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PREFACE

This thesis was aimed for the Master of Science degree in Mechanical Engineering at
The Delft University of Technology. The goal of this research was to formulate an assign-
ment algorithm for autonomous guidance, control, and navigation system for spacecraft
formation flying using a Model Predictive Control approach for estimation of fuel expen-
diture.

This report is split into three parts. First, the earth’s gravitation field and its variation
are discussed. The relative motion in the orbit around the earth is briefly explained.
The derivation of linearized relative dynamics by Clohessy-Wiltshire is presented. In the
second part, the assignment problem is explained. The majority of the literature has
been using the distance between the deployed state to the target state. A new approach
is discussed using fuel as the assignment parameter including the framework for the
assignment parameters is established.

For the third part, fuel expenditure estimation using two types of control schemes is ex-
plained. The Artificial Potential Function approach is concisely explained. The choice of
Model Predictive Control over Artificial Potential Function is discussed. The aim for the
third part was the formulation of the control problem using the Model Predictive Con-
trol with a linearization dynamics model of the satellites. The system model used in the
MPC formulation was constructed based on the Clohessy–Wiltshire relative equations of
motion. The demonstrations were established using randomized positions.

The simulations were performed and estimation of the fuel expenditure was explained
based on the simulation results. The proposed assignment algorithm was tested using
the fuel cost estimations from the MPC-based simulations. The results showed that the
algorithm performed as designed. Lastly, the possible future research options are listed
out.

Rupak Dhankhar
Delft, July 2021
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2 1. INTRODUCTION

1.1. INTRODUCTION
In the last couple of decades, small satellites’ capability to carry out complex missions
has improved exponentially with the advent of technology. With such recent improve-
ments in small satellites, formation flying has become a lucrative area of research. Using
multiple spacecraft provides more flexibility and robustness during a mission in com-
parison to a singular monolithic satellite. A minor malfunction in a large satellite can
result in mission failure. But if such a case occurs in a formation mission, the mission
control can replace the faulty satellite in the formation potentially saving large sums of
investment. The production and deployment costs alone justify the influx of the research
resources.

Recent formation flying missions such as GRACE by NASA [1] where two satellites or-
bit the earth in tandem to map its gravity field by measuring the mass of polar ice caps,
ocean currents, sea-level changes, and so on. The enhanced geoid gravity knowledge
will help with a better understanding of weather patterns. Magnetospheric Multiscale
(MMS) by NASA [2] employs four spacecraft in tetrahedral formation in the area of in-
terest. MMS was deployed to study the magnetosphere of the earth making crucial dis-
coveries. PRISMA [3] by ESA consists of two spacecraft where one being stationary in the
relative frame while the other spacecraft performed Guidance, navigation, and control
demonstrations to show formation flying capabilities. TanDEM-X [4] by DLR involves
two spacecraft with the primary goal to generate a Digital Elevation Model using syn-
thetic aperture radar interferometry in a polar orbit Along-track formation described by
Sabol et al. [5].

Such space missions are demonstrating a glimpse of the potential that formation fly-
ing missions hold. The satellite swarms can enable massive sensing capabilities with
distributed antennas to cover a larger area than possible with a singular satellite or a
scattered array aperture for a telescope to cover a larger field of view in space. There
are some intriguing future formation flying missions planned. Recently, there was an
exciting discovery in the field of science. For the first time in history, scientists detected
gravitation waves using the Light Interferometry Gravitation-wave Observatory (LIGO)
based in North America. However, the LIGO is a ground-based observatory limiting the
length of the interferometer to 4km. If the interferometer distance is longer, the obser-
vatory will be able to detect even smaller gravitational waves. Hence, NASA has planned
a formation flying space mission called Laser Interferometry Space Antenna (LISA) 50
million kilometers behind the earth in its orbit. The interferometer has an arm length of
2.5 million kilometers resulting in more sensitivity to long-period gravitation waves.

Recently, the Event Horizon Telescope (EHT) [6] gathered data of light around the cen-
ter M87 galaxy for an image of the supermassive black hole. The EHT is a large array of
telescopes all around the earth shown in Figure 1.2a. After gathering data using all the
telescopes in EHT at precise time instants using an inbuilt hydrogen maser clock, the
data were combined and processed to produce the first image of a Blackhole two years
ago in 2019. As of March 2021, a new image of the M87 Blackhole has been processed
and shows the polarized light around the Blackhole in Figure 1.2b. The EHT is a ground-
based array of telescopes. The next step is to set up a space observatory to provide much
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(a) LIGO at Livingston (b) the Laser Interferometry Space Antenna

Figure 1.1: The present and the future of Gravitation wave detection observatories

higher capabilities than the Hubble telescope. OLFAR [7] is one such technology under
research in the Netherlands. OLFAR aims to deploy a distributed aperture synthesis tele-
scope array using an autonomous system of cube sats to capture the radio frequencies
below 50MHz which is a significant limitation for earth-based observatories.

As the spacecraft increase in number, the satellite swarm becomes extremely complex
and can take some spectacular formations. Just consider the structure of solids around
us. A few examples are shown in Figure(1.3). These Bravais Lattices are just a few of
many possible based on the arrangement of atoms in the matter around us. SpaceX
Starlink is a plan where the company plans to blanket the earth with satellites much like
the Buckminsterfullerene example.

Izzo and Pettazzi [8] simulate an even more complex procedure, visualized in Figure 1.4.

(a) EHT configuration (b) M87 Blackhole in polarized light

Figure 1.2: EHT is an array of telescopes used to capture the first image of a Blackhole at the enter of Galaxy
Messier 87
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(a) Tetragonal-I

(b) Hexagonal-P

(c) Buckminsterfullerene

Figure 1.3: Advanced Lattice structures

The sequential phases show an assembly of a flat surface in the space where 49 aircraft
assume the required formation and perform the docking maneuver to achieve the target
lattice structure.

Figure 1.4: Assembly Process of 49 Spacecrafts

However, formation flying comes with its own set of complexities. The swarm of satel-
lites has to operate in cluttered space in close vicinity to carry out the formation ma-
neuvers. Keeping track of multiple satellites and providing assistance from the ground
station is much more challenging. Koenig and D’Amico [9] outline some more design
constraints such as the small, low-cost satellites incorporated in the formation might be
equipped with limited capability hardware. These lower-grade sensors and communi-
cation equipment adding that complexity. An autonomous decentralized guidance and
control system seems like an appropriate solution but does not solve all the problems.
In this work, the autonomous assignment of satellites using fuel as the parameter is ex-
plored.
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The problem is defined as an Assignment Problem which means assigning spacecraft in-
volved in the formation flying new positions as per the mission requirement. A valuable
solution to the problem satisfies the constraints of fuel or time of flight or a combina-
tion of both while successfully occupying all the target destinations. In this thesis, the
assignment of the destinations is decided based on the fuel parameter such as current
fuel level or expected fuel consumption or fuel capacity of the swarm as a whole. The
second problem of calculation of expected fuel consumption is explored using prelimi-
nary navigation simulations as means for estimating the fuel consumption in the desired
maneuver to occupy the target destinations. Two strategies are explored for preliminary
navigation simulations. Artificial Potential Function (APF) as a traditional control and
guidance approach is discussed. A model-based approach with the Model Predictive
Control is explored in-depth with test simulations.

1.2. RESEARCH OBJECTIVES
The goal of this thesis is to formulate an assignment strategy for autonomous reconfigu-
ration maneuvers for space formation flying missions. This thesis aims to tackle the goal
through three main objectives:

1. Formulating an algorithm to autonomously assigning satellites a destination from
a set of available targets.

2. Formulating a process to estimate fuel consumption using Model Predictive Con-
trol.

3. Testing the said autonomous assignment algorithm with a randomized set of ini-
tial positions and destinations.

In this thesis report, as discussed earlier, the assignment problem is developed by using
fuel expenditure as the assignment parameter with an MPC as the estimation tool. The
MPC problem is set up based on a classical two-body model with satellites and the Earth
are represented as point masses. The only force experienced by the bodies is the Gravita-
tional force due to earth. The earth is considered symmetrical and all perturbations are
neglected in this work. The model used for the MPC is operational in Hill’s frame of ref-
erence i.e. a rotating frame of reference anchored to the chief orbiting satellite obit. The
relative motion of the satellites will be guided by Clohessy-Wiltshire equations [10] in
Hill’s frame of reference. The model predictive control is set up using the ACADO toolkit
for the simulation in the MATLAB SIMULINK environment.

1.3. SCOPE OF THE THESIS
An Autonomous assignment and guidance consist of systems such as separation control,
trajectory planning, formation position assignment, setting up a guidance strategy, and
finally, obstacle and collision control while in the navigation phase. This thesis report is
focused on formulating an assignment algorithm using an MPC as an estimating tool for
fuel expenditure. The problems of trajectory planning and navigation are quite broad in
themselves, so they will not be covered in this thesis. In terms of MPC formulation, col-
lision avoidance is not considered in the preliminary simulations as the simulations are
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targeted towards the estimation of fuel expenditure. The reason for that is the algorithm
is approached with a decentralized system in mind. Hence, any cooperating satellite
system knowledge is not considered in simulations ran for estimating fuel expenditure.
The preliminary simulation demonstrations are carried out in circular orbits thus using
the Clohessy-Wiltshire Approximations. The report is structured as follows:

• Chapter 2: The dynamics of the satellites around the Earth as explained in this
chapter. The relative frame of reference is defined along with the derivation of
relative equations of motion by Clohessy-Wiltshire.

• Chapter 3: This chapter covers the formulation of an assignment algorithm. The
assignment problem is defined with illustrations. Some assignment parameters
like initial position to destination distance or fuel parameters are discussed. A
priority parameter matrix is defined that consists of all the applicable assignment
parameters and their relevant weights. An assignment algorithm is formulated
using the said parameter matrix.

• Chapter 4: This chapter summarizes the state-space model based on the Clohessy-
Wiltshire equations of motions and the control strategies. Artificial Potential Func-
tion is briefly discussed. Linear MPC is defined with a brief explanation of the
parameters involved in MPC formulation. An approach to calculate dynamic ter-
minal weights using the Algebraic Riccati Equation is mentioned.

• Chapter 5: This chapter presents the simulations and results of this thesis work.
The MPC simulations using randomized initial and final positions are demon-
strated. The fuel expenditure is estimated based on the MPC simulations. These
estimated fuel values are used to demonstrate the formulated assignment algo-
rithm.
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2.1. INTRODUCTION
In this chapter, a brief background to the Earth’s gravity is discussed and how the pertur-
bations affect the gravitational field. In section 2.2, the fundamental two-body dynamic
equations are discussed and the expression for the force of gravitation is derived. In sec-
tion 2.3, the Hills frame of reference is established. And in Hill’s frame of reference, the
Clohessy–Wiltshire equations of motion are derived in section 2.3.2.

