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The flow on the cavity surface reflects at the cavity closure line. The reflected
flow forms the re-entrant jet that determines the topological structure of the
cavity.

A non-linear method, as developed in this thesis, predicts the unsteady cavity
motion including phase differences both for the cavity length and for the cavity
thickness. The cavity surface is ‘dancing’ instead of simply ‘blowing’ up and
shrinking like a balloon.

Cavitation phenomena are chaotic, but not all the chaotic results from numerical
simulations represent cavitation.

Whatever type of cavitation the customers expect, an expert on cavitation can
always generate it in a cavitation tunnel. Before accepting the test results, it is
necessary to check carefully the test conditions and the way the test is
conducted.

Since the scale effect is so strong in a cavitation inception test, full-scale
calculations are sometimes better than model tests.

The first impression is very often the most correct impression. Further
evaluation reflects more or less your preferences.

ZALT - WERAE - BHEEWR. - BHAEEWYE - (Confucianism:  Among
every three persons, there is always one who can be my teacher. Choose his
better ideas to follow and choose his worse ideas to discard.) '

BRI - BT 204 - (Confucianism:  Learning  without  thinking  is
confusing while thinking without learning is exhausting.)

Life is a continuous learning experience.

Do not miss the train that comes sharp on time, because the next train may be
considerably delayed or never come.
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Nomenclature

O-XYZ

ip,jp

aspect ratio

Bernoulli constant

chord length

drag coefficient

polynomial expansion coefficients
lift coefficient

a closed curve in the fluid

pressure coefficient

cavity volume coefficient

diameter of propeller, drag

dipole influence coefficients

volume external force acting on the fluid
Froude number

Green function, x €  and % € 60
influence coefficient from the dipole
influence coefficient from the source
integrals defined by equation (3.48)
Jacobian

= "1- advance coefficient of propeller

= ;’70 reduced frequency
g e
reference length

integrals defined by equation (3.35)

highest order of the geometry expansion

highest order of the Jacobian expansion

chordwide number of panels on the cavity

panel index of the detachment point

chordwise number of panels on the back of the profile
number of panel edges or panel index at cavity end
highest order of the dipole expansion

highest order of the source expansion

total number of panels in main flow direction

total number of panels in cross flow direction

space fixed inertial coordinate system

body surface

cavity surface

re-entrant jet cross section surface

wake surface of lifting body

source influence coefficients

reference velocity like ship speed V;
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v cavity volume

v fluid velocity in O - XY Z

Vo translational velocity of o — zyz system

V., relative velocity of fluid with respect to o — zyz system
Vo = Vw — Vy — Q x x relative inflow

Vw space-fixed existing flow (non-uniform wake)

Ve the velocity on the cavity surface

ic dipole influence coefficients of the wake

P,

o = (X,Y, Z)7 position vector in O ~ XY Z
Xc = (X¢,Ye, Ze)T position vector of the cavity surface

in0O-XYZ
dS% integral area element on the boundary
e1,es,e3 base vectors on the surface
f camber of profile
g gravity acceleration
h Landau symbol for the panel size
or re-entrant jet thickness

ip, jp panel index in (s1,s2) direction respectively
i, gr relative panel index
l cavity length
£ vector along a closed curve C(t)
n = (z,Nny,n.)T unit normal vector on the surface
n rotational speed of propellers (rps)
0 —zTYz body-fixed non-inertial coordinate system
p pressure
Py vapor pressure
Poo reference pressure
(o) pressure induced by disturbance potential
q = (z¢,yc, 20, @)Y solution vector
r distance vector pointing from X to x
81,82 body-fitted curvilinear coordinates
& normalized curve length on the cavity (from 0 to 1)
t time or thickness
U7, Uz, U3 local Cartesian disturbance velocity components
v disturbance velocity
\7) grid velocity of the cavity surface
x = (z,y, z)T position vector in 0 — zyz
Xg = (24, Yg, zg)T grid position vector in o — zyz
T4 the coordinate of the detachment point
Ze the coordinate of the cavity end
xXo = (x¢,yc, 2¢)T position vector of the cavity surface

in o~ xyz

iil



R )

6(x)
Hip,jp

Oip,jp

circulation around a closed curve C
detachment line of a 3-D cavity
time step

potential of volume force F

flow domain

rotational speed of 0 — zyz system

angle of attack

strength of vortex

artificial disturbance

cavity thickness

interior angle of the boundary at point x

normal dipole strength

kinematic viscosity of fluid

fluid mass density

cavitation number

source strength

rotational cavitation number

=e3 X e;

potential of velocity V

potential of velocity Vy

po%entia,l of the disturbance velocity v
P

circular velocity of the gust
material derivative in O — XY Z

material derivative in 0 — zyz

boundary of domain
nabla operator
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Chapter 1

Introduction

Cavitation is a very complicated phenomenon involving phase
change, surface tension, turbulence, non-equilibrium thermodynamic
effects, etc. Cavitation is unsteady in nature and occurs over a wide
range of time and length scales. The development of advanced cav-
itation simulation tools should not override the physical nature of
cavitation. It is essential to understand the behavior of cavitation
and develop a numerical simulation method that incorporates the
most important phenomena in detail, as much as possible. Section
1.1 describes the basic physical phenomena of cavitation. Empha-
$is is on various types of cavitation and their behavior on propeller
blades. Section 1.2 reviews the development of cavitation simula-
tion and discusses the most recent methods. The research objectives
of this thesis are outlined in Section 1.3.

1.1 Physical phenomenon

Cavitation is a flow phenomenon that occurs when liquid changes phase to
vapor and results in a visible vapor region (called a bubble or a cavity) in the
fluid due to dynamic pressure reduction at essentially constant temperature,
like the temperature of river or sea water. Cavitation is different from boiling —
the most common phase change phenomenon that we observe in our daily life.
Boiling involves also phase change but occurs when the liquid temperature is
raised to the boiling-point at atmospheric pressure. Growth of a cavity occurs
at a slow rate when dissolved gases diffuse into the cavity or when the liquid
temperature rises or drops. But the growth of a cavity will be explosive if it is
primarily the result of vaporization into the cavity (Knapp et al. (1970)). When
these vaporous bubbles or cavities travel to a high-pressure region or when the

1



2 NUMERICAL SIMULATION OF UNSTEADY PARTIAL CAVITY FLOWS

ambient static pressure is increased by some means, the growth process will
reverse. The vapor will condense into liquid at a very high rate. The cavity
then collapses and eventually disappears. This #mplosive process can be very
violent, which results in detrimental effects like erosion, vibration, excessive
noise, etc.

Cavitation occurs under three basic conditions: 1) The presence of a low
pressure, which should be lower than a critical value, or simply speaking, lower
than the vapor pressure p,. The non-dimensional parameter to scale this low
pressure is the cavitation number o, defined in the inflow as,

DPoo — Py

Ve’
where p, is the static pressure of the inflow, p, is the vapor pressure, p is the
fluid density and V., is the velocity of the flow; 2) The presence of nuclei, which
are tiny bubbles of microscopic size and filled with vapor or gases from e.g.
microorganisms or some other sources from the nature. Nuclei are measured
in nuclei population spectrum (N/cm?®) or by nuclei number density spectrum
(Gates (1977)) based on nuclei sizes; and 3) The duration of time during which
the nuclei are exposed to the low pressure.

The cavitation number measures the vulnerability of the flow to cavitation.
The higher the cavitation number, the less likely cavitation is to occur; the
lower it is, the more likely. Nuclei are always needed for cavitation since ‘pure
water’ can withstand very high tension (Blake (1949)) and cavitation never
occurs in this kind of water. Gaseous nuclei form the impurity th-the lquid
that reduce the tensile strength of the liquid. Different tensile strengths in
different cavitation test facilities gives different cavitation inception results for
the same test. Enough duration of exposure to low pressure is also important.
It enables the nuclei to grow up to visible sizes. If one of the three conditions is
different, the cavitation phenomena can be totally different. This is one of the
essences of ‘scale effects’. Other influences are e.g. turbulence, viscous effects
through the Reynolds number, diffusion, etc.

Cavitation occurs in a broad variety of hydrodynamic devices, such as ma-
rine propellers, hydrofoils, pumps, water turbines of electric power generators
and even in the liner of the cylinders of a diesel engine. Cavitation degrades
the performance of these devices in many aspects. E.g. 1) Excessive cavitation
reduces the efficiency or affects the rotation rate of a propeller or reduces a
head of a pump. 2) Certain types of cavitation (bubble and cloud) damage the
structure of these devices by erosion. This can sometimes be so violent that it
causes disastrous damage to the structure of a pump within only a few months
of operation or to a ship propeller after a single voyage. 3) Periodic (sheet or
cloud) cavitation causes a periodic volume change of the cavity, which eventu-
ally causes pressure fluctuations on nearby structures (ship hulls). Cavitation
nearly always results in a strong noise emission into the water.

o= (1.1)
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tip vortex cavitation

sheet cavitation

bubble cavitation

Figure 1.1: Schematics of the various cavitation on propeller blade.

Cavitation occurs in different forms. It can be fixed to body or fixed to the
fluid; It occurs in the liquid or at the surface of immersed bodies; It can shape
as a group of perfect spheres (bubbles) or as a single sheet. The surface of a
sheet cavity can be very smooth and transparent, or very frothy and opaque.
As widely accepted by researchers, cavitation on marine propeller blades are
organized into the following categories,

1. Bubble cavitation;

2. Sheet cavitation;

3. Tip and hub vortex cavitation;
4. Cloud cavitation,

as schematized in Figure 1.1.

Bubble cavitation occurs when nuclei travel into a low-pressure region, ex-
pand explosively into visible bubbles in this region, and collaps implosively
when subsequently they travel into a high-pressure region. This kind of cavi-
tation has a relatively less influence on hydrodynamic forces and efficiency of
propellers, but generates strong noise emission and erosion when it is close to
the surface of the propeller blades. Sheet (fixed or attached) cavitation is fixed
relatively to the body, mostly a foil or propeller blade. It starts normally from



4 NUMERICAL SIMULATION OF UNSTEADY PARTIAL CAVITY FLOWS

the leading edge, where the flow is separated, and forms a pocket of vapor.
Over the entire length of the sheet cavity, the cavity surface is always concave
towards the blade surface (Ronald (1989)). Because of this, the cavity must
eventually close on the blade surface (partial cavity) or close somewhere down-
stream with other cavity surfaces (super cavity). The end of the sheet cavity
is normally unsteady. It either breaks into a lot of small bubbles, which is very
local and non-periodic, or it induces large-scale cavity shedding periodically.
Both of these different processes eventually form the cloud cavitation further
downstream, but the periodic shedding generates large-sized cloud cavitation.
Vortex cavitation happens when nuclei are trapped into the core of a vortex,
where the pressure is low, and grow into longitudinal bubbles. When these
bubbles merge with each other, they eventually form a hollow long spiral tube,
which can extend stably over a considerable distance downstream. A vortex
cavity will finally collapse when the vortex is dispersed or dissipated by vis-
cosity and therefore the pressure in the core is no longer low enough. This
collapse could be also very violent and generate very strong noise emission, but
not erosive because it normally occurs far downstream of the propeller blades.
However it is possible that erosion damage occurs on rudders.

Sheet cavity closure controls the behavior of a sheet cavitation. When sheet
cavity occurs on propeller blades, it starts normally from the leading edge as
a smooth transparent film. This sheet may remain smooth and transparent
to the end of the cavity if the flow reattaches the blade surface as laminar
reattachment. But this sheet may become. frothy if the cavity surface flow. ..
becomes turbulent. This is called turbulent reattachment.

When a reentrant jet forms at the end of a cavity, it forms a reverse flow
with a speed as high as the free stream velocity at the cavity surface (Furness &
Hutton (1975)), and moves into the cavity between the underside of the cavity
and the blade surface. If this reentrant jet moves upstream and eventually
impinges on the cavity surface near the cavity detachment point, the sheet
cavity will break and a large portion of the cavity will be shed into the wake of
the cavity and form a large-scale cloud cavity. This cavitation is highly periodic,
as shown by De Lange (1996) in Figure 1.2a. It is found that the average
shedding frequency, in terms of Strouhal number, is relatively independent of
the cavitation number (Ronald (1989), Avellan et al. (1989), Le et al. (1993)).
When there is a turbulent reattachment at the end of a cavity, the end of cavity
becomes a bubbly mixture in the cavity wake that is as thick as the maximum
cavity height and locates at the maximum thickness point of the sheet cavity
(Laberteaux (1998)).

The highly periodic shedding of the cloud cavity, as a result of the imping-
ing of the reentrant jet on the cavity surface (Figure 1.2a) (which is always
tried to be avoided by propeller and hydrofoil designers), can be prevented by
changing the shape of the hydrofoil or the propeller blade. As a consequence,
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Figure 1.2: a) (left) Convex shape of the closure line in casc of a local break-off
scquence: NACA 16-009, o = 3°, 0 = 1.39, U = 6.9m/s. b) (right) Top view
of the 3-dimensional cavity and jet layer on the swept wing. The black arrows
sketch the direction of the re-entrant jet. De Lange (1996).

the topology of the cavity can be changed completely (see Figure 1.2b). Fig-
ure 1.2 shows two cavitating hydrofoils with the same profile, but one is swept
and one is not. Experiments show totally different topologies of these cavities.
When the reentrant jet shifts its direction from towards the leading edge to a
direction along the span, the cavity surface will no longer reached by the jet,
and therefore the cavity will not be broken and no periodic cloud cavity sheds
at the end of the sheet cavity. De Lange (1996) called this a ‘reflection’ of the
flow at the end of a three-dimensional hydrofoil. This kind of flow reflection
is also very often found on propeller blade. Figure 1.3 shows a typical sheet
cavity on a conventional propeller blade (Kuiper (1981)). In this picture, the
reentrant jet underneath the cavity at the cavity end can be clearly seen from
0.257/R up to 0.7r/R. Within this region, laminar reattachment of the cavity
at the end is observed and no cloud cavity is shedding. But the liquid entering
the cavity by the reentrant jet can not stay inside the cavity forever and it must
find an exit. For the present situation, instead of impinging on the cavity at the
leading edge at the same radius, the reentrant jet flows in radial direction and
finally leaves the cavity at about 0.7r/R to 0.8r/R radii. Around this region,
cloud cavity shedding together with the the jet is seen. From 0.8 /R up to the
tip, the cavity has a cloudy closure. Some cloud cavities are shedding locally
from the end of the cavity. But this shedding is not highly periodic.

The topology of a sheet cavity is strongly related to the blade loading in
radial direction and thus to the pressure distribution on the propeller blades.
The relative velocity between the propeller blades and the liquid is very high
at the outer radii and relatively low at the inner radii. This velocity gradient
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Figure 1.3: Cavitation Observation in the Cavitation Tunnel on Propeller S at
J =0.4. (Re, = 1.78 x 108, 0,, = 1.3, without tunnel wall correction), Kuiper
ae81). ; s

makes the cavity on the propeller blades highly three-dimensional and makes
that the reentrant jet at the cavity closure flows in radial direction instead
of in chord direction. This is true even when the propeller blades are not
skewed. Introducing blade skew will move the exit of the reentrant jet from,
e.g. 0.7r/R for this case, to the propeller tip. Finally the reentrant jet enters
the tip vortex cavitation. Therefore over the entire blade surface, no cloud
cavitation is shedding, which is important for preventing erosion and noise
radiation.

More detailed discussions on the structure and the reentrant jet exit on
both model propellers and full scale propellers can be found in the papers of
Kuiper (1994) and Van der Meulen & Wijnant (1990).

1.2 Numerical simulation

Research on cavitation has already a very long history. Cavitation phenomena
have been recognized since Euler (1754) found that cavitation occurred in high-
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speed water flow during his study on water turbines. In 1873, Reynolds recog-
nized cavitation as the cause of the ‘racing’ of a ship propeller that is loaded
above a torque threshold. The first time when the word cavitation appeared
in literature was as early as 1895 in a paper by Barnaby & Parsons (Ronald
(1989)). In the early stage of cavitation research, people focused mainly on ex-
perimental investigation to try to understand the cavitation phenomena, such
as cavitation inception; cavitation erosion; scale effect; nuclei influence; rough-
ness effect, etc. In recent years, experimental research is still pursued on all of
the above aspects, but much more in detail. As to the research on the sheet
cavity flow, much attention has been paid to the detachment point (Arakeri
(1975), Franc & Michel (1985), Shen & Peterson (1980)), but less attention has
been paid to its closure region. Experimental observation of the closure region
of a fixed cavity has been continued recently by researchers who are trying to
understand the physical mechanism behind the phenomena (Furness & Hutton
(1975), Avellan et al. (1989), Kubota et al. (1989), Le et al. (1993), Laberteaux
& Ceccio (1997)). Various physical appearances at the cavity end like a vapor
core, a horseshoe vortex or a cloud of bubbles have been found. But more
experimental investigations are still needed (ITTC (1999)). Nevertheless, it
has been widely accepted that the reentrant jet is directly responsible for the
generation of large-scale cloud cavitation at the end of a sheet cavity.

According to the 22"¢ ITTC special committee survey on computational
methods for propeller cavitation, numerical simulation of cavity flow on pro-
peller blades is still limited to sheet cavity flows, no matter whether a lifting-
surface method, a boundary-element method or a method based on models like
Euler, RANS or a two-phase flow model is used (ITTC (1999)). A few methods
have been developed for bubble or tip vortex cavitation. No method has ever
been tried yet for the simulation of cloud cavitation on propeller blades.

1.2.1 Hodograph technique

The theoretical simulation of sheet cavity flow started more than a century ago
when Helmholtz (1868) and Kirchhoff (1869) established the free streamline
theory by using conformal mapping techniques, or the hodograph technique
(Wu (1972)). The first cavity flow problem was solved for bluff bodies at zero
cavitation number with a Riabouchinsky image model (Riabouchinsky (1921))
and the reentrant jet model (Efros (1946)), and later extended to the flat
plate at incidence (Kutznetsov and Terentev (1967)) and to the wedge (Cox &
Clayden (1958)) at zero cavitation number. The hodograph technique is a non-
linear method. It can be used for cavitating flows around simple geometries like
bluff bodies and flat plates, but not for arbitrary lifting or non-lifting bodies
like hydrofoils or propeller blades. And hence, it is nothing useful for practical
use in engineering. A detailed description of the hodograph technique can be
found in Birkhoff & Zarantonello (1957). A good review has been provided by
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Wu (1972).

1.2.2 Linear theory

The great breakthrough on cavity flow simulation was made by Tulin (1953)
when he applied the linear theory to the problem of a supercavitating symmet-
ric section at zero angle of attack and zero cavitation number. This method was
latter extended by himself to supercavitating flows around a flat plate at inci-
dence and at any cavitation number (Tulin (1964)). Extensions of this linear
theory for super cavitating flow at any cavitation number to arbitrary bodies
were contributed by a lot of excellent researchers like Wu (1956), Geurst (1960),
Fabula (1962), and Chen (1962). A similar technique for partial cavitation was
first obtained by Acosta (1955) and Geurst (1959) independently. The camber
influence on partial cavity flow has been incorporated later on in their linear
method (Geurst & Verbrugh (1959)) and the thickness influence was added
by Wade (1967). But linear theory for partial cavity flow about hydrofoils
predicts that the cavity extent and volume will increase when the thickness
of the hydrofoil is increased. This contradicts the experimental observations
that when the thickness is increased, the leading edge radius is increased and
as a result the cavity extent and volume is decreasing. This is because the
small perturbation assumption of the linear theory is not valid at.the leading
edge where the perturbation velocity is of the same order as the free stream
velocity. Tulin & Hsu (1980) developed the short cavity theory by considering
the cavitating flow as a small perturbation to the nomnlinear fully wéttéd flow
(2-Dimensional or 3-Dimensional), which predicts a correct thickness effect on
cavitation. Kinnas (1991) recently corrected the linear cavity flow theory by
applying a leading-edge correction from Lighthill (1951) and incorporated this
correction into a propeller cavitation prediction code (Kerwin et al. (1986)).
Better prediction of the cavity extent for cavitating propellers were reported
(Kinnas (1992)).

Three-dimensional flow application of the two-dimensional linearized cavity
flow theory was limited to hydrofoils or propeller blades under the assumption
of high aspect ratio. Asymptotic expansion with matching of the inner and
outer solutions was normally adopted in these methods. Leehey (1971) in-
troduced a theory for supercavitating hydrofoils of finite span. Uhlman (1978)
also developed a similar method for partially cavitating hydrofoils of finite span.
But the propeller blades are never shaped as a high aspect ratio foil. Hence,
the applicability of this theory to propeller blades is questionable.

The use of digital computers and numerical methods brought cavity flow
simulation into a new era. Golden (1975) repeated the solution of the cavity
flow of a flat plate (Geurst (1959)) but in a purely numerical way. After that,
numerical methods based on linear cavity flow theory have been quickly ex-
tended to three-dimensional flow problems. Jiang & Leehey (1977) used the
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lifting surface theory to solve the problem of a supercavitating hydrofoil of fi-
nite span. Discrete vortex and source distributions were used to formulate the
equations. A chordwise cavity closure condition for each strip was enforced,
which is exact for a symmetric hydrofoil but not for arbitrarily shaped foils like
propeller blades. Even so, this method was extended to solve the problem of
an unsteady, cavitating marine propeller by Lee (1979).

Van Houten (1983) calculated the unsteady cavity flow on a high aspect
ratio hydrofoil by matching the outer lifting-line solution with the inner lin-
earized cavity flow solution. He succeeded to calculate the slow growth and
rapid collapse of the cavity in one cycle of gust variation. He predicted the
cyclic variation of the cavity length to decrease as the frequency increases.

1.2.3 Non-linear theory

The drawback of the lincar theory for unsteady sheet cavity flow is that the
dynamic motion of the cavity is not predicted, since the boundary condition
is not satisfied at the real cavity surface. This dynamic motion may give con-
tributions to the higher harmonics of the pressure fluctuations. Stern & Vorus
(1983) developed a nonlinear method which divides the cavity flow problem
into a three-dimensional outer flow problem and a two-dimensional inner flow
problem. In his inner problem, the cavity is modeled by a semi-ellipse on a
plane surface and the dynamic boundary condition at the cavity surface is
satisfied at the cavity surface in a least-squares sense. The advantage of this
method is that the three-dimensional outer flow problem remains fully non-
linear, and hence it can be used for extreme geometry like propellers. Also, the
dynamic motion of the cavity is simulated more or less correctly. Stern (1989)
compared his results with the experimental results of Shen & Peterson (1978).
But the predicted cavity lengths were significantly less than those observed in
both steady and unsteady flows.

The big leap to nonlinear cavity flow simulation on arbitrary lifting bodies
started as a boundary-integral method (a boundary-element method or panel
method) was used. Pioneering work was done by Uhlman (1987) who solved
the partial cavity flow on two-dimensional hydrofoils with a cavity termination
wall model. In his method, the cavity surface is iterated until both kinematic
and dynamic boundary conditions at the cavity surface are satisfied. A cavity
termination wall model is used at the end of the sheet cavity. Compared to
other linear and nonlincar method, his method correctly predicts the influence
of the foil thickness on cavity extent and volume. Similar work was also done
by Yamaguchi & Kato (1983), Kinnas & Fine (1991) and recently by Dang &
Kuiper (1998b).

Pellone & Rowe (1981) calculated the supercavitating flow on a three-
dimensional hydrofoil with free surface by a velocity-based method. Peallat
& Pellone (1996) extended the same velocity-based panel method to the three-
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dimensional partial cavity flow. Systematic research on non-linear simulation of
partial and super sheet cavity flow by using potential based panel methods for
three-dimensional hydrofoils and propeller blades has been performed at MIT
in the last decade (Fine & Kinnas (1993), Kinnas & Fine (1993), Kinnas & Fine
(1992), Kinnas et al. (1994), Kinnas (1998)). Similar work was also done at the
same time by Kim et al. (1994) and Kim & Lee (1996). Recently, reentrant jet
modeling of the partial cavity termination was simulated for three-dimensional
hydrofoils by Dang & Kuiper (1998a).

1.2.4 Viscous and other method

Another important development that is prevailing recently is the cavity simula-
tion method based on Euler or RANS, together with two-phase flow equations.
High quality solution with large mesh sizes is considered to be required for this
simulation especially close to the cavitating region. This claims large computer
resources both in memory and speed. Up to now, no method has ever really
succeeded to calculate cavitation on propeller blades. As classified by 22nd
ITTC (1999) special committee, this method can be grouped into four cate-
gories: 1) Interface tracking methods; 2) Two-phase flow methods; 3) Discrete
bubbles methods and 4) volume-of-fluid methods.

Deshpande et al. (1994) predicted cavity flow on two-dimensional cascades
and isolated hydrofoils by using an Euler solver based on artificial-compressibility
and a pseudo-time stepping technique. A cubic profile that merges smoothly
with the cavity interface and approaches the body surface tangentially 18 tised
at the cavity end. The length of this profile is empirically chosen to be three
times the cavity thickness at the end. Based on the same cavity model, Desh-
pande et al. (1993) used a Navier-Stokes solver to solve the same partial cavity
flows on 2-D foils. He concluded that the comparison with their Euler analysis
shows that the presence of viscous effects has little impact on the cavitating
region. Chen & Heister (1994) also solved the Navier-Stokes equations but
without taking into account the turbulent fluctuations. An empirical cavity
end model is also enforced by assuming a circular connection with the body
surface when the cavity thickness is reduced to half of its maximum value.
Dupont & Avellan (1991) successfully calculated the partial cavity flow at the
leading edge of a NACA 0009 profile by using a RANS code with a two-equation
k — € turbulence model. This method was extended lately to a propeller-liked
twisted hydrofoil (Hirschi et al. (1998)) and cavitation on a pump impeller
(Hirschi et al. (1997)).

Interface tracking methods have their own limitations in cavitation simu-
lation because it is usually hard to simulate vortex and cloud cavitation due
to difficulties to track interfaces of this kind of cavities and to generate three-
dimensional meshes for them. Two-phase flow methods seem more promising.
At present, this is still in its infancy and only used for sheet cavitation on
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simple geometries. Kubota et al. (1989) used a variable density Navier-Stokes
solver coupled with a microscopic model for the bubbles to predict the unsteady
formation of cloud cavitation on a hydrofoil. This model treats the cavity as
a local homogeneous cluster of spherical bubbles. The local void fraction is
calculated by the local bubble sizes at each point. However, the local void
fraction can exceed unity in some situations. Merkle (1998) proposed a mixed
model that simulates both vapor and liquid simultaneously. In his method,
mass can exchange on the cavity surface from one phase to the other by means
of a rate-limited process. The author claims that this method is more robust
than single-phase model.

Another approach to cavitation simulation is to treat the cavitation flow
as a single-phase flow by assuming a pseudo-density equation of state while
using a compressible Euler or RANS code. People working in this field include
Delannoy & Kueny (1990), Hoeijmakers et al. (1998), Merkle (1998), Song
& He (1998), etc. The single-phase flow model has the potential to solve
more complicated cavity flow problems like tip vortex and cloud cavitation.
These models have the advantage that an explicit model is not needed for the
downstream closure of the cavity. However, a pseudo-density has to be used.
In the result, the fluid flows across the interface into the cavity, and becomes
supersonic when the density drops quickly. This contradicts the experiments,
since nobody has ever observed supersonic flow inside a cavity. A good review
of these methods can be found in 227¢ ITTC (1999) report of the Specialist
Committee on Computational Methods for Propeller Cavitation.

1.3 Objectives and outline of the thesis

Cavitation on ship propeller blades is a major source of noise and vibrations.
In order to prevent excessive noise and vibrations, either cavitation has to be
eliminated entirely or its behavior has to be controlled. Since for reasons of
efficiency the propeller always operates in the wake of the ship hull, which is
highly non-uniform, cavitation can generally not be avoided. The increasing
speed and power installed in ships nowadays make the problems worse. It is
therefore important to control the dynamic behavior of cavitation.

Cavitation simulation methods based on Euler and RANS equations are
advancing very quickly in recent years but are still in a maturing stage. Most of
these methods are still limited to two-dimensional foil flows. The mathematical
and numerical details employed in those methods are rather diverse. It means
that the explorations are still under way. Stability, robustness, convergence
and computational speed are major issues that must be clarified. Using these
methods to predict propeller cavitation is still restricted to steady flow, where
the propeller is considered to operate in a circumferentially averaged wake.

Boundary Element Methods (BEM) (panel methods) have become practical
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tools for both the analysis and design of marine propellers, hydrofoils, pumps
and ship appendages. Remarkable progress in numerical algorithms has been
achieved in terms of accuracy and efficiency. In the last decade, BEM methods
have been successfully extended to sheet cavity flow on propellers. Extension
to viscosity dominated flow like tip and hub vortex cavitation will remain dif-
ficult however. Applications show that the BEM is a stable and efficient tool
for sheet cavity flow prediction on propellers. But further improvement to the
detachment and closure of the cavity has to be made, since they have a strong
influence on the topology and, in turn, on the stability of the sheet cavity. On
the other hand, the linearized method has failed to predict the cavity dynam-
ics in non-uniform ship wakes, which is thought to be important for higher
harmonic components of the exciting forces. A fully non-linear simulation,
especially at the cavity end, is hence in high demand.

The present thesis presents a general non-linear theory for unsteady partial
sheet cavity flows, under the assumption of incompressible and inviscid flow.
A potential based panel method is used to solve the spatial problem of the
Laplace equation at each time step. The alternative Eulerian method is used
for the evolution of the cavity surface. Bernoulli integration of Euler equation
is used to update the potential at the cavity surface. At the end of the cavity,
a reentrant jet cavity model is used. With this kind of fully nonlinear method,
a better prediction of the cavity volume, which in turn results in“a better
prediction of pressure fluctuation and noise, can be expected. Emphases are

_glven on the simulation of the re-entrant jet, the explanation of the $opology of

the cavity, the stability of sheet cavities and the dynamics of cavity in a gust.

In Chapter 2, the cavity flow problem considered in the present research
is described first. The equations that describe the fully non-linear problem
are then derived according to the fundamental conservation laws. Boundary
and initial conditions for solving this problem are discussed. Equations for the
evolution of the cavity surface and updating of the Dirichlet boundary condition
on the cavity surface are formulated. A solving strategy is discussed.

A higher-order panel method, based on an analytical calculation of the in-
fluence coefficients, is formulated in Chapter 3 for solving the spatial problem
governed by Laplace equation in each time step. The way to describe the geom-
etry and solution by using polynomial expansions is given. The influence of the
reference panel and its shape on the convergence of the method is discussed.

Chapter 4 describes the time-stepping technique for the present unsteady
flow calculation. Both Lagrangian and Eulerian methods are discussed and
addressed by test cases. An alternative Eulerian method is chosen for the
present method. The evolution and the motion of the cavity surface mesh are
discussed.

Besides the major numerical methods discussed in Chapter 3 and 4, other
numerical techniques are given and verified in Chapter 5. The numerical treat-
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ment of the system of equations is discussed first with application of different
Kutta conditions and the cavity detachment condition. The implicit and ex-
plicit Kutta conditions, the cavity detachment condition, the planform search
method, the evolution of the cavity surface, the propeller wake shape and the
treatment of the time derivatives of the potential and their effect on the cavity
flows are all discussed in detail in this chapter.

Numerical results for two-dimensional and three-dimensional hydrofoils and
propellers are presented in Chapter 6 for steady flow conditions. Compar-
isons are presented for results of two-dimensional cavity flows and results of
the present method and other linear and non-linear methods. For sectional
and simple hydrofoil cavity flows, validation is carried out by using available
experimental results. The re-entrant jet thickness and its direction in three-
dimensional flow are successfully predicted. The calculated results of the cavity
extent on the S Propeller at two different conditions agree well with the exper-
iments.

Unsteady flow calculation of both 2-D and 3-D hydrofoil and propeller cavity
flows are presented in Charpter 7. 2-D flow calculations are carried out by
using a 3-D hydrofoil with very large aspect ratio. The variation of the cavity
thickness in a cycle of a vertical gust is found to be out of phase for different
positions along the chord. Three-dimensional flow calculation of a hydrofoil
with an aspect ratio of 2 shows the phase different of the cavity length variation
between the cavity at the tip and the cavity at the mid-span can be as large
as 90°. The main dynamics movement of the sheet cavity flow on the blade of
a S Propeller in a sharp wake is captured by the present simulation.

A benchmark test is now being carried out in the cavitation tunnel of Tech-
nical University Delft on a twisted transparent hydrofoil. A stationary sheet
cavity is generated on this hydrofoil and the cavity thickness is expected to be
measured. The re-entrant jet can be observed due to the transparency of the
foil. Some preliminary results have been obtained and compared with results
of the present calculations in Chapter 8. Good agreement is found.

A discussion on the present method and a future perspective on cavity flow
calculations is given in Chapter 9.
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Chapter 2

Mathematical Formulation

A general description of our present problem is given at the be-
ginning of this chapter. The mathematical formulation of the fully
non-linear unsteady partial cavity flow on multiple bodies, which
are moving together, are derived from the fundamental conservation
laws of fluid dynamics. Governing equations, initial conditions and
boundary conditions are listed. The strategies for solving this fully
non-linear problem are discussed at the end of this chapter.

2.1 Description of the problem

Let us consider a general case that one or more bodies are moving in the same
manner in the fluid. Examples are a propeller with propeller blades and hub
(see Figure 1.1), and a hydrofoil system that consists of the hydrofoils, the
hub and the strut (see Figure 2.1). Those moving bodies can be either lifting
bodies (like the propeller blades and the hydrofoils) or non-lifting bodies (like
the hub and the strut). For lifting bodies, relatively thin wakes that contain
concentrated vorticity are attached to their trailing edges.

When the ambient pressure is low enough, cavitation will occur on some
part of these bodies’ surfaces. Cavitation can occur on lifting bodies such as
the propeller blades and the hydrofoils, as well as on a non-lifting body like
the strut surface (Figure 2.1). Since bubble and cloud cavitation involve very
complicated physical phenomena, they are still not easy to simulate. Here we
deal only with flows with partial sheet cavities.

We define two Cartesian coordinate systems. One is the space-fixed inertial
system O — XY Z and the other is the body-fixed moving coordinate system
0 — zyz, which is a non-inertial system as shown in Figure 2.1. The position
vectors in these two systems are denoted as X = (X, Y, Z)T and x = (2,9, 2)7,

15
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b ship hull
0 X strut

Figure 2.1: Schematics of the general problem by a hydrofoil system. =

respectively. The body-fixed system is moving together with the bodies at a
translational velocity of Vo and it is rotating, at the same time, around its
origin at a rotational speed of £2p. The translational and rotational movement
of this system is considered to be constant in the present problem, without
accelerations.

When these bodies are moving in the fluid, they encounter a space-fixed
existing low — Vy in the fluid domain {2, which extends to infinity. This
space-fixed flow field can be thought of as the wake generated by a ship hull or
a gust such as the underwater current.

As discussed in the previous chapter, the re-entrant jet at the end of a
sheet cavity can flow into the cavity and impinge on the cavity surface near
the leading edge. This complicated phenomenon of impinging is still hard to
tackle by numerical simulations and hence will not be considered here.

In the present method, we cut the re-entrant jet off at a certain place
in the cavity and introduce a special boundary along this cutting-off. We
call this artificial boundary ’the re-entrant jet cross-section surface’, denoted
by Sy in Figure 2.1(see also Figure 6.1 for details). So, S; consists of the
vertical connection between the foil surface and the cavity. Then the entire
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flow field is bounded by the boundary 8 of the domain €, which consists of
the boundary of the body surfaces Sg, the boundary of the cavity surfaces Sc
and the boundary of the re-entrant jet cross section surfaces S;.

