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Figure 1: The proposed teleoperation setup, where the remote envi-
ronment is locally simulated. This way feedback to the operator can
be provided in near real-time from this simulation.

Abstract

The current state of teleoperation in Tactile In-
ternet faces the problem of limited operating dis-
tance. To circumvent this limitation, a setup has
been proposed which provides Ultra-Low Latency
feedback to the operator from a local simulation
of the remote environment. To be able to accu-
rately simulate the remote environment and the ob-
jects within it, an initial estimation of the mass and
Center of Mass of these objects is required. We
explore three approaches to estimating these prop-
erties, using Axis-Aligned Bounding Bounding
Boxes (AABB), Oriented Bounding Boxes (OBB),
and convex hulls. We also explore the impact of
sensor resolution and object occlusion. The perfor-
mance of these methods varies and highly depends
on the type of object. Sensor resolution has a high
impact on the estimated mass, but not on Center of
Mass. Object occlusion has a clear impact on both,
suggesting the use of multiple viewpoints will im-
prove accuracy.

1 Introduction

This section introduces the field of Tactile Internet (Ti) and
our research in this field.

”The field of teleoperation coupled with force feedback
will undergo a paradigm shift in the forthcoming years with
the advent of Tactile Internet (TI)” [7]. Take Tactile Internet
(TT) for example, which aims to allow for the perception of
physical touch over the Internet. More formally, the IEEE
1918.1 “Tactile Internet” Standards Working Group defines
TI as: “A network (or network of networks) for remotely ac-
cessing, perceiving, manipulating, or controlling real or vir-
tual objects or processes in perceived real-time by humans or
machines” [9, p. 258].

One of the applications of TI is teleoperation, where a re-
mote operator is able to control a device in a remote envi-
ronment. This can be extremely useful when operating in
dangerous environments [13], or when people have to be sep-
arated for the sake of public health. However, this requires an

incredibly low latency communication between the operator
and the controlled device. Even with communication at the
speed of light, the 1ms round-trip latency identified [9] for
the communication to be in “perceived real-time” limits the
distance of operation to 150km. This would mean an operator
stationed in the Netherlands would barely be able to operate
outside of the country.

To circumvent this limitation as a whole, an alternative
setup has been proposed. To be able to provide near real-
time feedback to the operator, a local simulation of the re-
mote environment is used, see Figure 1. This way the visual
and haptic feedback to the operator can be directly provided
from this simulation, eliminating the network latency.

However, this introduces a significant new challenge, sim-
ulating a remote environment accurately enough to provide
accurate feedback. Not providing accurate feedback can lead
to unwanted side effects, such as the discomfort of the opera-
tor, to more catastrophic consequences like damage to ma-
chinery. The simulation can periodically be synchronised,
however, this alone is not enough. To be able to simulate
the environment and the objects within it several properties
of these objects are required.

Two important properties are the mass and Center of Mass
(CoM) of an object. A physics simulation requires these to
simulate how objects interact with each other. It might be
possible to discover these properties through physical interac-
tion with the objects, however, some initial value is still nec-
essary. Thus, in this work, we look into the question "What
techniques can be used to make an initial estimation of the
mass and Center of Mass of objects”. To answer this question
we identified a number of sub-questions:

* "How accurately can the mass and Center of Mass of an
object be estimated”

* ”Are these estimates still accurate when part of the ob-
ject is occluded”

* “How does the resolution of sensors impact the accuracy
of the estimations”

This work provides the following contributions:

* Insight into how accurately the volume of objects can be
estimated

¢ Insight into how accurately the Center of Mass of objects
can be estimated

* Insight into how sensor resolution impacts the estima-
tions

* Insight into how the occlusion of objects impacts the es-
timations

The rest of the paper is organised as follows: Section 2
goes through research and concepts related to our research.
Section 3 lays out the problems we encountered and the ap-
proaches used to solve them. Section 4 provides details on the
implementation of these solutions. Section 5 explains how we
tested the performance of the solutions and presents the gath-
ered results. In Section 6 we discuss the results we gathered
and relate them to previous works. Section 7 discusses the
ethical challenges that were encountered. Finally, Section 8
concludes the paper as we draw conclusions from the gath-
ered results, and identify future work.



2 Related Works

This section goes through research and concepts related to
our research.

Previous research has been done into “Estimating the mass
of an object from its point cloud for Tactile Internet” [2].
Here, two methods were compared under a number of nec-
essary assumptions. Assumed was that the problem of sepa-
rating different objects’ point clouds and missing or occluded
data were solved, as well as there being no noise in the data
and it being possible to estimate the density of the object.
The density of the object being known leaves only the need
to calculate the object’s volume. Two methods of volume es-
timation, Oriented Bounding Box (OBB), and surfacing the
mesh with a greedy triangulation algorithm then dividing the
resulting mesh into tetrahedrons, were compared against each
other. The results showed that the ’surfacing and division’
method generally performed better than the OBB method.
However, the ’surfacing and division’ method did show a
large outlier, which was speculated to be caused by gaps in
the mesh resulting from the surfacing algorithm [maybe in-
clude a part in results where it shows that when using an orig-
inal mesh instead of a calculated one the division into tetra-
hedrons method is pretty much perfect]. These gaps were the
result of incorrect parameters, which had to be chosen to be
able to apply the same method to a wide range of objects.