The universe is filled with celestial bodies acting on each other by gravity, stars in a galaxy
influenced by the black hole, the stars having a solar system around themselves and the
planets on those solar systems have moons revolving around them. All the bodies influ-
ence each other in this universe, the star of a solar system influences the moon but the
moon’s motion is defined by the gravitation effect of the parent planet.

Fg =−GMm

r 2

( r

r

)
(2.1)

Newton coined a law, called Universal Law of Gravitation, which describes this phe-
nomenon that every point mass attracts every other point mass by a force acting along
the line intersecting the two points. The force, Gravity, is proportional to the product
of the two masses, and inversely proportional to the square of the distance between
them[11]. So, the equation tells us that the astronomical distances between the bod-
ies are the key factor responsible for the reduced influence that we observe. Another
important factor is the mass of the body itself. The heavier body is the stronger its grav-
itational influence becomes. Planets do no revolve around other planets but the star at
the center because it is the heaviest body in a solar system. This phenomenon of attrac-
tion plays the most important role while deciphering and understanding the dynamics
of the celestial bodies.

Figure 2.1: Oblate earth causing J2 perturbation

In this report, the focus is on a satellite revolving around the earth and tracking its move-
ment to achieve the desired goal within the gravitational field of the earth which can be
represented by the (2.1). However, the earth’s gravity is not uniform as the equation sug-
gests. There are a few factors that impact the earth’s gravitation field. Earth is not com-
pletely a sphere but an oblate spheroid. Because of the rotation of the earth, centrifugal
force bulges the equator hence, more of the earth’s mass is distributed at the equator
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than the poles. Therefore, equatorial orbits experience a larger force of gravity because
of increased mass. This perturbation force around equator is called J2 perturbation[12]
as in Figure 2.1. This J2 perturbation must be factored in the dynamic system to account
for the variation in the gravitation field.

Another topological factor to consider here is the variation due to the Geoid. The Geoid
refers to the shape that the ocean surface would take under the influence of gravity and
rotation rejecting the effects of winds or tides. The Geoid describes the uneven distri-
bution of mass on the surface of the earth causing variations in the field of its gravity.
These gravitation anomalies have been mapped via satellites as recently as 2011 [13] as
the Figure 2.2.

Figure 2.2: Satellite scan of gravity anomalies on Earth

Additionally, Solar winds[14] could also account for additional variation in the force ex-
erted by the earth’s gravity field. Solar winds are a continuous stream of charged sub-
atomic particles. Hydrogen and helium are two major ingredients. These winds can
travel up to 600-800 km/s and because it is a stream of particles. it exerts pressure on
celestial bodies generating force which is considered a disturbance when calculating the
dynamics of bodies in space. The force is small compared to gravity but can still be used
as propulsion for space travel using solar sails much like ocean-faring ships. The pres-
sure due to solar wind is almost negligible is generally not accounted for.

2.2. TWO BODY DYNAMICS
This project deals with the guidance of satellites around the earth so, the problem in
essence is defined as a two-body system of the equation of motion. The Two-body equa-
tion is based on Newton’s law of gravitation. We will focus on dynamics as a two body
problem in our system following texts by Vallado and Curtis [15, 16]. A satellite motion

around the earth and it’s Inertial frame is described by the state vector x = [
rT ,vT

]T
,

where r = [
x, y, z

]T is the position vector and ṙ = v = [
ẋ, ẏ , ż

]T is the velocity vector as in
Figure 2.3.

To find out the Two-body equation of motion, the system in Figure 2.3 is placed in a fixed
inertial frame of reference shown in Figure 2.4 where m1 represents the mass of the Earth
and m2 is the mass of the satellite.
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Figure 2.3: Two Body Geometry in Inertial(Earth) Reference Frame

Figure 2.4: Free body diagram of two masses in an Inertial frame of reference

R1 and R2 are position vectors for both masses exerting F12 and F21 force on each other
respectively. Let r be the position vector of m2 relative to m1, we get

r = R2 −R1 (2.2)

and lets also assume ûr be the unit vector to the position vector r ,

ûr = r

|r | (2.3)

Furthermore, the force of gravitation is defined by (2.1). Then, the gravitation force ex-
erted by m2 in m1 can be written as

F21 = Gm1m2

r 2 (−ûr) (2.4)

m2R̈2 = Gm1m2

r 2 (−ûr) (2.5)
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F21 suggests that the force is directed towards m1 hence the −ûr. Similarly, F12 is the
force directed towards m2 which is opposite to F21 from Newton’s second law of motion,
every force has an equal and opposite reaction that written as

F12 = Gm1m2

r 2 (ûr) (2.6)

m1R̈1 = Gm1m2

r 2 (ûr) (2.7)

Now, to find the resultant acceleration

R̈2 − R̈1 = Gm1

r 2 (−ûr)− Gm2

r 2 (ûr) (2.8)

R̈2 − R̈1 = Gm1 +m2

r 2 ûr (2.9)

The gravitational parameter µ is defined as

µ=G(m1 +m2) (2.10)

The mass of the satellite m2 can be considered negligible for this project as these are
man-made satellites which result in

µ=Gm1 (2.11)

Hence, the resultant acceleration r̈ can be defined as

r̈ =− µ

r 2

r

|r | (2.12)

The (2.12) represents the 2nd order non-linear differential equation that governs the rel-
ative motion of satellite m2 with respect to the planet m1. Few assumptions are made
here to get the equations:

1. The bodies are symmetrical so they can be safely assumed as point masses.

2. The mass of the satellite is negligible compared to the parent body.

3. All the perturbation forces like J2, Geoid, etc are neglected. Only the mutual grav-
itation force is considered.
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2.3. RELATIVE MOTION
Since we are looking into a cluster of spacecraft, we are more interested in the dynamics
between multiple crafts to each other. The relative motions can be easily imagined by
considering real-life examples like rendezvous missions to the International Space Sta-
tion (ISS) sending supplies or equipment into space. In this project, the guidance of the
individual satellites is very similar to the rendezvous operation itself. To find out the rel-
ative dynamics equation we shall start with rendezvous operation following Curtis[16].

2.3.1. RELATIVE MOTION IN ORBIT

Figure 2.5: Location of satellite B near destination A

Following the Figure 2.5, A and B are two spacecrafts with position vectors r0 and r re-
spectively withδr the small distance between the two spacecrafts. A represents the target
destination and B represents the satellite. So, the position vector r can be

r = r0 +δr (2.13)

Using the equation above, we can work towards building the dynamics equation for the
satellite B. We have the two body equation of motion (2.12) for the satellite B. Substitut-
ing (2.13) in (2.12) we get,

δr̈ =−r̈0 −µro +δr

r 3 (2.14)

Lets consider (r · r )

r 2 = r.r = (r0 +δr).(r0 +δr) = r0.r0 +2r0δr+δr.δr

Also, δr.δr = δr 2 and r0.r0 = r 2
0 . So



2.3. RELATIVE MOTION

2

13

r 2 = r 2
0

[
1+ 2r0.δr

r 2
0

+
(
δr

r0

)2
]

again, δr << r0 so the last term can be neglected

r 2 = r 2
0

[
1+ 2r0.δr

r 2
0

]
(2.15)

Now, r−3 = (r 2)−
3
2 , we can substitute (2.15) and get

r−3 = r−3
0

[
1+ 2r0 ·δr

r 2
0

]− 3
2

(2.16)

using binomial expansion on (2.16) and neglecting terms of higher order, we get

r−3 = r−3
0

[
1−

(−3

2

)
.

(
2r0.δr

r 2
0

)]

which can be written as,

1

r 3 = 1

r 3
0

− 3

r 5
0

r0 ·δr (2.17)

Now, we substitute (2.17) in (2.14), we get

δr̈ =−r̈0 −µ
(

1

r 3
0

− 3

r 5
0

(r0.δr)

)
(r0 +δr)

Resolving the equation above and neglecting higher order terms,

δr̈ =−r̈0 −µ r0

r 3
0

−µ
[
δr

r 3
0

− 3

r 5
0

(r0 ·δr)r0

]
(2.18)

But we also know the two- body equation of a satellite (2.12)

r̈ =− µ

r 2

r

|r |
so, we substitute this into (2.18) and we get

δr̈ = µ

r 5
0

[
r 2

0δr−3(r0.δr)r0
]

(2.19)
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(2.19) represents the Linearized motion of the satellite for the target in the earth-centric
frame when the distance between the target δr is much smaller than the distance from
the center of the earth.

2.3.2. CLOHESSY–WILTSHIRE RELATIVE MOTION EQUATIONS
We discussed the similarity between the rendezvous maneuver and the guidance of a
satellite to its destination to be of a similar approach and we found the equation of mo-
tion for spacecraft to its target position in the earth-centric frame. Now, we will explore
another approach towards relative motion in the target centric local frame of reference
known as Local Vertical Local Horizontal (LVLH) frame of reference also known as Hills
frame of reference which is represented by Figure 2.6

Figure 2.6: Local Vertical Local Horizontal co-moving frame for Relative motion

The same restriction applies as previously with δr << r0, The origin for the moving sys-
tem is at A. The x-,y-,z-axis represent the radial, along-track, cross-track directions of
motion of deputy spacecraft relative to the chief spacecraft with (î , ĵ , k̂) as the unit vec-
tors in the LVLH frame.

