
Graph Burning
on necklace graphs and cycle-forests

by

A.B. Kooijmans
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Wednesday July 2, 2025 at 13:00 PM.

Student number: 5783623
Project duration: April 22, 2025 – July 2, 2025
Thesis committee: Dr. Y. Murakami, TU Delft, supervisor

Dr. N. D. Verhulst, TU Delft, supervisor
Dr. ir. E. G. Rens, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Concepts and definitions from graph theory. 4
2.2 Graph burning . 5

3 Literature review 7
3.1 Burning number. 7
3.2 Algorithms and complexity results . 8

4 Necklace graphs 10

5 Cycle-forests 15

6 Conclusion & Discussion 17

ii

Summary
Graph burning is a process that models the spread of information through a network. This process is
divided into rounds and is visualized as a spreading fire. Each round, a source of fire may be chosen
fromwhere the fire spreads and burns surrounding points. From every burned point, the fire propagates
through adjacent points, eventually covering the entire network. The burning number of a graph, 𝑏(𝐺),
was introduced to measure the time required to burn the entire network.

It was proven that path graphs on 𝑛 vertices have burning number ⌈√𝑛 ⌉. It was then conjectured that
all connected graphs have at most this burning number. The burning number has been estimated or
identified for several classes of graphs. We provide a lower and upper bound for the burning number
of a new class of graphs with a path-like structure, namely necklace graphs. Necklace graphs are
constructed by concatenating smaller graphs, called pearls. To obtain bounds, we define lower-bound
paths and upper-bound paths, which are paths connecting two designated vertices. We show that a
lower-bound path always exists in the form of a shortest path, while finding an upper-bound path for
an arbitrary necklace is NP-complete. For necklace graphs where a shortest path is an upper-bound
path, we show that the burning number can take only two values.

Finally, we consider cycle-forests, which are disconnected graphs whose components are cycle
graphs. We prove that burning cycle-forests is NP-complete.

Layman’s summary
To understand how quickly information spreads across a network, the graph burning model can be
used. Graph burning is a step-by-step process that uses mathematical objects called graphs to model
the network. In each step, the information spreads from a point in the network, a vertex, to its neighbors,
similar to a fire that spreads to the surrounding environment. The type of network which takes the
longest to burn is a path, where all vertices are linked in a sequence.

We use the concept of paths to construct necklace graphs, which have a path-like structure by string-
ing together so-called pearls. We define two types of paths in a necklace graph, a lower-bound path
and an upper-bound path, to estimate how quickly information spreads in a necklace graph. We show
that finding a lower-bound path in a necklace is easy, while finding an upper-bound path is generally
hard.

For some types of graphs, it has been shown that burning them in the fewest possible number of
steps is generally hard to do. One such type of graphs are path-forests, which are composed of paths
that are completely separate from each other. We use this to prove that cycle-forests, which are similar
to path-forests, are also hard to burn in an optimal way.

1

1
Introduction

In recent years, the study of networks has become increasingly important. For instance, social media
has grown to play a vital role in today’s society as a source of information and a means to communicate.

One way to study a network mathematically is by representing it as a graph. A graph is a collection
of vertices and edges in which each vertex illustrates an object from the network and each edge depicts
a connection between two vertices. For instance, vertices may be interpreted as individuals on a social
media platform and edges as interactions between these individuals. An example of a graph is shown
in Figure 1.1.

Figure 1.1: A graph in which the circles are vertices and the lines between circles are edges.

To examine how quickly information spreads across a network, a model was introduced in [3]. In this
model, which considers the process of graph burning, the concept of a spreading fire was translated
to graphs. The process takes place in steps (or rounds) and is as follows. At first, all vertices are in an
‘unburned’ state. Then, in round 1, a single vertex is chosen to be the first source of fire. This vertex is
now burned. In round 2, the fire spreads from the first source to all its neighbors. That is, all vertices
that are directly connected to the first source become burned. In addition, a second source of fire may
be chosen which also burns immediately. Each round, the fire spreads from burned vertices to their
unburned neighbors and an additional source of fire may be selected. This process continues until all
vertices of the graph are burned. Examples of the graph burning process are shown in Figure 1.2.

1 2 3 3 2 3

(a) Burning a path graph in 3 rounds using 2 sources.

3

3 2

3

3

1 2

3

2 3

(b) Burning a tree in 3 rounds using 3 sources.

Figure 1.2: Examples of graph burning; sources are marked in red and the numbers in vertices indicate the round in which they
are burned.

2

3

Choosing different vertices to be sources may affect the number of rounds needed to fully burn
a graph. The aim is to find the minimum number of rounds. This number is known as the burning
number of the graph. For some classes of graphs, the burning number can be quickly identified. One
such class is the class of complete graphs, which are graphs where each vertex is connected to all
other vertices. Complete graphs have burning number 2, as any first source burns all other vertices in
the second round. A similar argument is true for star graphs: star graphs have exactly one vertex that
is connected to vertices. These examples are illustrated in Figure 1.3.

Although the burning number has been determined for some graph families, finding it for arbitrary
graphs remains an unsolved problem. Two classes of graphs that play a pivotal role in making progress
in this problem are path graphs and trees (see Figure 1.2 for examples). For path graphs, the burning
number is known and it is conjectured to be the highest burning number of all graphs (Conjecture 2.1). If
all trees are proven to satisfy this conjecture, then all graphs do. Path graphs and trees will be formally
introduced in Chapter 2; their role in graph burning will be discussed in more detail in Chapter 3.

1

2

2

2

2

(a) Complete graphs have burning number 2.

1 2

22

2

2 2

(b) Star graphs have burning number 2.

Figure 1.3: Examples of graphs with burning number 2.

Different approaches have been taken to study graph burning, such as finding bounds for the burning
number and developing algorithms that produce burning sequences for graphs. Before some of the
important results are discussed, in Chapter 2 we will focus on setting up the mathematical framework to
formalize graph burning. In Chapter 3, we will explore previously established results in graph burning,
which can be primarily classified into two categories: results directly related to finding the burning
number (section 3.1) or algorithms aimed at burning graphs as efficiently as possible (section 3.2).

Chapters 4 and 5 are dedicated to our contributions. In Chapter 4, we will construct necklace graphs
and find bounds on their burning number. They are constructed by stringing together smaller graphs
(pearls) which may be heavily interconnected. The goal of this construction is to obtain a graph that
burns as slowly as possible, due to its path-like structure. In Chapter 5, we will consider a specific
class of graphs, called cycle-forests (see definition in Chapter 2). We will prove that the graph burning
problem is NP-complete for this class of graphs. Informally, this means that finding an optimal burning
schedule for cycle-forests is computationally hard.

2
Preliminaries

In this chapter, we will review fundamental definitions from graph theory (section 2.1) and describe the
process of graph burning in a formal way (section 2.2).

2.1. Concepts and definitions from graph theory
We start by introducing basic concepts and definitions from graph theory, which will lay the foundation
for graph burning. A graph is a pair of sets 𝐺 = (𝑉, 𝐸), where the elements of 𝑉 (or 𝑉(𝐺)) are called
vertices and the elements of 𝐸 (or 𝐸(𝐺)) are unordered pairs of vertices, also known as edges. The
number of vertices in a graph 𝐺, also known as the order of 𝐺, is written as |𝐺|. A graph is called simple
if it does not contain edges from a vertex to itself (loops) and if between any two vertices there is at
most one edge connecting the two. If two vertices 𝑢, 𝑣 are connected by an edge, we denote this edge
by 𝑢𝑣 and call 𝑢 and 𝑣 adjacent or neighbors. We write the set of neighbors of 𝑣 as 𝑁(𝑣). We say that
the endpoints 𝑢 and 𝑣 of 𝑢𝑣 are incident to 𝑢𝑣. The degree 𝑑(𝑣) of a vertex 𝑣 is the number of edges
it is incident to (or equivalently, the number of neighbors of 𝑣). If all vertices in a graph have the same
degree 𝑘, the graph is said to be 𝑘-regular. A graph in which each vertex is connected to every other
vertex is called complete, and it is denoted by 𝐾𝑛, where 𝑛 is the order of the graph. A subdivision of
an edge 𝑢𝑣 is the action of removing 𝑢𝑣 and adding a vertex 𝑤, along with the edges 𝑢𝑤 and 𝑤𝑣. A
subgraph of 𝐺 = (𝑉, 𝐸) is a graph 𝐺′ = (𝑉′, 𝐸′) such that 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. An induced subgraph
of 𝐺 = (𝑉, 𝐸) on a subset 𝑉′ ⊆ 𝑉 contains exactly the vertices in 𝑉′ and all of the edges between
these vertices that are present in the original graph 𝐺. In other words, the edge set 𝐸′ of 𝐺′ satisfies
𝐸′ = {𝑢𝑣 ∈ 𝐸 ∶ 𝑢, 𝑣 ∈ 𝑉′}. We denote a subgraph 𝐺′ ⊆ 𝐺 induced by 𝑉′ ⊆ 𝑉 as 𝐺[𝑉′].

