
Metric-based Evaluation of
Implemented Software Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. Ir. K.Ch.A.M. Luyben
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 28 juni 2013 om 15.00 uur

door
Eric Matteas BOUWERS,

Master of Science in Computer Science,
geboren te Rijswijk.

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. A. van Deursen
Prof. dr. ir. J.M.W. Visser

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. A. van Deursen Technische Universiteit Delft, promotor
Prof. dr. ir. J.M.W. Visser Radboud Universiteit Nijmegen, promotor
Prof. dr. ir. G.J. Houben Technische Universiteit Delft
Prof. dr. P. B. Kruchten, P.Eng. University of British Columbia, Canada
Prof. dr. ir. R. L. Lagendijk Technische Universiteit Delft
Prof. dr. A. Zeller Universität des Saarlandes, Duitsland
Dr. P. Lago Vrije Universiteit Amsterdam

Copyright c© 2013 by E. M. Bouwers

All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording or
by any information storage and retrieval system, without the prior permission of the author.

ISBN 9789088916380

Typeset by the author with the LATEX Documentation System.
Printed by Proefschriftmaken.nl || Uitgeverij BOXPress.
Cover design by Proefschriftmaken.nl.

Author email: e.bouwers@sig.eu

Acknowledgments

In December 2007 I had my first evaluation review at the Software Improvement
Group with Per John and Brigitte van der Vliet. During this review they asked me
whether I wanted to pursue a PhD, a possibility I did not realize I had until then.
I don’t think I would have even considered going back into research without them
asking me for it. The fact that you can now read this thesis shows that I am very
happy that they did.

The next 200 pages provide an overview of the research I have conducted in the
past four and a half years. This research has not only lead to the results presented in
this thesis, but also allowed me to get into contact with many interesting researchers,
travel to locations I would not think of visiting, and made me aware of aspects of
myself I did not know I had. All of this, and much more, would certainly not have
been possible without the help and support of many different people.

To start, I would like to thank Arie and Joost for their willingness to supervise me.
The results in this thesis would not be presentable without the questions, remarks and
advice you both gave me during all hours of the day. I greatly enjoyed our discussions
and hope to have more of them in the future.

Then I want to thank all of my current and former colleagues at the Software
Improvement Group for their help. Not only have you helped me by planning around
my research time, you have also assisted me by sharing your ideas, participating in
experiments, and by always offering your feedback on the results. Thank you for
offering me such a rich and inspiring environment.

Similarly, I would like to thank the colleagues of the Software Engineering Re-
search Group at Delft University of Technology. Even though I was there only once
a week (at best), you still made me feel at home and did not hesitate to help me in
both Delft and abroad.

A special thanks goes out to all of my co-authors for their willingness to work
together on conducting joint research and writing down the results. I have learned
new things from all of you, which are certainly going to be useful in the remainder of
my career.

Lastly, I want to thank my friends and family for listening to me and supporting
me during all these years. Thank you for distracting me by going climbing, playing
games, or sharing dinner with me. And mom and dad in particular, thank you for
always supporting me and for allowing me to do what I wanted to do.

But above all, thank you Karin for sticking with me and helping me in every way
possible. It is unbelievable how many great gifts you have given me! I deeply love
you and Suus and look forward to spend the rest of my life making you happy.

Eric Bouwers
Maarssen, April 2013

Contents

1 Introduction 1
1.1 Software Architecture: What to evaluate? 2
1.2 Software Architecture: How to evaluate? 4
1.3 Research Context . 7
1.4 Research Method . 8
1.5 Research Approach . 9
1.6 Origin of Chapters . 11

2 Criteria for the Evaluation of Implemented Architectures 15
2.1 Introduction . 15
2.2 Software Risk Assessments . 17
2.3 Architectural System Properties 19
2.4 Problem Statement . 20
2.5 Empirical Study . 21
2.6 Answers to research questions . 27
2.7 Discussion . 29
2.8 Related Work . 31
2.9 Conclusion . 32

3 A Cognitive Model for Software Architecture Complexity 33
3.1 Introduction . 33
3.2 Scope and Contribution . 34
3.3 Background . 35
3.4 Overview of SACM . 38
3.5 Criteria of SACM . 42
3.6 Discussion . 46

Contents

3.7 Conclusion . 50

4 A Lightweight Sanity Check for Implemented Architectures 51
4.1 Introduction . 51
4.2 Background . 52
4.3 LiSCIA . 53
4.4 Discussion . 59
4.5 Related Work . 60
4.6 Conclusion . 61

5 Getting what you measure: four common pitfalls in using software met-
rics 63
5.1 Software metrics steer people . 64
5.2 What does the metric mean? . 65
5.3 How many metrics do you need? 69
5.4 Conclusion . 70

6 Quantifying the Analyzability of Software Architectures 73
6.1 Introduction . 73
6.2 Problem statement . 75
6.3 Requirements . 76
6.4 Related Work . 77
6.5 Counting components . 78
6.6 Metric definition . 80
6.7 Evaluation Design . 84
6.8 Quantitative evaluation of metric performance 85
6.9 Case study . 88
6.10 Discussion . 91
6.11 Threats to Validity . 93
6.12 Conclusions . 94

7 Dependency Profiles for Software Architecture Evaluations 95
7.1 Introduction . 95
7.2 Background . 96
7.3 Dependency Profiles . 97
7.4 Preliminary Observations . 100
7.5 Discussion . 102
7.6 Evaluation Design . 102
7.7 Conclusions . 103

Contents

8 Quantifying the Encapsulation of Implemented Software Architectures 105
8.1 Introduction . 106
8.2 Problem Statement . 107
8.3 Metrics for Encapsulation . 107
8.4 Experiment Design . 113
8.5 Experiment Implementation . 119
8.6 Experiment Results . 123
8.7 Discussion . 128
8.8 Threats to Validity . 130
8.9 Related Work . 132
8.10 Conclusion . 133
8.11 Architecture Metrics Overview . 134

9 Evaluating Usefulness of Software Metrics - an Industrial Experience
Report 137
9.1 Introduction . 138
9.2 Evaluation Goal . 139
9.3 Evaluation Method . 140
9.4 Evaluation Setting . 140
9.5 Data Gathering . 144
9.6 Observation Findings . 145
9.7 Interview Findings . 150
9.8 Discussion of Findings . 154
9.9 Reflections on Evaluation Methodology 155
9.10 Related Work . 156
9.11 Conclusion . 157

10 Conclusion 159
10.1 Contributions . 159
10.2 Answer to Research Questions . 160
10.3 Impact on Practice . 162
10.4 Impact on Research . 163
10.5 Future work . 164

Bibliography 166

Summary 176

Samenvatting 180

Curriculum Vitae 184

Contents

Appendix A LiSCIA 187
A.1 Goal . 187
A.2 Start-up Phase . 188
A.3 Review Phase . 190
A.4 Actions and Guidelines . 193

CHAPTER 1

Introduction

Between waking up in the morning and reading the first e-mail at work the majority
of people have already interacted with over a dozen software systems. All aspects
of a daily commute, from waking up in the morning by the sound of the radio to
actually arriving at work using a car or public transportation, is controlled by software
systems.

As with all man-made objects, the functionality of a software system is bounded
by the principles of its construction. Just as a car typically consists of wheels, a
body and an engine which enables ground-transportation (but not flying), a software
system designed for an alarm-clock will not be able to track trains. Within software
engineering, this framework of principles is typically referred to as the software ar-
chitecture of a system.

Software architecture is loosely defined as “the organizational structure of a soft-
ware system including components, connections, constraints, and rationale” (Kogut
and Clements, 1994). All software systems are inherently constraint by a software
architecture which may be the result of a deliberate process of balancing stakeholder
requirements, may have organically grown by accumulating choices made by indi-
vidual developers, or anything in between.

Although the process of creating the architecture might deviate from project to
project, the importance of the architecture within the system is paramount, as stated
by Clements et al. (2002): “Architectures allow or preclude nearly all of the system’s
quality attributes”. In other words, without a proper architecture the quality of sys-
tem properties cannot be ensured or can be highly expensive, or even impossible, to
implement.

1

1 Introduction

For example, a software system which is designed and constructed as an iOS app
cannot be easily ported to a Windows-based operating system because of the inherent
use of operating system specific procedures. Similarly, the architectural choice for
building a web-based software system has the consequence that some functionality,
such as using operating system specific user interface elements or the direct manipu-
lation of files on the client, is not possible, or at least very challenging and costly to
implement.

Whether these limitations are problematic is context-dependent. The software
that controls the break-installation of a car does not necessarily need a graphical
user-interface, while the software system within a navigation device cannot function
without one. Additionally, for a system that is only used for a one-time conversion
of data the maintainability of the code is probably less important than the speed or
correctness of the conversion.

In order to determine whether the limitations imposed by the architecture are
problematic it is crucial to evaluate the architecture of a software system in light of
the current context and future plans with the system. Within this thesis we take a
closer look into both the “what” and “how” of architecture evaluations.

1.1 Software Architecture: What to evaluate?

To assist experts in the evaluation of a software architecture various methodolo-
gies have been developed (see for example Babar et al. (2004) and Dobrica and
Niemelä (2002) for two different overviews). These methodologies have been di-
vided into two different types of evaluations, early architecture evaluations which
focus on a designed architecture and so-called late architecture evaluations focussing
on the architecture already implemented in a software system (Dobrica and Niemelä,
2002).

Ideally, the designed architecture of a system is evaluated before the implement-
ation of the system begins, and also when the context or future plans of the system
change significantly. When the implemented architecture strictly follows the design,
the quality attributes ensured by the designed architecture are also ensured by the
implementation, limiting the need for more frequent evaluations of the implemented
architecture.

However, in practice we often encounter systems for which it is not possible,
nor effective, to evaluate the designed architecture. In some cases there never was
a designed architecture, in other cases the documentation of the architecture is out-
of-date, e.g., the design and the implementation of the architecture are out-of-sync.
Also, we frequently encounter up-to-date documentation which is incomplete, e.g.,
important trade-offs are either not documented or not considered at all.

Therefore, evaluating a designed architecture in isolation, i.e., without taking
into account the implemented architecture, leads to an incomplete overview of the

2

1.1 Software Architecture: What to evaluate?

Functional Suitability Performance Efficiency Compatibility

Reliability

Portability Maintainability Security

Usability ISO 25010

Figure 1.1: The eight quality characteristics of software quality as defined by the Interna-
tional Organization for Standardization (2011)

strengths and weaknesses of a software system. Using such an incomplete view of the
architecture as a basis for decision-making can have severe consequences, potentially
including the loss of revenue or reduced credibility of the company. Because of these
observations the focus of this thesis is on the evaluation of existing systems based on
their implemented architecture.

To evaluate an implemented architecture many different criteria can be considered.
Based on the evaluation of designed architecture, criteria such as the component-
structure and the dependencies between the components of a system are likely can-
didates to be evaluated. However, there is currently no overview of all criteria that
should be evaluated (or can safely be ignored).

A first step towards such a set of criteria is to choose a quality characteristic of a
system which is in need of evaluation. According to the International Organization
for Standardization (2011), the quality of a software system can be analyzed using
eight different quality characteristics, see Figure 1.1 for an overview.

Each quality characteristic is decomposed into several sub-characteristics. For
example, Maintainability is decomposed into: Analyzability, Modifiability, Testabil-
ity, Modularity and Reusability. The standard provides a definition for each (sub-
)characteristic, but does not provide an overview of the criteria which should be used
to evaluate the sub-characteristics. This makes the identification of these criteria an
open research topic.

The choice of a particular quality characteristic as defined in the ISO/IEC 25010
will affect the criteria. For example, choosing Performance will most likely result in
criteria related to “response time” and “memory utilization”. In contrast, a choice for
Security will likely yield criteria such as “secure communication” and “encryption
strength”.

In this research, we focus on the Maintainability characteristic of software qual-
ity, which is defined as:

Degree of effectiveness and efficiency with which a product or system can be
modified by the intended maintainers (International Organization for Standardiz-
ation, 2011).

3

1 Introduction

Evaluation

Start of
project

End of
life

Continuous Measurement

Evaluation

Check Check Check Check Check

Evaluation Evaluation

Check

Figure 1.2: Overview of activities ideally conducted during a software project

Based on this definition we reason that this quality characteristic is a prerequisite to
achieve any of the other quality characteristics efficiently. This leads us to the first
research question:

RQ1: Which criteria should be taken into account during the evaluation of the
maintainability of an implemented architecture?

1.2 Software Architecture: How to evaluate?

In an ideal situation a project is under Continuous Software Architecture Evaluation,
i.e., there is a constant attention towards the state of the software architecture of the
system using different types of activities as shown in Figure 1.2.

The evaluation of a designed architecture is done at the beginning of a project
to ensure that the design fits the current business needs. During the implementation
and maintenance phase this evaluation should be repeated at every point in time in
which the current design is not able to meet the (future) needs from the business.
If this situation is detected the evaluation team, the architects of the system, and
representatives from important stakeholders should align, evaluate the current design
and define actions to make any adjustments which are necessary to either the design
or the implementation.

The evaluation of a designed architecture can take several days and involves a
relatively large group of people. Therefore it is not cost-efficient to perform such an
evaluation on a regular basis, for example every three months. Instead, it would
be better to perform such an evaluation only when it is needed, e.g., only when
the business-context or important characteristics of the implemented architecture
changes.

To detect significant changes in the important characteristics of an implemented
architecture we envision the use of a check-list (Gawande, 2009). Such a check-
list can be performed by a quality evaluator, a role which can either be full-filled
by a team-member or by an external party. By filling in a check-list on a regular

4

1.2 Software Architecture: How to evaluate?

Architecture
Evaluation

Sanity
Check

M
et

ri
c

Time

Sanity
Check

if incorrect

Expected
bounds

Figure 1.3: Triggers within a continuous software architecture evaluation setting

basis significant changes in the implemented architecture can be detected and a full
evaluation of the designed architecture can be scheduled if needed.

Better yet, because the implemented architecture of a system is embedded in the
software system itself we can use software metrics to continuously monitor important
aspects of the implemented architecture. Basic metrics, for example the number of
components, are straight-forward to calculate after each change and can be used as a
trigger-mechanism by the quality evaluator.

Whenever a metric deviates beyond its expected bounds it is the responsibility of
the evaluator to determine the root-cause of the change by interpreting the (change in)
value of the metric. If this root-cause indicates a problem the check-list can be used to
determine other potential problems, which are then discussed with the development
team and the architects to explore alternative solution strategies. Should this fail a
more full-scale architecture evaluation could be warranted.

Consider the following situation, based on our experience, as an example. During
the development of a new system a component called “XX-connector” is introduced
which implements a connection to the XX-system, but also includes logic for when
the XX-system is not available. This increased number of components triggers the
quality evaluator to check the current implemented architecture which, amongst oth-
ers, consists of a component called “YY-connector” which also implements both the
connection and fail-over logic. From a previous discussion with the architects the
quality evaluator remembers that the system needs to communicate with a wide range
of software systems.

If no action is taken this could result in a large number of connector-components,
each of which implements its own fail-over mechanism. To prevent this situation, the
quality evaluator initiates a discussion with the development team to ensure that the
connection to external systems, including fail-over mechanisms, are implemented in
a consistent manner.

5

1 Introduction

Figure 1.3 provides an illustration of the trigger-process as described above. Ac-
cording to our own experience, this type of repeated evaluation of either the designed
or implemented architecture of a system is often not embedded within development
projects. The research literature provides some hints as to why this is the case.

1.2.1 Current State of Art: Architecture Evaluations

The results of a survey conducted by Babar and Gorton (2009) shows that the adop-
tion of any form of (structural) architecture evaluations within industry is low. One of
the reasons given by Babar et al. for this low level of adoption is the lack of process
and tool-support for companies that want to start performing architecture evaluations.
Following from these conclusions we define our second research question:

RQ2: What support can we define to make the process of regularly checking an
implemented architecture easier for a quality evaluator?

1.2.2 Current State of Art: Architecture Metrics

As mentioned before, the concept of Maintainability is decomposed into five differ-
ent sub-characteristics. One of these characteristics, Modularity, directly targets to
the software architecture of a system. Note how the definition of this characteristic
describes desirable properties of the components of a system:

Degree to which a system or computer program is composed of discrete compon-
ents such that a change to one component has minimal impact on other compon-
ents (International Organization for Standardization, 2011)

According to a recent survey performed by Koziolek (2011), there exists 19 architecture-
level metrics which aim to evaluate this property. However, despite their availability
the repeated application of these metrics is not often seen in practice.

One reason for not regularly using architecture metrics within a software develop-
ment process could be the fact that most metrics lack an empirical validation (Kozi-
olek, 2011), e.g., it is not clear whether the available metrics indeed quantify the
desired quality characteristic. This property is called “construct validity” (Kaner and
Bond, 2004).

For those metrics which have been evaluated, the evaluation normally focusses
on the construct validity of the specific metric while the comparison with existing
metrics is hardly ever performed. Thus it is yet unclear which architecture metrics
are most suitable to quantify the modularization of a software system, which leads us
to our third research question:

RQ3: Which metrics are capable of quantifying the modularization of a software
system?

6

1.3 Research Context

Apart from evaluations which cover the construct validity of a metric there exist
some evaluations which focus on the mathematical (or metrological) properties of a
metric. However, the usefulness of the metric is normally not evaluated. In other
words, the question “does the use of the metric help a quality evaluator in initiating
the right type of discussions?” is never considered. This leads us to our fourth and
final research question:

RQ4: Are the metrics identified in RQ3 useful in practice?

1.3 Research Context

The research presented within this thesis has been conducted within the Software
Improvement Group (SIG), a Dutch consultancy firm which “. . . translates detailed
technical findings concerning software-intensive systems into actionable advice for
upper management.”1. SIG is continuously seeking to improve its way of working.
To that end, SIG collaborates with the research community, and frequently publishes
about the evaluation methodology used (Deursen and Kuipers, 2003; Kuipers and
Visser, 2004; Heitlager et al., 2007; Baggen et al., 2010).

All research experiments have been performed within the period from October
2008 to December 2012. During his research the author was also involved in the de-
livery of the services offered by SIG. Prior to starting this research, the author worked
at SIG as a technical consultant for a period of one year. The insights into real-world
problems and the experiences with different solution strategies gained during the de-
livery of these services have also been an important motivator for conducting the
research leading to this thesis.

Within the services of SIG, a team of consultants has the role of external quality
evaluators for software systems built or maintained by the clients of SIG or their sup-
pliers. In the initial working period, the evaluation of the architecture of a system was
part of every project, but a structured approach was missing. Instead, the evaluations
relied heavily on the expertise of the individual consultants, which makes it hard to
deploy the services on a larger scale, increases the time to educate new personnel and
limits the traceability and repeatability of the evaluations.

Based on these observations, we hypothesize that a more structured approach to-
wards the evaluation of an implemented architecture, such as described in Section 1.2,
makes it possible to lift the various limitations of expert-based evaluations. We con-
sider the research project successful if the answers to the research questions allow
such a structured approach to be implemented in practice, or if the answers show that
such a structured approach is infeasible.

1http://www.sig.eu

7

1 Introduction

1.4 Research Method

Even though this research project has been initiated based on a problem identified
in a particular research context, the research of Babar and Gorton (2009) shows that
the lack of a structured approach towards software architecture evaluation is a more
general problem. This means that the answers to the research questions should also
be useable by quality evaluators in general. If this is not the case, i.e., if the answers
to the research questions are not valid outside our specific research context, then we
consider this research unsuccessful.

The research approach we use can be defined as “industry-as-a-laboratory” (Potts,
1993). In this approach a researcher closely collaborates with industry to identify
problems and create and evaluate solutions. To ensure that the answers to the research
questions can still be applied outside our specific research context, we use a mix of
well-established research methods, each of which is selected based on the nature of a
specific research question (Creswell and Clark, 2006).

For RQ1 we extract criteria from practice taking into account guidelines from
grounded theory (Adolph et al., 2011), which we then validate using interviews. In
addition, the theoretical validity of these criteria is done by matching the identified
criteria against theories taken from cognitive science (Hutchins, 1996).

To answer RQ2 we build upon the theoretical framework which is the result of
RQ1 and combine this with our own experience in the metric-based evaluation of
implemented software architectures. Since our goal here is to construct hands-on
advice for practitioners we validate the interest of a more general public by targeting
publication venue’s which are oriented towards practitioners.

In order to answer RQ3 we quantitatively evaluate the construct validity of po-
tential metrics using experiments and case-studies. By following the guidelines from
Wohlin et al. (2000) and Yin (2009) we ensure that conclusions drawn are valid and
that the results are as generic as possible.

Lastly, since the aim of RQ4 is to determine which metrics are useful we per-
form a qualitative evaluation by executing a large-scale empirical study, again using
the guidelines from grounded theory (Adolph et al., 2011). In addition, we conduct
interviews with experienced quality evaluators to determine whether the most prom-
ising metrics are indeed useful.

Whether the research method outlined above indeed results in a balanced and
generally applicable answer to the research questions is discussed in Chapter 10.
This chapter also discusses the impact of the results on both practice and the research
community.

8

1.5 Research Approach

1.5 Research Approach

Based on the methodological considerations outlined in the previous section we define
a more specific approach for each research question below.

RQ1: Which criteria should be taken into account during the evaluation
of the maintainability of an implemented architecture?

The research context of SIG provides an unique opportunity to access quality evalu-
ators and data extracted from industry systems, both in the form of raw metric-data
as well as their interpretation in written reports. This opportunity is leveraged to an-
swer RQ1 by mining the contents of evaluation reports containing an evaluation of
the implemented architecture of a wide range of systems. To validate the analyses,
interviews are conducted with two experienced consultants. The result of this study
is a set of criteria which have been used to evaluate the implemented architecture of
a software system. Details about the design and execution of this study are given in
Chapter 2.

The extraction of the criteria from empirical data provides us with insight into
which criteria have been used to evaluate implemented architecture, but it does not
necessarily explain why these criteria influence the maintainability of an implemented
architecture (if they have any influence at all). To define these relationships we extend
the existing architecture complexity model of Lilienthal (2009) based on theories
taken from cognitive science. The result of this study is the Software Architecture
Complexity Model (SACM), of which a description is given in Chapter 3.

As a result, those criteria which are extracted from the empirical data and which
can be explained in terms of the SACM should provide the answer to RQ1.

RQ2: What support can we define to make the process of regularly
checking an implemented architecture easier for a quality evaluator?

Apart from answering RQ1 the criteria identified in Chapter 2 also serve as a basis
for the definition of a Lightweight Sanity Check for Implemented Architectures (LiS-
CIA). By combining the specific criteria with experiences gained from structurally
evaluating the maintainability of software systems, as defined by Deursen and Kuipers
(2003) and Kuipers and Visser (2004), we design an easy-to-use check-list which can
be executed within a day. A description of LiSCIA and its design decisions is given
in Chapter 4.

Another use of our experiences in performing metric-based evaluations of the
maintainability of software systems is the definition of practical guidelines. During
the execution of the services of SIG we identified four major failure patterns in the
use of software metrics in a project management setting. In our experience, knowing
these patterns enables a manager to avoid unwanted situations, which makes it easier

9

1 Introduction

to reach a pre-defined goal. Chapter 5 discusses these patterns using several examples
taken from practice.

As a result, both chapters provide actionable advice which enables practitioners
to perform regular evaluations of an implemented architecture using metrics, thus
answering RQ2.

RQ3: Which metrics are capable of quantifying the modularization of a
software system?

Keeping the different pitfalls in mind we aim to identify two metrics which quantify
two different aspects of the modularity of an implemented architecture. Taking into
account the observation of Koziolek (2011) that most metrics lack validation, our
focus will be on the empirical validation of the construct validity of existing metrics,
and introduce new metrics if needed.

The definition of software architecture mentions two aspects of modularization
which we want to capture in two different metrics: components and connections.
Thus, one of the metrics must quantify the analyzability of a system in terms of
its components, while the other metric focusses on the connections between these
components in relation to the encapsulation within a system.

To identify a metric which can quantify the analyzability of a system in terms of
its components we first inspect the componentization of a large set of systems. Based
on this data we derive a metric called Component Balance (CB) which combines both
the number of components as well as their (difference in) volume. By performing
both a quantitative evaluation, in which we correlate the opinion of experts to the
metric-values, as well as a qualitative evaluation, by performing a case-study, we
evaluate the initial applicability of CB. Details about the design and evaluation of CB
are given in Chapter 6.

Our proposal for a metric to quantify the dependency between components is
called a Dependency Profile. Within this profile, all source-code modules of a sys-
tem are categorized into one of four categories depending on their relationship with
modules in different components. The initial hypothesis is that such a profile is an
improved indicator of the dependencies between components as opposed to simply
counting the number of dependencies. The design and initial evaluation of the De-
pendency Profile is given in Chapter 7.

To test the initial hypothesis we perform an empirical evaluation in which the his-
toric encapsulation of 10 open-source software systems is correlated with the values
of 12 architecture level metrics, including three categories of the Dependency Profile.
The results of this study show a moderate correlation between the three categories of
the Dependency Profile and the metric for historic encapsulation. For the remaining
nine dependency-metrics the correlation is either small or not significant. The details
of this empirical study are given in Chapter 8.

10

1.6 Origin of Chapters

Evaluating
Implemented

Software
Architectures

What?

How?

RQ1: Criteria Selection

RQ2: Defining Support

RQ3: Metric Identification

RQ4: Metric Validation

Chapter 4 & 5

Chapter 2 & 3

Chapter 6, 7 & 8

Chapter 9

Figure 1.4: Schematic overview of the relationship between the subject of this thesis, the
research questions and the chapters

The results of both experiments should identify those metrics which are best
suited to quantify two important properties of the modularization characteristic, thus
answering RQ3.

RQ4: Are the metrics identified in RQ3 useful in practice?

Based on the results as presented in Chapter 6 and Chapter 8 we move forward to a
large-scale evaluation of the two metrics using a four step method. First, the metrics
are embedded in the standard operating procedure of the quality evaluators within
SIG. Afterwards, data about their experiences is gathered using two different meth-
ods (in two consecutive steps). Lastly, gathered data is analyzed to derive both an
overview of situations in which the metrics are useful, as well as possible areas of
improvement for the specific metrics. Chapter 9 provides an overview of the design
and execution of this large-scale evaluation.

1.6 Origin of Chapters

Figure 1.4 shows a breakdown of the subject of this thesis, the relationship between
the topic and the research questions, and the connection to the different chapters.
Lastly, Chapter 10 discusses the contributions of this thesis, the answer to the research
question and outlines areas of future work.

Most chapters in this thesis are based on a peer-reviewed publication, Chapter 8
and Chapter 9 have been submitted for review. Each chapter contains some redund-
ancy in the explanation of context and related work to keep it self-contained, thus
each chapter can be read in separation. The author of this thesis is the main author of
all publications.

• The introduction is loosely based on two sources. The first one is a book-
chapter written in Dutch called Ontwerp versus implementatie - de kans om
ze niet uiteen te laten lopen∗, published as part of the Landelijk Architectuur
Congres 2010.
The second source is an abstract of a presentation called Continuous Architec-
ture Evaluation presented at the 10th BElgian-NEtherlands software eVOLu-
tion seminar (BENEVOL 2011).

∗Design versus implementation - the chance to keep them aligned

11

1 Introduction

• Chapter 2 is based on the paper Criteria for the Evaluation of Implemented Ar-
chitectures, which appeared in the proceedings of the 25th IEEE International
Conference on Software Maintenance (ICSM 2009). This paper is referenced
as (Bouwers et al., 2009).

• Chapter 3 is an extended version of the paper A Cognitive Model for Software
Architecture Complexity, which appeared in the proceedings of the 2010 IEEE
18th International Conference on Program Comprehension (ICPC 2010). This
paper is referenced as (Bouwers et al., 2010).

• Chapter 4 is based on the article A Lightweight Sanity Check for Implemented
Architectures, which appeared in IEEE Software, Volume 27 number 4, July
2010. This article is referenced as (Bouwers and van Deursen, 2010).

• Chapter 5 is based on an article Getting what you measure, which appeared in
Communications of the ACM, Volume 55 Issue 7, July 2012. This article is
referenced as (Bouwers et al., 2012).

• Chapter 6 is based on the paper Quantifying the Analyzability of Software Ar-
chitectures, which appeared in the proceedings of the 9th Working IEEE/IFIP
Conference on Software Architecture (WICSA 2011). This paper is referenced
as (Bouwers et al., 2011a).

• Chapter 7 is based on the short-paper Quantifying the Encapsulation of Imple-
mented Software Architectures, which appeared in the proceedings of the 27th
IEEE International Conference on Software Maintenance (ICSM 2011). This
paper is referenced as (Bouwers et al., 2011c).

• Chapter 8 is based on the paper Quantifying the Encapsulation of Implemented
Software Architectures, which has been submitted to ACM Transactions on
Software Engineering and Methodology on September 6th, 2012. A technical
report of this paper is available as (Bouwers et al., 2011b).

• Chapter 9 is based on the paper Evaluating Usefulness of Software Metrics,
which appeared in the proceedings of the 35th International Conference on
Software Engineering (ICSE 2013), Software Engineering in Practice (SEIP)
track. This paper is referenced as (Bouwers et al., 2013).

Apart from these publications the author has been involved in the following publica-
tions which are not directly included in this thesis:

• Detection of Seed Methods for Quantification of Feature Confinement, which
appeared in the proceedings of the 50th International Conference on Objects,
Models, Components, Patterns (TOOLS Europe 2012). This paper is refer-
enced as (Olszak et al., 2012).

12

1.6 Origin of Chapters

• Preparing for a Literature Survey of Software Architecture using Formal Concept
Analysis, which appeared in the proceedings of the Fifth International Work-
shop on Software Quality and Maintainability (SQM’11) at CSMR 2011. This
paper is referenced as (Couto et al., 2011).

• Extracting Dynamic Dependencies between Web Services Using Vector Clocks,
which appeared in the proceedings of the IEEE International Conference on
Service Oriented Computing & Applications (SOCA 2011). This paper is ref-
erenced as (Romano et al., 2011).

13

CHAPTER 2

Criteria for the Evaluation of Implemented Architectures ∗

Abstract

Software architecture evaluation methods aim at identifying potential maintainabil-
ity problems for a given architecture. Several of these methods exist, which typically
prescribe the structure of the evaluation process. Often left implicit, however, are the
concrete system attributes that need to be studied in order to assess the maintainab-
ility of implemented architectures.

To determine this set of attributes, we have performed an empirical study on over
40 commercial architectural evaluations conducted during the past two years as part
of a systematic “Software Risk Assessment”. We present this study and explain how
the identified attributes can be projected on various architectural system properties,
which provides an overview of criteria for the evaluation of the maintainability of
implemented software architectures.

2.1 Introduction

Any active software system will need maintenance in order to keep up with new de-
mands and changing business requirements (Lehman, 1980). From this perspective,
a good software architecture is desired because, according to Clements et al. (2002);
“Architectures allow or preclude nearly all of the system’s quality attributes”. Be-
cause of this, it is not surprising that a wide range of software architecture evalu-
ation methodologies exists (for overviews see Babar et al. (2004) and Dobrica and
Niemelä (2002)) for selecting an architecture that minimizes business risks.

∗Originally published in the proceedings of the 25th IEEE International Conference on Software
Maintenance (ICSM 2009) (Bouwers et al., 2009). Terminology has been updated to fit the thesis.

15

2 Criteria for the Evaluation of Implemented Architectures

Examining the review of Babar et al. (2004), we conclude that almost all of the
discussed methods focus on evaluating the quality of a designed architecture, i.e.,
evaluating the architecture before it is implemented. In contrast, the so-called late
architecture evaluations (Lindvall et al., 2003) are focused on assessing the quality
of an implemented architecture. Taking a closer look at the late architectural evalu-
ation methods we notice that they only define the structure of the evaluation in the
form of roles (e.g., evaluation team, architect, stakeholders) and steps (e.g., the nine
steps of the ATAM (Clements et al., 2002)). Although this structure provides a ba-
sic framework, it does not explain which properties of a system should be studied.
Usually, finding out which properties to study is part of the process itself.

Fortunately, there is research available that provides examples of system proper-
ties to study, see for example Kazman and Carrière (1999) or Murphy et al. (1995).
These techniques mainly focus on extracting a high-level (component) view of a
system in terms of components and their dependency relations. This view is then
compared with a previously designed architecture. In this light, the quality of the
implemented architecture is directly coupled with the conformance to the original
designed architecture.

Unfortunately, in many cases the documentation of the architecture is not avail-
able or out-of-date (Lilienthal, 2009). Also, the architecture of a system contains
more than the relationships amongst the main components. Many researchers agree
that one needs to inspect a system using multiple views to get a complete overview
of the architecture of a system (Bass et al., 2003; Kruchten, 1995).

In order to evaluate the maintainability of a system, the Software Improvement
Group (SIG) has developed the source-based Software Risk Assessments (SRA)
method (Deursen and Kuipers, 2003), which it uses to assess systems on a commer-
cial basis. Part of this method is dedicated to evaluating the implemented architecture
of a software system. During the course of an SRA, a Maintainability Model (Heitla-
ger et al., 2007) is used. This model provides an overview of several system proper-
ties to consider, including three system properties which address architectural issues
from different perspectives.

Most system properties used within the Maintainability Model are assessed by
auditing a single system attribute. For example, the system attribute lines of code is
used to assess the system property Volume. Unfortunately, architectural system prop-
erties are often too broad to be assessed by a single system attribute. Instead, several
system attributes need to be judged and combined to come to a balanced quality rat-
ing. This quality rating is currently based on expert opinion. To avoid inconsistencies
in the quality ratings, systems are always assessed by multiple experts. However, it
would be beneficial if the rating of an architecture’s quality could be (partially) de-
rived in a more formalized way.

To achieve this we have conducted an empirical study to reach two goals: 1)
identifying the system attributes the SIG experts have used to assess these architec-
tural system properties, and 2) finding out how the system attributes are normally

16

2.2 Software Risk Assessments

projected onto the three architectural system properties. Combining the answers to
these research questions leads to an overview of criteria for evaluating the maintain-
ability of implemented architectures.

This chapter is structured as follows: we first introduce the environment in which
the SIG evaluates implemented architectures in Section 2.2. After this, the archi-
tectural properties are introduced in Section 2.3. A problem statement and ensuing
research questions are formulated in Section 2.4, followed by the design of our em-
pirical study in Section 2.5. The results of the study are used to formulate answers to
the research questions in Section 2.6. A discussion of the relevance of the study and
threats to its validity is provided in Section 2.7, after which related work is discussed
in Section 2.8. Finally, Section 2.9 concludes this chapter.

2.2 Software Risk Assessments

The SIG has developed the Software Risk Assessment method to evaluate the main-
tainability of a software system. A first version of this method was described more
than five years ago (Deursen and Kuipers, 2003). Between 2003 and 2008, SIG ex-
perts have used this method to assess over 80 systems, almost all from industry. In the
course of these assessments, the method has been refined to better suit the purpose
of the SRA, which is to understand whether current costs and system risks are in line
with the business and IT strategy of the client. This section contains a description
of the latest version of the SRA method reflecting this experience, to show in which
environment the SIG normally evaluates implemented architectures.

Goals and Deliverables The goal of an SRA is to answer the question a company
has about the quality of their software system(s). Typical examples for the need of
an SRA include package selection, quality assurance or deciding whether to maintain
or rebuild a given system. A more detailed description of these scenarios is given by
Deursen and Kuipers (2003).

The outcome of an SRA is a report containing objective measurements of the
source code, an objective representation of the concerns of the business and an expert
assessment of the relation between the measurements and the concerns. Lastly, a set
of scenarios for reducing the impact of potential risks is given. The duration of the
project typically ranges between six and eight weeks.

Roles Figure 2.1 illustrates the different roles and responsibilities in the SRA pro-
cess. The SRA Consultant is responsible for the overall process and delivering the
final report. The SRA Analyst assists the SRA Consultant, mainly on the technical
level, and is responsible for running the source code analysis, interpreting its outcome
and supporting the SRA Consultant during technical interviews. The SRA Client is
the organization that requested the SRA to whom the final report is delivered. The
System Client is the organization that is using, or is going to use the system. In

17

2 Criteria for the Evaluation of Implemented Architectures

System

SRA Analyst

SRA Consultant

System Supplier

System Client

SRA Client

Analyzes

Provides

Final
Report

Writes

Receives

Sessions

Uses
Participates

Participates

Contributes
to

Activity

Role

Event

Product

Figure 2.1: Roles and communications within the SRA process

most cases, the System Client and the SRA Client are the same. Lastly, the System
Supplier is the organization that has developed/maintained the system.

Sessions The SRA process includes four different sessions followed by the delivery
of the final report. Before starting the first session the System Supplier transfers a
copy of the source code of the system, as well as available documentation, to the
SRA Analyst.

The first session is the Technical Session and is attended by the SRA Consultant,
the SRA Analyst and the System Supplier. Within this session the process and target
of the SRA are explained. Additionally, this session focuses on collecting all relevant
technical information of the system.

After the Technical Session, the SRA Analyst starts the extraction of source-
code facts from the system. Simultaneously, the SRA Consultant conducts a Strategy
Session together with the System Client and the SRA Client in order to precisely
identify the business goals of the client.

In the Validation Session, the SRA Consultant, assisted by the SRA Analyst,
presents the derived facts to the System Supplier and the System Client. This session
provides the opportunity to identify errors in the retrieved facts.

In the last step, the SRA Consultant and the SRA Analyst map the source-code
facts onto the concerns of the business and derives scenarios that confirm or mitigate
the concerns. Additionally, the scenarios for reducing the impact of the risks are
identified. All of this is written down in the final report which is presented in the
Final Presentation. After this session, the final report is delivered to the SRA Client.

Experience The described SRA method has been successfully applied in the past
four years. An internal report about customer satisfaction shows that customers of
SIG are highly satisfied with the outcome of their SRA. The survey over the year
2008 (with a response rate of 60 percent) reveals that over 90 percent of the clients

18

2.3 Architectural System Properties

are definitely interested in a new SRA (giving it a rating of four out of five). Also,
almost 80 percent of the clients would definitely recommend the SRA service to
others (a number rated important by Reichheld (2003)). Additionally, we have seen a
steady growth in the number of SRA’s carried out in the last two years. This increased
demand for risk assessments justifies a further investment in making the process more
systematic, which is one of the goal of the present chapter.

2.3 Architectural System Properties

As part of an SRA, a software system is evaluated on a number of system prop-
erties, including both code-level properties and architectural properties. Code-level
properties include the volume of the system, the complexity of its units, the degree
of redundancy in its code lines etc. These code-level properties can be measured in
a fairly direct way, by gathering source code metrics, aggregating them, and com-
paring them to statistically determined thresholds. A more detailed description of
SIG’s measurement model for code-level system properties can be found elsewhere
(Heitlager et al., 2007).

To evaluate the implemented architecture of the system, three architectural sys-
tem properties are distinguished, corresponding to different, but complementary, per-
spectives.

High-level Design The architectural property of high-level design is aimed at the
technical division of the overall system into layers or other organizational and/or
technological components. A typical example is the division of the system into a data
layer, a business logic layer, and a user interface, following the three-tier architectural
style.

Modularization The architectural property of modularization concerns the divi-
sion of the main technical building blocks into functional components. A typical
example would be components for account management, interest calculation, pay-
ment processing, annual reporting, etc. A single functional area is often addressed by
several related components, situated in distinct technical layers.

Separation of Concerns The architectural property of separation of concerns deals
with the division of tasks over the components within layers and over the source
code units within components. For example, within the component for payment pro-
cessing, the tasks of user authentication, input validation, transaction logging, etc.
may be addressed separately or in a tangled fashion. Also, some tasks may be handled
fully at the data layer, while others are handled by a combination of units at the data
and business logic layers.

19

2 Criteria for the Evaluation of Implemented Architectures

Thus, these three architectural properties cover organizational elements at increas-
ingly higher degrees of granularity: layers, components, and tasks or concerns. At
the granularity of high-level design, the focus is on technological choices. At the
granularity of components, the functional break-down takes center stage. Finally,
at the granularity of concerns, the interplay of technical and functional divisions is
addressed.

Unlike code-level properties, the architectural properties are not evaluated on the
basis of source code metrics alone. Though certain source code metrics may be
considered by the evaluator, many other factors are taken into account that are not
readily quantified. In fact, the evaluation requires interpretation of a wide variety of
observations and extensive software engineering expertise. In the remainder of this
chapter, we delve deeper into the exact criteria that are applied for this evaluation.

2.4 Problem Statement

The criteria employed by SRA Consultants for the evaluation of implemented ar-
chitectures have emerged from practice. The overall distinction between High-level
Design, Modularization, and Separation of Concerns emerged early and has been
used in a stable fashion throughout many years. However, the observations to un-
derpin judgements about these architectural properties were selected and used on a
per-evaluation basis. The SRA Consultants may share a common understanding of
observable system attributes and how they influence architectural properties, but this
common understanding has not been documented in an evaluation-independent and
re-usable form.

The lack of a documented set of observable attributes leads to a number of lim-
itations. Firstly, without documentation, the evaluation method can only be taught
by example to new SRA consultants, which is a time-consuming process. Secondly,
the structure of the argument that backs up each evaluation must be constructed from
scratch each time, even though they follow the same pattern. In practice, previous
arguments are used as templates for new ones, while it could be more efficient to
refer to a common model. Thirdly, a documented set of relevant system attributes
would augment the traceability, reproducibility, and evaluator-independence of the
evaluation method. Lastly, to use the architecture evaluation results for comparing
systems, e.g. in order to benchmark the architecture of a system under evaluation
against the architectures of previously evaluated systems, a documented and shared
overview of criteria is indispensable.

In order to discover and document a set of observable system attributes that can
be used for evaluating implemented architectures, we have conducted an empirical
study (Wohlin et al., 2000) into the evaluations performed by SRA Consultants of
the SIG over several years. In particular, we set out to find answers to the following
research questions:

20

2.5 Empirical Study

Q1 Which set of system attributes do experts normally take into account when de-
termining the quality rating of the three architectural system properties?

Q2 How do these system attributes influence the architectural system properties?

The answers to Q1 documents which observable system attributes are relevant for
architectural evaluation, while the answer to Q2 documents which properties are
influenced by them. Together, the answers to these questions help to remove the
above-mentioned limitations.

2.5 Empirical Study

2.5.1 Design

The input for this study are the final reports of 44 SRA’s conducted between Decem-
ber 2006 and August 2008. Older reports do not consider the Maintainability Model
and are therefore not taken into account. The reports contain a total of 54 system
ratings and are written by seven different SRA Consultants. The reviewed systems
cover a wide range of languages, sizes, ratings and business areas. An overview of
this data is given in Figure 2.2. Note that the two lower bar-charts respectively show
the number of systems with a specific rating and the number of systems of a specific
size.

Based on the guidelines as proposed by Wohlin et al. (2000) we define the fol-
lowing collection procedure. For each report, we extract the arguments used for the
quality rating for each of the architectural system properties. These arguments can be
extracted from a table that appears in most final reports. This table lists all the system
properties from the Maintainability Model, the rating for each system property, and a
small argumentation for this rating. Additionally, each system property is discussed
in a separate paragraph in the appendix of the report.

When there is no table we only use the information extracted from the discussion
paragraph. In case of ambiguity we let the arguments in the table take precedence
because these are the arguments most likely used to determine the final rating. From
the list of all arguments we extract the set of system attributes by examining which
system attributes are mentioned in the arguments. The result of this first step is given
in Section 2.5.2.

After mining the list of system attributes, we iterate through all the reports a
second time. In this iteration we determine which system attributes are used to rate
each of the three architectural system properties. This is done in a separate iteration
because the first step has given us a stable set of system attributes to work with, which
makes it easier to categorize all arguments consistently. The result of this second step
is given in Section 2.5.3.

