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Preface
The motivation behind this thesis is to investigate crashworthiness assessment of heli-
copter structures. Given the scarcity of data from computationally expensive simulations
and experiments, and the need of performing design optimization for crashworthiness
efficiently, the focus is on meta-modeling techniques. The study compares machine learn-
ing approaches for predicting energy absorption and load-displacement curves in tubular
metallic structures, highlighting the efficacy of machine learning to predict structural
behaviors. After building surrogate models solely based on high-fidelity data from exper-
imentally validated numerical models, the incorporation of low-fidelity data to enhance
energy absorption predictions in a multi-fidelity framework is investigated. The method-
ologies and approaches presented in this research aim to construct surrogates that should
be suitable for employment within crashworthiness optimization and preliminary design
processes.
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Abstract
This study investigates the development and application of meta-models for crashwor-
thiness assessment of helicopter structures and components. It aims to address the
challenges associated with scarcity of data from computationally expensive simulations
and experimental drop-tests, and enable the use of surrogates in a crashworthiness opti-
mization framework. Two predictive approaches utilizing Machine Learning techniques
are compared to predict and assess the energy absorption of tubular metallic structures
for different cross-section configurations. The first approach directly predicts energy
absorption, while the second predicts load-displacement curves, from which energy ab-
sorption is derived. Results indicate that certain regressors, such as the Transform Target
Regressor, the Decision Tree Regressor and the Poisson Regressor, consistently achieve
high accuracy in predicting load-displacement curves and energy absorption across the
evaluated tubular samples. A low-fidelity model able to provide less accurate but compu-
tationally inexpensive information is then introduced. The influence of low-fidelity data
is investigated when it serves as additional input alongside high-fidelity data during the
training phase of the surrogate model, through a comparative analysis. The research’s
findings suggest the efficiency of Machine Learning in representing structural behaviour
under crushing conditions and highlight the potential for further enhancements through
the integration of low-fidelity data, thereby holding promise for extending the method-
ology to more complex structures.
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1 Introduction
Helicopters are a type of aircraft that utilize rotating wings to provide lift force, propul-
sion, and control. In contrast to fixed-wing aircraft, helicopters are capable of generating
aerodynamic force even without forward movement. This unique characteristic enables
them to perform translational flight, hover flight, and vertical take-off and landing, mak-
ing them extremely versatile among aircraft types.

Crash protection for occupants in aircraft has always been a significant concern, even
from the early days of powered flight. Initially, measures such as helmets and leather
jackets were introduced to prevent head injuries and abrasions during crashes. Seat belts
were also designed to secure pilots during acrobatic maneuvers but were soon recognized
as valuable for maintaining occupants in the event of a crash. However, it was not until
the 1940s that researchers like Hugh DeHaven began to approach crash survivability as
a comprehensive system [1]. These early efforts paved the way for the development of
more advanced and standardized crashworthy designs in the subsequent years.

In recent decades, there has been an increased emphasis on helicopter safety due to a
rise in accidents resulting from structural failures or human errors [2]. Helicopters have
been found to have a 17.3 times higher risk of fatal accidents compared to passenger cars
[3]. A fatal accident is defined as an operational incident wherein at least one individual
sustains fatal or severe injuries due to various circumstances. These include being inside
the aircraft during the incident, or direct contact with any part of the aircraft (including
detached components). Notably, injuries resulting from natural causes, self-inflicted ac-
tions, or those inflicted by third parties are excluded from this definition. Additionally,
injuries to stowaways concealed outside the typical passenger and crew accessible areas
are not considered fatal accidents in this context [4]. Although traditional helicopter
designs consider factors such as static strength, fatigue strength, aerodynamics, stabil-
ity, and control capability to ensure flight safety, there still remains a risk of significant
damage to major structural components and severe injury to occupants in the event of
a crash. The impact force resulting from such crashes can directly impact passengers
and impede crucial escape routes. When the impact energy exceeds human tolerance,
the consequences can be grave, leading to severe injuries and casualties.

To address these issues, it is crucial to implement crashworthy design principles in he-
licopter structures. Analysis of helicopter crash accidents has identified several factors
contributing to occupant injuries: inertial overload due to sudden acceleration or de-
celeration, contact injuries resulting from collisions with hard surfaces within the cabin,
and environmental injuries such as fires caused by fuel leakage, asphyxiation from smoke
and fumes, and drowning in water. Studies on helicopter accidents have shown that 90%
of these incidents offer survival conditions for occupants [5]. Therefore, the significance
of crashworthiness design has markedly increased in the advancement of helicopters.

The basic principles of crashworthiness design may be summarized by the acronym
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“CREEP” as follows [1]:

• C – Container: should possess sufficient strength to prevent intrusion of structure
into occupied spaces during a survivable crash.

• R – Restraint: seats, restraint systems and their attachments should have sufficient
strength to retain all occupants for the maximum survivable crash pulse.

• E – Energy absorption: locations, where vertical energy absorbing capability may
be integrated into a helicopter design, include landing gear, floor structure and
the seats.

• E – Environment (local): any object within the passenger space may be considered
an injury hazard.

• P – Postcrash factors: provide for the escape of occupants after the crash under
a host of adverse conditions. Control or eliminate the hazard at the source or
provide for more rapid egress, or a combination of both.

The Federal Aviation Administration (FAA) and European Aviation Safety Agency
(EASA) are the regulatory agencies to address the crashworthiness principles and stan-
dards for aircraft structures. Specifically the AW09 aircraft designed by Kopter Group
AG adheres to the EASA standards for small rotorcraft (CS27). The civil crashworthi-
ness requirements for small rotorcraft CFR 27/CS 27 are provided in the in the Federal
Aviation Administration (FAA) 14 CFR Airworthiness Standards [6] and EASA Certifi-
cation Specifications [7].

The CS 27.561 paragraph specifies that the rotorcraft, must be designed to protect oc-
cupants during emergency landings on land or water, despite potential damage. The
structure should provide occupants with the best possible chance of avoiding severe in-
jury in the event of a crash landing given the proper use of seats, belts, and safety design
features, especially when wheels are retracted.

Occupants and any cabin items with the potential to harm must be restrained under
specified inertial load factors relative to the surrounding structure: upward 4 g, forward
16 g, sideward 8 g, downward 20 g considering the intended seat device displacement,
rearward 1.5 g. The supporting structure must be designed to secure any potentially
hazardous mass located above or behind the crew and passenger compartment during an
emergency landing. These masses may include rotors, transmissions, and engines. The
design must ensure they remain restrained for the following inertial load factors: upward
1.5 g, forward 12 g, sideward 6 g, downward 12 g, and rearward 1.5 g. Fuselage struc-
tures containing internal fuel tanks below the passenger floor level must be designed to
withstand specified inertial factors and loads. Furthermore, they must protect the fuel
tanks from rupture when subjected to these loads: upward 1.5 g, forward 4 g, sideward
2 g, and downward 4 g.

The emergency landing dynamic conditions are addressed in the CS 27.562 paragraph.
The dynamic compliance tests should be conducted using a 77 kg anthropomorphic test
dummy (ATD) in a normal upright sitting position. The tests should be conducted
considering the following. Change of no less than 9.1 m/s (30 ft/s) in downward velocity
with the seat inclined at a 60-degree angle to the direction of impact. The peak floor

Delft University of Technology 2 Kopter Group AG
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deceleration must occur in not more than 0.031 seconds after impact and must reach a
minimum of 30 g. Change of no less than 12.8 m/s (42 ft/s) in forward velocity with the
seat in its nominal position. The maximum floor deceleration should be achieved within
a time frame of 0.071 seconds following the impact, and it should reach a minimum value
of 18.4 g. Where floor rails or attachment devices on the floor or sidewall are employed,
they must exhibit a minimum misalignment of 10° in a vertical (pitch) direction and a
10° lateral roll to account for potential floor warping.

The seating device system and the attachment between the seating device and the air-
frame structure must remain intact, even if the structure has exceeded its limit load.
The occupant retention system must effectively handle dynamic loads. Permanent seat
deformations should remain within predefined limits, ensuring they do not significantly
hinder an occupant’s ability to release shoulder harnesses, stand, and exit the seat. In
case the ATD’s head is exposed to impact, the Head Injury Criterion (HIC) should not
exceed 1000. The expression for HIC is provided in Equation 1.0.1:

HIC = (t2 − t1)
[ 1
t2 − t1

∫ t2

t1
a(t) dt

]2.5
(1.0.1)

where a(t) is the resultant acceleration at the centre of gravity of the head form ex-
pressed as a multiple of g and t2 − t1 is the time duration in seconds of major head
impact, which should not exceed 0.05 seconds.

Provided that upper torso harness straps are employed, individual strap tension loads
should not exceed 7.78 kN (1,750 lbs). If dual straps are used, the total strap tension
load should not exceed 8.90 kN (2,000 lbs). The maximum compressive load measured
between the pelvis and the lumbar column of the ATD should not exceed 6.67 kN (1,500
lbs). Each upper torso restraint strap must remain securely in place on the ATD’s shoul-
der during the impact. The pelvic restraint must remain securely fastened to the ATD’s
pelvis throughout the impact.

These certification requirements serve as essential guidelines within the optimization
framework for designers in order to achieve a crashworthy helicopter design. By adher-
ing to EASA and FAA requirements, designers are compelled to integrate safety features,
structural integrity, and performance considerations into their designs from the outset.
This approach ensures that safety concerns are systematically addressed, resulting in
helicopters that not only meet regulatory standards but also prioritize the safety of oc-
cupants in the event of a crash.

In the certification process of aircrafts, the following steps are undertaken:

• Type certification: this phase involves the certification of the design itself. In
the context of a helicopter, this step necessitates the Original Equipment Man-
ufacturer (OEM) to demonstrate compliance with crashworthiness requirements
and type-certification standards, such as CS-27 (pertaining to small rotorcraft)
and CS-29 (pertaining to large rotorcraft). The objective is to ensure initial air-
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4

worthiness. According to the European Aviation Safety Agency (EASA), “Initial
airworthiness is demonstrated by a certificate of airworthiness issued by the civil
aviation authority in the state in which the aircraft is registered” [7].

• Continued airworthiness: this stage is characterized by the ongoing maintenance
actions necessary to maintain airworthiness. It involves aspects such as damage
tolerance and defect inspection, ensuring the sustained operational integrity of the
aircraft.

Airworthiness requirements encompass various factors, including the legal and physical
condition that an aircraft must meet to ensure its safe operation. According to ICAO
Annex 8 [7], the term “airworthy” is defined as “the condition of an aircraft, engine,
propeller, or part when it adheres to its approved design and is in a safe operational
state.” In order to assess the overall design and construction of an aircraft, certification
authorities thoroughly review all aspects, even if there are perceived advancements be-
yond minimum standards. Once an aircraft is deemed compliant with all certification
requirements, it is issued a Type Certificate (TC).

In the certification process for aerospace structures, Original Equipment Manufacturers
(OEMs) employ physical tests, such as drop-tests, as a means to demonstrate compli-
ance with type certification requirements. These tests also serve as validation for the
numerical models developed. Finite Element Analysis (FEA) assumes a pivotal role
in this process, simulating aircraft components and systems across various flight condi-
tions. FEA evaluates landing gear integrity, aerodynamics, thermal stress, fatigue life,
vibrations, and fuel usage, ensuring the safety and efficiency of aerospace structures
and operations. In the quest for crashworthy designs, conducting finite element simu-
lations and validating them through experimental drop-tests in accordance with safety
standards and regulations outlined by EASA and FAA is imperative. The simulation en-
vironment is intricately linked with virtual testing, enabling the evaluation of numerous
cases and facilitating the creation of more robust designs while simultaneously reducing
the costs associated with the certification campaign.

Given the substantial computational resources required for experimentally validated
numerical models and the formidable challenges associated with drop-tests, such as
prolonged preparation periods, correlation with the respective numerical models and
exorbitant costs, the data providing insights on the structural behavior under crash con-
ditions remain scarce. Furthermore, employing computationally intensive finite element
simulations within a design optimization framework presents a daunting challenge. It
would be an arduous endeavor to conduct optimization (either for a single component
or the whole helicopter subfloor) aimed at obtaining a crashworthy design, especially
considering that running a single load case may require hours of explicit finite element
analysis. An optimization aiming in enhancing crash performance would require large
number of function evaluations, each representing the crash response of the structure.
In pursuit of these goals, the development of highly efficient meta-models for prediction
and design emerges.

Delft University of Technology 4 Kopter Group AG



1.1. Purpose of the Thesis 5

1.1. Purpose of the Thesis
The present study focuses on addressing the challenges inherent in crashworthiness assess-
ment for helicopter structures and components when these are represented by surrogate
models. Rather than analysing an extensively detailed helicopter subfloor, the crashing
of tubular structures is utilized in this dissertation. The main reason for choosing a
tubular structure is that there are available experimentally validated data in the exist-
ing body of literature. Such data are not easily accessible for cruciforms or helicopter
subfloors. This selection made the implementation of the methodology developed a com-
putationally feasible task and valuable insight can be gained within the context of crash
performance.

Taking advantage of a plethora of algorithms and tools recently available in the research
area of Machine Learning, the focus is on employing Machine Learning techniques to
predict the structural behavior under crashing conditions. Another reason behind this
selection is that Machine Learning has been used before in the literature in the context
of crashworthiness which means that this study could leverage previous findings.

The high-fidelity data for this case-study consist of load-displacement curves based on
which the crashworthiness performance of the structure is evaluated. One approach is
to perform this assessment based on the energy absorption, which corresponds to the
integral of the load-displacement curve, as scalar value. Another approach is to evaluate
the entire load-displacement curve and based on it evaluate crashworthiness. A first hy-
pothesis can be formulated here: the evaluation of the entire load-displacement curve
can become a more valuable input for the Machine Learning models and give better
insight on the structural behavior of the structure instead of utilizing the energy ab-
sorption as a scalar value.

Due to the limited availability of high-fidelity data, there is a necessity to introduce low-
fidelity models capable of producing less accurate information through computationally
less demanding methods. Here a second hypothesis can be formulated: by introducing
low-fidelity data along with high-fidelity data in the training process of the surrogate
model within a multi-fidelity framework the predictions of the energy absorption can
become more accurate.

The primary objective of the thesis is to identify the influence in the accuracy of the
predictions by introducing low-fidelity information, which are less accurate but highly
more efficient, in the training phase of the meta-models. The efficiency of surrogate
models trained solely with expensive / accurate numerical data is compared with that of
surrogate models trained with both expensive / accurate numerical data and cheap / less-
accurate data, aiming to assess the impact of incorporating low-fidelity information when
predicting the energy absorption. The ultimate goal is to contribute valuable insights
that will enable crashworthy design based on predictions made via meta-modeling and
the use of surrogates in crashworthiness optimization.
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1.2. Structure of the Report
The report comprises of 7 chapters. Chapter 1 refers to the present chapter and aims
to introduce the reader to the report with important definitions and background crash-
worthiness information on helicopters. Chapter 2 includes the state of the art articles
and studies focused on crashworthy helicopter subfloor designs, surrogate modelling and
optimization, along with the research questions addressed. Chapter 3 describes a numer-
ical and an analytical model for tubular metallic structures that was utilized within the
study. The methodology adopted is thoroughly described in Chapter 4. The results are
presented and discussed in Chapter 5 and the conclusions are documented in Chapter 6.
Finally, recommendations on future work are given in Chapter 7.

Delft University of Technology 6 Kopter Group AG



2 Literature Review
The purpose of this chapter is to cover the relevant aspects of helicopter crashworthi-
ness based on research done until the present dissertation is written. The research areas
that are described and will be the basis to address the research questions and the ob-
jective of the thesis, are the crashworthy design of helicopter subfloor, crashworthiness
requirements and evaluation criteria, surrogate modelling, and optimization for struc-
tural crashworthiness.

2.1. Crashworthy Design of Helicopter Subfloor
Aircraft crashworthiness refers to the aircraft system’s ability to secure occupants from
severe or fatal injuries in the event of a crash. It encompasses two crucial aspects of air-
craft crash-resistant design, impact reduction through energy-absorbing structures and
human tolerance [8].

When the vertical component of the impact energy is high the crash loads should be
mainly absorbed by controlled structural deformation. A systems approach should be
followed which consists of the landing gear, the subfloor, the mass retention structure,
the seat, and the restrain systems as depicted in Figure 2.1. For helicopters, the overall
crash behavior highly depends on the design of beams intersections, bulkheads (cruci-
forms), the beam webs, and the boxes in the floor structures. Typical helicopter subfloor
elements are shown in Figure 2.2.

Figure 2.1: Rotorcraft crashworthiness concept [9]

Beam and frame elements for rotorcraft subfloor structures require a dual structural con-
cept. These elements must be designed to carry flight loads during operation and crash
loads in case of impact [10]. In other words, designing for crashworthiness comprises
designing for structural integrity and energy absorption. The requirements for the struc-
tural design must be well-defined. For helicopters, survivability must be guaranteed

7



2.1. Crashworthy Design of Helicopter Subfloor 8

according to specified requirements which is essential to define relevant optimization
objectives. A standard optimization objective for lightweight structures is to find min-
imum weight, in which case the crashworthiness requirements should be interpreted as
constraints.

Figure 2.2: Typical helicopter subfloor and subfloor intersection element [11, 12]

It has been shown that composite materials show a significant capacity for absorbing
kinetic energy in the event of a crash [13–15]. Using composites improved safety and
lightweight designs can be obtained. Buckling and folding are the common failure modes
for metallic structures under crash loads, which allow them to absorb crash energy
through material yielding and plastification along the folding lines. In composite materi-
als though the process of microfragmentation depends on various parameters. The aim
is to initiate the failure mechanisms and to obtain a controllable crushing behavior [16].

Full-scale crash testing is one of the most important methods to assess the crashworthy
design of helicopters. These tests require long preparation period and increased exper-
imental costs. For these reasons, a meticulous experimental framework is imperative
to capture an extensive range of structural responses. These responses play an impor-
tant role in evaluating helicopter crashworthiness and validating numerical crash models.
NASA Langley Research Center’s Landing and Impact Research (LandIR) facility has
conducted over 100 full-scale crash tests. Notable helicopter crash tests conducted at
LandIR include those involving the ACAP, CH-47, UH-60, and AH-1, as depicted in
Figure 2.3.

These tests were crucial for evaluating the crashworthiness characteristics and dynamic
responses of small representative helicopters. They also provided empirical data to vali-
date finite element models used in helicopter crash simulations. Validated computational
tools offer a cost-effective means of simulating the majority of crash scenarios compared
to conducting full-scale crash tests, contributing to the overall understanding of heli-
copter crash performance. Another objective of conducting such full-scale tests is to
validate innovative energy absorption concepts on actual airframe structures.
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Figure 2.3: Full-scale helicopter crash tests [8]

Depending on the test conditions, the materials used, the assumptions made, and the
strain rain regimes a classification of experimental techniques is made depicted in Fig-
ure 2.4. Helicopter crash tests belong to high strain rates regime of the graph while bird
strike tests belong to very high strain rain rates regime of the graph.

Figure 2.4: Classification of experimental techniques based on testing conditions and assumptions [17]

The analytical models are typically well correlated with experimental test results for
global parameters, such as landing gear or engine response. However, the non-linear,
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transient dynamic responses of helicopter structures hinders the development of analyt-
ical predictions for localized responses, such as stresses in components at a given time
during a crash [18]. Non-linear responses may arise due to high peak loads to which
structures are subjected, plastic deformations induced by inertial forces, alterations in
boundary conditions, material and joint failures, high rates of deformation, contact
forces, and large deformations which are commonly encountered in crash conditions [19].
Numerical simulations serve as an essential tool to evaluate crash scenarios not econom-
ically feasible with full-scale drop-tests. In the aerospace domain, the topic of helicopter
crashworthiness has been a subject of in-depth deliberation, and comprehensive investi-
gations have been diligently conducted.

Kermanidis et al. [20] in 1970 pioneered the study of the energy absorption behavior of
helicopter subfloor components such as sin-wave beams and “tensor skin” panels with
experiments and numerical simulations. The water impact scenario was mainly investi-
gated while composite material damage models were developed capable of representing
successfully the properties degradation. The failure modes of subfloor components ne-
cessitated the selection of appropriate contact algorithms and the creation of adequately
refined meshes to accurately predict these failure modes during drop-tests.

Frese and Nitschke [21] investigated numerically and experimentally the structural be-
haviour of helicopter subfloor structures under crash impact loading. The performance of
stiffened and honeycomb sandwich panels, made of metallic materials under quasistatic
and dynamic conditions, was examined to obtain an optimized crashworthy structure,
and to establish the non-linear characteristics of subfloor structures. An efficiency fac-
tor was introduced for the energy absorption evaluations, defined as the ratio of the
absorbed energy to the product of the peak load and the stroke length. Within this
paper was emphasized that in the design of crashworthy structures, it is essential to
shift away from the conventional focus on achieving high specific strength and stiffness
and, instead, prioritize the design for controlled failures and controlled deformations.

Farley et al. [13] developed analytical formulations to predict the energy-absorption ca-
pability of helicopter subfloor beams with circular and square cross sections. Sandwich,
sine-wave and two integrally stiffened designs were evaluated in this study. From these
concepts the sine-wave beams had the best energy absorption performance. One of the
main outcomes of the study was that graphite/epoxy subfloor structures absorbed en-
ergy more efficiently compared to Kevlar or aluminum structures.

Boitnott and Kindervater [22] investigated the crush behavior of cruciforms and sine-
wave beams considering them representative of keel beam and bulkhead intersections
found in rotorcraft subfloor. Non-linear dynamic analysis with the finite element code
DYCAST was performed and quasistatic tests on aluminum and composites cruciform
elements were conducted aiming to initiate stable crushing failure modes. From the
evaluated designs only one showed stable failure mode. It was a hybrid cruciform made
of a mixture of carbon and aramid fibers. The design variants of the aluminium and
composite cruciforms examined in this study are depicted in Figure 2.5. Implementation
to the subfloor design, though, would require considerable manufacturing efforts. The
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sine-wave subfloor beams were the most efficient in absorbing energy, result also shown
in [13, 16].

Kindervater and Georgi [16] pointed out the limitations of analytical models stemming
from the complexity and the multi-parameter nature of the problem. Frictional effects,
viscoelastic and viscoplastic behavior of the elements, and the microcracking responses
should be considered in order to have representative enough models. The load-deflection
curves are extensively used for crashworthiness evaluation of the concepts proposed.

Figure 2.5: Cruciform design variants [22]

Figure 2.6: Schematic diagram of simple box-beam underfloor structure [23]
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Johnson et al. [10] described the incorporation of composites to the design of crash resis-
tant beam and frames for helicopter subfloor structures. The most efficient yet evaluated
subfloor beams were composite beams with sinusoidal or trapezoidal web profiles. Their
main drawbacks, however, include the high manufacturing costs, the interface issues
with other structural components, and the difficulty to trigger failure mechanisms. The
load-deflection curves for subfloor box and cruciforms of the tests conducted are shown
in Figure 2.7. Other studies that conducted experiments in box structures include [23].
The schematic diagram of the simple box-beam underfloor structure that was experi-
mentally evaluated with a drop-test is shown in Figure 2.6. Observing the form of these
curves is crucial in the training phase of the surrogate model when employed to represent
the structural behavior of a crushing structure.

(a) Cruciform and subfloor box (b) Tensor-skin panel

Figure 2.7: Load-deflection curves for subfloor box and cruciforms [10]

The previous studies involved both numerical simulations and experimental analyses to
explore the crash performance of helicopter subfloor elements. The goal was to gain a
deeper comprehension of failure modes and the energy absorption performance of these
components. The findings aimed to provide practical guidance and recommendations
for the implementation of crashworthy design concepts in helicopters.

