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This study presents a robust contact constitutive model in the distinct element method (DEM) framework for 
simulating the mechanical behavior of masonry structures. The model is developed within the block-based 
modeling strategy, where the masonry unit is modeled as deformable blocks with potential crack surfaces 
in the middle of the bricks, while the mortar joints are defined as zero-thickness interfaces. The modeling 
strategy implements multi-surface plasticity with damage mechanics, including a tension cut-off, Coulomb failure 
criterion, and an elliptical compressive cap for the damage in tension, shear, and compression, respectively. Two 
new features are introduced in this contact model: a piecewise linear softening function for strength degradation 
in tension and shear and a hardening/softening function to phenomenologically define the compressive damage 
of masonry composite into the unit-mortar interface. The constitutive model is implemented in commercial 
DEM software using the small displacement configuration and validated against material and experimental 
tests on masonry walls subjected to constant pre-compression and monotonically increasing in-plane load. The 
experimental and numerical results regarding the force-displacement relationship and damage pattern produced 
by the proposed constitutive model are compared and critically discussed, demonstrating the capability of DEM 
coupled with the suitable constitutive law in simulating the behavior of masonry structures.
1. Introduction

Unreinforced masonry (URM) structures, considered one of the old-

est forms of construction known to man, account for the majority of ex-

isting residential buildings and architectural heritage worldwide [1–4]. 
It is generally known that URM structures are capable of withstanding 
gravitational loads but are vulnerable to extraordinary actions, such as 
settlements, earthquakes, strong wind, etc. This prompts researchers to 
investigate the state of maintenance and the mechanical behavior of 
these URM structures further through numerical analyses and/or exper-

iments.

The numerical investigation of the behavior of masonry structures it-
self has been an active field of research over the last half-century. With 
the rapid increase of computational power over the past few decades, 
researchers have opted for numerical modeling approaches that can ef-

ficiently predict nonlinear and complex responses of URM structures. 
D’Altri et al. [5] categorized the modeling strategies for masonry struc-

tures into four distinct groups: Block-based models where masonry units 
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are modeled as rigid or deformable blocks with the unit-mortar inter-

faces defined either by interface elements, cohesive-frictional contact 
points, or textured continua [6–10]; Continuum models where masonry 
is defined as a continuum body with no distinction between the units 
and mortar joints, where either calibrated constitutive laws or homog-

enization procedures are applied to represent the discrete nature of 
masonry [11–15]; Equivalent frame models where the structure is ideal-

ized into panel structural elements with constitutive laws that reproduce 
the mechanical response of masonry as structural components instead 
of as masonry constituents in the continuum-based models [16–20]; and 
Geometry-based models where masonry structures, modeled as rigid 
bodies, are analyzed through limit-analysis-based solutions implement-

ing static or kinematic theorems [21–25].

The constitutive model proposed in this paper is developed within 
the block-based modeling strategy. Most numerical strategies that follow 
the block-based models utilize a combination of damage and plasticity 
formulations to capture the failure and local mechanisms at the bond 
(also termed as unit-mortar interface) and within the masonry unit of 
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Fig. 1. Illustration of subcontacts of two deformable blocks in distinct element method.
URM structures. In the context of block-based modeling strategy with 
damaged plasticity concept, one of the earliest attempts at the develop-

ment of the constitutive model was made by Lotfi and Shing [26], who 
proposed a single hyperbolic yield surface for the damage in shear and 
tension. Similar work was proposed by Lourenço and Rots [27], who in-

troduced a multi-surface plasticity model with Coulomb-friction yield 
criterion for the shear region, tension cut-off, and an elliptical “cap” 
yield function for tension and compression regions, respectively. The 
interface model was then extended to account for stiffness degrada-

tion during cyclic loading [28]. Since then, many constitutive models 
have been developed incorporating the multi-surface plasticity concept 
within the block-based modeling strategy [9,29–34].

The constitutive models mentioned above were developed on finite 
element-based frameworks, which often rely on the implicit backward 
Euler method to iteratively solve the system’s equilibrium. The im-

plicit solver is known to encounter convergence issues and instabilities 
on highly nonlinear problems, e.g. the analysis of masonry structures. 
Therefore, researchers often opt for other solutions, such as the explicit 
integration method [35,36] or sequentially linear method [37], to sim-

ulate the failure mechanism of masonry structures.

In the last several decades, discontinuum analysis, based on the dis-

tinct element method (DEM), has gained increasing attention within the 
field of computational modeling of masonry structures as the numeri-

cal method is able to define the mechanical interaction between blocks 
through contact points and explicitly represent the typical brick and 
bond failure mechanisms such as cracking and sliding (see [6,7,38–42], 
etc.). The DEM, developed by Cundall [43], represents masonry as a 
system of rigid and/or deformable blocks by a set of cohesive-frictional 
contact points. The DEM utilizes the explicit time-marching integration 
scheme as the solution procedure, which is able to alleviate the con-

vergence problems often found in numerical modeling with the implicit 
integration scheme [44].

The Mohr-Coulomb contact model is commonly employed in the 
DEM framework to analyze masonry structures. This model, utilized 
in various studies ([7,22,38,42,45]), accounts for brittle failure in ten-

sion and shear, although it simplifies the true mechanical response of 
masonry components. Furthermore, this constitutive model neglects the 
compression damage that often occurs at URM walls or structures with 
higher axial stress and/or aspect ratio [46]. Recently, more sophisti-

cated contact constitutive models have been proposed in the literature to 
better address the post-peak response and coupled damage mechanisms 
between the compression-shear and tension-shear regimes, e.g. [39,47].

This paper introduces a new contact constitutive model to be uti-

lized in the DEM framework using the multi-surface plasticity with the 
Coulomb friction failure criterion and tension cut-off to address the fail-
2

ure in shear and tension regions, respectively, and a compression cap 
to limit the failure in compression and combined shear-compression re-

gions. The main contributions of this paper are the proposed contact 
constitutive model with post-peak behavior in tension and shear through 
the user-defined piecewise linear softening functions and the harden-

ing/softening function in the compression regime. The piecewise linear 
softening functions allow flexible yet robust representations of damage 
in tension and shear, while the hardening/softening function creates the 
actual behavior of masonry composite when subjected to pure compres-

sion load. Robust force update routines for each failure regime within 
the explicit integration scheme are implemented to stabilize the system.

The proposed constitutive law is implemented as a user-defined con-

tact constitutive model in 3DEC [48], a commercial software. The pro-

posed model is validated at the material and structural levels, including 
comparisons to other numerical methods, to demonstrate the capability 
of DEM with the suitable constitutive law for masonry analysis.

2. Computational background of the distinct element method

In this section, the computational procedure of DEM is briefly ex-

plained. This contact-based approach is developed under the explicit 
time-marching integration scheme to solve the equations of motion and 
obtain each block’s relative velocities and displacements. The masonry 
units are represented as deformable blocks with linear elastic behavior. 
The deformability of the discrete blocks is introduced by discretizing 
them into constant-strain tetrahedral elements with three translational 
degrees of freedom at each node. Meanwhile, the mortar joints are de-

fined as cohesive-frictional contact points [43]. It is important to note 
that the formulations explained herein, including the formulation of the 
contact constitutive model, are defined for small displacement configu-

ration where contact points detected at the start of the simulation are 
kept throughout the simulation.

The ‘common-plane’ (CP) concept is used for the detection of blocks 
in contact, which is essentially a plane in which the maximum over-

lap between the two blocks is minimized. An illustration of the two 
deformable blocks in contact is presented in Fig. 1. The illustration is 
presented in two dimensions for simplicity, but the same logic applies in 
the three-dimensional implementation of the detection algorithm. Fur-

thermore, for the simplification of the definition of CP, rigid translation 
without any rotation is assumed for the blue block in Fig. 1b. This im-

plies that equal velocity is imposed on the subcontacts in the blue block. 
In reality, incremental rotation can occur, causing the unit normal to the 
CP for each subcontact to differ, resulting in different displacement in-

crements.

Once the gap, measured from the unit normal to the CP, between 
the two deformable blocks is lesser than the tolerance, the blocks are as-
sumed to be in contact. The contact points (hereby termed subcontacts) 
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Fig. 2. Local coordinates of contacting faces between two blocks.
are then defined on both blocks (the black circles in Fig. 1), comprising 
normal and shear springs that relate the relative displacements to the 
subcontact forces. For the case of Fig. 1a, the subcontacts are created 
for each node on the contacting faces. If both blue and green blocks are 
moving with a nodal velocity of 𝑉 𝐵

𝑖
and 𝑉 𝐺

𝑖
, respectively, the relative 

velocity for the vertex in the blue block is shown in Eq. (1). The 𝑉 𝐺
𝑖

term comes first for the relative velocity in the green block.

𝑉𝑖 = 𝑉 𝐵
𝑖

− 𝑉 𝐺
𝑖

(1)

If the green block is stationary (as the case for Fig. 1b), the opposing 
velocity 𝑉 𝐺

𝑖
is equal to zero. The relative displacement increment at the 

subcontact in the blue block Δ𝑈𝑖 is then calculated in Eq. (2).

Δ𝑈𝑖 = 𝑉𝑖Δ𝑡 where 𝑢𝑡+
𝑖

= 𝑢𝑡−
𝑖

+Δ𝑈𝑖 (2)

where Δ𝑡 is the timestep, 𝑢𝑡+
𝑖

and 𝑢𝑡−
𝑖

are the nodal displacement vectors 
at the time 𝑡 +Δ𝑡∕2 and 𝑡 −Δ𝑡∕2, respectively. This displacement incre-

ment along the CP is then resolved into normal and shear components, 
Δ𝑈𝑛 and Δ𝑈𝑠

𝑖
respectively, as given in Eq. (3).