This paper also identified alternative solutions to estimate
the mass of an object. However, these only applied to specific
types of objects, such as salmon [3], cows [12], and pigs [15].
Since a Tactile Internet (TI) application aims to deal with a
large variety of objects, the aforementioned approaches are
not applicable.

The estimation of the mass of an object can be separated
into two individual problems, that of volume and of density
estimation. A possible approach to estimating the density of
an object is the use of infrared thermography [1]. This work
managed to achieve a 99.1% R2-fit for the predicted versus
the actual density.

An alternative to the surface reconstruction method is a
convex hull, a convex mesh which wraps around a set of n-
dimensional points. While many algorithms exist applicable
to x-dimensional data, we require an algorithm applicable to
the 3-dimensional case. This narrows the algorithms down to
QuickHull [4], a divide-and-conquer [10] method, and Chan’s
Algorithm [5]. While each uses a different algorithm, the re-
sulting convex hull will be equal.

As for the Center of Mass (CoM), an approach for estimat-
ing the CoM of shape-unknown objects exists [16]. However,
here the interaction of a robotic arm with the objects is used,
which is strictly forbidden in our case as we aim to make an
estimation before any physical interaction happens.

3 Methodology

This section lays out the methods used to estimate volume and
Center of Mass, and why those methods were chosen. Back-
ground information on the mentioned methods is provided in
Section 2.

Making an ’initial estimation’ forbids any physical inter-
action with the object, as we aim to make an estimation of

the mass and Center of Mass (CoM) before the object is in-
teracted with. This meant that the object and its environment
could only be observed from a distance. In this case, this
observation would be done with the use of RGB-D cameras.
This would provide us with a regular RGB image, as well as
depth information in the form of the distance from the camera
sensor to where that camera ray hit some object in the envi-
ronment. This depth information can be translated into a set
of 3-dimensional points, each point consisting of an X, y, and
z coordinate. Thus the data we were working with is a set of
XYZ-points of the environment.

While estimating the mass and Center of Mass (CoM) of an
object are two separate problems, similar assumptions had to
be made for both. Firstly, the methods used for either problem
required the data to be of only the object itself. This could
however be assumed to be solved, as existing segmentation
algorithms provide a way to separate the object from the rest
of the data [8]. Secondly, in reality, the gathered data will
likely contain noise. Again, existing algorithms allowed us
to filter out noise, allowing us to work with perfect noiseless
data [11]. Finally, objects were assumed to be simple objects
with an equal density throughout their entire volume.

One assumption not made was the lack of missing informa-
tion. While we did still explore the situation where informa-
tion about the entire object is available, our focus lay on the
more realistic situation where only data from a single view of
the object is available. However, We still assumed our view of
the target object was not blocked by any other object. Explor-
ing both situations would allow us to say something about the
difference in results, and thus the necessity of multiple view-
points. These multiple viewpoints could be gathered either
through multiple cameras or by moving the camera through
the environment. Besides that we aimed to provide more con-
sistent results without any large outliers, improving on the
results attained by Thomas Baars [2].

3.1 Mass Estimation

The mass M of an object is equal to the product of its volume
V' and the material’s density d. This splits the problem of
mass estimation into two sub-problems. Assuming the den-
sity is known, left us with the need to estimate the volume
of an object. While this was a strong assumption, and pre-
vious research done by Haocheng Yang [14] did not provide
a working approach for mass estimation, it was necessary to
assume this part of the problem had been solved or would be
solved in the near future.

As this work builds upon the research by Thomas Baars
[2], the two methods for volume estimation described in their
work were implemented first. Doing this would allow for
the performance of other methods to be directly compared
against what was achieved previously, with the aim to pro-
vide improved results.

AABB and OBB bounding boxes

One of the previous approaches used the object’s Oriented
Bounding Box (OBB), using the volume of the box as an es-
timation. While being a very naive approach, it can provide
an upper bound on the true volume of the object, and can
quickly be calculated from a set of XYZ-points. Unlike an
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Figure 2: A tetrahedron created from the vertices v1, v2, and v3 of a
surface triangle, and a reference point v [2].

Axis-Aligned Bounding Box (AABB), it can be oriented such
that it wraps more tightly around the set of points, therefore
being closer to the true volume of the object. Besides that,
being able to be oriented makes the resulting volume inde-
pendent of the orientation of the object.

On the other hand, while an AABB will provide a less ac-
curate estimation, the error of this estimation might be more
consistent. A consistent error could be corrected by a combi-
nation of a constant factor and offset. However, this is purely
speculation, and results will have to show whether this holds
any truth.

