underper-
formance of models in the diagonal. The amount of train-
able parame ters of the models considered can be seen in
Table 15. 

A second ANOVA was performed on the results of the 
grid search. This time quadratic and interaction effects
were included in the ANOVA model. The results follow
in Table 13. The Shapiro–Wilk test and 

l r 

(p 0 9004) 
Fig. 13. Summary of the performance and training of th
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Anderson–Darling test again confirm that the 
residuals are normally distributed; homoscedasticity was 
verified by visual inspection of the residuals, confirming 
the validity of the ANOVA. The ANOVA model accounts 
for 97.97% of the observed variance, indicating a strong fit. 
The full factorial ANOVA confirms that both embedding
dimension and number of layers have significant effects
on performance. Embedding dimension shows a strong
main effect and a significant quad-
ratic term . The interaction between 
embedding dimension and number of layers is marginally
significant , indicating that their 
combined influence affects performance. These findings 
confirm the significant linear effects identified by the L27
fractional ANOVA and indicate the presence of additional
non-linear relationships.

The results further support the conclusion that network 
architecture, and particularly the architecture of the enco-
der, is the principal driver of model performance for this 
policy, and suggest that the performance of the NCO pol-
icy considered in this work improves asymptotically as a
function of network size.

4.7. Impact of training dataset size on policy performance 

The amount of data that the model is exposed to during
training is key for its performance (Berto et al., 2024b). 
This is especially the case for atte ntion-based ML models
(Vaswani et al., 2017; Kaplan et al., 2020; Hoffmann
et al., 2022). Fig. 14a shows the effect of increasing the size

(p 0 153) 

(F 97 81 p 0 0022)
(F 29 46 p 0 0123)

(F 10 07 p 0 05 04)
e policy architectures considered in the grid search.

move_t0065
move_t0070
move_f0065
move_t0075
move_f0070
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Fig. 14. Final learning curves.

Table 16 
Policy performance compared to the DRW STSP heuristic for STSPs with 10, 30 and 50 targets. Values given as: Performance measured on test 
datasets of 1000 missions. Bold: best result.

Number of nodes 10 30 50 

Heuristic AM BS DRW AM BS DRW AM BS DRW 

[km/s] 106,4±16,2 122,1±31,4 573,5±83,9 208,1±46,2 1041,8±68,2 261,2±52,6 
Optimality gap [%] 32,6±25,5 50,5±36,8 616,0±133 50,4±37,2 555,4±97,4 63,9±38,3 
Inference time [ms] 99,2±0,0 2494,9±0,0 3592,0±0,0 8534,5±0,0 8630,0±0,0 16147,1±0,0 

l r. 

DV 
of the training dataset from 1 M to 3 M tours of 10 trans-
fers. Convergence speed and consistency was observed to 
improve. No gains in model performance were observed 
from using larger training datasets: in both cases model
performance plateaus to a validation optimality gap in
training of approximately 50%. Fig. 14b shows the final 
learning curves, extending training from 100 to 300 epochs 
using the 3 M tour training dataset. Performance gains 
from the extended training were marginal. This result con-
firms that the architecture of the policy is the factor limit-
ing further learning.

4.8. Final performance and generalization to larger routing 

problems 

To evaluate the capacity of the final trained policy to 
generalize to larger problems, the trained policy was 
employed to plan scenarios with 10, 30, and 50 transfers.
BS was used to search the trained policy. Table 16 presents 
the final performance results of the trained NCO policy 
compared to the DRW heuristic across scenarios with 10, 
30, and 50 transfers. Each case consisted in the planning
of 1000 missions. The metrics include the mean and stan-
dard deviation of (change in velocity), the optimality 
gap percentage, and the inference time in milliseconds. 
Optimality gaps are obtained by comparison with the solu-
tion obtained using HCO.

The trained NCO policy exhibits better performance in 
the 10-node scenario than the DRW heuristic. However, 
as the number of nodes increases to 30 and 50, the perfor-
mance of the NCO policy greatly deteriorates. This indi-
cates a limitation in the policy’s ability to generalize to

DV 
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mission scenarios with a higher number of transfers: the 
learned policy is not generally applicable for the design
of ADR missions.

In terms of computational efficiency, the NCO policy 
outperforms DRW across the board. The difference is large 
for small mission scenarios, but becomes less significant for
30 and 50 transfer scenarios.

5. Conclusion 

This study evaluated the applicability and effectiveness 
of Neural Combinatorial Optimization (NCO) methods 
for space Vehicle Routing Problems (VRPs), with a focus 
on the Active Debris Removal (ADR) Space Traveling
Salesman Problem (STSP) using the Iridium 33 debris
cloud as a case study.

A statistical model of the Iridium 33 debris cloud was 
constructed to generate millions of realistic ADR scenarios 
in which to train NCO policies. An electric propulsion 
ADR spacecraft concept was employed, and Lyapunov 
Feedback Control (LFC) was used to generate low-thrust 
trajectories. Specifically, the Rendezvous Q-Law LFC 
guidance policy was applied to produce six-element ren-
dezvous transfer trajectories between targets. An efficient
transfer cost estimator based on the best quadratic time-
to-go was designed and verified. Finally, a generalized
STSP environment model was implemented, incorporating
the secular perturbations on the Right Ascension of the 
Ascending Node (RAA N) and the Argument of Perigee
(AOP).

