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Abstract

The purpose of this project is to extend the Heston model in order to incorporate the term

structure (TS) of the implied volatility surface. This includes implementing a TS within the

Heston model and its calibration to a set of market instruments. The TS Heston model with

piecewise constant parameters is implemented to match the TS and the COS pricing method

is used for fast option pricing. We calibrate the model to the EUR/USD and USD/JPY

market data and historic data is also used to test the robustness of the model. Then the

model with calibrated parameters are used to price exotic options by means of Monte Carlo

simulation with a new control variate we propose. Finally we also propose the COS method

for pricing discrete barrier options as future research directions.
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1 Introduction

1.1 Options and their pricing

It was not until the publication of the Black-Scholes model in 1973 that the era of using

mathematical models to price options and hedge risks started.

An option is a contract between a buyer and a seller that gives the buyer the right, but

not the obligation, to buy or to sell a particular asset (the underlying asset) at a later day

(at or before the maturity) at an agreed price (the strike price). In return for granting the

option, the seller charges a premium from the buyer. A call option gives the buyer the right

to buy the underlying asset; a put option gives the buyer of the option the right to sell the

underlying asset. If the buyer chooses to exercise this right, the seller is obliged to sell or buy

the asset at the agreed price; otherwise the option just expires after the maturity.

Investors buy options either as speculators or as hedgers. As speculators, they bet on

the upward movement of the underlying asset by buying a call option, or on the downward

movement of the underlying asset by buying a put option. As hedgers, they either want to

buy or sell certain underlying asset in the future, and by buying the corresponding options,

they either �x the maximum price they need to pay if they want to buy, or lock the maximum

loss they will su�er if they want to sell; or they want to hedge the risks for the underlying

asset they own or owe by trading options whose value move in the opposite direction of the

underlying asset.

There are mainly two types of options, exchange-traded options and over-the-counter

options. Exchange-traded options form an important class of options which have standardized

contract features and are traded on public exchanges, facilitating trading among independent

parties. They include stock options, commodity options, bond options, stock market index

options and options on futures contracts. Over-the-counter options are traded between private

parties, often well-capitalized institutions that have negotiated separate trading and clearing

arrangements with each other. They include interest rate options, equity options and foreign

exchange (FX) options. In this thesis, we focus on the FX options, although we expect the

results can be extended to equity options as well.

When traders trade options, the need to know their prices. Hence, the valuation of options

become very important and their values can be estimated using a variety of quantitative

techniques based on the concept of risk neutral pricing and using stochastic calculus. The

�rst and most basic model is the Black-Scholes model. More sophisticated models are those

which also incorporate the volatility smile, a pattern in which at-the-money options tend to

have lower implied volatilities than in- or out-of-the-money options.

A model usually has several parameters which need to be prede�ned. Some of them are

quite obvious, such as the interest rate. Others are more tricky and in order to make the

model consistent with the current market situation, we get their values by calibrating the

model to the market data, usually the most liquid exchange-traded options.

In the calibration process, we �rst set initial values to the model parameters and then
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search for the best set of parameters which minimize the di�erences between the model

outputs and the market data. If a set of parameters which reproduces the market data within

a reasonable accuracy can be found, then the calibration is successful and we can use the

model to price the exotic options.

In some models, analytic solutions exist for certain options. Then they can be priced fast

and accurately. For others, Monte Carlo simulation is often used. A number of random price

paths of the underlying asset are generated, each of which results in a payo� for the option.

Then these payo�s are averaged and discounted to yield an expectation value for the option.

1.2 Project description

In the Black-Scholes model, constant volatility throughout all the strikes and maturities is

assumed. This was indeed the case in the market at that time until the market crash in 1987,

after which people started to observe the volatility smile. Hence, researchers have proposed

various extensions of the Black-Scholes model for pricing options that aim to incorporate the

market observed implied volatility smile. The two most popular ones that are used for path-

dependent options are the local volatility model and the Heston stochastic volatility model

[1].

Dupire has shown [24] that the local volatility model can exactly reproduce the prices of

all vanilla call/puts at a continuous range of strikes and maturities. Given this range the

local volatility model is completely determined. One disadvantage of the model is that it has

only one stochastic factor and the volatility is a deterministic function of the spot price and

time. However, it is clear for many markets that the correlation between spot and implied

volatility is not close to 1. Therefore the model is not fully realistic which may a�ect pricing

of some path-dependent options signi�cantly.

In the Heston stochastic volatility model, the volatility follows a stochastic and mean-

reverting process. It has this extra stochastic factor which makes the model more realistic.

Its popularity among practitioners comes from the fact that it has semi-analytical expressions

for prices of vanillas, which makes fast and accurate calibration possible. This calibration

assumes time-independent parameters. In practice one often calibrates to the smile observed

at one maturity, thus accepting that the model will not reproduce the prices of all vanillas.

However, besides the above calibration issue, the assumption of constant parameters pro-

vides an issue for risk managing a book of multiple path-dependent options. Assume the

model calibrates to the maturity of the option. Then a book with multiple options with

di�erent maturities, that are all valued and risk managed on Heston, is actually not handled

by the same model, because the Heston parameters for each model may be di�erent. To

stress the point, it may be that the instantaneous volatility at time zero varies signi�cantly

over di�erent calibrated models (implying they disagree on the current level of instantaneous

volatility).

In this project, we compare di�erent ways of incorporating the term structure into the

Heston model and implement the model with piecewise constant parameters. In the calibra-
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tion process, we employ a recently proposed pricing method called the COS method. The

combination of these two produce fast and accurate results for the calibration of certain mar-

ket data. Then we use the calibrated model to price some exotic options using Monte Carlo

simulation. Here, we propose a new control variate to reduce the variance. We also propose

to apply COS method to price discrete barrier options as a future research direction.

The thesis is organized in ten sections. Section 2 introduces the market conventions in the

FX market. Section 3 presents the derivation of the characteristic function of the TS Heston

model with piecewise constant parameters. Section 4 presents the COS pricing method for the

European-style options. Section 5 discusses the details of calibration. Section 6 applies the

calibration method to calibrate the EUR/USD and USD/JPY market data. Section 7 does

some jump tests to see whether jumps exist or not in the historic market data and calibrate

our model to them. Section 8 proposes a new control variate for variance reduction in Monte

Carlo simulation for pricing exotic options and shows the simulation results and the variance

reduction achieved. Section 9 discusses the possibility of applying COS method on discrete

barrier options as a future research direction. Section 10 concludes the thesis.
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2 FX market

In the FX market, the European options are quoted in implied volatilities rather than in

option prices directly [2]. Furthermore, those implied volatilities are quoted in terms of delta

rather than strike. Given the implied volatility and delta, we can easily calculate the strike

and further the option price using the Black-Scholes equation.

Usually for each maturity, �ve quotes are available in the market: At-The-Money Strad-

dle (ATM), 25-� Risk Reversal (RR), 25-� Strangle (STR), 10-� Risk Reversal and 10-�

Strangle. The last two are not so liquid since they are far out-of-the-money. Therefore, we

will only use the market data of the �rst three in the calibration.

2.1 Delta conventions

The FX market employs quite complicated delta conventions for di�erent currency pairs and

di�erent maturities, namely (spot) delta and forward delta, delta including the premium and

delta excluding the premium.

The value of a vanilla option in the Black-Scholes model is calculated as follows:

C0 = �
�
e�rfTdS0N(�d1)� e�rdTdKN(�d2)

�
(1)

where

d1 =
log(S0=K) + (rd � rf )Td + v2Te=2

v
p
Te

and d2 = d1 � v
p
Te (2)

Here � is put-call type with � = 1 for a call and � = �1 for a put, Td is time from spot

until the delivery date, Te is time from today until the expiry date, rd=f is continuously

compounded zero rate for the domestic/foreign currency corresponding to the delivery date

of the option, K is the strike of the option, v is the volatility, S0 is the initial FX spot and

N(�) is the standard normal distribution function.

The (spot) delta of the option is

�BS =
@C0

@S0
= �e�rfTdN(�d1) (3)

In all the markets except the EUR/USD market, the premium (C0) is included in the

delta. This delta is called the "left-side delta" and is de�ned as:

�L = �BS � C0

S0
= � � K

S0
e�rdTdN(�d2) (4)

The logic of the left-side delta is as follows: Consider a bank that sells a call on the foreign

currency and needs to do delta hedging in that currency. The amount that the bank has to

buy is �BSS0 � C0 since it receives the premium in foreign currency. This is how �L is

de�ned in equation (4).
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For emerging markets (EM) and for maturities of more than two years (including 2 years),

it is usual for forward delta's to be quoted (it is called driftless delta in [7]). They are de�ned

as follows:

�F
BS = erfTd�BS and �F

L = erfTd�L (5)

2.2 ATM straddle, 25-� risk reversal and 25-� strangle

By convention the implied volatilities are quoted in terms of the ATM Straddle, 25-� RR

and 25-� STR.

The ATM is a zero delta straddle consisting of both a call option and a put option, with

the same expiry T and with the same strike price. The strike price is chosen in such way that

the delta of the straddle is equal to zero, i.e. the call delta is equal to the opposite of the put

delta. Hence, for the EUR/USD market, we have N(d1) =
1
2 according to equations (3) and

(5). For other markets, we have N(d2) =
1
2 according to equations (4) and (5). Thus, the

ATM strike can be calculated analytically. The table below shows the ATM delta and the

ATM strike.

ATM Delta ATM Strike Market

�BS �e�rfTd=2 S0e
(rd�rf )Td+v

2

ATMTe=2 EUR/USD maturities� 1y

�F
BS �=2 S0e

(rd�rf )Td+v
2

ATMTe=2 EUR/USD maturities> 1y

�L �e�rfTd�v
2

ATMTe=2=2 S0e
(rd�rf )Td�v

2

ATMTe=2 maturities� 1y

�F
L �e�v

2

ATMTe=2=2 S0e
(rd�rf )Td�v

2

ATMTe=2 maturities> 1y, EM

Table 1: ATM Delta and strike for di�erent delta de�nitions [2]

A 25-� RR is a portfolio consisting of a long 25-� call and a short 25-� put with the

same expiry. A 25-� RR quote is hence the di�erence between the volatility of a 25-� call

and a 25-� put.

A 25-� STR is a portfolio consisting of long both a 25-� call and a 25-� put option with

the same expiry. A 25-� STR quote is equal to the average volatility of a 25-� call and a

25-� put minus the ATM volatility.

Therefore, the volatility of a 25-delta call and put can be obtained from these quotes as

follows

vC;25 = vATM + STR25 +
1

2
RR25 (6)

vP;25 = vATM + STR25 � 1

2
RR25 (7)
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3 Heston model and TS Heston model

In �nance, the Heston model, named after Steven Heston, is a mathematical model describing

the evolution of the volatility of an underlying asset. It is a stochastic volatility model: such

a model assumes that the volatility of the asset is not constant, nor even deterministic, but

follows a random process [21].

In (ordinary) Heston model, all the parameters (normally �ve) are time-independent.

Hence, the model can be calibrated to at most four market instruments. Since we want to

calibrate to more than four market instruments with di�erent maturities, we try to make

them piecewise constant and thus get the TS Heston model.

3.1 Heston's stochastic volatility model

Let S(t) be the FX spot at time t, rd and rf be the domestic and foreign short rates. Then

we assume that S(t) is governed by the following SDEs in (risk-neutral) pricing measure:

dS = (rd � rf )Sdt+
p
vSdW1;

dv = �(� � v)dt+ �
p
vdW2;

Cov[dW1;dW2] = �dt (8)

where �, � and � are the mean reversion rate, the volatility of the variance and the mean

reversion level.

De�ne x = log(S) and � = rd � rf . We then have

dx = (�� 1

2
v)dt+

p
vdW1;

dv = �(� � v)dt+ �
p
vdW2 (9)

The joint characteristic function on the interval [0; T ] is de�ned as follows:

�0T (X;V jx0; v0) = E(eiXxT+iV vT jx0; v0) (10)

and the marginal characteristic function for the logarithm of the underlying asset on the same

interval is de�ned as:

�0T (Xjx0; v0) = E(eiXxT jx0; v0) = �0T (X;V jx0; v0)jV=0 (11)

The analytic formula of the marginal characteristic function is given by Heston in [25].

Elices [4] derives an analytic formula for the joint characteristic function where the mar-

ginal characteristic function of the log-asset price can be obtained by evaluating the joint

characteristic function at V = 0:

�0T (X;V jx0; v0) = exp(C(X;V ) +D(X;V )v0 + iXx0) (12)
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Here (X;V ) is in the dual space of (x; v). The coe�cients of the characteristic function are

given by 8><>:
C(X;V ) = i�X� + ��

�2

�
log

�
1�~ge�d�

1�~g

��2
+ (�� i��X � d)�

�
+ C0

D(X;V ) = ��i��X�d
�2

�
g�~ge�d�

1�~ge�d�

� (13)

where ~g = ��i��X�d�D0�2

��i��X+d�D0�2
, g = ��i��X�d

��i��X+d , d =
p
(�� i��X)2 + �2X(i+X), C0 = 0, D0 =

iV and the length of the period � = T .

Because of its analytic feature, the prices of the European options can be calculated much

more easily using Fourier inversion techniques for example. Hence, the Heston model is widely

used by practioners.

3.2 Characteristic function of TS Heston model with piecewise constant

parameters

Despite its popularity, the Heston model also has its own limitations. Since the coe�cients

of the characteristic function are solutions of ordinary di�erential equations of Riccati type,

most of the parameters cannot be time-dependent if we want the coe�cients to be analytic.

This however causes a problem if we want to calibrate to options of di�erent maturities. For

each maturity, we may get completely di�erent sets of parameters, and what is more, the

initial variance may disagree as well.

To solve this problem, we incorporate the term structure information. To achieve that,

the Heston model has to be generalized in order to allow for time dependence in its coe�cients

[8]. Time dependence is most easily added to the mean-reversion level �, since this parameter

does not enter in the non-linear Ricatti equation. Hence the solution can be constructed for

arbitrary �(t) by means of numerical calculation of integrals over time. For the other Heston

model parameters, the generalization to the time-dependent model is not so straightforward.

Some analytic solutions are possible for speci�c choices of the time dependence, but in general

the solution can only be found by numerical integration of the two-dimensional system of

di�erential equations. Since we will not be able to get analytic solutions of the characteristic

functions in general, these methods are not in our favor.

As an alternative, Mikhailov [8] et al proposed the idea of using piecewise constant pa-

rameters. The parameters are kept constant in one time interval, but di�erent for other

intervals. The coe�cients of the characteristic function are derived by solving the di�erential

equations from the last period till the �rst period, where the solution of the past period is

used as initial condition for the preceding one. Elices [4], however, derives the characteristic

functions in a di�erent way. He proposes the way of deriving the characteristic function of

two consecutive periods from the characteristic functions of each period. Due to its recursive

feature, we hence adopt his way to derive the characteristic functions of models with piecewise

constant parameters.
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According to [4], we consider an N-dimensional Markov process x(t) = (x1(t); :::; xN (t))

and the family of exponential characteristic functions of the form (14) with exponents linear

in the stochastic processes xu at time tu in the time interval from tu to tv. (The Heston

process, as we have shown, consists of (x0; v0) and also has the same form of characteristic

function.) The characteristic function thus reads:

�uv(Xjxu) = exp(Cuv(X) +Duv(X) � xu) (14)

Here,X = (X1(t); :::; XN (t)) is in the dual space of x(t) andDuv(X)�xu =
PN

i=1Duv;i(X)xi(tu)

refers to the inner product.

The criterion of the linearity of exponents is actually very important. We will show that

if a process has di�erent characteristic functions in di�erent time intervals but all with linear

exponents, the characteristic function in the overall time interval still has that property.

Now suppose �0u(Xjx0) describes the process from 0 to tu and �uv(Xjxu) describes the
process from tu to tv. We want to obtain �0v(Xjx0) in terms of �0u(Xjx0) and �uv(Xjxu).

The de�nition of the characteristic function is as follows:

�0v(Xjx0) =
Z
RN

eiX�xvf0v(xvjx0)dxv (15)

As the process is Markov, the time interval [0; tu] is independent from [tu; tv]. Hence, the

density function can be written as

f0v(xvjx0) =
Z
RN

fuv(xvjxu)f0u(xujx0)dxu (16)

Substituting equation (16) into (15) and exchanging the integration order yields:

�0v(Xjx0) =
Z
RN

f0u(xujx0)
Z
RN

eiX�xvfuv(xvjxu)dxvdxu

=

Z
RN

f0u(xujx0)�uv(Xjxu)dxu (17)

Substituting equation (14) into (17) yields:

�0v(Xjx0) =
Z
RN

f0u(xujx0) exp(Cuv(X) +Duv(X) � xu)dxu

= exp(Cuv(X))

Z
RN

f0u(xujx0) exp(i � (i�1Duv(X)) � xu)dxu

= exp(Cuv(X))�0u(i
�1Duv(X)jx0)

= exp(Cuv(X) + C0u(i
�1Duv(X)) +D0u(i

�1Duv(X)) � x0) (18)

Hence, �0v(Xjx0) still belongs to the family of exponential characteristic functions with

linear exponents. Applying equation (14) to the time interval [0; tv] yields:

�0v(Xjx0) = exp(C0v(X) +D0v(X) � x0) (19)
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Equating the coe�cients of equation (18) and equation (19) yields:(
C0v(X) = Cuv(X) + C0u(i

�1Duv(X))

D0v(X) = D0u(i
�1Duv(X))

(20)

Applying this procedure, we obtain the characteristic function of any consecutive periods.

We can also get the recursion formula by applying the principle of iterated expectations.