Validation of the results is done in two ways. First, we conduct interviews with
two experienced SRA Consultants in which we ask for an explanation of how they

21

2 Criteria for the Evaluation of Implemented Architectures

25	

13	

4	

2	

3	

7	
Dominant	 Language	

Java	

Csharp	

VB	

PlSql	

C++	

Cobol,	 RPG,	 Adabas,	 Pascal,	 Informix,	 C,	 Deplhi	 (1	 occurence	 each)	

4	

12	

23	

4	

8	

3	

Business	 Area	
Pensions	

Government	

Logis4cs	

Insurance	

Financial	

Other	

0

5

10

15

20

-- - 0 + ++

Quality rating per System Property

High Level Design Modularization Separation of Concerns
0

2

4

6

8

10

12

14

16

< 10 < 20 < 50 < 100 < 200 < 500 <1000 < 5000 > 5000
Size (KLOC)

Figure 2.2: Distribution of the key characteristics of the 54 subject (sub)-systems

usually evaluate the three architectural system properties. Secondly, we present our
findings to a group of ten SRA Consultants. In both cases the authors are not amongst
the SRA Consultants. During the validation the SRA Consultants can identify new
system attributes or projections. When this is not the case we conclude that the results
are valid and provide a good overview of the current practice. The interview process
and the reports of the interviews are described in Section 2.5.4. The results of the
study are validated in Section 2.5.5.

2.5.2 Report Study Results

In order to extract the system attributes from the arguments used in the reports we
used an iterative process. The first report provided us an initial set of system attrib-
utes, after which we tried to place the arguments used in the second report under these
system attributes. When an argument could not be placed under an existing system
attribute we introduced a new system attribute based on a general description of the
used argument. Adding a new system attribute was done conservatively in order to
keep the list of system attributes manageable.

Finding the system attributes used in an argument was in most cases straight-
forward. For example, the argument “Usage of many different technologies” clearly
touches upon the Technology Combination attribute. On the other hand, the argument
“Implementation of data-access logic is bad” does not directly mention a system at-
tribute. After reading the accompanying paragraph it became clear that the code for
data-access was scattered all over the system. Therefore, this argument touches upon
the Functional Duplication and the Component Functionality attribute.

22

2.5 Empirical Study

Name Description Assessment Approach
Abstraction How well are input, output and

functionality shielded through-
out the system.

Inspecting maximum Inheritance Depth,
create a call-graph showing the path
between user interface and back-end.

Functional
Duplication

The amount of functional duplic-
ation within the system.

Browsing the source code, identifying
chunks of duplicated functionality.

Layering The functional decomposition of
the system into layers.

Inspecting the call graph on component
level.

Libraries / Frame-
works

The usage of standard libraries
and frameworks.

Inspecting the list of imports and struc-
ture of the source- and build-files.

Logic in Database The encoding of business logic in
the database.

Inspecting the size and complexity of
stored procedures and triggers.

Component
Dependencies

The static dependencies (i.e.,
calls, includes) between com-
ponents.

Inspecting the call-graph on component
level, matching this against expected de-
pendencies.

Component Func-
tionality

The match between the expected
and encoded functionality within
a component.

Expected component functionality is de-
termined by interviews and available doc-
umentation, encoded functionality is de-
termined by browsing the code.

Component
Inconsistency

Whether similar components
have a different type of set-up.

Inspecting the structure of the source /
method calls within a component.

Component Size The match between expected
size of a component and the ac-
tual size.

Expected component size is determined
by the encoded functionality, actual size
is measured by summing the LOC of all
files in a component.

Relation Doc-
umentation /
Implementation

The correctness of the relation-
ship between the available docu-
mentation and the source code.

Manual inspecting of both the source
code and the documentation.

Source Grouping The complexity of grouping
sources into components.

Creation of filters to put sources into
components.

Technology Age The age of the used languages
and platforms.

Finding the technologies used is done by
inspecting the different types of source
code. Used platforms are determined by
reading the documentation and through
the technical session.

Technology Usage Adherence to coding standards,
patterns, and best practices.

Browsing the source code, using lan-
guage specific style-checkers.

Technology Com-
bination

How well the combination of
technologies is expected to work.

Finding of the technologies is done in the
same way as Technology Age, how com-
mon the combination is is based on expert
opinion.

Textual Duplica-
tion

The amount of textual duplica-
tion within the system.

Checking the values of a duplication re-
port.

Table 2.1: System Attributes mentioned in the rating of properties

23

2 Criteria for the Evaluation of Implemented Architectures

High Level Design Modularization Separation of Concerns

Abstraction 8 3 2

Functional Duplication 2 6 18

Layering 28 1 20

Libraries / Frameworks 22 1 1

Logic in Database 1 1 3

Component Dependencies 7 11 6

Component Functionality 4 32 13

Component Inconsistency 0 1 0

Component Size 1 1 0

Relation Doc. / Impl. 2 3 0

Source Grouping 0 14 2

Technology Age 13 0 0

Technology Usage 7 3 0

Technology Combination 5 1 0

Textual Duplication 0 0 4

Table 2.2: Number of times a system attribute is named in the rating of a system property

Using this process we have identified 15 system attributes that are used in the
evaluation process. The list of found system attributes is given in Table 2.1 and
includes items one would typically expect such as layering or the use of frameworks,
as well as less common attributes such as the (un)likelihood of certain technology
combinations (e.g., Java and Pascal). For each system attribute we provide a name, a
definition and an operational procedure to quantify the attribute called an “assessment
approach”.

2.5.3 Projection Results

After defining the set of system attributes we examined the reports in a second it-
eration and determined which system attributes are used as an argument for which
system property. The result of this survey can be found in Table 2.2. Note that sev-
eral system attributes can be mentioned in the rating of each of the system properties,
which can result in more than 54 system attributes per system property.

2.5.4 Interview Description

The interviews with the two SRA Consultants took place on two different occasions.
In both cases the SRA Consultant was asked to explain how he usually determines the
rating of the three architectural system properties. Since the goal of these interviews

24

2.5 Empirical Study

is to validate our findings we did not provide the list of system attributes. Even though
we did not impose a time-limit both interviews took around 60 minutes to complete.
The reports of the two interviews are described below.

Expert 1 The first expert normally uses the different dimensions of the board of
a tic-tac-toe game as an analogy to explain the differences between the architectural
system properties to the management of an organization. He models each architec-
tural system property as a separation of the functionality along one of the axis in the
game.

Modularization is explained as the vertical separation of functionality. The ex-
pert looks for components in the code based on e.g. the directory structure, naming
convention of files, packaging structure, etc. Roughly speaking, four components are
usually expected for a system with < 20 KLOC, up to 10 components for a system <
100 KLOC and up to 20 components in larger systems. After this, the expert inspects
the files in the components to discern if these components encode certain function-
ality in a consistent manner. The expert inspects the size of the components to see
whether the distribution of the code is expected given the functionality encoded in
the component, or whether there is an indication of poorly chosen components (e.g.
1 component of 10 KLOC and 15 components of 100 LOC).

Separation of Concerns is explained as the horizontal separation of functionality,
typically encoded by the layering of the system. The expert asks questions such as:
“are there layers for specific purposes such as presentation, data-access and business-
logic?” and “is there one and only one place where communication with external
systems or with the database is handled?”. In addition, the expert takes into account
framework usage and violations between layers to determine the rating of this charac-
teristic. Finally, the expert considers the interweaving of, for example, the definition
of SQL-code and business-logic or embedding Java in JSP to have a negative impact
on Separation of Concerns.

High Level Design is explained as the diagonal separation of concerns. The
expert usually measures this by inspecting the call-graph on component level and
determining the absence or presence of loops (so each dependency between compon-
ents is unidirectional). In addition, the expert takes into account the usage of modern
programming languages and platforms to determine the rating for this system prop-
erty.

Expert 2 The interview with the second expert revealed the following definitions
of the different architectural system properties. For High Level Design, the expert ex-
amines the interaction of the system under assessment with other systems. A typical
question here is: ”is there a clearly defined communication channel to the outside
world?” Also, the expert looks for a high level division of the system into layers
with separate functionality. Furthermore, the expert inspects the relation between

25

2 Criteria for the Evaluation of Implemented Architectures

High Level Design Modularization Separation of Concerns

Abstraction E2

Functional Duplication E1

Layering E2 E1

Libraries / Frameworks E2 E1, E2

Logic in Database

Component Dependencies E1 E2

Component Functionality E2 E1, E2 E2

Component Inconsistency E1

Component Size E1

Relation Doc. / Impl. E2 E2

Source Grouping E1

Technology Age E1

Technology Usage

Technology Combination

Textual Duplication

E1 = mentioned by expert 1, E2 = mentioned by expert 2.

Table 2.3: System attributes used per system property as mentioned by the interviewees

the provided documentation (if any) and the source code. This relation is usually
given a low priority except when there are large differences. Lastly, when frame-
works contribute to the layering (for example frameworks for dependency injection
or persistence) the usage of these frameworks is taken into account when the expert
determines the rating.

The expert rates Modularization by inspecting the way the system is divided into
logical components. This division is based on the package or directory structure,
interviews with the customer and the presence of clearly defined subsystems. Again,
the relation between the documentation and the component structure is inspected by
the expert. Given the components, the expert makes an effort to put each component
into one of the layers of the system based on the functionality of the component. This
also includes the division of components into functional components and components
that act as utility-repositories. Finally, the dependencies between the components is
assessed by inspecting the call-graph. According to the expert, a good call-graph
shows the layering where each component is part of one layer and each layer depends
on one lower layer. Furthermore, a good call-graph shows all the utility components
because these components only receive calls. A bi-directional dependency in the
call-graph usually hints at an implementation or design flaw.

For Separation of Concerns the expert inspects the separation of functionality
within components. An example of this is whether the interfacing between two mod-
ules in a component is separated from the implementation. A different example is
whether a component that allows access to the outside worlds implements this access

26

2.6 Answers to research questions

as a thin layer on top of ’real’ functionality instead of encoding business logic into
the functions / objects that provide the actual access. In addition, the expert takes into
account frameworks that do not directly contribute to the layering of the system.

2.5.5 Validation

When we process the reports of the interviews with the experts in the same we as we
analyzed the final reports, we see that they do not introduce any new system attrib-
utes. All of the arguments used for each system property can be placed under the 15
system attributes listed in Table 2.1. For example, the first expert explains that Mod-
ularization is judged by looking at the sizes of the components, which corresponds
with the Component Size attribute. A second example is that he mentions “. . . the use
of modern programming languages . . . ” as an argument for High Level Architecture.
This corresponds to the Technology Age attribute. The experts opinion of how the
system attributes project onto system properties is summarized in Table 2.3.

Additionally, the presentation of the findings to a group of ten SRA consultants
did not lead to an addition of new system attributes. During the discussion that fol-
lowed the presentation the SRA Consultants concluded that they did not miss system
attributes they normally use. Also, they agreed that the projection of the system at-
tributes as given in Table 2.2 provides a general overview of the current practice.

2.6 Answers to research questions

Q1: Which system attributes do experts take into account when eval-
uating architectural system properties?

The 15 system attributes presented and defined in Table 2.1 are taken into account
for the evaluation of architectural system properties by SIG’s software assessment
experts.

Note that some of these attributes, e.g. Component Inconsistency and Component
Size, occurred with a very low frequency (see Table 2.2). Still, these attributes were
also mentioned in the expert interviews (see Table 2.3), which indicates that they are
actively used and should therefore not be excluded from the list.

Q2: How do these system attributes influence the architectural sys-
tem properties?

The data in Table 2.2 provides the raw historical data of how the system attributes
have influenced the architectural system properties. From this data, we can math-
ematically deduce a) which system attributes are most important for each system
property, and b) which system property each system attributes influences most. The
answers to these questions provides an overview of how the system properties are
influenced by the system attributes.

27

2 Criteria for the Evaluation of Implemented Architectures

High Level Design Modularization Separation of Concerns

Abstraction X

Functional Duplication X X

Layering X X

Libraries / Frameworks X

Logic in Database

Component Dependencies X X X

Component Functionality X X

Component Inconsistency

Component Size

Relation Doc. / Impl.

Source Grouping X

Technology Age X

Technology Usage X

Technology Combination

Textual Duplication

Table 2.4: Most Important System Attributes Per System Property

a) Which system attributes are most important for each system property? When
all system attributes are of equal importance for each system property they would
have been used a roughly equal number of times. By first calculating the average
number of usages for each system property, we can filter out the system attributes
with a lower usage count than this average. This filtered set gives us an overview of
which system attributes are most important for that system property.

For example, when we add all mentioning of system attributes for Modulariz-
ation we get a total of 78 usages. When all system attributes would contribute to
Modularization in the same way we expect each system attribute to be used 78/
(number o f system attributes) = 78/15 = 5.2 times. Since this is not the case, we
can filter out the most important system attributes for Modularization by stripping
away all system attributes which where mentioned less than five times. This leaves us
with only the four most important system attributes for Modularization, see Table 2.4.

Comparing the projection of the specific experts shown in Table 2.3 with the pro-
jection of the historical opinion in Table 2.4 we observe that some deviation between
the two exists. We assume this deviation stems from the fact that the projection of the
experts is extracted from a single free-form description of the assessment process,
while the projection in a report contains the consolidation of multiple discussions
amongst SRA Consultants. Also, during the interviews the SRA Consultants most
likely mentioned only those system attributes that they consider to be important in
general, which are not necessarily the same as the system attributes that are most
important for each system property.

28

2.7 Discussion

High Level Design Modularization Separation of Concerns

Abstraction X

Functional Duplication X

Layering X X

Libraries / Frameworks X

Logic in Database X

Component Dependencies X

Component Functionality X

Component Inconsistency X

Component Size X X

Relation Doc. / Impl. X X

Source Grouping X

Technology Age X

Technology Usage X

Technology Combination X

Textual Duplication X

Table 2.5: Most Important System Properties Per System Attribute

b) which system property is influenced most by each system attribute? In order
to answer this question, we again compute a threshold for average use, but in this case
we use this threshold to filter out the most important system property for each system
attribute. For example, the system attribute Technology Combination is used a total
of 6 times. This provides us with a threshold of 6/(number o f system properties) =
6/3 = 2. Using this threshold we conclude that the system property High Level
Design is most relevant for this system attribute. The algorithm described above
results in the listing for which system property is influenced most by each system
attribute shown in Table 2.5.

2.7 Discussion

Applicability By documenting the system attributes used to evaluate implemented
architectures, as well as their projection onto system properties, the limitations men-
tioned in Section 2.4 are partially lifted. Training new consultants becomes easier
because the documentation is available, argumentation of the evaluation can refer to
this documentation which increases efficiency, and by using the documentation as
a guideline during evaluations the traceability and reproducibility of the evaluation
method increases. Lastly, ratings determined with the documentation in mind allow
comparison against a benchmark of earlier evaluations, providing better insight into
the quality of the implemented architecture under review.

29

2 Criteria for the Evaluation of Implemented Architectures

In general, we can think of other useful applications for both the list of system
attributes and the projection onto system properties. For example, the list of system
attributes can directly be used in existing architectural evaluation methods such as
the ATAM (Clements et al., 2002) to make these methods more operational.

More concretely, we envision that the list of system attributes combined with the
projection can be turned into a lightweight “sanity check” for implemented architec-
tures. This can be done by providing questionnaires with a few qualitative questions
about each system attribute. When multiple persons familiar with the system fill out
these questionnaires the general opinion about the quality of the implemented archi-
tecture can quickly be determined by averaging the answers. Naturally, the results
of such a sanity check are not of the same quality as a complete architecture eval-
uation. However, performing such a check on a set of system can be useful to, for
instance, filter out the system that is in most dire need of a complete evaluation. A
more in-depth discussion of this topic is given in Chapter 4.

In any case, the list of system attributes serves as a “wish”-list for researchers
to develop automatic, qualitative measurements. Taking into account the importance
of the system attributes determined by the projection, we can quickly spot for which
system attribute there is a need for qualitative, easily (or more preferably automatic-
ally) calculable metrics. Developing and validating these type of metrics is done in
Chapter 6 to Chapter 9.

Threats to Validity A first threat to validity is whether the data sources of the em-
pirical study are representative. The data in Figure 2.2 shows that the used reports
were written for systems covering a wide range of industries, system sizes and pro-
gramming languages. Thus, the study was not focussed on only a single type of
system. Moreover, the lower-left chart in Figure 2.2 shows that the 54 ratings cover
the complete spectrum of quality ratings. This implies that the study is not based on
only problematic systems. Based on these two properties we conclude that the data
sources of the study are representative sample of industry systems.

The data extracted from the interviews might not be representative because we
have only interviewed two SRA Consultants. Even though the two interviewed SRA
Consultants are amongst the most experienced consultants within SIG, the low num-
ber of interviewees might lead to system attributes not being discovered through these
interviews. This threat is countered by the fact that we used the interviews only as a
secondary source of validation.

A second threat is the reliability of the measurements of the report study. Even
though a consistent process was followed, a different person might find different
arguments in the reports, possibly leading to a different set of system attributes. This
threat is countered by the presentation of the system attributes to a group of 10 SRA
consultants.

Finally, a threat to validity that needs to be discussed is whether the results can be
generalized towards an environment outside of SIG. In other words, can we infer that

30

2.8 Related Work

the system attributes are also important in evaluations carried out in other contexts?
This threat is partly countered by the fact that the results of the evaluations based
on these system attributes have been accepted by the system supplier. Based on this
we argue that other evaluation contexts should find these system attributes important
as well. To allow others to validate or refute this claim we have ensured that the
description of our empirical study allows replication of this study in other contexts.

2.8 Related Work

In a study done at AT&T (Avritzer and Weyuker, 1998), fifty evaluation reports were
mined for indicators that can predict the risk of a project. The authors found twelve
main categories of issues. Unfortunately, these twelve categories where too broad
to be useful, so they had to use more concrete issues to make a reliable method for
predicting the risk of a project. Even though the domain of this study (risk of a
project) is different from the domain of our study (maintainability of a product), it
does show that it is useful to identify lower-level system attributes.

As discussed in Section 2.7, the list of system attributes together with the analysis
of the projection provides us with a first overview of criteria for evaluating implemen-
ted architectures. According to the overviews of Babar et al. (2004) and Dobrica and
Niemelä (2002) there exists only a limited set of architectural evaluation methods
which are specifically aimed at implemented architectures. These methods, and the
methods targetting the designed architecture as well, normally include a phase in
which the criteria for evaluation are defined. Our work improves on this situation by
explicitly defining such a set of quality criteria, thus making it usuable within each
of these evaluation methods when maintainability is in scope.

More recently, Lilienthal (2009) defined a model to assess the complexity of im-
plemented architecture. The system attributes she uses are similar to ours, but the
model does not take into account systems implemented in multiple languages. Also,
the environment of the system (e.g., libraries used, platforms it runs on) are not con-
sidered. Lastly, the research presented in this chapter goes beyond the work of Li-
lienthal by providing not only an overview of criteria, but positioning it in a larger
process to assess the maintainability of systems in general.

There also exists some research in the area of assessing the individual system
attributes. For example, Lindvall et al. (2003) links the documented architecture of a
system to the actual implementation. Their case study shows an example of how the
connections between components, a specific instantiation of our component depend-
encies, are used to assess this link. As mentioned before, both Kazman and Carrière
(1999) and Murphy et al. (1995) use component dependencies to assess an imple-
mented architecture. Even though this research provides a solid basis for assessing
these attributes in isolation Table 2.1 shows that they cover only a part of the aspects
of an implemented architecture.

31

2 Criteria for the Evaluation of Implemented Architectures

2.9 Conclusion

This chapter describes our steps for finding criteria for the evaluation of the main-
tainability of implemented architectures. The main contributions of this chapter are:

• A description of an empirical study using over 40 SRA reports (Section 2.5)

• The identification of 15 system attributes that have an impact on the maintain-
ability of an implemented architecture (Table 2.1)

• An analysis of the projection of the found system attributes onto three archi-
tectural system properties (Section 2.7)

Additionally, we have extended the work presented by Deursen and Kuipers (2003)
by giving a more detailed description of the SRA process in Section 2.2. Combining
the identification of the system attributes with the analysis of the projection provides
us with a first overview of concrete criteria for the evaluation of the maintainability
of implemented architectures.

While the system attributes presented in this chapter are based on experience
taken from practice, the next chapter focusses on validating these system attributes
using theories taken from the field of cognitive science.

32

CHAPTER 3

A Cognitive Model for Software Architecture Complexity ∗

Abstract

Evaluating the complexity of the architecture of a software system is a difficult task.
Many aspects have to be considered to come to a balanced assessment. Several
architecture evaluation methods have been proposed, but very few define a quality
model to be used during the evaluation process. In addition, those methods that
do introduce a quality model do not necessarily explain why elements of the model
influence the complexity of an architecture.

In this chapter we propose a Software Architecture Complexity Model (SACM)
which can be used to reason about the complexity of a software architecture. This
model is based on theories from cognitive science and system attributes that have
proven to be indicators of maintainability in practice. SACM can be used as a formal
model to explain existing quality models, and as a starting point within existing ar-
chitecture evaluation methods. Alternatively, it can be used in a stand-alone fashion
to reason about a software architecture’s complexity.

3.1 Introduction

Software architecture is loosely defined as “the organizational structure of a soft-
ware system including components, connections, constraints, and rationale” (Kogut
and Clements, 1994). The quality of the software architecture of a system is import-
ant, since Architectures allow or preclude nearly all of the system’s quality attrib-
utes (Clements et al., 2002).

∗Originally published as a short paper in the proceedings of the IEEE 18th International Conference
on Program Comprehension (ICPC 2010) (Bouwers et al., 2010). Terminology has been updated to fit
this thesis.

33

3 A Cognitive Model for Software Architecture Complexity

Many architecture evaluation methods have been introduced to evaluate the qual-
ity of a software architecture (for overviews see Babar et al. (2004) and Dobrica and
Niemelä (2002)). However, many of these evaluation methods do not define a notion
of “quality”. Usually, the methodology defines a step or a phase in which evaluators
are urged to define which quality aspects are important and how these aspects should
be measured and evaluated. In a sense, these aspects and their evaluation guidelines
define a quality model for the architecture under review.

We defined an informal quality model in Chapter 2 in the form of 15 system
attributes. Because these attributes have been extracted from practice we know that
quality evaluators consider these aspects to be indicators for the maintainability of an
implemented architecture. However, the list of attributes does not explain why these
attributes influence the maintainability of the architecture.

A formal model that provides more explanation has been introduced by Lilienthal
(2009). This architecture complexity model is founded on theories in the field of cog-
nitive science and on general software engineering principles. The model has been
successfully applied in several case studies. However, due to the design of the model
and the case studies, the scope of this model is limited to explaining the complexity
of an architecture from the individual perspective of a developer. In addition, the
validation of the model is only based on systems written in a single (object-oriented)
language. Lastly, the model does not provide an explanation for all the system attrib-
utes found in Chapter 2.

In this chapter, we introduce the Software Architecture Complexity Model (SACM).
This model extends the architecture complexity model of Lilienthal by taking into
account the environment in which a developer has to understand an architecture.
SACM provides an explanation for all system attributes as defined in Chapter 2 and
can be used in various situations in both industry and research.

This chapter is structured as follows. First, the scope of SACM is defined in
Section 3.2. More information about the background of the creation of SACM is
given in Section 3.3. Section 3.4 provides an overview of the model in terms of
its goal, factors and criteria. More detailed explanations of these criteria are given in
Section 3.5. In Section 3.6, we discuss whether the objectives of SACM are achieved,
and what the limitations of the model are. Finally, Section 3.7 concludes the chapter.

3.2 Scope and Contribution

In the IEEE Standard Glossary of Software Engineering Terminology (IEEE, 1990),
the term “complexity” is defined as:

The degree to which a system or component has a design or implement-
ation that is difficult to understand and verify.

Based on this definition, the complexity of a software architecture can be found in
the intended, or designed architecture, and in the implemented architecture. The in-

34

3.3 Background

tended architecture consists of design documents on paper, whereas the implemented
architecture is captured within the source code.

The main contribution of this chapter is the definition of the Software Architec-
ture Complexity Model (SACM). SACM is a formal model to reason about 1) why an
implemented software architecture is difficult to understand, and 2) which elements
complicate the verification of the implemented architecture against the intended ar-
chitecture.

While presenting SACM in the following sections, we demonstrate that:

• SACM is defined as a formal model based on the existing theory of quality
models

• the factors and criteria that are examined by SACM are grounded in the field
of cognitive science and backed up by best practice and architecture evaluation
experience

• SACM is independent of programming languages and application context.

In addition, we will argue that SACM can serve as a framework for further research
to discover at which point developers experience certain attributes of a software ar-
chitecture as being too complex.

3.3 Background

3.3.1 Related Work

Over the years, several proposals have been made to define the complexity of an
architecture in the form of metrics. The following overview is by no means complete,
but is meant to give a small taste of the available work in this area. A more complete
overview of complexity metrics is presented by Lilienthal (2008 & 2009).

In many cases, proposed complexity metrics are based on the dependencies between
components. For example, it has been suggested to count the number of dependen-
cies (Zhao, 1998), or to use the cyclomatic complexity of the used relations (McCabe
and Butler, 1989) between components.

Other metrics defined on the level of the complete architecture can be found in
the work of Kazman and Burth (1998) and Ebert (1995). Kazman defines archi-
tecture complexity as a combination of the number of architecture patterns needed
to cover an architecture, and which proportion of an architecture is covered by ar-
chitecture patterns. In contrast, Ebert has constructed a complexity vector based on
sixteen measures which have been identified in discussions that took place during a
workshop.

In addition to these types of architecture level metrics, both AlSharif et al. (2004)
and Henderson-Sellers (1996) introduce intra-component metrics for complexity. Des-
cending even lower, we can find plenty of metrics for complexity on a unit level in

35

3 A Cognitive Model for Software Architecture Complexity

Figure 3.1: General structure of factor-criteria-metrics-models

for example the Chidamber and Kemerer (1994) metrics suite and the overview of
Zuse (1990).

A major limitation of these metric-based contributions, but also of other discus-
sions about software complexity such as the one by McDermid (2000), is that they
provide insight into the characteristics of complexity using a single or a small set
of attributes. However, none of these approaches provides a structured insight into
the complexity of the software architecture as a whole. In order to provide such a
complete view, a model which explains the relationship among the separate charac-
teristics is needed.

3.3.2 Design Process of SACM

One way to provide a framework to express the relationship among metrics is to
define a factor-criteria-metric-model (FCM-model) (McCall et al., 1977). An FCM-
model aims to operationalize an overall goal by reducing it to several factors. These
factors are still abstract terms and need to be substantiated by a layer of criteria. The
lowest level in a FCM-model consists of metrics that are derived from the criteria. A
visual representation of this breakdown can be found in Figure 3.1.

An existing FCM-model for architecture complexity can be found in the work of
Lilienthal (Lilienthal, 2009). The complexity model of Lilienthal (CML) describes
three factors of architecture complexity: Pattern Conformity, Ordering and Modu-
larization. These factors are based upon a combination of theories from cognitive
science and general software engineering principles. Each of these factors is trans-
lated into a set of criteria (for example the criteria size of cycle for the factor ordering)
which are in turn evaluated using questionnaires and metrics (Lilienthal, 2008).

Unfortunately, two aspects of the design and evaluation of CML prevent it from
being used in a general setting. On the one hand, the theories taken from cognitive
science focus on a specific level of understanding. On the other hand, the scope of the
validation of the CML is limited to systems written in only a single (object oriented)
language.

The cognitive science theories underlying CML only consider understanding from
within a single person. In other words, the theories only consider how understanding
works inside the mind of the individual. In his book Cognition in the wild, Hutchins
argues against the view of the person as the unit of cognition that needs to be stud-
ied (Hutchins, 1996). Instead, he argues that cognition is fundamentally a cultural

36

3.3 Background

Ordering Modularity Pattern conformity

Abstraction X

Functional Duplication

Layering X

Libraries / Frameworks

Logic in Database

Component Dependencies X X

Component Functionality X

Component Inconsistency X X

Component Size X

Relation Documentation / Implementation X

Source Grouping X

Technology Age

Technology Usage

Technology Combination

Textual Duplication

Table 3.1: Mapping of how system attributes are captured under factors of CML. An empty
row indicates that the system attributes cannot be mapped.

process. For instance, in any society there are cognitive tasks that are beyond the
capabilities of a single individual. In order to solve these tasks, individuals have to
work together using a form of distributed cognition. The interpersonal distribution of
the cognitive work may be appropriate or not, but going without such a distribution
is usually not an option.

Within software engineering, the cognitive task of understanding the implemen-
ted architecture of a system with, e.g., 4 million lines of code is simply too much for
a single individual. Several persons need to work together in order to form a shared
understanding and thus be able to reason about changes and improvements of the
architecture.

Note that this widened perspective does not mean that personal factors of under-
standing should be discarded. Instead, a model for software architecture complexity
should incorporate factors that deal with the environment in which the software ar-
chitecture needs to be understood.

The case studies used to evaluate CML were all implemented in Java. Because of
this, the complexity of, for example, using different programming languages inside a
single system is not taken into account.

Moreover, there are more attributes that influence the complexity of a software
architecture that are not considered in the original model of Lilienthal. In Chapter 2
we examined over 40 reports which contain, amongst others, evaluations of imple-
mented software architectures. From these evaluations, a list of 15 system attributes

37

3 A Cognitive Model for Software Architecture Complexity

Factors

Goal

Criteria

Complexity

Ordering Pattern
ConformityModularity Information

Extent
Information
Availability

Inner
coherence

Balance

Interface
coherence

Independence

Duplication

Library
extent

Technology
extent

Age

Technology
combination

Information
mediumCycle size

Cycle scope

Cycle extent

Module
conformity

Component
conformity
Technology
conformity

Cycle
entwinement

Personal Environmental

Pattern
extent

Figure 3.2: Detailed overview of SACM, grayed factors and criteria denote the original
Complexity Model of Lilienthal (2009) (CML), white factors and criteria represent our ex-
tension.

which influence the maintainability of an implemented architecture was extracted.
The list of system attributes can be found in the rows of Table 3.1.

Since a system attribute has to be understood before it can be maintained, the
expectation is that all system attributes can be explained by CML. For some attributes,
the mapping onto CML is straight-forward. For example, the definition of the factor
“Pattern conformity” directly corresponds to the definition of the attribute “Relation
between documentation and implementation”. However, despite various discussions,
the mapping of other attributes such as “Technology Combination” and “Technology
Age” turned out to be impossible.

The final conclusion of our discussions about mapping the system attributes onto
CML can be found in Table 3.1. In the end there was no explanation found for seven
of the fifteen system attributes. This shortcoming has lead to the design and definition
of SACM. And even though the original CML can still be found in this design, we
will show that this extension is novel.

3.4 Overview of SACM

An overview of SACM is given in Figure 3.2. At the top, the overall goal of SACM is
displayed. To simplify matters, this goal is named “complexity”, although strictly
speaking the goal of SACM is to evaluate and reduce complexity.

The overall goal is divided into five different factors. These factors are parti-
tioned into two different categories. The first category are the personal factors. This

38

3.4 Overview of SACM

category captures those factors that play an important role in how a single person in-
ternally understands the architecture and include small extensions on the factors from
CML.

On the right, the two environmental factors are shown. These factors reason about
the role the environment of the architecture plays in understanding an architecture.
These factors are based on the theory of Hutchins (1996) and some of the system
attributes that were not explained by CML.

Underneath each factor, a list of criteria is displayed. Those criteria with a grey
background are taken from CML, while the criteria shown in white are newly defined
for SACM. To keep the figure simple, the metrics and questions used to evaluate the
criteria are not shown. However, examples of metrics are provided with the descrip-
tion of the criteria in Section 3.5. Even though the description of the personal factors
and some of the criteria draw heavily from previous work (Lilienthal, 2008 & 2009),
we feel that all elements should be discussed in order to completely understand the
foundations and reasoning underlying SACM.

In Section 3.4.1 several basic terms are defined that are used in SACM. After
this, Section 3.4.2 provides a description of the personal factors, after which the
two environmental factors are discussed in Section 3.4.3. The criteria of the different
factors are introduced in the next section. This separation of the description of factors
and criteria makes it easier to understand the interplay between the factors, without
the need to explain the criteria in detail.

3.4.1 Definition of terms

The following terms will be used throughout the description of SACM and therefore
deserve a definition: module, component and technology.

A module is a logical block of source code that implements some sort of func-
tionality. In object oriented programming languages this normally is a class, whereas
in imperative languages the usual module is normally the file. To capture both
paradigms, in the context of SACM a module can be defined as a source file.

A component is a coherent chunk of functionality within a system on a higher
level than a module, such as a package in Java or a namespace in C#.

Within the context of SACM, the term technology includes programming lan-
guages, build tools and runtime-components such as interpreters and servers. This
broad scope is chosen in order to reason about, for example, the choice a certain
build tool has on the partitioning of the source code into components.

3.4.2 Personal Factors

A single developer needs to understand an existing software system and its architec-
ture before introducing new functionality or fixing bugs. To understand the architec-
ture, the developer needs to handle a large structure that makes up the implemented

39

3 A Cognitive Model for Software Architecture Complexity

architecture, including the large number of elements on different levels (modules,
components and layers) and the even larger number of relationships between those
elements. In addition, the software developer has to map the intended architecture
onto the implemented architecture in the source code.

To model the strategies used for this understanding, Lilienthal turned towards the
field of cognitive science (Lilienthal, 2008). This area examines how human beings
deal with complex contexts in their daily live. In this context, the question that is
answered by cognitive science is “How do human beings understand and learn about
complexity, and how do they solve problems related to complexity?”

Within cognitive psychology, three mental strategies have been described that are
used by human beings to deal with large structures and complex mappings (Anderson,
2000; Norman, 1982): chunking, formation of hierarchies and the development of
schemata.

Chunking refers to a strategy for making more efficient use of short-term memory
by recoding detailed information into larger chunks. This strategy can only be ap-
plied successfully if the information to be chunked represents a meaningful cohesive
module.

With the formation of hierarchies, human beings try to structure information on
different levels, analogous to chapters in a book. Most of the time human beings
combine formation of hierarchies and chunking to handle a huge amount of inform-
ation.

Schemata on the other hand are mental structures that represent some aspects of
the world in an abstract way. For example, most people have a teacher schema and
can apply it to a person they have never seen before. Just mentioning that someone
is a teacher instantly activates our schema and we know the job of the person, and
attach certain characteristics to the person. People use schemata to organize current
knowledge and provide a framework for future understanding. By organizing new
perceptions into existing schemata, people can act efficiently without effort.

A number of investigations have been carried out to verify that chunking, hier-
archies and schemata can help software developers to cope with large structures (Haft
et al., 2005; Simon, 1996; Gamma et al., 1995; Riel, 1996; Ebert, 1995). In par-
allel, general design principles have been developed in the last 40 years that sup-
port these mental processes: modularization (Martin, 2002; Parnas, 1972) and ab-
straction through interfaces (Martin, 2002) to foster chunking, avoiding cyclic struc-
tures (Brügge and Dutoit, 2009; Henderson-Sellers, 1996; Storey et al., 1999) and
layering (Cockburn, 2003; Melton and Tempero, 2007) to support hierarchies as well
as design patterns and architectural styles (Gamma et al., 1995; Fowler, 2002; Evans,
2003) to facilitate schemata.

Based on the three mental strategies from cognitive psychology and the above
listed general design principles, we define three personal factors for architectural
complexity to be applied on all levels of abstraction (from methods to modules and
to components):

40

3.4 Overview of SACM

• Modularity: checks whether the implemented architecture is decomposed into
cohesive elements that encapsulate their behavior and offer a cohesive inter-
face.

• Ordering: checks whether the relationships between elements in the implemen-
ted architecture form a directed, acyclic graph.

• Pattern conformity: checks whether the pattern of the intended architecture and
the technology in use can be recognized in the implemented architecture, and
whether their rules are adhered to.

3.4.3 Environmental Factors

In an ideal case, all parts of an implemented architecture of a system can be under-
stood by a single person at a global level of abstraction. However, due to the size
of modern software systems this cognitive task exceeds the capabilities of a single
person. In addition, the speed at which the implemented architecture needs to be ad-
apted to changing business requirements can demand several people to work together
in some form of distributed cognition.

This situation is similar to the scenario of navigating a ship as described by
Hutchins (1996). A single person can perform all the cognitive tasks to navigate a
ship when on open sea, but navigating a ship safely into a port requires a substantial
navigation team.

A reason for the need of distributed cognition is the amount of information that
needs to be processed in a certain time interval. In order to lower the amount of
distributed cognitive work needed, one strategy is to lower the amount of information
needed to understand the implemented architecture.

Within the context of SACM, the term “information” refers to every piece of
meaningful data that is needed to understand the architecture. How easy it is to un-
derstand pieces of information depends on the experiences of a specific person. This
is one of the reasons why “complexity” is a subjective term. After all, an experi-
enced Java developer will have less trouble understanding a system programmed in
Java than a system implemented in Cobol. However, when more information needs
to be understood, it is less likely that a single person can provide all the context for
this information himself. When this happens, the context for the information has to
be determined by interacting with external entities, which complicates the process of
understanding and is thus more complex. Because of this, the extent of information
that needs to be understood should be kept to a minimum.

In order to be able to process the needed information, it is important that the
information is actually available. After all, understanding the implemented architec-
ture of a system is virtually impossible when the implementation of the system is
not available. In addition, the representation of the available data contributes to the
complexity of understanding the data. For example, it is usually easier to grasp the

41

3 A Cognitive Model for Software Architecture Complexity

allowed dependencies between components when these dependencies are shown in a
picture, as opposed to when the dependencies are specified as a list of text.

Based on these observations, we define two environmental factors for architec-
tural complexity: information availability and information extent, where the latter
refers to the total amount of information that needs to be understood.

3.5 Criteria of SACM

Now that the factors of SACM are defined and their relation is made clear, the criteria
supporting each factor can be explained. As illustrated in Figure 3.1, some of the cri-
teria in SACM are based upon the earlier work of Lilienthal (2009). Those attributes
that are not based upon CML are inspired by the criteria identified in Chapter 2.

The criteria of the personal factors are explored in Section 3.5.1, Section 3.5.2
and Section 3.5.3, after which the environmental factor are discussed in Section 3.5.4
and Section 3.5.5. We have chosen to define all criteria in full, in order to make sure
that the model is self-contained.

3.5.1 Pattern Conformity

The factor pattern conformity checks whether the patterns that have been defined for
a software can be found, and are adhered to in the implemented architecture. There
are various sources of patterns in software architecture, such as design patterns, archi-
tectural patterns, best practices, coding standards and the intended architecture. Each
of these patterns addresses a different aspect of the software architecture. Design
patterns give guidance for the interfaces of programming modules and the interaction
between them. The intended architecture and architectural patterns, such as a layered
architecture, apply to the level of components in a software architecture. Finally, best
practices and coding standards stem from the technology that is used.

To capture these three aspects of pattern conformity we have defined the follow-
ing criteria:

1. Module conformity: checks patterns on module level

2. Component conformity: checks patterns on component level

3. Technology conformity: checks the usage of the technology against best prac-
tices and coding standards

To evaluate pattern conformity, metrics, (automated) code reviews, information from
the documentation and interviews with the system’s architects have to be combined.
For example, the patterns defining the dependencies between components should first
be extracted from the documentation or from interviews with the architects of the
system. This data can then be combined with the (static) dependencies to partly

42

3.5 Criteria of SACM

evaluate the component conformity. As another example, a language specific code-
style checker can be used to check the conformity on technology level.

3.5.2 Ordering

The factor ordering checks whether the relationships between elements in the im-
plemented architecture form a directed, acyclic graph. This factor operates on both
the module and component elements within the architecture. The first step in eval-
uating this factor is to check whether the graph of elements is acyclic. When this is
not the case, a more detailed evaluation of the cycles must be conducted to assess
the difficulty of removing the cycles from the architecture. To conduct this detailed
evaluation we have defined the following criteria:

1. Cycle size: checks how many artifacts and dependencies are part of cycles in
the system

2. Cycle extent: checks how many artifacts belong to the largest cycles

3. Cycle entwinement: checks how many bidirectional dependencies can be found
in the cycles

4. Cycle scope: checks whether component cycles are based on module cycles

With the first criteria cycle size we get an indication how ordered the evaluated soft-
ware architecture is. Our expert opinion state that systems with more than 10 percent-
age of modules in cycles tend to be hard to maintain. But if all the cycles are small,
for example 2 or 3 modules, the problem is not that big. Therefore the second criteria
cycle extent investigates the extent of the largest cycles. Still the extent of cycles
gives us no final indication whether they will be hard to remove or not. The third cri-
teria cycle entwinement provides us with an answer to this question. If the artifacts in
a cycle are connected by several bidirectional dependencies, they are strongly linked
with each other and breaking up the cycle will lead to a redesign of all the artifacts.
If there is only one dependency in a cycle going against the ordering and all other
dependencies are not bidirectional the case is much easier. Finally, the forth cri-
teria cycle scope deals with cycles on the component level that are based on module
cycles. A pure component cycle reveals the unsound sorting of some modules. If
these modules are moved to other components the component cycle is resolved. If
the component cycle is based on a module cycle resorting the modules will not solve
the problem, but the modules in the cycle will have to be redesigned to remove the
component cycle.

On the base of these four criteria a profound evaluation of ordering in software
architectures becomes possible. Metrics to evaluate these criteria can be found in
tools that check dependencies and in the extensive literature on graph-theory.

43

3 A Cognitive Model for Software Architecture Complexity

3.5.3 Modularity

The factor modularity checks whether the implemented architecture is decomposed
into cohesive elements that encapsulate their behavior and offers a cohesive interface.
In other words, each component in the system should have a single responsibility and
should offer access to that one responsibility in a consistent way. If this is done cor-
rectly and in a balanced way, it becomes relatively easy to recognize these chunks
as a whole and treat them as one block of functionality. Apart from these intra-
component properties, there are some inter-component properties that are desirable
to avoid confusion. Orthogonal to the fact that each component should have a single
responsibility, each responsibility in the system should be encoded in a single com-
ponent. This is to avoid a situation in which a change in functionality causes changing
multiple components. In addition, each component should be fairly independent, in
order to avoid that a change in a single component trickles through to many other
components.

The criteria defined for this factor are:

1. Inner Coherence: checks whether each component has a single responsibility

2. Duplication: checks whether each responsibility is encoded in a single com-
ponent

3. Interface Coherence: checks whether each component offers access to a single
responsibility

4. Independence: checks how cross-linked a component is

5. Balance: checks the distribution of system size over the components

There are many metrics available to help in evaluating these criteria. Within the
related work section, several metrics regarding independence have been named. In
addition, metrics such as the percentage of textual and functional duplication in the
system can be used to evaluate the duplication criteria. To assess the criteria of inner
and interface coherence, the description of the functionality and interface of each
component can be used. By combining these metrics by manual code inspection of
the encoded functionality, a balanced assessment can be made.

3.5.4 Information extent

The factor information extent checks the amount of information needed to understand
the implemented architecture. A large portion of this information need is dictated by
the technologies which are used within the implementation. In order to comprehend
the function each technology fulfills within the architecture, information about the
semantics, the syntax and the task of each technology is needed. The more techno-
logies are used, the bigger the total extent of information will be. For example, the

44

3.5 Criteria of SACM

information extent for a system implemented in only the Java language is smaller
then a system which is implemented using Java, HTML and Javascript.

A strategy to reduce the information extent is the usage of pre-existing solutions
such as libraries, frameworks and design patterns. In order to use these solutions, a
developer only needs to understand which task the solution accomplishes, not how
the task is accomplished. When the information needed to be able to apply a solution
is lower then the information needed to encode the solution itself, the information
extent is reduced.