2.2 Mathematical model

In the space-fixed Cartesian coordinate system O — XY Z, we denote the abso-
lute velocity as V = (U, V, W)”. By assuming that the fluid is incompressible,
the conservation law of mass requires the following continuity equation to be
satisfied,

V.V =0 (2.1)

If the unit volume forces acting on the fluid particles are F and they have
a potential ®, then this force can be written as the gradient of this potential

as F = —V®. The conservation law of momentum is expressed by the Navier-
Stokes equation, which can be written in the following vector form,

DV p ;

— =-V(®+=)+vV*V 2.2

where % denotes the material derivative with respect to the time ¢; p is the
static pressure; p is the fluid mass density and v is the kinematic viscosity of
the fluid. At high Reynolds numbers, the viscous effects are confined within the
thin boundary layers on the body surfaces, as well as on the cavity surfaces, or
within the thin wake sheet Sy as shown in Figure 2.1. The fluid in the region
outside these thin layers can be treated as inviscid fluid. For a homogeneous
inviscid fluid, the Navier-Stokes equation is simplified into the following Euler
equation,

DV p
57 =-V(@+ ;). (2.3)

In most engineering problems, the volume force consists of only the gravity
force. Considering that the gravity is in the negative direction along the Y
coordinate of the space-fixed system, the volume force potential is then written
into the following form,

b = gY, (2.4)

where g is the gravity acceleration.
Assume that the flow is irrotational at some initial time ¢t = tg, so that,

V x V(X;to) = 0. (2.5)
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By taking the curl of the Euler equation, we obtain the following relation for
the vorticity in the fluid at any time ¢,

%(V X V) =(V x V)-VV, (2.6)
This equation infers that, if no vorticity is transferred into the fluid domain,
the initial irrotational flow will remain irrotational in the subsequent time.

Since the flow can be irrotational at any time for our present unsteady
problem, if we have assumed it to be irrotational at one time in history, a time
dependent velocity potential ¢(X;t) can be introduced to describe the flow
velocity at any time, and,

V=-V¢ 2.7)

Substituting equation (2.7) into the continuity equation (2.1), we obtain
the Laplace equation for this potential,

Vi =0. (2.8)

This is the governing equation of our present problem.

The solution of the Laplace equation, subject to certain boundary conditions
(Dirichlet or Neumann type), yields the potential in the entire flow field. By
using equation (2.7), the velocity distribution V throughout the entire fluid field
is then obtained. The interesting observations are that the Laplace equation is
a purely kinematic equation (it can be solved in either inertial or non-inertial
frame of reference) and it does not include the time derivatives. The time
dependency is introduced through its time-dependent boundary conditions.

The dynamics of the fluid flow is governed by Euler equation (2.3), which
can be integrated over space, under the assumption of velocity potential as,

o 1

0 T alVel +o¥ + 7 =B() (29)
where B(t) is an arbitrary function of time, which has the same value for any
point in the fluid field at a certain time. This function can be omitted without
affecting the velocity field, or determined by choosing a reference point in the
fluid at which the pressure and velocity potential are known. Equation (2.9) is
called Bernoulli equation.

It should be noted that this Bernoulli equation is only valid in the inertial
system, since it is the integration of the Euler equation (2.3) in this inertial
system. The Bernoulli equation in the non-inertial coordinate system will be
discussed in the following section.

We consider now the velocity generated by the moving bodies as a dis-
turbance to an existing velocity field of Vy that is considered to be also a
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potential flow. And further, we suppose this velocity field Vi to be steady in
space, i.e., its potential is not a function of time. If we denote the disturbance
velocity by v(X,t), the potential can be divided, according to the following
formula, into two parts,

(X;t) = dow (X) + @(X; ¢), (2.10)

where ¢w is the velocity potential in the fluid domain for the existing velocity
field with Vi = —Vow, and ¢ is the disturbance velocity potential with
v = —~Vg. We note here again that ¢y is only a function of X.

By choosing a point as the reference in the far field at which the disturbance
velocity v = 0, and denoting the static pressure at Y = 0 as po, (for instance,
the pressure upstream of the propeller shaft), we obtain the following equation
that links the pressure at any field point to this reference point.

8¢ 1

-+

. 1 > Doo
SIVePR +gY + B = S(vy)2 4 B2 (2.11)
ot 2 p 2 p

Here we used that the partial time derivative of the existing flow field

Odw

—— =0 2.1

| = (212)
Substituting equation (2.10) into equation (2.8) and (2.11), we get the fol-

lowing Laplace equation and Bernoulli equation for the disturbance velocity

potential ¢ as,

Vip =0, (2.13)
and,
200 |Ve-VwP-|Vw[* 2 Y
== —=- 14
VZor T vz tEitL T (2.14)

where L, is the reference length, which could be the propeller diameter or
the hydrofoil chord length; F,. and C, are the Froude number and the pressure
coefficient, respectively defined by the following formulas as,

Voo
F, = , 2.15
i~ (2.15)
and,
- P~ P
C, = (2.16)
Tz
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The elliptic problem of equation (2.13) can be solved if continuous boundary
conditions (Dirichlet, Neumann or mixed type) are given on all boundaries of
the flow domain. If the domain boundary 9 is piecewise smooth, a solution
exists for this problem. Since a constant does not contribute to the space
derivatives of the potential, a unique solution for the velocity field can be
obtained by equation (2.7) and (2.10).

Equation (2.14) gives an expression for the pressure in the flow domain in
terms of the derivatives of the disturbance potential, with respect to both space
and time. Then the pressure distribution throughout the entire fluid domain
can be calculated accordingly.

Since the potential ¢u (X) is not time dependent in the space-fixed coordi-
nates, it disappears from the term of the partial time derivative of the Bernoulli
equation (2.14). This equation is easy to deal with in the sense that it is in
the inertial frame of reference and it relates the pressure only to the distur-
bance potential. And also, the velocity potential ¢w is not explicitly seen in
this equation, and hence it is not needed to be explicitly prescribed. But in
some cases, equations in non-inertial frame of reference are even simpler and
easier to be handled. The dynamic equations and its integration in the moving
coordinates will be discussed in the following section.

2.3 Dynamic equations in moving coordinates
In many engineering applications, it is easier to ‘treat the flow problem in a
body-fixed coordinate system than in a space-fixed coordinate system, because
the geometry of the bodies is always given in the body-fixed coordinates. For
instance, the geometry of a propeller is described by pitch, chord length, skew,
rake, etc. of the blades in a propeller-fixed coordinate system. Furthermore,
it is easier to evaluate the space derivatives of the potential in this body-fixed
coordinates.

For a propeller problem e.g., due to the rotation of the propeller around its
shaft, this frame of reference is non-inertial. The continuity equation, which
is reduced to the Laplace equation under the assumption of the existance of a
velocity potential, is still valid in this non-inertial coordinate system, but the
dynamic equation must be re-written. According to the theory of dynamics,
the momentum equation (Euler equation) can be written as,

av B P
Tt V=V (2.17)

d
where Er denotes the material derivative with respect to the moving coordinate
system of o — zyz.
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Integrating the above equation over space, the Bernoulli equation is ob-
tained (Lamb (1945)) as,

0 1 .

—£+§|V0+V¢I2+g)’+§—Qo‘(V(j)xx):B(t). (2.18)

We can carry out the same potential flow linear decomposition (similar to
equation (2.10)) as in the following,

B(x;t) = dw(x;t) + o(x;1). (2.19)

But the difference between equation (2.10) and (2.19) is that the potential ¢
in equation (2.19) becomes time dependent in the moving coordinates.

Substituting equation (2.19) in equation (2.8), we obtain the Laplace equa-
tion as,

Vip =0, (2.20)

which keeps the same form as equation (2.13).

Now we choose the same reference point as we discussed in the last section
and make the Bernoulli constant B(t) equal for the point of reference and
the point in concern. We obtain the following simple form for the pressure
coefficient in the moving coordinates,

._2__62 + IV"P . |V0+Qo )(x-—-\fwl2 N __2_Y(X;t) B

r

—Cp,  (220)

where we have defined a relative velocity V, with respect to the moving coor-
dinates o — zyz as,

V,=-Vé— Vo= x x

=V, — Vo, (2.22)

where V. = Vi ~ Vg — g x x is the relative inflow and the second and
the fifth terms in equation (2.18) on the left hand side are combined into the
second term in equation (2.21).

It is interesting that the time partial derivative of the existing potential
¢w in the moving coordinates appears on both side of the equation, and hence
cancels. Finally it does not appear explicitly in the above equation. When
we evaluate the pressure on the body or the cavity surfaces, we need only to
evaluate the partial time derivative of the disturbance potential .

For the case when a propeller operates in an oncoming uniform flow field,
without inclination of the shaft, and when the advance velocity Vg is also
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along the shaft, the relative flow field in the propeller-fixed coordinates can be
considered as steady flow. If gravity is neglected, the above Bernoulli equation
is then reduced to the following form,

Vo2 [Vo+ Qo xx—Vw|® _
V2 V2 B

o]

—Cp, (2.23)

This is the equation that we usually employ to calculate the pressure dis-
tribution on the propeller blades for open water operation.

2.4 Boundary conditions

In the present non-linear problem, three different boundaries can be distin-
guished. The most obvious ones are the body surfaces Sp and the cavity
surfaces Sc. The re-entrant jet cross section surface Sy is also one of the
boundaries. Depending on the type of the problem, the influence of a tunnel
wall and its inlet and outlet surfaces can be also included (see Chapter 8).
Boundary conditions for these different boundaries can be different and will be
discussed in the following sub-sections. '

2.4.1 Body surface

The condition that is always used in potential flow theory on the body surface
and the tunnel wall is that of impermeability. On a space-fixed surface, like a
tunnel wall, the normal component of the total velocity should be zero,

-2—22%5— W-n=~V-n=0, on SB, (2.24)
where n denotes the unit normal vector on the body surface, pointing from the
boundary surface into the fluid.

On moving bodies such as the wetted part of the propeller blades, the
hydrofoil, the hub and the strut, the normal velocity of the fluid coincides with
the velocity of the body motion in that direction,

%‘5=vw.n_(vo+ﬂoxx)-n=v,0-n. (2.25)

These are the time-dependent momentary boundary conditions, or called Neu-
mann boundary conditions, which are valid both for inertial and non-inertial
systems.
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2.4.2 Cavity surface

The pressure inside of a sheet cavity has been measured by some experimen-
talists in their previous research (e.g. Shen & Peterson (1978)). It has been
shown that the pressure is nearly constant for both steady and unsteady cavity
flows, and it is close to the vapor pressure of the water. Pressure fluctuation
is only found at the closure region of the cavity, where the cavity is no longer
a smooth sheet and cavity clouds are formed. In our present simulation, we
assume that the pressure inside the cavity is constant and equals the vapor
pressure p,. Then we can write the dynamic boundary condition on the cavity
surface as,

P =Py, O1 Sec. (226)

Substituting this equation in both equation (2.14) and (2.21), we obtain the
dynamic boundary conditions in the space-fixed coordinates as,

20 |Ve-Vw|’-|Vw] 2 Y _
Vg at + VI + Fle o, (2.27)

and in the body-fixed coordinates as,

2 3¢ |Ve* |Vo+Qoxx-Vw|[* 2 V(xt)

vZor T V2 V2 F? Lo

r

=0, (2.28)

respectively. Here the cavitation number is defined by equation (1.1).

Since the position of the cavity surface is not known a priori and it is also a
part of the solution itself, more than one boundary condition is needed. Besides
the dynamic boundary condition on the cavity surface that we derived in the
last paragraph, a kinematic boundary condition can be also enforced, which
defines the evolution of the cavity surface with time.

There are two different ways to describe the kinematic boundary condition:
the Lagrangian method and the Euler method. The observation of the particles
on the cavity surface shows that the fluid particles on the cavity surface always
remain on the cavity surface. To describe the cavity surface by tracing the
fluid particles on the surface leads us to the following Lagrangian kinematic
boundary equations,

DX¢
Dt
where X denotes the position vector of the cavity surface in the space-fixed co-

ordinates. Its counterpart equation, formulated in the body-fixed coordinates,
reads,

=V=-V¢=Vy —Vy, on S¢, (2.29)

dXC
dt

= (VW — Vo — £ x x) - V(p, (2.30)
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where x¢ denotes the position vector of the cavity surface in the frame of
reference o — zyz.
If we have a cavity surface which is defined by the equation,

Sc(X,Y,Z;t) =0, (2.31)
in the O — XY Z coordinate system, or defined by,
Sc(z,y,2t) =0, (2.32)

in the o — zyz system, then at any time, the velocity of the particles perpen-
dicular to these surface must be equal to the normal velocity of the surface,

DSc(X,Y,Z;t) R
= —0, (2.33)
or,
dSC(x)y)z;t) _
5D o, (2.34)

These are the Eulerian descriptions of the kinematic boundary condition.

2.4.3 Re-entrant jet surface

Because the re-entrant jet cross section surface is the cut-off of the real re-
entrant jet in the preésent method, it is then an artificial surface. There is no
special kinematic boundary condition on this surface that is physically required.
The only requirement on this surface is the dynamic boundary condition. If the
viscous effects in the re-entrant jet is neglected, the dynamic condition states
that the pressure in the jet should also be the same as the pressure on the
cavity surface as well as in the cavity, and hence the vapor pressure,

p=p, on Sj. (2.35)

In Chapter 6, we will see that this dynamic boundary condition can be
reduced into a simple kinematic boundary condition in the steady flow situa-
tion for both two-dimensional and three-dimensional flow problems. In two-
dimensional steady flow, it can even be reduced to a Neumann boundary con-
dition that states that the velocity normal to the jet surface is a constant and
its value must be the same as the velocity on the cavity surface but pointing
into the boundary, through which the fluid flows outside of the fluid domain.
Further numerical experiments will show that this artificial boundary has very
limited impact on the solution of the cavity flow (including the shape of the
cavity). Here, we did not take into account the impinging of the re-entrant jet
on the cavity surface.
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However, in three-dimensional with a steady cavity flow, the velocity of
fluid going through the cut-off of the jet is not necessarily equal to the cavity
velocity because of the strong secondary cross-flow. In the most extreme case,
the velocity on the jet cross section can be tangential to its surface. If this
happens, the artificial surface will be a natural interface between the fluid and
the vapor, and no re-entrant jet can be expected to flow upstream and impinge
on the cavity surface close to the detachment point. So, a general kinematic
condition can not be derived.

2.4.4 Other conditions

Besides the boundary conditions we have discussed in the previous sub-sections
for the cavity surface, the body surface and the re-entrant jet surface, we have
other important conditions that must be enforced to ensure the problem to be
well-posed and the solution unique. These conditions include the detachment
condition, the reattachment condition, the kinematic and dynamic conditions
for the wake, etc.

Detachment condition

In the potential flow theory for cavity flows, a so-called smooth separation
condition is normally used. It is also called Brillouin-Villat condition. This
condition states that the curvature of the free streamlines is finite at the sep-
aration point, and for smooth bodies, this curvature should be equal to the
curvature of the body at the detachment point.

Instead of using this condition, an alternative weaker condition, which states
that the cavity surface should be tangential to the body surface, can be used.
It is written as,

Degyity = Dpody atb T4, (236)

where, I'y denotes the detachment line. Practical treatment of the detachment
condition and its influence on the solution will be discussed in detail in Chapter

5.

Reattachment condition

At the re-attachment point of the cavity, if the free streamline is going to
touch the body surface at a non-zero angle, a stagnation point forms. Then a
contradiction occurs. On the one hand, the pressure at this point should be
the same as the pressure on the cavity surface. Or, in other words, the pressure
at this point remains as low as p, according to Bernoulli's equation. But on
the other hand, the pressure should be as high as the pressure at a stagnation
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point. This contradiction requires that the streamlines on the cavity must be
tangent to the body surface (but the cavity surface itself doesn’t have to be).

In three-dimensional flow, the flow can turn into the cross direction and
hence the cavity surface can re-attach with the body surface at any angle. In
unsteady cavity flows, the reattachment point is moving, and the speed of the
movement can be so high that the cavity surface may reattach to the body
surface with any angle but still keep the same pressure as that in the cavity.

But in two-dimensional steady flow, tangential re-attachment is the only
possible re-attachment. There are two ways the cavity can reattach to the
surface in this case, as shown in Figure 2.2.

— ——

a b

Figure 2.2: Schematics of the possible topology for reattachment for 2-
dimensional steady cavity flow. a) tangential with body surface but travels
upstream; b) tangential with body surface but travels downstream.

It has been stated by Ronald (1989) and proven by De Koning Gans.(1994)
that the cavity surface must be concave toward the body surface (the guide
surface). The illustration of Figure 2.2(b) has a convex shaped cavity close
to the reattachment point, and hence it does not occur in reality. Figure
2.2(a), where the flow enters the cavity as a re-entrant jet, is the only possible
reattachment. So, we state that the re-entrant jet is always needed for a 2-
dimensional steady cavity flow.

Wake and Kutta condition

In potential flow theory, the vortex shear layer behind a lifting body is thought
to be confined within a sheet without thickness, which we call the wake sheet.
The flow is separated by the sheet and the fluid velocity on its two sides can
be different. But this sheet can never be split into two sheets and it carries no
force. This leads to the following kinematic and dynamic conditions,

9¢ _ 09

v [
ony,  Onjy,

(2.37)

and,

P =P, (2.38)
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for the sheet, respectively. Here, ny denotes the unit normal vector on the wake
surface; py the pressure on the wake; and the superscript u and ! represent
the upper and lower sides of the wake sheet, respectively.

Equation (2.37) tells us that the wake sheet will stay stationary in space
if the flow is steady, and the wake sheet will move but not split if the flow is
unsteady.

Notice that equation (2.38) is not only applicable to the wake but also to its
edges, including the trailing edge of the lifting bodies, where the wake surface
starts. When this condition is applied at the trailing edge, we call it the Kutta
condition,

P =Pre. (2.39)

The implementation of the conditions and the influence of the wake shape
and Kutta condition on the cavity prediction will be discussed more in detail
in Chapter 5.

Vorticity conservation

Choosing an arbitrary closed curve C(¢) in the flow field, which is moving with
the flow, we can calculate the circulation I' of the flow associated with this
curve, which is equal to the flux of vorticity through the surface of which C(t)
is the boundary contour. Notice that the curve itself can change shape with
time in the flow.

r= V-dl, (2.40)
Gw)

where, df is the element of the closed curve C(¢).

By taking the derivative of the above equation with respect to time ¢, we
obtain,

Dr DV
- = — .df+ V-[(d¢- V)V (2.41
Dt = Jpyy Dt - [(de-V)V] )

where the first term measures the rate of change of the velocity and the second
measures the rate of change of the element df of the curve C(t).
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Substituting equation (2.2) in the first term of equation (2.41), we have,

or _ u/ (V2V)-dZ+/ V»[(d£~V)V]—/ v(¢+£).dg
Dt o) cw) ct) p

dl-VEW—Q—Q]

= v / (V2V) -de +
c(t) P

= v / (V2V) - de.
C(t)

This equation tells us that the circulation around a closed curve, which is
moving with the fluid, can only change through viscous diffusion.

For high-Reynolds number flow, or potential flow as in the present problem,
the circulation around any closed curve is conserved,

Dr
Dt
This is Kelvin’s circulation theorem. The shedding of the vorticity at the

trailing edge of the lifting bodies must satisfy this theorem, whether 1t 1s 2-
Dimensional or 3-Dimensional, steady or unsteady flow. o

c(t)

(2.42)

=0. (2.43)

Quiescent condition at infinity
The spatial gradient of the disturbance potential ¢, as it is defined, should
vanish at infinity,

Vo -0 when x— . (2.44)

This is automatically garanteed by using Green’s Function for the solution of
Laplace’s equation. And more over, if the source singularity distribution on
the surfaces are limited, the disturbance potential itself is pre-assumed to be
zero at infinity even if there is no condition requiring for a fixed potential value
at a certain position in the flow field,

¢ —0 when x-— o0. (2.45)

For the dynamic quiescent condition at infinity, it requires that the pressure
induced by the disturbance potential should also vanish at infinity,

plp) >0 as x— oo, (2.46)

where p(y) is the component of the pressure caused by the disturbance velocity
field.
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2.5 Solving strategies

The equations that we have discussed in section 2.1 through 2.4 form the equa-
tion set which describes the present problem both in the flow field and the
boundaries. This set of equations forms a hyperbolic system which describes
the motion of the cavity surface in space with respect to time. It can be viewed
and hence treated in different ways. The most natural way to treat this problem
is to view it as an elliptic problem with time-dependent boundary conditions.
So, at a certain time, the problem can be solved as a spatial problem for given
boundary conditions. Subsequently the boundary condition is updated to a
new time level and the spatial problem can be solved again at this new time
level, and so forth. This is the so-called method of line approach.

In the spatial problem, the governing equation for the disturbance potential
 is the Laplace equation (2.13) or (2.20). It is a linear equation and looks very
simple and can be solved easily. But the solution of this equation can become
very complicated due to its time-dependent and fully non-linear boundary con-
ditions. The problem can become extremely hard to solve when the boundary
itself is part of the solution and moving with time, like the boundary of the
wave and cavity surfaces. The nonlinearity of the present problem certainly
originates from the boundary and its motion.

Some of these equations on the boundary are easy to be handled and imple-
mented in the calculation, like the boundary condition of equation (2.24) and
(2.25) on the wetted part of the bodies. But some of them are not that easy
to be treated, like the equations on the cavity surface, (2.27), (2.28).

The updating of the spatial boundary-value problem includes both the up-
dating of the boundary conditions and the boundary position. The updating
of the Neumann boundary condition on the wetted body surface with time is
trivial, since the boundary position does not have to be updated. The updating
of the Dirichlet boundary condition on the cavity surface needs some additional
equations. This will be discussed in the following sections.

2.5.1 Cavity surface updating

In order to show the general idea of the cavity surface updating, here we take
the Lagrangian method as an example. Detailed discussion about its numerical
stability and convergence will be given in Chapter 4.

As we trace the cavity surface by following the particles on the cavity surface
using the Lagrangian method (equation (2.29) and (2.30)), the updating of the
Dirichlet boundary condition on the cavity surface can be done in a similar
way.

We view the potential ¢ as a property of a particle. Then we have the
following material derivatives of the potential to describe its variation in space
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for both space-fixed and the body-fixed frame of referencec,

Dy 8<p

Dt~ ot +V-Vp, on S¢, (2.47)
and,

de _ 9

a 8t+v Ve, on Sc, (2.48)

respectively, where V and V, are the velocity of the particles in the recpective
frames of reference.

Taking the equation for the body-fixed coordinates as an example, the equa-
tions for the updating of the cavity surface consists of,

d:;tc (Vw — Vo — Qo X x) = Vo, (2.49)
and,
dcp 9p »
3= B +V,-Vyp, on Sg, ) (2.50)

where the partial time deriviative of the potentla.l is gwen by Bernoulh equa.tlon
(2.21), re-written here as,

dp _ V4|2 B [Vo+ Qo x x = Vw|? _Kéa_FY(X;t)Yé
a2 2 2 F?2 Ly’

(2.51)

If we introduce a new variable vector q (solution vector) that consists of the
cavity surface position vector x¢ and the potential ¢ as q = (z¢,yc, 2¢, )T,
we can combine equation (2.49), (2.50) together into the following ordinary
differential equation,

D=t (252)

where the function f consists of the right-hand side of equation (2.49) and
(2.50), which are known from the spatial solution of the potential ¢ and from
the surface position.

Then the update of the cavity surface and its boundary condition is calcu-
lated by solving the ordinary differential equation (2.52) in time. The numerical
algorithm for solving this equation, and also for the alternative method like the
Neumann method, will be discussed in detail in Chapter 4.
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2.5.2 Spatial problem

Solving the spatial problem governed by Laplace’s equation can be achieved in
different ways. When we think about the numerical method for this problem,
we immediately find, that the finite-difference method, finite-volume method,
finite-element method and boundary-integral method are all available.

All of these methods are well developed in the last few decades. No one
is superior to the other in the sense of efficiency and accuracy of the solver.
Nowadays when people are using these methods to solve a practical problem,
much work has to be done for generating the grid of a specific complicated
geometry. Comparing to other methods, the boundary-integral method needs
only a surface grid rather than a volume grid and hence grid generation for this
method costs relatively less. For a complex geometry like a propeller blade, the
boundary-integral method has been successful both in efficiency and accuracy.
Hence, the boundary-integral method based on point collocation will be used
in the present research.

The boundary-integral method is not new and it has been used in different
fields. The basic theory is Green’s theorem. Using this theory, the spatial
solution of the potential ¢ can be written as the integral of its boundary values
in the following way,

) = dp(%;t) o . 0G(FX)] o
p(x;t) = /39 [WG(X,X) - cp(x,t)TLi— dSx (2.53)

where G(X;x) is the Green function and % € 99.
Details of the theory and its application to the present method will be
discussed in the next chapter.

2.5.3 Initial condition

Because our present problem is a hyperbolic problem, an initial condition
must be given. When we solve the problem with the method of line approach
that is based on solving Laplace’s equation, the solution depends on the time-
dependent boundary conditions. Then, an accurate solution of the cavity flow
at time ¢ = t; must be obtained.

The well-posedness of a hyperbolic problem requires that at time ¢t > 0 a
solution g(¢) exists, which is unique and continuously depends on the initial
condition and the boundary conditions.

Since the solution depends on the initial condition, in order to render our
present problem well-posed, a good initial condition should be given.

In our calculation, we start always from the steady flow state, and then
march in time to reach the final unsteady state. The fully non-linear steady
calculation of cavity flow will be treated first in the following chapters and their
results will be given in details and validated in Chapter 6.
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Chapter 3

Panel Method

The boundary integral equations for the potential theory of cavity
flows are given in this chapter. A potential based panel method with
higher-order geometry and singularity descriptions is discussed. The
lower-order panel method based on hyperboloidal panels is imple-
mented and used in the present research. The perspectives on using
the higher-order panel method in cavity flows are made.

3.1 Introduction

With the advent of the fast electronic computers in the 1950’s, boundary inte-
gral method (such as panel method) was introduced in various fields for solving
potential problems, such as aerodynamics, elastostatics, acoustics, etc. (Hess
(1990)). Since the application of the boundary element methods to marine
propellers with a velocity based method (Hess & Valarezo (1985)) and poten-
tial based method (Lee et al. (1994)), remarkable progress has been made for
prediction accuracy and computational efficiency. For fully wetted propeller
flow, panel methods can, at the present time, handle very complicated geome-
try like propeller hubs, highly-skewed blades (Kinnas & Hsin (1992)), propeller
ducts (Kerwin et al. (1987)) and rolling-up wake (Pyo (1995)). Panel methods
can also handle difficult flow conditions such as off-design operating condition.
Comparative calculations of propeller flow by panels method have been carried
out for steady operating condition by 19** ITTC Propulsion Committee and
for unsteady operating condition by 22"¢ ITTC Propulsion Committee. Re-
sults show that the panel method can not only predict the total forces (K,
K () accurately, but also predict the pressure distribution on the blade surface
reasonably well.

With respect to the velocity-based panel method, the potential-based panel

33
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method reduces the computational effort for the influence coeflicient calcula-
tions and the memory by two third at least. So, the potential based panel
method is now the mainstream of the panel methods used for propeller perfor-
mance predictions. Another advantage of the potential based panel method is
that it is easier to be extended to the sheet cavitation prediction of propellers,
because the dynamic boundary condition is easier enforced on the cavity sur-
face by prescribing the potential than by prescribing the velocity. Most of
these potential based panel methods are using hyperboloidal quadrilateral pan-
els with constant source and constant normal-dipole distributions, as proposed
by Morino & Kuo (1974). The analytical formulas for the influence coefficient,
derived by Morino, are exact for the dipole, but approximate for the source
distribution.

The advantage of the constant singularity panel method is its simplicity
and the relative ease of its implementation. The main drawbacks are the grid
dependence of the solution and the large number of panels that are usually
needed for complex geometry and hydrodynamics, such as the flow around the
cavity end.

The use of a large number of panels leads to an increased computation
costs for solving the system equations. The leading edge of a lifting body, such
as a hydrofoil, and the cavity end where the re-entrant jet turns direction by
180° are two examples where both high local geometry curvature and steep
change of the surface velocity and pressure occur. For unsteady fully wetted
flow, influence coefficients normally don’t need to be re-evaluated for-each time
step, but for fully non-linear cavity flows, the influence coefficients must be
re-evaluated. Calculation efficiency has to be taken into account in our present
simulation.

As the effort to achieve equivalent accuracy and grid independent solution
for a smaller number of panels, the higher-order panel methods have been
proposed. Hess (1979) found that the high-order method is superior to the
constant panel method for the interior flow with an example of the flow through
a duct of varying cross-section. Johnson & Rubbert (1975) concluded that the
higher-order method is insensitive to the panel distributions by a case of random
discretization of the surface.

In the analytical calculation of the influence coefficients for the higher-order
panel method, two different methods are used. One carries out the integration
based on a physical reference plane which is the projection of the original curved
surface on its surface tangential plane through the collocation point (Romate
(1989)). The other method calculates the coefficients based on a body-fitted
curvilinear coordinates (see De Koning Gans (1994), Maniar (1995)).

In the present investigation for the prediction of sheet cavity flows, both the
lower-order panel method, based on hyperboloidal panels with constant singu-
larity distribution, and the higher-order panel method, based on the body-fitted
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curvilinear coordinates, are implemented. The details about the description of
the geometry and the solution, and the calculation of the influence coeflicients
for the higher-order panel method are discussed in the following sections. A
comprehensive review on panel method in general can be found in Romate
(1989).

3.2 Green’s identity

Before describing the details of the panel method, the boundary integral equa-
tions for the potential theory are discussed briefly first, assuming that the
reader is familiar with most of the concepts. The elements of potential theory
and the boundary integral methods can be found in many textbooks on fluid
dynamics. Rigorous mathematical treatments of the potential theory are also
available in the publications like Courant & Hilbert (1962). Since there are so
many different ways to use these integral equations, the choice of the integral
equations for our present cavity flow problem is the main discussion in the
section.

Our present concern is the solution of the Laplace equation of (2.13) or
(2.20),

Vip(x;) =0 x in (, (3.1)

subject to the boundary conditions, either in Dirichlet or in Neumann format,
By, g;%,fc) =0 % on 09, (3.2)

where,  is the fluid field of our concern which is assumed to be singly-
connected, and 8Q is the boundary. It is assumed that the potential ¢ and
its spatial derivatives arc finite and continuous at all points, except for some
possible points on the boundary, where a non-smooth junction of two smooth
surfaces may occur. So, the solution depends highly on the boundary shape
and the boundary conditions. When the potential or its derivatives are given
on all of the boundaries, there is a unique solution in the fluid field and the
solution can be expressed as an integral over the boundaries.

If we apply Green’s theorem to this fluid field and assume that one of the
field is (x;t) of our solution and the other is the Green’s function of,

1
G(x;x) = ——  for 3D space, (3.3)
47r
and,

G(x;x) = % In(r)  for 2D space, (3.4)
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where £ is the position vector of a point on the boundary, x is a point in the
field and r = |r| = |x — X].

When the point x is in the fluid field, the Green’s function becomes singular
at this point. By excluding this singularity with the small spherical neighbor-
hood of this point x, the boundary integral can be calculated analytically. The
Green theorem becomes,

ﬂmﬂ=£ﬂﬁ§i0(xﬂ—w@,pﬁiﬂ]ﬁx (3.5)

Taking the spatial gradient of the above identity, we obtain the following
equation for the velocity field as,

0G(x;x)

Onx )] d5z, (3.6)

Vxp(x;t) = /

[W“”vcmw (% )Vl
aQ

on
where the gradient Vx denotes the operation with respect to the field point x.

When the field point is on the boundary 912, the above equations can be
derived in a similar way and become into the following form,

0x) dp(%;t) ., - se®n) -, L

—i——) o(x t)_j{m [a‘g(:;t)vxc(i;x)— o(%; t)vx(aG("x"))] dSs,
(3.8)

where, § is the finite part of the integral and 6(x) is the interior angle of the
boundary 912 at point x. For a smooth boundary at x, §(x) = 2.

If the boundary values of both the potential and its derivatives are known,
the potential and the velocity throughout the whole flow field can be calcu-
lated through equation (3.5) and (3.6). If only one of the potentials or the
potential derivatives are known, the other can be always obtained by using ei-
ther equation (3.7) or (3.8). The uniqueness of the solution has been discussed
intensively by Romate (1989). It is concluded that, for external flow problem
with mixed boundary conditions like our present cavity flow problem, the above
two equations always give unique solution.

If we apply equation (3.7) onto the body surface where the impermeable
boundary condition (2.25) (Neumann boundary condition) is enforced, then
we obtain the following Fredholm integral equation of the second kind for the
potential p(x;t),
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ng(x; ) l{m [(p(i;t)g%(%ﬁ] i, j{m [3%(:;t)g(i;x)] dSx,
(3.9)

where the right-hand side is known.

If we apply equation (3.7) on the cavity surface where the potential is pre-
scribed by the solution of equation (2.48) (Dirichlet boundary condition), then
we obtain the following Fredholm integral equation of the first kind for the
potential derivatives dp(x;t)/0ng,

f 25500t~ 2, 2]
(3.10)

where the right-hand side is known.

Fredholm equations of the first kind will generate a matrix which is ill-
conditioned because it has no large entries on the main diagonal. If all of the
equations are Fredholm equations of the first kind, it has been found that this
kind of system of equations may cause severe numerical instability. To improve
the condition, we can take an inner product of equation (3.8) with the surface
normal unit vector ny at x and move the potential integral term to the right
hand side, then we obtain a Fredholmn equation of the second kind for the
potential derivative as,

8*G(%x;x) dSe

0(x) dp(x;t) 7{90 [&p(i; t) BG(i;x)] dSg = _}f [W(i5t)m
(3.11)

4 Ong Onx Onx

It will be a perfect combination by using equation {3.9) on the body surface
and using equation (3.11) on the cavity surface, respectively, since both of
these two integral equations are Fredholm equations of the second kind. In
this situation, the system matrix will be diagonally dominant. An iterative
method, like the conjugate gradient method, can then be used, and solving the
equations can be more efficient and economic.

But on the other hand, using equation (3.11) results in more effort for the
evaluation of the influence coefficients, which have to be computed as vector
variables. The evaluation of these influence coefficients is much more expensive
(roughly about three times more expensive) than that of equation (3.9). For
our present three-dimensional fully non-linear simulation, we always have to
re-evaluate the influence coefficients when the cavity shape is changing in time
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(or within a time step when an iterative method is used). This makes the above
combination extremely expensive and hence practically prohibitive.

For lifting bodies, a Kutta condition, which results in the required circula-
tion around the bodies, is always needed and must be enforced at the trailing
edge. When an implicit Kutta condition (Morino condition) is used, the original
diagonal dominant matrix will be destroyed (more or less). But the applica-
tion of the panel method for a complex geometry like highly skewed propellers
did not show any numerical instability (Kerwin et al. (1987), Hoshino (1989)).
And furthermore, the continuity requirement of the potential at the cavity de-
tachment point (which will be discussed in section 4.5 and given in equation
e.g. (6.5) and (6.26)) will also affect this diagonal dominance. Successful ap-
plication of the Green’s Identity of equation (3.7) to both the body surface and
the free surface in wave calculation (Romate (1989)) and cavity calculation
(Kinnas & Fine (1993), Dang & Kuiper (1998a)) shows that partially using a
Fredholm equation of the first kind will not result in numerical instability. And
also, it forms a system of equations that is the cheapest for the evaluation of
the influence coefficients.

So, we chose the combination of equation (3.9) and (3.10) for our present
investigation.

3.3 Description of the geometry and solution

3.3.1 The geometry'

The hydrodynamic devices that are designed nowadays turn out te be. very
sophisticated and complicated in order to meet certain design requirements.
The surface geometry of these devices is far more complicated than can be
described analytically by simple mathematical formulas. A marine propeller
consists of, at least, a few blades and a hub. For one blade, the surface is
very smooth, but the blade width, the thickness, the pitch and the skew can
vary along the radius. To express the geometry using surface gridding is not in
our present scope. In the following sections, ways are discussed to re-construct
the surface locally with mathematical formulas based on the given position of
discrete grid points on the surface.