According to equation (11), the characteristic function �uv(Xjxu) for any time interval [tu; tv]
is given by

�uv(Xjxu) = E(eiX�xv jxu) (21)

Suppose �uv(Xjxu) also satis�es equation (14). Considering the time interval [0; tv] and

using the iterated expectations, we have

�0v(Xjx0) = E(eiX�xv jx0)
= E(E(eiX�xv jxu)jx0)
= E(�uv(Xjxu)jx0)
= E(eCuv(X)+Duv(X)�xu jx0)
= exp(Cuv(X))E(exp(Duv(X) � xu)jx0)
= exp(Cuv(X))E(exp(i � i�1Duv(X) � xu)jx0)
= exp(Cuv(X))�0u(i

�1Duv(X)jx0)
= exp(Cuv(X) + C0u(i

�1Duv(X)) +D0u(i
�1Duv(X)) � x0) (22)

which is the same as equation (18).

For the Heston model with constant parameters in the interval [tu; tv], according to (12),

the characteristic function reads:

�uv(Xjxu) = exp(Cuv(X) +Duv;2(X)v(tu) +Duv;1(X)x(tu)) (23)

where X = (X;V ), xu = (x(tu); v(tu)), Duv;1(X;V ) = iX and Cuv(X;V ) and Duv;2(X;V )

are given by equations (13) (Duv;2(X;V ) = D(X;V )).

Suppose we already have the characteristic function of the interval [0; tu], we obtain the

coe�cients in (19) using recursive equation (20):8><>:
C0v(X;V ) = Cuv(X;V ) + C0u(X; i

�1Duv;2(X;V ))

D0v;2(X;V ) = D0u(X; i
�1Duv;2(X;V ))

D0v;1(X;V ) = iX

(24)

If we continue with the recursive procedure, the joint characteristic function from 0 to

any time can be derived, and the marginal characteristic function of the log-asset price can

be obtained according to (11) for pricing European options.

What is worth mentioning here is that as one can see from equation (13), the characteristic

function of the Heston model contains a complex logarithm, which is a multivalued function.
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According to the literature [28], one should be careful in choosing the correct branch. If

we restrict the logarithm to its principal branch, the characteristic function may become

discontinuous, leading to completely wrong option prices if options are priced by Fourier

inversion. Kahl and J�ackel [29] propose the phase rotation count technique to solve this

problem. However, in a later paper, Lord and Kahl [5] proved that for Heston-like models,

we can restrict the logarithm to its principal branch, and the resulting characteristic function

is the correct one for all complex ! in the strip of analycity of the characteristic function.

Therefore, in our implementation, we just choose the principal branch.
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4 COS pricing method

The calibration process involves a very large number of option price evaluations with many

di�erent parameter settings. Hence e�cient numerical methods are required to rapidly price

the options.

Existing numerical methods can be classi�ed into three categories: partial-(integro) di�er-

ential equation methods, Monte Carlo simulation and numerical integration methods. When

characteristic functions are known analytically, the integration methods are always used for

calibration purposes. State-of-the-art numerical integration techniques have in common that

they all rely on a transformation to the Fourier domain, among which the Carr-Madan method

[6] is most widely used. Instead of using FFT, Fang and Oosterlee [3] recently proposed a new

method, called COS method, which is based on Fourier-cosine expansions. The COS method

is found to be superior to the Carr-Madan and other methods with respect to both speed

and accuracy for among others the Heston model. We extend its use to the term structure

Heston model in this paper.

4.1 COS pricing method

In this section, we summarize the COS pricing method for the European-style options pro-

posed in [3].

The point-of-departure for pricing European options with numerical integration techniques

is the risk-neutral valuation formula:

C(x; t0) = e�r�tEQ[C(y; T )jx] = e�r�t
Z
R

C(y; T )f(yjx)dy (25)

where C denotes the option value, �t is the di�erence between the maturity T and the initial

date t0, E
Q[�] is the expectation operator under risk-neutral measure Q, x and y are state

variables at time t0 and T respectively, and f(yjx) is the probability density of y given x, and
r is the risk-neutral interest rate.

The probability density function which appears in the integration of the pricing formula

is not known for many relevant pricing processes. However, its Fourier transform, the char-

acteristic function, is often available. Hence, the main idea here is to reconstruct the whole

integral from its Fourier-cosine series expansion (also called 'cosine expansion') where the

characteristic function rather than the density function is involved, since Fourier-cosine series

expansions usually give an optimal approximation of functions with a �nite support.

For functions supported on a �nite interval, say [a; b] � R, the Fourier-cosine series ex-

pansion reads

f(x) =
1X
k=0

0Ak � cos(k�x� a

b� a
) (26)

with

Ak =
2

b� a

Z b

a
f(x) cos(k�

x� a

b� a
)dx (27)
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Here
P

0 indicates that the �rst term in the summation is weighted by one-half.

Suppose [a; b] � R is chosen such that the truncated integral approximates the in�nite

counterpart very well, i.e.

�1(!) :=

Z b

a
ei!xf(x)dx �

Z
R

ei!xf(x)dx = �(!) (28)

Thus,

Ak =
2

b� a
Re

�
�1

�
k�

b� a

�
� exp

�
�i ka�
b� a

��
(29)

and Ak � Fk with

Fk =
2

b� a
Re

�
�

�
k�

b� a

�
� exp

�
�i ka�
b� a

��
(30)

We now replace Ak by Fk in the series expansion of f(x) on [a; b], i.e.

f1(x) =
1X
k=0

0Fk � cos(k�x� a

b� a
) (31)

and truncate the series summation such that

f2(x) =
N�1X
k=0

0Fk � cos(k�x� a

b� a
) (32)

Now we derive the COS formula for European-style options by replacing the density

function by its Fourier-cosine series. Since the density rapidly decays to zero as y ! �1 in

equation (25), we truncate the in�nite integration range to [a; b] � R without losing signi�cant

accuracy, and we obtain approximation C1:

C1(x; t0) = e�r�t
Z b

a
C(y; T )f(yjx)dy (33)

Since f(yjx) is usually not known whereas the characteristic function is, we replace the

density by its cosine expansion in y,

f(yjx) =
1X
k=0

0Ak(x) � cos(k�y � a

b� a
) (34)

with

Ak(x) =
2

b� a

Z b

a
f(yjx) cos(k�y � a

b� a
)dy (35)

so that

C1(x; t0) = e�r�t
Z b

a
C(y; T )

1X
k=0

0Ak(x) � cos(k�y � a

b� a
)dy (36)

We interchange the summation and integration, and insert the de�nition

Vk :=
2

b� a

Z b

a
C(y; T ) cos(k�

y � a

b� a
)dy (37)
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resulting

C1(x; t0) =
1

2
(b� a)e�r�t �

1X
k=0

0Ak(x)Vk (38)

We further truncate the series summation to obtain approximation C2 :

C2(x; t0) =
1

2
(b� a)e�r�t �

N�1X
k=0

0Ak(x)Vk (39)

Replacing Ak(x) in equation (39) by Fk(x) as de�ned in equation (30), we �nally obtain

C(x; t0) � C3(x; t0) = e�r�t
N�1X
k=0

0Re

�
�

�
k�

b� a
;x

�
� exp

�
�i ka�
b� a

��
Vk (40)

which is the COS formula for general underlying processes.

4.2 Truncation range

The formula for the truncation range [a; b] in the COS method is given by equation (11) in

[3]:

[a; b] =

�
(x0 + c1)� L

q
c2 +

p
c4; (x0 + c1) + L

q
c2 +

p
c4

�
with L = 10 (41)

Here, x0 = log(S0=K). cn is the n-th cumulant of x = log(ST =K) which is equal to the n-th

derivative of the cumulant-generating function g(!) = log(E(e!x)) evaluated at ! = 0. L is

a constant set according to di�erent models. For most models, L with values around 8 to 10

is enough to produce very accurate results.

For Heston model, c1 and c2 are given in Table 11 in [3]. According to [3], since the

analytic formula of c4 is too lengthy, it is omitted and a larger L is used. c2 may become

negative when the Feller condition (2�� > �2) for the parameters is not satis�ed, so the

absolute value of c2 is used. The truncation range [a; b] for Heston model thus reads

[a; b] =
h
(x0 + c1)� L

p
jc2j; (x0 + c1) + L

p
jc2j

i
with L = 12 (42)

In the case with multiple maturities, however, not only c2, but also c4 may play an im-

portant role which cannot be justi�ably omitted. However, the derivation of these cumulants

becomes even more complicated. The analytic formula of c1 may already be very lengthy, not

to mention c2 and c4. We therefore use the �nite di�erence method to get these values.

The cumulant-generating function g(!) is closely related to the characteristic function

�(!):

g(!) = log(E(e!x)) = log(�(�i!)) (43)
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Thus, the derivative of the cumulant-generating functions can be derived as follows:

g0(!) =
1

�(�i!)
d�(�i!)
d!

(44)

g00(!) = � 1

�(�i!)2 [
d�(�i!)
d!

]2 +
1

�(�i!)
d2�(�i!)
d!2

(45)

g(3)(!) =
2

�(�i!)3 [
d�(�i!)
d!

]3 � 3

�(�i!)2
d�(�i!)
d!

d2�(�i!)
d!2

+
1

�(�i!)
d3�(�i!)
d!3

(46)

g(4)(!) = � 6

�(�i!)4 [
d�(�i!)
d!

]4 +
12

�(�i!)3 [
d�(�i!)
d!

]2
d2�(�i!)
d!2

� 3

�(�i!)2 [
d2�(�i!)
d!2

]2

� 4

�(�i!)2
d�(�i!)
d!

d3�(�i!)
d!3

+
1

�(�i!)
d4�(�i!)
d!4

(47)

Using �nite di�erence methods, we can obtain the central di�erence approximation for the

derivatives of the characteristic function:

d�(�i!)
d!

����
!=0

� 1

�!
[�(�i�!

2
)� �(i

�!

2
)] (48)

d2�(�i!)
d!2

����
!=0

� 1

(�!)2
[�(�i�!)� 2 + �(i�!)] (49)

d3�(�i!)
d!3

����
!=0

� 1

(�!)3
[�(�i3�!

2
)� 3�(�i�!

2
) + 3�(i

�!

2
)� �(i

3�!

2
)] (50)

d4�(�i!)
d!4

����
!=0

� 1

(�!)4
[�(�i2�!)� 4�(�i�!) + 6� 4�(i�!) + �(i2�!)] (51)

Thus, the cumulants can be approximated:

c1 = g0(!)j!=0 = d�(�i!)
d!

����
!=0

(52)

c2 = g00(!)j!=0 =
"
�
�
d�(�i!)
d!

�2

+
d2�(�i!)
d!2

#�����
!=0

(53)

c4 = g(4)(!)j!=0 =
"
�6

�
d�(�i!)
d!

�4

+ 12

�
d�(�i!)
d!

�2

� d
2�(�i!)
d!2

� 3(
d2�(�i!)
d!2

)2

�4d�(�i!)
d!

� d
3�(�i!)
d!3

+
d4�(�i!)
d!4

�����
!=0

(54)

With c1, c2 and c4 in hand, we can now calculate the truncation range according to

equation (41). However, instead of using equation (41) directly, we use equation (42), but

with L dependent on c4:

L = max

�
16; 8

qp
jc4j=jc2j

�
(55)

Here, both the absolute values of c2 and c4 are used in case the Feller condition does not

satisfy. When c4 is small, this is equivalent to equation (42) with L = 16; when c4 is large, it

is equivalent to equation (41) with L = 8.
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4.3 Number of terms in the truncated series

In equation (39), we truncate the series and use the �rst N terms to calculate the option

prices. The larger the N, the more accurate the price but also the longer the computation

time. Hence, we need to �nd a compromise between the speed and accuracy.

As shown in Table 5 of [3], N = 128 produces an error less than 10�9 in the Heston

model with the parameters chosen there. However, in our case, with a larger L and multiple

maturities, N = 128 might not be enough. Since we don't know how large N should be in

advance, we start with a relatively small N, do the calibration, check the model output using

a large N (say 1024) and redo the calibration with a larger N if the error exceeds a certain

level.

Since the complexity of the COS method is O(N log2(N)), we set an upper bound (nor-

mally 1024) on N to avoid too expensive calculations. If a very large value of N is indeed

needed, we will check the parameters to see whether it can be avoided.
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5 Calibration

In order to be able to use the model for option pricing, its parameters have to be adjusted

to the current market conditions as re
ected in the implied volatility. Thus, having chosen a

set of n market instruments (typically, call options) with strikes fK1;K2; :::;Kng and matu-

rities f�1; �2; :::; �ng, whose market prices are fC1; C2; :::; Cng, the calibration is performed by

minimizing the di�erence between the market data and the model output.

Usually, the cost function can be either the sum of the least-square absolute errors or the

sum of the least-square relative errors. The former one implicitly assigns more weight to the

expensive options (ITM and ATM options), and less weight to the OTM options. In our case,

we have one ATM option and several OTM options (25-� call and 25-� put usually) and we

certainly want to assign more weight to the ATM option. (Of course, we can use the 75-�

call instead of the 25-� put since they have the same volatility, but this will result in a much

larger price range, which might lead to greater error in the minimization procedure. That is

why the 75-� call is never used.) Hence, the cost function is set as:

F =

nX
i=1

wi[C(S;Ki; �i)� Ci]
2 (56)

where fw1; :::wng is a chosen set of weights and C(S;K; �) is calculated according to equation
(40) where x = log(S=K). We choose uniform weights (with all the weights wi set to 1) in

the following tests.

Since we calibrate to the market data maturity by maturity, the cost function is hence

minimized maturity by maturity. For each maturity, we have the quotes of ATM, 25-� RR

and 25-� STR. We can then get the prices of 25-� call, ATM, and 25-� put as market prices

in the cost function. Since the prices of the three options are of the same order of magnitude,

there is actually not much di�erence in using absolute errors or relative errors in the cost

function.

5.1 Minimization schemes

Generally, there are two di�erent kinds of minimization schemes, namely local (determinis-

tic) algorithms and global (stochastic) algorithms. Local algorithms depend largely on the

initial guess and might easily fall into local minima. Stochastic algorithms will �nd a global

minimum, but they are much more computationally burdensome.

Past researchers all emphasize on the importance of �nding the global minimum in the

calibration procedure. However, in our tests of the multi-period case, we �nd that the global

minimum of one period does not necessarily produce nice results for the next period. It can

happen that several completely di�erent sets of parameters all produce prices close enough

to the market data. In this case, it is certainly better to choose one set that is not extreme

in value and relatively stable compared to the previous set.
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Based on such consideration, I currently choose a local algorithm (the Matlab function,

fminsearch, which uses the Nelder-Mead Simplex search method). Therefore, a set of good

initial values needs to be found as input. For the �rst period, the initial parameters are set

manually; for the later periods, the calibrated parameters of the previous period are used

as the initial values for the next one. The local algorithm hence ensures the stability of the

parameters.

5.2 Parameters and their initial values

In the Heston model, there are totally 5 free parameters, the mean reversion rate �, volatility

of variance � (vol of vol), correlation �, initial variance V0 and long run variance �. Since

three market prices (25-� call, ATM and 25-� put) are available for each maturity, two of

the parameters have to be �xed.

Of the 5 parameters, � is chosen manually. For the �rst period, we calibrate �, � and

V0. � is set equal to V0 as many practitioners do. In the Dolphin implementation of the

Heston Model [26], FX Quantitative Analytics set this coe�cient of proportionality, �=V0, to

1.5. This is done in order to avoid negative prices in their model which includes the term

structure adjustment. However, there is no convincing reason to do so otherwise. Thus we

still stay with � = V0, which also gives much freedom in the choice of �.

For the later periods, since V0 is already �xed, we calibrate � instead (actually the coe�-

cient of proportionality, �=V0, in the tests).

Since the local algorithm is chosen, the task now is to �nd a set of good initial values. It

is not a good idea to just randomly choose several sets of initial parameters in the hope of

�nding the global minimum. Rather we can set them according to the information contained

in the market data.

Since we have set � equal to V0 for the �rst period, the major contribution to the change

of volatility comes from the stochastic part. Thus, we can imagine that the volatility might

not 
uctuate too much from its initial value, which indicates that we might just set V0 to

be the square of the ATM implied volatility of the �rst maturity. In our tests, we �nd that

compared to the square of the ATM volatility, the calibrated V0 is even closer to the square of

the 25-� put volatility in a negatively skewed market, but it does not make much di�erence

which we take as the initial value.

Next we consider the initial value of �. The RR contains information about the skewness,

and consequently in
uences the value of the correlation. If the quote of RR is negative, i.e.

the 25-� put has a higher volatility than the 25-� call, we then have a downward skew in

the smile. Hence, � is negative in this case. A positive � will produce an upward skew in the

smile. Thus, � has the same sign as RR [9]. Suppose that the term structure of RR implies

an increasing skewness for longer maturities (since ATM volatilities also changes, it is better

to divide the RR quote by the ATM quote when comparing skewness), a large initial value for

� will not be suitable. If there is a local minimum close to the extreme value, the increasing

skewness will drive � to -1 (or 1) in the calibration of later periods, resulting in the failure
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of the calibration. Therefore, the initial value of � can vary, but it is usually chosen close to

-0.5 (or 0.5). We set it to -0.4574 in our tests.

What remains to be determined is �. Actually, � and � are actually strongly interdepen-

dent. While a large � increases the volatility of v, a large � will o�set this e�ect. Thus, the

combination of a large � and a large � can produce the same result as a small � and a small

�.

If the Feller condition (2�� > �2) does not satisfy, the variance process may become

negative with a non-zero probability. This condition does not always hold (e.g. for very

skewed markets), but it is certainly desired that it is satis�ed. Thus, we can set the initial

value of � to be around
p
2��, using the initial values of � and �. If this initial value results

in a local minimum, we will try larger values of � in search of a global minimum.

Once the parameters of one period are calibrated, they are used as the initial input for

the next period.