Now, we take the acceleration of a particle in a moving reference also known as five-term
acceleration formula [17]

r̈ = r̈0 + ω̇×δr+Ω× (Ω×δr )+2Ω×δvrel +δarel (2.20)

where Ω is the angular velocity of the LVLH frame or the chief spacecraft and Ω̇ is the
angular acceleration. The relative position, velocity, and acceleration are defined as fol-
lows
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δr = δx î+δy ĵ+δzk̂ (2.21)

δvrev = δẋ î+δẏ ĵ+δżk̂ (2.22)

δarel = δẍ î+δÿ ĵ+δz̈k̂ (2.23)

Going back to Equation (2.20),

r̈− r̈0 = ω̇×δr+Ω× (Ω×δr )+2Ω×δvrel +δarel

we consider the chief orbit to be circular in this project so, ω̇will be zero. (2.20) becomes

δr̈ =Ω× (Ω×δr)+2Ω×δvrel +δarel (2.24)

Now, we have assumed the orbit to be circular that means the angular velocity becomes

Ω= nk̂

where n represents the mean motion of the spacecraft which is constant which means

Ω.δr = nk̂.(δx î+δy ĵ+δzk̂)

= nδz

also,

Ω×δvrel = nk̂× (δx î+δy ĵ+δzk̂)

=−nδẏ î+nδẋ ĵ

substituting these equations into (2.20), we get

δr̈ = bk̂(nδz)−n2(δx î+δy ĵ+δzk̂)+2(−nδẏ î+nδẋ ĵ)+δẍ î+δÿ ĵ+δz̈k̂ (2.25)

rearranging the terms in this equation yields,

δr̈ = (−n2δx −2nδẏ +δẍ)î+ (−n2δy +2nδẋ +δÿ)ĵ+ (δz̈)k̂ (2.26)

(2.26) gives us the components of absolute acceleration. Since we assumed the orbit to
be circular, the mean motion is
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n = v

r0

= 1

r0

√
µ

r0

=
√

µ

r 3
0

Hence, n can be written as

n2 = µ

r 3
0

(2.27)

Also, we can note that

r0 ·δr = (r0)î.(δx î+δy ĵ+δzk̂) (2.28)

= r0δx (2.29)

Recalling (2.19), we can substitute (2.27), (2.29) and (2.23)

δr̈ =−n2

[
(δx î+δy ĵ+δzk̂)− 3

r 2
0

(r0δx)(r0 î)

]
(2.30)

= 2n2δx î−n2δy ĵ−n2δzk̂ (2.31)

If we merge (2.31) and (2.26), we obtain

2n2δx î−n2δy ĵ−n2δzk̂ = (−n2δx −2nδẏ +δẍ)î+ (−n2δy +2nδẋ +δÿ)ĵ+ (δz̈)k̂

After rearranging the terms on both left and right side we get

(δẍ −3n2δx −2nδẏ)î+ (δÿ +2nδẋ)ĵ+ (δz̈ +n2δz)k̂ (2.32)

Which can be written as

δẍ −3n2δx −2nδẏ = 0 (2.33)

δÿ +2nδẋ = 0 (2.34)

δz̈ +n2δz = 0 (2.35)
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The set (2.35) represents the Clohessy–Wiltshire Equations of motion for deputy space-
craft in the LVLH frame of reference. The terms in (2.35) containing n2 terms are the
centripetal acceleration, ẋ, ẏ are the Coriolis accelerations and ẍ, ÿ , z̈ terms are the to-
tal accelerations. This set of equations are coupled second-order differential equations
which can be solved to obtain the analytical solution for the spacecraft.

δx =(4−3cosnt )δx0 + sinnt

n
δẋ0 + 2

n
(1−cosnt )δẏ0 (2.36)

δy =6(sinnt −nt )δx0 +δy0 + 2

n
(cosnt −1)δẋ0 +

[
4

n
sinnt −3t

]
(2.37)

δz =cosntδz0 + 1

n
sinntδż0 (2.38)

including the change in velocity equations

δẋ =3n sinntδx0 +cosntδẋ0 +2sinnt ẏ0 (2.39)

δẏ =6n(cosnt −1)δx0 −2sinntδẋ0 + (4cosnt −3)ẏ0 (2.40)

δż =−n sinntδz0 +cosnt ż0 (2.41)

Where the initial conditions at t = 0 are given as

δx = δx0 δy = δy0 δz = δz0

δẋ = δẋ0 δẏ = δẏ0 δż = δż0

These sets of equations remove the requirement for numerical integration in the LVLH
frame but the cost of flexibility because these equations are only valid for circular orbits.

2.4. SUMMARY
In this chapter, we discussed some background and variation in the gravitational field
of the earth. The classical two-body problem is explored and the relative motion of two
bodies is explained for the two-body problem. To reduce the complexity of the problem,
the orbits around the earth are limited to the circular shape. Keeping that in mind, a lin-
ear approximation derivation is presented known as Clohessy–Wiltshire relative equa-
tions of motion. With these basics defined, the guidance problem is discussed next.
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3.1. INTRODUCTION
This chapter discusses the importance of the assignment phase of the satellite formation
execution. The chapter begins with a brief explanation of what the assignment phase
means and follows with an example of how a badly planned assignment could result
in poor fuel utilization. The chapter further explores how to formulate the assignment
algorithm and explains the algorithm execution with the help of an example.

One of the most important questions in the Automated Guidance problem is the desti-
nation assignment and the path planning phase. For Automated guidance in 2-D i.e. the
surface of the earth, the path planning aspect is more important because the destina-
tion is regarded as a preset and the terrain navigation is more difficult. However, in this
project, a group of satellites is required to be in a certain formation in Space. This 3-D
nature, without much spatial restriction, relieves us from most of the terrain navigation
problems for now. Although, the collision and safety problem remains common. The
main focus becomes to select a destination minimizing time or fuel. The satellite should
be able to figure out what position assume in the formation or what position would be
most beneficial in the formation.

3.2. ASSIGNMENT PROBLEM
This assignment phase governs the process of helping the system find a selection order
for satellites. According to this selection order, the satellites select a position out of an
available destination pool based on individual preference. This availability pool is called
the Bag of Destination (BoD), where the number of set elements, the destinations, are
equal to numsat . numsat attributes to the number of satellites participating in the
formation maneuver. However, there might be cases where the number of destinations
might be more or less than the numsat s depending on the final formation. Next, The
selection order is a numsat × 1 column vector. The element of the vector refers to the
place in the queue of assignment preference.

We consider a simplified example of a particular case where the selection order vector
shows the satellite s2 will get to choose from the available positions shown in the Desti-
nation set (BoD). At the end, each satellite has a preferred destination if available in the
BoD .

selection order ⇒


s5

s1

sn
...

s2

 destination set ∈ {1,2,3,4.......n}

In the literature, the most commonly used parameter for assignment is the distance of
the satellites from their initial position to the possible destinations. This can be acquired
simply by the resultant of the initial position vector and the possible final position vec-
tors for each satellite unit.
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Figure 3.1: The satellites and available formation destinations

Following Figure 3.1, satellite s2 is farthest of the satellite swarm. Hence, it gets to make
the choice first. So, calculating the distance for each satellite to all the possible des-
tinations a matrix can be constructed called a Distance matrix (Dmat ). The Dmat will
become the basis for the assignment of the destinations for the satellites.

3.3. ASSIGNMENT PARAMETERS
In the previous section, we introduced the idea of the distance between the satellites
and the destinations as an assignment criterion. There can more than one criterion for
assignment. Some of them are listed below:

• Total distance

• Reserve fuel level

• Expected fuel consumption

• Obstacle avoidance

Using these criteria, a matrix with priority values for each satellite to the destinations
can be constructed. This matrix can be classified as the Parameter matrix (Pmat ) in (3.1)
where Dmat is the distance matrix as described in the previous section, Fexp is the ex-
pected fuel consumption matrix, Fr es is the fuel matrix consisting the reserve fuel levels
of the satellites. More assignment criteria can be added to (3.1) as per requirement.

Pmat =Wd Dmat +W f e Fexp +W f r
1

Fr es
(3.1)

The Wd , W f e , and W f c are the weights for the assignment criteria giving us flexibility in
cases where one criterion is more important than the other. Pmat has the values that
represent the priority of destination for each satellite. The higher value points to higher
priority to the destination.
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3.3.1. TOTAL DISTANCE
This criterion is simplest and straightforward to implement. The information is stored in
a n×3 matrix where n is the number of satellites in the formation. The Parameter matrix
based on distance will look as follows:

Dmat =

d1 d2 d3 . . . dn


s1 D1,1 D1,2 D1,3 . . . D1,n

s2 D2,1 D2,2 D2,3 . . . D2.n
...

...
...

... . . .
...

sn Dn,1 Dn,2 D3,n . . . Dn,n

The satellites are numbered from s1 to sn on the left side of the column matrix, the desti-
nations are from d1 to dn on the top, and the matrix is the distance matrix where (Dn,n)
is the distance of each formation position from the current satellite position. Now using
this distance matrix, the elements are sorted column-wise to understand what position
is farthest/closest for each satellite termed sorted distance matrix.

Figure 3.2: Possible trajectories for satellite s2

Figure 3.3: Possible trajectories for satellite s3

The priority order for the satellites is simply from the farthest satellite to the nearest
satellite. The farthest satellite from Figure 3.2, the red satellite ie satellite s2, has all 5
of the formation destinations available to choose from. Hence, the priority for the red
satellite is destination 1. Then, the blue satellite s3 gets to choose from the available 4
formation positions as in Figure 3.3. The preference for the satellite s3 was also destina-
tion 1 but since it was selected by the red satellite s2, its next preferred destination is 5
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which is available and so the process goes on. This is further explained as the assignment
algorithm example.

3.3.2. RESERVE FUEL LEVEL
It is the same implementation as the distance-based one explained in the previous sec-
tion. For this priority sequencing, the reserve fuel capacity ( fr esn ) of the satellites decides
which satellite gets to have a go at the process of selecting their final position out of the
bag. The vector comprised of the reserve fuel level of the satellites is represented below
as Fuel Level.

Fuel Level =




s1 fr es1

s2 fr es2

...
...

sn fr esn

Fr es =

d1 d2 d3 . . . dn


s1 fr es1 fr es1 fr es1 . . . fr es1

s2 fr es2 fr es2 fr es2 . . . fr es2

...
...

...
...

. . .
...

sn fr esn fr esn fr esn . . . fr esn

The Fr es is a matrix comprised of the reserve fuel levels of the respective satellites ar-
ranged in a numsat ×numsat dimensional matrix to satisfy the priority matrix Pmat

calculation such that the priority parameter includes the factor of the reserve fuel level
to each destination. The individual values of the matrix Fr es are inverted to ensure the
low reserve fuel value contributes to a higher priority score for the satellite.

Now, we go back to the image showing all the satellites and the formation positions Fig-
ure 3.1, we observe that the yellow satellite s1 has the lowest amount of fuel left in reserve
and the purple satellite s5 has the highest amount of fuel reserve. In this case, we want
the satellite with the lowest fuel reserve to go first because it minimizes the risk that the
satellite might be assigned an unfavorable position rendering the satellite cluster inca-
pable of another reconfiguration maneuver if one of the unit satellite fuel is too low. Here
the yellow satellite s1 makes the choice of destination 1 as probable one.

3.3.3. EXPECTED FUEL CONSUMPTION
The lines shown in the figures are just the distance vectors for each available destination
from the satellites. However, the actual trajectory is not straight. It follows the celestial
dynamics as explained in the previous chapter as shown in Figure 3.5. Hence, assigning
the destination to the satellites just based on of distance does not paint the complete
picture. Therefore, we define a new parameter called Expected Fuel Consumption (Fex ).
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Figure 3.4: Possible trajectories for satellite s1

The order is set up using this expected fuel consumption (Fex ) parameter. This param-
eter is calculated using an MPC controller where the MPC runs a simplified simulation
without any state constraints except the physical limitation of the maximum thrust avail-
able from the thrusters. This optimized fuel expenditure profile is used to calculate the
fuel consumption parameter∆V . A more detailed explanation of the process is provided
in the next chapters.

