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Summary 
 
The field of ecohydraulics has emerged over recent decades and addresses the 
interactions between hydro-dynamic and eco-dynamic processes. While 
hydrodynamic processes are usually well described by mathematical equations 
based on physical principles of mass, momentum and energy conservation at the 
global system level, ecosystem dynamics often involve specific local interactions 
between species with a strong dependence on individual properties. Thus, while 
partial differential equations may be well suited to describe the hydraulic 
(hydrodynamic) features, a more localized mathematical description is often preferred 
when modelling the ecosystem behaviour. It has been observed in the field that even 
in case of relatively simple interactions at the local scale, ecological evolution often 
leads to quite complex spatio-temporal patterns at the global scale. 
 
Cellular Automata (CA) are known to be capable of representing (strongly) non-linear 
dynamical systems at discrete levels in time and space. Von Neumann (1949) was 
first to develop a numerical algorithm for digital computers considering an array of 
cells in a lattice arrangement. He observed that repetitive use of simple local 
transition rules could evolve into quite complex space-time patterns. The concept of 
CA was further elaborated by (Wolfram, 1984) and applications were investigated in a 
wide range of fields in science and engineering, ranging from turbulence theory to oil 
exploration, and from information theory to population dynamics. Applications in the 
field of ecohydraulics were explored by (Minns et al., 2000) who showed CA to be a 
viable paradigm for ecosystem modelling due to its ease of accounting for local 
differences in individual species properties, while at the same time enabling complex 
space-time dynamics to emerge at the global scale.  
   
Cellular automata constitute a mathematical system in which each cell starts from an 
initial state and all cells update their states synchronously at discrete steps according 
to simple local rules. The classical configuration of cellular automata consists of an 
array of identical and uniformly distributed cells in a structured grid arrangement. But 
in the field of hydrodynamics, the use of unstructured grids has become more and 
more popular due to its capability to deal with arbitrary geometries and its flexibility to 
adapt to changing boundary configurations. 
  
In this thesis, the concept of Unstructured Cellular Automata (UCA) is explored for 
unstructured computational meshes of varying sizes and topological arrangements. 
The main objective of the research is to identify whether the cellular automata 
modelling paradigm can be applied to unstructured computational grid arrangements 
as well. Various options of unstructured cellular automata configurations are explored 
and their performance is investigated by numerical experiments. The practical 
applicability of UCA in eco-hydraulics modelling is explored through a number of case 
studies and compared with field measurements. 
    
Compared with classical cellular automata, UCA configurations often contain different 
cell-types within the same computational grid: the computational stencil for any 
particular object cell may differ from the ones of its neighbours. The properties of such 
UCAs are analysed in some detail in this thesis. First, the characteristics of two types 
of cell configurations (triangular elements and polygon elements) were explored via 
numerical experiments. Then, the effect of initial conditions was analysed for various 
initial spatial distributions and different initial percentages in a prey-predator type  



 
 
 
application. Furthermore, the performance of different Neighbourhood Schemes for 
UCA was investigated, exploring the analogies with the conventional Neumann, 
Moore and Extended Moore configurations in classical CA. 
   
Cellular Automata are sometimes considered as an alternative approach in numerical 
modelling. There are many references to, for example, cellular automata being used 
to solve the Navier-Stokes equation by Lattice-gas CA. However, Lattice-gas CA 
holds a microscopic view and is thus restricted to very small scales. For real 
applications, Lattice-gas CA is less practical for solving the full Navier-Stokes 
equations (Chen, 2004). In this thesis special attention was paid to exploring the 
differences and analogies between CA and PDEs. 
   
Partial Differential Equations (PDEs) can have significant advantages like the ability 
to obtain analytical solutions that capture the main features of the problem at hand in 
continuous time and space coordinates. But when solutions of PDEs are obtained by 
digital computer based on discrete approximations, the solution also becomes 
discrete in space-time. Cellular Automata on the other hand are already fully discrete 
by the nature of its concept as described above. The analogies between discrete 
solutions of PDEs and equivalent approaches from CA are discussed in this thesis. 
Particular attention is given on how to deduce transition rules for CA-modelling from 
PDE-based approaches using finite difference methods. Some specific types of 
partial differential equations (diffusion equation, wave equation, Burgers equation) are 
used as a reference for evaluating the equivalent performance of CA simulations. 
  
Since UCA can have varying neighbourhood properties in contrast with classical CA, 
the influence of cell size in UCA was analysed in this thesis (chapter 3) using the 
Finite Volume Method. A characteristic parameter —min distance of UCA– was put 
forward and tested by several numerical experiments on different types of meshes 
(rough meshes, locally refined meshes, globally refined meshes) in order to explore 
the usefulness of this parameter. 
   
The analysis results from computational theory of UCA were applied to a water quality 
modelling case study of spiked pollution loading for Hong Kong Bay (Chapter 5). In 
Chapter 6 UCA was used to quantify the spatial distribution of macro invertebrates as 
part of a river restoration study in China, simulating the spatial evolution of benthonic 
macro invertebrates under different flow regulation scenarios. In Chapter 7 UCA is 
applied to an aquatic pond system and compared with Individual-based modelling. 
The main findings of this research are summarised in Chapter 8. 

 
 



Samenvatting 
 
Het vakgebied van de ecohydraulica is gedurende de afgelopen decennia ontstaan 
en richt zich op de interakties tussen hydro-dynamische en eco-dynamische 
processen. Waar de hydrodynamische processen gewoonlijk goed kunnen worden 
beschreven door wiskundige vergelijkingen gebaseerd op fysische behoudswetten 
voor massa, impuls en energie voor het totale systeem, gaat het bij de dynamica van 
ecosystemen veel meer om lokale interacties tussen verschillende soorten die sterk 
afhankelijk zijn van hun specifieke eigenschappen. 
 
Vandaar dat partiële differentiaalvergelijkingen uitstekend geschikt zijn om 
hydraulische (hydrodynamische) verschijnselen te beschrijven, maar een meer lokale 
wiskundige benadering de voorkeur verdient bij het modelleren van ecosystemen. 
Waarnemingen in de natuur geven aan dat zelfs betrekkelijk eenvoudige interacties 
op lokale schaal kunnen leiden tot complexe patronen op grotere schaal. Cellulaire 
Automata (CA) staan bekend om hun vermogen om complexe niet-lineaire 
dynamische systemen te kunnen weergeven op discrete niveaus in tijd en ruimte. 
Von Neumann (1949) ontwikkelde als eerste een numeriek algoritme voor een 
digitale computer op een gestructureerd rekenrooster. Het viel hem op dat het 
herhaald toepassen van relatief eenvoudige lokale regels tot complexe ruimte-tijd 
patronen kon leiden. Het concept van cellulaire automata werd verder onderzocht 
door (Wolfram, 1984) met een breed scala aan toepassingen in wetenschap en 
praktijk, van turbulentie theorie tot oliewinning, en van informatie theorie tot populatie 
dynamica. 
 
Toepassingen op het gebied van ecohydraulica werden onderzocht door (Minns et al., 
2000) die aantoonden dat CA mogelijkheden bood voor het modelleren van 
ecosystemen aangezien het gemakkelijk rekening kon houden met lokale verschillen 
in eigenschappen van soorten, terwijl het tegelijkertijd het gedrag van complexe 
dynamische systemen kon simuleren op grotere ruimte en tijdschalen. Cellulaire 
Automata zijn wiskundige systemen waarbij iedere cel start met een bepaalde 
beginconditie en alle cellen hun toestand tegelijkertijd opwaarderen op basis van 
lokale regels (gerelateerd aan de toestand van naburige cellen). Een klassieke CA 
configuratie bestaat uit een regelmatig rooster van identieke cellen die uniform 
verdeeld zijn. Maar in de hydrodynamica neemt het gebruik van ongestructureerde 
rekenroosters snel toe, vanwege de mogelijkheden om willekeurige geometrieën te 
kunnen representeren en zich te kunnen aanpassen aan veranderende 
randvoorwaarden. 
 
In dit proefschrift wordt onderzoek gedaan naar de mogelijkheid om het concept van 
cellulaire automata toe te passen op ongestructureerde rekenroosters. Verschillende 
vormen van ongestructureerde rekenroosters worden onderzocht en hun 
toepasbaarheid nagegaan middels numerieke simulaties. De praktische 
toepasbaarheid op het gebied van ecohydraulische modellen wordt nagegaan aan de 
hand van metingen in praktijksituaties. 
 
Vergeleken met de klassieke CA structuren kunnen ongestructureerde cellulaire 
automata verschillende celconfiguraties hebben binnen hetzelfde rekengrid: de 
rekenstencils kunnen per buurcel verschillen. De eigenschappen van verschillende 
ongestructureerde configuraties worden in dit proefschrift onderzocht. Allereerst 
wordt het verschil tussen driehoekige cellen en polygon elementen nagegaan aan de  



 
 
 
hand van numerieke simulaties. Vervolgens wordt de invloed van de begincondities 
onderzocht voor verschillende ruimtelijke verdelingen en verschillende 
beginpercentages in een jager-prooi configuratie. Vervolgens worden de analogieën 
onderzocht met de bekende Neumann, Moore en Extended Moore configuraties uit 
de klassieke CA.  
 
CA wordt soms gezien als een alternatieve vorm van numeriek modelleren. Zo zijn er 
bijv. meerdere toepassingen bekend van het oplossen van de Navier-Stokes 
vergelijkingen middels Lattice-gas CA. Deze zijn echter vaak beperkt tot gebieden 
met kleine afmetingen. Voor praktische toepassingen biedt CA minder mogelijkheden 
(Chen, 2004). In dit proefschrift wordt speciaal aandacht besteed aan het nagaan van 
de overeenkomsten en verschillen tussen cellulaire automata en numerieke 
oplosmethoden voor partiële differentiaalvergelijkingen. PDEs hebben duidelijke 
voordelen waaronder het hebben van analytische oplossingen die de belangrijkste 
kenmerken in zich dragen. Maar als numerieke technieken worden gebruikt op 
digitale computers, dan worden de oplossingen discreet benaderd in ruimte en tijd. 
Cellulaire Automata daarentegen zijn uit zichzelf al volledig discreet. De 
overeenkomsten en verschillen worden in dit proefschrift nagegaan. 
  
Daarbij wordt in het bijzonder aandacht besteed aan het afleiden van lokale 
CA-regels vanuit het gedrag van PDE oplossingen op basis van eindige 
differentieschema’s. Een aantal voorbeelden (diffusievergelijking, golfvergelijking, 
Burgers’ vergelijking) wordt gebruikt als referentie voor het equivalente gedrag van 
cellulaire automata. Aangezien ongestructureerde CA lokaal verschillende stencils 
kan hebben (in tegenstelling tot gestructureerde CA), wordt het effect van 
verschillende stencils nagegaan in analogie met de Eindige Volume Methode 
(hoofdstuk 3). Voorgesteld wordt om een karakteristieke parameter –minimale 
afstand– te gebruiken en de relevantie daarvan wordt in dit proefschrift aan de hand 
van numerieke experimenten onderzocht. 
  
De toepasbaarheid van de hier ontwikkelde theorie is nagegaan aan de hand van een 
waterkwaliteitsstudie ten gevolge van afvalwaterlozing in de baai van Hong Kong 
(hoofdstuk 5). In hoofdstuk 6 wordt de ruimtelijke verdeling van ongewervelde soorten 
onderzocht bij verschillende scenario’s van rivierbeheer in China. Hoofdstuk 7 laat 
aan de hand van een toepassing in een kleine vijver zien dat ongestructureerde 
cellulaire automata veel overeenkomsten hebben met individual-based modelling 
(IBM). De belangrijkste bevindingen van dit onderzoek zijn samengevat in Hoofdstuk 
8. 
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Chapter 1    

Introduction 
_________________________________________ 
 

1.1 Background 
 
Cellular Automata are able to represent non-linear dynamical systems at discrete 
intervals in time and space. First proposed by Von Neumann (1949), the theory and 
application of CA developed rather slowly. Codd and Langton (1968) proved that CA 
has self-reproduction capabilities, but CA probably became most well known owing to 
the famous ‘Game of Life’ as developed by Conway (1970). After that, Wolfram (1986, 
1994) contributed significantly to the further evolution of CA.  
 
The classical concept of Cellular Automata consists of an n-dimensional array of cells. 
Each cell starts from an initial state and all cell states are updated synchronously at 
discrete steps according to a simple local rule (Beigy & Meybodi, 2004). The new 
state of each cell depends on the previous state of the cell itself, and of the states of 
its nearest neighbours only (James & Kingsbery, 2006). Even when based on a set of 
simple local rules, cellular automata can generate very complex global patterns that 
are often not unlike complex processes observed in nature. 
 
One could argue that the concept of Cellular Automata is an interdisciplinary 
modelling paradigm that integrates computability theory, mathematics, theoretical 
biology and microstructure modelling. It belongs to the computational tools of 
physicists, mathematicians, computer scientists and biologists alike. Hence there are 
different interpretations and meanings of cellular automata. From the view of 
physicists, cellular automata are defined as discrete, infinite-dimensional dynamical 
systems; mathematicians describe it as a discrete space-time mathematical concept; 
computer scientists think of it as an emerging artificial intelligence technique while 
biologists treat cellular automata as an abstract representation of life. 

 
Cellular Automata can be used to study many phenomena, including communications 
theory, information transfer, computing algorithms, reproduction, competition and 
evolution (Smith, 1969; Perrier, 1996). For processes related to the theory of 
dynamical systems such as turbulence, chaos theory, fractal dynamics and other 
complex dynamic systems, the study of CA provides an effective modelling tool 
(Vichhac, 1984; Bennett, 1985). 
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1.2 Research scope 
 
Cellular Automata have become more and more popular due to their conceptual 
simplicity, ease of computer implementation, and ability to exhibit a variety of complex 
global spatial pattern evolution dynamics, all stemming from using a set of simple 
local rules. These features have attracted researchers’ attention from a wide range of 
different fields of science as elaborated in Chapter 2 hereafter. 
 
Applications of CA have been successfully used to model tumor growth, fluid flow, 
galaxy formation, biological pattern formation, avalanches, traffic jams, parallel 
computers, image processing, and earthquakes (Hu & Ruan, 2003); urban land-use 
patterns (Engelen et al., 1993); spreading of forest fires (Karafyllidis & Thanailakis, 
1996); random number generation (Seth et al., 2008). 
 
Ecological evolution can generate complex space-time dynamics. Cellular Automata 
proved to be a viable approach for ecosystem modelling due to its relative ease to 
implement differences between individual properties and account for local 
interactions. Examples include the spreading of water plant species (Babovic & 
Baretta, 1996); the evolution of vegetation (Balzter et al., 1997); animal population 
dynamics (Minns et al., 2000; Chen et al., 2002b); the spreading of marine 
macrophytes (Wortmann et al., 1997; Mynett & Chen, 2004), prey-predator population 
dynamics (Chen & Mynett, 2003) and harvesting strategies (Chen, 2006). 

 
CA based ecological models usually define simple interactions between components 
at a local level that can lead to complex spatial patterns emerging on a global scale. 
(Wootton, 2001; Chen & Mynett, 2003). These features of CA caused increasing 
popularity in ecohydraulics modelling of coupled hydro-dynamic and eco-dynamic 
processes. 
 

1.3 Objectives and research questions 
 
The classical concept of CA is based on structured computational grids. In recent 
years, however, unstructured grids have become more and more popular in 
hydrodynamic computations due to its flexibility to handle irregular geometries and 
capability to create local grid refinement where needed. In ecohydraulics modelling 
the computational meshes are usually first generated for the hydrodynamic flow and 
transport processes, and then used for ecosystem modelling. 
 
In order to avoid mapping results from unstructured grid onto structured grids in order 
to be able to use cellular automata computing, an Unstructured Cellular Automata 
(UCA) approach is explored in this thesis.  
 
While the classical CA concept consists of an array of identical interacting cells, the 
UCA concept as developed in this thesis consists of object cells and its neighbours 
that differ from each other. (Lin et al., 2008)  
 
The main objective of this research is to explore an unstructured cellular automata 
modelling approach and to investigate the performance of unstructured cellular 
automata by numerical experiments and explore possible applications of unstructured 
cellular automata in eco-hydraulics modelling. 
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More specifically, the objectives of this research are: 
1. To explore unstructured cellular automata (UCA) schemes;  
2. To evaluate the performance of UCA using numerical experiments; 
3. To investigate similarities / differences between numerical discretisation of Partial 

Differential Equations and UCA modelling;  
4. To explore the computational theory of unstructured cellular automata;   
5. To apply the unstructured cellular automata paradigm to ecological modelling; 
6. To compare unstructured cellular automata with other computational methods.  
 

1.4 Thesis Outline 
The thesis is structured in 8 chapters where 
Chapter 1 introduces the research background and motivation, the description of the 
research problems and the related methodologies. 
Chapter 2 depicts the fundamental aspects of the classical cellular automata 
modelling paradigm.  
Chapter 3 describes the concepts of Unstructured Cellular automata with construction 
method and sensitivity analysis.  
Chapter 4 elaborates computational theory of unstructured cellular automata 
including the relationship between UCA and PDE, and deriving rules for cellular 
automata from the analogous differential equations. 
Chapter 5 presents several applications of unstructured cellular automata to 
ecosystem including spatial water quality modelling for spiked pollution loading. 
Chapter 6 demonstrates the procedure of how to use unstructured cellular automata 
to quantify the evolution of benthonic macroinvertebrate under flow regulation. 
Chapter 7 compares the concepts of Individual-Based Modelling (IBM) and 
spatially-based unstructured cellular automata in aquatic ecosystem modelling. 
Chapter 8 concludes the research activities and highlights the findings of the research, 
In addition, unsolved problems and recommendations for future exploration are 
outlined. 
 





 

Chapter 2  

The concept of Cellular Automata  
_________________________________________ 
 

2.1 A brief historical overview 
Von Neumann (1949) first introduced the concept of Cellular Automata (CA) for digital 
computers using regular lattice architecture of cells. He explored options for 
self-reproduction considering 29 possible cell states. Since then, the trend has been 
to focus on investigating the simplest possible configuration which is still capable of 
(re)producing a complex dynamic system. CA constitute a mathematical system in 
which many simple components act together at discrete intervals in time and the 
states of all cells change in parallel. CA often exhibits ’self-organization’ behaviour. 
Even starting from complete disorder, irreversible evolutions can spontaneously 
generate an ordered structure – and vice versa. Following up from the initial CA 
concept, applications tend to use a regular grid as the underlying network structure. 
However, other regular grid configurations could be hexagonal or triangular structures 
(Navid and Aghababa, 2013) 
 
The classical cellular automata components update their states at discrete time steps 
according to local evolution rules, which are functions of the states of a cell itself and 
its immediate neighbours. Fig. 2-1 (a) and (b) illustrate a one-dimensional and a 
two-dimensional CA configuration with their nearest neighbours. The corresponding 
evolution rules are expressed in Equations (2-1) and (2-2) resp. 
 