In general, it is difficult to find a global mathematical expression for a
complicated surface. For the usage of a panel method, a local mathematical
expression of the geometry suffices.

The surface is first discretized into smooth patches. All the patches are
assumed to be connected smoothly and re-construct the original geometry. We
call these patches ’panels’. Here we discuss only quadrilateral panels forming
a structured grid. Given panel index in two directions as ip and jp, then a
panel is uniquely identified by its index pair (ip, jp). We define a surface-fitted
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curvilinear coordinate system (corresponding to these indices) as s; and s,. For
the later use, the third coordinate is along the normal direction. It is denoted
as s3. Suppose the position of a point on the surface is described by its position
vector X(sy, 82), then the position vector can be written into a Taylor expansion
around the panel center (ip, jp) (normally at (s1,s2) = (0,0)) as,

N
Xip,jp(51,82) = Z aj s1' s’ (3.12)

where N is the order of the expansion, and subscripts ip, jp emphasize that
this expansion is only valid for panel ip, jp. Note that there is no restriction
on the choice of the body-fitted coordinates (say, no need to be orthogonal)
except that the above expression gives the correct geometry that connects with
all its neighbor panels with the degree of smoothness desired.

Once the coefficients a; ; are obtained, the geometry of the panel is defined.
For a certain order of expansion, the coeflicients are not unique, they depend
on the numerical scheme. Different schemes give different coefficients. A good
scheme should give the best approximation of the original geometry with fast
convergence of the expansion and should make a smooth connection between
panels.

Consider an arbitrary scalar one-dimensional function f;,(s;) on panel ip,
(here we take s; as the variable), the following Taylor expansion will be valid
both for s; and ss curvilinear coordinate on the body surface.

falo) =V =3 [T pen| el G
i—o 1. 081 51=0

i=0

where N denotes the order of the expansion. Because the coefficient a; depend
on the order, we use a superscript (N). Subscript ip means that this expansion

is only applicable for panel ip. The coefficients of this expansion (LEN) are given
in Appendix A. According to equation (A.6), these coeflicients depend on the
function values at the panel center and at the neighboring panel centers. It can

be written as,

Ni(N)

1 & .
e = 3 M fipririy (3.14)
0 k=1

(N) _

S1=

where, N}, is the number of supports of the spline, which depends on the order
of the expansion. Details of the expansion can be found in Appendix A. The
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increment ir(k) is the relative index of the supporters. So, we can write the
expansion as,

1 & N [Ne(V) N .
fip(s1) = Z [ 1 5o ,fw(sl)] 81t = Z Z O fipririy | 81°-
i=0 s1=0 i=0 \ k=1

(3.15)

Applying the above formula to the s, direction for a function g;p(s2) at
panel jp, we obtain the similar expansion,

1 & WA RO N .
gip(s2) = Z [ 188, ]gJP( 2)] 032] = Z Z Cz( )gjp+ir(l) 827,
j=0 2= =0 =1

(3.16)

where jr(l) is also the relative index but in jp direction.

For a two-dimensional function, like the geometry position vector, we need
construct the two-dimensional Taylor expansions. We can do this sequentially
in two directions. If we expand it in s, direction first, we have,

N N-i
— [ ]
o Xip,jp(81,82) = 3 O 8y 381%857
P S5
SR N N—-i 1 ai+] W Tor
= Z Z 15! 95,0857 tp,Jp(31’32) s1's9’ (3.17)
i=0 j=0 51 1=0,82=0
N . [N-
1 8 ‘1o .
= Z A Z zp,]p(31)32)|sg—032" st
: i1 051t \ 4 'Bs J
=0 ‘7: 81=0

Substituting equation (3.15) and (3.16) sequentially into the above expansion,
we obtain,

N N—i [Np(N)Ni(N—i)
N) ~(N—i )
Xip,jp(s1,82) = Z Z Z Z oMy ')Xip+ir(k),jp+jr(z) s1's9’
=0 j=0 k=1 =1
(3.18)
If we expand along s; first, then we obtain a similar expansion as,

N N—j [Ni(N) Nx(N—j)

N .
xip:j?(sh s2) = Z Z Z Z C( )C xzp+zr(k),]p+]r(l) 8182’
=1

3=0 i=0
(3.19)
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Since the expansion is symmetrical in s; and s, the position vector x(s1, s2)
can then be expanded into the following combined form,

Xip,jp(81,82) =
N N—i [No(N=j) N{(N—

5 31 (1 DD olRC L L) PR EY
i k=1

=0 j=0

Equation (3.20) tells us that the local geometry expansion depends on the
central point of the panel itself and the other central points of the neighboring
panels. These kind of local function molecules are discussed extensively by De
Koning Gans (1994) for the panels in the central part of the surface as well as
for the panels close to the edges.

It should be pointed out that, since the molecule passes through the central
points (collocation points) of the panel only, there is no guarantee from the
present method on the connection of panels along their edges. Practical usage
shows that the gaps between panels are reducing quickly as the expansion order
increases. Some examples will be shown in the following paragraphs.

If we combine the summations in the bracket of equation (3.20) into one
summation, and rearrange the relative index ir and jr. We can have a more
compact form as,

N N-—iNum.cf

Xip,jp(81, 52) ZZZ Z Cijk Xiptir(k).jptjr(k)51°82° (3.21)

=0 j=0 k=1

where Num._cf is the total number of the supports for this two-dimensional
molecule, and ¢r, jr are not the same as in equation (3.20).

3.3.2 The solution

The expansion of the solution is expressed in the same way as the expansion
of the geometry. The difference is that the central-point function values are
known when the geometry is given, but the central-point function values of the
solution are not known, i.e., they are part of the solution.

For a mixed problem where part of the surface is prescribed with potential
and the other part is prescribed with the potential derivatives, the expansion
should be done for both. As we discussed previously for the geometry expan-
sion, the solution expansion applies to a certain panel and hence it is a local
expansion, instead of a global prescription. So, the following expression should
be used for each panel, e.g. for panel indexed ip, jp,

Num_.cf N N—i

Tip, Jp z Z Z C i.j,k T iptir(k),jp+ir(k)S1 32 ’ (322)

k=1 i=0 j=0
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Num.ocf N N-i

Hip,jp(81,82) = Z Z Z Cffj,kﬂip+ir(k),jp+jr(k)81i82j, (3-23)

k=1 =0 j=0
where, for simplicity of notation, we call the potential on the surface the normal

dipole p and the potential normal derivative the source 0. We will use either

1 and o, or ¢ and g_go alternatively, but they are identical throughout the rest
n

of the thesis.
Upon solving the problem, the solution can be re-constructed by the fol-
lowing expansions on each panel as,

N N-i

Tip,ip(81,52) Z Z C{;81'se7, (3.24)

=0 j=0

N N-i

Mip,ip (81, 52) Z Z Sliszj, (3.25)

=0 j=0

where the coefficients are calculated by the following equations,

Num.cf )
Coi= Y. CPinOiptin(k)iptir(k)) (3.26)

k=1

Num_cf .
Cly= E Cj kBiprir(k), ip+ir(k)- (3:27)

k=1

3.4 Analytical calculation of influence coeflicient

The influence coefficient can be computed numerically or analytically. Since
analytical calculation has higher accuracy and efficiency, it is discussed in this
section in detail.

Basically, the coefficients can be calculated either in the physical space
(x,y,2) or in the computational space (s1,s2). When the coefficients are calcu-
lated in the physical space, a local coordinate system has to be established at
each panel center and the panel geometry is expressed in this coordinate sys-
tem. Normally a tangential reference plane is chosen, which passes through the
central point of the panel and it takes the shape of the projection of the panel
on the plane. When the curvature of the panel is not too large, the difference
between the curved panel and the reference flat panel is small. The detailed
formulation is given by Hess (1972) for the velocity and Romate (1988) for the
potential.
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Since the computational space is a rectangular space, the evaluation of the
integrals in this space is much simpler. After we expanded both the geometry
and the solution in the computational space, we can adopt the method based
on the surface (s1,s2) coordinates. The details about the evaluation of the
integral are given by De Koning Gans (1994) and Maniar (1995). For the
sake of completeness, the method of De Koning Gans (1994) is briefly repeated
below. Some discussions on this method are given in section 3.5.

From equation (3.9), we need to evaluate two integrals. When we use the
Green function of equation (3.3) for calculations in three dimensions, these two
integrals can be written as,

1 - - 1
In=1- [—e(%;t) ng-r(x,x)] mdsi
= =[] Fuor) nsor,0) xlor,s0) J) rsdsidsa, (329
= I o0 H\S81,82) Nx(S1,82) TS, 82 (51, 82) S$1A82, .
and,
1 dolk;t)] 1
7 4m Joa [ Ong ] r(fc,x)dsx.
= i// [—a(s1,82) J] —l—ds ds (3.29)
- 47!' 50 1,°2 T(Sl,SQ) 1 2 .

where nx is the surface normal unit vector and J is the Jacobian. They are
given in the following sub-sections.
The base vector on the surface and the Jacobian

The tangential base vectors on the surface along s; and sy directions are the
first derivatives of the position vector from equation (3.12),

ox , 0
er= 5o /I5o = x10/xi0l, (3.30)
and,
ox , 0
e = 5 /I5] = %0 /%01 (3.31)

and the unit normal vector is the cross product of this two vectors,

€3 = e X es. (332)
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The Jacobian is the norm of the normal vector. It can be written as,
J = |x1,0 X %01}, (3.33)
and the surface unit vector ng is then,
ni = e;. (3.34)

Once the geometry is expanded into equation (3.12), the expansion of the
base vectors and the Jacobian can be derived. Substitute all the polynomial
expansions of equation (3.22), (3.23), (3.33) and (3.34) into the brackets of
equation (3.28) and (3.29), re-arrange and re-organize by multiplication and
summation between polynomial expansions, we encounter the following basic
integral for both the normal dipole and the source influence coefficients,

m n
N(m,n,p)=//31r1;32 dsids; p=1,3 m,n=0,1,2,--- ,Np, (3.35)

where, N}, is the highest order of the expansion.

The near field

In the near field, the variation of the distance between the collocation point and
the point on the curved panel surface must be evaluated accurately. But gener-
- ally; the integral can not be evaluated analytically on arbitrarily curved. panel.
A reference panel is always needed, on which all the integrals are expressed by
analytical formulas.

Here we use x.01 to denote the collocation point, then we have the distance
in the following form,

r(s1,82) = reot — x(81,82), (3.36)

or in the polynomial expansion form as,

N N-i o
r= Z Z ri,jsl’sf. (337)
i=0 j=0
We can define the distance as,
N N-—i
r=+r-r= Z Z a;i ;js1isad, (3.38)
=0 j=0

where, a;; is the coefficient after the multiplication of the series of r from
equation (3.37).
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Suppose we find a reference surface X,.f, on which the integrals can be
evaluated analytically. We denote the distance from the collocation point to
the reference surface as r,.s, then,

r”’f = Xcol — x"t’f(slas'Z)a (339)

and the distance between the reference surface and the collocation point can
be expanded as well,

Nyes Npeg—i
Pref =a| O D Gijsiisyd, (3.40)
i=0 j=0

where N,.s is the highest order of the expansion.
Now we can make the following re-arrangement,

P

1 ST AN
- <1+———’i> — (3.41)

1ef rref

Here we assume that the reference surface is very close to the curved panel
surface and that the difference between the true surface and the reference sur-
face is very small.

a=r2—rl; <<ri;. (3.42)

If the above inequality is true, the following expansion will be convergent,

2 -k
(1 + T—f) Z Ci ( ) (3.43)
Tref ref

EE+Y)---(5+Ek-1)
k! :

Substitute (3.41) and (3.43) into equation (3.35), the integral (3.35) be-
comes,

where,

_( 1)k2

(3.44)

oks
N(m,n,p) E Ck// p1+2k dsld32 (3.45)
ref

Let us expand o into a series as well,

Z Z aﬁk)J ]sli_jsnj. (3.46)

=0 j=0



46 NUMERICAL SIMULATION OF UNSTEADY PARTIAL CAVITY FLOWS

Then Equation (3.45) becomes,

slm+z Js2n+1

N(m)nap ZCk {ZZ (i)j,]// 7‘p+2k d81d82

i=0 j=0 ref

= I(m,n,p) +ZC’“ }:Za Ziilm+i—j,n+j,p+2k) (3.47)
=0 j=0

where, we introduced a new integral I(m,n, p) as

81" 8"
I(m,n,p) = 7 dsydss m,n=0,1,2,--- p=13,5--- (3.48)
ref

The integral I(m,n,p) can be easily evaluated by analytical method. The
detailed formulation is given by De Koning Gans (1994).

3.5 Discussion

The calculation of the near field influence coefficients is essentially important
when the higher-order panel method is used. The formulation involved in the
previous sections contains a lot of polynomial expansions and their multiplica-
tion and summations. Consistence of ¢alculation and convergerice of €xpansions
must be analyzed.

The consistence of the panel method with the physics and the convergence
of the numerical modeling as a whole are supposed to be true and will not be
discussed in the following paragraphs. For an extreme geometry like a propeller
blade, these are still not very clear and remain un-solved, because they involve
those difficulties in detailed modeling of the wake, the Kutta condition, the tip
and the joint of the blade with the hub. These are out of our present scope.

3.5.1 Consistence

The basic idea of the present higher order method is based on the series expan-
sion of all the functions in the body-fitted curvilinear coordinates. The main
expansions involved in the calculation of the near-field coefficients are equation
(3.22), (3.23) for the solution, equation (3.12) for the geometry, equation (3.33)
and (3.34) for the base vectors and the Jacobian, and equation (3.37) for the
distance. In order to make the calculation consistent with each other, each part
of the above equations must be analyzed.

Now we use Landau symbol with parameter h (the size of the panel) as the
order to investigate the orders of the expansions (in equation (3.28) and (3.29)),
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which must be made in order to achieve a certain order for the global integrals.
The orders of the expansions of the variables used in the above equations are
listed in the following;:

The panel size

Asy = O(h) (3.49)
Asy = O(h) (3.50)

The singularity distributions
o =0(1) + O(h) + O(h%) + - + O(h"7) (3.51)
p=0(1) + O(h) + O(h?) + -+ + O(h"*) (3.52)

The geometry and the distance

x = O(1) + O(h) + O(h?) + - - - + O(KNe) (3.53)
ny = O(1) + O(h) + O(h?) + - -- + O(hVe) (3.54)
J=0(h) + O(h*) + --- + O(hN¢) (3.55)

For the near-field calculation, the order of the distance is the same as the
size of the panel, hence they are one order higher than the position vector x.

r = O(h) + O(h?) + --- + O(hN®) (3.56)

r = 0(h) + O(h?) + - - - + O(RN<) (3.57)

Combining the above analysis with equation (3.28) and (3.29), we obtain
the following consistence table (Table 3.1) for the singularity distribution and
the geometry expansion, which achieves the same global order for the boundary
integral equations.

It is obvious that the geometry expansion should be always one order higher
than the global order. With this one order higher expansion of the geometry,
the Jacobian can be the same order as the global order. The source expansion
keeps the same order as the global order but the dipole should be also one
order higher than the global order. For the consistence of the expansion for
the velocity, see De Koning Gans (1994).
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Table 3.1: Consistence requirement for potential based higher-order panel
method.

Global order | Geometry | Jacobian | Source | dipole

N Ng Ny N, N,
) oY) | O | O | O®d)
O(h?) o) | O | O3 | O(RP)

o N i) N I I R a0 W R i)

3.5.2 Convergence

The convergence analysis here focuses only on the convergence of expansion
(3.43), which is based on the difference of the distance square between the
original curved panel and the reference panel. For the others, the convergence
property is guaranteed by the Taylor expansion where s; and sp are in the
order of h.

The condition for the convergence of the expansion is equation (3.42), which
states that the distance difference should be much smaller than the distance
itself. But if we print out the coefficients of expansion (3.43) Cj for p = 1 (the
source) and p = 3 (the dipole), we obtain the following table.

Table 3.2: Series expansion coefficients of equation (3.43).

p=1 p=3
Co 1.0 1.0
Ci -0.5 -1.5
Ca | 0375 1.875
Cs | -0.3125 | -2.1875

It indicates that the coefficients are not convergence. The convergence of
the series expansion can be only guaranteed if a is very small. This is true
for most panels on the surface, but not true when the panel is topologically
triangular or close to triangular, as shown in Figure 3.1.

In this situation, a in equation (3.43) can be of the same order in magnitude
as the distance r or r..;. The problem is caused by the choice of the reference
plane. When we choose the flat plane, we obtain always a parallelogram that
is too far away from a triangular shaped panel. A typical picture, which shows
these parallelograms for a propeller blade-liked circular disk at the tip, is given
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Collocation point

Figure 3.1: Schematics of the topological triangular or close to triangular panel
and its flat reference panel.

in Figure 3.2. For the last strip along the chord at the tip, no convergent
solution can be expected from equation (3.43).

When this happens, subdivision of the panel for the integral (but not to
increase the total number of panels for the global problem) has to be used. Or
for some panels, the quadratic terms or some part of them can be included in
the reference panel. This has been discussed by Mazzi (1999) and implemented
in Delprop (De Koning Gans (1994)).

3.5.3 Hyperboloidal panels

Hyperboloidal quadrilateral panels with constant singularity distribution have
been widely used in propeller calculations, both for fully wetted and cavity
flows (Hoshino (1989), Hoshino (1994)). Obviously, the advantage of using
this method is that the formulation and implementation of this method is
relatively simple and the code based on this method is easily optimized for
certain computers. On a vector computer, the code can be fully vectorized
and runs very efficiently and hence the cost for the evaluation of the influence
coefficients is very low.

According to the previous consistency analysis, this hyperboloidal panel
method with constant singularity distributions, both for sources and normal
dipoles, are mathematically not consistent. But due to this higher order term
(the cross term x;,15152) in the geometry, the discretized body surface is fully
covered with panels that have no gaps between them. The panels can represent
the original surface nicely, however note that the connections between panels
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Figure 3.2: Flat reference plane for a propeller blade-liked circular disk at the
tip.

are straight lines. These well-connected panels eliminate the problem we had
with the triangular panels, which we have discussed in the previous section.

The formulation of the influence coefficients from a hyperboloidal panel
was first derived by Morino & Kuo (1974). More discussions can be found in
Hoshino (1989). The potential influence coefficient from the constant normal
dipole can be exactly evaluated by the following formula,

N‘ . - .
I# - 4—],.”,_ E(_l)‘l tan"l ((rt X el) (rt X e2)> (3.58)

|l‘i|l‘i . (e1 X 62)

where, N, is the number of edges and N, = 4 for quadrilateral panels. The
potential influence coefficient from the constant source can be approximately
evaluated by the following equation by neglecting some curvature influence
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terms,

I = 1 i( 1)1 (rixel)-n sinh_l r;-e;
7 dn le1] |r; % €]

i=1
. (I’i X 82) ‘n qinh_l T;- e
|e2| Il‘i X 82|

—(r; -n) tan™"! ((” x ey - (rs X e2)) } . (3.59)

rilr; - (e1 X e3)

where, n is the unit normal vector on the surface and its value is simply taken
e] X e .

as — 2 at the central point of the panel.
|e1 X egl

Due to its simplicity, it is also implemented and used in our present research
and for the calculations in the coming chapters.
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Chapter 4
Time Stepping

Time stepping methods based on Lagrangian and Eulerian de-
scriptions, with explicit and implicit schemes, are discussed. Lin-
ear stability analysis has been applied to these schemes and marginal
stablility has been found on the cavity surface. Problems have been
shown along the boundaries of the cavity — the detachment and the
closure. A more stable alternative Euler method is proposed.

4.1 Introduction

The governing equations for linear and nonlinear cavity flows are the same
— the Laplace equation. There is no difference to solve this boundary value
problem in both methods, as far as the boundary conditions are properly given.

But solving the fully non-linear unsteady cavity flow problem is much more
difficult than solving its linear version. Laplace’s equation is an elliptic partial
differential equation. The difficulties in solving Laplace’s equation come from
its complicated boundary conditions. On one hand, these boundary conditions
can be time dependent. On the other hand, it can be highly non-linear so that
the linearization of these conditions is sometimes not possible. Moreover, when
these non-linear conditions are going to be enforced on moving boundaries, such
as the cavity surface, the problem becomes extremely complicated and hard to
solve.

In the linear method, all the boundaries are fixed, no matter they are body
surfaces or cavity surfaces. Instead of applying the boundary conditions on
the real cavity and body surfaces, these boundary conditions are satisfied on
a simple reference plane, like the nose-tail line of a hydrofoil section (Geurst
(1959)). Improved linear method can apply the boundary conditions on the
camber line, which is then curved (Geurst & Verbrugh (1959)). The most novel

53
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linear method (it is also called nonlinear or quasi-nonlinear method) applies
the impermeable boundary condition on the real body surface, but applies the
dynamic boundary condition for the cavity on the body surface beneath the

" cavity (Kinnas & Fine (1993), Kim et al. (1994)).

While in the fully non-linear method, the cavity surface itself is part of the
solution and must be determined before the kinematic and dynamic boundary
conditions can be enforced on it.

The dynamic boundary condition (2.27) or (2.28) links the disturbance po-
tential ¢ with the pressure p, on the cavity surface through the prescribed
cavitation number ¢. If this equation can be solved in advance at a certain
time ¢, the disturbance potential ¢ on the cavity surface can then be prescribed
for this time level. When on some part of the boundary the potential condition
(Dirichlet condition from equation (2.27) or (2.28)) are prescribed and on the
other part of the boundary the normal derivatives of the potential (Neumann
condition from equation (2.24) or (2.25)) are prescribed, Laplace’s equation can
then be solved on this time level ¢£. The potential and velocity field throughout
the entire fluid domain are obtained.

But solving the dynamic boundary condition of equation (2.27) or (2.28)
in advance to obtain the potential on the cavity surface for the new time step
is practically not possible, because it needs information about the potential
and its derivatives on the cavity surface at the new time step. This leads to
the requirement of the spatial solution of the Laplace equation in the new time
step too. Obviously this solution can not be found, since the new cavity surface
position is not known a priori for the new time step. - s

A possible way is to use some kind of implicit scheme to link two time levels
through the dynamic boundary condition, and solve the spatial problem in two
levels simultaneously. This, at least, doubles the number of variables of the
problem and increases the computation effort to a large extent, and hence is
too expensive.

An efficient, accurate and stable time stepping method for the cavity surface
evolution will be explored for the present calculation. The fixed wetted body
surface has shown not to be a problem in the calculation, and hence omitted
from this chapter. We focus, in the following discussion, only on the method
of time stepping for the cavity surface.

4.2 Lagrangian method

For any variable q(z, y, z; t), vector or scalar, the following total derivative can
be defined,

da _ 9q

- ot +(v-V)q, (4.1)
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where the first term is called the local time derivative and the second term is
the convective time derivative. When the velocity v is the particle velocity of

d
the fluid, we call this derivative X the material derivative.

If we trace the cavity surface according to the particles on it and update
the particle properties, like the potential, according to the above equation at
the same time, we call this method a Lagrangian method.

Substitute equation (2.51) into equation (2.48), we obtain the Lagrangian
description of the present problem, together with (2.49) for the cavity surface,
23,

dp VI (Vo+Qxx-Vw)> V3
dxc
—(’;f; = (Vw = Vo—Q xx) — Vo, (4.3)

where the gravity term is neglected. Solving these equations with respect to
time, we can update the cavity surface as well as the potential together. Then
the solution can be stepped in time.

But solving these purely Lagrangian equations has revealed difficulties for
cavity flows, because cavity flow problems often show rapidly varying flow
quantities. If the cavity surface grid is updated according to the speed of the
fluid particles, the grid will break from the detachment point immediately and
move downstream. Then either new grid points have to be generated at the
detachment point or very small time steps have to be used. When the time
step is too small, the method becomes impractical.

Fortunately, when we use potential theory, the shear stress on the boundary
surface is neglected. From the kinematic point of view, the tangential move-
ment of the particle is not required by any boundary condition and hence has no
effect on the cavity movement. In other words, it does not affect the evolution
of the cavity surface. The movement of the cavity surface is purely controlled by
the normal component of the particle velocity. Then, the kinematic boundary
condition (equation (4.3)) can be modified to,

dditc-nz[(vw—vg—ﬂoxx)—ch]~n. (4.4)

Hence the grid updating of the cavity surface can be done using the normal
velocity only.
Let us define a grid velocity v, as,

. dx, _ dxc
Vg = d_t = ( dr Il) n, (45)

X, is the grid position vector and x, = (z4, yq, z)T.
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Now, we obtain the modified Lagrangian method, in which the grid and the
potential follow the artificial particles on the cavity surface with velocity v,,

d 0
%:[(Vwﬁvo—mxx).n—a—:]n, (4.6)
and,
d V32 Vo+ -Vw)? V2
d_f=Tr_( o+ 0);)( W) ——-2—-0'+Vg V(p (47)

The equation for the potential ¢ keeps the same form because it is the total
derivative following the artificial particles on the grid.

Combining equation (4.6) and (4.7), we obtain the following ordinary dif-
ferential equation (ODE),

dq

a - f(q, t)’ (48)
where q = (4, Yy, 29, )T is the vector variable and function f (a,t) consists of
the right-hand side of equation (4.6) and (4.7). If the right-hand side function
f(q, t) can be evaluated, then we can march q explicitly in time by solvmg this
ordinary differential equation in time.

- 4.2.1 - Explicit- method -

There are two distinctive ways to solve this system of ordinary differential
equations explicitly, the Taylor method and the Runge-Kutta method.

The Taylor method estimates the values of the numerical solution q;4; in
the new time step by using the first and higher derivatives of the solution at
the old time level ¢,

1 diq
Q+at = (lt+z 1 3t |,

(At)*

=q + f(q; t)At + le a—q (At)'. (4.9)

The accuracy and stability of this method depends on its order m. When a
higher-order is used, the higher-order time derivatives of q have to be evaluated.
Evaluation of the higher order derivatives (of the cavity surface and potential)
by numerical differentiation is not always possible, or it is possible but very
inaccurate. So, this method is not favorable for the present application.
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Because the Runge-Kutta method needs only to evaluate the first-order
derivative of the solution, it can be used in the present calculation. The general
algorithm of the Runge-Kutta method is written as,

Q+at =q + Z’yjijt (4.10)
Jj=1
where,
m
k; =f(q+ At Bikiit+a;At) j=1,2,--,m, (4.11)

i=1

where , 3 and 4 are constants and their values depend on the order of the
method. The disadvantage of this method is that the first derivatives have to
be evaluated four times if a 4th-order 4-stage Runge-Kutta method is used. It
means that the spatial problem has to be solved four times by the panel method
within each time step. Since the evaluation of the influence coefficients is the
most expensive part of the panel method, it makes the Runge-Kutta method
quite expensive too.

Besides, this explicit method is only marginal stable. The stability region is
small and depends on the order. The Runge-Kutta 4th-order 4-stage method
has a relatively large stability region, but it still limits the time step extremely.
A stability analysis of this method for cavity flow calculation is given by De
Koning Gans (1994). The estimated time step is given in the following formula,

As

At<es- (4.12)
where As is the panel size and v is the local velocity. He concluded that a
practical value for € is less than 0.25. It means that the fluid particles have
to pass one grid interval in more than one step. If we look at Figure 6.2 and
notice how many panels are used in order to resolve the details of the cavity
closure, then we realize that a tremendous number of time steps is needed for
unsteady flow calculations.

It has been found by many people that the normal evolution of the cavity
is relatively easy to be fulfilled, but the longitudinal development of the cavity
is more difficult. Figure 6.5 and 6.6 in Chapter 6 will show how difficult it is
for the cavity to evolve in longitudinal direction.

The other reason for noy choosing explicit methods is the consistency prob-
lem. In order to gain numerical stability, a higher-order stepping method must
be used, for instance, fourth-order Runge-Kutta method. But on the other
hand, the order of panel method is not as high as fourth-order. They are not
consistent with each other. And the lower accuracy of the evaluation of the
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right-hand side of equation (4.8) will deteriorate the stability region of the
higher-order Runge-Kutta method.

Detailed discussions on the stability region for the explicit method can be
found in De Koning Gans (1994) and Romate (1989).

4.2.2 Implicit method

As we have discussed at the beginning of this chapter an implicit method
needs to solve these two time steps simultaneously and hence it is not practical
because the cavity surface position is not known at the new time step. But an
iterative implicit method is still possible, which builds up the relation between
the two time levels by an implicit scheme, iteratively updating both the cavity
surface and the potential on it until the implicit scheme is satisfied. This
method can be very expensive, but the efficiency is gained by using large time
steps allowed due to its stability.

Implicit methods have been thought to be uncounditionally stable for any
arbitrary time step. This is true if we are dealing with only an unbounded
cavity surface. But as the cavity surface is normally bounded and restricted
in a small region, the instability can be introduced from the boundary of the
cavity.

De Lange (1996) has used a second-order implicit method based on ¢ +

§At time level. The total derivatives for the cavity position and the potential
(equation (4.8)) are given by the following scheme,

At -
aiple = iple-ae + 5 [faf;58) + flawpst — AL)] (4.13)

where, ip is the panel index in the two-dimensional case and superscript n
denotes the iteration steps at time step &.

Some results have been obtained. But numerical tests show that the method
sometimes fails for certain calculation conditions. So, limited results have been
presented. Some numerical instability is believed to transmit from the bound-
ary to the central part of the cavity and hence spoils the calculation completely.

4.3 Euler method

Another method to describe the evolution of the cavity surface is the Euler
method. This method has been used widely for solving wave problems (e.g.
Cheng & Lu (1986) and De St Isaacson (1982)). Similar work for cavity flows
was not found by the author in the literature.

We use the same body-fitted curvilinear coordinates (s, s3,s3) as we used
in Section 3.3. Based on this body-fitted coordinates, we define the cavity with
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a thickness of s3 = 7j(s1, s2;t), and hence,
Sc(s1,52,83;t) = s3 —ns1,s2;t) = 0. (4.14)
The Euler kinematic boundary condition (2.34) becomes,

—% + V-V [s3 = n(s1,82:8)] = 0. (4.15)

Working out the surface metric tensor for the curvilinear coordinates, the
second term on the left-hand side of equation (4.15) can be written as a function

0 0
of the co-variant differentiations N and —1—7—, and equation (4.15) becomes,

0s; Oss
an Oy On an
— = n—-—~r}-A-+--B— .
Bt (V"’ n an) 95, " osy’ (4.16)
where,
€] - €2
A = (VTO -e; + Ul) - (V,-O - T + ’Ulz) s (417)
€z -T2
1
B = ez 72 (Vg - 72 +u2), (4.18)

with 75 perpendicular to both e; and e3 and 72 = e3 x e;, u; and us denote
the contra-variant components of the disturbance velocity in the local Cartesian
coordinates (e;,72,e3) and v = (u1,uz,u3)’. The local Cartesian velocities of
the disturbance can be also expressed as a function of their co-variant velocities
in,

_ _9p
u = —Bs—l, (4.19)
w = —0yp/B8s2 + (€1 - €2)0p /051 (4.20)
2 = P 3 .
il
us = —a—z. (4.21)

When the spatial problem is solved, the co-variant velocity of the distur-
bance can be easily evaluated by the surface numerical differentiation of the
potential and hence the right-hand side of equation (4.16) is known. Then the
cavity surface can be stepped into the new time by explicit or implicit method,
as we have discussed in the last section.

The drawback of the present Euler method is that the cavity thickness is
defined in the body fixed coordinate, so that it cannot be used to predict the
re-entrant jet where the cavity thickness becomes bi-valued.
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Note that equation (4.16) is not only valid when the curvilinear coordinates
are defined on the body surface but also valid when the coordinates are defined
on the cavity surface. Then 7 in equation (4.16) denotes the additional cavity
thickness based on these coordinates. With this idea, the re-entrant jet can
still be calculated.

In this situation, the cavity surface, in the frame of reference of the curvi-
linear coordinates (s1, sy, 83), is fixed in space and hence the temporal differ-

entiation =2 represents the local change of the potential with respect to the

grid points. Then the potential on the cavity surface can be stepped in time
according to equation (2.51), which can be re-written into,

dp V.o Vil V)t

ot T2 2 2 (4.22)
. . . . Op dp )
where V.. is a function of the co-variant velocity 35, and P which can be
1 2

evaluated.

In order to gain stability in the time stepping, an implicit method for updat-
ing both 7 from equation (4.16) and the potential ¢ from equation (4.22) was
implemented according to the scheme of equation (4.13) for the unsteady cav-
ity flows over a three-dimensional rectangular hydrofoil with very high aspect
ratio (AR = 500) in vertical gust. , ,

But it appears that this scheme is very stable for the cavity surface but
tooth-like (2As) wiggles are propagating into the central part of the cavity from

‘the detachment and the closure of the cavity, where the curvature-is high and

the evaluation of the co-variant velocity components is relatively inaccurate.
After few cycles of the gust, the cavity surface blows up and the calculation has
to stop. The calculated potential ¢ and its normal derivative ,, just before
the cavity blows up is plotted in Figure 4.1 and 4.2.

Because the potential ¢ on the cavity surface is prescribed but the poten-
tial derivative ¢, is calculated by the panel method, the wiggles in Figure 4.2
are the consequence of the wiggles in Figure 4.1, where the potential is de-
termined by equation (4.22). It appears that this system is very sensitive to
the smoothness of the prescribed potential on the cavity. The small wiggles
in the potential will generate large wiggles in potential derivatives. The large
wiggles in the potential derivatives finally generate large wiggles in the cavity
thickness through equation (4.16). Then the cavity surface will blow up after
several cycles of calculation.

4.4 Stability

A simple stability analysis of the present time stepping method is carried out in
this section. The interior part of the cavity is analyzed first and the boundary
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Figure 4.1: The wiggles of the disturbance potential on the cavity surface by
using an implicit iterative algorithm. (NACA 16-006, AR=500, vertical gust
Vw = 0.07Vp + 0.0157Vp sinwt), time step A(wt) = 0.27.

3
=l i

2: ' NACA16-006

N AR=500
2 4 : V,=0.07V;+0.0157Vsin(ak)

Reduced frequency K=n
1 )
0 -
-1 4
-2
-3 4 —O— Mid-span
—— close to tip
-4 T i t
0 5 10 15 20

panel index ip along cavity surface in main stream direction

Figure 4.2: The wiggles in the normal derivative of the potential on the cavity
surface by using implicit iterative algorithm. (NACA 16-006, AR=500, vertical
gust Viy = 0.07Vp + 0.0157Vp sin wt), time step A(wt) = 0.27.
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of the cavity is then discussed at the end of this section.

Here we will apply Von Neumann stability analysis to equation (4.8) by
linearizing the non-linear problem. We introduce a disturbance vector € to the
solution vector q and analyze the growth of the disturbance in space with time.
Equation (4.8) is then written as,

dq de

n + pri f(q+€t). (4.23)

Substituting equation (4.6) and (4.7) into the above equations, we have the
following equations for the disturbance € and the solution q,

d(xg +ex) _ . _Oo+ey)
T = [Vro (n+e€n) o n, (4.24)

where the disturbance consists of two parts and € = (ex,€,)7, and €, is the
disturbance to the unit normal vector on the cavity surface due to €x. According
to the definition of the cavity thickness, we have n = (x, — xg) - n. Note that
dxp

e 0, the above equation can be then written as,

d(n + €n) -
dt

where €, = €x - n. And for the potential, we have,

Ay +ep) (4.25)

V,.o.(n+e,.) - on B

2 2
_VTO'V((P'Fe(p) +'w;ﬂ‘_ 22"_0 _ K;ga

+V,-V(p+e,). (4.26)

Subtracting equation (4.6) and (4.7) from equation (4.25) and (4.26) re-
spectively, and neglecting the non-linear higher order terms, the evolution of
the errors in the cavity surface is governed by,

dip +¢,) — Vro2
dt 2

dep Oe, Oe,

& N TVesamt- G (427)
de, Oe,

2 & s (4.28)

where s and n are tangential and normal direction of the cavity surface, (V)5
denotes the tangential component of the total relative velocity and « is the
angle between V. and s.