Convex Hull

While a bounding box provides a quick estimate, it is unlikely
to be accurate. A more accurate approach would be to recon-
struct the surface of the object, and use the volume of that
reconstructed mesh as an estimation. This is the second ap-
proach explored by Thomas Baars [2]. While providing accu-
rate estimates, it also resulted in large outliers caused by gaps
in the reconstructed mesh. It was concluded that to prevent
these gaps, different parameters would be needed for differ-
ent objects. This however would require the use of some form
of object identification.

An alternative approach we explored is the use of a con-
vex hull, which wraps a convex mesh around the entire set
of points. Unlike the mesh reconstruction method, a convex
hull is guaranteed to not contain any gaps in the mesh. On
the downside, it will not wrap as tightly around objects which
have holes or other concave features, such as a torus (Fig-
ure 3e) or a mug (Figure 3f). Therefore it likely will not be as
accurate of an estimation as the volume of a well-resurfaced
mesh.

To calculate the volume of the convex hull we used the
same method used for the reconstructed mesh. For this, the
mesh first had to be turned into a mesh consisting of only tri-
angles, known as triangulating a mesh. The mesh is divided

into tetrahedrons, after which the volume of each individual
tetrahedron is summed together. A tetrahedron is created for
each triangle in the mesh, made up of the three vertices of
the triangle and a reference point. Where this reference point
is does not matter, as long as it is the same for each tetrahe-
dron. The volume of a tetrahedron can be computed using the
following formula:

1
-
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where vy, v9, and v are the vertices of the surface triangle,
and vy is the reference point, see Figure 2. The sign of this
volume can be calculated as the inner product of the vector
from vg to v1, and the surface normal.

This requires the surface normals to be oriented towards
the outside of the mesh. For the sake of this calculation, the
surface normal of a triangle can be any vector perpendicular
to its surface. This can be obtained from cross product be-
tween the vector from v; to vg, and the vector from v to vs.
The normal then has to be oriented towards the outside of the
mesh. The mesh being a convex hull allowed us to take the
average of all the vertices, and orient the normal vector away
from this point, meaning, at an angle > 90 deg.

3.2 Center of Mass Estimation

Besides the mass, we also aimed to estimate the Center of
Mass (CoM) of an object. A logical step was to see how
the previously mentioned approaches for estimating volume
could be used here.

AABB and OBB bounding boxes

As for the OBB and AABB approach, a way to estimate the
CoM would be to take the center of the box. The center can
be obtained by taking the average of all 8 vertices of the box,
or of 2 vertices laying opposite of one another. While this is
a very naive approach, the result might be promising, as in
general, the CoM of an object lies somewhere near its center.
This is more true for symmetric objects than it is for objects
with the bulk of their material on one single side. The same
hold for objects with an equal density throughout the object,
compared to those consisting of materials differing signifi-
cantly in density. In our case, however, we assumed density
to be consistent throughout the object.

Convex Hull

The convex hull approach could be used here as well, by tak-
ing the CoM of the hull mesh as an estimate. As a convex
hull is able to wrap more tightly around a set of points, the
estimated CoM is expected to be closer to the true CoM. We
assumed this would especially show for less symmetric ob-
jects, as the convex hull will resemble the shape of the object
more than a simple OBB. To calculate the volumetric center
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Here, Eq. (1) shows the relation between the CoM of two
separate objects 1 and 2 with their CoM C,, and a volume V,,
and the object 3 which consists of objects 1 and 2. Eq. 2 cal-
culates the CoM C' of an object consisting of n sub-objects,
where the volume and CoM of an object ¢ are v; and c¢; re-
spectively. Combining Eq. 1 and Eq. 2 results in Eq. 3. Here,
the wanted object is a sub-object of the full object, where
extra is any sub-object of full not part of wanted.

The derived equation (3) can be used to calculate the CoM
of the convex hull using the same approach as the use of divi-
sion into tetrahedrons to calculate the volume of a mesh. In-
stead of summing signed sub-volumes, sub-CoMs weighted
by the corresponding tetrahedron’s volume are summed. The
tetrahedrons are the sub-objects, and the sign of each tetrahe-
dron decides whether it belongs to the wanted or the extra
sub-object.

3.3 Occlusion

While having information about the entire object is useful,
it is not realistic. A more realistic situation would be to only
have points on the object gathered from a single point of view.
This introduces occlusion of a large part of the object, whose
Xyz-points are now missing from the data.

Volume

When looking at an object from a single point of view, we
generally can see about half of the object. In the case of a
depth camera, this would result in a partial set of points. The
back half of the sphere, which cannot be seen by the camera,
is an exact mirror of the front half. This suggests that multi-
plying the volume of the front half by a factor of 2 results in
the volume of the full mesh.

The bounding box and convex hull approaches used before
could be used to estimate the volume from occluded data. Be-
cause a single viewpoint only sees about half of the object, a
convex hull around the partial set of points would generally
result in a mesh consisting of half of the object. To get an
estimation of the volume of the full object, we multiplied the
volume of the convex hull by a factor of 2. As for the AABB
and OBB, we decided not to multiply these by any factor.
Since the bounding boxes are able to wrap significantly less
tightly around the points, both are likely to contain a signif-
icant amount of volume which in reality is not part of the
original object. We theorised that this extra volume could
compensate for the missing data.