 
         Fig. 2-1 (a) One-dimensional CA       (b) Two-dimensional CA. 
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where φ is a function of local evolution rules. 
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According to the definition of cellular automata, classical cellular automata have the 
following characteristics (Rothman & Zaleski, 1997; Li, 1997; Chen, 2004): 
 
(1) Homogeneity: all cells follow the same evolution rules; 
(2) Discrete in space: Cellular Automata are distributed discrete in space; 
(3) Discrete in time: evolution of the CA system is based on step-wise intervals in time; 
(4) Parallelism: all cell states are updated simultaneously, which is particularly        
suitable for parallel computing; 
(5) Locality: each cell can only gather information from its neighbours and can only 
affect its neighbours. 

In practical applications many cellular automata models have certain extensions from 
the basic features. For example for continuous cellular automata all cells have 
continuous states during the evolution process. But quite often, as pointed out in the 
conceptual analysis of cellular automata, the homogeneity, parallelism, and locality 
are the core of the algorithm; any variation on cellular automata usually follows these 
core features, especially the locality feature. 

 

2.2 Cellular Automata with different structured lattice configurations 
 

                    
Fig. 2-2 Structured square grids                    Fig. 2-3 Structured triangle grid 
 
 
Cellular Automata come in a variety of shapes. The simplest computational ‘grid’ is a 
one-dimensional array. Two-dimensional cellular configurations can consist of square, 
triangular or hexagonal cells. Classical cellular automata are based on structured 
grids, most commonly square girds. But there are other type of grids such as 
triangular grids and hexagon automata that also have isotropy.  
 
 
In the following section, classical cellular automata models are considered based on 
square grids (Fig.2-2) and structured triangle grids (Fig. 2-3). In order to provide two 
sets of lattices with the same initial conditions, the structured triangle grids are 
generated from the square grid (every square grid is divided into two sub-triangular 
grids). The initial conditions are randomly generated. In order to assign the same 
initial pattern to triangular and square grids, three kinds of initial conditions are tested, 
as listed below: 
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 In the first scenario the initial state is set for the square grid, and then the two 
sub-triangles are assigned the same initial state. As shown in Fig. 2-4, the 
population dynamics are both stable (the two sub-figures on the right side); and 
the spatial patterns (the two sub-figures on the left side) are similar. 
 

 
Fig. 2-4 Comparison between triangular and squared structured meshes (Initial condition 1) 

 
 

 In the second scenario random initial values are generated for the triangular grid, 
then averaged sub-triangles’ values are used as input for the square grid. 
 

 
Fig. 2-5 Comparison between triangle and squared structured meshes (Initial condition 2) 

 
In Fig. 2-5 for the square grid part, the influence of initial conditions vanishes rapidly 
within a few running steps. The two types of grids reach stable states, but in this case 
the spatial patterns appear to be different. 
  



Chapter 2                                                     The concept of Cellular Automata 

8 
 

 In the third scenario random initial values are generated for the triangular grid and 
the rule between every two sub-triangles is executed for a single step (like a local 
rule for initial distribution). The output is assigned to the square element.  
 
 

 
Fig. 2-6 Comparison between triangle and squared structured meshes (Initial condition 3) 
 
In summary, classical cellular automata with different structured lattices are 
implemented. Generally speaking, there is no obvious difference between the 
structured triangle grids and the square grids in a regular area, in the sense that both 
result in stable states. The influence of initial conditions vanishes rapidly within a few 
running steps. Meanwhile, some advantages and disadvantages of different kinds of 
grids appear.  
 
An advantage of triangular grids is that they have a relatively small number of 
neighbours, which is useful in some cases; drawback is that computer programming 
is not convenient; sometimes one needs to convert to a square grid. Advantages of 
square grids are that they are intuitive and simple, and particularly suitable for display 
on existing computers; shortcomings are that they can prefer regular geometry. 
Advantages of hexagonal grids are that they are able to also simulate non-isotropic 
phenomena and therefore the model can be more natural and real. 
 
 

2.3  Neighbourhood schemes of cellular automata 
Neighbourhood schemes and evolution rules are considered the most important 
properties that are worthy of further elaboration (Chen, 2008). The neighbourhood 
can be defined as a spatial region specified for a cell to gather information from its 
vicinity when the cell is updating its state (Chen, 2008). There are several 
neighbourhood schemes belonging to 2-dimension cellular automata, e.g. Von 
Neumann scheme; Moore scheme; and Margous scheme. Fig. 2-7 shows the most 
frequently used neighbourhood schemes, named after John von Neumann, who used 
it in his studies of self-reproducing machines. 
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Moore neighbourhoods for ranges r=0, 1, 2, and 3 are illustrated above. The number 
of cells in the Moore neighbourhood of range r is the odd squares ሺ2ݎ ൅ 1ሻଶ, the first 
few of which are 1, 9, 25, 49, 81, ... etc. In this case, for d-dimensional square 
meshes with a neighbourhood range r=1, the number of neighbours for the cell can 
be calculated to be (3d-1). 
 
(3) Extended Moore Neighbourhoods 
 
By extending the neighbour radius r to larger than 2 or even more, one obtains 
so-called extended Moore type neighbours. The number of neighbours in 
d-dimension on square meshes with Extended Moore type can be expressed as 
((2r+1)d - 1). 
 
(4) Margolus Neighbourhood 
 
In the above neighbourhood schemes, every cell is treated as standalone element, 
evolving synchronously with other integrated elements. Margolus neighbourhoods 
are different, since transitions are applied to cells found in non-overlapping 2-cell 
blocks. (Such as 2 × 2 squares in two dimensions, or 2 × 2 × 2 cubes in three 
dimensions, etc.) The blocks are shifted by one cell (along each dimension) on 
alternate time steps. This simple partitioning scheme turned out to be very useful for 
modelling physical systems. Another important property of a Margolus neighbourhood 
is that it allows for a very easy creation of reversible rules at the microscopic scale, as 
elaborated on (http://cell-auto.com/neighbourhood/margolus/). 
 

 

    

      
Fig. 2-9 (a) Margolus neighbourhood at t       (b) Margolus neighbourhood at (t +1) 

 

2.4 Transition rules of CA 
 
Cellular Automata update the state values of all cells synchronously at discrete time 
steps according to a transition rule R. Such rule is based on the state of the cell itself 
and on the state of its neighbours. There are several kinds of evolution rules (Wolfram, 
2002; Ganguly et al., 2003). 

2.4.1 Deterministic CA rules 

The rules of cellular automata in general are deterministic in nature (Burks, 1970; 
Wolfram, 1984; Karafyllidis & Thanailakis, 1997; Chen et al, 2002) similar to spatial 
discretization of differential equations. They are said to be deterministic if a given 
initial value of the state variable yields a unique value of the state variables at the next 
time level. Take e.g. the “parity rule” for the 5-neighbourhood: 
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Fig. 2-10 “parity rule” for the 5-neighbourhood 
 
If the state variable is Boolean or Logical type, the CA rule could be described as: 
 
Ci

t+1 = mod {(Ci
t + Ni

t + Ei
t + Si

t + Wi
t ), 2}, viz.  

Ci
t+1 = 1 if the sum of the neighbourhood states (including C itself) is odd, and  

Ci
t+1 = 0 otherwise.  

 
For other types of state variables, the Parity Rule is simply the average value among 
the total 5-neighbourhood 
 
Ci

t+1 = (Ci
t + Ni

t + Ei
t + Si

t + Wi
t ) / 5 

 
In the “Parity Rule” all cells are treated the same way, which is why it is very popular 
in 2-dimentional cellular automata and most often used in deterministic CA rules. 

2.4.2 Probabilistic CA rules 

There are variations, however, in which the rule sets are probabilistic, or fuzzy. They 
are said to be probabilistic if the value of the state variables at the next time step is 
conditioned by a probability distribution or random variable, which is compared to a 
pre-determined numerical value that is a function of the initial state variable (Guinot, 
2002).  
 
One example is the “Voter Rule” for the 5-neighbourhood scheme (here we take a 
Boolean state variable as an example): 
 
Ci

t+1 = 1      if (Ni
t + Ei

t + Si
t + Wi

t ) > 2 
Ci

t+1 = 0      if (Ni
t + Ei

t + Si
t + Wi

t) < 2 
Ci

t+1= ~Ci
t     otherwise 

 
where ~C is the complement of C:   
~C= 1       if C = 0;  
~C= 0       if C =1 
 
It was observed that in the “Voter Rule” the results may more depend on the value of 
Ci

t and it’s locally neighbours, as compared with the “Parity Rule”.  
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2.4.3  Data-driven based rules 

There are more cellular automata models that apply stochastic rules in which the 
probability of transition is calculated and generated a random process, simulating 
evolution. (Chen & Mynett, 2003a; Bandman, 2002). Data-driven approaches can be 
used to generate the rules for cellular automata. There are several kinds of 
data-driven based CA rules, such as ANN based rules and Fuzzy Logic rules. Fuzzy 
Logic rules in cellular automata have the advantage that (i) fuzzy sets and cell states 
are both finite (Flocchini, et al., 2000); (ii) inference in fuzzy logic and evolution in CA 
are rule based; and (iii) empirical knowledge is easily incorporated (Chen & Mynett, 
2004). 

2.4.4  Asynchronous rules 

In most cases, the state of a cell depends upon the output from the precious state. 
However, there are some time-independent rules. For example, two alternate rules at 
even and odd time steps were used in the problem of directed percolation (Chopard & 
Droz, 1998).  
 

2.5 Boundaries of CA  
 

 
Fig. 2-11 boundary conditions of CA: (i) periodic boundary; (ii) fixed boundary; (iii) adiabatic 

boundary; (iv) reflection boundary (dashed lines represent the virtual cells). 
 
In theory, cellular space in each dimension extends to infinity. However, in practical 
implementations, this ideal condition cannot be achieved, so we need to define 
different boundary conditions to deal with the edges of the domain. There are four 
main types of boundary conditions (Fig. 2-11): (i) periodic; (ii) reflective; (iii) adiabatic 
and (iv) fixed. Sometimes, in real applications of more realistically simulating natural 
phenomena, there may exist random type boundaries, i.e. a random value is 
generated in real time at the boundary. (Chen, 2004) 
 
(i) Periodic Boundary. This refers to a virtual boundary ‘connecting’ the end-cells. 
For the one-dimensional case, this leads to a ‘circle’. For a two-dimensional CA space, 
periodic boundaries connect the upper and lower, as well as left and right edge (Fig. 
2-12). The shape of topological torus looks like a ‘tire’ (Fig. 2-13). Periodic type 
boundary conditions are closest to infinite space and are often used in CA-research.  
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Fig. 2-12 Neighborhood Wrap-Around       Fig. 2-13 Topological Torus 
 

 
(ii) Fixed (Constant) Boundary. For the entire domain the outer boundary value is 
taken to be a fixed pre-assigned value, such as 0, 1, and so on. 
 
(iii) Adiabatic Boundary. The virtual cells beyond the border are assumed to have 
the same value as the boundary cell.  
 
(iv) Reflection Boundary. The state of the cells outside the border is determined by 
reflection (setting the boundary as the ‘mirror-axis’) from the neighbour inside the 
border. 
 
Typical for CA based ecosystem modelling, the fixed boundary conditions are often 
used for aquatic ecosystem, while the adiabatic boundary condition is usually used 
for the terrestrial ecosystem modelling (Chen, 2008). It should be noted that these 
four types of boundaries in practical applications, especially in two-dimensional or 
higher dimensional configurations, can be combined with each other. Often in 
two-dimensional space, the upper and lower boundaries use the reflection type; while 
the left and right boundaries use periodic type.  
 

2.6 Behaviour and classification of CA 

Classification of cellular automata is an important research topic at the core of cellular 
automata theory. Based on different starting points, there are a variety of 
classification categories of cellular automata, among them the most influential 
classification was undoubtedly done by Wolfram in the early 1980s. Wolfram (1984) 
classified cellular automata based on their dynamic behaviour. Gutowitz proposed a 
hierarchical and quantitative classification system based on the behaviour of cellular 
automata with Markov probability (Gutowitz, 1991). In this section, we give a further 
description and survey about the two classification categories.  

Wolfram (1984) began a systematic investigation into the evolution behaviour from 
one-dimensional cellular automata during the early 1980s. The one-dimensional CA 
has two neighbourhoods (left and right) and two states, which is possibly the simplest 
CA configuration. The lattice in these 1-d CAs is a line, and cells are updated based 
on their own state and their immediate neighbours. As the neighbourhood size is 
equal to 3, and the number of states is equal to 2, in total 256 (22*2*2) CA rules are 
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possible. Wolfram identified these 256 kinds of rules (from 0 to 255) for Elementary 
Cellular Automata. Based on a large number of computer experiments, the kinematic 
behaviour of all cellular automata was grouped into four categories (Wolfram, 1986): 

(1) Class I--- Homogeneous type: CAs evolve to a uniform configuration from any 
initial state, which means after a certain runtime CAs stabilize in cellular space, where 
the space remains steady in a fixed state and does not change with time. This state 
can be thought of in dynamical systems terms as a ‘point attractor’, or ‘limit point’. 

(2) Class II---Periodic type: After running a certain period of time, a series of cells 
tends to a fixed structure (Stable Patterns) or periodic structures (Periodical Patterns). 
Since these structures may be seen as a filter, the approach can be applied to image 
processing. The evolution of Class II CA with periodic configurations can be thought 
of as analogous to ‘limit cycles’ in dynamical systems. 

(3) Class III---Chaotic type: from any initial state, after sufficient runtime, cellular 
automata exhibit a non-periodic or chaotic behaviour, comparable to fractal 
dimension features. Small changes in initial lattice configuration can lead to larger 
and larger changes in resulting configurations, as is the case is for chaotic dynamical 
systems. 

(4) Class IV---Complex type: in some sense Class IV is ‘between’ the purely chaotic 
behaviour of Class III, and the static behaviour of Class II. These types of CA exhibit 
propagating structures, where the emergence of complex global structures from initial 
local disturbances, will continue to spread. 

From the perspective of research on cellular automata, most valuable research is the 
fourth class, because such class can be considered to have the virtue of "emergence 
computation", which can be used as a generalized computer (Universal Computer) to 
simulate arbitrarily complex calculation processes. In addition, this type of cellular 
automata in the development process also shows a strong irreversible characteristic. 
 
Wolfram also described the approximate probability of four classes’ cellular automata. 
It was noted that the CA with complex patterns appears with relatively smaller 
probability, while the third type of CA with chaotic configurations occurs more 
frequently, and the probability shows an increasing trend when k (the finite state 
number) and r (neighbour radius) increase. 
 
Although the above classification is not a strict mathematical classification, Wolfram 
was able to identify many types of dynamical behaviour from only these four classes 
of cellular automata, which is a very meaningful finding and has great significance for 
cellular automata. This classification may be universal, so that it is likely there are 
many physical systems or living systems can be classified according to this method. 
Although the details may be different, their behaviour is similar. 
 
Another classification method is based on the number of dimensions of cellular 
automata. Theoretically, cellular automata can have any number of dimensions. So, 
according to the dimension of cellular space classification, cellular automata can be 
divided into (Wolfram, 2002).  
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(1) One-dimensional cellular automata. 
One-dimensional cellular automata were researched systematically at an early stage. 
Generally speaking, it has relatively simple rules, and all possible rules can be 
studied in-depth. Wolfram classified the dynamics of cellular automata based on the 
analysis of elementary one-dimensional cellular automata (Elementary Cellular 
Automata). The distinguished features of Elementary Cellular Automata are easily 
visualized to observe their dynamic evolution: as spatial-temporal visualization. 
 
(2) Two-dimensional cellular automata.  
Here the two-dimensional Euclidean space is divided into lattices, like in Conway's 
most widely used "Game of Life" (Gardner, 1970). Because many phenomena in the 
world show a two-dimensional distribution, and there are some other phenomena that 
can be converted to two-dimensional space by abstraction or mapping methods, the 
application of two-dimensional cellular automata is most widely used and very popular. 
Many applications in CA modelling are based on two-dimensional cellular automata.  
 
(3) Three-dimensional cellular automata. 
(Bays, 1988) carried out a number of experiments in this respect, including achieving 
the Game of Life in three-dimensional space, which is the continuation and expansion 
of one-dimensional and two-dimensional cellular automata theory.  
 
(4) Higher-dimensional cellular automata. 
Currently, only a few theoretically investigations exist but lack actual system 
modelling in real applications. Meeker (1998) explored four-dimensional cellular 
automata. 
 

2.7 Applications of Cellular Automata 
 
Since its introduction, CA has been widely applied to various fields of computer 
science, mathematics, physics, chemistry, biology, ecology, sociology, geography, 
environmental science, information theory, and military science. 
 
In computer science, Cellular Automata can be seen as a parallel computer and are 
used to study parallel computing (Wolfram, 1983). In addition, Cellular automata are 
also used in computer graphics research. 
 
In mathematics, Cellular Automata are used to study number theory and parallel 
computing. For example, (Fischer, 1965) designed prime number filters (Prime 
Number Sieves). (Wolfram, 1983) 
 
In physics, the lattice gas cellular automata were most successfully applied in fluid 
mechanics. CA simulation is also applied to magnetic field theory, electric fields, etc., 
as well as to thermal diffusion, thermal conductivity and mechanical analog waves. In 
addition, CA are also used to simulate snowfall, avalanches, and dendrite formation. 
 
In chemistry, cellular automata are used to study chemical reactions and interactions 
by simulating atoms, molecules, and other microscopic particles in a chemical 
reaction. (Bar-Yam, 1996; Ostrovsky et al., 2001) used cellular automata to simulate 
the polymerization process. 
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In biology, since cellular automata are derived from the idea of biological self- 
reproduction, its application is more natural and widespread. Cellular Automata are 
used on growth of tumor cells, exploring the mechanism of the human brain (Victor, 
1990), HIV infection process (Sieburg, 1990), and self-reproductive biological 
phenomena such as the latest popular clone technology (Ermentrout, 1993). 
 
In ecology, CA were used for population dynamic process simulation, such as 
rabbit--grass, shark-fish interactions etc., which demonstrated satisfactorily the 
dynamic effects; cellular automata were also successfully applied to ants, geese, 
migratory fish and other animals simulating group behaviour. In addition, the 
CA-based biomes dispersion model has currently become to be a hot item.  
   
In sociology, cellular automata are used to simulate formation and outbreak 
processes of economic crisis, social behaviour of individuals, popular phenomena 
(such as clothing fashion, colour preference, etc.). 
 
In Geography, Tobler (1970) proposed the use of cell space models for modelling 
geographic interactions, but CA matured as a unban technique tool around the end of 
the 1980s. Green et al. (1989) used CA as a generic tool for modelling land-scope 
dynamics. Itami (1994) showed cell-based GISs may indeed serve as a tool for 
implementing cellular automata models for the purposes of geographic analysis. 
 
In information science, Cellular Automata are used for information storage, image 
processing and pattern recognition (Deutsch, 1972), (Sternberg, 1980), (Rosenfeld 
&Wu, 1980). 
 
