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We consider spread-out models of self-avoiding walk, bond percolation,
lattice trees and bond lattice animals on Z

d , having long finite-range
connections, above their upper critical dimensions d = 4 (self-avoiding
walk), d = 6 (percolation) and d = 8 (trees and animals). The two-point
functions for these models are respectively the generating function for self-
avoiding walks from the origin to x ∈ Z

d , the probability of a connection
from 0 to x, and the generating function for lattice trees or lattice animals
containing 0 and x. We use the lace expansion to prove that for sufficiently
spread-out models above the upper critical dimension, the two-point function
of each model decays, at the critical point, as a multiple of |x|2−d as x → ∞.
We use a new unified method to prove convergence of the lace expansion.
The method is based on x-space methods rather than the Fourier transform.
Our results also yield unified and simplified proofs of the bubble condition
for self-avoiding walk, the triangle condition for percolation, and the square
condition for lattice trees and lattice animals, for sufficiently spread-out
models above the upper critical dimension.

1. Introduction.

1.1. Critical two-point functions. In equilibrium statistical mechanical models
at criticality, correlations typically decay according to a power law, rather than
exponentially as is the case away from the critical point. We consider models of
self-avoiding walks, bond percolation, lattice trees and bond lattice animals on
the lattice Z

d . Let |x| denote the Euclidean norm of x ∈ Z
d . Assuming translation

invariance, and denoting the critical two-point function for any one of these models
by Upc(x, y) = Upc(y − x), the power-law decay is traditionally written as

Upc(x) ∼ const · 1

|x|d−2+η
as |x| → ∞.(1.1)
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The critical exponent η is known as the anomalous dimension, and depends on the
model under consideration. Its value is believed to depend on d but otherwise to
be universal, which means insensitive to many details of the model’s definition.

The above models have upper critical dimensions

dc =



4, for self-avoiding walk,
6, for percolation,
8, for lattice trees and lattice animals,

(1.2)

above which critical exponents cease to depend on the dimension. Our purpose in
this paper is to prove (1.1) for d > dc, with η = 0, for certain long-range models
having a small parameter. The small parameter is used to ensure convergence
of the lace expansion. There is now a large literature on the lace expansion, but
proving (1.1) for d > dc remained an open question.

All past approaches to the lace expansion have relied heavily on the Fourier
transform of the two-point function [although Bolthausen and Ritzmann (2001),
which appeared after this work was complete, does not use the Fourier transform].
We present a new approach to the lace expansion, based directly in x-space. Our
approach provides a unified proof of convergence of the expansion, with most
of the analysis applying simultaneously to all the models under consideration.
There is one model-dependent step in the convergence proof, involving estimation
of certain Feynman diagrams. The Feynman diagrams are model-specific, and
converge when d > dc. This is the key place where the assumption d > dc enters
the analysis. We use a new method to estimate the relevant Feynman diagrams,
based in x-space rather than using the Fourier transform.

As we will explain in more detail below, weaker versions of (1.1) have been
obtained previously, for the Fourier transform of the two-point function. These
statements for the Fourier transform follow as corollaries from our x-space
results. In addition, our results immediately imply the bubble, square and triangle
conditions for sufficiently spread-out models of self-avoiding walks, lattice trees
and lattice animals, and percolation, for d > dc. These diagrammatic conditions,
which had been obtained previously using Fourier methods, are known to imply
existence (with mean-field values) of various critical exponents.

For d ≤ dc, it remains an open question to prove the existence of η. In fact,
it has not been proved for self-avoiding walk nor for lattice trees or animals that
Upc(x) is even finite for 2 ≤ d ≤ dc. For percolation, the two-point function is a
probability, so it is certainly finite. However, it has not been proved for 2 ≤ d ≤ 6
that it approaches zero as |x| → ∞, except for d = 2 [Kesten (1982)]. Such a
result was shown in Aizenman, Kesten and Newman (1987) to imply absence of
percolation at the critical point, which, for general dimensions, is an outstanding
open problem in percolation theory.

For self-avoiding walks, partial results suggesting that η = 0 for d = dc = 4
have been obtained by Brydges, Evans and Imbrie (1992) for a hierarchical
lattice, and by Iagolnitzer and Magnen (1994) for a variant of the Edwards model.
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Contrary to other critical exponents at the upper critical dimension, no logarithmic
factors appear to leading order. It is believed that η > 0 for self-avoiding walk
for 2 ≤ d < 4 [see Madras and Slade (1993)]. Interestingly, there is numerical
evidence that η < 0 for percolation when 3 ≤ d < 6 [Adler, Meir, Aharony
and Harris (1990)], and it has been conjectured that η < 0 also for lattice trees
and lattice animals when 2 ≤ d < 8 [Bovier, Fröhlich and Glaus (1986)] [see
also Parisi and Sourlas (1981) for d = 3 and Lubensky and Isaacson (1979) for
d = 8 − ε]. The exponent η is believed to be related to the exponents γ for the
susceptibility and ν for the correlation length by the scaling relation γ = (2 −η)ν.
Some exact but nonrigorous values of γ and ν have been predicted [see Grimmett
(1999), Hughes (1996), Madras and Slade (1993) and Parisi and Sourlas (1981)],
which lead to the exact predictions η = 5

24 for two-dimensional self-avoiding
walk and percolation, and η = −1 for three-dimensional lattice trees and animals.
For recent progress on two-dimensional percolation, see Lawler, Schramm and
Werner (2001).

1.2. Main results. The spread-out models are defined in terms of a function
D : Zd → [0,∞), which depends on a positive parameter L. We will take L to
be large, providing a small parameter L−1. We will consider only those D which
obey the conditions imposed in the following definition.

DEFINITION 1.1. Let h be a nonnegative bounded function on R
d which

is piecewise continuous, symmetric under the Z
d -symmetries of reflection in

coordinate hyperplanes and rotation by 90◦, supported in [−1,1]d , and normalized
so that

∫
[−1,1]d h(x) ddx = 1. Then for large L we define

D(x) = h(x/L)∑
x∈Zd h(x/L)

.(1.3)

Since
∑

x∈Zd h(x/L) = Ld [1 + o(1)] [using a Riemann sum approximation to∫
[−1,1]d h(x) ddx], the assumption that L is large ensures that the denominator

of (1.3) is nonzero. We also define σ 2 = ∑
x |x|2D(x).

The sum
∑

x |x|pD(x) can be regarded as a Riemann sum, and is asymptotic
to a multiple of Lp for p > 0. In particular, σ and L are comparable. A basic
example obeying the conditions of Definition 1.1 is given by the function
h(x) = 2−d for x ∈ [−1,1]d , h(x) = 0 otherwise, for which D(x) = (2L + 1)−d

for x ∈ [−L,L]d ∩ Z
d , D(x) = 0 otherwise.

Next, we define the models we consider. Let �D = {x ∈ Z
d :D(x) > 0}.

By Definition 1.1, �D is finite and Z
d -symmetric. A bond is a pair of sites

{x, y} ⊂ Z
d with y − x ∈ �D . For n ≥ 0, an n-step walk from x to y is a mapping

ω : {0,1, . . . , n} → Z
d such that ω(i + 1) − ω(i) ∈ �D for i = 1, . . . , n − 1. We

sometimes consider a walk to be a set of bonds, rather than a set of sites. Let
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W(x, y) denote the set of walks from x to y, taking any number of steps. An n-step
self-avoiding walk is an n-step walk ω such that ω(i) 
= ω(j) for each pair i 
= j .
Let S(x, y) denote the set of self-avoiding walks from x to y, taking any number of
steps. A lattice tree is a finite connected set of bonds which has no cycles. A lattice
animal is a finite connected set of bonds which may contain cycles. Although a
tree T is defined as a set of bonds, we write x ∈ T if x is an endpoint of some bond
of T , and similarly for lattice animals. Let T (x, y) denote the set of lattice trees
containing x and y, and let A(x, y) denote the set of lattice animals containing
x and y.

Given a finite set B of bonds and a nonnegative parameter p, we define its
weight to be

Wp,D(B) = ∏
{x,y}∈B

pD(y − x).(1.4)

If B is empty, we set Wp,D(∅) = 1. The random walk and self-avoiding walk
two-point functions are defined respectively by

Sp(x) = ∑
ω∈W(0,x)

Wp,D(ω), σp(x) = ∑
ω∈S(0,x)

Wp,D(ω).(1.5)

For any d > 0,
∑

x Sp(x) converges for p < 1 and diverges for p > 1, and p = 1
plays the role of a critical point. It is well known [see, e.g.,Uchiyama (1998)] that,
for d > 2,

S1(x) ∼ const · 1

|x|d−2 as |x| → ∞,(1.6)

so that η = 0. A standard subadditivity argument [which can be found in
Hammersley and Morton (1954), Hughes (1995) or Madras and Slade (1993)]
implies that

∑
x σp(x) converges for p < pc and diverges for p > pc, for some

finite positive critical value pc.
The lattice tree and lattice animal two-point functions are defined by

ρp(x) = ∑
T ∈T (0,x)

Wp,D(T ), ρa
p(x) = ∑

A∈A(0,x)

Wp,D(A).(1.7)

We use a superscript (a) to discuss lattice trees and lattice animals simultaneously.
A standard subadditivity argument implies that there are positive finite pc and pa

c

such that
∑

x ρ
(a)
p (x) converges for p < p

(a)
c and diverges for p > p

(a)
c [Klarner

(1967) and Klein (1981)].
Turning now to bond percolation, we associate independent Bernoulli random

variables n{x,y} to each bond {x, y}, with

P(n{x,y} = 1) = pD(x − y), P(n{x,y} = 0) = 1 − pD(x − y),(1.8)

where p ∈ [0, (maxx D(x))−1]. (Note that p is not a probability.) A configuration
is a realization of the bond variables. Given a configuration, a bond {x, y} is called
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occupied if n{x,y} = 1 and otherwise is called vacant. Let C(x) denote the random
set of sites y such that there is a path from x to y consisting of occupied bonds.
The percolation two-point function is defined by

τp(x) = Pp

(
x ∈ C(0)

)
,(1.9)

where Pp is the probability measure on configurations induced by the bond vari-
ables. For d > 1, there is a critical value pc ∈ (0,1) such that

∑
x τp(x) < ∞ for

p ∈ [0,pc) and
∑

x τp(x) = ∞ for p ≥ pc. This critical point can also be charac-
terized by the fact that the probability of existence of an infinite cluster of occupied
bonds is 1 for p > pc and 0 for p < pc [Aizenman and Barsky (1987), Menshikov
(1986)].

We use Up(x) to refer to the two-point function of all models simultaneously.
We use pc to denote the critical points for the different models, although they
are, of course, model-dependent. In what follows, it will be clear from the context
which model is intended.

Let

ad = d
(d/2 − 1)

2πd/2 .(1.10)

We write O(f (x,L)) to denote a quantity bounded by const · f (x,L), with a
constant that is independent of x and L but may depend on d . We define ε by

ε =



2(d − 4), for self avoiding walk,
d − 6, for percolation,
d − 8, for lattice trees and animals

(1.11)

and write

ε2 = ε ∧ 2.(1.12)

Our main result is the following theorem.

THEOREM 1.2. Let Upc(x) denote the critical two-point function for self-
avoiding walk, percolation, lattice trees or lattice animals. Let d > dc, and fix
any α > 0. There is a finite constant A depending on d , L and the model, and
an L0 depending on d , α and the model, such that for L ≥ L0,

Upc(x) = adA

σ 2(|x| ∨ 1)d−2

[
1 + O

(
Lε2

(|x| ∨ 1)ε2−α

)
+ O

(
L2

(|x| ∨ 1)2−α

)]
.(1.13)

Constants in the error terms are uniform in both x and L. For self-avoiding walk
and percolation, A = 1 + O(L−2+α). For lattice trees and lattice animals, A is
bounded above uniformly in L. Constants in the error terms for (1.13) and A − 1
depend on α.
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We expect that Theorem 1.2 remains true with α = 0, but it is convenient in our
analysis to allow a small power of |x| to enter into error estimates. Results closely
related to Theorem 1.2, for nearest-neighbor models in very high dimensions, are
proved in Hara (2003) using a different method to analyze the lace expansion.

