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Abstract
Wave fields traveling through a varying medium (e.g. topography, currents), can develop

well-defined focal zones and caustics, where the wave field is highly coherent and wave statis-
tics vary rapidly. However, the presence and evolution of such coherent structures in the
wave field are not resolved in a quasi-homogeneous description of the wave field (e.g. the
radiative transport equation), and a more general description of the wave statistics (and its
evolution) is needed. In this work we demonstrate with numerical examples that, when using
a (recently developed) transport equation for the second order inhomeogeneous wave statis-
tics that accounts for cross-variance contributions, we can resolve coherent structures in wave
fields such as those typically found in focal and diffraction zones. What this shows is, that in
a statistical sense, diffraction is essentially an interference phenomenon that can be readily
resolved if cross-phase information in the transport equations is retained.

1 Introduction
The dynamics and statistics of ocean waves are important e.g. for upper ocean dynamics (e.g.
Craik & Leibovich, 1976), air-sea interaction, deep-ocean circulation (e.g. McWilliams & Restrepo,
1999), and coastal circulation and transport processes (e.g. Hoefel & Elgar, 2003). As a conse-
quence, great advances have been made in our theoretical understanding of the evolution of wave
statistics in the open ocean and near the coast, which in turn has led to the development of
advanced and operational numerical wave prediction models (e.g. The WAMDI Group, 1988; Tol-
man, 1991; Komen et al., 1994; Booij et al., 1999; Wise Group, 2007). These models are based on
the premise that the wave field can be described as a quasi-homogeneous and Gaussian random
process, and are invariably based on some form of the radiative transfer equation, augmented with
(parametrized) source terms to account for non-conservative processes and nonlinearity.

In the open ocean, where wave statistics evolve principally through the action of wind, dissipa-
tion (whitecapping), and cubic nonlinear effects, the assumption of quasi-homogeneous and Gaus-
sian statistics is often reasonable. However, quasi homogeneous wave theory (radiative transfer
equation) is particularly restrictive near the coast, where through the effects of medium variations
(topography and currents), obstacles (e.g. coastal islands) and a transition to weakly disper-
sive wave motion, considerable deviations from homogeneity and Gaussian statistics can occur
(e.g. Agnon & Sheremet, 1997; Herbers & Burton, 1997; Herbers et al., 2003; Janssen et al.,
2008). To capture such wave coherent structures, be it introduced through medium variations
or nonlinearity, requires the evaluation of additional correlators, and cannot be described by the
evolution of (auto-)variance contributions alone. Efforts have been made to describe the evolution
of inhomogeneous and/or non-Gaussian statistics for special cases (e.g. Agnon & Sheremet, 1997;
Herbers et al., 2003; Janssen et al., 2008; Alber, 1978; Stiassnie et al., 2008), but through addi-
tional assumptions (e.g. bandwidth, direction) such models are limited to certain special cases.
A principal issue is the transport of (second- or higher-order) cross-correlations, which are needed
to completely determine the wave statistics, but for which usually no conservation principles are
available from the outset.

Recently Smit & Janssen (2011) considered the linear (Gaussian) case, and derived a new
(approximate) transport equation (the Quasi-Coherent approximation) for inhomogeneous wave
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statistics for wave fields of arbitrary bandwidth propagating through a variable medium. The
model, that transports the Coupled Mode (or Wigner-Ville) spectrum, accounts for the coherent
interference between wave components propagating at moderate angles, and can thus resolve rapid
spatial variations in the wave statistics associated with wave interference. In the present work we
briefly present the new theory (see Smit & Janssen, 2011, for details) and illustrate its implications
through various numerical examples.

Thereto, we will start by introducing the Quasi-Coherent approximation and the coupled mode
spectrum in §2 and relate the approximations to the Quasi-Homogeneous theory. In §3 we will
consider two examples: 1) the coherent interference of two discrete of wave packages, and 2) wave
diffraction through a narrow gap. What this shows is, that in a statistical sense, diffraction is
essentially an interference phenomenon that can be readily resolved if cross-phase information in
the transport equations is retained (as done here). Finally, we will discuss the properties, physical
interpretation and origins of the cross-variance contributions in §4 and summarize our main results
in §5.