5.3 Mean reversion rate

The mean reversion rate � is set manually before the calibration. In the Dolphin implementa-

tion for ordinary Heston model [26], it is set to 0.2. We will show that for the term structure

Heston model, this value for the mean reversion rate is not always suitable, for every set of

market data.

For the one-maturity calibration case, we �nd in the tests that if the model can be cali-

brated, then for any � we take, we will always �nd a � which suits the model (see section 5.2

for a theoretical explanation).

For the multi-period calibration case, this is no longer true. Imagine that the ATM

volatility level (�2) at the second maturity falls dramatically from that of the �rst maturity.

Suppose the length of the second period is short, then the chances that the volatility will

reach the new level given a small � are rather low. This can be seen more clearly if there is

no volatility smile (that is, we remove the stochastic part of the volatility SDE and make it

deterministic). In this case, the ATM variances at the �rst two maturities are as follows:

dv(t) = �(� � v(t))dt (57)

)vt1 = (vt0 � �1)e
��1(t1�t0) + �1 = �1 (58)

vt2 = (vt1 � �2)e
��2(t2�t1) + �2 = (�1 � �2)e

��2(t2�t1) + �2 (59)
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Thus, the ATM volatility at the second maturity is

�2 =

�Z t1

t0

v(s)ds+

Z t2

t1

v(s)ds

� 1

2

=(t2 � t0)
1

2 (60)

=

�
�1(t1 � t0) +

�1 � �2
�2

(1� e��2(t2�t1)) + �2(t2 � t1)

� 1

2

=(t2 � t0)
1

2 (61)

>

�
�1(t1 � t0) +

�1
�2
(1� e��2(t2�t1))

� 1

2

=(t2 � t0)
1

2 (62)

) �2

1� e��2(t2�t1)
>

�21
�22(t2 � t0)� �21(t1 � t0)

(63)

Since the left-hand-side is an increasing function of �2, this shows that for every ATM volatility

value at the second maturity, �2 cannot be smaller than a certain value in order for the

volatility to reach that level.

In the stochastic case, it is hard to get an analytic formula for the lower bound of �2.

Although we do not know it exactly, we assume that the minimum value of �2 in the deter-

ministic case can serve as a good reference on how large �2 should be in order to be calibrated,

especially when there is no large smile.
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6 Calibration results

We apply the piecewise constant calibration method to the EUR/USD market and USD/JPY

market. The maturities taken into consideration range from 6-month to 5-year (including 9m,

1y, 2y, 3y and 4y). For each maturity, the market price of the 25-� call, ATM and 25-� put

are available.

Since some parameters have constraints to satisfy, we thus use the technique of change

of variables to avoid constrained optimization. Suppose the parameter p is bounded in the

interval [pmin; pmax], using an unconstrained parameter ~p, we can express p in terms of ~p as

p = pmin +
pmax � pmin

2

�
1 + tanh(

~p

100
)

�
(64)

This ensures that the parameter values stay within the proper range.

6.1 EUR/USD market

We �rst test the EUR/USD data listed in Table 38 on each single maturity. � is set to 0.2

and 2 respectively. We set the number of terms in the truncated series of the COS method,

N, to 256.

Period 0-6m 0-9m 0-1y 0-2y 0-3y 0-4y 0-5y

� 0.2960 0.2536 0.2317 0.1692 0.1512 0.1341 0.1297

� -0.1653 -0.1564 -0.1454 -0.1490 -0.1598 -0.1698 -0.1774

V0 0.0262 0.0246 0.0239 0.0230 0.0222 0.0209 0.0199

(25-� put vol)2 0.0257 0.0238 0.0228 0.0220 0.0210 0.0197 0.0186

(ATM vol)2 0.0228 0.0210 0.0202 0.0195 0.0185 0.0174 0.0164

(25-� call vol)2 0.0229 0.0214 0.0207 0.0201 0.0191 0.0179 0.0168

Max Rel. Error 2.89E-07 1.43E-07 1.45E-07 1.32E-07 8.79E-08 4.94E-08 1.12E-07

c1 -0.0121 -0.0168 -0.0220 -0.0424 -0.0610 -0.0766 -0.0907

c2 0.1144 0.1359 0.1562 0.2177 0.2634 0.2962 0.3250

c4 0.0006 0.0004 0.0013 0.0048 0.0109 0.0174 0.0286

L 16 16 16 16 16 16 16

b� a 3.6595 4.3488 4.9994 6.9665 8.4286 9.4770 10.3990

Table 2: Parameters calibrated to every single maturity of EUR/USD with � = 0:2 and

N = 256, market data in Table 38

The maximum relative error for each maturity � is de�ned as:

Max Rel. Error = max
1�i�3

����Cmodel(S;Ki; �)� Ci
Ci

���� (65)
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Period 0-6m 0-9m 0-1y 0-2y 0-3y 0-4y 0-5y

� 0.4421 0.4518 0.4854 0.5200 0.5946 0.6171 0.6738

� -0.1609 -0.1514 -0.1404 -0.1420 -0.1519 -0.1610 -0.1684

V0 0.0265 0.0250 0.0246 0.0236 0.0228 0.0214 0.0204

Max Rel. Error 7.12E-08 6.10E-08 5.10E-08 9.41E-08 1.02E-07 1.27E-07 1.03E-07

c1 -0.0121 -0.0170 -0.0224 -0.0431 -0.0619 -0.0776 -0.0918

c2 0.1152 0.1375 0.1587 0.2216 0.2686 0.3015 0.3309

c4 0.0001 0.0017 0.0018 0.0076 0.0195 0.0293 0.0470

L 16 16 16 16 16 16 16

b� a 3.6850 4.3988 5.0791 7.0915 8.5963 9.6490 10.5882

Table 3: Parameters calibrated to every single maturity of EUR/USD with � = 2 and N =

256, market data in Table 38

where Ci; i = 1; 2; 3 are the market data and Cmodel(S;Ki; �); i = 1; 2; 3 are the model outputs

using the calibrated parameters.

From Table 2 and Table 3, we see that in both cases, all the maturities can be calibrated

well. V0(= �) is closer to the square of the 25-� put volatility (less than 10% di�erence) than

that of the ATM volatility. � is not large as the EUR/USD market is not a severely skewed

one. When we increase � from 0.2 to 2, � and V0 change very slightly, but � increases with

�, as pointed out in section 5.2.

All the relative pricing errors are below 10�6 and each calibration is done within a couple

of seconds. This shows that the calibration method is fast and accurate in the single maturity

cases.

Period 0-6m 6m-9m 9m-1y 1y-2y 2y-3y 3y-4y 4y-5y

� 0.4421 0.1405 1.4122 0.4311 0.9182 0.5643 1.3646

� -0.1609 -0.0878 -0.0916 -0.2105 -0.1674 -0.2445 -0.2037

V0 0.0265

�=V0 1 0.1770 1.6070 0.8000 0.7735 0.5713 0.6519

Max Rel. Error 7.12E-08 1.58E-09 1.15E-08 4.06E-07 9.34E-08 8.05E-08 6.85E-08

c1 -0.0121 -0.0170 -0.0224 -0.0438 -0.0626 -0.0785 -0.0930

c2 0.1152 0.1372 0.1586 0.2259 0.2726 0.3066 0.3369

c4 0.0001 0.0008 0.0023 0.0142 0.0284 0.0471 0.0710

L 16 16 16 16 16 16 16

b� a 3.6850 4.3900 5.0757 7.2290 8.7236 9.8103 10.7813

Table 4: Parameters calibrated to multiple maturities of EUR/USD with � = 2 and N = 256,

market data in Table 38



The Heston model with term structure
Date: Page:
June 18, 2009 22

ini value 1 calibrated ini value 2 calibrated ini value 3 calibrated

� 1.3646 20 0.5643 20 1.4122 20

� -0.2037 0.99 -0.2444 0.99 -0.0916 0.99

�=V0 0.6519 0.2367 0.5713 0.2366 1.6070 0.2366

Table 5: Initial parameters tried for maturity 6y to calibrate that maturity in the multiple

maturity calibration of EUR/USD with � = 2 and N = 512, market data in Table 38

Next we calibrate to the multiple maturities, starting from 6-month till 5-year. We cal-

ibrate maturity by maturity. When the previous maturity is calibrated and the parameters

�xed, we calibrate to the market data of the next maturity and �nd the corresponding pa-

rameters. If we set � to 0.2, we �nd that the calibration fails when calibrating to the data

of the second maturity (i.e. 9-month). This shows that there is indeed a minimum on the

value of � in the stochastic case as well. As discussed in Section 5.3, when the volatility is

deterministic, we �nd � to be at least 2.3, but in the stochastic case, it has a di�erent range.

When we increase � to 2, we �nd that all the 7 maturities can be calibrated well (see Table

4). In this case, � for the second period is rather low, which shows that in compensation for

a low �, the level of the long term variance has to be reduced dramatically in order to reach

a lower volatility level at the second maturity. If we increase � to 5, � turns out to be around

0:6V0 in the second period.

For the calibrated parameters, we �nd L = 16 for all options and all maturities. This

shows that c4 is very small and can be omitted in the calibration of EUR/USD options.

The multiple maturities from 1-month to 5-year can also be calibrated, but in this case �

has to be set to 15, which seems somehow impractical.

However, when we try to calibrate to the maturities from 6m to 6y, we �nd that we cannot

get proper parameters for the last maturity (see Table 5). The calibrated parameters of several

previous maturities have been tried as the initial values for the last maturity. However, the

parameters will go to very extreme values (� to the upper bound we set and � to 1) no matter

we set N to 256 or 512, indicating failure in �nding the minimum. The resulting maximum

error is about 1%. This suggests that the successful calibration also depends on the market

data and the SDE model chosen.

6.2 USD/JPY market

Next we test the USD/JPY data listed in Table 39. Since USD/JPY market is a highly

skewed one, it can be tougher to handle than the EUR/USD market.

We still start tests on each single maturity. � is again set to 0.2 (see Table 6) and 2 (see

Table 7) respectively. In both cases, N = 256 works well for the �rst several maturities, but

for the last several maturities, N has to be increased to 512. This results from a larger c4 and

hence a larger value of L in the truncation range, bringing more computational burden. It
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Period 0-6m 0-9m 0-1y 0-2y 0-3y 0-4y 0-5y

� 0.2818 0.2614 0.2590 0.2125 0.2221 0.2536 0.2890

� -0.5448 -0.5684 -0.5888 -0.6349 -0.6767 -0.6763 -0.6874

V0 0.0151 0.0150 0.0155 0.0148 0.0157 0.0177 0.0198

(25-� put vol)2 0.0171 0.0169 0.0171 0.0164 0.0166 0.0172 0.0176

(ATM vol)2 0.0124 0.0117 0.0114 0.0103 0.0099 0.0100 0.0101

(25-� call vol)2 0.0098 0.0090 0.0086 0.0072 0.0065 0.0065 0.0064

Max Rel. Error 5.80E-08 1.49E-07 3.19E-07 7.28E-07 2.72E-06 1.81E-06 8.65E-07

c1 -0.0007 -0.0012 -0.0020 -0.0045 -0.0087 -0.0154 -0.0242

c2 0.0879 0.1083 0.1292 0.1829 0.2391 0.3055 0.3794

c4 -0.0002 0.0007 0.0014 0.0106 0.0441 0.1654 0.5327

L 16.00 16.00 16.00 16.00 16.00 16.70 18.01

b� a 2.81 3.46 4.13 5.85 7.65 10.20 13.67

N 256 256 256 256 512 512 512

Table 6: Parameters calibrated to every single maturity of USD/JPY with � = 0:2, market

data in Table 39

Period 0-6m 0-9m 0-1y 0-2y 0-3y 0-4y 0-5y

� 0.4134 0.4673 0.5641 0.7133 0.9906 1.3605 1.7376

� -0.5504 -0.5727 -0.5903 -0.6311 -0.6701 -0.6672 -0.6782

V0 0.0154 0.0156 0.0166 0.0162 0.0177 0.0201 0.0224

Max Rel. Error 1.36E-07 1.46E-06 9.01E-06 2.30E-05 1.20E-05 6.05E-06 7.28E-06

c1 -0.0007 -0.0014 -0.0025 -0.0059 -0.0116 -0.0201 -0.0306

c2 0.0890 0.1111 0.1351 0.1966 0.2649 0.3461 0.4351

c4 -0.0006 0.0013 0.0036 0.0296 0.1606 0.6846 2.2548

L 16 16 16 16.88 19.12 21.03 22.53

b� a 2.85 3.55 4.32 6.64 10.13 14.55 19.61

N 256 256 256 256 512 512 512

Table 7: Parameters calibrated to every single maturity of USD/JPY with � = 2, market

data in Table 39

thus suggests that we should consider a small value of � in the multiple-maturity calibration

in view of computational speed.

From Table 6, we can see that again V0(= �) are quite close to the square of the 25-� put

volatilities (about 10% di�erence). For long maturities, there are dramatic increases in the

values of � when we increase � from 0.2 to 2, which results in large c4. The errors are also

relatively large in the latter case.
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Period 0-6m 6m-9m 9m-1y 1y-2y 2y-3y 3y-4y 4y-5y

� 2 2 2 2 2 2 2

� 0.4134 1.0216 2.7734 0.7215 3.8857 15.1340 15.1983

� -0.5504 -0.6283 -0.7085 -0.8364 -0.8339 -0.7203 -0.7902

V0 0.0154

�=V0 1 1.3611 3.3761 0.8466 2.7452 7.8526 7.5280

Max Rel. Error 1.36E-07 3.85E-06 7.34E-05 2.41E-05 2.06E-05 4.20E-05 7.99E-04

c1 -0.0007 -0.0015 -0.0034 -0.0093 -0.0201 -0.0572 -0.1076

c2 0.0890 0.1119 0.1455 0.2325 0.3523 0.9418 1.6947

c4 0.0005 0.0022 0.0145 0.2151 2.3652 1316.72 16183.31

L 16 16 19.08 23.44 28.16 51.17 53.24

b� a 2.85 3.58 5.55 10.90 19.84 96.38 180.46

N 256 256 256 512 1024 2048 2048

Table 8: Parameters calibrated to multiple maturities of USD/JPY, � = 2, market data in

Table 39

Period 0-6m 6m-9m 9m-1y 1y-2y 2y-3y 3y-4y 4y-5y

� 2 2 2 2 1 0.5 0.5

� 0.4134 1.0216 2.7734 0.7215 2.2016 3.7831 3.3951

� -0.5504 -0.6283 -0.7085 -0.8364 -0.8282 -0.7041 -0.7976

V0 0.0154

�=V0 1 1.3611 3.3761 0.8466 3.0592 7.8223 6.6708

Max Rel. Error 1.36E-07 3.85E-06 7.34E-05 2.41E-05 8.83E-06 1.15E-05 7.23E-05

c1 -0.0007 -0.0015 -0.0034 -0.0093 -0.0183 -0.0398 -0.0724

c2 0.0890 0.1119 0.1455 0.2325 0.3283 0.5504 0.8990

c4 0.0005 0.0022 0.0145 0.2151 1.0720 22.90 278.32

L 16 16 19.08 23.44 24.80 31.80 36.34

b� a 2.85 3.58 5.55 10.90 16.28 35.00 65.35

N 256 256 256 512 1024 1024 1024

Table 9: Parameters calibrated to multiple maturities from 6m to 5y of USD/JPY, varying

�, market data in Table 39

When we calibrate to the multiple maturities, we have to be very careful in choosing �

in this case. For the �rst several periods, we need a relatively large � to match the volatility

term structure, but we need to decrease it in the later periods to avoid a very large truncation

range.

When we set � to 2 for all intervals, � turns out to be very large in the last several intervals
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(see Table 8). A very large N (at least 2048) is hence needed in COS pricing for the successful

calibration, which signi�cantly increases the time. Through trial and error, we decrease �

for the last 3 maturities as shown in Table 9 and manage to control the value of � within a

reasonable range. With N set to 256 in the �rst period and gradually increased to 1024 in

the last several periods, we get the parameters which produce relative errors less than 10�4.

The upper bound of N is set to 1024 in concern of the computation time.

We also try to calibrate from 6m to 10y. From Table 10, we see that for the maturity of 7y,

we do not obtain a good set of parameters (� and �=V0 become unreasonably large). Hence,

for this and consequent maturities, there are relatively large errors between the model output

and market data. Larger N has also been tried, but doesn't give a good set of parameters

either.

Period 0-6m 6m-9m 9m-1y 1y-2y 2y-3y 3y-4y

� 2 2 2 2 1 0.5

� 0.4134 1.0216 2.7734 0.7215 2.2016 3.7830

� -0.5504 -0.6283 -0.7085 -0.8364 -0.8282 -0.7041

V0 0.0154

�=V0 1 1.3611 3.3761 0.8466 3.0592 7.8221

Max Rel. Error 1.36E-07 3.85E-06 7.34E-05 2.41E-05 8.83E-06 1.19E-05

c1 -0.0007 -0.0015 -0.0034 -0.0093 -0.0183 -0.0398

c2 0.0890 0.1119 0.1455 0.2325 0.3283 0.5504

c4 0.0005 0.0022 0.0145 0.2151 1.0720 22.8984

L 16 16 19.08 23.44 24.80 31.80

b� a 2.85 3.58 5.55 10.90 16.28 35.00

N 256 256 256 512 1024 2048

Period 4y-5y 5y-6y 6y-7y 7y-8y 8y-9y 9y-10y

� 0.5 0.5 0.5 0.5 0.5 0.5

� 3.3799 3.3788 16.7917 1.9063 3.0063 12.3797

� -0.7975 -0.8045 -0.6602 -0.7139 -0.5648 -0.4686

�=V0 6.6418 7.1198 29.6627 7.7974 9.3465 38.4467

Max Rel. Error 1.46E-05 1.26E-05 1.50E-03 2.11E-02 3.71E-02 3.78E-02

c1 -0.0723 -0.1099 -0.1865 -0.2753 -0.3463 -0.4547

c2 0.8985 1.2761 2.3635 4.2620 5.6015 6.6733

c4 277.35 1322.32 39584 784900 2660684 5238217

L 36.34 37.80 47.74 55.87 57.68 57.35

b� a 65.29 96.48 225.68 476.24 646.20 765.45

N 2048 2048 2048 2048 2048 2048

Table 10: Parameters calibrated to multiple maturities from 6m to 10y of USD/JPY, varying

�, market data in Table 39 (Note: the parameters till 5y are the same as those in Table 9)
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7 Historic tests

In this section, we test our term structure Heston model by calibrating it to some historic

data spanning a whole year. In this way, we can see whether our model is su�ciently robust

in the calibration so as to be used in pricing exotic options. Before we do the historic tests,

we �rst perform some jump tests on the historic market data based on some test statistics to

see whether there are jumps or not in the data, since our model does not assume jumps.