Δ𝑈𝑛 =Δ𝑈𝑖𝑛𝑖 and Δ𝑈𝑠
𝑖
=Δ𝑈𝑖 −Δ𝑈𝑗𝑛𝑗𝑛𝑖 (3)

where 𝑛 is the unit normal that points from the blue block to the green 
block, and 𝑖 and 𝑗 are vector indices with values from 1 to 3, denoting the 
vector components in the global coordinate system. The subcontact force 
in normal and shear are then defined in Eqs. (4) and (5), respectively, 
under the linear elastic law [48].

𝐹𝑛 ∶= 𝐹𝑛 +Δ𝐹𝑛 where Δ𝐹𝑛 = 𝑘𝑛𝐴𝑐Δ𝑈𝑛 (4)

𝐹 𝑠
𝑖
∶= 𝐹 𝑠

𝑖
+Δ𝐹 𝑠

𝑖
where Δ𝐹 𝑠

𝑖
= 𝑘𝑠𝐴𝑐Δ𝑈𝑠

𝑖
(5)

where 𝑘𝑛 and 𝑘𝑠 are the normal and shear stiffnesses, respectively, and 
𝐴𝑐 is the subcontact area, calculated as 1/3 of the triangular faces’ areas 
where the subcontact lies. This area is halved for face-to-face contact or 
coinciding blocks, as the subcontacts are defined for vertices of both 
blocks that occupy the same exact position in space. The subcontact 
force vector is given by Eq. (6)

𝐹 𝑐
𝑖
= 𝐹𝑛𝑛𝑖 + 𝐹 𝑠

𝑖
(6)

where 𝑛𝑖 is the unit normal to the contacting bodies (points, edges, or 
surfaces).

For deformable blocks configuration, the subcontact force in Eq. (6)

is added directly to the nodal points. For face-to-face contact (Fig. 2), 
the subcontact force is distributed among the three vertices that form a 
face (𝛼, 𝛽, 𝛾) using weight factors, as presented in Eq. (7).

𝐹𝛼
𝑖
∶= 𝐹𝛼

𝑖
± 𝐹 𝑐

𝑖
𝑊𝛼 𝐹

𝛽

𝑖
∶= 𝐹

𝛽

𝑖
± 𝐹 𝑐

𝑖
𝑊𝛽 𝐹

𝛾

𝑖
∶= 𝐹

𝛾

𝑖
± 𝐹 𝑐

𝑖
𝑊𝛾 (7)

where 𝑊𝛼 , 𝑊𝛽 , and 𝑊𝛾 are the weight factors for vertices 𝛼, 𝛽, and 
𝛾 , respectively. These weight factors are defined according to a local 
coordinate system with one local axis normal to the face plane. This 
is defined in Eq. (8) for vertex 𝛼, while 𝑊𝛽 and 𝑊𝛾 are calculated by 
3

circular permutation of the superscripts in Eq. (8).
𝑊𝛼 =
𝑌 𝛾𝑋𝛽 − 𝑌 𝛽𝑋𝛾

(𝑋𝛼 −𝑋𝛾 )(𝑌 𝛽 − 𝑌 𝛾 ) − (𝑌 𝛼 − 𝑌 𝛾 )(𝑋𝛽 −𝑋𝛾 )
(8)

where 𝑋 and 𝑌 denote the local in-plane coordinates of each vertex.

The subcontact force in Eq. (6), along with external load (𝐹 𝑙), gravi-

tational force (𝐹𝑔), and the force due to internal stress of the discretized 
deformable blocks (𝐹𝑧), form the total force (𝐹𝑖), as shown in Eq. (9).

𝐹𝑖 = 𝐹𝑧
𝑖
+ 𝐹 𝑐

𝑖
+ 𝐹 𝑙

𝑖
+ 𝐹

𝑔

𝑖
(9)

As a deformable block is divided into a mesh of tetrahedral elements 
(see Fig. 1a), the 𝐹𝑧

𝑖
is a nodal force vector equivalent to the stresses in 

the tetrahedral elements converging on the node under consideration. 
Meanwhile, the gravitational force 𝐹𝑔

𝑖
is simply the gravitational con-

stant multiplied by the lumped mass at the nodal point, which is the 
sum of one-third of the tetrahedral masses connected to the gridpoint.

The subcontact force vector in Eq. (6) only exists at the nodal points 
along the block boundary. This force vector equals zero at nodal points 
outside of the block boundary. The total force contributes to the equa-

tion of motion for the system. The equation of motion is presented in 
Eq. (10), where the total nodal force is zero at equilibrium.

𝑢̇𝑖
𝑡+ = 𝑢̇𝑖

𝑡− +
(
Σ𝐹 𝑡

𝑖
− 𝐹𝑑

𝑖

) Δ𝑡
𝑚

(10)

where 𝑢̇𝑖𝑡
+

and 𝑢̇𝑖𝑡
−

(essentially 𝑉 𝑡+
𝑖

and 𝑉 𝑡−
𝑖

) are the nodal velocity 
vector at the time 𝑡 + Δ𝑡∕2 and 𝑡 − Δ𝑡∕2, respectively, 𝑚 is the nodal 
mass, and 𝐹𝑑

𝑖
is the nodal damping force, defined in Eq. (11).

𝐹𝑑
𝑖
= 𝛼|𝐹 𝑡

𝑖
|𝑠𝑔𝑛(𝑢̇𝑖𝑡− ) (11)

The damping force is based on a proportion of the total force, con-

trolled by a non-dimensional damping constant 𝛼 set equal to 0.8, and 
the direction of the velocity vector (owned by the sign function). The 
adopted damping formulation, referred to as local damping [49], pro-

vides fast convergence to obtain quasi-static solutions. Once the nodal 
velocity in Eq. (10) is obtained, the nodal displacement is calculated 
again through Eq. (2). This is then used again to update the normal and 
shear subcontact forces, which are adjusted according to the assigned 
contact constitutive law.

The whole process is summarized in Fig. 3. The solution procedure at 
one node described above is iterated until either equilibrium or failure 
is reached. Failure in the context of an explicit integration scheme is 
defined as the condition where the evaluated node is unable to find a 
steady-state flow as it accelerates to infinity.

The numerical procedure under the distinct element method is al-

ready implemented in a commercial three-dimensional discrete element 
code, called 3DEC, developed by Itasca [48]. It is important to note that 
the explicit time marching integration scheme used for the distinct el-

ement method is conditionally stable, as it is typical for other methods 
using the explicit solver [44]. The time step required to achieve stability 
in calculating the internal block deformation is defined in Eq. (12) [50].

Δ𝑡 = 2
√

𝑚𝑖
(12)
𝑏𝑙𝑜𝑐𝑘

𝑘𝑛,𝑖 + 𝑘𝑡𝑒𝑡,𝑖
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Fig. 3. Calculation cycle in DEM [48].

Fig. 4. Standard Mohr-Coulomb contact model available in 3DEC [8].
where 𝑡𝑏𝑙𝑜𝑐𝑘 is the timesteps requirement for the calculation of block 
deformation, 𝑚𝑖 is the mass of the blocks associated with node 𝑖, 𝑘𝑛,𝑖 is 
the contact stiffness for nodes located on block boundary (zero for non-

boundary nodes), 𝑘𝑡𝑒𝑡,𝑖 is the contributions of the stiffness of all blocks 
connected to node 𝑖, defined in Eq. (13).

𝑘𝑡𝑒𝑡,𝑖 =
8
3

(
𝐾 + 4

3
𝐺

) 𝑙2
𝑚𝑎𝑥

ℎ𝑚𝑖𝑛
(13)

where 𝐾 and 𝐺 are the block’s bulk and shear moduli, respectively, 
𝑙𝑚𝑎𝑥 is the longest block length, and ℎ𝑚𝑖𝑛 is the minimum height of the 
tetrahedron. The expression in Eq. (12) gives a conservative estimate 
based on an upper bound of the highest system eigenfrequency [51]. 
The estimate has been shown to be sufficiently stable even for complex 
nonlinear systems [52,53].

3. Contact constitutive model

While the behavior of the contact points can be represented using 
Eqs. (4) and (5) under linear elastic law, the failure progression of the 
contact points under shear, tensile, and compressive regimes needs to be 
properly defined to obtain numerical responses that represent the actual 
condition of masonry structures. The contact constitutive law suitable 
for masonry structures and readily available within the commercial dis-

tinct element code [48] is the Mohr-Coulomb contact model, in which a 
cohesive-frictional contact law is defined and limited by a tension cut-

off, as presented in Fig. 4.

Under the Mohr-Coulomb contact model, the tensile strength drops 
to zero at the onset of failure, while the shear strength drops to the resid-

ual strength. While this model is typically sufficient to provide a decent 
4

prediction of the ultimate capacity of masonry structures that exhibit 
brittle behavior [7,38,42,54–56], an accurate definition of the post-peak 
behavior for the tensile and shear regime is essential to represent the 
damage initiation and propagation of masonry structures [47]. Further-

more, this contact constitutive model considers the damage that occurs 
only in tension and shear regimes and assumes an infinite strength in 
the compressive regime, as presented in Fig. 4. In reality, compression 
damage in the form of crushing at the compressed toes is often observed 
at URM walls or structures, especially those with higher axial stresses 
or aspect ratio [46,57].

Elasto-softening contact models were recently proposed to capture 
the post-peak behavior under tensile and shear regimes [39], which was 
extended to include the limit in the compressive regime through an el-

liptical compressive cap [58]. However, linear softening functions were 
adopted by the authors to define the tensile, shear, and compressive uni-

axial behavior, which deviates from the nonlinear mechanism exhibited 
by the damaged masonry structures.

To overcome such limitations, the proposed contact constitutive 
model uses the damage plasticity concept to represent masonry struc-

tures with complex nonlinearities. It is important to note that the contact 
constitutive model introduced in this paper is developed within the 
small displacement theory, in which the contact points detected at the 
beginning of the analysis are used throughout the simulation. This is 
done to avoid spurious contact interpenetration and when compressive 
crushing occurs, which happens when the simulation is run under the 
large displacement theory.

