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Abstract
Even though the abaility to recommend items
in the long tail is one of the main strengths of
recommendation systems, modern models still
show decreased performance when recommend-
ing these niche items. Various bipartite and tri-
partite graph-based models have been proposed
that are specifically tailored to solving this long
tail issue. This study aims to investigate the ef-
fect of the design of the additional layer intro-
duced by tripartite graph-based recommender
systems on their performance. All options avail-
able in the MovieLens 1M dataset are evaluated
on recall and diversity. Experimental results
suggest that tripartite graphs based on latent in-
formation describing the users perform better
than ones utilising item-based latent informa-
tion, but both these options hardly outperform
the baseline bipartite model. Regardless of the
graph used, normalising the transition matrix is
found to significantly increase performance. It is
hypothesised that larger user-focused additional
layers show increased diversity over smaller op-
tions when normalised. Issues regarding the re-
producibility of previous research are identified
and addressed, and the development of unified
evaluation metrics is advocated to prevent such
problems in the future.

1 Introduction
Recommender systems have become ingrained in a plethora
of applications since their introduction. Possibilities for in-
corporating recommender systems into existing products and
services are nearly endless, but specifically the domains of e-
commerce and media recommendations have been the main
areas of adaptation (Roy & Dutta, 2022). Through decades of
research and development recommender systems have been
extensively refined and improved, resulting in the wide range
of recommender systems present today, as summarized by
Bobadilla et al. (2013).

While recommender systems provide numerous bene-
fits like increasing sales in e-commerce settings (Pathak
et al., 2010), several issues became apparent through their
widespread use. One of these major issues is the fact that
where most recommender systems show great performance
and accuracy when popular items are concerned, the error rate
tends to increase towards the low-ranked items that reside in
the long tail of the itemset. This was defined as the ”Long
Tail Recommendation Problem” by Park and Tuzhilin (2008)
and will hereafter be referred to as the long tail issue. The
notion of the long tail issue was confirmed by Steck (2011) in
their empirical study.

Solving the long tail issue is of relevance as recommenda-
tions in the long tail are believed to be one of the main driv-
ing forces behind the widespread success of recommender
systems. Anderson (2008) argues that the increase in sales
that was already identified and later confirmed empirically by

Pathak et al. (2010) can be largely attributed to recommen-
dations in the long tail. These niche items allow for greater
profit margins and can even attract new customers (Luke et
al., 2018).

An interesting form of recommender systems that is not
covered by Bobadilla et al. (2013) but can prove useful in
solving the long tail issue, are graph-based recommender
systems. Initially, Yin et al. (2012) pioneered this area by
proposing a bipartite graph-based approach towards increas-
ing diversity of recommendations. By applying a random
walk across the nodes in the graph to find the items most
similar to the preferences of the user, promising results were
found when evaluated on the MovieLens dataset (Harper &
Konstan, 2015). Subsequently, Johnson and Ng (2017) built
on the theoretical foundation constructed by Yin et al. (2012)
and extended to a recommender system based on a tripar-
tite graph. Johnson and Ng (2017) reported increased per-
formance after evaluation on the same dataset. This tripartite
graph-based solution was later extended by the same authors,
which led to a further increase in performance (Luke et al.,
2018).

The design choices behind the third group of nodes intro-
duced in the tripartite graph are of crucial importance for the
work of Johnson and Ng (2017), as these nodes are the one
thing distinguishing their approach from the bipartite graph-
based model described by Yin et al. (2012). In their paper,
Johnson and Ng (2017) make the design choice to utilise
movie genres for this layer of nodes, neglecting the other op-
tions present in the data that can be used as a basis to construct
this additional layer.

This study aims to contribute to the research towards ap-
plying tripartite graph-based recommender systems in solv-
ing the long tail issue by pinpointing how design choices gov-
erning the construction of the additional layer of nodes influ-
ence the performance of the overall system. Specifically, the
research question ’What effect does the design of the addi-
tional layer of nodes in tripartite-graph based recommender
systems have on the overall performance of the system with
regards to solving the long tail issue?’ will be answered.