The leading asymptotics of the critical random walk two-point function S1(x)

are also given by (1.13), with A = 1. This will be discussed in detail, in
Proposition 1.6 below. The second error term in (1.13) represents an error term
in the asymptotics for random walk, while the first error term represents the
difference between random walk and the other models. The fact that the power
|x|2−d appears as the leading power in (1.13), independent of the precise form
of D or the value of large L, is an illustration of universality.

As was pointed out in Section 1.1, it is a consequence of (1.13) for percolation
that there is no percolation at the critical point. In other words, for d > 6 and
for L large, with probability 1 there is no infinite cluster of occupied bonds when
p = pc . There are, however, large emerging structures present at p = pc that are
loosely referred to as the incipient infinite cluster. The result of Theorem 1.2
for percolation provides a necessary ingredient for a result of Aizenman (1997)
in this regard. Roughly speaking, Aizenman showed that if a (then unproved)
weaker statement than (1.13) holds for d > 6, then at pc the largest percolation
clusters present within a box of side length M are of size approximately M4 and
are approximately Md−6 in number. Details can be found in Aizenman (1997).
Equation (1.13) now implies that Aizenman’s conclusions do hold for sufficiently
spread-out models with d > 6.

The following corollary will follow immediately from Theorem 1.2. The
conclusion of the corollary was proved previously in Madras and Slade (1993)
for self-avoiding walk, in Hara and Slade (1990a) for percolation and in Hara
and Slade (1990b) for lattice trees and lattice animals. The corollary is known to
imply existence (with mean-field values) of various critical exponents [Aizenman
and Newman (1984), Barsky and Aizenman (1991), Madras and Slade (1993) and
Tasaki and Hara (1987)].

COROLLARY 1.3. For d > dc and L ≥ L0, the self-avoiding walk bubble
condition, the percolation triangle condition and the lattice tree and lattice animal
square conditions all hold. These diagrammatic conditions are respectively the
statements that the following sums are finite:∑

x∈Zd

σpc(x)2,
∑

x,y∈Zd

τpc(x)τpc(y − x)τpc(y),

∑
w,x,y∈Zd

ρ
(a)

p
(a)
c

(w)ρ
(a)

p
(a)
c

(x − w)ρ
(a)

p
(a)
c

(y − x)ρ
(a)

p
(a)
c

(y).
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Theorem 1.2 implies a related result for the Fourier transform of the critical
two-point function. Given an absolutely summable function f on Z

d , we denote
its Fourier transform by

f̂ (k) = ∑
x∈Zd

f (x)eik·x, k ∈ [−π,π ]d .(1.14)

In general, (1.1) can be expected to correspond to

Ûpc(k) ∼ const · 1

|k|2−η
as k → 0.(1.15)

However, some care is required with this correspondence. In particular, if η = 0
then Upc(x) is not summable, and hence its Fourier transform is not well defined.
Moreover, the inverse Fourier transform of a function asymptotic to a multiple
of |k|−2, which does exist for d > 2, is not necessarily asymptotic to a multiple
of |x|2−d without further assumptions. A counterexample is given in Madras and
Slade [(1993), page 32].

The situation is well understood for a random walk [Spitzer (1976)]. For d > 2,
it is the case that S1(x) is given by the inverse Fourier transform

S1(x) =
∫
[−π,π ]d

e−ik·x

1 − D̂(k)

ddk

(2π)d
.(1.16)

Therefore, it is reasonable to assert that

Ŝ1(k) = 1

1 − D̂(k)
,(1.17)

even though S1(x) is not summable. Our assumptions on D imply that 1 − D̂(k) ∼
σ 2|k|2/(2d) as k → 0. Comparing with (1.15) and (1.17), this gives the k-space
version of the statement that η = 0 for a random walk.

For the models of Theorem 1.2, we have the following corollary. A proof of
the corollary will be given in Section 2. The quantity Ûpc(k) appearing in the
corollary represents the Fourier transform of the corresponding x-space two-point
functions Upc(x), in the sense that the x-space two-point functions are given by
the inverse Fourier transform of the k-space quantities. It will be part of the proof
to demonstrate this correspondence. Recall that ε2 = ε ∧ 2.

COROLLARY 1.4. For d > dc and L ≥ L0, the Fourier transforms of the
critical two-point functions of the models of Theorem 1.2 obey

Ûpc(k) = 2dA

σ 2|k|2 [1 + L(k)] ,

|L(k)| ≤
{

const · |k|ε2, ε 
= 2,

const · |k|2 log |k|−1, ε = 2,

(1.18)

as k → 0, with an L-dependent constant in the error term L. The constant A is
the same as the constant of Theorem 1.2.
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The conclusion of Corollary 1.4 for a self-avoiding walk was established in
Theorem 6.1.6 of Madras and Slade (1993), with |L(k)| ≤ const · |k|a for any
a < d−4

2 ∧ 1. For percolation, it was proved in Theorem 1.1 of Hara and Slade
(2000) that, under the hypotheses of Corollary 1.4, limk→0 |k|2τ̂pc(k) = A, with
no error estimate but with joint control in the limit (k, h) → (0,0), where
h is a magnetic field. For lattice trees, the conclusion of Corollary 1.4 was
implicitly proved in Derbez and Slade (1998), with |L(k)| ≤ const · |k|a for some
unspecified a > 0.

The proof of Theorem 1.2 also yields the following result for the asymptotic
behavior of the critical points of self-avoiding walks and percolation. We do not
obtain such a result for lattice trees and lattice animals. Much stronger results have
been obtained for nearest-neighbor self-avoiding walk and percolation by pushing
lace expansion methods further, in Hara and Slade (1995). See Penrose (1994)
for related results obtained without using the lace expansion, including for lattice
trees.

COROLLARY 1.5. Let α > 0. For a self-avoiding walk and percolation with
d > dc, as L → ∞,

1 ≤ pc ≤ 1 + O(L−2+α).(1.19)

In van der Hofstad and Slade (2002a, b), (1.19) is improved to 1 ≤ pc ≤
1 + O(L−d) for a self-avoiding walk.

1.3. Overview of the proof. In this section, we isolate four propositions which
will be combined in Section 2 to prove Theorem 1.2.

We define I by I (x) = δ0,x , and denote the convolution of two functions f,g

on Z
d by

(f ∗ g)(x) = ∑
y∈Zd

f (x − y)g(y).(1.20)

Consider the random walk two-point function Sz(x). By separating out the
contribution from the zero-step walk, and extracting the contribution from the first
step in the other walks, Sz can be seen to obey the convolution equation

Sz = I + (zD ∗ Sz).(1.21)

The lace expansion is a modification of this convolution equation, for the models
we are considering, that takes interactions into account via a kind of inclusion-
exclusion.

To state the lace expansion in a unified fashion, a change of variables is required.
This change of variables is explained in Section 3. To each p ≤ pc , we define

z =
{

p, for self-avoiding walk and percolation,
pρ

(a)
p (0), for lattice trees and animals.

(1.22)
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We denote by zc the value which corresponds to pc in the above definition. It is
possible in principle that zc = ∞ for lattice trees and animals, but we will rule out
this possibility in Section 2, and we proceed in this section under the assumption
that ρ

(a)
pc (0) < ∞. Since the right-hand side of (1.22) is increasing in p, it defines

a one-to-one mapping. For p = p(z) given by (1.22), we also define

Gz(x) =



σp(x), for self-avoiding walk,

ρ
(a)
p (x)/ρ

(a)
p (0), for lattice trees and animals,

τp(x), for percolation.
(1.23)

We will explain in Section 3 how the lace expansion gives rise to a function �z

on Z
d and to the convolution equation

Gz = I + �z + (
zD ∗ (I + �z) ∗ Gz

)
.(1.24)

The function �z is symmetric under the symmetries of Z
d . For self-avoiding

walks, a small modification of the usual analysis [Brydges and Spencer (1985),
Madras and Slade (1993)] has been made to write the lace expansion in this form.
(In Section 2, a remainder term in the percolation expansion will be shown to
vanish.)

The identity (1.24) reduces to (1.21) when �z ≡ 0. Our method involves
treating each of the models as a small perturbation of random walk, and the
function �z(x) should be regarded as a small correction to δ0,x . As we will
show in Section 2, �z(x) is small uniformly in x and z ≤ zc for large L and
decays at least as fast as |x|−(d+2+ε), when d > dc. In particular,

∑
x |x|2+s |�z(x)|

converges for z ≤ zc, for any s < ε, so �z has a finite moment of order (2 + s).
We assume the above bounds on �z(x) in the remainder of this section.

Equations (1.21) and (1.24) can be rewritten as

I = (I − µD) ∗ Sµ = Gz − �z − (
zD ∗ (I + �z) ∗ Gz

)
.(1.25)

Let λ ∈ R. Writing

Gz = λSµ + (I ∗ Gz) − λ(I ∗ Sµ)(1.26)

and using the first representation of (1.25) for I in I ∗Gz and the second in I ∗Sµ,
we obtain

Gz = λ
(
(I + �z) ∗ Sµ

) + (Sµ ∗ Ez,λ,µ ∗ Gz),(1.27)

with

Ez,λ,µ = [I − µD] − λ[I − zD ∗ (I + �z)].(1.28)

By symmetry, odd moments of Ez,µ,λ(x) vanish. We fix λ and µ so that the
zeroth and second moments also vanish, that is,∑

x∈Zd

Ez,λ,µ(x) = ∑
x∈Zd

|x|2Ez,λ,µ(x) = 0.(1.29)
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Here we are assuming, as discussed above, that �z has finite second moment. Thus
we take

λ = λz = 1

1 + zσ−2 ∑
x |x|2�z(x)

,(1.30)

µ = µz = 1 − λz

[
1 − z − z

∑
x

�z(x)

]
.(1.31)

For simplicity, we will write Ez(x) = Ez,µz,λz(x). Then (1.27) becomes

Gz(x) = λz

(
(I + �z) ∗ Sµz

)
(x) + (Sµz ∗ Ez ∗ Gz)(x).(1.32)

The critical point obeys the identity

1 − zc − zc

∑
x

�zc(x) = 0,(1.33)

and hence µzc = 1. To see this, we sum (1.24) over x to obtain

∑
x

Gz(x) = 1 + ∑
x �z(x)

1 − z − z
∑

x �z(x)
.(1.34)

The left-hand side is finite below the critical point, but diverges as z ↑ zc

[Aizenman and Newman (1984), Bovier, Fröhlich and Glaus (1986) and Madras
and Slade (1993)]. Under the assumption made above on �z, the critical point thus
corresponds to the vanishing of the denominator of (1.34).

Using the decay of �z in x, we will argue that, at zc, the first term of (1.32)
gives λzc [1+∑

y �zc(y)]S1(x) as the leading behavior of Gzc(x). The second term
will be shown to be an error term which decays faster than |x|−(d−2). In terms of
the Fourier transform, we understand this second term as follows. By our choice
of the parameters λz and µz, Êzc (k) should behave to leading order as k2+a for
some positive a. Assuming that Ĝzc(k) behaves like k−2, and since Ŝ1(k) behaves
like k−2 by (1.17), the second term of (1.32) would be of the form k−2+a , which
should correspond to x-space decay of the form |x|−(d−2+a). Our proof will be
based on this insight.

The proof will require:

(i) information about the asymptotics of Sµ(x) (model-independent),
(ii) an estimate providing bounds on the decay rate of a convolution in terms

of the decay of the functions being convolved (model-independent),
(iii) a mechanism for proving that �z(x) decays faster than |x|−(d+2) (model-

dependent), and
(iv) given this decay of �z(x), an upper bound guaranteeing adequate decay

of (Sµz ∗ Ez)(x) (model-independent).
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The third item is the part of the argument that is model-dependent. The
restriction d > dc enters here, in the bounding of certain Feynman diagrams that
are specific to the model under consideration.