The explanation of the constitutive model is divided into three 
stages: a definition of the plastic yield functions in Section 3.1, an expla-

nation of the damage evolution law in Section 3.2, and an explanation 
of the stabilization process for the numerical strategy when damage has 

occurred in Section 3.3.
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Fig. 5. Two-dimensional yield surfaces in normal stress vs shear stress space.

3.1. Plasticity definition of the interface

The proposed contact model uses the multi-surface plasticity concept 
illustrated in Fig. 5. The yield functions are mathematically defined in 
Eq. (14). The yield function consists of three regions as an extended 
version of the Coulomb-slip model: a tension cut-off region represented 
by 𝐹1 (Eq. (14a)), the Coulomb-slip region defined in 𝐹2 (Eq. (14b)), 
and an elliptical curve to control the behavior under shear-compression 
shown in 𝐹3 (Eq. (14c)).

𝐹1 = 𝜎 − 𝑓𝑡(𝑢𝑡𝑛) (14a)

𝐹2 = |𝜏|+ 𝜎 tan𝜙(𝑢𝑠) − 𝑓𝑠(𝑢𝑠) (14b)

𝐹3 = 𝐶𝑛𝑛 𝜎
2 +𝐶𝑠𝑠 |𝜏|2 +𝐶𝑛 𝜎 − 𝑓 2

𝑐
(𝑢𝑐

𝑛
) (14c)

where 𝑢𝑐
𝑛

and 𝑢𝑡
𝑛

are the relative normal subcontact displacement in com-

pression and tension, respectively, 𝜎 is the normal stress, 𝜏 is the shear 
stress, 𝜙(𝑢𝑠) is the friction angle correlated to the shear displacement, 
𝑓𝑡(𝑢𝑡𝑛) is the tensile strength that evolves in accordance with the posi-

tive normal displacement, 𝑓𝑠(𝑢𝑠) is the cohesive strength correlated to 
the shear displacement, 𝑓𝑐 (𝑢𝑐𝑛) is the compressive strength that evolves 
in accordance with the negative normal displacement, 𝐶𝑛𝑛 and 𝐶𝑠𝑠 are 
the parameters that control the radius of the elliptical curve in Fig. 5 in 
normal and shear directions, respectively, and 𝐶𝑛 is the ellipsis center.

The yield functions 𝐹1 and 𝐹2 are identical to those implemented in 
the Coulomb-slip contact model. The elliptical yield surface 𝐹3 is the 
compression cap adopted from Lourenço and Rots [27]. An associated 
flow rule is assumed for the tensile cut-off and compression cap regions 
where plastic potential 𝐺1 and 𝐺3 are set equal to 𝐹1 and 𝐹3, respec-

tively. Meanwhile, the non-associated flow rule is used for the 𝐹2 yield 
surface to address the role of dilatancy at the onset of damage in the 
mortar joints [31,56,59]. The mathematical expression of the plastic 
potential 𝐺2 is defined in Eq. (15).

𝐺2 = |𝜏|+ 𝜎 tan𝜓 − 𝑓𝑠(𝑢𝑠) (15)

where 𝜓 is the dilation angle. van Zijl [31], Chainmoon [60], and Li & 
Zeng [61] showed that the dilation angle also softens as the shear load 
increases, similar to the friction angle. However, the dilatancy softening 
is not considered in the current implementation of the contact consti-

tutive model, and the dilatancy angle set for the numerical analysis in 
this research is equal to zero, similar to the values considered by other 
numerical approaches [27,30,58]

3.2. Damage evolution law

The separation of the damage parameters is essential in modeling 
the contact constitutive model since the masonry interfaces behave dif-

ferently when subjected to different modes of deformation, as presented 
in Fig. 6 at the masonry couplet level. The failure modes presented in 
5

Figs. 6a and 6d relate to the failure modes at the interface level, while 
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Figs. 6b and 6e relate to the failure of the masonry constituents (units 
and mortar layers). The diagonal cracking failure presented in Fig. 6c 
combines failure at both units and interface levels. Similar failure modes 
can be observed when the problem scales up to masonry walls, as clas-

sified by Mann and Müller [62].

The strength degradation of the contact points during material soft-

ening is controlled by three damage parameters corresponding to tensile 
(𝑑𝑡), shear (𝑑𝑠), and compressive damage (𝑑𝑐 ). In the proposed contact 
constitutive model, the tensile and shear softening behaviors are defined 
by a set of linear segments that reduce until the residual strength of 
each regime is reached. This formulation is an extension of the contact 
constitutive model proposed in the two-dimensional distinct element 
modeling by Lemos and Sarhosis [41].

A similar approach to Pulatsu et al. [63] is taken where the coupling 
between the tension and shear softening is assumed. The coupling pro-

cess is obtained by combining the strength degradation in the forms of 
damage parameters in tension and shear (𝑑𝑡 and 𝑑𝑠, respectively) into a 
combined tensile/shear damage parameter 𝑑𝑡𝑠 . The user-defined values 
for both tensile and damage parameters are separated, while the com-

bined damage parameter is calculated in the algorithm through Eq. (16).

𝑑𝑡𝑠 = 𝑑𝑡(𝑢𝑛) + 𝑑𝑠(𝑢𝑠) − (𝑑𝑡(𝑢𝑛)𝑑𝑠(𝑢𝑠)) (16)

The behavior of the proposed contact constitutive model is shown in 
Fig. 7. The mathematical formulation will be explained in the following 
sections.

3.2.1. Damage in tension

Under damage in tension, the tensile damage parameter 𝑑𝑡 is a user-

defined value that depends on the normal displacement ratio, defined 
in Eq. (17).

𝑢̄𝑛 =
𝑢𝑡
𝑛

𝑢𝑛𝑝,𝑡
where 𝑢𝑛𝑝,𝑡 =

𝑓𝑡

𝑘𝑛
(17)

Once damage occurs in tension, the evolution of the tensile stress is 
given by Eq. (18) as a function of the normal displacement ratio, where 
𝑓𝑡 is the peak tensile strength (also used in Eq. (17) and Fig. 5).

𝑓𝑡(𝑢𝑡𝑛) = 𝑓𝑡(1 − 𝑑𝑡𝑠) (18)

The combined damage parameter 𝑑𝑡𝑠 is given in Eq. (16). The dam-

age parameter is defined by a table of pairs (𝑢𝑛 , 𝑑𝑡), where 𝑢𝑛 begins 
at 1 at the peak and decreases to zero at the residual state, while 𝑑𝑡
starts at zero at the peak and increases to 1 at the residual state. The 
tabulated values of the damage parameters enable the user to approxi-

mate any given shapes of the post-peak softening curve in tension using 
a piecewise linear function. Maintaining the increasing damage param-

eter ensures a consistent assignment of numerical values to the scalar, 
which aligns with the conventional approach in damage-based models.

The tensile uniaxial behavior of the contact model is shown in 
Fig. 7a. With the presence of experimental data, e.g., mode I tensile 
tests [64], the post-peak stress-displacement experimental curve can be 
converted into joint displacement ratio and damage scalar pairs through 
Eqs. (17) and (18), respectively by assuming zero contribution from the 
shear regime on the combined damage parameter 𝑑𝑡𝑠 .

3.2.2. Damage in shear

The formulation for the strength degradation in the shear regime is 
similar to that defined for the tensile behavior, where the shear damage 
parameter is controlled by the normalized softening curve that depends 
on the joint shear displacement ratio, as shown in Eq. (19).

𝑢̄𝑠 =
𝑢𝑠

𝑢𝑠𝑝
(19)

where 𝑢𝑠𝑝 is the displacement at peak shear strength, defined in Eq. (20).

𝜏𝑝

𝑢𝑠𝑝 =

𝑘𝑠
(20)
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Fig. 6. Typical failure modes in masonry.

Fig. 7. Contact constitutive model behavior under each failure regime.
where 𝜏𝑝 is the peak shear strength formally defined in Eq. (21).

𝜏𝑝 = 𝑐𝑝 − 𝜎 tan(𝜙𝑝) (21)

where 𝑐𝑝 and 𝜙𝑝 are the peak cohesion strength and friction angle, re-

spectively.

The post-peak shear strength is formulated according to the Mohr-

Coulomb envelope where the cohesion 𝑐 and the friction angle depend 
on a user-defined shear damage parameter 𝑑𝑠, as shown in Eq. (22).

𝜏(𝑢̄𝑠) = 𝑐(𝑢̄𝑠) − 𝜎 tan(𝜙)(𝑢̄𝑠) (22)

where 𝑐(𝑢̄𝑠) and tan(𝜙)(𝑢̄𝑠) are the post-peak cohesion and friction angle, 
respectively. Equations for 𝑐(𝑢̄𝑠) and tan(𝜙)(𝑢̄𝑠) are respectively shown 
in Eqs. (23) and (24).

𝑐(𝑢̄𝑠) = 𝑐𝑟 + (𝑐𝑝 − 𝑐𝑟)(1 − 𝑑𝑡𝑠) (23)
6

tan(𝜙)(𝑢̄𝑠) = tan(𝜙𝑟) + (tan(𝜙𝑝) − tan(𝜙𝑟))(1 − 𝑑𝑡𝑠) (24)
Once again, the combined damage parameter is given in Eq. (16). 
Similar to the formulation in the tension regime, the user-defined value 
for the damage parameter comprises a table of pairs (𝑢𝑠 , 𝑑𝑠) where 𝑢𝑠
starts at 1 at peak and reduces to zero at residual state while 𝑑𝑠 starts 
at zero at peak and increases to 1 at residual state. The behavior of the 
contact constitutive model under shear is presented in Fig. 7b.

Similar to the tensile regime, with the presence of experimental data, 
e.g., couplet or triplet tests, the post-peak stress-displacement curve 
from the experimental test can be converted into the joint displacement 
ratio and damage scalar through Eqs. (19), (23) and (24), by assum-

ing zero contributions from the tensile regime to the combined damage 
parameter 𝑑𝑡𝑠.