Center of Mass

Estimating the CoM from partial data is considerably more
complex, as this deals with a point in 3D space and not a sin-
gle scalar value. However, the same principle of only being
able to see about 50% of the object applies here as well.

As theorised before, the CoM of an object generally lies
in the center of the object. Since both AABBs and OBBs
take up extra volume, which might account for the missing
volume not seen by the camera, the same could hold for the
CoM. This especially holds for the AABB, since it orients its
box with the X, y, and z axis instead of fitting as tightly around
the points as possible. Depending on the viewing angle, this
bounding box might still encapsulate the occluded part of the
object, thus having its center near the true CoM of the full
object.

Since the convex hull wraps around the partial set of points
as tightly as possible, this theory was less likely thought to
work. However, assuming about half of the object can be
seen, the other occluded half of the object was theorised likely
to resemble the front half. Mirroring this front half and com-
bining both would result in an estimation of the full object. To
then get the CoM of the full object, we averaged the CoMs of
the front and mirrored half. Drawing this situation, a realisa-
tion could be made. The true CoM is simply the CoM of the
front half, projected onto the mirror plane. To position the
plane at the right distance from the camera, we put its origin
at the point furthest away from the camera. This should put
the plane at the back side of the front half.

However, to calculate the CoM of the convex hull, correct
surface normals of the mesh are required. We were not able
to establish a reliable method to calculate these surface nor-
mals. Therefore, instead of using the CoM, we had to use the
average point of all the vertices of the hull.

4 Implementation Details

This section describes how the approaches mentioned in Sec-
tion 3 were implemented. Additionally, it provides a descrip-
tion of the virtual depth camera used to generate partial views
of objects.

The Point Cloud Library (PCL) offers most of the function-
ality needed to implement the methods we used to estimate
the mass and Center of Mass (CoM) of an object. PCL does
most of these calculations on PointCloud' objects, which are
a set of points consisting in our case of 3D points. The 3D
objects used to

To obtain the Axis-Aligned Bounding Box (AABB) and
Oriented Bounding Box (OBB), PCL’s MomentOfInertiaEs-
timation? class can be used. From a point cloud it provides
the minimum and maximum point of the computed AABB,
and the relative minimum and maximum point, the position,
and the rotation of the computed OBB. Based on the min-
and max-points of the bounding boxes it is possible to find
the length, width and height of the boxes. From these, the

"https://pointclouds.org/documentation/classpel_1_1 _point._
cloud.html

Zhttps://pointclouds.org/documentation/classpcl_1_1_moment_
of inertia_estimation.html
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volume of the box can be calculated. The center of each box
can be obtained by averaging the min- and max-point.

PCL’s ConvexHull® class provides an implementation to
calculate the convex hull of a point cloud. The implemen-
tation uses the QHull library’s qconvex* class, which imple-
ments the QuickHull algorithm [4]. It provides a mesh of the
calculated convex hull, consisting of a set of triangular faces
those 3 vertices reference the points in the input point cloud.
This method can be applied to both complete objects and par-
tial views of objects

From this mesh, the volume can be calculated by iterating
over the faces, a tetrahedron consisting of the triangular face
and the reference point (0,0,0) is created. The signed volume
of each tetrahedron can then be calculated and added to the
total resulting volume of the mesh. A similar method can
be used to calculate the CoM of the mesh. Again, iterating
over the faces a tetrahedron consisting of the triangular face
and the reference point (0,0,0) is created. The CoM of each
tetrahedron can be calculated by taking the average of its 4
vertices, after which it is multiplied by its signed volume and
added to the resulting CoM of the mesh. To obtain the actual
CoM of the mesh the previous result is divided by the total
volume of the mesh.

However, to obtain the sign of a tetrahedron’s volume, cor-
rect surface normals are required. Since we were not able to
establish a reliable method to calculate these, we resorted to
using the average point of all the vertices of the mesh. PCL’s
CentroidPoint’ class provides an implementation to calculate
this average point.

Estimating the CoM from partial data using the convex hull
approach requires a mirroring plane perpendicular to the di-
rection of the camera. This plane can be described by a ori-
gin point on the plane, and the plane’s normal. The reference
point is taken as the point furthest away from the camera, and
the normal is equal to the camera direction. To project the
convex hull’s CoM onto the plane, first, the distance d from
the plane to the CoM is calculated from the plane origin o,
the CoM ¢, and the plane normal 77 as d = (¢ — o) - 7. Then
the projected point p can be obtained with p + dmn. Eigen®
provides the required Vector3 object and vector operation im-
plementations to quickly perform the required calculations.

Yue Chen [6] implements a virtual depth camera in Unity’,
which could be used to generate partial views of objects. This
depth camera shoots out rays into the scene, calculating at
which xyz-coordinate each ray first intersects an object in the
scene, and exports all hit points to a .pcd file. As input, it
takes the resolution and field of view of the camera, as well
as other parameters not relevant to this work. As we were
required to generate partial views from multiple angles, and
at multiple resolutions, some basic modifications were imple-
mented by us.