Now we assume a two-dimensional disturbance with the following form,
which is harmonic on the cavity surface but decays in the normal direction
toward the fluid (n > 0) for the potential,

€n _ " eiksen
( e ) =e¥ ( e"ks_““’"?swo , (4.29)
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and then we can observe the evolution of the disturbance by the value of w. If
this value has a non-positive real part of w, the disturbance will not grow and
the problem is stable.

Here we choose central difference schemes for the tangential derivatives on
the right-hand sides of equation (4.27) and (4.28), while the normal derivative
on the right-hand side of equation (4.27) is assumed to be exact. Applying this
numerical discretization on the cavity surface (where n = 0) to equation (4.27)
and (4.28), we obtain,

UJ( 6170 ) =
F‘FO

[ —iVyg cosasin(kAs)/(As) k| ] ( €n

0 —i(Vy), sin(kAs) /(As) 0 ) . (4.30)

€00

where As is the panel size.
The matrix in this equation has the following eigenvalues,

s = %{—[Vm cosa + (V,)] sin(kAs)/(As)

ﬂ:\/[Vro cosa — (V;.)s]2sin®(kAs)/(As)? + 4|k|} . (4.31)

They are purely imaginary. That means there is no positive eigenvalue and the
disturbance will not grow. So, the problem is marginally stable.

The same analysis can be applied to the Euler method of equation (4.16)
and (4.22) and, without giving details, the same conclusion can be drawn.

As for the stability of the problem for the cavity surface close to the corners
(detachment and re-attachment), the situation is too complicated to carry out
the same analysis. The examples from the previous section illustrate that the
wiggles can start from the edges and propagate into the interior part of the
cavity. Since the scheme for the interior part is stable, it implies that once the
wiggles are prevented from the edges, the scheme can give stable solution.

One of the tools we can use is a filter, a smoother, to smooth out all of the
wiggles, but the drawback is that the high curvature and the formation of the
re-entrant jet might also be smoothed out and no details of the flow can be
predicted.

The alternative is to find a new scheme that itself is acting as a smoother.
This idea leads us to the proposal of an alternative Euler method in the fol-
lowing section.



64 NUMERICAL SIMULATION OF UNSTEADY PARTIAL CAVITY FLowsS

4.5 Alternative Euler method

Let us consider equation (4.16) and (4.22) again, the evaluation of the spatial
derivatives of the potential and the cavity thickness are all on the right-hand
side of the equations, but the time derivatives are on the left-hand side. The
integration with respect to time does not act as a natural smoother in space
for the potential, neither for the cavity thickness.

Since the propeller cavitation and the hydrofoil cavitation in the gust has a
cyclic behavior, we can reverse equation (4.16) and (4.22) by solving the right-
hand side of these two equations for the potential and the cavity thickness under
the estimated time derivatives of the left-hand side of the equations from the
previous cycle.

With this idea, equation (4.16) becomes,

on on on Op
8o, +B(932 5 +{Ve'n , (4.32)

and equation (4.22) becomes,

V" &p Vro VOO
2 = ot + — 2 + 2 (4.33)

Accordiﬁg to equation (2.22), V2 can be written as,
Vi2=(Vyp-e1+u1)? + (Vyo -T2 +ug)? 4+ (Vyo-n — —a%)’. (4.34)

Substitute this equation into equation (4.33) and after rearrange it, we obtain,

0
\/2 +Vr02+V002‘7—(Vro‘T2+U2)2—( 0" n_B%)

— Vo €. (4.35)

681

When the cross-flow is relatively small (which is true for the hydrofoil with
high aspect ratio, but not for the flow on the propeller blade close to the tip),
the potential on the cavity surface can be simply calculated by the following
integration,

81 6
= <po+/ [\/28—“: + Vo2 4+ Vo0 — (Vg - T2 + u2)2 — (Vg -1 — 222
0
—Vio-e1]ds;, (4.36)

where ¢y is the potential at the detachment of the cavity where s; = 0. Equa-
tion (4.36) guarantees that the potential is continuous at the detachment, but
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it prescribes only the value relative to the value at the detachment g that
still has to be determined by the panel method. This makes some change in
the system of equations and hence we call it the continuity condition of cavity
detachment.

The advantages of using equation (4.36) are:

1. The integration of equation (4.36) guarantees the prescribed potential on
the cavity surface to be smooth and no wiggles will be introduced by
numerical differentiation formula.

2. Equation (4.36) links the potential on the cavity surface with the potential
at the detachment point (on the body surface). This guarantees the
continuity and smoothness of the potential at the edge of the cavity and
prevents wiggles originating from the edges.

When the prescribed potential is smooth enough, the calculated potential
derivatives 0p/0On will be smooth as well. The wiggles in Figure 4.2 disappear.
Based on this smooth d¢/0n, equation (4.32) can be solved by a recursive
method starting from the detachment point where the cavity thickness n = 0
and a smooth cavity surface can be obtained.

A similar procedure was followed by Kinnas & Fine (1992) and Kim & Lee
(1996), who show stable and smooth results.






Chapter 5

Numerical Algorithms

Besides the numerical algorithms discussed in the previous chap-
ters for the panel method and time stepping, other numerical imple-
mentations for the present nonlinear method are presented in this
chapter, with detailed algorithms for each problem. Emphasis is
on the numerical accuracy. Cavity planform search, grid update,
detachment position and the cavity-body intersection are discussed.
Other highly-related numerical problems for panel method and cavity
flows, like Kutta condition and wake alignment, are also addressed
with numerical tests. Concerns are focussed on the influence of
these numerical algorithms on cavity flows.

5.1 Introduction

When a cavity surface is introduced in panel methods, the numerical algorithms
for solving the problem become more complicated than the calculation for fully
wetted flows. The system of equations for the boundary-value problem has to
be rearranged due to both the Kutta condition at the trailing edge of a lifting
body and the continuity condition (equation (4.36)) at the cavity detachment
point. Different Kutta and cavity detachment conditions result in different
systems of equations.

Both for the steady and the unsteady cavity low problem, we need to guess
an initial cavity shape before we can start the surface iteration or the time
stepping. The natural way of starting a calculation is to start from the body
surface where the cavity is expected. Searching for a possible cavity area has
been found important since a good choice will save calculation time and reduce
the possibility of errors that might be brought into the subsequent calculations
and contaminate the whole result.

67
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Furthermore, the cavity flow problem is a pressure sensitive problem both in
the sense of physics and in the sense of numerical simulations. Kutta condition,
wake shape, tip flow, grid arrangement and vortex shedding at the trailing edge
have been found to have strong influence on the pressure distribution on the
lifting bodies, and as a result, having a strong effects on cavitation. A good
method with better prediction of pressure on the surface can expect to give
a better prediction of cavitation too. Morino’s Kutta condition satisfies the
vorticity conservation law of Kelvin, but it does not guarantee an equal pressure
at both sides of the trailing edge. However, the pressure Kutta condition
gives sometimes peculiar pressure peaks at the trailing edge for a complex
geometry and Kelvin’s theorem is violated in some implementations. And for
unsteady flows, the wake shape and the shedding vortex strength also have
strong effects on the amplitude of the pressure peak and hence strong influence
on the cavitation too.

All of these issues will be discussed in this chapter by elaborating relevant
details for each numerical algorithm. Some numerical tests for these algorithms
are also given in the following.

5.2 System of equations

As we have discussed in Section 3.2, using the Green’s identity of equation (3.9)
for both body boundary and cavity boundary will save tremendous computation
time and memory for the evaluation of the influence coefficients. This kind
of mixed problem will generate both Fredholm equations of the first and the
second kind. Free surface wave and cavity flow applications of this method
have not shown any problem when mixing Fredholm equations of the first and
of the second kind. Since the Kutta condition and the continuity condition of
the potential at the detachment point (equation (4.36)) will change the matrix
too, it is impossible to keep the matrix strictly diagonally dominant, even in
case of a fully wetted flow.

The present method is designed such that it can cope with more than one
smooth surfaces, with or without cavity attached. Each surface can be either
a lifting or a non-lifting body. For convenience of discussion in the following,
we take a simple case of only one smooth cavitating surface with lift as an
example.

We discretize the body surface with a structured network of panels so that
we have NIg panels streamwise (chordwise) and NJ panels crosswise (span-
wise). The cavity is assumed to detach from the body surface at the NIt
panel from the leading edge of the streamwise strips. Similarly, the network of
the panels on the cavity is also structured with the same panels in the cross
direction as that on the body surface, but with different panels in the main
stream direction. We denote the number of the panels in the main stream
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direction on the cavity as NIo. The collocation point has been chosen to be
at the center of each panel, which is denoted as ic.

After we have calculated the integrals of equation (3.35) by the analytical
method described in Section 3.4 or 3.5.4, we can substitute them into equation
(3.28) and (3.29). For a certain collocation point ic, where x = x;., after re-
organizing the coefficients, Green’s identity can be discretized into the following
system of linear equations with the sources and dipoles as the unknowns at the
collocation points,

NI NJ
Z Z DlP:JP(p'p jp = § : Z Szp _)pUZP,JI” (51)
ip=1 jp=1 ip=1 jp=1

where N1 denotes either NIg or NI, D . are the re-organized dipole influ-

ip.jp
6
ence coefficients including the term %g@(x; t) in the left-hand side of equation
T

(3.9), and Sf; jp are the re-organized source influence coeflicients. We use o

instead of — L for the sake of the notation simplification.

When the body is a lifting body, a wake surface is introduced and the
normal dipole singularities are also distributed on the wake surface. We keep
the same number of panels N.J for the wake too, but we used different number
of panels NIy in the main stream direction. Then the system of equations
becomes,

NI NJ NIw NJ NI
> > Diipbiwan+ D D Wi spbwinin =D Z i ipOimin (5:2)
tp=1 jp=1 ip=1 jp=1 ip=1 jp=1

where W . are wake dipole influence coefficients and ¢ ip,jp are the dipole

strengths on the wake surface.

5.2.1 Unsteady flow

For the unsteady lifting-surface problem, whatever method is used for the Kutta
condition (Morino’s or pressure Kutta condition, which will be discussed in the
following sections), the dipole strengths on the first spanwise row in the wake
are unknowns and they are related to the dipole strengths on the body surface
at the trailing edge (Morino’s method) or they are determined in an iterative
way (pressure method). The rest of the dipoles in the wake are known from the
previous time steps. Then we can split the wake term in the previous equations
into two parts as,

NIw NJ

Z Wi gp¥Pw tjp + z Z Wii;,jp‘Pw ip,ip>

jp=1 ip=2 jp=1



70 NUMERICAL SIMULATION OF UNSTEADY PARTIAL CAvITY FLOWS

where the first part is unknown and the second part is known.

As we have discussed in the Chapter 4 about the alternative method for time
stepping, the dipole strength on the cavity surface is obtained by integrating
the velocity along the main stream direction, but it is a function of the potential
o at the detachment point. For the cavity surface, the dipole term in equation
(5.2) can be split as well by,

p=wot+¢ (5.3)
into two parts,
NI NJ NI NJ
Z Z Dz pp0 + Z Z D3 jpPin.iv
ip=1 jp=1 ip=1 jp=1

where the first part is unknown and the second part is known.

Now we can apply equation (5.2) both to the body surface and the cavity
surface. By moving the unknowns to the left-hand side and the knowns to the
right-hand side, we obtain the following system of equations for solving the
mixed unsteady cavity flow problem with Morino’s Kutta condition as,

NIg NJ NIg NJ
ic
Z Z tp,:p‘Ptp,Jp Z E Sipsjp”fﬂyip
ip=1jp=1 ip=1 jp=1 ;
NIc NJ NJ .
ic
+ Z Z Dtp oo + Z WiiipPw 1.ip
ip=1 jp=1 Jjp=1
NIg NJ NIc NJ
= Z Z SleJPU’NP Z Z 1p,]p‘p1P,JP
ip=1jp=1 ip=1jp=1
NIw NJ
C
- Z Z ip,jpPw ip,jp> (54)
ip=2 jp=1

where the first dipole strength in the wake is related to the unknowns on the
body surface by Morino Kutta condition, and hence it is on the left (the fourth
term). Once the pressure Kutta condition is going to be enforced, this term
will be on the right-hand side as a known term, but its value will be determined
by an outer iteration scheme.

5.2.2 Steady flow

For steady cavity flow, if the Morino’s Kutta condition is used, all the wake
dipoles are unknowns and related to the dipole strength on the body surface,
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which is then moved to the left-hand side of the equations. The system of
equations becomes,

NIg NJ NIc NJ
Z E :sz,Jpgoll),Jl" E : Z SlpJpUZPJP
ip=1 jp=1 ip=1 jp=1
NI~ NJ NIw NJ
ic
+ Z E: Dip.jpo + E: E: ijp‘P“’ ip.jp
ip=1 jp=1 ip=1 jp=1
NIg NJ Nl
- E : Z Szp]paw jp — E : E : sz Jp“Pw,]P (5'5)
ip=1 jp=1 ip=1 jp=1

But if the pressure Kutta iteration is going to be used, the system of equations
has to be rearranged as,

NIg NJ NIz NJ
E : E :sz,JpSOW jp E : Z Szp ]palP»JP
ip=1 jp=1 ip=1jp=1
NIc NJ NIw NJ
+ Z Z sz,],,lpo + Z Z w,Jp‘pw ip,jp
ip=1jp=1 p=2 jp=1
NIg NJ NIc NJ
— C
Z Z Sw,JpUW ir Z Z DW»JP<PW7JP
ip=1 jp=1 ip=1 jp=1
NJ
ic
- Z Wl,jp‘Pw 1L,jp>
jp=1

(5.6)

where, except for the first panel in the wake, the others are on the left. It is
due to the reason that Kelvin’s Theorem (equation (2.43)) must be fulfilled,
which means that the rest of the wake should satisfy Morino’s Kutta condition
and the first panel is used as an artificial device to make the pressure equal.
More discussions about this will be given in the section of this chapter on Kutta
conditions.

But whatever system of equations is used, we can always write it into the
following compact matrix form as,

Dgs -Sac ) ( ¢B \ _( S —Dsoc oB ) (5.7)

Dcp  —Sce oc Scg —Dcc oc )’ )
where, the subscript B and C denotes the body surface and the cavity surface,
respectively. However they include terms from the wake and ¢q.
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Since the right-hand side of the system of equations is known, we can write
it in the following form as a system of linear equations for the unknowns v,

Av=h. (5.8)

- ( ¥B )
oc
Solving this equation, we obtain the potential distribution on the body surface
and the normal derivatives of the potential on the cavity surface. The wake
dipole strength is hence obtained.

It should be noted that, for a purely nonlinear method, the influence co-
efficients in the matrix A of equation (5.8) have to be re-evaluated in each
iteration or time step since the cavity shape is changing with either the sur-
face iteration or the time iteration. This makes the present method relatively
more expensive than the linear method. On the other hand, the coefficients are
not needed to be re-calculated if a linear method with some special techniques
is used, such as the so-called split-panel method proposed by Kinnas & Fine
(1993). If the cavity planform is moving with time, even when a linear method
is used, the influence coefficients have to be re-evaluated. :

Matrix A is a full matrix. And due to the use of the Fredholm equation

where,

_ of the first kind for the cavity surface, this matrix is no longer diagonally

dominant. The third and fourth terms on the left-hand side of equation (5.4)
make it even worse. A conventional iterative method can not give a convergent
result for this system of equations. Even if the congrate-conjugate method is
used, the speed of the convergence doesn’t show much advantage on calculation
efficiency. So, an L-U method is used in the present calculations.

5.3 Cavity planform search

Strictly speaking, there is no need to search for the planform (the area the
cavity covers) in the fully non-linear cavity flow theory. The cavity surface
evolves iteratively and the planform of the cavity is determined accordingly.
But the first good guess will speed up the whole calculation and reduce the
risk of instability that may happen when the first guess is too far away from
the final result.

Another reason of searching the planform in the fully non-linear theory is
that, comparing to its evolution in the normal direction, the evolution of the
cavity shape in longitudinal direction is very slow, especially when the first
guess is a too short cavity. Numerical experiments on two-dimensional cavity
flow show that hundreds of iteration steps are needed to achieve the convergence
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(as shown in Figure 6.5 and 6.6). But this is prohibitive for three-dimensional
cavity flow calculations.

The basic idea of searching the cavity planform is to apply the cavity bound-
ary condition on the body surface beneath the guessed cavity and then predict
only once the cavity shape to find the intersection of the cavity with the body
and determine the new guess of the cavity planform as shown in the 1st search
of Figure 5.1, where we chose a NACA 16-006 section with an aspect ratio of 2
as an example. The angle of attack is 4° and the cavitation number is 0.5. First,
we choose the cavity planform as an equal length cavity with [/chord = 0.8.
After one calculation of the cavity, the basic shape of the cavity is obtained as
shown in this figure with zero cavity length at the tip where the load is zero.
By applying the boundary conditions on the new planform again (but not on
the last predicted cavity surface), a new cavity shape and its intersection can
be found, as shown by the 2nd search in Figure 5.1. We can make some more
searching until a converged result is reached. But normally, three searches are
enough.

This scheme has been found to be stable even for the cavity flow on a
propeller blade close to the tip, where other methods might fail. But it may
be somewhat slower than the Newton-Raphson method that we will discuss in
the following. The disadvantage of this method is that we have to start with a
very long guess of the cavity length to make sure that there is an intersection
between the cavity and the body surface.

The other cavity planform searching method, which is thought to be more
general and faster, is proposed by Kinnas & Fine (1993) with a Newton-
Raphson (secant method) scheme. After the calculation of the cavity shape
according to the alternative Euler method, the cavity thickness at the guessed
cavity end is obtained. This value can be positive (if the cavity does not inter-
sect with the body surface) or negative (if the cavity end intersects the body
surface). Let us denote this thickness as fjena = (M1,M2,** »TINp.s ), Where
N g. is the number of the trailing edge panel, then the scheme reads,

I = =3 et + 1Y, (59)
wherel = (I3, 12, -+ ,In, 5 )7 denote the cavity length, the supercript & denotes
the iteration step and J is the Jacobian,

on . .
Jij = 1 Jj=12,---,Nrg. (510)
ol;

If we would like to renew the Jacobian in each iteration step, it will take us at
least Nt . full calculations. It makes this method prohibitively expensive and
hence impractical. But for some simple geometry like a rectangular hydrofoil,
a local scalar Newton-Raphson method for a single strip can be used which
converges very fast.
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Figure 5.1: Planform searching procedure on a rectangular hydrofoil. (NACA
16-006, aspect ratio AR=2, angle of attack a = 4°, cavitation number ¢ = 0.5).
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Figure 5.2: The cavity end thickness on a rectangular hydrofoil. (NACA 16-
006, aspect ratio AR=500, angle of attack a = 4°, cavitation number ¢ = 1.0).

In order to evaluate the Jacobian, a two-point finite-difference scheme is
used. That means we must give a perturbation to the cavity length and then
calculate the cavity thickness at the end again. An example of the relation
between the chosen cavity length and its calculated thickness at the end is
shown in Figure 5.2. Here the hydrofoil is a rectangular one with a very high
aspect ratio. Since this variation of the end thickness, with respect to the cavity
length, is almost linear, the choice of the amount of perturbation is relatively
insignificant and the two-point difference scheme can be accurate enough.

The disadvantage of this method is that it may become very inaccurate for
propeller cavity flows, because the neglected off-diagonal terms in the Jacobian
can be very important for the case where three-dimensional effects are strong.
Furthermore, the variation of the cavity end thickness with respect to the length
in the propeller case is no longer linear or close to linear anymore. Newton-
Raphson method may lead to an unexpected result, like a zigzag cavity end,
which finally induces instability in the further non-linear iteration.

For an extreme geometry, the local scalar Newton-Raphson method is there-
fore not recommended.

5.4 Cavity model and grid update

As we have discussed in Section 2.4.4 with Figure 2.2 that the cavity end, in
the present frame of the inviscid potential flow theory, can be only tangential
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Figure 5.3: Comparison of the cavity shapes with and without jet section.

to the body surface with fluid moving upstream into the cavity. This kind of
cavity model is called re-entrant jet cavity closure model, which is thought to
be the most physical and mathematically consistent model. Furness & Hutton
(1975) have filmed the process of the re-entrant jet formation by high-speed
cinaphotography. From the speed of the film, the velocity of the re-entrant
jet was measured. The measurement shows that the maximum speed of the
re-entrant jet is close to the freestream velocity.

De Lange (1996) succeeded to simulate this re-entrant jet. But his calcu-
lation has to stop when the re-entrant jet touches the cavity surface. In order
to avoid this, we decided to cutoff the re-entrant jet and prescribe a bound-
ary condition at this cut-off to make the flow pass through it. We call this a
re-entrant jet model and it will be discussed in Chapter 6.

We succeeded to use this model for two-dimensional cavity flow. To in-
vestigate the influence of the re-entrant jet velocity on the cavity volume and
length, the flow around NACA 16-006 at an angle of attack 4° is calculated
and shown in Figure 5.3. In order to make sure that this cut-off will give the
same results as that of De Lange (1996)’s model, we calculated also the flow
with a free re-entrant jet. It is also plotted in Figure 5.3. They are very close.

The free jet here means that we did not use the jet cut-off boundary and
the jet is not cut-off. So, with the iteration continuing, the jet evolves auto-
matically. Figure 5.3 shows that when the free jet is developed long enough,
these two methods give exactly the same result.
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Figure 5.4: Schematics of the intersection between cavity surface and the solid
body surface.

This result suggests that the jet boundary is not really needed. It can be
easily described in the two-dimensional situation, however it can be hard to
describe it in a three-dimensional situation. So this model is not used in our
three-dimensional calculations.

To give as much freedom as possible to the evolution of the cavity surface
and the re-entrant jet in three-dimensional flow, we decided to apply the exact
dynamic and kinematic boundary conditions up to the last panel at the cavity
closure and let the end of the cavity evolve by itself.

We reduced our restrictions at the end of the cavity to the minimum by
using only two treatments as shown in Figure 5.4.

1. When the cavity end is above the body surface, the end of the cavity is
simply connected with the body surface with a vertical surface that is
thought to be the continuity of the original cavity surface, as shown in
Figure 5.4A. The cavity surface has to be re-paneled according to the arc
length from a to ¢ in this figure.

2. When the cavity end intersects the body surface, these part inside of
the body is simply truncated, and the cavity surface is re-paneled also
according to the arc length from a to ¢ in Figure 5.4B.

We use a fixed form of panel distribution on the cavity from the detachment
point to the reattachment point, as given in equations (6.21) to (6.24) later on.
This means that after each iteration, the cavity surface has to be re-paneled
and the panel size is varying along the cavity surface all the time.

In order to find the intersection of the cavity surface with the body surface,
the paneling of the cavity surface is chordwise based. This means that the
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Figure 5.5: Schematics of the intersection between cavity surface and the solid
body surface.

cavity panels are always just above the panels that on the same strip of the
body from which the cavity surface detaches at its leading edge. This does
not always guarantee that the panel edges intersect as shown in Figure 5.5.
The panels on the body surface are fixed (a'd’ panel in Figure 5.5), but the
cavity surface (ab line) is modified to be on the same surface as line a’d’ by a
movement in the direction of (a’d’ x ab).

For the panel that has straight edges, the edge can be written into the
following parametric formulas as straight lines (as shown in Figure 5.5),

x' = xXg 4+ (X —Xg)A (0< A <1)

x = X + (xb —xa))\a (O <A< 1) (511)
At the intersection point, these two equations are equal and we have,
Xat + (xb, - xa:)}\l‘ =Xq + (Sq, — Xa)A2. o )('5‘12)

It consists of three equations with only two unknowns A; and As. This
system is over-determined and a least-square approach has to be used to find
the value of A; and A2. Since the calculated intersection by these two formulae
might be slightly different due to numerical truncation errors, an average value
is used,

A1) +x'(A
Xinter = _’il)_2x(_22’ (513)

where, X;n:er denotes the position vector of the intersection.

5.5 Detachment of sheet cavity

The detachment point of a cavity from the solid body is also called the posi-
tion of cavitation separation. Bodies with sharp corners possess a cavitation
separation point which is known to be located at this sharp corner and hence
it is given a priori for our present method. But for smooth bodies, a smooth
separation condition, as we have given in equation (2.36), is usually used.
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Figure 5.6: Schematics of the separation point of the cavity on a smooth solid
body.

But it was observed that the experimentally-found position of cavitation
separation lies considerably downstream from that predicted by smooth sepa-
ration. This leads us to assess the present smooth separation condition and its
influence on the predicted cavity length and volume.

Arakeri (1975) observed the smooth cavitation separation on two differ-
ent headforms and found two different kinds of separations: the viscous lam-
inar separation and the nucleate separation. He concluded that the position
of nucleate cavitation separation is predicted quite accurately by the smooth
separation condition. But for the viscous laminar cavitation separation, the
predicted position by smooth separation condition does not given accurate re-
sults. A similar observation and conclusion was later given by Franc & Michel
(1985) for the case of cavitating hydrofoils.

A schematics of the observation at the separation point of the cavity is given
in Figure 5.6. The minimum pressure point is denoted by sy,,. in this figure.
The laminar separation point sps is known to be close to the maximum negative
pressure gradient point downstream of the minimum pressure peak 8,,in., where
subscript LS denotes laminar separation. The cavitation separation point is
observed well downstream of the laminar separation point as shown at scg,
where C'S means the cavitation separation. The area between s;s and scg is
called a dead water region. Within this region, there is a local circulation of
the fluid in the direction as shown by the arrow in the figure.

But the observation of Arakeri (1975) shows that cavitation bubbles are first
observed to originate within the reattachment portion of the separation region
in the non-cavitating laminar boundary layer. With reduction in the cavitation
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number, a considerable portion of the separated flow region is observed to
be filled by cavitation bubbles, and, with further reduction of the cavitation
number, almost all of the separation region is occupied by the attached smooth
cavity. Accompanied with this process is that the laminar separation position
is also observed to move upstream and close to the minimum pressure position
Smin.-

Since the present numerical simulation of cavity flow deals only with fully
developed sheet cavity flows, due to the existence of the cavity, the laminar
separation of the boundary layer before the cavity separation point can be
roughly set to the minimum pressure point spm;,. with acceptable errors.

On the other hand, the round nose of the cavity at the separation point as
observed is believed to be the effect of the surface tension, which is neglected
in the present method. Therefore, we could not predict a cavity with round
nose. If we still set the cavity separation point at s¢s as observed, the cavity
shape is predicted as shown in the dashed line in Figure 5.6. It does not give a
correct prediction. A reasonable choice of the detachment point of the cavity
for the present method might be the laminar separation point sps, which is
close to the minimum pressure peak point Spin. as we argued before. It then
means that we take the triangular part of the dead water in front of the cavity

as part of the cavity.

Kinnas et al. (1994) investigated the influence of the detachment point
on the predicted cavity flow. They fixed the cavity length and calculated
the corresponding cavitation numbers.  Rowe & Blottiaux (1993) .predicted
the influence of the detachment point on the geometry of the cavity and the
pressure distribution on the foil surface. In the following, we will show the
influence of the cavity separation point on the cavity shape and the cavity
length too. The sensitivity for different profiles and the relation between the
pressure distribution and the cavity shape are also discussed.

We took NACA 16 series section as an example. The angle of attack is
set at 4° because it is a typical situation of a section on a propeller blade. We
chose four different thicknesses for the investigation, t/C = 0.06, 0.09, 0.12 and
0.15. The cavitation number is chosen to be ¢ = 0.87513. At this cavitation
number the cavity length is approximately 50% of the foil chord length.

All the calculation have been obtained with 100 panels for the wetted part
of the foil, 100 panels for the cavity surface and 10 panels for the re-entrant jet
surface.

The influence of the detachment point on the cavity length is surprisingly
large as shown in Figure 5.7. For all four sections, it is found that there is
a special detachment point for each section, for which the predicted cavity
length reaches its maximum. For the thin section (NACA 16-006), this point
is at the leading edge. With the increase of the foil thickness, this point moves
downstream.
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Figure 5.7: Influence of the detachment position on the cavity length. (NACA
16 series, & = 4°, 0 = 0.87513)

The sensitivity of the cavity length to the detachment point is much higher
for the thin section (NACA 16-006) than for the thick section (NACA 16-015).
This makes the present research easier since the thin sections (e.g. NACA
16-006) has normally a cavitation separation at the leading edge, which avoids
the strong influence of the detachment point. For a thick foil (c.g. NACA
16-015), the laminar separation point strongly depends on Reynolds number,
but a small error in the estimation of the separation point does not affect the
predicted cavity length and volume too much.

This effect can be expressed more precisely in term of the pressure distri-
bution. When the suction peak and the gradient is very high, the cavity is
sensitive to its detachment point. When the suction peak and its gradient is
lower, the cavity is relative insensitive to the detachment point.

If we compare the position of the detachment point, for which the cavity
has a maximum length, with the pressure distribution of the fully wetted flow
around the nose (Figure 5.8), we will notice that the cavity reaches the max-
imum when the detachment point is around the minimum pressure point. At
the same time, the cavity shape at the nose of the foil shows that the detach-
ment is smooth only when the detachment point is at the minimum pressure
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Figure 5.8: Pressure distribution at the nose of NACA 16 series.

point (Figure 5.9). If the detachment point is chosen in front of this point, the
predicted cavity surface intersects the solid surface. This is contradictory to
reality.

On the other hand, if the detachment point is chosen at a location down-
stream of the minimum pressure point, the cavity detaches from the solid sur-
face at nonzero angle. Then a stagnation point is expected at this point, which
is also impossible in reality.

The most applicable and maybe the most correct location to choose the
detachment point in the present simulation is still at the minimum pressure
point of the fully wetted flow.

It should be pointed out that, the outer surface from sps to scs of the
boundary layer is treated in the present method as cavity surface and a cavity
pressure p, is enforced on this part of the surface in the calculation. An error
can be expected due to this, but the error will not be too large because the
pressure in the dead water should be a constant and close its environment, the
cavity.
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Figure 5.9: Detachment of the cavity from the foil surface at different positions.
(NACA 16 series, 0 = 0.87513, a = 4°)
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5.6 Wake shape

Hydrodynamic modeling of the wake geometry of a propeller is one of the
important problems in propeller theory. It has been found that the influence
of the wake geometry on the predicted hydrodynamic forces on the propeller
can be higher than 4% for a heavily loaded conventional propeller (Moulijn &
Kuiper (1995)), comparing to the wake geometry determined by mean blade
geometric pitch. For highly skewed propellers, this effect is believed to be
higher. A calculation for the highly skewed propeller DTMB 4661 at J = 0.8
(design J = 1.038) shows that the influence of the wake alignment on both the
thrust and torque is as high as about 4.5% (Kinnas & Pyo (1997)), comparing
to the original wake used in their program. Since the cavity flow is a sensitive
phenomenon reflecting severely in the surface pressure distribution, a similar
level of influence on the cavity flow, volume and length of the cavity, can be
expected.

The treatment of the wake alignment started from the application of lifting
line-theory to both the propeller prediction and the propeller design. At that
stage the wake shape is normally chosen as a constant pitch on helical lines at
constant radius. This is expected to give a good approximation of the wake
geometry under the assumption that the propeller is well designed and close to
the optimal efficiency condition, for which the wake has a constant pitch in the
far-field wake (Burrill (1947)). Practically, this pitch is chosen to be the blade
mean geometrical pitch.

A sophisticated empirical wake model was. suggested by Kerwin & Lee
(1978). They assumed that all the trailing vortices would roll-up into the
tip vortices for each blade and a single hub vortex at a certain contracted point
in the wake. The far-field wake is treated as constant pitch helical lines. This
model later has been revised by partially alignment of the wake pitch for the
transition wake with the calculated velocity in the wake, but the wake sheet
roll-up is ignored (Greeley & Kerwin (1982)). The radial position of the wake
is restrained to a certain radius, only the pitch is aligned in this method. In
stead of aligning the transition wake, Hoshino (1991) aligned the far-field wake
and interpolate the transition wake with a linear method connecting the blade
trailing edge and the far-field wake.

A full alignment of a marine propeller wake according to the flow velocity
was carried out by Maitre & Rowe (1991) using a panel method. A similar
method was also used by Takinaci (1996) accounting for the viscous effect at
the trailing edge. A quantitative analysis of the effect of wake alignment on
the induced velocity and on the loading distribution on the propeller is given
by Moulijn & Kuiper (1995). A more sophisticated method based on a higher-
order panel method is provided by Pyo (1995).

Up to today, all of these method are for steady flows. Unsteady wake align-
ment is now tried for two-dimensional flows but no method has been available
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for unsteady three-dimensional wake alignment, due to its high cost. In most
unsteady flows, the wake is considered to be fixed as the aligned wake in the
circummferentially averaged inflow.

Other wake alignment theory based on potential panel method can be found
in Johnson & Rubbert (1975) and Hoeijmakers (1989).

5.6.1 Theory

According to the boundary condition of equation (2.38), there should be no
pressure jump across the wake sheet. In other words, the wake sheet cannot
carry any force. According to the Kutta-Joukowsky law, the force F acting on
a vortex segment ds in the wake sheet is given in the following equation,

dF = pV x ~vds, (5.14)

where, v is the vector of the vortex and V is the total velocity. Then the
pressure jump Ap across the sheet can be written as,

Ap = pV x 7. (5.15)

Because the velocity V and the vorticity v are generally not zero, they have to
be co-parallel or anti-parallel to avoid a pressure jump across the sheet,

V xy=0. (5.16)

Whatever lower-order or higher-order panel method is used, the vorticity
is assumed to keep the same value streamwise on the sheet to satisfy Kelvin’s
theorem. In other words, the vorticity vector v is presumed to be in the stream-
wise direction, i.e. approximately along the chordwise grid lines. In order to
fulfill the requirement of equation (5.16), the grid line has to be aligned with
the local velocity.

5.6.2 Implementation

The local velocity can be calculated by equation (2.7). A method based on the
hyperboloidal quadrilateral panel method with constant singularity distribu-
tions has been used in the present investigation. The induced velocity from the
surface normal dipole and the source distributions is calculated by the spatial
derivation of equation (3.86) and (3.87). The velocity is evaluated at the nodal
point of the grid. The self-induced velocity from the edge (passing through the
nodal point) is neglected:

It has been shown by Pyo (1995) that lower-order panel method with the
simple Euler method,

Xip,jp = Xip—1,jp + Vip_lyijt for every jp, (517)
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Figure 5.10: Euler method (A) and prediction-correction method (B) for the
wake alignment in the circular moving flow.

for the wake alignment does not lead to convergent result, where At is the time
interval when the fluid particle travels from grid point ip— 1 to #p. This is true
when coarse grid is used.

The problem of using Euler’s method is shown in Figure 5.10(A), where the
fluid particle follows the velocity V, from point a to b, and it travels further
in the next time step according to velocity V3, from point b to point c. Even if
the velocity field is a solid-body rotation field, like the uniform inflow towards
a propeller, the trace of the particle will follow a divergent path as shown in
the dashed line in Figure 5.10(A). This divergent effect is not retrievable by
- increasing the number of panels. A method based on Euler formula will never
predict the contraction of the wake. This is why Moulijn & Kuiper (1995)
concluded that the application of the cylinder coordinates is necessary to get a
converged result. Using cylinder coordinates however will loose generality and
limit its applications to other lifting problems.

This problem can be simply avoided by using a prediction-correction method,
where the prediction is given by Euler’s formula,

Xip,jp = xz;,‘_ll,jp + V(x;;,__ll' jp) - At for every jp, (5.18)

and the correction is given by,

Xip.jp = xz,__llyjp + %(V(x?p__ll,jp) + V(Xip,jp)) - At  for every jp, (5.19)
where the superscript n means the iteration steps. An illustration is given in
Figure 5.10B where the subscript p denotes the prediction and the ¢ denotes
the correction. Instead of from point a to b, fluid particle will move from point
a to b', which stays on the circle in the uniform inflow.