For example, in the development of an interactive website it is a good idea to
use an existing library to abstract over the implementation details of different web-
browsers. The information needed to understand what the library does is less than the
information needed to understand how the details are handled. On the other hand, if
only a small part of a library is used, the information needed to understand what the
library does might not outweigh the amount of information that it hides. Because of
this, it is important to not only assess whether libraries can be used, but also to take
into account the trade-off between the reduced and required information extent.

Based on these observations, we define the following criteria for this factor:

• Technology extent: checks the used technologies

• Library extent: checks the used libraries, their coverage and whether parts of
the system could be replaced by available libraries.

• Pattern extent: checks the used patterns and whether certain parts of the system
can be replaced by standard patterns.

In order to evaluate the first criteria, the list of used technologies, the percentage of
the system which is implemented in each technology and descriptions of the tasks
of each technology has to be assembled. For the second criteria, metrics such as the
list of libraries used, the percentage of the usage of each library, and the percentage
of functionality within the system that could be captured by an existing library have
to be asserted. Lastly, metrics for the third criteria are the list of pattern definitions
which are used and a description of common strategies used within the system.

3.5.5 Information availability

The aim of the factor information availability is to assess the availability of inform-
ation about the architecture. One aspect that greatly influences the availability of
information is age. Due to erosion of the information, getting up-to-date informa-
tion about an old system, technology or library becomes increasingly complex. For
example, locating an experienced Java developer is currently quite easy, in contrast
with hiring an experienced Algol developer.

Another aspect that complicates the gathering of information is the way techno-
logies are combined. For example, the combination of Java and Cobol in a single

45

3 A Cognitive Model for Software Architecture Complexity

system is quite rare. Because of this, there is little documentation available of how
this integration can be accomplished. This in contrast with finding information about
using Java together with Java Server Pages.

However, apart from the fact that it should be possible to obtain information, it is
also important that the information can be placed in a meaningful context. How easy
it is to place information in a meaningful context is greatly dependent on the medium
of the information.

For example, consider the difference between just having access to the source
code of a system, or having access to a developer who has worked on the system. In
the second situation, understanding the architecture becomes a less complex task be-
cause 1) the developer is capable of providing both factual information of the system
and a context, and 2) it is easier to interact with the developer in order to extract in-
formation because the developer can more easily understand what you want to know.

To capture these aspects of this factor, we define the following criteria:

1. Information medium: checks the medium on which information is available

2. Age: checks the age of the used technologies, libraries and the system

3. Technology combination: checks whether the combination of used technolo-
gies is common

Examples of metrics for the first criteria are “amount of textual information”, “num-
ber of experienced developers on the development team” and “language of the docu-
mentation”. For the second criteria, metrics such as “year of first release” and “size
of community” can be used. Evaluating the last criteria can be done by counting
the number of times a technology is mentioned in the documentation of the other
technology, or locating predefined interfaces within the technology itself.

3.6 Discussion

Section 3.2 states some desirable properties of SACM. We discuss these properties in
Section 3.6.1 till Section 3.6.4. In addition, the application of SACM in industry is
discussed in Section 3.6.5, after which the application of SACM in a research setting
is discussed in Section 3.6.6. Lastly, a number of limitations of SACM is discussed
in Section 3.6.7.

3.6.1 SACM is a formal model

Figure 3.2 shows the general design of SACM. In this figure, the overall goal of
SACM is divided into several factors, which are decomposed into measurable criteria.
In Section 3.5, different metrics and questions are given to support the evaluation of
the individual criteria. This design corresponds to the setup of general FCM-models.
Therefore, we conclude that SACM is a formal model.

46

3.6 Discussion

O
rd

er
in

g

M
od

ul
ar

ity

Pa
tte

rn
co

nf
or

m
ity

In
fo

rm
at

io
n

ex
te

nt

In
fo

rm
at

io
n

av
ai

la
bi

lit
y

Abstraction X

Functional Duplication X

Layering X

Libraries / Frameworks X

Logic in Database X

Component Dependencies X X

Component Functionality X

Component Inconsistency X X

Component Size X

Relation Documentation / Implementation X

Source Grouping X

Technology Age X

Technology Usage X

Technology Combination X

Textual Duplication X

Table 3.2: Mapping of how system attributes are captured under the factors of SACM

3.6.2 SACM is based on both theory and practice

In Section 3.4, the relationship between the factors and existing theories from cog-
nitive science are given. This shows that the theoretical basis of SACM can be found
within this field. In addition, part of the explanation of the criteria in Section 3.5 con-
sist of examples taken from real-world situations. Also, the grey part of the model
as displayed in Figure 3.2 is mainly based on CML, which is already validated in
practice. The basis of the new criteria and factors in the model are on the one hand
the theories from Hutchins (1996), and on the other hand the system attributes as
identified in Chapter 2. Because of this fact, we conclude that SACM is based upon
both theory and practice.

3.6.3 SACM is independent of programming languages and application
context

In none of the factors, criteria or metrics (excluding examples) there is a reference to a
specific type of programming language or application context. In contrast, the envir-
onmental factors of SACM explicitly take into account the usage of multiple techno-

47

3 A Cognitive Model for Software Architecture Complexity

logies within a single system. Also, the definition of the terms used in SACM given
in Section 3.4.1 are designed to capture all application contexts. More generally,
SACM does not make any assumptions towards the domain, the semantics or the
requirements of the application. This ensures that SACM can be used as a basis to
evaluate a wide range of applications.

3.6.4 SACM is novel

SACM is not a straight-forward combination of existing approaches, but rather in-
novates over earlier work in a number of different ways. First of all, SACM extends
CML on both the factor and criteria level, see Figure 3.2. Secondly, the definition
of, e.g., “Pattern Conformity” has been extended in order to be more generally ap-
plicable. Lastly, several criteria, such as “Information Medium” and “Technology
Usage”, are based neither upon CML, nor the system attributes. Instead, these cri-
teria are completely new and explain the new insights obtained during our discussions
about the mapping of the system attributes onto CML.

3.6.5 SACM in industry

One of our first goals was to define a formal model that could be used to explain the
system attributes found by Bouwers et al. Table 3.2 shows that SACM is capable
of doing this. Because of this, SACM can be used as a model inside the Software
Risk Assessment (Deursen and Kuipers, 2003) process of the Software Improvement
Group (SIG). This shows that there is a direct application of SACM within an industry
setting.

More generally, SACM can be used to reduce the initial investment needed to
start performing architecture evaluations. Since there are no external dependencies,
the SACM can be “plugged into” existing software architecture evaluation methods
such as the Architecture Tradeoff Analysis Method (Clements et al., 2002). Doing
this does not only speed up the evaluation process, but the usage of an uniform model
across evaluations allows the direct comparison of evaluation results. This is useful
in, for example, the process of supplier selection.

3.6.6 SACM in research

Using SACM as a basis, we envision two different areas of further research. A first
area is the development of new metrics. Currently, in order to provide a balanced
assessment of some criteria, metrics need to be augmented by expert opinion. In
order to lower this dependency on the opinion of experts, metrics that capture these
opinions could be developed. We explore this research area for the criteria Balance
and Independence in Chapter 6 to Chapter 9.

48

3.6 Discussion

The second area of research can be found in the definition of thresholds. The basic
question here is “which value of metric X indicates that the system is too complex on
criterion Y?”. This question can be answered by several approaches. A first approach
is statistical benchmarking. By computing the value of a metric for a large group of
systems, the “normal” value of the metric can be found, everything above this value
is non-standard and therefore indicates that the criterion is becoming too complex.

A different approach to determine the threshold value is by conducting exper-
iments similar to those performed in the area of cognitive science. For example,
one can try to determine the threshold value for a metric by letting subjects exam-
ine pieces of source code with different values of the metrics and ask them to answer
questions related to understanding. This last approach is especially well suited to find
out whether a higher value of a metric always means that the source code is more dif-
ficult to understand. Taking into account the different strategies for understanding,
our hypothesis is that the statement “a higher value means more complex code” is not
correct for all complexity metrics. A validation of this assumption with respect to the
Balance criterion is discussed in Chapter 6.

3.6.7 Limitations

In order to use every part of SACM, an evaluator should have access to both the
implemented and the intended architecture. If this is not possible, and only the im-
plemented architecture is available, the assessment of, the factor “Pattern Conform-
ity” can only be done with the criteria ”Technology Conformity”. This is because
no module or component patterns are available. The remaining factors and criteria
that only check the implemented architecture are nevertheless worth to be applied
to achieve some results about the complexity of the implemented architecture. The
same holds true for utilizing SACM to an intended architecture on paper. “Pattern
conformity” can not be checked on a intended architecture alone, but many other
factors and criteria will generate valuable results to judge the intended architecture.

A more fundamental limitation of SACM is that there is no formal proof to show
that the model is complete. Even though parts of SACM are used in evaluating over
sixty systems, it could be that some factors of complexity are not captured by the
model. However, since there is also no proof that the model of “understanding” in
cognitive science is complete, we accept this limitation of the model. Therefore,
during the application of SACM one should always be on the lookout for new factors
that can help to capture complexity.

3.6.8 Evaluation

The CML part of SACM has been validated in over 25 case studies (Lilienthal, 2008).
In addition, the criteria which are based upon system attributes can build upon data of
over 40 case studies (see Chapter 2). However, a study to formally validate SACM as

49

3 A Cognitive Model for Software Architecture Complexity

a whole has currently not been conducted. Therefore, only anecdotical evidence of
the usefulness of the complete model can be given. In order to formally support these
positive first results, we plan to apply SACM in a number of formal case studies
within SIG.

3.7 Conclusion

In this chapter, we introduced the Software Architecture Complexity Model. This
formal model can be used to reason about the complexity of an implemented software
architecture and is founded upon both theories from cognitive science and general
software engineering principles. Several desirable properties of SACM have been
explained, as well as how the model can be used in both industry and research.

As a next step we will use SACM as a theoretical basis for the definition a light-
weight evaluation method for implemented architectures in Chapter 4. In addition,
we will develop and validate new metrics to support the evaluation of the criteria of
SACM in Chapter 6 to Chapter 9.

50

CHAPTER 4

A Lightweight Sanity Check for Implemented Architectures ∗

Abstract

Architecture evaluations offer many benefits, including the early detection of prob-
lems and a better understanding of the possibilities of a system. Although many meth-
ods are available to evaluate an architecture, studies have shown that the adoption of
architecture evaluations in industry is low. A reason for this lack of adoption is that
there is limited out-of-the-box process and tool support available to start performing
architecture reviews.

In this chapter we introduce LiSCIA, a Lightweight Sanity Check for Implemented
Architectures. It can be used out-of-the-box to perform a first architectural evaluation
of a system. The check is based on years of experience in evaluating the maintain-
ability of software systems. By periodically performing this check, the erosion of the
implemented architecture as the system (and its requirements) evolves over time can
be controlled.

4.1 Introduction

Software architecture is loosely defined as “the organizational structure of a soft-
ware system including components, connectors, constraints, and rationale” (Kogut
and Clements, 1994). Evaluating a software architecture of a system helps project
teams in verifying whether the architecture complies with the design goals and wishes
of the stakeholders. Additionally, the evaluation can result in a common understand-

∗Originally published in IEEE Software, Volume 27 number 4, July 2010 (Bouwers and van
Deursen, 2010). Terminology has been updated to fit the thesis.

51

4 A Lightweight Sanity Check for Implemented Architectures

ing of the architecture, its strengths, and its weaknesses. All of this helps a project
team to determine which quality criteria the system meets, since “Architectures allow
or preclude nearly all of the system’s quality attributes” (Clements et al., 2002).

Many architecture evaluation methods are available, see for example the reviews
of Babar et al. (2004) and Dobrica and Niemelä (2002). Unfortunately, as shown
by a survey conducted by Babar and Gorton (2009), the adoption of architecture
evaluations in industry is low. Their conclusion is that “There is limited out-of-the-
box process and tool support for organizations that want to start [architecture] re-
views” (Babar and Gorton, 2009).

In this chapter we propose a way to bridge this gap, by presenting a Light-
weight Sanity Check for Implemented Architectures (LiSCIA). This check is based
on nine years of experience in conducting structured Software Risk Assessments (see
Deursen and Kuipers (2003) and Heitlager et al. (2007)), as well as our earlier re-
search on maintainability indicators presented in Chapter 2.

LiSCIA is a concrete, easy-to-apply, architecture evaluation method of which the
goal is to obtain insight in a system’s quality within a day. When an evaluator applies
LiSCIA at the start of a software project and then periodically, for example every six
months or at every release, potential problems with the implemented architecture can
be spotted quickly and dealt with it at an early stage.

4.2 Background

Existing methodologies for architecture evaluations have been divided into early and
so-called late evaluations (Dobrica and Niemelä, 2002). Early evaluations focus on
designed architectures, while late architecture evaluations focus on an architecture
after it has been implemented. LiSCIA falls in the latter category as it is aimed at
evaluating an actually implemented architecture.

Our experience shows that recurrent evaluation of an implemented architecture
helps to identify architecture erosion (Perry and Wolf, 1992), the steady decay of
the quality of an implemented architecture. In the past years, the Software Improve-
ment Group (SIG) has been offering this type of recurrent evaluations as part of its
Software Monitoring service (Kuipers and Visser, 2004) and Software Risk Assess-
ments (Deursen and Kuipers, 2003) (SRAs). In both services, the technical quality
of a system is examined and linked to business risks. In an SRA this is done once,
while during the Software Monitor service the evolution of a system is followed over
a longer period of time.

In Chapter 2 we describe a study which uses over 40 risk assessment reports
of the past two years to identify 15 system attributes that influence the quality of
an implemented architecture. These 15 attributes, together with the experience of
SIG in monitoring the development of software systems in the past years, form the
basis of LiSCIA. In essence, LiSCIA is designed to concretely measure these abstract

52

4.3 LiSCIA

attributes. Additionally, LiSCIA represents a basic formalization of the steps SIG
experts normally take at the start of an SRA and during the re-evaluations within a
Software Monitoring project.

LiSCIA focuses on the maintainability quality attribute of a software system.
Due to the lightweight nature LiSCIA does not provide a complete architecture eval-
uation. However, by recurrently applying LiSCIA, an evaluator can obtain insights
into the current status of the implemented architecture of a system. With this recur-
ring insight, the evaluator can schedule and execute appropriate actions to control
the erosion of the implemented architecture. Additionally, the result of LiSCIA of-
fers a project team a platform to discuss current issues and can be used to justify
refactorings or a broader architecture evaluation.

4.3 LiSCIA

For the design of LiSCIA, we took the following key issues into account to ensure
that it is practical, yet generally applicable:

• The evaluation takes an evaluator no more than a day.

• The evaluation includes ways to improve the system, i.e., it helps the evaluator
to define actions.

• The evaluation is not limited to a specific programming language or techno-
logy.

• The evaluation is able to handle different levels of abstraction.

LiSCIA is divided into two different phases: a start-up phase (done once) and an
evaluation phase (performed for every evaluation). The result of the start-up phase
is an overview report, which is the input for the evaluation phase. The result of the
evaluation phase is an evaluation report, containing the results of the evaluation and
actions to be taken. These actions might require adjustments to the overview report.
Both the (possibly adjusted) overview report and the evaluation report serve as input
to a re-evaluation of the system. An illustration of the complete process is given in
Figure 4.1.

Before describing the two phases in depth, three key elements of LiSCIA need to
be defined: the component, the module and the container.

4.3.1 Definitions

LiSCIA uses the module viewtype (Clements et al., 2003) to reason about the struc-
ture of an implemented architecture. This viewtype divides the system into coher-
ent chunks of functionality called components. A component can represent some

53

4 A Lightweight Sanity Check for Implemented Architectures

Start-up phase Overview
Report Evaluation Phase

Evaluation
Report

Produces

Produces

Perform
Actions

Possible adjustments

Figure 4.1: Overall flow of LiSCIA

business functionality, such as ”Accounting“ and “Stocks”, or a more technical func-
tionality, such as “GUI” and “XML-processing”. LiSCIA can be applied to both
decompositions.

Better yet, LiSCIA can be applied to the same version of a system using different
decompositions. In this way, different modularization-views on the architecture can
be explored. Each of these views can give different insights, which can lead to a
better understanding of the implemented architecture as a whole.

A module within LiSCIA is a logical block of source-code that implements some
sort of functionality. The typical module in LiSCIA is that of a source-file. Modules
are grouped into containers; within LiSCIA the normal container is a directory on
the file-system.

Using the source-file as a module complies with the notion that files are typically
the dominant decomposition of functionality (Tarr et al., 1999). In other words, most
programming languages use the file as a logical grouping of functionality. An argu-
ment against this decomposition is that some technologies offer a more fine-grained
granularity of functionality. For example, for the Java language, the classes (or even
methods) can be seen as a separate decomposition of functionality. The choice for
files is made to make the method independent of the evaluated technology.

4.3.2 Start-up Phase

In the start-up phase, the evaluator first has to define the components of the system
under review. In some cases, the components are defined in the (technical) docu-
mentation. In other cases, the components are apparent from the directory, package
or namespace structure. When high-level documentation is not available, the com-
ponents can be obtained from an interview with the developers of the system. In
our experience, developers have no problem with producing a description (and draw-
ing) of the components and the relationships between the components of the system
they work on. These descriptions are often wrong in details, but adjustments to these

54

4.3 LiSCIA

descriptions can be defined as actions in the evaluation phase.
After defining the components, each module in the system should be placed under

one of the defined components. This is done by placing patterns on the names of the
modules and the containers to which they belong. For example, if all modules in
the container called ”gui“ are part of the GUI-component, a logical pattern for this
component would be .*/gui/.*.

Every module should only be matched to a single component to ensure a well-
balanced evaluation. When a module should actually be placed under multiple com-
ponents, it indicates that this module implements parts of different functionalities,
which is a sign of limited separation of concerns. In this case, either these modules
should be split up into different parts, or a component capturing the two functionalit-
ies should be introduced.

As a last step in the start-up phase, the evaluator should identify the types of
technologies used within the project. For LiSCIA, the term “technologies” can be
read as programming languages, but can also include frameworks, libraries, build
tools and possibly even hardware platforms.

A description of the components, the patterns and a list of technologies is docu-
mented in the report of this phase.

4.3.3 Evaluation Phase

The evaluation phase of LiSCIA consists of answering a list of questions concerning
the architectural elements identified in the start-up phase. Many of the questions are
grouped into pairs. Usually, the first question asks for a specific situation, after which
a second question asks for an explanation. The answer to the first question is either
“yes” or “no”, while the answer to the second question is open-ended. This set-up
requires the evaluator to be explicit, but leaves room for explaining why a certain
situation occurs.

In addition to the questions, LiSCIA provides a set of actions linked to the ques-
tions. These actions can be used as a guide to answer the questions. In principle,
the answers to the open-ended questions must explain why the action belonging to a
question does not need to be taken. The actions are defined in such a way that when
there is no valid reason to ignore the action, the maintainability of the implemented
architecture can benefit from performing the given action.

The questions and actions are divided into five different categories. These cat-
egories cover the grouping of sources, the technologies used in the system, and
the functionality, size, and dependencies of components. Table 4.1 lists some key-
properties of these categories such as topic, number of questions and number of ac-
tions. The complete list of 28 questions and 28 actions can be found in Appendix A
and online1.

1http://www.sig.eu/en/liscia

55

4 A Lightweight Sanity Check for Implemented Architectures

Name Topics of Interest #Questions #Actions
Source Groups current grouping of modules in compon-

ents, future components
4 4

Component Functionality decomposition of functionality over com-
ponents

5 6

Component Size size of components, distribution of sys-
tem size over components, growth of
components

6 5

Component Dependencies expected, circular, unwanted dependen-
cies and changed dependencies

6 7

Technologies combination, version, usage and size dis-
tribution of the used technologies

7 6

Table 4.1: Key properties of the categories of LiSCIA

Each category contains questions related to the current situation, as well as ques-
tions related to the previous evaluation. The latter type of questions can be ignored
in the initial evaluation, since their primary objective is to reveal the reasons for dif-
ferences between the versions compared.

Source Groups

A good example of the re-evaluation questions can be found in the “Source Groups”
category of questions. As a first step in this category, the evaluator has to determine
whether all modules belong to a component given the patterns described in the over-
view report. During the start-up phase, the patterns for the component are designed
to capture all modules. Because of this, it is to be expected that during the first eval-
uation, all modules are placed under a component. Since most of the questions in
this category are about modules that are not matched to a component, the questions
in this category can be ignored for this first evaluation session.

During later evaluation sessions, it sometimes happens that new modules have
been added to the system that are not matched by any component-pattern. We have
experienced this situations on a multitude of occasions. In some cases, these modules
are simply misplaced by mistake and the modules can easily be moved to their correct
location. In other cases, a new component (together with a new pattern) needs to be
introduced because new functionality is introduced. Questions regarding the ideas
behind this new component, and possibly additional components, are also part of this
category of questions.

Even though it is to be expected that the mapping of modules to components
is complete during the first evaluation, this is not always the case, especially when
existing documentation is used as part of the overview report. For example, in one
of our assessments we evaluated a system containing over 4 million lines of code.
The existing documentation described several components. In addition, the docu-
mentation included a file describing the mapping of each source-file to one of these

56

4.3 LiSCIA

components. Evaluating this mapping carefully, we discovered that over 30 percent
of the source-files could not be assigned to a component. Additionally, a considerable
part of the mapping contained source-files that did not exists anymore. One of the
actions defined for this system was to re-order the source-files to better resemble the
component structure as outlined in the documentation. This example illustrates that
it is important to verify existing documentation against the current implementation,
instead of assuming that the documentation is correct.

Component Functionality

Within the second category, the evaluator focusses on how the functionality of the
system is spread out over the components. For example, one of the questions asks
whether the functionality of each component can be described in a single sentence.
The question helps the evaluator in determining whether the current decomposition of
functionality is not too generic. In several cases, we encountered systems that defined
a component called “Utilities” (or something similar). When the exact functionality
of this component is described, it turns out that this component does not only contain
generic functionality, but also business functionality, specific parsing functionality,
or an object model. In these cases, the action is to split up the component in a truly
generic part and separate components for the more specific types of functionality.

Component Size

This third category of questions is related to the size of the components. In order to
keep LiSCIA usable for a large range of systems, the exact definition of “size of a
component” is intentionally kept abstract. Nevertheless, in most cases the size of a
component can be represented by the sum of the lines of code of all modules in the
component.

The questions in this category are not only related to the size of the individual
components, but also consider the distribution of the size of the complete system
over the components. Additionally, this category contains questions related to the
growth of the components. These last type of questions are especially useful in de-
tecting unwanted evolution within the system, but also help in detecting unwanted
development effort.

For example, in one of our monitoring projects we had several components marked
as “old”. These old components contained poor quality legacy code which was still
used, but which was not actively maintained. After inspection of the growth of the
size of the components, it was discovered that new functionality was still being ad-
ded to the “old” components. The explanation given was that it was easier to add the
new functionality in this component. Even though it was easier, it also resulted in the
addition of large and complex pieces of code because it had to follow the structure of
the legacy-code. The action that resulted from this observation was the migration of
the functionality to a new component, where it would be easier to maintain and test.

57

4 A Lightweight Sanity Check for Implemented Architectures

Component Dependencies

To answer the questions in this category, the dependencies between components need
to be available. Similar to the size of a component, the concept of “dependencies
between components” is kept abstract. However, the dependencies between com-
ponents can be calculated by first determining the dependencies between modules
(for example, the calls between methods inside the source-files), after which these
dependencies can be lifted to the component level.

The questions in this category help the evaluator to assess the wanted, unwanted
and circular dependencies between components. In addition, questions about added
and removed dependencies are defined for when a previous evaluation is available.
One of the questions in the latter category is whether there are any new dependencies
added, as was the case on one of our monitoring projects. The follow-up question is
whether this dependency is expected, which, in the case of this project, it was not.
The new dependency was not allowed according to previously defined layering rules.
After reporting this violation of the architecture, the project-lead was surprised and
asked the developers for an explanation. The developers recognized the violation,
and explained that it was introduced because a third component was not finished yet.
As soon as this third component was finished, the dependency would be removed.
All of this was documented in an evaluation report. Four months later, when the third
component was finished, the developers were reminded of this undesired dependency
and it was removed.

Technologies

The last category of LiSCIA assist the evaluator in assessing the combination of the
technologies used within the system. In addition, the questions in this category deal
with the age, the usage, and the support for each of the used technologies. As an
example, one of the questions asks whether the latest version of each technology is
used. In many projects we have seen that this is not the case. The usual explanation
for this is that there is no time to upgrade the system. In these situations, an action
is defined to upgrade to the latest technology as soon as possible. This is to prevent
the situation in which a legacy technology is used without an easy upgrade path. A
different explanation for the same situation is that management decided to always
use the second-last version of a technology, because this version has already proven
itself in practice. In these cases, there is no action defined, but the explanation for not
implementing the action is documented.

Result

The answers to all the questions and, if applicable, a list of actions is documented
in the report of this phase. With this report, certain refactorings can be justified. In
addition, the report provides a basic overview of the architecture as it is currently

58

4.4 Discussion

implemented. Because of this, the report can serve as a factual basis for discussions
about the current architecture. Lastly, the report is used as input to the next evaluation
session.

4.4 Discussion

4.4.1 Applications

Because LiSCIA is based on our experience in monitoring existing software systems,
we were able to provide examples in the last section showing how the different parts
of the method can be used to discover problems in an implemented architecture.
In order to evaluate the complete LiSCIA method, we are currently starting to use
LiSCIA as part of our daily practice. Currently, there is not enough data available to
formally evaluate the method, but the first results look promising.

LiSCIA has been applied in a number of different situations. It has been used,
amongst others, to start the evaluation process of a new system and as a sanity check
after an evaluation. Overall, the reactions of the consultants who used LiSCIA were
positive. They appreciated the structure of the methodology, as well as the type and
the ordering of the questions. One of the consultants was particularly pleased because
the straight-forward application of LiSCIA has, in his words, “mercilessly led to the
discovery of the embedding of a forked open source system in the code.”

Apart from this discovery, the application of LiSCIA led to more detailed evalu-
ations of certain system attributes. For example, the addition of a new technology in
one system led to a detailed evaluation of how this new technology interacted with
the “old” technologies, and how the old technologies interacted with each other. In a
different system, the application of LiSCIA warranted a deeper look into how func-
tionality was divided over the components. In general, LiSCIA was able to identify
which attributes of the implemented architecture deserved a more thorough evalu-
ation.

The application of LiSCIA took between about thirty minutes (for the sanity
check) and one day (as the start of the evaluation of a new system). In the first
case, all data needed to evaluate the system was already available, while in the latter
case the data was constructed during the application of LiSCIA. In both cases, the
consultants were not involved in the development of the reviewed systems.

These preliminary results show that the application of LiSCIA can be done within
a day, and that LiSCIA helps to identify weaknesses in the implemented architecture.
However, a more formal study needs to be conducted to confirm these results.

4.4.2 Limitations

During the initial evaluation of LiSCIA, some critical aspects of LiSCIA were brought
to our attention. As a start, one of the consultants stressed that LiSCIA should be ap-

59

4 A Lightweight Sanity Check for Implemented Architectures

plied by an expert outside the development team, pointing out that “. . . it is hard for a
software engineer to remain objective when it concerns his own code”.

It is indeed true that LiSCIA relies heavily on the opinion of the evaluator. After
all, the evaluator is the person who decides whether a given explanation is “good
enough” in the setting of the project. Therefore we advise that a second expert exam-
ines the evaluation report to make sure that none of the explanations is flawed.

Different consultants also pointed out a second limitation of LiSCIA. They stated
that the method relies on some of the functionality of the internal toolset of SIG,
which might limit the usability outside of SIG. This is a correct observation, since
LiSCIA relies on (automated) tool-support to determine the size and the dependencies
between the modules of the system. However, these types of measurements can be
done by freely available open source tools. The only investment needed is in the
aggregation of the raw output of these tools, which is a relatively minor investment.

A third limitation of LiSCIA is the fact that it is only aimed to discover poten-
tial risks related to maintainability. Additionally, because LiSCIA uses only a single
viewpoint to evaluate the architecture it is likely that it does not even cover all poten-
tial risks in this area.

In our view, these limitations can also be considered as strengths of the method.
First of all, when a system is not maintainable, dealing with other quality issues such
as performance and reliability becomes more difficult. Because of this, a first focus
on maintainability is justified. This focus also allows for a scoped setup of the ques-
tionnaire, allowing LiSCIA to be easily implemented in current projects with little
effort. Moreover, LiSCIA is deliberately positioned as a lightweight check to ensure
that it is seen as a stepping-stone towards more broader architecture evaluations. Last
but not least, the collection of questions and actions reflects years of experience in
conducting architectural evaluations, making it likely that they cover the most im-
portant maintainability risks.

4.5 Related Work

4.5.1 Evaluating Architectures

Comparing LiSCIA against the architecture evaluation techniques mentioned by Babar
et al. (2004) and Dobrica and Niemelä (2002), a major distinction can be found. In
contrast to many of the available architecture evaluation, LiSCIA pre-defines a no-
tion of quality in terms of maintainability. Other available architecture evaluation
methods, including the ones explicitly aimed at an implemented architecture, do not
provide such a notion. Instead, virtually all methods contain a phase in which the
notion of quality should be defined by the evaluators. As discussed before, this limits
the use of LiSCIA to a specific purpose, but makes it easier to start with performing
an architecture evaluation.

60

4.6 Conclusion

4.5.2 Architecture Erosion

Approaches for dealing with architecture erosion typically try to incorporate a solu-
tion into the design of the architecture. This approach helps in avoiding architec-
ture erosion, but van Gurp and Bosch (2002) conclude that “even an optimal design
strategy for the design phase does not deliver an optimal design”. In addition, pre-
dicting all new and changed requirements during the definition of a first release of a
system is impossible. So even if the design was optimal in some sense for the first
release, there is a good chance the design needs to be adapted. To conclude, there is
no way to completely avoid changes to an implemented architecture. Therefore, the
architecture that is currently implemented should be taken into account when dealing
with software change in order to avoid, or minimize, architectural erosion.

There exists approaches that do take into account the implemented architecture,
for example the approach proposed by Medvidovic and Jakobac (2006). The main
difference between this (and similar) approaches and LiSCIA is the time at which
erosion is dealt with. LiSCIA tries to detect erosion when it has actually happened,
whereas other approaches try to prevent erosion from happening. Since these ap-
proaches are complementary they are both considered to be useful and necessary. We
realize that dealing with erosion after is has happened is more difficult and costly, but
it is better to deal with erosion as soon as it has been introduced rather than when
other issues need to be solved.

4.6 Conclusion

LiSCIA provides a lightweight sanity check to keep control over the erosion of an
implemented architecture. A first introduction of LiSCIA within SIG has received
positive feedback. LiSCIA is simple to apply, and therefore will not provide the
same depth as a full-fledged architecture evaluation. In spite of that, the results are
useful and help in detecting architecture erosion.

We are currently evaluating the formal LiSCIA method by applying it in our cur-
rent practice. In addition, we are very interested to see whether LiSCIA is useful in
environments outside SIG. For this, we call upon you to try out LiSCIA and share
the results with us. Combining our own experience with the feedback of the com-
munity we hope to report on an improved version of LiSCIA in the coming year. The
complete LiSCIA method can be found in Appendix A and online at:

http://www.sig.eu/en/liscia

61

CHAPTER 5

Getting what you measure:
four common pitfalls in using software metrics ∗

Abstract

In the previous chapters the focus of our research has been on the identification of
attributes which influence the maintainability of an implemented architecture, and on
how these attributes can be used in a repeated evaluation of such an architecture. In
the remaining chapters of this thesis the focus shifts towards the design and validation
of metrics for two of these attributes, which allows the continuous evaluation of these
two attributes within a software project.

Before defining new metrics we use this chapter to present four pitfalls related to
the use of software metrics in a project management setting. These pitfalls are based
on the professional experience of the author as a consultant and the interactions with
other consultants during the course of his research. In such, they are a lightweight
codification of undesired situations observed in practice and are therefore not expec-
ted to represent many new ideas. To the contrary, we expect experienced software
engineers to recognize most, if not all, of these situations.

Nonetheless, by explicitly naming and describing these pitfalls evaluators work-
ing with software metrics will be able to recognize and deal with these undesired
situations in a timely manner. In addition, these four pitfalls provide more context for
the work presented in Chapter 6 to Chapter 9.

∗Originally published in Communications of the ACM, Volume 55 Issue 7 (Bouwers et al., 2012).

63

5 Getting what you measure: four common pitfalls in using software metrics

Software metrics, a helpful tool or a waste of time? For every developer who
treasures these mathematical abstractions of their software system there is a developer
who thinks software metrics are only invented to keep their project managers busy.
Software metrics can be a very powerful tool which can help you in achieving your
goals. However, as with any tool, it is important to use them correctly, as they also
have the power to demotivate project teams and steer development into the wrong
direction.

In the past 11 years, the Software Improvement Group has been using software
metrics as a basis for their management consultancy activities to identify risks and
steer development activities. We have used software metrics in over 200 investig-
ations in which we examined a single snapshot of a system. Additionally, we use
software metrics to track the ongoing development effort of over 400 systems. While
executing these projects, we have learned some pitfalls to avoid when using software
metrics in a project management setting. In this chapter we discuss the four most
important ones:

• Metric in a bubble

• Treating the metric

• One track metric

• Metrics galore

Knowing about these pitfalls will help you to recognize them and hopefully avoid
them, which ultimately leads to being able to make your project more successful.
As a software engineer, knowing these pitfalls helps in understanding why project
managers want to use software metrics and help you in assisting them when they are
applying metrics in an inefficient manner. For an external advisor, the pitfalls need to
be taken into account when presenting advice and proposing actions. Lastly, should
you be doing research in the area of software metrics, then it is good to know these
pitfalls in order to place your new metric in the right context when presenting them to
practitioners. But before diving into the pitfalls we first discuss why software metrics
can be considered a useful tool.

5.1 Software metrics steer people

“You get what you measure”; in our experience this phrase definitely applies to soft-
ware project teams. No matter what you define as a metric, as soon as the metric
is being used to evaluate a team the value of the metric moves towards the desired
value. Thus, to reach a particular goal one can continuously measure properties of the
desired goal and plotting these measurements in a place visible to the team. Ideally,
the desired goal is plotted alongside the current measurement to indicate the current
distance to the desired goal.

64

5.2 What does the metric mean?

Imagine a project in which the run-time performance of a particular use-case is
of critical importance. It then helps to create a test in which the execution time of
the use-case is measured on a daily basis. By plotting this daily data point against
the desired value, and making sure the team sees this measurement, it becomes clear
to everybody whether the desired target is being met, or whether the development
actions of yesterday are leading the team away from the goal.

Even though it might seem simple, there are a number of subtle ways in which
this technique can be applied incorrectly. For example, imagine a situation in which
customers are unhappy because issues that are found in a product are reported, but not
solved in a timely matter. In order to improve customer satisfaction, the project team
is tracking the average resolution time for issues in a release, following the reasoning
that a lower average resolution time results in higher customer satisfaction.

Unfortunately, reality is not as simple as this. To start, solving issues faster might
lead to unwanted side-effects, for example because a quick fix now results in longer
fix-times later on due to incurred technical debt. Secondly, solving an issue within
days does not help the customer if these fixes are released only once a year. Lastly,
customers are probably more satisfied when issues do not end up in the product at all
instead of them being fixed rapidly.

Thus by choosing a metric it becomes possible to steer towards a goal, but it can
also make you never reach the desired goal at all. In the remainder of this chapter we
will go over some of the pitfalls that you want to avoid when using metrics to reach
a particular goal. Such a goal can either be a high-level business goal (“the costs
of maintaining this system should not exceed 100K per year”) or more technically
oriented goals (“all pages should load within 10 seconds”).

5.2 What does the metric mean?

Software metrics can be measured on different views of a software system. In this
chapter we focus on metrics calculated on a particular version of the code-base of a
system, but the pitfalls also apply to metrics calculated on other views.

Assuming that the code-base only contains the code of the current project, soft-
ware product metrics establish a ground-truth on which can be reasoned. However,
only calculating the metrics is not enough. Two actions are needed in order to inter-
pret the value of the metric: context should be added and the relationship with the
goal should be established.

To illustrate these points we use the Lines of Code metric to provide details about
the current size of a project. Even though there are multiple definitions of what
constitutes a ’Line of Code’ (LOC), such a metric can be used to reason about whether
the examined code-base is complete, or contains extraneous code, such as copied-in
libraries. However, to do this the metric should be placed in a context, bringing us to
our first pitfall.

65

5 Getting what you measure: four common pitfalls in using software metrics

5.2.1 Metric in a bubble

Using a metric without proper interpretation. Recognized by not being able to explain
what a given value of a metric means. Can be solved by placing the metric inside a
context with respect to a goal.

The usefulness of a single datapoint of a metric is limited. Knowing that a system
is 100,000 LOC is meaningless by itself, since the number alone does not explain if
the system is large or small. In order to be useful the value of the metric should,
for example, be compared against data-points taken from the history of the project
or taken from a benchmark of other projects. In the first scenario, trends can be
discovered which should be explained by outside external events. See for example
Figure 5.1, which shows the LOC of a software system from January 2010 up until
July 2011.

Lines of code

01/2010 03/2010 05/2010 07/2010 09/2010 11/2010 01/2011 03/2011 05/2011 07/2011
0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Figure 5.1: Trendline of the Lines of Code metric over a period of 18 months

The first question that comes to mind here is: “Why did the size of the system
drop so much on July 2010?” If the answer to this question is “we removed a lot of
open-source code we copied-in earlier” there is no problem (other then the inclusion
of this code in the first place). Should the answer be “we accidentally deleted part of
our code-base”, then it might be wise to introduce a different way of source-code
version management. In this case the answer is that an action was scheduled to
drastically reduce the amount of configuration needed; given the amount of code
which was removed this action was apparently successful.

Note that one of the benefits of placing metrics inside a context is that it enables
you to focus on the important part of the graph. Questions regarding what happened
at a certain point in time or why the value significantly deviates from other systems
become more important than the specific details about how the metric is measured.
We often encounter situations in which people, either on purpose or by accident, try
to steer a discussion towards “how is this metric measured” instead towards “what do
these data-points tell me”’. In most cases, however, the exact construction of a metric
is not important for the conclusion drawn from the data.

66

5.2 What does the metric mean?

01/2010 03/2010 05/2010 07/2010 09/2010 11/2010 01/2011 03/2011 05/2011 07/2011
0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Lines

Lines of code

01/2010 03/2010 05/2010 07/2010 09/2010 11/2010 01/2011 03/2011 05/2011 07/2011
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Nr. of files

Figure 5.2: Trendline of various volume metrics over a period of 18 months

For example, Figure 5.2 shows plots representing different ways of computing
the volume of a system: (1) lines of code counted as every line containing at least one
character which is not a comment or white-space (Lines of Code); (2) lines of code
counted as all new line characters (Lines); and (3) number of files used (Nr. of files).

The trend-lines show that, even though the scale differs, these volume-metrics all
show the same events. This means that each of these metrics are good candidates to
compare the volume of a system against other systems. As long as the volume of the
other systems are measured in the same manner the conclusions drawn from the data
will be highly similar.

Looking at the different trend-lines a second question which could come to mind
is: ’Why does the volume decrease after a period in which the volume increased?’
The answer to this question can be found in the normal way in which alterations are
made to this particular system. When the volume of the system increases an action
is done to determine whether there are new abstractions possible, which is usually
the case. This type of refactoring can significantly decrease the size of the code base,
which results in lower maintenance effort and easier ways to add new functionality
to the system. Thus the goal here is to reduce maintenance effort by (amongst others)
keeping the size of the code-base relatively small.

In the ideal situation there is a direct relationship between a desired goal (i.e.,
reduced maintenance effort) and a metric (i.e., a small code-base). In some cases this
relationship is based on informal reasoning (e.g., when the code-base of a system is
small it is easier to analyze what the system does), in other cases scientific research
has been done to show that the relationship exists. What is important here is that
you determine both the nature of the relationship between the metric and the goal
(direct/indirect) and the strength of this relationship (informal reasoning/empirically
validated) when determining the meaning of a metric.

Summarizing, a metric in isolation will not help you reach your goal. On the
other hand, assigning too much meaning to a metric leads to a different pitfall.

67

5 Getting what you measure: four common pitfalls in using software metrics

5.2.2 Treating the metric

Making alterations just to improve the value of a metric. Recognized when changes
made to the software are purely cosmetic. Can be solved by determining the root
cause of the value of a metric.

The most common pitfall we encounter is the situation in which changes are made
to a system just to improve the value of a metric, instead of trying to reach a particular
goal. At this point, the value of the metric has become a goal in itself, instead of a
means to reach a larger goal. This situation leads to refactorings to simply ’please
the metric’, which is a waste of precious resources. You know this has happened
when one developer explains to another developer that a refactoring needs to be done
because ’the duplication percentage is too high’, instead of explaining that multiple
copies of a piece of code can cause problems for maintaining the code later on. It is
never a problem that the value of a metric is too high or too low: The fact that this
value is not in-line with your goal should be the reason to perform a refactoring.

To illustrate, we have encountered different projects in which the number of
parameters for methods was relatively high (as compared to a benchmark). When
a method has a relatively large number of parameters (e.g., more than seven), this
can indicate that the method is implementing different functionalities. Splitting the
method up into smaller methods would help in making it easier to understand each
separate functionality.

A second problem which could be surfacing through this metric is a lack of group-
ing of related data-objects. For example, consider a method which takes, amongst
others, a Date-object called ’startDate’ and a Date-object called ’endDate’ as para-
meters. The names suggest that these two parameters together form a DatePeriod-
object in which the startDate will need to be before the endDate. When multiple
methods take these two parameters as an input it could be beneficial to introduce
such a DatePeriod-object to make this explicit in the model, reducing both future
maintenance effort as well as the number of parameters being passed to methods.

However, we sometimes see that parameters are for example moved to the fields
of the surrounding class or replaced by a map in which a (String,Object)-pair repres-
ents the different parameters. Although both strategies reduce the number of para-
meters inside methods, it is clear that if the goal is to improve readability and reduce
future maintenance effort these solutions are not helping you to reach your goal. It
could be that this type of refactoring is done because the developers simply do not
understand the goal, and thus are treating the symptoms, but we also encounter situ-
ations in which these non-goal-oriented refactorings are done to game the system on
purpose. In both situations it is important to talk to the developers and make them
aware of the underlying goals.

To summarize, a metric should never be used ’as-is’, but placed inside a context
which enables a meaningful comparison. Additionally, the relationship between the

68

5.3 How many metrics do you need?

metric and desired property of your goal should be clear, this enables you to use the
metric to schedule specific actions in order to reach your goal. However, make sure
that scheduled actions are targeted towards reaching the underlying goal instead of
only improving the value of the metric.

5.3 How many metrics do you need?

Each metric which is measured provides a specific view-point on your system. There-
fore, combining multiple metrics allows you to get a well-balanced overview of the
current state of your system. There are two pitfalls related to the number of metrics
to be used. We start with using only a single metric.

5.3.1 One track metric

Focussing on only a single metric. Recognized by seeing only one (of just a few)
metrics on display. Can be solved by adding metrics relevant to the goal.

Using only a single software metric to measure whether you are on track towards
your goal reduces your goal to only a single dimension, i.e., the metric which is
currently being measured. However, a goal is never one-dimensional. For software
projects there are constant trade-offs between delivering desired functionality and
non-functional requirements such as security, performance, scalability and maintain-
ability. Therefore, multiple metrics need to be used to ensure that your goal, including
specified trade-offs, is reached. For example, a small code-base might be easier to
analyze, but if this code-base is made of highly-complex code it is still be hard to
make changes.

Apart from providing a more balanced view on your goal, using multiple metrics
also assists you in finding the root-cause of a problem. A single metric usually only
shows a single symptom, while a combination of metrics can help to diagnose the
actual disease within a project.