A fuel parameter matrix can be obtained that consists of the expected fuel expenditure
parameter for each destination in the availability pool. Following previous example of
Figure 3.4, satellite s1 has the lowest amount of fuel left.

Fexp =

d1 d2 d3 . . . dn


s1 f1,1 f1,2 f1,3 . . . f1,n

s2 f2,1 f2,2 f2,3 . . . f2.n
...

...
...

... . . .
...

sn fn,1 fn,2 f3,n . . . fn,n

Now, an MPC gives us some possible trajectories in Figure 3.5 1. The generation of tra-
jectories is discussed later in Chapter 4. Based on these trajectories, the choice would be
between destination ’4’ or ’5’ with a minute difference in ∆V values and further avail-
ability in the bag of destinations. By sequentially executing this strategy, the satellites
can be assigned destinations.

1The path lines in the figure are for illustration purposes only. The lines DO NOT signify actual trajectories.
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Figure 3.5: Possible trajectories for satellite s1

In this matrix, the elements fn,n represent the expected fuel consumption values for each
satellite sn to each formation position. This matrix looks the same as the distance param-
eter matrix except the elements are the ∆V values for all the available positions for each
satellite.

3.3.4. OBSTACLE AVOIDANCE
Here the obstacle is defined as any celestial body that is not part of this formation ma-
noeuver. The obstacle avoidance scenario would include an additional parameter to the
priority parameters in the Pmat matrix. This avoidance parameter will cover the possibil-
ity of obstacles that are known to the system, meaning the state of the obstacles’ position
and velocity is an available set of data that can be used to further improve the accuracy
of the predicted trajectory giving us an even more precise fuel expenditure profile. This
allows us to make better assignments ensuring the chance to save even more fuel.

However, the obstacle data set availability and quality are hard to determine. The prob-
ability of a scenario where every debris is tracked is very low because a large percentage
of obstacles encountered are unknown such as debris of a destroyed spacecraft, out-
of-commission satellite, or a random piece of rock. The parameter for obstacle dataset
availability and quality could become an essential part of the future but as of now, it is
not included either in the literature or in this document.

3.4. ASSIGNMENT ALGORITHM
Now that some of the viable parameters have been discussed, the assignment algorithm
is the next step of the process. At the start of the assignment, all the destinations are
available. This set of available destinations will be referred to as Bag of Destinations
(BoD) as explained at the start of the chapter.

Now, the flexibility of the Parameter matrix (Pmat ) is a very important part. The algo-
rithm is designed to work with any kind of parameter be it distance measurements, fuel
measurements or any other factors/scales. The initial positions and the available des-
tinations have been randomized between [−2,2]kms and [−50,50]m to ensure the algo-
rithm works on any kind of initial and final position dataset.As an example, the distance
will be considered as the parameter so the parameter matrix Pmat looks as follows:
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Pmat =

d1 d2 d3 d4 d5


s1 2.6202 2.6074 2.6637 2.6239 2.5778
s2 2.7494 2.7763 2.7194 2.7600 2.7825
s3 1.8560 1.8489 1.8048 1.8354 1.9018
s4 2.0480 1.9983 2.0302 2.0053 2.0675
s5 0.5702 0.5319 0.5623 0.5368 0.6011

To start, Pmat is sorted using the MATLAB sort operation twice. Once row-wise, sort the
parameter in ascending/descending order to each destination of each satellite. Consid-
ering distance as the assignment parameter, executing this row-wise sorting operation
gives us the order of closest to farthest destinations and each satellite. This order helps
us identify the selection order for each satellite as to when a satellite’s turn comes to se-
lect, the preferred destination can be selected quickly out of the available destination
from the bag.

Pmatstor ed =




s1 2.5778 2.6074 2.6202 2.6239 2.6637
s2 2.7194 2.7494 2.7600 2.7763 2.7825
s3 1.8048 1.8354 1.8489 1.8560 1.9018
s4 1.9983 2.0053 2.0302 2.0480 2.0675
s5 0.5319 0.5368 0.5623 0.5702 0.6011

Further, the indices of the now sorted destinations can be extracted into a numsat ×
numsat matrix called Destination order (Do) using the same MATLAB sort function.
Following the same distance example, Do looks as shown. Each row index of Do rep-
resents the respective satellite and columns’ slots in each row represent the destination
index in priority.

Do =




s1 5 2 1 4 3
s2 3 1 4 2 5
s3 3 4 2 1 5
s4 2 4 3 1 5
s5 4 3 1 5 2

The next task is the sorting of the Parameter matrix again but column-wise this time
matrix of numsat ×numsat dimensions again. This column-wise operation puts the
satellites in the right order from farthest to closest thereby setting up the selection queue
of the satellites.
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Pmatstor ed =

d1 d2 d3 d4 d5


2.7494 2.7763 2.7194 2.7600 2.7825
2.6202 2.6074 2.6637 2.6239 2.5778
2.0480 1.9983 2.0302 2.0053 2.0675
1.8560 1.8489 1.8048 1.8354 1.9018
0.5702 0.5319 0.5623 0.5368 0.6011

The indices of the sorted matrix give us the selection order matrix where the first ele-
ment in the first column is the first satellite to pick a destination position from the Bag of
Destination (BoD). In this case, all columns are identical in the Ao matrix showing the
satellite s2 is the farthest to each destination.

Ao =




2 2 2 2 2
1 1 1 1 1
4 4 4 4 4
3 3 3 3 3
5 5 5 5 5

The assignment order matrix (Ao) and the destination order matrix (Do) have been ob-
tained, we move on to the next step of the Assignment as shown in Algorithm 1.

The result of this algorithm is the assignment of a destination for each satellite to one of
the positions in the final formation. The required data set includes the set of assignable
Destinations (BoD), the Parameter matrix (Ppr e f ), The Assignment order matrix (Ao),
and the Destination order matrix (Do).

As we follow the example, the Ao matrix’s 1st element shows satellite (s2) gets destina-
tion selection priority out of the five satellites. Following, we shift our focus to Do . In the
Do matrix, we check the second row which represents the priority of the destinations for
satellite (s2) which in this example is the destination (d3). Now, the algorithm checks if d3

is available in the bag of destinations (BoD). Since it is the first assignment, all the desti-
nations are available. So, satellite s2 is assigned its first preference i.e. d3, and is ready to
begin its journey. Subsequently, d3 is removed from the bag of destinations. Now, there
are numsat −1 destinations available, that is 4 in the example we are following, for the
other satellites to choose from.

Let us continue with another pass of the loop. The next satellite in order is s1 from the As-
signment matrix (Ao). Following the same procedure, the row corresponding to satellite
s1 is checked in the Destination matrix (Do) i.e., the first row. The first priority of satellite
s1 is destination d5. This destination d5 is available in the bag of Destination (BoD) so,
d5 is assigned to the satellite s1 and again is deleted from the bag of destinations. Now,
there are numsat −2 destinations available that is available destinations are down to 3
for 3 remaining satellites.
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Algorithm 1: Destination Assignment

1

Result: Dass , Assignment array with destination for each satellite
Data: Bag of destination(BoD) is a set of destinations, Parameter matrix(Ppr e f )

2 begin

3 Sorting operations
4 Assignment order(Ao) = sort(Ppr e f , column-wise, ascending/descending)
5 Destination order(Do) = sort(Ppr e f , row-wise, ascending/descending)
6 Dass = numsat ×1 null array
7 for i ← 1 to numsat do
8 for j ← 1 to numsat do
9 for k ← 1 to |BoD| do

10 flag is 0
11 if Ao(Do((i ), j )) = Bod(k) then
12 Dass (Do(i )) = Ao(Do((i ), j ))
13 remove the respective element from BoD
14 flag is 1
15 break
16 end
17 end
18 if flag = 1 then
19 display ’Assigned!’
20 display Dass

21 end
22 end
23 end
24 end
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In the next pass, satellite s4 is inline to select its destination and follows the same pro-
cedure. The satellite s4 is assigned its first preference as well which is the destination d2

because it was available and d4 is also removed from the bag of destinations. Now, the
following pass is the interesting one. Next up is satellite s3 in the order as we keep follow-
ing the Assignment matrix (Ao). The Destination matrix (Do) row three shows the first
preference for satellite s3 is destination d3. However, d3 was also the priority of satellite
s2 and therefore, taken by s2. Since d3 is not in the bag of destination anymore, satellite
s3 will move on to its second preference which is destination d4. Destination d4 is cur-
rently available in the bag of destination(BoD). Hence, it can be and is assigned to the
satellite s3 and removed afterward from the bag.

In the final pass of the assignment algorithm loop, the satellite s5 is the last satellite with-
out a destination. The corresponding row to the satellite s5 in the Do matrix shows its
first preference being destination d4 which, unfortunately, is already taken by satellite s3

in the previous loop. Its next favorable destination is d3, which is again taken by satellite
s2 at the start of the assignment algorithm. Now, satellite s5 has to consider its third pref-
erence, which is the destination d1. Destination d1 is available in the BoD and hence, is
assigned to satellite s5 and removed from the bag of destinations.

Following this assignment algorithm, the bag of destinations would ideally be empty be-
cause the number of available destinations is the same as the number of satellites. In the
case where there are more destinations available than the total number of satellites, the
algorithm would still work because the assignment occurs from a satellite’s first to last
preference. By the end of the algorithm, all the satellites would have an assigned desti-
nation to reach in the formation. In this explanation, the distance example is taken as it
is the simplest one. The Parameter matrix would consist of fuel statistics as parameters
in the following because it is the primary focus of this project.

3.5. SUMMARY
At the start of this chapter, the assignment problem was defined with appropriate illus-
trations. From the initial positions, satellites are assigned a target destination from a
set called Bag of Destinations. The assignment is executed with priority parameters. The
various possible choices of parameters are listed and explained briefly. The construction
Parameter matrix Pmat is defined using the possible assignment parameters with appro-
priate weights. After Pmat construction, the proposed assignment algorithm is laid out.
A demonstration is shown based on the satellite distance to the target destinations. With
the assignment algorithm defined, we move on to the procedure to estimate the fuel ex-
penditure which will be used as the major priority parameter.
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4.1. INTRODUCTION
The development of Control and Guidance techniques has garnered significant research
in the last few years in spacecraft formation flying with a key focus on collision avoidance
and optimizing fuel consumption. Multiple control strategies have been researched to
achieve those goals from Multiple glideslope transfer [18], sliding mode control [19, 20,
21, 22] to Artificial Potential Function [23, 8] and Model Predictive control [24, 25, 26].
Guidance comes with an important and complex factor of the trajectory planning prob-
lem brilliantly explained by Hu et al. [27]. This project will focus on guiding a satellite
using an MPC to its destination. The trajectory planning is out of scope for this project.