A strategy to speed up the roll-up of the wake has been discussed by Pyo
(1995) and a similar method has been developed in the present method. The
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Figure 5.11: Schematics of the effective wake rolling-up procedure, downstream
of a lifting body.

roll-up of the wake is done spanwise, strip by strip, as illustrated in Figure
5.11. The observation of a particle on the wake sheet shows:

1. The particle remains on the wake sheet surface and its travelling direction
determines the whole wake downstream of it.

2. The neighboring panels of the particle have the strongest influence on the
induced velocity at this particle and hence determine its moving direction.

which suggest us to update all the geometry downstream of the present strip
immediately as shown in Figure 5.11.

As we have used in the curvilinear higher-order panel method, a local Carte-
sian surface coordinate system is set up at every nodal point, where n is the
unit normal vector and ez is perpendicular to n and e; as shown in Figure 5.11.
As soon as the displacement of the grid point (ip, jp) is calculated according
to the prediction-correction method,

d =X p — x?ptjlp’ (5.20)
it is decomposed into the components along e;, e and n and preserved for
the subsequent strips. The displacement of the subsequent grid points is de-
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termined by this preserved components and applied in its local Cartesian coor-
dinates. After the alignment of the first strip, the whole wake is shown as the
dashed line in Figure 5.11. Applying the same technique to the second strip,
the wake geometry becomes as shown by the dotted line in the same figure.
This is done until the last strip of the wake.

5.6.3 A test case

It has been found that this technique gives a very quick convergence of the
wake shape. A test case is shown in figure 5.12 for Propeller 4119 (Jessup
(1989)) in uniform inflow at an advance coefficient of J = 0.833. The initial
wake is determined by the uniform onset flow. It is shown that the present
prediction-correction method gives a perfect circular shape for the initial wake
(Figure 5.12(a)) and the pitch of the wake is a constant along both the shaft
and radial directions. After one iteration, the wake pitch shows variation along
the radial direction and it is already very close to the converged wake shape.
Practically, three iterations are generally enough.

It should be noted that the roll-up of the vortex sheet into the tip and hub
vortex cores is an endless procedure. To resolve the details of the core requires
tremendous amount of panels and hence is generally not practical. This detailed
core shape has found to have almost né6 effect on the pressure distribution and
loading of the propeller. Hence it is not of interest in the present work. The

. judgement of the convergence of the wake is simple by its global shape.and. its...

induced velocity on the propeller blade.

A top view from the blade tip to the root for the aligned wake is shown in
Figure 5.13. Generally speaking, at the design condition, the empirical method
which determines the wake pitch as the averaged direction of the upper surface
and lower surface at the blade trailing edge is correct for the wake at most
radial positions, except the radius close to the tip, where the wake leaves the
trailing edge at a large angle to the nose-tail line. The waviness of the wake
lines at the last radius is caused by the roll-up of the tip vortices.

The aligned wake improves the prediction of the thrust and torque acting
on the propeller in a wide range of advance coefficients J, independent of
empirical ways of choosing the wake, which in most situations are propeller
geometry dependent. More consistent results can be expected by using the
wake relaxation. But due to the complication of this problem, the influence
of the wake alignment on the cavitation prediction within the present theory
is not investigated in detail in the present research. The discussion about its
influence on fully wetted flows and the loading on propeller blades can be found
in Pyo (1995), Maitre & Rowe (1991), Takinaci (1996), etc.
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Figure 5.12: Wake alignment procedure for Propeller 4119 at design point
J = 0.833. 30 x 50 panels are used on the blade surface, 30 x 120 are used on
the wake. (Only one of the three wake sheets is shown.)
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Figure 5.13: Top view (from the tip to the root) of blade sections and their
aligned wake at selected radius for Propeller 4119 at J = 0.833.

5.7 Kutta condition

The flow around the trailing edge of a lifting body is very complicated, which
involves viscous effects, boundary layer development, flow separation, and vor-
tex forming and shedding. Solving the full Navier-Stokes equations for such a
problem with the present numerical method and computer is still not practical.
It is found that, for un-separated flows, the trailing edge plays a crucial role in
controlling the entire flow field around lifting bodies. Although methods based
on interacting boundary-layer theory (Crighton (1985)) are well developed and
practically used in recent years to tackle the trailing edge problem, potential
flow theories with a Kutta condition at the trailing edge, still remain the main
stream of engineering methods.

The Kutta condition at the sharp trailing edge of lifting bodies, in the frame
work of invicid flow, has been proposed in the beginning of the last century.
The initial idea is to fix the undetermined value of the bound circulation around
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a lifting body by removing the velocity singularity at the trailing edge, or in
other words, to make the velocity at the trailing edge finite. Later on, this
Kutta condition was extended to unsteady flow as stated: the change of the
bound circulation should make the stagnation streamline to be an extension of
either one of the tangents of the body surface at the trailing edge. These are
the classical Kutta conditions for both steady and unsteady flows. A logical
reasoning on this classic condition has been given recently by Polling & Telionis
(1986) for both steady and unsteady flows. It is concluded from the paper that
these conditions are equivalent to requiring a zero loading at the trailing edge,
as given by equation (2.39).

Many experiments have been done to validate this statement of the Kutta
condition and the range of its applicability. But no consistent pattern has
emerged yet (McCroskey (1982)). In unsteady flow, the situation is even worse
and the trailing edge flow is poorly understood, physically and mathematically.
Visualization experiments of Ohashi & Ishikawa (1972) found that the Kutta
condition is valid for all their test conditions. But Polling & Telionis (1986)
stated from their results that the classical unsteady Kutta condition is clearly
not valid and the experiments show that the loading at the trailing edge is
not always zero too, due to the abrupt high curvature of the shedding vortex
sheet at the trailing edge. In the other word, the very near wake sheet after
the trailing edge can withstand vertical forces. The same phenomenon has also
been found by Fleeter (1979).

All the experiments suggest that the Kutta condition is still valid for flows
when the reduced frequency is low. It is believed that there is a critical num-
ber for the reduced frequency, above which the Kutta condition is no longer
applicable.

As for the value of the critical number, different experiments conclude dif-
ferently. Polling & Telionis (1986)’s results showed that when the reduced
frequency is higher than 2 and when the amplitude of the gust is not small, the
Kutta condition fails, whereas Fleeter (1979) concluded that the zero-loading
condition prevailed up to a value of 7 for the reduced frequency on a flat plate
but not for a highly cambered blade.

On the other hand, Polling & Telionis (1986)’s measurement with LDV
in the near wake downstream of the trailing edge tells us also show that the
loading difference can only sustain up to 3% of the chord length, but never more.
Since in numerical simulation, a Kutta condition has been widely recognized
and should be applied at least for the situation at a low reduced frequency for
the angle of attack is not sufficient to cause trailing edge separation, we are
encouraged to use the pressure Kutta condition, as given in equation (2.39),
for propeller flow problems, including cavitating propellers.
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5.7.1 Classical Kutta conditions

Mathematical statements of the Kutta condition for potential based panel
method are diverse, but two statements are widely used. One says that the
potential jump at the trailing edge should be equal to the dipole strength on
the free wake surface, it is known as the Implicit Kutta Condition or called
Morino’s Kutta condition,

Yu =" — ¢, (5.21)

where, superscript u and ! denotes upper and lower surface, respectively. The
other states that the pressure jump at the trailing edge should be zero. In other
words, the loading at the trailing edge should be zero. We call it zero-loading
condition. This is known as the Fzplicit Kutta Condition or pressure Kutta
condition.

When we apply the Bernoulli equation (2.21) to the trailing edge at both
the upper and the lower side and enforce equal pressure, we obtain the following
formula to guarantee a zero-loading,

ANe* ') _

o = s v, (5.22)
This equation is certainly a different condition than the previous Morino one
for unsteady flow, because it contains the contribution of the time derivative
of the potential and hence can really gudrantee the pressure equality.On the
other hand, Morino’s condition is obviously not valid for unsteady flow.
But in the steady flow case, the pressure Kutta condition can be simplified
into the following velocity equality condition,

|Vru| = |Vrl|7 (5'23)

which is eventually nothing more than the Morino’s Kutta condition in two
dimensions, but still differs for three-dimensional flows. A simple proof is given
in the following.

Consider a three-dimensional hydrofoil with a trailing edge which is not
perpendicular to the main stream direction, but at an angle of 8, as shown in
Figure 5.14. Morino’s Kutta condition guarantees that there is no concentrated
vortex along the trailing edge in I direction. This means that the velocity
components in /; direction on both side are equal,

(‘/Tu)ll = (W)ll' (524)

The velocity component in I, direction can be evaluated in the following way.
We choose two points at the trailing edge, marked 1 and 2, which are very close
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Iz

Figure 5.14: Schematics of the Morino’s Kutta condition.

to each other. The potentials at these two points are different for the upper
surface and the lower surface. We can write the two velocities as,

U __ AU (N )
V), = fg&z_‘f’l_, Vi), = %Az.;pl' (5.25)

Upon subtracting them, then,

(V) = (Vi = L2208 (5.26)
2
Because the dipole strength on the wake is equal to the circulation around the
section which differs for different span positions, then the right hand side of the
above equation is not zero in general. It means that the total velocities on the
upper surface and on the lower surface are generally different at the trailing
edge. So, the pressure is different too.

Using the pressure Kutta equation (5.22) directly is not easy due to its
nonlinearity. Davi et al. (1997) suggested an algorithm based on higher-order
panel method, but most of the others are using an iterative method (Kerwin
et al. (1987), Hoshino (1994), Bose (1994), Kinnas & Hsin (1992)). Whatever
methods they are using, these methods are all found quite time consuming.

Kinnas & Hsin (1992) state that the circulation around the foil is iterated
until the pressure is equal at the trailing edge, but Hoshino (1994) states that
the potential jump at the first panel in the wake is iterated, until the jumps
are zero. But the essence behind it is the same. That is: iterating the dipole
strength at the first panel of the wake (or the whole strength in one strip for
steady flow) until the pressures on the upper and lower body surface are equal
at the trailing edge.
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We denote the pressure difference at the trailing edge as,
Apm = Dy — Db (5.27)

where subscript m = 1,2,--- , Mrg, M7g is the total number of trailing edge
panels. Our objective is to make,

Apm =0 for m=1,---, Mrg. (5.28)

If we can find the derivative matrix (Jacobian) J which relates the pressure
difference with the dipole strength at the first panel in the wake as,
0(8pm)

Nenm)

then we can use a Newton-Raphson iterative procedure to achieve equal pres-
sure by changing the strength of the first dipole in the wake,

J= (5.29)

<P£E(n+l) _ ng(") —J'Ap™, (5.30)

where, Ap = (Ap;, Apg, - - ’APMTE)T’ ‘PZ; : (‘pw 119011: 29" " wzgufg‘)T7
and the superscript n denotes the iteration step.

The Jacobian is simply calculated by given a small perturbatlon to the
“initial guess of the dipole strength at the first wake panel as (I + €)pLr,.
Solving the complete problem again and obtain the pressure difference after this
perturbation from the initial value as Ap;®, then the elements in the Jacobian
can be evaluated by the following difference scheme,

€ _ Ap.
Jij = M’ (5.31)

6905Ei

where, 7,7 = 1,2,--- , M7g. It is obvious that M7 g times of completely solving
the whole problem has to be done before the Jacobian is obtained. This makes
the present algorithm very expensive. But fortunately, it is found both in steady
and unsteady flow calculations that the Jacobian has not to be re-evaluated in
every iteration or time stepping. Once it is formed, it can be used throughout
the whole calculation.

But sometimes it happens that the evaluation of the Jacobian fails. This
occurs when the dipole strength in the wake is zero or close to zero. An example
is the unloaded tip propeller, where the dipole strength in the wake can be
very small. An evaluation of the Jacobian based on the perturbation of this
small value will not give a correct searching direction for the Newton-Raphson
method, which eventually make the iteration divergent. This can easily be
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improved by using an absolute value of the perturbation, instead of using the
relative ones. Then the Jacobian can be evaluated by,

Ap;© ~ Ap;

Ppert

Jij = (5.32)

where,

TE
= max .} X €.
Ppert ('i-=1.1WTE Puw z)

5.7.2 Discussions

Until now, the mathematical consistency of the present method for the flow at
the trailing edge is still not clear. Numerical experiments show that the equal
pressure condition and Kelvin’s law cannot be satisfied at the same time, even
if very dense panel distributions are used at the trailing edge and even if the
wake alignment is applied at the same time, so that the numerical model shall
converge to its mathematical model. This occurs because the details of the
trailing edge flows, which involve strong viscous effects, are not modeled in the
potential flow theory.

The method by changing the wake strength to obtain equal pressure, as
we discussed in the previous section, is actually one of the simplest models for
the trailing edge flow. But using this value as the strength of the shedding
vortex (Kinnas & Hsin (1992), Hoshino (1994)) violates the Kelvin’s theorem
of equation (2.43). This value has no physical meaning and should be seen as
some kind of spurious dipole, which makes the pressure equal by hiding all the
numerical errors coming from:

1. the non-accurate simulation of the wake shape and its position,

2. the non-accurate calculation of the influence coefficients by using lower-
order panel geometry and lower-order singularity distribution,

3. all those errors that contribute to the velocity difference in s; direction
in Figure 5.14,

4. etc...

So, it has no physical meaning. This can be shown in the following simple
analysis for a two-dimensional flow.

Taking a two-dimensional sectional flow as an example (Figure 5.15), we
can form a rectangular closed path around the section on which we calculate
the circulation I'(t). This path is chosen so that it just passes through the
trailing edge on the body surface. According to Kelvin’s theorem, after a short
time At, the closed path moves downstream with the fluid to the new location
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Figure 5.15: Schematic illustration of Kelvin’s theorem.

as shown by the dotted path in the figure, but the circulation along the path
should keep the same. A spurious dipole of strength pTF (as shown in the
shaded area) can be introduced to make the pressure the same at the trailing
edge, but it has nothing to do with the shedding of the circulation. Shedding
the vortex according to ¢IF is certainly a mistake. This analysis is also valid
for the three-dimensional flows, and also for the steady flows where the dipole
strength does not change in the flow direction along the wake. ”

The drawback of using the first wake dipole as a device to make the pressure
the same is that it becomes very non-efficient and even mis-leading for-the flows
close to the tip of a propeller where the grids are highly distorted. Even for a
conventional propeller, if an equal radius grid is used, the panels are skewed so
much that /; and ls become almost parallel with each other, and furthermore
parallel to the shedding vortex of the wake. Changing the first dipole strength
in the wake equals changing the strength of shedding vortex. The wake vortex
has strong influence on the velocity component along [; direction but has almost
no effect (or very small effect that depends on the angle #) on the velocity
component along l; direction (Figure 5.14), which is the key part to make
the pressure equal as we have discussed through equation (5.26). When this
happens, the solution converges to such a situation that the wake strength pI?
becomes very large and the velocity at the trailing edge becomes very large too.
Then a low pressure peak at the trailing edge is predicted that is never observed
in experiments.

5.7.3 Unsteady Kutta condition

It has been shown by Kinnas & Hsin (1992) that a time-independent Kutta
condition needs at least a linear distribution of the singularity in the wake
close to the trailing edge. This is investigated and verified in this sub-section,
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Vw

Figure 5.16: A hydrofoil travelling in a sinusoidal vertical gust with a constant
speed.

which is essential for our following prediction of the unsteady cavity flow on
hydrofoils in a gust.

Numerical tests were carried out for a case where a hydrofoil is traveling
into a spatially fixed vertical gust as shown in Figure 5.16. The vertical gust
is given as Vi = V + AV sinwt, where V is the mean value and AV is the
amplitude of the gust. The hydrofoil has a rectangular planform so that the
panels are non-skewed. The shedding vortices are vertical to the trailing edge so
the pressure Kutta iteration can be very efficient. We define a non-dimensional
reduced frequency K as,

wC
K= Wy’ (5.33)
where, C is the chord length and Vp is the forward speed of the foil. In the
following calculation, the reduced frequency is chosen to be 7, so that the wave
length of the gust equals the chord length. When the time step is chosen to be
A(wt) = 0.2, the wake panel size will be 0.1 chord length. The calculated lift
variation is shown in Figure 5.17.

A constant singularity distribution on the wake panel is used for the cal-
culation. It is believed that the cross flow is not strong on this rectangular
hydrofoil, except for the time derivative of the potential, Morino Kutta condi-
tion should be able to given reasonable results. The solid line in this figure is
calculated by using Morino’s Kutta condition with very short time steps which
means very small panels in the wake too. It is found that the result is very
close to the result for the pressure Kutta condition (it will be shown in the next
section). But when the large time step is used, Morino’s Kutta condition fails
to control the pressure at the trailing edge and the amplitude of the unsteady
lift is reduced to only half of what it should be (as shown by the circles).

The under-estimation of the amplitude cannot be totally corrected even if
the pressure Kutta condition is used, where the strength of the shedding vortex
is determined by the spurious dipole strength (as shown by the squares in the
figure).

This problem can be solved automatically when a higher-order panel method
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Figure 5.17: Influence of the unsteady wake on the lift force. (rectangular foil
with aspect ratio of 2, NACA16-006 section, in sinusoidal gust with reduced
frequency K = )

is used. For lower-order panel method, a linear or quadratic distribution of the
singularity in the fixst. panel of the wake has to be specially implemented. The
influence coefficients from this higher-order distribution can be easily calcu-
lated by panel subdivision. It does not increase too much computer time but
increases the accuracy a lot and makes the calculation independent of the wake
paneling. The detailed treatment can be done as shown in Figure 5.18 for a
linear or quadratic distribution.

The shedding dipole strength p1g equals the dipole strength difference
at the trailing edge p* — ¢'. After a time step At, this dipole will travel
downstream to the next panel edge, which we denote as prgy1. The dipole
strength is fitted with a spline to determine its distribution over the first panel.
In the subsequent panels, the constant dipole is calculated by the integration
of the distributed dipole over the panel as,

_ ¥PTE + YTE+1

> (5.34)

Pwl

for the linear method, and,

5 8 1
Pyl = E‘PTE + E‘PTE+1 - ﬁ‘PTE+2 (5.35)

for the quadratic method. This method has been found to give a consistent




CHAPTER 5: NUMERICAL ALGORITHMS 99

Figure 5.18: Schematics of the wake dipole strength and wake shedding (left:
linear; right: quadratic).

and wake independent results. Details of this improvement will be shown in
the last section of this chapter.

5.7.4 Effect of Kutta conditions on cavity flows

Kutta conditions can have a big influence on the cavity flows, because different
Kutta conditions may result in different loadings, which in turn are directly
related to the surface pressure distribution. In case the pressure at the trailing
edge is almost equal using Morino Kutta condition, the cavity shape will not
change too much when the pressure Kutta condition is enforced. In case the
pressure gap at the trailing edge under Morino Kutta condition is not small
and the cavity is relatively long, then the predicted cavity shape can be quite
different from that predicted using pressure Kutta condition. To show this
influence, calculations have been carried out for the S propeller (Kuiper (1981))
at an advance coefficient of J = 0.4 and cavitation number of g, = 1.7. The
results are shown in Figure 5.19.

For this propeller at this condition, we found that the trailing-edge pressure
difference using the Morino Kutta condition is not big for outer radii. But it is
quite big for the inner radii. As we expected, the result in Figure 5.19 shows a
big difference in the cavity extent for the inner radii.

In general, it can not be stated how much the influence of the Kutta con-
dition can be on the predicted cavity extent and volume. But it will be shown
in section 6.4 that the cavity extent predicted using pressure Kutta condition
agrees very well with the experiment of open water tests in the Depressurized
Towing Tank.
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with Morino’s Kutta condition
with pressure Kutta condition

Figure 5.19: Comparison of calculated cavity extent on S-propeller (Kuiper
(1981)) using Morino and pressure Kutta conditions. (J = 0.4, o, = 1.7)

5.8 Time derivative of potential

In the calculation of the unsteady pressure distribution from the Bernoulli
equation (2.14) or (2.21), the partial time derivative of potential % plays
an important role. For a moving boundary, like the cavity surface, this value
is not easily evaluated, it has to be determined iteratively during the solving
procedure. This has been discussed in Chapter 4 and we will not repeat it here.

For the solid body surface, when we use body-fixed coordinates, this tem-
poral change of the potential can be evaluated easily by finite-difference scheme
that relates the value at the present time with the value at the previous times.
But we would like to mention that, generally speaking, the potential itself can
be multi-valued without influence on the velocity field. In other words, the
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potential at different time steps can include a different constant without influ-
ence on the velocity field. To use the above-mentioned finite-difference scheme,
at least one point in the flow field must be chosen as which the potential at
different time steps fixed.

When a boundary-integral method is used, the unique potential is guaran-
teed by the Green’s function (3.3), which renders the perturbation potential
¢ zero at infinity for any time level. Kinnas & Hsin (1992) suggested to use
a fourth-order backward finite-difference scheme. They concluded that this
fourth-order method has been found to produce results that are less sensi-
tive to the number of time steps in one cycle of the unsteady flow than the
second-order finite-difference scheme. Hoshino (1994) used third-order scheme
for the time derivative term in the pressure Kutta iteration, but a fourth-order
central-difference scheme for the evaluation of the pressure on the body surface.

In order to quantitatively evaluate these schemes and their effect on the
results, the same test case as we have used in the previous section is used here
again. Four different schemes are used — the first-, the second-, the third- and
the fourth-order scheme.

The calculated lift coeflicients are plotted in Figure 5.20 for the results
obtained with Morino’s Kutta condition and in Figure 5.21 for the results ob-
tained with the pressure Kutta condition. Solid lines in these figures represent
the results obtained by using a very fine grid in the wake. Both figures show
that the first-order scheme is not accurate enough and hence should not be
used. But the fourth-order scheme does not show to be superior to the second-
or third-order scheme as expected. Since the fourth order scheme does not
require more computer time, it is used in our present method.

Together with the discussion in the previous section about Kutta condition,
we can conclude that Morino’s Kutta condition, with a higher-order wake sin-
gularity distribution and a higher-order scheme for the time derivative of the
potential, can produce the same results as the pressure Kutta condition, at
least for a three-dimensional rectangular foil. However Morino’s Kutta condi-
tion is much cheaper than the pressure Kutta condition. In Chapter 7, where
unsteady cavitation flow on a rectangular hydrofoil is calculated, the Morino
Kutta condition is used.
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unsteady lift with pressure Kutta condition. (rectangular foil with aspect ratio
of 2, NACA16-006 section, in sinusoidal gust with reduced frequency K = )




Chapter 6

Steady Cavity Flows

The present nonlinear cavity flow theory is first checked in nu-
merical tests for steady cavity flows. Numerical convergence tests,
comparisons with results of other methods, verifications and vali-
dations are carried out in this chapter, both for two- and three-
dimensional hydrofoil cavitating flows, and for propeller cavitating
flows.

6.1 Two-dimensional section flows

Cavitation on a ship propeller is three-dimensional and unsteady. If there
is no sharp peak in the wake behind a ship stern, the inflow variations into
the propeller have a low frequency, however. Although the blade loading is
highly unsteady and has to be calculated as such, it seems acceptable as a
first approximation to consider the cavity as quasi-steady. In the years before
the 1980’s, most attention has been given to two-dimensional cavity flows.
Only a few authors have investigated the characteristics of three-dimensional
cavity flow at that time (e.g. Leehey (1971)). Some of the three dimensional
cavity flow models were based on two-dimensional cavity sectional flows, which
matches the inner flow with the outer flow asymptotically. We also start the
numerical tests and cavity flow calculations with two-dimensional cavity flows.
The results and experience for the two-dimensional cavity flows will be used as
guide line for the three-dimensional cavity flow calculations.

Excellent reviews of the research and predicting theories on two-dimensional
steady cavity flows have been given by Wu (1972) and Uhlman (1987). The
classical linear solution of cavity flow around a hydrofoil by Tulin & Hsu (1980),
Wu (1956) and Geurst (1959) has been modified by Kinnas (1991) to predict
the leading-edge partial cavity flows. Different from traditional linear meth-

103
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ods, this method predicts the cavity length to decrease with an increase of
foil thickness. This is in accordance with experimental observations. A sys-
tematic investigation from two-dimensional foils to three-dimensional propeller
cavitation has been performed recently at MIT by Kinnas (1992), Kinnas &
Fine (1992), Kinnas (1991). A so-called split-panel technique is used to avoid
re-paneling of the cavity-foil surface. At the end of the cavity, a simple em-
pirically algebraic expression of the pressure recovery is enforced over a given
range of the cavity length in this method. This approach of artificial recovery
may influence the final results. Also, the detailed flow structure at the trailing
edge of the cavity is ignored and no insight is obtained in its behavior.

In real flow a re-entrant jet will occur, especially in two-dimensional flows.
The formation of such a jet determines the shedding of the cloud cavitation
and the subsequent generation of noise by the cloud’s implosion. And hence
the jet influences the volume of the cavity as well. Using the present method, a
re-entrant jet model is very easily be implemented for two-dimensional cavity
flow since it is easy to define a re-entrant jet cross-section boundary on which
the boundary conditions can be applied.

In the following sub-sections, the focus is mainly on the non-linear cav-
ity volume prediction and the re-entrant jet simulation. A separate two-
dimensional potential based lower order panel method has been developed.
A re-entrant jet cross section is introduced as a boundary of the problem. Ac-
cording to the Bernoulli equation, the original dynamic boundary condition
on the jet (2.35) can be simplified into a kinematic boundary condition, which
states that the jet velocity should be the same as the free stream vélocity on the |
cavity to keep the same pressure as in the cavity (the vapour presure). So, a
normal velocity into the cavity on the jet cross section can be prescribed which
equals the free-stream velocity on the cavity surface. Then a Dirichlet dynamic
boundary condition can be enforced on the cavity surface, while the Neumann
boundary conditions can be enforced both on the jet boundary and on the wet-
ted surface of the foil. Giving an initial shape for the cavity (normally on the
body surface), the cavity surface is iterated. The kinematic boundary condi-
tion on the cavity surface is satisfied by iterating the cavity length and shape.
Upon convergence, both the dynamic and kinematic boundary conditions on
the cavity surface are satisfied and a re-entrant jet with a certain thickness
evolves automatically.

6.1.1 Formulation of the problem

Taking a cross-section of the hydrofoil of Figure 2.1, we draw a scheme of a
sectional flow with a cavity surface in a two-dimensional way as shown in Figure
6.1, which uses the same notation as Figure 2.1 but in more detail. The re-
entrant jet in the real flow is generally unsteady, moves upstream and impinges
the cavity surface close to the detachment point. But the re-entrant jet can




CHAPTER 6: StTreaDY CAviTY FLOWS 105

y
n S SJ
Sc
Ve
I n+ X
So ! * Sw -
Xd Xe I
Sg n n-

Vo_—4&

Figure 6.1: Schematics of the cavity-hydrofoil system in two-dimensional flow.

be also steady if there is a velocity component in the third direction along the
span. The latter one is the case we are investigating here.

The section is thought to be fixed in space and an inflow 14 has an angle
of incidence a to the nose-tail line of the foil section. A steady partial cavity
is formed on the surface of the foil when the ambient pressure is lower than
the cavitation inception pressure, which can be taken as the vapor pressure.
A re-entrant jet is formed at the end of the cavity and flows inward to the
cavity with the same speed as the speed on the cavity surface. The detailed
development of the jet in the cavity is not easily simulated. Fortunately this is
not important for the steady flow simulation. So we simply cut the re-entrant
jet at a certain location. Suppose that the re-entrant jet flows through this cut
of the jet (S in Figure 6.1) and disappears. Then the flow around the cavity
and the foil can be treated as an inviscid fluid flow with a velocity potential
function that satisfies Laplace’s equation. The solution for the disturbance
potential ¢ can be obtained by Green’s identity on this closed boundary. Since
the two-dimensional flow field around the foil is not a simple connected zone,
a cut (wake surface) has to be introduced to connect the foil trailing edge to
the infinity. A boundary condition should also be enforced on this cut.

In two-dimensional problem, a Green’s function of equation (3.4) is used
and the governing equation can be generally written as,

_ 0 ¢ ,
Ty = /Scp (5; In rp‘q> ds + /S Bn (Inrpq)ds (6.1)

where, S = Sg + Sc + Sw + Sy, p is the collocation point (control point)
and both p and ¢ are on the boundary S. The calculation of the influence
coefficients is different from the three-dimensional problem as we discussed in
Chapter 3.
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6.1.2 Boundary conditions

All the boundary conditions we have discussed in Chapter 2 are valid for two-
dimensional flows. For the present specific problem, they get the following
simple forms.

The kinematic boundary condition on the cavity surface (equation (2.30)
and (4.4)) and the kinematic boundary condition on the foil surface (equation
(2.25)) become the same. They are combined and simply written as,

O¢ =Vy'n on Sgp and Sc (6.2)
on
where, n denotes the outward normal unit vector both on the foil surface and
on the cavity surface.

In steady two-dimensional cavity flows, the dynamic boundary condition of
equation (2.26) is also simplified into a kinematic requirement from equation
(2.28), which states that the velocity on the cavity surface should be a constant
and,

Ve =Vovi+o, (6.3)

where V¢ is the freestream velocity on the cavity surface and we choose Vg as
the reference velocity of V..

Taking into account the disturbance velocity Vi, and defining the same
curvilinear coordinates on the cavity surface as in section 3.3.1, so that the
detachment point is at 8; = 0, then equation (4.35) is simplified into,

7/
07(‘0 =—-Vp-ei(s1)+VoVi+o on Sc. (6.4)
1
Following the same method as the alternative method discussed in section 4.5,
the potential on the cavity surface can be prescribed by,

w(s1) = / [Vov1+0 — Vo -e(s1)]ds) + o on Sc. (6.5)
0

On the jet cross section Sy, the dynamic condition of equation (2.35) can

also be simplified into a kinematic requirement,
dp Y

‘a— = ""/0 1+0-— on SJ. (66)
where n is the normal unit vector on the jet boundary (the cut-off) but pointing
into the fluid field.

On the wake surface Sw, the velocity in magnitude is considered to be
continuous while the potential has a jump across the wake, but is kept con-
stant along the wake from the trailing edge to infinity. It is expressed in the
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perturbation potential as,

Jp _ Oy
%‘F = On— on SW (67)
Ap=¢h—ps  on Sw (6.8)

where Ay is the potential jump across the wake surface and superscripts + and
— denote the variables on the upper and lower surface of the wake, respectively.

Morino’s Kutta condition is used in the present investigation since it gives
good results in steady two-dimensional flow cases. A pressure Kutta condition
is not necessary. The so-called Brillouin-Villat condition can be also enforced at
the detachment of the cavity. But at present, the detachment point is treated
as an input parameter. The guideline is given in section (5.5).

6.1.3 Iteration scheme for the cavity surface

An estimated cavity length and shape, and a re-entrant jet cross section bound-
ary are first estimated at the beginning of the calculation. The dynamic Dirich-
let boundary condition (6.5) is imposed on the cavity surface, and the kinematic
Neumann boundary conditions (6.2) and (6.6) are imposed on the wetted part
of the foil and on the cross-section surface of the jet. Only the kinematic
boundary condition on the cavity surface is not satisfied at this moment. The
potential on the wetted part of the foil and on the cross-section of the jet, and
the normal derivative of the potential on the cavity surface are calculated by
solving equation (6.1). These calculated normal derivatives of the potential
on the cavity surface are usually not equal to the value prescribed in equation
(6.2). The difference AV, is defined as,

13 J d
a(pi'req a(plcal Vo-n-— 6—£|cal' (69)

»

AV, =

where the subscripts “req.” and “cal.” denotes the value prescribed by equation
{6.2) and the calculated values respectively.

In two-dimensional flows, the coefficient defined by equation (4.17) is sim-
plified into A = Vj5+/1 + ¢ and equation (4.32) becomes,

dn Ay
Vovl+o o Vo-'n anlmz. AV, (6.10)

and then the cavity thickness n can be determined by the integration,

AV, LAV,

—ds;. 6.11
Vo\/1+0' 0 Ve 51 ( )
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6.1.4 Cavity volume and hydrodynamic forces

The most important parameter of the cavity in the present simulation is its
volume. If the cavity thickness is described by 7(z), then the cavity volume V
can be obtained by the following integration,

V= /Ie 7(x)de (6.12)

where, z4 denotes the position of the cavity detachment point and z. denotes
the position of the maximum cavity length (see 6.1). The lift L and drag D on
the foil section are calculated by integrating the pressure all over the surface
as,

F, = - /pnyde,
F, = - / pngde,
and then,
L = F,cosa—F;sina,
D = Fysina+ F;cosa. (6.13)

where n, and n, are the two components of the outward normal unit vector on
the foil surface and df is the line integral element along the surface. The pres-
sure under the cavity, but on the foil surface; is set to p, in thesé ¢aléiilations.
The following non-dimensional parameters are used in the expression of the
results in this section.
The pressure coefficient is defined,

Do—Dp
C, = . 6.14)
T i’ (
The lift and drag coefficients are defined as,
L
CL=—5—, 6.15)
ipW’C (
and,
D
Cp = ———, 6.16
P IV (6.16)

where C' is the chord length of the foil.
In the two-dimensional flow case, we also define the following non-dimensional
cavity volume coefficient,

Cy =V/C2. (6.17)
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6.1.5 Numerical Implementation
Discrete expression of the problem

The computing time for the two-dimensional flow problem with potential theory
is not a key issue nowadays. Instead of using the higher-order panel method,
we used the lower-order panel method with constant source and dipole distri-
butions on every panel. When the number of panels is high enough, it should
give a result with the same level of accuracy as that of the high-order method
and approach the analytic solution.

The details of the discretization of the geometry and the system of equations
are not discussed in the following. Only the discretization of equation (6.5) and
(6.11) are given.

All of the prescribed dipole strengths on the cavity surface are related to
the dipole strength on the panel just ahead of the detachment point of the
cavity as described in equation (6.5) by ¢o. Suppose the cavity starts at panel
Ny, and ends at panel N.. For consistency with the panel method, a simple
integration of equation (6.5) by mid-point rule is used here,

1
Y = Z [VovVl+o—(Vo-e)i] Ask + N1 i=Ng,...,N. (6.18)
k=Ny

where,
1
Asyp = §(lk + lkt1) (6.19)

and i is the length of the k** panel and the second term (Vg - e;); in the
summation is calculated at the collocation point for panel k.

After solving the system of equations, we obtain the normal derivatives of
the potential on the cavity surface. This AV, is evaluated at the collocation
point and the cavity thickness is calculated by the same rule as,

m=3 @Vade e i=N,... N (6.20)
Ve
k=Ny .

At the beginning of each calculation, after the length of the cavity is as-
sumed, a re-entrant jet surface with very small height is firstly taken vertically
to the surface at this point and the cavity thickness distribution is assumed
to increase from the detachment point to the jet linearly. If the cavity length
is under estimated, the cavity will grow very quickly over the jet boundary.
If the end of the cavity surface intersects the foil surface, the program simply
truncates that part. But if the end of the cavity is above the foil surface, the jet
boundary is adjusted to connect this end point vertically to the foil surface. No
more restrictions are enforced and the re-entrant jet can evolve automatically,
as we have discussed in section 5.4.
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Surface paneling

A very fine grid is generally needed to simulate the re-entrant jet at the closure
of the cavity where the curvature is very large. At the leading edge and the
trailing edge, a fine grid should be also used. It is known that the abrupt
change of the panel size for neighboring panels will influence the accuracy of
the calculation. A fine grid on the foil surface close to the closure of the cavity
is also needed. Qur arrangement for the panels is as follows.

On the lower surface of the foil, a cosine distribution of the panel from the
leading edge to the trailing edge is used. On the cavity surface, two sets of
panels are used. Half of the panels on the cavity surface are used for the last
5% of the arc length on the cavity surface.