In environmental science, researchers use cellular automata to simulate oil spill 
behaviour (Ha et al., 2012), waste water pollution, gas dispersion, and other diffusion 
processes (Slimi & Yacoubi, 2009).  
 
In military science, cellular automata are used for military combat simulation and 
battlefield understanding (Lauren, M. K., 2001). 
 
 



     

Chapter 3   

The concept of Unstructured Cellular Automata 
_________________________________________ 
 
 

3.1 Motivations to develop Unstructured Cellular Automata 
 
Cellular Automata (CA) were originally associated with regular grids, or more 
particularly, rectangular cells on a structured grid. Classical CA assumes that the 
structure of the cell configuration and the number of neighbours are homogenous for 
every location in cellular space. Since geographical features in nature (like rivers, 
coasts or lakes) are usually not regularly shaped, classical Cellular Automata with 
identical shape and size are not the most adequate to represent complex geometries 
in real world. In order to overcome this limitation, some researchers have explored to 
extend Classical Cellular Automata to irregular cell configurations (Flache & 
Hegselmann, 2001). 
 
In this thesis, the concept of Unstructured Cellular Automata (UCA) is developed for 
unstructured computational meshes which allow more modelling flexibility missing in 
structured grids. Allowing variable sizes of elements, permits a more accurate 
representation of boundaries without requiring an excessive number of points and 
elements. In unstructured cellular automata, the state of a cell depends upon the 
state of the cell at the previous time step as well as the states of the cell’s immediate 
neighbours. The corresponding evolution process could be described as 
 

  

 
where φ is a function of local evolution rules, the subscripts i, j, k, … refer to the 
positions of the neighbouring cells, and superscripts t, t+1, …  refer to the cell states 
at different time intervals. All cell states are updated synchronously in discrete time 
steps according to local evolution rules. 
 
 

3.2 Cell configurations of Unstructured Cellular Automata 

3.2.1 Unstructured Cellular Automata with triangle elements 

Fig. 3-1(a) shows the basic scheme of structured cellular automata, together with the  
triangle-based unstructured cellular automata as in Fig. 3-1(b); three neighbours of 
the triangles were taking into account. The neighbours share the common edges with 
the central triangle. The state of the central triangle is determined by the previous 
state and the state of its three neighbours. 
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Fig. 3-1 (a) Four-sided type structured CA;      (b) Three-sided type unstructured CA 
 
 
Wolfram (1983) pointed out that for a one-dimensional classical cellular automaton with 
two neighbours and two states, there are 2 2*2*2 = 256 possible transition rules. In case 
of two-dimensional unstructured cellular automata, taking the simplest configuration 
consisting of triangular elements as an example, each element now has three 
neighbours as shown in Fig. 3-1(b). Suppose each cell has three possible states, 
Red-Green-White, say, then the total number of possible rules could be calculated as   
3 3*3*3*3*3 = 4.4*1038 which is a huge number so it is impossible to explore all rules. 
 
In this chapter, we use the fair rule, which looks like ‘Rock-Paper-Scissors’, which also 
called cyclic cellular automaton (Fisch, 1992). In this system, each cell remains 
unchanged until some neighboring cell has a special value exactly one unit larger than 
that of the cell itself, at which point it copies its neighbor's value. 
 
 

ܽ௜
௧ାଵ ൌ

ە
ۖ
۔

ۖ
ۓ 1,           ݂݅  ܽ௜

௧ ൌ 0,  ܽ௜௝
௧ ൌ 1

     0,          ݂݅  ܽ௜
௧ ൌ െ1,  ܽ௜௝

௧ ൌ 0
   െ1,          ݂݅  ܽ௜

௧ ൌ 1,  ܽ௜௝
௧ ൌ െ1 

ܽ௜
௧,                      otherwise

 

 
where, 
 
 ܽ௜௝

௧  is anyone of the neighbours of ܽ௜
௧  

 ݆ ൌ 1,2,3 for Three-sided type unstructured CA. 
 
 
Representing  ܽ௜௝

௧ ൌ െ1, 0, 1 with three colours (green, white, red).In this thesis, three 
colours rule of UCA implies: “Green” beat “White”; “White” beat “Red”; “Red” beat 
“Green”. 
 
Running this rule in simulation for 100 time steps leads to the distribution as shown in 
Fig. 3-2.  
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Fig. 3-2 Unstructured CA based on triangular elements implemented with ‘Three-sided’ rule. 

(Initial distribution Red33% Green33% White33%) 
 
It should be noted there are two sub-figures in this Figure: the upper one displays the 
spatial distribution pattern (at the last time step), while the lower lines with different 
colours represent the population dynamics in time. The results from Fig. 3-2 show a 
dynamic stability. No obvious patchiness patterns can be observed and the 
populations fluctuate around some seemingly stable values.  
 

3.2.2 Unstructured Cellular automata with polygon elements 

In the previous section, unstructured cellular automata were introduced taking one 
triangular element at the centre, in analogy with the classical Von Neumann 
arrangement in structured CA. During trial experiments it was observed that the 
difference between taking a common-vertex neighbour and a common-edge 
neighbour as neighbouring cells affect the state of the central element. In this section, 
we try to explore a scheme that avoids such behaviour, by taking the common vertex 
between cells as the centre. In Fig. 3-3, the Voronoi based Cellular Automata is 
shown as polygons around cell vertices. The triangular elements in the Voronoi 
diagram (blue lines) are the triangular elements of the grid, while the resulting Voronoi 
polygons are indicated in red (Flache & Hegselmann, 2001). 
 

 
Fig. 3-3 Unstructured cellular automata based on Voronoi diagram 

(the red lines indicate the Voronoi polygons) 
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Voronoi elements are convex polygons. Points along a common boundary between 
Voronoi regions are equidistant to the corresponding spatial objects. Objects that 
share a common boundary are neighbours to each other in the Voronoi spatial model 
(Aurenhammer & Klein, 2000; Carvalho et al., 2002). Compared with the triangular 
scheme introduced above, the polygon scheme effectively places the state variables 
in the cell-vertices (CV), with related vertices as ‘neighbours’ (see Fig. 3-4). 
 

         
Fig. 3-4 (a) Neighbours in structured CA.   (b) Neighbours in polygon UCA 

 
From Fig. 3-4 the analogy can be seen with a Moore scheme on a rectangular grid. 
More in general, it has been found that the number of neighbouring cells can vary 
from 3 to 14 in a Voronoi graph, while in case of structured CA the number of 
neighbouring cells is constant (Flache & Hegselmann, 2001). 
 
 

 
Fig. 3-5 Unstructured CA simulation based on Voronoi polygon elements 

(initial conditions Red 33%, Green 33%, White 33%) 
 
From Fig. 3-5 it is observed that the simulation result shows that the populations 
become stable quite quickly, and patchiness appears. In the cases explored here, the 
polygon-based unstructured cellular automata always showed advantages with respect 
to stability. 
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3.3  Effects of Initial Conditions in UCA 
 
CA evolutions are in principle irreversible, so initial conditions of cellular automata are 
usually set at random. However, in modelling practice it is observed that initial 
conditions can influence the macro-level spatial structures that emerge from local 
interactions. So the effects of initial conditions in UCA are worthy of further 
elaboration. In reality, observations from the real world could be obtained from a 
geographical information system (GIS) or from remote sensing (RS) data (Chen, 
2009). Such set of high solution images can be processed to provide as the initial 
conditions for (U)CA modelling, as demonstrated in an application later in thesis 
(Chapter 7). 
 

3.3.1 Initial spatial distribution 

3.3.1.1 Three colours randomly mixed 

If a uniform distribution is assumed, an initial spatial distribution can be randomly 
generated. This is referred to hereafter as “three colours random mix”. It is observed 
that after some initial transitions, the populations exhibit only mild fluctuations around 
a constant value (the evolution lines in the Figures below).  
 

 
Fig. 3-6 Unstructured cellular automata with “three colours random mix” 

(Red 20%, Green 40%, White 40%) 
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3.3.1.2 One colour isolated near a boundary  

Fig. 3-7 (a) shows the initial condition when all 20% red elements are located on one 
side, while the 40% green elements and 40% white elements are randomly 
distributed over the remaining space.  
 

 
Fig. 3-7 (a) Initial conditions with “one colour isolated near one boundary” 

(Red 20%, Green 40%, White 40%) 
 
 

 
Fig. 3-7 (b) Unstructured cellular automata with “One color isolated near one boundary”. 

(Red20% Green40% White40%) 
 
 

Figure 3-7 (b) illustrates the result when 20% red elements isolated near one 
boundary. From the simulation, the following phenomena are observed. At the 
beginning, since the red ones were isolated, the green ones ate most white ones, 
causing the green population increasing suddenly. Meanwhile, the white ones 
decreased quickly. Later, with red ones propagating, the green population reduced 
and the red number rise until these three colors reached an equilibrium state.  
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3.3.1.3 One colour isolated in the middle 

Fig. 3-8 (a) shows the initial condition when all 20% red elements are located in the 
middle; Fig. 3-8 (b) shows the result that the system reaches a stable state after 30 
steps when the red elements are isolated in the middle. 
 

   
Fig. 3-8 (a) Initial distribution with 20% red isolated in the middle 

(Red 20%, Green 40%, White 40%) 
 
 

 
  Fig. 3-8 (b) Unstructured cellular automata with “red isolated in the middle”. 

 (Red20% Green40% White40%) 
 

Comparing Figure 3-6 with Figure 3-7(b) and Figure 3-8(b), it is very clear that the 
propagating speed depends on the initial distribution. For the randomly mixed case, 
the red number increases very quickly; and the system reaches the stable state after 
20 steps. For the middle isolated case, it takes 30 steps to stabilize. The 
boundary-isolated case is slowest, which requires 60 steps before the stable state. 
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3.3.2 Initial percentage analysis 

Initial conditions are two-fold: initial spatial pattern and initial percentage distribution. 
In the previous section, the initial spatial pattern was considered. In this section, the 
initial percentage is analysed. In the previous sections already two different 
initial-percentages were considered. The first case was the equal distribution Red 
33.3%, Green 33.3%, and White 33.3% (Fig. 3-2 and Fig. 3-5), which can be 
considered to lead to the fairest competition since the populations of species at the 
beginning are equal. The second case with the percentages “Red 20%, Green 40% 
and White 40%” (Fig. 3-6, Fig. 3-7 and Fig. 3-8 resp.) was an situation where only two 
species have the same initial population.  
 
In this section, another case is analysed, where all three species have different 
populations at the beginning. We take “Red 20%, Green 30%, White 50%” as an 
example. Fig. 3-9 shows the performance of unstructured cellular automata with the 
initial conditions characterized by “three colours random mix” in space and “Red 20%, 
Green 30%, White 50%” in population percentage. 
 
 

 
Fig. 3-9 Unstructured cellular automata with “three colors random mix” 

(Red 20%, Green 30%, White 50%) 
 
 
It is observed that after some 70 running steps, a stable state is reached of equal 
distributions (33.3% each); the system stays in a steady equilibrium after that. The 
initially unequal population situation disappears. The three species keep competing 
with each other leading to a dynamic equilibrium. However, the results turn out be 
totally different if other initial distributions are considered, i.e. “one (red) is isolated on 
a boundary” and “one (red) is isolated in the middle”, as depicted in the following two 
figures below. 
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Fig. 3-10 UCA with initial condition “one type isolated on boundary” 

(Red 20%, Green 30%, White 50%) 
 
 

 
Fig. 3-11 UCA with initial condition “one isolated in middle’ 

(Red 20%, Green 30%, White 50%) 
 
 
From Fig. 3-10 it can be observed that with 20% red clustering at the boundary, the 
green becomes the dominant survivor and the other two disappear. From Fig. 3-11 it 
can be seen that the outcome becomes somewhat dynamically stable again after 
multiple time steps. From this and several other experiments, the conclusion can be 
drawn that only when the initial distribution is reasonably uniform, the results become 
stable after initial transition; otherwise, one of species may become the winner, while 
the other two will die out. 
 
More UCA simulations with triangle elements were demonstrated in Appendix-A. 
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3.4 Effects of different Neighbourhood Schemes in UCA 
 
The concept of unstructured cellular automata developed in this thesis may be more 
flexible compared with classic cellular automata; it also leads to much more complex 
problems of neighbourhood schemes than classic CA. In this section some 
considerations on neighbouring schemes of UCA are put forward. (Lin & Mynett, 
2010) 
 

3.4.1 Three-sided type 

Fig 3-12 shows the basic scheme of unstructured cellular automata based on 
unstructured meshes as compared with structured cellular automata; three 
neighbouring triangles were taking into account. The neighbours share the common 
edges with the central triangle. The state of the central triangle is determined by its 
previous state and the state of its three neighbours, i.e.  
 
 

                                                    (3-1)  
                                                    
 
 

 
Fig. 3-12 ‘three-side’ type UCA 

 

 
Fig. 3-13 sample evolution of ‘three-sided type’ 

 
 
Using simple evolution rules (section 3.2.1) and a random initial distribution of ‘green’, 
‘red’ and ‘white’, a distribution pattern evolves after a simulation of 100 time steps as 
shown in Fig.3-13. The upper figure shows the spatial distribution pattern where no 
obvious patchiness can be observed. The lower curves with corresponding colours 
represent the time evolution of the individual species (often referred to as population 
dynamics), which show dynamic equilibrium after multiple time steps. The stabilized 
populations of different species also seem random. 
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3.4.2 Moore type UCA 

                    
Fig. 3-14 ‘Moore’ type UCA               Fig. 3-15 sample evolution of ‘Moore’ type UCA 
 
The Moore type considers more neighbours of the central element. For a structured 
grid, a Moor type configuration has 8 neighbours (Fig. 3-4a), while for unstructured 
grids, the number of neighbours is undetermined (see Fig. 3-14). However, if we 
consider common vertices with the central element, we obtain a neighbourhood 
configuration similar to Moore’s for structured grids. The results shown in Fig. 3-15 
indicate that the population reaches a stable state in this case. It should be mentioned 
that a patchiness pattern can appear. This can be contributed to the fact that more 
neighbours are contributing when sharing common vertices with the central triangle. 

3.4.3 Three-vertex type 

Since every triangular element has three vertices, we can consider the contribution of 
three vertices (vertex 1, vertex 2, and vertex 3) to the central element (see Fig. 3-16). 
For every vertex, the state is determined by the triangles surrounding it. For instance, 
the vertex 3 is surrounded by triangle 1, 4, 5, 6 and 3. 
 
 

           
Fig. 3-16 ‘three-vertex’ type in UCA         Fig. 3-17 sample evolution of ‘three-vertex’ type 
 
In fact, we can take the same numbers of neighbours into account as we do in the 
Moore type. But in this case, “common-edge” and “common-vertex” neighbours can 
be distinguished. In Fig. 3-16, triangles 1, 2 and 3 are “common-edge” neighbours, 
while triangle 4, 5 and 6 are “common-vertex” neighbours. The “common-edge” 
neighbours are more dominant than the “common-vertex” neighbours. The results in 
Fig. 3-17 show that in the beginning there are some fluctuations, but after a few time 
steps, the population reaches an equilibrium state.  
 

 

1 2 

3 

1

3 2 5 
6 

4 
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3.4.4 Star-like Voronoi polygons  

In this section, the Star-like scheme is proposed which is based on the Voronoi 
polygon. From Fig. 3-18 it is obvious that no matter how the shape and size of the 
polygon elements vary, the area of the central polygon element with the red colour is 
always equal to the total area of the green triangular neighbours. For every discrete 
time step, each polygon is executed as a cell and its common-edge triangles are 
taken into account as the neighbour’s cells of the central polygon. Meanwhile, when 
the polygons are regard as neighbourhoods, they can be divided into several 
triangles with the same status who affect their neighbouring polygons.  
 

             
Fig. 3-18 ‘Star-like’ type in UCA          Fig. 3-19 Sample evolution of ‘Star-like’ type 

 
 
From Fig. 3-19 it can be seen that the result shows the populations to become stable 
rather quickly, but also patchiness appears. Compared with other schemes, this type 
of unstructured cellular automata modelling has advantages mainly in stability. 
  
More UCA experiments with polygon elements were demonstrated in Appendix-B 
 

3.5 Analysis and discussion 
  
As a summary of this chapter, the following conclusions from the simulation studies 
can be highlighted. 

 
(1) Different initial spatial distributions: when three species are randomly mixed, the 

ecosystem reaches equilibrium quickly. Among the different randomly mixed 
cases considered here, either when all the three species are randomly mixed the 
evolution of the populations quite rapidly reaches a dynamically stable state. On 
the other hand, when one species is isolated either on the boundary or in the 
middle, this may cause bigger patchiness or even lead to the dominant solution of 
one species 
 

(2) Different initial percentages: if there exist more fair distributions at the beginning 
(e.g. 33% for each of the three species), the UCA shows more active equilibrium 
characteristics. If there are two kinds of species with the same initial population, 
and if there is no big difference between this number and that of the third species, 
the ecosystem also can reach an equilibrium state; otherwise, either one or two 
species will die out, or the system becomes unpredictable. 
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(3) Polygon element: the polygon element has the advantage of balancing the 

equilibrium conditions and manifesting the occurrence of patchiness 
characteristics. It also takes more neighbours into consideration. Compared with 
triangle-based unstructured cellular automata, this kind of paradigm shows bigger 
patchiness than triangular cell-based configurations. In addition, whatever the 
initial conditions are, the results converge to a steady state, where the numbers of 
different species are almost same 
 

(4) Neighbouring schemes: it was observed that the ‘Three-sided type’ is most stable, 
while the ‘Moore’ type and ‘vertex type’ show clearer patchiness. This is because 
the ‘Three-sided type’ is based on few local rules, which usually leads to 
quasi-stable dynamic states. In ‘Moore’ type and ‘vertex type’ configurations, 
more neighbours are taken into account and more patchy patterns appear. In 
order to balance the equilibrium and the patchiness characteristics, and to take 
more neighbours into consideration, the Unstructured Cellular Automata based on 
polygon-type elements were developed. Compared with triangle-based 
unstructured cellular automata, this kind of paradigm shows more patchiness but 
is more stable than ‘Three-Vertex’ type configurations. Whatever the initial 
condition is, the result is always stable, with the population of different species 
converging to their average value. When unstructured cellular automata are used 
in practical applications, the evolution rules of UCA should be selected based on 
real-life features of the phenomenon considered. 
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Table 4-1 Popular methodologies compared with CA 

Modelling 
paradigms 

Similarity 
with CA 

Difference with CA 

CA modelling paradigm 

Artificial 
Life (AL) 

Local interactions 
create global 
behaviour in 
non-linear dynamic 
systems 

CA is an important 
branch and research 
tool of AL 

AL was based on 
in-depth research of CA 

Fractal Theory 

Both make use of 
repetitive local 
interactions to create 
global patterns 

CA focuses on a 
specific mechanism of 
interaction, from which 
global patterns emerge 

FT has statistical 
implications when 
deducing the overall 
characteristics from 
local structure 

Markov 
Processes 

dynamical model with 
discrete time and 
discrete state 

CA states are closely 
related to MP concept 
of spatial location  

there is no concept of 
space in Markov Chains 
only state variables 
 

Diffusion 
Limited 
Aggregation 
modelling 
(DLA) 

Both are discrete in 
space and time and 
can generate similar 
complex patterns 

CA covers the entire 
grid space; each cell 
can only have one 
active state at a time, 
states are changing; 

DLA considers the 
movement of specific 
particles that can have 
variable states; multiple 
particles can occupy 
one grid cell. 