For example, in one project we found that the ’equals’ and ’hashCode’-methods
(the methods used to implement equality for objects in Java) were amongst the longest
and most complex methods within the system. Additionally, there was a relatively
large percentage of duplication amongst these methods. Since these methods use all
the fields of a class the metrics indicate that multiple classes have a relatively large
number of fields which are also duplicated. Based on this observation we reasoned
that the duplicated fields form an object that was missing from the model. In this case
we advised to look into the model of the system to determine whether extending the
model with a new object would be beneficial.

In this example, examining the metrics in isolation would not have lead to this
conclusion, but by combining several unit-level metrics we were able to detect a
design flaw.

69

5 Getting what you measure: four common pitfalls in using software metrics

5.3.2 Metrics galore

Focussing on too many metrics. Recognized when the team ignores all metrics. Can
be solved by reducing the number of metrics.

Where using a single metric oversimplifies the goal, using too many metrics
makes it hard (or even impossible) to reach your goal. Apart from making it hard
to find the right balance amongst a large set of metrics, it is not motivating for a team
to see that every change they make results in the decline of at least one metric. Addi-
tionally, when the value of a metric is far off the desired goal a team can start to think
’we will never get there anyway’ and simply ignore the metric all together.

For example, we have seen multiple projects in which a static analysis tool was
deployed without critically examining the default configuration. When the tool in
question contains a check that flags the usage of a tab-character instead of the use
of spaces, the first run of the tool can report an enormous number of violations for
each check (numbers running into the hundred of thousands). Without proper inter-
pretation of this number it is easy to conclude that reaching zero violations cannot be
done within any reasonable amount of time (even though some problems can easily
be solved by a simple formatting action). Such an incorrect assessment sometimes
leads to results in the tool being considered useless by the team, which then decides
to ignore the tool.

Fortunately, in other cases the team adapts the configuration to suit their specific
situation by limiting the number of checks (e.g., by removing checks that measure
highly related properties, can be solved automatically or are not related to the current
goals) and instantiating proper default-values. By using such a specific configuration,
the tool reports a lower number of violations which can be fixed in a reasonable
amount of time.

In order to still ensure that all violations are fixed eventually, the configuration
can be extended to include other types of checks or more strict versions of checks.
This will increase the total number of violations found, but when done correctly the
number of reported violations does not demotivate the developers too much. This
process can be repeated to slowly extend the set of checks towards all desired checks,
without overwhelming the developers with a large number of violations at once.

5.4 Conclusion

Software metrics are a useful tool which offer benefits for project managers and de-
velopers alike. In order to use the full potential of metrics, keep the following recom-
mendations in mind:

• Attach meaning to each metric by placing it in context and by defining the
relationship between the metric and your goal, while at the same time avoiding
to make the metric a goal in itself;

70

5.4 Conclusion

• Use multiple metrics to track different dimensions of your goal, but avoid de-
motivating a team by using too many metrics.

If you are already using metrics in your daily work, try to see whether it is possible
for you to link the metrics to specific goals. If you are not using any metrics at
this time but like to see its effects we suggest you start small. Define a small goal
(methods should be simple to understand for new personnel), define a small set of
metrics (e.g., length and complexity of methods), define a target measurement (at
least 90 percent of the code should be simple) and install a tool which can measure
the metric. Communicate both the goal and the trend of the metric to your co-workers
and see the influence of metrics at work.

71

CHAPTER 6

Quantifying the Analyzability of Software Architectures ∗

Abstract

The decomposition of a software system into components is a major decision in any
software architecture, having a strong influence on many of its quality aspects. A sys-
tem’s analyzability, in particular, is influenced by its decomposition into components.
But into how many components should a system be decomposed to achieve optimal
analyzability? And how should the elements of the system be distributed over those
components?

In this chapter, we set out to find answers to these questions with the support
of a large repository of industrial and open source software systems. Based on our
findings, we designed a metric which we call Component Balance. In a case study
we show that the metric provides pertinent results in various evaluation scenarios.
In addition, we report on an empirical study that demonstrates that the metric is
strongly correlated with ratings for analyzability as given by experts.

6.1 Introduction

Software architecture is loosely defined as “the organizational structure of a software
system including components, connections, constraints, and rationale” (Kogut and
Clements, 1994). Choosing the right architecture for a system is important, since
“Architectures allow or preclude nearly all of the system’s quality attributes” (Cle-
ments et al., 2002). Fortunately, there is a wide range of software architecture evalu-

∗Originally published in the proceedings of the 9th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2011) (Bouwers et al., 2011a).

73

6 Quantifying the Analyzability of Software Architectures

ation methods available to assist in evaluating an designed architecture (for overviews
see Babar et al. (2004) and Dobrica and Niemelä (2002)).

After the initial design, it is important to regularly evaluate whether the archi-
tecture of the software system is still in line with the requirements of the stakehold-
ers (Svahnberg, 2003). However, a complete re-evaluation of a software architecture
involves the interaction of various stakeholders and experts, which makes this a time-
consuming and expensive process. An alternative is to use more lean methodologies
that support a high-frequency evaluation, such as those proposed by us in Chapter 4
and by others (Christensen et al., 2010; Harrison and Avgeriou, 2010).

Any evaluation process, the high-frequency ones in particular, greatly benefits
from the use of software metrics to support it. Advantages include reducing the effort
and time needed to perform the evaluation, as well as making the evaluation more
objective and repeatable. Furthermore, metrics can enable continuous monitoring
and thus early detection of deviations in quality.

The work on metrics for software architectures has traditionally been focussed on
the way components depend on each-other and how components are internally struc-
tured (coupling and cohesion (Stevens et al., 1974; Yourdon and Constantine, 1979)).
Two related aspects of a software architecture have, however, received relatively little
attention when it comes to metrics: the decomposition of the system in terms of the
number of components and their relative sizes.

Both of these aspects have a strong influence on how easy it is to locate the parts
of the system that need to be changed, i.e., the system’s analyzability. Having only
one component (or one large component combined with several small ones) does not
offer much discriminative power to locate specific functionality. In contrast, having a
large number of (equally sized) components can overwhelm a software engineer with
too many choices.

In earlier work, efforts have been made to quantify the relative sizes of compon-
ents (Sarkar et al., 2007) and there have been references to an “ideal” number of
components for a system (Blundell et al., 1997). However, there has been no effort
to quantify these concerns and capture them in a single metric, such that they can be
evaluated in a condensed manner.

In this chapter, we present a metric called Component Balance which takes into
account both the number of components and their relative sizes. In order to define
this metric, we determined what a “reasonable” number of components can be by
studying the decomposition of over 80 systems.

To investigate whether the proposed metric accurately reflects the analyzability
of a system, we performed a quantitative experiment in which we test the correlation
of the values of the metric with the judgement of experts. In addition, we performed
a qualitative case study on an open-source project to show that the metric is usable in
an evaluation setting.

74

6.2 Problem statement

In short, this chapter makes the following contributions:

• We describe an empirical exploration of how systems are decomposed into
top-level components;

• We define a metric to measure the balance of components which is usable
across all life-cycle phases of a project;

• We show how the metric is correlated with the opinion of experts about the
analyzability of a software system.

6.2 Problem statement

We are looking for a metric which characterizes a system’s analyzability by evaluat-
ing the decomposition of a system into components. In order to define more clearly
the problem at hand, we need to define our notion of component, as well as its con-
nection to analyzability.

6.2.1 Definition of component

We define component by adopting the definition of software modules by Clements
et al. (2003), i.e., a component is considered to be an implementation unit of software
that provides a coherent unit of functionality. Within a system, such coherent units of
functionality exist on multiple levels (e.g., class, package). To ensure a consistent use
of the term, we define a component to be a module at the first level of decomposition
in a system.

For example, the components could be the top-level packages in a Java system, or
the collection of files which together form a working project in the IDE of a developer.
A component can further be divided into modules (e.g., classes in Java or files in a
working project), which are in turn decomposed into units (e.g., methods in Java
or functions in C). Note that, in this definition, there is no assumption of the type
of functionality which is implemented in a component. A decomposition can be
based on a technical point of view (e.g., having components for file-access, network
connections and the GUI) or a business point of view (e.g., containing components
for savings, accounts and stocks).

6.2.2 Analyzability and component decomposition

The International Organization for Standardization (2011) standard for software qual-
ity defines analyzability, a sub-characteristic of maintainability, as: “degree of effect-
iveness and efficiency with which it is possible to assess the impact on a product or
system of an intended change to one or more of its parts, or to diagnose a product for
deficiencies or causes of failures, or to identify parts to be modified”.

75

6 Quantifying the Analyzability of Software Architectures

A B C D(a)A B C D(b)A B C D(c)A B C D(d)

Figure 6.1: Decomposition of three systems which is considered are hard to analyze (a), (b),
(c) and one which is considered to be easy (d)

Related to the last part of the definition, a common strategy to find those parts
that need to be modified is by following the control-flow of a program. However, be-
fore this strategy can be applied, a software engineer needs to identify where to start
following the control-flow for a specific feature. From a cognitive perspective, this
first step is influenced by how easy it is for a software engineer to split up the over-
all software system into meaningful chunks of functionality (see Chapter 6, without
being overwhelmed by too many choices.

To illustrate this problem, consider Figure 6.1 which shows several examples of
how a system can be decomposed. Figure 6.1(a) shows the simplest case in which
a system is “decomposed” into a single component. Such a decomposition hinders
analyzability, as the structure of the code does not provide any hints as to where
functionality is implemented. On the other hand, a division as shown in Figure 6.1(b),
in which the system is decomposed into many small components, does not provide a
software engineer with sufficient clues as to which component should be chosen to
inspect.

However, inspecting only the number of components does not suffice to conclude
about the analyzability of a system. As illustrated in Figure 6.1(c), there can still
be a situation in which a system has a reasonable number of components, but where
one component contains almost all the code of the system. Similar to having only a
single component, this decomposition provides only limited clues as to where which
functionality is implemented. To provide maximal discriminative power to a software
engineer, a system should be decomposed into a limited number of components of
roughly the same size, as illustrated in Figure 6.1(d).

These observations lead us to conclude that a metric which measures the analyz-
ability of a software system must quantify whether a software system is decomposed
into a reasonable number of components with a low variation in size.

6.3 Requirements

To guide our search and evaluation of a metric that fits our problem, let us estab-
lish some basic requirements. The first follows naturally from the discussion in the
previous section:

76

6.4 Related Work

R1: The metric should provide an indication of the analyzability of a software sys-
tem in terms of its structural decomposition.

The fulfillment of this requirement ensures that the metric is usable during the evalu-
ation of a software system in a single moment of time.

Apart from such a one-off assessment it is desirable to use the metric to track
the evolution of the analyzability over time. To be able to compare the results of the
metric over a longer time-period, we should ensure that the values of the metric are
equally meaningful in every stage of the development of a software system, which
leads to the second requirement:

R2: The metric should provide relevant results during all stages in the life-cycle of a
software system.

Lastly, in order to ensure that the metric can be used in a wide range of systems
we require that the metric is not restricted to a specific programming language or
programming paradigm. This leads us to the last requirement:

R3: The metric should be technology-independent.

With these requirements in mind, let us explore existing metrics in the literature.

6.4 Related Work

One of the seven design principles of Sarkar et al. (2007) is the uniformity of compon-
ent size, i.e., component should be roughly equal in size, an attribute also mentioned
by several other researchers (Hatton, 1997; Hutchens and Basili, 1985; Bouwers
et al., 2010). Apart from mentioning the design principle, Sarkar et al. define a
metric to measure the uniformity of the component size called the Module Size Uni-
formity Index (MSUI) (Sarkar et al., 2007). The MSUI is defined as the division
of the average component size of a system by the sum of this average component
size and the standard deviation. In a later paper, Sarkar et al. specialized this metric
towards object-oriented systems (Sarkar et al., 2008).

Unfortunately, the proposed metrics do not deal with all situations outlined in
Figure 6.1. In particular, the situation in Figure 6.1(a) would receive the highest
possible score of 1, while even the original authors of this metric state that having
only a single component in a system is considered to be a bad decomposition (Sarkar
et al., 2007).

In addition, both the original MSUI and its object-oriented variant are considered
to be supporting metrics and are only briefly mentioned in their evaluations. In the
first paper (Sarkar et al., 2007) the authors explain that the change in values is re-
lated to the way in which their clustering algorithm works, while in their second pa-
per (Sarkar et al., 2008) the authors explain that the evaluation is not geared towards
these metrics.

77

6 Quantifying the Analyzability of Software Architectures

A second metric which can be used to measure the uniformity of the sizes of
components is the Gini coefficient (Gini, 1921). This metric was proposed by the
statistician Corrado Gini in 1921 to measure the inequality of the distribution of in-
come of a given population. This measurement has recently been applied in the field
of software metrics by Vasa et al. (2009) with interesting results. Unfortunately, this
metric has the same problem as MSUI when it comes to dealing with a single com-
ponent, and there has been no validation of this metrics with respect to measuring the
size distribution of components in software systems.

Unfortunately, papers proposing metrics to address the number of components
of a system are scarce. There is evidence in the literature that a single component
is considered to be a bad decomposition (Sarkar et al., 2007), and that breaking up
a system into many small pieces may harm reliability (Hatton, 1997). In addition,
Blundell et al. conclude that there is an optimal number of components for a given
software system (Blundell et al., 1997). However, we are unaware of papers which
define metrics to quantify the number of components of a system with respect to this
optimum or either of the extremes.

6.5 Counting components

Not having found in the literature a suitable metric for our purposes, we set out to
investigate what a “reasonable” number of components might be. For that, we took
an empirical approach and created a repository of different software systems. This
allowed us to investigate how systems are typically decomposed into components, in
particular into how many.

This section describes the general criteria for creating such a repository, the com-
position of our particular instance and discusses some of our observations.

6.5.1 Repository composition criteria

Establishing a repository of systems amounts to sampling individuals from a popula-
tion. To ensure generalizability and reliability of the results, general considerations
for sample taking should be taken to heart, such as maximizing size and representat-
iveness, consistent data collection, and outlier inspection and removal.

Consistent data collection requires that a clear definition of component exists and
is applied consistently across systems. Furthermore, the measurement of the volume
of the various components should be done according to common guidelines or with a
single tool.

The level of quality of the architecture of systems should not play a role in their
selection. Otherwise a bias will be introduced in the sample which could compromise
the generalizability of the results. On the other hand, the degree of stability of the
architecture of candidate systems should be taken into account. Systems that are in

78

6.5 Counting components

the initial stages of development or in a phase of rapid architectural churn are best
excluded from the sample, since the architecture at the time of measurement could
be not representative of the architecture of the system during a substantial phase of
its life.

6.5.2 Repository instantiation

Because we are interested in today’s state-of-the-art, the population of software sys-
tems from which we wish to take a sample are modern, object-oriented systems that
support corporations or large user communities. This excludes, for instance, old
legacy systems or research prototypes. Within this group, we want systems to be
represented of different sizes and development contexts (industrial and open-source).

We created a repository by gathering software systems previously analyzed by
the Software Improvement Group (SIG), an independent advisory firm that employs
a standardized process for evaluating software systems of their clients (Baggen et al.,
2010). These industry systems were supplemented by open source systems previ-
ously analyzed by SIG’s research department. Since, in the experience of SIG, the
overwhelming majority of modern industrial systems are developed in C-like pro-
gramming languages, we restricted our selection to Java, .NET (C#, VB.NET), and
C/C++ systems.

The following table characterizes the repository in terms of number of systems
per technology and development context:99

Java .NET C/C++ Total
Industry 35 19 5 59

Open source 17 4 6 27

Total 52 23 11 86

Thus, the repository contains a total of 86 systems. Almost 70% were developed in
an industrial context. About 60% were developed on the Java platform, 27% on .NET
and the remaining 13% are C/C++ systems. The selected systems offer functionality
in a broad spectrum of domains (e.g. public administration, finance, developer tools,
system control) with a size ranging between 1 thousand and 3 million Lines of Code.

6.5.3 Component breakdown

For the industrial systems, the component breakdown was determined by the tech-
nical analysts of SIG. They work according to standard guidelines that start with eli-
citation of component information from the system’s development/maintenance team
and ends by validating the defined breakdown with that team.

For the open-source systems, the breakdown was determined also by a technical
analyst and/or researcher of SIG, based on available documentation. In cases where
the documentation was insufficient, the directory structure of the source-code was

79

6 Quantifying the Analyzability of Software Architectures

used to guide the component breakdown. In line with our definition of component in
Section 6.2, we used only the first major decomposition, leaving any deeper hierarch-
ical decomposition out of consideration. We took as leading the breakdown for the
main programming language in each system, also when a deviating breakdown was
present for an auxiliary language.

6.5.4 Observations

Figure 6.2 shows the distribution of the number of components per system based on
the created repository. As it can be observed, the number of components metric is
distributed in a non-symmetric way. In fact, a Shapiro-Wilk test (Shapiro and Wilk,
1965) yielded a p-value of 0.0014, thus allowing us to reject the hypothesis that the
data is normally distributed.

A second observation is that a large portion (57%) of the systems in our repository
tends to have between 5 and 10 components. If we inspect the central tendency of the
repository, using the median in order to be robust against the asymmetry, we observe
that this is valued at 8. Thus apparently, the most common number of components
for a system is close to this number.

A question which this repository could answer is whether a large system more
often consists of a high number of components, simply because there is more func-
tionality to be implemented. If this is the case, a high correlation between the size of
the system and the number of components in the system should be observed. When
measuring the size of the systems in the repository by their Lines of Code, we ob-
served no strong positive or negative correlation between the sizes and the number
of components of a system (Spearman rank correlation shows 0.27 with a significant
p-value).

We hypothesize that whenever a system grows in terms of the number of com-
ponents, there comes a certain point at which the current components of the system
are grouped together within a new level of abstraction. In other words, when the
system grows, new levels of abstraction are added to ensure that the first level of
decomposition in the system remains manageable.

6.6 Metric definition

With more empirical data on the number of components available, we can use this
knowledge to define a general metric called Component Balance (CB). We define this
metric as a combination of two other metrics System Breakdown (SB), which is de-
signed to measure whether a system is decomposed into a reasonable number of com-
ponents and Component Size Uniformity (CSU), which aims to capture whether the
components are all reasonably sized. We define the metrics in general, non software
specific terms first, after which they are instantiated for the domain of components in
a software system in Section 6.6.6.

80

6.6 Metric definition

Figure 6.2: Distribution of number of components per system

6.6.1 Terminology

Let S = 〈M,C〉 be a system, consisting of a set of modules M and a set of components
C. Each module is assigned to a component and none of the components overlap.
More formally, the set C ⊆ P (M) is a partition of M, i.e.,

• ∀c1,c2 ∈C : c1 6= c2⇒ c1∩ c2 = /0.

•
⋃

c∈C = M

Furthermore, each module has a given size (for example measured by the Lines
of Code), which is captured by a function size : M→N. The volume of a component
c ∈C is defined simply as the sum of the size of its modules, thus:

volume(c) = ∑
m∈c

size(m)

6.6.2 System Breakdown

The basis for measuring the System Breakdown (SB) metric is the number of com-
ponents |C|, which is an unbounded positive number. However, a higher number of
components does not imply better analyzability. As discussed in Section 6.2, both a
high number of components and a low number of components hinders analyzability.
To capture this in a metric, we want to map the number of components to a fixed
range of numbers in which the highest number denotes a better analyzability, thus
SB : N+→ [0,1].

Since the number of components has a lower bound of 1, we define SB(1) = 0,
thereby assigning the lowest value of the metric to the minimum number of com-
ponents. On the other end, there is no theoretical upper bound for the number of
components so we define an artificial upper limit ω > 1 for which SB(n) = 0 when
n ≥ ω. Between 1 and ω there is a number of components which depicts the best

81

6 Quantifying the Analyzability of Software Architectures

Ideal case
1

0
1

(a)

1

0
1

(b)

Figure 6.3: (a) ideal component deviation function, (b) example plot of the SB function

analyzability, let us consider µ < ω to represent this number and define SB(µ) = 1,
thus assigning the highest value of the metric to the optimal number of components.

The values of the function between 1 and µ and between µ and ω are still un-
defined. Ideally, one would like the function to behave as represented in Figure 6.3(a)
(closely resembling the shape of the distribution of our repository), where being
slightly off the optimal case still warrants a high score, but being farther away would
warrant progressively lower scores. However, to keep the metric definition as simple
as possible, we opted to define the intermediate values by linear interpolation between
the aforementioned points, thereby obtaining the following metric definition:

SB(n) =

n−1
µ−1 if n≤ µ

1− n−µ
ω−µ if µ < n < ω

0 if n≥ ω

which behaves as shown in Figure 6.3(b).
The result of this function is thus a number in the range [0,1], where a higher

value denotes less deviation from the “optimal number of components”, and thus a
better decomposition of the system.

6.6.3 Component Size Uniformity

The goal of the Component Size Uniformity (CSU) metric is to measure how uni-
formly the volume of the system is distributed over its components. A way to meas-
ure this is by using the Gini coefficient (Gini, 1921; Vasa et al., 2009). The value
of the coefficient is a number in the range [0,1], where a low value denotes a more
balanced distribution in the population, and a higher value means more inequality,
i.e., a small part of the population has a significantly higher value than the rest.

The coefficient is directly applicable to the problem at hand, except that we would
like a lower value to represent a less well-distributed decomposition, thus we define
CSU as:

CSU(C) = 1−Gini({volume(c) : c ∈C})

82

6.6 Metric definition

The result of this function is a number in the range [0,1], where a higher value
denotes a more balanced distribution of the volume of the system into its components.

As discussed in Section 6.4, another option would have been to use the MSUI
metric of Sarkar et al. (2007). We evaluate this option and compare it to the CSU in
Section 6.8.

6.6.4 Component Balance

The values of SB and CSU need to be combined to give intuitive quantifications to
the scenarios listed in Section 6.2. Since there are various ways to combine the two
metrics (e.g., minimum, maximum, sum, product, average), we need to choose an
aggregation function based on desired properties. The main property we require is
that the function is conjunctive, i.e., that it does not allow for compensation (Beliakov
et al., 2008).

To illustrate, consider the extreme case where a system is decomposed into a
single component. This results in a low score on SB (0), but a perfect score of 1
on CSU. This last score is due to the fact that when a single component holds the
complete size of the system, the size is trivially evenly distributed. For example,
when using the average (which is a disjunctive function) the resulting score would be
1+0

2 = 0.5, thus assigning a value in the middle of the range for what is considered a
very bad component balance.

The simplest examples of conjunctive aggregation functions are the minimum
and the product. The minimum, however, reduces the discriminative power of the
metric. For example, a system for which SB = 0.1 (few components) and CSU = 0.1
(badly balanced) would not be distinguishable from another system with the same
number of components but for which CSU = 1 (perfectly balanced). For that reason
we chose the product as the aggregation function, thus:

CB(S) = SB(|C|)×CSU(C)

The result of this function is a number in the range [0,1]. Higher values represent
better component decomposition.

6.6.5 Properties

The definition of CB, as outlined above, exhibits several desirable properties. First of
all, the definitions of the metrics are not tailored towards any programming language
or methodology, which ensures that requirement R3 is satisfied.

Secondly, the metrics are not influenced by the volume of the system. As shown
before, the number of components is not correlated with the size of the system. Ad-
ditionally, the Gini-coefficient has specifically been designed to be agnostic to pop-
ulation size. This enables the comparison of the values for a system over time, even
when the system grows.

83

6 Quantifying the Analyzability of Software Architectures

More generally, even though the metric is explained in terms of the components
of the software system, it is not necessarily limited to this particular situation. In
fact, the definition is generic enough to apply to any situation in which an entity is
decomposed into distinct parts with a given size.

Regarding limitations of the metric, we emphasize that it can currently only be
applied on a single level of decomposition. Therefore the metric cannot be directly
used to quantify the analyzability of a multi-layered architecture. However, the metric
can be applied to each layer of such a decomposition in isolation, which reduces the
impact of this restriction.

6.6.6 Metric instantiation

To instantiate the metric for a specific domain two actions need to be taken. First, to
be able to calculate the metric, the free variables of SB must be instantiated. In our
current situation, we should instantiate µ with the “optimal” number of components
for a system.

One line of reasoning here is that the number of components should be such
that a developer can efficiently work with them in its short-term memory. Based
on this assumption the theories of Miller (1956) would suggest that the number 7
is an appropiate choice. However, this is an hypothesis which, to the best of our
knowledge, has not been validated in the field of software engineering.

As a pragmatic alternative, we use “the most common number of components” as
an approximation of the ideal number of components. By using the central tendency
of the repository described in Section 6.5, we can define µ= 8. The value of ω should
be one of the higher values of the metric observed in the repository. However, to not
be overly sensitive to extreme values we decided to take the 95th percentile of the
repository which is valued at 16. We thus have ω = 16.

Secondly, in most domains a small variation in the size of components is allowed
and expected, which means that a value of 1 for CB is only achieved under artifi-
cial circumstances. Therefore, the distribution of the values of CB for real-world
cases should be analyzed to determine which values can be considered indicative of
a certain level of analyzability, instead of using the theoretical range of the metric.

6.7 Evaluation Design

While the definition of the metric inherently satisfies requirement R3, both require-
ment R1 and R2 call for a more extensive evaluation. First of all, we want to evaluate
whether CB satisfies requirement R1, thus we have the following goal:

G1: Evaluate if CB can be used as an indicator for the analyzability of a software
system.

84

6.8 Quantitative evaluation of metric performance

Whether or not this goal is achieved, it could be the case that taking an alternat-
ive choice in the design of the metric would lead to better results, thus it would be
interesting to evaluate the alternatives:

G2: Evaluate if the choices made in the design of the metric are appropriate.

In order to achieve these two goals, we designed a quantitative experiment where
the metric and some alternatives were compared to a “Gold standard”, which con-
sisted of ratings provided by experts. This is presented in Section 6.8.

To satisfy requirement R2 we need to determine whether CB provides relevant
results during all stages of the life-cycle of a software system. Thus, we would like
to address two goals, namely:

G3: Understand how the value of CB can help during the assessment of a software
architecture.

G4: Understand how the value of CB evolves over time.

To accomplish these goals, we performed a case study where we assess a software
system in terms of its structural decomposition. We used the metric as a basis for
discussion of the current decomposition, as well as to investigate its evolution through
time. This is presented in Section 6.9.

The integrated evaluation findings are presented in Section 6.10, along with an
assessment of the threats to validity covered in Section 6.11.

6.8 Quantitative evaluation of metric performance
6.8.1 Experiment design and execution

The first step is to create the “Gold standard” to compare the metric to. To do this,
we conducted interviews with eight experts working at SIG (see Section 6.5.2) in
the field of software quality assessment, who were asked to rate the analyzability of
a given software system in terms of its structural decomposition into components.
They were requested to use a 5-point Likert scale, but in certain cases they did not
find the scale detailed enough and chose to award half-point ratings.

All experts are experienced in evaluating the technical quality (focussed on main-
tainability) of industrial systems. For each expert, we selected 1–3 systems for which
they had conducted regular, monthly assessments, during at least three months. This
time period was chosen to ensure that the expert was familiar with the systems under
evaluation. This resulted in 15 different systems of which 10 are implemented in
Java, 4 in C# and 1 in VB.NET.

For 6 out of the 15 systems we asked two experts to provide us with an analyz-
ability rating, for the other 9 we could only interview a single expert due to resource
constraints. In 4 out of the 6 double analyzability ratings the experts agreed with

85

6 Quantifying the Analyzability of Software Architectures

System Language |C| KLOC Expert Analyzability Rating
A Java 8 53 2

B Java 10 153 3

C VB.NET 2 87 2.25

D C# 11 22 2

E C# 9 82 2

F Java 5 273 3

G Java 5 64 2.5

H Java 51 333 1

I Java 5 35 3.5

J Java 5 25 3

K Java 11 145 2

L Java 14 512 2

M C# 16 125 2

N Java 9 197 5

Table 6.1: Statistics of the systems used in the evaluation

each other by giving the same analyzability rating. In one case they disagreed only
by half a point, so we decided to include the data point using the average of their
analyzability ratings (2.25). In another case, one of the experts gave an analyzability
rating of 1 while the other expert gave an analyzability rating of 3. Because of this
disagreement we excluded those analyzability ratings from the results, resulting in 14
data-points.

The details of the systems used, as well as the analyzability ratings assigned by
the experts can be found in Table 6.1. As can be seen, the systems range over different
sizes and numbers of components. Furthermore, the experts tend to provide an ana-
lyzability rating below the average rating of three, while distributing the analyzability
ratings over the full possible range.

6.8.2 Experiment details

In order to ensure that the experts all had the same understanding of the terms used
they received an explanation of the overall goal of the Component Balance metric at
the start of the interview. It was explained that when the code is evenly distributed
over the components on a similar level of abstraction, it is easier to find out where
changes in a system need to be made and that, therefore, this metric is related to the
analyzability of the system.

To lower the risk that the experts use pre-existing knowledge about metrics related
to Component Balance to guess the desired outcome, the experts were made aware of
the fact that using this type of knowledge would mean that we would measure their
ability to guess a metric. It was stressed that we are only interested in their expert
opinion. To emphasize this point and to make the evaluation as realistic as possible,

86

6.8 Quantitative evaluation of metric performance

the experts were asked to imagine that the customer behind the system is asking for
such an analyzability rating.

To evaluate the technical quality of systems, all experts are experienced users of
the SIG Quality Model (Heitlager et al., 2007). This model provides a maintainability
rating for a software system on a scale of 1 to 5, in which each level corresponds to
5/30/30/30/5-percent of the systems in a benchmark. In other words, a maintainab-
ility rating of 1 puts a system within the worst 5 percent of systems, and assigning a
score of 5 places a system amongst the top 5 percent of systems (Baggen et al., 2010;
Correia and Visser, 2008). Because the experts are familiar with the usage of such a
scale, we have chosen to adopt the same scale for the interviews.

During the analyzability rating-phase, the experts had access to all the data that
they usually have while evaluating these systems. This data includes (among other
things) size, coupling, complexity and duplication metrics. In addition, dependency
graphs between components and the evolution of these dependencies over time were
available. In connection to the metric, the experts do have access to the number of
components and the different sizes of the components, but they do not have access
to the Gini-values for component sizes, nor do they have access to any contextual
information provided by a repository such as defined in Section 6.5.

Apart from the actual analyzability rating, the experts were also asked to provide
a motivation for it, which was used to a) cross-check analyzability ratings between
experts which rated the same systems, b) see whether our initial intuition is shared
by the experts, and c) determine which metrics the experts used in their evaluation.

6.8.3 Results
In order to evaluate whether the values of CB can serve as an indicator for the opinion
of the experts, we calculated a Spearman rank correlation coefficient (ρ) between
the analyzability ratings given by them and the Component Balance metric values.
This non-parametric rank correlation test was chosen because no assumptions can be
made as to how the values extracted from either the experts or the value of CB are
distributed.

Furthermore, we use the ranking to evaluate some of the choices made in the
design of the metric. For example, we combine SB and CSU by multiplication rather
than a different aggregation function. In addition, we have chosen to use the Gini
coefficient as a means to calculate CSU instead of the MSUI metric proposed by
Sarkar et al. (2007). To validate whether these decisions are justified, we calculate
the Spearman correlation scores for two alternative aggregation functions as well as
the replacement of CSU with MSUI. Lastly, to ensure that combining the two parts
of the metric is actually needed we also calculate the correlation scores for CSU, SB
and MSUI in isolation. The results are summarized in Table 6.2.

The Spearman rank correlation between the opinion of the experts and the values
obtained from CB is 0.80 (with a p-value of 6.4× 10−4), which indicates a strong,
significant correlation between both rankings.

87

6 Quantifying the Analyzability of Software Architectures

Metric ρ p-value
CB (SB×CSU) 0.80 0.00064

CB (min(SB,CSU)) 0.79 0.00084

CSU 0.73 0.0031

CB (SB+CSU
2) 0.70 0.0057

MSUI 0.68 0.0071

CB (SB×MSUI)) 0.62 0.019

SB N/S 0.43

Table 6.2: Correlations scores between experts ranking and different definitions of CB

The table shows that almost all of the alternative metrics can be used as an indic-
ator for the opinion of experts, but that the definition for CB as given in Section 6.6
yields a significantly higher correlation score than most of the alternative metrics.
Only using the minimum as an aggregation function has a similar performance, but
as explained in Section 6.6.4, using multiplication is preferable to taking the min-
imum, because of the added discriminative power.

The only alternative metric for which there is no significant correlation score is
using SB in isolation. Although there is a reason for not using this metric in isolation,
because it focusses on only one aspect of the component structure, the lack of stat-
istically significant evidence does not allow us to reject this metric as a candidate on
mathematical grounds. An experiment involving more subjects should be conducted
to investigate this hypothesis more thoroughly.

6.9 Case study

6.9.1 Subject system

The subject of the case study is Checkstyle1, an open-source Java-library that checks
for coding violations. This project has been chosen because it is mature (having
a history of over 10 years), widely used in both industry and academia, and small
enough to be evaluated and understood in a reasonable amount of time. In addition,
the open-source nature of the project allows for easy replication.

In this evaluation, we considered the major releases from 1.0 (January 2001) until
5.1 (February 2010). We only considered the Java-code in the main src directory of
the Checkstyle project, excluding the separate source-tree under contrib.

1http://checkstyle.sourceforge.net/

88

6.9 Case study

0.6 0.8 1.0 1.2 1.4

0
.6

0
.8

1
.0

1
.2

1
.4

Index

1

grammars

doclets

gui

filters

checkstyle

api

checks

0 2000 4000 6000 8000 10000 12000 14000

Figure 6.4: Sizes of the top-level packages of Checkstyle 5.1 measured in Lines of Code.
SB = 0.86, CSU = 0.34 and CB = 0.29.

6.9.2 Architecture assessment

To understand how the value of CB can be used in a discussion about the top-level de-
composition of a software system, we perform an in-depth evaluation for release 5.1
of Checkstyle, which has a CB value of 0.29. By evaluating this value in the context
of Checkstyle, we hope to determine actions to be taken to increase the analyzability
of the project.

To put the value of 0.29 in perspective, we compare it to the CB-values of other
systems. In particular, we can compare it to the CB-values of the repository estab-
lished in Section 6.5. It turns out most systems (90%) have a CB-value between 0
and 0.53. Checkstyle scores better than about 55% of the systems in the repository,
meaning that the quality of its decomposition is slightly above average.

If we breakdown the metric into its two parts, we have SB= 0.86 and CSU= 0.34.
In the context of the repository, the value of SB is higher than 84% of the systems,
but CSU scores in the bottom 22%. This indicates that the system is decomposed into
a reasonable number of components, but that there is a large variation in the sizes
of those components. The plot of the relative sizes of the components of Checkstyle
shown in Figure 6.4 confirms this.

The biggest component is checks, containing almost 70% of the code of the sys-
tem. Given that the core-functionality of the library is to check for coding-standard
violations, it is not surprising to notice that most of the code of the project is indeed
dedicated to the implementation of the various checks. Given this distribution of
size, our intuition is that most of the changes take place within the checks compon-
ent. A manual inspection of the release notes of the project reveals that in the last
three releases, most of the features and bug-fixes have indeed been related to different
checks.

Based on the fact that checkstyle is a plug-in based architecture, a recommend-
ation could be to split up the project into a “framework”-project and a “plugins”-
projects. Benefits of this approach are, amongst others, a more strict separation of
concerns on the architecture level and less code to analyze for developers working on
checks. In addition, such a break-up would have benefits on the project-management
level, possibly resulting in more focussed project-teams and separate release cycles.

89

6 Quantifying the Analyzability of Software Architectures

In an industry setting, this would also lead to a new allocation of budget and other
resources.

To evaluate the result of such a break-up we calculated the values for CB for both
the hypothetical “framework” project (all top-level packages minus the checks pack-
ages) and the hypothetical “plugins” project (the top-level checks package which is
decomposed into sub-packages). For the framework project, the value of CB would
rise to 0.39, placing it in the higher regions of our repository. In the other hand, the
score for the plugins project would be valued at CB = 0. This low score is due to
the fact that SB = 0, which in turn is caused by the fact that the checks-package is
subdivided into 16 different sub-packages.

A closer inspection of the naming of these sub-packages reveals that not all of
them are on the same level of abstraction. There are both sub-packages with generic
names such as design, coding and metrics, as well as sub-packages with a more
specific purpose such as modifier, header and annotation. This last sub-package,
together with the sub-package blocks, could probably be merged into the more gen-
eric sub-package code. In addition, the grouping of the checks in the different sub-
packages is not consistent. For example, there is a sub-package called whitespace,
but the NewlineAtEndOfFileCheck is placed in the root of the checks-package,
right along abstract types for checking formatting and options. Again an example of
placing concepts from different levels of abstraction side-by-side.

These observations strengthen the evaluation by CB that within this part of check-
style it is indeed hard to determine where certain functionality is located. A reor-
ganization of the checks into clearly defined concepts on a similar level of abstrac-
tion would help new developers to understand more easily where to look for specific
checks.

6.9.3 System evolution

To understand how the value of CB evolves over time we plotted the values of CB,
SB and CSU for 23 releases of Checkstyle in Figure 6.5. In this plot, four distinct
time periods (marked as I, II, III and IV) can be distinguished. For each of these
periods, we relate the changes in the values of the metrics to specific events in the
development of the project and their impact on the analyzability.

In the first time period I, corresponding to the releases 1.0 to 3.0, one can observe
that the metric is valued at 0. In fact, initially Checkstyle had no major compon-
ent decomposition. At the end of the period, we see a large positive jump. The
explanation for this jump can be found in the release notes of release 3.0, which
state: “Completely new architecture based around pluggable modules.” This release
decomposed the system into three distinct components; the core, the API and the
checks, thus making it easier to distinguish between these three types of functional-
ity.

The second time period II shows a sharp decrease in CB-value between releases

90

6.10 Discussion

● ● ● ● ● ● ● ● ● ●

● ●

●

●

● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ● ● ● ● ● ● ●

●

●

●
● ●

●

● ● ● ● ●
● ●

1.0 1.1 1.2 1.3 1.4 2.0 2.1 2.2 2.3 2.4 3.0 3.1 3.2 3.3 3.4 3.5 4.0 4.1 4.2 4.3 4.4 5.0 5.1

●

●

SB
CSU
CB

I II III IV

Figure 6.5: Metric Trends for different Checkstyle versions

3.0 and 3.2. This decrease is mostly due to the sharp decline in the values of CSU
which suggest that a large amount of code was added to a single component. An
inspection shows that this is indeed the case, since the largest component checks
almost doubled in size between both releases 3.0 and 3.1 and between release 3.1 and
3.2, while the size of the other components changed only a little.

Within the third time period III, spanning releases 3.2 until 4.0, the value of CB
slowly increases. In the first two releases of this period, this is due to the increasing
value of SB, which is explained by the addition of the components grammar and
doclets. In the later two releases, the number of components is stable, thus the
increase in value can only be explained by an increase in CSU. Inspection of the
code shows that between these releases several checks have been retired to a separate
source tree which results in almost a 20 percent decrease of code in the checks
component. Although removing this code requires a software engineer to examine
less code in the largest component, the overall analyzability only increases a little.

Since release 4.0, the value of CB has not been changing significantly, indicating
the architecture of the project has stabilized in time period IV. Inspecting the release
notes confirms this, since after release 4.0 no mention to architectural changes on the
level of components can be found.

6.10 Discussion

This section discusses the results of the two phases of the evaluation with respect to
the goals as outlines in Section 6.7.

In Section 6.8.3 we showed that the value of CB strongly correlates with a ranking
of the analyzability of a software system as given by experts. Because of this, we

91

6 Quantifying the Analyzability of Software Architectures

conclude that CB can be used as a proxy for the analyzability of a system and thus
G1 is satisfied. In addition, the results also show that alternative implementations of
the metric do not outperform the definition as given in Section 6.6, thus satisfying
G2.

In order to evaluate why CB shows this strong correlation, we took a closer look
at the systems which where assigned similar rankings by both the experts and CB.
The system which is ranked lowest by both the CB-metric and the experts consists of
over 50 components which is the result of combining both a technical and functional
decomposition on a single level. This results in components which are either dedic-
ated to the implementation of a single business functionality, or contain the complete
GUI of the system. On the high end of the scale there is the system which is ranked
the highest by both the experts, as well as the metric. According to the expert who
evaluated this system, the naming of the components suggest a similar level of ab-
straction.

There are two cases in which CB gave a significantly higher ranking than the
experts. One of these systems was decomposed into eight components, of which two
contained almost all of the code. According to the experts, the architecture aims to
be a Model-View-Controller architecture, in which the representation of the model of
the application is separated from the implementation of the manipulation and display
functionalities. However, in the implementation of this system, both the model and
the functionality to manipulate this model are placed in a single component, which
leads to a highly skewed implementation. The situation was similar for the other
system which has nine components, two of them containing too much functionality.
In both cases, the score for CSU is low, but the high score for SB places the systems
on a higher position than the expert(s).

For none of the systems the ranking of CB was significantly higher than the rank-
ing given by the experts. Given the previous example, it could be the case that a high
score for SB has a too strong influence on the value of CB. This might be because
reaching an optimal value for SB is relatively easy, while reaching an optimal value
for CSU is very difficult under realistic scenarios. To compensate for this, we could
make the optimal value for SB harder to reach or choose a more complex aggregation
function. Both solutions might lead to better results at the cost of a more complic-
ated definition of the metric, which is undesirable from an explainability point of
view. Before exploring alternative options we first assess the impact of the stronger
influence of SB when using CB in practice in Chapter 9.

With respect to both G3 and G4 several observations can be made. First of all,
the case-study shows that the metric provides a solid quantified basis for discussing
the decomposition of the subject system. In addition, the values of CB were show to
indicate problems in the code which are related to the analyzability of the system.

As explained in Chapter 5 a metric should always be used in combination with
other metrics to come to a well-balanced conclusion. In our architecture evaluation
checklist (see Chapter 4), the metric is used to answer only one of 17 questions related

92

6.11 Threats to Validity

to the structural decomposition, thus ensuring that other aspects are also taken into
account. If used outside this context CB should be complemented with metrics related
to the dependencies between the components of a system. We investigate which
coupling and cohesion metrics best complement CB in Chapter 8.

As described in Section 6.6, the definition of the metric is currently limited to a
single level of decomposition. Nevertheless, the metric could be extended to take into
account hierarchical decompositions by using the inverse of the CB of each compon-
ent as weights for the Gini coefficient on a higher level. The reasoning behind this is
that the influence of the size of a component to the overall inequality in size distribu-
tion should be lower the better it is itself properly decomposed into sub-components.
Again, before exploring alternative options we first assess the impact of this limita-
tion by applying CB in practice in Chapter 9.

6.11 Threats to Validity

To put the results presented in Section 6.10 in perspective, here we address several
questions related to the evaluation design.

A first threat that needs to be addressed is the presence and influence of ties
in the expert ratings in Section 6.8. To evaluate its impact, we compared the tied
expert ratings and the metric rankings. This revealed that, for the two groups of
ties, the corresponding CB ranks are contiguous with the exception of two cases.
To quantify the impact of these ties we examined two scenarios of breaking up the
ties. The first one corresponds to a worst-case scenario in which the opinion of the
experts is the opposite of the ranking of CB, while the second scenario illustrates
the best case in which the expert opinion gives the same ranking. This results in a
significant correlation score between 0.6 for the worst case, and 0.9 in the best case
scenario. Since both scenarios show a strong correlation the influence of these ties is
considered limited and does not invalidate our conclusions.