Given any vertex 𝑢 in a graph 𝐺, one might wonder whether it is possible to reach another vertex
𝑣 by traversing edges of 𝐺. This gives rise to the following definition. A path is a sequence of distinct
vertices 𝑢 = 𝑣1, 𝑣2, … , 𝑣𝑛−1, 𝑣𝑛 = 𝑣 from 𝑢 to 𝑣 such that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸 for 𝑖 ∈ {1, … , 𝑛−1}. A graph is called
connected if there exists a path between any two vertices. A disconnected graph whose connected
subgraphs are not part of a larger subgraph are called components. If removing a vertex (along with
its incident edges) from a graph would increase the number of connected components in a graph, it is
said to be a cut vertex. A 𝑘-connected graph is a graph that remains connected whenever fewer than
𝑘 vertices are removed from it. These notions regarding the connectivity of a graph are illustrated in
Figure 2.1.

(a) A disconnected graph (path-forest) with 3 components. (b) A 2-connected graph.

Figure 2.1: Examples of a disconnected and a 2-connected graph.

4

2.2. Graph burning 5

The distance between two vertices 𝑢 and 𝑣, denoted by 𝑑(𝑢, 𝑣), is the length of a shortest path
between 𝑢 and 𝑣 (that is, the number of edges in the path). The maximum distance from a certain
vertex 𝑢 to any other vertex in the graph is the eccentricity of 𝑢: ecc(𝑢) = max{𝑑(𝑢, 𝑣) ∶ 𝑣 ∈ 𝑉(𝐺)}.
The minimum eccentricity in a graph is called the radius of the graph, while the maximum eccentricity is
called the diameter. They are denoted as rad(𝐺) and diam(𝐺), respectively. Figure 2.2 demonstrates
the difference between radius and diameter:

(a) A path graph with radius 3 and diameter 5; blue ver-
tices are associated with the radius, black vertices with the
diameter.

(b) A cycle graph with radius 3 and diameter 3; every vertex
has both the radius and diameter as eccentricity.

Figure 2.2: Examples of the radius and diameter of graphs.

A graph whose vertices can be ordered as 𝑣1, 𝑣2, … , 𝑣𝑛−1, 𝑣𝑛 such that the edges are 𝑣𝑖𝑣𝑖+1 for
𝑖 ∈ {1, … , 𝑛 − 1} is a path graph, written as 𝑃𝑛. A cycle is a path whose starting and ending point are
the same. A cycle graph on 𝑛 vertices is a graph that consists of a single cycle, and it is denoted by
𝐶𝑛. Path graphs and cycle graphs play an important role in graph burning.

Another important class of graphs are trees. Trees are connected graphs that contain no cycles.
Every tree has at least one leaf, which is a vertex of degree 1. A forest is a graph whose connected
components are trees. In particular, a path-forest is a graph whose components are paths (see Figure
2.1). Similarly, a cycle-forest is a disconnected graph composed of cycles. Strictly speaking, a cycle-
forest is not a forest as its connected components are not trees. However, it will be convenient to refer
to cycle-forests in this way to emphasize their similarity to path-forests. Cycle-forests will be discussed
in more detail in Chapter 5. A spanning tree is a subgraph 𝑇 ⊆ 𝐺 which is a tree and contains all
vertices of 𝐺. Figure 2.3 shows that a graph may have multiple spanning trees.

(a) A graph (which is not a tree). (b) Spanning tree 1. (c) Spanning tree 2.

Figure 2.3: A graph with two spanning trees.

For further background information on graph theory, we refer the reader to [7].

2.2. Graph burning
Having introduced basic definitions in graph theory, we are now set to formalize graph burning. We
start with a finite, simple and connected graph 𝐺. The process of graph burning is a discrete process (a
process divided into rounds) where 𝐺 is burned according to the following rules. Let 𝑆 = (𝑥1, 𝑥2, … , 𝑥𝑘)
be a sequence of vertices, which are called sources. Initially, in round 0, all vertices are unburned. In
round 1, we burn the source 𝑥1. For each round 𝑖 that follows (𝑖 ∈ {2, … , 𝑘}), we burn the source 𝑥𝑖 and
all unburned neighbors of burned vertices. After 𝑘 rounds, if all vertices of 𝐺 are burned, 𝑆 is called a
burning sequence. The burning number 𝑏(𝐺) is the minimum number of rounds needed to burn 𝐺. In

6 2. Preliminaries

[3], it was shown that 𝑏(𝑃𝑛) = ⌈√𝑛 ⌉. It was conjectured that among all connected graphs, path graphs
have the highest burning number.

Conjecture 2.1 (Burning Number Conjecture [3]). Let 𝐺 be a connected graph on 𝑛 vertices. Then
𝑏(𝐺) ≤ ⌈√𝑛 ⌉.

Although Conjecture 2.1 still remains unproven in general, it has been verified for various specific
cases. These will be discussed in more detail in Chapter 3.

3
Literature review

In this chapter, we collect some important results that have been established in graph burning. We
start by discussing graph classes that have been shown to satisfy Conjecture 2.1 or whose burning
number has been identified (section 3.1). Finding the burning number of a graph is NP-complete [2],
which has led to the development of (approximation) algorithms for the burning number of a graph and
complexity results (section 3.2).

3.1. Burning number
A line of research has focused on identifying or finding bounds for the burning number for different
classes of graphs. In this section, we will explore these results.

We begin by stating a characterization of the burning number of graphs in terms of trees, which was
originally given in [3].

Corollary 3.1 ([3]). For a graph 𝐺, we have that

𝑏(𝐺) =min{𝑏(𝑇)∶ 𝑇 is a spanning subtree of 𝐺}.

It follows from this result that Conjecture 2.1 is true for all connected graphs if it is true for trees.
Some families of trees have already been shown to satisfy Conjecture 2.1. The burning number of path
graphs was determined in [3].

Proposition 3.1 ([3]). For a path graph 𝑃𝑛 on 𝑛 vertices, we have that 𝑏(𝑃𝑛) = ⌈√𝑛 ⌉.

In [5], Conjecture 2.1 was shown to be true for spider graphs, which are trees with exactly one
vertex of degree greater than or equal to 3.

Proposition 3.2 ([5]). Let 𝐺 be a spider graph on 𝑛 vertices. Then 𝑏(𝐺) ≤ ⌈√𝑛 ⌉.

In [13], graph burning was studied on 𝑝-caterpillars. A 𝑝-caterpillar 𝐺 is a tree whose vertices are
within a distance 𝑝 of a so-called ’central spine’, which is the longest path in 𝐺. A caterpillar is short for
a 1-caterpillar. Furthermore, given a 𝑝-caterpillar 𝐺, a 𝑝-leg is a subgraph of 𝐺 whose vertices lie on a
path of length 𝑝 and are not on the central spine. The following results were derived.

Proposition 3.3 ([13]). Let 𝐺 be a caterpillar on 𝑛 vertices. Then 𝑏(𝐺) ≤ ⌈√𝑛 ⌉.

Proposition 3.4 ([13]). Let 𝐺 be a 2-caterpillar on 𝑛 vertices. Then 𝑏(𝐺) ≤ ⌈√𝑛 ⌉.