3.2.3. Damage in compression

The behavior of the contact constitutive model under compression 
is governed by a hardening/softening law, as presented in Fig. 7c. 

The initial linear-elastic phase for a typical masonry composite under 
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compression was observed between 30% to 40% of the compressive 
strength [65]. The hardening phase follows immediately after the linear-

elastic phase before reaching the peak compressive strength. Mathemat-

ically, the hardening phase is defined by a parabolic function [27,66], 
presented in Equation (25).

𝜎𝑐(𝑢𝑐𝑛) = 𝜎𝑒𝑙 + (𝑓𝑐𝑝 − 𝑓𝑐;𝑒𝑙)

√√√√2𝑢𝑖𝑛𝑒𝑙
𝑢𝑐𝑝

−
𝑢2
𝑖𝑛𝑒𝑙

𝑢𝑐𝑝
(25)

where 𝜎𝑐(𝑢𝑐𝑛) is the current compressive stress during the hardening 
phase, 𝑓𝑐;𝑒𝑙 is the elastic compressive stress (set at 30% of the com-

pressive strength by default), 𝑓𝑐𝑝 is the peak compressive strength, 𝑢𝑐𝑝
is the normal compressive displacement at peak compressive strength 
and 𝑢𝑖𝑛𝑒𝑙 is the inelastic normal compressive displacement.

The inelastic displacement is the irrecoverable displacement cal-

culated as the total subcontact displacement (𝑢𝑐
𝑛
) subtracted by the 

displacement at elastic compressive stress (𝑓𝑐;𝑒𝑙). The peak compres-

sive displacement is formulated in Eq. (26). It is controlled by a non-

dimensional parameter 𝑛, which is the factor of the supposed displace-

ment at peak compressive strength under the initial stiffness.

𝑢𝑐𝑝 = 𝑛 ⋅
𝑓𝑐𝑝

𝑘𝑛
(26)

After the peak compressive strength is reached, compressive dam-

age is initiated, and the compressive damage parameter 𝑑𝑐 that controls 
the strength degradation under compression is calculated. The damage 
parameter is formulated in Eq. (27), referencing the implementation of 
the computational strategy proposed by Lourenço and Rots [27].

𝑑𝑐 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, 𝑢𝑐
𝑛
< 𝑢𝑐,𝑝(

1 − 𝑓𝑐𝑚

𝑓𝑐𝑝

)(
𝑢𝑐𝑛−𝑢𝑐𝑝
𝑢𝑐𝑚−𝑢𝑐𝑝

)2
𝑢𝑐𝑝 ≤ 𝑢𝑐

𝑛
< 𝑢𝑐𝑚(

1 − 𝑓𝑐𝑟

𝑓𝑐𝑝

)
− 𝑓𝑐𝑚−𝑓𝑐𝑟

𝑓𝑐𝑝
exp

(
𝛼

𝑢𝑐𝑛−𝑢𝑐𝑚
𝑓𝑐𝑚−𝑓𝑐𝑟

)
𝑢𝑐
𝑛
≥ 𝑢𝑐𝑚

(27)

where 𝑓𝑐𝑚 is the intermediate compressive stress between peak and 
residual compressive strength, defined as the point of inflection from 
quadratic to exponential softening, 𝑓𝑐𝑟 is the residual compressive 
strength, 𝑢𝑐𝑚 is the displacement at intermediate compressive strength, 
and 𝛼 is the parameter defining the slope of the exponential function, 
defined in Eq. (28).

𝛼 = 2
𝑓𝑐𝑚 − 𝑓𝑐𝑝

𝑢𝑐𝑚 − 𝑢𝑐𝑝
(28)

The intermediate compressive strength is fixed as the average value 
between peak and residual compressive strength. The compressive dam-

age variable 𝑑𝑐 is used to calculate the current compressive strength 
𝜎𝑐(𝑢𝑐𝑛) in Eq. (29).

𝜎𝑐(𝑢𝑐𝑛) = (1 − 𝑑𝑐) ⋅ 𝑓𝑐𝑝 (29)

Intuitively, it can be seen from the last branch in Eq. (27) that the 

compressive damage variable 𝑑𝑐 will asymptotically reach 
(
1 − 𝑓𝑐𝑟

𝑓𝑐𝑝

)
, 

which indicates that the masonry system will never be ‘fully’ damaged 
if there is a residual compressive strength. This differs from the imple-

mentation of linear softening, where the damage variable reaches 1.0
when the normal compressive strength exceeds the ultimate subcontact 
compressive displacement [58].

Similar to the displacement at peak compressive strength in Equa-

tion (26), the displacement at intermediate compressive strength is con-

trolled by a non-dimensional parameter 𝑚 as a factor to the displacement 
at peak compressive strength, as defined in Eq. (30).
7

𝑢𝑐𝑚 =𝑚 ⋅ 𝑢𝑐𝑝 (30)
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However, in contrast with the peak ratio, the non-dimensional pa-

rameter 𝑚 is not a user-defined parameter. It is instead associated with 
the compressive fracture energy 𝐺𝑐 as shown in Eq. (31).

𝑚 =
𝐺𝑐 − 0.5

𝑓2
𝑐𝑝

9𝑘𝑛
− 0.65(𝑢𝑐𝑝 − 𝑢𝑐;𝑒𝑙)𝑓𝑐𝑝 + 0.75𝜅 + 0.25𝜉

𝜅 + 𝜉
(31)

where 𝐺𝑐 is the compressive fracture energy, 𝑢𝑐;𝑒𝑙 is the displacement at 
elastic compressive stress 𝑓𝑐;𝑒𝑙 , defined as 𝑓𝑐;𝑒𝑙∕𝑘𝑛, 𝜅 and 𝜉 are defined 
in Eq. (32).

𝜅 = 𝑢𝑐𝑝𝑓𝑐𝑝 and 𝜉 = 𝑢𝑐𝑝𝑓𝑐𝑟 (32)

By associating 𝑚 with the compressive fracture energy 𝐺𝑐 , the pre-

dicted fracture energy under the hardening/softening law can be ap-

proximated to that calculated based on the multi-linear softening law. 
The minimum value of 𝐺𝑐 is higher than the energy dissipated before 
the peak compressive strength is reached, ensuring that the 𝑚 is larger 
than 1.

3.3. Force update routine

Within the context of an explicit time-marching integration scheme, 
the proper handling of force corrections upon damage is important to 
ensure the stability of the numerical simulations. This section explains 
the force update routine on each failure regime when the failure surfaces 
are violated.

The inadmissible contact stresses are mapped back to the yield sur-

face upon violation of the pre-defined yield criterion. It is worth recall-

ing that the yield value degrades as the relative subcontact displacement 
progresses on each regime. This behavior is defined in Eq. (33) for the 
tensile regime.

If 𝐹1 > 0, then 𝐹 𝑡
𝑛
= 𝑓𝑡(𝑢𝑡𝑛)𝐴𝑐 and Δ𝐹𝑛 = 0 (33)

Meanwhile, if 𝐹2 in Eq. (14b) is violated, the subcontact shear force 
is corrected proportionally to the shear strength that also degrades as 
the shear displacement increases, defined in Eq. (34), where |𝐹𝑠| is the 
magnitude of the subcontact shear force vector.

If 𝐹2 > 0, then 𝐹𝑠 ∶= 𝐹𝑠

𝑓𝑠(𝑢𝑠)𝐴𝑐|𝐹𝑠| and Δ𝐹𝑠 = 0 (34)

Lastly, if 𝐹3 is violated, the force is proportionally corrected by calcu-

lating the gradient vector to the point where the yield surface is violated 
and then reducing both normal and shear forces to the intercept of that 
gradient vector at the yield surface 𝐹3 = 0. Once the intercept of the gra-

dient vector at the yield surface is found, the correction procedure for 
normal and shear stresses is the same as that defined in Eqs. (33) and 
(34), respectively. The procedure is mathematically defined in Eq. (35)

and illustrated in Fig. 8, where 𝑅𝑡𝑟𝑖𝑎𝑙 and 𝑅𝑦𝑖𝑒𝑙𝑑 are vectors for the vi-

olated force and the intercept at the yield surface towards the origin, 
respectively.

If 𝐹3 > 0, then 𝐹 𝑐
𝑛
= 𝜎𝑦𝑖𝑒𝑙𝑑𝐴𝑐 and 𝐹𝑠 ∶= 𝐹𝑠

𝜏𝑦𝑖𝑒𝑙𝑑𝐴𝑐|𝐹𝑠| (35)

Note that the yield surface will shrink due to strength degradation; 
hence, the force correction will always occur once the yield surface is 
violated unless the unloading occurs.

4. Material level validation of the contact model

Material characterization tests are often conducted to determine the 
material properties before a large-scale experimental test. The character-

ization tests are typically categorized into material tests on the masonry 
constituents (i.e., masonry units and mortar properties separately) and 
material tests on masonry as composite materials. It is important to note 

that within a block-based modeling strategy, the latter tests are required 
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Fig. 8. Force update routine for the violation of yield surface 𝐹3.

to calibrate and validate the input values assigned to the unit-mortar in-

terfaces. In this section, a series of material characterization tests were 
selected to highlight the capability of the proposed model to simulate 
masonry failure in tension, shear, compression, and combined modes. 
For this scope, two distinct testing campaigns were selected, one con-

ducted by van der Pluijm [64] on solid clay bricks and one by Esposito 
et al. [67] on solid calcium silicate (CS) bricks.

Since the experimentally obtained elastic properties are valid for 
the actual dimensions of the mortar joints and units, homogenization is 
required to relate the elastic properties of the extended unit with zero-

thickness unit-mortar interfaces [68]. This can be done by assuming the 
same elastic properties between the extended and actual unit dimensions 
and that both configurations experience the same elongation. The nor-

mal and shear stiffnesses are then obtained as defined in Eq. (36) [68].

