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Summary 

 

In this work, we adopt a greedy inversion solver to design a fast version of the double focal transform that we 

can use to eliminate blending noise in simultaneous source acquisition. The greedy inversion introduces a 

coherence-oriented mechanism to enhance focusing of significant model space, leading to a sparse model space 

and fast convergence rate. Synthetics and numerically blended field data examples demonstrate the validity of 

its application for deblending. We also tested different inversion 

parameters (percentile value and weights) influencing the choice of the model subspace. The results indicate 

that by setting the percentile carefully and using weights it is possible to get better deblending results. 
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Introduction 

Several simultaneous source data acquisition methods have been proposed to reduce the cost of 

seismic surveys, which also offer certain advantages over conventional acquisitions such as better 

illumination of the subsurface and better spatial resolution (Berkhout, 2008). One way to handle the 

blended data is to use it for imaging directly (Soni and Verschuur, 2015). However, most seismic data 

processing algorithms are designed to handle data with nonoverlapping sources. This makes it 

necessary to separate the blended shot gathers first (deblending) and then to process them in the 

conventional way. Deblending methods can be sorted into three categories: (1) Denoising–based 

source separation (Huo et al., 2012a); (2) Source coding-based source separation (Muller et al., 2015); 

(3) Inversion-based source separation (Moore et al., 2010), usually with constraints designed to take

advantage of signal coherency.

Central to the deblending approach described in this paper is the focal transform. The first variant was 

proposed by Berkhout and Verschuur (2006), which uses subsurface information from the data to 

create two-way focal operators. A second variant was proposed in Berkhout and Verschuur (2010), 

using one-way propagation operators. Kontakis and Verschuur (2014) use the sparse double focal 

transform for solving the deblending problem and get an inspiring simultaneous source separation 

result. In this paper, we propose a new method for deblending that uses the double focal transform in 

combination with a greedy solver for faster convergence. We then examine its performance on 

synthetic and numerically-blended field data. 

Theory 

The double focal transform is a versatile seismic processing tool that uses one-way extrapolation 

operators to generate wavefields focused at chosen depth levels. Combined with sparsity-based 

inversion, it is possible to transform the surface data into a compressed focal domain with few 

elements of significant magnitude. This sparse representation of the recorded wavefield is an 

attractive property of the focal transform, that can be exploited for solving inherently under-

determined problems, such as interpolation and deblending. An example of such a sparse inversion is 

the optimization problem 
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Here K  pairs of focal operators -

kW and -

kW are used. Each pair of focal operators defines a focal 

subdomain, Xk  , that holds the focal representation of the input surface data, P. The notation .
S

and .
F

 is used for the sum and Frobenius norm respectively. All operators are in the temporal 

frequency domain, except when marked with a hat symbol, in which case they are in the time domain. 
Adding a blending operator Γ  to Equation (1) yields 
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which can be used for deblending (Kontakis and Verschuur, 2014). Note that in (2) the blended data 

blP  is given as an input. Optimization problems of the form (1) and (2) can be handled by solvers such 

as SPGL1 solver (van den Berg and Friedlander, 2008). 

In this paper we do not perform deblending by solving the optimization problem (2). Instead, inspired 

by the greedy local Radon transform (Wang et al., 2010), we use a greedy least-squares method for the 

same purpose. The alternative deblending procedure we use can be described as follows: 

1. Set the maximum number of iterations M and the percentile   to desired values. The

percentile  controls the sparsity of the focal subdomains.
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2. Set the data residual
[0]

bl,res blP P , the deblended focal subdomains 
[0]

,deblX 0k  and the

iteration counter 0i  . 
3. While i M  

(a) Pseudodeblend the residual,
[ ] [ ]

ps,res bl,resP Pi i H  , where 
H is the adjoint of the blending

operator.

(b) Focus the pseudodeblended residual at each depth level and place the results into an array

 [ ] [ ] [ ] [ ]

1 1 ps,res 1 ps,resF ,..., F (W P W ,...,W P W )i i H i H H i H

K K K       .  