A different approach was proposed by Hajela and Lee [24] who addressed a topological
optimization of the subfloor structure using genetic algorithms for improved crash per-
formance approximating response models with multilayer perceptron Neural Networks
(NN). NN predicted the Dynamic Response Index (DRI) values, in a range of 0.7-4.7 %
compared to the values derived from the numerical model. The subfloor was considered
as a crush zone on top of which a rigid floor structured was installed. The DRI is an
indicative of the likelihood of severe spinal injury to the occupants [25]. The definition of
DRI injury model is mentioned in [26] as a one-dimensional spring-mass-damper system.

The approach adopted in this study was aiming to determine both the optimum load-
deflection response of a structural element and its location in the subfloor structure. The
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KRASH analysis program was used to simulate the structural behavior of the subfloor.
Lumped masses, linear and non-linear beam elements, and spring elements were em-
ployed to obtain a representative model depicted in Figure 2.8 (b). A simplified model
that includes the landing gear, the fuselage, the seat, and the lower and upper torso can
be seen in Figure 2.8 (a).

(a) Simplified model [27] (b) Subfloor model [24]

Figure 2.8: Simplified helicopter numerical models

Kohlgruber and Kamoulakos [28] examined the crash behavior of composite box struc-
tures in helicopter subfloor assemblies, focusing on numerical simulations with PAM-
CRASH. Their work encompasses material data, validation, and numerical simulations.
The initial and the improve concepts can be seen in Figure 2.9. Future advancements
was recomended to focus on integrating strain-rate effects and delamination processes
into the shell materials model. It was underscored that these enhancements are impor-
tant, particularly for shells, as they are the sole elements viable for analyzing larger
structures, primarily due to computational expenses.

Kindervater et al. [14, 29] presented crashworthy design principles for aircrafts and dis-
cussed the energy dissipation at structural element level. The helicopter frame structure
consists of frames and longitudinal beams to support the the outer skin and cabin floor.
The subfloor structure is composed of keel beams and lateral bulkheads which form the
subfloor boxes. Beam elements are designed to deform and absorb the energy during
crash conditions.

The frames and shell structures in the cabin should ensure survivable conditions for the
occupants, preventing collapse and potential intrusion from other components. Finally,
the subfloor must provide structural integrity for the cabin, absorb the impact energy,
and reduce the crash vibrations transmitted to the occupants. This system approach
with reference to the key design concepts and structural elements for a crashworthy
aircraft is illustrated in Figure 2.10. The deceleration forces should be limited by struc-
tural deformation through a controlled load concept shown in Figure 2.11 where the
the botom part of the rotorcraft aiframe consists of a high strength cabin floor and an
energy absorbing crushing zone.
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Figure 2.9: Initial (left) and improved (right) cruciform element design [28]

Figure 2.10: Crashworthiness design concepts for helicopter structures [14]

Bisagni [11, 30, 31] investigated the energy absorption of helicopter subfloor made of
aluminum aloy in cooperation with Agusta. Experimental drop-tests were conducted
and finite element analyses of the subfloor riveted intersections were performed since
these elements can be responsible for high deceleration peak loads at the cabin floor and
then to the occupants. The analysis with finite elements included detailed geometrical
models, materials models and the proper modeling of contact forces and rivets. While
these studies contribute significantly to understanding the crashworthiness performance
of subfloor elements, they are limited and they focus solely on aluminum materials, ne-
glecting the exploration of composites and their relevant failure modes.
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Figure 2.11: Control load concept for helicopter subfloor [14]

Mccarthy and Wiggenraad [32] investigated the response of composite helicopter subfloor
subjected to crushing loading conditions with explicit finite element code and drop-tests.
It was found that using coupon data as an input provided a reasonable overall repre-
sentation. The structure used for experimental validation together with the numerical
model can be seen in Figure 2.12. The kinetic energy was considered to be mainly con-
verted to the internal energy absorbed by the box elements, the friction energy between
the subfloor box elements, and the the friction energy between the subfloor box elements
and the top plate of the box. Thus, modeling the frictional phenomena was of outmost
importance.

Fasanella et al. [18] developed a finite element model for the Sikorsky Advanced Compos-
ite Airframe Program (ACAP) helicopter, using explicit transient dynamic code. They
used a two-stage rigid-to-flexible modeling approach to obtain numerical predictions
which were later correlated with the full-scale tests. The aim was to verify the capa-
bilities of the explicit code to capture accurately the structural behavior. The forces,
velocities, and accelerations were analyzed and correlated between the experimental and
numerical models at various significant locations of the aircraft. The last timestep of
the experimental and numerical simulation is depicted in Figure 2.13.

Figure 2.12: Experimental subfloor structure along with the finite element models [32]
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Figure 2.13: Experimental and numerical model of the helicopter structure [18]

Bisagni et al. [33] approximated the structural behavior of helicopter subfloor’s struc-
tural elements with Neural Networks at crushing conditions trained by finite element
analyses. Sequential Quadratic Programming and Genetic Algorithms were implemented
to evaluate the objective function after training samples were generated with finite el-
ement analyses. The objective function considered was the sum of the crush force ef-
ficiency and the specific energy absorbed. Response surfaces generated by Neural Net-
works were able to reproduce scalar values of maximum and mean forces in order to
evaluate the crashworthy efficiency of the configurations proposed by the optimization
algorithms.

The same researchers [19, 34] conducted a topology optimization to a helicopter subfloor
made of aluminum alloy. To overcome the irregular design domain and the non-linear
structural response a decomposition procedure was developed. Global approximation
strategies with Neural Networks as basis were again employed for the evaluation of the
response of each subsystem. Then a Genetic Algorithm was used to obtain the optimal
configuration overcoming the non-linearities and the discrete variables. Even though
the outlined approach appears comprehensive in its application to subfloor’s structural
component, it neglects the broader structural response of the aircraft and its interaction
with components that were not modeled, such as the occupants’ seats or the landing gear.

Lanzi et al. [35] approximated the structural response under crushing loading of compos-
ite cylindrical absorbers with Radial Basis Functions (RBF). Then Genetic Algorithms
were coupled with the generated response surfaces to conduct constrained single and
multi-objective optimizations. Two years later, a numerical optimization method for
a composite intersection element of a helicopter subfloor was developed [36]. Quasi-
Newton algorithms and Radial Basis Functions were used together with high-fidelity
Finite Element Analyses to optimize the efficiency of the absorber. Effective formula-
tion of the optimization problem necessitated proper parameterization of the shape and
precise selection of sample points within the design domain. Throughout the optimiza-
tion process, a significant decrease in computational effort is attained by substituting the
high-fidelity model with a set of response surfaces able to reproduce crash load-deflection
curves using bi-linear laws. Implementing this approach in a global model of a helicopter
structure could be advantageous in the training phase of the surrogate model employed.
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Joosten et al. [37] validated with experiments a numerical design of a composite heli-
copter airframe and subfloor. In their paper the building block approach was introduced
for numerical simulation and experimental validation depicted in Figure 2.14. It rep-
resents the level of complexity depending on the stage of the pyramid the analysis or
experiment is conducted.

(a) (b)

Figure 2.14: Building block approach for numerical models (a) and experimental validation (b) [37]

Prusty et al. [38] introduced a novel concept with variable crushing loading conditions
to improve the energy absorption efficiency of crushing element, using pressurized com-
posite tubes, found in helicopter subfloors. The motivation was to overcome the disad-
vantage of constant or fixed load energy absorbing systems. A simple analytical model
provided preliminary results verifying the adopted variable loading concept. Quasistatic
crash tests were conducted the results of which verified an explicit finite element study.

Anghilery et al. [39] on a study with AgustaWestland developed a numerical model
of a helicopter subfloor. The research focused on enhancing the correlation between
tests on individual intersections and entire four-walled subfloor cells. Critical factors for
the model’s robustness included using incremental damage materials, optimizing mesh
size around joints, and determining friction and viscous friction coefficients. While com-
plete subfloor cell results didn’t perfectly match experimental data, the model accurately
represented energy absorption, crash efficiency, and collapse mode evolution for intersec-
tions. These positive outcomes led to the model’s application in simulating a complete
test involving the subfloor cell, a helicopter seat, and an anthropomorphic crash test
dummy.

Subbaramaiah et al. [40] developed a retrofittable solution of energy-absorbing compos-
ite structures to enhance the crashworthiness performance of metallic helicopter sub-
floors. The study explores the potential of layered aluminum and glass fiber-reinforced
composite hybrids for reinforcing subfloor components, employing LSDYNA and PAM-
CRASH for explicit finite element analysis. Modeling strategies are discussed and the
advantages of hybrid materials, by comparing mean crushing force and specific energy
of absorption, are highlighted. These retrofits offer a promising way to boost crashwor-
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thiness with minimal impact on structural weight and reduced complexity compared to
other design solutions.

Zhou and Wang [12] studied the intersection element (see Figure 2.2) of a helicopter
subfloor structure under crushing loading by conducting numerical simulations and ex-
periments. This led to the redesign of the intersection element, integrating fold core
sandwich structures as buffering and energy-absorbing components in helicopter sub-
floor structures. A comparative analysis revealed that the redesigned structure, with
fold cores, exhibited reduced mass, lower peak force, and increased crush force compared
to the conventional intersection element. This signified an enhancement in buffering and
energy-absorbing capabilities.

In a subsequent research, Astori et al. [41] validated numerical models for a rotorcraft
seat and subfloor equipped with energy-absorbing stages, focusing on vertical impact
scenario for crashworthiness assessment, including an anthropomorphic dummy. The
subfloor testing setup can be seen in Figure 2.15. The method developed began with a
preliminary lumped mass model used to guide the design of the experimental drop-test.
Additional static and dynamic tests were conducted at the coupon and sub-component
levels to characterize the seat cushion, seat pan, and the honeycomb elements that were
integrated into the structure for energy absorption. Then, a finite element model rep-
resenting the full drop-test was created. The experimental test validated the original
lumped mass model outlining the advantages of using both numerical techniques and
experimental data for design assistance.

Al-Fatlawi et al. [42] aimed to optimize helicopter floors using fiber-reinforced plas-
tic (FRP) composites to reduce weight and improve performance. They explored 46
FRP layer combinations while addressing nine design constraints, including deflection,
facesheet stress, stiffness, buckling, coreshear stress, skin wrinkling, intracell buckling,
and shear crimping. The fiber-reinforced plastic (FRP) honeycomb core sandwich plate
optimized can be seen in Figure 2.16. Matlab’s Interior Point Algorithm and Excel
Solver’s Generalized Reduced Gradient (GRG) Non-linear Algorithm were used as single-
objective optimization tools.

(a) (b)

Figure 2.15: (a) Energy absorbers in helicopter structure and (b) load cells on the top of the subfloor
crushable columns [41]
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Figure 2.16: Sandwich structure of the helicopter subfloor [42]

A significant number of the aforementioned studies either aimed to optimize a specific
component of the helicopter subfloor in terms of energy absorption and weight or to
validate existed numerical models with experiments. Load-deflection curves along with
energy absorbed-deformation curves are primarily used to evaluate the crashworthiness
of the investigated concepts.

It is important to emphasize that relying solely on these studies does not ensure com-
pliance with crashworthiness standards set by relevant authorities such as EASA and
FAA. This is primarily due to the fact that the primary objective of these studies is
to optimize specific components within the assembly, rather than comprehensively as-
sessing the crashworthiness attributes of the entire helicopter structure. As a result,
vital information concerning passenger loading, accelerations, or injury criteria may not
always be provided. Nevertheless, it should be noted that despite these limitations, this
step remains a highly significant aspect of crashworthiness evaluation.

Hajela et al. [24] addressed the subfloor crashworthiness problem quite effectively by
employing Neural Networks as an approximation method in conjunction with Genetic
Algorithms. However, it’s worth noting that the models utilized for explicit analysis
were considerably simplified, as depicted in Figure 2.8 (b). This is not always negative
though, especially if the response of the structure can sufficiently be predicted.

A considerable number of papers [33, 35, 36] have been conducted to evaluate the crash-
worthiness of helicopters, utilizing surrogate modeling techniques to reduce computa-
tional costs. One of the main disadvantages of these models is that they often require
extensive training to accurately represent high-fidelity models. Exploring the integration
of low-fidelity data, which are less accurate and computationally less intensive to obtain,
within surrogate modeling holds significant potential to advance the field of crashwor-
thiness optimization in helicopters. Not only does it offer the possibility of improving
model development, efficiency, and accuracy, but it also has the capability to signifi-
cantly reduce training requirements.
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2.2. Crashworthiness Evaluation Criteria
Fang et al. [43] summarized the energy-based metrics to asses crashworthiness and en-
ergy absorption. One of the most-common energy-based metric used in crashworthiness
analysis [35, 44–50] is the energy absorption level expressed as:

EA(d) =
∫ d

0
F (s) ds (2.2.1)

where F (s) is the impact force, s is the crash distance and d is the total crash displace-
ment considered. To consider mass efficiency, the specific energy absorption (SEA),
defined as the EA per unit mass, has been used in literature [34, 51–55]. It is defined
as:

SEA(d) = EA(d)
M

(2.2.2)

where M represents the mass of the structure. Crash force efficiency (CFE) is another
criteria to design crashworthy structures. This metric is defined in Equation 2.2.4 as the
ratio of the mean crash load (Favg), given in Equation 2.2.3, to maximum load (Fmax).

Favg(d) = EA(d)
d

(2.2.3)

CFE(d) = Favg(d)
Fmax(d)

(2.2.4)

Mean crushing force was used by [33, 34] who focused specifically on helicopter subfloor
crashworthiness.

The complex nature of crashworthiness problems arises from the intricate interplay of
various structural phenomena involved in collisions, including high rates of deformation,
contact forces, and other non-linearities. These complexities pose significant challenges
in accurately modeling and predicting the behavior of structures under crush conditions.
Compounding these challenges is the scarcity of experimental data necessary to develop
precise predictive models. Considering these limitations, the need of surrogate mod-
els emerges. Surrogate models offer a representation of the complex crashworthiness
phenomena, allowing for efficient exploration of the design space and optimization of
structural configurations.

2.3. Surrogate Modelling in Crashworthiness
Surrogate modeling, also known as meta-modeling, is a technique used to create a rep-
resentative model of a more complex model. It is often employed when the original
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model is deemed impractical or difficult to use in a specific context. This may be due
to factors such as the complexity of the model’s implementation, the need for use in
many-query applications such as optimization or real-time simulations, or the desire to
conceal proprietary information or expertise.

To efficiently perform structural optimizations in crashworthiness problems, it is essen-
tial to establish a robust and flexible approximation system that requires a minimum
number of exact points while considering large domains. Promising methodologies to
achieve this goal include meta-model techniques such as Response Surface Methodolo-
gies (RSM).

The schematic process of implementing a Response Surface Methodology for meta-
modeling optimization is depicted in Figure 2.17. The dimension of the dataset can
be expressed as n × (p + k), where n is the number of observations, p is the independent
variables, and k is the response variables number. Meta-modeling starts with goal def-
inition, where the objectives, independent variables, response variables, and validation
measures are clearly established. To reduce computational time, Design of Experiments
(DoE) strategies are applied.

The subsequent stage is resource-intensive, involving the execution of experiments or
simulations to gather response data for all design variables. Meta-models, aiming to
approximate system behavior, are fitted, validated and analysed. Incorporating physics-
based information into the construction of surrogate models presents a challenging but
essential endeavor. The intricate nature of this challenge arises from the absence of a
straightforward relationship between design variables and the corresponding structural
responses, particularly in the context of crash conditions.

Nevertheless, the inclusion of low-fidelity information holds great promise as it has the
potential to significantly reduce the training demands imposed on the meta-model. In
the literature, artificial Neural Networks, radial basis functions, polynomial response
surfaces, and kriging methods have been used in modeling helicopter subfloor for crash-
worthiness.

Figure 2.17: The schematic process of implementing a Response Surface Methodology for
meta-modeling optimization [56]
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2.3.1. Artificial Neural Networks
Neural Networks try to emulate the human brain’s problem-solving approach. The
human brain relies on intricate neural cells, neurons, to efficiently transmit electric-
chemical signals. In Neural Networks, nodes or units process signals from input links
and send activation levels to the next layer through output links, resembling the brain’s
data processing. Neural Networks have been used as an approximation tool in crashwor-
thiness analyses since they are capable of reducing the computational costs significantly.

Hajela and Lee [24] highlighted that the Genetic Algorithm approach was computation-
ally expensive, as each generation of evolution required a significant number of function
evaluations, which was of the order of the population size. To make this approach
effective, function approximation concepts were explored. Traditional Taylor series ap-
proximations would not be effective due to the absence of gradient evaluations. Instead,
the multilayer perceptron (MPL) Neural Network was employed to construct a response
surface of the DRI values based on training data making it akin to a special case of
non-linear regression analysis.

The MPL network comprised input and output layers connected through hidden layers
and, through training, learned to provide accurate estimates for input vectors in the
training domain. A representation is depicted in Figure 2.18. The input layer, receives
external inputs and transmits signals to the hidden layers. These signals undergo mod-
ifications, are weighted, and are redistributed throughout the hidden layers until they
reach the output layer.

The output layer is designed in such a way that each neuron corresponds to an output
component. A drawback of MLPs though is that, in general, they are not capable of
extrapolating results beyond the design domain. Once trained, the network was used
for generalization, producing approximate outputs for input patterns not part of the
training set.

Figure 2.18: Architecture of a multilayer perceptron (MPL) [57]
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This generalization operation was swift and significantly reduced the computational costs
of repetitive analysis. To successfully implement the MPL network for function approxi-
mation, no important factors should be neglected from the input space, the number and
distribution of training samples should be sufficient, and the training samples should be
pre-processed to achieve computational efficiency.

Clustering techniques, which divided the training patterns into distinct clusters, were
used to reduce the computational effort required in network training. Instead of a single
network generated for the entire training set, multiple networks were trained with data
belonging to specific clusters, allowing for more efficient generalization of new input pat-
terns based on their cluster affiliation.

Bisagni et al. [19, 33] used multilayer perceptrons (MPL) Neural Networks to pro-
duce mean crash force, maximum crash force and load-time curves. The architecture
of the adopted Neural Network in this study can be seen in Figure 2.19. The system
involves four interconnected Neural Network subsystems: Box_1 receives normalized
design variables and employs two Neural Networks (net1_a and net1_b) to return nor-
malized maximum force. Box_2 processes input to return the normalized mean force
value and uses three Neural Networks (net2_a, net2_b, and net2_c). Box_3 takes
two normalized column vectors and handles the load-time curve using a Neural Network
(Net3). Box_4 combines the results from Box_1, Box_2, and Box_3.

The system accurately reproduces crushing behavior, with small errors in force values
when compared to finite element analysis, making it highly effective in simulating crash
phenomena.

Figure 2.19: Adopted Neural Networks system in [33] to reproduce crash behavior
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Figure 2.20: Optimization process implemented for a standard helicopter subfloor configuration [34]

Lanzi et al. [34, 57] used global approximation strategies based on Neural Networks able
to provide indices regarding the structural behavior and complete load-time curves at
crash events. The concept of parallel subsystems consisting of small Neural Networks
was again adopted. A schematic overview of the optimization process implemented
can be seen in Figure 2.20. This approach provides flexibility in adding, modifying,
or removing individual outputs without the need for a complete system overhaul and
retraining. Within MLP Neural Networks, the learning phase involves the adjustment
of neuron connection weights, with the aim of minimizing the root mean square error
between the known outputs in the training set and the returned outputs. Multi-objective
optimization algorithms based on maximum distance concepts were employed taking into
account equality and inequality constraints directly on the design variables. Explicit
finite element analyses was used to obtain design points for the training process. The
developed procedure was applied to riveted tubes, honeycomb structures, longitudinal
keel beam and intersection elements of helicopter subfloors made of aluminium alloy.

2.3.2. Radial Basis Functions
Radial Basis Functions (RBF) method is an interpolating scheme used to describe the
behavior of non-linear functions. It was first developed by Hardy [58] to address the inter-
polation of scattered multivariate data by employing a set of symmetric basis functions,
each centered at individual sampling points. The formulation of radial basis functions
is provided in Equation 2.3.1:

ŷ(xxx) =
m∑

j=1
cjpj(xxx) +

ns∑
i=1

λiϕ(r(xxx,xxxi)) (2.3.1)
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where m denotes the number of polynomial terms, cj denotes the coefficient of the poly-
nomial basis functions pj(xxx), ns denotes the number of the sample points, λi denotes
the weighted of the term of the i-th variable, r(xxx,xxxi) denotes the Euclidean distance,
and ϕ(r) is the radial basis function.

Lanzi et al. [35] in order to overcome the computational challenges and evaluate the
crash-load curves, replaced the finite element analyses with a system of response surfaces
obtained using RBF. In this paper, linear, cubic and Gaussian RBF were used to produce
reproduce load-deflection curves using bi-linear laws. To have a homogeneous allocation
within the normalized domain the initial position of the sample points are modified using
a hoc algorithm. Finite element analyses was used to obtain 30 sample points of which
20 were used to define the response surfaces and 10 to verify their accuracy level. The
approximations obtained remained below the maximum error of 7 %. As a final step
the 10 remaining sampling points were added to rebuild the response surfaces to incrase
accuracy.

The same researchers in a subsequent study [36] estimated the crushing behavior with
different response surfaces. They built three response surfaces using the RBF method,
one for the first peak force, one for the ultimate force, and one for the absorbed en-
ergy. The error was estimated with Average Percentage Error (APE) and the Maximum
Absolute Error (MAE) indices.

2.3.3. Polynomial Response Surfaces
Polynomial response surfaces have been extensively used in crashworthiness problems
[48, 59–65] as approximation techniques. It is another simple yet effective way of creating
surrogate modes. For instance, a quadratic Polynomial Response Surface (PRS) model,
as described by Montgomery [66], can be represented as:

ŷ(xxx) = b0 +
n∑

i=1
bixi +

n∑
i=1

biix
2
i +

n−1∑
i=1

n∑
j>1

bijxixj (2.3.2)

where b0, bi, bii and bij denote unknown coefficients, n denotes the number of design
variables, xi denotes the design variable vector, ŷ(xxx) denotes the approximation, and y(xxx)
denotes the value obtained from FEA. This meta-modeling technique exhibits limitations
when applied to high-dimensional data or data characterized by oscillations. Improving
accuracy is possible by increasing the order of the polynomials. However, in the case
of high-order approximations, instability and inaccurate predictions may arise due to
Runge’s phenomenon [67].

2.3.4. Kriging Model
The Kriging model (KRG), was initially intended for use in mining and geostatistical
applications that involve data exhibiting spatial and temporal correlations [68]. This
model is comprised of two components: a global model denoted as f(xxx) representing
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the overall trend of the function of interest, and a local departure represented as Z(xxx),
which models the spatial correlation among data points through a stochastic process
with a zero mean and variance σ2. This can be mathematically expressed as:

y(xxx) = f(xxx) + Z(xxx) (2.3.3)

In Equation 2.3.3, y(xxx) represents the unknown function of interest, f(xxx) represents the
global trend, and Z(xxx) represents the correlation between data points, governed by a
stochastic process with a mean of zero and variance σ2. Z(xxx) provides local variations,
and the covariance between different points is expressed as:

Cov(Z(xxxi)), Z(xxxj))) = σ2RRR[R(xxxi,xxxj)] (2.3.4)

The correlation function R(xxxi,xxxj) defines the correlation matrix RRR as follows:

R(xxxi,xxxj) = exp
[
−

n∑
k=1

θk|xk
i − xk

j |2
]

(2.3.5)

where θk denotes the correlation fitting parameter, and xk
i and xk

j denote the k-th com-
ponents of the xxxi and xxxj sample points respectively.