𝑘𝑛 =
𝐸𝑏𝐸𝑚

𝑡𝑚(𝐸𝑏 −𝐸𝑚)
𝑎𝑛𝑑 𝑘𝑠 =

𝐺𝑏𝐺𝑚

𝑡𝑚(𝐺𝑏 −𝐺𝑚)
(36)

where 𝐸𝑏 and 𝐸𝑚 are the brick and mortar Young’s Moduli, respectively, 
𝐺𝑏 and 𝐺𝑚 are the brick and mortar shear moduli, respectively, and 𝑡𝑚
is the thickness of the mortar joints.

The material properties used in the material level validation are 
given in Table 1. The material properties were obtained directly from 
the corresponding material tests: the van der Pluijm test [64] for the SC 
case and the experimental campaign by Esposito et al. [67] for the FPB, 
CV, and CH cases. Specifically, for the SC test, the mortar Young’s Mod-

ulus was calibrated to reproduce the experimentally observed stress-

displacement response.

The deformable block configuration is used for all simulations with 
the same mesh discretizations. The brick units are represented as lin-

ear elastic blocks with blown-up dimensions up to half of the mortar 
thickness. The mortar joints are not explicitly modeled and are mod-

eled by zero-thickness interfaces where the deformation of the system 
is lumped. The dilatancy angle is set to zero in all models considered in 
this subsection.

The non-dimensional post-peak softening curve for tensile and shear 
are presented in Fig. 9. Since a series of tests conducted by vari-

ous researchers [64,67,69–71] proved solid clay brick masonry to be 
more brittle compared to CS masonry, the damage profiles in tension 
and shear have to be defined differently. The tensile and shear dam-

age profile for the solid clay bricks in the test conducted by van der 
Pluijm [64] is built using the exponential softening function by Lourenço 
and Rots [27] divided into 100 equal steps, presented as black solid lines 
in Fig. 9. The damage profile for CS masonry, given as dashed red lines 
8

in Fig. 9, is defined according to Esposito et al. [67].
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Table 1

Material properties used in the validation case.

Material 
parameters

Unit Valuea

SC FPB CV CH

Unit properties

𝐸𝑏 GPa 16.7 4.8

𝜌 kg m−3 2300 1800

𝑓𝑠,𝑏 MPa - 3.1 3.0

𝑓𝑡,𝑏 MPa - 1.55 1.5

𝜙𝑝
◦ - 36.87

Interface properties

𝐸𝑚 GPa 1.37b 1.2b 2.5

𝑘𝑛 GPa m−1 150c 158c 521c

𝑘𝑠 GPa m−1 70c 68c 227c

𝑓𝑠𝑝 MPa 1.0 0.15 0.11

𝑓𝑡 MPa 0.3 0.11 0.1

𝑓𝑐𝑝 MPa - - 5.93 7.55

𝐺𝑐 N m−1 - - 31500

𝑓𝑠𝑟 MPa 0.1 0.1𝑓𝑠𝑝
𝜙𝑝

◦ 45 29.64 23.27

𝜙𝑟
◦ 35 28.37 23.27

a SC: Shear-compression, FPB: Four-point bending, CV: Vertical 
compression, CH: Horizontal compression tests.

b Calibrated such that the global numerical response matched the 
experimental response.

c Derived values from Eq. (36).

4.1. Masonry couplet under combined shear-compression

The simplest material characterization test for masonry as a com-

posite structure is the masonry couplet test. In the experimental test 
conducted by van der Pluijm [64], a masonry couplet was subjected to 
constant compressive load and a displacement-controlled lateral load. 
The test was performed on clay brick masonry couplets with unit dimen-

sions of 210 mm × 80 mm × 100 mm (L × H × W) and the mortar joint 
thickness of 10 mm. Three different levels of pre-compression stresses 
were considered in this experiment: 0.1, 0.5, and 1.0 MPa.

In the numerical model, the nodes of the bottom block are fixed in 
all directions. The system is first brought to equilibrium under gravita-

tional load, followed by applying the pre-compression stress at the top 
surface of the top block. Then, a lateral velocity of 2.5 mm s−1 is ap-

plied until the displacement reaches 3.0 mm. The comparison between 
numerical prediction with the implemented contact constitutive model 
and the experimental test is presented in Fig. 10. The contact model can 
predict the shear capacity and the post-peak behavior within the range 
of the upper bound and lower bound for all pre-compression levels.

4.2. Masonry wallets behavior under flexural load

Four-point bending tests are often conducted for quasi-brittle materi-

als, such as concrete and masonry, to investigate the bending properties 
of masonry in terms of flexural strength and fracture energy in bend-

ing [72]. The four-point bending tests validated herein are taken from a 
series of tests conducted by Esposito et al. [67] for both calcium silicate 
and clay bricks. Only the calcium silicate specimens are considered for 
validation in this paper.

The four-point bending test setup is presented in Fig. 11. The bending 
properties are usually characterized by considering two configurations 
of four-point bending tests [73]; the test with the moment vector paral-

lel to the bed joints (OOP-1 in Fig. 11a) and orthogonal to the bed joints 
(OOP-2 in Fig. 11b). An additional non-standardized four-point bend-

ing with the moment vector orthogonal to the plane of the wall (IP in 
Fig. 11c) is also considered to compare the masonry wallets’ in-plane 
and out-of-plane vertical flexural strength.

The wall specimen comprises 2 × 10 courses of 210 × 70 × 100 mm3

(L × H × W) calcium silicate bricks for the OOP1 test, while the OOP2 
and IP tests comprise 4 × 4 courses of bricks. The distance between the 
loading points was set at 360 mm, and the distance between the roller 

supports was set at 720 mm.
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Fig. 9. Shear and tensile post-peak softening behaviors for the couplet test. VDP: van der Pluijm test campaign [64], CS: testing campaign on CS masonry [67].
Fig. 10. Comparison of experimental and numerical responses of the couplet 
test [64].

The model configuration for the four-point bending tests is shown 
in Fig. 12. The displacement-controlled load is applied as line load for 
OOP1 and OOP2, as shown in Figs. 12a and 12b, respectively. In order 
to conduct the IP test (Fig. 12c), it is necessary to ensure that the loading 
plate remains orthogonal to the plane of the masonry wall. Therefore, 
the load is applied through a plate modeled via rigid blocks. Similarly, 
for the boundary conditions, the roller supports are directly applied to 
the nodal points in the OOP1 and OOP2 models, while the supports 
for the IP model are defined through rigid blocks representing the steel 
roller supports in the experiment. The linear elastic law is applied to the 
contact points between the masonry blocks and the loading and support 
plates.

The material properties for the four-point bending tests are presented 
in Table 1. The same properties are applied to all tests to maintain con-

sistency. The displacement in the experiment is obtained from linear 
interpolation of the vertical Linear Variable Differential Transformers 
(LVDTs), while the displacement in the numerical simulation is obtained 
by averaging the nodal points in the mid-span of each model. The force 
in the numerical simulation is tracked by defining a subroutine in the 
3DEC software, based on the FISH function, an executable programming 
language by ITASCA.

The force-displacement curves of all four-point bending tests are pre-

sented in Fig. 13. The material characterization tests were run 6 times 
for each configuration for statistical purposes. Readers are referred to 
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the report by Esposito et al. [67] for the full details on each test re-
sult. The numerical model was able to predict the global behavior of 
the experimental specimens relatively well despite using the same set of 
material properties for each test.

The numerical post-peak response for the IP case was also in good 
agreement with the experimentally observed behavior. The stable post-

peak response for the IP case was due to the interlocking mechanism 
of the masonry units at the onset of failure, which provided stability to 
the specimens before full collapse was observed. On the other hand, the 
experimental post-peak response for the OOP1 and OOP2 cases cannot 
be compared as the tests were conducted so that the gravity effect was 
not retained at the onset of damage. This caused the immediate collapse 
of the experimental specimens soon after the peak load was achieved, as 
shown by the interruption of the experimental curves in Figs. 13a and 
13b.

It is also clear from the force-displacement curve in Fig. 13 that the 
same experimental tests conducted multiple times would produce a scat-

tered global response. To demonstrate the effect of material variability 
when compared against a deterministic numerical model, a comparison 
is drawn between the experimentally observed crack pattern and the 
numerically predicted deformed shape, presented in Fig. 14. The ex-

perimental photos in Figs. 14a and 14b correspond to the upper- and 
lower-bound results for the in-plane bending force-displacement tests 
shown in Fig. 13c, respectively. The experimental crack pattern ex-

hibited the same crack initiation (from the bottom-most section of the 
mid-span) but different crack propagation for the same loading protocols 
and materials from the same batch, i.e., supposedly the same material 
properties. The crack found in the upper-bound test (Fig. 14a) prop-

agated to the left side of the mid-span region while the lower-bound 
(Fig. 14b) propagated to the right.

The numerical model predicted the crack initiation at the bottom-

most section of the mid-span region in Fig. 14c. However, in contrast 
with the experimentally observed crack pattern, the crack propagation 
was symmetric and localized only in the mid-span region of the model. 
Such different crack propagation within the same material properties 
and loading protocols could be attributed to the spatial variability of 
the material properties, as reported by several researchers [74–76]. Nev-

ertheless, despite the material variability observed in the experimental 
specimens, the numerical model could still predict the peak load and 
stiffness, as well as the post-peak behavior in some cases, in a relatively 
accurate manner.

4.3. Masonry prism subjected to pure compressive load

The performance of the contact constitutive model under monotonic 
uniaxial compressive loading is validated using the same series of ex-

periments conducted by Esposito et al. [67] on calcium silicate bricks. 

The compression test is conducted in accordance with the standard EN 
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Fig. 11. Experimental set-ups for the four-point bending tests [67].

Fig. 12. Model setup for the four-point bending tests in 3DEC [48].
10

Fig. 13. Force-displacement comparison of the four-point bending tests.
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Fig. 14. Comparison of (a), (b) experimental crack pattern and (c) numerical deformed shape (magnified 100 times).