2 The quasi-coherent approximation
To describe the evolution of coherent structures in random wave fields propagating through in-
homogeneous media, Smit & Janssen (2011) derived an approximate transport equation for the
second-order statistics of a (real) scalar, zero-mean random wave variable η (e.g. free surface
elevation), as a function of the horizontal coordinates x = (x, y) and time t. To introduce this
Quasi-Coherent (QC) approximation, we define a complex variable ζ, such that η = Re{ζ} and
its real and imaginary parts form a Hilbert transform pair (see e.g. Mandel & Wolf, 1995). Upon
introducing the two-point correlator

Γ (ξ,x, t) = 1
2

〈
ζ

(
x+ ξ

2 , t
)
ζ∗
(
x− ξ2 , t

)〉
, (1)

we define the coupled mode (CM) spectrum E as the Fourier transform of Γ to the separation
coordinate ξ,

E (k,x, t) = 1
(2π)2

ˆ
Γ (x, ξ, t) exp (−ik · ξ) dx. (2)

The Coupled-Mode (or Wigner-Ville) spectrum E , thus captures the same statistical information
as Γ, but is an intermediate representation between the physical and the spectral (wavenumber)
domain. Assuming that the linear wave dynamics in a slowly varying medium admit plane wave
solutions with a dispersion relation of the form

ω = Ω (k,x, t) , (3)

the evolution of the Coupled mode spectrum, and consequently the (complete) second-order wave
correlation matrix, can be approximated with a transport equation that, upon defining p = [k,x],
q = [x,k], is given by (Smit & Janssen, 2011)

∂E
∂t

+ Cm
∂E
∂qm

+ Cm,n,o
∂3E

∂qm∂qn∂qo
= 0, (4)

where the coefficients C are defined as

Cm = −sm
∂Ω
∂pm

Cm,n,o = smsnso
1
24

∂3Ω
∂pm∂pn∂po

. (5)

The approximate expression (4) describes the evolution of the second-order wave statistics while
accounting for the presence of coherent structures in the wave field. Since it is the result of a
truncated series approximation around the homogeneous state (at the third order, see Smit &
Janssen, 2011), we refer (4) as the Quasi-Coherent approximation, and note that it is accurate for
coherent interference between wave components propagating at moderate (< 30◦) mutual angles.
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The QC approximation describes the wave statistics in terms of the CM spectrum, which from
its definition appears similar to the variance density (or Power) spectrum (e.g. Komen et al.,
1994); indeed the local wave variance V (x, t) at (x, t) is a marginal distribution of E , as in

V (x, t) =
ˆ
E (k,x, t) dk. (6)

Despite these similarities, the CM spectrum cannot be interpreted as a variance density spectrum
(see e.g. Janssen & Claasen, 1985). The principle difference is that the CM spectrum constitutes
a complete representation of the second-order statistics, including possible interference terms
that are associated with rapid variations in the statistics (e.g. Janssen et al., 2008). In particular,
although the CM spectrum is a real function, it is not generally positive, which in general precludes
an interpretation as a variance density spectrum.

However, in the limit where the wave field is Quasi-Homogeneous the CM spectrum does reduce
to a variance density function. In this case, we can neglect all but the first order terms on the
LHS of (4), which then reduces to the radiative transport equation. This shows that equation
(4) contains QH theory as a special case, and is a natural extension of the radiative transfer
equation in areas where the statistics undergo potentially rapid (intra-wave scales) variations due
to the presence of inhomogeneities (coherent wave interference) in the wave field. In the context
of ocean waves, such inhomogeneities can be induced for instance by medium variations (seafloor
bathymetric features and variable currents). In the remainder of this paper we will demonstrate
that the inclusion of cross-variance contributions is vital for a correct representation of the wave
statistics in focal and diffraction zones.

3 Coherent interference in focal and diffraction zones
3.1 Coherent Gaussian packets
A simple example that illustrates how the inclusion of wave coherence can introduce rapid spatial
variations in the wave statistics can be constructed by considering a wave field for which at t = t′,
a realization of the sea surface can be represented as a superposition of two coherent Gaussian-
shaped wave packets, each with a complex amplitude Am and carrier wave number km, written
as

ζ (x, t = t′) = A1 exp
(
−α |x|2 + ik1 · x

)
+A2 exp

(
−α |x|2 + ik2 · x

)
. (7)

To obtain the coupled mode spectrum at t = t′, we take the Fourier transform with respect to ξ
of the two-point correlator Γ, so that