In this chapter, the state-space model is explained in Section 4.2. Then a couple of con-
trol strategies are discussed starting with Artificial Potential function(APF) in Section 4.3
and the basic terms and strategy are explained for Model Predictive Control keeping this
project in reference in section 4.4. In section 4.4.1, we discuss the role of sampling time in
MPC formulation for projects in space. In section 4.4.2, we examine how the prediction
parameters in the MPC impact the controller performance. Further, the cost function is
constructed based on the project in section 4.4.3 followed by system constraints in sec-
tion 4.4.4 as they are tied to each other. With these basics, the Optimal Control Problem
is formulated in section 4.5.

4.2. STATE-SPACE SYSTEM MODEL
We consider an autonomous formation reconfiguration maneuver for the ’deputy’ satel-
lites to the target destinations using a guidance strategy that is discussed in this chapter.
We set up the simulation to calculate the expected fuel consumption ∆V used in the
Parameter matrix construction for the Assignment of satellites as discussed in the pre-
vious chapter. The dynamics for the satellites are defined using the Clohessy-Wiltshire
equations derived in the previous Chapter. The CW equations are as follows:

δẍ −3n2δx −2nδẏ = 0

δÿ +2nδẋ = 0

δz̈ +n2δz = 0

where the mean motion n is defined as:

n =
√

µ

a3

The dynamics system can be represented in a state-space model [28, 29] as follows:

Ẋ = AX +BU (4.1)

The state matrix X is defined as:
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X =



x(t )
y(t )
z(t )
ẋ(t )
ẏ(t )
ż(t )


The Control matrix U consists of the control input in the 3-dimensions:

U =
ux (t )

uy (t )
uz (t )


The system matrices based on the CW equations are as following:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−3n2 0 0 0 −2n 0
0 0 0 2n 0 0
0 0 n2 0 0 0

 B =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


With the Problem and the Model defined, we take a look at the preferred guidance strate-
gies.

4.3. ARTIFICIAL POTENTIAL FUNCTION
Artificial potential functions offer simple mathematical guidance laws that are imple-
mented in real-time and do not require any prior assumptions concerning the system
dynamics. The objective of this control algorithm is to guide the element to the target
with the help of a negative gradient. In the literature, one of the better research papers
is written by Theodore Wahl and Kathleen Howell [30]. They explain it as the space from
the element to target position is defined as an artificial potential zone. This approach is
accomplished by creating the target position at the lowest potential point in the poten-
tial field and all obstacles are placed at high potential. Now the element follows the path
of negative potential gradient avoiding any high potential areas to the required target
lowest potential location. Figure 4.1 shows the idea behind the said obstacles made to
be potential peaks and the system has to define the path around them.

A basic approach is explained by Wahl and Howell [30]. The potential field is generated
by incorporating attractive and repulsive pieces. A Lyapunov function is chosen as the
quadratic attractive potential function (φa) that is based on the separation between the
spacecraft in Hill’s frame (ρ) and target position (ρt ) described as

φa = k

2
(ρ−ρt )′Q(ρ−ρt ) (4.2)
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Figure 4.1: Artificial Potential Function guidance

k is a scalar weighting factor and Q is a positive-definite matrix describing the shape of
the potential and is spacecraft symmetrical. The repulsive potential for a single obstacle
is defined as

φr = K

2

(ρ−ρt )′Q(ρ−ρt )

(ρ−ρ0)′P (ρ−ρ0)−1
(4.3)

where K is a scalar weighting factor, ρ0 is the initial position, and P is the positive definite
matrix describing the shape of an ellipsoid. This shape takes care of the uncertainty
of the element position and shape. If there are multiple objects, say n obstacles, ρ0,i

describes the i th obstacle position and the repulsive potential is a sum of all n obstacles
that need to be avoided.

φr = K

2

n∑
i=1

(ρ−ρt )′Q(ρ−ρt )

(ρ−ρ0,i )′P (ρ−ρ0,i )−1
(4.4)

The obstacles can be known spacecraft within the formation or other nearby operations
and can be some unknown debris. The total sum of the potential portions is

φ=φa +φr

. The desired velocity is the negative gradient of the total potential

vd =−∇φ=−∇φa −∇φr (4.5)

This is the relative velocity definition in Hill’s frame. Now, the spacecraft must match
the target velocity where the error εv is defined as the difference in spacecraft and target
velocity vector. Based on this error, the algorithm defines the control input ∆V as the
difference in the current spacecraft velocity and the error.



4.4. LINEAR MPC-BASED GUIDANCE

4

35

∆V = vd −εv (4.6)

However, the APF control method is not inherently optimal because it does not consider
the system dynamics. This results in unnecessarily large ∆V i.e. the thrust as maneuver
requirement further resulting in more correction maneuvers. This drawback is discussed
by Izzo and Pettazzi [8]. Their study shows that APF uses the most amount of propellant
compared to Q-guidance or SMC discussed in the simulation. The reason is the APF
technique is shown to be robust but the correctional control usage is quite high which in
turn results in excessive fuel usage.

An extension is proposed again by Wahl and Howell [30] based on the work of Josue
Munoz [31] called The Adaptive Artificial Potential Function(AAPF). Munoz explains in
his dissertation that APF is simple and shows favorable convergence characteristics. APF
can be modified by embedding the dynamics and performance index in its algorithm us-
ing a state transition matrix to adapt the system relative to the dynamics. These studies
successfully showed the ability of APF and AAPF to guide the spacecraft to their desig-
nated locations but fail to remark on the key point of fuel efficiency.

Wahl and Howell further go to show in their research [32, 30, 23] another guidance ap-
proach using the Model Predictive control for better control over fuel consumption. In
the next section, we explain how MPC formulation works.

4.4. LINEAR MPC-BASED GUIDANCE
At its root, MPC is an optimal control problem where a dynamic system model is used to
optimize the prediction resulting in the best decisions. MPC is a form of control strategy
where the general design objective is the computation of the control action trajectory by
solving an optimal control problem at each time step for the optimized future behavior.
The optimization is carried out inside a limited time frame where its current state is its
initial state at the start of the time window. The MPC computes the control action online
which differentiates MPC from the conventional control strategies where the control law
is precalculated offline [33].

Furthermore, Liuping Wang in his book [34] briefly points out the parameters for an MPC
described as following:

• Moving horizon sampling time window Tp is a constant time window from an ar-
bitrary point ti to ti +Tp .

• Prediction Horizon (Np ) is the parameter that governs how far ahead the predic-
tion takes place. Same length as moving horizon window Tp .

• Receding horizon control referring to predicting the full horizon but using only the
first prediction value in the next time step and repeating the process.

• For prediction computation, state information vector xi is needed at the current
time step ti directly measured or estimated.
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• A precise dynamic model is a requirement for the MPC to consistently perform
during operation.

• The best decision is made based on the criterion which is an error function be-
tween suitable and real response. The optimal control is found by minimizing the
said error function

4.4.1. SAMPLING TIME
For an MPC implementation, the continuous system is discretized according to sam-
pling time (Ts ), which in turn refers to the sampling frequency (1/Ts ). The Sampling
frequency is the interval when data is collected and hence, quite an important factor
for real-time applications. A higher sampling frequency i.e. lower sampling time means
the data is being collected more frequently. The high rate of data collection results in
a high computational load. The computation factor is often the bottleneck for a Con-
trol system’s efficacy. The higher frequency for data collection allows the controller to
follow the system dynamics more closely. So, for a system with dynamics that changes
within a millisecond, a computer with high computational capacity is a necessity other-
wise the control system will tend to miss the dynamics resulting in poor performance.
For this project, the satellites are operated in low-earth orbit with the primary objective
of minimizing fuel consumption. Given reasonably ample time to finish the operation,
the sampling time for the system is usually in minutes [32, 8, 18].

The satellites being small and starved for space, the onboard computers are tradition-
ally not powerful ones. So, designing a control strategy with low computational power
high sampling time is chosen. Furthermore, the fuel consumption can also be reduced
by spacing the times the control action is applied. Hence, keeping sampling high also
increases the interval where the control action can be applied. However, the sampling
time cannot be a large interval either because a large sampling time interval can desta-
bilize the controller. A compromise is necessary to achieve both objectives, minimizing
fuel consumption and accuracy of the reconfiguration operation.

4.4.2. PREDICTION AND CONTROL
MPC involves future prediction to calculate the optimal control input. There are two
types of predictions made [36]. System state predictions are sometimes referred to as
set-points and control predictions. These predictions on the future state are based on
the Plant system model. The system is optimized for each sampling interval throughout
multiple samples called Prediction Horizon (Np ). While using the MPC, Optimal control
input is calculated over the prediction termed as Control Horizon (Nc ). Over the con-
trol horizon, the control input from the next time step is applied. In the next iteration
step, the Prediction and Control horizon are moved to another time step making a new
prediction calculation for states and optimal control. The system has a terminal state to
achieve, the control system drives the plant system towards it with each time step until it
encounters the terminal state in the prediction horizon. This is called a Receding Hori-
zon control as the prediction horizon recedes to the terminal state. The process is aptly
described in Figure 4.2.
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Now, for each step of the prediction horizon, the optimized control input is calculated.
If it’s longer than the prediction horizon, the system cannot optimize control for states
that are not predicted yet. The Control Horizon (Nc ) has to be shorter or the same as the
Prediction Horizon (Np ).

Nc ≤ Np (4.7)

Furthermore, The prediction time window (Tp ) can be defined as the time frame in
which prediction is carried out for each sampling time (Ts ), written as follows:

Tp = Np .Ts (4.8)

Following Figure 4.2, it is shown Nc is the same as Np . In this way, the control inputs are
available for each prediction state. Only the first control input value uc (k|k) is used by
the MPC for each iteration. However, to simplify calculations MPC computes the change
in the input (∆uc ) and calculates uc afterward. When Nc < Np , the change in control
input (∆uc ) is assumed as zero for the time steps between Nc and Np .

Selecting the length of the Predication Horizon is very important. The system must be
allowed to predict in significant future anticipating any problems. So, the prediction
horizon should not be too short as it could result in system instability and bad reference
tracking. On the other hand, the benefits of a long prediction horizon are also evident.
The farther ahead in time the control system knows the state the better decisions can be
made in the present. This comes at the cost of increased computational capacity as dis-
cussed earlier and the risk of compounding errors or uncertainties over a long prediction

Figure 4.2: MPC working with Prediction and Control Horizon [35]
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horizon. The prediction horizon should be long enough so that the system is stable and
not starved for resources due to high computation demand.