The remainder of this paper is structured as follows. First,
Section 2 will provide an overview of the relevant theory and
papers crucial to understanding this research. Next, Section 3
describes the approach taken towards answering the research
question, and elicits the various options considered for the ad-
ditional layer of nodes within the constructed tripartite graph
used as a basis for recommendations. Subsequently, Section 4
will detail the experimental setup and showcase the results of
the performed experiments, which will be discussed in Sec-
tion 5. Finally, the Responsible Research practices applied
during this study will be explained in Section 6, before con-
cluding the paper in Section 7.

2 Background and related work
Various solutions have been proposed that are specifically en-
gineered to solve the long tail issue in recommender systems.
This wide range of techniques is extensively covered in the
survey paper authored by Qin (2021). Five categories of rec-
ommender systems tailored to the long tail issue are identified



in the aforementioned paper, but this research limits its scope
to focus solely on the graph based recommendation methods.
This category was pioneered by Yin et al. (2012) through the
bipartite graph recommendation model they developed. Sub-
sequently, Johnson and Ng (2017) built on this research by
enhancing the bipartite model with a third set of nodes, there-
fore basing it on a tripartite graph. Finally, Luke et al. (2018)
refined the tripartite graph-based model with minor adjust-
ments and improvements across the board, resulting in fur-
ther increased performance. All three of the aforementioned
models will be discussed in sufficient detail in this section.

Figure 1: A simple undirected graph

Crucial to understanding both the bipartite and tripartite
graph-based approaches are Markov processes. This math-
ematical concept is explained in great detail by Kemeny and
Snell (1976), where this section will cherry-pick only the rel-
evant topics needed to understand the research. A Markov
process has countless applications in various domains (Par-
doux, 2010), but in this specific context, it is used to describe
the movement of a random walker over a graph. This ran-
dom walk is performed following probabilities specified in a
transition matrix. Take, for example, the undirected graph
given in Figure 1, which has been adapted from Johnson and
Ng (2017). Assuming uniformly distributed transition proba-
bilities, the given graph can be represented by the following
transition matrix M (entries are rounded to two decimals for
clarity):

M =

 0 0.5 0.33 0
0.5 0 0.33 0
0.5 0.5 0 1
0 0 0.33 0

 (1)

The above matrix M contains the probabilities of a random
walker reaching node j from node i in a single step (denoted
pi,j) at entry mij . The probability of jumping to node 2 from
node 1, for example, is highlighted in bold in M . Worth not-
ing is the fact that the entries in each column of a transition
matrix must sum up to 1, seeing as it encompasses the proba-
bilities of all options of the random walker at a given node.

Transition matrices can be used to find the distribution of
the position of a random walker after an arbitrary amount of
steps t, by raising the transition matrix to the power t. For
example, the distribution of the position of a random walker
traversing the graph shown in Figure 1 for two steps is as fol-
lows (again, entries are rounded to two decimals for clarity):

M2 =

0.42 0.17 0.17 0.33
0.17 0.42 0.17 0.33
0.25 0.25 0.66 0
0.17 0.17 0 0.33

 (2)

When starting at node 1, there is only one way to end up
in node 3 after two steps: jump to 2 with a 50% probability,
then jump to 3 with a 50% probability. Hence for M2, m13 =
0.25.

For higher values of t, the resulting matrix will converge
to the so-called stationary distribution. When this distribu-
tion has been reached, additional steps of the random walker
will not change the distribution of its position. For the graph
shown in Figure 1, the random walk converges to its station-
ary distribution after 38 steps:

M38 =

 0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.375 0.375 0.375 0.375
0.125 0.125 0.125 0.125

 (3)

Interesting here is the fact that for any starting node in the
graph, the random walker is most likely to end up in node 3
given enough time. In general, uniform random walks favour
nodes with the highest degree, which is the number of edges
a particular node has. This is of crucial importance in the
context of graph-based recommender systems, as nodes with
the lowest degree are rated the least and therefore reside in
the long tail.