Individual 
Based 
Modelling 
(IBM) 

Both are discrete in 
space, focus on the 
interaction between 
individuals creating 
complex global 
behaviour  

IBM usually comprises 
individuals with sparse 
distribution, and only 
calculates individual 
behaviour 

CA covers the entire 
grid and calculates the 
status of each grid cel 
among the entire 
domain 

 
 

4.1.1 Artificial Life and Cellular Automata 

Artificial Life (AL) emerged in 1987 and, although still relatively new, is one of the 
important complexity science disciplines. AL can mimic some characteristic behaviour 
of natural living systems such as self-replication, parasitism, competition, evolution, 
collaboration. Besides, Artificial Life can simulate "a possible phenomenon of life" 
(Life-as-it-could-be), so that people can deepen their understanding of the "known 
phenomenon of life" (Life-as-we-know-it) (Langton, 1995). 
 
A cellular automaton is an important branch and research tool of artificial life. Langton 
(1986) proposed the concept of artificial life based on in-depth research on cellular 
automata. At the same time, the development of artificial life gave a new meaning to 
cellular automata. CA modelling received renewed understanding and recognition, 
and in the 1990s the theory of CA and its applications were further improved. 
 
CA has considerable similarities with AL modelling. Cellular Automata and other 
artificial life models (such as neural networks, genetic algorithms and the like), are 
both based on simplified local interactions that, together and at a larger scale, turn 
into an overall complex system behaviour. Furthermore, cellular automata, neural 
networks, and artificial life systems can be classified as network dynamics models 
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that belong to non-linear dynamics; they are closely related and interrelated with each 
other. Recently a product called cellular neural network (CNN) was introduced as a 
combination between cellular automata and artificial neural networks. 
 

4.1.2 Fractal Theory and Cellular Automata 

Cellular automata and fractal theory are closely linked. The repetitive application of 
self-replicating algorithms in case of cellular automata often leads to self-similar 
fractal configurations in space, which means that the performance of cellular 
automata sometimes can even be quantitatively described by fractal theory. The 
classic example of fractal theory in itself resembles a cellular automaton model. 
However, there are also essential differences between cellular automata and fractal 
theory: Cellular Automata focus on representing the underlying mechanism of the 
phenomenon, while Fractal Theory studies the expression of the phenomenon. 
 
CA usually starts from the rule of the particular phenomenon, and then creates a 
model to simulate the evolution of the phenomenon. A Fractal Model on the other 
hand, need not be based on physical or laws, but can be based on a mathematical 
algorithm that is applied repetitively to create particular complex phenomena by 
multiple self-similarity as described by its fractal dimension. Cellular automata and 
fractal theory both evolve from the local to the global level, but in essence there is a 
huge difference between them. The self-similarity of Fractal Theory has statistical 
meaning when deducing the overall characteristics from the local structure. Contrary 
to that, the essence of cellular automata is that "emerging" properties of complex 
behaviour of the structure as a whole, although derived from certain simple local rules, 
leads to features at the macro-level that local-levels do not have. 
 
In essence, fractal theory emphasizes the similarity and relevance between local and 
global behaviour, while cellular automata focus on "emerging" overall behaviour, 
including uncertainty and the nonlinear relationships between the global behaviour 
and the local structure. 
 

4.1.3  Markov Processes and Cellular Automata 

Markov Processes are stochastic processes where the state variables time and 
space may either be continuous, or discrete. Markov processes with discrete time 
steps and discrete states are called Markov chains (James, 1998). Markov chains 
and cellular automata are both discrete dynamic models, and have a number of 
conceptual similarities. Especially for stochastic cellular automata, each cell can be 
viewed as a Markov chain with no backward effect in time and no external effect in 
space. 
 
But even for stochastic cellular automata there are considerable differences when 
compared with Markov chains. First of all, there is no concept of space in Markov 
chains, only state variables that evolve in time, while the states of cellular automata 
are closely related to their spatial location. Secondly, the transition probability of 
states in a Markov chain is often pre-configured, while the transition probabilities of 
stochastic cellular automata are decided by the state of the current configuration and 
its neighbours’ states. 
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4.1.4 Diffusion-Limited Aggregation model (DLA) and Cellular Automata 

A Random Walk Model (from Wikipedia: Pearson, 1905) is a statistical mathematical 
model which is commonly used to provide "the most likely state". Random walk 
models usually include a number of particles that follow the same rules but with 
different random parameters, so their movements become independent of each other. 
If interactions are considered, it is possible to construct other models based on 
random walk, such as the cohesion–diffusion model. 
 
Written and Sander (1983) first proposed the Diffusion–Limited Aggregation (DLA). 
DLA can be seen as a multi-particle random walk model and its computational domain 
often includes a discrete grid. Voss (1984) improved DLA and explored the 
Multi-Particle Diffusion Aggregation model. 
 
Like cellular automata, random walk models and cohesion–diffusion models can 
generate similar complex patterns. But there are still some differences between them. 
Differences between random walk models and cellular automata are: 
- the random walk model usually only considers the motion of individual particles, 

while cellular automata models include multiple cels; 
- random walk models usually do not consider the interactions between particles, 

while CA models do; 
- particles in random walk models follow the concept of movement, while elements 

in Cellular Automata models usually refer to a state change process; 
- the space of particle movement in random walk models can be discrete or 

continuous, but cellular automata are on a discrete grid in space. 
 
Multi-particle diffusion cohesion models are very similar to cellular automata: both of 
them are discrete in space and time; deal with interacting particles; effects have local 
features. However, there are still several points of difference between them: (i) a 
cellular automaton model contains the entire grid space, while cohesion diffusion 
models consider the movement of specific particles; (ii) cellular automata usually only 
have state changes of elements and their spatial positions are fixed, while the particle 
diffusion model not only changes in state, but also contains moving particles; (iii) 
cohesion diffusion models contain multiple particles which can simultaneously occupy 
one grid cell in space, while in cellular automata each cell can only have one active 
element. Thus, in a sense, the cohesion-diffusion model is more similar to the 
multi-agent model mentioned below; it can be seen as a "no mind" multi-agent model 
in which the particle has no particular objective and there is no competition and 
collaboration between particles. 
 

4.1.5 Individual Based Model (IBM) and Cellular Automata 

Multi-Agent Systems (MAS) is a hot topic in distributed artificial intelligence research 
(Shi, 2000) on collaboration, competition and other interactions between autonomous 
intelligent agents. Agent Based Models (ABM), also known as Entity Based Models 
(EBM) or called Individual Based Model (IBM) is a subset of multi-agent systems. 
Each agent in IBM represents a intelligent entity or individual in a real-world, like 
people in a crowd, individual plants and animals in ecosystems, a car in traffic flow, 
and so on. 
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Sometimes the agent in Individual Based Models is space-based, for example a 
vehicle in traffic flow, individual plants and animals in an ecosystem, etc. But some 
agents do not have any concept of space, such as in network computing. For 
space-based agents, space can be continuous or discrete. The cellular automaton 
model with discrete space is very similar to the space-based IBM: both are discrete in 
space, allow interactions between individuals, and result in a complex global 
behaviour. But still there is a big difference: 
   

(1) Agents in IBM can move, e.g. individual animals, while elements in cellular 
automata are fixed in space; 

(2) When IBM is based on a grid, the grid is just used to locate the spatial position of 
the agent, and several agents can occupy one grid cell; in cellular automata, each 
grid cell only represents one particular state; 

(3) In essence, IBM usually comprises individuals with sparse distribution in space, 
while cellular automata cover the entire grid; IBM only considers individuals’ 
behaviour, but cellular automata calculate the status of each grid cell among its 
entire space. 

4.2 Cellular Automata and Partial Differential Equations  

4.2.1 Analogies and differences between CA and PDEs 

Partial Differential Equations (PDEs) have a history of several centuries. Famous 
scientists like Euler, Lagrange, Laplace, Poisson and so on, made many outstanding 
contributions. PDEs are the language of modern science used in many important 
fields of applied science. Typical features of PDEs are that they represent a 
space-time continuum. Contrary to that, cellular automata are fully discrete in 
space-time and in that sense; PDEs and CA can be seen as opposing calculation 
methods (Toffoli & Margolus, 1987). 
 
The advantage of partial differential equations is that they can have accurate 
quantitative solutions, often in closed analytical form in case of simplified geometries. 
But modern digital computing is based on discrete representations of space-time 
co-ordinates leading to discrete solutions of PDEs, in close resemblance to CA. Still, 
CA models are different since (i) in CA the state variables are also discrete, providing 
the possibility to represent individuals rather than a continuum, and are therefore very 
well suited for population dynamics simulation; (ii) CA has very simple transition rules 
but can lead to rather complex behaviour patterns in both time and space (Guinot, 
2002). 
 
Furthermore, cellular automata modelling has the advantage of being easily 
understood, and being highly suitable for parallel computing, allowing the perspective 
of the model to multiple local views. However, continuum-based partial differential 
equations can easily be used to describe conservation principles in science and 
engineering and even in biological and ecological modelling (Bartlett and Hiorns, 
1973). Recently, research has been done on using cellular automata as an alternative 
to (partial) differential equations. But when using a CA approach one has to face the 
problem of deducing the transition rules from continuum-based models (Guinot, 
2002).The emphasis of the next section is on discussing the relationships between 
partial differential equations and cellular automata, and how to get the transform rules 
for cellular automata modelling from the physical concepts underlying partial 
differential equation models. 
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4.2.1.1 CA and FD for the 1D Diffusion Equation 

We first choose the 1D diffusion equation for demonstration purposes: 

 

where: D is the diffusion coefficient; C is the substance concentration. 

 
The Finite Difference (FD) method of discretizing a differential equation on a regular 
grid with the evolution of states at discrete time steps has similarities with a classical 
cellular automata approach on the evolution of state variables with a finite number of 
values on a regular grid at discrete time steps. If the number of states of a cellular 
automaton is comparable to that of the related finite difference equation, then it can 
be expected that the results should also be comparable. Using a Forward-Time 
Central-Space (FTCS) scheme to discrete the 1D diffusion equation, we get 
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If the exact solution ܥ୧
୲ satisfies the equation, then the error value ߝ୧

୲ should also 
meet the discretion equation: 
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and the amplitude Am as a function of time t, 
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in which the coefficient a is constant, viz. 
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which leads to 
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we obtain  
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If  

                                                  (4-1)    

This computational stencil is similar to a structured cellular automaton in one 
dimension with two-neighbouring cells having equal weight. The truncation error can 
be analysed from the discrete steps of the partial differential equations as follows: 
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If we write the discrete diffusion equation as 
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then the truncation error is 
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12
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which is Oሾ∆t, ሺ∆xሻଶሿ.  
 

The cellular automata system is by nature a discrete system, so there is no truncation 
error. But one should realize that the truncation error should always accounted for if 
we use CA to simulate a partial equation, because the CA rules were deduced from 
the discrete equation.  
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4.2.1.2 CA and FD for the 2D Diffusion Equation 

2D diffusion equation:
2 2

2 2( )C C CD
t x y

∂ ∂ ∂
= +

∂ ∂ ∂
 

 
The truncation error of the 2D diffusion equation was analysed as follows: 
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In the same way 
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which implies that the truncation error is of the form  

Oሾ∆t, ሺ∆xሻଶ, ሺ∆yሻଶሿ 
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For stability analysis of equation  

 
We use the general discrete scheme as: 
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When θ ൌ 0 (the FTCS scheme) the stability condition reads: 
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In the particular case with  this becomes 

                                                              (4-3) 

If      then                   (4-4) 
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The second expression is similar to a CA-stencil with the “Parity Rule” (Section 2.4.2). 
If the state variables are discrete, they are exactly the finite-state cellular automata. 
However, if the state variables are continuous, they become continuous-valued 
cellular automata, which are studied by Ostrov and Rucker (1996)  
 
In some sense, continuous-valued cellular automata are similar to finite difference 
methods, but there are some subtle differences and advantages of cellular automata 
over finite difference simulations due to e.g. CA's parallel computing capabilities for 
searching large phase space, as observed by (Rucker et al., 2003) 
 

4.2.1.3 UCA and Finite volume methods (FVM) for 2D diffusion equation 

For the 2D diffusion equation: 

 

the discretization based on the triangular mesh using the FVM method becomes 
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Where: 

௜ܥ
௧ ---the concentration of element i at time step t 

 the normal flux of diffusion---   ݆݅ܨ

Vi --- the area of the triangular elements i 

 ௜௝--- the edge length of edge ijܮ

݀௜௝--- the normal projection of the distance between the centre of i and j 

 ௜௝--- the diffusion coefficient between element i and jܦ

 

For stability reasons, it is required that 

   

which implies that every element i and its neighbouring element j should satisfy the 

stable conditions: 
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then we obtain 
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This result shows that  is related to the value ݀௜௝ which is the distance between 
neighbouring elements. Using the parameter  ݀௠௜௡ which is the minimum value of 
the ݀௜௝ among all the triangular elements, Equation (4-7) could be simplified as: 
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Since there are no  concepts in cellular automata schemes, for every execution 

step the CA rules were based only on cell neighbour radius. During the numerical 

experiments in this thesis (Section 4.3), the numerical value ଵ
ଷ

݀௠௜௡was used instead 

of  in order to satisfy the stability condition 
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4.2.1.4 CA and its relations to specific differential equations  

(1)  Wave equation    

For the 1D linear wave equation, 

 

where c is the wave speed, the discrete version based on a central difference scheme 

reads  
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which can be written as: 
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This is a reversible function under certain conditions because the wave equation is 
invariant under transformation from t to -t. (Yang and Young, 2006). 
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(2) Burgers’ equation with white noise  
 
The Burgers equation reads 

∂u
∂t

൅ u
∂u
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ൌ
∂ଶu
∂xଶ ൅  υ׏ 

 

By adding Gaussian white noise the equation can be rewritten as 
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where and  are uncorrelated in space and time. 
 

By introducing the variable 

 

 

then in the limit when  tends to zero, the CA rule becomes 

 

                                                                  (4-11) 
This equation demonstrates that a generalized probabilistic cellular automaton is in 
essence related to the Burgers equation. Because the Burgers equation was used to 
present a shock wave without noise, the addition of some noise can be simulated by 
probabilistic cellular automata which can capture the disorganization of a shock wave 
(Yang and Young, 2006). 
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4.2.2 General comparison of CA and PDE 

(Wolfram, 1985; Wolfram, 2002) has shown that Cellular Automata and differential 
equations are related in case of continuum models for physical, chemical and 
biological processes. Continuum models have advantages such as high accuracy 
and conservation laws, but mathematical analyses are usually very difficult and 
analytical solutions do not always exist. There are vast literatures concerning 
numerical algorithms and numerical solutions of partial differential equations. These 
include Finite Difference methods which work very well for many problems but have 
some disadvantages in dealing with irregular geometries; Finite Volume and Finite 
Element methods which can deal with irregular geometries. Partial differential 
equations are suitable for systems with only a small degree of freedom and evolutions 
of system variables in a continuous and smooth manner. 
 
On the other hand, Cellular Automata are often considered to be an alternative 
mathematical approach. There are many references on the relationship between the 
two, for example, cellular automata have been used to simulate fluid flows and to 
solve the Navier-Stokes equations by a Lattice-gas approach. However, Lattice-gas 
CA is an idealized system where space and time are discrete values. It is mostly 
restricted to very small scales. For real applications of Navier-Stokes, Lattice-gas CA 
is not practical (Chen, 2004).  
 
Cellular Automata have the advantage that they can represent discrete entities 
directly. CA can reproduce the emergent properties of behaviours, and they have 
large degrees of freedom. Compared with PDE-based models, another unique 
characteristic of CA is that CA could generate dynamic patterns that are 
self-reproducing.  
 
CA uses vast numbers of cells or nodes that can take a number of states which 
always cause a mass of computational loads. And sometimes CA-based modelling is 
not as accurate and conservative as PDE models. However, CA has universal 
computability and the nature of parallel implementation; it is powerful and is gradually 
becoming an essential part of numerical computation.  
 
The following Table 4-2 summarizes the differences between cellular automata based 
and PDE based modelling: 
 

Table 4-2 differences between CA based modelling and PDE based modelling 
 PDE model CA model 

Degree of freedom Small Big 
Variable State Continuum Discrete 
Variable Value Spatial Mean value Individual (could be) 

Emergent properties No Yes (could be) 
Self-reproducing No Yes 

Accurate / Conservative Yes No (could be) 
Parallel implementation No Yes 
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4.3 Effects of cell size in Unstructured Cellular Automata 
 
Ideally, any simulation result should be grid independent; the result should be stable 
even when calculated on different computational grids. But CA modelling considers 
one cell as a participant element, and executes the same rules synchronously for 
every element. If we use small grids instead of large grids and run the same rules, the 
result shows different patterns since the smaller elements cause more executing 
steps among the calculating area. Especially for UCA modelling which is based on 
unstructured meshes, the size of every element is different. The size effect should be 
an important factor in the UCA rules. 
 
In this research, in order to eliminate the effects of cell size, the parameter ݀௠௜௡ was 
used. Firstly, the distance ݀௜௝ between every central element was calculated, and the 
parameter  ݀௠௜௡ is the minimum value among those distances. Take the diffusion 
problem for instance. The relation between the PDE equation and CA rules based on 
the unstructured triangular meshes was deduced in Equation (4-4): 
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This equation will be used as the evolution rules for UCA to analyse the effects of 
variable meshes. The diffusion coefficient is this equation will be set as a constant, 
the non-uniform diffusion coefficient were analyzed in the next Chapter. 
 
In this research, numerical experiments were carried out based on the diffusion 
problem. The results were compared under two groups of meshes. The first mesh set 
is the original mesh with local refinement; the second type of meshes is the rough 
mesh compared with the global refined meshes. The results show that the minimum 
distance between the cells can serve as a characteristic parameter for unstructured 
cellular automata.  
 
 

4.3.1 Original meshes & Locally refined meshes 

It was supposed that we should get the same results from two sets of meshes: one is 
the original, and the other is the mesh with local refinement. Fig 4-2 shows the 
original mesh on a circular area, while Fig 4-3 gives the local refined meshes based 
on the Fig.4-2. 
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Fig. 4-2 Original Meshes                  Fig. 4-3 Locally refined Mesh 
 
 

          
Fig. 4-4 Diffusion on Original Meshes       Fig. 4-5 Diffusion on refined Meshes 
 
 
In this case, after the local refinement, the  ݀௠௜௡ equals 0.8605. Fig. 4-4 and Fig.4-5 
are snapshots at 900 steps from the experiments. In these two experiments, 
 ݀௠௜௡=0.8605 was adopted. The results show similar diffusion values (maximum 
concentrations 1.0 compared with 1.1) and diffusion patterns, which means under this 
rule and parameter, UCA modelling can be cell independent. After running several 
experiments, it was found that if the original meshes use the same  ݀௠௜௡ as the 
locally refined meshes, the results of simulation from two sets of meshes are 
comparable. The diffusion patterns and concentration values are both similar, and the  
difference between them decreased with the time steps. 
 