7.1 Jump tests on market data

7.1.1 Jump tests in a discretely observed process

The problem of deciding whether the continuous-time process which models a �nancial time

series should have continuous paths or exhibit jumps is becoming an increasingly important

issue, in view of the high-frequency observations that are now widely available [20].

Two closely related but di�erent issues are to decide whether jumps are present or not

and to determine the impact of jumps on the overall variability of the observed process. Most

of the literature so far has concentrated on the second issue [20]. Until recently, Ait-Sahalia

and Jacod [20] propose a method to determine whether jumps are present or not in discretely

sampled processes. As the sampling interval tends to 0, the test statistic converges to 1 if

there are jumps, and to another deterministic and known value (such as 2) if there are no

jumps. We want to use their test method to see whether the Heston model (without jumps)

we choose is suitable for the EUR/USD and USD/JPY markets or not.

In the case where a large jump occurs, a simple glance at the data set might be su�cient

to decide on this issue, but small or medium sized jumps are much more di�cult to distinguish

visually. Hence, it is important to have some statistical methods.

Assume that X is an Itô semimartingale on some �ltered space (
;F ; (Ft)t�0;P):

Xt =X0 +

Z t

0
bsds+

Z t

0
�sdWs +

Z t

0

Z
E
g � �(s; x)(�� �)(ds; dx)

+

Z t

0

Z
E
g0 � �(s; x)�(ds; dx) (66)

where W is a Wiener process, � is a Poisson random measure on R+ � E with (E; E) an
auxiliary measurable space on the space (
;F ; (Ft)t�0;P) and the predictable compensator

(or intensity measure) of � is �(ds; dx) = ds
 �(dx) for some given �nite or �-�nite measure

on (E; E). Moreover g is a continuous function with compact support and g(x) = x on a

neighborhood of 0, and g0(x) = x� g(x).

�t is also an Ito semimartingale, of the form

�t =�0 +

Z t

0

ebsds+ Z t

0
e�sdWs +

Z t

0
e�0sdW 0

s +

Z t

0

Z
E
g � e�(s; x)(�� �)(ds; dx)

+

Z t

0

Z
E
g0 � e�(s; x)�(ds; dx) (67)
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where W 0 is another Wiener process independent of (W;�).

In addition, we write

�Xs = Xs �Xs� (68)

Clearly, �Xs = 0 for all s when X is continuous.

Our process X is discretely observed over a given time interval [0; t]. Suppose that X can

be observed at times i�n for all i = 0; 1; :::; [t=�n], where [�] is the ceil function. As n!1,

�n ! 0.

Now we de�ne a number of processes which all measure some kind of variability of X, or

perhaps its continuous and jump components separately, and depend on the whole (unob-

served) path of X:

A(p)t =

Z t

0
j�sjpds (69)

B(p)t = �s�tj�Xsjp (70)

where p is a positive number.

In the actual observations, let

�n
i X = Xi�n �X(i�1)�n

(71)

denote the observed discrete increments of X and de�ne for p > 0 the estimator

bB(p;�n)t = �
t=�n

i=1 j�n
i Xjp (72)

For r 2 (0;1), let

mr = E(jU jr) = ��1=22r=2�

�
r + 1

2

�
(73)

denote the rth absolute moment of a variable U � N(0; 1). We have the following convergences

in probability, locally uniform in t:8>>>>><>>>>>:
p > 2 ) bB(p;�n)t

P�! B(p)t

p = 2 ) bB(p;�n)t
P�! [X;X]t

p < 2 ) �
1�p=2
n
mp

bB(p;�n)t
P�! A(p)t

X is continuous ) �
1�p=2
n
mp

bB(p;�n)t
P�! A(p)t

(74)

where [X;X]t is the quadratic variation.

The intuition for the behavior of bB(p;�n)t is as follows. Suppose X can jump. While the

increments of X containing large jumps are much less frequent than those small ones, they

are so much bigger in magnitude that they overwhelm B(p) when p > 2, since large values

are magni�ed and small ones suppressed. When p is small (p < 2), the sum is driven by the

summation of the small increments since the magni�cation of the large jumps is not strong

enough to suppress all the other small ones. When p = 2, these two e�ects (magni�cation of
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the relatively few large increments vs. summation of many small increments) are of the same

magnitude. When X is continuous, there are no large jumps and we are in the same situation

as p < 2.

Based on this intuition, we see when p > 2 the limit of bB(p;�n)t does not depend on the

sequence �n going to 0, and it is strictly positive if X has jumps between 0 and t. On the

other hand, when X is continuous on [0; t], bB(p;�n)t converges again to a limit not depending

on �n, but only after a normalization which depends on �n.

We set bS(p; k;�n)t =
bB(p; k�n)tbB(p;�n)t

(75)

where k is an integer.

Let t > 0, p > 2 and k � 2. Then

bS(p; k;�n)t
P�! S(p; k)t =

(
1; on the set 
j

t

kp=2�1; on the set 
j
c (for p � 2 as well)

(76)

Therefore the test statistics will converge to 1 in the presence of jumps and, with the

selection of p = 4 and k = 2, to 2 in the absence of jumps.

The decision rule is de�ned by:(
X is discontinuous on [0; t]; if bS(p; k;�n)t < a

X is continuous on [0; t]; if bS(p; k;�n)t � a
(77)

for certain choice of a in the interval (1; kp=2 � 1).

7.1.2 Jump tests in EUR/USD and USD/JPY historic data

Now we apply the statistical method to the EUR/USD historic data. We take the FX spot

from Sep. 1, 1998 to Aug. 31, 2008.

In Table 11, we can see that when k is set to 2, bS(p; k;�n)t = 1:69, which is closer to

the limit 2 corresponding to the continuous case. So are the cases where k = 5 and k = 10.

Although we have not got the con�dence interval (which is quite complicated), we are quite

sure that the probability that there are no jumps in the EUR/USD market during that period

is high.

Next we apply the statistical method to the USD/JPY historic data. We also take the

FX spot from Sep. 1, 1998 to Aug. 31, 2008.

In Table 12, we can see that when k is set to 2, bS(p; k;�n)t = 0:52, well below the

theoretical limit 1, which corresponds to the discontinuous case. Clearly, jumps exist in the

USD/JPY spot process. This can be veri�ed when we set k = 5 and k = 10. The results

(2.02 and 2.18) are again far closer to the theoretic limit in the discontinuous case rather

than the continuous case. Hence even without the con�dence interval, we are quite sure that

the probability that there are jumps in the USD/JPY market during that period is high.
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Figure 1: EUR/USD spot from Sep. 1, 1998 to Aug. 31, 2008

p=4 k=1 k=2 k=5 k=10bB(p; k�n)t 2.19E-05 3.70E-05 7.48E-05 1.69E-04bB(p; k�n)t= bB(p;�n)t / 1.69 3.42 7.72

theoretic limit if continuous / 2 5 10

theoretic limit if discontinuous / 1 1 1

Table 11: The test statistics for EUR/USD historic data from Sep. 1, 1998 to Aug. 31, 2008

Therefore, models with jumps (e.g. Bates' model) might be preferred for USD/JPY market

instead of models without jumps (e.g. Heston model).

What is worth mentioning here is that we used historic data before the deterioration of

the current �nancial crisis. Since then, the FX market has become extremely volatile and

even EUR/USD has become an emerging-market-like currency. If we test the data in that

period, we think the results will very likely indicate jumps. However, since the size of the

sample space is too small, it might not be very meaningful from the statistics point of view.
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Figure 2: USD/JPY spot from Sep. 1, 1998 to Aug. 31, 2008

p=4 k=1 k=2 k=5 k=10bB(p; k�n)t 3.58E+04 1.85E+04 7.23E+04 7.81E+04bB(p; k�n)t= bB(p;�n)t / 0.52 2.02 2.18

theoretic limit if continuous / 2 5 10

theoretic limit if discontinuous / 1 1 1

Table 12: The test statistics for USD/JPY historic data from Sep. 1, 1998 to Aug. 31, 2008

7.2 Calibration using historic data

Since it seems that models without jumps might apply for the EUR/USD market, we calibrate

the TS Heston model to the EUR/USD historic data (the quotes of spot, ATM, 25-� RR and

25-� STR) to see whether the calibrations will be successful and whether the TS parameters

are stable.

We test on the EUR/USD historic data starting from Sep. 3, 2007 to Aug. 29, 2008.

Since the 9m market data are not available, we use maturities 6m, 1y, 2y, 3y, ..., 9y and 10y,

eleven maturities in total. Hence we have 11 periods in our term structure: period 1 (0 - 6m),
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period 2 (6m - 1y), period 3 (1y - 2y), ..., period 10 (8y - 9y) and period 11 (9y - 10y). Since

in the previous test, the calibration breaks down when we try to calibrate the period from 5y

to 6y, we expect similar results in the historic test as well.

Period No Num of days calibration fails Percentage

Period 1 (0 - 6m) 0 0.00%

Period 2 (6m - 1y) 0 0.00%

Period 3 (1y - 2y) 0 0.00%

Period 4 (2y - 3y) 2 0.78%

Period 5 (3y - 4y) 0 0.00%

Period 6 (4y - 5y) 43 16.67%

Period 7 (5y - 6y) 158 61.24%

Period 8 (6y - 7y) 5 1.94%

Period 9 (7y - 8y) 0 0.00%

Period 10 (8y - 9y) 2 0.78%

Period 11 (9y - 10y) 2 0.78%

Num of days calibration succeeds till �nal maturity

46 17.83%

Table 13: The periods where calibration breaks down

The calibration results do not go beyond our expectations. Of all the 258 trading days in

that year, calibration breaks down in period 7 (5y - 6y) on 158 days. The number of failures

in period 4 (2y - 3y) is 2, in period 6 (4y - 5y) is 43, in period 8 (6y - 7y) is 5, in period 10

(8y - 9y) is 2 and in period 11 (9y - 10y) is 2 as well. On the other days (46 in total), the

calibration is successful till the �nal maturity.

The results again suggest that the success of calibration depends on the market data. One

case that the calibration might break down is when the volatility surface is downward sloping

with time and there is some relatively large downward jump at certain long maturity. We

think that the large jump in the volatility level might require a very large mean reversion rate

(or a very low mean reversion level) and hence results in the failure of the calibration. In a

correspondence with Alberto Elices, the author of [4], he also agrees: \I agree with you that

not every possible market data might be calibrated with a Heston model with time dependent

parameters. The bootstrapping algorithm that is proposed in the paper does an optimization

of four parameters at each maturity. This calibration algorithm is not as good as doing a

global optimization across all maturities. If the data is wrong at some maturity, the following

maturities might not calibrate. A global calibration would improve that problem, but might

have other even worse problems. I guess that a jump in the term structure of volatility might

not be captured by Heston model. For the very short term, the literature mentions that it is

necessary to introduce jumps to �t market data."
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Since almost all the calibrations succeed until at least 4y maturity, we now study the TS

Heston parameters in the �rst �ve periods. We take out the two days on which calibration fails

in Period 4 and another day on which the parameters have too dramatic changes compared

with previous and later days. Hence, the total number of days in our plots is 255.

We show the plots of the correlation parameter in the �rst �ve periods in Figure 3. We

can see that generally the correlation in the later periods is larger in magnitude compared to

the previous ones. This corresponds well to the market data where the risk reversal is greater

in magnitude on the later maturities. Also the correlation values in the di�erent periods move

approximately in the same direction, which is again correspondent to the market data in which

the value of risk reversals in di�erent periods increase or decrease in the same direction.

The range of the correlation is around 0.25 in the �rst three periods: -0.2 to 0.05 in period

1, -0.22 to 0.02 in period 2, and -0.25 to 0 in period 3. In period 4 and period 5, the ranges

become much wider: -0.6 to 0.1 in the former and -0.5 to 0.1 in the latter. Hence we can

expect even wider range in the later periods which �nally drives the correlation into -1 and

results in the calibration failure. This is indeed the case in the next two periods where the

calibration breaks down on 201 of the 258 days (77.91%).

In Figure 4, we show the values of the mean reversion level in di�erent periods. We can

see that the mean reversion level in period 2 (6m - 1y) is generally the largest. When we

check the market data, we �nd that the At-the-Money volatility at the 1y maturity is on

most of the days higher than those of the other maturities and that the volatility surface has

a downward slope after that.

When we look at the mean reversion level in each period respectively, we observe the

phenomenon of volatility clustering in almost all the periods. Take the �rst sub-�gure as an

example. The mean reversion level �rst 
uctuates around a small value. Then on a certain

day it jumps to a larger value and 
uctuates around that for an number of days, which is

followed by another jump to an even larger value. This suggests that the market changes the

view at least twice on the future long term volatility level.

Finally we plot the volatility of variance (vol of vol) in Figure 5. From the sub-�gures,

it seems that vol of vol 
uctuates around a certain mean value. When we check the market

data, we �nd that the value of the strangles also 
uctuates around a certain mean value. This

is in agreement with the relationship between strangle and vol of vol.

In conclusion, we �nd that when the market data (ATM, RR or STR) change greatly with

the passage of time, the corresponding Heston parameters will also experience quite large

changes. Hence, we can only expect stable parameters when the market data remain stable.

Changing model parameters therefore requires us to take extra e�ort in hedging.
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Figure 3: Term structure parameters: correlation, calibrated to the EUR/USD historic market

data from Sep. 3, 2007 to Aug. 29, 2008
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Figure 4: Term structure parameters: mean reversion level, calibrated to the EUR/USD

historic market data from Sep. 3, 2007 to Aug. 29, 2008
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Figure 5: Term structure parameters: volatility of variance, calibrated to the EUR/USD

historic market data from Sep. 3, 2007 to Aug. 29, 2008
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8 Pricing exotic options

8.1 Exotic options in the FX market

8.1.1 Barrier options

In the FX market, there are many exotic options in addition to the vanilla options. The most

popular one is the barrier option. A barrier option is a type of option whose payo� not only

depends on the spot at the maturity, but on the underlying's crossing or reaching a given

barrier level as well. They can either be call or put, and American or European. \In" options

start their lives worthless and only become active when the knock-in barrier level is breached.

\Out" options start their lives active and become valueless when the knock-out barrier level

is breached. Using barrier options, the buyers can keep the premium at a lower level if they

are sure that the spot movement will be limited within a certain range.

The popularity of barrier options is due to the following reasons [7]:

1. They are cheaper than the vanilla options: the closer the spot is to the barrier, the

cheaper the knock-out option. Any price between zero and the vanilla premium can be

obtained by taking an appropriate barrier level. However, one must be aware that too cheap

barrier options are very likely to knock out and become valueless.

2. They allow FX risk exposure to be designed to meet special needs of customers.

Instead of lowering the premium, one can increase the nominal coverage of the vanilla option

by admitting a barrier. Some customers feel sure about barrier levels not being hit before

the maturity of the option and could exploit to lower the premium. Others could require a

knock-in option if they only want to cover their exchange rate exposure if the market moves

drastically.

3. The money saved on the lower premium can be used for another hedge of FX risk

exposure if the �rst barrier option happens to knock out.

4. The contract is easy to understand if one knows about vanillas.

5. Pricing and hedging barriers in the Black-Scholes model are well-understood and closed-

form solutions are available.

There are four main types of barrier options:

1. Up-and-out: spot starts below the barrier level and has to move up for the option to

be knocked out.

2. Down-and-out: spot starts above the barrier level and has to move down for the option

to be knocked out.

3. Up-and-in: spot starts below the barrier level and has to move up for the option to

become activated.

4. Down-and-in: spot starts above the barrier level and has to move down for the option

to become activated.
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In the Black-Scholes model, the analytic formula for pricing the barrier options exist [11].

Suppose H is the barrier level and K is the strike.

When the barrier level is lower than or equal to the strike, and the initial FX spot is

higher than the barrier level:

Cdown�in = S0e
�rfT

�
H

S0

�2m

N(y)�Ke�rdT
�
H

S0

�2m�2

N(y � �
p
T ) (78)

Pdown�in = �S0e�rfTN(�x1) +Ke�rdTN(�x1 + �
p
T ) + S0e

�rfT

�
H

S0

�2m

(N(y)�N(y1))

�Ke�rdT
�
H

S0

�2m�2

[N(y � �
p
T )�N(y1 � �

p
T )] (79)

When the barrier level is lower than or equal to the strike, and the initial FX spot is lower

than the barrier level:

Cup�in = CBS (80)

Pup�out = �S0e�rfTN(�x1) +Ke�rdTN(�x1 + �
p
T ) + S0e

�rfT

�
H

S0

�2m

N(�y1)

�Ke�rdT
�
H

S0

�2m�2

N(�y1 + �
p
T ) (81)

When the barrier level is greater than the strike, and the initial FX spot is higher than

the barrier level:

Cdown�out = S0e
�rfTN(x1)�Ke�rdTN(x1 � �

p
T )� Se�rfT

�
H

S0

�2m

N(y1)

�Ke�rdT
�
H

S0

�2m�2

N(y1 � �
p
T ) (82)

Pdown�in = PBS (83)

When the barrier level is greater than the strike, and the initial FX spot is lower than the

barrier level:

Cup�in = S0e
�rfTN(x1)�Ke�rdTN(x1 � �

p
T )� S0e

�rfT

�
H

S0

�2m

(N(�y)�N(�y1))

+Ke�rdT
�
H

S0

�2m�2

[N(�y + �
p
T )�N(�y1 + �

p
T )] (84)

Pup�in = �S0e�rfT
�
H

S0

�2m

N(�y) +Ke�rdT
�
H

S0

�2m�2

N(y + �
p
T ) (85)
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where

y =
ln(H2=S0K)

�
p
T

+m�
p
T (86)

m =
rd � rf + 0:5�2

�2
(87)

x1 =
ln(S0=H)

�
p
T

+m�
p
T (88)

y1 =
ln(H=S0)

�
p
T

+m�
p
T (89)

rd=f is continuously compounded zero rate for the domestic/foreign currency corresponding

to the maturity of the option, � is the volatility, S0 is the initial FX spot, T is the time to

the maturity, and N(x) is the cumulative normal distribution of x.