Et′ (k,x) = 1
4πα exp

[
−2α|x|2

]{
〈A1A

∗
1〉 exp

[
− 1

2α |k − k1|2
]

+ 〈A2A
∗
2〉 exp

[
− 1

2α |k − k2|2
]

+ exp
[
− 1

2α

∣∣∣∣k − 1
2(k1 + k2)

∣∣∣∣2
]

(〈A1A
∗
2〉 exp [−i(k1 − k2) · x] + C.C)

}
(8)

The first two terms on the RHS of (8) correspond to the auto-variance contributions of the
individual packets, whereas the last term represents the rapid spatial interference when the two
packets are coherent. The inclusion of such interference terms is what differentiates the coupled
mode spectrum from the Variance density spectrum, which only accounts for the auto-variance
contributions. These interference terms are located midway between the two corresponding auto-
terms (at 1

2 (k1 + k2)), might become negative, and can vary on potentially much faster spatial
scales. Consequently, due to interference, the wave statistics can vary on scales comparable to a
typical wavelength, even if the associated auto-terms vary slowly (or not at all).

To illustrate the difference between the QC and QH approximation we shall consider the time
evolution of a two-packet system which at t = t′ is described by (8). Assuming that the dispersion
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Figure 1: Snapshots of normalized wave variance (normalization by a2) of two-packet interference example.
The wave variance is shown at discrete times tI−V , starting at tI = 110Lp/vx (left panels) increasing in
time (from left to right) in intervals of ∆t = 20Lp/vx. Top panel (a) shows evolution for the QC-
approximation (9); bottom panel (b) shows the evolution according to QH theory. The x′ and y′ denote
the horizontal coordinates normalized with 6Lp.

relation is given by the deep-water relation, the QC approximation (4) decouples in spectral space
(since ∇xΩ = 0) so that, using Fourier transforms, the solution at an arbitrary time t is given by
(Smit & Janssen, 2011)

E(k,x, t) = 1
(2π)2

¨
dudx′ Et′ exp [−iu · x′ + iu · x− i(t− t′)w(k,u)] (9)

where

w(k,u) = u1
∂Ω
∂k1

+ u2
∂Ω
∂k2

+ 1
24u

3
1
∂3Ω
∂k3

1
+ 1

24u
3
2
∂3Ω
∂k3

2

+ 1
8u1u

2
2

∂3Ω
∂k1(∂k2)2 + 1

8u2u
2
1

∂3Ω
∂k2(∂k1)2 (10)

The Quasi-Homogeneous solution can be obtained in a similar way from equation (9), by only
accounting for the first two terms on the RHS in equation (10), and neglecting the cross-variance
contributions to the spectrum in the initial conditions.

We adopt a reference frame that, relative to the medium, travels with a fixed velocity v and
assume deep water conditions so that the dispersion relation becomes Ω (k) =

√
g |k|+k ·v. The
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Figure 2: Cross-sections (at x′ = 0) of normalized wave variance of the two-packet interference example.
The wave variance is shown at discrete times tI−V , starting at tI (a) and increasing in time (from left
to right). Comparison between the QC-approximation (Solid line), and the evolution according to QH
theory (Thin red line). Normalization of vertical and horizontal scales and discrete times as in figure 1.
Note that the horizontal and vertical range can vary between panels.

two packets (with equal amplitudes |A| = a and carrier wavelength Lp) travel at a mutual angle
of 20 degrees, with one packet traveling along the positive x-axis. We set α = 1

36L
−2
p , so that

a characteristic length scale of the packets is roughly six wave lengths, let the coordinate frame
travel at the mean group velocity along the x axis vx = 1

2 k̄xk
−1
p

√
g/kp (with kp = 2πL−1

p , k̄ is
the mean carrier wave number and vy = 0), and set t′ = 150Lp/vx. To evaluate (8) numerically,
each packet is calculated individually on a discrete equidistant k-mesh using thirty points in each
direction with a mesh-size of ∆k =

√
α/5. The Fourier integrals are approximated using a Fast

Fourier Transform on a discrete array [−31 . . . 31] ∆u for u1 and u2 with ∆u =
√
α/5, and the

result is then interpolated to a discrete 241 × 241 x-mesh centered at the origin with mesh-size
∆x = ∆y = Lp/5.