4.3.2 Rough meshes & Globally refined meshes 

In this part, the experiments are executed separately on the rough mesh and global 
refined mesh. 
 
Fig. 4-6 illustrates the rough mesh, while the mesh shown in Fig.4-7 is a globally 
refined mesh generated based on the rough mesh. 
 
 
 
 
 
 
 

1.11.0 
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Fig. 4-6 Rough Mesh                    Fig. 4-7 Globally refined Mesh  

 

Using separate ࢔࢏࢓ࢊ 

For these sets of meshes, we keep their own  ݀௠௜௡ separately in the modelling. The 
 ݀௠௜௡ which belongs to the rough meshes (Fig.4-6) equals 2.5851, while the  ݀௠௜௡ of 
the fine mesh (Fig.4-7) is reduced to 1.066 after global refining. If we calculate the 
ratio between these two  ݀௠௜௡ values, the ratio is around 2.4 times.  
 
 

           
Fig. 4-8 Rough Meshes in 250 steps         Fig. 4-9 Refined Meshes in 600 steps 

 
Running the models and making a snapshot after 250 steps (Fig. 4-8) and a snapshot 
at 600 steps (Fig. 4-9) separately, it can be seen that similar diffusion patterns and 
comparable concentration values appear. The proportion approximates the ratio 
value from  ݀௠௜௡. For example, Fig.4-8 / Fig.4-9 = 600steps / 250steps = 2.4 (which 
was mentioned in last paragraph). 
 

Using same ࢔࢏࢓ࢊ 

In Fig 4-6 and Fig 4-7 we change the parameter to ݀௠௜௡ =1.066, which is the 
minimum characteristic distance belonging to the globally refined mesh. With this 
parameter and executing the model for 800 steps, the results are shown in Fig. 4-10 
and Fig. 4-11. 
 
 
 
 

1.8 1.6 
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Fig. 4-10 Rough Meshes at 800 steps          Fig.4-11 Refined Meshes at 800 steps 
 
The results in Fig. 4-10 and Fig. 4-11 show similar diffusion patterns. From the graphs 
it can be seen that using the same characteristic parameter, UCA modelling under 
different meshes leads to almost the same diffusion process. 
  

4.3.3 Analysis and discussion 

In this research, the minimum distance ݀௠௜௡ was adopted as a characteristic 
parameter in unstructured cellular automata modelling. The results show that in most 
cases, the performance of UCA was comparable even based on different sets of 
meshes. Generally speaking, the results obtained similar concentration values and 
diffusion patterns at the same time step if the same ݀௠௜௡ was adopted. On the first 
set of meshes, we used the ݀௠௜௡ which belongs to the locally refined meshes, and in 
the case of the second type of meshes, the parameter ݀௠௜௡ was calculated from 
globally refined meshes. With the same parameter, the results from rough meshes 
and globally refined meshes are very similar. Meanwhile, if the ݀௠௜௡ from rough 
meshes and globally refined meshes are used separately, the results are still 
comparable but proportional to the time scale, which is related to the ratio of ݀௠௜௡. 
 
 

1.2  1.4 





     

Chapter 5  

Unstructured cellular automata for   
spatial dynamic ecological modelling 
_________________________________________ 
 
 
Ecosystem changes continuously in space and time, thus predictions are important 
for people to accommodate these changes and take proper actions. Models are 
broadly used and proven to be effective to achieve the objective.  
 
Ratze (Ratze et al., 2007) summarized three common numerical paradigms which 
were used to represent spatial pattern dynamics: (i) Physical paradigm, based on 
differential equations, either Ordinary Differential Equations (ODEs) or Partial 
Differential Equations (PDEs); (ii) Discrete paradigm, including Cellular Automata (CA) 
and Discrete Event Specification systems (DEVS); (iii) Agent based paradigm, such 
as individual-based models (IBM) and Multi-Agent Systems (MAS). (Li, 2009) 
 
Although partial differential equations may naturally fit different situations and have 
been widely used at present, they can be mathematically complex thus difficult to 
solve. Meanwhile, most of the current ecological models are capable of simulating the 
conventional system; however, they are not sufficient when describing behaviors of 
systems under novel conditions (Evans, M. R., 2012). Cellular Automata employ very 
simple mathematical rules, but has the advantages to describe complex dynamics. 
This chapter demonstrates the capability of Unstructured Cellular Automata (UCA) in 
ecological modeling through three applications, including the prey-predator system; 
algae blooms dynamics; and water quality changes of spiked outlet in Hong Kong. 
 

5.1 UCA for prey-predator model 
Prey-predator dynamic is a classical problem of ecosystem evolution. Vito Volterra, a 
mathematical physicist, first used simplified differential equations to simulate the 
dynamics of prey and predatory fish populations in the Adriatic in 1926 (Volterra, 1926; 
Scholarpedia, 1(10):1563.). On one hand, this kind of models has the advantage of 
mathematical tractability; and most of which can be solved analytically to give precise 
results. But, on the other hand, it seems obviously that the models can never reflect 
any particular system accurately since they do not consider realistic conditions.  
 
A Cellular Automaton has been applied for the Prey-Predator models, which can be 
found in (Chen, 2003; Cattaneo et al., 2006; Arashiro and Tome, 2007; Farina and 
Dennunzio, 2008). However, classical cellular automata are built on the structured 
grids, where every element (grid) indicates one prey, one predator, or an empty state. 
The state of the predator is determined by the defined neighbors. The predator itself 
can’t move to another grid. In classical CA-based prey-predator models, each grid is 
considered as an individual. But in reality, the distribution and the group number are 
more important than individuals. In addition, predators’ abilities to search for food 
should be taken into account. 
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Fig. 5-1 Schematic diagram of animals’ movements 

 
Fig. 5-1 shows the schematic diagram of the proposed model, where the dark areas 
are covered by enough grass (food) and the red points represent individual animals. 
The yellow arrows indicate the possible routes along which the predators can search 
for food. 
 
The unstructured grid used in this model is spatially non-uniform. If the density of the 
predators is relatively high, or the grass distribution is very complicated, the girds can 
be refined to mimic the reality.
 
In order to simulate the movements of the vegetarians, optimization techniques are 
adopted. Assume the vegetarians have the intelligence to search food for survival. If 
there is enough grass in a grid for vegetarians to feed on, they will stay within the grid; 
otherwise, some of them will move to neighboring elements (if grass is still redundant 
in the neighboring elements). Mostly, the vegetarians have three options (neighboring 
elements) to choose; but in some special locations (such as coroners), the 
vegetarians have only one direction to move. If grass is limited globally, the searching 
routes are optimized in order to obtain maximum possible survivors. 
 
The growth and the spread of grass have been taken into account. The reproduction 
rate of the vegetarians (represented by sheep vegetarian) is also considered. 
 
The initial conditions:  
(1) grass density in each element—dgrass(i); 
(2) the number of vegetarians in each element—nsheep(i). 
…… 
Some parameters: 
(1) the amount of grass a sheep needs within tΔ  —msheep_need; 
(2) reproduction rate of sheep—k1         
(3) growth rate of grass—k2 
(4) spread rate of grass—k3 
…… 
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Some variables: 
(1) the maximum number of sheep in the element: 

 maxsheep(i)=dgrass(i)*area(i)/msheep_need; 
(2) the number of unknown variables at each time step—Nunknown 
(3) the coefficient array of linear programming problems— A(i, Nunknown) 
(4) Total time for running — T 
(5) Total elements — Etotal 

 
 

The procedure can be summarized as following (Fig. 5-2): 
 

 
Fig. 5-2 T he calculate process of the grass-vegetarian model 
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Snapshot and population dynamics of the developed grass-vegetarian model are 
shown in Fig. 5-3 and Fig. 5-4. The green grids stand for the areas covered by grass. 
The white grids represent the areas with less grass. The small black circles represent 
the movements’ routes of vegetarians. 
 
 

 

 

Fig. 5-3 The snapshot at 20 steps after 
running of the grass- vegetarian model 

Fig.5-4 The population dynamics of the 
grass- vegetarian model 

5.2 UCA for algae bloom model 
The performance of algal bloom models is restricted by spatial heterogeneities and 
local interactions, which can be simulated by a cellular automata paradigm. The 
classical cellular automata paradigm is based on structured grids with predefined 
interactions between species at a local level. Unstructured meshes can provide the 
flexibility, which the structured grids are lacking, to focus on resolution on features of 
interest and avoid the unfortunate staircase representation of boundaries. 

 
In this section, cellular automata model was developed based on the geometry of the 
North Sea. Both classical CA and unstructured CA were applied and the results were 
compared.  

 
There are 72554 triangular elements and 35733 vertices in the unstructured mesh, 
and 17560 curvilinear elements and 18192 vertices in the structured mesh. The 
curvilinear mesh has fewer grid vertices, at the cost of losing some geometric 
configuration.  
 
When the initial spatial distribution is “randomly mixed”, the two kinds of meshes turn 
out to have the same regularities: the dynamic competition reaches to an equilibrium 
state, where the population of the three colors roughly stabilizes around their average. 
(See Figure 5-5 & Figure 5-6) 
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The developed Unstructured Cellular Automata provide the flexibility for isotropic 
system, which is missing in classic Cellular Automata, and they also demonstrates 
their capabilities in ecosystem modeling. The present work focused on the 
methodology of Unstructured Cellular Automata. More practical studies are to be 
given to verify and improve the unstructured cellular automata paradigm. 
 

5.3 Spatial water quality model for spiked pollution  

5.3.1 Non-uniform diffusion water quality model 

It is generally believed that the water quality problem could be simulated by physical 
transport equations. (Postma et al., 1998; Stelling, 1984.) But for spiked-shape 
problem, some coefficients vary temporally and spatially. Besides, several factors 
could not be taken into account by using the physical equations. Therefore, it is 
difficult to simulate this kind of problem by using the transport equations. An 
alternative method is the Cellular Automata paradigm, which is proved to be a useful 
method for simulating non-smooth system. 
 
To simulate the spiked pollution loading phenomena, different diffusion coefficients 
were tested in the UCA modelling in this research. For x direction the diffusion was 
set as normal distribution; and in y direction, several numerical experiments were 
carried out.  
 
Fig 5-9 (a) shows the distribution of diffusion coefficient in x direction, where the 
normal function was adopt as Ex~ N(0, 0.42) 
Fig.5-9 (b) shows the setting of diffusion coefficient in y direction based on the 
function: Ey=y/(y+1) 

 

                             

Fig. 5-9 (a) Distribution of diffusion 
coefficients in x direction (3D view)                                             

(b) Distribution of diffusion coefficients in y 
direction (3D view) 

 
More coefficient distributions in y direction were tested, as shown in the coefficient curves 
in Fig. 5-10 together with their corresponding functions. They included the constant 
coefficients (e.g. Ey=5), and the functional settings that gradually increased or decreased 
along the y direction from the entries of pollution sources on the boundary. 
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Fig. 5-10 Numerical experiments on diffusion coefficient setting in y direction 

 
With various coefficient settings in 2D space, the simulated result shows different 
diffusion processes and patterns:   

(1) Ey=5 
If a constant coefficient was adopted, compared with other coefficients, the 

constant value should be set within a small threshold value. For instance, when the 
maximum of the other coefficients is close to 8, the constant coefficient could not 
exceed 5. Otherwise, the UCA modelling became unstable. 

(2) Ey=8y/(y+1) 
The curve of experiment (2) is above the other curves, which means the value of 

this setting is higher than the others, and it can cause the quickest diffusion process 
among all the experiments. 

(3) Ey=9y/(y+30)  
(4) Ey=9(y+30)/(y+50) 
(5) Ey=(y+100)/(y+10) 
 

Experiment (3) diffused very slowly at the beginning. Compared with experiment (4), 
the diffusion region of experiment (3) is much smaller when they decrease to the 
same concentration range. To reach the same concentration value, Experiment (5) 
needs the longest time, but its diffusion area is larger than experiment (4).  
 
After knowing the effect of diffusion coefficients in UCA, some modelling exercises 
were conducted. By setting the initial concentrate on the bottom of a round boundary, 
the result from isotropic diffusion coefficient shows the round diffusion patterns 
(Fig.5-11). It is not suitable for simulating the spiked pattern problem. By using 
suitable anisotropic and non-uniform coefficient, the spiked patterns could be well 
captured (Fig.5-12) 
 

                       
Fig. 5-11 Uniform diffusion coefficient     Fig. 5-12 Non-uniform diffusion coefficient
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5.3.2 Application for study case (Numerical experiment)  

In this research, the Victoria harbor was taken as the study case (Fig. 5-13) where the 
yellow line is the geometric boundary. 
 

 

Fig. 5-13 The map of Victoria harbor 
 
The primary meshes were generated using Delaunay triangulation technique (Fig. 
5-14). To get more details about the diffusion process, the meshes were refined at the 
source entries of the pollution (Fig. 5-15). The initial pollution conditions 
(concentration value and locations) were hypothesized for the simulation 
experiments. 
 

                 
Fig. 5-14 Initial meshes based on geometry                                            Fig. 5-15 Local refined at source entries 
 
The diffusion coefficients were set according to the numerical experiments in Section 
5.3.1 as the following: in x direction, the diffusion coefficient obeys normal distribution; 
in y direction, the trend of coefficient is based on the tanh(x) function, where c is an 
adjustable parameter (Fig. 5-16).  
 
Ex~ N(0, 0.42)                 
Ey= - 0.5*tanh(c*x) + 0.5 
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Fig. 5-16 (a) Distribution of diffusion 
coefficients in x direction 
 

 (b) Distribution of diffusion coefficients in y 
direction 

 
Fig. 5-17 Snapshot at step10      

 
Fig. 5-18 Snapshot at step1000 

 
Fig 5-17 is a snapshot at step 10 which shows the pollutant diffused near the sources 
region. After 1000 steps, the spiked pattern became obvious, as shown in Fig. 5-18. 
The simulation results indicated that by using suitable anisotropic and non-uniform 
diffusion coefficients, the spiked patterns could be captured by UCA modelling. Even 
for the small-scaled pollution, the pollutant region at source entries could be easily 
refined and modelled based on the unstructured meshes. 
 
These numerical experiments gave a general idea to apply unstructured cellular 
automata in the water quality modelling. The developed unstructured cellular 
automata provide flexibility which is missing in classic cellular automata. 
 
Until this stage, the study focused on the methodology of unstructured cellular 
automata and its potentials in ecosystem modelling. In the next sections, more 
realistic simulation studies were carried out to demonstrate the capabilities of 
unstructured cellular automata paradigm in ecological modelling. 
 
 
 





     

 

Chapter 6  

Spatial evolution of benthonic macroinvertebrate 
under flow regulation using hybrid modelling 
_________________________________________ 
 
 

6.1 Introduction  
 

Flow regulations usually imposed great impacts on aquatic ecosystem, such as 
alteration of hydrological and water quality conditions, disrupt of habitat connectivity, 
nutrient cycling and sediment transportation, block of fish path and invertebrate 
movements (Santucci et al., 2005).  

 
In recent years, great efforts have been taken to evaluate the effects of flow variability 
on aquatic ecosystem (Li et al., 2010; Li et al. 2012; McClain et al. 2014; Ye et al., 
2010). Being an important component, benthic macroinvertebrates play a special role 
in aquatic systems. Therefore, it is valuable to investigate the relationships between 
flow alterations and macroinvertebrate distributions. Plenty of studies have focused 
on macroinvertebrates (Chen et al., 2011; Chen et al., 2013; Cortes et al., 2002; 
Sheldon & Thoms, 2006; Dunbar et al., 2010), and most of these researches have 
assessed the qualitative impacts. However, with a growing awareness of the value of 
natural ecosystems, there are strong demands to investigate the impacts of flow 
regulation quantitatively and to seek for implementable remediation measures 
(Nagaya et al., 2008; Li et al., 2010).  

 
This research aimed to quantify the spatial changes of macroinvertebrate distribution 
induced by flow regulation. To simulate the spatial distribution of macroinvertebrates 
under different flow regulating conditions, a hybrid ecohydraulics model was set up, 
which couples a water quality module with a macroinvertebrate habitat module. The 
habitat module was based on an Artificial Neural Networks (ANN) model, which was 
trained and validated by two-year datasets.  
 
To understand the spatial patterns of macroinvertebrate dynamics, cellular automata 
techniques were introduced in this study. Two criteria are adopted: patch analysis 
using cellular automata to generate the patches of macroinvertebrate, and to 
calculate the areas of the patches; homogeneity characterizing the cluster feature of 
the entire system (M.-Th. Hutt & R.Neff, 2001). 
 
The realistic scenario together with the hypothesis scenario were implemented and 
compared. 
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6.1.1 Description of study area 

Lijiang river basin (Fig. 6-1), a world famous scenic spot with natural karst landscape, 
is located in the Southwest of China. It originates from the Mao’er Mountain and flows 
from north to south crossing through Guilin, Yangshuo and Pingle cities. (Chen, et.al., 
2013) 
 
The main stream of the Lijiang River is 214 km long, and the total catchment area is 
12,285 km2.(Miao, 1997) The Lijiang River is generally divided into three reaches 
according to the physical features. The upstream extends from Mao’er Mountain to 
Guilin city, where the substrate is mainly mud and fine sand. The middle stream, 
down to the Yangshuo County, is characterized as transitional zone with high flow 
velocity and pebble sediment. The downstream is to the confluence of Guijiang River, 
where the sediment mainly consists of pebble and gravel. Due to the special karst 
landscape and the strong seasonality of rainfall, the daily averaged discharges in the 
Lijiang River vary from 12 m3/s to 12,000 m3/s, with an annual average of 120 m3/s. 
The recorded minimum discharge was 8 m3/s, which posed great threats to the local 
water supply and aquatic ecosystem. Therefore, a series of reservoirs have been or 
will be constructed in the main stream and the upstream tributaries to overcome this 
problem. At present, the Qingshitan reservoir is in full operation, and the Chuanjiang 
reservoir was completed in 2012. The Darongjiang reservoir is under 
construction.(Chen, et.al., 2013) 
 
With the regulation of the Qingshitan reservoir, the discharge in the dry season was 
increased from 12 m3/s to 28 m3/s. After all the reservoirs are in operation, the 
discharge in the dry season will raise up to 60 m3/s. Since the hydro-environmental 
conditions have been dramatically altered by the operating reservoir and will be 
further modified, it is important to investigate their effects on the aquatic ecosystem. 
Previous studies focused on the fish habitat (Li et al., 2010) and riparian vegetation 
evolution (Ye et al., 2010), while this research concentrated on macroinvertebrates, 
and particularly using unstructured cellular automata to quantify the spatial-tempo 
dynamics of macroinvertebrates. 