Proposition 3.5 ([13]). Let 𝐺 be a 3-caterpillar with at least 2⌈√𝑛 ⌉ − 1 leaves. Then 𝑏(𝐺) ≤ ⌈√𝑛 ⌉.

Proposition 3.6 ([13]). Let 𝐺 be a 𝑝-caterpillar with at least 2⌈√𝑛 ⌉−1 disjoint 𝑝-legs. Then 𝑏(𝐺) ≤ ⌈√𝑛 ⌉.

Conjecture 2.1 has also been verified for homeomorphically irreducible trees (HITs), which are trees
without vertices of degree 2 [18].

Proposition 3.7 ([18]). Let 𝐺 be a HIT on 𝑛 vertices. Then 𝑏(𝐺) ≤ ⌈√𝑛 ⌉.

7

8 3. Literature review

Note that by Corollary 3.1, the Burning Number Conjecture is true for any graph that contains one
of the trees listed above as a spanning tree. For example, cycle graphs 𝐶𝑛 have burning number
𝑏(𝐶𝑛) = ⌈√𝑛 ⌉ as they only have paths as spanning trees.

In addition to trees, the burning number has been studied for various other classes of graphs.
In [9], the burning number of 3-regular and several other specific circulant graphs was determined,
and bounds were given for the burning number of 4-regular circulant graphs. In [19], Conjecture 2.1
was verified asymptotically for generalized Petersen graphs and also proven for specific generalized
Petersen graphs. Various bounds for the burning numbers of graph products were provided in [17]. A
lower bound for the burning number of grids of size 𝑙×𝑏 was given in [12]: it is at least (𝑙×𝑏)

1
3 . Specific

types of theta graphs were studied in [16] and their burning number was given. In [1], an improved best-

known bound on the burning number of a graph 𝐺 was given: 𝑏(𝐺) ≤ ⌈√4
3𝑛 ⌉+1. This bound was used

to show that Conjecture 2.1 is almost valid for graphs of minimum degree 3 (𝑏(𝐺) ≤ ⌈√𝑛 ⌉ + 2) and is
valid for large enough graphs of minimum degree 4, which are graphs whose vertices have degree at
least 3 or 4, respectively. Finally, graphs with burning number 3 were characterized in [15].

3.2. Algorithms and complexity results
To make an attempt at finding the burning number of an arbitrary graph, one possible approach is the
development of an algorithm. Such an algorithm is a sequence of instructions that takes a graph as
input and returns its burning number as output. For the algorithm to work efficiently in practice, it should
return an optimal solution within a reasonable amount of time. This is where difficulties arise: finding the
burning number of a graph is an NP-complete problem, even for graph families with a relatively simple
structure, such as spider graphs and path-forests [2]. NP is the class of decision problems where ”yes”
instances (the problems that have a solution) have a proof (or certificate) that can be verified quickly,
even if finding those certificates might be hard. In the context of NP, ”quickly” means ”in polynomial
time”, which describes that the time needed to check a certificate grows at a rate proportional to a
polynomial function of the input size. If a certificate can also be found in polynomial time, the decision
problem is in the class P. Unless each decision problem verifiable in polynomial time is also solvable
in polynomial time (that is, P = NP), there is no algorithm that can find the burning number of a graph
in polynomial time. A decision problem is NP-hard if every problem in NP can be reduced to it in
polynomial time. If a decision problem is in NP and NP-hard, it is called NP-complete. Therefore,
the graph burning problem is at least as hard as other decision problems in NP. This has raised the
importance of approximation algorithms and heuristics. Approximation algorithms are algorithms that
run in polynomial time and return a solution that is guaranteed to be worse than the optimal solution only
by a constant factor. Heuristic algorithms usually run in polynomial time as well, but they do not give a
guarantee on the quality of the produced solution. In this section, we will discuss some (approximation)
algorithms and heuristics that are currently known to find or approximate the burning number of a graph.
Moreover, we will list some complexity results regarding the graph burning decision problem.

Burning spider graphs and path-forests was shown to be an NP-complete problem in [2]. However,
polynomial-time algorithms finding their burning numbers were provided under certain restrictions on
the number of components or orders. Also, a polynomial time 3-approximation algorithm was given
for general graphs. More progress has been made on burning path-forests. In [5], a 3

2 -approximation
algorithm was introduced for the burning number of path-forests. If a path-forest consists of a constant
number of disjoint paths, its burning number can be found in polynomial time [4]. In the same pa-
per, two polynomial-time approximation algorithms were given that approximate the burning number of
path-forests with a non-constant number of components. Moreover, polynomial-time approximation al-
gorithms were given that approximate the burning number with approximation ratio 3 for general graphs
and 2 for trees. In [14], an algorithm was presented that burns any graph with minimum degree 𝛿 in at
most ⌈√ 24𝑛

𝛿+1 ⌉ rounds. It follows that Conjecture 2.1 is true for graphs with minimum degree 𝛿 ≥ 23. A
2-approximation algorithm for burning square grids was provided in [12]. Moreover, it was shown that
burning connected interval graphs and permutation graphs is NP-complete.

In addition to the development of algorithms for specific graph families, heuristics and algorithms
have been designed aimed at burning graphs from commonly used datasets, which are more repre-
sentative of real-life networks. The first heuristics for graph burning were introduced in [8], where they

3.2. Algorithms and complexity results 9

were tested both on known datasets for other NP-hard problems and randomly generated graphs whose
burning number is known. A key aspect of these heuristics is ’centrality’ of the first source: the first
source is chosen in such a way that the number of vertices of 𝐺 burned after 𝑏(𝐺) rounds is maximized.
Another aspect that is taken into account is trying to burn those vertices sooner which are farthest away
from previous sources. A different approach was taken in [10]: rather than burning graphs based on
centrality measures, this heuristic burns graphs ’greedily’. That is, each round a source is chosen such
that it covers as many unburned vertices as possible. The best up-to-date algorithm was given in [6]:
it optimally burns graphs with up to 200,000 vertices in under 35 seconds.

4
Necklace graphs

In this chapter, we will introduce a new class of graphs which we call necklace graphs (or necklaces
for short). We will find upper and lower bounds for the burning number 𝑏(𝐺) of any member 𝐺 of this
class.

We begin by defining pearls, which are the building blocks of necklaces.

Definition 4.1 (Pearl). Let 𝐺 be a finite, simple, and connected graph. We call 𝐺 with designated
vertices 𝑠, 𝑡 a pearl.

To construct a lower bound for the burning number of a pearl, we define lower-bound paths.

Definition 4.2 (Lower-bound path). Let 𝐺 = (𝑉, 𝐸) be a pearl with designated vertices 𝑠, 𝑡. We call
𝑃 ⊆ 𝐺 a lower-bound path if it is a path from 𝑠 to 𝑡 such that

∀𝑣 ∈ 𝐺 ∖ 𝑃 ∃𝑝 ∈ 𝑃 ∀𝑝′ ∈ 𝑃 ∶ 𝑣𝑝′ ∈ 𝐸 ⇒ 𝑝𝑝′ ∈ 𝐸.

Every pearl contains a lower-bound path. The following theorem demonstrates that a shortest path
between the designated vertices of the pearl is always a lower-bound path.

Theorem 4.1. Let 𝐺 be a pearl with designated vertices 𝑠, 𝑡. Then a shortest 𝑠-𝑡 path 𝑃 is a lower-bound
path for 𝐺.

Proof. To show that a shortest path 𝑃 from 𝑠 to 𝑡 is a lower-bound path, we need to verify that it satisfies
the definition of a lower-bound path. For every vertex 𝑣 ∈ 𝐺 ∖ 𝑃, there must exist a vertex 𝑝 ∈ 𝑃 such
that 𝑝 is adjacent to all vertices 𝑝′ ∈ 𝑃 which are neighbors of 𝑣. That is, 𝑣 should satisfy the condition
𝑁(𝑣) ∩ 𝑃 ⊆ 𝑁(𝑝) ∩ 𝑃. Several cases may arise regarding the number of vertices in 𝑁(𝑣) ∩ 𝑃.