Figure 2: A bipartite user-item graph

The bipartite graph-based model incorporates two sets of
nodes into its undirected graph: set U containing the users,
and set I containing the items. A visual representation of this
bipartite user-item graph is shown in Figure 2. A user u is
connected to an item i if and only if the user rated the item,
and the weight of this edge is proportional to the rating given
to the item by the user. To find items to recommend for a
query user q, Yin et al. (2012) propose three concrete algo-
rithms; Hitting Time, Absorbing Time, and Absorbing Cost.
All three algorithms aim to find items with few ratings rele-
vant to the query user, therefore mitigating the long tail issue.

The Hitting Time (HT) between nodes j and q, denoted
as H(q|j) is defined as ”the expected number of steps that a
random walker starting from node j (j ̸= q) will take to reach
node q” (Yin et al., 2012). Recommendations are generated
by computing H(q|j) for all j ∈ I not rated by q and taking



the item nodes with the lowest HT. This intuitively returns the
set of items ’closest’ to query user q in the bipartite graph.
The initial probability pui to jump from user u to item i and
vice versa is given by Formula 4, where r(u, i) is the rating
user u gave to item i.

pui =
r(u, i)∑

k∈I

r(u, k)
(4)

The transition matrix containing these probabilities is then
used to calculate the stationary probability of the random
walk. Subsequently, the HT of two nodes is calculated fol-
lowing Formula 5, where πj equals the stationary probability
of node j, and pq,j is the stationary probability of a random
walker reaching node j when it starts in node q.

H(q|j) = πj

pq,jπq
(5)

Therefore, the HT algorithm prioritises items with a low sta-
tionary probability πj and a high transition probability to the
query user pq,j . In other words, this algorithm recommends
items that both have few ratings, and are relevant to the query
user. Relevancy between a user and item increases as there
are more paths connecting them, these paths become shorter,
and the weights (and thus the ratings) along the edges consti-
tuting the paths increase. These properties effectively com-
bine to elegantly solve the long tail issue.

The Absorbing Time (AT) algorithm generalises the HT al-
gorithm by introducing a set S consisting of absorbing nodes.
When generating recommendations for a query user q, these
absorbing nodes are chosen to be all items previously rated
by q. Yin et al. (2012) define AT as follows: ”Given a set
of absorbing nodes S in a graph G, the absorbing time de-
noted as AT (S|i) is the expected number of steps before a
random walker, starting from node i, is absorbed by S.”. In
other words, instead of calculating the proximity of items to
the query user like in the HT algorithm, the AT algorithm
calculates the distance to the set of items rated by the query
user. AT is a generalisation of HT, as when S = {q}, the two
algorithms are equivalent.

The Absorbing Cost (AC) algorithm further extends the AT
algorithm by incorporating additional information into the
model beyond the ratings given by users. In essence, the AC
algorithm introduces weights to user ratings, valuing the rat-
ings of users with a more specific taste higher than that of
users with more broad preferences in items. The specificity
of user tastes is measured by the entropy of their preferences.
The first form of the AC algorithm, dubbed AC1, calculates
the entropy based on the items they rated, while the second
form of the AC algorithm, aptly named AC2, analyses the
distribution of the user over a set of topics.

Yin et al. (2012) reported that out of the algorithms they
developed, the AC2 algorithm performs best in terms of accu-
racy, while the AC1 algorithm performs best when diversity
is concerned.

Figure 3: A tripartite user-item-category graph

The tripartite graph-based model initially developed by John-
son and Ng (2017) incorporates additional latent information
into the bipartite graph-based model through a third set of
nodes C, as shown in Figure 3. The aim of this additional in-
termediate layer is to fill in the gaps when available user-item
data is too sparse, and provide additional short paths when
traversing the graph, resulting in improved recommendations.
Like the bipartite graph-based model previously discussed,
this model was evaluated on the MovieLens dataset. Latent
information regarding the genres of the movies in this dataset
was chosen to form the basis for the newly introduced layer
of nodes. Here, the full genres were taken; the entire set of
genres a movie falls under is considered, instead of splitting
them into basic genres. This difference is further illustrated
in Figure 41. As a result of this design choice, an item can
only be connected to a single node in the additional layer.