- i—-1 .
5; =0.95 (05 — 0.5 cos m'fl’) 1= 1, 2, N 7Ncav/2a (6.21)
and,
~ i— Ncav
§; = 0.95 4+ 0.05 Noas/2 T

where, N 4y is the total number of panels on the cavity surface and § is the
normalized arc length.

For the paneling on the foil surface downstream of the cavity end, a similar
distribution is used with fine paneling close to the re-entrant jet.

i—1

i=Neaw/2 ... \Neaw + 1, (6.22)

i=1,2,..., Niown/2 (6.23)

§=01—+-
Ndown/2
and,
~ i — Ndown/2>
§=01+09 (0.5 —~0.5c08 ———
! Ndown/2

i = Naown/2:-- » Naown +1, (6.24)

where Ngowyn is the total number of panels on the back of the foil downstream
of the cavity.

Figure 6.2 shows an example of the panel arrangement around the re-entrant
jet for this scheme of paneling,.

6.1.6 Results and Discussion
Convergence test

At first, we carried out a convergence test for the present method to check the
number of panels we need to obtain a convergent result. We took a NACA16-
006 section at an angle of attack 4° and a cavitation number of 0.87513 as
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Figure 6.2: Surface paneling around the re-entrant jet surface and the cavity
end. (NACA16-006 section at an angle of attack 4°, and cavitation number

0.87513)
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Figure 6.3: Variation of the cavity length with number of panels. (NACA16-006
section at an angle of attack 4°, and cavitation number 0.87513)

a test case. Figure 6.3 shows the change of the calculated cavity length and
Figure.6.4 shows the change of the re-entrant jet thickness, with increasing.the
number of panels.

It is obvious that the solution quickly approaches an asymptotic value with
increasing number of panels. When both of the number of panels on the cavity
surface and on the foil surface downstream of the cavity is increased to 80, the
changes of the cavity length and the re-entrant jet thickness become small. So,
80 panels on the cavity surface and 80 panels on the foil surface downstream
of the cavity is sufficient. In the following calculations, we take 100 panels for
both surfaces. That means a total of 260 panels (with 50 on the pressure side
of the foil and 10 on the jet cross section).

Figure 6.5 and Figure 6.6 show the cavity convergence on the NACA16-
006 section at an angle of attack of 4° for two different cavitation numbers,
respectively. It is found that the convergence is slow toward the final result.
From our experience, although the steps needed for the iteration depend on the
initial assumption of the cavity, 100 steps are always needed to achieve a result
with a maximum error between the calculated velocity on the cavity surface
and the prescribed freestream cavity velocity of less than 1%. The maximum
error always occurs at the intersection of the cavity and the re-entrant jet.
But on most part of the cavity surface, the tangential velocity converges much
faster and the errors are much smaller.
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Figure 6.4: Variation of the jet thickness with number of panels. (NACA16-006
section at an angle of attack 4°, and cavitation number 0.87513)

MWWWNW |

Figure 6.5: Changes of the cavity shape with iteration steps. (NACA 16-006
a=4° 0 = 0.87513, linitiat /C = 0.37550, converged I/C = 0.59279).

Figure 6.6: Changes of the cavity shape with iteration steps. (NACA 16-006,
a=4° 0 =14).
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Figure-6.7: Pressure distribution on the cavity and foil surface. (NACA 16-006,
a = 4°, o = 0.87513, re-entrant jet cavity model)

As we have discussed in Section 5.3, the longitudinal growth of the cavity
in the iteration is very slow when a short initial guess is used. For three-
dimensional cavity flow calculations, this is prohibitive.

The influence of the detachment point on the final cavity volume and cavity
length has been investigated in Section 5.5. Since we have not found a good
way to calculate the position of the detachment point, detachment is always
set at the leading edge for all the calculations in the following paragraphs.

Predictions for NACA16 series

A calculation for the cavity flow with a re-entrant jet on the NACA 16-006
section at an angle of attack of 4° is carried out at a cavitation number of
0.87513. This cavitation number is chosen because the author wanted to make
a comparison with the result of Uhlman (1987) cavity termination wall model.
The converged shape of the cavity and its re-entrant jet and the final pressure
distribution on the cavity and on the wetted part of the foil are presented in
Figure 6.7. Details on the re-entrant jet are shown in Figure 6.2 with the panel
arrangement.

Figure 6.7 shows that the velocity on the cavity surface equals to the pre-
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Figure 6.8: Pressure distribution on the cavity and foil surface. (NACA 16-006,
a = 4°, 0 = 0.87513, termination wall cavity model)

scribed freestream velocity since the pressure equals to the prescibed pressure.
It means that both the dynamic boundary condition and the kinematic bound-
ary condition on the cavity surface are very well satisfied. Only at the control
point of the last panel on the cavity, the velocity is slightly higher than the
freestream velocity, but the relative error is still less than 1%. A stagnation
point C, = 1 is clearly visible downstream of the end of the cavity.

The flexibility of the present program makes it very easy to change the
kinematic boundary condition on the jet section from equation (6.6) to a non-
penetration condition similar to equation (6.2) and find the solution with a
cavity termination-wall model. The result is shown in Figures 6.8. A stagnation
point is also shown at the corner of the wall. The difference of the predicted
cavity shapes by these two cavity models can be clearly seen in Figure 6.9 and
Figure 6.10 for two different cavitation numbers. The predicted cavity lengths
and volume are about 10% larger than those of the termination-wall model.
But for a thicker section (NACA 16-012) however, the predicted cavity length
and volume of the re-entrant jet model are smaller than those in the results of
the termination-wall model. This will be shown later.

A parametric analysis has been performed for the NACA 16 series with
different thickness to chord ratios, to study the relations between the cavity
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Figure 6.9: Comparison of the cavity shapes for these two different cavity
models. (NACA 16-006, a = 4°, cavitation number ¢ = 1.3).
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Figure 6.10: Comparison of the cavity shapes for these two different cavity
models. (NACA 16-006, o = 4°, cavitation number o = 0.87513).
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Figure 6.11: Cavity re-entrant jet thickness h/C versus cavitation number o.
(the angle of attack a is 4°)

volume, the cavity length, the cavitation number and the re-entrant jet thick-
ness. All results are listed in Table B.1, Table B.2 and Table B.3 in Appendix
B.

The special feature of the present method is the re-entrant jet calculation.
Figure 6.11 shows the re-entrant jet thickness versus the cavitation number
for three sections. It follows from this figure that the re-entrant jet thickness
decreases with increasing cavitation number. Also found is that the re-entrant
jet is thicker on a thinner profile.

When we plot the ratio of the re-entrant jet thickness and the maximum
cavity thickness against the cavity length, we obtain Figure 6.12. It shows that
the re-entrant jet thickness is always a certain fraction of the maximum cavity
thickness t,,q;, irrespective of the cavitation number and the profile thickness.
This percentage is around 8% to 10%. It is also found that the maximum cavity
thickness is also always located at 60% of the total cavity length (Figure 6.13),
irrespective of the cavitation number and the profile thickness as well. These
characteristics of the re-entrant jet can also be found in Gilbarg & Rock (1946)
for the re-entrant jet behind an obstacle.

Comparison with other linear and nonlinear results

In order to assess the difference in the prediction results of the present method
and those of other linear methods with thickness correction and nonlinear meth-
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Figure 6.12: The re-entrant jet thickness as fraction of the cavity maximum
thickness versus the cavity length. (NACA 16 series, angle of attack a = 4°)
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Figure 6.13: The maximum cavity thickness position as fraction of the cavity
length. (NACA 16 series, angle of attack a = 4°)
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Table 6.1: Comparison of different approaches for the same cavity termination
wall model.

Uhlman’s Re- | Present Re- | Relative Dif-
sults sults ferences
Cav. Number ¢ 0.87513 0.87513 0.00%
Cavity Length [/C | 0.5000 0.5100 +2.00%
Cavity Volume C, | 0.01670 0.01794 +7.4%
Lift Coeff. Cy, 0.53562 0.51705 -3.5%

ods with termination-wall model, comparisons have been made for NACA 16
series sections at an angle of attack 4° for different cavitation numbers.

Uhlman (1987)’s method is based on velocity. A cavity termination-wall
model is employed in his method. The cavity length is prescribed, while a
cavitation number is calculated. When the shape of the cavity has converged,
the cavitation number was obtained. By assuming the velocity on the jet
boundary to be zero in the present method, we can also obtain the solution
with a termination wall model. A comparison is shown in Table 6.1. It can
be concluded that the results are very close to each other. The cavity length
predicted by the present method is 2% longer than the length predicted by
Uhlman.

The calculated cavity lengths have also been compared with the results of
Uhlman (1987)’s nonlinear method, as shown in Figure 6.14. It is found that the
results for NACA16-009 are very close to each other. The cavity predicted by
present method is longer for NACA16-006 section but shorter for NACA16-012
section compared to the nonlinear method results by Uhlman (1987). Another
comparison has been made of the present results and the linear method results
with thickness correction provided also by Uhlman (1987) for his comparison.
This is shown in Figure 6.15. The linear method with thickness correction gives
very good results compared to the present nonlinear method for NACA16-006
but over-predicts the cavity length for NACA16-012. The present method
predicts a decrease of the cavity length with increasing thickness while the
linear method predicts an increase. Since the tendency is different, we can say
the linear method is not accurate enough even for a cavity flow on a very thin
section, especially when the cavity is long,.

As for the cavity volume, a comparison is shown in Figure 6.16 between
results of the present method and results of the linear method. The tendency
that the cavity volume decreases with increasing foil thickness is the same
but the results are very different. The linear method seems to over-predict
the cavity volume. For NACA16-012 section, the volume predicted by the
linear method is twice as large as that predicted by the present method. This
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Figure 6.14: Comparison of results of the present method and those of the
non-linear method of Uhlman (1987) for NACA 16 series.

emphasizes that for the calculation of pressure fluctuation the linear method is
not accurate enough.

Comparison with experimental measurements

In order to validate the present method, the present results are compared with
measured results of Shen & Peterson (1978) and Shen & Dimotakis (1989a)
both for a modified Joukowsky profile and for a NACA 66 (MOD) a=0.8 section.
Since the leading edge sheet cavity is very sensitive to the pressure distribution
at the suction side of the profile, a careful investigation of the influence of
viscosity, boundary-layer separation and wall effects in the experiment should
be done before the comparison can be made.

The viscosity has strong effects not only on the cavity flow, but also on
the wetted flow (Shen & Dimotakis (1989b)). The experimental results show
that the lift coefficient of the NACA 66(MOD) a=0.8 section obtained in the
experiment is 0.531 at an angle of attack of 3° when the Reynolds number is
3 x 108, while the potential theory predicts 0.626, which is 15% larger than
the experiment. Correspondingly, the calculated pressure at the suction side is
also lower than the measured one. For the cavity flow, Avellan et al. (1989)’s
experiment shows that the leading edge cavity on a NACA 0009 symmetric
profile at 2.5° incidence is 30% chord length when the water speed is 20 m/s,
but 45% chord length when the water speed is 35 m/s.
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Figure 6.15: Comparison of results of the present method and the results from
the linear method provided by Uhlman (1987). (NACA 16 serics)
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Figure 6.16: Comparison of cavity volume obtained from different methods.
(Cy = volume/C?, NACA 16 series).
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This may be caused by the differences of the boundary-layer development
at the suction side and at the pressure side at different Reynolds numbers. For
the NACA 66 (MOD) a=0.8 section, the transition location of the boundary
layer is reported to be at 13% of the chord length on the suction side and at
89% of the chord length on the pressure side. At a Reynolds number of 5 x 105,
the flow is almost laminar all over the section surface. The section is actually
de-cambered and also the effective angle of attack is reduced by the boundary-
layer. This de-cambering could be treated accurately by a careful calculation
of the boundary-layer development on the section surface. A viscous/inviscid
interaction calculation (Kinnas et al. (1994)) for a 2-D section has shown this
strong effect already. Any comparison based on equal angle of attack or equal
lift coefficient does not work. In the equal angle of attack comparison, the
potential flow method always over-estimates the cavity length and volume be-
cause the negative pressure on the suction side is always over-predicted. But
in the equal lifting coefficient comparison by changing the angle of attack only,
the potential theory always under-predicts the negative pressure peak at the
leading edge.

In the present method a boundary-layer calculation has not been carried
out for this comparison because the difference in the pressure distribution may
result not only from the boundary-layer flow but also from the blockage of the
test section (Deshpande et al. (1994)). We think that if the cavity is small, the
boundary layer at the suction side of the section is not influenced too much by
the cavity, and a comparison could be made on an equivalent section that has
the same pressure distribution as measured in the wetted condition. -

A simple empirical method like Pinkerton (1936)’s is used. An arbitrary
function is used to de-camber the section,

A(f/C) = (f/C)r.e.- (1 - (2/C)?)
where (f/C)t.g. is the total de-camber amount at the trailing edge. For this
NACA 66(MOD) a=0.8 section, (f/C)r.e. = —0.009 gives a good correla-
tion between the experiments and the calculations for pressure distribution, as
shown in Figure 6.17.

Based on this de-cambered profile, the calculations are done for three cavi-
tation numbers (0.84, 0.91, and 1.00) at an angle of attack of 4°. The agreement
is quite good, as shown in Table 6.2.

In order to estimate, as a first estimate, how strong the viscous effect is, the
same section in a condition of & = 4° and ¢ = 1.0 is calculated both for the
original geometry and for the de-cambered geometry. The results are plotted in
Figure 6.18. As expected, the predicted cavity length on the original geometry
is 2.5 times as long as that predicted for the de-cambered section.

But this result can not be generalized because it strongly depends on the
pressure distribution on the section surface. For a NACA 66 section, which has

]
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Table 6.2: Comparison of the cavity length and the lift coefﬁcient. (NACA
66(MOD) thickness + NACA a=0.8 camber, angle of attack a = 4°)

Cavitation Number | Experiment  Calculation
e JC | C. | 1JC | CL
1.00 0.20 | 0.645 | 0.223 | 0.619
0.91 0.36 | 0.670 | 0.363 | 0.652
0.84 0.60 | 0.699 | 0.610 | 0.678
15
o resent method
(@)
;1 0 o=1.0
g 0=031  s=0.84
£ v experiment
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o
o
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wetted flow

negcabtlve press re
o 3}
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Figure 6.17: Comparison of the pressure distribution for an angle of attack
of 4°. (NACA 66(MOD) thickness + NACA a=0.8 camber, the experimental

data are from Shen & Dimotakis (1989a))
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Table 6.3: Comparison of cavity length calculations with experiments. (Modi-
fied Joukowsky foil, Shen & Peterson (1978))

Qa Experiments Calculations
3.8° 0.25 0.249
4.3° 0.39 0.395
0.3 E : :
0.2 o original NACA 66(MOD) + a=0.8 | _
| ¢ | =———- de-cambered
0.1 - : '
0.0
0.1 i i i i
0.0 0.2 04 0.6 0.8 x/Chord1.0

Figure 6.18: Comparison of the cavity shape for the de—camBeféd and the
original section. (NACA 66(MOD) thickness + NACA a=0.8 camber, angle of
attack o = 4°) T ; I

arelative flat pressure distribution (Figure 6.17) over a large part of the suction
surface in wetted-flow condition, the cavity length and volume are very sensitive
to the pressure. On the other hand, for a section like the modified Joukowsky
section (Shen & Peterson (1978)), a de-cambering seems not necessary because
the pressure distribution is not so flat on the suction side.

Figure 6.19 shows the pressure distribution calculated by the present po-
tential flow theory and the measured data (Shen & Peterson (1978)) for the
modified Joukowsky profile. Since the agreement is quite good and the pressure
distribution is not very flat on the suction side of the section, a comparison
can be made without viscous correction. The calculated cavity lengths for
two different angle of attacks are listed in Table 6.3. The agreement is very
satisfactory.

Since no good experimental results are available for the cavity volume, com-
parison can not be made at present.
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Figure 6.19: Comparison of pressure distribution on the modified Joukowsky
profile. (angle of attack o = 3.25°, experimental data are from Shen & Peterson
(1978))

6.1.7 Summary

The results obtained using a cavity termination wall model in the present
method shows a good agreement with results of Uhlman’s non-linear termination-
wall model. Calculations for NACA 16 series sections with three different thick-
nesses to chord ratio (6%, 9% and 12%) have been performed. The present
results show, like other non-linear methods, that the cavity length decreases
with increasing foil thickness.

We have found that the re-entrant jet thickness is always a certain percent-
age of the cavity maximum thickness, irrespective of the cavitation number,
the cavity length and the foil thickness. The location of the maximum cavity
thickness for different conditions is also fixed at 60% of the cavity length from
the detachment point. This may be of importance for the shedding of the cavity
by the re-entrant jet.

The present method is validated by comparing results with experimental
data. The comparisons were made by de-cambering the original NACA section
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into a modified section in order to take the displacement of the boundary layer
on the section surface into account. Three cases (¢=1.00, 0.91, 0.84) have
been investigated for this de-cambered section and a good correlation has been
found.

In summary, the re-entrant jet modeling with the potential flow theory for
two-dimensional cavity flows is a quite stable and convergent method. If the
viscous effect could be included in the method, it could provide a rather precise
prediction. A benchmark test of the cavity volume for the steady flow condition
should be carried out to verify the present theory. A further extension of
the method to three-dimensional predictions and unsteady cavity flow around
hydrofoils and propeller blades appears feasible.

6.2 Three-dimensional hydrofoil flows

It is important to control the dynamic behavior of cavitation on a propeller
blade in order to reduce cavitation induced ship vibrations. As has been shown
in previous research (De Lange (1996)), the re-entrant jet at the end of the
sheet cavity plays an important role in the instability of the cavity and the
formation of cloud cavitation. The surface of a sheet cavity is initially smooth,
transparent and stable. In many situations, the sheet cavity surface will distort
and break partially into small bubbles at the end of the cavity (20th ITTC
Report, 1993). When the angle of attack is increased, a strong re-entrant jet
forms at the end of the cavity: When the re-entrant jet touches the-cavity
surface, the cavity will break up and part of the cavity will be shed and form
cloud cavitation in the wake.

A re-entrant jet is always needed to close a 2-dimensional cavity. A steady
3-dimensional cavity flow, however, can have a smooth closure over much of its
extent, even when a re-entrant jet is formed. Many observations, both at model
and full scale, show that a sheet cavity can be very stable if the re-entrant jet
is able to find a good exit (Kuiper (1994)). A typical exit for highly skewed
propeller blades is in the cavitating tip vortex. This makes the sheet cavity on
the propeller blades quite stable.

Most of the prediction methods for 3-D cavity flow are aiming at the influ-
ence of cavitation on the hydrodynamic forces. Only a few methods tried to
predict the cavity volume accurately in recent years. At first, methods were
developed only for high-aspect-ratio hydrofoils (Leehey (1971) , Furuya (1975),
Uhlman (1978)and Van Houten (1983)) by matching the asymptotic expan-
sion of the inner and outer solutions. After having published their 1971 paper,
Jiang & Leehey (1977) accomplished a complete 3-D calculation. Because of
the difficulty to determine the cavity planform, a closure condition for each
individual spanwise strip was used. Recently, nonlinear methods have been
developed for arbitrary hydrofoils. Pellone & Rowe (1981) calculated the su-
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percavitating flow on a 3-D flow hydrofoil with free surface by a velocity-based
panel method. Peallat & Pellone (1996) developed a nonlinear method for the
prediction of the partial cavity flow. Systematic research on partial cavity flow
using potential-based panel methods for 3-D hydrofoils and propeller blades
has been performed at MIT in the last ten years (Kinnas & Fine (1992), Kin-
nas & Fine (1993), Fine & Kinnas (1993)). A so-called split-panel technique
is used to avoid re-paneling of the cavity-foil surface and a fast convergence is
achieved in their method.

In order to predict accurately the cavity volume and to analyze the possible
influence of the jet on the stability of the cavity, a re-entrant jet model at the
cavity end is needed. Calculations of the re-entrant jet formation at the end
of a 2-D cavity were first carried out by Furness & Hutton (1975) and recently
by De Lange (1996) for arbitrary hydrofoil sections. But 3-D simulations of
the re-entrant jet have not been found in the literature. Encouraged by the
successful simulation of the re-entrant jet in the 2-D cavity flow, the present
method has been extended to the steady 3-D partial cavity flow on arbitrary
hydrofoils.

6.2.1 Formulation and discretization

We consider a simple case (see Figure 2.1), where only a three-dimensional
hydrofoil is in the flow and fixed in the space, as shown in Figure 6.20. The
incoming flow is along the chord direction with an angle of attack o with
respect to the hydrofoil. We consider the situation that the cavity starts from
the leading edge and a re-entrant jet is formed at the end of the cavity. As we
have discussed in Section 5.4, a cut-off of the re-entrant jet is not easy for the
three-dimensional case and not really necessary. So, we will let the re-entrant
jet develop by itself. The detail of the jet is not our interest. When the cavity
surface has converged, the calculation is terminated.

Even if for the purely three-dimensional steady flow, the dynamic boundary
condition on the cavity surface can be simplified from equation (2.28) into
a kinematic requirement that the velocity on the cavity surface should be a
constant and,

Vo =Vovl+o. (6.25)

The difference of this equation from equation (6.3) is that this velocity contains
components in three directions, including the span direction.
In the present case, equation (4.36) becomes,

81
o = o+ / (VA + o)WV~ (Vo-m + w2~ Vo-er)dsy  (6.26)
0
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Figure 6.20: Schematics of the 3-D cavity flow of a hydrofoil in uniform on-
coming flow.

where the (Vo ‘n— -5% term is omitted since it will valish when the calcu-
lation is converged.

By using a similar discretization as we used for the two-dimensional flow
calculations, the potential on the cavity surface can be determined by the
following equation,

o =3 (L +0)VE — (Vo m)f + ()] = (Vo - en)])Ase + 0 (6.27)
k=1

where n denotes the iteration step, and this equation is applied on each chord-
wise strip. The potential on the cavity has to be updated after each iteration.

The updating of the cavity surface from an initial guess or the previous
iteration is then determined by the following hyperbolic equation,

on on _ _ 9y
Ag+By = (Vm n-32), (6.28)

which is a simplification of equation (4.32). This equation is solved recursively
starting from the detachment point, where 7 is zero.
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Figure 6.21: The side view of the cavity on a NACA 16-006 rectangular hy-

drofoil (aspect ratio = 500, angle of attack o = 4° and cavitation number
o =1.0).

6.2.2 Convergence tests and numerical verification

A convergence test has been carried out successfully for the 2-D simulation of
the cavity flow with a re-entrant jet. Quite a large number of panels is needed
in the 2-D flow case to achieve an accurate result.

Here we take a high-aspect-ratio (AR=500) rectangular hydrofoil as an
example. The cross-section is NACA 16-006. The intention is to verify our
following calculations by our previous two-dimensional calculations. The angle
of attack is chosen to be 4 degrees, which is representative for the situation on
a propeller blade. In our test the spanwise number of panels is maintained at
20 for the half-span while the chordwise number of panels on the cavity surface
is varied from 20 to 50. A side view of this converged cavity shape is given in
Figure 6.21. The re-entrant jet is clearly shown for every spanwise station.

Because the hydrofoil has a very high aspect ratio, the cavity length is
uniform over the whole span, except for the region very close to the tip. The
flow at mid-span can be regarded as a purely 2-D flow in this case. The cavity
end and the re-entrant jet are quite similar to the 2-D flow result, as will be
illustrated below.

The prediction of the volume of the cavity is important for the prediction
of the pressure fluctuations in a cavitating flow. Therefore the cavity volume
is used as a criterion to check convergence. Not all the boundary conditions on
every cavity panel are satisfied in that case, especially on the last few panels
at the cavity end. But the calculations show that the shape of the cavity and
its volume converge much faster than the kinematic boundary condition on the
cavity surface. Figure 6.22 shows the cavity volume with varying chordwise
number of panels on the cavity surface. When the number of panels is increased
to 50, convergence is approached. A reasonable result can be expected when
the chordwise number of panels is around 50 to 60. The cavity length for the
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Figure 6.22: Cavity volume as a function of the number of chordwise panels on
the cavity surface (NACA 16-006, aspect ratio = 500, angle of attack a = 4°
and cavitation number o = 1.0).

same calculation is presented in Figure 6.23. This is also compared with the
previous 2-D flow result. A satisfactory agreement is found again when the
number of panels is 50.

Because we intent to simulate the cavity re-entrant jet, a very fine panelling
is applied at the end of the cavity. In the span direction, the panel distribu-
tion on the cavity surface follows the same distribution as on the foil surface
below the cavity and no special arrangement is needed. But in the chordwise
direction, the grid is refined according to the same formulae as given for the
two-dimensional case (equation (6.21),(6.22),(6.23) and (6.24)).

The correction of the cavity surface in the iteration steps can not be too large
because otherwise a small waviness of the surface will result in a twisted cavity
end. So, a relaxation factor between 0.2 to 0.4 is used. The disadvantage of
this relaxation factor is that it makes the convergence slower and more iteration
steps are needed. Figure 6.24 shows the change of the cavity volume with the
number of iteration steps. When the number of iteration steps exceeds 40, the
cavity volume does not change any more. The change of the cavity shape after
40 iteration steps is mainly in the re-entrant jet, while the whole upper part of
the cavity has already converged.

A verification of the present 3-D cavity flow method is obtained by com-
paring this prediction for the high-aspect-ratio hydrofoil with the 2-D cavity
flow calculations. The cavity shape at midspan calculated by the 3D method
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Figure 6.23: Cavity length as a function of the number of chordwise panels on
the cavity surface (NACA 16-006, aspect ratio = 500, angle of attack a = 4°

and cavitation number ¢ = 1.0).
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Figure 6.24: Cavity volume as a function of the number of iteration steps
(NACA 16-006, aspect ratio = 500, angle of attack @ = 4° and cavitation

number o = 1.0).
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Figure 6.25: Comparison of 2-D flow cavity length with 3-D flow results at
midspan (NACA 16-006, aspect ratio = 500, angle of attack a = 4° and cavi-
tation number o = 1.0).

should be the same as the 2D result. These comparisons are shdwn for the
cavity length, the cavity cross-sectional area and the re-entrant jet thickness in

Figure 6.25, Figure 6.26 and Figure 6.27 réespectively. The agreeméfit is quite

satisfactory. This is true even for the re-entrant jet. Although the kinematic
boundary condition on the jet is not fully satisfied, the calculated jet thickness
in 3D is still the same as the result from the 2-D cavity flow calculation: about
9% of the maximum cavity thickness.

6.2.3 3-D results

To show the behavior of 3-D cavity flow and its re-entrant jet on hydrofoils,
both a flat rectangular hydrofoil and a twisted rectangular hydrofoil at an angle
of attack of 4° have been considered. The aspect ratio of these two hydrofoils
are set to 2 in order to provide the geometry and the working condition similar
to that of a propeller blade.

For the flat rectangular hydrofoil, the cavitation number is set to 0.5 and
the initial cavity length is chosen to be (l;nitiar /Chord = 0.5), uniform all over
the span.

The result of the cavity and hydrofoil system at a cavitation number of
0.5 is shown in Figure 6.28. In order to show the shape clearly, the y-axis is
elongated by a factor of two. Some more calculations for the same hydrofoil at
different cavitation numbers have also been carried out. The calculated cavity
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Figure 6.26: Comparison of cavity volume at midspan in 3-D cavity flow cal-
culation with 2-D cavity flow results (NACA 16-006, aspect ratio = 500, angle
of attack a = 4° and cavitation number o = 1.0).
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Figure 6.27: Comparison of the cavity shape at midspan (NACA 16-006, aspect
ratio = 500, angle of attack o = 4° and cavitation number ¢ = 1.0).
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NACA 16-006 AR=2 Alpha=4 degrees Sigma=0.5

Figure 6.28: The calculated 3-D cavity-hydrofoil system (NACA 16-006, aspect
ratio = 2, angle of attack a = 4° and cavitation number o = 0.5).

planform at various cavitation numbers is given in Figure 6.29. The cavity
shape converges even when the maximum cavity length at mid-span-is as long
as 0.85. It is well known that in the 2-D flow case the solution is bifurcated
when the cavity length is longer than about 3/4 chord length. The cavitation
volume predicted for these different cavitation numbers is given in Figure 6.30.
It is obvious that the change of the cavity volume with the cavitation number is
not linear. The gradient becomes higher when the cavity is longer. Or in other
words, when the cavity is very short at the leading edge, the cavity variation is
less sensitive to the pressure variation. This is in accordance with experimental
observations that the cavity length becomes more variable when it is longer.

6.2.4 Streamline and re-entrant jet direction

Theoretically the re-entrant jet is always needed for a 2-D cavity flow because
the cavity must be closed with the same pressure as the pressure on the cavity
surface. But in the 3-D cavity flow case, a re-entrant jet is not needed when a
strong cross flow exists at the end of the cavity. The flow characteristics around
the trailing edge of the cavity end are therefore of interest. Both the experiment
of a swept hydrofoil (Figure 2.6 in De Lange (1996)) and the experiment of a
conventional propeller (Figure 15 in Kuiper (1994)) show that the re-entrant
jet turns away from the flow direction on the cavity surface. It is assumed by
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Figure 6.29: The calculated cavity planform for different cavitation numbers
(NACA 16-006, aspect ratio = 2, angle of attack a = 4°).
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Figure 6.30: The cavity volume at different cavitation numbers (NACA 16-006,

aspect ratio = 2, angle of attack a = 4°)
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De Lange (1996) that the flow is 'reflected’ at the end of the cavity, which has
been verified by Schoon (2000) in experiments. But no theoretical calculation
has been carried out.

In order to understand the characteristics of the flow at the end of the cavity,
the streamlines on the cavity surface and in the re-entrant jet are calculated
for the hydrofoil in Figure 6.28 of the same conditions. The result is given in
Figure 6.31. Also drawn in this figure is the distribution of the negative pressure
coefficient on the cavity and foil surface. From the pressure coefficients it is
found that a stagnation point is present on the foil surface downstream of the
end of the cavity, especially at mid-span. But in the tip region, where the
gradient of the cavity length is large, no stagnation pressure is found. From
the streamlines in this figure, we find that in that region the flow is almost
tangential to the cavity. Consequently re-entrant jet is not found. But in
the region close to the mid-span, the flow remains perpendicular to the inflow
direction and a re-entrant jet is found. A detail of the flow in the region without
stagnation pressure is shown in Figure 6.32. It is quite clear that the flow is
indeed "reflected” at the cavity end. That means the angle between the jet
and the cavity extent is equal to the angle between the cavity end line and
the flow on the cavity. So the cavity can be stable when the spanwise gradient
of the cavity extent is large enough. Since the re-entrant jet is cut off in our
calculations, prediction of the behavior of the jet internally in the cavity and
thus of the occurance of cloud cavitation can not be derived.

6.2.5 Comparison with experimental data

At present good and accurate experimental data on 3-D cavity flow are not
available in literature. An example of available data is the experiment con-
ducted at MIT by Kinnas & Fine (1993). Unfortunately there is uncertainty
about the angle of attack and the section geometry. But it can still be used
to validate our calculations qualitatively. A NACAG65a section in the present
calculation approximates the cross section of the foil. Its main parameters can
be found in Kinnas & Fine (1993). The angle of attack is 6.5°. Only the cavity
length has been measured at two different cavitation numbers. No information
is available about the cavity volume.

The calculated cavity length along the span is compared with experimental
data in Figure 6.33. The calculation shows a very good correlation with the
data over most part of the hydrofoil surface. Slight deviations occur at the tip
and at midspan. The calculated cavity volume is listed in Table 6.4 and the
calculated cavity shapes for several span positions are shown in Figure 6.34 for
a cavitation number of 1.084.
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Figure 6.31:  Pressure distribution and streamline on the cavity-foil sur-
face(NACA 16-006, aspect ratio = 2, angle of attack o = 4°, cavitation number
|4

oc=0.5).

Figure 6.32: The flow 'reflects’ at the end of the cavity(NACA 16-006, aspect
ratio = 2, angle of attack a = 4°, cavitation number ¢ = 0.5 ).
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Figure 6.33: Comparison of calculated cavity length with experimental data.
(Kinnas & Fine (1993), angle of attack a = 6.5°)

Table 6.4: The calculated cavity volume for the three dimensional hydrofoil

used by Kinnas & Fine (1993). (cavitation number ¢ = 1.084 and 1.148, angle
of attack a = 6.5°)

Cavitation number 1.084 1.148
Cavity volume/(Span/2)® 1.40 x 10% 1.04 x 10°
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Figure 6.34: Cavity shapes at different spanwise positions. (for the hydrofoil
of Kinnas & Fine (1993), angle of attack a = 6.5°)
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6.2.6 Summary

A three-dimensional cavity re-entrant jet has been simulated. Systematic con-
vergence tests of the present method show that the method is quite stable and
convergent. Calculation of the cavity on a high-aspect-ratio hydrofoil shows
good agreement with previous non-linear 2-D cavity flow calculations for both
cavity length and cavity volume. Some 3-D cavity flow calculations for a flat
and a twisted rectangular hydrofoil with NACA 16-006 wing section have been
made at different cavitation numbers. The calculated results show that the
re-entrant jet is not always needed. In the tip region, the fluid at the end of
the cavity flows in a direction tangential to the cavity end. The calculations
confirm that the flow on the cavity surface is 'reflected’ at the cavity end line
when the re-entrant jet exists. A preliminary experimental validation of the
present method has been made for a MIT hydrofoil. The present method gives
a quite good prediction of the cavity length over the whole span. In order to
validate the present method systematically, more experimental data are needed,
especially for the cavity shape and volume in 3-D flows.

6.3 Propeller flows

So far, the present method has been verified by numerical tests, like convergence
tests. Present results have been and compared with results of other linear
and non-lnear methods both for two- and three-dimensional flow cases: Some
simple validations are given as well for hydrofoils. Although our objective
is the prediction of the dynamics of cavitation on propeller blades, tests and
validations of the present method for steady propeller flows are essential too,
because the previous test cases are relatively simple which do not include aspect
of propeller flows like the tip vortices, the skewness and the warp of the blade,
the pitch variation, etc. These aspects are essential and make the propeller
flows different from hydrofoil flows.

Since the present method has been developed only for leading-edge partial
cavity flows, we will take a test case with only leading-edge partial cavity flows
on the blades, but it should still cover a wide range of different cavity extents,
say from short leading-edge cavitation up to cavities of 80% of the chord.

The most reliable experimental results we have are the results for Propeller
S from the thesis of Kuiper (1981). This propeller is designed such that a
high suction peak at the leading edge will result in boundary-layer separation
and lead to a stable sheet cavity from the leading edge. Since the tip region
is unloaded, it provides an ideal test case for the partial sheet cavity flow on
propeller blades.

The geometry of this propeller can be found in Table A1.3 and Table A1.4 of
Kuiper (1981). The experiments were carried out in the depressurized towing
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tank at MARIN. The pictures were recorded on 16mm black and white films.
The experiments were carried out for two different advanced coefficients J =
0.4 and 0.6 and a number of different cavitation numbers a,,, where we defined,

v,
=2 (6.29)
and,
Do — Po
n = 6.
o Lon?D? (6.30)

with V,, the oncoming velocity to the propeller, D the diameter of the propeller
and n the rotational speed.

The basic structure of the cavity on the blade is the same as that observed
in the cavitation tunnel (Figure 1.3) for J = 0.4. In this case the cavity
extent increases from 0 at the root of the propeller to a certain length on the
blade. The cavity then remains almost of the same length before it decreases
to zero again at the tip, due to the unloading at the tip. A comparison of the
present calculation with the experiments for four different cavitation numbers
o, =22, 2.0, 1.7, 1.5is given in Figure 6.35 and Figure 6.36. To minimize
the scale effect, only the test results with surface roughness are used. The
agreement is quite good. '

There is no experimental data on the thickness and volume of the cavity.
But the calculations show that the cavities for all the calculated conditions are
predicted to be very thin. They are so thin that only when a very fine grid
is used at the cavity closure, the details of the re-entrant jet can be resolved.
This was not done, since the details of the re-entrant jet have no effect on the
cavity extent and volume in the present situation.