Gao et al. [69] developed a time-space Kriging-based sequential meta-modeling approach
that was proposed for Multi-objective Crashworthiness Optimization (MOCO). The ap-
proach utilized novel time-space design criteria to construct meta-models for the opti-
mization objectives, which included mechanical responses with respect to both structural
space domain and crash time domain. Adaptive addition of new samples was employed
to improve the approximation accuracy during optimization, with the guidance of an
adaptive weighted sum method. The effectiveness of the proposed method was demon-
strated through investigation of a multi-cell thin-walled crashworthiness design problem.
Kriging methods were used by Yang et al. [70] in multidisciplinary optimization of
crashworthy vehicle structures while other examples of studies that used Kriging as an
approximation method in computationally intensive problems for crashworthy designs
are [62, 71].

Besides, the Anisotropic Kriging surrogate model utilizes statistical theory to construct a
surrogate model. It is particularly applicable in the numerical simulations where random
geometric errors are introduced to enhance the accuracy in representing crashworthiness.
Since the geometric variables have different levels of importance, Anisotropic Kriging is
able to effectively handle this variability. The suitability of this surrogate model does not
depend on the presence of random errors. Its underlying technology enables control over
the significance of variables, making it particularly suitable for crashworthiness scenarios
[72].
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2.4. Optimization for Structural Crashworthiness
Non-linear structural optimization can be very challenging especially for problems that
require explicit solvers like crashworthiness problems. Many commercial codes (NAS-
TRAN, LS-DYNA etc) are capable of performing size, shape, and topology optimization
in acceptable amount of time while the computational cost can be further decreased
when the (semi-) analytical sensitivity analysis allows the deployment of gradient-based
optimizers. However, gradient information is not always available making the optimiza-
tion task more intricate.

The dominant factors contributing to non-linearities in crash problems are contact forces,
as well as material and geometric non-linearities. Contact forces represent a non-linearity
in boundary conditions that can vary in magnitude and location from one time step to
another, posing a significant challenge for applying the sensitivity analysis mentioned
above. To overcome the complexities associated with sensitivity analysis in crash prob-
lems, meta-model-based techniques described in the previous section are frequently em-
ployed. Structural optimization techniques for crashworthiness are more complex due
to the presence of multiple local optima in the design space, making the quest for the
global optimum challenging. Especially deterministic algorithms, even though they have
proven to be efficient, can easily be trapped in local minima. Non-linear optimization
techniques can be divided into two subcategories: non-linear local and non-linear global
optimization techniques.

The first category tend to converge to local optima, rendering them suitable for refining
solutions in the proximity of initial guesses. The later category is designed to search for
the global optimum across a broader problem space. A classification of the optimization
techniques is presented in Figure 2.21.

Figure 2.21: Classification of optimization techniques [73]
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2.4.1. Genetic Algorithms
Genetic Algorithms can be aptly categorized as stochastic search methods based on Dar-
win’s theory of survival of the fittest. The genetic search optimization does not require
the use of gradients from objective or constraint functions, rendering it suitable for sce-
narios where the design space could exhibit non-convexity or discontinuity common in
crashworthiness problems.

Hajela and Lee [24] used Genetic Algorithms together with a crash response analysis
code. Their approach involved both sizing and topology optimization while two main
concerns were addressed. Firstly, the design space comprises both discrete and con-
tinuous variables making conventional gradient-based optimization techniques computa-
tionally expensive. Secondly, the problem’s design space was shown to be non-convex,
requiring the use of a global search strategy to find the global optimum. The weighting
coefficients of a linear combination of load-deflection curves were designated as design
variables along with the linear stiffness and the linear displacement. Their aim was
to minimize the accelerations of the occupants focusing on the design of the subfloor
structure. This was mathematically stated as:

Minimize F̄ (2.4.1)
subject to X̄L ≤ X̄ ≤ X̄U

where F̄ represents a scalar vector of the dynamic response index (DRI) values, indica-
tive of the likelihood of severe spinal injury to the occupants; F̄ is a function of the
design variable vector represented by X̄; X̄L and X̄U are the lower and upper limits
respectively. The variable vector included topological variables indicating the presence
or absence of energy-absorbing elements and parameters characterizing load-deflection
curves. The topological variables were binary (0 or 1), and the load-deflection param-
eters involved linear stiffness, displacement, and six weighting coefficients used for the
linear superposition of the basis functions. Typical values for the linear stiffness and
displacement were determined with numerical experimentation conservatively assuming
that the subfloor structure absorbs all kinetic energy from a vehicle’s vertical impact.
These values yielded an equivalent energy absorption on average and were used as ref-
erence points to create feasible and infeasible designs by varying parameters above and
below the mean.

Bisagni et al. [19] addressed the optimization of subfloor configurations for crashwor-
thiness, considering 23 design variables such as positions of intersection elements, thick-
nesses, angle of elements, number of rivets and widths. They treated panel thicknesses
as continuous variables, optimizing them and then rounding to the nearest commercially
available thickness. In contrast, the number of vertical rivets and longitudinal keel beam
elements was treated as discrete variables. Acceleration constraints were considered in
order to remain within the human tolerance limits while the the mass specific energy
absorbed by the subfloor was chosen as objective function. The use of penalty functions
helped in transforming the optimization problem into a unconstrained maximization
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Figure 2.22: Optimization scheme of helicopter subfloor (adapted) [19]

problem. The optimization procedure followed is illustrated in Figure 2.22. It begins
with problem decomposition and the identification of substructures. Size and global vari-
ables are separated and a simplified subfloor model defines and validates the substructure
interactions. Subsequently, response surfaces for each substructure are generated using
Neural Network systems trained with a minimal set of finite element analyses. These
response surfaces were able to reproduce the values of the constraints and the objective
functions in every optimization iteration. Finally, optimization runs were executed using
Genetic Algorithms to obtain an optimal solution.

Bisagni et al. [33] utilized Genetic Algorithms within MATLAB, employing an objective
function aimed at describing both crushing force efficiency and increased mass-specific
absorbed energy. This implementation involved basic parameters such as selection,
crossover, and mutation to optimize the process. Despite its simplicity, the algorithm’s
performance appeared to be suitable for addressing the defined crashworthiness problem.
They incorporated penalty functions into the objective function which was considered as
the sum of the crushing force efficiency and the specific absorbed energy. The expression
defining the fitness function can be seen in Equation 2.4.2. As in their previous study,
the design variables considered were the thickness of the webs, the thickness and the
position of the angle elements, and the number of of vertical rivets (see Figure 2.2).

f(x) = υ1υ2υ3

{(
Fmean(x)
Fmax(x)

)
+ K

(
Fmean(x)
mass(x)

)}
(2.4.2)

Fmean ≥ F̄m Fmax ≤ F̄M (2.4.3)

where f(x) represents the objective function, x represents the vector of the normalized
design variable, Fmean represents the mean force, Fmax represents the maximum force,
F̄M represents upper constraint on the maximum force, and F̄m represents lower con-
straint on the mean force. The maximum force is described by υ1, the mean force is
described by υ2, and the vertical rivet number is described by υ3. K is a weighting
parameter which Bisagni et al. variated along with the constraint values.
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(a) (b)

Figure 2.23: Pareto curves of energy absorption VS weight during vertical a 30° impact conditions [35]

Lanzi et al. [35] suggested an multi-objective optimization of a composite energy ab-
sorber under crashworthiness requirements. It was suggested that the simplest approach
of the optimization problem would be a single objective formulation to minimize the
weight while ensuring crashworthiness performance through the incorporation of non-
linear inequality constraints on absorbed energy. Other constraints such as limitations
on the maximum load or the acceleration peaks could be also imposed. However, this
approach would result in a single optimal solution for each set of constraints and is not
recommended for preliminary design. The optimization problem can be generalized by
using different objective functions, such as minimizing weight and maximizing absorbed
energy under various impact conditions.

A multi-objective Genetic Algorithm is used to carry out the searching for the Pareto
set and a depiction of some of the Pareto curves obtained in this study can be seen in
Figure 2.23. Three independent design variables were specified for the energy absorber:
the major axes of the lower edge, the eccentricity of the lower edge, and the taper ra-
tio, which is defined as the ratio between the upper edge radius and the lower edge
minor axis. Decision criteria were employed not only to find the Pareto set but also
selecting a single feasible solution. Weighted exponential penalty functions were used to
include constraints, while minimization problems investigated are formulated by using
the opposite of the original objective function as the fitness function. Furthermore, a
ranking selection method based on non-dominated points is integrated into the initial
single-objective Genetic Algorithm (GA).

Lanzi et al. [34, 57] used a sequential multi-objective optimization method based on
the “goal attainment” approach. It was applied to a typical helicopter subfloor through
the process seen in Figure 2.20. The selected objective function focuses on the energy
absorbed per unit mass by the subfloor, while constraints are implemented regarding
acceleration. The design variables encompass both the position of individual elements
within the subfloor and their respective local characteristics. The aim was to obtain a set
of points where the distances between each point and all other points exceed a specified
minimum goal distance, denoted as dk. If a solution exists, the value of dk increases. At
each k−th iteration, the goal attainment method is applied to identify an appropriate
arrangement of points starting from the final positions in the prior iteration, according
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to the following formulation:

minimize
λλλ,x

λλλ (2.4.4)

subjected to


d1 + λλλ ≥ dk

...
di + λλλ ≥ dk

i = 1, . . . , m (2.4.5)

where x denotes the design variable vector; n denotes the total number of points to ar-
range; N denotes the dimension of the design domain; di denotes the distances between
the points; and x is a vector that contains the positions of each point and comprises a
total of n × N elements. To expedite the optimization process, gradients for distances
and objective functions are computed analytically.

Astori and Impari [74] investigated the interaction of a two-stage energy-absorbing sys-
tem, made of seat and subfloor crushing elements to minimize occupant lumbar spine
load during crash landings. The variable parameters chosen for each energy-absorbing
stage, encompass the activation load and the plastic stiffness associated with it. A fully
multi-body model was developed as depicted in Figure 2.24.

Figure 2.24: Multi-body model accounting for the seat, occupant and subfloor [74]

They performed single objective optimizations with iChrome NexusTM Genetic Algo-
rithm where two cases were considered. The first optimization attempt evaluated ideal
elastic-plastic laws for both the seat energy absorber and the subfloor elements. General
elastic-plastic laws of deformation used can be seen in Figure 2.25 where F represents
the activation load, k is the stiffness of the plastic region, and Fav is the average load in
the plastic region. In this approach, the coefficients cseat and csubfl were set to zero. The
second optimization attempt considered more general elastic-plastic laws characterized
by linearly variable plastic loads. This approach led to the determination of specific
values for the mechanical parameters of the seat and subfloor, optimized to minimize
the maximum lumbar spine load. A sensitivity study generated response surfaces of
the lumbar spine load as a function of loads applied to the seat and subfloor. These
diagrams can be seen in Figure 2.26 where the considered safe area with spine load
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less than 6.5 kN is shadowed. The multi-body approach used allowed to complete the
optimization in under 3 hours on a dual-CPU personal computer. On the other hand,
a full finite element approach, although more refined, was computationally expensive
and posed challenges in system parameterization. Therefore, it was best suited for final
verification or optimization purposes. A hybrid approach, combining both finite element
and multi-body analysis, achieves a balance between accuracy and CPU cost.

(a) (b)

Figure 2.25: General elastic-plastic laws of deformation used for subfloor elements as a function of
plastic stiffness k (a) and coefficient c (b) [74]

(a) as functions of average seat energy absorber activation load (Fav Seat) and average
subfloor crushing load (Fav Subfl)

(b) as functions of cSeat and csubfl

Figure 2.26: Response surfaces of the max lumbar spine load, seat stroke and subfloor deflection [74]
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2.4.2. Sequential Quadratic Programming Methods
Bisagni et al. [33] stated the optimization problem as in Equation 2.4.2. They ap-
proached the problem by decomposing it into simpler sub-problems that could be solved
iteratively. The idea was to formulate a quadratic sub-problem by means of a quadratic
approximation of the Lagrangian function. The non-linear constraints were linearized
and bound constraints were expressed as inequality constraints.

The implementation of the Sequential Quadratic Programming (SQP) algorithm com-
prised three steps. Firstly, the Hessian matrix of the Lagrangian function was updated
through the use of a positive definite quasi-Newton approximation, such as the Broyden-
Fletcher-Goldfarb-and-Shanno (BFGS) methods. Subsequently, the quadratic program-
ming problem was solved, with the sub-problem obtained by linearizing non-linear con-
straints and employing an active set strategy. This solution procedure encompassed two
phases, involving the determination of a feasible point and the generation of a conver-
gent sequence of points. The third step of the past implementation involved conducting
a line search and calculating the merit function.

The SQP algorithm was implemented in MATLAB while it was penalized when integer
design variables were incorporated and when dealing with irregular or opposing behavior
in mean and maximum forces. This renders the SQP method susceptible to finding local
minima instead of the global minimum. As with many other gradient-based optimiza-
tion methods, the optimal design might be influenced by the initial design.

SQP was also used by Lanzi et al. [75]. They formulated the optimization problem as:

minimize max(w1 · SSeat(t) + w2 · SSubfloor(t)) (2.4.6)

subjected to


max(FLumbar(t)) ≤ F̄Lumbar

max(SSeat(t)) ≤ 0.95 · SMax
Seat

max(SSubfloor(t)) ≤ 0.95 · SMax
Subfloor

(2.4.7)

where SSeat represent the seat stroke, SSubfloor represents the subfloor stroke, FLumbar

represents the actual maximum lumbar load carried by the dummy model, F̄Lumbar rep-
resents the maximum allowable value, SSubfloor represents the maximum stroke of the
absorption elements on the subfloor, SMax

Subfloor represents the maximum stroke of the
absorption elements on the seats, and t represents the time. The weighting factors are
represented by w1 and w2, while the factor of 0.95 was used so that the optimization
algorithm controls and avoids bottoming.

Lanzi et al. [36] used standard Quasi-Newton method to conduct the optimization ex-
plorations. The optimization domain depended on four different design variables that
define the shape of the intersection element of the helicopter subfloor. The parameteriza-

Delft University of Technology 33 Kopter Group AG



2.4. Optimization for Structural Crashworthiness 34

tion of the shape and the meticulous selection of sample points within the optimization
domain (Design of Experiment) led to a highly effective problem formulation.

2.4.3. Interior-point Method
The Interior-point method was used by Al-Fatlawi et al. [42] to solve a single objective
optimization subjected to nine constraints using MATLAB. Grippo and Sciandrone [76]
provide a detailed documentation of this method. Considering a mathematical program-
ming problem of the form:

min f(x)
x ∈ H, g(x) ≤ 0

(2.4.8)

where H ⊆ Rn is a closed set, and is assumed that the functions f : Rn → R and
g : Rn → Rm are at least continuous. The feasible set is denoted by F = {x ∈ H :
g(x) ≤ 0}, and the set where the inequality constraints g(x) ≤ 0 are satisfied as strict
inequalities is denoted by D = {x ∈ Rn : g(x) < 0}.

In general, we refer to interior point methods with reference to approaches such that a so-
lution of the constrained problem Equation 2.4.8 is approximated either with a sequence
of points in D (infeasible methods) or a sequence of points in H ∩ D (feasible methods).
In both instances, the principle an interior point method is to remain in D, strictly sat-
isfying the inequality constraints g(x) ≤ 0. Feasible methods for inequality-constrained
problems are considered methods where H = Rn, D is non-empty, and a point x0 ∈ D is
available. In this case, the motivation for interior point methods is essentially to employ
solution techniques based on unconstrained minimization algorithms directly, without
introducing penalty terms on the constraints.

2.4.4. Generalized Reduced Gradient Method
In 1967, Wolfe introduced the reduced gradient method, which was based on a straight-
forward variable elimination approach designed for equality-constrained problems [77].
The Generalized Reduced Gradient (GRG) method extends the principles of the re-
duced gradient method to handle non-linear inequality constraints. In this approach,
a search direction is determined to ensure that the currently active constraints remain
precisely active even with small adjustments. If, due to the non-linearity of constraint
functions, some active constraints are not precisely met, the method resorts to the
Newton–Raphson technique to return to the constraint boundary. As a result, the GRG
method bears certain similarities to the gradient projection method. This method was
used by Al-Fatlawi et al. [42] along with the Interior-point method to perform the single
objective optimization of the helicopter subfloor.

2.4.5. Bayesian Optimization
Bayesian optimization has been efficiently employed to address crashworthiness optimiza-
tion problems in the automotive industry [78–82]. This optimization technique usually
initiates with the formulation of the design problem, the development of a baseline model,
and parameterization. Data-driven prior knowledge derived from critical components in-
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forms the design problem. Subsequently, an initial design dataset is generated by the
design of experiments (DoE) and assessed via Finite Element (FE) simulations to train
the surrogate model. The optimal acquisition process determines the best solution, with
the surrogate model training and optimal acquisition conducted sequentially due to their
computational efficiency. In parallel, The new optimized response is evaluated through
FE simulations in parallel to reduce the computational cost and is then incorporated
into the design dataset for updating the surrogate model in the subsequent iteration of
optimal acquisition. This iterative process continues until the termination criterion is
satisfied.

2.5. Research Questions
The aforementioned studies primarily focused on two main objectives: optimizing spe-
cific components of helicopter subfloors for energy absorption and weight reduction, and
validating existing numerical models through experimental testing.

To evaluate the crashworthiness performance of the investigated concepts, load-deflection
curves and energy absorption-deformation curves were predominantly employed. Specif-
ically, they provide valuable insights into how the components responded under various
loading conditions and offer a means to assess the effectiveness of structures in absorbing
energy during crashes.

While Machine Learning techniques offer a promising avenue for addressing these chal-
lenges, there exists a notable dearth of comprehensive studies that focus on accurately
predicting load-displacement curves and energy absorption, particularly in scenarios
where numerical or experimental data are scarce.

To bridge this gap, several key research questions emerge. Firstly, how can Machine
Learning techniques be effectively utilized to confront the complexities inherent in
crashworthiness assessment of helicopter subfloor structures and components? Under-
standing the comparative performance of different predictive approaches and algorithms
constitutes a critical task for this inquiry.

Moreover, delving into the core challenges and mechanisms involved in predicting the
structural behavior of tubular metallic structures under crushing conditions becomes
imperative as the methodologies developed will be implemented in a crushing cylinder
structure. Machine Learning can offer valuable understanding into these intricacies and
potentially surmount the obstacles posed by non-linear responses, material failures, and
other non-linear phenomena.

In the context of crashworthiness evaluation, a comprehensive examination of the energy-
absorbing subfloor structure at the component level is essential. The construction of an
accurate surrogate model, representative of the structure, demands careful consideration
and thorough analysis to ensure efficiency with minimal training. Additional research
questions arise here: What advantages does a surrogate model gain by predicting the
load-displacement curve as a function compared to directly predicting energy absorp-
tion as a scalar value? How could the surrogate leverage more in terms of accuracy
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and efficiency?

The study aims to explore methodologies capable of augmenting the prediction perfor-
mance of energy absorption for tubular metallic structures, particularly in scenarios
characterized by limited numerical or experimental data availability. A potential ap-
proach would be to introduce low-fidelity models along with the high-fidelity models.
Another research question arises here. How does the introduction of low-fidelity data
alongside high-fidelity data impact prediction accuracy, and what implications does
this have for predicting energy absorption in more intricate structures like helicopter
subfloors? Additional questions related to this is how accurate the low-fidelity model
will be, how will this data be incorporated in the methodology, and how will the low-
fidelity data influence the overall accuracy of the predictions?

By addressing these research questions, the study endeavors to contribute substantially
to the existing body of literature, offering insights into the application of Machine Learn-
ing techniques for crashworthiness assessment and proposing innovative methodologies
to improve prediction accuracy, even in data-scarce environments.
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3 Thin-walled Metallic Tubular Model
For the development of the methodology, the entire helicopter subfloor is replaced by a
tubular model to render it computationally feasible. The numerical model of thin-walled
tubular structures that is considered as high-fidelity model in the present thesis, is pre-
sented in Section 3.1. It encompasses four cross-sectional shapes and two materials for
studying the crushing behavior. The cross-sectional shapes consist of square, circular,
hexagonal, and octagonal configurations. Crushing modes include either extensional or
in-extensional, as depicted in Figure 3.1. The materials involved are AA6060-T4 and
AISI-316. An analytical model is presented in Section 3.2 where a closed form relation-
ship for the mean crushing force is provided. This closed-form relationship constitutes
an additional font of information which, if efficiently processed, might augment the ac-
curacy of predicting the energy absorption.

(a) (b)

Figure 3.1: Extensional crushing mode (a) and inextensional crushing mode (b) for metallic tubular
structures [83]

Each sample obtained by the crushing tube consist of a load-displacement curve and is
associated with geometrical parameters of the respective tube sample such as material,
cross-sectional shape, side length or radius, wall thickness, and tube length. It is shown
that there is a good agreement with the analytical, the numerical, and experimental
data [83].

3.1. Description of the Numerical Model
Shell-based crushing models are commonly used in simulating the crushing behavior
of thin-walled metallic structures, and their accuracy has been well-documented in the
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literature [84–86]. The data used were generated by a shell-based finite element model
developed in Abaqus, employing quadrilateral shell elements with reduced integration
(S4R) [83]. All models were comprised of a tubular structure positioned between two
rigid planes. A vertical displacement is applied to the top rigid plane, while the bottom
plane is encastred, and the nodes at the bottom of the tubular structure were connected
to the bottom rigid plane.

In the inextensional crushing mode, a type-I trigger is introduced on alternate faces,
while in the extensional crushing mode, a type-II trigger is introduced on all faces. A
trigger mechanism is employed to initiate a progressive folding sequence within the struc-
ture by creating local weakness. This ensures the formation of a stable crushing zone
and prevents other failure modes such as global bending. The use of trigger mechanisms
also leads to a decrease in peak crushing force which is beneficial for crash applications
due to the susceptibility of the human body to severe injury when exposed to high de-
celeration magnitudes [87].

The load-displacement curves, illustrated in Figure 3.4, are obtained by positioning a
reference node at the center of the top rigid plane where both the reaction force and
the displacement are measured. All the samples used in the present dissertation are
documented in Appendix B. A representation of the finite element shell-based model
used for hexagonal tubular structures is depicted in Figure 3.2.

Figure 3.2: Tubular structure shell-based numerical model in Abaqus [83]

The numerical model underwent validation by comparing simulated data with experi-
mental results. Material data from published stress-strain curves were used to ensure
consistency across datasets. The close alignment between the numerical simulations and
experimental data points, with a coefficient of correlation R2 of 0.97, demonstrates the
model’s robustness in simulating the axial crushing behavior of metallic tubular struc-
tures [83].
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An example of the type of curves aimed to be predicted in the present study is shown
in Figure 3.3. It depicts a finite element result for a square cross-section with material
AA6060-T4. The side length is 30 mm, thickness is 1.75 mm, and tube length is 200
mm.

Figure 3.3: FEA load-displacement curve for square cross-section sample [83]

3.2. Closed-form Expression of Mean Crushing Load
The purpose of this section is to present the equations that lead to a generalized mean
crushing load expression applicable for axial crushing of metallic tubular structures. In
this section, M0 represents the fully plastic bending moment per unit length, σ0 the flow
stress, ε the strain, εu the ultimate strain, Nc the number of corners for a polygonal
cross-section [85], Pmean the mean crushing load, h the metallic structure wall thickness,
κ the effective crushing length, c the edge length of the cross-section in polygonal tubular
cases, 2H the initial distance between plastic hinges at top and bottom of a basic folding
element [88] and R2 the coefficient of determination. An ideal load-displacement curve
(continuous line) and the mean value (dash line) for a tabular structure is illustrated in
Figure 3.4 .