Figure 4: An example illustrating the difference between full and
basic genres

Like for the bipartite graph-based model discussed previ-
ously, the weights given to the edges present in the graph are
of crucial importance for the performance of the overall rec-
ommender system. The edges connecting users and items
are given the same weight in both the bipartite and tripar-
tite model, as described in Formula 4. User u is connected to
genre g following the formula described in Formula 6 , where
ar(u, g) is the average of all the ratings user u gave to the
items in genre g.

1This figure contradicts the explanation of Qin (2021), which
misplaces the intermediate layer



wu,g =
ar(u, g)∑

c∈C

ar(u, c)
(6)

These edge weights ensure that the genres rated the highest
by a given user are prioritised over others. Likewise, Johnson
and Ng (2017) chose to connect item i to its genre g with
weight wi,g shown in Formula 7, where ar(j) is the average
of all ratings given to item j.

wi,g =
ar(i)∑

j∈g

ar(j)
(7)

In other words, when a random walker is at a given genre, it
will favour stepping to items with the highest average rating.
Here, the crucial assumption is that items with higher ratings
on average are better to recommend than items scoring lower.

To generate recommendations in the tripartite graph-based
model, the HT algorithm is simulated through a Markov
process. Again, the random walk is started from a query user,
but instead of converging to the stationary distribution, only a
limited number of steps are taken. This circumvents the issue
of favouring highly connecting nodes, which would lead to
decreased recommendations in the long tail. To this end,
Johnson and Ng (2017) defined the T3, T5 and T7 algorithms,
where the random walker performs three, five and seven
steps, respectively. All three of these algorithms pick the
items not rated yet by the query user with the maximal prob-
ability of arrival by the random walker as recommendations.
Out of these three options, T5 performs best, and both T3
and T5 edge out the bipartite AC algorithms in terms of
accuracy, but both algorithms perform worse when diversity
is considered.

In their paper, Luke et al. (2018) describe three im-
provements to the tripartite graph-based model. First, like
illustrated in Figure 4, the full genres were split up in favour
of basic genres. Second, the weights of the edges connecting
these basic genre nodes were updated to utilise the Bayesian
average shown in Formula 8.

wu,g =
av(u) ∗ ar(u) + v(u, g) ∗ ar(u, g)

av(u) + v(u, g)
(8)

In Formula 8, av(u) is the average number of items user u
rated per genre, ar(u) is the average rating user u gave per
genre, v(u, g) is the amount of items user u rated in genre g,
and ar(u, g) was previously defined in Formula 6. Finally,
the edge weights connecting basic genre nodes to item nodes
adjusted to follow Formula 9, where ar(i) is the average rat-
ing of item i and Gi is the set of basic genres applicable to i.

wi,g =

{
ar(i)
|Gi| if g ∈ Gi

0 otherwise
(9)

Through these improvements the T3 algorithm outperforms
all other previously discussed options both in terms of accu-
racy and diversity.

3 Methodology
This research aims to investigate the influence of the design
of the additional layer of nodes introduced in the tripartite
graph-based recommender system model on its performance.
Previously, Johnson and Ng (2017) and Luke et al. (2018)
reported on the performance of full and basic genres, but to
the researcher’s best knowledge no further research has been
completed towards this topic.

The additional layer introduced in the tripartite graph-
based model can be based on latent information describing
either the items or the users. For both of these approaches,
the same baseline bipartite graph containing solely the
user and items nodes is utilised. This is the bipartite graph
described by Yin et al. (2012), where edges connecting
users to items are connected following Formula 4. The sole
exception to this is the tripartite graph based on full genres
described by Luke et al. (2018), as this uses different weights
between users and items. Here, users are simply connected
to items by the rating they have given it, with zero being the
default.

For the graphs based on categorical latent information
about the items, the edges connecting the additional layer
will be weighted following the method described by Johnson
and Ng (2017). These edge weights described in Formula 6
and Formula 7 were chosen over the improvements imple-
mented by Luke et al. (2018), as this latter approach was de-
veloped for a many to many relationship between items and
categories, which normally is not applicable.