 
Fig. 6-1 Lijiang River Basin and data collection reaches, QST: Qingsitan Reservoir (Chen et 
al., 2011) 
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6.1.2 Data Collection 

In total, three reaches (separately located at upstream, middle reach, downstream, 
See Fig. 6-1 were selected, in which samples for physical, chemical and biological 
analyses were taken. These samples were examined twice over a 2-year period 
(autumn of 2009 and summer of 2010), and the database consisted of 300 instances. 
 
At each site, physical and chemical parameters were measured prior to 
macroinvertebrate sampling. Temperature (℃), conductivity (mS/cm), turbidity (NTU), 
dissolved oxygen (mg/L), and pH were measured in situ using a portable YSI (YSI 
6600). Water depth (cm) was measured with a wading rod and flow velocity (m/s) was 
measured by a hydrometric propeller near the bed for 60s time interval. 
 
Water samples for chemical parameter analyses were collected at the position about 
10-15 cm above the river bed at each microhabitat, and were preserved in 500 ml 
polyethylene bottle. All the water samples were placed in an ice chest at 4℃, and 
were analyzed immediately after the samples arrived in the laboratory, which was 
within 24 h after collection.  
 
The total nitrogen (mg/L) and total phosphorus (mg/L) were determined by UV 
spectrophotometer. The chemical oxygen demand (COD, mg/L) was analyzed by 
potassium dichromate colorimetric method. 
 
The grab sample bed material type was monitored visually. Manning coefficient was 
calculated depending on reliable and consistent evaluations of channel condition and 
an accurate measurement of the cross-sectional area, hydraulic radius, and slope. 
 
The hydrological data during 2008-2010 were collected from the local hydrological 
stations, including daily averaged discharge, water level, and water quality 
parameters. Furthermore, the bathymetry and the flow profiles of the studied river 
section were measured by the Doppler flow measurement device--River Cat. In total, 
100 cross-sections (with an interval of 50 m) were measured and the bathymetry of 
the entire area was obtained by interpolation. 
 
Macroinvertebrate living in different habitats were sampled using a perterson grab 
dredger (1/20 m2). The sampled materials were first put in a plastic basin, then the 
materials with size below 0.5 mm were eliminated by means of sieving using a metal 
sieve, and finally the remaining materials were preserved in 100ml plastic bottles with 
5% formaldehyde solution. The macroinvertebrate taxa were identified in the 
laboratory under a stereoscopic dissection microscope (magnification 10~75 times).  
 
In total, there are 300 instances sampled from the three reaches of Lijiang River, 
including 108 instances in the upstream (Tan Xia), 90 instances in the middle stream 
(Da Yu), and 102 samples in the downstream (Fu Li). 
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6.2 Hybrid Model developments 
The hybrid model was applied to the compound channel in the middle reach of Lijiang 
River, where the flow was seriously regulated by the Qingshitan reservoir upstream. 
The integrated model simulated water temperature, dissolved oxygen, water depth, 
water velocity and the distribution of Semisulcospira amurensis (Chen et al., 2011) 

6.2.1 Two-dimensional water quality module 

To model the spatial distribution of macroinvertebrate, the study area is divided into 
20m*20m meshes, as shown in Fig. 6-2. 
 

 
Fig. 6-2 Mesh Generation (Middle stream) 

 
Basing on the measured cross-sectional data, the bathymetry of the entire river 
reaches was obtained through trigonometric interpolation method, as shown in Fig. 
6-3. 

 
Fig. 6-3 River Terrain in DaYu reach (Middle Stream) 
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Delft-3D software package was used to simulate the hydrodynamic and water quality 
processes. In the flow module, daily averaged discharge was used at the upstream 
boundary and daily water level was used at the downstream boundary. The time step 
was set to 6 seconds.  
 

There modeled environmental factors, affecting the spatial distribution of 
macroinvertebrate, included flow regime (water depth and flow velocity) and water 
quality (water temperature, dissolved oxygen, bed material type). The hydrodynamics 
was modeled by the two-dimensional shallow water equations (6-1)-(6-3):   
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where, Qa is discharge or withdrawal (m3/s) , H is water level (m), u, v are velocity in x 
and y direction (m/s), υ is horizontal eddy viscosity coefficient (m2/s), f is Coriolis 
parameter, τx, τy are bottom shear stress. Implicit scheme was applied to solve the 
equations numerically.  
 
Meanwhile, the water quality was modeled by the two-dimensional 
advection-diffusion equations (6-4) with source/sink and reaction terms: 
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∂ ∂ ∂ ∂ ∂

                               (6-4) 

where, c is concentration (mg/L), Dx and Dy is dispersion coefficients (m2/s), S is 
source or sink term and fR(c, t) is reaction term.  

 
It is well known that reservoir operation dramatically changed water temperature and 
dissolved oxygen concentrations that have great impact on river ecosystem. 
Therefore, water temperature and dissolved oxygen concentrations were taken into 
consideration in the water quality module, and bed material type is defined as 
constant value.  
 
The monitored data of environmental factors were grouped into the dry season and 
the high flow season. The mean value of monitoring data in high flow period was 
selected for model parameter calibration. Some Parameters were listed in Table 6-1. 
 

Table 6-1 Parameters in Two-dimensional Water Quality module 
Parameter Value Parameter Value 
Cp (J/(kg℃) 4.2╳103 ρ (kg/m3) 1000 
Φso (W/m2) 188.27 CS (g/m3) 7.30╳10-3 
C (%) 0.3 K1,20(1/d) 0.1 
W (m/s) 1.00 i (‰) 1.34 
Ts (℃) 32.0 U(m/s) 0.13 

Td (℃) 26.5 H(m) 0.87 

Ta (℃) 28.0   
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where: 
Cp---  Specific heat of water 
Φso--- the total solar radiation during sunny days 
C --- the cloud cover ratio 
W -- the wind speed at 10m on the water 
Ts-- the temperature of the water surface 
Td-- the dew point temperature 
Ta-- Air temperature on the water at 2m 
ρ -- the density of water 
CS--the saturation concentration of dissolved oxygen under temperature T 
K1,20 –the BOD5 degradation rate constant (temperature=20) 
i-- the river slope 
U --the flow velocity 
H-- the water depth 

 
CBOD degradation rate takes value from 0.04 1/d to 0.08 1/d. Due to the 
characteristics of the river in terms of bed materials, meandering shape, and flat 
bathymetry, Manning roughness coefficient ranges from 0.04 to 0.05. 

6.2.2 macroinvertebrate habitat module  

The aim of macroinvertebrate habitat module is to predict the possibility of S.  
amurensis presence. Due to the high complexity, nonlinearity and insufficient 
knowledge to the relation between hydro-environmental conditions and 
macroinvertebrate presence (Chon et al., 2002, Chen and Mynett, 2006), the Habitat 
module was developed based on an artificial neural network (ANN). A three layer 
feed-forward back-propagation neural networks was constructed in order to map the 
presence of S. anmurensis from hydro-environmental parameters. (Chen et al., 2011) 
 
In the macroinvertebrate habitat module, five hydro-environmental parameters were 
selected as the inputs of ANN model, which included water temperature, dissolved 
oxygen, water depth, water velocity and manning coefficient (Table 6-2). The 
absence/presence of S. amurensis is taken as the output. Thus the ANN network 
consisted of 5 inputs and 1 output (Chen et al., 2011). 
 
 

Table 6-2 Variables and units used in the ANN model 
Variables Units Min Max Mean SD 
Temperature °C 15.99 34.11 23.44 5.84 
Water depth cm 5.6 686 109.2 96.1 
Flow velocity m/s 0 1.869 0.287 0.339 
Dissolved oxygen mg/L 6.12 12.56 9.79 1.83 

Manning 
coefficient 

4 classes ( silt =0.033; 
silt and grass=0.039; 
cobble=0.042; cobble 
and grass=0.046) 

0.033 0.046 0.042 0.003 

SD: standard deviation 
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The presence and absence of macroinvertebrate are represented by S = 1 and S = 0, 
respectively. And the continuous values from model outputs are classified into 1 or 0 
using a threshold of 0.5 (Dedecker et al., 2004). 
 

1      0.5
0      0.5

a
S

a
≥⎧

= ⎨ <⎩                                                  
in which a is the ANN model output value. 
 

6.2.3 Model verification 

The distribution of S. amurensis was verified under current flow condition (with 
discharge equal to 28 m3). Fig.6-4 and Fig. 6-5 showed the snapshots of four 
environmental factors (Water temperature, Dissolved oxygen, water velocity and 
water depth) modeled by the two-dimensional water quality module (described in 
Section 6.2.1).  Using the modeled values of the environmental factors as the input 
(together with manning coefficient), ANN module simulated the distributions of S. 
amurensis, as shown in Fig. 6-6. 
 
It can be seen that compared with the filed data of S. amurensis which was collected 
in September 2009, the hybrid model reproduced the similar distribution of S. 
amurensis.  
 
 

 
 
Fig. 6-4 The snapshot of water temperature and dissolved oxygen when discharge is 28 m3  
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Fig. 6-5 The snapshot of water velocities and depths when discharge is 28 m3 

 

 
Fig. 6-6 The Simulated and observed distribution patterns of S. amurensis under current flow 
regime (model verification) 
 

6.2.4 Scenario analyses 

Under the regulation of reservoir, the discharge will raise from 28 m3, to 60 m3, which 
will change the hydro-environmental conditions dramatically. Figure 6-7 and Figure 
6-8 presented the modeled flow velocity, water depths, water temperature and 
dissolved oxygen for the discharge of 60 m3.  
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When the flow is 28 m3/s, the water temperature in the studied area ranges from 30 to 
37.68 °C, with an average of 31.93 °C; dissolved oxygen ranges from 8.03~ 9.15 
mg/L, with an average of 8.77 mg/L; flow velocity varies between 0.60 m/s and 1.73 
m/s, with an average of 0.12 m/s; water depth ranges from 0 cm to 544.9 cm, with an 
average of 87.2 cm. 
 
When the flow is raised to 60 m3/s, water temperature in the studied area ranges from 
30 to 37.19 °C, with an average of 31.91 °C; dissolved oxygen ranges from 8.03 to 
9.14 mg/L, with an average of 8.57 mg/L; flow velocity varies between 0 and 1.91 m/s, 
with an average of 0.18 m / s; water depth ranges from 0 to 671.1 cm, with an 
average of 148.1 cm. 
 

Table 6-3 Water Environmental factors under two scenarios 
Flow 28 m3/s,     60 m3/s 

 Min Max Average Min Max Average 
Water Temperature 

(°C) 30 37.68 31.93 30 37.19 31.91 

Dissolved Oxygen 
(mg/L) 8.03 9.15 8.77 8.03 9.14 8.57 

Flow Velocity (m/s) 0 1.73 0.12 0 1.91 0.18 
Water Depth (cm) 0 544.9 87.2 0 671.1 148.1 

 
From Table 6-3, it can be seen that compared to the current condition of 28 m3, the 
average water depth and water velocity increased significantly. The average water 
depth increased with 60.9 cm, leading to the decrease of dry riverbed from 5.12×105 
m2 to 4.69×105 m2, which directly affected the macroinvertebrate distribution. The 
other two factors, water temperature and dissolved oxygen, were also simulated, but 
their changes are slight. 
 
After water replenishing, hydro-environmental conditions of the river has a significant 
difference during the dry season. The riparian area decreased, while the deepwater 
area increased.  

 
Fig. 6-7 Water temperature and dissolved oxygen when discharge is 60 m3 



Chapter 6 Special evolution of benthonic macroinvertebrate under flow regulation using hybrid modelling 

70 
 

 

 
Fig. 6-8 the snapshot of water velocities and depths when discharge is 60 m3 

 
 
Using the modeled results of the environmental factors as inputs, the 
macroinvertebrate habitat model can simulate the spatial evolution of benthonic 
macroinvertebrate under flow regulation.  
 

 
Fig. 6-9 the macroinvertebrate distribution pattern when discharge is 28 m3 (Yellow color: 
bank area, green color: presence of macroinvertebrate, blue color: absence of 
macroinvertebrate) 
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Fig. 6-10 the macroinvertebrate distribution pattern at scenarios when discharge is 60 m3 
(Yellow color: bank area, green color: presence of macroinvertebrate, blue color: absence of 
macroinvertebrate) 
 
The modeled macroinvertebrate habitat distribution of the two scenarios was shown 
in Fig.6-9 and Fig6-10. When the discharge is 28 m3/s(Fig 6-9), the bank area was 
5.12×105 m2, the empty area was 8.06×105 m2, and the potential habitat area was 
11.35×105 m2. When the discharge is 60 m3/s (Fig 6-10), the bank area was 4.69×105 
m2, the empty area was 13.49×105 m2, and the potential habitat area was 6.36×105 
m2 

 
Table 6-4 Comparison of S. amurensis distribution area  

between the current flow regime and designed flow 
Discharge Presence area Dry area Absence area 
(m3/s) (m2) (m2) (m2) 
28 11.36 ± 0.013×105 5.12×105 8.04± 0.014×105 
60 6.39 ± 0.009×105 4.68×105 13.46± 0.008×105 

 
From Table 6-4, it can been seen that after flow regulation, the S. amurensis habitat 
area was decreased from 1.35×105 m2 to 6.36×105 m2, with the reduction percentage 
of 44%. 
 
The above results showed the changes of habitat area due to flow regulation. 
However, it is also important to know the effects on spatial distribution and geometry 
fraction of macroinvertebrate’ habitat. The next section will apply unstructured cellular 
automata method to quantify the spatial patterns of macroinvertebrate habitats. 
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6.3 Quantify spatial distribution of macroinvertebrate using cellular 
automata 

6.3.1 Patch analysis of macroinvertebrate habitat using cellular automata 

In this section, the cellular automata technique was applied to analyze the spatial 
pattern of macroinvertebrate habitat. (Lin, et al., 2011a) ‘Four neighbors’ scheme was 
implemented in the CA paradigm (Figure3-1 (a)). 
 
The patch searching procedure is given in the following: 
 
(1) Firstly, the state (presence/ absence) of each CA element from the habitat module 

is checked. If the element’s state is ‘presence’, this element is considered as an 
individual patch at the beginning, and is assigned a non-redundant patch ID 
number as the initial condition in the CA modeling. 

(2) Secondly, run the CA model synchronously. If any of the neighbors has the same 
state with the central element, reallocates the patch ID number and unify the 
patch ID number between the central element and the neighboring element when 
their states are the same.  

(3) Repeat the second step until the total Patches ID number stabilized, which means 
any element has the same Patch ID number with their neighbors if they are both 
under presence state. Meanwhile, the area of each patch can be calculated based 
on the area of element. The results of patch analysis were shown in Table 6-5. 

 
Table 6-5 Macroinvertebrate Patch Analysis 

Patch Analysis 
Discharge 

28 m3/s 60 m3/s 
Patches number 37 45 
Max patch’s area (m2) 779359 137576 
Min patch’s area (m2) 166 218 
Average area (m2) 30683 14135 
Total areas (m2) 1135276 636104 

 
In this case, ‘Four neighbors’ scheme was applied in CA model which means that the 
four neighbors who have common sides with the central element are related cell of 
the patch. Of course, different neighboring scheme could be used if the patch 
classification criterion is changed.  

6.3.2 Cellular automata Homogeneity 

To further quantify the spatial distribution of S. amurensis, cellular automata 
homogeneity value (M.-Th. Hutt & R.Neff, 2001) was calculated in the study. 
 
Due to the effects from local interaction in the CA model, we transformed the 
element’s state of macroinvertebrate into a meta-state by certain rules. The 
corresponding rule is given with following equation: (Equation 6-5) 

∑
∈

→
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ijij ba
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a ),(1 θ
                                     (6-5) 

where a, b represent the state of central element ija  and its nearest neighbors 
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correspondingly, 
Nij

 denotes the number of neighbors of central element . 
In this case study, there is no distance difference in state-space, so the function θ  
became:  

⎩
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                                               (6-6) 

After transforming the macroinvertebrate’s state in to a meta-state using CA 
technique, the CA homogeneity can be obtained for all the elements. Combining 
Equation (6.5) and Equation (6-6), and normalized summation among all elements, 
the CA homogeneity H was calculated by Equation (6-7): 
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                                         (6-7) 

By applying ‘Four neighbors’ scheme in the CA process, the homogeneity values for 
spatial distribution of macroinvertebrate are 0.8878 and 0.8907 for the discharge of 
28 m3/s and 60 m3/s respectively. Meanwhile, the box homogeneity HB, which is 
related to the correlation length, was calculated, but the difference was not obvious. 
Due to the small patch number and some patches hold a big area, the box 
homogeneity HB is in fact meaningless in this research. In particular, the mesh size is 
already 20 m*20 m, there is little influence from far away neighbors. 
 

6.4 Results and discussions 
 
Results 
 
This chapter simulated and analyzed the spatial distribution of macroinvertebrate 
under flow regulation. A hybrid model which integrates a two-dimensional water 
quality module with an ANN based habitat module was applied. Finally, the cellular 
automata technique was used to quantitatively analyze the spatial patterns of 
macroinvertebrate distribution.  

 
The case study was at a compound reach in the middle of Lijiang River in China, 
where the discharge is regulated by the upstream Reservoir. The field data were 
collected during three years (2008-2010), and the model was used to analyze two 
typical flow regimes in dry season. The hybrid model efficiently characterized the 
distribution of S. amurensis under the two discharge conditions (28 m3/s and 60 m3/s). 
The results of hydro-environmental variables and macroinvertebrate distribution 
obtained from the model were in coincidence with the real observations.  

 
The study showed there is a close relationship between environmental factors and 
macroinvertebrate distribution. Water depth, sediment and flow velocity determine the 
habitat conditions, and affect the composition and distribution of macroinvertebrates 
(Beauger et al, 2006). In this study, scenario analysis showed that the flow regulation 
had negative impacts on the spatial distribution of Semisulcospira amurensis, as the 
habitat area would decrease. 

 
 
 
 

ija
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Discussion 
 

This study maps macroinvertebrate presence with environmental factors based on an 
ANN modeling. There are some other alternatives such as statistics, fuzzy logic and 
genetic algorithm available to extract the non-linear relationships between species 
evolution and environmental factors. The effect of local interaction between nearest 
neighbors can be presented besides of the environmental factors in CA habitat 
evolution modeling. By coupling the numerical water quality modules with the habitat 
module, the hybrid model is able to investigate the influence of flow regulations on 
species habitats distribution.  
 
Cellular automata technique was applied to characterize the spatial patterns of 
macroinvertebrate distribution. The patch analysis included the total patches number, 
patch area and so on. The results showed that when the discharge increased to 60 
m3/s, some small patches were formed, but the possible total presence area of S. 
amurensis decreased 44%. Homogeneity value was also calculated, but it was found 
not an appropriate index in this research due to the coarse spatial scale. The 
research results can give support to improve river management. 