The first ingredient in the above list, namely asymptotics for the random walk
generating function, is provided by the following proposition. More general results
can be found in work of Uchiyama (1998). However, the results of Uchiyama
(1998) do not explicitly provide the L-dependence we need, and, to keep this paper
self-contained, we will give a proof of Proposition 1.6 in Section 6. Our proof
of Proposition 1.6 will also be used in an essential way in proving Proposition 1.9
below.

To abbreviate the notation, throughout the rest of the paper we will write

|||x||| = |x| ∨ 1.(1.35)

Note that (1.35) does not define a norm on R
d .

PROPOSITION 1.6. Let d > 2, and suppose D satisfies the conditions
of Definition 1.1. Then, for L sufficiently large, α > 0, µ ≤ 1 and x ∈ Z

d ,

Sµ(x) ≤ δ0,x + O

(
1

L2−α |||x|||d−2

)
,(1.36)

S1(x) = ad

σ 2

1

|||x|||d−2 + O

(
1

|||x|||d−α

)
.(1.37)

In (1.36) and (1.37), constants in error terms may depend on α, but not on L.

For the second ingredient in the list above, we will use the following
proposition, whose estimates show that the decay rate of functions implies
a corresponding decay for their convolution. The elementary proof of the
proposition will be given in Section 5.

PROPOSITION 1.7. (i) If functions f,g on Z
d satisfy |f (x)| ≤ |||x|||−a and

|g(x)| ≤ |||x|||−b with a ≥ b > 0, then there exists a constant C depending
on a, b, d such that

∣∣(f ∗ g)(x)
∣∣ ≤

{
C|||x|||−b, a > d ,
C|||x|||d−(a+b), a < d and a + b > d .

(1.38)

(ii) Let d > 2, and let f,g be functions on Z
d , where g is Z

d -symmetric.
Suppose that there are A,B,C > 0 and s > 0 such that

f (x) = A

|||x|||d−2
+ O

(
B

|||x|||d−2+s

)
,(1.39)

|g(x)| ≤ C

|||x|||d+s
.(1.40)
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Let s2 = s ∧ 2. Then

(f ∗ g)(x) = A
∑

y g(y)

|||x|||d−2
+ e(x)(1.41)

with

e(x) =
{

O
(
C(A + B)|||x|||−(d−2+s2)

)
, s 
= 2,

O
(
C(A + B)|||x|||−d log(|||x||| + 1)

)
, s = 2,

(1.42)

where the constant in the error term depends on d and s.

For the third ingredient, we will use the following proposition. The proof of
the proposition involves model-dependent diagrammatic estimates, and is given in
Section 4.

PROPOSITION 1.8. Let q < d , and suppose that

Gz(x) ≤ β|||x|||−q , x 
= 0.(1.43)

Then for sufficiently small β , with β/Lq−d bounded away from zero (which
requires L to be large), the following statements hold:

(a) Let z ≤ 2, and assume 1
2d < q < d . For self-avoiding walk, there is a

c depending on d and q such that

|�z(x)| ≤ cβ δ0,x + cβ3

|||x|||3q
.(1.44)

(b) Define p = p(z) implicitly by (1.22), and fix a positive constant R. Let
z be such that ρ

(a)
p(z)(0) ≤ R, and assume 3

4d < q < d . For lattice trees or lattice
animals, there is a c depending on d , q and R such that

|�z(x)| ≤ cβδ0,x + cβ2

|||x|||3q−d
.(1.45)

(c) Let z ≤ 2, and assume 2
3d < q < d . For percolation, there is a c depending

on d and q such that

|�z(x)| ≤ cβδ0,x + cβ2

|||x|||2q
.(1.46)

The main hypothesis in Proposition 1.8 is an assumed bound on the decay of
the two-point function. To motivate the form of the assumption, we first note that
Gz(x) cannot be expected to decay faster than D(x). Let χL denote the indicator
function of the cube [−L,L]d . By Definition 1.1,

D(x) ≤ O(L−d)χL(x) ≤ O(Lq−d |||x|||−q ),(1.47)
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and the upper bound is achieved when |x| and L are comparable. This helps explain
the assumption that β/Lq−d is bounded away from zero in the proposition. Note
that Gz(0) = 1 for all z ≤ zc.

We will apply Proposition 1.8 with q = d − 2. However, to do so, we will have
to deal with the fact that a priori we do not know that (1.43) holds for z near zc with
q = d − 2. Note that, for q = d − 2, the conditions on d in the above proposition
correspond to d > dc, with dc given by (1.2). Also, using ε defined in (1.11), all
three bounds of the lemma can be unified (after weakening the self-avoiding walk
bound by removing a factor β) in the form

|�z(x)| ≤ cβ δ0,x + cβ2

|||x|||d+2+ε
.(1.48)

Note that ε > 0 if and only if d > dc. It is at this stage of the analysis, and only
here, that the upper critical dimension enters our analysis.

Finally, the fourth ingredient is the following proposition. Its proof is model-
independent and is given in Section 7.

PROPOSITION 1.9. Fix z ≤ zc, 0 < γ < 1, α > 0 and κ > 0. Let κ2 = κ ∧ 2.
Assume that z ≤ C and that |�z(x)| ≤ γ |||x|||−(d+2+κ). Then there is a c depending
on C,κ,α but independent of z, γ,L such that, for L sufficiently large,

|(Ez ∗ Sµz)(x)| ≤
{

cγL−d, x 
= 0,
cγLκ2|||x|||−(d+κ2−α), all x.

(1.49)

The above assumption that z ≤ C (uniformly in L) will turn out ultimately to
be redundant, as we will prove that zc ≤ 1 + o(1) as L → ∞. However, we apply
Proposition 1.9 before proving zc ≤ 1 + o(1) and need the additional assumption
in its statement.

In (1.49), we are interested in the case where α is close to zero (and small
compared to κ2), so that the upper bound decays faster in |x| than |x|−d . It will
be crucial in the proof of Proposition 1.9 that Ez is Z

d -symmetric, and that we
have chosen λz and µz such that the zeroth and second moments of Ez vanish. The
coefficients of terms of order |x|2−d and |x|−d , which would typically be present
in the convolution of a function decaying like |x|−(d+2+κ) with Sµz , then vanish
and hence these terms are absent in the upper bound of (1.49). This can partially
be seen from the first term of (1.41), where the leading term vanishes if and only
if

∑
y g(y) = 0.

2. Proof of the main results. In this section, we prove Theorem 1.2 and
Corollaries 1.3–1.5, assuming Propositions 1.6–1.9. The proof will be based on
the following elementary lemma.
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LEMMA 2.1. Let f : [z1, zc) → R and a ∈ (0,1) be given. Suppose that:

(i) f is continuous on the interval [z1, zc).
(ii) f (z1) ≤ a.

(iii) for each z ∈ (z1, zc), if f (z) ≤ 1 then in fact f (z) ≤ a. (In other words,
one inequality implies a stronger inequality.)

Then f (z) ≤ a for all z ∈ [z1, zc).

PROOF. By the third assumption, f (z) /∈ (a,1] for all z ∈ (z1, zc). By the first
assumption, f (z) is continuous in z ∈ [z1, zc). Since f (z1) ≤ a by the second
assumption, the above two facts imply that f (z) cannot enter the forbidden interval
(a,1] when z ∈ (z1, zc), and hence f (z) ≤ a for all z ∈ [z1, zc). �

We will employ Lemma 2.1 to prove the following proposition, which lies at the
heart of our method. The proposition provides a good upper bound on the critical
two-point function for nonzero x. There is an additional detail required in the proof
for lattice trees and lattice animals, and we therefore treat these models separately
from self-avoiding walk and percolation. The relevant difference between the
models is connected with the fact that σz(0) = τz(0) = 1, whereas ρ

(a)
p (0) > 1 and

we do not know a priori that ρ
(a)
pc (0) < ∞. In the proof, we establish the finiteness

of ρ
(a)
pc (0). As usual, α should be regarded as almost zero in Proposition 2.2.

PROPOSITION 2.2. Fix d > dc and α > 0. For L sufficiently large depending
on d and α,

Gzc(x) ≤ C

L2−α|||x|||d−2 , x 
= 0.(2.1)

In addition, zc ≤ 1 + O(L−2+α), and, for lattice trees and lattice animals,
ρ

(a)
pc (0) ≤ O(1). The constants in all the above statements depend only on d and α,

and not on L.

PROOF. We prove the desired bound for α < ε∧1
2 , because the bound for

large α follows from that for small α. In the following, let K denote the smallest
constant that can be used in the error bound of (1.36), that is,

K = sup
L≥1,x 
=0

L2−α|||x|||d−2S1(x) ∈ (0,∞).

Self-avoiding walks and percolation. We will prove that Gz(x) obeys the
upper bound of (2.1) uniformly in z < zc. This is sufficient, by the monotone
convergence theorem.

Let

gx(z) = (2K)−1L2−α|||x|||d−2Gz(x), g(z) = sup
x 
=0

gx(z).(2.2)
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For self-avoiding walks and percolation, we will employ Lemma 2.1 with z1 = 1,

f (z) = max
{
g(z), 1

2z
}
,(2.3)

and a chosen arbitrarily in (1
2 ,1). We verify the assumptions of Lemma 2.1 one

by one, with the bound (2.1) then following immediately from Lemma 2.1. In
the course of the proof, the desired upper bound on zc will be shown to be
a consequence of a weaker bound than (2.1) in (2.7). Since the proof actually
establishes (2.1), (2.7) then follows.

(i) Continuity of each gx on [0, zc) is immediate from the fact that σz(x)

is a power series with radius of convergence zc, and from the continuity in z

of τz(x) proved in Aizenman, Kesten and Newman (1987). We need to argue
that the supremum of these continuous functions is also continuous. For this,
it suffices to show that the supremum is continuous on [0, zc − t) for every
small t > 0. It is a standard result that σz(x) and τz(x) decay exponentially
in |x|, with a decay rate that is uniform in z ∈ [0, zc − t) (though not in L)
[Grimmett (1999) and Madras and Slade (1993)]. Thus gx(z) can be made less
than any δ > 0, uniformly in z ∈ [0, zc − t), by taking |x| larger than some
R = R(L, t, δ). However, choosing x0 such that D(x0) > 0, we see that gx0(z) ≥
(2K)−1L2−α|||x0|||d−2zD(x0) ≥ (2K)−1L2−α|||x0|||d−2D(x0) ≡ δ0 for z ≥ z1 = 1.
Hence the supremum is attained for |x| ≤ R(L, t, δ0), which is a finite set, and
hence the supremum is continuous and the first assumption of Lemma 2.1 has
been established.

(ii) For the second assumption of the lemma, we note that τ1(x) ≤ σ1(x) ≤
S1(x) and apply the uniform bound of (1.36) to conclude that g(1) ≤ 1/2. Since
we have restricted a to be larger than 1

2 , this implies f (1) < a.
(iii) Fix z ∈ (1, zc). We assume that f (z) ≤ 1, which implies

Gz(x) ≤ 2KL−2+α

|||x|||d−2 , x 
= 0.(2.4)

We will apply Proposition 1.8 with q = d − 2 and β = KL−2+α . Since we have
taken α < 1

2 , we have β � 1 and β/Lq−d = KLα � 1 for sufficiently large L

depending on α. Proposition 1.8 then implies that

|�z(x)| ≤ cKL−2+αδ0,x + c K2 L−4+2α

|||x|||d+2+ε
≤ c KL−2+α

|||x|||d+2+ε
,(2.5)

where ε > 0 was defined in (1.11). It addition, for percolation, as argued at the end
of Section 4.5, the remainder term R

(N)
z (x) vanishes in the limit N → ∞ under

the assumption (2.4), yielding the form (1.24) of the expansion.
Summing (1.24) over x ∈ Z

d gives

∑
x

Gz(x) = 1 + ∑
x �z(x)

1 − z − z
∑

x �z(x)
> 0,(2.6)
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which is finite for z < zc. The numerator is positive by (2.5), and hence the
denominator is also positive. Therefore, since z ≤ 2 by our assumption that
f (z) ≤ 1, (2.5) implies that

z < 1 − z
∑
x

�z(x) ≤ 1 + O(L−2+α).(2.7)

Since a ∈ (1
2 ,1), this implies that z < 2a for all z < zc, when L is large. Thus, to

prove that f (z) ≤ a, it suffices to show that g(z) ≤ a.
The bound (2.5) also implies that λz and µz are well defined by (1.30) and

(1.31), and that λz → 1 as L → ∞, uniformly in z ∈ (1, zc). In addition, since the
denominator of (2.6) is positive and λz is close to 1, it follows from (1.31) that
µz < 1. To see that µz > 0, it suffices to show that λ−1

z > 1 − z − z
∑

x �z(x). But
this follows from (1.30) and (2.5). Therefore µz ∈ (0,1), and Sµz is well defined.