If the two packets are coherent (and in phase at t = t′), the evolution of the wave system (using
the QC approximation) is characterized by convergence and interference of the wave packets,
followed by de-focusing and divergence, after which the packets emerge unchanged (figure 1a
and 2). In contrast, the wave packet evolution as represented by QH theory (figures 1b and 2),
which assumes that all contributions are independent, is dramatically different; in particular, the
interference pattern at t = tIII is absent entirely, as a result of the inability of QH theory to
account for cross-variance contributions.

That the QC approximation gives fundamentally different results is also apperent when we
evalute the coupled mode spectrum at different time instances along the line x′ = 0 (figure 3a).
The auto-variance contributions at k′y = 0 (tI to tV ) and k′y = −0.35 (tIII), associated with the
wave packets traveling at 0 and −20 degrees respectively, essentially comprise what would be the
variance density spectrum. However, since the CM spectrum accounts for the inter-mode coupling
it contains an additional interference peak which travel along a ray midway between the rays of the
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Figure 3: Spectral evolution of the two-packet interference example evaluated at (x′, y′) = 0 (a) and
(x′, y′) = (0, 1

4 ) (b) for tI−V (times as defined in caption figure 1). The spectral coordinates k′x and k′y
are normalized with kp and spectra are normalized with the peak contribution of an individual packet
(4πα)−1.

auto-variance contributions, and therefore manifests itself most prominently between tII to tIV ,
when the two packets have converged. This spectral interference term captures the rapid spatial
oscillations of the wave statistics associated with coherent interference patterns in the physical
domain (figure 1a). This fast-scale variability is also seen in the spectral domain when the spectra
are evaluated at a slightly offset location (compare panels a and b in figure 3). Note that the wave
packets in this example do not ’interact’ with each other in the usual sense. Their interference is
completely determined a-priori by the inclusion of interference peaks in the initial condition.

3.2 Wide angle diffraction
A well-known example of how the initial conditions, including information regarding the coherency
between wave components propagating in various directions, fully determines the wave field evolu-
tion (and its statistics), is that of diffraction around a thin barrier. To illustrate how the evolution
of a diffracted wave field can be described in a purely statistical framework, we apply our QC ap-
proximation to a classic example of diffraction through a gap (extending over −G1 < y < G2), in
an otherwise rigid, but fully absorbing barrier (situated at x = 0). Apart from the obstacle, the
medium is uniform and the incident wave field in the half-plane x < 0 is stationary and known.

For a stationary field in an homogeneous medium the Fourier transform of the CM spectrum
to x can only contain contributions for wavenumbers k,u that are perpendicular to one-another
(k ·u = 0, see Smit & Janssen, 2011). Hence, if the field components are restricted to contributions
traveling in (say) the positive x direction, and given the CM spectrum E0+ along the line x = 0,
the solution in the half plan x ≥ 0+, using ux = −uykyk−1

x , can be written in the form (see Smit

6



Figure 4: Contours of the normalized wave height H ′ =
√

V/V0 (where V0 is the variance of the incident
waves) behind a breakwater gap (top panels). Panel(a) corresponds to an analytic solution (Penney &
Price, 1952), panel (b) to the Quasi-Coherent solution and panel (c) represents the Quasi-Homogeneous
solution. The incident wave field consists of uni-directional waves (with θ0 = 30◦ ), with a peak angular
frequency of ωp = π rad/s, kph = 1.2 and a narrow-band Gaussian-shaped frequency distribution with
characteristic width of ∆ω = 1

100ωp. The horizontal coordinates (x′, y′) are normalized with the peak
wavelength.

Figure 5: Lateral cross-sections of of the normalized wave height H ′ behind a breakwater gap along x′ = 1
(a), x′ = 4 (b) and x′ = 15 (c). Shown are the analytic solution (solid line), the QC approximation (cross
markers) and the QH solution (thin red line). Incident wave field and coordinates as in figure ??.