Fig. 15. Compressive test setup on masonry prism [67].
1052-1:1998. The masonry prism comprises 2 × 6 courses (L × H) of 
brick units with a 10 mm layer of mortar joints.

The experimental setup is presented in Fig. 15. There are two con-

figurations considered in the test: a “vertical” configuration (Fig. 15a) 
where the load was perpendicular to the bed joints, which is in line 
with the European standard, and a “horizontal” configuration (Fig. 15b) 
where the compression load was parallel to the bed joints. The latter 
was used to observe the orthotropic behavior of the masonry prism. 
The numerical modeling for this test is straightforward, where the 
11

displacement-controlled compressive load is applied at the bottom of 
the model through a rigid loading plate with the support located at the 
top.

The material properties considered for this test are presented in Ta-

ble 1. The peak ratio 𝑛 is set at 68.5 and 85 for the vertical and horizontal 
tests, respectively. The reason for such a high peak ratio is due to the fact 
that calcium silicate masonry wallets often exhibit a higher secant elas-

tic modulus, evaluated at 30% of the compressive strength, compared 
to clay bricks, but the responses are followed by a longer hardening be-

fore the peak compressive strength is reached compared to those of clay 

masonry wallets [67,72].
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Fig. 16. Stress-strain comparison of the direct compression test.

The axial strain recorded in the pre-peak phase was taken from the 
displacements recorded in the set of LVDTs attached to the specimen. 
However, since rotation and detachment of the LVDTs caused by the 
large post-peak deformations were observed in the experiment, the post-

peak displacement readings from the LVDTs were disregarded. Instead, 
the readings from the hydraulic loading jack were used to obtain the 
stress-strain relationship. Similarly, the pre-peak strain recorded in the 
numerical model was taken from the displacement at the measurement 
locations of the LVDTs, while the post-peak strain was taken from the 
displacement at the loading plate.

The comparison of the stress-strain diagram between the numerical 
model and the averaged result from the series of compression tests for 
each configuration is presented in Fig. 16. It is evident that the predicted 
peak compressive strengths are in good agreement with the experimen-

tally observed responses. However, the hardening and softening curves 
for each test configuration could still be improved by calibrating the 
peak ratio parameter according to the averaged experimental responses.

In conclusion, the material-level validations showed that the pro-

posed contact constitutive model offers sufficient accuracy and capabil-

ity to capture associated failure mechanisms. In the next section, the 
contact constitutive model will be validated on a larger scale with com-

plex failure mechanisms.

5. Structural level validation of masonry walls under in-plane 
loading using DEM

In this section, the contact constitutive model is validated against a 
series of unreinforced masonry (URM) wall experiments that captured a 
complex failure mechanism with combined flexural and diagonal cracks 
both along the mortar joints and through the bricks, including crush-

ing of compressed toes. The widely referred masonry wall experiment 
by Vermeltfoort et al. [77] is used to validate the implemented contact 
constitutive model. While two wall configurations (complete wall panels 
without opening and wall panels with opening in the center) were tested 
in the experiment, this paper simulates only complete wall panels with-

out openings. The experimental study reported a series of experiments 
on masonry walls with dimensions of 0.99 × 1.00 mm2 subjected to 
restrained vertical deformations with displacement-controlled monoton-

ically increasing lateral loading. The wall experiments were preloaded 
with vertical compression stress (𝜎𝑣) of 0.3 MPa, 1.21 MPa, and 2.1 MPa, 
termed in this paper as “LOW”, “MID”, and “HIGH” compression wall 
12

specimens, respectively.
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Table 2

Material properties as input parameters to the numerical model.

Masonry unit properties

𝐸𝑏, 𝑣 𝑘𝑛,𝑏, 𝑘𝑠,𝑏 𝑓𝑡,𝑏 𝑓𝑠𝑝,𝑏, 𝑓𝑠𝑟,𝑏 𝜙𝑝,𝑏 𝜌

(GPa,[-]) (GPa m−1) (MPa) (MPa) (◦) (kg m−3)

16.7, 0.15 820, 360 2.0 2.8, 0.0 45 1800

Interface properties - 𝜎𝑣 = 0.30 MPa

𝑘𝑛, 𝑘𝑠 𝑓𝑡, 𝑓𝑐𝑝 𝑓𝑠𝑝, 𝑓𝑠𝑟 𝜙𝑝, 𝜙𝑟 𝐺𝑐 , 𝑛 𝐶𝑛,𝐶𝑛𝑛,𝐶𝑠𝑠

(GPa m−1) (MPa) (MPa) (◦) (N m−1,[-]) ([-])

82, 36 0.25, 10.5 0.35, 0.0 35, 35 5000, 2.0 0.0, 1.0, 9.0

Interface properties - 𝜎𝑣 = 1.21 MPa

𝑘𝑛, 𝑘𝑠 𝑓𝑡, 𝑓𝑐𝑝 𝑓𝑠𝑝, 𝑓𝑠𝑟 𝜙𝑝, 𝜙𝑟 𝐺𝑐 , 𝑛 𝐶𝑛,𝐶𝑛𝑛,𝐶𝑠𝑠

(GPa m−1) (MPa) (MPa) (◦) (N m−1,[-]) ([-])

110, 50 0.16, 11.5 0.22, 0.0 35, 35 5000, 2.0 0.0, 1.0, 9.0

Interface properties - 𝜎𝑣 = 2.12 MPa

𝑘𝑛, 𝑘𝑠 𝑓𝑡, 𝑓𝑐𝑝 𝑓𝑠𝑝, 𝑓𝑠𝑟 𝜙𝑝, 𝜙𝑟 𝐺𝑐 , 𝑛 𝐶𝑛,𝐶𝑛𝑛,𝐶𝑠𝑠

(GPa m−1) (MPa) (MPa) (◦) (N m−1,[-]) ([-])

82, 36 0.16, 11.5 0.22, 0.0 35, 35 5000, 2.0 0.0, 1.0, 9.0

5.1. Experimental and numerical setups

The masonry wall specimen comprised 18 courses of solid clay bricks 
with dimensions of 204 × 98 × 50 mm3 (L × W × H). The bottom- and 
top-most courses were clamped to the steel beams, in which a vertical 
compression load and a monotonic displacement-controlled lateral load 
were applied to the top steel beam. The experimentally observed dam-

age pattern at the end of the analysis for both tested vertical stresses 
is shown in Fig. 17. At both tests, horizontal flexural cracks initially 
formed at the bottom- and top-most part of the wall specimen. Diagonal 
shear cracks were then observed, followed by a gradual drop in lateral 
capacity. The reported failure of all tested walls was due to the forma-

tion of diagonal cracks and crushing observed at the toes of the wall 
specimens.

It is evident from the crack pattern that the diagonal cracks on the 
LOW compression model (Fig. 17a) were more localized, with a few 
cracks through the brick units. As the pre-compression load increased 
to the MID compression model (Fig. 17b), the cracks through the bricks 
became apparent. Finally, the diagonal cracks on the HIGH compression 
model (Fig. 17c) were more dispersed, with comparatively more cracks 
through the brick units.

The model geometry and the corresponding joint plane discretiza-

tion are presented in Figs. 18a and 18b, respectively. The masonry unit 
is discretized as two deformable blocks joined by a potential crack sur-

face at half-length of the brick unit. The bond (unit-mortar interface) is 
defined at the mortar joint locations. Two rigid blocks representing the 
support and loading plates are modeled and connected to the masonry 
specimen through linear elastic contact planes (orange-colored surfaces 
in Fig. 18b).

Similar to the experiment, a double-clamped boundary condition is 
applied to the model where only the lateral direction of the top block 
is freed. The vertical displacement of the top block is freed when the 
axial stress is applied and fixed when the lateral displacement-controlled 
load is applied. The material properties of the contact points are taken 
from the main literature as well as references from various researchers 
that used the experimental results as validation cases [27,29,30,32,33,

47,78]. The input parameters are summarized in Table 2 for each pre-

compression level.

The peak ratio 𝑛 is taken as 2.0 considering the recommendation 
from the material characterization test on solid clay bricks conducted by 
Jafari [79]. Since there were no material characterization tests given in 
this original experiment, the softening curve is obtained using the equa-

tion for exponential softening in tension and shear defined by Lourenço 
and Rots [27] divided into 200 linear segments. The post-peak soften-

ing behaviors in shear and tensile regimes are presented in Figs. 19a and 
19b, respectively.

The system is first brought to equilibrium under gravity load, which 
is then followed by the application of the pre-compression load as dis-
tributed loads at the top surface of the upper rigid block. Once the 
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Fig. 17. Damage pattern of the shear-compression masonry wall test [77].

Fig. 18. Brick discretization of the solid URM wall experiment.
13

Fig. 19. Shear and tensile post-peak softening behaviors for the monotonic shear-compression wall test.
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Fig. 20. Force-displacement response comparison at each pre-compression level.

equilibrium is achieved again, the top block vertical displacement is 
fixed, and the lateral load is applied as a velocity with a constant rate 
of 1 mm s−1.

5.2. Validation results and discussions

A comparison of force-displacement response between the numerical 
models (indicated as “NUM”) and the experimental findings (indicated 
as “EXP”) at each precompression level is presented in Fig. 20. The wall 
experiment with low pre-compression stress was conducted twice, hence 
the bounded force-displacement curve. The numerical model was capa-

ble of predicting the global behavior of the experimental specimens with 
relatively good accuracy.