Using the convolution bound of Proposition 1.7(i), (1.36) and the first bound
of (2.5), it then follows that

|(�z ∗ Sµz)(x)| ≤ O(L−4+2α)

|||x|||d−2
= o(L−2+α)

|||x|||d−2
, x 
= 0.(2.8)

By Proposition 1.9 with κ = 2α < ε and γ = cKL−2+α , for L large we have

|(Ez ∗ Sµz)(x)| ≤
{

O(L−2+α−d), x 
= 0,
O(L−2+3α)|||x|||−(d+α), all x.

(2.9)

Using the first bound for 0 < |x| ≤ L and the second bound for |x| ≥ L, we
conclude from this that

|(Ez ∗ Sµz)(x)| ≤ O(L−4+2α)|||x|||−(d−2), x 
= 0.(2.10)

By Proposition 1.7(i), (2.4) and (2.9), it then follows that

|(Ez ∗ Sµz ∗ Gz)(x)| ≤ |(Ez ∗ Sµz)(x)| + ∑
y 
=0

|(Ez ∗ Sµz)(x − y)| Gz(y)

≤ O(L−4+4α)

|||x|||d−2
= o(L−2+α)

|||x|||d−2
, x 
= 0,

(2.11)

where we have used (2.10) to bound the first term in the first inequality. Using the
fact that λz = 1 + o(1) as L → ∞, and the definition of K , it then follows from
the identity (1.32) that for L sufficiently large we have

Gz(x) ≤ (
1 + o(1)

)
S1(x) + o(L−2+α)

|||x|||d−2
≤ 2a K

L2−α |||x|||d−2
, x 
= 0.(2.12)

This yields g(z) ≤ a, and completes the proof for self-avoiding walk and
percolation.
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Lattice trees and lattice animals. We will first prove that Gz(x) obeys the
upper bound of (2.1) uniformly in z < zc.

By (1.3) and the fact that h is bounded, there is a δ1 ≥ 1 such that
D(x) ≤ δ1|�D|−1 for all x. The number of n-bond lattice trees or lattice animals
containing the origin is less than the number bn(L) of n-bond lattice trees on the
Bethe lattice of coordination number |�D| (the uniform tree of degree |�D|),
which contain the origin. A standard subadditivity argument, together with the
fact that, as L → ∞, limn→∞ bn(L)1/n ∼ e|�D| ≤ 3|�D| [see, e.g., Penrose
(1994)], implies that bn(L) ≤ (n+1)(3|�D|)n. Therefore, for lattice trees or lattice
animals,

ρ(a)
p (0) ≤

∞∑
n=0

(n + 1)(3δ1p)n = 1

(1 − 3δ1p)2
.(2.13)

Let p1 = 1
6δ1

. We use z1 = p1ρ
(a)
p1 (0) in Lemma 2.1. Note that z1 is well

defined, since (2.13) gives ρ
(a)
p (0) ≤ 4 for p ≤ p1. In addition, (2.13) implies

that pc ≥ (3δ1)
−1 > p1, so zc > z1. We again fix a ∈ (1

2 ,1), and we use the
function f (z) of (2.3) in Lemma 2.1, taking now

g(z) = sup
x 
=0

gx(z) with gx(z) = 1

8K
L2−α|||x|||d−2Gz(x).(2.14)

The desired bound on Gz(x), for z < zc, together with the desired bound on zc,
will follow once we verify the three conditions of Lemma 2.1. We verify these
conditions now.

(i) Continuity of f (z) follows from the exponential decay of ρ
(a)
p (x) for

p < pc , as in the previous discussion, together with the continuity of ρ
(a)
p (0)

for p < pc .
(ii) By the remarks surrounding the definition of z1, we have z1

2 ≤ 4
2·6δ1

≤
1
3 < a. Moreover, this implies z1 < 2

3 < 1. It remains to show that

Gz1(x) ≤ 8aK

L2−α|||x|||d−2 , x 
= 0.(2.15)

Since ρ
(a)
p1 (0) ≥ 1, we have Gz1(x) ≤ ρ

(a)
p1 (x). Each lattice tree or lattice animal

containing 0 and x can be decomposed (nonuniquely, in general) into a walk
from 0 to x with a lattice tree or lattice animal attached at each site along
the walk. Therefore ρ

(a)
p1 (x) ≤ ρ

(a)
p1 (0)Sz1(x). Using ρ

(a)
p1 (0) ≤ 4, it follows from

Proposition 1.6 that Gz1(x) ≤ 4KL−2+α|||x|||−(d−2) , which implies (2.15).
(iii) Fix z ∈ (z1, zc). The assumption that f (z) ≤ 1 implies the bound

ρ
(a)
p (0) ≤ z/p1 ≤ 12δ1, and we take R = 12δ1 in Proposition 1.8(b). We then pro-

ceed as in the discussion for self-avoiding walks and percolation. We obtain (2.7)
as before, so that z < 2a as required. The proof of (2.12) also proceeds as before.
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The above discussion proves that Gz(x) is bounded by the right-hand side of
(2.1) and that ρ

(a)
p (0) ≤ 4, uniformly in z < zc, and that zc ≤ 1 + O(L−2+α). The

proof is then completed by observing that limp↑pc ρ
(a)
p (x) = ρ

(a)
pc (x), by monotone

convergence. �

Proposition 2.2 establishes the hypotheses of Proposition 1.8, with β propor-
tional to L−2+α , z = zc and q = d − 2. Hence the hypotheses of Proposition 1.9
are also now established, with z = zc, γ = O(L−2+α), and for any κ ≤ ε. The
conclusion of Proposition 1.9 has therefore also been established. Moreover, since
Proposition 2.2 gives a bound on Gz(x) uniformly in z ≤ zc, the bounds of Propo-
sition 2.2 and Proposition 1.9 hold uniformly in z ≤ zc. We will use this in the
following.

PROOF OF THEOREM 1.2. Fix z = zc, and recall the observation below (1.33)
that µzc = 1. Define

H(x) = λzc

∞∑
n=0

((
I + �zc

) ∗ (
Ezc ∗ S1

)∗n)
(x),(2.16)

where the superscript ∗n denotes an n-fold convolution and (Ezc ∗ S1)
∗0 = I . To

bound (2.16), and in particular to show that it converges absolutely, we proceed as
follows. By the remarks in the previous paragraph, for any positive ζ ≤ ε2 = ε ∧ 2
we have

∣∣�zc(x)
∣∣ ≤ O(L−2+α)

|||x|||d+2+ε
,

∣∣(Ezc ∗ S1
)
(x)

∣∣ ≤ O(L−2+α+ζ )

|||x|||d+ζ−α
(2.17)

and hence, by Proposition 1.7(i),

∣∣(Ezc ∗ S1
)∗n

(x)
∣∣ ≤ O(L(−2+α+ζ )n)

|||x|||d+ζ−α
, n ≥ 1.(2.18)

We choose ζ = ε2 − 2α, to ensure that −2 + α + ζ < 0. Note that it suffices to
consider only small α, small enough that ε2 −2α > 0, since Theorem 1.2 for small
α implies the theorem for large α. By Proposition 1.7(i), we then have

H(x) = λzcδ0,x + O

(
L−2+ε2−α

|||x|||d+ε2−3α

)
.(2.19)

Iteration of (1.32) then gives

Gzc(x) = (S1 ∗ H)(x).(2.20)

By Proposition 1.7(ii) and the asymptotic formula of (1.37), this yields

Gzc(x) = adA
′

σ 2|||x|||d−2 + O

(
L−2+ε2−α

|||x|||d−2+ε2−3α

)
+ O

(
1

|||x|||d−α

)
,(2.21)
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with A′ = Ĥ (0). This proves Theorem 1.2 [with α in the statement of the theorem
corresponding to 3α in (2.21)], apart from the assertions that A = 1 + O(L−2+α)

for self-avoiding walks and percolation (where A = A′) and that A is uniformly
bounded for lattice trees and lattice animals [where A = A′ρ(a)

p
(a)
c

(0)].

The constant A′ = Ĥ (0) can be evaluated as follows. Since (2.16) is absolutely
summable over x, the Fourier transform

Ĥ (k) = λzc

(
1 + �̂zc (k)

) ∞∑
n=0

[
Êzc (k)Ŝ1(k)

]n
(2.22)

is continuous in k. Using (1.29), the fact that Ezc(x) decays like |x|−(d+2+ε), and
dominated convergence, we have

lim
k→0

|k|−2Êzc(k) = lim
k→0

∑
x

Ezc(x)|k|−2
(

cos(k · x)− 1 − |k|2|x|2
2d

)
= 0.(2.23)

Since Ŝ1(k) diverges like a multiple of |k|−2 by (1.17), we conclude from (1.30)
and the conclusion of Proposition 1.8 that

A′ = Ĥ (0) = lim
k→0

Ĥ (k) = λzc

(
1 + �̂zc (0)

)

= 1 + �̂zc (0)

1 + zc σ−2 ∑
x |x|2�zc(x)

= 1 + O(L−2+α).

(2.24)

�

PROOF OF COROLLARY 1.3. The corollary follows immediately from Theo-
rem 1.2 and the convolution bound of Proposition 1.7(i). �

To prove Corollary 1.4, the following lemma will be useful.

LEMMA 2.3. Let f (x) be a Z
d -symmetric function which obeys the bound

|f (x)| ≤ |||x|||−(d+2+κ) with κ > 0. Then

f̂ (k) = f̂ (0) + |k|2
2d

∇2f̂ (0) + e(k)(2.25)

with

|e(k)| ≤
{

const · |k|2+(κ∧2), κ 
= 2,
const · |k|4 log |k|−1, κ = 2.

(2.26)

PROOF. By the Z
d -symmetry of f (x),

f̂ (k) = ∑
x

f (x) cos(k · x)

= f̂ (0) + |k|2
2d

∇2f̂ (0) + ∑
x

(
cos(k · x) − 1 + (k · x)2

2

)
f (x).

(2.27)
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The expression in brackets of the third term is bounded in absolute value both by
|k|4|x|4/4! and 2 + |k|2|x|2/2. The third term of (2.27) is therefore bounded by

|k|4
4!

∑
x:|x|≤|k|−1

|x|4 |f (x)| + ∑
x:|x|>|k|−1

(
2 + |k|2|x|2

2

)
|f (x)|.(2.28)

Using the assumed upper bound on f (x) then gives (2.26) and completes the
proof. �

PROOF OF COROLLARY 1.4. We first assume ε 
= 2, and comment on the
minor modifications required for ε = 2 at the end of the proof.