The prices of the other barrier options can be calculated according to the \in-out parity":

CBS = Cdown�out + Cdown�in (90)

CBS = Cup�out + Cup�in (91)

PBS = Pdown�out + Pdown�in (92)

PBS = Pup�out + Pup�in (93)

8.1.2 Double barrier options

One variation of the barrier option is the double barrier option. A double barrier option has

two barriers, one above and the other below the current spot price. The payo� depends on

whether the up-barrier or down-barrier is hit, or no breaching of either barrier throughout

the whole life of the option. A barrier is said to be of knock-out type if the resulting payo�

when hit is a rebate payment (the rebate amount may depend on the time of hitting and can

be zero), and knock-in type if the holder receives a new option (call or put) upon hitting.

The barrier feature may be applied over the whole life or a partial life of the option. A

great number of double barrier options can be designed to achieve a wide variety of risk

management functions through various structures. Like single barrier options, an investor

buying a double barrier option may use the more exotic forms of the double barrier feature

to achieve reduction in option premium, match investor's belief about the future movement

of the stock price process and/or match his speci�c hedging needs more [12].

In the Black-Scholes model, double barrier options also admit closed-form solutions (we

assume no rebate here) [13]. Suppose the payo�, (ea+ebS), is a linear function of the underlying
price S inside the interval [X1; X2] and zero elsewhere.

De�ne the following parameter set

� = (ea;eb;X1; X2; rd; rf ; �; T ) (94)
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where rd=f is continuously compounded zero rate for the domestic/foreign currency corre-

sponding to the maturity of the option, � is the volatility and T is the time to the maturity.

The value of the option is

V (S0;�) = eae�rdT [N(dX1

2 )�N(dX2

2 )] +ebS0e�rfT [N(dX1

1 )�N(dX2

1 )] (95)

where

d
(K)
1 =

log(S0=K) + (rd � rf )T

�
p
T

+
�
p
T

2
(96)

d
(K)
2 = d

(K)
1 � �

p
T (97)

and K 2 [X1; X2].

Standard call and put options can be regarded as special cases. Setting X1 = K, X2 =1,ea = �K and eb = 1 gives the price of a standard call option with strike K:

CBS(S0; X; rd; rf ; �; T ) = S0e
�rfTN(d1)�Ke�rdTN(d2) (98)

Similarly, setting X1 = 0, X2 = K, ea = K and eb = �1 yields the price of a standard put

option with strike K:

PBS(S0; X; rd; rf ; �; T ) = Ke�rdTN(�d2)� S0e
�rfTN(�d1) (99)

8.1.3 Discrete barrier options

For a discrete barrier option, whether the barrier is breached or not is checked at discrete times

(barrier dates). In practice most, if not all, barrier options traded in markets are discretely

monitored. In other words, they specify �xed times for monitoring of the barrier (typically

daily closings). Besides practical implementation issues, there are some legal and �nancial

reasons why discretely monitored barrier options are preferred to continuously monitored

barrier options. For example, some discussions in traders literature [22] pose the concern that,

when the monitoring is continuous, extraneous barrier breach may occur in less liquid markets

while the major western markets are closed, and may lead to certain arbitrage opportunities

[14].

8.1.4 Parisian options

A Parisian option is a barrier option where the barrier condition applies only when the price

of the underlying instrument has spent at least a given period of time on the "wrong" side of

the barrier. Hence, Parisian options are essentially a crossover between barrier options and

Asian options. They are similar to barrier option features in that they can be knocked in

or out depending on hitting a barrier from under or above; they di�er from standard barrier
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options in that short-lived spot spikes will not trigger the Parisian, and for the trigger to be

activated or extinguished, the asset must lie outside or inside the barrier for a predetermined

time period, t [17].

There are two di�erent kinds of Parisian options, cumulative and standard. For a cumu-

lative Parisian option, the payo� is dependent on the total amount of time the underlying

asset value has spent above or below a barrier level; for a standard Parisian option, the payo�

is dependent on the maximum amount of time the underlying asset value has spent consecu-

tively above or below a barrier level. Hence, all other parameters being equal, the standard

Parisian option is usually cheaper than the cumulative Parisian option.

For discrete Parisian options, the payo� does not depend on the total amount of time

but on the total number of barrier dates on which the underlying asset is above or below a

barrier level, and for the trigger to be activated or extinguished, the number must exceed the

maximum number of knocks, n. Thus, for a cumulative discrete Parisian option, the payo�

is dependent on the number of the longest sequence of consecutive barrier dates on which

the underlying asset value is above or below a barrier level; for a standard discrete Parisian

option, the payo� is dependent on the total number of barrier dates on which the underlying

asset value is above or below a barrier level. Similarly, all other parameters being equal, the

Standard Discrete Parisian option is usually cheaper than the Cumulative Discrete Parisian

option.

The discrete barrier option is a special case of the discrete Parisian option. When the

maximum number of knocks is equal to one, the discrete Parisian option becomes the discrete

barrier option. Hence, all other parameters being equal, the discrete Parisian option is usually

cheaper than the discrete barrier option.

8.2 Pricing exotic options using Monte Carlo

For discretely monitored options, closed-form solutions exist in some models. For example,

[15] applied the COS method on the discrete barrier options in the Black-Scholes, NIG (the

Normal Inverse Gaussian L�evy process) and CGMY [23] models. However, in the Heston

model, very few papers present the analytic solutions. One of them is [16]. They derive

multivariate characteristic functions depending on at least two spot values for di�erent points

in time. The derived characteristic functions are used as building blocks to set up (semi-)

analytical pricing formulas for exotic options with payo�s depending on �nitely many spot

values such as fader options and discretely monitored barrier options. This approach, although

feasible, is computationally quite complex.

We have tried to apply the COS method to the discretely monitored options in the Heston

model, but have not succeeded yet. The pricing results still have quite large errors. We put

our current results in Section 9 as a future research direction.

Hence, we still use the Monte Carlo simulation to price barrier options, but we propose

some new control variates which can signi�canlty reduce the variance. The pricing results are
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shown and compared in 8.5, which include results in ordinary Heston model and TS Heston

model, with control variates and without control variates.

8.3 Applying control variates for variance reduction in MC

In Monte Carlo simulation, variance reduction techniques are employed to increase the pre-

cision of the result, reduce the number of iterations needed to obtain a certain con�dence

interval and save simulation time. The main variance reduction techniques used are common

random numbers, antithetic sampling, control variates, importance sampling and strati�ed

sampling.

Control variates can be applied when we want to price an option and have an accurate

price (usually analytic formula) for another option, usually a highly correlated one.

8.3.1 Basic principles of control variates

Suppose we want to value an option Y , the price estimate given by Monte Carlo simulation

is

M = E[Y ] (100)

Suppose further that we have another option and its price process V is also driven by

the same random variables. It has mean value �v = E[V ]. Then instead of using Y as an

estimate for the original option we want to price, we replace it with

W = Y + c(V � �v) (101)

where c is a constant to be speci�ed so as to achieve the maximum reduction of variance.

Since E[W ] = E[Y ] =M , W is an unbiased estimate of Y and its variance is given by

V ar(W ) = V ar(Y ) + c2V ar(V ) + 2cCov(Y; V ) (102)

where Cov(Y; V ) is the covariance between Y and V .

Thus, in order to minimize V ar(W ), we set

c = �Cov(Y; V )
V ar(V )

(103)

Substitute this back into (102), we have

V ar(W ) = V ar(Y )� Cov2(Y; V )=V ar(V ) (104)

That is,
V ar(W )

V ar(Y )
= 1� Corr2(Y; V ) (105)

where Corr(Y; V ) is the correlation between Y and V .

Hence, the higher the correlation between the two options, the greater the variance re-

duction can be achieved.
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8.3.2 Using multiple control variates

Sometimes, using multiple control variates can further reduce the variance. Suppose V is a

combination of several options,

V =
nX
i=1

�iVi (106)

where �i are weights to be determined so as to achieve the maximum reduction of variance.

According to equation (101), the estimate of Y reads

W = Y + (V � E[V ]) (107)

We have

V ar(W ) = V ar(Y )+
nX
i=1

�2iV ar(Vi)+
nX
i=1

2�iCov(Y; Vi)+
nX
i=1

nX
j=1;i 6=j

2�i�jCov(Vi; Vj) (108)

Writing in matrix form, we have

V ar(W ) = V ar(Y ) + �TA�+ 2�T� (109)

where

� = (�1; �2; :::; �n)
T (110)

A =

266664
V ar(V1) Cov(V1; V2) ::: Cov(V1; Vn)

Cov(V1; V2) V ar(V2) ::: Cov(V2; Vn)
...

. . .
...

Cov(V1; Vn) : : : V ar(Vn)

377775 (111)

and

� = (Cov(Y; V1); Cov(Y; V2); :::; Cov(Y; Vn))
T (112)

Note that A is a symmetric matrix.

According to the matrix calculus, suppose that f(x) and g(x) are two vectors, we have

d(f(x)Tg(x))

dx
= g(x)T f 0(x) + f(x)Tg0(x) (113)

Hence, applying it to �TA�, we have

d(�TA�)

d�
= �TA+ �TAT = �T (A+AT ) (114)

Since A is a symmetric matrix, we have

d(�TA�)

d�
= 2�TA (115)
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To minimize the variance, we have

2�TA+ 2�T = 0

�TA = ��T
AT� = ��
� = �A�1� (116)

Substitute this back into (109), we have

V ar(W ) = V ar(Y )� �TA�1� (117)

That is
V ar(W )

V ar(Y )
= 1� �TA�1�=V ar(Y ) (118)

Equating it with equation (105), we obviously have

Corr2(Y; V ) = �TA�1�=V ar(Y ) (119)

When the correlations between the Vi are very low, A is close to a diagonal matrix. Then

�i = �Cov(Y; Vi)
V ar(Vi)

(120)

Substitute this back into (109), we have

V ar(W ) = V ar(Y )�
nX
i=1

Cov(Y; Vi)
2

V ar(Vi)
(121)

That is,

V ar(W )

V ar(Y )
= 1�

nX
i=1

Corr2(Y; Vi) (122)

Since we want to choose options which have high correlations with the option we want to price

as control variates, they usually have high correlations with each other. Hence we normally

cannot simplify (116) to (120) as in [10].

8.4 Pricing discrete barrier options using Monte Carlo with control vari-

ates

We now use the control variates for the Monte Carlo simulation to price the discrete barrier

option. The critical issue is to �nd another option as a control variate which has the highest

correlation with the discrete barrier option and can be priced analytically as well.

Chu [18] proposed several control variates for the discrete barrier option in the BS model:

1. Continuously monitored barrier options with the same barriers and the same strike
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The di�erence between the continuous barrier and discrete barrier is the observation fre-

quency. The continuously-monitored barrier option becomes valueless, as soon as the price

of the underlying asset reaches the barrier level during the life of the option. Hence, the-

oretically the price of the continuously-monitored barrier option is the lower bound for the

price of the discretely-monitored barrier option. As the number of observed dates increases,

their prices become much closer. Thus, the continuously-monitored barrier option is a better

control variate for the discretely-monitored barrier option when the number of observation

dates is large.

2. Portfolio of standard European options

Derman, Ergener and Kani [19] proposed the static options replication technique which

involves searching for a portfolio of standard European options that approximately replicate

the boundary condition satis�ed by the barrier option. The basic principle is that two port-

folios are worth the same at all interior points of the boundary if they are worth the same

on a certain boundary. Suppose T , K and B are the maturity, strike and barrier levels of

a discrete barrier option respectively and C(T;K) is a vanilla option with maturity T and

strike K. The portfolio could be only C(T;K), or C(T;K) and C(T;B), or C(T;K) and

C(Ti; B), where Ti are the speci�ed dates until maturity.

Chu [18] shows that continuously monitored barrier options perform much better than

portfolios of standard European options. However, we hardly �nd any analytic solution for

the continuous barrier option in the Heston model. Therefore, instead of using continuous

barrier options, we choose di�erent portfolios of European barrier options and European

options as control variates.

For a European barrier option, the barrier only exists at the maturity. Hence we can use

the COS method to price it. Suppose K is the strike, Rb is the rebate, L the lower barrier

and H the higher barrier of the discrete barrier options respectively. The payo� function for

a European double barrier option reads

v(y; T ) = fmax(�(ST �K); 0)�Rbg1fL<ST<Hg +Rb

= f[� �K(ey � 1)]+ �Rbg1fhdown<y<hupg +Rb (123)

where � = 1 for a call, � = �1 for a put, y = log(ST =K), hdown = log(L=K) and hup =

log(H=K).

De�ne the cosine series coe�cients, �k, of g(y) = ey on [c; d] � [a; b] which is known

analytically as shown in equation (22) in [3]:

�k(c; d) :=

Z d

c
eycos

�
k�
y � a

b� a

�
dy

=
1

1 +
�

k�
b�a

�2 �cos�k�d� a

b� a

�
ed � cos

�
k�
c� a

b� a

�
ec

k�

b� a
sin

�
k�
d� a

b� a

�
ed � k�

b� a
sin

�
k�
c� a

b� a

�
ec
�

(124)
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and the cosine series coe�cients,  k, of g(y) = 1 on [c; d] � [a; b] which is also known

analytically as shown in equation (23) in [3]:

 k(c; d) :=

Z d

c
cos

�
k�
y � a

b� a

�
dy

=

( h
sin

�
k� d�ab�a

�
� sin

�
k� c�ab�a

�i
b�a
k� k 6= 0

d� c k = 0
(125)

Hence, according to the de�nition of Vk in (37), we have

Vk =
2

b� a
�K [�k(x1; x2)�  k(x1; x2)] +

2

b� a
Rb [ k(a; x3) +  k(x4; b)] (126)

where x1 = maxfa; hdown; 0g, x2 = minfb; hupg for a call, and x1 = maxfa; hdowng, x2 =

minfb; hup; 0g for a put. For both call and put, x3 = maxfa; hdowng and x4 = minfb; hupg.
Substitute (126) into (40) to get the semi-analytic value for the European barrier option.

This paves the way to use European barrier options as control variates.

Suppose that TBi are the barrier dates and T is the maturity date. Further suppose that

CB(T;K;L;H) (PB(T;K;L;H)) and C(T;K) (P (T;K)) are European barrier call (put) op-

tion and European call (put) option respectively. The control variates portfolios we try for

the discrete barrier call options are:

1. CB(T;K;L;H)

2. CB(T;K;L;H) and CB(TBi ;K; L;H)

3. CB(T;K;L;H), C(TBi ; H) and P (TBi ; L)

4. CB(T;K;L;H), C(TBi ; L) and P (T
B
i ; H)

5. CB(T;K;L;H) and C(TBi ;K)

6. CB(T;K;L;H), C(TBi ;K) and P (TBi ;K)

7. CB(T;K;L;H), CB(TBi ;K; L;H) and PB(TBi ;K; L;H)

We have found in the tests that by using European barrier option CB(T;K;L;H) alone,

the variance is already greatly reduced (between 6% and 66% depending on the options

and market data). By including more options, either European barrier options or European

options, we can further reduce the variance by a small percentage, but this involves calculating

the variance and covariance between all the control variants and the discrete barrier option.

In the tests, we have also found that the mean values of the control variate deviate from

their analytic values for some options (even when the number of paths is very large), which

makes the MC simulation results with CV di�er from those without. Theoretically, by the law

of large numbers, this method will display 1=
p
N convergence. The di�erence suggests certain

problem in the MC simulation, and we think it might be the negative volatility caused by the

Euler discretization when the Feller condition does not satisfy (which is often the case). For

example, for a 5-year option, the fraction of negative volatility could be as high as nearly 40%.

Hence, by including the CV, we think we could not only reduce the variance, but eliminate

the bias in the expectation of the MC simulation result as well.
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In all the tests, the parameters we use are the ones calibrated to the market data shown

in table 38. The mean reversion rate, �, is set to 2 in all the cases. The variance reduction

achieved is calculated by

Var with CV�Var without CV

Var without CV
� 100% (127)

We �rst test on the one-year discrete (double) barrier call options with di�erent strikes,

both with term structure and without term structure. The number of barrier dates is set to

24 (set on the 2nd and 9th day of each month). From Table 14 and Table 15, we can see

that using a European barrier option with one-year maturity (Portfolio 1) alone has already

greatly reduce the variance, on average by 43.34% in the ordinary Heston and 42.41% in the

TS Heston. By including more options with maturities on each barrier date, we can further

reduce the variance, but only by a small percentage. We can see that from Portfolio 2 to

Portfolio 7, Portfolio 2 (European barrier options with strike K on each barrier date) and

Portfolio 7 (both European call and put options with strike K on each barrier date) achieve

a slightly better variance reduction than the other 4 portfolios. However, by including more

options in the control variates, the time to compute the mean and covariance matrix of the

options also increases dramatically (on the order of N2). It is not worth spending much time

in order to achieve a slight improvement.