An attention-based routing policy, integrating a Graph 
Attention Network (GAT) and a Pointer Network (PN),

J 2 
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was implemented and trained using three RL algorithms: 
REINFORCE, Advantage Actor-Critic (A2C), and Proxi-
mal Policy Optimization (PPO). A2C was found to yield 
the best performance. A fractional factorial ANOVA was 
conducted to study the impact of 13 key hyperparameters 
on model performance, finding embedding dimension and 
the number of layers in the GAT encoder to be the two 
most critical factors. An ablation study confirmed that 
the GAT encoder is the most critical architectural element 
for model performance. A 3-level grid search followed to
determine the optimal combination of embedding dimen-
sion and encoder layers. Model performance was found
to improve asymptotically with network size. Lastly, the
impact of training dataset size was investigated, finding
that using larger training datasets did not yield significant
gains in final performance, confirming that policy architec-
ture is the factor limiting further learning.

The trained NCO policy in combination with a Beam 
Search policy search strategy achieved a mean optimality 
gap of 32% with respect to the near-optimal Heuristic 
Combinatorial Optimization (HCO) benchmark in 1000 
missions with 10 transfers. The NCO policy outperformed 
the Dynamic RAAN Walk (DRW) heuristic in both mis-
sion cost and runtime. This result shows that NCO meth-
ods can be effective for ADR missions with a limited 
number of targe ts and indicate potential for efficient,
autonomous multi-rendezvous routing solutions by means
of NCO policies. Policy performance declined however in
scenarios with more targets (30- and 50-visit sequences)
than seen in training. Achieving robust performance in sce-
narios with variable numbers of visits remains a challenge
to be solved.

Future research should follow along three main direc-
tions of improvement: NCO policy performance and effi-
ciency, robustness in scenarios with uncertain numbers of 
nodes and greater target variety, and multiple spacecraft 
routing problems. As to the first, alternative NCO policy 
architectures, deep RL approaches that incorporate tree 
search strategies (such as Monte Carlo Tree Search), and 
transfer learning techniques using foundational NCO mod-
els are an attractive option to improve policy performance
and efficiency. Secondly, procedures to expose policies to
variable-length routing problems during training must be
pursued. Lastly, adapting existing NCO approaches for
multi-agent VRP to tackle multiple spacecraft routing
problems is a promising research direction.

This research demonstrates the viability and potential of 
NCO methods to learn effective and efficient routing poli-
cies for space VRPs, in particular short-horizon routing 
problems and high-throughput autonomous decision-
making in uncertain scenarios where solving complex opti-
mizations on-board may not be a possibility. This also 
applies to other problems in spacecraft au tonomy, such
as sensor allocation under uncertainty. However, to realize
their full potential further development is required to
improve policy efficiency, and robustness in scenarios with
uncertain numbers of visits. The further development and
7324
integration of NCO with established optimization tech-
niques offers a viable pathway for enhancing mission plan-
ning capabilities, paving the way for more sophisticated
and scalable solutions for mission planning and autonomy
in space logistics.

Declaration of Competing Interest 

The authors declare that they have no known competing 
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements 

This research would not have been possible without the 
support of my supervisor at the Delft University of Tech-
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Appendix A. Nomenclature 

A.1. Abbreviations 
A2C
 Advantage Acto r-Critic

ADR
 Active Debris Rem oval

ANOVA 
Analysis of Var iance

AOP
 Argument of Perigee

CO
 Combinatorial Optimi zation

DISCOS 
ESA Database and Information System 

Char acterising Objects in Space

DNN
 Deep Neural Netwo rk

DRW
 Dynamic RAAN W alk

ECI
 Earth-Centered Inertial frame

FF
 Feed-Forward ne twork

GAT
 Graph Attention Network

GIT
 Gridded Ion Thruster

GNN
 Graph Neural Netw ork

GPU
 Graphics Processing Unit

KS
 Kolmogorov–Smirnov 

LC
 Lyapunov Cont rol

LFC
 Lyapunov Feedback Cont rol

LEO
 Low Earth Orbit
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Appendix A (continued)
A2C
 Advantage Actor-Critic
LVLH
 Local-Vertical Local-Horizontal frame

MEE
 Modified Equinoctial Elements

MDP
 Markov Decision Process

MEO
 Medium Earth Orbi t

MINLP 
Mixed-Integer Nonlinear Pro gramming

ML
 Machine Learning 

MLP
 Multi-Layer Perceptr on

NCO
 Neural Combinatorial Opti mization

NN
 Nearest-Neighbour Search 

OOS
 On-Orbit Servic ing

PN
 Pointer Netwo rk

PPO
 Proximal Policy Optimizati on

Q-Law
 Lyapunov Feedback Control Law ba sed on the

proximity quotient Q 
RL
 Reinforcement Learning

RQ-Law 
Rendezvous Q-Law 

RCS
 Radar Cros s-Section

SMA
 Semi-major Axi s

STSP
 Spacecraft Traveling Salesman Problem

TOF
 Time of Flight

TSP
 Traveling Salesman Problem

VRP
 Vehicle Routing Problem
A.2. Greek Symbols 
a 
In-plane thrust angle
 –
b 
Out-of-plane thrust angle
 –

c
 Relative inclination
 rad 

DV
 Delta-V (change in velocity)
 ms−1 
Dr Dt Dn 
Perturbing accelerations in
radial, tangential, normal 
directions 
ms−2 
DL p p 
Differ ence in true longitude
wrapped to p p 
rad
l 
Earth’s gravi tational parameter
 3.986e14m3s−2
h
 True anomaly
 rad 

H
 Vector of spacecraft and

guidance law parameters 

rad 
r 
Stand ard deviation
 –

x
 Argument of Perigee
 rad 

X
 Right Ascension of the

Ascending Node 

rad 
U 
State trans ition function
derived from integrating the 
dynamics f 
–

W
 Gauss variational equations
state-space input matrix in
MEE
–
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