& Janssen, 2011)

E (k,x) = 1
(2π)2

¨
E0+ exp

(
−iuyy′ + iuyy − iuykyk−1

x x
)
dy′duy, (11)

which, upon taking the spatial derivative ∂x on both sides, becomes

∂xE = −ky
kx
∂yE , when x ≥ 0+,kx > 0. (12)

Equation (12) implies that the solution for stationary fields in homogeneous media is invariant
along the rays of Geometric optics, and consequently that the evolution of the wave field is
implied by the initial condition (at x = 0). Hence, the wave statistics behind the breakwater
gap, including possible coherent interference between components, are obtained from (11) once
the transfer function between the incident wave field and the scattered spectrum at x = 0+ is
known.
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Figure 6: Contours of the normalized wave height H ′ =
√

V/V0 (where V0 is the variance of the incident
waves) behind a breakwater gap (top panels). Panel(a) corresponds to an analytic solution (Penney &
Price, 1952), panel (b) to the Quasi-Coherent solution and panel (c) represents the Quasi-Homogeneous
solution. The incident wave field consists of directionally spread waves (raised cosine distribution with
θ0 = 30◦), with a peak angular frequency of ωp = π rad/s, kph = 1.2 and a Gaussian-shaped frequency
distribution with characteristic width of ∆ω = 1

10ωp. The horizontal coordinates (x′, y′) are normalized
with the peak wavelength.

Figure 7: Lateral cross-sections of of the normalized wave height H ′ behind a breakwater gap along x′ = 1
(a), x′ = 4 (b) and x′ = 15 (c). Shown are the analytic solution (solid line), the QC approximation (cross
markers) and the QH solution (thin red line). Incident wave field and coordinates as in figure ??.

Using the Kirchhoff, or physical optics, approximation (e.g. Born & Wolf, 1999, p. 422) we can
derive an approximate boundary condition just behind the barrier (x = 0+) (see Janssen et al.,
2008), which, in terms of the CM spectrum,becomes (see Smit & Janssen, 2011)

E0+ (k, y) =
ˆ
duy

{
S
∣∣∣ ∂ω̂∂kx

∣∣∣ exp (iuyy) if kx > 0
∣∣∣kx ∓ kyuy

2kx

∣∣∣ ≥ 0
0 elsewhere

, (13)

where

S (k, y) = 1
π2

ˆ
dk′y

{
S0
(
ω̂, k′y

)
exp (−iuyG∆)

|k|2 + u2
y

(
1 + k2

yk
−2
x

)
− (k′y)2

k2
x − 1

4k
−2
x k2

yu
2
y

sin
(
(k′y − ky − uy/2)Gm

)
(ky + uy/2)

sin
(
(k′y − ky + uy/2)Gm

)
(ky − uy/2)

}
. (14)
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Here G∆ = (G2 −G1) /2 , Gm = (G1 +G2) /2, S0(ω, ky) is the variance density spectrum in the
region x < 0, expressed in terms of the angular frequency and lateral wavenumber ky, and ω̂ is
given by

ω̂(k, uy) = Ω(k) +
u2
yk

2
y

4k2
x

∂2Ω
∂k2

x

− 1
4u

2
y

∂2Ω
∂k2

y

+
u2
yky

2kx
∂2Ω

∂kx∂ky
(15)

To illustrate that the QC approximation accurately represents wave fields in diffraction zones,
we compare equation (11), initialized with (13), to an analytic solution (Penney & Price, 1952),
and a Quasi-Homogeneous solution1, for a gap configuration of G1 = G2 = 5Lp, where Lp is the
wavelength at the peak of S0. The incident wavefield is assumed to have a Gaussian frequency
distribution and a raised cosine directional distribution

S0(ω, θ) = V0D(θ)√
2π∆ω

exp
−(ω−ωp)2

2 (∆ω)2 D(θ) =
{

Γ( 1
2m+1)√

πΓ( 1
2m+ 1

2 ) cosm(θ − θ0) |θ| < π/2
0 elsewhere

(17)

where V0 is the variance, ωp the angular frequency at the peak, ∆ω a characteristic width and θ0
the mean wave direction.

When we consider a narrow-banded, uni-directional wave field (∆ω/ωp = 1/100 , m → ∞),
the agreement between the analytic result and the QC approximation is excellent (figures 4 and
5) for distances greater than about 4 wavelengths behind the barrier (x/Lp > 4), which confirms
that (4) accurately describes diffracted fields in the intermediate to far-field. In the near-field,
the approximation is less accurate, in part due to the lack of high-frequency spatial modes, but
principally due to the omission of evanescent modes (especially in the region x/Lp < 1), and
the use of an approximate (Kirchhoff) boundary condition (see e.g. Stamnes, 1986). Evidentially,
compared to the QH solution, the QC approximation is a radical improvement, mainly because the
assumption of mutually independent spectral constituents prevents the inclusion of the coherent
scattering by the gap in the boundary condition, so that only the sheltering effect is represented
in the QH solution.