3https://pointclouds.org/documentation/classpel_1_1_convex_
hull.html
*http://www.ghull.org/html/gconvex.htm

(a) Sphere (b) Cube (c) Cylinder
(d) Cone (e) Torus (f) Mug

Figure 3: The 3D objects used in the experiments.

Object  Volume (cm®) AABB Dimensions (x-y-z)
Sphere 3658.7121 19-20-20
Cube 8000.0 20-20-20
Cylinder 6242.8903 20-20-20
Cone 2080.9634 20-20-20
Torus 1174.7357 25-5-25
Mug 1285.2886 27.6-23-19.9

Table 1: True volume and Axis-Aligned Bounding Box (AABB)
dimensions of the models used in the experiments. See Figure 3.

5 Results

This section lays out the experimental setup and procedure
used to generate results, and presents the results that were
generated.

5.1 Experimental Setup

To generate our results, multiple experimental setups were
used. As well as an input set consisting of 6 3D objects to
perform these experiments on. These objects in Figure 3, as
well as their true volume and Axis-Aligned Bounding Box
(AABB) dimensions. These objects were chosen to range
from high levels of symmetry, such as a Sphere, to lower
levels of symmetry, such as a Cone. Besides this, a Torus
and a Mug were chosen to see the impact of holes and con-
cave features on objects. These models, except for the Mug,
were created by us in Blender®. The Mug model was created
by ’afferu’ and distributed for free use on Sketchfab®. Us-
ing Blender the true volume and Center of Mass (CoM) were
extracted, to allow for a direct comparison of the estimations
against the true values.

To get a better insight into the impact of the resolution of
the depth camera on both volume and CoM accuracy, a setup
was created allowing us to generate partial views of objects
at a range of resolutions. This setup makes use of a modified

Shttps://pointclouds.org/documentation/classpcly 1 centroidyoint. htmil 8https://www.blender.org/

®https://eigen.tuxfamily.org/index.php?title=Main_Page
https://unity.com

*https://sketchfab.com/3d-models/blender-mug-
bad3565a215a4795a119973e6816df8a
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(a) Camera A (b) Camera B (c) Camera C
Figure 4: The camera angles used in the experiments. A mug object
is used as an example to clarify the positions of the cameras relative

to the objects.

Camera C
(-30,30,-30)

Camera B
(-15,15,-45)

Camera A
(0,0,-50)

Position

Table 2: The XYZ-coordinates of the camera positions from which
partial views of the test objects were generated.

version of the depth camera implemented by Yue Chen [6].
The resulting .pcd files could then be used as input to the
respective volume and CoM estimation functions.

To generate volume and CoM estimations from complete
objects, the models in the input set were exported to .pcd
files. These could then be used as input to the respective vol-
ume and CoM estimation functions.

As for estimations from occluded data, a partial view of
each object was generated from a single viewing angle and a
set resolution. Intermediate results on volume estimation over
arange of resolutions with an aspect ratio of 16:9 from *16x9’
to *1920x1080’ showed that generally, resolutions higher than
’640x360° did not cause a significant change in results. Be-
sides that, the time it takes to generate partial views is directly
proportional to the total pixel count of the camera, ranging
from 3 minutes for a resolution of *640x360’ to over 30 min-
utes for a resolution of *1920x1080’. These facts combined
made us choose a resolution of ’640x360’ to generate the re-
quired partial views from multiple camera angles with suffi-
cent accuracy, while not taking too much time. These results
can be found in Figure 5, 6, 7, 8, 9, and 10. As for the Field
of View (FoV) of the camera, a vertical FoV of 43 deg was
chosen to match the Xbox Kinect. While this device does
have a different aspect ratio, this would not have any impact
on the results. Using the Kinect’s 4:3 aspect ratio would only
decrease the width of the camera view, which in our case does
not change the results.

3 camera angles were used to generate partial views, whose
views are visualised in Figure 4. The positions of these cam-
eras can be found in Table 2. The cameras were oriented
towards the origin, which generally aims them towards the
center of the objects.

As the evaluation method for the performance of the vol-
ume estimations, the estimated volume as a factor of the true
volume was chosen. As for evaluating the performance of
the CoM estimations we chose the L2 norm, or the Euclidian
distance from the true CoM to the estimated CoM.

5.2 Volume

Table 3 shows the results for volume estimation from com-
plete data, using the Axis-Aligned Bounding Box (AABB),
Oriented Bounding Box (OBB), and convex hull approach.

Object  AABBerror OBB error Convex Hull error
Sphere 2.08 2.07 1.00
Cube 1.00 1.00 1.00
Cylinder 1.28 1.28 1.00
Cone 3.84 3.84 1.00
Torus 2.66 2.66 1.89
Mug 9.86 10.35 6.51

Table 3: Volume estimation results from a fully known mesh using
the Oriented Bounding Box (OBB) and Convex Hull method. The
error is defined as the estimated value relative to the true value. An
error of 1.0 meaning a perfect estimation, and 2.0 meaning the esti-
mated volume is twice as large as the true volume.