Let F̂z(k) = 1 − zD̂(k)(1 + �̂z(k)). For z < zc, as in (2.6) we have

Ĝz(k) = 1 + �̂z(k)

F̂z(k)
.(2.29)

As we have noted above, the bounds of Proposition 1.8 have been established with
q = d − 2, uniformly in z ≤ zc. Therefore by Lemma 2.3, we have, for z ≤ zc,

1 + �̂z(k) = 1 + �̂z(0) + OL(|k|2),(2.30)

F̂z(k) = F̂z(0) + |k|2
2d

∇2F̂z(0) + OL(|k|2+(ε∧2)),(2.31)

with L-dependent error estimates. Also, as observed in (2.7), F̂z(0) > 0 for z < zc.
Thus we have the infrared bound

0 < Ĝz(k) ≤ OL(|k|−2)(2.32)

uniformly in z < zc.
Since Gzc(x) behaves like |x|−(d−2), it is not summable over x and hence the

summation defining Ĝzc(k) is not well defined. We define

Ĝzc (k) = lim
z↑zc

Ĝz(k) = 1 + �̂zc (k)

F̂zc(k)
.(2.33)

This is a sensible definition, because Gzc(x) is then given by the inverse
Fourier transform of Ĝzc (k). In fact, using monotone convergence in the first
step, and (2.32) and the dominated convergence theorem in the last step (since
d ≥ dc + 1 > 2), we have

Gzc(x) = lim
z↑zc

Gz(x) = lim
z↑zc

∫
[−π,π ]d

Ĝz(k)e−ik·x ddk

(2π)d

=
∫
[−π,π ]d

Ĝzc(k)e−ik·x ddk

(2π)d
.

(2.34)
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Since F̂zc (0) = 0 by (1.33), (2.30) and (2.31) then imply

Ĝzc(k) = 2d(1 + �̂zc(0))

∇2F̂zc (0)|k|2
[
1 + OL(|k|ε∧2)

] = 2dA

σ 2|k|2
[
1 + OL(|k|ε∧2)

]
.(2.35)

In the last equality we used (1.33) and (2.24).
The case ε = 2 can be treated by adding an extra factor log |k|−1 to (2.31)

and (2.35). �

PROOF OF COROLLARY 1.5. Recall the elementary fact that for self-avoiding
walks and percolation, pc = zc ≥ 1. The corollary then follows immediately
from Proposition 2.2. (The bound zc ≤ 1 + O(L−2+α) is uninformative con-
cerning pc for lattice trees and lattice animals, since we have proved only
that ρ

(a)
pc (0) ∈ [1,4].) �

It remains to prove Propositions 1.6–1.9. After reviewing the lace expansion
in Section 3, these four propositions will be proved in Sections 6, 5, 4 and 7,
respectively.

3. The lace expansion. In this section, we review the key steps in the
derivation of the lace expansion. In particular, we will describe how for each of
our models the lace expansion gives rise to the convolution equation (1.24), which
can be written as

Gz(x) = δ0,x + �z(x) + (zD ∗ Gz)(x) + (�z ∗ zD ∗ Gz)(x).(3.1)

For a self-avoiding walk, the lace expansion was introduced by Brydges and
Spencer (1985). Our treatment of the expansion for a self-avoiding walk differs
slightly from the usual treatment, to allow for a simultaneous treatment of lattice
trees and animals. For percolation, and for lattice trees and lattice animals, the
expansions were introduced by Hara and Slade (1990a, b). For overviews, see Hara
and Slade (1994) and Madras and Slade (1993). Proofs and further details can be
found in the above references.

This section, together with Section 4, contains the model-dependent part of our
analysis.

3.1. Inclusion–exclusion. The expansion can be understood intuitively as
arising from repeated use of the inclusion–exclusion relation. We describe this
now in general terms, postponing a more precise (but more technical) description
to Sections 3.2 and 3.3.

The two-point function for each of the models under consideration is a sum,
over geometrical objects, of weights associated with these objects. The geometrical
objects are self-avoiding walks, lattice trees or lattice animals containing the two
points 0 and x. This is the case also for percolation when p < pc. For example,
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FIG. 1. A string of beads.

for the nearest-neighbor model τp(x) = ∑
A∈A(0,x) p

|A|(1 − p)|∂A| for p < pc,
where ∂A represents the boundary bonds of A and |A| is the number of bonds
in A. We view these geometrical objects as a string of mutually-avoiding beads,
as depicted in Figure 1. For a self-avoiding walk, the beads are simply lattice
sites, whose mutual avoidance keeps the walk self-avoiding. For lattice trees, the
string represents the unique path, or backbone, in the tree from 0 to x, and the
beads represent lattice trees corresponding to branches along the backbone. These
branches are mutually avoiding, to preserve the overall tree structure.

For lattice animals and percolation, we need to introduce the notion of a pivotal
bond. A bond {a, b} in A ∈ A(x, y) is called pivotal for the connection from x to y

if its removal would disconnect the animal into two connected components, with
x in one component and y in the other. A lattice animal A containing x and y is said
to have a double connection from x to y if there are two bond-disjoint paths in A

between x and y or if x = y. For lattice animals, the string in the string of beads
represents the pivotal bonds for the connection of 0 and x. The beads correspond
to the portions of the animal doubly-connected between pivotal bonds. The mutual
avoidance of the beads is required for consistency with the pivotal nature of the
pivotal bonds. This picture is the same both for lattice animals and for percolation.

The basic idea of the lace expansion is the same in all four models. It consists of
approximating the two-point function by a sum of weights of geometrical objects
represented by a string of beads, with the interaction between the first bead and all
subsequent beads neglected. This treats the model as if it were a Markov process.
The approximation causes configurations which do not contribute to the two-point
function to be included, and these undesired contributions are then excluded in a
correction term. The correction term is then subjected to repeated and systematic
further application of inclusion–exclusion.

Let D(x, y) denote the set of all animals having a double connection between x

and y, and, given a lattice animal, let (x) denote the set of sites that are doubly-
connected to x. We define

ψ(0)
p (x) =




0, for self-avoiding walks
and lattice trees,

(1 − δ0,x)
∑

A∈D(0,x)

Wp,D(A), for lattice animals,

(1 − δ0,x)Pp

(
x ∈ (0)

)
, for percolation,

(3.2)

and

ap =
{

1, for self-avoiding walks and percolation,
ρ

(a)
p (0), for lattice trees and lattice animals.

(3.3)
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The procedure described in the preceding paragraph is implemented by writing

Up(x) = apδ0,x + ψ(0)
p (x) + ap(pD ∗ Up)(x)

+ (ψ(0)
p ∗ pD ∗ Up)(x) + R(0)

p (x).
(3.4)

The terms on the right-hand side can be understood as follows. The first term is the
contribution due to the case when the string of beads consists of a single bead and
x = 0. The term ψ

(0)
p (x) is the contribution due to the case when the string of beads

consists of a single bead and x 
= 0. The convolutions correspond to the case where
the string of beads consists of more than a single bead. The factors ap and ψ

(0)
p

together give the contribution from the first bead, the factor pD is the contribution
from the first piece of string, and the factor Up is the contribution of the remaining
portion of the string of beads. These two terms neglect the interaction between
the first bead and the subsequent beads. This is corrected by the correction term
R

(0)
p (x), which is negative.
To understand the correction term, we first restrict attention to the combinatorial

models, which excludes percolation. In this case, the correction term simply
involves the contributions from configurations in which the first bead intersects
some subsequent bead. The contribution due the case where the first such bead
is actually the last bead is denoted −ψ

(1)
p (x). If the first such bead is not the last

bead, then suppose it is the j th bead. The second through j th beads are mutually
avoiding, and the (j + 1)st through last bead are mutually avoiding, and these two
sets of beads avoid each other. We neglect the mutual avoidance between these two
sets of beads, making them independent of each other, and add a correction term
to exclude the undesired configurations included through this neglect. This leads
to the identity

R(0)
p (x) = −ψ(1)

p (x) − (ψ(1)
p ∗ pD ∗ Up)(x) + R(1)

p (x).(3.5)

The inclusion–exclusion can then be applied to R
(1)
p (x) and so on. For percolation,

the above procedure can also be applied, but more care is needed in dealing with
the probabilistic nature of the weights involved. The form of the terms arising in
the expansion for percolation is, however, the same as the above. When the process
is continued indefinitely, the result is

Up(x) = apδ0,x + ψp(x) + ap(pD ∗ Up)(x) + (ψp ∗ pD ∗ Up)(x),(3.6)

with

ψp(x) =
∞∑

N=0

(−1)Nψ(N)
p (x).(3.7)

The change of variables defined by (1.22) and (1.23) then gives our basic
identity (3.1), once we define

�z(x) = a−1
p ψp(x).(3.8)
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Care is needed for convergence of (3.7). We require convergence at p = pc,
which demands in particular that the individual terms in the sum over N are
finite when p = pc. This will be achieved by taking d greater than the critical
dimension dc. The role of large L is to ensure that the terms ψ

(N)
pc (x) are not only

finite, but grow small with N sufficiently rapidly to be summable. These issues are
addressed in detail in Section 4.

3.2. Self-avoiding walks, lattice trees and lattice animals. For the combinato-
rial models, an elegant formalism introduced by Brydges and Spencer (1985) can
be used to make the discussion more precise, using the notion of lace. We discuss
this now.

Let R be an ordered set R0,R1, . . . ,Rl of lattice animals, with l arbitrary. In
particular, each Rj may be simply a lattice tree or a single site. Given R, we define

Ust (R) =
{−1, if Rs ∩ Rt 
= ∅,

0, if Rs ∩ Rt = ∅.
(3.9)

In (3.9), the intersection is to be interpreted as the intersection of sets of sites rather
than of bonds. For 0 ≤ a ≤ b, we also define

KR[a, b] = ∏
a≤s<t≤b

(
1 + Ust (R)

)
.(3.10)

Given a finite set B of bonds, we let |B| denote its cardinality. For self-avoiding
walk, we let R consist of the sites along the walk (the “beads”), so that each Ri is
the single site ω(i). Then the two-point function can be written

σp(x) = ∑
ω∈W(0,x)

Wp,D(ω)KR[0, |ω|].(3.11)

The sum is over all walks, with or without self-intersections, but KR is nonzero
only for self-avoiding walks, for which KR = 1. Thus KR provides the avoidance
interaction.

For a lattice tree T � 0, x, we let the Ri denote the branches (the “beads”) along
the backbone of T joining 0 to x. The two-point function for lattice trees can be
written

ρp(x) = ∑
ω∈W(0,x)

Wp,D(ω)

[ |ω|∏
i=0

∑
Ri∈T (ω(i),ω(i))

Wp,D(Ri)

]
KR[0, |ω|].(3.12)

The additional sums and product in (3.12), compared with (3.11), generate the
branches attached along the backbone ω, and the factor KR ensures that the
branches do not intersect.

For a lattice animal A ∈ A(x, y), there is a natural order to the set of pivotal
bonds for the connection from x to y, and each pivotal bond is directed in
a natural way, as in the left to right order in Figure 1. Given two sites x, y
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and an animal A containing x and y, the backbone of A is defined to be the
ordered set of directed pivotal bonds for the connection from x to y. In general,
this backbone is not connected. Let R denote the set R0,R1, . . . of connected
components which remain after the removal of the backbone from A (the “beads”).
Let B = ((u1, v1), . . . , (u|B|, v|B|)) be an arbitrary finite ordered set of directed
bonds. Let v0 = 0 and u|B|+1 = x. Then the two-point function for lattice animals
can be written as

ρa
p(x) = ∑

B:|B|≥0

Wp,D(B)

[ |ω|∏
i=0

∑
Ri∈D(ui ,vi)

Wp,D(Ri)

]
KR[0, |B|].(3.13)

The lace expansion proceeds by expanding out the product defining KR , in each
of (3.11)–(3.13). An elementary but careful partial resummation is then performed,
which leads to a result equivalent to that of the inclusion–exclusion procedure
described in Section 3.1. We will review this procedure now, leading to precise
definitions for ψp(x) and hence, recalling (3.8), also for �z(x).

An essential ingredient is the following definition, in which the notion of lace
is defined. It involves a definition of graph connectivity, which for self-avoiding
walks has been relaxed in the following compared to the usual definition [Brydges
and Spencer (1985) and Madras and Slade (1993)], to give a unified form of the
expansion for all the models.