4.4.3. COST FUNCTION
We have established that MPC is a receding horizon control scheme using a feedback
loop for position and velocity to compute the predictive solution over the moving hori-
zon. The dynamic model used for this project is linear defined as following:

xk+1 = Axk +Buk (4.9)

where xk is the state vector at time tk , uk is the control vector, A is the system matrix and
B is the control matrix. A standard cost function consists of tracking error and control
action along the moving horizon Np . The control action is the first element of a sequence
obtained by minimizing the cost function at each time instant. The system is updated
and the next step is computed and so on. The objective function can be defined as:

J (Uk , xk , xr e f
k )

where Uk is the stacked control vector, xk is the current state vector at tk and xr e f
k is the

reference tracking signal as explained by Gros et. al [37]. The objective function can be
written as the sum of two functions J1 and J2:

J (Uk , xk ) = J1(xk+Np−1)+ J2(xk+Np ) (4.10)

where J1 is defined as quadratic positive semi-definite stage cost:

J1(xk , xr e f
k ,uk ,ur e f

k ) =
Np−1∑
k=0

1

2

[
xi ,k −xr e f

i ,k

ui ,k −ur e f
i ,k

]′
Wi ,k

[
xi ,k −xr e f

i ,k

ui ,k −ur e f
i ,k

]
(4.11)

Wi ,k =
[

Q 0
0 R

]

Where Wi ,k represents the augmented matrix made of Q and R weight matrices for states
and control input respectively. Furthermore, the terminal cost J2 is expressed as:

J2(xk+Np , xter m) = (xk+Np −xter m)′Wter m(xNp −xter m) (4.12)

where Wter m represents the positive semi-definite terminal cost matrix on the final time
step. Now, we have an Objective function around which the system can run an optimiza-
tion for the control input.
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4.4.4. SYSTEM CONSTRAINTS
The significant advantage of MPC over other control strategies is the application of ex-
plicit constraints on the control inputs and system output. There are generally three
types of constraints that can be put on the system, two of them on the control input u(k)
and the third type is state x(k) or output y(k) constraint as explained by Liuping Wang
[34]. These hard constraints on the amplitude of the control input can be defined as:

umi n ≤ ui ,k ≤ umax

where umi n , umax are the limits on the amplitude and the constraint on the change in
the control input is the second-hand constraint that can be applied as:

∆umi n ≤∆ui ,k ≤∆umax

As discussed earlier, the satellites have a large bias towards keeping the weight low where
the compromise for the amount of fuel and the thrust available comes into play. There
are many types of thrusters available to choose from as NASA [38] and ESA [39].The
available thrust can vary from micro-Newtons to tens of Newtons but in small satellites,
thrust output is mainly between milli-newtons(mN ) to Newtons(N ).

Now, the output or state constraints are put on the system to define the operating range
similarly:

xmi n ≤ xi ,k ≤ xmax

In addition to this, the system dynamics themselves also act as constraints in the MPC
problem. The problem itself is defined as linear or non-linear based on the constraints
and the system dynamics.

4.5. OPTIMAL CONTROL PROBLEM FORMULATION
From the previous sections, we can say that the Linear Model Predictive Control is a
fitting control strategy for the Assignment and Guidance problem to handle the dynam-
ics and constraints for the problem. The controller is set up to accommodate the non-
linearities that can be added to the dynamics or the constraints. The major issue with
the implementation of an onboard MPC is the high computational cost and computa-
tion time required to get a solution. In recent times, this problem has been overcome
with the advancement in onboard chips becoming faster and getting smaller at the same
time. The researchers have not been sitting idle either. The developments in algorithm
speed and computational efficiency have been significant making even non-linear con-
trollers affordable for onboard computations [40, 41, 42].

Hence, a MPC problem can be defined in (4.13). The control input ui is defined for a
state estimate x̂i at every time instant i .
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QPMPC (x̂i , xr e f
i ,ur e f

i , xter m ,uter m) = (4.13)

ar g min
∆xi ,∆ui

N−1∑
k=0

1

2

[
∆xi ,k

∆ui ,k

]′
Wi ,k

[
∆xi ,k

∆ui ,k

]
+ (xk+N −xter m)′Wter m(xN −xter m)

s.t . ∆xi ,0 =x̂i −xr e f
i ,0

∆xi ,k+1 =Ai ,k∆xi ,k +Bi ,k∆ui ,k + ri ,k k =0 · · ·N −1, (4.14)

Ci ,k∆xi ,k +Di ,k∆ui ,k +hi ,k ≤ 0 k =0 · · ·N −1, (4.15)

where xr e f
i ,ur e f

i are the reference values at time instance i with the prediction starting
at current time instance. The system is constrained with dynamics and constraints on
input using (4.14) where A,B represent the system matrix and the control input matrix.
The actuator limitations or obstacle avoidance is included in (4.15) where C ,D represent
the output matrix and feed forward matrix. The notation given here xi ,k suggests to the
k th element from k = 0, · · · , N − 1 in the sequence xi provided at time instance i . The
error of the predicted and reference values are provided at time i as:

∆xi ,k =xi ,k −xr e f
i ,k k =0 · · ·N (4.16)

∆ui ,k =ui ,k −ur e f
i ,k k =0 · · ·N −1 (4.17)

At every time instance i , the input is applied to the system:

uMPC
i = ur e f

i ,0 +∆ui ,0 (∆xi ,∆ui ) =QPMPC (x̂i , xr e f
i ,ur e f

i ) (4.18)

The problem formulation in (4.13) is a structured Quadratic Program where Ai ,k ,Bi ,k are
constant in the Linear Time-Invariant model or the Linear Time-Variant model where
Ai ,k ,Bi ,k are developing with time. The affine terms ri ,k are zero if the reference values

xr e f
i ,ur e f

i satisfy the dynamics of the system. The weights Wi ,k and Wter m are positive
semi-definite diagonal matrices.

The next important factors are the weights used in the optimization problem. The Wi ,k

matrix is an augment matrix made of matrices S representing the penalty matrix on
the difference in states from the reference values except for the final state, and R is the
penalty matrix on the control cost. The weight matrix Wter m is the semi-definite matrix
imposing penalties on the difference in the terminal state of the satellite.

This terminal weight can also be calculated using Discrete-time Algebraic Riccati Equa-
tion(DARE) as the solution of the unconstrained closed-loop system leads to asymptotic
stability given R and S̄ being positive definite matrices [34, 23, 43, 44]. The terminal
weights can be represented as:
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Wter m =A′Wter m A+ S̄ −H ′(R +B ′Wter mB)H (4.19)

H =(R +B ′Wter mB)−1B ′Wter m A

The Algebraic Riccati Equation solves for the Wter m at the start of each time step using
MATLAB algorithm eDARE. Theodore [23] states that the terminal state of the satellite
becomes a state penalty instead of a hard terminal constraint forcing the controller to
build an optimal control history. With the problem completely defined, we can carry on
with the selection of the simulation toolbox in MATLAB SIMULINK.

The MATLAB SIMULINK provides an MPC environment to work with which is a solid so-
lution for problems that have a defined reference but it does not offer the framework re-
garding the terminal state computations and constraints. In this regard, the ACADO tool-
box [45] provides a thorough implementation of the MPC including non-linear applica-
tion. ACADO comes with discretization and linearization algorithms for non-linear sys-
tems and solution computation algorithms. Sequential Quadratic Programming(SQP) is
used to compute the solution. SQP is generally used for solving constrained non-linear
problems by sequentially approximating the optimization problem providing direction
to Newton’s steps towards the solution from an available guess [46]. For this project,
ACADO is used to solve the MPC problem as per the settings provided in the table 4.1.
These chosen settings are further explained.

Parameter ACADO Setting
Hessian Approximation Gauss-Newton
Discretization Type Multiple Shooting
Sparse QP solution Full Condensing N2
Integrator Type Explicit RK4 integrator
Number of Integrator steps 2N
QP solver qpOASES3
Levenberg Maquardt Parameter 1e−4

Table 4.1: ACADO toolbox settings for the MPC solver

Commonly used approaches for the discretization of system dynamics are based on
boundary value problem-solving techniques. These techniques are divided into single
shooting or multiple shooting methods. The direct multiple shooting method divides
the time interval (t0, to + T ) into several smaller intervals (k,k + 1) for k = 0 · · ·Np − 1
and solves the initial value problem for each interval. The constraints over the state are
discretized over the same interval as the states and controls. On the other hand, the sin-
gle shooting method solves the boundary problem over a single interval. The multiple
shooting method has been shown to perform superior to single shooting in modeling
and numerical stability [47, 48]. Hence, the Multiple shooting method is chosen for this
project.

The linearization of non-linear constraints or models requires accurate approximations
by the integrator to ensure feasible prediction for the system. ACADO provides vari-
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ous integrators implicit and explicit in nature. In this project, we are using a non-stiff
dynamic so an explicit Range-Kutta integrator is a good choice for this MPC problem
computation.

Another important choice here is the integration steps and order of the integrator. This
choice again depends on the available computation effort. A smaller step size or a higher
order of integrator will result in more accurate computations at the cost of processing
power and time. Since we are using a linearized dynamics model, we can afford some
computational leeway and go for the Range-Kutta integrator order 4 with a step size of
2∗N i.e. twice the prediction horizon. The next choice we have to make is the Quadratic
Problem solver. The QP 4.13 can be solved using various online solvers included in the
ACADO toolbox and are categorized based on their constraint handling approach.

The interior-point(IP) method of optimization solver uses a barrier function called bar-
rier method IP where the barrier function replaces the limits and is added to the op-
timization problem. When these barriers are violated, the cost of function increases.
Afterward, an optimal solution is calculated using Newton’s method. Another approach
to the QP solution is using the Active Set (AS) method where at the current state, the al-
gorithm finds a working set of active constraints and computes the resulting QP problem
with equality constraints. The algorithm is repeated until optimality is achieved. The IP
method uses less iterations than AS however, the AS algorithm gets faster with each cal-
culation [40, 49]. Farreau et al. [40] further propose a qpOASES QP solver that employs
AS algorithm for constraint handling.

With the ACADO ready to go according to this explanation, we move on to see how the
system performs based on these parameters and set up the simulation for the MPC Con-
trol Strategy.