These results were generated from the complete mesh of the
objects directly exported from Blender.

Table 4 shows the results for volume estimation from par-
tially occluded data, using the Axis-Aligned Bounding box
(AABB), Oriented Bounding Box (OBB), and convex hull
approach. The partial views clouds were generated from 3
camera angles, see Figure 4, using the modified depth cam-
era.

In both tables, the error is defined as the estimated volume
as a factor of the true volume. An error of 1.0 meaning a
perfect estimation, and 2.0 meaning the estimated volume is
twice as large as the true volume. For readability, the values
are rounded to 2 decimals.

5.3 Center of Mass

Table 3 shows the results for Center of Mass (CoM) estima-
tion from complete data, using the Axis-Aligned Bounding
box (AABB), Oriented Bounding Box (OBB), and convex
hull approach. These results were generated from the com-
plete mesh of the objects directly exported from Blender.

Table 4 shows the results for CoM estimation from par-
tially occluded data, using the Axis-Aligned Bounding box
(AABB), Oriented Bounding Box (OBB), and convex hull
approach. The partial viewpoints were generated from 3 cam-
era angles, see Figure 4, using the modified depth camera.

In both tables, the error is defined as the L2 norm. An error
of 0 thus meaning a perfect estimation. For readability, the
values are rounded to 2 decimals.

5.4 Resolution

Figure 5, 6, 7, 8, 9, and 10 plot the volume estimation re-
sults using the Axis-Aligned Bounding box (AABB), Ori-
ented Bounding Box (OBB), and convex hull approach, over
a range of resolutions. The partial viewpoints were generated
from camera angle C (4c), over a range of 16:9 resolutions
from ’16x9’ to *1920x1080’, using the modified depth cam-
era. The error is defined as the estimated volume as a factor
of the true volume. An error of 1.0 meaning a perfect estima-
tion, and 2.0 meaning the estimated volume is twice as large
as the true volume.

Figure 5, 6, 7, 8, 9, and 10 plot the volume estimation
results using the Axis-Aligned Bounding box (AABB), Ori-
ented Bounding Box (OBB), and convex hull approach, over
arange of resolutions. The partial viewpoints were generated



Object Camera AABB OBB er- Convex Object AABB OBB error Convex
error ror Hull error error (cm) (cm) Hull error
A 1.01 1.07 0.97 (cm)
Sphere B 1.37 1.06 0.93 Sphere 0.00 0.00 0.00
C 1.46 1.11 0.94 Cube 0.00 0.00 0.00
A 0.00 0.00 0.00 Cylinder 0.00 0.00 0.00
Cube B 1.00 2.65 1.62 Cone 5.00 5.00 4.39
C 1.00 2.68 1.65 Torus 0.00 0.00 0.00
A 0.46 0.46 0.67 Mug 2.73 2.47 2.27
Cylinder B 1.26 1.42 1.37
C 1.28 1.51 1.40 Table 5: Center of Mass (CoM) estimation results from a fully
A 1.83 1.46 0.72 known mesh using the Oriented Bounding Box (OBB) and Convex
Cone B 2.49 2.00 1.10 Hull method. The error is defined as the L2 norm.
C 3.17 2.30 1.24
A 0.95 0.95 1.22 ) Relative volume estimates of a Sphere
Torus B 2.15 2.25 2.90 1.6
C 2.23 2.36 2.76 £ 144
A 5.67 5.00 5.98 £ 1.2
Mug B 9.59 1062 898 § 10 . s e s
C 9.64 16.49 9.98 Eos
Table 4: Volume estimation results from a partial view of an object. é 2(: —— OBB
Partial views were generated from 3 camera angles. Specifics about = AABB
the camera angles can be found in Table 2. A visualisation of these F0.27 —— Convex Hull (factor=2)
camera angles can be found in Figure 4. The error is defined as the 0.0 BT e U
estimated value relative to the true value. An error of 1.0 meaning A A N R N
a perfect estimation, and 2.0 meaning the estimated volume is twice PTG e Y
as large as the true volume. Ressiution (pncs) 2%
esolution (pixels

from camera angle C (4c), over a range of 16:9 resolutions
from *16x9’ to *1920x1080’, using the modified depth cam-
era. The error is defined as the estimated volume as a factor
of the true volume. An error of 0 thus meaning a perfect esti-
mation.

6 Discussion

This section discusses the results presented in Section 5, and
relates these results to previous works.

6.1 Volume

Looking at Table 3, where the accuracy of three approaches
to estimating volume from complete data are presented, we
see that the convex hull approach performs extremely well
for the first four objects. For the other 2 objects, however, a
large error of 1.89 and 6.51 is shown. This can be explained
by the fact that the Torus contains a large hole through the
middle, and the Mug features a thin handle containing a hole
hole protruding from the side, and a large concave dent. As
the name suggests, a convex hull is unable to wrap tightly
onto these concave features.

Comparing this to the results presented by Thomas Baars
[2], the convex hull approach presented in this work provides
a promising improvement for objects without concave fea-
tures. The use of a convex hull instead of reconstructing the
mesh using a greedy triangulation algorithm seems to solve
the issue with gaps in the resulting mesh.