A different approach has to be taken for the tripartite
graphs focused on the latent information about users, as these
have a substantially different structure. Here, user nodes are
connected to additional nodes with weight wu,c shown in For-
mula 10, where Uc is the set of users belonging to additional
category c. This method ensures that all outgoing transitions
from categories to users sum op to one, which has the added
side effect of discounting large categories. In other words, the
collective preferences of large groups that are more broad and
general are valued less than smaller communities the users are
part of.

wu,c =

{
1

|Uc| if u ∈ Uc

0 otherwise
(10)

Similar to the weights shown in Formula 7, additional nodes
are connected to item nodes following Formula 11, where
ar(c, i) is the average of all ratings of item i from users be-
longing to additional category c. These edge weights ensure
that items preferred by the collective making up the category
likewise are prioritised by the random walker when generat-
ing recommendations.

wc,i =
ar(c, i)∑

j∈I

ar(c, j)
(11)

To generate recommendations from the various graph
options, three different algorithms will be tested. The T3,
T5, and T7 algorithms all employ a random walker that
respectively takes three, five and seven steps when generating
recommendations for a query user. These algorithms were



first developed by Johnson and Ng (2017), and based on
their results the T3 algorithms is expected to outperform both
other options.

Additionally, a potential point of improvement to the
existing models that will be tested is the normalisation of
the transition matrices. These matrices form the basis for
the Markov process employed on the constructed graphs and
therefore largely influence the performance of the overall
model. As explained previously in Section 2, the values
in the columns of the transition matrix should sum up to
one, as this exhaustively covers all the traversal options
a random walker has at a given node. The issue with the
methods described by Yin et al. (2012), Johnson and Ng
(2017) and Luke et al. (2018) is the fact that the adjacency
matrices resulting from their weighting formulas violate this
property. To investigate the impact of this design flaw on
the performance of the models additional experiments will
be run using normalised adjacency matrices as a basis. This
normalisation is performed by dividing all values in a column
by the sum of its values.

4 Experimental Setup and Results
Like the bipartite and tripartite graph-based approaches de-
scribed previously in Section 2, this research utilises the
MovieLens 1M dataset (Harper & Konstan, 2015). This
dataset consists of 1,000,209 ratings on a scale of 1 through 5
on 3,952 movies by 6,040 users. Additionally, demographic
data concerning gender, age, occupation, and zip code is in-
cluded for every user. Here, the distinction is made between 2
genders, age is aggregated in 7 ranges, the occupation is cov-
ered by 21 labels, and 3,439 distinct zip codes are included.
Latent information about the movies includes release year -
covering a span of 81 years - and genres - consisting of 301
unique combinations of 18 genres.

To effectively answer the research question, all options for
the additional layer in the tripartite graph-based model will be
evaluated on their performance. As a benchmark, the bipartite
model foregoing any additional layer described by Yin et al.
(2012) and the additional layers encompassing full and basic
genres implemented previously by respectively Johnson and
Ng (2017) and Luke et al. (2018) are included in evaluation.
Additionally, the following five options are considered for the
additional layer:

• The gender of the user, counting 2 options.

• The age of the user, counting 7 options.

• The occupation of the user, counting 21 options.

• The zip code of the user, counting 3,439 options.

• The release year of the movie, counting 81 options.

Thus, three options incorporating item-based latent informa-
tion and four options based on user-focused latent informa-
tion are evaluated in addition to the basic bipartite model.

4.1 Evaluation Metrics
To evaluate the performance of the various options for the
additional layer in the tripartite graph-based model, the same

metrics will be applied as by Yin et al. (2012), Johnson and
Ng (2017), and Luke et al. (2018).

First, Recall@N aims to effectively indicate the accuracy
of the model in recommending items that are actually rele-
vant to the user. In order to evaluate the tripartite models on
Recall@N, the following procedure is followed:

1. Create test set T by removing 4,000 five star ratings from
the training set at random.

2. For each test item t ∈ T randomly select 1,000 items not
rated by the user who created rating t.

3. Use the training set to order the 1,001 selected items in
order of relevance to the query user.

4. Calculate Hit@1 through Hit@50, as defined in Formula
13, where t is the test item defined in step 2 and rank(t)
is the rank of item t in the ordered list constructed in step
3.