The following models in the literature exhibit satisfactory correlation with the exper-
imental and numerical mean crushing force data. First Tabacu et al. [85] with an
equation valid for circular structures:

Pm

M0
· κ = 33.85 · N0

c ·
(

R

h

)0.5
(3.2.1)
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Figure 3.4: Ideal load-displacement curve for a crushing tube and mean value [83] (adapted)

The Nc variable is kept for similarity purposes in the previous equation. Tabacu et
al. proposed also a closed-form relationship applicable to the extensional crushing of
polygonal tubular structures:

Pm

M0
· κ = 12.56 · N0.5

c ·
(

c

h

)0.5
(3.2.2)

The flow stress denotes the critical stress level required for initiating plastic deformation
within the material. The determination of flow stress directly impacts the computation
of the mean crushing force exerted on these metallic structures. A formula [85] to
calculate the flow stress is :

σ0 = 1
εu

∫ εu

0
σ · dε (3.2.3)

The flow stress and the fully plastic bending moment connect with the following rela-
tionship [89] for circular tubular structures:

M0 = σ0h
2

4
(3.2.4)

The model proposed by Zhang and Zhang [90] for the inextensional crushing of polygonal
tubular structures also maintains a consistent level of agreement between the experimen-
tal and numerical data:

Pm

M0
· κ = 15.91 · N1.03

c ·
(

c

h

)0.15
(3.2.5)
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Shreyas et al. [83] combined Equation 3.2.1, Equation 3.2.2 and Equation 3.2.5 into one
general equation for mean crushing force, applicable to metallic tubular structures:

Pm

M0
· κ = X · NY

c ·
(

c

h

)Z

(3.2.6)

where c/h is replaced with R/h for circular tubular structures. The values of X, Y and Z
vary for cross-sectional shape and crushing mode (Ext stands for extensional and Inext
stands for inextensional) and can be found in Table 3.1. Square cross-section tubes
undergo inextensile crushing, indicating they fall under the Polygonal (Inext) case.

Table 3.1: Values for exponents of Equation 3.2.6 for each configuration

# Cross-section X Y Z

1 Circular 33.85 0 0.5
2 Polygonal (Ext) 12.56 0.5 0.5
3 Polygonal (Inext) 15.91 1.03 0.15

A good correlation between the analytical average crushing load and the mean crushing
dataset is achieved encompassing all cross-sections and both modes of crushing (R2 =
0.97), as illustrated in Figure 3.5.

Figure 3.5: Comparison between generalized expression for mean crushing force and mean crushing
force dataset for different cases and configurations [83]
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In Chapter 3, a numerical model experimentally validated is described. Results gener-
ated from this model (see Figure 3.3) will be considered as the expensive and accurate
data that are referred as high-fidelity in the following chapters. Moreover, a recent study
[83] showed that the mean crushing force can be estimated with a closed-form relation-
ship which provides an additional font of information for the crashworthiness evaluation.
In Chapter 4, an investigation takes place on how the aforementioned data sources can
be processed in order to predict the energy absorption of a crushing tubular structure
and obtain its load-displacement curve as accurate and computationally efficiently as
possible using Machine Learning techniques.
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4 Methodology
The present chapter discusses the Machine Learning techniques employed in the study,
the core of the algorithms that are utilized, the approaches followed to predict the energy
absorption, and the methodologies developed to increase the predictive accuracy. The
multi-output regressors utilized are determined to be the most effective among a large
list of regressors documented in literature libraries.

4.1. Multi-output Regression in Machine Learning
In the field of Machine Learning, regression analysis is frequently employed to perform
predictive tasks involving the estimation of a continuous target variable. However, nu-
merous real-world applications necessitate the prediction of multiple variables simulta-
neously, leading to the utilization of multi-output regression algorithms. A classification
of Machine Learning techniques can be seen in Figure 4.1. Regression is a specific type
that belongs to Supervised Learning.

Figure 4.1: Machine Learning techniques classification [91]

Multi-output regression encompasses methodologies aimed at modeling relationships be-
tween input features and multiple target variables, thereby enabling the prediction of
several outcomes concurrently. This framework is particularly pertinent in crashworthi-
ness analysis to address challenges regarding the structural behavior during crushing,
where identifying triggering mechanisms and failure modes is required.

Non-linear responses can emerge from various factors such as high peak loads, plastic
deformations from inertial forces, alterations in boundary conditions, material and joint
failures, high rates of deformation, contact forces, large deformations, and rivet fail-
ures. Predicting the load-displacement curves can give insight on the evaluation and
assessment of the aforementioned non-linear behavior. The schematic of multi-output
regression for predicting load-displacement curves is illustrated in Figure 4.2.
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Figure 4.2: The schematic of multi-output regression when predicting functions

In the present study, the focus is on regressors where geometric features serve as input
and load-displacement curves are the output. This approach facilitates understanding
of the relationship between geometric features and the non-linear structural behavior in
crashworthiness scenarios.

There are some models in Machine Learning that inherently support performing multi-
output regression. These models encompass a range of regression techniques. The Linear
Regressor, for instance, assumes a linear relationship between input features and targets,
employing a straight line to predict the target variable by minimizing the difference be-
tween predicted and actual values.

The Random Forest Regressor utilizes ensemble learning, combining multiple Decision
Trees to predict regression tasks, with the final prediction being an average of all in-
dividual tree predictions. The Extra Trees Regressor employs ensemble learning but
introduces additional randomness by sub-sampling the input data, potentially reducing
overfitting. Extra Trees use the original sample entirely, enhancing robustness by select-
ing random splits instead of optimal ones. Another algorithm that inherently supports
performing multi-output regression is the K-Neighbors Regressor. K-Neighbors Regres-
sor estimates target values by averaging the target values of its k nearest neighbors in
the feature space, making it adaptable and effective, particularly when local patterns
among features are significant.

In case the Machine Learning algorithm does not support performing multi-output re-
gression a separate regressor could be trained for each target variable. This augments
the functionality of regressors originally intended for single-output regression tasks in
the context of multi-target regression endeavors and could be achieved for example
through the utilization of a Support Vector Regressor (SVR). By integrating SVR into
the multi-output regressor framework, which serves as a wrapper over SVR, the method-
ology effectively extends SVR’s applicability to handle multi-output regression tasks.

Another approach is chained Multi-output Regression, also known as Regression Chain.
This entails organizing individual regression models into a sequential chain where each
model within the chain predicts a target label by considering all available input features
alongside the predictions made by preceding models in the sequence. This sequential
chaining strategy benefits from both feature information and insights gained from earlier
model predictions, thereby enhancing the accuracy of multi-output predictions.
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4.2. Description of the Algorithms Employed
For the selection of the optimal regressor, a considerable challenge is faced due to the
plethora of regressors available in Python toolboxes online [92, 93]. The selection is based
on tested performance rather than a detailed analysis of each regressor’s mathematical
background. Following this rigorous evaluation process, six regressors that consistently
demonstrated superior performance across various metrics (such as Mean Absolute Per-
centage Error) are identified. An overview of their baseline is documented in the present
section. The Table 4.1 shows which toolbox was used for each algorithm.

Table 4.1: Algorithms and relevant python toolboxes used in the study

Prediction Method Scikitlearn [92] SMT [93]

Transform Target Regressor !

Adaptive Boosting Regressor !

Poisson Regressor !

Decision Tree Regressor !

Radius Neighbor Regressor !

Gaussian Processes !

4.2.1. Transformed Target Regressor
The Transformed Target regressor [92] serves as a meta-estimator utilized for regression
on a transformed target. This approach proves beneficial for applying non-linear trans-
formations to the target in regression scenarios. The regressor performs transformations
on the targets before fitting a regression model, and subsequently maps the predictions
back to the original space via an inverse transform. Its parameters include the regres-
sor utilized for prediction and the transformer applied to the target variable. In cases
of simple transformations, instead of a transformer object, a function can be provided,
defining the transformation and its inverse mapping.

Common examples include the quantile transformation which is a method that trans-
forms the features to follow a uniform or a normal distribution or the logarithmic trans-
formation and its reverse operation. During each fitting process, these provided functions
undergo validation to ensure their mutual inverses. Nonetheless, it remains possible to
bypass this validation step. Figure 4.3 depicts the probability density functions of the
target both before and after the application of logarithmic functions.
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Figure 4.3: Target distribution before and after the Target transformation [92]

4.2.2. Adaptive Boosting Regressor
The Adaptive Boosting algorithm (AdaBoost) belongs to the category of Boosting tech-
niques utilized as an Ensemble method in Machine Learning [92, 94–97]. It is used for
weak learners and exhibits adaptability by focusing on instances misclassified by previ-
ous classifiers. AdaBoost’s properties are sensitive to noisy data and outliers while the
issue of over-fitting is less pronounced compared to other learning algorithms. Although
individual learners are weak, as long as each one’s performance slightly surpasses ran-
dom guessing, the final model will converge to a strong learner. AdaBoost specifically
denotes a method of training a boosted classifier. A boosted classifier is expressed by
the following equation:

F (x) =
T∑

T =1
ft(x) (4.2.1)

In equation 4.2.1, each ft(x) is defined as a weak learner, which accepts x as input for
an object and produces a value indicating the object’s class. For instance, in a two-class
problem, the sign of the weak learner’s output signifies the predicted class of the object,
while the absolute value provides confidence in that classification. The Tth classifier is
considered positive if the sample belongs to the positive class or indicates negativity
otherwise. In the initial stage of the Adaptive Boosting algorithm, a training subset is
randomly chosen.

Subsequently, the AdaBoost Machine Learning model undergoes iterative training, wherein
the selection of the training set is based on the accurate predictions from the previ-
ous training rounds. Higher weights are assigned to incorrectly classified observations,
thereby increasing their likelihood of being classified correctly in subsequent iterations.
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Furthermore, weights are allocated to the trained classifiers in each iteration based on
their accuracy; classifiers with higher accuracy receive greater weight. This iterative
process continues until either the entire training dataset fits without error or until the
specified maximum number of estimators is reached. For classification, a “vote” is con-
ducted across all the learning algorithms that have been constructed. A representation
of these steps can be seen in Figure 4.4.

4.2.3. Poisson Regressor
Poisson Regressor belongs to generalized linear models with a Poisson distribution [92,
98–100]. It is considered as a simple count regression model, involving coefficients that
are exponentiated due to the requirement that counts must be non-negative (0 or greater).
Poisson regression operates under the assumption of a Poisson distribution, typically fea-
turing a significant positive skew where the majority of cases cluster at the lower end of
the dependent variable’s distribution. Additionally, it assumes a variance equal to the
mean. Given that count data distributions, such as visit counts, frequently conform to
a Poisson distribution, Poisson regression typically provides a superior fit for such data
compared to linear regression, which assumes a normal distribution.

Figure 4.4: Adaptive Boost algorithm [101]

Consequently, it enables the examination of predictive relationships with a dependent
variable, such as visit counts, similar to ordinary linear regression. This is achieved with-
out encountering issues stemming from non-normal distributions and heteroscedasticity
commonly associated with visit counts and costs. However, Poisson regression has a
significant limitation. It necessitates that the variance of the count variable does not ex-
ceed its mean. When this assumption is violated, resulting in “overdispersion” standard
errors become deflated, leading to Type I errors, rendering Poisson regression inappro-
priate. Various tests within software programs can evaluate the presence of significant
overdispersion.
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4.2.4. Nearest Neighbor Regressor
The Nearest Neighbor Search (NNS) problem is defined as follows: within a multidimen-
sional space X containing a set P of n points and characterized by a distance function D,
the task is to implement an algorithm that, when presented with a query point q ∈ X,
identifies the point p from set P that minimizes the distance D(q, p). When regression
relies on neighbors within a fixed radius, the algorithm used is called Radius Neighbors
Regressor. It essentially predicts the target by locally interpolating the targets associ-
ated with the nearest neighbors in the training set [102–104]. k-Nearest Neighbor (kNN)
algorithm is a commonly used classification method for unknown data. In the training
process, the training dataset is loaded and stored.

Subsequently, in the testing phase, k nearest neighbors are searched from the training
dataset, where k is the hyperparameter chosen initially. The voting method is generally
applied in the classification task, wherein the label of x0 is determined by selecting the
most frequent label among its k nearest neighbors. Similarly, in the regression task, the
label of x0 is determined by setting it as the mean value of the labels of its k nearest
neighbors. An ilustration is depicted in Figure 4.5.

Figure 4.5: k-Nearest Neighbor algorithm for k=1 and k=3 [105]

The algorithms provided by [92] toolbox encompasses both unsupervised and super-
vised neighbors-based learning methods. Unsupervised nearest neighbors form the basis
of various other learning techniques for learning and spectral clustering. Supervised
neighbors-based learning manifests in two forms: classification for data with discrete
labels, and regression for data with continuous labels. The essence of nearest neighbor
methods lies in identify a predefined number of training samples closest in distance to
the new point and predicting the label based on these neighbors. The user can specify
the number of samples either as a constant (k-nearest neighbor learning) or allow it to
vary based on the local density of points (radius-based neighbor learning). The distance
metric can be any measure, with the standard Euclidean distance being a common choice.
Neighbors-based methods are considered non-generalizing Machine Learning techniques,
as they simply retain all their training data potentially transformed into a fast index-
ing structure such as a Ball Tree or K-dimensional tree. Nearest neighbors algorithm
has proven successful in numerous classification and regression tasks, such as recogniz-
ing handwritten digits and classifying satellite image scenes. Being a non-parametric
method, it often performs well in classification scenarios where the decision boundary
is highly irregular. Other learning algorithms such as kernel density estimation, rely on
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nearest neighbors as their core component [106].

4.2.5. Decision Tree Regressor
Decision Tree learning is a method that employs a Decision Tree (DT) structure to
predict target values at the leaves based on observations in the branches [92, 107, 108].
Arranged in a straightforward tree structure, Decision Trees feature terminal nodes that
display decision outcomes, while non-terminal nodes represent tests on one or multiple
attributes. In this approach, the quality of a split at each node of the Decision Trees is
measured by its ability to reduce the Mean Squared Error (MSE). However, alternative
criteria such as Mean Absolute Error (MAE) can be considered, which aims to minimize
the L1 loss by utilizing the median of each terminal node. A typical structure of a
Decision Tree can be seen in Figure 4.6

Decision Trees offer the advantage of facilitating multi-target joint feature selection and
prediction by taking into account inter-correlations between the targets. Furthermore,
Decision Trees are characterized by their ease of understanding and high interpretabil-
ity while they do not require data scaling, and they can effectively capture nonlinear
relationships within the data.

Figure 4.6: Decision Tree structure [91]

However, Decision Trees are prone to overfitting, where the model excessively tailors
itself to the training data, compromising its ability to generalize and predict future ob-
servations reliably. To mitigate overfitting, it’s common practice to limit the depth of
the trees. Scikit-learn library [92] and specifically the Decision Tree Regressor is also
one of the algorithms employed.
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4.2.6. Gaussian Processes
Gaussian Process, often mentioned in literature as Kriging, is a statistical surrogate
model that enables the approximation of any unknown mapping black-box function f(·)
within its input space by considering it as a realization of a Gaussian Process [93, 109–
111] . Essentially, a Gaussian Process (GP) defines a distribution across a set of func-
tions, corresponding an ensemble of infinite random variables, each finite subset of which
follows a joint Gaussian distribution.

The Gaussian Process is characterized by the covariance functions and mean while its
framework entails a supervised learning problem, wherein it is trained on a dataset or
Design of Experiment (DoE) comprising M samples, XM =

{
x1, . . . , xM

}
being the

input data set
(
x ∈ Rd

)
and the corresponding unknown function responses noted as

YM =
{
y1 = f (x1) , . . . , yM = f

(
xM

)}
.

The exact function response f(·) can be predicted by the meta-model at a new unmapped
location without evaluating it. The reduced computational evaluation cost is considered
as the main advantage of this approach since instead of evaluating the expensive black-
box function f(·), the surrogate model is used for evaluation. In the GP regression,
a prior covariance function kΘ (x, x′) is used to place a GP prior on the unobserved
function f(·). This covariance function depends on hyper-parameters Θ and a mean
function m(·). A commonly used kernel referred as p-exponential kernel is given in
Equation 4.2.2.

kΘ (x, x′) = Θσ exp
(

−
d∑

i=0
Θθi

∣∣∣x(i) − x′(i)
∣∣∣Θpi

)
(4.2.2)

A constant mean function, denoted by µ, is commonly assumed, leading to what’s re-
ferred to as ordinary Kriging in Gaussian Process (GP) modeling when the trend of
the response is uncertain beforehand. Different types of mean functions such as linear,
quadratic, or general basis functions can be considered based on available prior knowl-
edge. Under the assumption of a constant mean function, the GP can be represented
as f̂ (x′) ∼ N

(
m, kΘ (x, x′)

)
, where the function has a multivariate normal distribution

on any finite subset of variables, notably on the Design of Experiment (DoE) X M (de-
noted as fM

)
, fM | X M ∼ N

(
1µ, KΘ

MM

)
. Here, KΘ

MM represents the covariance matrix
derived from the parameterized covariance function kΘ(·) on X M .

The selection of the covariance function dictates the prior assumptions regarding the
modeled function. Introducing a Gaussian noise variance, often referred to as the nugget
effect, allows for the incorporation of uncertainty in the relationship between the latent
function values f(X M) and the observed responses YM . This relationship can be ex-
pressed as p(y | fM) = N (y | fM , σ2I). The marginal likelihood is derived by integrating
out the latent function f(·):

p
(
y | X M ,Θ

)
= N

(
y | m, KMM + σ2I

)
(4.2.3)
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Figure 4.7: Gaussian process prediction and its confidence interval [109]

The optimal values of the hyper-parameters Θ, m and σ can be determined by maximiz-
ing the log marginal likelihood in order to train the Gaussian Process. The negative log
marginal likelihood and its derivative are defined in Equation 4.2.4 and Equation 4.2.5
respectively. The kernel matrices implicitly depend on the hyperparameters Θ along
the previously two mentioned quantities.

L
(
Θ | X M , YM

)
= log

(
p
(
y | X M , YM ,Θ

))
∝ log

(∣∣∣K̂MM

∣∣∣)− yT K̂−1
MMy (4.2.4)

dL

dΘ
= yT K̂−1

MM

dK̂MM

dΘ
K̂−1

MMy + Tr
(

K̂−1
MM

dK̂MM

dΘ

)
(4.2.5)

with K̂MM = KMM + σ2I.

Optimization algorithms can be employed to minimize the negative log marginal likeli-
hood for determining the hyperparameter values of the trained Gaussian Process (GP).
Additionally a closed form of the constant mean function can be obtained rather than
being determined through an optimization algorithm, as indicated in references. Follow-
ing the training phase, predictions at a new point x∗ ∈ Rd are made by utilizing the
conditional properties of a multivariate normal distribution expressed in Equation 4.2.6
and illustrated in Figure 4.7. The mean prediction ŷ∗ is given in Equation 4.2.6 and the
associated variance ŝ∗2 is given in Equation 4.2.7.

p
(
y∗ | x∗, X M , YM ,Θ

)
= N

(
y∗ | ŷ∗, ŝ∗2

)
(4.2.6)

ŷ∗ = m + kT
x∗

(
KMM + σ2I

)−1
(y − 1µ) (4.2.7)
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ŝ∗2 = kx∗,x∗ − kT
x∗

(
KMM + σ2I

)−1
kx∗ (4.2.8)

where kx∗,x∗ = k (x∗, x∗) and kx∗ =
[
k
(
x(i), x∗

)]
i=1,...,M

During the training phase of Gaussian Processes the computational burden is primarily
carried by operations such as computing the linear solve K̂−1

MMy, evaluating the log de-
terminant log

(∣∣∣K̂MM

∣∣∣), and determining the trace term Tr
(
K̂−1

MM
dK̂MM

dΘ

)
. These tasks

rely on the Cholesky decomposition of K̂MM , which is computationally demanding and
necessitates O (M3) operations. Sparse GP can be used in order to mitigate these com-
putational costs.

Α 1D function and the corresponding Gaussian Process (GP) constructed from four
observations is illustrated in Figure 4.7. The confidence interval, determined by the GP
variance (±3ŝ∗2), shows no variance at observation points without a nugget effect and
increases with distance from existing data. GPs are valuable in complex system design,
offering both model predictions and uncertainty estimates to designers.

4.3. PredictiveApproaches for EnergyAbsorptionEvaluation
The evaluation of the energy absorption capability of a structural element requires to
access data related either to the load-displacement curve or to the area below the load-
displacement curve directly which represents the energy absorbed by the system. The
development of meta-models able to perform these predictions is essential due to the
significant computational resources needed for explicit finite element simulations and
the challenges associated with experiments. The use of regression models that they
are either multi-output for the case of the load-displacement curve prediction or single-
output for the case of the energy absorption prediction is investigated. These approaches
are described in the following two subsections.

4.3.1. Prediction of Energy Absorption as Scalar Value
One approach to asses the crashworthiness performance is to employ one of the Machine
Learning algorithms described in Section 4.2 to predict a single output, or target, which is
the energy absorption. The schematic of the single-output regressor used to estimate the
energy absorption is illustrated in Figure 4.8. The geometrical features herein considered
are: material, the thickness, the side length and the tube length. In other words the
same surrogate model can have as input load-displacement curves derived from different
materials, thicknesses, side lengths and tube lengths.

Figure 4.8: The schematic of single-output regression
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The drawback of this approach is that the only information that becomes available after
training the meta-models is the energy absorption as scalar value. Thus, no information
is estimated regarding the load-displacement curve.

4.3.2. Prediction of Load-displacement Curve
Another approach to asses the crashworthiness performance is to employ the Machine
Learning algorithms described in Section 4.2 by considering the values of the curve as
the targets to be predicted. The motivation for predicting the load-displacement curve
of each structural element individually lies in the fact that the superposition of these
curves enables the estimation of the crashing behavior of the subfloor.

The schematic of the multi-output regressor used to estimate the load-displacement curve
is illustrated in Figure 4.9. The material, the thickness, the side length and the tube
length are considered as “Geometrical Features”. The value of the load at displacement
equal to di for i = 1, ..., m, is represented by f(di). The curves, which are generated
as results of the finite element analysis using Abaqus (see Figure 3.3), consist of 1000
points or m equals 1000. These curves are the high-fidelity data mentioned in Chapter 3,
which are emulating what would be available from a physical test.

Figure 4.9: The schematic of multi-output regression

The main goal is to assess the crashworthiness performance meaning that after estimating
the load-displacement curve with the multi-output regressor another step is needed, the
derivation of the integral below the predicted curve, fpred, as illustrated in Figure 4.10.
This area corresponds to the energy absorbed by the structure and in the present analysis
this task is performed with Simpson’s rule [112]. When the units of the loading is in kN
and the units of the displacement is in mm, the calculated energy absorption (or area)
is in J .

Figure 4.10: Energy absorption calculation after the load-displacement curve estimation

To evaluate how well the load-displacement curve is estimated along with how well the
energy absorption is estimated, the Mean Absolute Percentage Error (MAPE) metric is
used as formulated in Equation 4.3.1. It is a regression loss designed to evaluate the
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accuracy of regression models. It quantifies the average absolute percentage difference
between predicted and actual values, making it useful for understanding relative errors
across different scales of target variables. MAPE is used within the results in the format
of percentage (%).