Case 1: 𝑣 has 0 neighbors in 𝑃. In this case, the condition is satisfied immediately (𝑁(𝑣) ∩ 𝑃 = ∅).
Case 2: 𝑣 has 1 neighbor in 𝑃, say 𝑝′1. We can assign 𝑝′1 the role of 𝑝 in the definition.
Case 3: 𝑣 has 2 neighbors in 𝑃, say 𝑝′1, 𝑝′3. We can identify either of them with 𝑝 if 𝑝′1𝑝′3 ∈ 𝐸(𝑃);

otherwise, there exists exactly one vertex 𝑝′2 ∈ 𝑃 such that 𝑝′1𝑝′2, 𝑝′2𝑝′3 ∈ 𝐸(𝑃), and we identify 𝑝′2 with 𝑝.
Indeed, if there were 𝑘 > 1 vertices between 𝑝′1 and 𝑝′3 on the path, say 𝑝′2,1, 𝑝′2,2, … , 𝑝′2,𝑘, then replacing
the sequence 𝑠, … , 𝑝′1, 𝑝′2,1, … , 𝑝′2,𝑘 , 𝑝′3, … , 𝑡 in 𝑃 by the sequence 𝑠, … , 𝑝′1, 𝑣, 𝑝′3, … , 𝑡 would yield a shorter
path from 𝑠 to 𝑡, which is a contradiction.

Case 4: 𝑣 has 3 neighbors in 𝑃, say 𝑝′1, 𝑝′2, 𝑝′3. These three vertices must be consecutive vertices
in 𝑃. If they were not, so 𝑝′1𝑝′2 ∉ 𝐸(𝑃) or 𝑝′2𝑝′3 ∉ 𝐸(𝑃), then we arrive at the same contradiction as in
the third case. Therefore, we can assign 𝑝′2 the role of 𝑝 in the definition.

To see that 𝑣 can have no more than 3 neighbors in 𝑃, we assume that it has neighbors 𝑝′1, 𝑝′2, 𝑝′3, 𝑝′4
which are consecutive vertices in 𝑃, and we derive a contradiction. The sequence 𝑠, … , 𝑝′1, 𝑣, 𝑝′4, … , 𝑡 is
a shorter sequence of vertices in 𝑃 than the sequence 𝑠, … , 𝑝′1, 𝑝′2, 𝑝′3, 𝑝′4, … , 𝑡. This is a contradiction,
since we assumed 𝑃 with the latter sequence of vertices to be a shortest 𝑠-𝑡 path.

From the case analysis, it follows that every 𝑣 ∈ 𝐺 ∖𝑃 satisfies the lower-bound path condition. We
may thus conclude that a shortest 𝑠-𝑡 path is always a lower-bound path.

10

11

Since a shortest path between two vertices in a graph can be found in polynomial time, if follows
from Theorem 4.1 that we can find a lower-bound path in polynomial time.

We now define upper-bound paths, which will provide an upper bound for the burning number of a
pearl.

Definition 4.3 (Upper-bound path). Let 𝐺 = (𝑉, 𝐸) with designated vertices 𝑠, 𝑡 be a pearl. We call
𝑃 ⊆ 𝐺 an upper-bound path if it is a path from 𝑠 to 𝑡 such that

∀𝑣 ∈ 𝐺 ∖ 𝑃 ∃𝑝 ∈ 𝑃 ∖ {𝑠, 𝑡} ∶ 𝑣𝑝 ∈ 𝐸.

See Figure 4.1 for examples of a lower-bound path and an upper-bound path.

𝑡𝑠

(a) A lower-bound path in a pearl, highlighted in red. Note
that this is a shortest 𝑠-𝑡 path.

𝑡𝑠

(b) An upper-bound path in a pearl, highlighted in blue.
Note that this is also a lower-bound path.

Figure 4.1: Examples of a lower-bound path and an upper-bound path in two pearls.

Unlike lower-bound paths, upper-bound paths do not always exist. In fact, it is computationally hard
to find an upper-bound path for an arbitrary pearl. We will prove in Theorem 4.2 that finding an upper-
bound path in an arbitrary pearl is NP-complete. First, we formulate the Upper-Bound Path decision
problem.

Problem: Upper-Bound Path
Input: A pearl 𝐺 with two distinct vertices 𝑠, 𝑡 and an integer 𝑘.
Question: Does there exist an upper-bound path in 𝐺 of length at most 𝑘?

We will prove that the Upper-Bound Path problem is NP-complete by making a reduction from the
following known NP-complete problem [11]:

Problem: Hamiltonian Path
Input: A pearl 𝐺 with two distinct vertices 𝑠, 𝑡.
Question: Does there exist a Hamiltonian path in 𝐺 that starts at 𝑠 and ends at 𝑡?

Theorem 4.2. The Upper-Bound Path problem is NP-complete.

Proof. We begin by verifying that the Upper-Bound Path problem is in NP. Suppose we are given a
pearl 𝐺 with a candidate path 𝑃 from 𝑠 to 𝑡 of length at most 𝑘. We can verify that 𝑃 is a path, check
its length, and for each vertex 𝑣 ∈ 𝐺 ∖ 𝑃 confirm that it has a neighbor in 𝑃. All of these can be done in
polynomial time. Thus, the problem is in NP.

Now, let 𝐺 = (𝑉, 𝐸) be an instance of the Hamiltonian Path problem with |𝑉| = 𝑛 and designated
endpoints 𝑠 and 𝑡. We construct a new graph 𝐺′ = (𝑉′, 𝐸′) as follows. For every edge 𝑢𝑣 ∈ 𝐸,
subdivide it by introducing a new vertex 𝑤𝑢𝑣, and replace 𝑢𝑣 with the edges 𝑢𝑤𝑢𝑣 and 𝑤𝑢𝑣𝑣. Let
𝑊 = {𝑤𝑢𝑣 ∶ 𝑢𝑣 ∈ 𝐸} be the set of subdivision vertices. Set 𝑉′ = 𝑉∪𝑊 and 𝐸′ = {𝑢𝑤𝑢𝑣 , 𝑤𝑢𝑣𝑣 ∶ 𝑢𝑣 ∈ 𝐸}.
Finally, set 𝑘 ∶= 2𝑛 − 1.

We now show that 𝐺 has a Hamiltonian path from 𝑠 to 𝑡 if and only if 𝐺′ has an upper-bound path
from 𝑠 to 𝑡 of length at most 𝑘.

Suppose 𝐺 has a Hamiltonian path from 𝑠 to 𝑡, which we denote by 𝑃∶ 𝑠 = 𝑣1, 𝑣2, … , 𝑣𝑛−1, 𝑣𝑛 = 𝑡. We
define a path 𝑃′ in 𝐺′ as follows: 𝑃′ ∶ 𝑠 = 𝑣1, 𝑤𝑣1𝑣2 , 𝑣2, … , 𝑣𝑛−1, 𝑤𝑣𝑛−1𝑣𝑛 , 𝑣𝑛 = 𝑡. This is indeed possible,
since for all 𝑖 ∈ {1, … , 𝑛 − 1}, we have 𝑤𝑣𝑖𝑣𝑖+1 ∈ 𝑉′ and 𝑣𝑖𝑤𝑣𝑖𝑣𝑖+1 , 𝑤𝑣𝑖𝑣𝑖+1𝑣𝑖+1 ∈ 𝐸′. Furthermore, 𝑃′ has

12 4. Necklace graphs

length 2𝑛 − 1 = 𝑘 as it consists of all 𝑛 vertices from 𝑉 and all 𝑛 − 1 subdivision vertices from 𝑊. In
particular, 𝑉′ ∖ 𝑉(𝑃′) = ∅. Thus, 𝑃′ is an upper-bound path for 𝐺′, as there are no vertices outside 𝑃′.

