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1. Introduction 

n this paper, we describe results obtained in image I reconstruction using the Ipswich data sets IPSOO9-IPSO12. In 
earlier work, we employed versions of the Modified Gradient 
Method [l-31 to reconstruct the shape, location, and index of 
refraction of known and unknown scatterers, both dielectric and 
perfectly conducting, from the measured scattered field data 
contained in IPSOO1-IPSOOS. In the present paper, we employ a 
new inversion method, the Contrast Source Inversion (CSI) 
Method, for the reconstructions. We include here a brief 
description of the method, given in greater detail in [4]. In the case 
of the new Ipswich experiments, we have 36 angles of incidence, 
equidistantly distributed around the object. The unknown scatterer 
is assumed to be located somewhere in a known, bounded, test 
domain D (taken to be square), and the scattered field is measured 
on a domain S (taken to be a circle) containing the test domain D in 
its interior. In the case of the Ipswich experiments, S was taken to 
be in the far zone of the scattered field, and measurements were 
made at 18 angles of observation, equidistantly distributed over a 
semicircle. For each experiment, this semicircle started with the 
fonvard-scattering angle. 

2. The CSI method 

Denote by p and q position vectors in W 2 ,  and let B denote a 
bounded, not-necessarily-connected, scattering object (or objects). 
The exact location and index of refraction or contrast of the 
scattering object is unknown, but it i s  known to lie within another, 
larger, bounded simply connected domain, D. If 
uF ( p) = p c  (p, q;) denotes an incident wave with wavenumber 

k (assumed to be real) and source point q j  ( qJ is replaced by the 
unit vector q j  for plane waves), then for a large class of scattering 
problems, the total field in D is known to satisfy the integral 
equation 

where G(p,q) denotes the Green's function of the background 
medium: 

x denotes the complex contrast: 

where E,, and & are the permittivity and the permeability of the 
(lossless) background, while E(q) and o (q )  are the permittivity 
and conductivity of the scatterer, which is assumed to be 
nonmagnetic. Observe that if p is not in B, then x vanishes; but if 
the location of B is unknown, then it is not known a priori where 
x vanishes. However, with the assumption that B c D ,  it is 
known that x vanishes for p outside D. In fact, denoting by S a 
domain (or curve, or a discrete collection of points) outside of D 
where the scattered field is measured to be f j  (p) , Equation (1) 
becomes 

if there is no noise or error in the measurements. But error-free 
data are extremely unlikely, and we do not assume that Equation 
(4) holds exactly. Rewriting Equations (1) and (4) in symbolic 
form, we have the object or state equations 

and the data equations 
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The subscripts D and S on the operators defined implicitly in 
Equations (1) and (4) are added to accentuate the location of the 
point p, since the operators are identical in all other respects. 

In the absence of other a priori information, Equations (5) 
and (6) are the only equations we have relating the unknown 
contrast x (which, recall, consists of at most two unknown real- 
valued functions), and the unknown fields, u j ,  in D. The known 

data consist of the incident fields, U?, the measured data, f J  , and 
the test domain, D. Because the contrast and fields occur as a 
product, we introduce the contrast sources 

w . = x u j .  J (7) 

Then, the data equations become 

while the state equations become 

uj  =U? + GDwj,  (9) 

or, with Equation (7), 

Following a similar procedure to that used in the Modified 
Gradient Method [ 1-31, we now simultaneously construct 
sequences of sources wj,,, and contrasts x,, that converge to 
minima of the cost functional, 

where Il-Il', and \I$, denote the norms on &(S) and & ( D ) ,  
respectively. The normalization is chosen so that both terms are 
equal to one if w j  = 0. The first term measures the error in the data 
equations, and the second term measures the error in the form of 
the state equations given in Equation (10). This is a quadratic 
functional in w j ,  but highly nonlinear in x . We propose an 
iterative minimization of this cost functional, using an alternating 
method that first updates wj  and then updates x .  Thus, we 

construct sequences {wj,,,] and {x,,), for n = 0, 1,2, ..., in the 
following manner. 

Define the data error to be 

and the state error to be 

Now suppose and x,l-l are known. We update wj by 

wj,n = Wj,n-l +Cr ,Vj ,n  3 (15) 

where a,, is constant, and the update directions, vJ,. , are functions 
of position. 