MAPE = 1
n

n∑
i=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣× 100 (4.3.1)

where yi represents the true value, ŷi represents the predicted value, and n is the number
of samples. The predictive approach that forecasts the load-displacement curve is adept
at estimating the entire curve, despite the higher computational demand of predicting
1000 targets compared to a single one.

4.4. Methodologies and Techniques to Improve Training Per-
formance

After defining the potential regression models, a process to evaluate its performance
and prediction accuracy is required. Two methodologies are described in the present
section, both employing multi-output regressors since the ability to predict the load-
displacement curve is deemed necessary. In the first methodology the surrogate model
is solely trained with numerical data derived from a high-fidelity (HF) model. Data from
high-fidelity models are usually expensive and accurate that come from experiments or
computationally intense simulations.

In the second methodology a low-fidelity (LF) model is introduced along with the high-
fidelity model to improve the accuracy of the predictions. The low-fidelity model is a
simplified model that relies on the numerical data and the analytical equations presented
in Chapter 3.

After the creation of the low-fidelity model samples can be generated without computa-
tionally demanding processes for any geometrical characteristics (thickness, side length
and tube length) and material input. This low-fidelity samples in combination with the
available numerical samples from the high-fidelity model become now the input of the
Machine Learning models for the second methodology. The ultimate goal is to improve
the prediction performance of the energy absorption and compare the results between
the two methodologies.

4.4.1. Regression Solely Based on HF Samples
The initial methodology aims to predict the energy absorption, when training is solely
based on high-fidelity (HF) samples, as illustrated in Figure 4.11. The precision of
energy absorption prediction directly correlates with the efficacy of Regressor A (see
Figure 4.11) in forecasting load-displacement curves.
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Figure 4.11: Methodology initially employed to predict the energy absorption

Firstly, the available N +1 numerical samples (or FEA samples or high-fidelity samples)
are separated in to N training samples and 1 test sample i. The purpose of this is to
train the Regressor A with the N training samples and then evaluate its performance by
comparing with the test sample i, considering it as the ground truth. Given the scarcity
of data, the test sample is selected to be only one so as to train the regressor with the
highest possible amount of samples.

After training the Regressor A with the N training samples, the features (material, thick-
ness, side length and tube length) of the test sample i serve as input to the Regressor
and a load-displacement curve is estimated as output of it from which the area below
the curve is calculated. Thus, a comparison with the target area which is computed
from the test sample’s i load-displacement curve, can be made. Comparing these two
scalar values the Mean Absolute Percentage Error Pi % is calculated.

To get a better understanding of how the Regressor A performs the process is repeated
so that all the available samples become once the test sample i. The outcome is a
(N + 1) × 1 array including all the MAPEs, the average of which is calculated in the
final step. This average represents the performance of the Regressor A, since it can give
an overall insight on how accurate the energy absorption predictions are.

4.4.2. Regression Based on HF and LF Samples
The goal is to improve the prediction performance of the high-fidelity model, described
in Subsection 4.4.1, by introducing low-fidelity information as illustrated in Figure 4.12.
The blue loop depicts the difference between the two methodologies where low-fidelity
samples are incorporated in the training process. This approach employs two completely
different regressors.

Regressor A is a 1000-target regressor used to estimate the load-displacement curves
after being trained with N + M samples. Regressor B is a dual-target regressor used to
estimate the Pmax and the corresponding displacement, xPmax after being trained with
N training samples in order to construct the low-fidelity model in the next step.
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Figure 4.12: Methodology employed for improved prediction capability of the energy absorption

Similarly to the high-fidelity model the available N + 1 numerical data are separated in
to N training samples and 1 test sample i. Regressor A is trained with the N training
samples and M samples generated by the low-fidelity model. Then its performance is
evaluated by comparing with the test sample i, considering it again as the ground truth.

The M samples, referred as low-fidelity samples, are generated as follows. The N training
samples (which consist the high-fidelity data) serve as input to the dual-target Regressor
B so as to create a model able to predict the Pmax and the corresponding displacement,
xPmax . This in combination with the the analytical estimation of the Pmean, given in
Equation 3.2.6, can be used to construct a low-fidelity curve as shown in Figure 4.13 for
any desired input in terms of material, thickness, side length and tube length [83]. The
load-displacement curve of that simplified model is assumed to consist of a linear part,
a peak value and a plateau similarly working as Astori et al. [74] (see Figure 2.25).

Figure 4.13: Low-fidelity model to represent a load-displacement curve

Thus, Pmean is analytically estimated while the Pmax and the displacement xPmax are
estimated with a dual-target regression model, appearing as Regressor B in Figure 4.12.
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After constructing the low-fidelity model, M low-fidelity samples are generated. The
number of samples generated by the low-fidelity model depends on the user. The low-
fidelity model is based on the input taken by the Regressor B and the Analytical model
which are two completely separate models. On the one hand, Regressor B is a dual-
target regressor trained with high-fidelity samples and on the other hand the Analytical
model is a closed-form relationship, given in Equation 3.2.6, that estimated the mean
crushing load.

After Regressor A is trained with the N + M samples, the features (material, thickness,
side length and tube length) of the test sample i serve as input to the Regressor A
and a load-displacement curve is estimated as output of it, from which the area below
the curve is derived. Thus, a comparison with the target area can be made computed
from the test sample’s i load-displacement curve. Comparing these two scalar values the
Mean Absolute Percentage Error Pi % is calculated.

The process is repeated so that all the available numerical samples become once the test
sample i. The outcome is a (N + 1) × 1 array including all the MAPEs, the average
of which is calculated in the final step. This average represents the performance of the
Regressor A since it can give an overall insight on how accurate the predictions of the
energy absorption are.

Both methodologies described in Section 4.4 are evaluated for the following multi-output
regressors (referring to regressor A): Transform Target Regressor, Poisson Regressor, De-
cision Tree regressor, and Radius Neighbor Regressor. Running the Adaptive Boosting
Regressor and Gaussian Process models proved to be computationally infeasible to repro-
duce the graphs shown in Section 5.2. The Regressor B is selected to be the Transform
Target Regressor to predict the Pmax and the xPmax . Other regressors are also utilized;
however, they exhibited comparable satisfactory performance. Consequently, no com-
parative analysis is conducted within this study among Regressor B’s alternatives. The
Transform Target Regressor is deemed adequate for comparing the approaches outlined
in 4.4.

4.4.3. Evaluation of the LF Model
Before employing the low-fidelity model, shown in Figure 4.13 as main part of the
methodology depicted in Figure 4.12, its imperative to evaluate how well it can represent
the respective high-fidelity samples. Utilizing a low-fidelity model devoid of satisfactory
predictive performance would inherently lack the capacity to enhance the accuracy of
energy absorption prediction. For this purpose the evaluation process described in this
section is performed. For the square cross-section 40 high-fidelity samples (FEA) are
available. The low-fidelity model is relying on 39 of these high-fidelity samples and
one is used as target sample. This can be illustrated in Figure 4.14 by selecting one
target sample with Cross-section: Square, Material: AA6060-T4, Side length: 30 mm,
Thickness: 2.25 mm, and Tube length: 200 mm
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Figure 4.14: Comparison of LF-Model and HF-Model load-displacement curve

To evaluate the accuracy of the LF-Model for this specific case illustrated in Figure 4.14
the following indicators are computed: MAPE (Mean Absolute Percentage Error) of
Pmax is equal to 2.7%, MAPE of xPmax is equal to 13.2%, MAPE of Pmean is equal to
4.6%, and MAPE of Area (or energy absorption) is equal to 4.6%. The same process
can be repeated for all the 40 available high-fidelity samples. Then the aforementioned
MAPEs can be computed for each of these 40 samples and the average values can be
derived. The average MAPEs of these 40 samples are shown in Table 4.2.

Table 4.2: Average MAPEs for the square cs samples with reference to the HF Model

Estimated Variable Average MAPE %

Pmax 9.0
xPmax 21.6
Pmean 3.4
Energy Absorption 3.5

The low-fidelity model has as a primary objective to increase the accuracy of the en-
ergy absorption predictions. The energy absorption is derived as the area below the
load-displacement curve which is mainly relying on the Pmean compared to the other
estimated variables. This means that a good prediction of the Pmean will be of outmost
importance for a good energy absorption prediction.

This argumentation is confirmed also from the close values of average MAPEs Pmean

and Energy Absorption have in Table 4.2. Achieving average MAPE below 5% for the
square cross-section configuration is a promising outcome that employing a low-fidelity
model can increase the predictions of energy absorption.
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5 Results
5.1. Evaluation of the Regression Algorithms Performance
Before employing the methodologies described in Chapter 4, the machine learning al-
gorithms are evaluated on how well they perform in predicting the load-displacement
curves. Specifically the process illustrated in Figure 4.2 is employed for the four cross-
sections (cs). The first set of samples is provided in Table B.1 in Appendix B. It includes
40 samples in total, from which 39 are used for training of the multi-output regressor
and 1 is used as target. The target sample is randomly selected. Figure 5.1 illustrates a
prediction of the load-displacement curve and evaluation of the Mean Absolute Percent-
age Error (MAPE) with reference to the load-displacement curve of the target sample.
The specimen selected as test specimen (target) is material: AISI-316, side length: 30
mm, wall thickness: 1.25 mm, and tube length: 200 mm.

Figure 5.1: Prediction of the load-displacement with 6 different multi-output regressors for the square
cs

All the algorithms showed very good correlation for the first 20 mm of crushing length
while all except for the GP showed sufficient correlation for the first 45 mm of crushing
length. The overall trend of the target curve is captured with the Radius Neighbor
Regressor with a MAPE of 7.48%, then with the Transform Target Regressor with a
MAPE of 12.31% and the third best performed algorithm is the Poisson Regressor with
a MAPE of 12.56%. All six Regressors showed MAPE below 21% compared to the target
sample.

After estimating the load-displacement curves with the six multi-output regressors (MO
Regr.), the next step is to compare with the target sample the energy absorption by
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calculating the areas below the curves. Here another comparison can be made. As men-
tioned in Chapter 4 the energy absorption can be estimated with single-output regressors
(SO Regr.) directly as a scalar value. Thus, apart from evaluating the performance of
the multi-output regressors on estimating the energy absorption, their predictions can
be compared with the ones of the single-output regressors the schematic of which is
illustrated in Figure 4.8.

The evaluation of the MAPE of the areas below the load-displacement curves for the
function prediction approach (MO Regr.) and for the scalar value prediction approach
(SO Regr.) is presented in Table 5.1. The areas below the curve represent the absorbed
energy (J).

Table 5.1: Prediction of the energy absorption (J) with the SO Regr. and for the MO Regr. for the
square cs

Prediction Target SO MAPE MO MAPE
Method area Regr. % Regr. %

Transform T. 5089.44 5050.19 0.77 4944.26 2.85
AdaBoost 5089.44 5329.80 4.72 5334.10 4.81
Poisson 5089.44 5113.06 0.46 5086.53 0.06
Dec. Tree 5089.44 5285.59 3.85 5236.88 2.90
Rad. Neig. 5089.44 5228.56 2.73 5183.97 1.86
GP 5089.44 4947.53 2.79 4615.67 9.31

Transform T. stands for the Transformed Target regressor, AdaBoost stands for the
Adaptive Boosting Regressor, Poisson stands for the Poisson Regressor, Dec. Tree stands
for the Decision Tree Regressor, Rad. Neig. stands for the Radius Neighbor Regressor
and GP stands for the Gaussian Processes. All the results except for the GP that have a
MAPE 9.31% are below 5% for the multi-output Regressors while all the single-output
Regressors showed MAPE below 5%.

The same process is repeated for the circular cross-sections. The second set of samples
is provided in Table B.2 in Appendix B. It includes 32 samples in total, from which
31 are used for training of the multi-output regressor and 1 is used as target sample.
Figure 5.2 illustrates a prediction of the load-displacement curve and evaluation of the
Mean Absolute Percentage Error with reference to the target sample. The specimen se-
lected as test specimen (target) is material: AA6060-T4, radius: 20 mm, wall thickness:
1.75 mm, and tube length: 200 mm.

The algorithms for the circular cross-section didn’t show as good correlation as the
square cross-section, even for the first 20 mm of crushing length. The only algorithm
that is following the trend of the target sample is the Adaptive Boost Regressor for a
crushing length approximately until 100 mm. The overall trend of the target curve is
captured with the Adaptive Boosting Regressor with a MAPE of 21.92%, then with the
Poisson Regressor with a MAPE of 22.59% and the third best performed algorithm is
the Transform Target Regressor with a MAPE of 22.92%. All six Regressors showed
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MAPE below 27% compared to the target.

Figure 5.2: Prediction of the load-displacement with 6 different multi-output regressors for the
circular cs

After estimating the load-displacement curves with the six multi-output regressors (MO
Regr.), the next step is to compare with the target sample the energy absorption by
calculating the areas below the curves. Again apart from evaluating the performance of
the multi-output regressors on estimating the energy absorption, their predictions are
compared again with the ones of the single-output regressors.

The evaluation of the MAPE of the areas below the load-displacement curves for the
function prediction approach (MO Regr.) and for the scalar value prediction approach
(SO Regr.) is presented in Table 5.2. The areas below the curve represent the absorbed
energy (J).

Table 5.2: Prediction of the energy absorption (J) with the SO Regr. and for the MO Regr. for the
circular cs

Prediction Target SO MAPE MO MAPE
Method area Regr. % Regr. %

Transform T. 3192.48 3125.68 2.09 3031.01 5.06
AdaBoost 3192.48 3184.22 0.26 3316.63 3.89
Poisson 3192.48 3058.90 4.18 3050.34 4.45
Dec. Tree 3192.48 3058.90 4.18 2863.74 10.30
Rad. Neig. 3192.48 2780.07 12.92 2766.89 13.33
GP 3192.48 3210.44 0.56 3172.04 0.64
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All the MO Regr. results except for the Transform Target Regressor, the Decision Tree
Regressor and the Radius Neighbor Regressor are below 5%. The best multi-output re-
gressor appears to be the GP with below 1% prediction. For the single-output regressors
all the algorithms except for the Radius Neighbor Regressor showed MAPE below 5%.
The best result is shown for the Adaptive Boosting Regressor where the MAPE is 0.26%
and the second well performed algorithm is the GP with a MAPE of 0.56%.

The third set of samples refers to the hexagonal cross-section and is provided in Table B.3
in Appendix B. It includes 40 samples in total, from which 39 are used for training of the
multi-output regressor and 1 is used as target sample. Figure 5.3 illustrates a prediction
of the load-displacement curve and evaluation of the Mean Absolute Percentage Error
with reference to the target sample. The specimen selected as test specimen (target) is
material: AA6060-T4, side length: 50 mm, wall thickness: 1.75 mm, and tube length:
200 mm.

Figure 5.3: Prediction of the load-displacement with 6 different multi-output regressors for the
hexagonal cs

The algorithms for the hexagonal cross-section showed better correlation compared to
the circular cross-section but not compared to the square cross-section. The Regressors
seem to follow the trend with an offset in the horizontal axis. The best performed re-
gressor is the Transform Target Regressor with a MAPE of 13.83%, the second best
performed regressor is the Poisson Regressor with MAPE of 14.36%, and the third best
performed regressor is the Radius Neighbor Regressor with MAPE of 15.76%. All six
regressors showed a MAPE below 29% compared to the target sample.

Again apart from evaluating the performance of the multi-output regressors on estimat-
ing the energy absorption compared to the target sample, their predictions are compared
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with the ones of the single-output regressors.

The evaluation of the MAPE of the areas below the load-displacement curves for the
function prediction approach (MO Regr.) and for the scalar value prediction approach
(SO Regr.) is presented in Table 5.3. The areas below the curve represent the absorbed
energy (J).

Table 5.3: Prediction of the energy absorption (J) with the SO Regr. and for the MO Regr. for the
hexagonal cs

Prediction Target SO MAPE MO MAPE
Method area Regr. % Regr. %

Transform T. 3748.42 3741.01 0.20 3660.14 2.36
AdaBoost 3748.42 3809.28 1.62 3868.74 3.21
Poisson 3748.42 3714.17 0.91 3678.05 1.88
Dec. Tree 3748.42 3874.38 3.36 3851.07 2.74
Rad. Neig. 3748.42 3304.95 11.83 3279.92 12.50
GP 3748.42 2957.23 21.11 4123.13 10.00

All the MO Regr. results except for the Radius Neighbor Regressor and the Decision
Tree Regressor are below 3.3%. The best multi-output regressor appears to be the Poison
Regressor with a MAPE of 1.88%. For the single-output regressors all the algorithms
except for the Radius Neighbor Regressor and the Decision Tree Regressor are below
3.5%. The best result is shown for the Transformed Target Regressor where the MAPE
is 0.20% and the second well performed algorithm is the Poisson Regressor with a MAPE
of 0.91%.

The fourth and final set of samples is the octagonal cross-section and is provided in
Table B.4 in Appendix B. It includes 26 samples in total, from which 25 are used for
training of the multi-output regressor and 1 is used as target sample. Figure 5.3 illus-
trates a prediction of the load-displacement curve and evaluation of the Mean Absolute
Percentage Error with reference to the target sample. The specimen selected as test
specimen (target) is material: AA6060-T4, radius: 60 mm, wall thickness: 1.25 mm,
and tube length: 200 mm.

The algorithms for the octagonal cross-section showed good correlation, comparable to
the one showed with the square cross-section. The regressors seem to follow the trend
and magnitude until the 60 mm crushing length. The best performed regressor is the
Transform Target Regressor with a MAPE of 12.19%, the second best performed regres-
sor is the Poisson Regressor with a MAPE of 12.89%, and the third best performed
regressor is the Decision Tree Regressor with a MAPE of 16.79%. All six regressors
showed a MAPE below 31% compared to the target sample.

Again apart from evaluating the performance of the multi-output regressors with the
target sample on estimating the energy absorption, their predictions are compared with
the ones of the single-output regressors.
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The evaluation of the MAPE of the areas below the load-displacement curves for the
function prediction approach (MO Regr.) and for the scalar value prediction approach
(SO Regr.) is presented in Table 5.4. The areas below the curve represent the absorbed
energy (J).

Figure 5.4: Prediction of the load-displacement with 6 different multi-output regressors for the
octagonal cs

All the MO Regr. results except for the Adaptive Boosting Regressor have a MAPE
below 11%. The best multi-output regressor appears to be the Decision Tree Regressor
with a MAPE of 4.27%. The second well performed algorithm is the Poisson Regressor
with a MAPE of 4.71% and the third is the GP with a MAPE of 6.31%

Table 5.4: Prediction of the energy absorption (J) with the SO Regr. and for the MO Regr. for the
octagonal cs

Prediction Target SO MAPE MO MAPE
Method area Regr. % Regr. %

Transform T. 2675.32 2542.89 4.95 2486.39 7.06
AdaBoost 2675.32 2581.93 3.49 2962.38 10.73
Poisson 2675.32 2580.80 3.53 2549.31 4.71
Dec. Tree 2675.32 2581.93 3.49 2561.09 4.27
Rad. Neig. 2675.32 3320.57 24.12 3293.83 23.12
GP 2675.32 3253.15 21.60 2844.16 6.31

For the single-output regressors all the algorithms except for the Radius Neighbor Re-
gressor and the GP are below 5%. The best result is shown for the Adaptive Boosting
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Regressor and the Decision Tree Regressor where the MAPE is 3.49% while the third
best performed algorithm is the Poisson Regressor with a MAPE of 3.53%.

Considering studies such as [35], a maximum error of 7% was achieved for similar approx-
imations. Thus, for the purpose of comparing the performance of the above algorithms,
a threshold of 10% is deemed sufficient to predict the energy absorption. The Table 5.5
depicts which of these did show satisfactory performance and managed to predict the
energy absorption with MAPE below 10% and for what cross-section. The average run
time refers to the time the multi-output regressor takes in order to be trained and esti-
mate the load-displacement curve. This time is calculated for each regressor and each
cross-section and the average result is documented in Table 5.5.

Table 5.5: Multi-output regressors that exhibited Mean Absolute Percentage Error below 10% in
predicting energy absorption and average run time

Prediction Square Circular Hexagonal Octagonal Average run
Method cs cs cs cs (sec)

Transform T. ! ! ! ! 1.6
AdaBoost ! ! ! 58
Poisson ! ! ! ! 7.6
Dec. Tree ! ! ! 1.5
Rad. Neig. ! 1.4
GP ! ! ! 840

The device that was used to run the Python codes and achieve the running times appear-
ing in Table 5.5 has the following specifications. Device: LAPTOP, Processor: Intel(R)
Core(TM) i9-10980HK CPU 2.40GHz 3.1 GHz, Installed RAM: 32.0 GB, System type:
64-bit operating system, x64-based processor.

The Transform Target Regressor and the Poisson Regressor showed for all four cross-
sections (cs) MAPE below 10%. Then the Adaptive Boosting Regressor, the Decision
Tree Regressor and the GP showed for three of the four cross-sections MAPE below
10% while the Radius Neighbor Regressor achieved to predict within this threshold only
for one cross-section. However, the Decision Tree Regressor outperformed the Adaptive
Boosting Regressor and the GP in computational efficiency as illustrated in the last
column of the Table 5.5. One of the two reasons that the GP is highly computation-
ally intense is that unlike the other regressors a distribution is predicted. Thus, the
evaluation phase requires sampling of over that distribution in order to obtain the load-
displacement curve. The second reason is that is the only of the evaluated regressors
that takes into account the correlation of the outputs. Upon initial evaluation, the three
most efficient algorithms considered overall appear to be the Transform Target Regres-
sor, the Poisson Regressor, and the Decision Tree Regressor.

The square cross-section HF samples exhibit less variability compared to samples of
other cross-sections. Thus, the task of comparing the regression solely based on high-
fidelity samples with the regression based on high-fidelity and low-fidelity samples will
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be performed on the square cross-section configuration. The regressors employed to
evaluate the influence of low-fidelity samples in the accuracy of the energy absorption
prediction, implementing the method illustrated in Figure 4.12, are the Transform Target
Regressor, the Poisson Regressor, the Decision Tree regressor, and the Radius Neighbor
Regressor. Executing the Adaptive Boosting Regressor and Gaussian Processes posed
computational challenges, hindering their respective evaluation in Section 5.2. The
relevant results of all the other regressors are documented in the following section.

5.2. Regression Solely Based on HF Samples vs. Based on HF
and LF Samples

This phase of the analysis utilizes data from the square cross-section samples, as they
demonstrate a more stable behavior compared to other cross-section shapes. This stabil-
ity makes it easier to discern the impact of low-fidelity information during the training
phase. The multi-output regressors employed include the Transform Target Regressor,
the Poisson Regressor, the Decision Tree Regressor, and the Radius Neighbor Regressor.
However, both the Adaptive Boosting Regressor and the Gaussian Process (GP) were
deemed computationally infeasible to execute. Their computational intensity is evident
from the comparison presented in Table 5.5.

Specifically the Transform Target Regressor and the Poisson Regressor, both showed
efficiency as multi-output regressors not only for the square cross-section configuration
but for all the four cross-sections so it is expected to be suitable for the implementation
of this phase. The methodologies described in Chapter 4.4 are implemented in order to
identify whether including low-fidelity along with high-fidelity samples can influence the
accuracy of the energy absorption prediction.

The low-fidelity samples are generated as follows. The first low-fidelity samples generated
correspond to samples identical with the high-fidelity samples, which in this case-study
is 39 excluding the test sample that is used as reference. After that number, the rest of
the low-fidelity samples are created randomly. The limits of the side length, the thick-
ness and the tube length are bounded based on the variety of the existing high-fidelity
data. Particularly, the side length is bounded from 30 mm to 60 mm and the thickness
is bounded from 1 mm to 2.5 mm. The tube length remained as 200 mm since all the
available high-fidelity samples for the squared cross-section have length 200 mm while
the material can be either AA6060-T4 or AISI-316.