Conversely, suppose 𝐺′ has an upper-bound path 𝑃′ from 𝑠 to 𝑡 of length at most 𝑘. Note that every
vertex on 𝑃′ is either in 𝑉 or in𝑊. Suppose, for contradiction, that there is some vertex 𝑣 ∈ 𝑉 which is
not on 𝑃′. Every vertex in 𝑉 is adjacent only to subdivision vertices in 𝑊; similarly, every subdivision
vertex 𝑤𝑢𝑣 ∈ 𝑊 is adjacent only to 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉. Therefore, if 𝑤𝑢𝑣 is on 𝑃′, then both 𝑢 and 𝑣 must
also be on 𝑃′. So if any vertex 𝑣 ∈ 𝑉 is not on the path 𝑃′, then none of its neighboring subdivision
vertices can be on 𝑃′ either. But then 𝑣 has no neighbor on 𝑃′, contradicting the fact that 𝑃′ is an
upper-bound path. Hence, every vertex 𝑣 ∈ 𝑉 must be on 𝑃′. Since every pair of vertices in 𝑉 is
separated by a subdivision vertex, 𝑃′ must alternate between vertices in 𝑉 and vertices in 𝑊. That is,
we can order the vertices of 𝑃′ as 𝑠 = 𝑣1, 𝑤𝑣1𝑣2 , 𝑣2, … , 𝑣𝑛−1, 𝑤𝑣𝑛−1𝑣𝑛 , 𝑣𝑛 = 𝑡, where 𝑣𝑗 ∈ 𝑉, 𝑤𝑣𝑖𝑣𝑖+1 ∈ 𝑊
for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 1 ≤ 𝑗 ≤ 𝑛. Thus, 𝑃 ∶ 𝑠 = 𝑣1, 𝑣2, … , 𝑣𝑛−1, 𝑣𝑛 = 𝑡 is a Hamiltonian path in 𝐺, since
each 𝑤𝑣𝑖𝑣𝑖+1 ∈ 𝑊 corresponds to the edge 𝑣𝑖𝑣𝑖+1 in 𝐸.

It follows from the reduction that the Upper-Bound Path problem is NP-hard. Since the problem is
also in NP, we conclude that the Upper-Bound Path problem is NP-complete.

Having defined a lower-bound path and an upper-bound path for pearls, we can now extend these
concepts to the main class of graphs of this chapter: necklaces.

Definition 4.4 (Necklace). Let 𝐺 = (𝑉, 𝐸) be a finite, simple and connected graph. We call 𝐺 a necklace
if for some𝑁 ∈ ℕ and for every 𝑖 ∈ {1, 2, … , 𝑁}, there exist disjoint pearls 𝐺𝑖 ⊆ 𝐺 with designated vertices
𝑠𝑖 , 𝑡𝑖 such that 𝑉(𝐺) = ⋃𝑁𝑖=1 𝑉(𝐺𝑖) and 𝐸(𝐺) = ⋃𝑁𝑖=1 𝐸(𝐺𝑖) ∪ {𝑡𝑗𝑠𝑗+1 ∶ 1 ≤ 𝑗 ≤ 𝑁 − 1}. The designated
vertices of 𝐺 are 𝑠1, 𝑡𝑁.

𝑠1 𝑡1

𝑠2

𝑡2

𝑠3 𝑡3

𝐺1 𝐺2 𝐺3

Figure 4.2: Example of a necklace with pearls 𝐺1, 𝐺2 and 𝐺3. The labeled vertices are designated vertices.

Note that by definition, necklaces are pearls. An example of a necklace is given in Figure 4.2. Unless
specified otherwise, we assume that a necklace 𝐺 consists of pearls 𝐺1, … , 𝐺𝑁 where each pearl 𝐺𝑖 has
designated vertices 𝑠𝑖 , 𝑡𝑖. The designated vertices of 𝐺 are 𝑠1 and 𝑡𝑁. We aim to generalize the notions
of a lower-bound path and an upper-bound path for pearls to necklaces. The following lemma shows
how a lower-bound path for 𝐺 can be constructed from lower-bound paths for its pearls.

Lemma 4.1. Let 𝐺 be a necklace and suppose that each of its pearls 𝐺𝑖 has a lower-bound path 𝑃𝑙,𝑖.
Define 𝑃𝑙 to be the path such that 𝑉(𝑃𝑙) = ⋃𝑁𝑖=1 𝑉(𝑃𝑙,𝑖) and 𝐸(𝑃𝑙) = ⋃𝑁𝑖=1 𝐸(𝑃𝑙,𝑖)∪{𝑡𝑗𝑠𝑗+1 ∶ 1 ≤ 𝑗 ≤ 𝑁−1}.
Then 𝑃𝑙 is a lower-bound path for 𝐺.

Proof. To show that 𝑃𝑙 is a lower-bound path for 𝐺, we need to verify that ∀𝑣 ∈ 𝐺 ∖ 𝑃𝑙 ∃𝑝 ∈ 𝑃𝑙 ∀𝑝′ ∈
𝑃𝑙 ∶ 𝑣𝑝′ ∈ 𝐸 ⇒ 𝑝𝑝′ ∈ 𝐸. So let 𝑣 ∈ 𝐺 ∖ 𝑃𝑙 be arbitrary. Note that 𝑣 ∈ 𝐺𝑖 ∖ 𝑃𝑙,𝑖 for some 𝑖 ∈ {1, … , 𝑁}.
Since 𝑃𝑙,𝑖 is a lower-bound path for 𝐺𝑖, we know that there exists 𝑝𝑖 ∈ 𝑃𝑙,𝑖 such that for every 𝑝′ ∈ 𝑃𝑙,𝑖, if
𝑣𝑝′ ∈ 𝐸(𝐺𝑖), then 𝑝𝑖𝑝′ ∈ 𝐸(𝐺𝑖). Since the only possible neighbors of 𝑣 in 𝑃𝑙 are in 𝑃𝑙,𝑖, we can choose
𝑝 ∶= 𝑝𝑖 and it follows that ∀𝑝′ ∈ 𝑃𝑙 ∶ 𝑣𝑝′ ∈ 𝐸 ⇒ 𝑝𝑝′ ∈ 𝐸. Thus, 𝑃𝑙 is a lower-bound path for 𝐺.

Using a similar argument, we can construct an upper-bound path 𝑃𝑢 for 𝐺 given that each pearl 𝐺𝑖
has an upper-bound path 𝑃𝑢,𝑖. This is formalized in the following lemma.

Lemma 4.2. Let 𝐺 be a necklace and suppose that each of its pearls 𝐺𝑖 has an upper-bound path 𝑃𝑢,𝑖.
Define 𝑃𝑢 to be the path such that 𝑉(𝑃𝑢) = ⋃𝑁𝑖=1 𝑉(𝑃𝑢,𝑖) and𝐸(𝑃𝑢) = ⋃𝑁𝑖=1 𝐸(𝑃𝑢,𝑖)∪{𝑡𝑗𝑠𝑗+1 ∶ 1 ≤ 𝑗 ≤ 𝑁−1}.
Then 𝑃𝑢 is an upper-bound path for 𝐺.

13

Proof. To show that 𝑃𝑢 is an upper-bound path for 𝐺, we need to verify that ∀𝑣 ∈ 𝐺∖𝑃𝑢 ∃𝑝 ∈ 𝑃𝑢 ∶ 𝑣𝑝 ∈ 𝐸.
So let 𝑣 ∈ 𝐺 ∖𝑃𝑢 be arbitrary. Note that 𝑣 ∈ 𝐺𝑖 ∖𝑃𝑢,𝑖 for some 𝑖 ∈ {1, … , 𝑁}. Since 𝑃𝑢,𝑖 is an upper-bound
path for 𝐺𝑖, we know that there exists 𝑝𝑖 ∈ 𝑃𝑢,𝑖 such that 𝑣𝑝 ∈ 𝐸(𝐺𝑖). Therefore, choose 𝑝 ∶= 𝑝𝑖 and it
follows that 𝑣𝑝 ∈ 𝐸. Thus, 𝑃𝑢 is an upper-bound path for 𝐺.

In Theorem 4.3 and 4.4, we provide a lower bound and an upper bound for the burning number of
pearls.

Theorem 4.3. If 𝐺 is a pearl with lower-bound path 𝑃𝑙, then 𝑏(𝐺) ≥ 𝑏(𝐺[𝑉(𝑃𝑙)]).