For the wall model with the LOW pre-compression level (𝜎𝑣 = 
0.30 MPa), the blue line in Fig. 20, the experimental force-displacement 
curve was relatively ‘ductile’ with a stable response up to the horizon-

tal displacement of 2.5 mm and a gradual loss of load-carrying capacity 
afterward. The numerical model for the low pre-compression stress ex-

hibited a brief decline in shear capacity as the lateral displacement 
reached 1.0 mm. This drop is caused by the sudden opening of the di-

agonal crack through the mortar joints and the potential crack surface 
at the brick units [80], as presented by the evolution of the combined 
shear-tension damage parameter 𝑑𝑡𝑠 plot in Fig. 21. The diagonal crack 
was fully formed as the lateral displacement reached 2.0 mm. Since no 
compressive damage was observed when the diagonal crack formed, the 
model could regain its shear capacity as the displacement progressed 
to 3.0 mm when toe crushing was observed, and the capacity dropped 
gradually afterward.

Similarly, for the MID model (𝜎𝑣 = 1.21 MPa), the green line in 
Fig. 20, the experimental force-displacement curve was stable up to the 
lateral displacement of 1.0 mm, where the opening of the unit-mortar in-

terfaces occurred at the diagonal strut. In contrast with the LOW model, 
the MID model experienced more cracks through the potential crack 
surfaces, which caused the sharp decline in load capacity as the lateral 
displacement progressed to 2.0 mm. Although cracks through the brick 
units are more apparent in the MID model, the diagonal crack was still 
localized in one single strut, as shown in the combined shear-tensile 
damage variable plot in Fig. 21.

The wall model under high pre-compression stress (𝜎𝑣 = 2.12 MPa) 
resisted a higher peak load capacity of approximately 100 kN (the red 
line in Fig. 20), which was followed by a rapid degradation of the shear 
capacity due to the opening of the diagonal crack not only along the 
mortar joints but also through the bricks. During the splitting of the 
brick units, there is a transfer of subcontact forces to the adjacent units 
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as they push toward each other. The transference of subcontact forces 
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leads to the increase of frictional resistance at the adjacent blocks, re-

sulting in the regain of capacity after the shear capacity drops in Fig. 20. 
The increase in frictional resistance takes place until another splitting 
through the brick occurs, causing another drop in the shear capacity. 
This behavior persisted until crushing at the compressed toes took place 
beyond the lateral displacement of 3.5 mm.

The damage progression and formation of the diagonal cracks for the 
high pre-compression model are also well-represented by the tension-

shear damage parameter 𝑑𝑡𝑠 plot in Fig. 21, where the diagonal cracks 
formed between 1.0 mm and 2.0 mm, which included both the openings 
of the mortar joints and the potential crack surfaces on the brick units 
and progressed until the full formation of the diagonal cracks at the 
horizontal displacement of 3.0 mm.

Unlike the behavior observed during the experiment, where inclined 
cracks could occur through the units, the cracks in the numerical model 
were ‘forced’ to happen in the middle of the brick units through the 
potential crack surfaces, which caused the stepwise numerical force-

displacement curve in contrast with the smooth decline of the exper-

imental force-displacement curve in Fig. 20. This stepwise behavior 
persisted until the crushing damage at the compressed toes was observed 
at the horizontal displacement of 3.0 mm. An alternative solution to alle-

viate this behavior is to refine the potential crack surfaces into multiple 
planes, resulting in smoother crack representations on the brick units.

The crack pattern at the end of the analysis (at the horizontal dis-

placement of 4.0 mm) at each pre-compression level is shown in Fig. 22, 
magnified 50 times. The collapse mechanisms are consistent with those 
observed during the experiments (Fig. 17). It is also evident that con-

tact interpenetration between blocks was observed at the compressed 
toes within the diagonal cracks of the models in Fig. 22, indicating that 
compressive crushing occurred and localized within those regions.

5.3. Discussion on the numerical stability

The numerical stability in an explicit-based numerical method is 
quantified through the equilibrium error over the simulation. In this pa-

per, the equilibrium error is defined as the ratio of out-of-balance force 
components that remain after the summation of the forces and the to-

tal forces being applied to the nodes. This is termed the local force ratio 
and is defined in Eq. (37) for a single node.

𝑅 =
⟨Σ𝑖𝐹

𝑂𝑂𝐵
𝑖

⟩
Σ𝑖⟨𝐹𝑖⟩ (37)

where 𝑅 is the local force ratio on a single node, 𝐹𝑂𝑂𝐵
𝑖

is the out-of-

balance force after the summation of forces that tends to zero upon 
equilibrium, and 𝐹𝑖 is the total force (Eq. (9)). The ⟨⋅⟩ sign indicates 
the sum of the absolute values of the vector components.

The plot of the maximum local force ratio of any nodes against 
the applied displacement for each case is presented in Fig. 23. Since 
the geometry and mesh sizes used across all three models are identi-

cal, the timestep for all models was also identical at 1.68 × 10−6 s. The 
LOW model exhibited significant fluctuations from 1.0 mm to 1.5 mm 
(Fig. 23a), which corresponded with the loss of shear capacity due to 
the opening of the diagonal cracks (Fig. 21 for the LOW model). The 
wall model experienced another series of fluctuations from 2.0 mm to 
4.0 mm as more cracks were observed along the diagonal strut, followed 
by toe crushing.

On the other hand, the equilibrium error plot for the MID model 
(Fig. 23b) showed a relatively different behavior compared to the LOW 
model. The lesser fluctuations could be correlated with more occur-

rences of unit splitting in the MID model and better transference of the 
subcontact forces from the diagonal strut to the adjacent units. A slight 
increase in the equilibrium error occurred between 1.0 mm and 1.5 mm, 
and between 2.0 mm and 2.5 mm. These corresponded with the capacity 
loss due to the units splitting (Fig. 20).

The equilibrium error for the HIGH model showed a similar response 

to the other two models. The sharp increase in the equilibrium error 
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Fig. 21. Damage progression in combined tension and shear (𝑑𝑡𝑠) when lateral displacement is 1.0 mm,2.0 mm, and 3.0 mm (left to right).
15

Fig. 22. Crack pattern of the model at the end of the analysis (Def factor: 50).
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Fig. 23. Plot of maximum local force ratio vs applied displacement.
Fig. 24. Force-displacement curve of the HIGH model with different applied 
velocities.

due to the unit splitting was more distinct in the HIGH model, as shown 
in Fig. 23c where three peaks were observed from 1.7 mm to 2.6 mm 
which corresponded with the sudden drop in shear capacity as seen in 
Fig. 20. The HIGH model experienced another peak due to toe crushing 
at 2.9 mm.

5.4. Sensitivity analysis on the applied loading velocity

In this section, the sensitivity of the wall model to the applied load-

ing velocity is compared. Using the HIGH wall model, the initial applied 
velocity of 1 mm s−1 is decreased to one-fifth of its value (0.2 mm s−1) 
and increased to five times the original value (5 mm s−1). The initial ap-

plied velocity was determined heuristically by monitoring the changes 
in the global response of the wall structure due to the inertial effect.

The force-displacement comparison of the HIGH model with differ-

ent applied velocities is presented in Fig. 24. The peak load, corre-

sponding displacement, and dissipated energy are quantified in Table 3. 
Compared to the benchmark model, where the simulation was finished 
in 27 hours, the simulation for the one-fifth model required 150 hours, 
while it took 5.4 hours to run the model with the applied velocity five 
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times the original value.
Table 3

Quantification of the global responses for the HIGH model 
with different applied velocities.

Model Name Peak load Peak disp. Diss. energy

kN mm kN/mm

(%)a (%)a (%)a

EXP 97.69 1.51 199.9

𝑣 = 1 mm s−1
109.1 1.74 206.8b

(-11.58) (-15.62) (-3.47)

𝑣 = 0.2 mm s−1
108.16 1.73 209.4b

(-10.71) (-14.85) (-4.74)

𝑣 = 5 mm s−1
108.85 1.73 208.4b

(-11.42) (-14.65) (4.28)
a Values in brackets represent the relative error percentage to 

experimental values.
b Dissipated energy calculated until the displacement at the end 

of the experiment.

From both Fig. 24 and Table 3, both the peak load and the corre-

sponding displacement are almost identical, despite slight differences 
observed in the post-peak response. However, it is worth noting that 
the wall model may become more sensitive if the applied velocity is 
extremely increased such that the inertial effect can no longer be damp-

ened by the local damping scheme in Eq. (11).

5.5. Discussion on the computational efficiency

This section discusses the computational efficiency of the DEM 
framework when combined with the proposed contact model. The re-

search’s numerical simulations were conducted on a Windows work-

station equipped with a 2.6 GHz Intel Core i9 Processor and 32 GB 
of memory. The simulations of the low and high compression mod-

els reached a lateral displacement of 4.0 mm within 27 hours, with 
a constant lateral velocity of 1.0 mm s−1 and a local damping coeffi-

cient of 0.8. Additionally, both numerical simulations were executed 
consecutively, allowing the observation of the progressive failure of the 
masonry wall models without interruptions due to numerical instabil-

ities commonly seen in implicit solution-based simulations [81]. The 
explicit-based DEM framework coupled with a suitable contact model 
for masonry structures is more robust in terms of numerical stability 
compared to implicit-based finite element simulations. However, the 
DEM framework requires smaller time steps for stability, leading to 
longer computational time.

To further highlight both the efficiency and accuracy of the proposed 
model, numerical simulation on the HIGH model is conducted using the 

Mohr-Coulomb (MC) contact model readily available in 3DEC (Fig. 4). 
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Fig. 25. Numerical results of the high pre-compression wall test using Mohr-Coulomb (MC) model.
Table 4

Comparison of the proposed model to the Mohr-Coulomb 
contact model.

Model Name Peak load Peak disp. Diss. energy

kN mm kN/mm

(%)a (%)a (%)a

Proposed model
109.1 1.74 206.8b

(-11.58) (-15.62) (-3.47)

Mohr-Coulomb
83.12 1.11 128.07b

(-14.92) (-26.45) (-35.95)
a Values in brackets represent the relative error percentage to 

experimental values.
b Dissipated energy calculated until the displacement at the end 

of the experiment.