After the potential combinations are defined the samples increase in a random way based
on the user input. For instance, when the user requests the generation of 100 samples
then a 100 × 4 matrix is created which includes 39 low-fidelity samples identical to the
high-fidelity samples and 61 randomly selected low-fidelity samples based on the afore-
mentioned defined bounds. The dimension 4 of the matrix refers to the 4 features that
can be defined for each sample: material, side length, thickness and tube length.

The regressors utilized do not take into account the different fidelities between the sam-
ples. In other words, the the high-fidelity samples and the low-fidelity samples are of
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equal importance for the Regressor A (see Figure 4.12). For this reason, increasing
excessively the percentage (%) of the low-fidelity samples would result in a low-fidelity
model instead of a combination of a high-fidelity / low-fidelity model. An investigation
in the range of 0-95% in the added low-fidelity samples is pursued, depending on when
convergence behaviour is reached. The graphs are presented as follows: the y-axis rep-
resents the average MAPE of energy absorption (EA) in percentage (%) and the x-axis
represents the percentage (%) of the low-fidelity samples added to the total number of
samples (high-fidelity and low-fidelity together).

The trend of the average MAPE of the energy absorption for the two methodologies
described in Chapter 4.4 when the Poisson Regressor is employed is illustrated in Fig-
ure 5.5. The red dash line, representing the high-fidelity model (HF Model), shows the
average MAPE when the training is based solely on high-fidelity (HF) samples, imple-
menting the methodology illustrated in Figure 4.11.

Figure 5.5: Regression Solely Based on HF samples vs. Regression Based on HF and LF samples with
the Poisson MO Regr. - Square cs - HF Samples = 40

The average MAPE when the training is only relying to high-fidelity samples is 21.9%.
The black curve on the other hand, representing the adjusted high-fidelity model (HFLF
Model), shows the average MAPE when the training is based on high-fidelity (HF)
samples augmented with low-fidelity (LF) samples, implementing the methodology illus-
trated in Figure 4.12.

The HF Model and the HFLF Model have common initial point as the two methods
are identical when no LF samples are introduced in the training. When adding 26% of
LF samples, a decrease of 18% is observed in the average MSPE of energy absorption
(EA) compared to the HF Model. The maximum decrease is equal to 25% at 40% of
LF added samples while after 45% of LF added samples the decrease is stabilized at
approximately 21%. The HFLF Model when employing the Poisson Regressor produced
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improved performance in predicting the energy absorption compared to the HF Model
while it showed a maximum accuracy at 40% of LF added samples.

The behavior of the Transformed Target Regressor when is trained solely with high-
fidelity samples and when is trained with high-fidelity and low-fidelity samples is illus-
trated in Figure 5.6. Again the HF Model and the HFLF Model have common initial
point as the two methods are identical when no LF samples are utilized. When adding
25% of LF samples, a decrease of 1.6% is observed in the average MSPE of energy ab-
sorption (EA) compared to the HF Model. The maximum decrease is equal to 9.1% at
40% of LF added samples while after 46% of LF added samples the decrease is stabilized
at approximately 8.1%. The HFLF Model when employing the Transformed Target Re-
gressor produced improved performance in predicting the energy absorption compared
to the HF Model while it showed a maximum accuracy at 45% of LF added samples.

Figure 5.6: Regression Solely Based on HF samples vs. Regression Based on HF and LF samples with
the Transformed Target MO Regr. - Square cs - HF Samples = 40

The same curves when the Radius Neighbor Regressor is employed are shown in Fig-
ure 5.7. An almost linear decrease is observed in the average MSPE EA (%) from 0 to
60% LF Samples. When no LF Samples are added the average MSPE is at 27.8% while
the highest decrease is at 60% of LF added Samples where the average MSPE becomes
23.6% or there is a 14.4% decrease. Then the average MSPE reaches a steady state after
80% of LF Samples with a 13.3% decrease compared to the HF Model.

The Radius Neighbor Regressor efficiently shows that the presence of low-fidelity data
can improve the predictions of the energy absorption result also shown with the Trans-
formed Target Regressor and the Poisson Regressor. However this is not the case for
the Decision Tree regressor which was deemed unsuitable for part of the current study.
Detailed results for the Decision Tree regressor can be found in the Appendix C.
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Figure 5.7: Regression Solely Based on HF samples vs. Regression Based on HF and LF samples with
the Radius Neighbor MO Regr. - Square cs - HF Samples = 40

Observing the behavior of the Poisson Regressor, the Transformed Target Regressor and
the Radius Neighbor Regressor in Figure 5.5, in Figure 5.6, and in Figure 5.7 respec-
tively, several comments can be made. The maximum decrease compared to the HF
Model is observed for the Poisson Regressor and the Transformed Target Regressor at
approximately 40% of LF samples while for the Radius Neighbor Regressor the maxi-
mum decrease compared to the HF Model is achieved at 60% LF Samples.

This means that if the multi-output regressor had as input 100 samples in total, the
maximum accuracy would be observed when 60 of them are of high-fidelity and 40 of
them are of low-fidelity, referring to the Poisson Regressor and the Transformed Target
Regressor. Regarding all the three regressors (see Figure 5.5, Figure 5.6, and Figure 5.7),
by increasing the percentage (%) of LF Samples a decreasing trend of the HFLF Model
compared to the HF Model is shown, suggesting the positive influence of the low-fidelity
samples in predicting the energy absorption.

5.3. Discussion on the Results
The Transformed Target Regressor is able to predict the energy absorption more ac-
curately between the evaluated regressors, independently on what training approach is
utilized, the one presented in Figure 4.11 or Figure 4.12. This can be seen by comparing
Figure 5.6, Figure 5.5 and Figure 5.7; where the Transformed Target Regressor achieves
average MSPE of energy absorption in the range of 6.8-7.4%, the Poisson Regressor in
the range of 16.4-21.9% and the Radius Neighbor Regressor in the range of 24.3-27.8%.
This indicates that the logarithmic target transformation inherent in the Transformed
Target Regressor is more suitable compared to the assumption of a Poisson distribution
that the Poisson Regressor relies on and the radius neighbor theory that the Radius
Neighbor Regressor relies on, for the present case-study focused on square cross-section
configurations.
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The ability of regressors to represent the structural behavior of tubular structures with
load-displacement curves was evaluated across four different cross-sections for randomly
picked samples. The Transform Target Regressor and the Poisson Regressor consis-
tently exhibited MAPE below 10% for all four cross-sections. The motivation behind
this threshold was based on studies as [34] that achieved error of 7% for similar predic-
tions. Following closely, the Adaptive Boosting Regressor, the Decision Tree Regressor,
and the Gaussian Process (GP) achieved MAPE below 10% for three out of the four
cross-sections. However, the Radius Neighbor Regressor performed within this thresh-
old only for one cross-section. The Decision Tree Regressor was the third best performed
regressor since it outperformed the Adaptive Boosting Regressor and the GP in compu-
tational efficiency. The training samples range was 25 to 39 depending on the case under
evaluation. This suggests that the surrogate should be able after being given a data-
based input of the aforementioned range to predict efficiently the structural behavior of
an unknown sample, which is a rather complex objective.

Two methodologies were discussed aiming to improve the prediction accuracy of energy
absorption and were applied to tubular metallic structures with square cross-sectional
configuration. In the first methodology, a surrogate model is trained solely with numer-
ical data obtained from a high-fidelity model. In the second methodology, a low-fidelity
model is introduced alongside the high-fidelity model to enhance prediction accuracy.
Once created, the LF model enables generating results without the need for computation-
ally demanding processes, considering various geometrical characteristics and material
inputs. The combination of LF data and numerical data from the HF model serves as
input for machine learning models in the second methodology. The primary objective is
to enhance the prediction performance of energy absorption and compare the outcomes
between the two methodologies. The task of comparing regressions based solely on high-
fidelity samples with those incorporating both high-fidelity and low-fidelity samples was
successfully executed using the Transform Target Regressor, the Poisson Regressor, and
the Radius Neighbor Regressor for square cross-section samples.

Overall, as documented in Section 5.1 the Transformed Target Regressor showed capa-
bility of predicting the load-displacement curves with a minimum MAPE of 12.2% for
the octagonal cross-section and a maximum MAPE 22.9% for the circular cross-section
as shown in Figure 5.4 and Figure 5.2 respectively. It predicted the energy absorption,
when employed as multi-output regressor, with a minimum MAPE of 2.9% for the square
cross-section and with a maximum MAPE of 7.1% for the octagonal cross-section com-
pared to the target sample as shown in Figure 5.1 and Figure 5.4 respectively. The
Transformed Target Regressor and the Poisson Regressor were the only among the eval-
uated regressors that succeeded to predict the energy absorption for all cross-sections
with a MAPE of EA below 10%, making them very competitive candidates to implement
the methodologies presented in Section 4.4.

Indeed, when the Transformed Target Regressor was trained with high-fidelity samples
an average MAPE of 7.4% was achieved. Introducing LF Samples decreased this value
by 9.1% achieving an average MAPE EA of 6.8% at 40% LF added Samples. On the
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other hand, when the Poisson Regressor was trained with high-fidelity samples an aver-
age MAPE of 21.9% was achieved. Introducing LF Samples decreased this value by 25%
achieving an average MAPE EA of 16.4% again at 40% LF added Samples. Reduction
in the average MAPE was also shown with the Radius Neighbor Regressor with a 14.4%
decrease compared to the HF Model at 60% LF added Samples.
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6 Conclusions
The development of meta-models is essential due to the significant computational re-
sources needed for explicit finite element simulations and the challenges associated with
experimental drop-tests. Accurately predicting the structural behavior enables also the
potential of using surrogates in a crashworthiness optimization framework. In the cur-
rent study, the aim is to tackle the inherent difficulties in crashworthiness assessment
for helicopter structures and components when represented by surrogate models. These
models do not solve any type of analysis such as FEM. Instead they learn from the
data-based input given by the user.

A comparative analysis is conducted to assess the performance of two predictive ap-
proaches in determining the energy absorption of tubular metallic structures of four
cross-sections. The first approach involves predicting the energy absorption directly as
a scalar value, while the second approach predicts the load-displacement curve as a func-
tion, from which the energy absorption is computed as the integral of the curve. Both
approaches utilized Machine Learning techniques and specifically regression models. The
evaluation of the entire load-displacement curve was proved to be a valuable input for
the surrogate models and they were imperative in representing the structural behav-
ior of the structure. This would not be possible if the only information utilized was the
energy absorption of each sample, proving the first hypothesis documented in Chapter 1.

The challenges of assessing crashworthiness performance include the limited information
about the structural behavior when crushing so the need of introducing a low-fidelity
model emerges. Three evaluated regressors proved that introducing low-fidelity samples
in the training along with high-fidelity samples can increase the accuracy in predicting
the energy absorption proving the second hypothesis of the thesis. However, incorporat-
ing low-fidelity samples did not increase the prediction accuracy of the load-displacement
curve since the low-fidelity samples smooth the high-fidelity curves rather than trying
to capture the sharp drops and peaks in their behavior. From that perspective other
approach should be utilized, potentially employing completely different surrogate.

Another important conclusion is that the selection of the regressor is case-study related.
A regressor that can provide good predictions for one configuration might not perform
well with another configuration. Since the input of the methodologies are libraries of
structural data and no solving is performed during the surrogate construction it is im-
perative to identify a suitable regressor to the available data.

These findings are promising in implementing the methodology in more complex assem-
blies such as helicopter subfloors. Machine Learning techniques appeared to be efficient
in representing the structural behavior in crushing conditions while the accuracy of the
predictions can be further improved by incorporating low-fidelity models along with
high-fidelity models during the training process when there is scarcity of numerical or
experimental data.
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7 Recommendations
In future research initiatives, it is imperative to take into account more complex models
as low-fidelity models if the intention is to incorporate low-fidelity samples in the train-
ing phase along with high-fidelity samples. This could be either an analytical derivation
or samples that were derived from experiments of similar structural components to the
ones under evaluation. This might contribute in increasing the accuracy of the predic-
tion of the load-displacement curve instead of only the energy absorption of the crushing
element.

The developed approaches primarily employ data-based models, meaning that all results
are derived from a data library serving as input. This methodology enables the predic-
tion of structural behaviors without necessitating substantial computational resources
since structural solvers like FEM solvers are not utilized. Incorporating a simplified
configuration solved with FEM could serve as an additional information source for the
surrogate model. Although this addition may incur some computational expense, it
would be mitigated by the simplification of the potential model. Thus, employing FEM
can enhance the predictive capabilities of the structural behavior analysis.

Another future initiative is to implement the methodology to composite tubular struc-
tures or cruciforms which are more complicated structural elements, and confirm that
indeed the regressors can provide accurate results in predicting the energy absorption.
The next step is to implement the approaches of this project to even more complex
structures, as that was the motivation of the study. However, conducting experiments
such as helicopter subfloor drop-tests requires meticulous and long-lasting endeavors.

Additionally, incorporating a factor into the meta-models that distinguishes the impor-
tance between high-fidelity and low-fidelity samples could potentially yield even more
improved results. In this scenario, the regressor would be able to prioritize the high-
fidelity data over the low-fidelity data.

The Transform Target Regressor was chosen as the dual-target regressor for estimating
both Pmax and xPmax , as depicted in Figure 4.13. Even though this regressor outper-
formed in the present study, alternative estimators could be considered to assess poten-
tial enhancements in the accuracy of the overall methodology.

Supervised learning and specifically regressors were utilized for the surrogate models
construction. A comparative analysis with other types of Machine Learning techniques
or meta-models in general could give a better understanding whether there are margins
in further improving the results and extending the findings of this research. Given the
capability of regression algorithms in representing tubular structures accurately a design
optimization can be also part of the future work. Employing the developed meta-models
within optimization algorithms can lead to lightweight and crashworthy designs.
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A Python Codes
1 """
2 Code to generate results shown in section 5.2
3 """
4 import numpy as np
5 import utils_design_vector as udv
6 import LowFidelityModel as lf
7 import utils_plot as up
8 import utils_data as ud
9 import warnings

10 import matplotlib.pyplot as plt
11 from scipy.integrate import simps
12 from sklearn.metrics import mean_absolute_percentage_error
13 warnings.filterwarnings("ignore", category=RuntimeWarning)
14 warnings.filterwarnings("ignore", category=DeprecationWarning)
15

16 method_list = ['Transform␣Target␣Regressor', 'Poisson␣Regressor', 'RadNeig
.','DecTree','AdaBoost'] # , 'GP'] #

17 method = method_list[2]
18 predict = 'multi-output'
19 numel_samples = 40 # fea samples
20

21 evaluations = 800 - numel_samples + 1
22 total_samples = (evaluations + numel_samples - 1) + numel_samples - 1 #

solve the eq above wrt the integer and add the training samples
23 step = 5
24 xj = np.linspace(0, evaluations , num=step+1)
25 evals = np.zeros_like(xj)
26

27 for j in range(len(evals)):
28 mape_Pmax , mape_disp , mape_mean , mape_area = [np.zeros(numel_samples)

for _ in range(4)]
29

30 for index_sample in range(numel_samples):
31 X_train_fea , y_train_fea , X_test_fea , y_test_fea , x_array = lf.

get_fea_data (index_sample)
32 X_train_dummy , y_train_dummy = lf.get_dummy_data_with_random_ds(

int(xj[j]), X_train_fea)
33 if X_train_dummy==[]:
34 X_train = X_train_fea
35 y_train = y_train_fea
36 else:
37 X_train = np.vstack((X_train_fea , X_train_dummy))
38 y_train = np.vstack((y_train_fea , y_train_dummy))
39

40 y_pred = curves_train_dummy =udv.regression_model_advanced(method,
X_test_fea , X_train, y_train, predict)

41

42 y_test_fea_max_hf = np.max(y_test_fea[0, :200]) # Pmax in kN
43 index_hf = np.argmax(y_test_fea[0, :200])
44 mean_hf = np.mean(y_test_fea)
45 area_hf = simps(y_test_fea / 1000, x_array)
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46 y_test_fea_max_lf = np.max(curves_train_dummy[0, :200]) # Pmax in
kN

47 index_lf = np.argmax(curves_train_dummy[0, :200])
48 mean_lf = np.mean(curves_train_dummy)
49 area_lf = simps(curves_train_dummy / 1000, x_array)
50 mape_area[index_sample] = mean_absolute_percentage_error(np.array

([area_hf]), np.array([area_lf])) * 100
51

52 evals[j] = np.mean(mape_area)
53

54 if j==0:
55 print(f"added␣samples:␣{int(xj[j]):2.0f},␣average␣mape␣area:␣{np.

mean(mape_area):2.2f}␣")
56 else:
57 print(f"added␣samples:␣{int(xj[j])+numel_samples -1:2.0f},␣average␣

mape␣area:␣{np.mean(mape_area):2.2f}␣")
58

59 xj[1:] += numel_samples - 1
60 xj = xj / (total_samples * 0.01)
61 plt.plot(xj, evals,'k-*', markersize=8, label='HFLF␣Model')
62 plt.axhline(y=evals[0], color='r', linestyle='--', label='HF␣Model')
63 plt.legend()
64 plt.xlabel('LF␣Samples␣%', fontsize=14)
65 plt.ylabel('Average␣MSPE␣EA(%)' , fontsize=14)
66 plt.xlim(min(xj), max(xj))
67 plt.title('Square␣cs␣-␣Multi-output␣regressor:␣{}'.format(method),

fontsize=14)
68 plt.show()
69 """
70 LowFidelityModel.py
71 """
72 from matplotlib import pyplot as plt
73 import numpy as np
74 from sklearn.compose import TransformedTargetRegressor
75 from sklearn.linear_model import LinearRegression
76 import utils_data as ud
77 import utils_design_vector as udv
78 from scipy.integrate import simps
79 from sklearn.metrics import mean_absolute_percentage_error
80 import random
81

82 def get_fea_data(index_sample):
83 predict = 'multi-output'
84 Include_integral_in_the_training = False
85 list_test , list_train , test_train_list = ud.select_test_specimen(

index_sample)
86

87 X_train, y_train, X_test, y_test, x_array, = udv.assign_arrays(
list_test , list_train , test_train_list ,
Include_integral_in_the_training , predict)

88 y_train = y_train / 1000 # kN
89 y_test = y_test / 1000 # kN
90 return X_train, y_train, X_test, y_test, x_array
91

92 def get_dummy_data_with_random_ds(num_samples , X_train_fea):
93 samples = []

Delft University of Technology 84 Kopter Group AG



85

94 if num_samples == 0:
95 X_train_dummy = [] #X_train_fea
96 else:
97 for _ in range(num_samples):
98 x1 = random.choice([1, 2])
99 x2 = random.uniform(30, 60)

100 x3 = random.uniform(1, 2.5)
101 x4 = 200
102 samples.append((x1, x2, x3, x4))
103

104 X_train_dummy = np.vstack((X_train_fea , samples))
105

106 # Identify how many fea samples we have in total
107 dummy_sample = 0
108 _, _, dummy_list = ud.select_test_specimen(dummy_sample)
109 #
110 # In the mspe_errors_array we will include the mspe of each comparison

with the test (or each itteration) so as to compare in every itt
111 # with the specimen that is considered as test or in other words the

one that was not included in the training process.
112 mspe_errors_array = np.zeros(len(dummy_list))
113 #for index_sample in range(len(dummy_list)):
114 index_sample = 0
115 # Select which of the 40 in total specimens will be excluded from the

training. By setting this as variable
116 # index_sample we make sure that in each itteration the test specimen

(the one that we will compare the prediction with)
117 # will always be out of the training process.
118 list_test , list_train , test_train_list = ud.select_test_specimen(

index_sample)
119 X_train, Pmax_train , X_test, Pmax_test , x_array, curves_test ,

curves_train = udv.assign_Pmax_and_x_at_Pmax(list_test ,list_train ,
test_train_list) # Pmax in kN

120

121 # Train excluding the index_sample
122 model = TransformedTargetRegressor(regressor=LinearRegression(), func=

np.log, inverse_func=np.exp)
123 model.fit(X_train, Pmax_train)
124

125 # Create a matrix Pmean_Pmax_PmaxIndex_pred that contains 3 info:
Pmean from Shreyas model Pmax from machine learning model and
PmaxIndex

126 # also from from machine learning model. This array will be the input
to construct the low fidelity curves.

127

128 curves_train_dummy = np.zeros((len(X_train_dummy),1000))
129 for ikat in range(len(X_train_dummy)):
130 Pmean = ud.analytical(X_train_dummy[ikat ,:]) # Pmean in kN
131 beta = model.predict([X_train_dummy[ikat,:] ]) # Pmax in kN and

index of Pmax
132 Pmax = beta[0][0]
133 index = int(round(beta[0][1]))
134 #
135 Pmax2 = beta[0][2]
136 index2 = int(round(beta[0][3]))
137 if index == 0 or index == 1:
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138 index = 2
139 #array1 = np.linspace(2*Pmax, Pmax, index)
140 #array2 = np.linspace(Pmean, Pmean, 1000-index-index2)
141 #array3 = np.linspace(Pmean, Pmax2, index2)
142 #
143 array1 = np.linspace(Pmax/100 , Pmax, index)
144 array2 = np.linspace(Pmean, Pmean, 1000-index)
145 curves_train_dummy[ikat,:] = np.hstack((array1, array2))#, array3)

)
146 #print(curves_train_dummy[:,0:4])
147

148 # Nothing important here. We choose whether we would like to compare
the predictions with the train data (multiple sets of data) or

149 # with the test data (1 set of data). We choose the test data so as to
compare with the specimen that was not included in the

150 # training process.
151 X_train_or_X_test = X_test
152 curves_train_or_curves_test = curves_test # this is in kN
153

154 # Fea model. Construct the array that will contain the areas below
the fea curves

155 areas_train = np.zeros((len(X_train_or_X_test)))
156 for pkat in range(len(X_train_or_X_test)):
157 areas_train[pkat] = simps(curves_train_or_curves_test[pkat, :],

x_array)
158 # Low fidelity model. Construct the array that will contain the areas

below the low fidelity curves
159 areas_train_dummy = np.zeros((len(X_train_dummy)))
160 for hkat in range(len(X_train_dummy)):
161 areas_train_dummy[hkat] = simps(curves_train_dummy[hkat,:],

x_array)
162 for hkat in range(len(X_train_dummy)):
163 for pkat in range(len(X_train_or_X_test)):
164 if np.array_equal(X_train_dummy[hkat, :], X_train_or_X_test[

pkat ,:]):
165 mspe = mean_absolute_percentage_error(np.array([

areas_train[pkat]]), np.array([areas_train_dummy[hkat
]]))

166 mspe_errors_array[index_sample] = mspe * 100
167 #print(f"FEA area: {areas_train[pkat]:8.2f} J, low

fidelity area with pred Pmax and x @ Pmax: {
areas_train_dummy[hkat]:8.2f} J, mspe error: {mspe
*100:4.2f} %")

168 if False:
169 plt.plot(x_array, curves_train_or_curves_test[pkat,

:],'k-*', markersize=1, label='FEA') ###
170 plt.tick_params(axis='both', which='major', labelsize

=14)
171 plt.plot(x_array, curves_train_dummy[hkat,:], '-*',

markersize=1, color='green',label='LF␣model' ) #
Plot the total array ith #a blue curve

172 plt.legend()
173 plt.xlabel('Displacement␣(mm)', fontsize=14)
174 plt.ylabel('Load␣(kN)' , fontsize=14)
175 plt.title('Sample:␣{}'.format(X_train_or_X_test[pkat])

, fontsize=14) ###
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176 plt.xlim(0, max(x_array))
177 # Adding text box with print information
178 textstr = '\n'.join((
179 f'FEA␣area:␣{areas_train[pkat]:8.2f}␣J',
180 f'LF␣␣␣area:␣{areas_train_dummy[hkat]:8.2f}␣J',
181 f'mspe␣error:␣{mspe*100:4.2f}␣%'))
182 plt.text(0.57, 0.05, textstr, transform=plt.gca().

transAxes ,
183 fontsize=14, verticalalignment='bottom', bbox=

dict(boxstyle='round', facecolor='wheat',
alpha=0.5))

184 plt.show()
185 return X_train_dummy , curves_train_dummy
186 #print(f"Mean of Mean Squared Per. errors: {np.mean(mspe_errors_array)

:2.2f} %")
187

188

189 def lfvalidation(index_sample , X_test_fea):
190 # Select which of the 40 in total specimens will be excluded from the

training. By setting this as variable
191 # index_sample we make sure that in each itteration the test specimen

(the one that we will compare the prediction with)
192 # will always be out of the training process.
193 list_test , list_train , test_train_list = ud.select_test_specimen(

index_sample)
194 X_train, Pmax_train , X_test, Pmax_test , x_array, curves_test ,

curves_train = udv.assign_Pmax_and_x_at_Pmax(list_test ,list_train ,
test_train_list) # Pmax in kN

195 # Train excluding the index_sample
196 model = TransformedTargetRegressor(regressor=LinearRegression(), func=

np.log, inverse_func=np.exp)
197 model.fit(X_train, Pmax_train[:,0:2])
198

199 # Create a matrix Pmean_Pmax_PmaxIndex_pred that contains 3 info:
Pmean from Shreyas model Pmax from machine learning model and
PmaxIndex

200 # also from from machine learning model. This array will be the input
to construct the low fidelity curves.