As for volume estimations from a partial view of the ob-
jects, Table 4 shows a similar pattern. While not as accurate,

Figure 5: Volume estimation results from the partial view of a
Sphere (3a), generated using a virtual depth camera from camera
angle C (4c) over a range of 16:9 resolutions.

the estimated volume of the first four objects is still within a
factor of 2 of the true volume. Our theory about being able
to see about half of the object from a single view, thus having
to double the convex hull’s volume does seem to hold some
truth. For the Sphere, the error is only 6%. For the other ob-
jects, it can be observed that the more sharp angles the object
has, the greater the error becomes, going from 0.94 to 1.24,
to 1.40, to 1.65 for the Sphere, Cone, Cylinder, and Cube
respectively.

For the other two objects, however, the errors become even
larger than those estimated from complete data. While the
convex hull approach does not look viable for objects with
concave features, comparing the two tables does suggest that
gathering multiple viewing angles of an object is likely to
result in a more accurate estimation.

6.2 Center of Mass

For the estimation of the Center of Mass (CoM), Table 5
shows promising results for the estimation from complete
data. Four of the objects resulted in a perfect estimation using
all three approaches. While the two other objects, the Cone
and the Mug, show an error greater than 0, this error is consis-
tent for each object. This suggests that all three methods are
comparatively viable approaches. However, out of the three,
the convex hull approach still performed best. Besides that,



Object Camera AABB OBB er- Convex
error ror (cm)  Hull error
(cm) (cm)
A 5.03 5.03 0.18
Sphere B 2.79 4.62 0.69
C 1.87 4.29 1.07
A 10.00 10.00 10.04
Cube B 0.00 2.10 9.42
C 0.00 5.79 5.85
A 6.28 6.28 2.58
Cylinder B 0.10 1.68 6.38
C 0.03 4.94 4.77
A 7.02 4.24 1.48
Cone B 5.88 3.39 2.10
C 5.10 3.09 4.52
A 7.85 7.85 3.22
Torus B 1.32 1.31 9.10
C 091 0.67 8.64
A 6.90 7.03 2.30
Mug B 5.59 4.80 5.01
C 5.61 4.74 4.98

Table 6: Center of Mass (CoM) estimation results from a partial
view of an object. Partial views were generated from 3 camera an-
gles. Specifics about the camera angles can be found in Table 2. A
visualisation of these camera angles can be found in Figure 4. The
error is defined as the L2 norm. An error of 0 thus meaning a perfect
estimation.

comparing the results to the dimensions of the objects in Ta-
ble 1, the estimated CoMs appear to still lay well within the
bounds of the objects.

In Table 6 the results for estimating the CoM from a partial
view of the object are presented. For each object, it shows a
larger error compared to when the full data is available. This
again suggests that gathering views of the objects from mul-
tiple angles will improve the accuracy of the estimated CoM.
For all the approaches, the error lies well within the bounds
of the object. The only big outlier being the Mug. Interest-
ingly, camera angle A (4a) seems to perform the best. The
opposite was hypothesised, since this angle generally shows
the least of the objects’ features. Camera angle C (4c) on the
other hand shows more features of the objects, but performs
the worst.

The CoM estimations from both complete and partial data
for objects with concave features can likely be improved with
the use of a concave hull, since it is able to capture these
concave features much better.

6.3 Resolution

As for the impact of the resolution of the camera, the volume
estimation error in Figures 5, 6, 7, 8, 9, and 10 clearly sta-
bilise at a resolution of 640x360° or higher. Thus it can be
said that a resolution higher than this will not bring significant
improvements. However, these results are highly dependent
on other factors. These factors being the size of the objects,
the distance from the camera to the objects, and the field of
view of the camera. Therefore comparing the accuracy of the
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Figure 6: Volume estimation results from the partial view of a
Cube (3b), generated using a virtual depth camera from camera an-
gle C (4c) over a range of 16:9 resolutions.
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Figure 7: Volume estimation results from the partial view of a Cylin-
der (3c), generated using a virtual depth camera from camera angle
C (4c) over a range of 16:9 resolutions.

volume estimates against the number of points on the object
would be a better metric.

The results for estimating the CoM over a range of resolu-
tions in Figures 5, 6, 7, 8, 9, and 10, show a much different
result. The estimated CoM using the convex hull approach
is highly inconsistent, jumping back and forth between high
and relatively low errors, and not having a clear resolution
at which the result stabilises. On the other hand, both the
AABB and OBB approaches show fairly promising results
with an estimated CoM well within the bounds of the ob-
jects. The naive AABB approach generally performs the best.
However, this seems to depend on the shape of the objects, as
cube-like objects show a clearly more accurate result. As for
the impact of the resolution of the camera, this looks to be
very small. With the exception of the Sphere, the estimated
CoMs do not differ by more than 3 throughout the range of
resolutions. However, higher resolutions do result in a higher
accuracy.
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Figure 8: Volume estimation results from the partial view of a
Cone (3d), generated using a virtual depth camera from camera an-
gle C (4c) over a range of 16:9 resolutions.
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Figure 9: Volume estimation results from the partial view of a
Torus (3e), generated using a virtual depth camera from camera an-
gle C (4c) over a range of 16:9 resolutions.