Proof. Let 𝐺 be a pearl with burning sequence 𝑆𝐺 = (𝑥1, 𝑥2, … , 𝑥𝑘). Since 𝐺 has a lower-bound path
𝑃𝑙, we know that for any 𝑣 ∈ 𝐺 ∖ 𝑃𝑙, there exists a 𝑝 ∈ 𝑃𝑙 such that for all 𝑝′ ∈ 𝑃𝑙, 𝑣𝑝′ ∈ 𝐸(𝐺) implies
𝑝𝑝′ ∈ 𝐸(𝐺). We construct a sequence 𝑆𝑃𝑙 = (𝑦1, 𝑦2, … , 𝑦𝑘) as follows. For every 𝑥𝑗 ∉ 𝑃𝑙 (1 ≤ 𝑗 ≤ 𝑘),
choose 𝑦𝑗 ∈ 𝑃𝑙 such that for all 𝑝′ ∈ 𝑃𝑙, 𝑦𝑗𝑝′ ∈ 𝐸(𝐺) whenever 𝑥𝑗𝑝′ ∈ 𝐸(𝐺). For 𝑥𝑗 ∈ 𝑃𝑙, take 𝑦𝑗 = 𝑥𝑗. We
claim that 𝑆𝑃𝑙 is a burning sequence for 𝐺[𝑉(𝑃𝑙)], the subgraph of 𝐺 induced by the vertices of 𝑃𝑙. If this
claim holds, we have constructed a burning sequence 𝑆𝑃𝑙 from 𝑆𝐺 of equal length. It then follows that
𝑏(𝐺) ≥ 𝑏(𝐺[𝑉(𝑃𝑙)]). To verify the claim, it suffices to show that for each 𝑦𝑗 ≠ 𝑥𝑗 the vertices of 𝑃𝑙 are
burned by 𝑦𝑗 earlier than or in the same round as by 𝑥𝑗. In fact, we only need to consider neighbors of
𝑥𝑗 on 𝑃𝑙: if 𝑦𝑗 burns those in the same round as 𝑥𝑗, then it burns all vertices on 𝑃𝑙 in (at most) the same
round as 𝑥𝑗. But by assumption, each vertex of 𝑃𝑙 which is a neighbor of 𝑥𝑗 is also a neighbor of 𝑦𝑗 (that
is, 𝑁(𝑥𝑗) ∩ 𝑃𝑙 ⊆ 𝑁(𝑦𝑗) ∩ 𝑃𝑙). This means that each neighbor of 𝑥𝑗 is burned by 𝑦𝑗 in the same round as
by 𝑥𝑗 (or earlier), and so the claim follows. We may thus conclude that 𝑏(𝐺) ≥ 𝑏(𝐺[𝑉(𝑃𝑙)]).

Theorem 4.4. If 𝐺 is a pearl with an upper-bound path 𝑃𝑢, then 𝑏(𝐺) ≤ 𝑏(𝑃𝑢) + 1.

Proof. Let 𝐺 be a pearl with an upper-bound path 𝑃𝑢. By definition of an upper-bound path, we have
that for every 𝑣 ∈ 𝐺 ∖ 𝑃𝑢, there exists a 𝑝 ∈ 𝑃𝑢 such that 𝑣𝑝 ∈ 𝐸(𝐺). Therefore, 𝑣 is burned at most 1
round after its neighbor on 𝑃𝑢. Since all vertices on 𝑃𝑢 can be burned in at most 𝑏(𝑃𝑢) rounds, it follows
that 𝑣 burns after at most 𝑏(𝑃𝑢) + 1 rounds. Thus, 𝑏(𝐺) ≤ 𝑏(𝑃𝑢) + 1.

Building on the previously derived results, we now present the main result concerning the burning
number of necklaces.

Theorem 4.5. Let 𝐺 be a necklace with pearls 𝐺1, 𝐺2, … , 𝐺𝑁. Suppose that each pearl 𝐺𝑖 admits a lower-

bound path 𝑃𝑙,𝑖 and an upper-bound path 𝑃𝑢,𝑖. Then 𝑏(𝐺[⋃𝑁𝑖=1 𝑉(𝑃𝑙,𝑖)]) ≤ 𝑏(𝐺) ≤ ⌈√∑
𝑁
𝑖=1 |𝑃𝑢,𝑖| ⌉ + 1.

Proof. By Lemma 4.1, we can construct a lower-bound path 𝑃𝑙 for 𝐺, which contains the vertices of
each 𝑃𝑙,𝑖. Therefore, we have 𝑉(𝑃𝑙) = ⋃𝑁𝑖=1 𝑉(𝑃𝑙,𝑖). Theorem 4.3 now implies that 𝑏(𝐺) ≥ 𝑏(𝐺[𝑉(𝑃𝑙)]) =
𝑏(𝐺[⋃𝑁𝑖=1 𝑉(𝑃𝑙,𝑖)]), which establishes the first inequality.

Lemma 4.2 provides us with an upper-bound path 𝑃𝑢 such that |𝑃𝑢| = ∑𝑁𝑖=1 |𝑃𝑢,𝑖|. It follows from

Theorem 4.4 and Proposition 3.1 that 𝑏(𝐺) ≤ 𝑏(𝑃𝑢) + 1 = ⌈√|𝑃𝑢| ⌉ + 1 = ⌈√∑𝑁𝑖=1 |𝑃𝑢,𝑖| ⌉ + 1, which
verifies the second inequality.

The following definition classifies pearls that satisfy an additional property compared to general
pearls. This property can be used to reduce the number of values that the burning number of a corre-
sponding necklace can take, which is formulated in Corollary 4.1.

Definition 4.5 (Perfect pearl). Let 𝐺 = (𝑉, 𝐸) be a pearl with designated vertices 𝑠, 𝑡. We say 𝐺 is
perfect if it contains a lower-bound path 𝑃𝑙 and an upper-bound path 𝑃𝑢 such that |𝑃𝑙| = |𝑃𝑢|.

Corollary 4.1. Let 𝐺 be a necklace with perfect pearls 𝐺1, 𝐺2, … , 𝐺𝑁. Suppose that each pearl 𝐺𝑖 admits

a lower-bound path 𝑃𝑙,𝑖 and upper-bound path 𝑃𝑢,𝑖. Then 𝑏(𝐺[⋃𝑁𝑖=1 𝑉(𝑃𝑙,𝑖)]) ≤ 𝑏(𝐺) ≤ ⌈√∑
𝑁
𝑖=1 |𝑃𝑙,𝑖| ⌉+1.

Proof. Since each pearl𝐺𝑖 is perfect, we have |𝑃𝑙,𝑖| = |𝑃𝑢,𝑖|. By Theorem 4.5, 𝐺 then satisfies 𝑏(𝐺[⋃𝑁𝑖=1 𝑉(𝑃𝑙,𝑖)]) ≤

𝑏(𝐺) ≤ ⌈√∑𝑁𝑖=1 |𝑃𝑙,𝑖| ⌉ + 1.

14 4. Necklace graphs

To see how Corollary 4.1 can improve the estimation of the burning number of a necklace, we
consider pearls with designated vertices 𝑠, 𝑡 such that a shortest 𝑠-𝑡 path is an upper-bound path. This
leads to the following result.

Corollary 4.2. Let 𝐺 be a necklace with pearls 𝐺1, 𝐺2, … , 𝐺𝑁. Suppose that for each pearl 𝐺𝑖, a shortest
𝑠𝑖-𝑡𝑖 path 𝑃𝑖 is an upper-bound path. Then either 𝑏(𝐺) = ⌈√∑𝑁𝑖=1 |𝑃𝑖| ⌉ or 𝑏(𝐺) = ⌈√∑

𝑁
𝑖=1 |𝑃𝑖| ⌉ + 1.