An important question related to the scope of the results is how far the results of
the validation can be generalized (external validity). The projects used in the quantit-
ative evaluation are all industry systems written in modern object-oriented languages,
but differ in size, application domain and number of components. In principle, the
generalizability of the results is limited to these types of systems. Nevertheless, since
the metric is not specific for any language nor has any preference towards industry or
open-source systems this generalization is possible. To more formally validate this
claim we apply the metric to a more diverse set of systems in Chapter 9.

Apart from the set of systems used in the evaluation, the generalizability of the
results is also limited by the choices made in the instantiation of the repository (Sec-
tion 6.5.2). For example, using legacy systems, rather than modern ones, might lead
to a different instantiation of SB, and thus lead to different results. A preliminary
examination of our metric for some COBOL and Pascal systems revealed that they

93

6 Quantifying the Analyzability of Software Architectures

do not stand out as outliers with respect to the systems in our repository. However,
more empirical work is needed to determine the impact of taking into account legacy
systems. Chapter 9 provides the first steps towards such a validation.

Concerning the repository, we only examined software systems from the point of
view of their main technology. However, today’s software systems usually consist
of multiple languages. To evaluate these hybrid systems one can either evaluate the
decomposition of the system per language, or evaluate the system by combining all
the languages. The latter option seems to be preferred as it provides a more accurate
overview of the decomposition of the system as a whole.

Lastly, a fact that influences the generalizability of the results is the use of in-
dustry experts working at a single company. To evaluate whether the same results can
be obtained with different experts, the experiment described in Section 6.8 should be
replicated using a more heterogeneous set of experts. However, the exact replication
of the study is not possible due to the confidential nature of the industry systems
used. This threat could have been countered by asking the experts to evaluate freely
available open-source systems, but that would reduce the value of their opinion due
to less familiarity with the systems. To counter the reduced repeatability, we have
explicitly chosen an open-source system as the subject of the case-study and mixed
industry and open-source systems in the repository used to instantiate the metric.

6.12 Conclusions

In this chapter, we make the following contributions:

• We describe an empirical exploration of how systems are decomposed into
top-level components;

• We define a metric to measure the balance of components which is usable
across all life-cycle phases of a project;

• We show how the metric is correlated with the opinion of experts about the
analyzability of a software system.

Although the metric was developed in the context of the evaluation of software
architecture, its definition is not constrained to a particular language, programming
paradigm or level of abstraction. Actually, the metric can in theory be applied to
any entity which is decomposed into a discrete set of components with a given size.
This allows for the application of the metric on the requirements documentation of
a software system, or to measure the quality of the section breakdown of a scientific
publication. Although interesting, the investigation of these applications of the metric
are considered to be out of scope for this thesis.

94

CHAPTER 7

Dependency Profiles for Software Architecture Evaluations ∗

Abstract

In this chapter we introduce the concept of a “dependency profile”, a system level
metric aimed at quantifying the level of encapsulation and independence within a
system. We verify that these profiles are suitable to be used in an evaluation context
by inspecting the dependency profiles for a repository of almost 100 systems. Further-
more we outline the steps we are taking to validate the usefulness and applicability
of the proposed profiles.

7.1 Introduction

Software architecture is loosely defined as “the organizational structure of a software
system including components, connections, constraints, and rationale” (Kogut and
Clements, 1994). Since the architecture of a software system greatly influences all
of a system’s quality attributes (Clements et al., 2002), it is important to regularly
evaluate the actual, as-implemented, software architecture of a system.

In order to reduce the amount of time and effort needed to perform such an evalu-
ation, an evaluator can use software metrics to spot outliers and identify areas within
a system which are in need of a more detailed evaluation. Additionally, the use of
metrics reduces the need for expert opinion, thus making the evaluation more object-
ive and repeatable.

∗Originally published in the proceedings of the 27th IEEE International Conference on Software
Maintenance (ICSM 2011) (Bouwers et al., 2011c).

95

7 Dependency Profiles for Software Architecture Evaluations

For a metric to be useful in an evaluation context, several characteristics are de-
sirable (Heitlager et al., 2007). For instance, the metric needs to be simple to explain
to ensure that non-technical decision makers can understand them. Furthermore, in
order to allow an evaluation of a diverse application portfolio the metrics should be as
independent of technology as possible. The ability to perform a root-cause analysis
is also desirable to ensure that the metrics can provide a basis to determine which
actions need to be taken. Lastly, metrics which are easy to implement and compute
are desired as to reduce the initial investment for performing evaluations.

Research on metrics for software architectures has traditionally focussed on the
way components depend on each other and how components are internally structured
(coupling and cohesion (Stevens et al., 1974; Yourdon and Constantine, 1979)). To
the best of our knowledge, all of the existing metrics for architecture level dependen-
cies fail to meet at least one of the desired characteristics outlined above.

In this chapter we propose the concept of a dependency profile which categorizes
all modules in a system based on their dependencies. This purpose of the dependency
profile is two-fold. On one hand it is aimed at capturing the degree in which the
components within a system encapsulate the functionality they offer. On the other
hand, the profile quantifies the degree to which components depend on each other.
We assess to what extent the dependency profile meets the four criteria discussed
above by examining a benchmark of almost 100 systems totaling over 12.5 million
lines of code. Additionally we outline a plan to validate the profile against the type
of changes that occur within a system.

7.2 Background

To illustrate why existing metrics for quantifying the dependencies between com-
ponents of a system are less suitable to be used in an evaluation context we present a
short overview of typically found shortcomings.

To start, metrics which are simple to explain such as the basic number of in-
coming and outgoing dependencies allow for root-cause analyses. However, since
larger systems tend to have a higher number of dependencies these metrics should
be normalized against the size of the system to allow systems of various sizes to be
compared.

More complex coupling/cohesion metrics such as those defined by Briand et al.
(1999a) or in the well-known C&K suite of metrics (Chidamber and Kemerer, 1994)
(including variations), suffer from the same problem of not being normalized against
the size of the software unit they are measuring. Additionally, these class-level met-
rics are designed to target systems written in object-oriented languages, while ideally
a metric would be independent of technology.

And although there are extensions to these coupling metrics that are normalized,
see for example Gui and Scott (2007), the proposed normalization process tends to

96

7.3 Dependency Profiles

decrease the ability to perform root-cause analyses because the outliers in the data,
which are the interesting data-points, are usually hidden by the normalization. The
same problem applies to metrics defined to rank cluster algorithms, for example the
Modularization Quality-metric defined by Mancoridis et al. (1999).

7.3 Dependency Profiles

We define a metric to quantify the dependencies within a system by placing all mod-
ules of a system (e.g., Java classes or C files) into four distinct categories. This
categorization is based on the way in which the modules are grouped into compon-
ents (e.g., Java packages or C directories) and how the modules interact with modules
outside their own component.

7.3.1 Terminology

Let S = 〈M,C,D〉 be a system, consisting of a set of modules M, a set of components
C and a set of dependencies between modules D. Each module is assigned to a
component and none of the components overlap. More formally, the set C ⊆ P (M)
is a partition of M, i.e.,

• ∀c1,c2 ∈C : c1 6= c2⇒ c1∩ c2 = /0.

•
⋃

c∈C = M

For (m,m′) ∈ D we write m→ m′ to represents a directed dependency from module
m ∈M to module m′ ∈M.

For each module m∈M it is possible to obtain the containing component through
a function component : M→C. In addition, for a component c∈C we use c to denote
the complement of c, i.e., all modules not contained in c.

Lastly, each module has a given size (for example measured by the lines of code),
which is captured by a function size : M→ N. The volume of a component c ∈C is
defined simply as the sum of the size of its modules, thus:

volume(c) = ∑
m∈c

size(m)

7.3.2 Types of code

Each module within the components of a system can be divided into one of four
categories, see Figure 7.1:

• Hidden modules (1): modules which only have dependencies (either incoming
or outgoing) involving modules inside the component.

97

7 Dependency Profiles for Software Architecture Evaluations

B C

A

1

2

3

4

Figure 7.1: Three components illustrating the four different types of modules within a system;
1) hidden modules, 2) inbound modules, 3) outbound modules and 4) transit modules. Arrows
denote dependencies from/to modules within other components.

• Inbound modules (2): modules which do not have outgoing dependencies to
modules outside the component, but have incoming dependencies from mod-
ules outside the component.

• Outbound modules (3): modules which do not have incoming dependencies
from modules outside the component, but have outgoing dependencies to mod-
ules outside the component.

• Transit modules (4): modules which have dependencies (both incoming and
outgoing) coming from/going to modules outside the component.

For each of these categories a function of type C→ 2M can be defined which, given
a component C, returns the set of modules within that component which belong to
that category. Table 7.1 lists the definitions of those functions. Using these functions,
each category of modules can be turned into a normalized metric by calculating the
percentage of code in a system which belongs to each category. For example, the
percentage of hiddenCode of a system is defined as:

hiddenCode(S) = ∑
c∈S

volume(hiddenModules(c))
volume(c)

Definitions of the metrics for inboundCode, outboundCode and transitCode are sim-
ilar.

7.3.3 Dependency Profile

Using the metrics defined above we define a Dependency Profile as a quadruple of
the four types of code:

〈 hiddenCode(S) , inboundCode(S)

outboundCode(S) , transitCode(S) 〉

98

7.3 Dependency Profiles

Name Collection
hiddenModules(c) {m ∈ c | @ mi ∈ c : mi→ m ∈ D ∧ @ mo ∈ c : m→ mo ∈ D}

inboundModules(c) {m ∈ c | ∃ mi ∈ c : mi→ m ∈ D ∧ @ mo ∈ c : m→ mo ∈ D}
outboundModules(c) {m ∈ c | @ mi ∈ c : mi→ m ∈ D ∧ ∃ mo ∈ c : m→ mo ∈ D}

transitModules(c) {m ∈ c | ∃ mi ∈ c : mi→ m ∈ D ∧ ∃ mo ∈ c : m→ mo ∈ D}

Table 7.1: Conditions for each of the four categories of modules

A typical instantiation of such a profile is 〈75%,10%,15%,5%〉, which means
that 75 percent of the volume of the system falls into the hiddenCode-category, 10
percent falls into the inboundCode-category, etc. We hypothesize that this depend-
ency profile can be used to quantify two quality aspects of a software system: the
degree of encapsulation and the degree of independence.

The concept of encapsulation is often used to refer to the level in which the im-
plementation details of functionality are abstracted away by an interface. A high level
of encapsulation is desirable since this should mean that changes to the implementa-
tion can be done without the need to change clients which are using the interface. We
expect that the inboundCode metric can be used to measure this quality aspect. To
illustrate we compare a system A with a dependency profile of 〈50%,30%,18%,2%〉
with a system B with a dependency profile of 〈50%,15%,34%,1%〉. In system A
there is a higher percentage of code which is called from outside the component in
which it is defined, which leads to a higher chance that a change in this specific com-
ponent propagates to other components in the system. We hypothesize that a high
value of inboundCode shows that there is a low level of encapsulation in the system.

Analogously, independence is used to refer to the level in which components of
a system rely on other components (either interface or implementation) in the imple-
mentation of their own functionality. A high level of independence is desirable since
this should mean that changes in modules outside the component should not propag-
ate to the component itself. We expect that the outboundCode metric can be used
to measure this quality aspect since this metric quantifies the portion of the system
which is used by other components. In the example systems above, system B has a
higher percentage of code which depends on code outside the component in which it
is defined. This leads to a higher chance that a change in a component will propag-
ate to this specific component. We hypothesize that a high value of outboundCode
indicates that there is a low level of independence in the system.

In both cases the percentage of transitCode should also be taken into account.
This category contains those modules which both use and are used by modules in
other components and are thus even more likely to propagate changes between com-
ponents. Because of this issue, we hypothesize that although there might be some
need for transitCode, for example in a component which connects two other com-
ponents, it is desirable to have a low percentage of transitCode in a system.

99

7 Dependency Profiles for Software Architecture Evaluations

hiddenCode inboundCode outboundCode transitCode

0 20 40 60 80 100

Figure 7.2: Dependency profiles for a repository of systems, ordered by the percentage of
hiddenCode. Each line represents a system.

7.4 Preliminary Observations

As a first evaluation of the dependency profiles we instantiate the above metric frame-
work and use a repository of systems to observe the distribution for this specific
instantiation. The repository is an extended version of the one used in Chapter 6
and contains systems of different sizes, development context (open-source versus in-
dustry) and technologies. The following table characterizes the repository in terms
of number of systems per technology and development context:

Java .NET C/C++ Total
Industry 45 17 6 68

Open source 20 4 3 27

Total 65 21 9 95

To ensure that the metrics can be calculated for all technologies we instantiate “mod-
ule” as a source-file, “dependency” as a direct call relation and “component” as the
first level of decomposition in the system. Determining the components of the sys-
tems follows the approach in Chapter 6, i.e., for all systems the top-level decompos-
ition was made by a technical analyst of the Software Improvement Group based on
the directory structure of the system and available documentation. For the industry
systems this decomposition was validated with the development team. A chart show-
ing the distribution of the dependency profiles for this repository and this instantiation
is given in Figure 7.2.

100

7.4 Preliminary Observations

7.4.1 General Observations

A first observation that is clear from Figure 7.2 is that the percentage of hiddenCode
differs considerably for the systems in the repository, ranging from 7 to 100 percent
with a median of 35 percent. Since having 100 percent of hiddenCode is strange, we
investigated this particular system, an industry system written in C#, and found that
each top-level component in the system was a specific service built upon an external
framework. Since each service is independent from the all other services none of the
services have code in common.

Another observation that can be made about the distribution is that a large portion
of the repository (18 systems) does not have any transitCode, which corresponds with
our initial expectation. However, the amount of transitCode rises to over 20 percent
for 10 systems, having a maximum of 53 percent in the repository. Within these
systems we expect to see a high frequency of propagating changes. In Section 7.6 we
provide an outline of how we plan to validate this hypothesis.

A last observation that can be made is that in almost all cases (only 9 excep-
tions) the amount of outboundCode is larger than the amount of inboundCode. This
could indicate that, in general, there is a stronger focus on the design of the provided
interface of a component than on restricting the required interface of a component.

7.4.2 Statistical Observations

To enable a fair comparison between systems of different sizes we need to ensure that
there is no strong correlation between the size of the systems and the percentages in
the dependency profiles. To assess this we use a Spearman rank correlation test using
the size of the system in lines of code and the percentage of code in each of the four
categories. No significant correlations were found for hiddenCode and transitCode,
while both inboundCode and outboundCode have a weak correlation of −0.28 and
0.32 (p < 0.01) respectively. Thus we can conclude that there is no strong correlation
between the size of a system and any of the four categories.

In addition, using a two-sided Kolmogorov−Smirnov test we can determine whether
there is a significant difference between the distributions of two data samples. Us-
ing this test we did not find any significant differences between the distribution of
the values for different development contexts (industry versus open-source) or sys-
tem type (application versus libraries). However, there are differences between the
distribution in the values of hiddenCode for the Java technology versus other techno-
logies. Inspecting the distributions shows that systems written in Java tend to have a
lower percentage of hiddenCode. This difference in distribution does not mean that
the metrics are technology dependent, but only that the metrics might consistently
produce lower values for certain technologies.

101

7 Dependency Profiles for Software Architecture Evaluations

7.5 Discussion

As discussed before there are four desirable characteristics of metrics to be useful in
an practical evaluation setting (Heitlager et al., 2007). We argue that the metrics used
in the dependency profile as described in Section 7.3 feature these characteristics.

First of all, the metrics should be simple to explain. Even though the formal
definition of the metrics can be considered complex the intuition behind the metrics
is easy to explain given the visual support of Figure 7.1.

Secondly, the metrics should be as technology independent as possible. The
definition of the four metrics contains no technology specific constraints, although
certain definitions of “module” or “dependency” could make the metrics technology
specific. By using a generic instantiation of the metrics as given in Section 7.3 there
are no practical problems in comparing systems written in different technologies.

Furthermore, the metrics should allow for a root-cause analysis, which is rel-
atively straight-forward. After first using the system level dependency profiles to
discover a system in need of further investigation, the profile can be calculated on
component level to determine which component contributes the most to each cat-
egory of code. After the most interesting component has been found, the modules in
the category of interest can be sorted according to their size to discover which module
is contributing the most to this category. After determining the most interesting mod-
ules an expert should inspect the dependencies to/from these modules to determine
why these dependencies are there and whether they are problematic.

Lastly, the metrics should be straight-forward to implement. Because the metrics
are based on basic data such as dependencies between modules and the size of a
module, any existing tool which is capable of calculating this data should be able to
implement the needed metrics with only a small amount of effort.

7.6 Evaluation Design

To determine whether the intuition as described in Section 7.3.3 is correct we plan to
test the following hypothesis in the remainder of this thesis:

• Systems with a low percentage of inboundCode plus transitCode (e.g., a small
provided interface) have a better encapsulation and therefore changes in a com-
ponent will less likely propagate to other components

• Systems with a low percentage of outboundCode plus transitCode (e.g., a small
required interface) have more independent components and therefore changes
in a component will less likely propagate to other components

To validate these hypothesis we perform a case-study in which we examine the
change-sets of a system using the framework proposed by Yu et al. (2010). This

102

7.7 Conclusions

framework defines co-evolution of a system as either being internal (i.e., all mod-
ules in a change-set belong to a single component) or external (a change-set contains
modules of multiple components).

As a first step we calculate the frequency of external co-evolutions for a number
of open-source systems. By correlating this frequency with the size of the provided
interface, the size of the required interface, and a combination of these two measures
we plan to validate or reject the two hypothesis above. The details of the design and
result of this study are described in Chapter 8.

In addition, a more qualitative study will be performed in which (part of) the pro-
files are embedded within a measurement model for quantifying the maintainability
of a software system. The goal of this study is to determine whether the dependency
profiles are useful in an evaluation setting. The details of the design and the results
of this qualitative study are described in Chapter 9.

7.7 Conclusions

This chapter makes the following contributions:

• The definition of a dependency profile with desirable characteristics for use in
a software evaluation setting

• A first analysis of these profiles using a large repository of systems

• An outline of the evaluation strategy for the profiles

The results of setting up and performing the evaluation experiment are presented in
Chapter 8.

103

CHAPTER 8

Quantifying the Encapsulation
of Implemented Software Architectures ∗

Abstract

In the evaluation of implemented software architectures, metrics can be used to
provide an indication of the degree of encapsulation within a system and to serve as
a basis for an informed discussion about how well-suited the system is for expected
changes. Current literature shows that over 40 different architecture-level metrics are
available to quantify encapsulation, but empirical validation of these metrics against
changes in a system is not available.

In this chapter we survey existing architecture metrics for their suitability to be
used in a late software evaluation context. For 12 metrics that were found suitable
we correlate the values of the metric, which are calculated on a single point in time,
against the ratio of local change over time using the history of 10 open-source sys-
tems. In the design of our experiment we ensure that the value of the existing metrics
are representative for the time period which is analyzed. Our study shows that one of
the suitable architecture metrics can be considered a valid indicator for the degree of
encapsulation of systems. We discuss the implications of these findings both for the
research into architecture-level metrics and for software architecture evaluations in
industry.

∗Submitted to ACM Transactions on Software Engineering and Methodology on September 6th,
2012.

105

8 Quantifying the Encapsulation of Implemented Software Architectures

8.1 Introduction

When applied correctly, the process of encapsulation ensures that the design de-
cisions that are likely to change are localized (Booch, 1994). In the context of soft-
ware architecture, which is loosely defined as “the organizational structure of a soft-
ware system including components, connections, constraints, and rationale” (Kogut
and Clements, 1994), the encapsulation process revolves around hiding the imple-
mentation details of a specific component. Whether the encapsulation was done ef-
fectively, i.e., to what extent changes made to the system were indeed localized, can
only be determined retrospectively by examining the history of the project.

However, for evaluation purposes it is desirable to use the current implementation
or design of a system to reason about quality attributes such as the encapsulation of
the system (Clements et al., 2002). A common approach for this is to use a metric
which can be calculated on a given snapshot of the system, i.e., the state of a system
on a given moment in time, to reason about changes that will occur subsequently.

On the class level, several metrics for encapsulation have been proposed, see
for example the overview by Briand et al. (1999a), which have also been evaluated
empirically through a comparison with historic changes (Lu et al., 2012). At the
broader system level, however, few metrics for encapsulation exist, and for those that
exist no empirical validation against historic changes has been provided (Koziolek,
2011). The goal of this chapter is to fill this gap by means of an empirical study.

In our empirical study we take into account system-level architecture metrics cap-
able of quantifying the encapsulation of a system during the evaluation of an imple-
mented software architecture. These so-called “late” architecture evaluations (Dobrica
and Niemelä, 2002) are conducted to determine which actions need to be taken to
improve the quality of an architecture when, for example, the current implement-
ation deviates substantially from the original design or when no design documents
are available. Moreover, performing this type of architecture evaluation on a reg-
ular basis helps in identifying and preventing architecture erosion (Perry and Wolf,
1992). Additionally, this type of analysis is also employed to get a first overview of
the current state of a large portfolio of systems.

In such a context, the relative ease of calculation of the metrics is important to
ensure that (repeated) evaluation is economically feasible. In addition, the ability to
perform root-cause analysis is a key-factor in deriving low-level corrective actions
based on the high-level metrics, which in turn helps in the acceptance of the metrics
with practitioners (Heitlager et al., 2007). Moreover, metrics which can be calculated
on a broad range of technologies are preferred in order to make it possible to compare
systems taken from a large, heterogeneous portfolio of systems. The first step in our
study is to identify a set of existing metrics that adhere to these properties, which is
done by surveying the over 40 available architecture-level metrics.

In the second step of the study the remaining 12 architecture-level metrics are
correlated with the effectiveness of encapsulation in 10 open-source Java systems

106

8.2 Problem Statement

having an average history of six years. To quantify historic encapsulation, we follow
the proposal of Yu et al. (2010) and classify each change-set in a system as either local
(all changes occur within a single component) or non-local (multiple components are
involved in the change). A high ratio of local change-sets shows that the frequently
changing parts of the system were indeed localized, indicating that the encapsulation
was done effectively.

The results of our study show that three of the suitable architecture metrics, those
that are aimed at quantifying the extent to which components are connected to each
other, are correlated with the ratio of local change-sets. Of these three, one is chosen
as a valid indicator for the effectiveness of encapsulation of a system. In contrast,
metrics which are purely based on the number of components or on the number of
dependencies between components were not found to bear a relationship to the ef-
fectiveness of encapsulation. The implications of this finding on both the research
into architecture-level metrics as well as the use of these metrics in an architecture
evaluation setting are discussed.

8.2 Problem Statement

Following the Goal Question Metric approach of Basili et al. (1994) we define the
goal of our study to be to evaluate existing software architecture metrics for the pur-
pose of assessing their indicative power for the level of encapsulation of a software
architecture. The context of our study is late software architecture evaluations from
the point of view of software analysts and software quality evaluators. From this goal
the following research question is derived:

Which software architecture metrics can serve as indicators for the ef-
fectiveness of encapsulation of an implemented software architecture?

In order to answer our research question we first survey the currently available archi-
tecture metrics for their suitability to be used in a late software architecture evaluation
context in Section 8.3. We then design and execute an empirical study to determine
the relationship between the selected software architecture metrics and the effect-
iveness of encapsulation. The design and implementation of this study is given in
Section 8.4 and Section 8.5, the results are presented in Section 8.6. In Section 8.7
the presented results are discussed and put into context. Section 8.8 discussed threats
to validity, after which related work is discussed in Section 8.9. Lastly, Section 8.10
concludes the chapter.

8.3 Metrics for Encapsulation

As a first step towards answering our research question we review the architecture
metrics currently available in the literature. The purpose of this review is to select

107

8 Quantifying the Encapsulation of Implemented Software Architectures

*
1

Name: String
Size: Int

Architectural
Element

Kind : Enum
Cardinality: Int

Dependency

To From

System

*
1

Component

*
1

Module

Unit

Figure 8.1: UML-diagram of the used architectural meta-model

those metrics which are a) capable of providing a system-level indication of the en-
capsulation of a software system, and b) can be used within a late architecture eval-
uation context. Before discussing the selection criteria we first introduce the model
we use to reason about an implemented software architecture.

8.3.1 Architectural Meta-Model

In this chapter, we look at the software architecture from the module viewpoint (Cle-
ments et al., 2003). The model we use is displayed in Figure 8.1 in the form of a
UML-diagram. We define a system to consist of a set of high-level components (e.g.,
top-level packages or directories) which represent coherent chunks of functionality.
Each component contains one or more modules (e.g., source files). Within modules,
a unit represents the smallest block of code which can be called in isolation. Each
module is assigned to a single component and none of the components overlap.

Directed dependencies exists between both modules (e.g., extends or implements
relations) and units (e.g., call-relations) and have an attribute cardinality which rep-
resent the number of dependencies between two units. Dependencies between com-
ponents can be calculated by lifting the dependencies from the modules/units to the
component-level. Both modules and units can have (code-based) metrics assigned to
them, for example lines of code or McCabe complexity (McCabe, 1976), which can
be aggregated from the module-/unit-level to the component-/system-level.

8.3.2 Metric Selection Criteria

We use the criteria as listed in Table 8.1 to identify metrics that are relevant to our
experiment. The first two criteria expresses our focus on system level architecture
metrics capable of quantifying the encapsulation of a system. Criteria C3, C4 and
C5, which have been identified by Heitlager et al. (2007), relate to the suitability of
a metric for use within a late architecture evaluation context. Lastly, criterion C6
ensures that a metric can be used to compare different snapshots of a system over

108

8.3 Metrics for Encapsulation

The architecture metric:
C1 has the potential to measure the level of encapsulation within a system

C2 is defined at (or can be lifted to) the system level

C3 is easy to compute and implement

C4 is as independent of technology as possible

C5 allows for root-cause analysis

C6 is not influenced by the volume of the system under evaluation

Table 8.1: Criteria used for the selection of architecture metrics

time. Together, these six criteria ensure that the metrics can be used to evaluate the
encapsulation of a system in a repeated manner.

To ensure criterion C1 (measuring encapsulation) we follow the definition of
Booch (1994) and equate the level of encapsulation with the locality of changes. Us-
ing this definition we analytically assess each metric to determine to what extent the
metric quantifies the propagation of changes from one module to another. However,
metrics which do not have a (straight-forward) potential for measuring the level of
encapsulation within a system are not automatically excluded from our experiment.
Instead, we include these metrics as control variables in order to verify the validity
of our experimental set-up.

To ensure criterion C2 (system level metric) we check whether a metric defined
at the component level can also be calculated on the level of a complete system. If
this is the case (for example by using the dependencies on a higher level) we include
the metric in our experiment. If the metric can only be calculated on the level of a
component the metric is excluded. Determining the best way to aggregate component
level metrics to the system level (i.e., determining the best aggregation function for
each metric) is considered to be a separate study. This criterion ensures that the metric
can be used to compare different systems.

To ensure criterion C3 (that the metric is easy to compute), we adopt an architec-
tural description making as little assumptions as possible. Following the terminology
as defined in Section 8.3.1 this minimal description consists of a) the source-code
modules of a system, b) the dependencies between these modules (e.g., call rela-
tions), and c) a mapping of the source-code modules to high-level components. For
most programming languages, tool support exists to identify the required architec-
tural elements and their dependencies, thus making metrics based on these inputs
easy to implement which reduces the initial investment for performing evaluations.

To ensure criterion C4 (technology independence) we restrict the module-level
metrics to those that can be applied to any technology. Consequently, metrics that are
specific to, e.g., object-oriented systems (such as the depth-of-inheritance tree) are
not taken into account in the current experiment. This criterion enables the evaluation
of a diverse application portfolio.

109

8 Quantifying the Encapsulation of Implemented Software Architectures

To ensure criterion C5 (allow for root-cause analysis) we require that it is possible
to identify architectural elements that cause an undesirable metric result. In other
words, when the final value of the metric is undesired (i.e., either too high or too low)
it should be possible to determine which source-code modules are the cause of the
value (and are thus candidates for further inspection). This criterion ensures that the
metrics can provide a basis to determine which actions need to be taken to improve
the system if needed.

Heitlager et al. (2007) also identified a fourth criterion, that a metric is simple
to explain to ensure that technical decision makers can understand them. Because
we have no objective way to determine whether a metric is simple to explain this
criterion is not used in the selection process.

To ensure criterion C6 we do not include metrics that are influenced by the
volume of the system under review in a straight-forward manner (e.g., the absolute
number of calls between components) in the current experiment. This criterion en-
sures that the selected metrics can be used to compare systems with varying sizes,
thus allowing the comparison of different systems across a portfolio or the compar-
ison of different versions of the same systems over time. Determining the best way
to normalize this type of metrics is outside the scope of the current research. Note
that the number of components is independent of the size of a system. The empirical
study presented in Chapter 6 established that the number of top level components of
any system (irrespective of the volume) revolves around 7.

8.3.3 Metric Selection

Using the overview of Koziolek (2011) as a basis we identified over 40 metrics in the
literature, of which we provide a full account in Section 8.11. In the remainder of
this section we discuss the most important ones, including the 12 which are included
our in experiment. Of these 12, nine have a clear conceptual relation to encapsulation
while three metrics are included as control variables.

Briand et al. (1993) define three different coupling and cohesion metrics. First,
three definitions of the ratio of cohesive interactions (RCI) are given. As input for
these ratios the concepts of “known”, “possible” and “unknown” interactions need to
be instantiated. In order to make it possible to calculate these metrics on a large scale
we consider all dependencies between source-code modules to be “known” interac-
tions. Furthermore, following the definition of the pessimistic variant of the metric all
“unknown” interactions are treated as if they are known not to be interactions. Then,
we define the RCI to be the division of the number of “known” dependencies between
components by the number of “possible” dependencies between components.

Intuitively, when this ratio is low (e.g., only a limited percentage of all possible
dependencies is defined) a change is more likely to remain local since there is only
a limited number of dependencies over which it can propagate, which might indicate
a higher effectiveness of encapsulation. This metric adheres to all criteria and is

110

8.3 Metrics for Encapsulation

therefore included in our experiment.
The other two metrics defined by Briand et al. (1993) are the “Import Coupling”

and the “Export Coupling” of a component. Because these metrics are defined at the
level of components and cannot be calculated on the system level we do not include
them in our experiment.

Lakos (1996) defines a metric called Cumulative Component Dependency (CCD),
which is the sum of the number of components needed to test each component. On
the system-level, this is equivalent to the sum of all outgoing dependencies of all
components. Two variations are defined as well, the Average Cumulative Component
Dependency (ACD) and the Normalized Cumulative Component Dependency (NCD).
To arrive at the NCD, the CCD is divided by the number of components of the system.
For ACD, the CCD is divided by the total number of modules in the system. Higher
values of these metrics indicate that components are more dependent on each other,
which increases the likelihood for changes to propagate. Thus a lower value for these
metrics could indicate a more effective encapsulation. All three metrics adhere to all
criteria and are therefore included in our experiment.

Mancoridis et al. (1998) propose a metric aimed at expressing the proper balance
between coupling and cohesion in a modularization. Their metric is intended for
steering a (search-based) clustering algorithm. Unfortunately, their metric takes into
account an average coupling value. By using an average value, important information
about outliers is lost during the calculation of the metric, which makes it hard to
perform a root-cause analysis. Therefore, we do not include clustering metrics like
these in our experiment.

Allen and Khoshgoftaar (1999) use information theory as a foundation for meas-
uring coupling. Using a graph-representation of a system, the average information
per node (i.e., the entropy) is determined and the total amount of information in the
structure of the graph is calculating by a summation. The use of “excess entropy” (the
average information in relationships) in the calculation of the metric makes it hard to
perform root-cause analysis. The same reasoning applies to the metrics introduced
by Anan et al. (2009). Because of this property we do not include these metrics in
the current experiment.

Martin (2002) defines several metrics based on the concepts of Afferent Coup-
ling, which is the number of different components depending on modules in a certain
component, and Efferent Coupling, which is the number of components the modules
of a certain component depend upon. Both of these metrics are defined at the level of
components and are therefore not selected for our experiment. However, the metrics
can be lifted to the system level. The result is that both metrics become equal to the
number of dependencies between components, a metric which is considered in our
experiment under the name Number of Binary Dependencies (NBD) as discussed at
the end of this section.

Sant’Anna et al. (2007) defines a set of concern-driven metrics. Part of the input
of these metrics is a mapping between the source code and functional concerns (e.g.,

111

8 Quantifying the Encapsulation of Implemented Software Architectures

“GUI” or “Persistence”) implemented in the system, which is not available in our
operationalization of criterion C3. Moreover, the metrics are either defined at the
level of a concern or at the level of a component, thus we exclude these metrics from
the current experiment.

Sarkar et al. (2007) define an extensive set of architecture-level metrics. To start,
they define the Module Size Uniformity Index which measures the distribution of the
overall size of the system over the components. This metric adheres to five out of the
six criteria for metrics we use, but its primary goal is to quantify the analyzability of
a system; not encapsulation. Nonetheless, we include the metric in our experiment
as a control variable. The accompanying metric, Module Size Boundness Index relies
on an (unspecified) upper limit for the size of components. Because this upper limit
is not available the metric cannot be calculated. Additionally, the aggregation to
system-level requires an additional (user-specified) limit. Determining the best values
for these parameters is considered to be a separate study, therefore we exclude the
metric from our current experiment.

Another metric which is defined by Sarkar et al. (2007) is the Cyclic Dependency
Index, a metric which quantifies the number of cycles in the component dependency
graph. Similar to the other dependency based metrics, a higher value of this metric
potentially leads to a higher degree of propagation of changes and thus indicates little
effective encapsulation. Because this metric adheres to all criteria it is included in the
current experiment. Lastly, Sarkar et al’s Normalized Testability Dependency Metric
is equivalent to Briand’s RCI, and included under that name in our experiment.

Other metrics defined by Sarkar et al. (2007) such as the API Function Usage
Index or the Non-API Function Closedness rely on the definition of a formal API of
the components of a system. Other metrics such as the The Layer Organization Index
or the Concept Domination Metric rely on a mapping of components to layers, or on
a mapping of functional concerns to source-code. As stated in the operationalization
of criterion C3 this information is not available due to the manual effort needed to
create and maintain this information. Therefore we exclude these metrics from our
experiment. In addition, Sarkar et al. extend their list of architecture metrics to-
wards object-oriented concepts in (Sarkar et al., 2008). Because these metrics rely
on paradigm-dependent concepts we do not consider these metrics in our experiment.

Sangwan et al. (2008) define a metric called Excessive Structural Complexity
which combines low level complexity with a quantification of higher level depend-
encies. Unfortunately, the normalization involved in the calculation of the metric
prevents a straight-forward root-cause analysis. Because of this property we do not
include this metric in the current experiment.

In Chapter 6 we have defined Component Balance, an architecture-level metric
which combines the number of components and the relative size of the components.
Because this metric is designed to quantify the analyzability of a software system
rather than the encapsulation this metric is included in the current experiment as a
control variable.

112

8.4 Experiment Design

In Chapter 7 we have introduced the concept of a Dependency Profile aimed at
quantifying the level of encapsulation within a system. This is done by categoriz-
ing all code of a system as either being internal to a component, meaning that it is
not called from or depends on code outside its own component, or being part of re-
quired interface of a component (outbound code plus transit code, representing code
which calls code from other components) or the provided interface of a compon-
ent (inbound code plus transit code, representing code which is called from other
components). These metrics adhere to all criteria (see Chapter 7), thus we take into
account the percentage of code in the provided interface (PI), the percentage of code
in the required interface (RI) and the percentage of internal code (IC).

Lastly, several standard architecture metrics are taken into account. As a start the
number of components (NC) is considered to be a candidate to represent the size of
the architecture. Similar to Component Balance this metric does not seem to target
encapsulation directly but is added to the experiment as a control variable for the
experiment.

Furthermore, the number of dependencies between the components is also con-
sidered. Systems with a higher number of dependencies are expected to have more
propagation of changes. Note that for the number of dependencies the number of bin-
ary dependencies between components (i.e., 1 if there are dependencies, 0 if there are
no dependencies) or the precise number of dependencies between components (i.e.,
each dependency between modules is counted separately) can be taken into account.
The first metric is defined as the number of binary dependencies (NBD) and included
in the experiment under that name. The latter metric, however, is not included in the
current experiment because this absolute number is influenced by the volume of a
component.

8.3.4 Selection result

Table 8.2 provides a summary of the metrics suite for encapsulation that we will in-
vestigate in our experiment. The first nine directly address encapsulation, and adhere
to all criteria. The last three do not directly address encapsulation, but are included
as control variables for our experiment. Note that the metrics which are excluded
may still be considered to be suitable for specific situations, but are out of scope of
the current experiment and thesis. However, we envision additional experiments in
which these metrics are addressed specifically as part of future work.

8.4 Experiment Design

The central question of this chapter is which software architecture metrics can be
used as an indicator for the effectiveness of encapsulation of an implemented software
architecture. To answer this question, we need to determine whether the metrics listed

113

8 Quantifying the Encapsulation of Implemented Software Architectures

Name Abbr. Src. Description Aim Ctrl.
Ratio of Cohesive
Interactions

RCI (Briand et al., 1993) Division of known inter-
actions by possible inter-
actions

low

Cumulative Com-
ponent Dependency

CCD (Lakos, 1996) Sum of outgoing depend-
encies of components

low

Average CCD ACD (Lakos, 1996) CCD divided by number
of modules

low

Normalized CCD NCD (Lakos, 1996) CCD divided by the
number of components

low

Cyclic Dependency
Index

CDI (Sarkar et al., 2007) Normalized number of
cycles in the component
graph.

low

Provided Interface PI (Bouwers et al., 2011c) Percentage of code
which is dependent upon
from other components

low

Required Interface RI (Bouwers et al., 2011c) Percentage of code
which depends on code
from other components

low

Internal code IC (Bouwers et al., 2011c) Percentage of code
which is internal to a
component

high

Number of Binary
Dependencies

NBD The number of binary de-
pendencies within a de-
pendency graph

low

Component
Balance

CB (Bouwers et al., 2011a) Combination of number
of components and their
relative sizes

high x

Module Size Uni-
formity Index

MSUI (Sarkar et al., 2007) Normalized standard de-
viation of the size of the
components

low x

Number of com-
ponents

NC Counts the number of
components in a depend-
ency graph

low x

Table 8.2: Architecture-level metrics suitable for use in software architecture evaluations

114

8.4 Experiment Design

in Table 8.2 are indicative for the effectiveness of encapsulation within a system. This
is done by performing an empirical study in which historical data is used to analyze
the effectiveness of encapsulation within a system in the past. We then try to correlate
this effectiveness with the values of the selected metrics.

Since this type of evaluation of system-level architectural metrics has not been
done before (Koziolek, 2011) we first define how the effectiveness of encapsulation
can be measured in Section 8.4.1. Next, we define how metrics based on a single
snapshot of a system and a metric based on changes between snapshots can be com-
pared in Section 8.4.2 and Section 8.4.3. The procedure for correlating the different
metrics is discussed in Section 8.4.4 and augmented in Section 8.4.5. Lastly, Sec-
tion 8.4.6 provides a summary of the steps in the experiment.

In the design of the experiment we use the term snapshot-based metric to refer
to metrics which are calculated on a single snapshot of a system (e.g., the number
of components on a specific point in time). All metrics listed in Table 8.2 belong to
this category. A metric which is calculated based on changes between snapshots of
a system, for example the number of files that changes between two snapshots of a
system, is referred to as a historic metric.

8.4.1 Measuring Historic Encapsulation

The process of encapsulation revolves around localizing the design decisions which
are likely to change (Booch, 1994) (a process which is also known as “information
hiding” (Parnas, 1972)). In the context of software architectures, measuring whether
the changes made to a system are mainly local or spread throughout the system can
be determined by looking back at the change-sets of a system.

In an ideal situation, a software system consists of components which are highly
independent, encapsulating the implementation details of the functionality they offer.
In this situation, a change to a specific functionality only concerns modules within
a single component, which makes it easier to analyze and test the change made.
Naturally, it is not expected that all change-sets of a system concern only a single
component. However, a system which has a high level of encapsulation (i.e., in which
the design decisions which are likely to change are localized) is expected to have
more localized changes compared to a system in which the level of encapsulation is
low.

In this experiment, a change-set is defined as a set of modules (see Section 8.3.1)
which are changed together in a unit of work (e.g., a task, a commit or a bug-fix).
Using the concepts of Yu et al. (2010) as a basis, each change-set is categorized as
either local (all changes occur within a single component) or non-local (multiple
components are involved in the change).

A change-set series is a list of consecutive change-sets representing all changes
made to a system over a period of time. Note that a series of change-sets does not
necessarily contain change-sets which belong together, it can very well be that each

115

8 Quantifying the Encapsulation of Implemented Software Architectures

change-set concerns a different bug-fix. Our key-measure of interest is the ratio of
change-sets in a series that is local: the closer this ratio is to one, the better the system
was encapsulated.

More formally, let S = 〈M,C〉 be a system, consisting of a set of modules M and
a set of components C. Each module is assigned to a component and none of the
components overlap. More formally, the set C ⊆ P (M) is a partition of M, i.e.,

• ∀c1,c2 ∈C : c1 6= c2⇒ c1∩ c2 = /0 (no overlap)

•
⋃

c∈C = M (complete coverage)

For each module m ∈M the containing component is obtained through a function

• component : M→C.

A change-set cs = {m1 . . .mn} is a set of modules which have been changed together.
For a change-set series CSs =(cs1,cs2, . . . ,csm) we can determine for each change-set
whether it is local by counting the number of components touched in this change-set,
i.e., a change-set is local if and only if:

• isLocal(cs)⇔ |{c|m ∈ cs∧ c = component(m)}|= 1.

Given this property, the ratio of local change can be calculated by a division of the
number of local change-sets by the total number of change-sets in a series:

• ratioO f LocalChange(CSs) =
|{cs|cs∈CS∧isLocal(cs)}|

|CS|

In our experiment, we consider a change-set series with a high ratio of local
change-sets to represent a high degree of effectiveness in the encapsulation of the
system. Note that it is possible to split up a change-set series into multiple series
to obtain insight into the effectiveness of encapsulation for a certain period of time.
However, to obtain an accurate representation of the effectiveness of encapsulation
it is important that the number of change-sets in a change-set series is large enough
to calculate a meaningful ratio. Therefore, the use of longer change-set series, e.g.,
covering a longer period of time, is advised.

8.4.2 Snapshot-based versus Historic

To compare a snapshot-based metric, e.g., the number of components of a system,
against a historic metric, e.g., the ratio of local change, two input parameters need to
be defined: the exact moment of the snapshot for the snapshot-based metric and the
change-set series for the historic metric. To increase the accuracy of the calculation
of the historic metric, the change-set series should be as long as possible. On the
other hand, the value of the snapshot-based metric needs to be representative for the
chosen change-set series, e.g., it should be possible to link each change-set in the
series to the value of the snapshot-based metric.

116

8.4 Experiment Design

Sn
ap

sh
ot

-b
as

ed
 M

et
ric

cs0 cs1 cs3 cs4 cs7cs2 cs5 cs6

Change-sets

1

2

3

4

Figure 8.2: The value of a snapshot-based metric over time determines the change-set series
on which the historic metric should be calculated.

In our experiment, this balance is obtained by calculating the historic metric us-
ing a change-sets series for which the snapshot-based metric is stable. To illustrate,
consider the situation as shown in Figure 8.2 which shows the possible behavior of
a snapshot-based metric given a series of change-sets. Instantiating this hypothet-
ical graph with, for example, the number of components of a system we can see
that this number is stable for some periods, but also changes over time. This means
that we cannot use the complete change-set series (cs0, . . . ,c7) to calculate a his-
toric metric since there is no single snapshot-based metric value we can compare
against. However, the value of a historic metric based on the two change-set series
(cs0,cs1,cs2,cs3) and (cs4,cs5,cs6) can be meaningfully compared against the values
of the snapshot-based metric (respectively 3 and 4).