DEFINITION 3.1. Given an interval I = [a, b] of positive integers, we refer to
a pair {s, t} of elements of I as an edge. For s < t , we write simply st for {s, t}.
A set of edges is called a graph. The set of graphs on [a, b] is denoted G[a, b].
A graph 
 is said to be connected if, as intervals,

⋃
st∈
[s, t] = [a, b]. A lace is

a minimally connected graph, that is, a connected graph for which the removal of
any edge would result in a disconnected graph. The set of laces on [a, b] is denoted
by L[a, b]. Given a connected graph 
, the following prescription associates to 


a unique lace L
 ⊂ 
: The lace L
 consists of edges s1t1, s2t2, . . . where, for i ≥ 2,

s1 = a, t1 = max{t :at ∈ 
},
ti = max{t :∃ st ∈ 
, s ≤ ti−1},
si = min{s : sti ∈ 
}.

(3.14)

The procedure terminates as soon as tN = b. Given a lace L, the set of all edges
st /∈ L such that LL∪{st} = L is called the set of edges compatible with L and is
denoted C(L).

For 0 ≤ a < b we define

JR[a, b] = ∑
L∈L[a,b]

∏
st∈L

Ust (R)
∏

s′t ′∈C(L)

(
1 + Us′t ′(R)

)
.(3.15)
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This has a nice interpretation in terms of the beads of Section 3.1. In that
language, the product over C(L) in (3.15) is nonzero precisely when pairs of beads
compatible with the lace L avoid each other, as in the product defining KR . On
the other hand, the product over L is nonzero precisely when the pairs of beads
corresponding to lace edges do intersect each other. The number N = N(L) of
edges in L corresponds to the superscript in ψ

(N)
p (x) in (3.7).

The function ψp(x) is defined, for the different models, by

ψsaw
p (x) = ∑

ω : 0→x,
|ω|≥2

Wp,D(ω)Jω[0, |ω|],(3.16)

ψ lt
p(x) = ∑

ω : 0→x,
|ω|≥1

Wp,D(ω)

[ |ω|∏
i=0

∑
Ri∈T (ω(i),ω(i))

Wp,D(Ri)

]
JR[0, |ω|],(3.17)

ψ la
p (x) = (1 − δ0,x)

∑
R∈D(0,x)

Wp,D(R)

+ ∑
B:|B|≥1

Wp,D(B)

[ |ω|∏
i=0

∑
Ri∈D(ui ,vi)

Wp,D(Ri)

]
JR[0, |B|],(3.18)

for any p for which the right-hand side converges. We then define z in terms of p

as in (1.22), and introduce Gz(x) and �z(x) as in (1.23) and (3.8). The following
theorem gives the basic convolution equation (3.1) for the combinatorial models.
For self-avoiding walk, the proof involves a minor modification of the standard
proof given in Brydges and Spencer (1985) or Madras and Slade (1993), to account
for the relaxed definition of connectivity. For lattice trees and lattice animals, the
proof is given in Hara and Slade (1990b).

THEOREM 3.2. For any p < pc for which the series defining ψp(x) is
absolutely summable over x [with absolute values taken inside the sums in
(3.16)–(3.18)], the convolution equations (3.6) and (3.1) hold.

SKETCH OF PROOF. The proof relies on the elementary identity

KR[0, b] = KR[1, b]+JR[0, b]+
b−1∑
a=1

JR[0, a]KR[a + 1, b], b ≥ 1.(3.19)

To prove (3.19), we first expand the product in (3.10) to obtain KR[0, b] =∑

∈G[0,b]

∏
st∈
 Ust (R). Graphs with no edge containing 0 contribute KR[1, b].

Graphs with an edge containing 0 are then partitioned according to the interval
supporting the connected component containing 0, and give rise to the remaining
two terms in the identity.
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In the first term on the right-hand side of (3.19), interactions between the first
and subsequent beads do not occur, corresponding to the term ap(pD ∗ Up)(x)

of (3.6). The second term gives rise to the term ψp(x) of (3.6). [For lattice animals,
the first term of (3.18) arises from b = 0, which does not appear in (3.19).] The
last term represents an effective decoupling of the interaction between beads 0 to a

and beads a + 1 to b, and gives rise to the final term of (3.6). �

For N ≥ 1, let L(N)[a, b] denote the set of laces in L[a, b] consisting of
exactly N edges. We define

J
(N)
R [a, b] = ∑

L∈L(N)[a,b]

∏
st∈L

Ust (R)
∏

s′t ′∈C(L)

(
1 + Us′t ′(R)

)
.(3.20)

For N ≥ 1, the quantity ψ
(N)
p (x) discussed in Section 3.1 then corresponds

to (−1)N times the contribution to (3.16)–(3.18) arising from the replacement
of J by J (N) in those formulas. This representation of ψ

(N)
p (x) leads to the

formula ψp(x) = ∑∞
N=0(−1)Nψ

(N)
p (x) [with the N = 0 term arising only for

lattice animals and given by the first term of (3.18)], as in (3.7).

3.3. Percolation. The lace expansion discussed in Section 3.2 is combinatorial
in nature, but the expansion for percolation is inherently probabilistic. It relies
entirely on inclusion–exclusion and does not make use of an interaction term Ust .
It is interesting that an expansion based on such an interaction can be carried
out for oriented percolation [Nguyen and Yang (1993)], which has an additional
Markovian structure not present in ordinary percolation. However, this has not
been done outside the oriented setting. The expansion we present here, based
on inclusion–exclusion, applies to quite general percolation models, including
oriented percolation. Before giving a precise statement of the expansion, we first
revisit the discussion of Section 3.1.

For percolation, the discussion of the first application of inclusion–exclusion
can be recast as follows. Let g

(0)
p (x) = Pp(x ∈ (0)) denote the probability that

0 and x are doubly connected. If these two sites are not doubly connected, then
there is a first pivotal bond (u, v) for the connection. As in the discussion of lattice
animals in Section 3.2, we may regard this bond as being directed. Let F(0, u, v, x)

denote the event that 0 and x are connected, but not doubly connected, and that
(u, v) is the first pivotal bond for the connection. We would like to approximate
Pp(F (0, u, v, x)) by (g

(0)
p ∗ pD ∗ τp)(x), which treats the first bead in the string

of beads as independent of the beads that follow. To discuss the error in this
approximation, we will use the following definitions.

DEFINITION 3.3. (a) Given a set of sites A ⊂ Z
d and a bond configuration,

two sites x and y are connected in A if there is an occupied path from x to y having
all of its sites in A, or if x = y ∈ A.
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(b) The restricted two-point function is defined by

τA
p (x, y) = Pp(x and y are connected in Z

d\A).

(c) Given a bond {u, v} and a bond configuration, we define C̃{u,v}(x) to be
the set of sites which remain connected to x in the new configuration obtained by
setting {u, v} to be vacant.

It can be shown [Madras and Slade (1993), Lemma 5.5.4] that

Pp

(
F(0, u, v, x)

) = pD(v − u)E
[
I [u ∈ (0)]τ C̃{u,v}(0)

p (v, x)
]
,(3.21)

where E denotes expectation with respect to Pp. The restricted two-point function
in the above identity is a random variable, since the set C̃{u,v}(0) is random.
The approximation discussed above amounts to replacing the restricted two-point
function simply by τp(x − v), and gives

Pp

(
F(0, u, v, x)

)
= g(0)

p (u)pD(v − u)τp(x − v)

−pD(v − u)E
[
I [x ∈ (0)](τp(x − v) − τ C̃{u,v}(0)

p (v, x)
)]

.

(3.22)

To understand the correction term in (3.23), we introduce the following
definition. Two sites x and y are connected through A if they are connected in
such a way that every occupied path from x to y has at least one bond with an
endpoint in A, or if x = y ∈ A. Then, by definition,

τp(x − v) − τA
p (v, x) = Pp(v is connected to x through A).(3.23)

Therefore

Pp

(
F(0, u, v, x)

)
= g(0)

p (u)pD(v − u)τp(x − v) − pD(v − u)

×E
[
I [x ∈ (0)](EI [v is connected to x through C̃{u,v}(0)])].

(3.24)

In (3.24), a nested expectation occurs, corresponding to a pair of distinct
percolation configurations. This is the analogue for percolation of the occurrence
of independent strings of beads in the combinatorial models. The two percolation
configurations interact with each other via the event in the inner expectation, which
requires a specific kind of intersection between them.

An example of a pair of configurations contributing to this nested expectation
is depicted in Figure 2. In the figure, (u′, v′) is the first pivotal bond for the
connection from v to x such that v is connected to u′ through C̃{u,v}(0). It is
possible that there is no such pivotal bond, corresponding to a picture in which
u′ = x, and in that case no further expansion is performed. In the case where there
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FIG. 2. Schematic representation of the two configurations in a contribution to the nested
expectation of (3.24). Bold lines represent occupied bonds in the outer expectation, while thin lines
represent occupied bonds in the inner expectation.

is such a pivotal bond, we perform the expansion again by treating the portion
of the cluster of x following u′ as independent of the portion preceding u′, in
a manner similar to the first application of inclusion–exclusion performed above.
This is discussed in detail in Hara and Slade (1990a) and Madras and Slade (1993),
and we now just state the conclusion.

In doing so, we will use subscripts to coordinate random sets with the
corresponding expectations. For example, we write the subtracted term in (3.24)
as

pD(v − u)E0
[
I [u ∈ (0)](E1I [v is connected to x through C̃

{u,v}
0 (0)])](3.25)

to emphasize that the set occurring in the inner expectation is a random set with
respect to the outer expectation. We will also make use of the following definition.
Given sites x, y and a set of sites A, let E(x, y;A) be the event that x is connected
to y through A and there is no directed pivotal bond for the connection from x

to y whose first endpoint is connected to x through A. We make the abbreviation

Ij = I [E(y′
j , yj+1; C̃j−1)] with C̃j−1 = C̃

{yj ,y′
j }

j−1 (y′
j−1) and y′

0 = 0, and we write
pu,v = pD(v − u). In this notation, the situation with u′ = x discussed in the
previous paragraph makes a contribution to (3.25) equal to

pu,vE0
[
I [u ∈ (0)](E1I [E(v, x; C̃0)])].(3.26)

Let

ψ(0)
p (x) = (1 − δ0,x)Pp

(
x ∈ (0)

)
.(3.27)
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For n ≥ 1, we define

ψ(n)
p (x) = ∑

(y1,y
′
1)

py1,y
′
1
· · · ∑

(yn,y′
n)

pyn,y′
n

× E0
(
I [y1 ∈ (0)]E1I1E2I2E3I3

· · · En−1In−1EnI [E(y′
n, x; C̃n−1)]),

(3.28)

where the sums are over directed bonds and all the expectations are nested. Define

�(n)
p (x) =

n∑
j=0

(−1)jψ(j)
p (x)(3.29)

and

R(n)
p (x) = ∑

(y1,y
′
1)

py1,y
′
1
· · · ∑

(yn+1,y
′
n+1)

pyn+1,y
′
n+1

× E0
(
I [y1 ∈ (0)]E1I1E2I2

· · · En

(
In

(
τp(x − y′

n+1) − τ C̃n
p (y′

n+1, x)
)))

.

(3.30)

The following theorem is proved in Hara and Slade (1990a); see also Hara and
Slade (1994) and Madras and Slade (1993).

THEOREM 3.4. For p < pc and N ≥ 0,

τp(x) = δ0,x + �(N)
p (x) + (pD ∗ τp)(x) + (

�(N)
p ∗ pD ∗ τp

)
(x)

+ (−1)N+1R(N)
p (x).

(3.31)

As we will show in Section 4.5, the limit N → ∞ can be taken in (3.31) under
the hypotheses of Proposition 1.8(c), with the remainder term vanishing in the
limit. Defining �p(x) = ψp(x) = ∑∞

j=0(−1)jψ
(j)
p (x), (3.31) then becomes

τp(x) = δ0,x + �p(x) + (pD ∗ τp)(x) + (�p ∗ pD ∗ τp)(x).(3.32)

This is equivalent to (3.1), with z = p and Gz(x) = τp(x).