Hit@N(t) =

{
1 if rank(t) ≤ N

0 otherwise
(12)

5. Aggregate the results of all items in the test set into Re-
call@1 through Recall@50, as defined in Formula 13.

Recall@N =

∑
t∈T

Hit@N(t)

|T |
(13)

By removing the five-star ratings from the data provided, the
model’s ability to effectively learn the preferences of the users
and generate recommendations accordingly is tested.

Additionally, the models are evaluated on the Diversity
metric to get a grasp of their effectiveness in solving the long
tail issue. This metric captures the intuition that a recom-
mender system that recommends the same popular items to
all users performs worse in promoting items in the long tail
than a system that shows many unique items to its users. Di-
versity is calculated as defined below in Formula 14, where
U is the set of users, Ru is the set of items recommended to
user u, and I is the set of items.

Diversity =

⋃
u∈U

Ru

|I|
(14)

In the experiments conducted during this research, U was
chosen to consist of 200 random test users and Ru to equal
the top 10 recommendations for user u. Therefore, the max-
imum amount of distinct recommendations possible is 2000,
which is the value of |I|.

4.2 Results
This subsection shows the results most relevant for answer-
ing the research question posed in this paper. Details on the
experiments, raw data and additional results not detailed here
can be found in the repository containing all code used over
the course of this research2.

2The code repository can be accessed via:
https://gitlab.com/ThomasCrul/evaluating-tripartite-recommenders

https://gitlab.com/ThomasCrul/evaluating-tripartite-recommenders


Figure 5: The performance of the T3 algorithm on the graph options

Figure 5 shows the performance of the graph options, as mea-
sured by the Recall@N metric. Here, only the performance of
the T3 algorithm is shown for each option, as this algorithm
consistently outperformed the T5 and T7 algorithm. All three
of the options constructed with latent information describing
the items showed marginally decreased performance, while
the remaining five options demonstrated nearly identical per-
formance.

Due to the stochasticity introduced by sampling 200 users
at random in its calculation, the value of the Diversity metric
fluctuates between experiments. To counteract this, the aver-
age of 100 Diversity calculations was taken and the variance
of these samples was used to construct 95% confidence inter-
vals, which are shown by the black bars in Figure 6 and Figure
8. Randomness is, in fact, introduced in the calculation of the
Recall@N metric as well by arbitrarily selecting 1,000 items
not rated by the query user. This is however averaged over
4,000 test cases, and as a result this metric hardly fluctuates
between experiments. When averaged over just three calcula-
tions, the 95% confidence intervals already are barely visible
in the resulting graph, therefore they are not included. The
lines shown in Figure 6 and Figure 8 are the results of single
experiments.

Figure 6: The diversity of the graph options and algorithms

Figure 6 shows the diversity of all graph options, achieved by
the three algorithms performed on them. Interesting again is

the split in performance between the item-based latent infor-
mation options and the rest. All three of these options show
decreased diversity, and rather constant scores between the al-
gorithms, where the other options show marginally increased
diversity for the T3 algorithm, which rapidly decreases for
both T5 and T7.

Figure 7: The performance of the T3 algorithm on the normalised
graph options

Figure 7 and Figure 8 detail the performance and diversity of
the normalised graph options. Remarkable in both figures is
the fact that the simple act of normalising the transition prob-
abilities shows significant increases in both evaluation met-
rics for all graph options. For recall, Figure 7 shows that the
options formed with item-based latent information again per-
form worse than the other options, with the zip code graph
now lagging just behind the rest of the pack in terms of per-
formance, albeit with only a few percentage points. As for
diversity, Figure 8 shows that all three of the options utilising
latent information about the items show decreases in diver-
sity between the algorithms in line with the rest of the graph
options. Most remarkable however is the jump in diversity of
the zip code graph, which now edges out all other options.

Figure 8: The diversity of the normalised graph options and algo-
rithms



5 Discussion

The results shown previously in Section 4 indicate that the de-
sign of the additional layer in the tripartite graph-based does,
in fact, impact the model’s performance. It seems that within
the design choices for this extra added layer, the decision to
base it either on latent information describing the items or on
information about the users is the most influential. All four
user-based graph options outperformed the item-based graph
options both in terms of recall and diversity, albeit with a slim
margin. No differences in performance were found between
the four user-based graph options without applying normal-
isation, even though the amount of nodes in their additional
layer ranges from just two to almost four thousand nodes.
This seems to indicate that the number of nodes in the addi-
tional layer has little effect on the overall performance of the
model when normalisation is not applied.