Note that this approach deviates from the commonly used design (see for example
the experiments described by Yu et al. (2010) and Romano and Pinzger (2011)) in
which a recent snapshot of the system is chosen and the historic metric is calculated
based on the entire history of a system. The implicit assumption which is made in
these experiments is that the value for the snapshot-based metric calculated on the
specific snapshot is relevant for all changes throughout the history of the system.
However, this assumption is not valid in all situations, or should at least be verified
to ensure that the comparison between these two types of metrics is meaningful.

8.4.3 Metric Stability

One of the parameters that needs to be instantiated for this approach is the defin-
ition of when a metric has changed significantly. For some metrics this definition
is straight-forward, e.g., any change in the number of components is normally con-
sidered to be significant from an architectural point of view. However, for metrics
defined on a more continuous scale, such as for example RCI, the definition is less
straight-forward.

The definition of when a metric changes has an impact on the conclusions that
can be drawn from the data and the length of the change-set series for a metric. In

117

8 Quantifying the Encapsulation of Implemented Software Architectures

general, the definition of which change in the value of a metric is significant is most-
likely dependent on both the variability of the metric and the context in which the
metric is used. For example, the number of components is not expected to change in
a maintenance setting, while during the early stages of development it is expected that
this number fluctuates heavily. In the implementation of the experiment a definition
of “stable” related to the context of our goal is chosen.

8.4.4 Statistical Analysis

Given this approach, the aim of the experiment is to see whether the architecture met-
rics listed in Table 8.2 are correlated with the ratio of local change. To this end, we
first define a null hypothesis for each of the twelve metrics that the desired value for
the metric (for example a low number for the number of components or a high per-
centage of internal code) is not associated with a high (or low) ratio of local change.

To determine whether a null hypothesis can be rejected we perform a correlation
test between the values of the snapshot-based metric and the ratio of local change.
Because we cannot assume a normal distribution in any of the metrics, the specific
correlation test used here is the Spearman rank correlation. Furthermore, because the
hypotheses are directional a one-tailed test is performed. When the correlation test
shows a moderate to strong correlation the null-hypothesis can be rejected, meaning
that for a specific snapshot-based metric the values are correlated with the ratio of
local change.

Using the thresholds defined by Hopkins (2000) we consider a significant correl-
ation higher than 0.3 (or lower than −0.3) to indicate a moderate correlation, while
a significant correlation score higher than 0.5 (or lower than −0.5) indicates a strong
correlation. For a correlation to be significant the p-value of the test needs to be below
0.01, indicating that the chance that the found correlation is due to random chance is
less than 1 percent.

In this set-up, multiple hypotheses are tested using the same dataset. In this case
a Bonferroni correction (Hopkins, 2000) is appropriate to prevent the finding of a cor-
relation by chance simply because one performs many different tests. The correction
that needs to take place is the multiplication of the p-value of each individual test by
the number of tests performed. If the resulting p-value is still below 0.01 the result of
the test can be considered significant. Note that the use of the Bonferroni correction
might lead to false negatives, i.e., not rejecting a null hypothesis even though there
is a correlation. Our approach here is to be conservative by applying the correction.
The impact of this choice is discussed in Section 8.8.3.

8.4.5 Preventing Project Bias

In this set-up data-points from several projects are combined into a single data-set
to derive a correlation, instead of calculating the correlation on a per project basis.

118

8.5 Experiment Implementation

This is primarily done because we are interested in a general trend across projects.
Additionally, architecture-level metrics are expected to remain stable for long periods
of time, resulting in just a few data-points per project, which makes it hard to derive
statistically significant results.

However, it is possible that a single system contributes a proportionally large
number of data-points to the sample used for correlation. If this is the case a signi-
ficant correlation might be found just because the correlation occurs within a single
system. To determine the impact of this issue a multiple regression analysis will be
performed for all significant correlations.

The input of such an analysis is a linear model in which the dependent variable
(i.e., the ratio of local change) is explained by a set of independent variables (i.e.,
the value of one of the snapshot-based metrics) plus one dummy variable per pro-
ject. To determine which independent variables are significant a stepwise selection
using a backward elimination model is applied (Hopkins, 2000). This process iter-
ates over the input model and eliminates the least significant independent variables
from the model until all independent variables are significant. If the resulting model
contains the snapshot-based metric as the most significant factor (expressed by the
R-squared value of the individual factor) we can conclude that the influence of the
specific projects is negligible.

8.4.6 Summary

To summarize, the procedure for testing the correlation between each snapshot-based
architecture metric and the historic ratio of localized change becomes:

• Step 1: Define when a metric is considered stable

• Step 2: Determine the change-set series for which the snapshot-based metric
is stable on a per project/per metric basis

• Step 3: Calculate the historic metric for all selected change-set series

• Step 4: For each metric, calculate the correlation between the snapshot-based
metric value and the historic metric using data from all projects

• Step 5: Verify the influence of individual projects on significant correlations

8.5 Experiment Implementation

8.5.1 Metric Stability

The context of this experiment is that of software analysts and software quality eval-
uators. In such a context it is useful to place a system within a bin according to its
metrics in terms of different categories, i.e., 4 is a low number of components, 8 is a

119

8 Quantifying the Encapsulation of Implemented Software Architectures

moderate number of components and 20 is a large number of components. A change
in metric is interesting (and thus significant) as soon as the value of the metric shifts
from one bin to another.

However, for most of the snapshot-based metrics there is no intuitive value which
indicates when a systems should be placed in the “low”, “moderate” or “large” cat-
egory. Therefore, we take a pragmatic approach by defining a bin-size of 1. For
example, if the number of components for a system on (t1, t2, t3, t4, t5) is (4,4,5,6,6),
the stable periods are considered to be t1− t2 and t4− t5.

Similarly, for percentage- and ratio metrics a change is considered significant as
soon as the value is placed in a different bin, with a bin-size of 0.01. For example,
when the values of the metric on snapshots (t1, t2, t3) are (0.243, 0.246, 0.253), the
snapshots t1 and t2 are considered to be equal, while snapshot t3 is considered to
be a significant change. The implications of choosing this bin-size are discussed in
Section 8.8.2.

8.5.2 Stable Period Identification

To determine the time-periods for which a snapshot-based metric is stable, the value
of the metric must calculated for different snapshots of the system. To obtain the
most accurate result a snapshot should be taken after each change-set. However,
given the large number of change-sets this approach requires an enormous amount of
calculation effort. In order to compromise between precision and calculation effort a
sampling approach is used.

Snapshots of the system are extracted on regular intervals, i.e., on every first day
of the month, and all change-sets in between snapshots for which the snapshot-based
metrics are stable are grouped together into a single change-set series. If the value
of the snapshot-based metric changes significantly (as defined in Section 8.5.1) in
between snapshots tn and tn+1 all change-sets up until snapshot tn are grouped into a
single change-set series, while all change-sets in between tn and tn+1 are discarded.

Note that for a highly unstable metric the effect may be that all data-points are
discarded. This side-effect is not seen as a problem in this experiment because our
aim is to identify metrics which can be used to steer development efforts, which re-
quires the metric to be stable for a considerable period of time to enable the definition
of corrective actions.

Also note that a change in the value of the snapshot-based metric indicates a
change in the architecture of the system. Because our study only takes into ac-
count stable periods the study is focussed on determining the effect of these archi-
tectural changes, instead of the nature of the the architecture changes themselves.
Even though we consider the actual architecture changes out of scope of the current
thesis, we envision a thorough exploration of the unstable periods of a metric to be
part of future work.

120

8.5 Experiment Implementation

In this experiment we take one snapshot for each month that the system is act-
ive, i.e., changes are being made to the code. The snapshots are obtained from the
source-code repository on the first day of each month. A more fine-grained interval
(for example every week) might provide more accurate results, but since architecture
metrics are not expected to change frequently a monthly interval is expected to be
sufficient. The consequences of the decision for a sampling approach and the chosen
sample-size are discussed in Section 8.8.2.

8.5.3 Subject systems

We used the following guidelines to determine the set of subject systems:

• Considerable length of development: at least a year’s worth of data needs to be
available in order to provide a representative number of change-sets.

• Subversion repository: this source-code repository system facilitates easy ex-
traction of individual change-sets by assuming that each commit is a change-
set.

• Written in Java: although the metrics are technology independent we have
restricted ourselves to the Java technology because tool-support for calculating
metrics for Java is widely available.

While choosing the systems we ensured that the set contains a mix of both library pro-
jects as well as complete applications. Table 8.3 lists the names of the systems used
together with the overall start date and end date considered. The last two columns
show the size of the subject system on respectively the start date and the end date to
show that the systems have indeed changed over time.

8.5.4 Architectural Model Instantiation for Java

Following our earlier design from Chapter 6 we define the components of a system to
be the top-level packages of a system (e.g., foo.bar.baz, foo.bar.zap, etc). Direct
call relations between modules are taken as dependencies. Virtual calls (for example
created by polymorphism or by interface implementations) are not considered to be
a dependency. In other words, a call to an interface creates a dependency on that
interface, but not on classes implementing that interface. All metrics are calculated
on relevant source-code modules using the Software Analysis Toolkit of the Soft-
ware Improvement Group (SIG)1. In this experiment, a module is considered to be
relevant if it is production code which resides in the main source-tree of the system.
Code written for testing or demo purposes is considered to be out of scope for this
experiment (and therefore not included in the numbers of Table 8.3).

1http://www.sig.eu

121

8 Quantifying the Encapsulation of Implemented Software Architectures

Pe
ri

od
Si

ze
(K

L
O

C
)

N
am

e
R

ep
os

ito
ry

St
ar

t
E

nd
St

ar
t

E
nd

A
nt

ht
tp

://
sv

n.
ap

ac
he

.o
rg

/r
ep

os
/a

sf
/a

nt
/c

or
e/

tr
un

k
20

00
-0

2
20

11
-0

5
3

97

A
rg

ou
m

l
ht

tp
://

ar
go

um
l.t

ig
ri

s.
or

g/
sv

n/
ar

go
um

l/t
ru

nk
/s

rc
/a

rg
ou

m
l-

ap
p

20
08

-0
3

20
11

-0
7

11
3

10
8

B
ee

hi
ve

ht
tp

://
sv

n.
ap

ac
he

.o
rg

/r
ep

os
/a

sf
/b

ee
hi

ve
/tr

un
k/

20
04

-0
8

20
08

-1
0

45
86

C
ra

w
lja

x
ht

tp
://

cr
aw

lja
x.

go
og

le
co

de
.c

om
/s

vn
/tr

un
k/

20
10

-0
1

20
11

-0
7

6
7

Fi
nd

bu
gs

ht
tp

://
fin

db
ug

s.
go

og
le

co
de

.c
om

/s
vn

/tr
un

k/
fin

db
ug

s
20

03
-0

4
20

11
-0

7
7

97

Ja
sp

er
re

po
rt

s
ht

tp
://

ja
sp

er
fo

rg
e.

or
g/

sv
n/

re
po

s/
ja

sp
er

re
po

rt
s/

tr
un

k/
ja

sp
er

re
po

rt
s

20
04

-0
1

20
11

-0
8

28
17

1

Je
di

t
ht

tp
s:

//j
ed

it.
sv

n.
so

ur
ce

fo
rg

e.
ne

t/s
vn

ro
ot

/je
di

t/j
E

di
t/t

ru
nk

20
01

-1
0

20
11

-0
8

35
79

Jh
ot

dr
aw

ht
tp

s:
//j

ho
td

ra
w

.s
vn

.s
ou

rc
ef

or
ge

.n
et

/s
vn

ro
ot

/jh
ot

dr
aw

/tr
un

k/
JH

ot
D

ra
w

20
01

-0
3

20
05

-0
5

8
20

L
uc

en
e

ht
tp

://
sv

n.
ap

ac
he

.o
rg

/r
ep

os
/a

sf
/lu

ce
ne

/d
ev

/tr
un

k/
lu

ce
ne

/
20

01
-1

0
20

11
-0

8
6

67

St
ru

ts
2

ht
tp

://
sv

n.
ap

ac
he

.o
rg

/r
ep

os
/a

sf
/s

tr
ut

s/
st

ru
ts

2/
tr

un
k

20
06

-0
6

20
11

-0
7

25
22

Ta
bl

e
8.

3:
Su

bj
ec

ts
ys

te
m

s
us

ed
in

th
e

st
ud

y

122

8.6 Experiment Results

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

A
nt

 -
R

C
I

2000 2002 2004 2006 2008 2010

Figure 8.3: The value of the RCI metric plotted over the life-time of the Ant system

8.6 Experiment Results

8.6.1 Experiment Package

The raw data of the experiment is available in an on-line experiment package located
at:

http://www.sig.eu/en/QuantifyingEncapSA.

This package contains:

D1: The descriptions of the top-level components and the scope used for each pro-
ject

D2: The data-sets containing the change-sets with relevant modules used as an input
to calculate the ratio of local change for a given period

D3: The data-sets listing the values of the snapshot-based metric for each month
in which changes to the system have been made used to determine the stable
periods

D4: The result of combining data-set D2 and D3 using a bin-size of 1/0.01

8.6.2 Stable Periods

The first step in the experiment is to determine the stable periods for each of the
twelve snapshot-based metrics. To illustrate the need for determining these stable
periods the value for the metric RCI for the system Ant is plotted Figure 8.3. This
graph shows that there is considerable fluctuation in this metric during the develop-
ment of the system, resulting in a total of 15 stable periods.

123

8 Quantifying the Encapsulation of Implemented Software Architectures

Descriptive statistics of the stable periods per metric illustrating four important
characteristics of the data-set are shown in Table 8.4.

First of all, in the second column of Table 8.4 the number of stable periods per
metric is shown. In all cases this number exceeds the number of projects (10), from
which we can conclude that each metric changes over time and thus can be used to
distinguish different states of a system.

Secondly, descriptive statistics of the number of months per stable period are
shown in columns 3−5 of Table 8.4. As discussed in Section 8.5.2 it is desirable for
a snapshot-based metric to remain stable for a considerable period of time to enable
the definition of corrective actions. We observe that the median number of months in
a stable period variates between two and six months, with higher values up to three
to six years. Even though on the low end there exists stable periods that last only a
single month, we consider such a time-frame to be long enough to define corrective
actions.

Thirdly, the sixth column of Table 8.4 shows the percentage of development time
which is covered by the months in all stable periods. We observe that this percentage
is at least 65% for all metrics, which means that more than half of the total devel-
opment time of the systems is covered by the stable periods. From this we conclude
that the metrics are stable enough to be used in the context of our experiment.

Lastly, columns 7− 11 of Table 8.4 show descriptive statistics for the length of
the change-set series based on the stable periods. As discussed in Section 8.4.2 it
is desirable to have longer change-set series to ensure an accurate representation of
the ratio of local change. However, Table 8.4 shows that there are change-set series
containing only a single change-set, which means that the ratio of local change will
either be one or zero. When many change-sets series contain only a few change-sets
the accuracy of the ratio of local change could be considered inadequate. However,
as column 11 shows that for all metrics at least 91% of the change-sets series contain
more than ten change-sets (up to over 5000 change-sets), we consider these change-
sets series to be accurate enough and use all of the series in the current experiment.

8.6.3 Ratio of local change

For each of the snapshot-based metrics the ratio of local change is calculated based
on the stable periods described in Table 8.4. Table 8.5 shows descriptive statistics
of the result of this calculation. We observe that all metrics show considerable vari-
ation in the ratio of local change. The central tendency of the ratio of local change
appears to be close to 0.85 for all metrics. This indicates that it is common to make
more local than non-local changes during periods in which a snapshot-based metric
is stable, which is inline with the expectations that design decisions that change often
are indeed encapsulated.

In this chapter we do not study the ratio of local change within the unstable
periods. We suspect that the ratio of local change during unstable periods tends to

124

8.6 Experiment Results

Months change-sets series length
Metric periods Min Med. Max covered Min Med. Max total > 10

RCI 94 1 4.0 38 80.9 % 3 113.0 968 17760 93.6 %

CCD 71 1 6.0 40 85.9 % 3 222.0 1178 19011 97.2 %

ACD 111 1 3.0 38 75.6 % 1 92.0 954 16564 91.9 %

NCD 74 1 4.5 40 83.6 % 3 192.5 1174 17922 95.9 %

CDI 65 1 6.0 50 88.3 % 1 224.0 2334 20526 95.4 %

PI 122 1 3.0 35 68.1 % 3 67.5 715 13811 95.9 %

RI 111 1 3.0 42 71.8 % 3 68.0 1337 15346 94.6 %

IC 119 1 2.0 41 71.2 % 2 50.0 1257 14759 91.6 %

NBD 108 1 3.0 38 75.8 % 3 88.5 846 15436 94.4 %

CB 82 1 3.0 77 80.6 % 3 76.5 5147 19345 91.5 %

MSUI 99 1 3.0 35 77.1 % 1 91.0 1176 18028 93.9 %

NC 59 1 6.0 53 90.8 % 7 262.0 1805 21428 96.6 %

Table 8.4: Descriptive statistics for the stable periods per snapshot-based metric

be lower than during stable periods, but an in-depth analysis of this hypothesis is
considered to be out of scope for the current thesis.

8.6.4 Correlation values

Using the values of the snapshot-based metrics and the ratio of local change we cal-
culate the Spearman rank correlation between the two samples. Table 8.6 shows the
results of the tests together with both the corrected as well as the original p-values.

As can be seen from the results, many of the correlation tests do not result in a
significant correlation. This result is expected for the control variables MSUI, CB
and NC, but for the other metrics a lack of significance is unexpected. One reason
for this result could be that the number of data-points in the sample for a metric is
not large enough to detect correlation. However, looking at the size of the samples
as displayed in the second column of Table 8.4 this is not likely. Moreover, using a
power t-test to determine the required sample size needed to find correlation shows
that all samples contain enough data-points (Hopkins, 2000).

For PI, RI and the IC metric the result of the correlation tests is significant even
after applying the correction. For these three metrics we performed a multivariate
regression analysis to determine whether any of the projects have a significant in-
fluence on the found correlation (see Section 8.4.5 for details about this approach).
The resulting models for respectively PI, RI and IC are listed in table Table 8.7, 8.8
and 8.9. In all three cases some of the projects have a significant influence (the other
projects are eliminated from the model because their influence is non-significant),
but the value of the snapshot-based metric is the most significant factor (see the last
column) in each model. In other words, the snapshot-based metric explains most of
the variation in the ratio of local change.

125

8 Quantifying the Encapsulation of Implemented Software Architectures

Ratio of local change
Metric Min Median Max
RCI 0.00 0.84 1

CCD 0.37 0.84 1

ACD 0.00 0.85 1

NCD 0.37 0.84 1

CDI 0.00 0.84 1

PI 0.24 0.86 1

RI 0.25 0.86 1

IC 0.16 0.86 1

NBD 0.00 0.84 1

CB 0.35 0.86 1

MSUI 0.36 0.84 1

NC 0.18 0.83 1

Table 8.5: Descriptive statistics of the ratio of local change calculated on the stable periods
described in Table 8.4

Metric Correlation Corrected p-value p-value
RCI 0.16 11.3 0.94

CCD −0.27 0.13 0.01

ACD −0.26 0.04 < 0.01

NCD −0.19 0.59 0.05

CDI 0.32 11.94 1.00

PI -0.30 < 0.01 < 0.01

RI -0.31 < 0.01 < 0.01

IC 0.47 < 0.01 < 0.01

NBD −0.22 0.14 0.01

CB 0.29 0.05 < 0.01

MSUI −0.08 2.42 0.20

NC −0.26 0.27 0.02

Table 8.6: Correlation values between each snapshot-based metric and the ratio of local
change

126

8.6 Experiment Results

Model Coef. Std. Error t p-value R2

(Constant) 1.032 0.033 31.114 < 0.01 −
PI −0.616 0.079 −7.811 < 0.01 0.275

Beehive −0.321 0.073 −4.419 < 0.01 0.072

Findbugs 0.087 0.030 2.843 < 0.01 0.032

Lucene −0.065 0.032 −2.011 < 0.05 0.022

Model Summary: R2 = 0.4006; p≤ 0.01

Table 8.7: Linear model for predicting the ratio of local change using the percentage of code
in the Provided Interface and specific projects

Model Coef. Std. Error t p-value R2

(Constant) 0.987 0.036 27.528 < 0.01 −
RI −0.460 0.061 −7.517 < 0.01 0.167

Ant 0.253 0.038 6.720 < 0.01 0.094

ArgoUML 0.245 0.043 5.650 < 0.01 0.067

Findbugs 0.180 0.031 5.818 < 0.01 0.064

Lucene 0.145 0.026 5.509 < 0.01 0.080

Model Summary: R2 = 0.4733; p≤ 0.01

Table 8.8: Linear model for predicting the ratio of local change using the percentage of code
in the Required Interface and specific projects

Model Coef. Std. Error t p-value R2

(Constant) 0.564 0.030 19.200 < 0.01 −
IC 0.641 0.076 8.427 < 0.01 0.247

Ant 0.228 0.039 5.873 < 0.01 0.074

ArgoUML 0.139 0.046 2.984 < 0.01 0.013

Beehive −0.190 0.087 −2.191 < 0.05 0.023

Findbugs 0.199 0.037 5.334 < 0.01 0.057

Lucene 0.107 0.027 3.843 < 0.01 0.051

Model Summary: R2 = 0.4672; p≤ 0.01

Table 8.9: Linear model for predicting the ratio of local change using the percentage of
Internal Code and specific projects

127

8 Quantifying the Encapsulation of Implemented Software Architectures

8.7 Discussion

8.7.1 Key Findings

The results of the experiment shows that there is not enough evidence to reject the
null hypothesis for the metrics RCI, CCD, ACD, NCD, NBD, MSUI, CDI, CB, and
NC. For PI, RI and IC the found correlation is moderate, thus the null hypothesis may
be rejected. In other words, the results of the experiment shows that the percentage
of code in the provided interface, the percentage of code in the required interface and
the percentage of internal code are correlated with the historic ratio of local change.

In our opinion, the reasoning behind this correlation lies in the fact that these
metrics accurately quantify the requires interface, the provided interface, and the
non-interface code of the components of a system. The larger the interfaces of a
component, the more likely it is that changes in one place will propagate to other
components. From this point of view, these metrics are measuring the extent, e.g.,
the “width”, of the connection between components instead of only the intensity of
these connections.

Note that the first two results provide evidence for the two hypothesis as defined
in Section 7.6, while the last result was not originally expected. However, despite the
relationship between the metrics, e.g., a larger requires interface automatically leads
to a lower percentage of non-interface code, we observe that the quantification of
all non-interface code provides a stronger correlation than a quantification of either
the required or the provided interfaces within a system. Moreover, the percentage
of internal code is more closely related to the notion of encapsulation as defined
in Section 8.4.1. Based on these observations the answer to our research question
becomes:

The percentage of internal code can serve as an indicator for the effect-
iveness of encapsulation of an implemented software architecture.

8.7.2 Beyond “boxes and arrows”

The results show that for nine metrics there is insufficient evidence to conclude that
these metrics have indicative power for the level of encapsulation of a software ar-
chitecture. For the three control variables (MSUI, CB and NC), this result can be
attributed to a difference in goal. These metrics are primarily designed to quantify
the analyzability of a system instead of the encapsulation.

The other metrics for which no correlations were found (i.e., RCI, CCD, ACD,
NCD, CDI and NBD) are all based on a graph view (boxes and arrows) of the soft-
ware architecture. Possibly, the inability of these metrics to measure encapsulation
derives from the over-simplification inherent in such a view. More specifically, even
though these metrics capture the intensity of the dependencies between components,

128

8.7 Discussion

we suspect that they are not able to properly quantify the extent of the dependency
between components.

Since more sophisticated views apparently allow for the definition of more power-
ful metrics, we recommend investigating metrics based on even more sophisticated
views. For example, one could augment the view with information on the entry points
of the system (e.g., the external API for a library or user interface actions for an ap-
plication) or on the participation of the various components in the implementation of
various concerns. Construction of such views currently requires manual input. To
make construction of such views feasible in the context of (repeated) evaluations,
techniques must be found to lift such limitations. The first steps in this area have
already been taken (Olszak et al., 2012).

8.7.3 Generalization

The current implementation of the experiment limits the generalizability of the res-
ults to open-source systems written in Java. In Chapter 7 we already investigated the
behavior of the different categories of the dependency profiles on different technolo-
gies and found little variance between technologies, but replication of our experiment
using systems with other characteristics (i.e., non object-oriented systems, industry
systems) is needed to determine the exact situations in which the metrics are usable.
Because the design of the experiment as described in Section 8.4 does not impose
any limitations on the characteristics of the systems this can be done with relatively
little effort.

Furthermore, the fact that we only examined the stable periods of these systems
means that the indicative power of the metrics cannot be ensured while a system is
undergoing large refactorings on the level of the architecture. We do not consider
this a problem, since the snapshot-based metrics aim to quantify characteristics of
the architecture of a system and are therefore expected to remain stable for longer
periods. This is supported by the data in Table 8.4 which shows that the metrics are
stable for an average period of at least two months, and are stable for more than 60%
of the time a system is under development.

8.7.4 Implications for Architecture Evaluations

The implication of these results for late architecture evaluations is that the percent-
age of internal code can be used to reason about the level of encapsulation within a
system. We envision that a low percentage of internal code could be a reason to steer
the refactoring of a code base to internalize modules within components.

From an organizational perspective, this metric can be used to provide a first in-
dication of the level of the encapsulation of many systems across an application port-
folio. By combining the value of this metric with other key-properties of the systems

129

8 Quantifying the Encapsulation of Implemented Software Architectures

(e.g., size, business criticality or expected change rate) the allocation of resources can
be conducted on a more informed basis.

Based on the findings in this report, SIG (a consultancy firm specialized in the
analysis of the quality of software systems) has decided to include, amongst others,
the percentage of internal code in its suite of metrics used to conduct (repeated) ar-
chitectural evaluations. The results of applying these metrics in over 500 industrial
projects are available in Chapter 9.

8.7.5 Metric Stability

As can be seen in Table 8.4, the metrics measured on the level of the architecture of
a system have the tendency to be stable for a period between two and six months.
The implication of this finding is that the assumption that the value of a snapshot-
based metric is representative for all changes that occurred during the entire history
of a system is not correct. If this is the case on the system-level, this assumption
must also be verified when these types of experiments are performed on the level of
modules or units. An alternative solution is to explicitly encode these assumptions
into the design of the experiment, as we have done in Section 8.4.

8.8 Threats to Validity

Following the guidelines of Wohlin et al. (2000) the threats to the validity of the
results of the experiment are categorized in four categories addressing construct, in-
ternal, external and conclusion validity. Because the generalization of the results (ex-
ternal validity) has already been addressed in Section 8.7.3, this category of threats
is not discussed in detail in this section.

8.8.1 Construct validity

The basis for our experiment is the assumption that the ratio of local change accur-
ately models the concept of encapsulation. This relationship between encapsulation
and the localization of change has been made explicit by, amongst others, Booch
(1994). In addition, “encapsulate what changes” is a well known and widely recog-
nized design principle (Gamma et al., 1995). Additionally, the control variables
MSUI, CB and NC do not show any significant moderate to strong correlation, which
limits the threat that the ratio of local change measures a different external quality
attribute.

A second question regarding construct validity is whether the top-level packages
of a software system can be used as the architectural components of a software sys-
tem. We have performed many such componentizations for industry systems and val-
idated them with the development teams. In many of these cases the top-level pack-
ages are indeed considered to be the top-level components. Thus, even though we did

130

8.8 Threats to Validity

not perform an explicit validation of the component-structure with the developers of
the systems in our experiment, the naming of the top-level packages seems to indicate
a valid component structure.

A last question is whether the assumption that a commit into the Subversion
source-code repository of the systems is a coherent unit of work is valid. This as-
sumption might not hold for developers which have a particular style of committing
code, for example always committing several fixes at once or committing changes
made to each component in isolation. Although this effect might exist this threat is
countered by taking into account several projects, and thus different developers with
a different style of committing.

Additionally, it could be the case that a commit consists solely of automated
refactorings such as renaming a class, or changing the license statement in comments
only. We did not explicitly deal with these cases, but argue that the first type is not
problematic since an automated refactoring which impacts multiple components is
a legitimate non-local change-set. The second type might be problematic, but we
consider the impact of this case to be minor due to the large number of change-sets
used both per stable period and in total.

8.8.2 Internal validity

As discussed before, there might be confounding factors which explain the correla-
tion between the snapshot based metric values and the ratio of local change. One of
these confounding factors, the influence of specific projects on the significant correl-
ations, has already been addressed in the design and results of the study.

A second confounding factor is the choice for taking monthly snapshots to de-
termine the stable periods of the snapshot-based metrics. Taking longer or shorter
periods could result in a different number of stable time-periods, which could influ-
ence the variance of the ratio of local change. However, as can be determined from
the data in Table 8.4, the median number of months which are taken into account
as a stable period is between two and six months and over 60% of the development
time is covered by these periods. This shows that using a one month period between
snapshots already covers a considerable portion of the development of the system,
thus using a shorter period of time between snapshots is not immediately warranted.

A related issue is that the value of a snapshot-based metric could fluctuate sig-
nificantly between two snapshots of the system, but is still considered to be equal
because the value has not changed significantly on the first of the month. How-
ever, given the average length of the stable-periods this situation does not occur often
enough to influence the results significantly.

A third factor is the pragmatic choice to consider a percentage stable as long as
the value stays within the same bin with a bin-size of 0.01. As discussed before,
taking a more narrow or a broader bin-size can lead to more (or less) variance in the
snapshot based metric which in turn leads to more (or less) co-variance with the ratio

131

8 Quantifying the Encapsulation of Implemented Software Architectures

of local change. Again, the median length of the periods, the number of change-sets
per period and the variation in the metrics as shown in Table 8.4 do not indicate that
the bin-size is too small or too large for any of the metrics.

Moreover, we find that determining the optimal threshold for each snapshot based
metric is a new research topic in its own right. We hypothesize that the bin-size could
be defined on the stability characteristics of the metrics determined by, for example,
techniques taken from time-series analysis. Note that in our situation the pragmatic
choice of bin-size can only cause false negatives, e.g., using a different bin-size might
lead to finding significant correlations where there is none with the current bin-size.
In contrast, changing the bin-size will not invalidate the correlations found with the
current bin-size.

8.8.3 Conclusion validity

The final question is whether the conclusions drawn from the data are sound. On
the one hand, the metrics for which we do reject the null-hypothesis might not be
valid indicators. This would be the case when there is no rationale for the correlation
between the value of the snapshot-based metric and the ratio of local change. How-
ever, as discussed in Section 8.7.1 there is a logical explanation for this correlation,
thus the conclusions drawn from the data are valid.

On the other hand, the metrics for which we do not reject the null-hypothesis
might actually be valid indicators. As discussed before, the application of a Bon-
ferroni correction could cause false negatives. Inspecting the non-corrected p-values
shown in Table 8.6 shows that without correction ACD and CB also provide signific-
ant correlations with p < 0.01. However, in both cases the correlation values is below
0.3 and thus considered to be low, which means that not rejecting the null hypothesis
remains correct.

8.9 Related Work

The change-history of a software system has previously been used to, amongst oth-
ers, validate designs (Zimmermann et al., 2003), predict source-code changes (Ying
et al., 2004) and for predicting faults (Graves et al., 2000). The majority of this work
is focussed on predicting which artifacts are going to change together, while our fo-
cus is on correlating snapshot-based metrics with historic metrics. Apart from this
difference in goal, the artifacts which are considered are on a different level (i.e., file
versus components) or of a different nature (i.e., code versus faults).

With respect to the topic of validating snapshot-based metrics against change his-
tory of a system there is again a large body of work. As mentioned before, many class
level metrics have been validated extensively, see Lu et al. (2012) for an overview.

On the component level this type of validation has been done by Yu et al. (2010).
In this experiment, the relationship between the external co-evolution frequency (e.g.,

132

8.10 Conclusion

non-local change) and several size and coupling-related metrics is investigated using
the complete history of nine open-source projects.

However, we are not aware of any study which validates system-level architec-
ture metrics against the change-history of a system. Because of this we considered
the validation of system-level architecture metrics for measuring encapsulation as an
unresolved problem.

8.10 Conclusion

The goal of this chapter is to determine which existing system-level architecture met-
rics provide an indication of the level of encapsulation of an implemented software
architecture in the context of late architecture evaluations. The contributions of this
chapter are:

• A selection of twelve existing system-level architecture metrics which are suit-
able candidates to be used in an late architecture evaluation context.

• An experiment design in which the value of these twelve metrics are correl-
ated with the ratio of local change during periods for which the metrics are
representative.

• A stability analysis on twelve metrics which shows that the variability of a
metric needs to be taken into account when comparing snapshot-based metrics
against metrics based on multiple snapshots of a system.

• Strong evidence that the percentage of internal code provides an indication of
the effectiveness of encapsulation of an implemented architecture.

The key implications of these results are two-fold. First, the percentage of internal
code is suitable to be used in the evaluation of an implemented software architecture.
For technical stakeholders the correlation between these percentages and the ratio of
local change is expected to be sufficient to justify using the metrics within a decision
making process. However, based on our experience we expect non-technical stake-
holders to require a stronger relation between these values and costs or operational
risks. Determining this relationship is considered to be out of scope for this thesis.

Secondly, the results show that the twelve architecture metrics tend to be stable
for a period of two to six months. This property needs to be taken into account in
any experiment in which these specific snapshot-based metrics are correlated against
metrics based on multiple snapshots of a system. More generally, the assumption that
a snapshot-based metric is representative for the period of time on which an historic
metric is calculated must be verified for any experiment in which these two types of
metrics are correlated.

There are two main areas in which future work is needed. First of all, we plan on
verifying the usefulness of the percentage of internal code by using this metrics in a

133

8 Quantifying the Encapsulation of Implemented Software Architectures

late architecture evaluation setting. This is done by incorporating this metrics in the
suite of metrics which is used by SIG to conduct (repeated) architectural evaluations.
The design and results of this empirical study are available in Chapter 9.

Secondly, we envision a study aimed towards determining the best way to define
the stability of software metrics. Such a study would not only improve the experiment
design as proposed in this chapter, it would also help in interpreting metrics currently
used in the monitoring of software systems. Because of the effort involved in properly
investigating this subject we consider this topic to be out of scope for this thesis.

8.11 Architecture Metrics Overview

Table 8.10 provides an overview of the metrics considered in the evaluation of the
metrics as described in Section 8.3. The column headers C1 to C6 are defined in
Table 8.1 and repeated below:

C1: has the potential to measure the level of encapsulation within a system

C2: is defined at (or can be lifted to) the system level

C3: is easy to compute and implement

C4: is as independent of technology as possible

C5: allows for root-cause analysis

C6: is not influenced by the volume of the system under evaluation

Source Name Abbr. C1 C2 C3 C4 C5 C6
Briand et al. (1993) Ratio of Cohesive Interactions RCI Y Y Y Y Y Y

Briand et al. (1993) Import Coupling ImC - N - - - -

Briand et al. (1993) Export Coupling ExC - N - - - -

Lakos (1996) Cumulative Component Depend-
ency

CCD Y Y Y Y Y Y

Lakos (1996) Average CCD ACD Y Y Y Y Y Y

Lakos (1996) Normalized CCD NCD Y Y Y Y Y Y

Mancoridis et al. (1998) Modularization Quality MQ Y Y Y Y N -

Allen et al. (1999) Intramodule Coupling INMC Y Y Y Y N -

Allen et al. (1999) Cohesion of a Modular System COMS Y Y Y Y N -

Anan et al. (2009) Information Entropy of an
Architectural Slicing

IEAS - N N - - -

Anan et al. (2009) Coupling between Architecture
Slicings

ASC - N N - - -

Anan et al. (2009) System Coupling SC Y Y Y Y N -

Continued on next page

134

8.11 Architecture Metrics Overview

Continued from previous page
Source Name Abbr. C1 C2 C3 C4 C5 C6

Anan et al. (2009) Architecture Slicing Cohesion ASC - N N - - -

Martin (2002) Afferent Coupling Ca - N - - - -

Martin (2002) Efferent Coupling Ce - N - - - -

Martin (2002) Instability I - N - - - -

Martin (2002) Abstractness A - N - - - -

Martin (2002) Distance from the Main Sequence D - N - - - -

Sant’Anna et al. (2007) Concern Diffusion over
Architectural Components

CDAC - N N - - -

Sant’Anna et al. (2007) Concern Diffusion over
Architectural Interfaces

CDAI - N N - - -

Sant’Anna et al. (2007) Concern Diffusion over
Architectural Operations

CDAO - N N - - -

Sant’Anna et al. (2007) Component-level Interfacing
Between Concerns

CIBS - N N - - -

Sant’Anna et al. (2007) Interface-level Interfacing
Between Concerns

IIBC - N N - - -

Sant’Anna et al. (2007) Operation-level Overlapping
Between Concerns

OOBC - N N - - -

Sant’Anna et al. (2007) Lack of Concern-based Cohesion
LLC

IIBC - N N - - -

Sarkar et al. (2007) Module Interaction Index MII - - N - - -

Sarkar et al. (2007) Non-API Function Closedness NAFC - - N - - -

Sarkar et al. (2007) API Function Usage Index APIU - - N - - -

Sarkar et al. (2007) Implicit Dependency Index IDI - - N - - -

Sarkar et al. (2007) Module Size Uniformity Index MSUI N Y Y Y Y Y

Sarkar et al. (2007) Module Size Boundedness Index MSBI N Y N - - -

Sarkar et al. (2007) Cyclic Dependency Index CDI Y Y Y Y Y Y

Sarkar et al. (2007) The Layer Organization Index LOI - - N - - -

Sarkar et al. (2007) Module Interaction Stability
Index

MISI - N - - - -

Sarkar et al. (2007) Normalized Testability Depend-
ency Metric

NTDM Y Y Y Y Y Y

Sarkar et al. (2007) Concept Domination Metric CDM Y Y N - - -

Sarkar et al. (2007) Concept Coherency Metric CCM Y Y N - - -

Sarkar et al. (2008) Base-Class Fragility Index BCFI Y Y Y N - -

Sarkar et al. (2008) Inheritance Based Coupling IBC Y Y Y N - -

Sarkar et al. (2008) Not-Programming-to-Interfaces
Index

NPII Y Y Y N - -

Sarkar et al. (2008) Association-induced Coupling AIC Y Y Y N - -

Sarkar et al. (2008) State Access Violation Index SAVI Y Y Y N - -

Sarkar et al. (2008) Plugin Pollution Index PPI Y Y Y N - -

Continued on next page

135

8 Quantifying the Encapsulation of Implemented Software Architectures

Continued from previous page
Source Name Abbr. C1 C2 C3 C4 C5 C6

Sarkar et al. (2008) API Usage Index APIU Y Y Y N - -

Sarkar et al. (2008) Common Reuse of Modules CReuM Y Y Y N - -

Sangwan et al. (2008) Excessive Structural Complexity XS Y Y Y Y N -

Bouwers et al. (2011a) Component Balance CB N Y Y Y Y Y

Bouwers et al. (2011c) Internal Code IC Y Y Y Y Y Y

Bouwers et al. (2011c) Provided Interface PI Y Y Y Y Y Y

Bouwers et al. (2011c) Required Interface RI Y Y Y Y Y Y

Number of components NC Y Y Y Y Y Y

Number of Binary Dependencies NBD Y Y Y Y Y Y

Number of Absolute Dependen-
cies

NAD Y Y Y Y Y N

Table 8.10: The overview of a comparison of architecture metrics against the criteria as
listed in Section 8.3 grouped per source

136

CHAPTER 9

Evaluating Usefulness of Software Metrics
- an Industrial Experience Report ∗

Abstract

A wide range of software metrics targeting various abstraction levels and quality at-
tributes have been proposed by the research community. For many of these metrics
the evaluation consists of verifying the mathematical properties of the metric, invest-
igating the behavior of the metric for a number of open-source systems or comparing
the value of the metric against other metrics quantifying related quality attributes.

Unfortunately, a structural analysis of the usefulness of metrics in a real-world
evaluation setting is often missing. Such an evaluation is important to understand
the situations in which a metric can be applied, to identify areas of possible improve-
ments, to explore general problems detected by the metrics and to define generally
applicable solution strategies.

In this chapter we execute such an analysis for two architecture level metrics,
Component Balance and Dependency Profiles, by analyzing the challenges involved
in applying these metrics in an industrial setting. In addition, we explore the use-
fulness of the metrics by conducting semi-structured interviews with experienced as-
sessors. We document the lessons learned both for the application of these specific
metrics, as well as for the method of evaluating metrics in practice.

∗Originally published in the proceedings of the 35th International Conference on Software Engin-
eering (ICSE 2013), Software Engineering in Practice (SEIP) track (Bouwers et al., 2013).

137

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

9.1 Introduction

Software metrics continue to be of interest for researchers and practitioners. Met-
rics such as volume (Albrecht and Gaffney, 1983), McCabe Complexity (McCabe,
1976), the C&K metric suite (Chidamber and Kemerer, 1994) and a wide range of
architecture metrics (see Koziolek (2011) for an overview) are well-known and used
in practice. Moreover, new software metrics continue to be defined by the research
community.

The evaluation of a new metric typically consists of correlating the (change in)
value of the metric with other quality indicators such as likelihood of change (Lu
et al., 2012) or its ability to predict the presence of bugs (Nagappan and Ball, 2005).
In other cases, the evaluation consists of an analysis of the values of a metric for a set
of open-source systems, either on one single snapshot or over a period of time (Sarkar
et al., 2007 & 2008). More theoretical approaches of metric evaluation inspect math-
ematical properties of metrics (see for example Briand et al. (1999b & a) and Fenton
and Pfleeger (1998)) or focus on metrological properties of metrics (see for example
Abran (2010)).

The focus of these types of evaluation is to determine whether the designed metric
is related to the quality property it has been designed to quantify, a property known
as “construct validity” (Kaner and Bond, 2004). Although this is an important part
of the evaluation of a metric, these types of evaluations cannot be used to determine
whether a metric is useful. For a metric to be considered useful its value should
correspond to the intuition of an measurer (Fenton and Pfleeger, 1998) and should be
actively used in a decision-making process (Gopal et al., 2005).

In this chapter we evaluate the usefulness of two architecture level metrics, Com-
ponent Balance (see Chapter 6) and Dependency Profiles (see Chapter 7), which are
designed to quantify the analyzability and encapsulation within a software system.
Evidence of the construct validity of these metrics has been previously gathered in
small-scale experiments presented in Chapter 6 and Chapter 8. The large-scale study
presented here aims to gain an understanding of the usefulness of these two metrics
in practice.

The context of this research is the Software Improvement Group (SIG), a con-
sultancy firm specialized in providing strategic advice to IT management based on
technical findings. As a first step both metrics are embedded in the measurement
model used to monitor and assess the technical quality of a large set (500+) of sys-
tems developed by (or for) clients of SIG. The metrics are interpreted by consultants
working at SIG, who fulfill the role of external quality assessors.

Data about the usefulness of the metrics is collected using two different methods.
First, data about the challenges involved in actually applying the metrics is collected
by observing the quality assessors and documented in the form of memos. Secondly,
semi-structured interviews are conducted with the quality assessors who interpreted
the metrics when assessing their customers’ software systems.

138

9.2 Evaluation Goal

Our analysis of the collected data leads to two types of findings. First, we identify
in which situations and under which conditions the metrics are useful. Second, we
discover how to improve the metrics themselves and ways to apply them better.

In addition to reporting on the evaluation of these specific metrics in this partic-
ular context, we reflect upon a general method for evaluating software metrics in a
practical setting. The challenges involved in designing and executing such a study are
outlined and the generalizability of the results is discussed. We conclude that despite
the inherent limitations of this type of studies, the execution of such a study is crucial
for the proper evaluation of any software metric.