We can also see that when the barrier level becomes closer to the spot, the variance

reduction also becomes smaller. This is because the closer the barrier level is to the spot, the

higher the chance that the underlying will breach a barrier on one of the barrier dates but

ends within the barriers at maturity. This greatly reduces the e�ect of control variates.

L H K Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 Portfolio 6 Portfolio 7

1 1.6 1.2 -65.54% -68.18% -66.49% -66.99% -67.08% -67.74% -68.31%

1 1.5 1.2 -49.73% -53.41% -51.67% -52.92% -53.05% -54.16% -53.46%

1 1.4 1.2 -22.53% -27.29% -25.44% -29.30% -29.29% -30.51% -27.65%

1.2 1.6 1.2 -58.41% -62.46% -59.54% -59.72% -59.02% -59.42% -62.46%

1.2 1.5 1.2 -44.58% -50.39% -46.40% -46.62% -45.55% -46.30% -50.39%

1.2 1.4 1.2 -19.26% -26.24% -21.64% -23.17% -34.39% -23.82% -26.24%

Average -43.34% -48.00% -45.20% -46.45% -48.06% -46.99% -48.09%

Num of Options 1 24 48 48 24 48 48

Table 14: The percentage of variance reduction achieved using di�erent control variates port-

folios for discrete (double) barrier call options with 24 barrier dates (two per month) and

1-year maturity in (ordinary) Heston model. The spot FX is 1.3621.

Next we test on �ve-year discrete (double) barrier call options with di�erent strikes, both

with term structure and without term structure. The number of barrier dates is set to 5 (one

barrier date per year). From Table 16 and Table 17, we can see again that using European

barrier option with �ve-year maturity (Portfolio 1) alone has already greatly reduced the

variance, by average 42.17% in ordinary Heston and 44.25% in TS Heston. Again, using
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L H K Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 Portfolio 6 Portfolio 7

1 1.6 1.2 -65.33% -67.05% -66.81% -67.44% -67.17% -67.91% -67.20%

1 1.5 1.2 -48.90% -51.44% -50.86% -52.47% -52.49% -53.73% -51.50%

1 1.4 1.2 -21.06% -25.74% -24.02% -27.88% -27.69% -27.69% -26.15%

1.2 1.6 1.2 -58.03% -61.55% -59.64% -59.51% -58.53% -59.02% -61.55%

1.2 1.5 1.2 -43.39% -48.20% -45.25% -45.52% -44.35% -45.25% -48.20%

1.2 1.4 1.2 -17.78% -24.90% -20.16% -21.50% -21.05% -17.73% -24.90%

Average -42.41% -46.48% -44.46% -45.72% -45.21% -45.22% -46.58%

Num of Options 1 24 48 48 24 48 48

Table 15: The percentage of variance reduction achieved using di�erent control variates port-

folios for discrete (double) barrier call options with 24 barrier dates (two per month) and

1-year maturity in TS Heston model. The spot FX is 1.3621.

the other portfolios can further reduce the variance, but only by a small percentage, where

portfolio 2 (European barrier options with strike K on each barrier date) and portfolio 7 (both

call and put options with strike K on each barrier date) perform slightly better.

We can see that the level of variance reduction in this case is similar to the previous case,

although there are only �ve barrier dates (when there is only one, the variance reduction

should be 100%). This shows that for options with long term maturities, the e�ect of control

variates gradually reduces.

L H K Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 Portfolio 6 Portfolio 7

1 1.6 1.2 -63.02% -64.76% -63.56% -64.14% -64.51% -65.07% -64.92%

1 1.5 1.2 -50.04% -52.06% -50.87% -51.74% -52.23% -52.83% -52.55%

1 1.4 1.2 -31.61% -33.83% -32.52% -33.42% -33.80% -34.16% -34.79%

1.2 1.6 1.2 -51.15% -55.88% -51.70% -51.75% -51.35% -51.69% -55.88%

1.2 1.5 1.2 -37.56% -43.45% -38.25% -38.37% -38.03% -38.46% -43.45%

1.2 1.4 1.2 -19.62% -25.50% -20.18% -20.37% -20.24% -20.52% -25.50%

Average -42.17% -45.91% -42.85% -43.30% -43.36% -43.79% -46.18%

Num of Options 1 5 10 10 5 10 10

Table 16: The percentage of variance reduction achieved using di�erent control variates port-

folios for discrete (double) barrier call options with 5 barrier dates (one per year) and 5-year

maturity in (ordinary) Heston model. The spot FX is 1.3621.

Finally we test on �ve-year discrete (double) barrier call options with di�erent strikes,

both with term structure and without term structure. The number of barrier dates is set

to 20 (one barrier date per 3 months). From Table 18 and Table 19, we can see again that

most of the variance reduction is achieved by the European barrier option with �ve-year

maturity (Portfolio 1), on average by 26.33% without term structure and by 27.54% with

term structure. Again Portfolio 2 (European barrier options with strike K on each barrier

date) and Portfolio 7 (both call and put options with strike K on each barrier date) perform
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L H K Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 Portfolio 6 Portfolio 7

1 1.6 1.2 -63.83% -65.77% -64.40% -64.93% -65.23% -65.83% -65.90%

1 1.5 1.2 -51.91% -54.18% -52.83% -53.88% -54.98% -54.34% -54.65%

1 1.4 1.2 -34.93% -37.43% -35.96% -37.26% -37.44% -37.84% -38.44%

1.2 1.6 1.2 -53.97% -58.90% -54.59% -54.63% -54.18% -54.63% -58.90%

1.2 1.5 1.2 -40.26% -46.44% -41.07% -41.23% -40.88% -41.43% -46.44%

1.2 1.4 1.2 -20.60% -27.42% -21.29% -21.37% -21.18% -21.57% -27.42%

Average -44.25% -48.36% -45.02% -45.55% -45.65% -45.94% -48.63%

Num of Options 1 5 10 10 5 10 10

Table 17: The percentage of variance reduction achieved using di�erent control variates port-

folios for discrete (double) barrier call options with 5 barrier dates (one per year) and 5-year

maturity in TS Heston model. The spot FX is 1.3621.

L H K Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 Portfolio 6 Portfolio 7

1 1.6 1.2 -47.30% -49.36% -48.15% -48.98% -49.33% -50.31% -49.44%

1 1.5 1.2 -33.43% -35.29% -34.34% -35.55% -35.93% -36.89% -35.36%

1 1.4 1.2 -16.03% -17.50% -16.85% -18.15% -18.30% -18.81% -18.11%

1.2 1.6 1.2 -33.63% -38.04% -34.37% -34.43% -33.91% -34.29% -38.04%

1.2 1.5 1.2 -20.89% -25.10% -21.51% -21.65% -21.28% -21.71% -25.10%

1.2 1.4 1.2 -6.73% -9.38% -7.05% -7.15% -7.03% -7.22% -9.38%

Average -26.33% -29.11% -27.05% -27.65% -27.63% -28.21% -29.24%

Num of Options 1 20 40 40 20 40 40

Table 18: The percentage of variance reduction achieved using di�erent control variates port-

folios for discrete (double) barrier call options with 20 barrier dates (one per 3 months) and

5-year maturity in (ordinary) Heston model. The spot FX is 1.3621.

L H K Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 Portfolio 6 Portfolio 7

1 1.6 1.2 -50.21% -51.84% -50.93% -52.03% -52.34% -53.18% -51.91%

1 1.5 1.2 -34.84% -36.28% -36.04% -37.86% -38.21% -39.15% -36.56%

1 1.4 1.2 -17.04% -17.99% -18.22% -20.19% -20.26% -20.91% -18.65%

1.2 1.6 1.2 -36.27% -40.47% -36.92% -37.00% -36.50% -36.81% -40.47%

1.2 1.5 1.2 -20.96% -25.36% -21.72% -21.86% -21.39% -21.79% -25.36%

1.2 1.4 1.2 -5.93% -8.25% -6.37% -6.58% -6.43% -6.72% -8.25%

Average -27.54% -30.03% -28.37% -29.25% -29.19% -29.76% -30.20%

Num of Options 1 20 40 40 20 40 40

Table 19: The percentage of variance reduction achieved using di�erent control variates port-

folios for discrete (double) barrier call options with 20 barrier dates (one per 3 months) and

5-year maturity in TS Heston model. The spot FX is 1.3621.

slightly better than the other portfolios.

When the number of barrier dates is increased from 5 to 20, the amount of variance
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reduction achieved is reduced. Hence for options with long maturities and many barrier

dates, it is better to use other control variates (say continuous barrier options), but the

problem then lies in the derivation of the analytic formula.

We also list the standard deviation in Table 20 to 22 as a reference. This can be used to

calculate the con�dence interval of our estimate.

L H K
Heston TS Heston

std std (with CV) std std (with CV)

1 1.6 1.2 0.106921 0.062768 0.107494 0.063297

1 1.5 1.2 0.084117 0.059638 0.082998 0.059328

1 1.4 1.2 0.040919 0.036016 0.039185 0.034815

1.2 1.6 1.2 0.108496 0.069970 0.108783 0.070475

1.2 1.5 1.2 0.083652 0.062277 0.082160 0.061818

1.2 1.4 1.2 0.038306 0.034419 0.036385 0.032993

Table 20: The standard deviation of Monte Carlo simulation with 10000 paths with and

without CV for discrete (double) barrier call options with 24 barrier dates (two per month)

and 1-year maturity in (ordinary) Heston and TS Heston model. The spot FX is 1.3621.

L H K
Heston TS Heston

std std (with CV) std std (with CV)

1 1.6 1.2 0.087622 0.053286 0.086606 0.052087

1 1.5 1.2 0.057920 0.040937 0.058044 0.040251

1 1.4 1.2 0.027803 0.022992 0.028619 0.023085

1.2 1.6 1.2 0.083193 0.058148 0.083348 0.056551

1.2 1.5 1.2 0.052359 0.041375 0.053198 0.041119

1.2 1.4 1.2 0.022393 0.020076 0.022658 0.020189

Table 21: The standard deviation of Monte Carlo simulation with 10000 paths with and

without CV for discrete (double) barrier call options with 5 barrier dates (two per month)

and 5-year maturity in (ordinary) Heston and TS Heston model. The spot FX is 1.3621.

In conclusion, we think that using European Barrier options with the same maturity as

the original discrete barrier option can signi�cantly reduce the variance, and we do not intend

to include more options in the control variates. When the maturity of the option is short and

the number of barrier dates is small, the e�ect of variance reduction is most signi�cant.
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L H K
Heston TS Heston

std std (with CV) std std (with CV)

1 1.6 1.2 0.078698 0.057132 0.080300 0.056662

1 1.5 1.2 0.049368 0.040278 0.050292 0.040596

1 1.4 1.2 0.020314 0.018615 0.021195 0.019305

1.2 1.6 1.2 0.070519 0.057450 0.072592 0.057949

1.2 1.5 1.2 0.040610 0.036120 0.040819 0.036289

1.2 1.4 1.2 0.013258 0.012804 0.012774 0.012390

Table 22: The standard deviation of Monte Carlo simulation with 10000 paths with and

without CV for discrete (double) barrier call options with 20 barrier dates (one per 3 months)

and 5-year maturity in (ordinary) Heston and TS Heston model. The spot FX is 1.3621.

8.5 Simulation results using Monte Carlo with control variates

Now we will show the simulation results both with and without control variates and then

compare the prices given by the ordinary Heston model and the TS Heston model.

In all the tests, we still use the parameters calibrated to the market data shown in Table

38. The mean reversion rate, �, is again set to 2 in all the cases. The relative error (rel.

error) is calculated by

Rel. Error =
CMC � Cref

Cref
� 100% (128)

where CMC is the MC simulation price of the option and Cref is its reference value, either

the analytic one or the MC simulation result with a signi�cant number of paths.

In the tests, we �nd that there are some discrepancy between the results given by MC

simulation with control variates and those without. Since the di�erences can only come from

the control variates we have added, we �rst check their prices.

In Table 23 to 26, we can see that the MC simulation converges very slowly. For 1y

European barrier options in TS Heston model (Table 24), the price seems not to converge at

all. We suspect that it is because there is dramatic changes in the parameters and the Feller

condition does not satisfy. Hence, we try to price the same European barrier options, but

with smaller volatility of variance.

In Table 27, we show the simulation results of 1y European barrier options in TS Heston

model with vol of vol parameters reduced by 50%. Although only the parameters of the

�rst two periods (0-6m and 6m-9m) satisfy the Feller condition now, the fraction of negative

volatility has already be greatly reduced from 0.179256 to 0.049603. The MC simulation

results now converge to the analytic prices.

For the other cases where the MC simulation results converge, changing the parameters

to make them Feller condition complied does not make much di�erence in the convergence.

Therefore, in certain cases where there are discrepancies between MC simulation results
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L H K Num of MC paths price relative error

10000 0.122652 0.98%

1 1.6 1.2 400000 0.121596 0.11%

analytical 0.121458

10000 0.0896013 1.61%

1 1.5 1.2 400000 0.0881844 0.00%

analytical 0.0881824

10000 0.0445847 1.83%

1 1.4 1.2 400000 0.0436045 -0.41%

analytical 0.043782

Table 23: The MC price and analytic price of 1y European barrier call options in (ordinary)

Heston model. The fraction of negative volatility in the simulation paths is 0.117607.

L H K Num of MC paths price relative error

10000 0.121035 -0.36%

1 1.6 1.2 400000 0.120582 -0.73%

analytical 0.121474

10000 0.0869643 -1.40%

1 1.5 1.2 400000 0.0868087 -1.58%

analytical 0.0882015

10000 0.0431554 -1.36%

1 1.4 1.2 400000 0.0428222 -2.12%

analytical 0.0437519

Table 24: The MC price and analytic price of 1y European barrier call options in TS Heston

model. The fraction of negative volatility in the simulation paths is 0.179256.

and analytic values (say when the parameters undergo great changes from one period to

another), using control variates not only reduces the variance of the simulation results, but

somehow eliminates their biases as well.

Now we show the pricing results. As we have mentioned before, there are quite large

di�erences between the simulation results with and without CV for discrete (double) barrier

call options with 24 barrier dates (two per month) and 1-year maturity in TS Heston model,

even if the number of paths is set to 400000 (see Table 29). This is due to the simulation

errors in the CV, which we think should also exist in the simluation of the original Barrier

options. Hence, we think that the MC results with CV are closer to the accurate results since

the CV help to eliminate the biases.

We calculate the relative errors by taking the MC results of 400000 paths without CV
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L H K Num of MC paths price relative error

10000 0.0547018 1.79%

1 1.6 1.2 400000 0.0538528 0.21%

analytical 0.053738

10000 0.0409117 -1.03%

1 1.5 1.2 400000 0.0413376 0.00%

analytical 0.0413358

10000 0.0196083 -0.96%

1 1.4 1.2 400000 0.0197339 -0.33%

analytical 0.0197988

Table 25: The MC price and analytic price of 5y European barrier call options in (ordinary)

Heston model. The fraction of negative volatility in the simulation paths is 0.348872.

L H K Num of MC paths price relative error

10000 0.0646294 -0.69%

1 1.6 1.2 400000 0.0649998 -0.12%

analytical 0.0650767

10000 0.0412277 -0.14%

1 1.5 1.2 400000 0.0411992 -0.21%

analytical 0.0412868

10000 0.0200192 1.24%

1 1.4 1.2 400000 0.0197585 -0.08%

analytical 0.0197747

Table 26: The MC price and analytic price of 5y European barrier call options in TS Heston

model. The fraction of negative volatility in the simulation paths is 0.394043.

as reference values. In Table 28 to 33, we see that all the simulation results without CV

converges, but at a very slow rate. The number of paths need to be set to at least 50000

to get an accurate enough result. For the simulation results with CV, they do not always

converge to the reference values we take, sometimes with relative errors of around 1%. But

we think they give more accurate results.

One problem we �nd is that using CV sometimes slows the convergence of simulation

result, especially in the (ordinary) Heston model. For example, for discrete (double) barrier

call options with 24 barrier dates and 1-year maturity in Table 28, the di�erences between

results with 50000 paths and 400000 paths for MC with CV are in most cases larger than

MC without. We suspect that it is because the Feller condition does not satisfy. Hence, we

make the vol of vol parameters four times smaller (all the parameters are kept unchanged)



The Heston model with term structure
Date: Page:
June 18, 2009 53

L H K Num of MC paths price relative error

10000 0.113813 0.18%

1 1.6 1.2 400000 0.113758 0.13%

analytical 0.113614

10000 0.0769338 -0.69%

1 1.5 1.2 400000 0.0775061 0.05%

analytical 0.0774649

10000 0.0376636 -0.46%

1 1.4 1.2 400000 0.0378453 0.02%

analytical 0.0378376

Table 27: The MC price and analytic price of 1y European barrier call options in TS Heston

model. The vol of vol parameters are reduced by half. The fraction of negative volatility in

the simulation paths is 0.049603.

and price the same options again. Now the Feller condition satis�es. From Table 34, we can

see that there is indeed faster convergence in the simulation results.

Finally we compare the prices given by ordinary Heston model and TS Heston model.

From Table 35 to 37, we can see that when the barrier level is close to the current FX spot,

the di�erences between the prices given by two models become quite large for all the options.