  
In this study, the discharge was constant in the two scenarios. However, the flow in 
reality is often a time series. In future, a hydrograph should be used to simulate the 
spatial and temporal dynamics of macroinvertebrate distribution. Moreover, the 
meshes should be refined to a reasonable scale. 
The methodologies developed in this research can be used for macroinvertebrate as 
well as other aquatic organisms’ distribution, if suitability data are available for these 
species. 



     

Chapter 7  

Individual-based and Spatial-based 
Unstructured Cellular Automata and 
application to aquatic ecosystem modelling 
_________________________________________ 
 
 
Traditional mathematical ecological models commonly rely on the well-mixed 
assumption or the mean-field (MF) approximation. It is well known that the MF 
assumption can simplify a complex system by replacing all interactions with the 
average interaction strength. While the MF assumption seems reasonable in some 
cases, it seems hardly accurate for other spatial heterogeneity situations (Li, 2009). 
 
Besides, mean-field (MF) approximation will break down if the individuals by definition 
may only interact with each other within a limited neighborhood distance (E.g. forest 
trees). Many important features of ecological dynamics, such as the patterns of 
diversity and spatial distributions of species can be fundamentally changed when 
abandoning the MF assumption (Tilman and Kareiva, 1997). One way of relaxing the 
MF assumption is by formulating a spatially explicit individual-based model (IBM), or 
multi-agent systems, whose straightforward implementation is by means of a cellular 
automaton (Li et al., 2010). 
 
Therefore, in order to relax the MF assumption and take into account spatial 
heterogeneity, this chapter considers the application of a spatially explicit 
individual-based model (IBM) as well as Unstructured Cellular Automata (UCA) to the 
same problem in aquatic ecology where the space introduces important information 
which simply cannot be neglected. (Lin et al., 2011b) 
 

7.1 Description of study area 
 
The case study was carried out with data form a small pond located in Deltares 
followed the study by Li (2009) and Li, et al. (2012). The size of the pond is about 
52m*26m. In order to mimic the growth of water lilies in the small pond, time series of 
high resolution photos were recorded. The original photo is shown in Figure 7-1. The 
preliminarily process of photo used Image Processing Toolbox in Matlab environment. 
After photo feature was extracted, the photo became to Figure 7-2. Photo of week 18 
(when the water lily began to appear in this year) was processed and taken as the 
initial condition for the modelling (see Figure7-4).  
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Fig. 7-1 Original photo Fig. 7-2 Photo feature Exacting 

 

7.2 Influencing factors for water lily growth 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7-3 spatial properties of water lily (Li, 2009) 
 
In this study, the pond is quite small and it is assumed that there is no inflow and 
outflow, so the influence from wind and hydrodynamics was not taken into account. 
The main factors considered in this thesis which influence water lily growth are: (1) 
Water temperature (weekly averaged); (2) Sunshine duration (weekly accumulated); 
(3) Interaction between plant neighbors; (4) Physical properties of plants. 
 

7.3 Spatial-based UCA Model setup 
 
An Unstructured Cellular Automata (UCA) with ‘three-sided’ type scheme was used in 
the water lily model to capture growth patterns of water lily plants. The model was 
developed based on very fine unstructured meshes. In this case, 276392 
unstructured meshes were established over the pond. The average size of grid 
element is 7cm by 7cm, which can represent the actual area of water lily leaves. The 
model time step is one week so that the simulation results from the modelling can be 
calibrated with the weekly high resolution photos. 
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The model was carried out for the year 2005 from week 18 when the water lily began 
to appear in this year. The spatial pattern of week 26 is shown in Figure 7-5. It is 
obvious that the water lily grew considerably and expanded during these weeks 
compared with the initial condition (Figure7-4). The snapshot of modelling at week 30 
is illustrated in Figure 7-6, which can be compared with the real photo at the same 
week as shown in Figure 7-7. 
 
 

 
Fig. 7-4 Spatial pattern at week18 (Initial 

condition) 

 
Fig. 7-5 Snapshot of model result at week26 

 

 
Fig. 7-6 Snapshot of model at week 30 

 

 
Fig. 7-7 Photo at week 30 

 
 
The result of the cellular automaton simulation model is seen to capture quite well the 
general pattern of the water lily spatially. Detailed experiments were carried out on, 
e.g. setting the rules for unstructured cellular automata modelling; whether the ‘Moore’ 
type neighbouring scheme of UCA should be employed instead of the ‘three-sided’ 
(Von Neumann) type scheme. At present, plant occupation analysis and plant pattern 
recognition procedures are being developed in the ongoing work.  
 
Although unstructured cellular automata have great flexibility to present very complex 
boundaries, in this case study, the boundary is only a simple one and the advantages 
of UCA may not be obvious. 
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7.4 Individual Based Modelling using unstructured cellular automata 
In nature, each individual has its own living-space. For plants, such as the water lily, 
one water lily can typically reach 1 meter height and cover a surface with a diameter 
ranging from 0.5 to 1.0 meter, with its flower having a diameter of 3 to 6 cm. The 
water lily has round and large leaves; one mature water lily leaf can have a diameter 
of about 6 to 11cm. Because of the immobility of water lilies, there might be a 
competition between two individuals for their living-space.  
 

 
Fig. 7-8  Voronoi spatial model 

 
The Voronoi spatial model is a tessellation of space that is constructed by 
decomposing the entire space into a set of Voronoi regions around each spatial object. 
By definition, points in the Voronoi region of a spatial object are closest to the spatial 
object than to any other spatial object (Kolahdouzan and Shahabi, 2004). The 
generations of Voronoi regions can be considered as ‘expanding’ spatial objects at a 
unique rate until these areas meet each other. The mathematical expression of the 
Voronoi region is defined as: 
 

  V(pi)={p| d(p,pi)≤d(p,pj), j≠i, j=1…n} 
 

    In this equation, the Voronoi region of spatial object pi, V(pi), is the region defined by 
the set of locations p in space where the distance from p to the spatial object pi, d(p, 
pi), is less than or equal to the distance from p to any other spatial object pj. 

 
In Fig. 7-9, the red crosses signify the initial positions of the plants and their Voronoi 
polygons (blue lines) represent the biggest living spaces if there is no competition 
among the neighbours. Actually the neighbours struggle for their living space as well; 
in the meantime their growth interferes with others. Assuming that there exists a big 
plant which occupies a large space, the birth of new plants can be restricted. When 
an old plant dies out, the point at which it lived is removed from the domain. On the 
other hand, when a new plant comes out, a new point is added to the domain. 
Therefore, birth and death rates are also important factors affecting the competition 
among plants in addition to their individual states and life-cycle. 
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From Fig. 7-10, it can be seen that plants are in different phases of their life-cycles, 
represented by different colours: “green” implies growing phase, “red” presents 
mature phase whereas “yellow” denotes the decay phase when gradually shrinks and 
finally vanishes. 
 

 
Fig. 7-9 Initial positions of water lily plants 

and their living space (2D view) 
 

 
Fig. 7-10 Different phases of water lily in 

their life-cycles (2D view) 

 
Fig. 7-11 Photo of week 19 

 

 
Fig. 7-12 Snapshot of model at week 19 

 
Fig. 7-13 Photo of week 26 

 
Fig. 7-14 Snapshot of model at week 26 
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7.5 Analysis of results 
 

 
Fig. 7-15 Comparison between individual-based and spatial-based UCA model at week 26 
 
 
By comparing Fig. 7-14 (individual-based model) with Fig. 7-5 (spatial-based model), 
which are snapshots at the same week (week 26) but come from different types of 
UCA modelling, different features can be observed from Fig 7-15. Since they 
considered the same influencing factors and evolution rules, both approaches can 
demonstrate and represent spatial patterns of water lily growths. But there are some 
distinctions between them. Fig. 7-14 (individual-based) shows every water lily plant in 
detail, while Fig. 7-5 (spatial-based) seems to easily cause bigger patchiness and 
loss individual features. During the simulation process when using these two models, 
the individual based model needed more running time when solving long-term 
problems, while the spatial-based UCA model cost some time for generating the 
mesh at first step but saving time for running model. In case detailed information is 
needed and the scale of issue is quite small, the Individual Based Modeling (IBM) 
approach is more suitable; conversely, the spatial based UCA modelling has the 
advantage for long term and large scale problems. 
 

7.6 Future study  
 
Despite UCA/CA had broad applications, the commercial software for CA in 
eco-hydraulics modelling is still ongoing, and most of them are two-dimensional (in 
the horizontal plane) and based on structured meshes. 
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Fig. 7-16 Water lily modelling Graphic User Interface (3D view) 

 

The above mentioned case study was with data from a small and shallow pond 
without much influence from the wind and dynamics of flow, therefore the vertical 
dimension is not needed. However, in many real cases, flow dynamics cannot be 
neglected in lakes therefore three dimensional modelling is needed. 

 

Figure 7-16 shows a conceptual three-dimensional UCA model for water lily growing, 
in which the evolution of plants over the vertical dimension could be taken into growth 
account. 

In this model, some stochastic factors (e.g. seed production and settlement) are 
considered, and some empirical values based on the physiological mechanisms of 
water lily are also introduced together with flow process, geometry factors etc.   

 
The initial position of the water lilies could be obtained directly by extracting the 
features from real images. In order to test the sensitivity of the water lily model to 
initial conditions, random initial condition (with random special positions or different 
initial numbers of plants) was configured to run the unstructured cellular automata 
model. Hydrodynamic parameters and ecological parameters could be specified and 
adjusted in a graphical user interface of the water lily model (Figure 7-16), and their 
effects on UCA modelling could be observed from the evolutions of the water lily. The 
future studies will focus on a three dimensional model to include the influence of 
hydrodynamics in the UCA model. 
 
 

Plant property 
Parameters 

Hydrodynamics 
Parameters 





     

 

Chapter 8   

Conclusions and recommendations  
_________________________________________ 
 

Conclusions 

Ecohydraulic modelling is about integrating hydrodynamic, water quality and 
eco-dynamic processes. These are affected by several factors and evolve spatially as 
well as temporally. Due to the complexity of these systems, it is hard to find general 
physical equations that describe all processes with sufficient detail. In the past few 
years, the Cellular Automata paradigm was applied to ecohydraulic systems and 
already proved to be a useful approach in ecohydraulics modelling (Minns et al., 2000; 
Mynett, 2002; Chen et al., 2004).  

 
Most applications of cellular automata in ecohydraulic modelling are based on 
regularly spaced or structured computational grids. Recently, in computational 
modelling unstructured grids are become more popular due to their flexibility in 
representing complex geometries and arbitrary refinement. Moreover in reality, the 
computational area is usually irregular. This was the reason to explore unstructured 
cellular automata in this thesis. 
 
In Chapter 2, the Classic Cellular Automata concepts with different structured lattices 
are presented. It was found that there is no obvious difference between structured 
triangular grids and structured square grids in a regular area, in the sense that both 
result in similar stable states. The influence of initial conditions vanishes rapidly within 
a few running steps. 
 
Chapter 3 introduced the general concepts of Unstructured Cellular Automata and 
explored their behavior for a ‘three cell-type’ behaviour. The sensitivity of UCA was 
analyze and can be summarized as follows: (i) The dynamic competition reaches an 
equilibrium state, where the population of the three species roughly stabilizes around 
their average value; (ii) When the three species have similar initial populations, the 
ecosystem stabilizes very fast, with the populations oscillating remarkably around 
some fixed values (under-damped situation); (iii) When three species have different 
initial populations, the bigger the difference in their initial populations, the less the 
fluctuations are upon reaching the stable state. But in these cases, it takes longer 
time to reach the stable state (over-damped situation). In Section 3.5, different 
neighbourhood schemes of UCA which could also affect the patchiness pattern were 
depicted. Firstly, in terms of “Three-sided” type only considers the three neighbours 
and results in small patchiness appearances. However, in this case, all species can 
survive; i.e. none of them extinguish. No matter how non-uniform the initial condition 
is, the species keep competing all the time. In addition, because the “Three-sided” 
type is based on the small scale local rules, it usually leads to dynamic quasi-stable 
states. The principles inferred from numerous simulation studies can be summarized 
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as follows. With the “Three-sided” rule, more stable population dynamics result with 
smaller patchiness, when compared with “Moore” type and “Three-Vertex” type. 
Meanwhile, when the more neighbours are taken into account, the more patchy 
patterns appear. 
 
Usually, when developing models one needs to understand the basic underlying 
processes which is why partial differential equations are commonly used to model 
conservation processes. But in some cases, partial differential equations may have 
limitations. In contrast, complex nonlinear systems can be modelled by CA with a 
good computing efficiency. Chapter 4 gives some description of the computational 
theory of unstructured cellular automata, and a comparison is made between Partial 
Differential Equation and Unstructured Cellular Automata modelling. Compared with 
PDE-based models, Cellular Automata have the advantage that they can represent 
discrete entities directly and can reproduce emergent properties of behaviours with a 
large number of degrees of freedom. Another unique characteristic of CA-based 
modelling is that CA could generate dynamics patterns that are self-reproducing. It 
also should be mentioned that CA has universal parallel computing characteristics, 
which is powerful and has become an essential part in numerical computations.  
 
The emphasis of Chapter 4 is on deducing the transition rules for cellular automata 
modelling from the PDE equivalent, using the finite difference method. Some types of 
partial differential equation were tested in this research. The result shows that under 
certain rules, the CA evolution results could be compared with the PDE performance. 
Taking into consideration that UCA has varying neighbours in contrast with classical 
CA, the influence of cell size in UCA was analysed in this thesis by the means of 
Finite Volume Method. The characteristic parameter —min distance of UCA— was 
put forward. Followed by several numerical experiments which were validated on 
different kinds of meshes (Rough meshes & local refined meshes & Global refined 
meshes), the characteristic parameter (min distance) for UCA proved to be useful to 
eliminate effects from varying neighbours and the simulation results turned out to be 
grid-independent. 
 
Following up from the computational theory analysis of UCA, Chapter 5 gives three 
examples of using UCA in spatial dynamic ecological modelling, including (i) 
prey-predator modelling; (ii) algae bloom evolution modelling; and (iii) water quality 
modelling caused by spiked pollution loading in a bay area. Compared with traditional 
PDE based ecological modelling which usually focuses on mean-field (MF) 
approximations, these three applications illustrate the ability of UCA to represent 
processes with high spatio-temporal dynamics, which makes it especially suitable for 
processes with large spatial heterogeneity as well as for complex emergence. 
   
Chapter 6 focuses on a practical case study of river restoration in China by 
quantifying the effect of flow regulation on the spatial distribution of 
macroinvertebrates. A hybrid model was set-up which integrates a two-dimensional 
water quality module with an ANN based habitat module. Later, the cellular automata 
technique was adopted to quantify the spatial distribution of the macroinvertebrates, 
more specifically, CA was used for calculating two criteria of spatial distribution. One 
is patch analysis, which includes the total number of patches, patch area and so on. 
The results show that after flow regulation, some small patches appeared while the 
total possible presence area of S. amurensis decreased by 44%. Another criterion for 
spatial distribution used in this research is homogeneity. This value represents the 
cluster characteristics of a full image (presence area together with absence area). 
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From this value, it can be seen that the increased discharge caused some scattered 
presence areas, while assembling (connecting) the absence areas of the habitat.  
   
There are three types of numerical paradigms mainly used to represent spatial 
pattern dynamics (Ratze et al., 2007) namely (i) Partial Differential Equations (PDEs); 
(ii) Discrete paradigms including Cellular Automata (CA); and (iii) Agent-based 
paradigm including Individual-based models (IBMs). Among these three, the PDE and 
CA based paradigms were discussed in the first few chapters of this thesis. In order to 
compare UCA-based modelling with Individual-based modelling, Chapter 7 explored 
the applicability of UCA and IBM for an aquatic ecosystem case study of macrophyte 
growth in a small pond, using the same evolution rules. The results indicate that both 
approaches can adequately simulate and represent spatial pattern features of water 
lily growth. But there are some distinctions between them. IBM was able to capture 
every water lily plant in detail, while UCA modelling caused bigger patchiness and lost 
individual features. During the simulation process it was observed that the individual 
based model needed more running time when solving long-term problems, while the 
spatial-based UCA model cost some time for generating the mesh during the first 
steps, but saved considerable time when running model. In case detailed information 
is needed and the scale of issue is quite small, Individual Based Modelling (IBM) 
seems more suitable; conversely, the spatial based UCA modelling has the 
advantage for long-term and large-scale problems. 
 

In summary, this thesis explored the Unstructured Cellular Automata paradigm, which 
is more flexible than classical cellular automata to better fit complicated geometries. 
This thesis illustrated several applications of UCA such as diffusion modelling, spatial 
ecological modelling and the hybrid eco-hydraulics modelling, all of them showing the 
ability of UCA to capture the spatial dynamic features quite well. Furthermore, this 
thesis reviewed the relationships between cellular automata with other types of 
modelling paradigms, including PDEs, IBMs and population growth modelling. Their 
advantages and disadvantages were listed and compared, and the specific 
characteristics of cellular automata were highlighted. In brief, this research revealed 
the capabilities of UCA and indicated that UCA can be useful as an alternative 
paradigm, especially for complex spatial dynamics problems. 

Recommendations for future work  

This thesis explored the relationships between PDE-based modelling and 
Unstructured Cellular Automata. Numerical experiments were carried out, but 
additional simulations using measured data needs to be carried out as well, to verify 
and compare the two approaches. 
 
The spiked pollution problem mentioned in this thesis was simulated by UCA with 
rules extracted from the diffusion equation (PDE). The next step of this research 
could be to explore deducing the UCA rules considering the diffusion relations 
amongst neighbouring cells only. For example, the increasing/decreasing gradient 
could be used as a component of evolving UCA rules which could connect and 
determine the state values of the cell itself and its nearest neighbours. Perhaps in this 
way a more spiked diffusion pattern of effluents (like observed from field observations) 
could be captured, by dynamically adjusting the particular UCA rules. 
 



Chapter 8                                                   Conclusions and Recommendations 

86 
 

A macroinvertebrate habitat model was developed in this research based on an 
artificial neural network (ANN) method (Chapter 6). In future work, the UCA meshes 
will be refined to a smaller scale requiring new CA rules for macroinvertebrate 
evolution modelling which combines the environmental factors with the local 
interaction between adjacent elements. By using cellular automata techniques in the 
habitat module, the interaction between neighbours of macroinvertebrate elements 
can indeed be taken into account, although It still needs attention to find the proper 
spatio-temporal dependence for extracting the proper evolution rules. In CA habitat 
modelling, not only hydro-environmental parameters affect the presence of 
macroinvertebrates, but also the influence from related neighbours. Moreover, the 
flow regulation value could be a time series so that the spatial distribution of 
macroinvertebrates will turn out to become a dynamic evolution process, which could 
perhaps be captured by a spatio-temporal hybrid model. 
 