The update directions are chosen to be the Polak-Ribiere 
conjugate-gradient directions: 

vj,o = 0 ,  

where gj,,, is the gradient (Frechet derivative) of the cost 
functional with respect to w j ,  evaluated at W ~ , ~ - ~ , X , , - ~ ,  while 

denotes the inner product on k ( D ) .  Explicitly, this is 
found to be 

where G; and G i  are the adjoints of Gs and Go mapping 
& ( S )  into & ( D )  and &(D) into & ( D ) ,  respectively. 
Furthermore, the over-bar denotes complex conjugate. 

With the update directions completely specified, the constant 
a,, is determined to minimize the cost functional Equation (1 l), 
and is found explicitly to be 

where ( 0 , ~ ) ~  denotes the inner product on & (S) . 

Once wj,,, is determined, uj,,, is obtained via Equations (14) 
and (15) as 

We then seek x to minimize the cost functional 

where 

uj,,, = U? + GDwj,,, . 

28 

We now have a priori information that xr  and xi are positive. 
This leads to 

(14) 
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Figure 1. Reconstruction of the triangular aluminum object 

IPS009: a) xi; b) x; j c) ,&8 j d) x i 2 8 .  

Figure 2. Reconstruction of the mystery penetrable object 

IPS010: a) xh; b) xh; c) x & 2 ;  d) xi l z .  
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This completes the description of the algorithm, except for 
designating the starting values, w ~ , ~ .  Observe that we cannot start 

with wj,o = 0 ,  since then = xi = 0 ,  and the cost functional, 
Equation (l l) ,  is undefined. Therefore, we choose as starting 
values the values obtained by back-propagation: 

This completes the description of the algorithm. 

3. Calibration of the Ipswich data sets 

One of the persistent problems in using the Ipswich data sets 
concerns the phase of the measured data. Since the measurements 
provide relative phase only, some means is needed to normalize the 
data, so that it coincides in phase with the actual scattered field. 
That there is a phase shift became evident with the 1997 Ipswich 
data. It was found that, using the calibration described in [3], the 
contrast converged to zero, with a resultant 100% error in the cost 
functional. The following alteration in the algorithm was made, 
which provides a phase correction without any additional 
information about the experiments. We iteratively update the data 
f j  as follows: 

where c,, is a complex constant, and is found by minimizing the 
2 

data error 

error as 

.(IC,, fj,n-l - Gswj,,,lls . Then, we define a new data 
J 

The algorithm given above is changed only by using j7j,n-1 and 
fj,,,-l in place of pj,,,-l and f j  in Equations (17) and (18). 
Clearly, after n iterations, we have 

fj,,, = c, f j ,  c,, = fi L. 
m=l Icml  

Interestingly, when this modification was used on the 1996 data 

sets, we found that C,, + 1 for increasing n, whereas for the 1997 
data sets, C,, + -1 for increasing n. This once again indicates the 
fact that data sets presented in a non-uniform manner can present 
serious problems for inversion algorithms that depend on phase 
information. However, the technique described here can alleviate 
this problem. 

4. IPSO09 

We first present the reconstructed images using the Ipswich 
data set, IPS009, which was known to be a triangular aluminum 
object with additional a priori information that the object was 
located inside a circle of radius of 6 cm. We took a test domain, D, 
with sides of 15 cm, or 52 (since the wavelength, 2 ,  in all 
experiments was 3 cm). The test domain was subdivided into 
60x60 sub-squares for the computations. Figure 1 depicts the 
reconstruction results. Figures l a  and l b  are respectively the real 
and imaginary parts of the contrast, and xi, after the initial 
step (back-propagation using reciprocity [3]). Figures IC and Id 
show the real and imaginary parts of the contrast, x;28 and 
after 128 iterations. After 128 iterations, the image did not improve 
significantly, although the contrast at the boundary of the object 
did increase with additional iterations. This phenomenon indicates 
that the scatterer was impenetrable. The triangular shape is very 
visible. Inside the object, the reconstructed contrast has no 
meaning at all, since the interior fields for an impenetrable object 
are undefined. Note that the color scale covers a much smaller 
range for the initial reconstruction, in order to magnify the image. 