4. Lace expansion diagrams. We begin in Section 4.1 by recalling the
well-established procedure by which the lace expansion for a self-avoiding walk
gives rise to diagrammatic upper bounds for ψ

(N)
p (x) [Brydges and Spencer

(1985) and Madras and Slade (1993)]. We then bound these diagrams to prove
Proposition 1.8(a). For all the models, the diagrammatic upper bounds can be
expressed in the form ψ

(N)
p (x) ≤ M(N)(x, x), where M(N)(x, y) is a recursively



CRITICAL TWO-POINT FUNCTIONS 379

defined function having a diagrammatic interpretation. In Section 4.2 we prove
Lemma 4.1, a key lemma that will be used to bound M(N)(x, y). In Sections 4.3–
4.5 we recall the well-established procedure by which the expansions of Section 3
give rise to diagrams for lattice trees, lattice animals and percolation [Hara and
Slade (1990a, b)]. We will not provide complete proofs here but attempt only to
motivate the diagrams. Once the diagrams have been identified, we estimate them
using Lemma 4.1. This will provide a proof of Proposition 1.8(b, c). In addition,
for percolation, we will argue in Section 4.5 that limN→∞ R

(N)
p (x) = 0 under the

hypotheses of Proposition 1.8(c).
Our bounds here are for fixed x quantities, in contrast to all previous

diagrammatic estimates in lace expansion analyses, which have been for
∑

x ψp(x)

[Brydges and Spencer (1985) and Hara and Slade (1990a, b)].

4.1. Self-avoiding walk diagrams. For self-avoiding walks, it follows from the
discussion of Section 3.2 that

ψ(N)
p (x) = (−1)N

∑
ω:0→x, |ω|≥2

Wp,D(ω)J
(N)
R [0, |ω|].(4.1)

The diagrammatic representation of an expression of the form (4.1) has been
discussed many times in the literature, for example, in Brydges and Spencer (1985)
or Madras and Slade (1993). Here we focus on the differences that arise because
of the weakened definition of connectivity used in Definition 3.1.

The factor
∏

st∈L Ust (R) in J (N) imposes N bead intersections, which
are self-intersections of the random walk. These self-intersections divide the
underlying time interval into subintervals, as illustrated in Figure 3(a). The factor∏

st∈C(L)(1+Ust (R)) in J (N) is then bounded by replacing each factor 1+Ust (R)

for which s and t lie in distinct subwalks by the factor 1. This produces a bound
that can be interpreted as involving a self-avoiding walk on each time subinterval,
with no interaction between the walks corresponding to distinct time intervals. For
example, the lace of Figure 3(a) gives rise to the diagram of Figure 3(b).

A simplification for these diagrams occurs in the case where two lace edges abut
and do not overlap. In this case, after discarding the interaction between distinct
subwalks, the interaction decouples across the time coordinate where an abuttal
occurs. If we define π

(N)
p (x) to be the contribution to the summation in (4.1) only

from laces with no abuttal, then we are led to

0 ≤ ψ(N)
p (x) ≤

N∑
m=1

∑
(n1,...,nm) : n1+···+nm=N

(
π(n1)

p ∗ · · · ∗ π(nm)
p

)
(x).(4.2)

The quantity π
(n)
p (x) is the quantity that has appeared in previous lace expansion

analyses. We encounter ψp instead, due to the definition of graph connectivity in
Definition 3.1.
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FIG. 3. (a) A lace with five edges, dividing the time interval into eight subintervals. (b) The

self-avoiding walk diagram corresponding to this lace. (c) Diagrams for π
(n)
p (x).

We will bound ψ
(N)
p (x) by combining a bound on π

(n)
p (x) with Proposi-

tion 1.7(i). To bound π
(n)
p (x), we define

σ ′
p(x) = σp(x) − δ0,x,(4.3)

A(u, v, x, y) = σ ′
p(v − u)σp(y − u)δv,x,(4.4)

M(2)(x, y) = σ ′
p(x)2σp(y),(4.5)

M(n)(x, y) = ∑
u,v∈Zd

M(n−1)(u, v)A(u, v, x, y), n ≥ 3.(4.6)

The standard bounds of Brydges and Spencer (1985) can then be written as

0 ≤ π(1)
p (x) ≤ δ0,x

∑
v∈�D

pD(v)σ ′
p(v),(4.7)

0 ≤ π(n)
p (x) ≤ M(n)(x, x), n ≥ 2.(4.8)

The power 3q in the desired decay |||x|||−3q can be understood from the fact
that there are three distinct routes from 0 to x in the diagrams for M(n)(x, x);
see Figure 3(c).

PROOF OF PROPOSITION 1.8(a). For a self-avoiding walk, we have z = p,
Gz(x) = σp(x) and �z(x) = ψp(x). The hypotheses of the proposition are that
σ ′

p(x) ≤ β|||x|||−q , with 2q > d , and that p ≤ 2. Since σp(0) = 1, it follows that
σp(x) ≤ |||x|||−q . (The lower bound on βLq−d assumed in Proposition 1.8 is not
needed for a self-avoiding walk.) We must show that

ψp(x) ≤ cβδ0,x + cβ3|||x|||−3q .(4.9)

By definition of σ ′
p and the hypotheses, it follows from (4.7) that

0 ≤ π(1)
p (x) ≤ 21−qβδ0,x .(4.10)
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By (4.4) and hypothesis,

A(u, v, x, y) ≤ β

|||v − u|||q |||y − u|||q δv,x.(4.11)

Let

S(x) = ∑
y∈Zd

1

|||y|||q |||x − y|||q , S̄ = sup
x∈Zd

S(x).(4.12)

Note that S̄ < ∞ if 2q > d , by Proposition 1.7(i). Diagrammatically,
S(x) corresponds to an open bubble, and the condition S̄ < ∞ is closely related to
the bubble condition [Madras and Slade (1993), Section 1.5].

We will show that (4.11) implies there is a constant C such that

M(n)(x, y) ≤ βn(CS̄)n−2 1

|||x|||2q |||y|||q , n ≥ 2.(4.13)

The factor β2 in the n = 2 term of (4.13) can be improved to β3 by noting that, by
definition, M(2)(x, x) can be written as σ ′

p(x)3, and we obtain one factor of β for

each factor of σ ′
p. Let πp(x) = ∑∞

n=1 π
(n)
p (x). Then (4.8), (4.10) and the improved

(4.13) imply that

0 ≤ πp(x) ≤ Cβδ0,x + Cβ3|||x|||−3q .(4.14)

By (4.2),

|ψp(x)| ≤
∞∑

N=1

ψ(N)
p (x) ≤

∞∑
m=1

π∗m
p (x),(4.15)

where π∗m
p denotes the m-fold convolution of πp with itself. Using (4.14) and

Proposition 1.7(i) to bound (4.15) then gives the conclusion of Proposition 1.8.
To prove (4.13), we use induction on n. The case n = 2 follows immediately

from (4.5) and the assumed bound on σ ′
p . To advance the induction, we assume

(4.13) for n − 1 and show that it holds also for n. The inductive hypothesis
and (4.11) then give

M(n)(x, y) ≤ ∑
u∈Zd

βn−1(CS̄)n−3

|||u|||2q |||x|||q
β

|||x − u|||q |||y − u|||q , n ≥ 3.(4.16)

It therefore suffices to show that there is a C for which∑
u∈Zd

1

|||u|||2q

1

|||x − u|||q |||y − u|||q ≤ CS̄

|||x|||q |||y|||q .(4.17)

To prove (4.17), we consider four cases.
Case 1. |u| ≥ |x|/2 and |u| ≥ |y|/2. In this contribution to (4.17), we may bound

the factor |||u|||−2q above by 22q |||x|||−q |||y|||−q . The remaining summation over u

is then bounded above by S̄ , as required.
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Case 2. |u| ≥ |x|/2 and |u| ≤ |y|/2. The second inequality implies that |y−u| ≥
|y|/2. We then argue as in Case 1.

Case 3. |u| ≤ |x|/2 and |u| ≥ |y|/2. This is the same as Case 2, by symmetry.
Case 4. |u| ≤ |x|/2 and |u| ≤ |y|/2. This follows as above, using |y −u| ≥ |y|/2

and |x − u| ≥ |x|/2. �

4.2. The diagram lemma. In this section we present a lemma that will
be useful for the diagrammatic estimates for lattice trees, lattice animals and
percolation. It involves a constant S̄ , which is defined for q1, q2 > 0 by

S(x, y) = ∑
u,v∈Zd

1

|||u − v|||q1 |||y − u|||q2 |||x − v|||q1
, S̄ = sup

x,y∈Zd

S(x, y).(4.18)

It is possible that S̄ = ∞, depending on the values of d and the qi . However, if

2q1 + d > 2q1 + q2 > 2d(4.19)

then S̄ < ∞. In fact, given (4.19), it follows from Proposition 1.7(i) that

S(x, y) ≤ C

|||x − y|||2q1+q2−2d
.(4.20)

Finiteness of S̄ is related to the triangle condition for percolation and to the
square condition for lattice trees and lattice animals [Aizenman and Newman
(1984) and Tasaki and Hara (1987)]. To see this, we first note the diagrammatic
representation of S(x, y) in Figure 4(a). When q1 = q2 = q , which is the relevant
case for percolation, this corresponds to the open triangle diagram depicted in
Figure 4(b). When q1 = q and q2 = 2q − d , which is the relevant case for lattice
trees and lattice animals, S corresponds to the open square diagram depicted
in Figure 4(c). To understand this for the square diagram, we interpret the line
decaying with power q2 as arising from a convolution of two two-point functions
decaying with power q , in accordance with Proposition 1.7(i).

The following lemma is the key lemma that will be used in bounding diagrams
for lattice trees, lattice animals and percolation. Its statement involves functions
A(0) : Z2d → [0,∞), A(i) : Z4d → [0,∞) for i ≥ 1, A(end) : Z4d → [0,∞) and
functions M(N) : Z2d → [0,∞) defined for N ≥ 1 by

M(N)(x, y) = ∑
u1,v1,...,uN ,vN∈Zd

A(0)(u1, v1)

N−1∏
i=1

A(i)(ui, vi, ui+1, vi+1)

×A(end)(uN, vN, x, y).

(4.21)

(For N = 1, the empty product over i is interpreted as 1.) The proof of Lemma 4.1
can be extended to q1 < d and q2 obeying (4.19), but since q2 ≤ q1 in our
applications, we add this assumption to simplify the proof.
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FIG. 4. (a) The diagram for S(x, y). Thin lines decay with power q1 and the thick line
decays with power q2. Unlabelled vertices are summed over . (b) The open triangle diagram for
percolation (q1 = q2 = q). (c) The open square diagram for lattice trees and lattice animals
(q1 = q, q2 = 2q − d).

LEMMA 4.1. Fix q2 ≤ q1 < d obeying (4.19), so that S̄ < ∞. Let K0 > 0.
Suppose that

A(0)(x, y) ≤ K0

{
1

|||x|||q1 |||y|||q2
+ 1

|||x|||q2 |||y|||q1

}
,(4.22)

and suppose that A(i) for i ≥ 1 and A(end) satisfy

A(∗)(u, v, x, y)

≤ K∗
|||u − v|||q1

{
1

|||y − u|||q2 |||x − v|||q1
+ 1

|||y − u|||q1 |||x − v|||q2

}(4.23)

with K∗ > 0. Then there is a C depending on d, q1, q2 such that, for N ≥ 1,

M(N)(x, y) ≤ (CS̄)N−1

(
N−1∏
i=0

Ki

)
Kend

{
1

|||x|||q1 |||y|||q2
+ 1

|||x|||q2 |||y|||q1

}
.(4.24)

PROOF. The proof is by induction on N . To deal with the fact that M(N) is not
defined literally by a convolution of M(N−1) with A(end), we proceed as follows.
Let M̃(N) be the quantity defined by replacing A(end) by A(N) in the definition of
M(N). Because all the constituent factors in the definitions of M(N) and M̃(N) obey
the same bounds, it suffices to prove that M̃(N) obeys (4.24) with Kend replaced

by KN . We prove this by induction, with the inductive hypothesis that M̃(N−1)

obeys (4.24) with Kend replaced by KN−1 and N replaced by N − 1 on the right-
hand side.
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FIG. 5. Diagram for T (x, y). Thin lines decay with power q1, while thick lines decay with
power q2.