9.2 Evaluation Goal

The goal of this study is to gain an understanding of the usefulness of two software
metrics. Before we can reason about the usefulness of a metric the term “usefulness”
needs to be characterized. Different characteristics of usefulness are available, e.g. a
metric is considered useful if the metric:

• corresponds to the intuition of the measurer (Fenton and Pfleeger, 1998)

• is actively used in a decision making process (Gopal et al., 2005)

In the first definition, a crucial role is played by the person using the metric. Apart
from the experience of the particular person, the role in which he/she uses the metric,
e.g., a developer, a quality assessor inside a company or an external quality assessor,
has a significant impact on the outcome of the evaluation. In the second definition, the
context in which the metric is used, e.g., assessing the quality of a system, analyzing
the properties of an architecture or assessing the performance of developers, has a
large influence on the outcome of the evaluation.

The subjects of this evaluation are the Component Balance (see Chapter 6) and
Dependency Profile (see Chapter 7) metrics. In previous chapters have evaluated
the properties, correlations and statistical behavior of these metrics, but not their
usefulness.

Both of these metrics have been designed to quantify specific properties of the
implemented architecture of a software system, i.e., analyzability and encapsulation.
Such a quality assessment can either be done by an internal assessor (e.g., working in-
side a single company) or an external assessor (for example employed by an external
consultancy firm). In this research, we choose the viewpoint of external assessors.

Thus we define our evaluation goal in the template from the GQM approach of
Basili et al. (1994) as follows:

The objective of the study is to understand the usefulness of the “Component
Balance” and “Dependency Profiles” metrics, from the point of view of external
quality assessors, in the context of external assessments of implemented architec-
tures.

139

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

Data gathering!!!!!
Embed!

Observations! Interviews!
Analyze!

Figure 9.1: A four-step process for evaluating software metrics in practice

9.3 Evaluation Method

To answer our research question we use the four step methodology as outlined in
Figure 9.1. To start, the metrics are included in the standard operating procedure of
the external assessors. Details about this embedding and the context of the external
assessors are given in Section 9.4.

In line with recommendations about collecting data in qualitative research (Ad-
olph et al., 2011), data about the challenges involved in applying the metrics are
gathered using two methods. First, an observer records real-word experiences of
using the metrics in the form of memos. Secondly, interviews with the assessors
are conducted to determine the perceived usefulness of the metric as seen by the
assessors. Details about this data-gathering process are given in Section 9.5.

Lastly, the data extracted by both methods is analyzed and condensed separately,
the results of which are given in Section 9.6 and Section 9.7. Based on this data, the
most common observations are discussed and possible solution areas are explored in
Section 9.8.

Apart from evaluating the metrics we also reflect upon the benefits and limitations
of this evaluation process in Section 9.9, discuss related work in Section 9.10, after
which the chapter concludes in Section 9.11.

9.4 Evaluation Setting

The evaluation took place within the Software Improvement Group (SIG), a con-
sultancy firm which “. . . translates detailed technical findings about software-intensive
systems into actionable information for top management”.1

The length of the investigation was six months, from the start of February 2012
until end of August 2012. At the start of this period, two system properties based
on the Component Balance and the Dependency Profiles metrics were added to the
company’s software measurement model. Details about this measurement model and
the embedding of the metrics are given in Section 9.4.1 and Section 9.4.2.

The measurement model is applied by consultants employed by SIG on a wide
range of customer systems throughout various services. Details about the consult-
ants interpreting the metrics are discussed in Section 9.4.3, while the context of this

1http://www.sig.eu

140

9.4 Evaluation Setting

research is described in two parts focussing on the services in which the metrics are
used (Section 9.4.4) and the type of systems assessed in the services (Section 9.4.5).

9.4.1 Software Measurement Model

A measurement model based on the maintainability aspect of the ISO/IEC 9126 (In-
ternational Organization for Standardization, 2001) standard for software quality was
used throughout the services of SIG (Heitlager et al., 2007). This model operation-
alizes the standard by decomposing its sub-characteristics into a set of six system
properties, which are quantified by code-level metrics such as the duplication per-
centage and length of units.

These code-level metrics are in turn used to derive a rating for each system prop-
erty using a benchmarking-based methodology (Alves et al., 2011). More details
about the exact construction of the model and its application can be found in Baggen
et al. (2010).

Since the introduction of this model, the ISO/IEC 9126 standard has been re-
placed by the new ISO/IEC 25010 (International Organization for Standardization,
2011) standard for software quality. One of the changes of the new standard is the
introduction of the sub-characteristic of “Modularization”, which is defined as:

[The] degree to which a system or computer program is composed of
discrete components such that a change to one component has minimal
impact on other components.

Taking into account the pitfalls introduced in Chapter 5, the measurement model was
extended with two system properties to capture this new sub-characteristic: Compon-
ent Balance and Component Independence. Apart from upgrading to the latest quality
standard, the introduction of these system properties was expected to stimulate dis-
cussions about the architecture of systems and to incorporate a common view-point
in the assessment of implemented architectures.

9.4.2 Component System Properties

The metric used to quantify the system property of Component Balance is the metric
with the same name as was introduced in Chapter 6. The metric used to quantify the
Component Independence system property is the combination of two categories of
the Dependency Profiles metric introduced in Chapter 7. Both metrics were chosen
based on the results of our earlier experiments, which showed that these metrics out-
perform other metrics when quantifying the quality characteristics of analyzability
(see Chapter 6) and encapsulation (see Chapter 8).

Component Balance The Component Balance metric consists of two factors, Sys-
tem Breakdown (SB) and Component Size Uniformity (CSU). The SB provides a

141

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

B C

A

1

2

3

4

Figure 9.2: The four categories of modules as defined within a Dependency Profile.
1 = hidden, 2 = inbound, 3 = outbound and 4 = transit modules. Arrows denote dependencies
from/to modules within other components.

value in the range of [0,1] based on the number of components. The “optimal” num-
ber of components receives a high score which gradually decreases when a system
contains a higher or a lower number of components. The “optimal” number of com-
ponents is currently defined as the median number of components in a representative
benchmark of systems.

The CSU metric provides a value in the range of [0,1] based on whether the
volume of the system is distributed (roughly) equally amongst the components of the
system. More details about the design of these two metrics and their aggregation can
be found in Chapter 6.

Component Independence To quantify Component Independence two categories
of the Dependency Profiles are used. A dependency profile categorizes all modules
within a component into one of four categories based on the dependencies the module
has on modules in other components, as illustrated in Figure 9.2. The percentage of
code within the system in the internal category and the outbound category is com-
bined into a single percentage that quantifies the volume percentage of code in each
component that is not called from or otherwise directly depended upon by code in
another component. In other words, it quantifies the percentage of code which is
not part of the provided interface of the components of the system. The higher this
percentage the higher the rating for Component Independence.

Note that with this implementation the rating for Component Independence only
focusses on the provided interface of the components of a system, the size of the
required interface is not taken into account. The reasoning behind this is that the
benefits of a small provided interface are widely known, and thus more likely to be
accepted, than the need for a smaller required interface. However, in the tools used
within SIG all four categories of the dependency profile are calculated and shown,
thus allowing both interfaces to be discussed.

142

9.4 Evaluation Setting

Implementation choices Similar to the existing system properties, the raw soft-
ware metric is translated to a rating on a scale of [0.5,5.5] via a benchmarking based
methodology (Alves et al., 2011), and these ratings are combined with the ratings for
the other six system properties to calculate an overall rating (Baggen et al., 2010).

To ensure that both metrics can be applied to systems that are written in multiple
programming languages the following algorithms are used. For Component Balance,
the volume of the components is measured as the sum of Lines of Code for all pro-
gramming languages used within a component.

To calculate the categories of the Dependency Profiles, language-specific hierarchy-
and call-dependencies are statically resolved to calculate a percentage per program-
ming language. The rating obtained per programming language is aggregated to the
system-level using a weighted average, taking into account the relative volume of
each language.

9.4.3 Consultants

In this research we observe the consultants working for SIG. These consultants provide
recommendations to clients to improve the quality of a system in order to mitigate
risks, but are not involved in the execution of these recommendations. Thus they
fulfill the role of external quality assessors.

Two different types of consultants are distinguished, technical consultants trained
in identifying and assessing technical risks within a software system and general
consultants responsible for translating technical findings into project- and business
risks. By observing both types of consultants we aim to gain more insight in both the
technical usefulness as well as the usefulness of the metrics on a business level.

9.4.4 Services

Four different services are offered by SIG. Two of them, the Software Risk Assess-
ment (SRA) and the Software Risk Monitor (SRM), are the main subjects of this re-
search. The goal of an SRA is to answer a specific research question related to risks
involved in the technical quality of a software system. A standard investigation lasts
6-8 weeks and is executed by a team consisting of both general and technical con-
sultants (Deursen and Kuipers, 2003). In an SRM, the identified risks and technical
quality of a system are tracked over a period of time to ensure timely identification
and mitigation of problems (Kuipers and Visser, 2004).

9.4.5 Software subjects

In the six-month study period the measurement model has been used to monitor the
technical quality of over 500 systems, and applied to over 50 systems in the setting
of an SRA. The size of the systems varies from three thousand to several million

143

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

lines of code written in a wide range of programming languages ranging from Object-
Oriented and related languages (e.g., Java, C#, JSP, ASP, JavaScript and various SQL-
dialects) to languages typically deployed in mainframes (e.g., Cobol, Tandem). The
systems originate from different domains including banking, insurance, government
and logistics.

To gain the most benefits from transferring to the new model a system needs
to have its component defined. These definitions were made based on information
retrieved from the development teams using interviews and design documents.

9.5 Data Gathering

After the metrics were embedded into the measurement model, data about the applic-
ation and usage of the metrics was gathered using two different methods:

1. Experiences of using the metrics were collected through observations and doc-
umented in the form of memos

2. The opinions of the external assessors about the usefulness of the metrics were
collected by conducting semi-structured interviews

Combining these two methods of data-gathering does not only allow us to triangulate
findings, but also reduces the known limitations of either method. A reflection on this
design decision is given in Section 9.9.

9.5.1 Observations

The objective of using this method is to gain an understanding of the challenges
involved in applying the metrics, to gain insight in the situations in which the metrics
can be used and to identify situations in which the values of the metrics do not directly
correspond to the intuition of the assessor.

During the six month period the author of this thesis, who works as a technical
consultants at SIG, collects experiences about the metrics in the form of written
memos. All questions and remarks about the metrics which are either publicly stated
or directly asked are documented on a daily basis.

Each memo contains a description of the problem/question, the answer provided/action
defined and possible follow-up actions. After the six month period all memos are
manually analyzed to identify recurring questions and general observations.

9.5.2 Interviews

The objective of using this method is to get an overview of the usefulness of the
metrics as perceived by the external quality assessors. Eleven software quality as-
sessors with at least two years of experience with performing metric-based quality
assessments were interviewed to construct this overview.

144

9.6 Observation Findings

The interviews are time-boxed to a period of 30 minutes and are conducted by
the second author of the paper on which this chapter is based. This author, who is not
involved in the daily operations of SIG, has previous experience in using interviews
as a basis for qualitative research (Greiler et al., 2012) and started each interview with
the following question:

How do you use Component Balance and Component Independence?

The discussion based on this question is used to get a qualitative insight into the use-
fulness of the metrics. Each discussion is documented in a report which is validated
by the interview subject.

In order to get a more quantitative insight into usefulness of the metrics each
assessor was asked to answer the following two questions at the end of the interview:

1. On a scale of 1 to 5 (higher is better), how useful do you find Component
Balance / Component Independence in your job?

2. On a scale of 1 to 5 (higher is better), does the use of Component Balance
Component / Independence make it easier to do your job?

The above questions are based on the questions of Davis (1989) and are designed to
get an insight into the perceived usefulness and ease of use of the metrics.

9.6 Observation Findings

Over the period of six months a total of 48 memos were collected. The memos
describe interactions of the first author with 17 quality assessors (over one third of
the available quality assessors), decomposed into 10 general consultants, six technical
consultants and one internal researcher.

Twenty memos discuss specific systems, 14 different systems (spanning four dif-
ferent business contexts) where subject to these discussions. All memos combined
involved 11 different customers and suppliers.

Note that even though the specific discussions only cover a fraction of all ana-
lyzed systems and clients, the remaining memos contain discussions about general
trends observed by consultants, which are based on their experience with all systems
as discussed in Section 9.4.5.

All memos were analyzed together at the end of the six months period. In
this analysis 20 different concepts are extracted from the memos, which in turn are
grouped into five different categories. Figure 9.3 shows an overview of the collec-
ted categories and the related concepts, each of which is discussed in the following
sections.

145

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

Decision making

Intuition

Component Definition

Application

Implementation

Targeted improvements

Start of discussions

Communication device

Small systems
Older technologies
Influence of nr of components

File-system versus mental model
System Scope

Subjectivity

Model introduction

Definition of actions
Effect prediction

Steering
Context
Effort prediction

Component Balance

Component
Independence

Linear Equation

Volume metric
Dependency types
False positives
Cross language
dependencies

Figure 9.3: An overview of the five categories (displayed in bold/italic font), two sub-
categories (displayed in italic font) and their related concepts as collected via observations.

9.6.1 Decision making

Indications for the actual use of the two architecture metrics in a decision making
process was found in 16 different memos and grouped together in three different
concepts.

Targeted Improvements The addition of the metrics to the measurement model
resulted in targeted improvement efforts being made by development teams, includ-
ing the development team employed by the company. Shortly after the introduction of
the architecture metrics one of the internal developers posted the following message
on the internal communications-channel:

In ”eating-your-own-dogfood-news”, the new component independence
metric helped us find a remnant of old design in [system-name] that was
subsequently refactored, resulting in a +0.1 maintainability and a +0.85
component independence

Start of discussions Five memos describe direct questions posed by development
teams on how to improve the rating for the metrics. In all cases, findings related to
the specific system were discussed and recommendations were defined and commu-
nicated back to the development team.

Communication device One memo describes a discussion with a development
team of a system which is being monitored. At first the monitoring was focussed
on specific technical issues which required a technical componentization. However,
these technical components did not correspond to the components used by the de-
velopers to reason about the system. In order to decrease the effort needed to transfer
the system to a new maintenance team the current development team decided to re-
structure the source-code to reflect their mental components. In this situation, both
architecture metrics were used to communicate the progress of this re-structuring to
project-management.

146

9.6 Observation Findings

In summary, the metrics formed a basis for a discussion about the components,
led to the definition of a roadmap to make the transition of the system easier and
provided a way to track the progress for non-technical personnel.

9.6.2 Intuition

As explained by Fenton and Pfleeger (1998) a metric can be considered useful if
it corresponds to the intuition of the person using the metric. On three occasions
assessors specifically mention that in some cases the value of the metrics, in particular
the Component Balance metric, does not immediately correspond to their intuition
about the state of the system. One assessor states that in about half of the cases
the ratings are as expected, while in the other half of the cases the definition of the
components needs to be re-assessed.

More detailed examples of the situations in which the (change in) the value of the
metrics does not correspond to the intuition of the assessors are described in seven
different memos and grouped into three distinct categories.

Small systems Four different memos (involving five different assessors) describe
that smaller systems seem to receive lower ratings for the architecture metrics faster
than larger systems. One of the assessors hypothesized that this is due to smaller
systems with components related to technical topics (typically only a few such as
database, front-end, services) because the size of the system does not require a func-
tional decomposition.

For one assessor this size-related issue was important enough to sit down together
with an internal researcher to inspect the distribution of the ratings for all eight sys-
tem properties to determine whether the distribution of ratings was indeed different.
The result of this inspection was that, apart from a relatively large spike caused by
systems which did not yet have component definition, the distribution of ratings for
architecture metrics was not different from that of the other metrics.

Older technologies On two occasions assessors mentioned that systems written in
older technologies (e.g., Cobol, Tandem, Pascal) seem to receive higher ratings for
the component based metrics more easily than systems written in modern technolo-
gies (e.g., Java and C#).

For Component Balance, one assessor hypothesizes that this trend could be caused
by the way in which components are solicited from the developers. Because the
technologies themselves do not have a “component”-concept these types of systems
normally do not have any components defined. During the transfer to the new qual-
ity model the sources are grouped together in components according to functionality
after the metrics are explained, which could lead to a specific steering towards the
“optimal” number of components and thus higher ratings.

Influence of number of components For Component Balance one assessor ob-
serves that the number of components seems to influence the rating for Component

147

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

Balance more than the size-distribution, which confirms the observations in the initial
validation of this metric (see Chapter 6).

9.6.3 Component Definition

As discussed in Section 9.4, components needed to be defined for a system in order
to gain the most from the transfer to the new model. Three concepts are related to
this category.

File-system versus mental model The components of a system were defined based
on either the structure of the file-system (e.g., the top-level directories are used as
components) or based on interviews with developers about how they view the system.
In the latter case it might well be that files from different directories are combined
into a single component.

To illustrate, one assessor outlined a case in which the system contained a top-
level directory structure depicting technical components, while the second-level dir-
ectories contained a functional decomposition. Depending on the view-point of the
developers either the functional or the technical components can be used to calculate
the metrics. However, it was unclear to the assessor which one of the two is the best
representation of the “real” components of the system and should thus be used for the
current assessment.

Because there may be different components under various view-points, the value
of the rating can diverge, which in turn can have political consequences (for example
if there exists a contractual agreement to reach a certain rating for each system prop-
erty). This type of situation calls for a more clear definition of what constitutes a
component.

On the other hand, one assessor stated that within a SRA setting it can be helpful
to use different component-definitions (representing different views on the system)
to determine risks with respect to different view-points.

Subjectivity The lack of a very precise guideline of what constitutes a component
is a reason to view a measurement based on components as subjective in two memos.
In particular, by involving the developer in the definition of the components there
exists a feeling that the value of the measurement can be easily influenced by using a
different definition of component instead of a change in the code.

System Scope The question described in one memo was whether libraries developed
inside the company (but in this case only included as a binary dependency) should
be included as separate components. Even though this issue relates to the determin-
ation of system boundaries as opposed to the definition of component, it represents
an important issue as it influences the number of components and thus the discus-
sions based on the metrics. An additional challenge is that some technologies, e.g.,
JavaScript, enforce the source-code to be part of a code-base and thus influence the
definition of the components (and other metrics).

148

9.6 Observation Findings

9.6.4 Application

Challenges involved in the introduction and application of the metric are grouped
together in six different concepts.

Model Introduction The transition to the new quality model has not been without
challenges. After the initial introduction there was an additional need for an elevator
pitch for the new metrics (requested in one memo). In addition, the investment needed
to define components for a large number of systems written in older technologies,
combined with viewing the definition of components as subjective, made one client
decide not to upgrade yet to the new quality model for their portfolio.

Definition of Actions On three occasions different assessors indicate that defining
actions based on the architecture metrics was more involved than providing advice
for code-level metrics. On the code-level it is relatively straight-forward to define
general actions (e.g., remove this type of duplication or refactor these long methods),
but constructing this type of advice for the architecture metrics requires more effort
because these recommendations are more context-dependent.

Effect prediction Related to the definition of actions, four memos describe that as-
sessors are not always certain about the effect the implementation of a recommenda-
tion has on the value of the metrics. Especially because the addition of a component
potentially affects both metrics, the results of implementing a recommendation is
seen as harder to predict and could be smaller or bigger than desired.

For example, according to one assessor the effects of adding a component to a
small system can significantly influence the overall rating, but one memo describes
an example in which this influence was neglectable. Because of this uncertainty,
assessors ask for tool-support to simulate the implementation of a recommendation
in three different memos.

Steering One memo describes that the metrics are relatively stable for systems
which are in maintenance mode. Any change in the metrics is normally the result
of a targeted effort and thus expected. This makes it harder to use the metrics to steer
development on a weekly basis, which is seen as disappointing.

Context As indicated in Section 9.6.1 suppliers directly ask for recommendations
to increase the rating for a metric. In these situations it is tempting to focus on
either one of the metrics to increase only that value. However, five memos describe
discussions which point out that it is important to keep in mind that the eventual goal
is not to have perfect ratings, but to have an architecture which fits the current needs.

For example, for one system the Component Independence received a low rating,
while the rating for all other system properties are high. Combining this with the
observation that the system has only one open issue at this time any effort spend to
increase the rating for the this particular aspect is unneeded.

149

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

Effort prediction In line with the finding about providing recommendations, the
effort prediction related to improving architectural issues is seen as difficult. Two
memos describe that the effort needed to group components together is deemed to
be lower than the effort required to split up components in separate chunks of func-
tionality. In some situations a low rating is related to only a few violations, while in
other situations a large refactoring is needed. Because of this the assessors experience
difficulties in applying a general effort prediction model.

9.6.5 Implementation

Eight memos describe implementation issues regarding Component Balance (three)
or Component Independence (five).

Component Balance Two memos (involving one assessor) describe a discussion
about the implementation of the function to determine the rating for the number of
components of a system. The conclusion of this discussion was that even though the
function could be improved, the impact on the way in which the metric can be applied
would be small. Secondly, the use of Lines of Code to depict the size of components
is, according to one memo, not always applicable to XML-based languages.

Component Independence A first observation is that only using inter-language
dependencies has a high impact on systems for which one component is implemented
in a different technology. For example, in two systems one of the components was
dedicated to an SQL-type language, while the other components used an Object-
Oriented language. In these situations the rating for Component Independence was
considered to be too high.

Secondly, two memos describe two different systems in which incorrect call
resolving caused false positives, which in turn results in a rating which is too low
(because modules are put into the wrong category).

Lastly, one memo outlines a conversation between an assessor and a supplier
regarding the topic of dependency injection. As argued by the supplier, the difference
in constructing a class directly or using a framework to construct and inject a class
is small, but using the first approach significantly impacts the rating for Component
Independence in a negative way.

9.7 Interview Findings

A total of eleven quality assessors were interviewed on three days over a period of
one week. During the interviews notes were taken by the interviewer which formed
the basis for a report of each interview. These reports have been validated by the
subjects.

150

9.7 Interview Findings

0!

1!

2!

3!

4!

5!

1! 2! 3! 4! 5!

Fr
eq
ue
nc
y!

Scores!

Figure 9.4: Histogram displaying the distribution of scores related to the usefulness (black)
and ease of use (gray) of the architecture metrics as given by the eleven subjects.

The results of the interviews consists of two parts: a quantitative part based on
the scores given by the subjects and a qualitative part in which the reports of the
interviews are analyzed. The analyses of the reports has first been done by the authors
on an individual basis, after which the results were discussed and combined. These
results are presented in the remainder of this section based on the categories and
concepts as displayed in Figure 9.3. Whenever a new finding could not be related to
an existing concept, but was mentioned by at least two subjects, a new concept was
introduced.

9.7.1 Subject scores

An overview of the scores given by the subjects is displayed in Figure 9.4. Scores
related to the second question, whether the metrics are considered to be useful, are
displayed in black, scores related to the third question, whether the metrics make
their job easier, are displayed in gray.

From the distribution of scores we can deduce that overall the metrics are per-
ceived to be useful, but that the application of the metrics does not make the job of
assessments easier.

Related to the usefulness, nine subjects indicate that the metrics provide a starting
point for discussions about the components of a system. In three interviews specific
examples of how the metrics identified problems within a system were discussed,
while in two interviews examples of the use of the metrics as a communication device
were given. Lastly, three different subjects provide examples of targeted improve-
ment efforts.

In relation to making the job of the consultant easier different types of challenges
were brought forward, these challenges are discussed below.

151

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

9.7.2 Intuition

The concepts associated with this category were only discussed briefly. For example,
only one subject mentions that smaller systems tend to score lower on the component
metrics. And even though systems implemented in older technologies were discussed
in four interviews, only one subject mentioned that they tend to score lower. Addi-
tional insights for this concept are discussed below. The seemingly large influence of
the number of components on the rating was not discussed in any interview.

Older technologies One subject explained that older technologies tend to receive
a lower rating, which was in-line with his expectation. Interestingly, another subject
mentions that systems with older technologies normally receive a slightly better rat-
ing (an observation also made in the memos). From this we conclude that the exact
influence of the architecture metrics on systems written in older technologies varies.
Lastly, another subject mentions that for older technologies no meaningful compon-
entization exists, thus the component metrics should play a less significant role in the
overall assessment.

9.7.3 Component definition

The exact definition of components was a substantial topic in ten of the eleven in-
terviews. In particular, each of the three concepts as described in the memos were
mentioned by at least three subjects. Additional insights regarding these existing
concepts are discussed below. In addition, the concept of Technologies without com-
ponents is added to cover new findings in the interviews.

File-system versus mental model Seven subjects mention the challenge of choos-
ing the “right” view on the components of a system. Apart from the mental model
and the file-system, views related to the deployment of the code or functional de-
compositions can be chosen. A decision about which view should be leading in the
calculation of the metrics is requested.

Subjectivity The fact that multiple view-points can be used to calculate the metrics
leads to a feeling that the component definition is subjective. Although this flexibility
is considered to be a good thing in the context of an SRA, where different view-
points lead to different insights, the added flexibility sometimes leads to unwanted
discussions about what constitutes a component (especially when the rating for the
component metrics is low).

Technologies without components In three interviews it was mentioned that for
some technologies the concept of a “component” does not exists. This does not only
include older technologies such as Cobol and Tandem, but also systems implemented
in newer technologies such as SAP. Additionally, visual programming languages,
typically used to model business processes, also do not have an inherent concept of a
component. It is yet unclear what the best way is to apply the component metrics to
systems written in these technologies.

152

9.7 Interview Findings

9.7.4 Application

With respect to the application of the metrics all concepts were mentioned in at least
one interview. Several new insights were obtained for two different concepts. In
addition, the concept of Responsibility is introduced to capture new findings.

Definition of actions Nine subjects mention that the definition of actions is harder
for the architectural metrics than for the code-level metrics in the model. This is one
of the main reasons why the new metrics do not make it easier to perform assess-
ments. This increased effort needed to perform assessments is not necessarily seen
as problematic. Definition of the actions might be harder, but is also seen as more in-
teresting, challenging and valuable. However, to deal with common situations more
efficiently one assessor suggests to collect experiences of applying the metrics to
derive common recommendations.

Steering What is problematic is that in some situations the advice related to the
components metrics can involve a substantial amount of refactoring. In some situ-
ations this leads to the identification of problems that cannot be solved due to resource
constraints, which limits the usability of the advice in the setting of an SRA.

In a monitor setting the metrics can initially fluctuate, which is seen as problem-
atic by one subject. However, two other subjects do not find this problematic as long
as there is a roadmap towards a stable set of components. One subject mentions that
within a monitoring setting it is easier to do something to improve the underlying
architecture, although this is not necessarily done on a weekly basis.

Responsibility An additional challenge in the application of the metrics is that
there exist situations in which the development team does not feel responsible for
the components of the system. In some cases the components cannot be changed by
the development team because the technology or framework dictates the component-
structure; in other cases the components are mandated by a person outside the de-
velopment team. In these situations a discussion about the value of the component
metrics is considered to be useless by the development team, which hinders the ap-
plication of the metrics.

9.7.5 Implementation

Ten interviews mentioned issues related to the implementation category. Issues re-
lated to the definition of Component Balance mainly revolved around a new concept
of Optimal number of components; issues related to the other two concepts were not
mentioned. With respect to Component Independence all three concepts were dis-
cussed at least once.

Component Balance - Optimal number of components As explained in Sec-
tion 9.4.2 the “optimal” number of components is currently defined as the median
number of components in a benchmark, which is currently 7. In five interviews this

153

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

number is discussed, in all cases it is questioned whether the highest rating for SB
should be attached to this number only.

9.8 Discussion of Findings

The data extracted from the 48 memos and the eleven interviews illustrate the useful-
ness of the Component Balance and Dependency Profiles metrics in the assessment
of implemented architectures performed by external assessors. Examples show that
the metrics can trigger targeted improvement efforts, start meaningful discussions
and can be used as a communication device in a number of different situations.

The evaluation also illustrates situations in which the metrics perform less than
optimal. For example, because the metrics are relatively stable for systems in main-
tenance mode they cannot be used to steer development on a weekly basis. Moreover,
in some situations the recommendations following from the metrics require a signi-
ficant amount of effort, which is not always available due to resource constraints.

In these situations the metrics illustrate a problem that is not subject to improve-
ment, which reflects upon the perceived usefulness of the metrics.

Apart from these limitations, several areas of improvements are identified. We
discuss those areas related to the three most discussed topics: Component Definition,
Application and Intuition.

Component Definition The need for a strict definition of what entails a component
across technologies is an important topic of discussion. Even though the ability to use
different view-points is seen as both a positive and a negative aspect, a strict definition
of component is asked for on several occasions. As illustrated in Section 9.6.1 there
is a notion that the components of a system should be in line with the structure on the
file-system, but the interviews indicate that such a definition is not applicable to all
technologies.

In order to improve on this situation we plan to follow-up on the advice of one
subject and collect a representative set of component definitions for different techno-
logies. Such a set can be used as a basis for determining the components of existing
systems, and provides an opportunity to derive general as well as technology-specific
guidelines.

Application With respect to the application of the metrics both the observations
and the interviews indicate that defining actions based on the value of the metrics is
not always straight-forward. Moreover, estimating the amount of effort involved in
implementing recommendations is considered challenging.

To deal with this problem we plan to build up a body of knowledge containing
common value-patterns and associated recommendations for the architecture metrics.
Having these common patterns and the effects of implementing the recommendations
on the metrics available makes it easier for the assessors to gain a better feeling for

154

9.9 Reflections on Evaluation Methodology

the interpretation and application of the architecture metrics. The data collected in
this evaluation should be considered a first step towards this body of knowledge.

Intuition According to the assessors, the value of the metric for smaller systems
and systems written in specific technologies are not always as expected. Specific
reasons for the mis-match between value and intuition seem to be the current determ-
ination of the “optimal” number of components for Component Balance and missing
cross-language dependencies for Component Independence.

The overall intuition of the assessors could indicate that specific groups of sys-
tems should be treated differently by the metrics. To validate this hypothesis a stat-
istical analyses on the values of the metrics in different groups could be performed,
which is considered to be future work.

To address the specific issues we plan to investigate ways to implement sup-
port for cross-language dependencies in a cost-efficient manner. In addition, findings
ways to make the resolving of dependencies more precise is deemed to be an import-
ant part of future work. For Component Balance we plan to investigate ways to better
define the “optimal” number of components.

9.9 Reflections on Evaluation Methodology

In this section we reflect upon the benefits of evaluating the usefulness of metrics in
practice and the used process.

First of all, the main benefit of performing this type of evaluation is a better un-
derstanding of the usefulness of the software metrics. Moreover, the effective identi-
fication of possible improvement areas illustrates the benefits of performing such an
evaluation.

However, an important question here is whether the application of the metrics
brings new insights, or whether all findings could have been defined before the eval-
uation. For example, one could argue that the need for a strict component definition
or the questions related to systems written in different technologies could have been
defined before the metrics were applied. However, even if this is true the relative
importance of the different areas of future work could not have been determined in a
purely academic context.

A second question related to the benefits of this type of evaluation is whether the
results can be generalized to different contexts. In principle all findings are limited
by the context as defined within Section 9.4. However, based on the depth of this
evaluation and the nature of the metrics we expect that the benefits of the architecture
metrics also apply to external assessors in different settings.

Note that it is important to be able to place the value of the metrics in a context,
for example by the use of a benchmark. Because of this, the usefulness of the metrics
for developers working on a single system is considered to be limited.

155

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

In relation to the followed methodology we make three important observations.
First, the use of two different types of data-gathering is important to ensure a balanced
evaluation. Secondly, the confidentiality constraints inherent to the evaluation of
metrics within an industry setting limits reproducibility of the results. Lastly, the
embedding of metrics within a standard operating procedure can be challenging.

Balanced Evaluation Every data-gathering technique has known limitations. For
example, the interviews provide an indication of the usefulness of the metrics as
perceived by the assessors. As pointed out by Davis (1989), perceived usefulness
is not necessarily the same as objective usefulness. A limitation of the gathering of
observations is the inherent confirmation bias of the observer.

These limitations are partially countered by combining the data from both meth-
ods. In addition, the two methods are executed by different persons to increase the
possibility of finding new information in both methods. Furthermore, the interviews
are conducted by the author that does not have daily interactions with the interview
subjects to reduce interviewer bias.

The new findings in the interviews and the discovered areas of future work show
that combining these two types of data-gathering leads to a balanced and critical
evaluation of the usefulness of software metrics in practice.

Reproducibility Due to reasons of confidentiality, the data collected within the
memos and the interviews cannot be made publicly available. However, the descrip-
tion of the data as given in Section 9.6 and Section 9.7 is considered to be detailed
enough to support the conclusions drawn from the data.

Metric Embedding The biggest challenge in executing the proposed methodology
is the embedding of new metrics in a standard operating procedure on a large scale,
a topic that is out of scope of the current research. However, the benefits of evalu-
ating metrics in practice as described above and in Section 9.8 is intended to assist
researchers in acquiring the needed commitment from industry partners.

9.10 Related Work

Empirical evaluations of software metrics typically consist of evaluating the value
of a metric against one of three external properties: quality in terms of faults, effort
(either development or maintenance) or volume (Kitchenham, 2010).

By contrast, theoretical approached of metric evaluation inspect mathematical
properties of metrics (Fenton and Pfleeger, 1998) or focus on metrological properties
of metrics (Abran, 2010).

These types of evaluation aim to determine whether a metric is indeed measuring
the attribute it was designed for in a theoretical manner. Kaner and Bond (2004) stress
that this type of evaluation should also be done using a more practitioners oriented

156

9.11 Conclusion

view-point and defines a framework for evaluating the validity and risk of a metric in
the form of 10 questions.

All of the above evaluation strategies are meant to be done before a metric is used.
Although useful, this pre-deployment validation covers only part of the 47 different
validation criteria for metrics recently summarized in a literature review (Meneely
et al., 2012). Our evaluation of the usefulness of software metrics bests fits the ac-
tionability criteria, which is defined as:

A metric has actionability if it allows a software manager to make an em-
pirically informed decision based on the software product’s status (Me-
neely et al., 2012)

To the best of our knowledge, no empirical evaluation of this validation attribute has
been done for specific metrics.

9.11 Conclusion

This chapter describes a large-scale industrial evaluation of the usefulness of the
Component Balance and Dependency Profile metrics, in the context of the assess-
ment of implemented architectures, from the view-point of external quality assessors.
Using two different methods for gathering data, a detailed overview of the benefits
and challenges of the two specific metrics is constructed and discussed.

For SIG, this evaluation identified different areas for improving the application
of the metrics which have led to the definition of concrete improvement actions. For
other practitioners, this evaluation can be used to decide whether or not the two ar-
chitecture metrics can be used in their assessment processes. For the research com-
munity, the overview of areas for future work in Section 9.8, and the detailed over-
view of the data as discussed in Section 9.6 and Section 9.7, can be used as a starting
point for conducting new research.

In addition, a methodology for evaluating software metrics in practice was intro-
duced and the benefits and limitations of this approach are discussed. For practition-
ers, the overview of the insights gained from this type of evaluation is intended to
inspire practitioners to collaborate with researchers to perform similar types of eval-
uations. For researchers, the methodology can serve as a starting point for evaluating
the usefulness of (new) software metrics in practice, and can be reflected upon to
improve the methodology itself.

To summarize, this chapter makes the following contributions:

• It introduces a methodology for evaluating the usefulness of software metric in
industry

• It describes the execution of this methodology in an empirical study towards
understanding the usefulness of two specific software metrics

157

9 Evaluating Usefulness of Software Metrics - an Industrial Experience Report

• It provides an overview of challenges involved in the application of the two
specific software metrics and lists concrete areas for improvement

• It reflects upon the usefulness of the evaluation methodology, concluding that
the relative importance of challenges involved in applying specific metrics can-
not be determined in a purely academic setting.

158

CHAPTER 10

Conclusion

Every software system has an implemented software architecture which allows or im-
pedes the quality attributes of a system. It is therefore important to regularly evaluate
this implemented architecture to ensure it is still suitable for the current context of
the system. In this thesis we have investigated which aspects of an implemented soft-
ware architecture should be evaluated with respect to maintainability, and provided
concrete advice on how this evaluation can be performed by a quality evaluator. In
particular, we have focussed on determining which metrics are able to quantify the
modularity within a software system and evaluated the usefulness of these metrics
within the evaluation of implemented architectures.

10.1 Contributions

The main contributions of this thesis can be summarized as follows:

• The identification of 15 system attributes that have an impact on the maintain-
ability of an implemented architecture (Chapter 2), which have been incorpor-
ated in a general model for architecture complexity (Chapter 3).

• Practical tool- and process-support for starting evaluations in the form of the
Lightweight Sanity Check for Implemented Architectures (Chapter 4) and the
identification of four pitfalls related to using software metrics for evaluations
(Chapter 5).

• A new metric to quantify the analyzability of a software architecture called
Component Balance, including an evaluation of its construct validity (Chapter 6).

159

10 Conclusion

• A new metric to quantify the encapsulation of a software architecture called
Dependency Profiles (Chapter 7), including an evaluation of its construct valid-
ity (Chapter 8).

• A qualitative evaluation of the usefulness of the Component Balance and the
Dependency Profile metrics when used to evaluate the implemented architec-
ture of software systems in practice (Chapter 9).

10.2 Answer to Research Questions

RQ1: Which criteria should be taken into account during the evaluation of the
maintainability of an implemented architecture?

The answer to this research question is given in Chapter 3, in the form of the Soft-
ware Architecture Complexity Model (SACM) (see Figure 3.2). This model, which
is partly based on the results presented in Chapter 2, consists of five factors, each
of which are broken down into three to five criteria. Evaluating all criteria of the
SACM leads to a balanced and rich overview of the complexity of an implemented
architecture, which is related to the ease of future maintenance.

The five factors of SACM cover two different parts of complexity: the complex-
ity of an architecture as experienced by a single developer (personal factors) and the
complexity of the architecture as experienced by a team of developers (environmental
factors). Depending on the criteria which receive a negative evaluation an initial es-
timate of the magnitude of the solution can be defined. For example, changing the
technology in which a systems is written (an environmental factor) will normally re-
quire more effort than removing a cyclic dependency (a personal factor). Thus the
SACM can not only be used as a check-list for evaluations, but also provides a struc-
tured way of reasoning about solutions for solving the complexity of an implemented
architecture.

The SACM is based on well-accepted theories taken from the field of cognit-
ive science and general software engineering principles. In addition, the criteria of
SACM correspond to the criteria used by quality evaluators to evaluate implemented
architectures of systems written in a wide range of technologies. Despite the lim-
itations of the model as discussed in Section 3.6.7, in particular the fact that it is
unknown whether the model is complete, SACM provides a solid, generic basis for
the evaluation of the implemented architecture of software systems.

RQ2: What support can we define to make the process of regularly checking an
implemented architecture easier for a quality evaluator?

The answer to this research question is two-fold. First, Chapter 4 introduces the
Lightweight Sanity Check for Implemented Architecture (LiSCIA), consisting of 28

160

10.2 Answer to Research Questions

questions within five different categories. The design of LiSCIA is such that the
effort needed to apply LiSCIA for a person familiar with the system under evalu-
ation, or an experienced quality evaluator, is less than one day. Apart from listing the
questions, LiSCIA also provides possible actions for improvements. Because of this
LiSCIA provides quality evaluators with a ready-to-use check-list to start performing
evaluations.

Secondly, Chapter 5 explains four common pitfalls related to the use of (software)
metrics within project management and quality evaluations. These pitfalls are struc-
tured around two aspects of metric usage: the meaning given to metric values and the
number of metrics used. For both categories we have defined names and descriptions
for situations in which either too much or too little of the aspect is involved. By
taking into account these pitfalls quality evaluators and project managers can achieve
their goals more effectively.

The biggest limitation of the answer to this question is the lack of rigorous eval-
uation of both LiSCIA and the four pitfalls. The results of an initial evaluation of
LiSCIA, in which the check-list was embedded in the quality assurance process of
the services of SIG, showed that the check-list was a nuisance for experienced qual-
ity evaluators, e.g., filling in the check-list was seen as a ’red-tape’ activity instead
of being helpful in the evaluation process. However, a formal evaluation of LiSCIA
being applied by novice quality evaluators is yet to be done.

Likewise, the evaluation of whether it is useful to know the four pitfalls when
applying metrics in a project management situation is an open research topic. Even
though anecdotical evidence shows that knowing the pitfalls helps to apply metrics
more effectively, a formal experiment to test this hypothesis is an open research task.

RQ3: Which metrics are capable of quantifying the modularization of a software
system?

To answer this question we identified two metrics to quantify two different as-
pects of the modularization of a system; the analyzability of a system in terms of its
components and the encapsulation of a system in terms of its dependencies.

The experiment within Chapter 6 shows that Component Balance is the most
promising metric to quantify the analyzability of a software system in terms of its
components. This metric is the first metric which combines both the number of com-
ponents and their relative sizes, both of which are important criteria according to
quality evaluators. When a system consists of a reasonable number of components
which are roughly equal in size the value of the metric will be higher, indicating a
better analyzability.

The experiment within Chapter 8 shows that the different categories of the De-
pendency Profiles, in particular the amount of internal code, are the most promising
metrics to quantify the encapsulation within a system based on the dependencies
between components. When the percentage of internal code, i.e., code which only

161

10 Conclusion

uses and is used by code within a single component, is higher, the encapsulation
within a system is considered to be better.

For both metrics we have used controlled experiments to validate their construct
validity. By including existing architecture level metrics designed to quantify the
same characteristic within each experiment we have ensured that these new metrics
out-perform the current state of the art metrics which can be calculated on the same
input.

RQ4: Are the metrics identified in RQ3 useful in practice?

The empirical validation as presented in Chapter 9 shows that the Component
Balance and the different categories of the Dependency Profile are considered use-
ful, in particular when deployed using a benchmark-based approach as explained in
Section 9.4.2.

The validation zoomed in on two aspects which indicate the usefulness of a met-
ric: the correspondence of the value of the metric to the intuition of the quality evalu-
ator and the usage of the value of the metric in a decision making process. In relation
to the first aspect the collected data shows that metrics tend to correspond to the in-
tuition of the quality evaluator, or at least form a basis for a constructive discussion
of the implemented architecture of a system. The results of these discussions lead
to the definition of actions, which shows that the metrics are indeed used for making
decisions.

The empirical validation also resulted in the definition of several areas of im-
provements related to, amongst others, the specific metrics, tool support for architec-
ture evaluations and the way in which metric-based evaluations can be improved in
general. For all of these areas we define directions for future work.

Note that this answer is only one of the possible answers, different (combinations
of) architecture-level metrics might be as useful (or even more useful) than the com-
bination of Component Balance and the Dependency Profile. However, without a
validation similar to the one presented in Chapter 9 we cannot draw any conclusions
regarding the usefulness of other (combinations of) architecture-level metrics. Fortu-
nately, the evaluation design as presented in Chapter 9 is metric agnostic and can be
reused with little effort.

10.3 Impact on Practice

For our specific research context of SIG, this research has enabled a structural change
regarding the evaluation of implemented software architectures. As explained in Sec-
tion 9.4.1, SIG used to deploy a quality model based on ISO/IEC 9126 (International
Organization for Standardization, 2001) as a basis for its consultancy services (Bag-
gen et al., 2010).

162

10.4 Impact on Research

Based on, amongst others, the results described in this thesis this model has
been updated to reflect the changes in ISO/IEC 25010 (International Organization for
Standardization, 2011), which is the successor of ISO/IEC 9126. In this update, the
quality model is augmented with two new system properties targeted towards quan-
tifying aspects related to the modularity of the system. The metrics used to quantify
these system properties are based on Component Balance and the Dependency Profile
(see Section 9.4.2 for more details).