201

202 curves_train_dummy = np.zeros((1,1000))
203 Pmean = ud.analytical( X_test_fea[0,:] ) # Pmean in kN
204 beta = model.predict([X_test_fea[0,:] ]) # Pmax in kN and index of

Pmax
205 Pmax = beta[0][0]
206 index = int(round(beta[0][1]))
207

208 if index == 0 or index == 1:
209 print('oups')
210 index = 2
211

212 array1 = np.linspace(Pmax/100 , Pmax, index)
213 array2 = np.linspace(Pmean, Pmean, 1000-index)
214 curves_train_dummy[0,:] = np.hstack((array1, array2))
215

216 return curves_train_dummy
217
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218 def get_dummy_data(step):
219 def create_X_train_dummy(range_start , range_end , step,

second_column_values):
220 array = []
221 for first_column in [1, 2]:
222 for second_column in second_column_values:
223 for third_column in np.arange(range_start , range_end +

step, step):
224 array.append([first_column , second_column ,

third_column , 200])
225 return np.array(array)
226

227 # Define the range and step size for the side length in the
X_train_dummy

228 second_column_range_start = 30
229 second_column_range_end = 60
230 second_column_step = 5
231 # Define the range and step size for the thickness in the

X_train_dummy
232 third_column_range_start = 1
233 third_column_range_end = 2.5
234 third_column_step = step
235 # Generate the X_train_dummy
236 second_column_values = np.arange(second_column_range_start ,

second_column_range_end + second_column_step , second_column_step)
237 X_train_dummy = create_X_train_dummy(third_column_range_start ,

third_column_range_end , third_column_step , second_column_values)
238 # Identify how many fea samples we have in total
239 dummy_sample = 0
240 _, _, dummy_list = ud.select_test_specimen(dummy_sample)
241 #
242 # In the mspe_errors_array we will include the mspe of each comparison

with the test (or each itteration) so as to compare in every itt
243 # with the specimen that is considered as test or in other words the

one that was not included in the training process.
244 mspe_errors_array = np.zeros(len(dummy_list))
245 #for index_sample in range(len(dummy_list)):
246 index_sample = 0
247 # Select which of the 40 in total specimens will be excluded from the

training. By setting this as variable
248 # index_sample we make sure that in each itteration the test specimen

(the one that we will compare the prediction with)
249 # will always be out of the training process.
250 list_test , list_train , test_train_list = ud.select_test_specimen(

index_sample)
251 X_train, Pmax_train , X_test, Pmax_test , x_array, curves_test ,

curves_train = udv.assign_Pmax_and_x_at_Pmax(list_test ,list_train ,
test_train_list) # Pmax in kN

252 # Train excluding the index_sample
253 model = TransformedTargetRegressor(regressor=LinearRegression(), func=

np.log, inverse_func=np.exp)
254 model.fit(X_train, Pmax_train)
255 # Create a matrix Pmean_Pmax_PmaxIndex_pred that contains 3 info:

Pmean from Shreyas model Pmax from machine learning model and
PmaxIndex

256 # also from from machine learning model. This array will be the input

Delft University of Technology 88 Kopter Group AG



89

to construct the low fidelity curves.
257

258 curves_train_dummy = np.zeros((len(X_train_dummy),1000))
259 for ikat in range(len(X_train_dummy)):
260 Pmean = ud.analytical(X_train_dummy[ikat ,:]) # Pmean in kN
261 beta = model.predict([X_train_dummy[ikat,:] ]) # Pmax in kN and

index of Pmax
262 Pmax = beta[0][0]
263 index = int(round(beta[0][1]))
264 #
265 Pmax2 = beta[0][2]
266 index2 = int(round(beta[0][3]))
267 if index == 0 or index == 1:
268 index = 2
269 array1 = np.linspace(Pmax/100 , Pmax, index)
270 array2 = np.linspace(Pmean, Pmean, 1000-index)
271 curves_train_dummy[ikat,:] = np.hstack((array1, array2))#, array3)

)
272 # We choose whether we would like to compare the predictions with the

train data (multiple sets of data) or
273 # with the test data (1 set of data). We choose the test data so as to

compare with the specimen that was not included in the
274 # training process.
275 X_train_or_X_test = X_test
276 curves_train_or_curves_test = curves_test # this is in kN
277 # Fea model. Construct the array that will contain the areas below

the fea curves
278 areas_train = np.zeros((len(X_train_or_X_test)))
279 for pkat in range(len(X_train_or_X_test)):
280 areas_train[pkat] = simps(curves_train_or_curves_test[pkat, :],

x_array)
281 # Low fidelity model. Construct the array that will contain the areas

below the low fidelity curves
282 areas_train_dummy = np.zeros((len(X_train_dummy)))
283 for hkat in range(len(X_train_dummy)):
284 areas_train_dummy[hkat] = simps(curves_train_dummy[hkat,:],

x_array)
285 for hkat in range(len(X_train_dummy)):
286 for pkat in range(len(X_train_or_X_test)):
287 if np.array_equal(X_train_dummy[hkat, :], X_train_or_X_test[

pkat ,:]):
288 mspe = mean_absolute_percentage_error(np.array([

areas_train[pkat]]), np.array([areas_train_dummy[hkat
]]))

289 mspe_errors_array[index_sample] = mspe * 100
290 #print(f"FEA area: {areas_train[pkat]:8.2f} J, low

fidelity area with pred Pmax and x @ Pmax: {
areas_train_dummy[hkat]:8.2f} J, mspe error: {mspe
*100:4.2f} %")

291 if False:
292 plt.plot(x_array, curves_train_or_curves_test[pkat,

:],'k-*', markersize=1, label='FEA') ###
293 plt.tick_params(axis='both', which='major', labelsize

=14)
294 plt.plot(x_array, curves_train_dummy[hkat,:], '-*',

markersize=1, color='green',label='LF␣model' ) #
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Plot the total array ith #a blue curve
295 plt.legend()
296 plt.xlabel('Displacement␣(mm)', fontsize=14)
297 plt.ylabel('Load␣(kN)' , fontsize=14)
298 plt.title('Sample:␣{}'.format(X_train_or_X_test[pkat])

, fontsize=14) ###
299 plt.xlim(0, max(x_array))
300 # Adding text box with print information
301 textstr = '\n'.join((
302 f'FEA␣area:␣{areas_train[pkat]:8.2f}␣J',
303 f'LF␣␣␣area:␣{areas_train_dummy[hkat]:8.2f}␣J',
304 f'mspe␣error:␣{mspe*100:4.2f}␣%'))
305 plt.text(0.57, 0.05, textstr, transform=plt.gca().

transAxes ,
306 fontsize=14, verticalalignment='bottom', bbox=

dict(boxstyle='round', facecolor='wheat',
alpha=0.5))

307 plt.show()
308 return X_train_dummy , curves_train_dummy
309 #print(f"Mean of Mean Squared Per. errors: {np.mean(mspe_errors_array)

:2.2f} %")
310 """
311 utils.data.py
312 """
313 import numpy as np
314

315 def analytical(X_test):
316 mat, c, h = X_test[0], X_test[1], X_test[2]
317 Nc = 4 # Number of corners
318

319 Xcoef, Ycoef, Zcoef = 15.91, 1.03, 0.15 # Polygon (INEXT)
320

321 sigma_0_AA6060_T4 = 151 # (MPa)
322 sigma_0_AISI_316 = 624 # (MPa)
323

324 sigma_y_AA6060_T4 = 76 # (MPa)
325 sigma_y_AISI_316 = 467 # (MPa)
326

327 kapa_AA6060_T4 = 0.73
328 kapa_AISI_316 = 0.77
329

330 M0_AA6060_T4 = (sigma_0_AA6060_T4 * (h**2)) / 4
331 M0_AISI_316 = (sigma_0_AISI_316 * (h**2)) / 4
332

333 Pm_AA6060_T4 = ((M0_AA6060_T4 / kapa_AA6060_T4) * Xcoef * (Nc ** Ycoef
) * ( (c/h) ** Zcoef )) / 1000 # kN

334 Pm_AISI_316 = ((M0_AISI_316 / kapa_AISI_316 ) * Xcoef * (Nc ** Ycoef
) * ( (c/h) ** Zcoef )) / 1000 # kN

335 if mat==1:
336 return Pm_AA6060_T4
337 if mat==2:
338 return Pm_AISI_316
339

340 """
341 utils_design_vector.py
342 """
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343 import numpy as np
344 import pandas as pd
345 import csv
346 import re
347 from scipy.integrate import simps
348 from sklearn.compose import TransformedTargetRegressor
349 from sklearn.cross_decomposition import PLSRegression
350 from sklearn.dummy import DummyRegressor
351 from sklearn.gaussian_process import GaussianProcessRegressor
352 from sklearn.isotonic import IsotonicRegression , isotonic_regression
353 from sklearn.linear_model import ARDRegression , ElasticNetCV ,

GammaRegressor , Huber, Lars, LarsCV, Lasso, LassoCV, LassoLars ,
LassoLarsCV , LassoLarsIC , LinearRegression , LogisticRegression ,
MultiTaskElasticNet , MultiTaskElasticNetCV , MultiTaskLasso ,
MultiTaskLassoCV , OrthogonalMatchingPursuit ,
OrthogonalMatchingPursuitCV , PassiveAggressiveRegressor ,
PoissonRegressor , QuantileRegressor , RANSACRegressor , Ridge, RidgeCV,
TheilSenRegressor , TweedieRegressor , enet_path , lars_path_gram

354 import numpy as np
355 from sklearn.manifold import Isomap, LocallyLinearEmbedding
356 from sklearn.neural_network import MLPRegressor
357 from sklearn.gaussian_process.kernels import DotProduct , WhiteKernel
358 import utils_data as ud
359 import utils_design_vector as udv
360 import utils_plot as uplot
361

362 from catboost import CatBoostRegressor
363 from xgboost.sklearn import XGBRegressor
364 #
365 from scipy.optimize import OptimizeWarning
366 #
367 from sklearn.svm import SVR, LinearSVR , NuSVR
368 from sklearn.multioutput import RegressorChain , MultiOutputRegressor
369 from sklearn.linear_model import BayesianRidge , ElasticNet , HuberRegressor
370 from sklearn.model_selection import GridSearchCV
371 from sklearn.linear_model import LinearRegression
372 from sklearn.neighbors import KNeighborsRegressor ,

RadiusNeighborsRegressor
373 from sklearn.tree import DecisionTreeRegressor , ExtraTreeRegressor
374 from sklearn.ensemble import AdaBoostRegressor , BaggingRegressor ,

ExtraTreesRegressor , HistGradientBoostingRegressor ,
RandomForestRegressor , ExtraTreesClassifier , StackingRegressor ,
VotingRegressor

375 from sklearn.ensemble import GradientBoostingRegressor
376 from sklearn.kernel_ridge import KernelRidge
377 from sklearn.exceptions import ConvergenceWarning
378 #
379 import warnings
380 warnings.simplefilter(action='ignore', category=ConvergenceWarning)
381 warnings.simplefilter(action='ignore', category=FutureWarning)
382 warnings.simplefilter(action='ignore', category=OptimizeWarning)
383 #
384 from sklearn.linear_model import SGDRegressor
385 from sklearn.metrics import custom_score
386 from scipy.integrate import simps
387 import matplotlib.pyplot as plt
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388 from sklearn.metrics import mean_absolute_percentage_error
389

390 def regression_model_advanced(method,X_test,X_train, y_train, predict):
391 test_sample = 0 # test sample is assumed to be only one so scalar 0
392 y_pred = None # Initialize y_pred
393

394 if method == 'GradientBoost':
395 model = GradientBoostingRegressor()
396 if predict == 'multi-output':
397 wrapper = MultiOutputRegressor(model)
398 wrapper.fit(X_train, y_train)
399 geom_input = X_test[test_sample ,:]
400 y_pred = wrapper.predict([geom_input])
401

402 if predict == 'single-output':
403 model.fit(X_train, y_train)
404 geom_input = X_test[test_sample ,:]
405 y_pred = model.predict([geom_input])
406

407 if method == 'RF':
408 model = RandomForestRegressor()
409 model.fit(X_train, y_train)
410 geom_input = X_test[test_sample ,:]
411 y_pred = model.predict([geom_input])
412

413 if method == 'GP':
414 model = GaussianProcessRegressor(alpha=10)
415 model.fit(X_train, y_train)
416 geom_input = X_test[test_sample ,:]
417 y_pred = model.predict([geom_input])
418

419 if method == 'Linear':
420 model = LinearRegression()
421 model.fit(X_train, y_train)
422 geom_input = X_test[test_sample ,:]
423 y_pred = model.predict([geom_input])
424

425 if method == 'Ridge':
426 model = KernelRidge()
427 model.fit(X_train, y_train)
428 geom_input = X_test[test_sample ,:]
429 y_pred = model.predict([geom_input])
430

431 if method == 'TheilSenRegressor':
432 model = TheilSenRegressor()
433 if predict == 'multi-output':
434 wrapper = MultiOutputRegressor(model)
435 wrapper.fit(X_train, y_train)
436 geom_input = X_test[test_sample ,:]
437 y_pred = wrapper.predict([geom_input])
438

439 if predict == 'single-output':
440 model.fit(X_train, y_train)
441 geom_input = X_test[test_sample ,:]
442 y_pred = model.predict([geom_input])
443
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444 if method == 'Transform␣Target␣Regressor':
445 model = TransformedTargetRegressor(regressor=LinearRegression(),

func=np.log, inverse_func=np.exp)
446 model.fit(X_train, y_train)
447 geom_input = X_test[test_sample ,:]
448 y_pred = model.predict([geom_input])
449

450 if method == 'AdaBoost':
451 model = AdaBoostRegressor(n_estimators=100, random_state=0)
452

453 if predict == 'multi-output':
454 wrapper = MultiOutputRegressor(model)
455 wrapper.fit(X_train, y_train)
456 geom_input = X_test[test_sample ,:]
457 y_pred = wrapper.predict([geom_input])
458

459 if predict == 'single-output':
460 model.fit(X_train, y_train)
461 geom_input = X_test[test_sample ,:]
462 y_pred = model.predict([geom_input])
463

464 if method == 'Poisson␣Regressor':
465 model = PoissonRegressor()
466 if predict == 'multi-output':
467 wrapper = MultiOutputRegressor(model)
468 wrapper.fit(X_train, y_train)
469 geom_input = X_test[test_sample ,:]
470 y_pred = wrapper.predict([geom_input])
471

472 if predict == 'single-output':
473 model.fit(X_train, y_train)
474 geom_input = X_test[test_sample ,:]
475 y_pred = model.predict([geom_input])
476

477 if method == 'Gamma':
478 model = GammaRegressor()
479 if predict == 'multi-output':
480 wrapper = MultiOutputRegressor(model)
481 wrapper.fit(X_train, y_train)
482 geom_input = X_test[test_sample ,:]
483 y_pred = wrapper.predict([geom_input])
484

485 if predict == 'single-output':
486 model.fit(X_train, y_train)
487 geom_input = X_test[test_sample ,:]
488 y_pred = model.predict([geom_input])
489

490 if method == 'RadNeig.':
491 model = RadiusNeighborsRegressor(radius=0.5)
492 model.fit(X_train, y_train)
493 geom_input = X_test[test_sample ,:]
494 y_pred = model.predict([geom_input])
495

496 if method == 'DecTree':
497 model = DecisionTreeRegressor()
498 model.fit(X_train, y_train)
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499 geom_input = X_test[test_sample ,:]
500 y_pred = model.predict([geom_input])
501

502 if method == 'ElNet':
503 #model = Lasso(alpha=0.0000001, max_iter= 10000, selection='random

') # for the ones workes a=100 as the only attribute
504 model = ElasticNet()
505 model.fit(X_train, y_train)
506 geom_input = X_test[test_sample ,:]
507 y_pred = model.predict([geom_input])
508 return y_pred
509

510

511 def regression_model(method,X_test,X_train, y_train, predict,
cross_section):

512 test_sample = 0 # test sample is assumed to be only one so scalar 0
513 y_pred = None # Initialize y_pred
514

515 if method == 'Tran.␣Targ.':
516 model = TransformedTargetRegressor(regressor=LinearRegression(),

func=np.log, inverse_func=np.exp)
517 model.fit(X_train, y_train)
518 geom_input = X_test[test_sample ,:]
519 y_pred = model.predict([geom_input])
520

521 if method == 'AdaBoost␣':
522 model = AdaBoostRegressor(n_estimators=100, random_state=0)
523

524 if predict == 'multi-output':
525 wrapper = MultiOutputRegressor(model)
526 wrapper.fit(X_train, y_train)
527 geom_input = X_test[test_sample ,:]
528 y_pred = wrapper.predict([geom_input])
529

530 if predict == 'single-output':
531 model.fit(X_train, y_train)
532 geom_input = X_test[test_sample ,:]
533 y_pred = model.predict([geom_input])
534

535 if method == 'Poisson␣␣␣':
536 model = PoissonRegressor()
537 if predict == 'multi-output':
538 wrapper = MultiOutputRegressor(model)
539 wrapper.fit(X_train, y_train)
540 geom_input = X_test[test_sample ,:]
541 y_pred = wrapper.predict([geom_input])
542

543 if predict == 'single-output':
544 model.fit(X_train, y_train)
545 geom_input = X_test[test_sample ,:]
546 y_pred = model.predict([geom_input])
547

548 if method == 'Rad.␣Neig.':
549 model = RadiusNeighborsRegressor(radius=0.5)
550 model.fit(X_train, y_train)
551 geom_input = X_test[test_sample ,:]
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552 y_pred = model.predict([geom_input])
553

554 if method == 'Dec.␣Tree':
555 model = DecisionTreeRegressor()
556 model.fit(X_train, y_train)
557 geom_input = X_test[test_sample ,:]
558 y_pred = model.predict([geom_input])
559

560 if method == 'Custom':
561 estimators = [
562 ('lr', RidgeCV()),
563 ('svr', LinearSVR(dual="auto", random_state=42))]
564 model = BaggingRegressor()
565

566 decision =1
567

568 if decision == 1:
569 model.fit(X_train, y_train)
570 geom_input = X_test[test_sample ,:]
571 y_pred = model.predict([geom_input])
572 if decision == 2:
573 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
574 wrapper.fit(X_train, y_train)
575 geom_input = X_test[test_sample ,:]
576 y_pred = wrapper.predict([geom_input])
577 if decision == 3:
578 wrapper = RegressorChain(model) # Direct multioutput

regression
579 wrapper.fit(X_train, y_train)
580 geom_input = X_test[test_sample ,:]
581 y_pred = wrapper.predict([geom_input])
582

583

584 if method == 'PLS':
585 if cross_section == 'Square␣cross␣section':
586 model = PLSRegression(n_components=1)
587 if cross_section == 'Circular␣cross␣section':
588 model = PLSRegression(n_components=4, scale=False, max_iter

=8000, tol=1e-20, copy=True)
589 if cross_section == 'Hexagonal␣cross␣section':
590 model = PLSRegression(n_components=2, scale=False, max_iter

=8000, tol=1e-20, copy=True)
591 if cross_section == 'Octagonal␣cross␣section':
592 model = PLSRegression(n_components=1)
593 decision = 1
594

595 if decision == 1:
596 model.fit(X_train, y_train)
597 geom_input = X_test[test_sample ,:]
598 y_pred = model.predict([geom_input])
599 if decision == 2:
600 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
601 wrapper.fit(X_train, y_train)
602 geom_input = X_test[test_sample ,:]
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603 y_pred = wrapper.predict([geom_input])
604 if decision == 3:
605 wrapper = RegressorChain(model) # Direct multioutput

regression
606 wrapper.fit(X_train, y_train)
607 geom_input = X_test[test_sample ,:]
608 y_pred = wrapper.predict([geom_input])
609

610 if method == 'GradBoost':
611

612 model = GradientBoostingRegressor()
613

614 if predict=='single-output':
615 decision = 1
616 else:
617 decision = 2
618

619 if decision == 1:
620 model.fit(X_train, y_train)
621 geom_input = X_test[test_sample ,:]
622 y_pred = model.predict([geom_input])
623 if decision == 2:
624 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
625 wrapper.fit(X_train, y_train)
626 geom_input = X_test[test_sample ,:]
627 y_pred = wrapper.predict([geom_input])
628 if decision == 3:
629 wrapper = RegressorChain(model) # Direct multioutput

regression
630 wrapper.fit(X_train, y_train)
631 geom_input = X_test[test_sample ,:]
632 y_pred = wrapper.predict([geom_input])
633

634 if method == 'ElNet':
635 #model = Lasso(alpha=0.0000001, max_iter= 10000, selection='random

') # for the ones workes a=100 as the only attribute
636 model = ElasticNet()
637 model.fit(X_train, y_train)
638 geom_input = X_test[test_sample ,:]
639 y_pred = model.predict([geom_input])
640

641 if method == 'GP␣Regr.':
642 model = GaussianProcessRegressor(alpha=10)
643 model.fit(X_train, y_train)
644 geom_input = X_test[test_sample ,:]
645 y_pred = model.predict([geom_input])
646

647 if method == 'Huber':
648 if cross_section == 'Hexagonal␣cross␣section':
649 model = HuberRegressor(
650 epsilon= 1.5,
651 max_iter= 2000,
652 alpha= 10000,
653 warm_start= True,
654 fit_intercept= True,
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655 tol= 0.0000001)
656 else:
657 model = HuberRegressor()
658

659 if predict=='single-output':
660 decision = 1
661 if predict=='multi-output':
662 decision = 2
663