Most striking however, is the fact that the bipartite
graph-based model shows comparable performance to the
various tripartite graph-based options. This more simple
approach achieved similar results to the graph options based
on user-centered latent information, therefore outperforming
the item-based graph options. This raises the question
whether it is necessary to introduce the intermediate layer
into the original bipartite model in the first place. Within
the context and limitations of this research, few advantages
of the addition of the intermediate layer were found, while
increasing computational overhead of the model. In light
of this tradeoff, the results of this research suggest that it
is inadvisable to add unnecessary complexity to the model
through the intermediate layer.

The most concrete takeaway of the experiments is the
positive impact of the normalisation of the transition matri-
ces. This computationally inexpensive preprocessing step
increased the performance of every single graph option in
both metrics. By adhering to the requirements stipulated
for transition matrices in Markov processes, individual
nodes are prevented from being assigned inflated transition
probabilities. These nodes would otherwise dominate the
random walk performed on the graph, and therefore skew the
recommendation process in their favour.

Out of all the options for the additional layer, the graph
based on the zip codes of the user saw the greatest differ-
ence in performance through the application of normalisa-
tion. This stands to reason, as this graph option has the
largest amount of nodes in its additional layer. As the transi-
tion probabilities from these nodes to the users and items are
normalised with respect to themselves, each node adds ex-
cess transition probabilities to both sets that sum up to one.
This inflation of the transition probabilities of the user and
item nodes, therefore, is proportional to the number of nodes
present in the additional layer that is introduced. The higher
the inflation of the transition probabilities, the more effect
normalisation of the transition matrix has.

After applying normalisation, the zip code graph shows
a remarkable jump in performance in the diversity metric.
Intuitively, recommending movies based on the area of
residence of users does not immediately strike as a logical

choice, as the taste of a user can vary wildly from the
taste of its neighbour. This intuition is reflected in the fact
that utilising the zip code over other user-centered latent
information options comes at a minor expense of accuracy,
as shown in Figure 7. When considering diversity however,
a significant jump in performance can be seen over the other
graph options. A possible explanation for this discrepancy is
the number of nodes that make up the zip code layer, as it is
more than 163 times as large as the occupation graph, which
contains the second largest user-focused additional layer.
The performance of the normalised graph options suggest
that additional layers of increased size significantly improve
diversity, while marginally decreasing their accuracy. Further
research extending to additional datasets is needed to confirm
this hypothesis.

Through the experiments performed in this research,
previous results could not always be replicated. Despite
a thorough analysis of the research of Luke et al. (2018),
the reported performance improvement of the basic genres
graph over the full genres graph did not show in experiments.
This is most likely attributable to differences in concrete
implementations of the models between this research and
that of Luke et al. (2018), as important details were left
out on multiple occasions. An example of this is the fact
that the basic genre graph utilises different weights between
users and items than the full genres graph, which had to be
rediscovered during this research as this is never mentioned
in the paper describing it. Without this change in user-item
weights, the model showed abysmal performance.

This issue of reproducibility was not just relevant to the
implementations of the models, but also to the realisation of
the evaluation metrics. For the Recall@N metric, Yin et al.
(2012) write that they select 4,000 long tail ratings at random
as the test set, without specifying what is defined as such.
Next, Johnson and Ng (2017) merely write that the dataset
is split into a training set and a test set, without providing
any further details whatsoever. Finally, Luke et al. (2018)
randomly sample an unknown amount of users to make up
the test set, instead of ratings. Likewise, the implementations
of the Diversity metric are inconsistent between the papers.
Where Yin et al. (2012) sampled 2,000 users to calculate the
diversity score, Luke et al. (2018) take just 200. This last
paper also mentions that in calculating their diversity scores,
Johnson and Ng (2017) mistakenly recommended items users
had previously rated. Considering these ambiguities and
differences in the implementations of the evaluation metrics
between the referenced papers, it becomes impossible to
effectively compare their results, as there is no common
benchmark. This problem of irreproducible performance
metrics was previously identified and substantiated by
Qin (2021). Their survey paper similarly concludes that
recommender systems tailored to solving the long tail issue
are lacking in unified evaluation metrics.