Hence, we think that the prices of the barrier options with high chances of knock out are

a�ected most by the model we choose.
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L H K MC paths without CV rel. error with CV rel. error

1 1.6 1.2 5000 0.106641 1.24% 0.105571 0.22%

10000 0.106396 1.01% 0.105474 0.13%

50000 0.105405 0.06% 0.105136 -0.19%

400000 0.105337 0.105230 -0.10%

1 1.5 1.2 5000 0.0639071 -0.03% 0.0636669 -0.41%

10000 0.0657609 2.87% 0.0648543 1.45%

50000 0.063829 -0.15% 0.0638788 -0.07%

400000 0.0639262 0.0639250 0.00%

1 1.4 1.2 5000 0.0164407 1.93% 0.0161899 0.38%

10000 0.0166759 3.39% 0.0164255 1.84%

50000 0.0161817 0.33% 0.0162892 0.99%

400000 0.016129 0.0161839 0.34%

1.2 1.6 1.2 5000 0.0979302 1.88% 0.0968950 0.81%

10000 0.0971613 1.08% 0.0962780 0.16%

50000 0.0961731 0.06% 0.0959152 -0.21%

400000 0.0961194 0.0960170 -0.11%

1.2 1.5 1.2 5000 0.0570276 0.19% 0.0568009 -0.21%

10000 0.0587693 3.25% 0.0579158 1.75%

50000 0.0569117 -0.02% 0.0569584 0.07%

400000 0.0569211 0.0569199 0.00%

1.2 1.4 1.2 5000 0.0132047 2.32% 0.0129909 0.66%

10000 0.0135648 5.11% 0.0133480 3.43%

50000 0.0130648 1.24% 0.0131570 1.95%

400000 0.0129053 0.0129520 0.36%

Table 28: The MC simulation with and without control variates (European barrier with the

same maturity) for discrete (double) barrier call options with 24 barrier dates (two per month)

and 1-year maturity in (ordinary) Heston model. The spot FX is 1.3621. The MC simulation

results of 400000 paths without CV are used as reference values.
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L H K MC paths without CV rel. error with CV rel. error

1 1.6 1.2 5000 0.105665 1.86% 0.105062 1.28%

10000 0.104448 0.69% 0.104785 1.01%

50000 0.103923 0.18% 0.104573 0.81%

400000 0.103734 0.104415 0.66%

1 1.5 1.2 5000 0.0632405 2.12% 0.0635905 2.68%

10000 0.0627991 1.40% 0.0635751 2.66%

50000 0.0618218 -0.17% 0.0627669 1.35%

400000 0.0619301 0.0627863 1.38%

1 1.4 1.2 5000 0.0155787 0.70% 0.0158266 2.30%

10000 0.0153124 -1.02% 0.0154863 0.10%

50000 0.0154169 -0.35% 0.0157376 1.73%

400000 0.0154704 0.0157514 1.82%

1.2 1.6 1.2 5000 0.0963627 2.13% 0.0957875 -0.35%

10000 0.0951182 0.81% 0.0954397 -0.71%

50000 0.0943931 0.04% 0.0950109 -1.15%

400000 0.0943552 0.0950047 -1.16%

1.2 1.5 1.2 5000 0.0561794 0.12% 0.0565063 0.70%

10000 0.0556682 -0.79% 0.0563917 0.50%

50000 0.0547575 -2.41% 0.0556381 -0.84%

400000 0.0561119 0.0561459 0.06%

1.2 1.4 1.2 5000 0.0125195 2.22% 0.0127315 3.95%

10000 0.0122073 -0.33% 0.0123557 0.88%

50000 0.0122141 -0.28% 0.0124839 1.93%

400000 0.0122479 0.0124837 1.93%

Table 29: The MC simulation with and without control variates (European barrier with the

same maturity) for discrete (double) barrier call options with 24 barrier dates (two per month)

and 1-year maturity in TS Heston model. The spot FX is 1.3621. The MC simulation results

of 400000 paths without CV are used as reference values.
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L H K MC paths without CV rel. error with CV rel. error

1 1.6 1.2 5000 0.0495362 -1.09% 0.0487641 -2.63%

10000 0.050714 1.26% 0.0493721 -1.42%

50000 0.0501668 0.17% 0.0499923 -0.18%

400000 0.0500829 0.0498942 -0.38%

1 1.5 1.2 5000 0.0262222 0.87% 0.0256599 -1.29%

10000 0.0261654 0.65% 0.0257096 -1.10%

50000 0.02594 -0.21% 0.0260340 0.15%

400000 0.0259953 0.0259306 -0.25%

1 1.4 1.2 5000 0.00807969 2.13% 0.00791230 0.01%

10000 0.00784631 -0.82% 0.00771493 -2.48%

50000 0.00773448 -2.23% 0.00779431 -1.48%

400000 0.00791123 0.00796900 0.73%

1.2 1.6 1.2 5000 0.0401638 -2.11% 0.0394994 -3.73%

10000 0.0413728 0.84% 0.0402249 -1.96%

50000 0.0412637 0.57% 0.0411132 0.21%

400000 0.0410288 0.0408665 -0.40%

1.2 1.5 1.2 5000 0.0192344 -1.34% 0.0187987 -3.58%

10000 0.0195614 0.34% 0.0192043 -1.49%

50000 0.0195914 0.49% 0.0196663 0.87%

400000 0.0194957 0.0194445 -0.26%

1.2 1.4 1.2 5000 0.00469243 3.32% 0.00458750 1.01%

10000 0.00466201 2.65% 0.00457865 0.82%

50000 0.00451928 -0.49% 0.00455673 0.34%

400000 0.0045415 0.00457666 0.77%

Table 30: The MC simulation with and without control variates (European barrier with the

same maturity) for discrete (double) barrier call options with 5 barrier dates (one per year)

and 5-year maturity in (ordinary) Heston model. The spot FX is 1.3621. The MC simulation

results of 400000 paths without CV are used as reference values.
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L H K MC paths without CV rel. error with CV rel. error

1 1.6 1.2 5000 0.0508058 2.54% 0.0503171 1.56%

10000 0.0501294 1.18% 0.0498881 0.69%

50000 0.0496772 0.27% 0.0498101 0.53%

400000 0.0495458 0.0495739 0.06%

1 1.5 1.2 5000 0.0272326 4.75% 0.0267253 2.80%

10000 0.026663 2.56% 0.0264979 1.93%

50000 0.0261965 0.77% 0.0262036 0.80%

400000 0.0259966 0.0260614 0.25%

1 1.4 1.2 5000 0.00886097 2.34% 0.00855420 -1.21%

10000 0.00876139 1.19% 0.00868838 0.34%

50000 0.00871627 0.67% 0.00867524 0.19%

400000 0.00865865 0.00869507 0.42%

1.2 1.6 1.2 5000 0.0420043 2.56% 0.0415758 1.52%

10000 0.0417685 1.99% 0.0415550 1.47%

50000 0.0409316 -0.06% 0.0410471 0.23%

400000 0.0409543 0.0409788 0.06%

1.2 1.5 1.2 5000 0.0205757 4.85% 0.0201637 2.75%

10000 0.0201713 2.79% 0.0200381 2.11%

50000 0.0197968 0.88% 0.0198025 0.91%

400000 0.0196239 0.0196757 0.26%

1.2 1.4 1.2 5000 0.00497627 -3.26% 0.00479519 -6.78%

10000 0.00502489 -2.32% 0.00498050 -3.18%

50000 0.00511766 -0.51% 0.00509186 -1.01%

400000 0.00514401 0.00516708 0.45%

Table 31: The MC simulation with and without control variates (European barrier with the

same maturity) for discrete (double) barrier call options with 5 barrier dates (one per year)

and 5-year maturity in TS Heston model. The spot FX is 1.3621. The MC simulation results

of 400000 paths without CV are used as reference values.
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L H K MC paths without CV rel. error with CV rel. error

1 1.6 1.2 5000 0.0407734 -1.98% 0.0422148 1.49%

10000 0.0406413 -2.30% 0.0411847 -0.99%

50000 0.0413646 -0.56% 0.0415505 -0.11%

400000 0.0415962 0.0415548 -0.10%

1 1.5 1.2 5000 0.0187076 -3.90% 0.0190214 -2.29%

10000 0.0190495 -2.15% 0.0192206 -1.27%

50000 0.0194031 -0.33% 0.0193750 -0.47%

400000 0.0194673 0.0194665 0.00%

1 1.4 1.2 5000 0.00451968 4.23% 0.00462109 6.57%

10000 0.00440236 1.53% 0.00443878 2.37%

50000 0.00434726 0.26% 0.00439316 1.31%

400000 0.00433617 0.00434857 0.29%

1.2 1.6 1.2 5000 0.0294348 0.69% 0.0305553 4.52%

10000 0.0283607 -2.98% 0.0287713 -1.58%

50000 0.0288158 -1.43% 0.0289559 -0.95%

400000 0.0292326 0.0292011 -0.11%

1.2 1.5 1.2 5000 0.011737 0.43% 0.0119559 2.30%

10000 0.0113346 -3.01% 0.0114458 -2.06%

50000 0.0115606 -1.08% 0.0115424 -1.24%

400000 0.0116867 0.0116862 0.00%

1.2 1.4 1.2 5000 0.00183487 12.96% 0.00188279 15.91%

10000 0.00164877 1.50% 0.00166417 2.45%

50000 0.0016626 2.35% 0.00168222 3.56%

400000 0.00162441 0.00162953 0.32%

Table 32: The MC simulation with and without control variates (European barrier with the

same maturity) for discrete (double) barrier call options with 20 barrier dates (one per 3

months) and 5-year maturity in (ordinary) Heston model. The spot FX is 1.3621. The MC

simulation results of 400000 paths without CV are used as reference values.
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L H K MC paths without CV rel. error with CV rel. error

1 1.6 1.2 5000 0.0444891 6.55% 0.0442213 5.90%

10000 0.0424458 1.65% 0.0427088 2.28%

50000 0.0423423 1.40% 0.0420757 0.77%

400000 0.0417557 0.0417996 0.11%

1 1.5 1.2 5000 0.0207519 6.65% 0.0205349 5.54%

10000 0.0198746 2.15% 0.0198993 2.27%

50000 0.0198597 2.07% 0.0197690 1.60%

400000 0.0194571 0.0194931 0.19%

1 1.4 1.2 5000 0.00474856 0.26% 0.00469946 -0.78%

10000 0.00476566 0.62% 0.00471598 -0.43%

50000 0.00477863 0.89% 0.00474737 0.23%

400000 0.004736431 0.00473308 -0.07%

1.2 1.6 1.2 5000 0.0314424 7.14% 0.0312382 6.45%

10000 0.0299109 1.92% 0.0301130 2.61%

50000 0.0297154 1.26% 0.0295125 0.57%

400000 0.029346427 0.0293131 -0.11%

1.2 1.5 1.2 5000 0.0122826 6.21% 0.0121431 5.00%

10000 0.0114528 -0.96% 0.0114683 -0.83%

50000 0.0117791 1.86% 0.0117205 1.35%

400000 0.0115643 0.0115877 0.20%

1.2 1.4 1.2 5000 0.00153865 -10.17% 0.00152179 -11.15%

10000 0.00159058 -7.14% 0.00157292 -8.17%

50000 0.00163905 -4.31% 0.00162743 -4.99%

400000 0.00171282 0.00171416 0.08%

Table 33: The MC simulation with and without control variates (European barrier with

the same maturity) for discrete (double) barrier call options with 20 barrier dates (one per 3

months) and 5-year maturity in TS Heston model. The spot FX is 1.3621. The MC simulation

results of 400000 paths without CV are used as reference values.
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L H K MC paths without CV rel. di�erence MC with CV rel. di�erence

1 1.6 1.2 50000 0.086303 0.86% 0.085937 0.44%

400000 0.085563 0.085439 -0.14%

1 1.5 1.2 50000 0.042075 0.81% 0.041831 0.22%

400000 0.041737 0.041611 -0.30%

1 1.4 1.2 50000 0.008311 -2.39% 0.008387 -1.50%

400000 0.008515 0.008531 0.20%

1.2 1.6 1.2 50000 0.073425 0.77% 0.073084 0.31%

400000 0.072862 0.072746 -0.16%

1.2 1.5 1.2 50000 0.031444 0.76% 0.031243 0.12%

400000 0.031206 0.031101 -0.34%

1.2 1.4 1.2 50000 0.000932 -4.42% 0.000943 -3.29%

400000 0.000975 0.000983 0.78%

Table 34: The MC simulation with and without control variates (European barrier with the

same maturity) for discrete (double) barrier call options with 24 barrier dates (two per month)

and 1-year maturity in (ordinary) Heston model. The vol of vol parameters reduced by four

times. The spot FX is 1.3621. The MC simulation results of 400000 paths without CV are

used as reference values.
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L H K MC paths without CV with CV rel. di�erence

1 1.6 1.2 ordinary 0.105337 0.105230 -0.10%

TS 0.103734 0.104415 0.66%

rel. di�erence 1.55% 0.78%

1 1.5 1.2 ordinary 0.0639262 0.0639250 0.00%

TS 0.0619301 0.0627863 1.38%

rel. di�erence 3.22% 1.81%

1 1.4 1.2 ordinary 0.016129 0.0161839 0.34%

TS 0.0154704 0.0157514 1.82%

rel. di�erence 4.26% 2.75%

1.2 1.6 1.2 ordinary 0.0961194 0.0960170 -0.11%

TS 0.0943552 0.0950047 -1.16%

rel. di�erence 1.87% 1.07%

1.2 1.5 1.2 ordinary 0.0569211 0.0569199 0.00%

TS 0.0561119 0.0561459 0.06%

rel. di�erence 1.44% 1.38%

1.2 1.4 1.2 ordinary 0.0129053 0.0129520 0.36%

TS 0.0122479 0.0124837 1.93%

rel. di�erence 5.37% 3.75%

Table 35: Comparison between prices of discrete (double) barrier call options with 24 barrier

dates (two per month) and 1-year maturity given by ordinary Heston model and TS Heston

model using MC simulation with 400000 paths. The MC simulation results with and without

control variates are shown. The spot FX is 1.3621.
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L H K MC paths without CV with CV rel. di�erence

1 1.6 1.2 ordinary 0.0500829 0.0498942 -0.38%

TS 0.0495458 0.0495739 0.06%

rel. di�erence 1.08% 0.65%

1 1.5 1.2 ordinary 0.0259953 0.0259306 -0.25%

TS 0.0259966 0.0260614 0.25%

rel. di�erence -0.01% -0.50%

1 1.4 1.2 ordinary 0.00791123 0.00796900 0.73%

TS 0.00865865 0.00869507 0.42%

rel. di�erence -8.63% -8.35%

1.2 1.6 1.2 ordinary 0.0410288 0.0408665 -0.40%

TS 0.0409543 0.0409788 0.06%

rel. di�erence 0.18% -0.27%

1.2 1.5 1.2 ordinary 0.0194957 0.0194445 -0.26%

TS 0.0196239 0.0196757 0.26%

rel. di�erence -0.65% -1.18%

1.2 1.4 1.2 ordinary 0.0045415 0.00457666 0.77%

TS 0.00514401 0.00516708 0.45%

rel. di�erence -11.71% -11.43%

Table 36: Comparison between prices of discrete (double) barrier call options with 5 barrier

dates (one per year) and 5-year maturity given by (ordinary) Heston model and TS Heston

model using MC simulation with 400000 paths. The MC simulation results with and without

control variates are shown. The spot FX is 1.3621.
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L H K MC paths without CV with CV rel. di�erence

1 1.6 1.2 ordinary 0.0415962 0.0415548 -0.10%

TS 0.0417557 0.0417996 0.11%

rel. di�erence -0.38% -0.59%

1 1.5 1.2 ordinary 0.0194673 0.0194665 0.00%

TS 0.0194571 0.0194931 0.19%

rel. di�erence 0.05% -0.14%

1 1.4 1.2 ordinary 0.00433617 0.00434857 0.29%

TS 0.004736431 0.00473308 -0.07%

rel. di�erence -8.45% -8.12%

1.2 1.6 1.2 ordinary 0.0292326 0.029201112 -0.11%

TS 0.029346427 0.0293131 -0.11%

rel. di�erence -0.39% -0.38%

1.2 1.5 1.2 ordinary 0.0116867 0.0116862 0.00%

TS 0.0115643 0.0115877 0.20%

rel. di�erence 1.06% 0.85%

1.2 1.4 1.2 ordinary 0.00162441 0.00162953 0.32%

TS 0.00171282 0.00171416 0.08%

rel. di�erence -5.16% -4.94%

Table 37: Comparison between prices of discrete (double) barrier call options with 20 barrier

dates (one per 3 months) and 5-year maturity given by (ordinary) Heston model and TS

Heston model using MC simulation with 400000 paths. The MC simulation results with and

without control variates are shown. The spot FX is 1.3621.
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9 Future research direction: applying COS method on dis-

crete barrier options

In Section 8, we use Monte Carlo simulation with control variates to price discrete barrier

options. However, the slow error convergence in the Monte Carlo simulation is not a very

satisfactory result to us. Hence, we try to develop some analytic formula to price discrete

barrier options in Heston model which involves the COS method.1

9.1 COS expansion for option pricing in Heston model

Recall from Section 3 the transformed Heston model:

x = (�� 1

2
v)dt+

p
vdW1;

dv = �(� � v)dt+ �
p
vdW2;

Cov[dW1; dW2] = � dt (129)

Then the continuous price of an option at time 0 if we know its value function at time T ,

V (y; vT ), satis�es

er�tC(x; v0) =

Z d

c

Z b

a
V (y; vT )p(y; vT jx; v0)dydvT

=

Z d

c

Z b

a
V (y; vT )py(yjvT ; v0; x)pv(vT jv0)dydvT (130)

where p(y; vT jx; v0) is the two-dimensional probability density function of log-asset price y

and volatility vT conditioned on their initial values x and v0, py(yjvT ; v0; x) is the probability
density function of y conditioned on vT , v0 and x, pv(vT jv0) is the probability density function
of vT conditioned on v0, and V (y; vT ) is the payo�/value of the option at T .