For directionally spread waves with a broader bandwidth (∆ω/ωp = 1/10 , m = 200), the
fast scale spatial oscillations in the variance are smoothed so that the variations in the wave
statistics become more gradual, and the correspondence in the region x/Lp < 4 between the QC
approximation and the analytical solution generally improves (figures 6 and 7). The stochastic
approach presented here is more suitable for these type of conditions, where the wave statistics vary
on an intermediate scale, so that a theory that accounts for the coherence between components
that propagate at moderate mutual angles is necessary (figures 6 and 7), and provides sufficiently
accurate results.

4 Discussion
The principle difference between the variance density spectrum (e.g. Komen et al., 1994) and the
coupled mode spectrum is that the latter includes interference (cross-covariance) terms, and thus
forms a more complete representation of the wave statistics. In this section we shall briefly discuss
the properties and physical interpretation of the cross-variance terms, and address how such terms
may originate from initially quasi-homogeneous conditions by interaction with the topography.

The two-packet example (7) in section §3.1 illustrated that, when the contributions are mu-
tually coherent, an additional cross-variance peak appears in between the two auto-variance con-
tributions, that accounts for the rapid spatial variations in the wave statistics. In general, such
cross-variance contributions are always located midway (spatially and spectrally) between the as-
sociated auto-variance contributions (Hlawatsch & Flandrin, 1997), are generally oscillatory, and

1For the Quasi-Homogeneous solution we simply replace (13) with

E0+ (k, y) =
{

S0(k) if −G1 < y < G2
0 elsewhere , (16)

where S0(k) is the variance density spectrum in the region x < 0. Hence, what we refer to as the QH solution is
essentially a Geometric optics approximation.
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can become negative. Furthermore, since they do not directly correspond to a field component,
they do not carry energy themselves. Instead, these terms carry additional (cross-phase) informa-
tion that determines how the energy of the wave field is distributed between kinetic and potential
energy. In particular, if a wave field is statistically homogeneous (without coherent interferences),
wave energy is equipartitioned, so that knowledge of the potential energy (the auto-variance con-
tributions) suffices. In a wave field that undergoes coherent interference, information on the
distribution of potential and kinetic energy is required to fully characterize the wave field statis-
tics. Our examples show that, by including such information, the coupled mode spectrum can
represent the rapidly varying wave statistics as found in focal and diffraction zones.

However, in the present work this information was essentially already contained within the
initial conditions (§3.1), or prescribed at the boundary (§3.2), and we have not yet discussed, or
considered, the generation (and evolution) of such interference contributions. Physically, coherent
interference contributions can be induced by medium variations. In the particular case of ocean
waves, this occurs in areas where currents and sea-floor topography are strongly two-dimensional,
such as can be found in coastal areas and on the continental shelves. For example, the refractive
scattering of a narrow-band wave field impinging on a shoal or canyon can result in a focal zone
where cross-correlations non-collinear components are critical to resolve the rapid variations in
wave statistics in such regions (e.g. Magne et al., 2007). In such regions, which are not uncommon
in coastal areas, an energy balance model can be inadequate (e.g. O’Reilly & Guza, 1991) and
a quasi-coherent approach is physically more realistic. This will be discussed in more detail in a
following paper, where we apply the present theory to recent field observations of refraction and
scattering of waves over a nearshore canyon in Southern California (Thomson et al., 2007; Magne
et al., 2007).

5 Conclusions
In this paper we have considered the implications of a new approach (the Quasi-Coherent ap-
proximation) to the stochastic modeling of ocean waves of arbitrary bandwidth that, in contrast
to Quasi-Homogeneous theory, accounts for the generation and evolution of coherent interfer-
ence between wave components, and reduces to Quasi-Homogeneous theory if interference terms
are negligible. We have illustrated that, particularly for narrow-banded waves, the inclusion of
cross-variance contributions can lead to significant differences in the wave statistics in focal and
diffraction zones, and verified, by comparison to an analytic solution, that the Quasi-Coherent
approximation can accurately resolves the interference patterns associated with crossing waves.
Our results suggest that the Quasi-Coherent theory developed here is suitable for the evolution of
wave statistics in the presence of caustics and in refractive focal zones, which is of interest in the
study of wave statistics (and anomalies therein) in areas of two-dimensional medium variations,
particularly in coastal areas.
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