4.6. SUMMARY
The chapter introduces the various control strategies employed in the literature to solve
a navigation problem. Artificial Potential Function is briefly explained. But an MPC is
chosen as the control strategy of choice due to its inherent optimization strategy. Next,
the dynamics model is constructed using the CW equations of motions for the MPC con-
troller. Furthermore, the linearized MPC strategy is discussed along with all the control
parameters and constraints. An approach of introducing dynamic terminal weights by
using Algebraic Riccati Equation is introduced. The ACADO toolkit is employed as the
interface to set up the MPC controller in the MATLAB environment. The ACADO’s pa-
rameter choices are displayed and explained briefly. With the controller ready to esti-
mate the ∆V values, we go on ahead with simulations to test the proposed assignment
algorithm.
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5.1. INTRODUCTION
In this chapter, we analyze the working of the algorithm in tandem with the fuel values
extracted from the MPC simulations. The randomized initial conditions are discussed
and the MPC simulated trajectories are highlighted. Furthermore, the expected fuel con-
sumption extracted from the MPC simulations for each satellite to each destination is
also analyzed. Based on this information, the algorithm is tested and the destination for
each satellite is assigned. It should be noted that the tuning and setup of the MPC and
the assignment algorithm are kept the same throughout the simulations.

5.2. SIMULATION FRAMEWORK
Now, that the background is established, the simulation setup is defined in this section
with spacecraft specs, initial condition, MPC parameters, and constraints. After the sim-
ulation is carried out with the mentioned conditions, the results are analyzed.

5.2.1. SPACECRAFT SPECIFICATIONS
The spacecraft chosen for this project is a small satellite. All the satellites in the cluster
are of the same type and dimensions i.e. a Homogenous cluster of satellites. Similar
to that of the Starlink operation [50] by SpaceX. Table 5.1 shows the specifications for
the satellites considered in this project. Furthermore, the satellites are assumed to have
intercommunication capabilities throughout the simulation with common data access
with their stats available at all times during the simulation.

Orbit Orbital Period Mass Thrust
Low earth-300km 5431s 100kg 1N

Table 5.1: Satellite Specifications

5.2.2. INITIAL CONDITIONS
The satellites are deployed via a rocket into the low earth orbit. The rocket is launched
into orbit and the payload fairings are jettisoned into space as explained by NASA [51].
Then, the spacecraft must make its way to the desired orbit using its thrusters. This initial
deployment will result in randomly distributed satellites near the destination orbit which
is the Chief Orbit. For this project, the satellites must make their way themselves to the
destinations.

Satellite Radial Along-Track Cross-track
s1 -1747 -1675 848
s2 -97 1265 -1772
s3 -936 -435 -191
s4 1131 1427 635
s5 -398 1161 -1722

Table 5.2: Satellite initial positions [m]

The initial and final positions for the satellite are decided using the randomize function
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available in MATLAB. The algorithm was tested on randomized scenarios to emphasize
its ability to deal with any general proximity reconfiguration maneuvers. For this sim-
ulation demonstration, the initial positions for the satellites are randomized between
±2000m as shown in Table 5.2.

Destination Radial Along-Track Cross-track
d1 -40 -21 -21
d2 -18 -28 29
d3 -30 27 42
d4 34 -10 -17
d5 32 38 36

Table 5.3: Satellite final destinations [m]

The limits for the randomization were chosen to be 2000m because the dynamics model
used here is the Clohessy-Wiltshire relative model which is linearized to simplify the for-
mulation. As the distance is increased to tens of Kilometers, the trajectories were ob-
served to be inaccurate. The 2000m limit is far enough to be still considered as proximity
and close enough that the model captures the dynamics to acceptable accuracy.

Similarly, the destinations are also randomized between ±50m as shown in Table 5.3.
The limits for the final designated randomization were chosen as 50m to show the sys-
tem can deliver the satellite to meters accurately.

The set of randomized positions were chosen such that the satellites are spread in space
in ±2000m. Figure 5.1 shows the initial state of the simulation showing the relative initial
positions to the destinations in HIll’s frame of reference where the black star represents
the chief location as the origin of the relative frame. The red squares represent the initial
positions for satellites s1 to s5 and the green squares represent the available destinations
d1 to d5.

5.2.3. MPC PARAMETERS AND CONSTRAINTS
For this project, no obstacles are considered during the MPC simulation because as ex-
plained previously, this is a preliminary simulation to estimate the fuel consumption of
a satellite to the available destinations. There are no state transition constraints either
because we do not have a reference trajectory only a reference final position. Hence, a
terminal constraint is added to the MPC.

The next system constraint is for the maximum allowed acceleration to the system ac-
counting for the physical limiting capability of the satellite thrusters as in Table 5.4.
Thrusters here are considered to be cold gas thrusters with maximum available thrust
at 1N. The thrusters are assumed to provide maximum thrust instantaneously in the
required x,y, or z-direction.

As we discuss in previous Chapter 3, the choice of the MPC parameters for the available
computation power and time for onboard calculation is reiterated here in Table 5.5. In
addition to this, the weights for the MPC as shown in the same table. The state error cost
is kept low because, as mentioned previously, we do not have a state trajectory to follow
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(a) Initial positions for satellites s1−5

(b) Available Destinations d1−5

Figure 5.1: Initial satellite positions depicted as red squares and available destinations are green squares with
the black star as the origin of chief orbit reference frame

Contorl Input
umi n −0.01ms−2

umax 0.01ms−2

Table 5.4: Control input Constraints

only the final destination. On the other hand, the control cost is kept high to emphasize
the optimization of fuel consumption to be minimum to the reference which is taken to
be zero. Control cost any higher than the selected value would break the control.

Now, The terminal constraint is used in two ways in the simulations for comparison.
As discussed in the previous chapter, the terminal cost is not applied but controlled with
terminal cost weights. Another method is adding the destination as a terminal constraint
at the time of exporting MPC block for SIMULINK where it becomes a hard constraint. In
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Sampling Time (Ts ) Prediction Horizon (N )
60s 50

State error Cost(Q) Control Cost(R) Terminal Cost (Wter m)
1×10−8 ∗ I6×6 1×103 ∗ I3×3 1×1010 ∗ I6×6

Table 5.5: MPC parameters and weights [m]

Figure 5.2, it can be observed the effect of terminal cost addition to a constant terminal
cost weight scenario.

Figure 5.2: The Comparison between scenarios with Terminal constraint constant terminal cost and Constant
or Dynamic terminal cost weights without terminal constraint

The scenario with constant terminal cost weights shows is unable to converge in time of
the simulation with a larger overshoot in comparison to the scenario where the con-
troller is additionally dealing with a terminal constraint. The scenario with terminal
constraint performs much better and can achieve the target state in the given time.
However, adding a hard terminal constraint to the controller also increases computa-
tion load and time. This scenario with terminal constraint has another drawback while
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simulating using the ACADO toolkit. The ACADO toolkit adds the terminal constraint as
a hard constraint while compiling the s-function. Hence, the user is forced to compile a
new s-function every time the destination is changed making the whole process much
more complex and time-consuming. Another important observation here to make is the
performance similarity for the scenario with terminal constraints and Dynamic weights
without terminal constraints. Both scenarios converge to target states within the given
time.

These dynamic weights are calculated using the DARE Equation for each time step as ex-
plained in Chapter 4. The Introduction is dynamic weights alleviates the problem with
the application of hard constraints providing flexibility to the application without chang-
ing the s-function with each iteration.

Figure 5.3: Performance comparison for scenarios with Dynamic weights and Constant weights with terminal
cost.

Furthermore, It is observed in Figure 5.3 the controller with dynamic weights can closely
keep up with the controller with the terminal constraint with state transition and the
fuel expenditure. Hence, the controller with the dynamic weights is a viable option to be
considered for controller design. With the setup defined, we carry on with the simulation
scenarios.

5.3. SIMULATIONS
The simulations are carried out in SIMULINK using the exported s-function from the
ACADO toolkit. The simulation time limit is 360min that is four times the Orbital pe-
riod(T) of the chief orbit which is 90 minutes at 300km. If the satellite does not reach
its destination in the time frame, simulation is considered unsuccessful. Also, when the
velocity for the satellite reaches 1cms−1, the simulation is considered successful. At this
timestamp, the ∆V for the satellites is logged to be used for the Assignment algorithm.

5.3.1. EXPECTED TRAJECTORIES AND FUEL CONSUMPTION
First part of the simulations is the satellites translating to the each destination. The satel-
lites are guided by an MPC controller to the designations as the terminal constraint. The
destinations are a single set of randomized [x, y, z] coordinates for each satellite. Figures
5.4-5.8 show the trajectory in 3-D space the satellite takes to each destination. Figure
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5.4a shows the satellite s1 from its initial position [−1747,−1675,848] to the destinations
d1 to d5. Figure 5.4b shows the fuel consumption in terms of ∆V for each destination
again.

(a) Trajectories (b) Fuel consumption

Figure 5.4: Satellite 1 trajectories and the ∆V for each destination

(a) Trajectories (b) Fuel consumption

Figure 5.5: Satellite 2 trajectories and the ∆V for each destination

At the start of the maneuver, the fuel expenditure is similar and the diff is observed when
the satellite closes in on one of the destination positions. The reason for the similar fuel
expenditure is that the destinations are in range of ±50m which is a small space com-
pared to the initial positions of the satellites. Therefore, the starting leg of the journey
30–40min is similar for all the available destinations and the trajectories diverge when
the satellites get close to the destination space. Hence, you observer the splitting of plots
in figure 5.4b and the difference in ∆V is much clearer.

Notice here that maximum fuel consumption takes place at the early stage of the trans-
lation i.e. the first 20% of the journey. The rest of the time is spent making sure the desti-
nation is reached. The time taken by each satellite to finish the maneuver is also similar.
The farther the satellite seems to be, the higher acceleration is allowed by the MPC to
complete the maneuver in similar To f as shown by Walh and Howell [23]. Hence, the
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(a) Trajectories (b) Fuel consumption

Figure 5.6: Satellite 3 trajectories and the ∆V for each destination

(a) Trajectories (b) Fuel consumption

Figure 5.7: Satellite 4 trajectories and the ∆V for each destination

(a) Trajectories (b) Fuel consumption

Figure 5.8: Satellite 5 trajectories and the ∆V for each destination

∆V values are different allowing us a great parameter to differentiate the destinations
with.
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A similar To f is between the 90–110min where the rate of change of ∆V seems to be
constant i.e. accelerations have become constant. But the velocities at this point are
around 1cm for each component essentially implying the satellite has come to a stop
as shown in Figure 5.9. The acceleration does not go to zero even when the satellite is
relatively stationary because the natural motion of a satellite is to orbit in equilibrium
due to gravity. Since here the satellite is kept stationary, the constant slope of ∆V refers
to the station-keeping fuel expenditure.