The MC model is the standard contact constitutive model typically used 
in DEM for the numerical analysis of masonry structures, as it provides a 
brittle representation of damage in masonry constituents. The material 
elastic properties used in this simulation are taken from Table 2, along 
with the tensile strength (𝑓𝑡), peak and residual cohesive strengths (𝑓𝑠𝑝
and 𝑓𝑠𝑟, respectively), and the peak and residual friction angle (𝜙𝑝 and 
𝜙𝑟, respectively).

The force-displacement curve and the deformed shape of the wall 
model are presented in Fig. 25. The numerical simulation reached the 
4.0 mm displacement within 29 hours using the same workstation as the 
proposed model. The computational time is comparable to the proposed 
model, further highlighting the negligible impact of adding harden-

ing/softening and compressive cap functionalities to the contact con-

stitutive model in DEM.

In terms of prediction accuracy of the global behavior (the force-

displacement curve in Fig. 25a), the MC model provides significantly less 
accurate predictions than the proposed contact model. The sudden de-

cline of shear capacity for the MC model was consistent with the straight 
cracks through the potential crack surfaces and unit-mortar interfaces, 
as depicted in the deformed shape in Fig. 25b. With more occurrences 
of slidings and separations of the interfaces in the MC model, the trans-

ference of subcontact forces to the adjacent subcontacts happened more 
frequently, leading to more sudden increases and decreases of the shear 
capacity in Fig. 25a.

The relative errors of the peak load and corresponding displacement 
and dissipated energy of the MC model are compared to the proposed 
contact model in Table 4. It is clear that although the peak load is within 
the margin of error of 20%, the corresponding displacement, dissipated 
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energy, and the failure modes represented by the deformed shape are 
considerably different when compared to the experimental responses. 
Due to the inadequacy of the MC model to simulate both the global and 
local behavior of the experimental wall test, as also highlighted in Pu-

latsu [58], this result is not included in the following sections where 
comparison of the prediction done by other numerical methods is dis-

cussed.

In conclusion, the proposed contact model was able to provide a rel-

atively accurate representation of the mechanical behavior of masonry 
structures compared to the standard contact constitutive model typically 
used in DEM, with a negligible difference in computational efficiency in 
the overall numerical procedure.

5.6. Comparison to other numerical methods

The force-displacement curve for the proposed model shown in 
Fig. 20 is also compared against the results from numerical approaches 
proposed by other researchers. The comparison was only drawn to the 
selected numerical methods within the block-based modeling strategy. 
Fig. 26 shows the predictions made by the proposed model, the experi-

mental results, and the numerical results reported by Pulatsu [58] and 
Pulatsu & Tuncay [80], Nie et al. [30], and Lourenço & Rots [27]. Nie et 
al. [30] did not report a comparison to the intermediate pre-compression 
stress (𝜎𝑣 = 1.21 MPa). Hence, the comparison for the MID model is 
done only to the results reported by Pulatsu & Tuncay [80] and Lourenço 
& Rots [27].

It is evident on each pre-compression level that the responses from 
the proposed numerical model fall within the range of those reported by 
the other researchers [27,30,58,80]. The only exception is given for the 
test with low pre-compression by the model proposed by Nie et al. [30], 
where a premature stiffness reduction is obtained, followed by harden-

ing before the final capacity drop due to toe crushing.

Even though Nie et al. [30], Lourenço & Rots [27], and the proposed 
model implemented the exponential softening law for tensile and shear 
with a slightly different implementation of exponential hardening/soft-

ening law in compression, the difference is apparent with regards to the 
global behavior of the wall models. This difference could be attributed 
to many factors, including the different modeling schemes (interface vs 
contact models), numerical implementations (implicit vs explicit), ma-

terial input parameters, etc.

Meanwhile, the difference between the results reported by Pulatsu 
and Tuncay [80] could be attributed to the difference in the definition 

of the constitutive model and the one-way coupling scheme between 
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Fig. 26. Comparison of force-displacement response to other approaches in the literature.

Table 5

Comparison of peak load, displacement, and dissipated energy predictions.

EXP NUM Pulatsu [58,80] Nie et al. [30] Lourenço & Rots [27]

LOWa

Peak Load kN 52.23 53.74 (-2.89) 50.82 (2.70) 46.98 (10.06) 53.04 (-1.55)

Peak Disp. mm 2.49 2.91 (-16.47) 1.41 (43.31) 2.16 (13.40) 2.25 (9.81)

Diss. Energyb kN/mm 158.9 155.8 (1.99) 139.2 (12.44) 138.1 (13.10) 151.0 (4.97)

MIDa

Peak Load kN 72.03 70.70 (1.85) 72.05 (-0.01) - (N/A) 75.15 (-4.32)

Peak Disp. mm 1.18 1.12 (4.89) 1.26 (-6.79) - (N/A) 1.13 (5.43)

Diss. Energyb kN/mm 216.3 194.0 (10.28) 210.1 (2.85) - (N/A) 235.9 (-9.1)

HIGHa

Peak Load kN 97.69 109.10 (-11.58) 108.80 (-11.40) 99.89 (-2.24) 109.69 (-12.28)

Peak Disp. mm 1.51 1.74 (-15.62) 2.06 (-36.99) 2.58 (-71.77) 2.22 (-47.62)

Diss. Energyb kN/mm 199.9 206.8 (-3.47) 213.9 (-7.00) 208.9 (-4.51) 228.8 (-14.43)

a Values in brackets represent the percentage of relative error to experimental values.
b Dissipated energy calculated until the displacement at the end of the experiment.
shear and compression since both models were developed within the 
DEM framework.

The differences in the prediction of peak load, corresponding dis-

placement, and dissipated energy on all compared approaches are quan-

tified in Table 5. The dissipated energy, used to quantify the modeling 
accuracy in terms of pre-peak stiffness and post-peak strength degrada-

tions, was defined by calculating the area under the force-displacement 
curve. For a fair comparison, the energy calculated for each numerical 
method was limited until the corresponding displacement at the end of 
the experiment.

From Table 5, there seems to be no direct correlation between the 
peak load prediction from each numerical method and the applied pre-

compression stress. Except for the Lourenço & Rots [27] model, the 
relative error for the peak load prediction of the proposed model and 
that made by Pulatsu [58,80] drops as the pre-compression stress in-

creases from LOW to the MID model, but increases again from MID to 
the HIGH model.

These fluctuations could be influenced by many factors, including 
the inherent variability of the material properties in the walls compared 
to the values inputted in the numerical models and the representation 
of the potential crack surfaces in the brick units. In the LOW model, the 
splitting through the brick units was minimal as the failure mode was 
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governed by the localized stair-stepped diagonal crack. The response of 
the brick units did not significantly affect the peak load prediction of 
the URM wall.

As the pre-compression increased to the MID model, the failure mode 
was still governed by the presence of the stair-stepped diagonal crack. 
Again, the peak load prediction was still unaffected by the mechanical 
behavior of the brick units. In contrast, in the HIGH model, the peak load 
prediction was governed by cracking occurring both through the brick 
units and the unit-mortar interfaces, with the former being predominant. 
Since this local failure is forced in the conducted simulations to occur 
in the mid-length of the brick units and it is associated with brittle post-

peak strength degradation, its occurrence reduces the accuracy of the 
numerical predictions, such as in the case of the HIGH model.

Overall, it is evident that the proposed numerical strategy could 
predict the experimental responses within the 20% range of the experi-

mental values. The predicted responses from the proposed strategy were 
also in agreement with the other numerical approaches.

6. Conclusions

This study introduces a robust contact constitutive model for the 
analysis of masonry structures using the distinct element method. The 
proposed constitutive model is developed under the block-based mod-

eling strategy to predict the nonlinear mechanical responses of unrein-
forced masonry structures subjected to monotonic loading. The novelty 
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of this work includes the introduction of the multi-surface plasticity 
coupled with a hardening/softening law for the damage evolution in 
compression and the piecewise linear softening law in the shear and ten-

sion regions. A series of numerical simulations from the material level 
to a full-scale masonry wall test subjected to shear-compression loading 
was conducted to validate the proposed method. From the numerical 
validation results, it can be concluded that:

• The proposed contact model predicted the responses of the mate-

rial tests in shear-compression, flexural, and pure compression with 
adequate accuracy, including the post-peak regime on each test.

• The simulation of two wall experiments subjected to in-plane lat-

eral load and two levels of pre-compression loads showed a good 
agreement with the experimental results in terms of global (force-

displacement curve) and local (damage pattern) behaviors of the 
masonry walls. The comparison of the force-displacement curve to 
other numerical methods in the literature within the block-based 
modeling strategy also indicated good and consistent predictions.

• The numerical damage pattern of the low (0.3 MPa) and inter-

mediate (1.21 MPa) pre-compression model showed a localized 
diagonal crack with less crack through the bricks, while the high 
pre-compression model (2.12 MPa) showed a dispersed diagonal 
crack pattern with more cracks passing through the brick units. All 
models exhibited toe crushing at the end of the analysis, consistent 
with the experimental findings.

• The high-precompression model exhibited a stepwise force-dis-

placement post-peak response due to cracks in the brick units that 
were ‘forced’ through the potential crack surfaces in the mid-length 
of the units.

As the future development of this research, the contact constitutive 
model will be extended to consider the stiffness degradation at the mor-

tar joints and potential crack surfaces of the brick units in each damage 
regime, often observed in cyclic or seismic loading of unreinforced ma-

sonry structures. Different loading scenarios, e.g., out-of-plane loading, 
will also be considered to further exploit the capability of the proposed 
contact model and DEM in general. Moreover, the responses predicted 
by the numerical model could not fully represent the spatial variabil-

ity of masonry properties due to the deterministic-based system. The 
variability of the material properties within the unreinforced masonry 
structures and the sensitivity to change in the values will also be ex-

plored in the future. Then, the potential crack surfaces in the brick 
units will also be refined into multiple plane orientations to represent 
smoother cracks through the brick units. Finally, the dilatancy soften-

ing at the onset of shear damage will also be considered as the future 
work of this research.
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