Finally, a reservation about the scalability of the graph-
based recommender system models past static datasets has
to be made. Due to the definitions of the edge weights
in both the bipartite and tripartite graph-based models, all



ratings need to be aggregated in order to compute them. As
a result all edge weights in the graph need to be recomputed
whenever new ratings are introduced into the system. Addi-
tionally, the addition of new users and items is problematic
as this changes the dimensions of the adjacency matrix
representing the graph. As a sidenote, newly introduced
items would never be recommended to users, as long as they
do not receive a rating from at least one user. Recomputing
all edge weights and changing the dimensions of the adja-
cency matrix both pose significant challenges to overcome
before the graph-based recommender models can be applied
to real-world systems, as these require high adaptability.
Finding solutions to these challenges is a fruitful area for
further research.

6 Responsible Research
As previously highlighted in Section 5, various problems
were encountered while trying to implement models previ-
ously described in the literature. Both the models themselves
and the performance criteria they were evaluated by were
described in an insufficient level of detail to replicate
the reported results. This issue is a known and prevalent
problem within the scientific community, as explained by
Baker (2016). Raghupathi et al. (2022) researched this
reproducibility crisis specifically in the context of computing
research and formulated 25 criteria for the reproduction of
scientific research in doing so. To ensure that the research
described in this paper can easily be reproduced by fellow
researchers, all of the 25 aforementioned factors have been
included in this paper.

While this research promotes the application of recom-
mendation systems, one should be aware of the fact that they
are not free of negative ethical ramifications. Milano et al.
(2020) distilled six main ethical issues for recommendation
systems based on existing literature; concerns regarding
inappropriate content, privacy, autonomy, opacity, fairness
and social effects. Similarly, Polonioli (2021) identified
comparable problems through their research of the ethical
consequences of scientific recommender systems. The
models shown in this research are not free from these ethical
complications. Therefore, these issues should be carefully
considered when developing a recommendation system
based on the results of this research that will interact with
real users.

In contrast, solving the long tail issue can potentially mit-
igate one of the ethical issues recommendation systems are
currently facing. Modern recommendation systems suffer
from popularity bias, where the recommendations favour
items that are already popular, reinforcing their popularity
(Bellogı́n et al., 2017). This results in a winner-takes-all sce-
nario, where a small number of items gets recommended to
the majority of users (Milano et al., 2020; Polonioli, 2021).
Improving the performance of recommendation systems in
the long tail will increase the diversity of recommendations
and mitigate this undesirable winner-takes-all scenario. How-
ever, even after solving the long tail issue ethical issues re-
garding the application of recommendation systems remain.

7 Conclusions and Future Work
This paper set out to investigate the influence of the design
of the additional layer in the tripartite graph-based model
for recommendation systems described by Johnson and Ng
(2017) on its performance. Based on experimental results
limited to the MovieLens 1M dataset (Harper & Konstan,
2015), it can be concluded that basing the additional layer on
latent information describing the user yields the best results,
both in terms of recall and diversity. Simultaneously, it was
found that the simple baseline bipartite graph-based model
created by Yin et al. (2012) shows comparable results to the
optimal tripartite graph options, foregoing the need to intro-
duce the third layer into the model to begin with. Regardless
of the makeup of the graph, normalising the transition prob-
abilities to conform to stipulations formulated for transition
matrices in Markov processes yielded increased performance
for both applied performance metrics.

Four main directions for further research were identified.
First, the tripartite-graph based model can be extended to
utilise a multipartite model by combining various graph op-
tions. Next, this research advocates for the development of
unified metrics to evaluate recommender systems focused on
the long tail, following from the issues regarding the repro-
ducibility of previous research that were encountered. Third,
the experiments can be extended to additional datasets to test
the hypothesis that larger user-focused additional layers show
increased diversity over smaller options when normalised. Fi-
nally, challenges hindering the real-world applicability of the
graph-based model remain unsolved.
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