This means that the metrics as proposed and evaluated in this thesis are used
to continuously monitor the quality of over 500 software systems, and are used in
structured evaluations of over 100 systems on a yearly basis. Moreover, the metrics
are used in the measurement procedure approved by TÜViT for the “Trusted Product
Maintainability”-certificates1 since the beginning of 2012.

Overall, the embedding of these metrics inside the standard software quality
model used to evaluate the maintainability of software systems has lead to a more
structured approach towards evaluating implemented software architectures.

10.4 Impact on Research

Apart from the contributions and the practical impact this research advances the field
of software engineering research in three different ways.

First of all, we have defined and executed an evaluation methodology which en-
ables a meaningful interpretation of studies which correlate the value of a snapshot-
based metric and the value of a metric which is calculated over a period of time
(see Chapter 8). A crucial part of this methodology is the acknowledgment that the
value of the snapshot-based metric must be representative for a given period of time
in order to ensure that conclusions drawn from the correlation numbers are correct.
Any study in which the correlation between these two types of metrics is investigated
needs to take this consideration into account.

Secondly, we have defined and executed evaluation methodology to valid the
usefulness of a combination of software metrics in practice (see Chapter 9). By
showing the value of this type of studies it becomes easier for other researchers to
convince industrial partners to cooperate in this type of evaluation.

Lastly, this thesis is an example of the “industry-as-a-laboratory” approach as
sketched out by Potts (1993). We first identified a problem in our particular research
context and then used data from that research context to define a solution. This
solution is in turn validated by experiments designed using well-established research
methods, after which the solution is applied again in practice. The combination of
research methods and constant interaction between research and industry has resulted
in generally applicable, yet immediately useful, solutions. Based on the success of
this research we hope to inspire other researchers and practitioners to adopt the same
methodology.

1https://www.tuvit.de/en/products/maintainability-1215.htm

163

10 Conclusion

10.5 Future work

We envision four areas of future work, which roughly follow the answer to our re-
search questions in reverse order from smaller to larger research areas.

10.5.1 Improving specific metrics

With respect to Component Balance and the Dependency Profile we have identified
several specific tracks for future work in Section 9.8. For Component Balance we
first plan to examine the influence of the number of components on the overall score
in more detail. Furthermore, the inspection of the (difference in) statistical behavior
of the metrics with respect to systems written in different technologies is an important
short-term research topic.

With respect to the usage of the metrics the collection of common usage patterns
is deemed useful. For example, we envision the construction a “metric-interpretation”
catalog in which these patterns are collected together with the recommendations
made and the required effort for implementing the recommendations (if any). Such
a catalog provides practitioners with hands-one advice, while researchers can use the
patterns as a source of inspiration for conducting research.

Note that the construction of such a catalog is not limited to the Component
Balance and the Dependency Profile metrics, every software metric can benefit from
such a catalog.

10.5.2 Improving criteria evaluation

Concerning the evaluation of other criteria as defined in SACM we see a wide range
of potential research topics. The research described in this thesis designed and valid-
ated metrics for two specific criteria: balance and independence. For the remaining
sixteen criteria similar research projects can be executed to define metrics or invest-
igate automation techniques. This would enable a more efficient evaluation of these
remaining criteria as opposed to only using expert opinion.

For example, one of the inputs for evaluating the criteria of Inner Coherence
is the set of responsibilities implemented within modules. Unfortunately, for most
systems the mapping between responsibilities/functionality and source-code modules
is unclear. The effort involved in constructing and maintaining this mapping is (at the
current time) too large of an investment. To somewhat lift this limitations we have
been working towards a more automated way in towards the construction of such a
mapping (Olszak et al., 2012).

10.5.3 Improving characteristic evaluation

Taking another step back we emphasize that this research covers (a part of) only one
of the eight sub-characteristics of the ISO/IEC 25010 model for software quality.

164

10.5 Future work

For each of the remaining seven quality characteristics we see possibilities for future
research.

In general, each quality characteristic can benefit from the definition of a struc-
tured evaluation approach. As soon as there is a considerable amount of data collected
through the execution of such a structured approach a quality model can be developed
based on this data and the experience of quality evaluators.

10.5.4 Improving metric based evaluations

Lastly, we see the identification of the four pitfalls of using software metrics as
defined in Chapter 5 as a first step towards the identification of the limits which
are involved in using metrics in an evaluation setting. Metrics are a powerful tool
to identify possible areas of improvements, but are aware that the wrongful use of
metrics can do more harm than good.

To prevent this harm from happening metrics should always be (correctly) inter-
preted by humans. Developing support and education materials to enable the correct
interpretation of metrics is a significant area of future work. This support is a first
stepping stone towards the development of a truly fact-based software engineering
community, ultimately leading to the development of better and more accurate soft-
ware systems.

165

Bibliography

A. Abran. Software Metrics and Software Metrology. Wiley-IEEE Computer Society
Press, 2010.

S. Adolph, W. Hall, and P. Kruchten. Using grounded theory to study the experi-
ence of software development. Empirical Software Engineering, 16(4):487–513,
August 2011.

A.J. Albrecht and Jr. Gaffney, J.E. Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transactions
on Software Engineering, SE-9(6):639 – 648, 1983.

E.B. Allen and T.M. Khoshgoftaar. Measuring coupling and cohesion: An
information-theory approach. In Proceedings of the 6th International Symposium
on Software Metrics. IEEE Computer Society, 1999.

M. AlSharif, W.P. Bond, and T. Al-Otaiby. Assessing the complexity of software
architecture. In ACM-SE 42: Proceedings of the 42nd annual Southeast regional
conference, pages 98–103. ACM, 2004.

T.L. Alves, J.P. Correia, and J. Visser. Benchmark-based aggregation of metrics to
ratings. In Proceedings of the Joint Conference of the International Workshop on
Software Measurement and the International Conference on Software Process and
Product Measurement (IWSM/MENSURA), pages 20–29, 2011.

M. Anan, H. Saiedian, and J. Ryoo. An architecture-centric software maintainab-
ility assessment using information theory. Journal of Software Maintenance and
Evolution, 21:1–18, January 2009.

J.R. Anderson. Cognitive psychology and its implications. W.H.Freeman & Co Ltd,
2000.

167

Bibliography

A. Avritzer and E.J. Weyuker. Investigating metrics for architectural assessment.
In METRICS ’98: Proceedings of the 5th International Symposium on Software
Metrics, page 4. IEEE Computer Society, 1998.

M.A. Babar and I. Gorton. Software architecture review: The state of practice. Com-
puter, 42(7):26–32, 2009.

M.A. Babar, L. Zhu, and D.R. Jeffery. A framework for classifying and comparing
software architecture evaluation methods. In ASWEC ’04: Proceedings of the 2004
Australian Software Engineering Conference, page 309. IEEE Computer Society,
2004.

R. Baggen, K. Schill, and J. Visser. Standardized code quality benchmarking for
improving software maintainability. In 4th International Workshop on Software
Quality and Maintainability (SQM 2010), 2010.

V.R. Basili, G. Caldiera, and H.D. Rombach. The goal question metric approach. In
Encyclopedia of Software Engineering. Wiley, 1994.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, Second
Edition. Addison-Wesley Professional, 2003.

G. Beliakov, A. Pradera, and T. Calvo. Aggregation Functions: A Guide for Practi-
tioners. Springer Publishing Company, Incorporated, 2008.

J.K. Blundell, M.L. Hines, and J. Stach. The measurement of software design quality.
Annals of Software Engineering, 4(1022-7091):235–255, 1997.

G. Booch. Object-oriented analysis and design with applications (2nd ed.).
Benjamin-Cummings Publishing Co., Inc., 1994.

E. Bouwers and A. van Deursen. A lightweight sanity check for implemented archi-
tectures. IEEE Software, 27(4), 2010.

E. Bouwers, J. Visser, and A. van Deursen. Criteria for the evaluation of implemented
architectures. In Proceedings of the 25th International Conference on Software
Maintenance (ICSM 2009), pages 73–82. IEEE Computer Society, 2009.

E. Bouwers, C. Lilienthal, J. Visser, and A. van Deursen. A cognitive model for soft-
ware architecture complexity. In Proceedings of the 2010 IEEE 18th International
Conference on Program Comprehension. IEEE Computer Society, 2010.

E. Bouwers, J.P. Correia, A. van Deursen, and J. Visser. Quantifying the analyzability
of software architectures. In Proceedings of the 9th Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA 2011). IEEE Computer Society, 2011a.

168

Bibliography

E. Bouwers, A. van Deursen, and J. Visser. Quantifying the encapsulation of im-
plemented software architectures. Technical Report TUD-SERG-2011-031, Delft
Software Engineering Research Group, Delft University of Technology, 2011b.

E. Bouwers, A. van Deursen, and J. Visser. Dependency profiles for software archi-
tecture evaluations. In Proceedings of the 27th IEEE International Conference on
Software Maintenance (ICSM 2011). IEEE Computer Society, 2011c.

E. Bouwers, J. Visser, and A. van Deursen. Getting what you measure. Communica-
tions of the ACM, 55(7):54–59, July 2012.

E. Bouwers, A. van Deursen, and J. Visser. Evaluating usefulness of software met-
rics: An industrial experience report. In Proceedings of the 35th International
Conference on Software Engineering (ICSE 2013), 2013.

L.C. Briand, S. Morasca, and V.R. Basili. Measuring and assessing maintainability
at the end of high level design. In Proceedings of the Conference on Software
Maintenance (ICSM 1993), pages 88–97. IEEE Computer Society, 1993.

L.C. Briand, J.W. Daly, and J.K. Wust. A unified framework for coupling measure-
ment in object-oriented systems. IEEE Transactions of Software Engineering, 25
(1):91 –121, jan/feb 1999a.

L.C. Briand, S. Morasca, and V.R. Basili. Defining and validating measures for
object-based high-level design. IEEE Transactions on Software Engineering, 25
(5):722–743, 1999b.

B. Brügge and A.H. Dutoit. Object oriented Software Engineering Using UML, Pat-
terns, and Java. Prentice Hall International, 2009.

S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20:476–493, 1994.

H.B. Christensen, K.M. Hansen, and B. Lindstrøm. Lightweight and continuous
architectural software quality assurance using the asqa technique. In Proceedings
of the 4th European conference on Software architecture, ECSA’10, pages 118–
132. Springer-Verlag, 2010.

P. Clements, R. Kazman, and M. Klein. Evaluating software architectures : methods
and case studies. Addison-Wesley, 2002.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and
J. Stafford. Documenting Software Architectures: Views and Beyond. Addison-
Wesley, 2003.

A. Cockburn. People and Methodologies in Software Development. PhD dissertation,
University of Oslo, 2003.

169

Bibliography

J.P. Correia and J. Visser. Certification of technical quality of software products. In
Proceedings of the 2nd International Workshop on Foundations and Techniques
for Open Source Software Certification, pages 35–51, 2008.

L. Couto, J.N. Oliveira, M. Ferreira, and E. Bouwers. Preparing for a literature
survey of software architecture using formal concept analysis. In Proceedings of
the Fifth International Workshop on Software Quality and Maintainability (SQM
2011), 2011.

J.W. Creswell and V.L.P. Clark. Designing and Conducting Mixed Methods Research.
Sage Publications, Inc, 1 edition, August 2006.

F.D. Davis. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13(3):319–340, 1989.

A. van Deursen and T. Kuipers. Source-based software risk assessment. In ICSM
’03: Proceedings of the International Conference on Software Maintenance. IEEE
Computer Society, 2003.

L. Dobrica and E. Niemelä. A survey on software architecture analysis methods.
IEEE Transactions on Software Engineering, 28(7):638–653, 2002.

C. Ebert. Complexity traces: an instrument for software project management. pages
166–176. International Thomson Computer Press, 1995.

E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, August 2003.

N.E. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Practical Ap-
proach. PWS Publishing Co., 2nd edition, 1998.

M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., 2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995.

A. Gawande. The Checklist Manifesto: How to Get Things Right. Metropolitan
Books, December 2009.

C. Gini. Measurement of inequality of income. Economic Journal, 31:22–43, 1921.

A. Gopal, T. Mukhopadhyay, and M.S. Krishnan. The impact of institutional forces
on software metrics programs. IEEE Transactions on Software Engineering, 31
(8):679 – 694, aug. 2005.

170

Bibliography

T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy. Predicting fault incidence using
software change history. IEEE Transactions on Software Engineering, 26:653–
661, July 2000.

M. Greiler, A. van Deursen, and M. Storey. Test confessions: a study of testing
practices for plug-in systems. In Proceedings of the 2012 International Conference
on Software Engineering, ICSE 2012, pages 244–254. IEEE Press, 2012.

G. Gui and P. Scott. Ranking reusability of software components using coupling
metrics. Journal of Systems and Software, 80(9):1450–1459, September 2007.

M. Haft, B. Humm, and J. Siedersleben. The architect’s dilemma - will reference
architectures help? In R. et al. Reussner, editor, Quality of Software Architectures
and Software Quality QoSA/SOQUA, pages 106–122, 2005.

N. Harrison and P. Avgeriou. Pattern-based architecture reviews. IEEE Software, PP
(99):1, 2010.

L. Hatton. Reexamining the fault density-component size connection. IEEE Soft-
ware, 14(2):89–97, 1997.

I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring maintainab-
ility. In QUATIC ’07: Proceedings of the 6th International Conference on Quality
of Information and Communications Technology, pages 30–39. IEEE Computer
Society, 2007.

B. Henderson-Sellers. Object-oriented metrics: measures of complexity. Prentice-
Hall, Inc., 1996.

W.G. Hopkins. A new view of statistics. Internet Society for Sport Science, 2000.
URL http://www.sportsci.org/resource/stats/.

D.H. Hutchens and V.R. Basili. System structure analysis: Clustering with data bind-
ings. IEEE Transactions on Software Engineering, 11(8):749–757, 1985.

E. Hutchins. Cognition in the wild. MIT Press, 1996.

IEEE. IEEE Std 610.12-1990: IEEE standard glossary of software engineering ter-
minology, 1990.

International Organization for Standardization. ISO/IEC 9126-1: Software engineer-
ing - product quality - part 1: Quality model, 2001.

International Organization for Standardization. ISO/IEC 25010: Systems and soft-
ware engineering - Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models, 2011.

171

Bibliography

C. Kaner and W.P. Bond. Software engineering metrics: What do they measure and
how do we know? In 10th International Software Metrics Symposium - Metrics
2004. IEEE Computer Society Press, 2004.

R. Kazman and M. Burth. Assessing architectural complexity. In CSMR ’98: Pro-
ceedings of the 2nd Euromicro Conference on Software Maintenance and Reen-
gineering (CSMR’98), page 104. IEEE Computer Society, 1998.

R. Kazman and S.J. Carrière. Playing detective: Reconstructing software architecture
from available evidence. Automated Software Engineering, 6(2), 1999.

B. Kitchenham. Whats up with software metrics? A preliminary mapping study.
Journal of Systems and Software, 83(1):37 – 51, 2010.

P. Kogut and P. Clements. The software architecture renaissance. Crosstalk - The
Journal of Defense Software Engineering, 7:20–24, 1994.

H. Koziolek. Sustainability evaluation of software architectures: a systematic review.
In Proceedings of the joint ACM SIGSOFT conference – QoSA and ACM SIGSOFT
symposium – ISARCS on Quality of software architectures – QoSA and architecting
critical systems – ISARCS, QoSA-ISARCS ’11, pages 3–12. ACM, 2011.

P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50, 1995.

T. Kuipers and J. Visser. A tool-based methodology for software portfolio monit-
oring. In Proceedings of the 1st International Workshop on Software Audit and
Metrics, pages 118–128. INSTICC Press., 2004.

J. Lakos. Large-scale C++ software design. Addison Wesley Longman Publishing
Co., Inc., 1996.

M. Lehman. On understanding laws, evolution and conservation in the large program
life cycle. Journal of Systems and Software, 1(3):213–221, 1980.

C. Lilienthal. Komplexität von Softwarearchitekturen, Stile und Strategien. PhD
dissertation, Universität Hamburg, Software Engineering Group, 2008.

C. Lilienthal. Architectural complexity of large-scale software systems. In Proceed-
ings of the 13th European Conference on Software Maintenance and Reengineer-
ing. IEEE Computer Society Press, 2009.

M. Lindvall, R. Tesoriero Tvedt, and P. Costa. An empirically-based process for
software architecture evaluation. Empirical Software Engineering, 8(1):83–108,
2003.

172

Bibliography

H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen. The ability of object-oriented metrics
to predict change-proneness: a meta-analysis. Empirical Software Engineering, 17
(3):1–43, 2012.

S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R. Gansner. Using automatic
clustering to produce high-level system organizations of source code. In IWPC
’98: Proceedings of the 6th International Workshop on Program Comprehension.
IEEE, 1998.

S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner. Bunch: A clustering tool
for the recovery and maintenance of software system structures. In Proceedings
of the IEEE International Conference on Software Maintenance, ICSM ’99. IEEE
Computer Society, 1999.

R.C. Martin. Agile Software Development: Principles, Patterns, and Practices. Pren-
tice Hall, 2002.

T. McCabe and C.W. Butler. Design complexity measurement and testing. Commu-
nications of the ACM, 32(12):1415–1425, 1989.

T.J. McCabe. A complexity measure. In ICSE ’76: Proceedings of the 2nd interna-
tional conference on Software engineering. IEEE Computer Society Press, 1976.

J.A. McCall, P.K. Richards, and G.F. Walters. Factors in software quality. In US
Rome Air Development Center, pages Nr. RADC TR–77–369, Vols I,II,III, 1977.

J.A. McDermid. Complexity: concept, causes and control. In Proceedings of the
Sixth IEEE International Conference on Engineering of Complex Computer Sys-
tems (ICECCS), 2000., pages 2–9, 2000.

N. Medvidovic and V. Jakobac. Using software evolution to focus architectural re-
covery. Automated Software Engineering, 13(2):225–256, 2006.

H. Melton and E. Tempero. An empirical study of cycles among classes in java.
Empirical Software Engineering, 12(4):389–415, 2007.

A. Meneely, B. Smith, and L. Williams. Validating software metrics: A spectrum
of philosophies. ACM Transactions on Software Engineering and Methodology
(TOSEM), 21, 2012.

G. Miller. The magical number seven, plus or minus two: Some limits on our capacity
for processing information. The Psychological Review, 63(2):81–97, 1956.

G.C. Murphy, D. Notkin, and K.J. Sullivan. Software reflexion models: Bridging
the gap between source and high-level models. In SIGSOFT ’95: Proceedings of
the 3rd ACM SIGSOFT symposium on Foundations of software engineering, pages
18–28. ACM, 1995.

173

Bibliography

N. Nagappan and T. Ball. Static analysis tools as early indicators of pre-release
defect density. In Proceedings of the 27th international conference on Software
engineering, ICSE ’05, pages 580–586. ACM, 2005.

D.A. Norman. Learning and Memory. W. H. Freeman & Co, ACM Press, 1982.

A. Olszak, E. Bouwers, B.N. Jørgensen, and J. Visser. Detection of seed methods for
quantification of feature confinement. In TOOLS Europe 2012: Proceedings of the
50th 50th International Conference on Objects, Models, Components, Patterns,
2012.

D.L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053–1058, 1972.

D.E. Perry and A.L. Wolf. Foundations for the study of software architecture. SIG-
SOFT Software Engineering Notes, 17(4):40–52, 1992.

C. Potts. Software-engineering research revisited. IEEE Software, 10(5):19–28,
September 1993.

F. Reichheld. The one number you need to grow. Harvard business review, 81(12):
46–54, 2003.

A.J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, April 1996.

D. Romano and M. Pinzger. Using source code metrics to predict change-prone java
interfaces. In Proceedings of the 27th IEEE International Conference on Software
Maintenance (ICSM 2011). IEEE Computer Society, 2011.

D. Romano, M. Pinzger, and E. Bouwers. Extracting dynamic dependencies between
web services using vector clocks. In Proceedings of the 2011 IEEE International
Conference on Service-Oriented Computing and Applications, SOCA ’11, pages
1–8. IEEE Computer Society, 2011.

R.S. Sangwan, P. Vercellone-Smith, and P.A. Laplante. Structural Epochs in the
complexity of Software over Time. IEEE Software, 25(4):66–73, 2008.

C. Sant’Anna, E. Figueiredo, A. Garcia, and C. Lucena. On the modularity of
software architectures: A concern-driven measurement framework. In Flavio
Oquendo, editor, Software Architecture, volume 4758 of Lecture Notes in Com-
puter Science, pages 207–224. Springer Berlin / Heidelberg, 2007.

S. Sarkar, G.M. Rama, and A.C. Kak. API-based and information-theoretic met-
rics for measuring the quality of software modularization. IEEE Transactions of
Software Engineering, 33(1):14–32, 2007.

174

Bibliography

S. Sarkar, A.C. Kak, and G.M. Rama. Metrics for measuring the quality of modu-
larization of large-scale object-oriented software. IEEE Transactions on Software
Engineering, 34:700–720, 2008.

S.S. Shapiro and M.B. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52(3-4):591–611, 1965.

H.A. Simon. The Sciences of the Artificial. MIT Press, 1996.

W.P. Stevens, G.J. Myers, and L.L. Constantine. Structured design. IBM Systems
Journal, 13(2):115–139, 1974.

M.-A.D. Storey, F.D. Fracchia, and H.A. Müller. Cognitive design elements to sup-
port the construction of a mental model during software exploration. Journal of
Systems and Software, 44(3):171–185, 1999.

M. Svahnberg. Supporting Software Architecture Evolution. PhD thesis, Blekinge
Institute of Technology, 2003.

P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr. N degrees of separation: multi-
dimensional separation of concerns. In ICSE ’99: Proceedings of the 21st interna-
tional conference on Software engineering, pages 107–119. ACM, 1999.

J. van Gurp and J. Bosch. Design erosion: problems and causes. Journal of Systems
and Software, 61(2):105–119, 2002.

R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz. Comparative analysis of evolving
software systems using the gini coefficient. In Proceedings of the 25th Interna-
tional Conference on Software Maintenance (ICSM), pages 179–188. IEEE, 2009.

C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and A. Wesslén. Experi-
mentation in Software Engineering: an Introduction. Kluver Academic Publishers,
2000.

R.K. Yin. Case study research: Design and methods, volume 5. Sage Publications,
Inc, 2009.

A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll. Predicting source code
changes by mining change history. IEEE Transactions on Software Engineering,
30:574–586, September 2004.

E. Yourdon and L. L. Constantine. Structured Design: Fundamentals of a Discipline
of Computer Program and Systems Design. Prentice-Hall, Inc., 1979.

L. Yu, A. Mishra, and S. Ramaswamy. Component co-evolution and component
dependency: speculations and verifications. IET Software, 4(4):252–267, 2010.

175

Summary

J. Zhao. On assessing the complexity of software architectures. In ISAW ’98: Pro-
ceedings of the third international workshop on Software architecture, pages 163–
166. ACM, 1998.

T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system architecture (or
not). In Proceedings of the 6th International Workshop on Principles of Software
Evolution, pages 73–83. IEEE Computer Society, 2003.

H. Zuse. Software Complexity: Measures and Methods. Walter de Gruyter & Co.,
1990.

176

Summary

Software systems make up an important part of our daily lives. Just like all man-
made objects, the possibilities of a software system are constrained by the choices
made during its creation. The complete set of these choices can be referred to as the
software architecture of a system.

Since the software architecture of a system has a large influence on what can, and
cannot, be done with the system, it is important to regularly evaluate this architec-
ture. The purpose of such an evaluation is to create an overview of the strengths and
weaknesses of the software architecture, which can then be used to decide whether
each weakness is accepted or should be addressed.

There is a wide range of software architecture evaluation methods available which
can be used to investigate one or more quality aspects of a software architecture.
Most of these methods focus on the initial design of the software architecture, there
are only a few which specifically target the implemented architecture.

Looking at the design alone is not problematic if design and implementation are
in sync, but unfortunately there are many occasions in which these two architectures
deviate. Moreover, some systems are even built without an initial design at all. In
addition, earlier research shows that software architectures are not regularly evaluated
in practice, despite the availability of these methods. The reason for this is that the
initial effort to start performing software architecture evaluations is considered to be
too high for project teams.

The goal of this thesis is to lower this initial investment by providing an overview
of concrete evaluation attributes, as well as the definition of software metrics that can
be used to evaluate these attributes.

Our global research approach is that of “industry-as-a-lab”. During our research
we have closely collaborated with the Software Improvement Group to design solu-
tions, and to test these solutions on real-world cases. To be able to provide concrete
advice we must focus on only a single quality attribute; in this thesis we choose to
focus on the maintainability quality attribute of a software system.

177

Summary

Following from our goal the research in this thesis is composed of two parts. The
focus of the first part is on the identification of architectural attributes that can be used
as an indicator for the maintainability of a software system. The result of mining over
40 evaluation reports, interviewing experts, and a validation with various experts is
a list of 15 architectural attributes which experts consider to be indicators for the
maintainability of a software system.

To augment the opinion of the experts we used theories from the field of cognitive
psychology to extend an existing model for architectural complexity. This extended
model makes it possible to explain why each of the found attributes influence the
maintainability of a software system.

Based on the attributes and the model we developed a lightweight sanity-check
for implemented architectures. This check consists of 28 questions and 28 actions
divided over five categories. A person familiar with a system can use this check to
get an initial overview of the status of their system within a day, and needs less effort
to repeat this evaluation later on.

In the second part of our research we focus on the design and validation of metrics
related to two quality attributes: balance and independence. These two attributes
are related to two of the major building blocks of an implemented architecture; the
definition of the components of the system and the relationship these components
have with each other. In the ideal case a system is decomposed into a limited set of
components on the same level of abstraction, while the dependencies between these
components is limited.

To quantify the number of components and their level of abstraction we define
the Component Balance metric. This metric takes the number of components of a
system and the distribution of the volume of the system over these components and
outputs a score between zero and one. Interviews with experts and a case-study show
that the scores of this metric correlates with scores given by experts.

The quantification of the dependencies between the components is done by a
Dependency Profile. In such a profile, all code within a component is divided into
one of four categories depending on whether a piece of code is dependent upon by,
or depends on, code in other components. A large-scale experiment shows that the
percentage of code in these categories is correlated with the ratio of local change
within a system.

Both metrics are implemented in practice to evaluate the usefulness of these two
metrics within the context of the evaluation of implemented architectures. The results
of a structured observation of experts using the metrics during a period of six months
and interviews with 11 experts show that there is room for improvement, but that the
two metrics are considered to be useful within this context.

178

Summary

The combination of different research methods such as interviews, case-studies,
empirical experiments and grounded theory, augmented by experiences taken from
practice have lead to research results which are both valid and useful. In this thesis we
lower the initial effort needed to start performing architectural evaluations by show-
ing which concrete attributes should be taken into account, and how these attributes
could be evaluated in a continuous manner. Additionally, we define and validate met-
rics for two of these attributes, and show that experts find these metrics useful in the
evaluation of implemented architectures within practice.

179

Samenvatting

Softwaresystemen maken een belangrijk onderdeel uit van ons dagelijks leven. Zo-
als alle producten die gemaakt worden door mensen, zijn de mogelijkheden van een
softwaresysteem begrensd door de keuzes die gemaakt zijn tijdens de bouw van het
systeem. Deze verzameling van keuzes kan worden beschouwd als de softwarearchi-
tectuur van een systeem.

Omdat de softwarearchitectuur in belangrijke mate bepaalt wat er wel en niet
mogelijk is met een systeem, is het belangrijk om deze architectuur regelmatig te
evalueren. Het doel van dit soort evaluaties is het vaststellen van zwakke punten
binnen de architectuur, zodat men bewust een keuze kan maken deze zwakke punten
te accepteren of aan te pakken.

Er zijn veel evaluatiemethoden beschikbaar die één of meer kwaliteitsaspecten
van een softwarearchitectuur benadrukken. De meeste van deze methoden zijn ge-
richt op het initiële ontwerp van de softwarearchitectuur. Er zijn slechts enkele me-
thoden waarbij de focus specifiek ligt op de implementatie.

Als de implementatie het ontwerp precies volgt, is het geen probleem om alleen
naar het ontwerp te kijken. Helaas blijkt dit in de praktijk niet altijd het geval te zijn.
Sterker nog, sommige systemen worden gebouwd zonder dat er een (compleet) ont-
werp aanwezig is. Ook wijst eerder onderzoek uit dat ondanks de beschikbaarheid
van deze evaluatiemethoden de softwarearchitectuur van een systeem vaak niet regel-
matig wordt geëvalueerd. De reden die hiervoor wordt gegeven is dat de drempel om
deze evaluaties te beginnen te hoog is voor veel projecten.

Het doel van dit proefschrift is om deze drempel te verlagen door enerzijds con-
creet aan te geven waar men naar moet kijken tijdens een evaluatie, en anderzijds
door het definiëren van metrieken die bij deze evaluatie nuttig zijn.

181

Samenvatting

De algemene onderzoeksaanpak die wij hanteren kan worden bestempeld als
“industry-as-a-lab”. In ons onderzoek werken wij nauw samen met de Software Im-
provement Group om oplossingen te bedenken en te evalueren. Om concrete op-
lossingen te formuleren moet een enkel kwaliteitsaspect als focus worden genomen,
daarom hebben wij in dit proefschrift ervoor gekozen om ons te richten op de onder-
houdbaarheid van een softwaresysteem.

Volgend uit het gestelde doel is het onderzoek opgedeeld in twee verschillende
delen. In de eerste deel identificeren wij attributen van een geı̈mplementeerde soft-
warearchitectuur die een indicator vormen voor de onderhoudbaarheid van een sys-
teem. Het resultaat van een analyse uitgevoerd op 40 bestaande evaluatierapporten,
interviews met twee experts en een presentatie aan tien andere experts, is een over-
zicht van 15 architecturele attributen die experts in de praktijk als indicatoren zien
voor de onderhoudbaarheid van een softwaresysteem.

Om niet alleen af te gaan op de opinie van experts hebben wij theorieën uit de
cognitieve psychologie gebruikt om een bestaand model voor de complexiteit van
een softwarearchitectuur uit te breiden. Met dit uitgebreide model is het mogelijk om
voor elk van de 15 attributen een verklaring te geven waarom dit attribuut invloed
heeft op de onderhoudbaarheid van een software systeem.

Met dit model en deze attributen als basis hebben wij een methodiek ontwikkeld
voor een snelle diagnose van een geı̈mplementeerde architectuur. Deze methodiek
bestaat uit 28 vragen en 28 acties verdeeld over vijf onderwerpen. Deze methodiek
stelt iemand die bekend is met een systeem in staat om binnen een dag een eerste
evaluatie van het systeem uit te voeren.

Het tweede deel van ons onderzoek richt zich op het ontwikkelen en valide-
ren van metrieken gerelateerd aan twee specifieke attributen: Balance en Indepen-
dence. Deze twee attributen richten zich op de twee belangrijkste bouwstenen van
een geı̈mplementeerde architectuur, namelijk de componenten van een systeem en de
relatie tussen deze componenten. Het uitgangspunt hierbij is dat een systeem in het
ideale geval bestaat uit een beperkt aantal componenten die zijn gedefinieerd op het-
zelfde niveau van abstractie, waarbij de afhankelijkheden tussen deze componenten
beperkt is.

Om het aantal componenten en hun abstractieniveau te kwantificeren, introdu-
ceren wij de metriek Component Balance. Deze metriek gebruikt het aantal com-
ponenten en de verdeling van het volume van het systeem over deze componenten
om tot een score tussen de nul en de één te komen. Uit de validatie van deze me-
triek, door middel van interviews met experts en een case-study, blijkt dat deze score
gecorreleerd is met de beoordeling zoals die zou worden gegeven door een expert.

De mate van afhankelijkheid van de componenten kwantificeren wij door middel
van een Dependency Profile. Hiervoor wordt alle code binnen een component inge-
deeld in vier categorieën die duidelijk maken of code gebruik maakt van, of wordt
gebruikt door, code in andere componenten. Een grootschalig experiment toont aan
dat het percentage code in deze categorieën gecorreleerd is met de hoeveelheid lokale

182

Samenvatting

veranderingen binnen een systeem.
Om de bruikbaarheid van de bovenstaande metrieken binnen de context van het

evalueren van een geı̈mplementeerde architectuur te testen, zijn de metrieken toege-
past in de praktijk. Uit een structurele observatie van experts gedurende een periode
van een half jaar en uit interviews met 11 van deze experts blijkt dat er een aantal ver-
beteringen mogelijk zijn, maar dat bovenstaande metrieken zeker als nuttig worden
ervaren binnen deze context.

De combinatie van verschillende onderzoeksmethoden zoals interviews, case-
studies, empirische experimenten en grounded theory met ervaringen in de praktijk,
hebben geleid tot resultaten die toepasbaar en nuttig zijn. In dit proefschrift verlagen
wij daarmee de drempel voor het evalueren van een geı̈mplementeerde architectuur
door concreet aan te geven welke attributen belangrijk zijn en hoe deze attributen
voortdurend geëvalueerd kunnen worden. Daarnaast hebben wij voor twee attributen
metrieken ontwikkeld en gevalideerd, welke door experts als nuttig worden ervaren
tijdens het uitvoeren van deze evaluaties in de praktijk.

183

Curriculum Vitae

Personal Data

Full name: Eric Matteas Bouwers
Date of birth: December 12th, 1982
Place of birth: Rijswijk

Education

October 2008 - June 2013
PhD student at Delft University of Technology.

September 2005 - September 2007
Master student at Utrecht University, Master program “Software Technology”.

September 2002 - July 2005
Bachelor student at Utrecht University, Minor program “Artificial Intelligence”.

September 2002 - April 2005
Bachelor student (part-time) at Marnix Academie, Christian University for Teacher
Training, Utrecht.

September 2000 - August 2002
Bachelor student at Hogeschool Domstad, Katholieke Lerarenopleiding Basisonder-
wijs,
Utrecht.

September 1995 - June 2000
High school (HAVO) at Christelijke Scholengemeenschap “De Goudse Waarden”,
Gouda.

185

Curriculum Vitae

Work Experience

October 2007 - present
Technical Consultant at the Software Improvement Group, Amsterdam.

September 2005 - September 2007
Teaching assistant at Utrecht University, Utrecht.

186

APPENDIX A

Lightweight Sanity Check for Implemented Architectures
Version 1.4

A.1 Goal

LiSCIA is a lightweight sanity check for the implemented architecture of software
systems. It provides a set of guidelines to perform a basic evaluation of the imple-
mented architecture of a system. Using the questions in this document, an evaluator
can critically examine the architecture that is currently implemented. Using the res-
ults of the evaluation, the evaluator can either directly perform an action to correct
the implemented architecture, or justify a more in-depth architecture evaluation.

A.1.1 Pre-requisites

The input for LiSCIA is the following:

• The source code of the system to review,

• Information about the layout of the source-files on the file-system.

To get the most out of the review it is recommended to have access to the following:

• A tool to calculate the size of the source-files under review (e.g., Lines Of
Code)

• A tool to calculate the dependencies between the elements of the source code
under review

187

A LiSCIA

A.1.2 Participants

The roles in LiSCIA are the following:

1. Evaluator, the one evaluating the system

2. Expert, a person with in-depth knowledge about the system (such as a lead
developer, software architect or the project leader).

The same person can fulfill both roles and multiple people can fulfill the same roles.
In order to get the most out of the evaluation at least two persons should be involved
in order to create discussion. Additionally, the role of the evaluator should ideally
be fulfilled by someone outside of the development team of the system under review.
This makes it easier to ensure an objective evaluation.

A.1.3 General overview

LiSCIA consist of two phases, a start-up phase and a review phase. The start-up phase
only needs to be conducted once during the first evaluation of a system. The review
phase should be conducted during every evaluation, for more details see Chapter 4.

A.2 Start-up Phase

The code of a system is divided into source files that encode some part of the func-
tionality of the system. In order to have a good grasp of the system we need to divide
the code into logical groups of functionality. Such a group of functionality is called
a component.

A component can either represent some business functionality, such as Account-
ing and Stocks, or a more technical functionality, such as GUI and XML-processing.
The evaluation can be applied to both decompositions.

Also, the evaluation can be applied to the same version of a system using differ-
ent decompositions. In this way, different views on the architecture can be explored,
which can lead to more insight and a better understanding of the implemented archi-
tecture.

A.2.1 Defining components

Make a list of logical groups of functionality that should be in the system. This list
of functionalities should contain about 5 to 10 different core-functionalities. Usual
functionalities for a typical application can be things such as “User Interface”, “Input
processing”, “Administration” or “Utilities”.

188

A.2 Start-up Phase

Ideally, each core-functionality is a component within the system. If there are
more than 15 components try to group some of the components together. For ex-
ample, the components ’GUI for administrators’ and ’GUI for users’ can be grouped
into a component ’GUI’.

If there is already a list of components in the documentation this list can be used.

A.2.2 Defining name-patterns

For each component, try to determine which source files belong to it by defining
a pattern on the directory-/file-names of the source-files. For example, all files that
implement the GUI are in a subdirectory called ’GUI’, the name-pattern for this com-
ponent then becomes:

Component GUI, name-pattern = .*/GUI/.*

Note that the name-patterns for the components should be exclusive. In other words,
a single file should only be matched to a single component.

A.2.3 Inventory of Technologies

Determine the technologies used within the system by:

• Listing all different file-extensions used in the system

• Mapping each file-extension to a technology

189

A LiSCIA

A.3 Review Phase

A.3.1 Evaluation of Source Groups

Determine whether all source-files in the system belong to a component by applying
the name-patterns to the sources in the system. All source files that cannot be placed
under a component fall into one of the following two categories:

• Code that can be removed because it does not implement any functionality

• Code that should be put under a, possibly new, component

When code should be put into an existing component answer the following questions:

1. Should the name-pattern be expanded or should the code be relocated on the
file-system?

2. Why does the code fall outside of its desired component?

When code should be put into a new component, answer the following questions:

3. Why has this component only surfaced now?

4. Is it likely that more components will emerge?

A.3.2 Evaluation of Component Functionality

Answer the following questions about the way the sources are grouped into the com-
ponents:

1. Are the name-patterns defined for the components straightforward or complic-
ated? In other words, are the sources located in the file-system according to the
components or according to a different type of decomposition?

2. Is all functionality that is needed from the system available in the components?

3. Can the functionality of each component be described in a single sentence? If
not, why?

4. Do multiple components implement the same functionality? (For example, do
two components parse the same messages?)

5. Does any component contain functionality that is also available in a library/framework?
If so, why is this library/framework not used?

190

A.3 Review Phase

A.3.3 Evaluation of Component Size

Determine the size of each component by counting the lines of code for each file, and
then summing up the lines of code of all files in a component. Answer the following
questions about the size of the components:

1. Are the sizes of the components evenly distributed?

2. If not, what is the reason for this uneven distribution?

3. Is the reason in-line with the expectations about the functionality?

When previous results are available:

4. Which component has grown the most? Is this to be expected?

5. Which component has been reduced the most? Is this to be expected?

6. Is the ordering of components on size heavily changed? Is this to be expected?

A.3.4 Evaluation of Component Dependencies

Determine the dependencies between components by determining the dependencies
on file-level (or lower). After this, for each dependency between two files, determine
the components of the files. If no dependency between the components existed, add
this dependency, otherwise add an extra weight to the dependency.

Answer the following questions about the dependencies between components:

1. Are there any circular dependencies between the components? If so, why?

2. Are there any unexpected dependencies between components? (For example,
an Utilities component calling the GUI)

3. Which component depends on most other components, is this to be expected?

4. Which component is the most depended on (which component has the most
incoming dependencies)? Is this to be expected?

When previous results are available:

5. Are there any new dependencies? Is this to be expected?

6. Are there any dependencies that were removed? Is this to be expected?

191

A LiSCIA

A.3.5 Evaluation of Technologies

Answer the following questions about the technologies:

1. Is each technology needed in the system? Can the functionality be encoded in
a different technology that is used in the system?

2. Is each technology being used for the purpose it was designed for?

3. Is the combination of technologies common? Does the official documentation
of the technologies mention the other technologies?

4. Is each technology still supported by an active community or vendor?

5. Are the latest versions for each technology used? If not, why?

When previous results are available:

6. Are there any new technologies added? If so, why?

7. Are there any technologies that were discarded? If so, why?

192

A.4 Actions and Guidelines

A.4 Actions and Guidelines

This section contains examples and possible actions to take for each question to en-
sure that in the next evaluation the question can receive a more desirable answer.

A.4.1 Grouping the sources

Q3.1.1 Should the name-pattern be expanded or should the code be relocated?

• Adjust the name-pattern for a component

• Relocate the source-files (by renaming or moving the directories/files)

Q3.1.2 Why does the code fall outside of its desired component?
No actions specified.

Q3.1.3 Why has this component only surfaced now?
No actions specified.

Q3.1.4 Is it likely that more components will emerge?

• Make inventory of new components and their place in the overall architecture

• Make a plan for the integration of these new components into the source-code

A.4.2 Evaluation of Components

Q3.2.1 Are the name-patterns defined for the components straightforward or com-
plicated?

• Remodel the layout of the file-system to the functional decomposition of the
system

Q3.2.2 Is all functionality that is needed from the system available in the compon-
ents?

• Define the place where the desired functionality needs to be implemented

• See actions of 3.1.4

Q3.2.3 Can the functionality of each component be described in a single sentence?

• Split up a component into components with dedicated functionality

Q3.2.4 Do multiple components implement the same functionality?

193

A LiSCIA

• Merge the duplicated functionality implemented in multiple components and
move it to a common component

Q3.2.5 Does any component contains functionality that is also available in a
library/framework?

• Replace existing component by a framework/library

A.4.3 Evaluation of Component Size

Q3.3.1 Are the sizes of the components evenly distributed?
Q3.3.2 If not, what is the reason for this uneven distribution?
Q3.3.3 Is the reason in-line with the expectations about the functionality?

• Split components based on functionality

• Merge components based on functionality

Q3.3.4 Which component has grown the most? Is this to be expected?

• Limit growth by splitting up component or introducing abstraction

Q3.3.5 Which component has been reduced the most? Is this to be expected?

• Merge the component with an other component (if the component has become
too small)

• Add more functionality (either new or old) to the component.

Q3.3.6 Is the ordering of components on size heavily changed? Is this to be expected?

• Re-order components by making a new inventory of the components

A.4.4 Evaluation of Component Dependencies

Q3.4.1 Are there any circular dependencies between the components?

• Remove circular dependency by moving dependent code into single component

• Remove circular dependency by applying inversion of control

Q3.4.2 Are there any unexpected dependencies between components?

• Remove unexpected call from system by offering the functionality in a different
component

• Move code that is called to component that calls the code

194

A.4 Actions and Guidelines

Q3.4.3 Which component depends on most other components?
Q3.4.4 Which component is the most depended on?

• Restructure components to reflect dependency expectations

• Remove dependencies (see actions of 3.4.2)

Q3.4.5 Are there any new dependencies?

• If the dependencies are unexpected see 3.4.2

Q3.4.6 Are there any dependencies that were removed?

• If this is unexpected and the dependency is needed re-introduce the dependency

A.4.5 Evaluation of Technologies

Q3.5.1 Is each technology needed in the system?
Q3.5.2 Is each technology being used for the purpose it was designed for?

• Re-implement functionality in different technology (one that is already used
more or is more suitable)

Q3.5.3 Is the combination of technologies common?

• Re-implement the functionality of one technology in one of the other techno-
logies

• Re-implement the functionality of one technology in a technology that is more
common to use with the other technology

Q3.5.4 Is each technology still supported by an active community or vendor?

• Re-implement functionality in a newer, supported technology

Q3.5.5 Are the latest versions for each technology used?

• Update technologies of an older version to the latest version

Q3.5.6 Are there any new technologies added?

• If the technologies are unexpected see actions of 3.5.1 and 3.5.2

Q3.5.7 Are there any technologies that were discarded?

• If this is unexpected and the technology is needed restore the technology

195