5. IPSO10 

We now consider the first mystery object, with a priori 
information that the object is penetrable and lies inside a circle of 
radius of 6 cm. We took the same test domain, D, as in the 
previous example. The reconstruction results are depicted in Figure 
2. Figures 2a and 2b are the real and imaginary parts of the 
contrast, ~6 and after the initial step (back-propagation using 
reciprocity). Figures 2c and 2d are the real and imaginary parts of 
the contrast, xllZ and xil2, after 512 iterations. After 512 
iterations, the image did not improve significantly. From this 
image, a triangular shape is very visible, and the major part of the 
contrast is real valued. Hence, we guessed that this mystery object 
was a triangular object with a real permittivity, = 1.5. The 
dimensions can be guessed from the bottom images. Figure Id 
indicates that the object also has a non-zero imaginary contrast (a 
conductive part). But closer observation shows that the imaginary 
contrast fits in the indentations at the right side of the real contrast. 
This indicates that the data, for illuminations at the right side of the 
object, may have some substantial phase discrepancies. Again, note 
that the color scales cover different intensity ranges in the two 
reconstructions, although the difference is not as great as for 
IPS009. 

6. IPSO11 

In this example, we have a priori information that the object 
is an aluminum circular cavity, and lies inside a circle of radius of 
6 cm. We took the same test domain, D, as in the previous 
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Figure 3. Reconstruction of the aluminum circular cavity 
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igure 4. Reconstruction of the mystery hybrid obj 

x i ;  b) xi; c) xh2;  d) Xi12. 

ect IPSO '12: 

l€€€Antennas and Propagation Magazine, Vol. 41, No. 2, April 1999 31 



examples. The reconstruction results are depicted in Figure 3. 
Figures 3a and 3b show the real and imaginary parts of the 

contrast, ~ 0 ’  and xh, after the initial step (back-propagation using 
reciprocity). Figures 3c and 3d show the real and imaginary parts 
of the contrast, xr28 and xl28, after 128 iterations. After 128 
iterations, the image did not improve significantly, although the 
contrast at the boundary of the object increased further with an 
increasing number of iterations, which indicates, as with IPSOO9, 
that the scatterer is impenetrable. The image clearly shows that the 
object is an open circular shell. The very small thickness of the 
shell is reconstructed very well. At the edges on the left side there 
is some distortion, probably due to the edge behavior of the fields 
and contrast sources. There is also some distortion present inside 
the cavity, but that can be understood if one takes into account that 
the major part of the interior of the cavity is shielded from all but a 
few of the sources and receivers. Here, again, observe the 
magnification of the color scale for the initial reconstruction, 
which was needed to make the image visible. 

7. IPS012 

We now consider the second mystery object, where we have 
a priori information that the object is hybrid, partly penetrable and 
partly impenetrable, and, moreover, lies inside a circle of radius of 
9 cm. We took a test domain, D, with sides of 21 cm, or 71 .  The 
test domain was again subdivided into 60 x 60 sub-squares for the 
computations. The reconstruction results are depicted in Figure 4. 
Figures 4a and 4b show the real and imaginary parts of the 
contrast, ~ 0 ’  and ,yh, after the initial step (back-propagation using 
reciprocity). Figures 4c and 4d show the real and imaginary parts 
of the contrast, ,y;12 and xil2, after 512 iterations. We chose this 
number of iterations because in the case of IPSOIO, the penetrable 
object, we needed to take this large number of iterations to 
reconstruct the real part of the contrast, and we reasoned that we 
would again need this number to reconstruct the real part of the 
contrast, which would give information about the penetrable part 
of the object. The image clearly shows that the impenetrable part of 
the object is an open circular (impenetrable) shell. It is obvious that 
this shell is the aluminum shell of the previous example. The very 

small thickness of the shell is again reconstructed very well. From 
the real part of the contrast, we observe that there is a penetrable 
object present, both inside and outside the cavity. With some 
imagination, one can surmise that inside the aluminum shell of 
IPSO11, the triangular penetrable object of IPSO10 has been 
positioned; but, again, it is noted that reconstructions of objects 
inside the cavity can hardly be reconstructed with the present data 
set, because the major part of the interior domain of the cavity is 
shielded, and only sources and receivers at the left side of the 
object can illuminate and probe this interior domain. Note, also, 
that the magnitude of the color scale of Figure 4c differs from that 
for Figure 4d, which was needed to observe the penetrable parts of 
the object. 
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