Note that each 
[ ]F i

k has focused, but not yet sparse data.

(c) Vectorise the array  [ ] [ ]

1F ,..., Fi i

K  and select the top 1 -   percent of the elements with

the highest magnitudes. The indices of those elements define a model subspace 
[ ]i .

(d) Solve the constrained least-squares problem (e.g. using LSQR)
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4. Update the model parameters
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5. Update the deblended data estimate, the blended data residual
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6. Increase the iteration counter.

The final deblended data is then given by 
[ 1]

debl deblP =P M
. The constraint that the solution should lie in a 

restricted subspace of the focal subdomains favors sparse solutions and suppresses blending noise. 

Apart from a percentile-based approach, it is possible to use thresholding techniques to select the 

model subspace. There is a trade-off between choosing a percentile that is conservative enough to 

prevent blending noise entering the solution, and one generous enough such that the process 

converges in the fewer number of iterations necessary. 

Example 1: Synthetic data 

We first evaluate the proposed method on a set of simple synthetics, composed of 3 reflection events  

with hyperbolic moveout (Figure 1a). The deblending quality is evaluated using the following 

expression 
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With 99.8%   and using radial weights mask on the focal subdomains before choosing the 

subspace 
[ ]i , we get a high Q value for the deblending result after 20 iterations, as shown in Figure 

1c. The difference between the unblended and the deblended data in the errors profile (Figure 1d) is 

minimal, demonstrating good separation (here Q=36.46 dB).  

We test the same parameters as Figure 1, except without using radial weights to show the importance 

of using such weights. Looking at Figure 2c it can be seen that when not using weights, much more 

blending noise has been included in the solution compared to the result using weights (Figure 2b). 

This happens because the blending noise may be still strong despite the fact that it does not focus as 

point out by the arrow in Figure 2a. Using weights during the subspace selection can help avoid the 

cases described above. Looking at Figure 2d, using 99.6%   and radial weights, more blending 
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noise is visible and, thus, we should set the percentile carefully to get optimum deblending results. 

Example 2: Numerically blended field data 

The performance of the greedy approach is also tested using a North Sea dataset. We choose a subset 

of 151 sources and 151 receivers. The extracted data is then numerically blended with a blending 

factor of 2. The first unblended and blended shot gathers are shown in Figure 3a and 3b. After 

deblending using the greedy method, we get good results with a Q value of 13.65 dB, after 40 

iterations, although some blending noise is still present in the deblending result, as shown in Figure 3d. 

Figure 1 (a) Original unblended shot gather, (b) blended shot gather, (c) deblended shot gather after 

20 iterations of greedy focal transform with 99.8%   and using radial weights, (d) the difference 

between the Figure 1a and Figure 1c. 

Conclusions 

We have implemented a fast, greedy version of the double focal transform. Synthetics and numerically 

blended field data examples demonstrate the validity of its application for deblending. We also tested 

different inversion parameters (percentile value and weights) influencing the choice of the model 

subspace. The results indicate that by setting the percentile carefully and using weights it is possible 

to get better deblending results.  Although in this paper, we only show the application of this new 

method for deblending, it is straightforward to modify it for the purpose of data reconstruction using 

the focal transform or to combine it with other transforms. 

Figure 2 Focused shot 

gather, (a) before deblending, 

(b) after 20 iterations of

deblending using 99.8%   

and radial weights, (c) after

20 iterations of deblending

with 99.8%   and no

weights, (d) after 20

iterations of deblending using

99.6%  and radial 

weights. Red arrows point to 

the blending noise and black 

arrows to signal. 

(a) (b) (c) (d) 

(c) 

(a) (b) 

(d)
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Figure 3 (a) Original 

unblended shot gather, 

(b) blended shot gather,

(c) deblended shot gather

after 40 iterations of

greedy focal deblending

with 99.8%   and

using weights, (d) the

difference between the

Figure 3a and Figure 3c.
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(a) (b)