7 Responsible Research

This section discusses the ethical challenges that were en-
countered.

Doing research in a responsible manner means proving the
ability for others to reproduce our experiments, both to ver-
ify our results and compare results generated at a later stage
using alternative approaches. Therefore, we aimed to provide
sufficient details on the implementation of our approaches to
both volume and Center of Mass estimation. Both through
providing step-by-step instructions on our own implementa-
tion, and references to any outside libraries we used.

As for the use of the work of others, with the exception
of the Mug (3f), all data in the form of 3D objects were cre-
ated by us. The mug we used was acquired from Sketchfab'?,
which was made available under the Attribution-ShareAlike
4.0 International'! licence. This license allows for the free

https://sketchfab.com/3d-models/blender-mug-
bad3565a215a4795a119973e6816df8a
"https://creativecommons.org/licenses/by-sa/4.0/legalcode
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Figure 10: Volume estimation results from the partial view of a
Mug (3f), generated using a virtual depth camera from camera angle
C (4c) over a range of 16:9 resolutions.
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Figure 11: Center of Mass estimation results from the partial view of
a Sphere (3a), generated using a virtual depth camera from camera
angle C (4c) over a range of 16:9 resolutions.

use of this object.

8 Conclusions and Future Work

This section lays out the conclusions drawn from the results
and whether they provide answers to the questions we stated
in Section 1, as well as listing possible future improvements.

In Section 1 we stated a number of questions which we
aimed to answer through this work.

On the question “What techniques can be used to estimate
the mass of an object”, while not being able to provide a
definitive answer, it can be concluded that the approach us-
ing a convex hull provides a clear improvement over the ap-
proaches explored previously [2]. However, on objects with
concave features further improvements are necessary. These
improvements might be achieved with the use of a concave
hull.

As for the question "What techniques can be used to esti-
mate the Center of Mass of an object”, all three approaches
work well for the range of objects which we experimented
on, providing a viable method to estimate the Center of Mass
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Figure 12: Volume estimation results from the partial view of a
Cube (3b), generated using a virtual depth camera from camera an-
gle C (4c) over a range of 16:9 resolutions.
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Figure 13: Volume estimation results from the partial view of a
Cylinder (3c), generated using a virtual depth camera from camera
angle C (4c) over a range of 16:9 resolutions.

(CoM) of an object when a point cloud of the entire object is
available. However, here as well, even more accurate estima-
tions may be achieved with the use of convex hulls.

We also asked, ”Are these estimates still accurate when
part of the object is occluded”. We explored the situation
where only a single view of the object was available. Re-
sults on CoM estimation showed that, while the presented ap-
proaches still provided viable results, the error did increase
along the board. We thus conclude that, while not absolutely
necessary to have knowledge of the complete object, gather-
ing views from multiple angles will very likely increase the
accuracy of the estimated CoM. The impact of occlusion on
the estimated volume turned out to be significantly higher.
While somewhat viable for objects with a fairly high level
of symmetry, other objects with very little symmetry as well
as concave features resulted in large errors. Gathering views
from multiple angles therefore will improve the result, how-
ever, a larger issue lies with how to deal with holes and other
concave features in objects.

Finally, we asked "How does the resolution of sensors im-
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Figure 14: Volume estimation results from the partial view of a
Cone (3d), generated using a virtual depth camera from camera an-
gle C (4c) over a range of 16:9 resolutions.
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Figure 15: Volume estimation results from the partial view of a
Torus (3e), generated using a virtual depth camera from camera an-
gle C (4c) over a range of 16:9 resolutions.

pact the accuracy of the estimations”, which we explored by
estimating both the volume and CoM of objects from par-
tial views generated at a range of resolutions. From the re-
sults gathered we can conclude that for volume estimation,
while a resolution of *640x360’ is sufficient, higher resolu-
tions do provide slightly more accurate estimates. For CoM
estimation using the Axis-Aligned and Oriented Bounding
box approach, the resolution seemed to have an even smaller
impact, where even lower resolution depth cameras would
suffice. The convex hull approach on the other hand gave
very inconsistent estimates which did not stabilise even at
higher resolutions. Experiments using resolutions higher than
’1920x1080 will be necessary to see how this approach be-
haves.

We identified two main items on which further research
is required. Firstly, we were unable to use the true CoM of
the convex hull, and had to resort to using the average of the
mesh’s vertices. It would be worth investigating whether us-
ing the actual CoM results in more accurate CoM estimates.
Secondly, we identified that the convex hull approach is sig-
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Figure 16: Volume estimation results from the partial view of a
Mug (3f), generated using a virtual depth camera from camera angle
C (4c) over arange of 16:9 resolutions.

nificantly less accurate for objects with holes and other con-
cave features. Thus we find the use of a concave hull to be
worth researching as well.
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