664 if decision == 1:
665 model.fit(X_train, y_train)
666 geom_input = X_test[test_sample ,:]
667 y_pred = model.predict([geom_input])
668 if decision == 2:
669 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
670 wrapper.fit(X_train, y_train)
671 geom_input = X_test[test_sample ,:]
672 y_pred = wrapper.predict([geom_input])
673 if decision == 3:
674 wrapper = RegressorChain(model) # Direct multioutput

regression
675 wrapper.fit(X_train, y_train)
676 geom_input = X_test[test_sample ,:]
677 y_pred = wrapper.predict([geom_input])
678

679 if method == 'TheilSenRegressor':
680 model = TheilSenRegressor(n_subsamples=5)
681 decision = 2
682 if decision == 1:
683 model.fit(X_train, y_train)
684 geom_input = X_test[test_sample ,:]
685 y_pred = model.predict([geom_input])
686 if decision == 2:
687 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
688 wrapper.fit(X_train, y_train)
689 geom_input = X_test[test_sample ,:]
690 y_pred = wrapper.predict([geom_input])
691 if decision == 3:
692 wrapper = RegressorChain(model) # Direct multioutput

regression
693 wrapper.fit(X_train, y_train)
694 geom_input = X_test[test_sample ,:]
695 y_pred = wrapper.predict([geom_input])
696

697 if method == 'LarsCV':
698 model = LarsCV(max_iter = 5000, max_n_alphas=2000)
699 decision = 2
700 if decision == 1:
701 model.fit(X_train, y_train)
702 geom_input = X_test[test_sample ,:]
703 y_pred = model.predict([geom_input])
704 if decision == 2:
705 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
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706 wrapper.fit(X_train, y_train)
707 geom_input = X_test[test_sample ,:]
708 y_pred = wrapper.predict([geom_input])
709 if decision == 3:
710 wrapper = RegressorChain(model) # Direct multioutput

regression
711 wrapper.fit(X_train, y_train)
712 geom_input = X_test[test_sample ,:]
713 y_pred = wrapper.predict([geom_input])
714

715

716

717 if method == 'Linear␣Regr.':
718 model = LinearRegression()
719 model.fit(X_train, y_train)
720 geom_input = X_test[test_sample ,:]
721 y_pred = model.predict([geom_input])
722 if method == 'KNeighbors␣Regr.':
723 model = KNeighborsRegressor()
724 model.fit(X_train, y_train)
725 geom_input = X_test[test_sample ,:]
726 y_pred = model.predict([geom_input])
727 if method == 'Kernel␣Ridge':
728 model = KernelRidge()
729 model.fit(X_train, y_train)
730 geom_input = X_test[test_sample ,:]
731 y_pred = model.predict([geom_input])
732

733 if method == 'Random␣Forest␣Regr.':
734 model = RandomForestRegressor()
735 model.fit(X_train, y_train)
736 geom_input = X_test[test_sample ,:]
737 y_pred = model.predict([geom_input])
738

739 if method == 'Huber␣Regr.':
740 model = HuberRegressor()
741 if predict == 'multi-output':
742 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
743 wrapper.fit(X_train, y_train)
744 geom_input = X_test[test_sample ,:]
745 y_pred = wrapper.predict([geom_input])
746 if predict == 'single-output':
747 model.fit(X_train, y_train)
748 geom_input = X_test[test_sample ,:]
749 y_pred = model.predict([geom_input])
750

751 if method == 'XGB␣Regr.':
752 if predict == 'multi-output':
753 model = XGBRegressor()
754 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
755 wrapper.fit(X_train, y_train)
756 geom_input = X_test[test_sample ,:]
757 y_pred = wrapper.predict([geom_input])
758 if predict == 'XGBRegressor':
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759 model = XGBRegressor()
760 model.fit(X_train, y_train)
761 geom_input = X_test[test_sample ,:]
762 y_pred = model.predict([geom_input])
763

764 if method == 'Elastic␣Net':
765 if predict == 'multi-output':
766 model = ElasticNet()
767 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
768 wrapper.fit(X_train, y_train)
769 geom_input = X_test[test_sample ,:]
770 y_pred = wrapper.predict([geom_input])
771 if predict == 'single-output':
772 model = ElasticNet()
773 model.fit(X_train, y_train)
774 geom_input = X_test[test_sample ,:]
775 y_pred = model.predict([geom_input])
776

777 if method == 'Bayesian␣Ridge':
778 if predict == 'multi-output':
779 model = BayesianRidge()
780 wrapper = MultiOutputRegressor(model) # Direct multioutput

regression
781 wrapper.fit(X_train, y_train)
782 geom_input = X_test[test_sample ,:]
783 y_pred = wrapper.predict([geom_input])
784 if predict == 'single-output':
785 model = BayesianRidge()
786 model.fit(X_train, y_train)
787 geom_input = X_test[test_sample ,:]
788 y_pred = model.predict([geom_input])
789 return y_pred
790

791 def assign_arrays(list_test ,list_train ,test_train_list ,
Include_integral_in_the_training , predict):

792 """
793 This part extracts the design vector and defines the x-axis of the

Load-displacement function.
794 """
795 # Define a regular expression pattern that accommodates different

codes
796 pattern = re.compile(r'Output_m(\d+)_(\w+)_(\d+)_(\dp\d+|\d+)_(\d{3})'

)
797

798 # Extracting relevant information and writing to CSV
799 with open('tube_features.csv', 'w', newline='') as csvfile:
800 csv_writer = csv.writer(csvfile)
801 for item in test_train_list:
802 match = pattern.match(item)
803

804 if match:
805 groups = match.groups()
806 tube_features = (groups[0], groups[2], groups[3].replace('

p', '.'), groups[4])
807 csv_writer.writerow(tube_features)
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808

809 specs = 4 # geometrical parameters that vary accross the samples
810 column_names1 = ['feat' + str(i) for i in range(1, specs + 1)]
811 dfeatures = pd.read_csv("tube_features.csv", header=None, names=

column_names1)
812

813 X=dfeatures.iloc[ : , :].values
814

815 test_dataset = [0]
816 # Seperate test and training features data
817 X_test = X[test_dataset]
818 X_train = np.delete(X, test_dataset , axis=0)
819

820 # dimentions of the load displacement arrays (train and test)
821 k_test = len(list_test) # Number of samples
822 n_test = len(list_test[0].iloc[1:, 1]) # Assuming all dataframes

have the same shape
823 k_train = len(list_train) # Number of samples
824 n_train = len(list_train[0].iloc[1:, 1]) # Assuming all dataframes

have the same shape
825

826 """
827 This part is when we predict the 'multi-output' and then we compute

the integral
828 """
829 if predict == 'multi-output' and Include_integral_in_the_training ==

False:
830 # Definition with zeros
831 y_test , y_test_without_Int , disp_test = np.zeros((3, k_test,

n_test)) # Initialize the arrays
832 y_train, y_train_without_Int , disp_train = np.zeros((3, k_train,

n_train)) # Initialize the arrays
833

834 # Iterate over the test list and assign values to the load and
displacement array

835 for i, df_test in enumerate(list_test):
836 disp_test[i, :] = df_test.iloc[1:, 0]
837 y_test_without_Int[i, :] = df_test.iloc[1:, 1]
838 y_test[i, :] = df_test.iloc[1:, 1]
839

840 tet_sample = 0
841 x_array = disp_test[tet_sample , :]
842

843

844 # Iterate over the train list and assign values to the load and
displacement array

845 for i, df_train in enumerate(list_train):
846 disp_train[i, :] = df_train.iloc[1:, 0]
847 y_train_without_Int[i, :] = df_train.iloc[1:, 1]
848 y_train[i, :] = df_train.iloc[1:, 1]
849

850 #target_integrals = np.zeros((k_train, n_train -1)) # Initialize
the arrays

851 #for i in range(k_train): # rows
852 # for j in range(n_train -1): # columns
853 # target_integrals[i, j] = simps(y_train[i, 0:j+2] / 1000,
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x_array[ 0:j+2])
854

855 #orange = y_train
856 #y_train = []
857 #y_train = np.hstack((orange, target_integrals))
858

859 """
860 This part is when we predict directly the Integral
861 """
862 if predict == 'single-output':
863 # Definition with zeros
864 y_test = np.zeros(k_test)
865 y_train = np.zeros(k_train)
866 #
867 y_test_without_Int , disp_test = np.zeros((2, k_test, n_test))

# Initialize the arrays
868 y_train_without_Int , disp_train = np.zeros((2, k_train, n_train))

# Initialize the arrays
869

870 # Iterate over the test list and assign values to the load and
displacement array

871 for i, df_test in enumerate(list_test):
872 disp_test[i, :] = df_test.iloc[1:, 0]
873 y_test_without_Int[i, :] = df_test.iloc[1:, 1]
874

875 tet_sample = 0
876 x_array = disp_test[tet_sample , :]
877

878 # Iterate over the train list and assign values to the load and
displacement array

879 for i, df_train in enumerate(list_train):
880 disp_train[i, :] = df_train.iloc[1:, 0]
881 y_train_without_Int[i, :] = df_train.iloc[1:, 1]
882

883 # Calculate the new column using Simpson's rule integration
884 for i in range(k_test):
885 y_test[i] = simps(y_test_without_Int[i, :] / 1000, x_array)
886 # Calculate the new column using Simpson's rule integration
887 for i in range(k_train):
888 y_train[i] = simps(y_train_without_Int[i, :] / 1000, x_array)
889

890

891 return X_train, y_train, X_test, y_test, x_array#, target_integrals
892

893

894 def assign_Pmax_and_x_at_Pmax(list_test ,list_train ,test_train_list):
895 """
896 This part extracts the design vector and defines the x-axis of the

Load-displacement function.
897 """
898 # Define a regular expression pattern that accommodates different

codes
899 pattern = re.compile(r'Output_m(\d+)_(\w+)_(\d+)_(\dp\d+|\d+)_(\d{3})'

)
900

901 # Extracting relevant information and writing to CSV
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902 with open('tube_features.csv', 'w', newline='') as csvfile:
903 csv_writer = csv.writer(csvfile)
904 for item in test_train_list:
905 match = pattern.match(item)
906

907 if match:
908 groups = match.groups()
909 tube_features = (groups[0], groups[2], groups[3].replace('

p', '.'), groups[4])
910 csv_writer.writerow(tube_features)
911

912 specs = 4 # geometrical parameters that vary accross the samples
913 column_names1 = ['feat' + str(i) for i in range(1, specs + 1)]
914 dfeatures = pd.read_csv("tube_features.csv", header=None, names=

column_names1)
915

916 X=dfeatures.iloc[ : , :].values
917

918 test_dataset = [0]
919

920 # Seperate test and training features data
921 X_test = X[test_dataset]
922 X_train = np.delete(X, test_dataset , axis=0)
923

924 # dimentions of the load displacement arrays (train and test)
925 k_test = len(list_test) # Number of samples
926 n_test = len(list_test[0].iloc[1:, 1]) # Assuming all dataframes

have the same shape
927 k_train = len(list_train) # Number of samples
928 n_train = len(list_train[0].iloc[1:, 1]) # Assuming all dataframes

have the same shape
929

930

931 # Definition with zeros
932 values_to_predict = 4
933 y_test = np.zeros((k_test,values_to_predict ))
934 y_train = np.zeros((k_train,values_to_predict))
935 #
936 curves_test , disp_test = np.zeros((2, k_test, n_test)) #

Initialize the arrays
937 curves_train , disp_train = np.zeros((2, k_train, n_train)) #

Initialize the arrays
938

939 # Iterate over the test list and assign values to the load and
displacement array

940 for i, df_test in enumerate(list_test):
941 disp_test[i, :] = df_test.iloc[1:, 0]
942 curves_test[i, :] = df_test.iloc[1:, 1] / 1000 # in kN
943 tet_sample = 0
944 x_array = disp_test[tet_sample , :]
945

946 # Iterate over the train list and assign values to the load and
displacement array

947 for i, df_train in enumerate(list_train):
948 disp_train[i, :] = df_train.iloc[1:, 0]
949 curves_train[i, :] = df_train.iloc[1:, 1] / 1000 # in kN
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950

951 for i in range(k_test):
952 y_test[i,0] = np.max(curves_test[i, :500]) # Pmax in kN
953 index = []
954 index = np.argmax(curves_test[i, :500])
955 y_test[i,1] = index
956

957 y_test[i,2] = np.max(curves_test[i, 500:]) # Pmax in kN
958 index = []
959 index = np.argmax(curves_test[i, 500:])
960 y_test[i,3] = index
961

962

963 for i in range(k_train):
964 y_train[i,0] = np.max(curves_train[i, :500]) # Pmax in kN
965 index = []
966 index = np.argmax(curves_train[i, :500])
967 y_train[i,1] = index
968

969 y_train[i,2] = np.max(curves_train[i, 500:]) # Pmax in kN
970 index = []
971 index = np.argmax(curves_train[i, 500:])
972 y_train[i,3] = index
973

974 return X_train, y_train, X_test, y_test, x_array, curves_test ,
curves_train

975

976 """
977 utils_plot.py
978 """
979 import numpy as np
980 import pandas as pd
981 from scipy.integrate import simps
982 import matplotlib.pyplot as plt
983 from sklearn.metrics import mean_absolute_percentage_error
984

985 def smooth(y, box_pts):
986 box = np.ones(box_pts)/box_pts
987 y_smooth = np.convolve(y, box, mode='same')
988 return y_smooth
989

990 def moving_average(x, w):
991 return np.convolve(x, np.ones(w), 'valid') / w
992

993 # Apply the moving average filter to smooth the data
994 window_size = 20
995 #smoothed_mean = moving_average(mean[0]/1000, window_size)
996

997 def plot_graph(y_pred, y_test, x_array, list_train ,
Include_integral_in_the_training , cross_section , material , method,
predict,method_list):

998 if predict == 'multi-output':
999 test_sample = 0

1000 f = 1000
1001

1002 # calculate the areas below the curves with sims rule
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1003 area_test = simps(y_test[0, :f] / 1000, x_array)
1004 area_pred = simps(smooth(y_pred[0, :f] / 1000,19), x_array)
1005

1006 # evaluate the curve wrt the target
1007 mspe1 = mean_absolute_percentage_error(y_test[test_sample , :f

]/1000, y_pred[0, :f]/1000)
1008 # evaluate the area wrt the target area
1009 mspe2 = mean_absolute_percentage_error(np.array([area_test]), np.

array([area_pred]))
1010 mspe3 = mean_absolute_percentage_error(np.array([area_test]), np.

array([y_pred[0, -1]]))
1011 if Include_integral_in_the_training == True:
1012 print(f"Method:␣{method:20},␣target:␣{area_test:.2f},␣

area_pred:␣{area_pred:.2f}␣&␣{mspe2*100:5.2f}␣&␣{y_pred[0,␣
-1]:.2f}␣&␣{mspe3*100:5.2f}␣")

1013 if Include_integral_in_the_training == False:
1014 print(f"Method:␣{method:20},␣target:␣{area_test:.2f}␣&␣{

area_pred:.2f}␣&␣{mspe2*100:5.2f}␣&␣")
1015

1016 plt.plot(x_array, smooth(y_pred[0, :f]/1000,19), 's-', markersize
=1, linewidth=1, label='{}␣,␣MSPE:␣{:.2f}%'.format(method,
mspe1*100))

1017 plt.xlabel('Displacement␣(mm)', fontsize=14)
1018 plt.ylabel('Load␣(kN)' , fontsize=14)
1019 plt.title('{}␣-␣#␣Samples:␣{}␣-␣{}'.format(cross_section , len(

list_train), material), fontsize=14)
1020 plt.xlim(0, max(x_array))
1021

1022 if method == method_list[-1]:
1023 ###
1024 if cross_section == 'Square␣cross␣section':
1025 data = np.genfromtxt("gp-sq-matern(r3).csv", delimiter=","

)
1026 if cross_section == 'Circular␣cross␣section':
1027 data = np.genfromtxt("gp-circ.csv", delimiter=",")
1028 if cross_section == 'Octagonal␣cross␣section':
1029 data = np.genfromtxt("gp-oct.csv", delimiter=",")
1030 if cross_section == 'Hexagonal␣cross␣section':
1031 data = np.genfromtxt("gp-hex.csv", delimiter=",")
1032 y_pred_gp = data
1033 method = 'GP'
1034 area_pred = simps(y_pred_gp / 1000, x_array)
1035 mspe2 = mean_absolute_percentage_error(np.array([area_test]),

np.array([area_pred]))
1036 print(f"Method:␣{method:20},␣target:␣{area_test:.2f}␣&␣{

area_pred:.2f}␣&␣{mspe2*100:5.2f}␣&␣")
1037

1038 mspe1 = mean_absolute_percentage_error(y_test[test_sample , :f
]/1000, y_pred_gp/1000)

1039 plt.plot(x_array, smooth(y_pred_gp/1000,19),'m^-', markersize
=1, label='GP␣,␣MSPE:␣{:.2f}%'.format(mspe1*100))

1040 ###
1041 plt.plot(x_array, y_test[0, :f]/1000,'k^-', markersize=1,

label='Target')
1042 plt.tick_params(axis='both', which='major', labelsize=14)
1043 #plt.legend(loc='upper center', fontsize=14)
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1044 plt.legend(loc='upper␣center', bbox_to_anchor=(0.45, -0.15),
ncol=3, columnspacing=0.12, fontsize=12)

1045 plt.show()
1046 ###
1047

1048 if predict == 'single-output':
1049 mspe2 = mean_absolute_percentage_error(np.array([y_test[0]]), np.

array([y_pred[0]]))
1050 print(f"Method:␣{method:30},␣y_test:{y_test[0]:.2f},␣y_pred:␣&␣{

y_pred[0]:.2f}␣&␣{mspe2*100:5.2f}␣")
1051 return
1052

1053

1054 def plot_graph_advanced(y_pred, X_test_fea , y_test_fea , x_array, predict):
1055 if predict == 'multi-output':
1056 # calculate the areas below the curves with sims rule
1057 area_test = simps(y_test_fea[0, :], x_array)
1058 area_pred = simps(y_pred, x_array)
1059 mspe = mean_absolute_percentage_error(np.array([area_test]), np.

array([area_pred])) * 100
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B Datasets from the numerical model

Table B.1: Datasets used for the square cross-section (in-extensional crushing mode)

material side length thickness tube length
(mm) (mm) (mm)

AA6060-T4 30 1.0 200
AA6060-T4 30 1.5 200
AA6060-T4 30 1.25 200
AA6060-T4 30 1.75 200
AA6060-T4 30 2.0 200
AA6060-T4 30 2.5 200
AA6060-T4 30 2.25 200
AA6060-T4 40 1.0 200
AA6060-T4 40 1.5 200
AA6060-T4 40 1.25 200
AA6060-T4 40 1.75 200
AA6060-T4 40 2.0 200
AA6060-T4 40 2.5 200
AA6060-T4 40 2.25 200
AA6060-T4 50 1.0 200
AA6060-T4 50 1.5 200
AA6060-T4 50 1.25 200
AA6060-T4 50 1.75 200
AA6060-T4 50 2.0 200
AA6060-T4 50 2.5 200
AA6060-T4 50 2.25 200
AA6060-T4 60 1.0 200
AA6060-T4 60 1.5 200
AA6060-T4 60 1.25 200
AA6060-T4 60 1.75 200
AA6060-T4 60 2.0 200
AA6060-T4 60 2.5 200
AA6060-T4 60 2.25 200

AISI-316 30 1.0 200
AISI-316 30 1.5 200
AISI-316 30 1.25 200
AISI-316 40 1.0 200
AISI-316 40 1.5 200
AISI-316 40 1.25 200
AISI-316 50 1.0 200
AISI-316 50 1.5 200
AISI-316 50 1.25 200
AISI-316 60 1.0 200
AISI-316 60 1.5 200
AISI-316 60 1.25 200
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Table B.2: Datasets used for the circular cross-section (in-extensional crushing mode)

material side length thickness tube length
(mm) (mm) (mm)

AA6060-T4 20 1.75 200
AA6060-T4 15 1 100
AA6060-T4 15 1.5 100
AA6060-T4 15 1.25 100
AA6060-T4 15 1.75 100
AA6060-T4 15 2 100
AA6060-T4 20 1 100
AA6060-T4 20 1.5 200
AA6060-T4 20 1.25 200
AA6060-T4 20 2 200
AA6060-T4 25 1 100
AA6060-T4 25 1.5 200
AA6060-T4 25 1.25 100
AA6060-T4 25 1.75 200
AA6060-T4 25 2 200
AA6060-T4 30 1 100
AA6060-T4 30 1.5 200
AA6060-T4 30 1.25 200
AA6060-T4 30 1.75 200
AA6060-T4 30 2 200

AISI-316 15 1 100
AISI-316 15 1.5 50
AISI-316 15 1.25 50
AISI-316 20 1 100
AISI-316 20 1.5 100
AISI-316 20 1.25 100
AISI-316 25 1 100
AISI-316 25 1.5 100
AISI-316 25 1.25 200
AISI-316 30 1 200
AISI-316 30 1.5 100
AISI-316 30 1.25 100
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Table B.3: Datasets used for the hexagonal cross-section (in-extensional crushing mode)

material side length thickness tube length
(mm) (mm) (mm)

AA6060-T4 50 1.75 200
AA6060-T4 30 1 200
AA6060-T4 30 1.5 200
AA6060-T4 30 1.25 200
AA6060-T4 30 1.75 200
AA6060-T4 30 2 200
AA6060-T4 40 1 200
AA6060-T4 40 1.5 200
AA6060-T4 40 1.25 200
AA6060-T4 40 1.75 200
AA6060-T4 40 2 200
AA6060-T4 50 1 200
AA6060-T4 50 1.5 200
AA6060-T4 50 1.25 200
AA6060-T4 50 2 200
AA6060-T4 60 1 200
AA6060-T4 60 1.5 200
AA6060-T4 60 1.25 200
AA6060-T4 60 1.75 200
AA6060-T4 60 2 200

AISI-316 30 1 200
AISI-316 30 1.5 200
AISI-316 30 1.12 200
AISI-316 30 1.25 200
AISI-316 30 1.37 200
AISI-316 40 1 200
AISI-316 40 1.5 200
AISI-316 40 1.12 200
AISI-316 40 1.25 200
AISI-316 40 1.37 200
AISI-316 50 1 200
AISI-316 50 1.5 200
AISI-316 50 1.12 200
AISI-316 50 1.25 200
AISI-316 50 1.37 200
AISI-316 60 1 200
AISI-316 60 1.5 200
AISI-316 60 1.12 200
AISI-316 60 1.25 200
AISI-316 60 1.37 200
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Table B.4: Datasets used for the octagonal cross-section (in-extensional crushing mode)

material side length thickness tube length
(mm) (mm) (mm)

AA6060-T4 30 1 200
AA6060-T4 40 1 200
AA6060-T4 40 1.25 200
AA6060-T4 50 1 200
AA6060-T4 50 1.5 200
AA6060-T4 50 1.25 200
AA6060-T4 60 1 200
AA6060-T4 60 1.25 200
AA6060-T4 60 1.5 200
AA6060-T4 60 1.75 200

AISI-316 30 1 200
AISI-316 30 1.12 200
AISI-316 40 1 200
AISI-316 40 1.12 200
AISI-316 40 1.25 200
AISI-316 40 1.37 200
AISI-316 50 1 200
AISI-316 50 1.5 200
AISI-316 50 1.12 200
AISI-316 50 1.25 200
AISI-316 50 1.37 200
AISI-316 60 1 200
AISI-316 60 1.5 200
AISI-316 60 1.12 200
AISI-316 60 1.25 200
AISI-316 60 1.37 200
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C HF vs. HFLF with the Decision Tree Regressor

Figure C.1: Regression Solely Based on HF samples vs. Regression Based on HF and LF samples with
the Decision Tree MO Regr. - Square cs - HF Samples = 40
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