Feller has shown that the density of vT conditioned on v0 reads

pv(vT jv0) = ce�b�x̂
�x
b

���1

2

I��1(2
p
bx̂)

= ce�c(v0e
��T+vT )

�
vT

v0e��T

���1

2

I��1(2
p
bx̂) (131)

where c = 2�=[(1 � e��T )�2], b = cv0e
��T , x̂ = cvT , � = 2��=�2, and I�(x) is the modi�ed

Bessel function of the �rst kind.

Applying trapezoidal rules on the volatility dimension to equation (130), we have

er�tC(x; v0) �
Jvol�1X
q=0

pv(uqjv0)wq
Z b

a
V (y; uq)py(y � xjuq; v0)dy (132)

1This part of work is mainly done in corporation with Fang Fang in 2008.
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where Jvol is the number of points in the volatility dimension, w0 = wJvol�1 = 1
2�v and

wq = �v, q = 1; 2; :::; Jvol � 2, with �v = (d� c)=(Jvol � 1).

Using the COS expansion for py(y � xjuq; v0), we have the cosine series coe�cients:

2

b� a

Z b

a
py(y � xjuq; v0) cos(k�y � a

b� a
)dy

=
2

b� a
Re

�Z b

a
py(y � xjuq; v0)eik�

y�x
b�a dy � eik� x�ab�a

�
=

2

b� a
Re

�bp( k�

b� a
;uq; v0)e

i k�
b�a

(x�a)

�
(133)

where

bp( k�

b� a
;uq; v0) =

Z b

a
py(y � xjuq; v0)eik�

y�x
b�a dy

=

Z b�x

a�x
py(y

0juq; v0)ei
k�
b�a

y0dy0

�
Z 1

�1
py(y

0juq; v0)ei!y0dy0
����
!= k�

b�a

= E[ei!y
0

]
���
!= k�

b�a

(134)

Remember that the truncation range [a; b] is given in equation (42) and thus

[a� x; b� x] =
h
c1 � L

p
jc2j; c1 + L

p
jc2j

i
with L = 12 (135)

which is chosen such that the truncated integral approximates the in�nite counterpart very

well.

The equation (134) is the conditional characteristic function of the logarithm of the stock

given v0 and vT and is known analytically:

bp(!; vT ; v0) = ei!T (��
��
�
�) � ei! �

�
(vT�v0) � �(g(!)) (136)

where

g(!) = !

�
��

�
� 1

2

�
+
1

2
i!2(1� �2) (137)

and �(a) is the characteristic function of
R T
t0
v(s)ds given v0 and vT and is also known in

closed-form:

�(a) = c1(a) � ev0+vT � ec2(a) �
I��1(

p
v0vT c3(a))

I��1(2
p
bx)

(138)
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where

c1(a) =

(a)e�

1

2
(
(a)��)T (1� e��T )

�(1� e�
(a)T )
= e

1

2
�T � 1� e��T

�
� 
(a)e

� 1

2

(a)T

1� e�
(a)T

c2(a) =
1

�2

"
�(1 + e��T )

1� e��T
� 
(a)(1 + e�
(a)T )

1� e�
(a)T

#

c3(a) =
4

�2

(a)e�

1

2

(a)T

1� e�
(a)T


(a) =
p
�2 � 2�2ai

(139)

Hence, we can expand py(y � xjuq; v0) in its cosine series:

py(y � xjuq; v0) � 2

b� a

N�1X
k=0

0Re

�bp( k�

b� a
;uq; v0)e

i k�
b�a

(x�a)

�
cos(k�

y � a

b� a
) (140)

Substitute (140) into (132), we get

er�tC(x; v0) �
Jvol�1X
q=0

pv(uqjv0)wq

2

b� a

N�1X
k=0

0

Z b

a
V (y; uq)Re

�bp( k�

b� a
;uq; v0)e

i k�
b�a

(x�a)

�
cos(k�

y � a

b� a
)dy

�
Jvol�1X
q=0

pv(uqjv0)wq 2

b� a

N�1X
k=0

0

Z b

a
V (y; uq) cos(k�

y � a

b� a
)dy

�Re
�bp( k�

b� a
;uq; v0)e

i k�
b�a

(x�a)

�
(141)

Set bVk;q := 2
b�a

R b
a V (y; uq) cos(k�

y�a
b�a )dy, thus

er�tC(x; v0) �
Jvol�1X
q=0

pv(uqjv0)wq
N�1X
k=0

0 bVk;qRefbp( k�

b� a
;uq; v0)e

i k�
b�a

(x�a)g (142)

De�ne �( k�
b�a ;uq; v0) = pv(uqjv0)bp( k�

b�a ;uq; v0), then

er�tC(x; v0) �
Jvol�1X
q=0

N�1X
k=0

0 bVk;qRe��( k�

b� a
;uq; v0)e

i k�
b�a

(x�a)

�
wq

=

Jvol�1X
q=0

N�1X
k=0

0 bVk;qPk;q(x; v0) (143)
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where

Pk;q(x; v0) = Ref�( k�

b� a
;uq; v0)e

i k�
b�a

(x�a)gwq (144)

Note that when we multiply pv(uqjv0) and bp( k�
b�a ;uq; v0) to get �(

k�
b�a ;uq; v0), we �nd that

the modi�ed Bessel function I��1(2
p
bx) in pv(uqjv0) and bp( k�

b�a ;uq; v0) cancel each other out.

Hence, the expression for �( k�
b�a ;uq; v0) can be simpli�ed:

�(
k�

b� a
;uq; v0) =pv(uqjv0) � bp( k�

b� a
;uq; v0) (145)

=ce�c(v0e
��T+vT )

�
vT

v0e��T

���1

2

� ei!T (r���
�
�) � ei! �

�
(vT�v0) � c1(g(!)) � ev0+vT � ec2(g(!))

� I��1pv0vT � c3(a) (146)

=f(!) � eAv0v
1��
2

0 � eBvT v
��1

2

T � I��1pv0vT � c3(a) (147)

where 8>>><>>>:
f(!) = ce�T

��1

2 ei!T (r�
��
�
�)c1(g(!))e

c2(g(!))

k(!) = c3(!)

A = �ce��T � i! �
� + c2(g(!))

B = �c+ i! �
� + c2(g(!))

9.2 Recursion formula for discrete barrier option

For discretely monitored "out" barrier options, suppose we have two barrier levels, L and H,

with L < S0 < H. De�ne hup = ln(H) and hdown = ln(L).

The payo� function for a discrete barrier option at maturity reads

V (x; T ) = fmax(�(ST �K); 0)�Rbg1fL<Sti<Hg +Rb

=
�
[�K(ex � 1)]+ �Rb

	
1fhdown<xti<hupg +Rb (148)

where � = 1 for a call and � = �1 for a put, x = log(ST =K), xti = log(Sti=K) and Rb is a

rebate.

At barrier date tm before maturity, if the spot has not breached the barrier, V (y; uq; tm)

is equal to its continuous value given in equation (143):

C(x; v0; tm) = e�r�t
Jvol�1X
q=0

N�1X
k=0

0Pk;q(x; v0)bVk;q(tm+1) (149)
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According to the de�nition of bVk;q(tm), we have
bVk;q(tm) =

2

b� a

Z b

a
V (y; uq; tm) cos(k�

y � a

b� a
)dy

=
2

b� a

Z x2

x1

C(y; uq; tm) cos(k�
y � a

b� a
)dy

+
2

b� a

Z x3

a
e�r(T�tm)Rb cos(k�

y � a

b� a
)dy

+
2

b� a

Z b

x4

e�r(T�tm)Rb cos(k�
y � a

b� a
)dy

:= bck;q(x1; x2; tm) + e�r(T�tm)Rb
2

b� a
[ k(a; x3) +  k(x4; b)] (150)

where equation (124) is applied. x1 = maxfa; hdown; 0g, x2 = minfb; hupg for a call, and

x1 = maxfa; hdowng, x2 = minfb; hup; 0g for a put. For both call and put, x3 = maxfa; hdowng
and x4 = minfb; hupg. Clearly, a � x3 � x1 � x2 � x4 � b.

Thus, substitute (149) into the de�nition of bck;q(x1; x2; tm), we have
bck;q(x1; x2; tm) = 2

b� a

Z x2

x1

C(y; uq; tm) cos(k�
y � a

b� a
)dy

=
2

b� a
e�r�t

Jvol�1X
n=0

N�1X
l=0

0

Z x2

x1

Pl;n(y; uq) cos(k�
y � a

b� a
)dy � bVl;n(tm+1)

(151)

Substitute the de�nition of Pl;n in (144) into the above equation, we have

bck;q(x1; x2; tm) =
2

b� a
e�r�t

Jvol�1X
n=0

N�1X
l=0

0 bVl;n(tm+1)

�
Z x2

x1

Ref�( l�

b� a
;un; v0)e

i l�
b�a

(y�a)gwn cos(k�y � a

b� a
)dy

= e�r�tRef
N�1X
l=0

0f
Jvol�1X
n=0

bVl;n(tm+1)�(
l�

b� a
; zn; uq)wngMk;l(x1; x2)g(152)

where Mk;l(x1; x2) =
2

b�a

R x2
x1
ei

l�
b�a

(y�a) cos(k� y�ab�a )dy:
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At the maturity (tm = T ), we have

bck;q(x1; x2; T ) = 2

b� a

Z x2

x1

C(y; uq; T ) cos(k�
y � a

b� a
)dy

=
2

b� a

Z x2

x1

V (y; T ) cos(k�
y � a

b� a
)dy

=
2

b� a

Z x2

x1

�K(ey � 1) cos(k�
y � a

b� a
)dy

=
2

b� a
�K [�k(x1; x2)�  k(x1; x2)] (153)

and substitute it into (150),

bVk;q(T ) =
2

b� a
�K [�k(x1; x2)�  k(x1; x2)] +

2

b� a
Rb[ k(a; x3) +  k(x4; b)] (154)

which is actually independent of q, the volatility dimension.

Hence, starting from bVk;q(T ), we can recursively get the coe�cients bVk;q(tm) for all the
previous barrier dates tm and �nally the option value c(x; v0; t0) at the pricing date.

9.3 Problems now in pricing discrete barrier option using COS method

Despite that we can show quite nice formula for pricing the discrete barrier options using the

COS method, we �nd that we get quite large errors when we implement the algorithm and

do the pricing, especially when the Feller condition does not satisfy. Hence, we still need to

dive into the algorithm and try to improve it. This will be our task in the future.
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10 Conclusion

The original Heston model contains constant parameters. In order to incorporate the term

structure of the implied volatility surface, we allow for time-dependent parameters. We choose

the time-dependence to be piecewise constant and show how in this case the model can be

calibrated in an e�cient way. A key ingredient is the characteristic function, where we show

the derivation of its analytic formula in the TS Heston model in Section 3. We then apply

the COS pricing method on it to price European-style options in Section 4. Since the COS

method provides us with a semi-analytic solution for pricing European-style options, we can

price them fast and accurately. In Section 5, we choose 3 parameters in the Heston model

to be time-dependent, the correlation, vol of vol and mean reversion level. These three will

be included in the calibration. The mean reversion rate is not included in the calibration, it

is treated as an unobservable parameter not determined by the market in our approach. We

consider the initial guess of the parameters used in the calibration, as well as an analytical

estimate for a minimum value of the mean reversion rate in the deterministic case. We test

the calibration on the market data for EUR/USD and USD/JPY in Section 6. For the most

liquid part of these volatility surfaces, up to 5-year maturity, we show that the TS Heston

model can be calibrated with high accuracy. This requires a mean reversion rate of 2 or higher

for EUR/USD. Interestingly, for USD/JPY calibration requires some term structure in the

mean reversion rate as well.

In order to see whether the model is su�ciently robust in the calibration of di�erent

market data, we test our TS Heston model by calibrating it to the historic data spanning a

whole year in Section 7. Before that, we perform jump tests on the historic market data to

�nd out whether jumps are present or not. We have found that there are no jumps in the

EUR/USD market data, but jumps do exist in the USD/JPY market data. Hence, for the

USD/JPY market, models with jumps (e.g. Bates' model) might be preferred. Since from

this conclusion it seems that models without jumps might apply for the EUR/USD market

data, we calibrate our model to the EUR/USD historic data spanning a whole-year period

from Sep. 3, 2007 to Aug. 29, 2008. We �nd that most of the calibrations (61.24%) fail at the

6-year maturity and the success of the calibration indeed depends on the market data. We

also �nd that we can only expect stable parameters over time when the market data remains

stable. Changing model parameters therefore requires us to take extra e�ort in hedging.

After the calibration, we now try to price some exotic options using the TS Heston model

we have calibrated in Section 8. In the Black-Scholes model, the analytic formula for contin-

uous (double) barrier options exists and we can use them as control variates for the pricing

of discrete (double) barrier options in the Monte Carlo simulation. In the Heston model, we

are not aware of the analytic formula for these two options. Therefore, to price the discrete

barrier options in the TS Heston model, we use Monte Carlo simulation with control variates.

Here, we propose to use the European barrier option with the same maturity as the discrete

barrier option as a new control variate. We have shown that using this alone can already

greatly reduce the variance. When the maturity of the option is short and the number of
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barrier dates is small, the e�ect of variance reduction is most signi�cant. We have also found

that sometimes there is discrepancy between the MC simulation results with control variates

and those without because the MC simulation results of the control variates do not converge

to their analytic values. We think it happens because the Feller condition does not satisfy.

Hence, in our view, the MC simulation with CV not only reduces the variance, but helps to

eliminate the biases as well. In addition, we have compared the simulation results from the

Heston model and the TS Heston model as well, and have found that the prices of the barrier

options with high chances of knock out are a�ected most by the model we choose.

Finally, we propose to apply the COS method on discrete barrier options as a future

research direction in Section 9. We have derived the COS expansion formula for option

pricing in the Heston model and the recursion formula for the discrete (double) barrier options.

Although the current pricing results using the COS method still have quite large errors, we

think that given time this algorithm can be improved and nice results will come out. Hence,

this will be our research direction in the future.
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A Appendix: market data

Tenor volATMs volRR25s volBF25s Delta type Discount factors Discount factors

(EUR) (USD)

1d 31.000% -1.500% 0.450% Pips 100.00% 99.99%

1w 22.000% -1.300% 0.450% Pips 99.96% 99.89%

2w 21.000% -1.300% 0.450% Pips 99.90% 99.79%

1m 20.000% -1.300% 0.450% Pips 99.65% 99.54%

2m 17.864% -1.097% 0.501% Pips 99.24% 99.15%

3m 16.772% -1.006% 0.523% Pips 98.84% 98.76%

6m 15.092% -0.902% 0.501% Pips 97.73% 97.80%

9m 14.495% -0.804% 0.524% Pips 96.39% 96.74%

1y 14.200% -0.700% 0.550% Pips 95.26% 95.72%

2y 13.947% -0.650% 0.550% PipsForward 93.28% 94.46%

3y 13.600% -0.650% 0.550% PipsForward 89.12% 90.94%

4y 13.199% -0.650% 0.500% PipsForward 85.64% 87.45%

5y 12.801% -0.650% 0.500% PipsForward 82.03% 83.76%

6y 11.902% -0.401% 0.375% PipsForward 78.53% 80.01%

7y 11.401% -0.400% 0.375% PipsForward 75.02% 76.31%

8y 10.952% -0.400% 0.375% PipsForward 71.59% 72.70%

9y 10.501% -0.400% 0.375% PipsForward 67.97% 69.22%

10y 10.100% -0.400% 0.375% PipsForward 65.20% 65.89%

12y 9.353% -0.599% 0.325% Simple 59.46% 59.96%

15y 8.601% -0.600% 0.325% Simple 51.96% 52.03%

20y 8.550% -0.600% 0.325% Simple 42.70% 41.66%

25y 8.450% -0.600% 0.325% Simple 36.13% 33.60%

30y 8.450% -0.600% 0.325% Simple 31.00% 27.30%

Table 38: EUR/USD market data, the spot FX is 1.3621 USD/EUR
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Tenor volATMs volRR25s volBF25s Delta type Discount factors Discount factors

(USD) (JPY)

1d 20.000% -0.750% 0.160% Percent 100.00% 100.00%

1w 12.879% -0.950% 0.180% Percent 99.91% 99.99%

2w 12.374% -1.450% 0.200% Percent 99.81% 99.99%

1m 12.176% -1.913% 0.241% Percent 99.57% 99.97%

2m 11.717% -2.288% 0.269% Percent 99.09% 99.93%

3m 11.440% -2.627% 0.307% Percent 98.68% 99.90%

6m 11.116% -3.182% 0.378% Percent 97.40% 99.77%

9m 10.819% -3.487% 0.428% Percent 96.12% 99.58%

1y 10.700% -3.800% 0.480% Percent 94.86% 99.37%

2y 10.149% -4.301% 0.510% PercentForward 90.15% 98.23%

3y 9.950% -4.801% 0.530% PercentForward 85.82% 96.80%

4y 10.000% -5.049% 0.580% PercentForward 81.57% 95.08%

5y 10.050% -5.299% 0.580% PercentForward 77.45% 93.16%

6y 10.200% -5.549% 0.550% PercentForward 73.50% 91.10%

7y 10.399% -5.650% 0.550% PercentForward 69.70% 88.91%

8y 11.050% -5.750% 0.550% PercentForward 66.10% 86.67%

9y 11.750% -5.850% 0.550% PercentForward 62.66% 84.37%

10y 12.546% -5.900% 0.550% PercentForward 59.31% 82.02%

12y 13.247% -6.099% 1.406% Simple 53.14% 77.35%

15y 14.699% -6.200% 1.460% Simple 44.98% 70.60%

20y 16.747% -6.300% 1.510% Simple 34.09% 60.30%

25y 18.696% -6.400% 1.560% Simple 25.94% 51.43%

30y 19.946% -6.400% 1.610% Simple 19.86% 44.17%

Table 39: USD/JPY market data, the spot FX is 118.95 JPY/USD
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