Proof. Theorem 4.1 implies 𝑃𝑖 is a lower-bound path for𝐺𝑖, and by assumption 𝑃𝑖 is also an upper-bound
path for 𝐺𝑖. By Lemma 4.1 and 4.2, the path 𝑃 containing the vertices of each 𝑃𝑖 is both a lower-bound
path and an upper-bound path for 𝐺. Since 𝑃𝑖 is a shortest 𝑠𝑖-𝑡𝑖 path, we have 𝑏(𝐺[𝑉(𝑃𝑖)]) = 𝑏(𝑃𝑖).
Similarly, 𝑃 is a shortest path from 𝑠1 to 𝑡𝑁, and so 𝑏(𝐺[⋃𝑁𝑖=1 𝑉(𝑃𝑖)]) = 𝑏(𝑃). By Proposition 3.1,

𝑏(𝑃) = ⌈√|𝑃| ⌉ = ⌈√∑𝑁𝑖=1 |𝑃𝑖| ⌉. It follows from Corollary 4.1 that ⌈√∑𝑁𝑖=1 |𝑃𝑖| ⌉ ≤ 𝑏(𝐺) ≤ ⌈√∑
𝑁
𝑖=1 |𝑃𝑖| ⌉+1.

That is, either 𝑏(𝐺) = ⌈√∑𝑁𝑖=1 |𝑃𝑖| ⌉ or 𝑏(𝐺) = ⌈√∑
𝑁
𝑖=1 |𝑃𝑖| ⌉ + 1.

For necklaces where a shortest path is an upper-bound path, Corollary 4.2 reduces the number of
values the burning number can take to 2.

An example of such a necklace is the necklace 𝐺 whose pearls 𝐺1, 𝐺2, … , 𝐺𝑁 are complete graphs:
𝐺𝑖 = 𝐾𝑛𝑖 with 𝑛𝑖 = |𝐺𝑖|, 𝑖 ∈ {1, … ,𝑁}. Define the path 𝑃 in 𝐺 as the path containing the designated
vertices of each pearl 𝐺𝑖: 𝑃 ∶ 𝑠1, 𝑡1, 𝑠2, … , 𝑡𝑁−1, 𝑠𝑁 , 𝑡𝑁. Note that 𝑃 contains 2𝑁 vertices. 𝑃 is a shortest
𝑠1-𝑡𝑁 path, so by Theorem 4.1, 𝑃 is a lower-bound path. Moreover, 𝑃 is an upper-bound path: for all
𝑣 ∈ 𝐺𝑖 ∖{𝑠𝑖 , 𝑡𝑖}, we have 𝑠𝑖𝑣 ∈ 𝐸(𝐺) as 𝑠𝑖 is connected to all other vertices in 𝐺𝑖. It follows from Corollary
4.2 that either 𝑏(𝐺) = ⌈√2𝑁 ⌉ or 𝑏(𝐺) = ⌈√2𝑁 ⌉ + 1.

5
Cycle-forests

In this chapter, we prove that the Graph Burning problem is NP-complete for cycle-forests, which were
defined in Chapter 2. We do this by making a reduction from the Graph Burning problem for path-
forests, which was shown to be NP-complete in [2]. First, we state the path-forest problem.

Problem: Burning Path-Forest
Input: A path-forest 𝐺 and an integer 𝑘.
Question: Does there exist a burning sequence (𝑥1, 𝑥2, … , 𝑥𝑘) for 𝐺?

Now, we formulate the cycle-forest problem.

Problem: Burning Cycle-Forest
Input: A cycle-forest 𝐺′ and an integer 𝑘′.
Question: Does there exist a burning sequence (𝑥1, 𝑥2, … , 𝑥𝑘′) for 𝐺′?

Theorem 5.1. The Burning Cycle-Forest problem is NP-complete.

Proof. Suppose that we have an instance of the path-forest problem; that is, we have a path-forest
𝐺 = (𝑉, 𝐸) with components 𝐺1, … , 𝐺𝑚 and a positive integer 𝑘. For each component 𝐺𝑖 (1 ≤ 𝑖 ≤ 𝑚),
label one of the endpoints as 𝐺𝑖,1, its only neighbor as 𝐺𝑖,2, and continue labeling unlabeled neighbors
of 𝐺𝑖,𝑗 as 𝐺𝑖,𝑗+1, 1 ≤ 𝑗 ≤ 𝓁𝑖 −1, where 𝓁𝑖 = |𝐺𝑖|. Hence, we can write 𝑉 = {𝐺𝑖,𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝓁𝑖}
and 𝐸 = {𝐺𝑖,𝑗𝐺𝑖,𝑗+1 ∶ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝓁𝑖 − 1}. We will construct an instance of the cycle-forest
problem as follows. Define 𝐺′ = (𝑉′, 𝐸′) with 𝑉′ = {𝐺′𝑖,𝑗 ∶ 𝐺𝑖,𝑗 ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝓁𝑖} and
𝐸′ = {𝐺′𝑖,𝑗𝐺′𝑖,𝑗+1 ∶ 𝐺𝑖,𝑗𝐺𝑖,𝑗+1 ∈ 𝐸, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝓁𝑖−1} ∪ {𝐺′𝑖,𝓁𝑖𝐺

′
𝑖,1 ∶ 1 ≤ 𝑖 ≤ 𝑚}. Then 𝐺′ is a disjoint

union of cycles 𝐺′1, … , 𝐺′𝑚, since we add an edge between the endpoints of each 𝐺𝑖. Moreover, define
𝑘′ = 𝑘. We are now ready to prove NP-completeness of the Graph Burning problem for cycle-forests.

First, assume that we are given a path-forest 𝐺 with components 𝐺1, … , 𝐺𝑚 and a burning sequence
𝑆 of length 𝑘. Since each path 𝐺𝑖 is a spanning tree of the corresponding cycle 𝐺′𝑖 , Corollary 3.1 implies
that 𝑏(𝐺′𝑖) ≤ 𝑏(𝐺𝑖). This is true for all 𝑖, and so 𝑏(𝐺′) ≤ 𝑏(𝐺). It follows that 𝑆 is a burning sequence
for the cycle-forest 𝐺′.

Conversely, assume that 𝐺′ has a burning sequence 𝑆′ of length 𝑘′. Suppose each 𝐺′𝑖 burns in 𝑘′𝑖
rounds. It suffices to show that from each 𝐺′𝑖 , we can remove an edge to obtain a path 𝐺𝑖 which burns in
𝑘𝑖 = 𝑘′𝑖 rounds. Regarding vertices which are burned in round 𝑘′𝑖, there are two possible cases: either
such a vertex has zero neighbors which are burned in the 𝑘′𝑖th round, or it has at least one.

Case 1: There is a vertex in 𝐺′𝑖 which is burned in round 𝑘′𝑖, such that its neighbors are not. Without
loss of generality, suppose this is the vertex 𝐺′𝑖,𝓁𝑖 . If 𝐺

′
𝑖,𝓁𝑖 is a source, then by definition its burning round

does not depend on its neighbors. Hence, deleting the edge 𝐺′𝑖,𝓁𝑖𝐺
′
𝑖,1 creates the path 𝐺𝑖 which can be

burned in 𝑘𝑖 rounds, using the same burning sequence as 𝐺′𝑖 . If 𝐺′𝑖,𝓁𝑖 is not a source, then both of its
neighbors are burned in round 𝑘′𝑖 − 1. Indeed, if one neighbor were burned in round 𝑘′𝑖 − 𝑗 for some
𝑗 ≥ 2, then 𝐺′𝑖,𝓁𝑖 would be burned in round 𝑘′𝑖 − 𝑗 + 1 < 𝑘′𝑖 which is a contradiction. But now we may
once again delete the edge 𝐺′𝑖,𝓁𝑖𝐺

′
𝑖,1, as the neighbor 𝐺′𝑖,𝓁𝑖−1 guarantees that 𝐺

′
𝑖,𝓁𝑖 is burned in round 𝑘

′
𝑖.

This creates the path 𝐺𝑖 which can be burned in 𝑘𝑖 rounds.

15

16 5. Cycle-forests

Case 2: There are two vertices in 𝐺′𝑖 which are neighbors and both have burning round 𝑘′𝑖. Without
loss of generality, suppose these vertices are 𝐺′𝑖,𝓁𝑖 and 𝐺

′
𝑖,1. Since 𝐺′𝑖,𝓁𝑖 and 𝐺

′
𝑖,1 are burned in the same

round, they do not affect each other. That is, the edge 𝐺′𝑖,𝓁𝑖𝐺
′
𝑖,1 does not contribute to the burning

sequence and may be removed. The newly created path 𝐺𝑖 can be burned in 𝑘𝑖 rounds according to
the same burning sequence as 𝐺′𝑖 .