Figure 5.9: Resultant velocity of each satellite corresponding to each destination

Figure 5.10 shows the expected fuel expenditure for each satellite to destinations d1−d5.
It can be observed from both Figure 5.10 and 5.9 around 100min mark the satellites are
converging to their destination. Thus, at timestamp 100min the ∆V values are consid-
ered for the assignment algorithm. Using this data Fexp matrix is constructed which
looks as following:

Fexp =

d1 d2 d3 d4 d5


s1 7.9099 7.6894 7.7935 7.1632 7.1651
s2 3.8761 3.6601 3.7590 3.2852 3.3267
s3 4.5338 4.2844 4.3879 3.7920 3.7885
s4 4.4929 4.5737 4.5441 5.0874 5.1056
s5 4.7999 4.5699 4.6697 4.0896 4.1273

5.3.2. THE ASSIGNMENT
For the assignment phase, we go back to equation 3.1 in Chapter 3. With the Pmat equa-
tion, we will consider two cases. The first case where only the expected fuel consumption
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Figure 5.10: Fuel Expenditure of each satellite corresponding to each destination

matrix Fexp is used for the assignment. In the second case, the expected fuel matrix Fexp

and the reserve fuel level Fr es are both used for the assignment.

Pmat =Wd Dmat +W f e Fexp +W f c
1

Fcr

Either of the cases does not consider the distance matrix Dmat ; the weight Wd is zero for
Dmat . The expected fuel consumption indirectly accounts for the distance because the
fuel consumption is measured using∆v (ms−1) where the distance to the destinations is
part of the calculation.

CASE I
Now, we will assign the destinations based on the expected fuel consumption values.
So, W f e will be one making sure we only consider the expected fuel consumption as the
parameter. The W f e is only non-zero weight, in this case; thus W f e is 1. Therefore, the
parameter matrix Pmat is same as the expected fuel consumption matrix in this case:

Pmat =

d1 d2 d3 d4 d5


s1 7.9099 7.6894 7.7935 7.1632 7.1651
s2 3.8761 3.6601 3.7590 3.2852 3.3267
s3 4.5338 4.2844 4.3879 3.7920 3.7885
s4 4.4929 4.5737 4.5441 5.0874 5.1056
s5 4.7999 4.5699 4.6697 4.0896 4.1273

Following the same assignment procedure as the Algorithm 24 in Chapter 3, next step
is to sort the Pmat in descending order to find out what satellite has highest priority for
each particular destination. After sorting, the Parameter matrix look as following:
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Pmatsor t =

d1 d2 d3 d4 d5


7.9099 7.6894 7.7935 7.1632 7.1651
4.7999 4.5737 4.6697 5.0874 5.1056
4.5338 4.5699 4.5441 4.0896 4.1273
4.4929 4.2844 4.3879 3.7920 3.7885
3.8761 3.6601 3.7590 3.2852 3.3267

In addition to this sorted Pmat , the MATLAB sort function also gives us the assignment
order of the satellites that are the index values of Pmat repented by matrix Ao :

Ao =




1 1 1 1 1
5 4 5 4 4
3 5 4 5 5
4 3 3 3 3
2 2 2 2 2

(5.1)

Another sorting row-wise operation on Pmat gives us the destination priority order for
each satellite Do as following:

Do =




s1 4 5 2 3 1
s2 4 5 2 3 1
s3 5 4 2 3 1
s4 1 3 2 4 5
s5 4 5 2 3 1

(5.2)

Now, Assignment Algorithm is executed using the information obtained above from the
MPC simulations. The Assignment Algorithm gives us the final Assignment Order Ao

based on the Parameter matrix Pmat . The destinations for each satellite are set according
to the Assignment order A f i n vector.

A f i n =




s1 4
s2 3
s3 2
s4 1
s5 5

(5.3)
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CASE II
For this case, we consider both Fexp and Fr es for the assignment. The weights W f c and
W f r are set at 1 and 1×103 respectively. The large W f r signifies the importance of re-
serve fuel in this case. The fuel values of the satellites are as following:




s1 41
s2 41
s3 36
s4 45
s5 38

The fuel levels are in terms of the ∆v . The fuel value indicated the amount of ∆v the
satellite can expend. The base value of reserve fuel for each satellite is 50. In this case, the
reserve fuel level is lower than 50 to account for the assumed previous reconfiguration
or any other maneuvers the satellites might have executed. Based on the fuel levels, the
Fr es can be defined as follows:

Fr es =




s1 41 41 41 41 41
s2 41 41 41 41 41
s3 36 36 36 36 36
s4 45 45 45 45 45
s5 38 38 38 38 38

The Fr es has been defined, with Fexp from the previous case, the new Pmat is calculated.
Note that the higher value means a higher priority.

Pmat =




s1 32.3001 32.0796 32.1837 31.5534 31.5553
s2 28.2663 28.0503 28.1492 27.6754 27.7169
s3 32.3116 32.0622 32.1657 31.5698 31.5662
s4 26.7151 26.7959 26.7663 27.3096 27.3278
s5 31.1156 30.8857 30.9855 30.4054 30.4431

The sorting operations are carried out again on the new Pmat . The new Ao and Do are
shown below.



5.3. SIMULATIONS

5

55

Do =




s1 4 5 2 3 1
s2 4 5 2 3 1
s3 5 4 2 3 1
s4 1 3 2 4 5
s5 4 5 2 3 1

(5.4)

Ao =




3 1 1 3 3
1 3 3 1 1
5 5 5 5 5
2 2 2 2 2
4 4 4 4 4

(5.5)

These new Ao and Do are further fed into the assignment algorithm which gives us the
final assignments A f i n as following:

A f i n =




s1 4
s2 3
s3 5
s4 1
s5 2

(5.6)

The results show the Do matrices are the same for both cases. The result is as expected
because the destination order for each steatite is decided based on the expected fuel
consumption, which is the same for both cases. However, the assignment priority order
has changed in Case II. The Ao representative matrices in (5.1) and (5.5) show a shift in
the assignment order with inclusion of the reserve fuel levels Fr es . The satellites s2 and
s3 have moved up in the priority order.

In Case I, satellite s1 was the first one assigned a value, and Case II gives priority to the
satellite s3 corresponding to the change in Pmat priority values due to added reserve
fuel level consideration. The change in priority order matrix Ao shows a change in the
final assignment order A f i n . Both cases show different assignments for the satellites s3

and s5. Similarly, more parameters can be added to the priority calculations for a wider
consideration at the assignment stage of the problem.

With all the set information about initial positions and the calculated destinations, the
satellites are ready to be deployed into the Guidance phase using any control scheme
chosen by design. One important note is that we started these simulations with just the
target destinations as the reference. However, the trajectories generated by the MPC in
these simulations can be used as the reference trajectories by the guidance controller in
the absence of a good trajectory generator as shown in 5.11.
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(a) Satellite trajectories to the assigned positions (b) Zoomed in view showing satellites converging to the as-
signed destination

Figure 5.11: Simulation showing successful demonstration of trajectory generation by MPC controller and
convergence to destinations assigned using the autonomous assignment algorithm

5.4. SUMMARY
This chapter details the simulations and tests the proposed assignment algorithm. At
the start, the randomized approach to the initial positions and target destinations is ex-
plained. It is chosen in this work to generalize the assignment approach with random-
ness instead of treating each case separately. After that, the simulation parameters are
defined from the satellite dimensions, weight, fuel capacity to the operational orbit. The
MPC parameters and constraints are chosen with an explanation for that choice. Sim-
ulation is executed with constant terminal weights and dynamic terminal weights. The
results from both simulations are compared and it is observed that the dynamic con-
straints offer much better results than the constant terminal weight scenario. Further-
more, the simulations for each satellite are performed with results showing satellites are
expected to reach the target between 90 to 110min mark. In that time frame, the value is
extracted to be used in the assignment algorithm. Using these∆V values, the assignment
algorithm is successfully executed. In the next section, some future research options are
discussed.
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6.1. CONCLUSION
An autonomous assignment algorithm is proposed and presented in this thesis. The as-
signment algorithm autonomously assigns the satellites an optimal destination based
on the priority parameter. Various assignment parameters such as the distance of ini-
tial position from the available destinations, the current fuel capacity, and the expected
fuel expenditure demonstrate the versatility of the algorithm. The simulations to desti-
nations for each satellite using an MPC algorithm provide the expected fuel expenditure
data.

The assignment algorithm autonomously assigning the optimal destinations to the satel-
lites is demonstrated using the fuel parameters from the MPC algorithm. Furthermore,
it is essential to note that the simulations were without a reference trajectory. These pre-
guidance phase MPC simulations carried out to compute the expected fuel consumption
also generate a reference trajectory. When a dedicated trajectory generator is lacking, the
reference trajectory generated by the MPC can be convenient in the guidance phase of
the delivery problem.

6.2. FUTURE WORK
The work represented in this thesis is considered preliminary and can serve as a stepping
stone for more comprehensive development. The next step should include a blend of
decentralized parallel assignment algorithm instances with accurate autonomous navi-
gation and delivery methods. Some potential improvements that would provide a course
towards an autonomous assignment and delivery system as proposed as following:

• This thesis focused on computing expected fuel consumption to and from an arbi-
trary position. Thus, the delivery of satellites to a planned formation was not con-
sidered at the time of assignment. A further step would be testing the algorithm
in a well-defined arrangement with computed final position orbits and check the
performance.

• In addition to the previous point, the thesis deals with the assignment problem. A
guidance system built in tandem with this assignment algorithm is the most natu-
ral step in future research.

• In this work, Linearized Clohessy-Wiltshire relative equations of motion is the dy-
namics model. The Yamanaka-Ankersen (YA) dynamics approximation will be an
upgrade to CW equations. The YA approximations are non-linear in nature and
applicable to elliptical orbits. The YA implementation will widen the scope of the
application. Furthermore, the non-spherical elements of the earth like j 2 pertur-
bation can also be included to more accurately define the relative motion.

• The satellite swarm is assumed to be in communication at all times. However, the
distance between the deputy satellites limits the connection in a real case. The
chief satellite acts as the centralized entity for the communication and the as-
signment information decimation. For true decentralization, the deputy satellites
must be able to operate on their own. Therefore, an assignment and a guidance al-
gorithm can be developed with communication limitations as a design constraint.
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• Safety is a decisive factor to consider for the autonomous delivery system. The
use of debris/spacecraft tracking data would further improve the assignment al-
gorithm by accounting for possible collisions or collision avoidance maneuvers at
the time of the assignment.

It is evident from the complexity of the autonomous guidance problem of a swarm of
spacecraft, and this thesis work was a small part of a big puzzle. Although the thesis
demonstrates the feasibility of a specific parameter set-based assignment algorithm, the
algorithm can achieve onboard functionality by further studying the constraints and un-
certainties in the delivery algorithm.
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