It has been concluded by Laberteaux (1998) that the prediction by potential
flow theory gives a good correlation with the experiments when the cavity
closure is a laminar closure, but overpredicts the cavity extent when the cavity
closure is a turbulent closure, because the observation shows that the cavity
ended almost at the maximum thickness point. According to our prediction in
the two-dimensional cavity flow, the position of the maximum thickness of the
cavity is located at 60% of the cavity extent (Figure 6.13). It means that the
observed cavity extent can be only 60% of the calculated one. This appears not
to be true for our present test case. At the inner radii where the re-entrant jet
is clearly seen in the experiment, the potential flow theory gives a very good
prediction. At the certain radius, the re-entrant jet impinges on the cavity
surface and the closure becomes frothy thereafter. But the potential theory
gives still a reasonable good prediction.

Another comparison is carried for a different advance coefficient J = 0.6.
The pressure peak at the leading edge is not as high as that for J = 0.4 and
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Experiment Calculation

On=2.2

Figure 6.35: Comparison of cavity shape on S Propeller at J = 04, 0, =
2.2 and 2.0. Experiments were carried out in the depressurized towing tank
with roughness (Kuiper (1981)).
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Experiment Calculation
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Figure 6.36: Comparison of cavity shape on S Propeller at J = 04, o, =
1.7 and 1.5. Experiments were carried out in the depressurized towing tank
with roughness (Kuiper (1981)).
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Experiment Calculation

C.=1.2

on=1.0

Figure 6.37: Comparison of cavity shape on S Propeller at J = 0.6, o0, =
1.2 and 1.0. Experiments were carried out in the depressurized towing tank
with roughness (Kuiper (1981)).
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the suction peak exists only in the middle part of the blade span. This gives a
very much restricted cavity in the mid span region. The comparison is given in
Figure 6.37. The calculation results are reasonable. The difference at the two
sides of the cavity maybe due to the roughness at the propeller leading edge in
the experiments.

All the calculations in this sub-section have been obtained using 50 chord-
wise panels and 30 spanwise pancls on the blade surface, and 40 chordwise
panels on the cavity surface. It has been proven in the previous sections that
this number of panels is large enough to provide a grid-converged result.
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Chapter 7

Unsteady Cavity Flows

The prediction of unsteady cavity flows occurring on two-dimensional
profiles, on three-dimensional hydrofoils and on propeller blades in
a non-uniform wake flow is investigated. Emphasis is on the dy-
namics of the cavity variation and its effect on the pressure fluctu-
ations. Some preliminary features of the unsteady cavity dynamics
are predicted. Phase differences of the cavity shape change, in ex-
tent and thickness, are found both in chord and in span directions.
The main characteristics of the cavity growth and collapse, when
the propeller blade is passing through a sharp wake peak, are cap-
tured. The present approach proves to be able to predict unsteady
cavity flows.

It has been more than three decades that propeller loading has been increas-
ing due to the growth in the size of bulk carriers and fast cargo liners. Even
before this time, the ship stern vibration excited by the shaft and hull forces
from the non-cavitating propellers had been noticed as an important problem
for ship and propeller designers. The appearance of unsteady cavitation on
the heavily loaded propeller blades increases the exciting forces up to an or-
der of magnitude in the blade frequency. Generally speaking, the excitation
forces generated only by cavitation are 4 to 6 times those from the sum of the
blade loading and thickness by non-cavitating propellers (Breslin & Andersen
(1994)). Specific features of some cavitating propellers are that the excitation
forces of higher blade harmonics (second and third blade frequency) have the
same magnitude as that of the blade frequency. This has never been observed
for the case of non-cavitating propellers and hence it is believed that the higher
harmonics originate from the dynamics of the cavity.

From an integrated point of view of Van Gent (1994), by using the Green’s
theorem, the pressure generated by a cavitating propeller can be expressed in
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the body-fixed moving coordinates o — zyz in the following form,

= (Vi) s
_ 47r//80”x)( )dS- (7.1)
- w e (Vg) s,

assuming that the pressure p has continuous derivatives up to the second di-
revitives. In equation (7.1), x is a point in the flow field and it is moving when
you are observing it in the body-fixed coordinates, and X is a point on the
boundary for the surface integrals or a point in the flow field for the volume
integral.

Notice that the temporal variation of the total potential ¢ depends on the
coordinate system, but as a vector, the gradient of the potential is independent
of the system of reference. Expressing the material derivative of the poten-
tial (following a fluid particle) both in the space-fixed and in the body-fixed
coordinates, we have,

D¢ _ 04(X;t)
Dt~ ot

Then we obtain the relation between the two partla.l time denvatlves of the
~potential,

3¢(x t)

+V V= —"+V, V. )

16 vt R e

Xst) _ 6¢(x t>+(v ~v)- v

ot
(7.3)
3¢(x, £)
o = Ve V9,
where V, = —(V, — V) = Vo + Qp X x is the velocity due to the motion of the
body-fixed coordinates.

Within the frame of potential flow theory, the pressure on the right-hand
side of equation (7.1) can be determined by equation (2.9) in the space-fixed
coordinates O — XY Z. Substituting equation (7.3) in equation (2.9), the pres-
sure can be expressed as a function of the velocity potential in the body-fixed
frame of reference and hence the excitation pressure can be expressed as,

=l vy ()
* 47r//agan[ at“’ Vo +3 (W)](%)dsi (7.4)

I e
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where w is the vorticity and E is the flow deformation tensor.

From equation (7.4) we can distinguish three major contributions to the
pressure field. The first term on the right-hand side of equation (7.4) is a
“dipole-like” term, which contains mainly the effects of the blade loading and
the thickness of a propeller blade. This term decays fast with the distance as
1/r%. It is related to the pressure generated by the non-cavitating propellers.
The second term is a “source-like” term, which contains mainly the effects of
the acceleration of the cavity thickness, the velocity of the cavity thickness
and the thickness itself. Comparing to the other terms, the acceleration of the
cavity thickness is dominant. Since the decay of this term is as 1/r, which
is slower than that of the dipole term, the contribution of this term to the
pressure in the far field is largest. By application of the divergence operator to
the Navier-Stokes equation, the third term of equation (7.1) can be re-written
into the third term of equation (7.4), which contains the effects of the fluid
deformation and the vorticity. These effects are concentrated in the boundary
layer or in the shear layer of the wake, which is out of the scope of our present
potential flow theory and hence is neglected here.

Because the second term has the largest contribution to the pressure fluc-
tuation and also because it decays much slower than the dipole term, we focus
on this term in the following. By taking the partial time derivative of the kine-
matic boundary condition of equation (4.16) and substituting it in the second

term of equation (7.4) for % (~%) term, the contribution of the second

term can be written as,

% T /./gc ot? (%) 5%
//SC ot [ gz + a% = Vro 'n} G) dSs (7.5)
=[] Ve v goer] (7) ass

where ps denotes the contribution of the second term in equation (7.4).

It has been proven by Van Gent (1994) that, using linearization, the second
and the third term on the right-hand side of equation (7.5) can be integrated by
partial integration and represented as chordwise dipole distributions, generated
by the thickness of both_the cavity and the foil and by the cavity thickness
velocity. The only source-like term is the first term, which we can re-write

into,
Pace. __ l -~
o= / / 5 O (r) dSsx, (7.6)

+
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where the subscript acc. denotes the contribution of the cavity acceleration.

When the observation point is a field point which is sufficiently far from the
propeller at r = R, the detailed geometry of the propeller and the cavity is no
longer important. Then equation (7.6) is simplified into,

Pace. 1 02 / 1. 18V
p 4R dt? U So ndSx| = LR o (7.7)

or,

__p OV
Pace. = iR 02

where V is the cavity volume.
In summary, we can conclude,

1. The contribution of the cavity acceleration to the pressure excitation
comes from the integration of the acceleration of the cavity thickness,
which is distributed over the cavitating area, instead of from the total
volume of the cavity.

2. When the field point is far away from the unsteady cavity on the propeller
blades, only the cavity volume acceleration is important for the prediction
of the pressure fluctuations (equation (7.8)), and the detailed information
about the. cavity shape is not needed. Hence large pressure amplitudes
at higher blade frequencies can not be predicted.

3. But when the field point is in the intermediate or near field, the details of
the cavity thickness distribution on the blade surface and its acceleration
play an important role. Their contribution to the pressure field is ex-
pressed as the surface integral given in equation (7.6). Hence the higher
blade frequency components can be predicted.

The previous quasi-steady methods of cavity flow prediction are suffering
from the fact that cavity dynamics are not really predicted. Only the wake
non-uniformity is transferred into a time-dependent pressure field, which then
causes the cavity volume change. These methods can supply a reasonable
estimate for the lowest frequency of vibration excitation, but not for the higher
frequencies. The improved method (Van Gent (1994)) used an unsteady lifting
surface code and a two-dimensional dynamic model of the cavity, and hence the
dynamics of the cavity were predicted. But the cavity was represented simply
by a semi-ellipse, in which the cavity thickness at different chord positions
increases or decreases simultaneously and in phase. In this case, equation (7.6)
acts like equation (7.8) and hence the higher blade frequency components of
the pressure excitation can not be predicted.
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The results of the present non-linear method will show that the cavity extent
and the thickness variations both in chord and span direction, are generally
not in phase. When some parts of the cavity are growing, some other parts are
shrinking. During the growth phase of the cavity, the maximum thickness is at
the mid-chord of the cavity. But when the cavity reaches its maximum extent,
the maximum thickness of the cavity moves toward the end of the cavity. These
details of the cavity dynamics are expected to provide enough information to
be able to calculate the higher blade frequency of the excitation.

7.1 Hydrofoil flows

7.1.1 Two dimensional cavity flows

Strictly speaking, the simulation of unsteady cavity flows in two-dimensions
violates the condition at infinity (see equation (2.46)). This is shown in the
following.

Instead of using Green’s function of equation (3.3) in the pressure integra-
tion of equation (7.1), equation (3.4) is used in two-dimensional flows. Follow-
ing the same derivation as used in the previous paragraphs, the contribution to
the pressure in the far field by the acceleration of the cavity volume is written
a‘s’

(7.9)

in stead of equation (7.8).

Due to the logarithmic function, the pressure tends to infinity when R — oo,
which violates the boundary condition at infinity. Hence no calculation is tried
for two-dimensional potential flow theory, as we did in section 6.1.

The two exceptions are when the cavity flow is a steady flow or when the
cavity is growing or shrinking at a constant speed. For a steady cavity flow, the
cavity can be represented by a source at the origin with zero strength and hence
satisfy the condition at infinity. For a cavity which is growing or shrinking at
a constant speed, the cavity is a source or sink at the origin with a constant
strength and hence its contribution to the pressure at infinity is zero as well.

So, the present investigation on two-dimensional cavity flow is carried out
for three-dimensional hydrofoils which have very high aspect ratio. We believe
that the flow at mid-span will asymptotically approach the two-dimensional
cavity flow and reveal some characteristics of the unsteady two-dimensional
cavity flow.
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Cavity flow in a gust

The present theory is first checked using a rectangular hydrofoil with an aspect
ratio of 500. The NACA 16-006 profile is chosen as the cross-section and no
camber is applied. The hydrofoil is plane and not twisted along the span.

The hydrofoil is traveling in unbounded fluid at a constant speed V,. There
is a space-fixed vertical gust field Viy in the whole fluid field, which is seen by
the hydrofoil-fixed system as,

VWw = 0.07V; + 0.0157V; sin(wt)

= 0.07Vp +0.0157Vp sin( 22 (7.10)

K,

where K is the reduced frequency of the gust defined by equation (5.33) and
w is the angular frequency. At mid-span the flow is similar but not equivalent
to the sectional flow with an angle of attack of 4° to the inflow and with 1° of
pitching around its chord center.

Only the cavity details at the central cross-section are taken from the cal-
culations and plotted in the following figures. The details close to the tip are
not important for our present two-dimensional flow investigations.

Due to the symmetry of the hydrofoil with respect to the mid-span, only
half of the hydrofoil is discretized. On the foil surface, 20 panels are used in
the span direction and 24 panels are used in the chord direction. In order to
simulate the cavity surface in more detail, 40 pa.nels along the chord are used

-for the-cavity surface.

For the very high aspect ratio hydrof01l a relatively long wa.ke Iength is
needed. In the present case, the wake length is chosen as 8 times the chord
length, which requires 20 panels chordwise for K = /4, 40 panels for K = 7/2
and 80 panels for K = 7.

One cycle within the cyclic motion of the cavity at mid-span is plotted in
Figure 7.1 from A to J. Also plotted in Figure 7.1 is the relative position of the
gust in which the peak and the trough of the gust can be seen. The cavitation
number o is 1.0. The reduced frequency K = m, which means that the wave
length of the gust equals the chord length. This situation is regarded as a very
high frequency situation for the propeller flows. Only a sharp peak in the ship
wake will generate a gust to the propeller blade that corresponds to this high
frequency. The cavity is growing from A to E in Figure 7.1 and is shrinking
from F to J in this figure. During the growth of the cavity, we can see that the
location of the cavity maximum thickness is around 50% of the total length in
A, and it moves towards the end of the cavity. The thickness of the cavity at
the end is building up while the cavity extent is increasing. But a re-entrant jet
is not observed in the whole process of cavity growth. When the cavity reaches
its maximum extent (F in Figure 7.1), the re-entrant jet starts to form. In the
early stage of shrinking of the cavity, the re-entrant jet is clearly seen at the
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Figure 7.1: Unsteady motion of the cavity on a high aspect ratio hydrofoil
travelling in a sinusoidal vertical gust. (Aspect ratio AR=500, NACA16-006
section, vertical gust Viy = 0.07Vp + 0.0157V} sin (wt), reduced frequency K =

7, 0 =1.0.)
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Figure 7.1: (continued) Unsteady motion of the cavity on a high aspect ra-
tio hydrofoil travelling in a sinusoidal vertical gust. (Aspect ratio AR=>500,
NACA16-006 section, vertical gust Vi = 0.07Vp + 0.0157V; sin (wt), reduced
frequency K =7, 0 =1.0.)
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end of the cavity (G in Figure 7.1). The re-entrant jet is present during the
whole process of the shrinking (collapsing) of the cavity until the cavity stops
shrinking (J in Figure 7.1).

The details of the re-entrant jet are not represented with the present num-
bers of panels. More details about the re-entrant jet can be expected when
more panels are used, but the computation time will increase dramatically and
hence is not tried at the present research stage. An important feature of this
calculation is that the cavity thickness distribution varies during a cycle. This
results in a motion of the location of the maximum cavity thickness back and
forth. Watching the movie generated by the results in Figure 7.1, we found
that the cavity surface looks like *dancing’ instead of simply *blowing’ up and
shrinking of a balloon.

The variation of the cavity extent, the maximum thickness, the cavity vol-
ume and the second time-derivative of the cavity volume with time are plotted
in Figure 7.2 to Figure 7.7 for three different reduced frequencies, K = 7 /4,7 /2
and #. The influence of the reduced frequency on the variation of the cavity
can be clearly seen.

Figure 7.2 shows that both the cavity length and the maximum cavity
thickness have the same characteristics: they grow slowly but collapse slightly
faster. The curves themselves are quite close to the sinusoidal curve, which
reflects that the response of the cavity variation to the sinusoidal gust is close
to linear. But it becomes more and more non-linear as the reduced frequency
is increased to K = 7/2 in Figure 7.4 and to K = « in Figure 7.6.

The same is true for the variation of the cavity volume with time. The
circles in Figure 7.3 represent the variation of the cavity volume with time,
which collapses also faster than it grows. Especially the second time derivatives
82 /0(wt)? shows already strong non-linear response to the gust. This becomes
stronger with the increasing reduced frequency in Figure 7.5 and Figure 7.7.

Since the pressure excitation from the unsteady cavity depends on the sec-
ond time derivative (equation (7.8)), the higher harmonics of the pressure field
can be more or less calculated even if we use equation (7.8). This is only
because of the non-linear response of the pressure field to the gust.

The analysis of the pressure fluctuations from an unsteady cavity is beyond
the scope of the present research and will not be calculated. But the harmonic
analysis can be done for the cavity volume to show the capability of the present
non-linear cavity flow theory in capturing higher harmonics of the cavity dy-
namics. This is plotted in Figure 7.8. It is obvious that when the reduced
frequency is increased, the variation of the cavity volume with time becomes
faster and hence the time derivatives of the volume become much larger. But
Figure 7.8(c) shows that the second harmonic becomes larger than its first har-
monic in (a) of the same figure, but still smaller than its first harmonic in (c).
These harmonics are directly related to the pressure fluctuation through equa-
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Figure 7.2: Cavity length and maximum thickness variation in time for a high
aspect ratio hydrofoil in a sinusoidal vertical gust. (Aspect ratio AR=>500,

NACA16-006 section, vertical gust Vi = 0.07Vg + 0.0157V, sin (wt), reduced

frequency K = /4, 0 = 1.0.)
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Figure 7.3: Cavity cross-sectional area and its second derivative in time for a
high-aspect-ratio hydrofoil in a sinusoidal vertical gust. (Aspect ratio AR=500,
NACA16-006 section, vertical gust Vi = 0.07Vp + 0.0157V; sin (wt), reduced
frequency K =« /4, 0 =1.0.)
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Figure 7.4: Cavity length and maximum thickness variation in time for a high-
aspect-ratio hydrofoil in a sinusoidal vertical gust. (Aspect ratio AR=>500,
NACA16-006 section, vertical gust Vi = 0.07Vp + 0.0157V, sin (wt), reduced
frequency K = /2, 0 =1.0.)
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Figure 7.5: Cavity cross-sectional area and its second derivative variation in
time for a high-aspect-ratio hydrofoil in a sinusoidal vertical gust. (Aspect ratio
AR=500, NACA16-006 section, vertical gust Viy = 0.07Vp + 0.0157Vp sin (wt),
reduced frequency K = n/2, o = 1.0.)



b

158 NUMERICAL SIMULATION OF UNSTEADY PARTIAL CAVITY FLOWS

0.6 [ : 0.05
-0~ Iengmth " RQCAS&G)'OOG
—& - max. thickness =
V=0.07V;+0.0157V,sin(at)
-5 N x L ~ K=nr M 0.04

N\

N e \ P 2
CHO\Q\LJ/"/ /ho\\\\q// / -
N ~OL ]

0.3 0.02 8
0 180 360 540 wt (°) 720

Cavity length L /Chord
o
4]

1N
kY

vity Max. thickness tmax/Chord

C

Figure 7.6: Cavity length and maximum thickness variation in time for a high-
aspect-ratio hydrofoil in a sinusoidal vertical gust. (Aspect ratio AR=500,
NACA16-006 section, vertical gust Vi = 0.07Vy + 0.0157V; sin (wt), reduced
frequency K =«, 0 = 1.0.) ‘
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Figure 7.7: Cavity cross-sectional area and its second derivative variation in
time for a high-aspect-ratio hydrofoil in a sinusoidal vertical gust. (Aspect ratio
AR=500, NACA16-006 section, vertical gust Vi = 0.07V; + 0.0157V; sin (wt),
reduced frequency K = =, 0 = 1.0.)
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Figure 7.8: Spectrum of the second time derivative of the cavity cross-sectional
area. (a) K =n/4; (b) K =n/2; (c) K = n. (NACA 16-006, AR=500, vertical

gust Viy = 0.07V + 0.0157Vg sin (wt), 0 = 1.0)
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Figure 7.9: Influence of the reduced frequency on the cavity length. (NACA
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tion (7.8). But if detailed information of the cavity thickness variation it taken
into account using equation (7.6), more contributions to the higher harmonic
components of the pressure can be expected from the present unsteady cavity
flow calculations.

With the same average vertical gust and the same amplitude of the gust
variations as given in equation (7.10), the variations of the cavity extent are
different at different reduced frequency K. The influence of the reduced fre-
quency on the cavity extent variations are plotted in Figure 7.9, where the open
circles represent the maximum cavity length while the solid circles represent
the minimum cavity length. The steady flow result of the same section at an
angle of attack of 4° from the two-dimensional calculations of Section 6.1.6 (or
Table B.1), is plotted as the solid square, which is assumed to be the result
at zero reduced frequency. This figure shows that the amplitude of the cavity
extent variation reduces quickly as the reduced frequency increases. This has
been observed by Shen & Peterson (1978) in their experiments with pitching
hydrofoil as well, where they claimed that the cavity length observed for the
stationary foil at the maximum angle of the oscillating foil is twice as long as
the cavity length observed at a finite value of K (eg. K=1.2). The same results
are also calculated by Van Houten (1983) in his numerical simulations.
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Cavity flow in a sinusoidal pressure field

A situation specific for propeller cavitation is that the blades sections are trav-
eling through a varying ambient pressure field due to the depth of water. An
extreme example is when a huge propeller of 10 meters in diameter is rotating
behind a ship in the sea. The variation of the static pressure at the tip of the
propeller is roughly as large as one bar. So the effect of the ambient pressure
variation on the cavity dynamics should also be investigated and will be carried
out in the following.

We use the same hydrofoil as we used in the previous section with the same
number of panels. The hydrofoil is set at an angle of attack of 4° and the
ambient pressure variation is realized by the variation of the cavitation number
in the onset flow. This variation is set to,

o =10+ 0.2sinuwt. (7.11)

As we expected, the response of the cavity length, cavity volume and cavity
thickness variation to the sinusoidal pressure variation is non-linear. This is
presented in Figure 7.10 and Figure 7.11. Two peaks of the second time deriva-
tives of the cavity in one cycle are clearly seen in Figure 7.11. This results in
a large second harmonic as shown in Figure 7.12, where the amplitude of the
second harmonic is comparable to that of the first harmonic and the amplitude
of the third harmonic is also considerable.

Cavity flow on different profiles

Because of their relatively flat pressure distribution at the suction side and
their large cavitation buckets (Brockett (1966)), some of the NACA sections
(e.g. NACA 16 and 6-series) have been extensively used for hydrofoils and
propeller blades in the last decades. These NACA sections were originally de-
signed for wing sections of airplanes and the design goals were either promoting
laminar flow (NACA 6-series) or minimizing the compressibility bubble at high
speed (NACA 16-series)(ITTC (1990)). No considerations have been given to
delaying cavitation inception of these series when they were designed.

Since the introduction of Eppler’s method for the design of sections for
hydrofoils and propeller blades (Shen & Eppler (1981), Shen (1985)), new blade
sections, considering cavitation inception and viscous effects, are continuously
designed and applied for propeller blades (Kuiper & Jessup (1993), Yamaguchi
et al. (1988), Dang et al. (1992), Stanier (1992)) in the last decades. Full-
scale investigations showed that the new blade sections are quite promising in
delaying both sheet cavitation and bubble cavitation (Kuiper & Jessup (1993)).
Initially designed sections (such as YS9-series) have an extremely unloaded
leading edge, which results in a leading edge with a larger leading edge radius
and an almost symmetrically-shaped suction and pressure side. The chordwise
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Figure 7.11: Cavity cross-sectional area and its second time derivative on a high
aspect ratio hydrofoil in a sinusoidal pressure field. (Aspect ratio AR=500,
NACA16-006 section, pressure field o = 1.0 + 0.2sin(wt), reduced frequency
K=m)
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Figure 7.12: Spectrum of the second time derivative of the cavity cross-sectional
area. (NACA 16-006, AR=500, pressure field 0 = 1.0 4+ 0.2 sin(wt), reduced
frequency K = «.)

loading on the section is largely shifted towards the trailing edge, which results
in a large positive camber in the aft end of the sections. But a design of a new
section for a marine propeller shows a section that is totally different. It has a
negative camber near the trailing edge (Kuiper & Jessup (1993)). It indicates
that the new blade sections are no longer the sections like NACA section series,
which have a definite thickness and camber distribution. On the contrary, it
means any design that meets certain design requirements to fit specific inflow
conditions.

But there is one question left for the new blade sections that have not
yet been answered. Does the cavity vary more violently on a profile with
a flat pressure distribution or on a profile with a more triangular pressure
distribution? A part of the concern is that, when the pressure distribution is
very flat, the cavity length becomes very sensitive to the pressure, which may
lead to erosion.

We chose two extreme test cases. One is a NACA 66(MOD) section with
a NACA a = 0.8 camber, which has a typical flat pressure distribution on the
suction side. The other is a NACA 0006 section with a NACA a = 0.0 camber,
which has an almost perfect triangular pressure distribution on the suction
side. The thickness and the camber of both sections are set to 6% and 2%,
respectively. The test is done in such a way that both sections generate the
same lift with the same length of sheet cavity on the suction side. We chose the
wetted lift for both sections as Cp = 0.51, where the angle of attack is 2.22°
for the NACA 66(MOD) and 3° for NACA 0006. The cavitation numbers are
set differently to make the cavity length more or less the same (I/C = 0.5).
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Figure 7.13: Comparison of the upper surface pressure distribution at fully
wetted condition for NACA 0006 and NACA 66(MOD). (t/C = 0.06; f /C’ =
0.02; anac 40006 = 3°; N aC A66(MOD) = 2.22°)

The pressure distribution for the fully wetted flow is plotted in Figure 7.13.
The cavity flow was calculated with the same panel arrangement as we used in
the previous two subsections. The cavitation number ¢ is chosen to be 0.8 for
NACA 0006 section and 0.6 for NACA 66(MOD). Both sections are placed in
the vertical gust of the following form,

Viw = 0.0157V; sin(wt). (7.12)

The comparison of the cavity length variation of the two sections is plotted
in Figure 7.14. It is unexpected that the cavity length variation is even larger
for the triangular pressure section than for the flat pressure section. But looking
at the slope of the non-cavitating pressure distribution at the cavitation index,
it can be seen that in this case the NACA 0006 was the flatter distribution
and the NACA 66 was the steeper one. Since our investigation is limited as
leading-edge partial cavity flow, the cavity thickness on the NACA 66 section
with the flat pressure distribution is even larger than that on the triangular
section. This brings the volume variation of both sections in the same range,
as shown in Figure 7.15.

The comparison of the harmonics of the second time derivatives of both
sections, up to the fifth order, is shown in Figure 7.16. It is surprising to find
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Figure 7.14: Comparison of the cavity length variations of NACA 0006 and

NACA 66(MOD) in the sinusoidal gust.
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Figure 7.15: Comparison of the cavity volume variations of NACA 0006 and

NACA 66(MOD) in the sinusoidal gust.
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Figure 7.16: Comparison of the spectrums of the second time derivatives of the
volume change for NACA 0006 and NACA 66(MOD) in the sinusoidal gust.

that the first harmonic is almost identical for both sections. There is a slight
trend towards higher harmonics for the NACA 0006 with the more sensitive
cavity length. It can be expected that the situation will be different when
the cavitation index is closer to the value of the pressure coefficient in the flat
pressure distribution. So it is not easy to generalize the effect of the pressure
distribution on the higher harmonics.

7.1.2 Three-dimensional cavity flows

Using the same profile (NACA 16-006) as we used in the last section for the
two dimensional investigation of the cavity flow simulation, we reduced the
aspect ratio of the hydrofoil from 500 to 2. Then the flow becomes strongly
three-dimensional. The results of the steady cavity flow calculation have been
shown in Figure 6.28 of section 6.2.3. Here we chose & = 0.5 for the present
calculation.

The calculated cavity shape variation at the mid-span is shown in Figure
7.17. Compared to Figure 7.1, Figure 7.17 has almost the same cavity length
but the cavity is thinner. This is due to the strong down-wash in this small
aspect ratio hydrofoil, which reduces the effective angle of attack. The re-
entrant jet at the cavity end is hardly predicted with the present number of
panels. But the motion of the maximum thickness of the cavity can still clearly
be seen.

The cavity extent variation during the gust at three different span locations
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Figure 7.17: Motion of the cavity at the mid-span section of a rectangular
hydrofoil in a sinusoidal vertical gust. (Aspect ratio AR=2, NACA16-006 sec-
tion, vertical gust Vi = 0.07Vp + 0.0157V, sin (wt), reduced frequency K =,
cavitation number ¢ = 0.5.)
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Figure 7.17: (continued) Motion of the cavity at the mid-span section of a rect-
angular hydrofoil in a sinusoidal vertical gust. (Aspect ratio AR=2, NACA16-
006 section, vertical gust Viy = 0.07V, + 0.0157V, sin (wt), reduced frequency
K = 7, cavitation number o = 0.5.)
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Figure 7.19: Cavity cross-sectional area variation in time on rectangular hydro-
foil in a sinusoidal vertical gust. (Aspect ratio AR=2, NACA16-006 section,

vertical gust Viy = 0.07V5 + 0.0157Vp sin (wt), reduced frequency K = m, cavi-
tation number o = 0.5.)
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Figure 7.20: Predicted cavity motion on a rectangular hydrofoil in a sinusoidal
vertical gust. (Aspect ratio AR=2, NACA16-006 section, vertical gust Vi =
0.07Vp + 0.0157Vp sin (wt), reduced frequency K = , cavitation number o =
0.5.)

Figure 7.21: Predicted cavity motion on a rectangular hydrofoil in a sinusoidal
vertical gust. (Aspect ratio AR=2, NACA16-006 section, vertical gust Vi =
0.07V, + 0.0157V} sin (wt), reduced frequency K = 7, cavitation number ¢ =
0.5.)
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is presented in Figure 7.18. It is quite clear that the cavity extent has a slow
growth and a faster collapse. This feature is stronger at the mid-span section
than for the section close to the tips. 60% of the time in a cycle is used for the
growth of the cavity while 40% of a cycle is used for the collapse. This is also
true for the cavity volume as shown in Figure 7.19.

Another interesting finding is that there is a phase shift for the cavities at
different span positions (Figure 7.18). The cavity at the mid-span grows and
collapses later than the cavity close to the tips. This phase difference is as large
as 90°. This means that when the cavity at the mid-span is still growing up
to the maximum cavity length, the cavity at the tip is alrcady shrinking (as
shown in Figure 7.20). In another extreme when the cavity at the mid-span
is still shrinking towards the minimum length, the cavity at the tip is already
growing (as shown in Figure 7.21).

As we have discussed at the beginning of this chapter, this kind of strong
three-dimensional, out-of-phase motion is believed to generate higher values of
the higher harmonic components.

7.2 Propeller flows

The present research should finally lead to the prediction of unsteady cavity
flow on propeller blades and the prediction of the pressure fluctuations due
to this cavitation on ship hulls. Extensive verification and validation has been
carried out in the previous sections for steady and unsteady hydrofoil flows, and
also for steady propeller cavity flows. The unsteady cavity flow on propeller
blades is addressed in this section on the same propeller as we used in Section
6.3 — the S Propeller.

There are only few publications available on the validation of panel codes
for propeller cavity flows, and almost no reliable experiments are available. A
numerical verification was done by Kinnas & Fine (1992) for only a one-bladed
pseudo-propeller in an artificial symmetric wake peak at 12'oclock position.
The results show that the cavity volume variation gives a linear response to
the wake field. No validation has been done in their paper for a real propeller
in a non-uniform wake field. Kim & Lee (1996) validated their method by
comparing their calculation with the experimental results from the HYKAT.
The predicted extent of the cavity agrees reasonably well with the experiments.

As in the validation of the steady cavity flow calculation, we prefer to start
the calculation from some fundamental case before we can apply the present
method to a cavitating propeller in a real ship wake.

An ideal experimental result from Kuiper (1984), carried out in the cavita-
tion tunnel at MARIN in the 80’s, was chosen for our present validation. The
wake peak was generated by mounting a foil with a chord of 30cm upstream of
the propeller. By putting the propeller at two different downstream positions
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Figure 7.22: 27% peak wake.

and by using smooth and roughened surfaces for this foil, four different wake
peaks were generated, 8%, 12%, 18% and 27% of the velocity reduction to the
uniform inflow at the peak. The profile is a NACA 66-021 symmetric section.

The S Propeller is chosen to operate in this wake. The unsteady cavity flow
tests were carried our at two different advance ratios, J = 0.4 and J = 0.6. The
cavitation numbers oy, are chosen to be 0.92, 3.00 and 0.92, 1.65, respectively.
In total, 16 different combinations of the conditions are tested. From all of
these tests; the test with J = 0.6 and o,, = 0.92 was chosen for-the present
validation. The wake peak is chosen to be 27% as shown in Figure 7.22. At this
condition, the cavity on the blade remains a partial cavity during the whole
revolution, but varies violently when the blade is passing through the wake
peak. The purpose of this validation focuses not on the details of the cavity
shape, but mainly on whether the present method can capture the dynamic
motion of the cavity in the wake.

The tunnel wall can be simulated simultaneously by the present panel
method, but the following calculations are carried out in an unbounded flow
field, for the sake of reducing the computational effort. From the experiments,
the influence of the tunnel wall was found to have an effect of 5% increase on
the advance ratio (Kuiper (1984)). Hence the calculation is carried out at an
effective advance ratio of J = 0.62 to account for the wall effects.

In order to save computing time, except for the key blade, the other three
blades are discretized with a relatively coarse grid (N, x N, = 12 x 15). On the
key blade, we used N, x N, = 25 x 30 on one side of the blade. The cavitation is
only calculated on the key blade. The other blades are treated as fully wetted.
This simplification is assumed to have a minor effect on the cavity on the key
blade.

When a 5° step in revolution is chosen for the calculation, 120 wake panels
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in stream direction are generally needed to form a wake that is as long as two
times the propeller diameter for this propeller at J = 0.6. This wake length
has been found to be the minimum wake length for fully wetted and cavitating
propeller flows for most cases.

The calculated variation in cavity extent, when the key blade is passing
through the sharp wake peak at 12 o’clock position, is presented in Figure
7.23. Tt is concluded from this figure that:

1. When the blade is outside of the wake peak, as shown at +30° position
in this figure, the cavity is restricted to the mid span with a maximum
length approximately 50% of the chord length.

2. When the leading edge of the blade enters the wake peak, as shown at
—30°, the cavity grows both in radial direction toward the tip and slightly
in the chord direction.

3. The cavity grows towards the tip of the blade from —30° to —5°, where
the cavity covers most of the mid-span and the tip region of the blade.

4. At 0° position, because the leading edge of the blade leaves the wake
peak, the cavity suddenly collapses in the tip region. After this collapse,
the cavity extent shrinks gradually to the extent outside the wake peak.

The details of the cavity extent at certain angular positions are drawn and
compared in Figure 7.24 together with the experimental observations. Except
for the cavity very close to the 12 o’clock position, where the cavity extent is
predicted too large, the cavity extent outside of the peak agrees quite well with
the experiment. The important feature of the cavity collapse, when the leading
edge is leaving the peak at 12 o’clock, is predicted by the present simulation
(from —15° to 0°). The cavity collapse in the tip region at 0° is not simulated,
because the detachment of the cavity in the simulation is fixed at the leading
edge. In the experiment, when the blade enters the wake peak (from —60°
to —10°), the cavity thickness is increasing dramatically but the maximum
length is not. The calculation seems to have over-predicted the cavity length.
When the blade leaves the wake peak (from 0° to +30°), the cavity at mid
span becomes quite long and thick in the experiment. But the calculation
under-predicts the cavity length.

The cavity volume change within one cycle is plotted in Figure 7.25. The
predicted total cavity volume in the present case shows a very quick increase
but a relatively slow decreasing, even when the cavity close to the tip shows an
abrupt collapse. The reason is that the cavity close to the tip is very thin. So
it has only a minor contribution to the total volume. The cavity at the mid-
span is dominant in the cavity volume. The cavity thickness in the collapsing
stage at mid-span becomes much thicker than the cavity at the growing stage
(comparing the photo at +15° to the photo at —15°).
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Figure 7.25: The cavity total volume change when the key blade passes through
the sharp wake peak. (J = 0.6, 0 = 0.92)

7.3 Conclusions

The present computational method has been successfully applied in this chap-
ter to the simulation of the unsteady cavity flow both on hydrofoil surfaces and
on propeller blades. The results show that the main dynamic features of the
unsteady cavity flows are captured by present calculation method. Simple ver-
ification and validations are carried out, which show-that the present-method
can be expected to predict unsteady cavity flow on the propeller blades effec-
tively.