From both cases it follows that if 𝐺′𝑖 can be burned in 𝑘′𝑖 rounds, it is guaranteed that the corre-
sponding path 𝐺𝑖 can be burned in 𝑘𝑖 rounds.

By making the reduction from the path-forest problem to the cycle-forest problem, we have shown
that a path-forest can be burned in 𝑘 rounds if and only if a cycle-forest can be burned in 𝑘 rounds. We
conclude that the Burning Cycle-Forest problem is NP-complete.

6
Conclusion & Discussion

In this thesis, we studied graph burning using two approaches: we made estimations for the burning
number of necklace graphs and studied the complexity of finding upper-bound paths and burning cycle-
forests.

In Chapter 4, we provided a lower bound and upper bound for the burning number of necklace
graphs. Necklace graphs were constructed to have a path-like structure by concatenating pearls. In
order to relate the burning number of necklaces to known burning numbers, lower-bound paths and
upper-bound paths were introduced. It was shown that such paths for necklaces can be constructed
by connecting lower-bound paths or upper-bound paths of pearls in series. Proofs were given that
lower-bound paths provide a lower bound for the burning number of pearls, and upper-bound paths
an upper bound. These results led to the main result: a lower bound and upper bound for the burning
number of necklaces. Furthermore, necklaces whose pearls are perfect have a burning number which
can take only two values.

One other important result from Chapter 4 is the NP-completeness of finding upper-bound paths,
which was proven by making a reduction from the Hamiltonian Path problem. In Chapter 5, an NP-
completeness proof was given for the graph burning problem for cycle-forests by reducing from the
graph burning problem for path-forests.

A future line of research could focus on characterizing graphs that contain upper-bound paths; the
results derived in this thesis might then contribute to verifying the Burning Number Conjecture for this
class of graphs. In addition, the development of an approximation algorithm to find an upper-bound path
is a problem that could be studied. Finally, the concept of constructing path-like graphs and estimating
the burning number using paths could be applied to different classes of graphs. For instance, a necklace
of 𝑘-regular pearls might be a useful construction to provide an upper bound for the burning number of
all 𝑘-regular graphs, as its path-like structure leads to a high burning number.

17

Bibliography
[1] Paul Bastide et al. “Improved Pyrotechnics: Closer to the Burning Number Conjecture”. In: The

Electronic Journal of Combinatorics 30.4 (2023). DOI: 10.37236/11113.
[2] Stéphane Bessy et al. “Burning a graph is hard”. In: Discrete Applied Mathematics 232 (2017),

pp. 73–87. DOI: 10.1002/andp.19063240204.
[3] Anthony Bonato, Jeannette Janssen, and Elham Roshanbin. “How to Burn a Graph”. In: Internet

Mathematics 12 (2015), pp. 85–100. DOI: 10.1080/15427951.2015.1103339.
[4] Anthony Bonato and Shahin Kamali. Approximation Algorithms for Graph Burning. Lecture Notes

in Computer Science. Springer, Cham, 2019, pp. 74–92. DOI: 10.1007/978-3-030-14812-
6_6.

[5] Anthony Bonato and Thomas Lidbetter. “Bounds on the burning numbers of spiders and path-
forests”. In: Theoretical Computer Science 794 (2019), pp. 12–19. DOI: 10.1016/j.tcs.
2018.05.035.

[6] Felipe de Carvalho Pereira et al. “Solving the Graph Burning Problem for Large Graphs”. 2024.
DOI: 10.48550/arXiv.2404.17080.

[7] Reinhard Diestel.Graph Theory. 6th ed. Springer Berlin, Heidelberg, 2025. DOI: 10.1007/978-
3-662-70107-2.

[8] Zahra Rezai Farokh et al. “New heuristics for burning graphs”. 2020. DOI: 10.48550/arXiv.
2003.09314.

[9] Shannon Fitzpatrick and Leif Wilm. “Burning Circulant Graphs”. 2018. DOI: 10.48550/arXiv.
1706.03106.

[10] Jesús García-Díaz, José Alejandro Cornejo-Acosta, and Joel Antonio Trejo-Sánchez. “A greedy
heuristic for graph burning”. In: Computing 107.91 (2025). DOI: 10.1007/s00607- 025-
01436-9.

[11] Michael Garey and David Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. W.H. Freeman and Company, 1979, p. 60. DOI: 10.1007/978-3-662-70107-
2.

[12] Arya Tanmay Gupta, Swapnil Lokhande, and Kaushik Mondal. Burning Grids and Intervals. Lec-
ture Notes in Computer Science. Springer, Cham, 2021, pp. 66–79. DOI: 10.1007/978-3-
030-67899-9_6.

[13] Michaela Hiller, Eberhard Triesch, and Arie Koster. On the Burning Number of p-Caterpillars.
AIRO Springer Series. Springer, Cham, 2020, pp. 145–156. DOI: 10.1007/978- 3- 030-
63072-0_12.

[14] Shahin Kamali, Avery Miller, and Kenny Zhang. Burning Two Worlds. Lecture Notes in Computer
Science. Springer, Cham, 2020. DOI: 10.1007/978-3-030-38919-2_10.

[15] Yinkui Li, Guiyu Shi, and Xiaoxiao Qin. “Graphs with burning number three”. In: Applied Mathe-
matics and Computation 487 (2018). DOI: 10.1016/j.amc.2024.129100.

[16] Huiqing Liu, Ruiting Zhang, and Xiaolan Hu. “Burning number of theta graphs”. In: Applied Math-
ematics and Computation 361 (2019), pp. 246–257. DOI: 10.1016/j.amc.2019.05.031.

[17] Dieter Mitsche, Paweł Prałat, and Elham Roshanbin. “Burning number of graph products”. In:
Theoretical Computer Science 746 (2018), pp. 124–135. DOI: 10.1016/j.tcs.2018.06.036.

[18] Yukihiro Murakami. “The Burning Number Conjecture is True for Trees without Degree-2 Ver-
tices”. In: Graphs and Combinatorics 40.82 (2024). DOI: 10.1007/s00373-024-02812-6.

[19] Kai An Sim, Ta Sheng Tan, and Kok Bin Wong. “On the Burning Number of Generalized Petersen
Graphs”. In: Bulletin of the Malaysian Mathematical Sciences Society 41 (2018), pp. 1657–1670.
DOI: 10.1007/s40840-017-0585-6.

18

https://doi.org/10.37236/11113
https://doi.org/10.1002/andp.19063240204
https://doi.org/10.1080/15427951.2015.1103339
https://doi.org/10.1007/978-3-030-14812-6_6
https://doi.org/10.1007/978-3-030-14812-6_6
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.48550/arXiv.2404.17080
https://doi.org/10.1007/978-3-662-70107-2
https://doi.org/10.1007/978-3-662-70107-2
https://doi.org/10.48550/arXiv.2003.09314
https://doi.org/10.48550/arXiv.2003.09314
https://doi.org/10.48550/arXiv.1706.03106
https://doi.org/10.48550/arXiv.1706.03106
https://doi.org/10.1007/s00607-025-01436-9
https://doi.org/10.1007/s00607-025-01436-9
https://doi.org/10.1007/978-3-662-70107-2
https://doi.org/10.1007/978-3-662-70107-2
https://doi.org/10.1007/978-3-030-67899-9_6
https://doi.org/10.1007/978-3-030-67899-9_6
https://doi.org/10.1007/978-3-030-63072-0_12
https://doi.org/10.1007/978-3-030-63072-0_12
https://doi.org/10.1007/978-3-030-38919-2_10
https://doi.org/10.1016/j.amc.2024.129100
https://doi.org/10.1016/j.amc.2019.05.031
https://doi.org/10.1016/j.tcs.2018.06.036
https://doi.org/10.1007/s00373-024-02812-6
https://doi.org/10.1007/s40840-017-0585-6

	Introduction
	Preliminaries
	Concepts and definitions from graph theory
	Graph burning

	Literature review
	Burning number
	Algorithms and complexity results

	Necklace graphs
	Cycle-forests
	Conclusion & Discussion