The case study of Water Lily growth occurred in a quite small and shallow square 
pond, so complex boundaries and geographical factors are not included in this case. 
In addition, within the small pond the influence from wind and hydrodynamics are very 
small so their effects were not taken into account in this thesis. For the broader 
application of UCA to such phenomena, it could be meaningful to develop a 
three-dimensional UCA modelling, in which vertical factors could also be taken into 
account.  
   
In conclusion, the present research focused on exploring the concepts and feasibility 
of unstructured cellular automata. It was shown that UCA can extend the concept of 
cellular automata to irregular flow domains and arbitrary geometries. However, there 
is adequate room for more detailed studies, both on the mathematical concepts and 
on the practical applicability of unstructured cellular automata. 
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Appendices 

Appendix  A 
 
Unstructured Cellular Automata based on triangle meshes 
 
For Unstructured Cellular Automata based on triangular meshes, the experiments are 
designed with the conditions listed in the Table A-1, where the following design 
parameters are combined with different values: the initial rules (Three-sided, Moore, 
Three-vertex), the initial distributions (Randomly mixed, One isolated on boundary, 
One isolated in the middle), and the ratios of initial populations. 
 
Table A-1 List of the simulation cases in Appendix-A. 

Initial 
percentage 

Initial 
distribution 

Initial  
pattern  

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex
” rule 

Red  33% 
Green 33% 
White 34% 

Randomly 
mixed Fig. A-1 Fig. A-2 Fig. A-3 Fig. A-4 

One isolated 
on boundary Fig. A-5 Fig. A-6 Fig. A-7 Fig. A-8 
One isolated  
in the middle Fig. A-9 Fig. A-10 Fig. A-11 Fig. A-12 

Red  20% 
Green 30% 
White 50% 

Randomly 
mixed Fig. A-13 Fig. A-14 Fig. A-15 Fig. A-16 

One isolated 
on boundary Fig. A-17 Fig. A-18 Fig. A-19 Fig. A-20 

One isolated  
in the middle Fig. A-21 Fig. A-22 Fig. A-23 Fig. A-24 

Red  20% 
Green 40% 
White 40% 

Randomly 
mixed Fig. A-25 Fig. A-26 Fig. A-27 Fig. A-28 

One isolated 
on boundary Fig. A-29 Fig. A-30 Fig. A-31 Fig. A-32 

One isolated  
in the middle Fig. A-33 Fig. A-34 Fig. A-35 Fig. A-36 

Red  20% 
Green 60% 
White 20% 

Randomly 
mixed Fig. A-37 Fig. A-38 Fig. A-39 Fig. A-40 

One isolated 
on boundary Fig. A-41 Fig. A-42 Fig. A-43 Fig. A-44 

One isolated  
in the middle Fig. A-45 Fig. A-46 Fig. A-47 Fig. A-48 

Red   2% 
Green 49% 
White 49% 

Randomly 
mixed Fig. A-49 Fig. A-50 Fig. A-51 Fig. A-52 

One isolated 
on boundary Fig. A-53 Fig. A-54 Fig. A-55 Fig. A-56 

One isolated  
in the middle    Fig. A-57 Fig. A-58 Fig. A-59 Fig. A-60 

 
*The UCA experiments carried out cyclic rules with three colors, represented in section 3.2.1:  
-----“Green” beat “White”; “White” beat “Red”; “Red” beat “Green”. 
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A.1  The initial distribution by randomly mixed (Red33% Green33% White34%) 
 
 

 
Fig. A-1 The initial distribution by randomly mixed 
(Red33% Green33% White34%) 

 
Fig. A-2 UCA implemented with ‘Three-sided’ rule 

 

 
Fig. A-3 UCA implemented with ‘Moore’ rule 

 

 
Fig. A-4 UCA implemented with ‘Three-vertices’ rule 

 
 
 

Initial 
percentage 

Initial 
distribution 

Initial  
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  33% 
Green 33% 
White 34% 

Randomly 
mixed Fig. A-1 Fig. A-2 Fig. A-3 Fig. A-4 

Spatial Distribution no patchiness obvious 
patchiness  likely patchiness 

Population Dynamic 
fluctuate around 
some seemingly 

stable values 

stabilized quite 
quickly 

stabilizes around 
their average 
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A.2 The initial distribution with one isolated on the boundary based on triangle 
meshes (Red33% Green33% White34%) 
 
 

  
Fig. A-5 The initial distribution with one isolated on 
the boundary 
 

Fig. A-6 UCA implemented with ‘Three-sided’ rule  

 
Fig. A-7 UCA implemented with ‘Moore’ rule 
 
 
 

 
Fig. A-8 UCA implemented with ‘Three-vertices’ rule 

Initial 
percentage 

Initial 
distribution 

Initial  
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  33% 
Green 33% 
White 34% 

One isolated  
on boundary Fig. A-5 Fig. A-6 Fig. A-7 Fig. A-8 

Spatial Distribution seemingly 
patchiness 

one domination 
(white) 

one domination 
(red) 

Population Dynamic stable   two extinctions   two extinctions 
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A.3  The initial distribution with one isolated in the middle based on triangle meshes 
(Red33% Green33% White34%) 
 
 

 
Fig. A-9 The initial distribution with one isolated on in 
the middle 
 

 
Fig. A-10 UCA implemented with ‘Three-sided’ rule  

 
Fig. A-11 UCA implemented with ‘Moore’ rule 
 
 
 

 
Fig. A-12 UCA implemented with ‘Three-vertices’ 
rule 

Initial 
percentage 

Initial 
distribution 

Initial  
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  33% 
Green 33% 
White 34% 

One isolated  
in the middle Fig. A-9 Fig. A-10 Fig. A-11 Fig. A-12 

Spatial Distribution bigger patchiness 
(red) 

one domination 
(green) 

one domination 
(red) 

Population Dynamic Stabilized two extinctions two extinctions 
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A.4 The initial distribution by randomly mixed based on triangle meshes (Red20% 
Green30% White50%) 
 
 

 
Fig. A-13 The initial distribution by randomly mixed 

 
Fig. A-14 UCA implemented with ‘Three-sided’ rule 
  
 

 
Fig. A-15 UCA implemented with ‘Moore’ rule 

 
Fig. A-16 UCA implemented with ‘Three-vertices’ rule 

 
 
 

Initial 
percentage 

Initial 
distribution 

Initial  
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  20% 
Green 30% 
White 50% 

Randomly 
mixed 

Fig. 
A-13 Fig. A-14 Fig. A-15 Fig. A-16 

Spatial Distribution no patchiness one domination 
(white) 

one domination 
(red) 

Population Dynamic 
convergence to 

the average value 
but cost long time 

 two extinctions   two extinctions 
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A.5  The initial distribution with one isolated on the boundary based on triangle 
meshes (Red20% Green30% White50%) 
 
 

 
Fig. A-17 The initial distribution with one isolated on 
the boundary 
 

 
Fig. A-18 UCA implemented with ‘Three-sided’ rule  

 
Fig. A-19 UCA implemented with ‘Moore’ rule 
 
 
 

 
Fig. A-20 UCA implemented with ‘Three-vertices’ rule 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  20% 
Green 30% 
White 50% 

One isolated 
on boundary 

Fig. 
A-17 Fig. A-18 Fig. A-19 Fig. A-20 

Spatial Distribution one domination 
(green) 

one domination 
(green) 

one domination 
(green) 

Population Dynamic two extinctions two extinctions    two extinctions 
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A.6  The initial distribution with one isolated in the middle based on triangle meshes (Red20% 
Green30% White50%) 
 
 

 
Fig. A-21 The initial distribution with one isolated on 
in the middle 
 

 
Fig. A-22 UCA implemented with ‘Three-sided’ rule  

 
Fig. A-23 UCA implemented with ‘Moore’ rule 
 

 
Fig. A-24 UCA implemented with ‘Three-vertices’ rule 
 
 
 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  20% 
Green 30% 
White 50% 

One isolated  
in the middle 

Fig. 
A-21 Fig. A-22 Fig. A-23 Fig. A-24 

Spatial Distribution close to patches one domination 
(red) 

one domination 
(green) 

Population Dynamic stable with 
separate value two extinctions    two extinctions 
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A.7  The initial distribution by randomly mixed based on triangle meshes (Red 20% 
Green40% White40%) 
 
 

 
Fig. A-25 The initial distribution by randomly mixed 

 
Fig. A-26 UCA implemented with ‘Three-sided’ rule  
 
 

 
Fig. A-27 UCA implemented with ‘Moore’ rule 
 

 
Fig. A-28 UCA implemented with ‘Three-vertices’ rule 

 
 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  20% 
Green 40% 
White 40% 

Randomly 
mixed 

Fig. 
A-25 Fig. A-26 Fig. A-27 Fig. A-28 

Spatial Distribution no obvious 
patchiness 

one domination 
(red) 

one domination 
(green) 

Population Dynamic dynamic 
stable two extinctions 

two extinctions 
after some 

competitions 
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A.8  The initial distribution with one isolated on the boundary based on triangle 
meshes (Red 20% Green40% White40%) 
 
 

 
Fig. A-29 The initial distribution with one isolated on 
the boundary 
 

 
Fig. A-30 UCA implemented with ‘Three-sided’ rule 

 
Fig. A-31 UCA implemented with ‘Moore’ rule 

 
Fig. A-32 UCA implemented with ‘Three-vertices’ 
rule  

 
 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  20% 
Green 40% 
White 40% 

One isolated  
on boundary 

Fig. 
A-29 Fig. A-30 Fig. A-31 Fig. A-32 

Spatial Distribution red cause bigger 
patchiness 

fairly 
patchiness 

one domination 
(red) 

Population Dynamic stable with higher 
red population 

convergence 
around average  

two extinctions 
 (white and green) 
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A.9  The initial distribution with one isolated in the middle based on triangle meshes 
(Red 20% Green40% White40%) 
 
 

 
Fig. A-33 The initial distribution with one isolated on 
in the middle 
 

 
Fig. A-34 UCA implemented with ‘Three-sided’ rule 

 
Fig. A-35 UCA implemented with ‘Moore’ rule 
 

 
Fig. A-36 UCA implemented with ‘Three-vertices’ 
rule  

 
 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  20% 
Green 40% 
White 40% 

One isolated  
in the middle 

Fig. 
A-33 Fig. A-34 Fig. A-35 Fig. A-36 

Spatial Distribution likely 
patchiness patchiness one domination 

(green) 

Population Dynamic 
  stable with 

respective 
population 

fluctuate around 
stable values 

two extinctions 
 (white and red)  
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A.10  The initial distribution by randomly mixed based on triangle meshes (Red 20% 
Green60% White20%) 
 
 

 
Fig. A-37 The initial distribution by randomly mixed 
 
 

 
Fig. A-38 UCA implemented with ‘Three-sided’ rule 

 
Fig. A-39 UCA implemented with ‘Moore’ rule 
 

 
Fig. A-40 UCA implemented with ‘Three-vertices’ 
rule  

 
 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  20% 
Green 60% 
White 20% 

Randomly 
mixed 

Fig. 
A-37 Fig. A-38 Fig. A-39 Fig. A-40 

Spatial Distribution No 
patchiness 

one domination 
(white) 

one domination 
(red) 

Population Dynamic Seemingly stable two extinctions two extinctions 
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A.11  The initial distribution with one isolated on the boundary based on triangle 
meshes (Red 20% Green60% White20%) 
 
 

 
Fig. A-41 The initial distribution with one isolated on 
the boundary 
 

 
Fig. A-42 UCA implemented with ‘Three-sided’ rule 

 
Fig. A-43 UCA implemented with ‘Moore’ rule 
 
 

 
Fig. A-44 UCA implemented with ‘Three-vertices’ 
rule  

 
Initial 

percentage 
Initial 

distribution 
Initial 

pattern 
“Three-sided” 

rule 
“Moore” 

rule 
“Three-vertex” 

rule 

Red  20% 
Green 60% 
White 20% 

One isolated  
on boundary 

Fig. 
A-41 Fig. A-42 Fig. A-43 Fig. A-44 

Spatial Distribution seemingly  
patchiness 

one domination 
(red) 

one domination 
(red) 

Population Dynamic 
 stable with 

respective 
population 

two extinctions two extinctions 
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A.12  The initial distribution with one isolated in the middle based on triangle meshes 
(Red 20% Green60% White20%) 
 
 

 
Fig. A-45 The initial distribution with one isolated on 
in the middle 
 

 
Fig. A-46 UCA implemented with ‘Three-sided’ rule 

 
Fig. A-47 UCA implemented with ‘Moore’ rule 
 

 
Fig. A-48 UCA implemented with ‘Three-vertices’ 
rule  

 
 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  20% 
Green 60% 
White 20% 

One isolated  
in the middle 

Fig. 
A-45 Fig. A-46 Fig. A-47 Fig. A-48 

Spatial Distribution seemingly  
patchiness 

one domination 
(white) 

one domination 
(red) 

Population Dynamic 

 
stable with 
respective 
population 

two extinctions two extinctions 
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A.13  The initial distribution by randomly mixed based on triangle meshes (Red 2% 
Green49% White49%) 
 
 

 
Fig. A-49 The initial distribution by randomly mixed 

 
Fig. A-50 UCA implemented with ‘Three-sided’ rule 
  
 

 
Fig. A-51 UCA implemented with ‘Moore’ rule 
 

 
Fig. A-52 UCA implemented with ‘Three-vertices’ 
rule  

 
 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  2% 
Green 49% 
White 49% 

Randomly 
mixed 

Fig. 
A-49 Fig. A-50 Fig. A-51 Fig. A-52 

Spatial Distribution Green cause 
bigger patchiness 

one domination 
(red) 

one domination 
(red) 

Population Dynamic 
stable with  

higher green 
population 

two extinctions 
(white and green) 

two extinctions 
 (white and green) 
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A.14  The initial distribution with one isolated on the boundary based on triangle 
meshes (Red 2% Green49% White49%) 
 
 

Fig. A-53 The initial distribution with one isolated on 
the boundary 
 

 
Fig. A-54 UCA implemented with ‘Three-sided’ rule  

 
Fig. A-55 UCA implemented with ‘Moore’ rule 
 

 
Fig. A-56 UCA implemented with ‘Three-vertices’ 
rule 

 
 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  2% 
Green 49% 
White 49% 

One isolated  
on boundary 

Fig. 
A-53 Fig. A-54 Fig. A-55 Fig. A-56 

Spatial Distribution dynamic 
patchiness 

one domination 
(red) 

one domination 
(red) 

Population Dynamic stable two extinctions two extinctions 
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A.15  The initial distribution with one isolated in the middle based on triangle meshes 
(Red 2% Green49% White49%) 
 
 

 
Fig. A-57 The initial distribution with one isolated on 
in the middle 
 

 
Fig. A-58 UCA implemented with ‘Three-sided’ rule  

 
Fig. A-59 UCA implemented with ‘Moore’ rule 
 

 
Fig. A-60 UCA implemented with ‘Three-vertices’ 
rule  

 
 

Initial 
percentage 

Initial 
distribution 

Initial 
pattern 

“Three-sided” 
rule 

“Moore” 
rule 

“Three-vertex” 
rule 

Red  2% 
Green 49% 
White 49% 

One isolated  
in the middle 

Fig. 
A-57 Fig. A-58 Fig. A-59 Fig. A-60 

Spatial Distribution Green cause 
bigger patchiness 

one domination 
(red) 

one domination 
(green) 

Population Dynamic 
Stable with  

higher green 
population 

two extinctions two extinctions 

 
 



     

 
Appendix  B 
 
Unstructured Cellular Automata based on polygon meshes 
 
For Unstructured Cellular Automata which based on polygon elements, the 
experiments are designed with the following design parameters: the initial 
distributions (Randomly mixed, One isolated on boundary, One isolated in the middle), 
and the ratios of initial populations. 
 
 

Initial 
percentage Initial distribution Initial pattern UCA based on polygon elements 

Red  20% 
Green 30%  
White 50% 

Randomly mixed Fig. B-1 Fig. B-2 

One isolated on boundary Fig. B-3 Fig. B-4 

One isolated in the middle Fig. B-5 Fig. B-6 

Red  20% 
Green 60%  
White 20% 

Randomly mixed Fig. B-7 Fig. B-8 

One isolated on boundary Fig. B-9 Fig. B-10 

One isolated in the middle Fig. B-11 Fig. B-12 

 
 
The polygon element based Unstructured Cellular Automata has the advantage of 
balancing the equilibrium and manifests the patchiness characteristics. It also takes 
more neighbors into consideration. Compared with triangle-based unstructured 
cellular automata, this kind of paradigm shows bigger patchiness and it’s more likely 
become stable. 
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B.1 The initial distribution based on polygon elements with percentage: 

Red20% Green30% White50% 
 
 

Fig. B-1 The initial distribution by randomly mixed 
based on polygon elements 

 
Fig. B-2 UCA implemented with initial distribution 
by randomly mixed 
 

 
Fig. B-3 The initial distribution with one isolated on 
the boundary 
 

 
Fig. B-4 UCA implemented with initial distribution 
by one isolated on the boundary 

 
Fig. B-5 The initial distribution with one isolated in 
the middle  

 Fig. B-6 UCA implemented with initial distribution 
by one isolated in the middle 
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B.2 The initial distribution based on polygon elements with percentage: 

Red20% Green60% White20% 
 
 

 
Fig. B-7 The initial distribution by randomly mixed 
based on polygon elements 
 

Fig. B-8 UCA implemented with initial distribution 
by randomly mixed 

Fig. B-9 The initial distribution with one isolated on 
the boundary based on polygon elements 
 

Fig. B-10 UCA implemented with initial distribution 
by one isolated on the boundary) 

Fig. B-11The initial distribution with one isolated in 
the middle based on polygon elements 

Fig. B-12 UCA implemented with initial distribution 
by one isolated in the middle 
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The field of ecohydraulics integrates hydro-
dynamic and eco-dynamic processes. While 
hydrodynamic processes are usually well 
described by partial differential equations 
(PDE’s) based on physical conservation 
principles, ecosystem dynamics often involve 
specific interactions at the local scale. 
Because of this, Cellular Automata (CA) are 
a viable paradigm in ecosystem modelling. 
All cells in a CA system update their states 
synchronously at discrete steps according 
to simple local rules. The classical CA 
configuration consists of uniformly distributed 
cells on a structured grid. But in the field of 
hydrodynamics, the use of unstructured grids 
has become more and more popular due to its 
flexibility to handle arbitrary geometries.
 

The main objective of this research is to 
identify whether the CA paradigm can be 
extended to unstructured grids. To that 
end the concept of Unstructured Cellular 
Automata (UCA) is developed and various 
UCA configurations are explored and their 
performance investigated. The influence 
of cell size was analyzed in analogy with 
the Finite Volume Method. A characteristic 
parameter —min distance of UCA– was put 
forward and tested by numerical experiments. 
Special attention was paid to exploring the 
analogies  and differences between the 
discrete CA paradigm and discrete numerical 
approximations for solving PDE’s. The 
practical applicability of UCA in ecohydraulics 
modelling is explored through a number 
of case studies and compared with field 
measurements.