Two-dimensional unsteady cavity flow in a sinusoidal gust shows a non-
linear response of the cavity shape to the gust. The maximum thickness of the
cavity moves towards the end of the cavity as the cavity is growing. This effect
becomes stronger when the reduced frequency of the gust is increased. The re-
entrant jet can be clearly seen at the end of the cavity when the cavity length
reaches the maximum length in a cycle and at the early stage when the cavity
starts to shrink, but is not found for the rest of the cycle. This is in accordance
with the observation in the experiments. The amplitude of the cavity length
and cavity volume variation is found to decrease with the increase of the gust
frequency.

A three-dimensional calculation of cavity flow on a hydrofoil with a small
aspect ratio shows the basic features of slow growth and faster collapse of a
- cavity in terms of both cavity length and cavity volume. Phase angle differences
for the cavities at different span positions are also found. For a rectangular
hydrofoil at a reduced frequency up to K = =, the phase difference between
the cavity length at the mid-span and the cavity length at the tip can be as
large as 90°.
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The prediction of the cavity flow on propeller blades in a sharp wake peak
shows that the present method can capture the important feature of growth
and collapse of the cavity, but the calculated cavity extent is generally longer
than that of the observations. Further validation is needed in the future before
this method can be practically used for the prediction of the characteristics of
cavitating propellers.
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Chapter 8

Experiment and Validation

A benchmark test is now being carried out in the cavitation tun-
nel of Technical University Delft on a twisted transparent hydrofoil.
The test setups and the test procedure are described in the follow-
ing. Some preliminary results are obtained and given in this chap-
ter. Comparisons are made between the experimental results and
the calculations. Good agreement is found.

It is necessary to validate the present numerical method with experiments
before we are confident about the results of the calculations. The simple vali-
dations we have carried out in the previous chapters (in Section 6.1.6, Section
6.2.5 and Section 7.2) are not sufficient. The validation should consist of not
only the cavity extent (contour in three-dimension), but also the cavity thick-
ness distribution, and even, the re-entrant jet direction and the re-entrant jet
thickness. Validation for unsteady cavity flows is even more important than
for steady flows. To the knowledge of the author, there is still no reliable test
result available even for steady cavity flows. Although some tests and mea-
surements have been conducted and published in the previous decades, those
tests were either performed for a two-dimensional profile (Shen & Dimotakis
(1989a), Shen & Peterson (1978)), for a three-dimensional hydrofoil (Kinnas &
Fine (1993)) or for a complicated propeller blade. Some measurements of the
cavity length have even been carried out in an unsteady situation (Hsu & Shen
(1988)). But all the results are not accurate enough to serve as a bench mark
for the present validation. The two-dimensional steady cavity flow tests show
unsteady results due to the impinging of the re-entrant jet on the cavity surface
and the constant shedding of the cloud. The three-dimensional hydrofoil and
propeller tests do not provide the basic structure that we can use to validate
the present numerical simulation.

Moreover, due to the difficulties of the measurement of the cavity thickness,
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only the cavity extents are always measured. The measuring techniques for
cavity thickness are still developing. A pin-gauge method is widely used for
two-dimensional cavity flows and also for propeller sheet cavitation. Some
very preliminary trials have even been attempted for full-scale propellers in sea
trials, but very limited data are available. The drawback of this method is
quite obvious: the pins interfere with the flow and the cavity surface and hence
change the flow itself. Furthermore, installing the pins on the surface is not
easy and mostly they are lost during the test, or they catch drifting rubbish and
frustrate the test completely. Other methods like stereo photography has been
also developed for these measurements. Unless it can be automated, it takes
too much time and labor to analyze the results. A method using laser beams
has been tried recently for cavity flows as well. It is very promising and will be
considered in the present experiments. The application of this method to the
measurement of the cavity thickness on a propeller has been shown successfully
by Ukon et al. (1991).

With the support of Maritime Research Institute Netherlands (MARIN),
a bench mark test is being carried out in the cavitation tunnel of Technical
University Delft. A twisted rectangular hydrofoil has been designed to generate
a distinct and stationary cavity on most part of the hydrofoil. Plexiglas is used
so that the profile is transparent and the re-entrant jet can be easily observed
from the bottom of the hydrofoil. A laser beam will be used to measure the
cavity thickness distribution along both the chord and the span. Unsteady
cavity length and thickness measurements for this hydrofoil in a gust is planned.
“'The gust will be generated by placing two small oscillating fins in-front of the
hydrofoil in the tunnel, as is presently being pursued at Chalmers University of
Technology by Sché6n (2000). Presently only some preliminary steady inflow
observations are available for comparison.

8.1 Experiment Setups

8.1.1 The tunnel

The cavitation tunnel at Technical University Delft is a Kempf und Remmers
closed re-circulation tunnel with a square test section of 0.3 x 0.3 square meters
and 0.6 meters long as shown in Figure 8.1. The highest water speed in the
test section is 7m/s. The tunnel is driven by a 4-bladed axial impeller with
Ward Leonard control. The power of the motor is up to 15Kw at a speed of
revolution of 2920rpm. The pressure at the test section is adjustable from 102
kPa (maximum) to 11 kPa (minimum), which suits most of the cavitation test
on hydrofoils and propeller blades.

The velocity at the test section is measured by the pressure drop of the
contraction, which is calibrated in advance. The water is deairated by running




CHAPTER 8: EXPERIMENT AND VALIDATION 181

Figure 8.1: The test section of the cavitation tunnel at Technical University
Delft with the twisted transparent hydrofoil installed.

the water at low pressure with a free surface for half a day. The air content is
measured by a Van Slijke apparatus and maintained at 0.85% during all of the
runs.

The static pressure at the test section is adjusted by a vacuum pump and
the pressure relative to the atmospheric pressure is measured by a U-shaped

mercury tube. The cavitation number of the test is calculated by equation
(1.1).

8.1.2 The twisted hydrofoil

In order to represent a typical propeller blade and to control the cavity and its
re-entrant jet in a restricted area, a specific twisted hydrofoil has been designed
for this test. The profile of the hydrofoil is chosen to be NACA four digits profile
with a representative thickness to chord ratio of 9% (with zero camber). The
hydrofoil is twisted in such a way that the loads at its two tips are zero, while
the load is high at the mid-span with a sharp leading edge suction peak. This
twisting is done by rotating the profile around its mid-chord point to a certain
designed angle of attack. A relatively thick sheet cavity can be expected to
start from the leading edge.

After an estimate of the cavity flow by the present numerical method, the
angle of attack at the tips was set to —1° and the angle of attack at the mid-
span was set to +7°. The wall effect is fully taken into account by putting
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panels on all the walls and on the inlet- and outlet-plane of the calculation
domain. A third order-polynomial is used to obtain a smooth distribution of
the twist,

a =T —24°2/zmaz|? + 16°|2/ Zmaz|’, (8.1)

where z is in span direction as shown in Figure 6.20 and 2,54, is the half of the
span.

Due to this twisting, the cavity extent is expected to increase from zero at
the tip to a certain length at mid-span at a given cavitation number. Due to
this change of the cavity length over the span, the re-entrant jet is expected
not to impinge on the cavity surface in the upstream but turns to a direction
along the span. Finally it finds an exit at the mid-span section only. Except
for the cavity at the mid-span, on most part of the hydrofoil the cavity can be
expected to be stationary in most test cases.

The hydrofoil is made of Plexiglas. The size of the hydrofoil is 150mm
in chord and 300mm in span. The surface is milled by the new computer
controlled milling machine at MARIN and then polished by hand. The defor-
mation of the hydrofoil under lifting force during the test has been estimated.
Due to the twisting of the foil, the deformation is negligible when the water
speed is less than 6m/s. Because of its transparency property, the cavity on
the hydrofoil can be observed on both sides of the foil. It makes the observation
of the re-entrant jet much easier.

In order to reduce the scale effect as much as possible; roughness.is applied
at the leading edge of this hydrofoil. These are carborundum grains with a size
of 60pm. The roughness is glued on the back of the foil around the minimum
pressure position of the foil with a width of 5mm which starts 3mm downstream
of the leading edge at a place very close to the location of the minimum pressure
point on the profile. This roughness makes the boundary layer turbulent all
over the surface and prevents spot cavitation to occur. Hence we can have a
nice sheet cavity on the suction side of the foil.

8.1.3 Procedure and Photographing

During the whole test, the static pressure at the test section of the tunnel
was kept constant (—644mmHg) relative to the atmospheric pressure. The
atmospheric pressure was measured during each run. The cavitation number
is changed by changing the velocity of the water in the test section. The tests
were done for five different angles of attack. All the test conditions are listed
in Table 8.1. On average, six photos were taken for each condition.

A Nikon F301 camera with an objective of Sigma 90mm was used for
photographing during the test. Two stroboscopes were used for the illumination
of the object from the top and the side. While taking the photos, the test
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Table 8.1: The test conditions for the twisted transparent hydrofoil.

Angle of attack at the tips o
V (m/s) -2° -1° 0° +1° +2°

4.1 X X
43 X X X X x
4.6 X X X X X
4.8 X X X X
5.1 X X X X X
53 R X X X X
5.6 X X X

5.8 X

6.1 X

X the photo was taken at this condition

section was covered with a simple black tent. The shutter was switched on first
by hand-timer and then the light was triggered once to make the exposure of
the film. Different positions of the lights have been tried and the best position
was determined by the quality of the photos and maintained during all of the
test runs.

8.2 Experimental Results

As we did expect, the scale effect was very strong when the roughness was not
applied. Because of the twisting of the foil, the suction peak at the mid-span
decreases towards the tip. When the peak is lower than a certain value at
a certain span position, the laminar boundary layer no longer separates and
hence no sheet cavity was observed at this position. The cavity sheet stops
suddenly towards the tip and the cavity is restricted to the mid-span. Because
of its special topology, some vortex systems were generated, which influence
the formation of cloud cavitation in a specific way. This has been observed and
analyzed extensively by Foeth (2000) in Ann Arbor, Michigan.

When the angle of attack is low (say —1°), this sheet cavity becomes a
series of spot cavities at mid-span accompanied with bubble cavitation at both
sides. When the angle of attack is very low (say —2°), only bubble cavitation
was observed.

The scale effect can easily be reduced by applying roughness at the lead-
ing edge to promote sheet cavitation. The mechanism of the roughness (see
Kuiper (1981)) will not be discussed here, but the basic idea is to generate
sheet cavitation inception when the pressure is at the vapor pressure. When
the roughness is sufficiently small and sufficiently widely distributed (Ligtelijn
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* Flow

Figure 8.2: Observed cavity on the twisted hydrofoil in the cavitation tunnel.
(angle of attack at the tips ayp = —1° Vo = 5.lm/s; cavitation number
o =0.979)

& Kuiper (1983)), the pressure distribution should not be affected by the rough-
ness. One of the typical photos of cavity flow with leading edge roughness is
shown in Figure 8.2, which gives a top view of the cavity with the flow in the
direction from the top of the page to the bottom of the page. The leading edge
and trailing edge are indicated in this figure. A nice sheet cavity was formed
in most part of the cavitating area, except very close to the sides of the sheet
where spot cavities can be observed. This indicates that the roughness close
to the right side of the hydrofoil is not sufficient. In this photo, the roughness
on the left side has been applied better.

The experiments are still being performed and the measurement of the cav-
ity thickness and the observation of the unsteady cavity flow in a gust have not
yet been completed. Some selected results at the design condition (o = —1°)
are listed in Appendix C. The cavity length at different cavitation numbers are
then measured from these photos and presents in a figure in the next section,
where the calculations are compared with the experimental results.




CHAPTER 8: EXPERIMENT AND VALIDATION 185

upper wall

hydrofoil

inlet

side wall

lower wall

Figure 8.3: Schematics of the numerical cavitation tunnel and the discretization
of the hydrofoil and its wake in the tunnel.

8.3 Comparisons

In order to include all the possible effects from the tunnel walls, the calculations
were carried out in a numerical cavitation tunnel as sketched in Figure 8.3. The
tunnel walls consist of three parts, the top wall, the bottom wall and the side
wall. The side wall is split into two parts, the upper and lower wall, at the
intersection of the foil and the wall. An inlet- and an outlet-plane are also
introduced to guarantee a uniform inflow and a uniform out flow.

The twisted hydrofoil is placed at the center of the tunnel with two tips
connected with the wall. The wake from the trailing edge of the foil is parallel
to the top and bottom walls. The wake is cut off at a sufficiently long distance
from the trailing edge before the outlet. This cutting-off is expected to have
minor influence on the flow at the hydrofoil. And because of this, the flow at
the outlet can be simply treated as a uniform flow. The discretization of the
foil surface and the wake is shown in Figure 8.3.

The impenetrable condition of equation (2.24) is applied on all tunnel walls.
To guarantee a uniform and constant axial flow at both the inlet and the outlet,
the following condition was applied,

9 _o.

an (8.2)

The discretization of the tunnel walls and the inlet and outlet is shown in
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Figure 8.4: The discretization detail of half the tunnel walls and its inlet and
outlet. (the example is given when the foil’s angle of attack at the tip is 0°.)

Figure 8.5: The discretization details of the intersetion of the foil and the tunnel
side wall. (the example is given when the foil’s angle of attack at the tip is 0°.)
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Figure 8.6: Comparison of the calculated cavity extent and the one measured
in the cavitation tunnel. (the angle of attack o = —1°)

Figure 8.4. The details of the intersection of the foil and the side wall are
shown in Figure 8.5. Due to the symmetry of the flow, only half the system
was taken into account for the numerical calculations.

In chord direction, 50 panels were used around the foil from the trailing
edge on the face to the leading edge and from the leading edge to the trailing
edge on the back. In steady flow, there is no need to use a very fine grid for
the wake because the singularity distribution of the wake will remain constant
on each strip. Seventeen panels were used in chord direction. On the cavity
surface, 30 panels were used in chord direction. The number of panels in span
direction has been kept the same at the foil, the wake and the cavity. Over
half the span 10 panels have been used.

In order to take the wall effect accurately into account, a relatively fine
grid was used close to the foil on the tunnel wall (Figure 8.4). On whole
wall, 60 panels have been used in the flow direction and 10 or 16 panels in
lateral direction. The panels on the inlet and outlet surface are matched with
the panels on the side walls. In total, 2980 panels have been used in this
computation.

The calculated cavity extent is compared with the experimental result in
Figure 8.6, where the symbols are experimental results and the solid curve is
the calculated. Only on of the calculated results is shown here since the others
have the same deviation from the experiments. The result is for ¢ = 1.105,
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at which a partial cavity with a length about 20% of the chord length was
observed on the hydrofoil.

As we can see, the calculated cavity extent has generally the same shape
as the observed ones, but it is longer than the observation. This is not unex-
pectated since the cavity closure in the experiment shows a strong turbulent
closing at the cavity end (Figure C.3).




Chapter 9

Conclusions and
Recommendations

After successful implementation of the present method and af-
ter extensive verification and validation for both two-dimensional
and three-dimensional cavity flows, the main conclusions are drawn
in this chapter. Problems are discussed and recommendations for
further improvement are surveyed

Viscosity has been found to have a strong effect on cavitation inception.
One of the reasons is that it changes the surface pressure distribution. But this
effect is limited for fully developed cavity flows, like a sheet cavity. Mostly,
the sheet cavity detaches from the leading edge of a lifting body and forms a
transparent smooth cavity surface. The shear stress on the interface between
the liquid and the vapor is so small that its effects can be neglected. Then a
potentialv flow theory can be expected to give a sufficiently good prediction for
this kind of flow, except at the detachment and the reattachment of the sheet.

Investigations on sheet cavity flows (Laberteaux (1998)) show a good cor-
relation between the experiment and the prediction by potential flow theory
when the cavity closure is a laminar closure. This is especially true for three-
dimensional sheet cavity flows when the re-entrant jet turns in the span di-
rection and the cavity is not locally shedding as cloud cavities. We are then
encouraged to develop the present method that is based on the panel method,
due to its simplicity and efficiency. It is even used for the simulation of the
re-entrant jet.

The single-phase approach methods, which use an artificial equation of state
together with a compressible the Euler or RANS code, predict sheet cavity
flows in which the fluid in the cavity moves at supersonic speeds. But this is
not observed in experiments. The surface-capturing methods based on Euler
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or RANS codes treat the cavity surface as a free surface and the dynamic
characteristics of the sheet cavity can then be predicted. With an improvement
of the calculation efficiency, they are also quite promising too.

After deriving the formulation, the present method has been successfully
implemented in a computer code that shows the method to be stable and
accurate. Generally, two different kinds of boundary conditions are used, one
is the Dirichlet boundary condition on the cavity surface which is derived from
the dynamic boundary condition, and the other is the Neumann boundary
condition that reflects the non-penetrating kinematic condition. The cavity
surface is assumed at first on the body surface and the kinematic boundary
condition on the cavity surface is used to iterate the cavity surface or to advance
the cavity surface in time until a converged result is reached.

It has been found that this method is quite stable and accurate for steady
cavity flow predictions, and also very promising for capturing the main features
of the unsteady dynamic variation of the cavity. After extensive numerical
verification and experimental validation, we formulate the following conclusions
and recommendations.

9.1 Concluding remarks

Some of the rémarks have beén concluded in the previous chapters, some others
will be drawn in the following. Both are listed below.

* o A potential based higher-order panel method has been shown by De Kon-
ing Gans (1994) to be advantageous both in terms of efficiency and ac-
curacy, especially for the flow around sharp edges like the leading edge
of a profile. However care must be paid to the evaluation of the near
field influence coefficients when the body-fitted curvilinear coordinates
are used and when all the variables are expanded based on these coordi-
nates. Special attention has to be paid to the triangular shaped panels
at the tip of a hydrofoil or a propeller blade.

o Lagrangian methods for advancing the solution in time have been found to
be not practical for cavity flow problems due to the high speed of the fluid
at the cavity surface and the high curvature at the cavity end. Previous
exercises with this method (De Koning Gans (1994), De Lange (1996)) do
not show to be promising for solving cavity flow problem on lifting bodies
with a complicated geometry like propeller blades. An Euler method has
been found to be marginally stable under the present formulation, but
wiggles can propagate from the edges to the central part of the cavity
and quickly contaminate the whole cavity surface. Only the alternative
Euler method has been found to be stable and hence has been used in
the present simulation.
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e The choice of the detachment position of the sheet cavity has been found
to have a very strong effect on the calculated cavity shape (both for the
length and for the thickness distribution). For the present potential flow
theory, choosing the detachment point at the physical detachment point
of the cavity may not seem to be right, because the surface tension, the
dead water and the round nose of the cavity is not represented. However,
taking into account the fact that the laminar boundary layer separation
will move upstream to a position very close to the minimum pressure point
after cavitation inception has occurred, setting the cavity detachment at
the minimum pressure point may give a better prediction of the cavity
shape.

e The Kutta condition, which enforces equal pressure at both sides of the
trailing edge by changing the singularity strength on the first panel of
the wake and keeping this strength for the other panels in the same strip
(steady flow case) or shedding this strength to the next panel in the next
time step (unsteady flow case), has been found to imply fundamental
errors, because it violates Kelvin’s circulation conservation law. In three-
dimensional flow situations, when the trailing edge is not perpendicular
to the local flow direction, the change of the singularity strength of the
first wake panel can generate a very high artificial speed in a direction
parallel to the trailing edge. Sometimes equal pressure can be achieved
but a suction peak is formed at the trailing edge which is not realistic.
Sometimes, equal pressures cannot be achieved. The influence of the
pressure Kutta condition on the sheet cavity simulation depends highly
on the pressure difference at the trailing edge when the Morino Kutta
condition is used. No general conclusions can be drawn.

o In unsteady flow calculations, the shedding of the vorticity at the trailing
edge has been found to have a strong effect on the pressure distribution
and the loading, and hence on the cavity shape. It is found that a higher
order formulation of the singularity in the first few panels in the wake
is generally needed. But the wake shape has been found to have minor
influence on the calculation, except when the propeller is highly loaded.

e The two-dimensional flow calculations for profiles with different thickness
to chord ratio shows the trend that the cavity length decreases when
the foil thickness increases. This is in accordance with the experimental
observations. Linear methods show an opposite trend. The predicted
cavity length exhibits a very good correlation with experimental results
when the closure of the cavity is smooth. When the closure of the cavity
is cloudy, the present method predicts a cavity length which includes the
cloudy region.
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o The re-entrant jet has been successfully predicted by the present method
when many panels are used at the closure of the cavity. Without consider-
ing the boundary layer, the predicted re-entrant jet thickness thickness is
always around 8 to 10% of the cavity maximum thickness. The re-entrant
jet in the viscous flow is expected to be thicker than this value. The di-
rection of the re-entrant jet is predicted to reflect at the cavity end in the
three-dimensional flow case, which is found to have a strong influence on
the formation of the cloud cavitation and eventually on the topology of
the cavity. Unsteady flow calculations show the trend that the re-entrant
jet forms when the cavity has grown to the maximum length and during
the early stage of collapse.

e The dynamic motion of the cavity in the two-dimensional flow case shows
an out-of-phase motion of the cavity thickness over the span. This out-of-
phase motion is also found for the cavity extent at different span positions.
The phase angle for a rectangular hydrofoil with an aspect ratio of 2
can be as large as 90°.The cavity maximum thickness is found to move
downstream towards the cavity end when the cavity is in the growing
stage.

e All the calculated results for a hydrofoil in a sinusoidal gust show a slow
increase and a faster decrease of the cavity size. This is found for both the
cavity extent and the cavity volume. In the case of the S Propeller passing

_ through a sharp wake peak, the cavity length at most radii.has the same
characteristics, but the total volume of the cavity changes differently in
the wake peak. It increases slowly and decreases faster. This is because
of the phase difference for cavities at different radii.

e The preliminary results from the cavitation test on a transparent twisted
hydrofoil in the cavitation tunnel show that this is a very promising
method for a benchmark test on steady and unsteady cavity flows, in-
cluding the measurement of the cavity thickness and the volume variation
in a gust. The calculated cavity shapes agree with experiments.

9.2 Recommendations

The following recommendations are given for further development and improve-
ment of the present method.

o The difference of the influence coefficients computed for a flat panel and
that computed for a curved panel comes from the curvature of the panel.
This difference is small in most cases, and can be evaluated by a higher-
order panel method. Since this difference is subtle, the accuracy of the
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evaluation has to be improved and addressed carefully, especially for tri-
angular panels.

e The search for the intersection of the cavity surface and the body sur-
face has a severe influence on the robustness of the present method. The
present method is found to have a problem in three-dimensional flow cal-
culations when the cavity is very thin so that the cavity surface is almost
tangential to the foil surface. An error in the search for the intersection
can generate a wiggle in the next iteration or time step, and this wiggle
can result in a fatal failure in the following steps.

e The correct simulation of the dynamic motion of the cavity surface de-

0
pends partly on the convergence of the 8_:‘) term in equation (4.32) and
5 ;
the 22 term in equation (4.36). Convergence was observed in all the
calculations, and very good convergence was obtained for the hydrofoil
flows. However further investigations should be carried out in more detail
and the convergence test should be quantified.

o Further validation of the present method should be done in the future.
Emphasis should be put on the dynamic variation of the cavity shape
and its volume. Since there are still no reliable experimental results for
unsteady cavity flows, a good benchmark test for both steady and un-
steady cavity flows should be carried out. Details of the cavity thickness
distribution should be measured.

o At present, the code is fully vectorized for the supercomputer Cray C90
for the calculation of the influence coefficients. But since the cavity sur-
face has to be re-paneled after each iteration step or time step, part of the
influence coefficients must be re-evaluated. During the developing stage
of the code, all the influence coefficients are simply re-evaluated for each
step. An improvement in this respect can increase the efficiency of the
code quite a lot.
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Appendix A

Polynomial Coefficients

Consider a variable y to be an sufficiently differentiable function of z. The
Taylor expansion of this function can be written as,

N
y=1@) =3 a (A1)

=0

where, N is the order of expansion. If we know the discrete (@, fip) pairs, we
can construct the function by using a local polynomial spline. For point z;p,
we write the polynomial based on the relative coordinate,

¥ =1z — Ty, (A.2)
as,
y=f(z) =ao+ a1+ ax®® + az3 + as®t + ... (A.3)
Then at the nodal points,
Tk = Tiptir(k) — Tips (A.4)

where ir(k) is the relative index function of k, and k = 1,2,..., K. K is the
number of nodes. When this polynomial passes through all the selected nodal
points, we obtain the following linear equations,

fo i 0 0 0 0 - ao ao

f~1 1 .'il .’i% i’i’ .i‘% M aj ay

2l | 1 & % 3 i a2 | _Al @

;1= 1 5. @2 53 g4 = ’
f3 3 X3 Ty I3 as as

o~ ~2 ~ o~

f4 1 T4 Ty .’Ei .7}3 ay (173

(A.5)
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Solving this system of linear equations, the coefficients can then be expressed

as a function of the spline supports fo, f1,--- as,
Qg JiO fip+ir(0)
a h fiptir(1)
az | _ g 2| C fiptir(2)
as ]f_3 fip+ir(3)
a4 f4 fz’p+ir(4)

(A.6)

where C = A~!. Once the matrix A~! is calculated, the coefficients are de-
termined. The coefficients for the first three orders are listed in the following,

1. 0**-order approach

C= [1] (A.7)
2. 1%t-order approach
1 0 0
C= [ 0 -1 1 . (A.8)
Ta—-21 Ta—iy i
3. 2"4.order approach
1 0 0
_ —Z1—%o —%o —F
C= 51152 5‘1(511—52) iz(ial—ﬁ (Ag)
Z122 £1(21—%3) Za(Z2—%1)
4. 37-order approach
1 0 0
—(F283+E1F2+%3%1) ZoFg Z1&g
C= T1%2%s (525‘3—5152-}-5?—5153)51 (—5:253-}-5351-}-53—5:152)52
= 1 +Ea+Eg —(E2+%3) —(&1+33
531521533 (52-’53—5152-{-5?—5153)51 (—525‘3+5‘3511+53§—5152)532
Z1Z2%3 (Z2Z3—~21224+3]-F183)51 (—Z2%3+23%1+35—2122)%2

0
221
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3

(A.10)




Appendix B

Two-dimensional Results

For future reference and comparison, all of the calculated results for NACA 16
series are listed in the following tables.

Table B.1: Calculated results for NACA 16-006 at o = 4°

o /c tma/C | Xtma/C Cv h/C C Cp
0.83 0.7324 0.06272 0.4452 0.03496 0.00549 0.6252 0.0270
0.85 0.6624 0.05737 0.3897 0.02888 0.00448 0.5920 0.0241

0.87513 0.5928 0.05197 0.3464 0.02338 0.00424 0.5614 0.0220
0.90 0.5355 0.04767 0.3124 0.01936 0.00384 0.5383 0.0206
1.00 0.3917 0.03721 0.2379 0.01106 0.00300 0.4940 0.0179
1.10 0.3066 0.03082 0.1866 0.00717 0.00275 0.4752 0.0164
1.20 0.2460 0.02607 0.1487 0.00487 0.00234 0.4635 0.0153
1.30 0.2070 0.02318 0.1220 0.00365 0.00225 0.4562 0.0142
1.40 0.1724 0.02011 0.1014 0.00264 0.00207 0.4498 0.0133
1.50 0.1454 0.01757 0.0853 0.00195 0.00185 0.4445 0.0125
1.60 0.1241 0.01549 0.0727 0.00147 0.00165 04412 0.0118
1.70 0.1073 0.01378 0.0628 0.00113 0.00154 0.4384 0.0112
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Table B.2: Calculated results for NACA 16-009 at a = 4°

o i/c tad/C | Ximad/C Cv h/C C. Cp
0.81 0.6998 0.04799 04212 0.02516 0.00339 0.5581 0.0160
0.90 0.4748 0.03407 0.2841 0.01202 0.00244 0.4957 0.0117
1.00 0.3376 0.02593 0.2088 0.00650 0.00180 0.4622 0.0094
1.10 0.2629 0.02117 0.1613 0.00412 0.00173 0.4606 0.0087
1.20 0.2019 0.01683 0.1234 0.00251 0.00136 0.4522 0.0076
1.30 0.1579 0.01367 0.0970 0.00159 0.00118 0.4368 0.0057
140 0.1271 0.01122 0.0778 0.00105 0.00103 0.4361 0.0050
1.50 0.1029 0.00915 0.0640 0.00069 0.00088 0.4349 0.0044

Table B.3: Calculated results for NACA 16-012 at a = 4°

o] /c tma/’C | Ximas/C Cv h/C CL Cp
0.80 0.6544 0.03373 0.3982 0.01606 0.00226 0.5037 0.0076
0.90 0.4261 0.02348 0.2608 0.00719 0.00148 04714 0.0051
1.00 0.2843 0.01595 0.1823 0.00321 0.00100 0.4575 0.0040
1.10 0.1821 0.00994 0.1195 0.00125 0.00082 0.4260 0.0015
1.20 0.1258 0.00652 0.0082 0.00054 0.00048 0.4260 0.0008
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Figure C.1: Observed cavity extent. (asp = —1°, Vo = 4.3m/s, cavitation
number ¢ = 1.377, with leading edge roughness)

Figure C.2: Observed cavity extent. (auip = —1°, Vo = 4.6m/s, cavitation
number ¢ = 1.203, with leading edge roughness)
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Figure C.3: Observed cavity extent. (o, = —1°, Vo = 4.8m/s, cavitation
number ¢ = 1.105, with leading edge roughness)

Figure C.4: Observed cavity extent. (ap = —1°, Vo = 5.1m/s, cavitation
number ¢ = 0.979, with leading edge roughness)
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Figure C.5: Observed cavity extent. (ap, = —1°, Vo = 5.3m/s, cavitation
number o = 0.906, with leading edge roughness)

Figure C.6: Observed cavity extent. (a4 = —1°, Vo = 5.6m/s, cavitation
number o = 0.812, with leading edge roughness)
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Summary

This thesis deals with the theory and the numerical simulation of sheet cav-
ity flows on arbitrary lifting bodies like hydrofoils and propeller blades. The
objective of this research is the accurate prediction of the cavity volume and
the volume variations in time when these lifting bodies travel in a gust or are
subject to an ambient pressure change. This volume change plays an important
role in the pressure excitation on neighboring structures like hull of a ship and
in the radiation of underwater noise.

The physical phenomenon of sheet cavitation on lifting bodies is described
according to experimental observations at the beginning of this thesis. The
specific features of sheet cavitation, different from bubble and cloud cavitation,
are addressed. The basic cavity flow theory within the frame of the potential
theory is described and all the boundary conditions are discussed in order to
obtain the solution of the problem. For predicting the dynamics of the cavity,
numerical methods to find the solution in time are studied.

All the numerical algorithms for solving the problem are discussed in detail
and checked extensively by numerical tests. A higher order panel method is
described and evaluated. Emphasis is given to the problems of the analyti-
cal calculation of the influence coefficients. The system of equations of the
fully wetted and cavitated flows are established under different Kutta con-
ditions. The detachment condition and its influence on the cavity flow are
studied. Cavity planform searching, grid updating and cavity-body intersec-
tion are described. Other highly-related numerical methods for panel methods
and cavity flows, like the Kutta condition and wake alignment, are investigated
and checked by numerical tests. Specific attention is paid to the influence of
these numerical algorithms on the calculated results.

The present method for predicting steady sheet cavity flows on two-dimen-
sional and three-dimensional hydrofoils and on propeller blades is used exten-
sively and validated by experimental results in this thesis. Good agreement
between the calculations and the experiments is achieved. The dynamics of
sheet cavitation is predicted by the present method for a hydrofoil moving
into a sinusoidal gust and for a propeller rotating in a sharp wake peak. The
present method demonstrates the ability of capturing the dynamic movement
of the sheet cavitation.

At the end of the thesis, the conclusion is drawn that the present method
has the potential to predict the cavity topology and the cavity dynamics. After
improvement of some numerical algorithms, the efficiency of the method can
be enhanced to such a level that it can be applied in the early stage of ship
propeller design in order to prevent excessive cavitation and vibrations.



s

224 NUMERICAL SIMULATION OF UNSTEADY PARTIAL CAVITY FLOWS

Samenvatting

In dit proefschrift wordt ingegaan op de theorie en de numerieke simulatie van
vliescavitatie op dragende lichamen, zoals vleugels en schroefbladen. Het doel
van dit onderzoek is om het volume van de caviteit en de verandering daarin
in de tijd nauwkeurig te voorspellen wanneer de invalshoek in de tijd varieert
of wanneer de omgevingsdruk varieert. Deze volumeveranderingen spelen een
belangrijke rol bij de opwekking van drukfluctuaties op naburige lichamen zoals
de huid van een schip. Ook de hoeveelheid lawaai die een schroef onder water
maakt wordt in belangrijke mate bepaald door deze volumeveranderingen.

In het begin van dit proefschrift wordt aan de hand van experimentele obser-
vaties de fysica van vliescavitatie op dragende lichamen beschreven. De speci-
fieke eigenschappen van deze vorm van cavitatie verschillen van die van bellen-
of wolken-cavitatie. Vervolgens wordt stroming met caviteiten beschreven met
behulp van potentiaaltheorie samen met alle randvoorwaarden die nodig zijn
om het probleem op te lossen. Ook wordt een methode gegeven om het in-
stationaire gedrag van de caviteit te beschrijven.

Alle algorithmen voor de oplossing van het probleem worden tot in detail
beschreven en worden grondig getest met behulp van numerieke experimenten.
De nadruk wordt gelegd op het uitrekenen van de invloedscoefficienten van de
hogere orde panelen methode die is gebruikt. Het systeem van vergelijkingen
voor het oplossen van stromingen met en zonder cavitatie wordt gegeven voor
verschillende Kutta condities. Het effect van de plaats waar de caviteit start
en-de richting waaronder-dit gebeurt op de-berekening van de-caviteit-wordt
besproken. Ook wordt de iteratie van de cavitatievorm en de aanpassing van
het rekenrooster aan de veranderende geometrie in de tijd beschreven. Andere
daarmee samenhangende numerieke problemen voor de beschrijving van een
stroming met cavitatie door middel van een panelenmethode, zoals de toepass-
ing van de Kutta conditie en de vorm van het volgstroomveld, worden onder-
zocht met numerieke experimenten. Speciale zorg is besteed aan de invioed
van deze numerieke algorithmen op de berekening van cavitatie.

De gepresenteerde methode voor de beschrijving van twee en drie dimen-
sionale stationaire stromingen met cavitatie op een watervleugel en voor een
stroming met cavitatie op een schroef wordt uitvoerig gevalideerd aan de hand
van experimentele resultaten. Goede overeenstemming tussen de berekende
en gemeten resultaten wordt gevonden. Met behulp van de opgestelde reken-
modellen is de dynamica van vliescavitatie voor twee gevallen voorspeld. Als
eerste is het gedrag van een cavitarende vleugel in een sinusoidaal varierende
aanstroming voorspeld en vervolgens is een schroef werkend in een scherpe
volgstroom piek berekend. Deze resultaten zijn vergeleken met het in experi-
menten gevonden gedrag van vliescavitatie.

Geconcludeerd kan worden dat de in dit proefschrift gepresenteerde meth-
ode mogelijkheden biedt voor het voorspellen van de vorm en het gedrag van
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cavitatie in instationaire aanstroming. Na verbetering van een aantal algorith-
men kan de effectiviteit van de methode dusdanig worden verbeterd dat deze in
cen vroeg stadium in het schroefontwerp gebruikt kan worden, zodat excessieve
cavitatie en trillingen kunnen worden voorkomen.
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