For x, y ∈ Z
d , let

T (x, y) = ∑
u,v∈Zd

{
1

|||u|||q1 |||v|||q2
+ 1

|||u|||q2 |||v|||q1

}

× 1

|||u − v|||q1 |||y − u|||q2 |||x − v|||q1
.

(4.25)

This quantity is depicted in Figure 5. By definition, and using (4.22) and (4.23),

M̃(1)(x, y) ≤ K0K1[T (x, y) + T (y, x)].(4.26)

By the induction hypothesis, (4.21) and (4.23),

M̃(N)(x, y) ≤ (CS̄)N−2

(
N∏

i=0

Ki

)
[T (x, y) + T (y, x)].(4.27)

It therefore suffices to show that

T (x, y) ≤ 1

2
CS̄

{
1

|||x|||q1 |||y|||q2
+ 1

|||x|||q2 |||y|||q1

}
.(4.28)

To prove (4.28), we write T (x, y) ≤ ∑4
i=1 Ti(x, y), with Ti(x, y) defined to be

the contribution to T (x, y) arising from each of the following four cases. In the
discussion of these four cases, C denotes a generic constant whose value may
change from line to line.

Case 1. |v| ≥ |x −v| and |u| ≥ |u−y|. This implies |v| ≥ |x|/2 and |u| ≥ |y|/2,
so that

T1(x, y) ≤ CS̄

{
1

|||x|||q1 |||y|||q2
+ 1

|||x|||q2 |||y|||q1

}
.(4.29)

Case 2. |v| ≥ |x − v| and |u| ≤ |u − y|. This implies |v| ≥ |x|/2 and |u − y| ≥
|y|/2. Then

T2(x, y) ≤ C

|||y|||q2

∑
u,v

{
1

|||u|||q1 |||x|||q2
+ 1

|||u|||q2 |||x|||q1

}

× 1

|||u − v|||q1 |||x − v|||q1
.

(4.30)
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The second term of (4.30) is bounded above by CS̄|||x|||−q1 |||y|||−q2 , as re-
quired. We bound the first term using Proposition 1.7(i), obtaining a bound
C|||x|||−(3q1+q2−2d)|||y|||−q2 . [Here we used the assumption q2 ≤ q1 to ensure that
3q1 − 2d > 0, as required to apply Lemma 1.7(i).] It follows from (4.19) that
3q1 + q2 − 2d > q1, which gives the desired result.

Case 3. |v| ≤ |x − v| and |u| ≥ |u − y|. This implies |v − x| ≥ |x|/2 and
|u| ≥ |y|/2, and hence

T3(x, y) ≤ C

|||x|||q1 |||y|||q2

∑
u,v

{
1

|||y − u|||q1−q2 |||v|||q2
+ 1

|||v|||q1

}

× 1

|||u − v|||q1 |||y − u|||q2
.

(4.31)

Each term is bounded by CS̄|||x|||−q1 |||y|||−q2 , as required.
Case 4. |v| ≤ |x − v| and |u| ≤ |u − y|. This implies |v − x| ≥ |x|/2 and

|u − y| ≥ |y|/2, and hence

T4(x, y) ≤ 2CS̄
1

|||x|||q1 |||y|||q2
.(4.32)

Adding the contributions in the four cases yields (4.28) and completes the
proof. �

REMARK 4.2. Let

H(z,w,x, y) = ∑
u,v

1

|||z − u|||q
1

|||y − u|||q
1

|||w − v|||q
1

|||x − v|||q
1

|||u − v|||q .(4.33)

By dividing into four cases according to whether |z−u| is greater than or less than
|y − u| and whether |w − v| is greater than or less than |x − v|, the above proof
can be easily adapted to show that

H(w,z, x, y) ≤ CS̄

|||y − z|||q |||x − w|||q ,(4.34)

where S̄ is defined in (4.18) with now q1 = q2 = q . This will be used in Section 4.5
to analyze percolation.

4.3. Lattice tree diagrams. For lattice trees, the quantity ψ
(N)
p (x), N ≥ 1, can

be understood either as arising from N applications of inclusion-exclusion, along
the lines discussed in Section 3.1, or from the contribution to (3.17) from laces
having N edges, as explained around (3.20). Explicitly,

ψ(N)
p (x) = (−1)N

∑
ω:0→x, |ω|≥1

Wp,D(ω)

[ |ω|∏
i=0

∑
Ri∈T (ω(i),ω(i))

Wp,D(Ri)

]

×J
(N)
R [0, |ω|].

(4.35)
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For a nonzero contribution to ψ
(N)
p (x), the factor

∏
st∈L Ust in J (N) enforces

intersections between the beads Rs and Rt , for each st ∈ L. This leads to bounds
in which the contribution to ψ

(N)
p (x) from the N -edge laces can be bounded above

by N -loop diagrams. We illustrate this in detail only for the simplest case N = 1.
To bound ψ

(1)
p (x), we proceed as follows. There is a unique lace 0|ω| consisting

of a single edge, and all other edges on [0, |ω|] are compatible with it. Therefore

ψ(1)
p (x) = − ∑

ω:0→x, |ω|≥1

Wp,D(ω)

[ |ω|∏
i=0

∑
Ri∈T (ω(i),ω(i))

Wp,D(Ri)

]

×U0|ω|(R)
∏

0≤s<t≤|ω|, (s,t) 
=(0,|ω|)

(
1 + Ust (R)

)
.

(4.36)

After relaxing the last product to
∏

1≤s<t≤|ω|(1 + Ust (R)), the trees R1, . . . ,Rl ,
together with the bonds of ω connecting them, can be considered as a single lattice
tree connecting ω(1) and x. Writing this tree as T1, writing v = ω(1), and stating
the constraint imposed by U0|ω|(R) in words, we obtain

0 ≤ ψ(1)
p (x) ≤ ∑

v∈�D

pD(v)
∑

R0∈T (0,0)

Wp,D(R0)
∑

T1∈T (v,x)

Wp,D(T1)

× I [R0 and the bead at x of T1 share a common site]
≤ ∑

y∈Zd

∑
v∈�D

pD(v)
∑

R0∈T (0,y)

Wp,D(R0)
∑

T1∈T (v,x)

Wp,D(T1)

× I [(bead at x of T1) � y].

(4.37)

In (4.37), the summations over R0 and T1 can be performed independently. The
summation over R0 simply gives ρp(y). For the summation over T1, we note
that there must be disjoint connections from v to x and from x to y, because y

is in the last bead of T1. Therefore the sum over T1 is bounded above by
ρp(x − v)ρp(y − x). Define

ρ̃p(x) = (pD ∗ ρp)(x) = ∑
v∈�D

pD(v)ρp(x − v).(4.38)

Then the above bound gives

0 ≤ ψ(1)
p (x) ≤ ∑

y∈Zd

ρ̃p(x)ρp(y − x)ρp(y).(4.39)

For N ≥ 2, a similar analysis can be performed, along the lines discussed in
Hara and Slade (1990b). To state the resulting bound, we define

M(0)(x, y) = A(0)(x, y) = ρ̃p(x)
∑
v

ρp(y − v)ρp(v)(4.40)
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FIG. 6. (a) The laces with one and two edges. (b) Bead intersections imposed by the laces.
(c) Constituents for constructing M(N), where A stands for both A(i) and A(end). Lines ending
with double bars represent ρ̃-lines. (d) The one-loop and two-loop lattice tree diagrams, with lines
corresponding to the backbone drawn in bold.

and

A(i)(u, v, x, y) = ρp(v − u)

[
ρ̃p(y − u)

∑
a∈Zd

ρp(a − v)ρp(x − a)

+ ρ̃p(x − v)
∑
a∈Zd

ρp(a − u)ρp(y − a)

]
,

(4.41)

with A(end) = A(i). We define M(N)(x, y) (N ≥ 1) recursively by (4.21). Then, for
N ≥ 1, the resulting bound is

0 ≤ ψ(N)
p (x) ≤ M(N−1)(x, x).(4.42)

The first few diagrams are depicted in Figure 6. The upper bound (4.42) differs
from the bound of Hara and Slade (1990b), which uses ρp in place of ρ̃p in (4.41).
We could also use the bounds of Hara and Slade (1990b) here, but the bounds with
ρ̃p are easier to derive and lead ultimately to the same conclusion.

PROOF OF PROPOSITION 1.8(b) for lattice trees. For lattice trees, we have
z = pρp(0), Gz(x) = ρp(x)/ρp(0) and �z(x) = ψp(x)/ρp(0). The hypotheses of
the proposition are that Gz(x) ≤ β|||x|||−q for x 
= 0, with 3

4d < q < d , that there
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is a constant R such that ρ
(a)
p (0) ≤ R, and that βLq−d is bounded away from zero.

It follows that ρp(x) ≤ Rβ|||x|||−q for x 
= 0. Since ρp(0) ≥ 1, it is sufficient to
conclude that

ψp(x) ≤ cβδ0,x + cβ2|||x|||d−3q ,(4.43)

where c may depend on R.
By definition,

ρ̃(a)
p (x) = pD(x)ρ(a)

p (0) + ∑
v∈�D:v 
=x

pD(v)ρ(a)
p (x − v).(4.44)

Note that p = ∑
v∈�D

pD(v) < ρ
(a)
p (0) ≤ R. The first term on the right-hand side

can be bounded as in (1.47), while the second term can be estimated by considering
separately the contributions due to |x| ≥ 2L and |x| < 2L. The result is

ρ̃p(x) ≤ C

Ld−q |||x|||q + Cβ

|||x|||q ≤ Cβ

|||x|||q ,(4.45)

where we have invoked the hypothesis that β/Lq−d is bounded away from zero.
Therefore, by definition and by Proposition 1.7(i),

M(0)(x, x) ≤ cβ|||x|||d−3q .(4.46)

Similarly, A(0)(x, y) of (4.40) obeys the bound of (4.22) with q1 = q and
q2 = 2q − d . Moreover, the factor β on the right-hand side of (4.46) can be
replaced by β2 when x 
= 0, since at least one of the two lower lines in the first
diagram of Figure 6(b) must make a nonzero displacement when x 
= 0.

For N ≥ 1, we will show that the hypotheses imply

M(N)(x, x) ≤ βN+1CN
1

|||x|||3q−d
,(4.47)

where C1 is a constant. By (4.42) and (4.46), this will complete the proof. The
remainder of the proof is devoted to proving (4.47).

By Proposition 1.7(i) and the above remarks, the function A(i) defined in (4.41)
obeys

A(i)(u, v, x, y) ≤ Cβ

|||u − v|||q
[

1

|||y − u|||q |||x − v|||2q−d

+ 1

|||y − u|||2q−d |||x − v|||q
]
.

(4.48)

Hence, (4.23) applies with q1 = q , q2 = 2q − d . By our assumption on q , it
follows that q2 ≤ q1 < d and (4.19) is satisfied. Therefore, by Lemma 4.1, there is
a constant C1 such that

M(N)(x, y) ≤ βN+1CN
1

{
1

|||x|||q |||y|||2q−d
+ 1

|||x|||2q−d |||y|||q
}
.(4.49)

This implies (4.47) and completes the proof for lattice trees. �
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4.4. Lattice animal diagrams. The determination of the lattice animal dia-
grams is similar to that for lattice trees. It makes use of Lemma 2.1 of Hara and
Slade (1990b), which can be rephrased in our present context as follows.

LEMMA 4.3. Given sets of lattice paths Ei , i = 1, . . . , n, let Ai denote the set
of lattice animals which contain a path in Ei , and let A denote the set of lattice
animals which contain disjoint paths in each of E1, . . . ,En. Then

∑
A∈A

Wp,D(A) ≤
n∏

i=1

[ ∑
Ai∈Ai

Wp,D(Ai)

]
.(4.50)

We denote the first term on the right-hand side of (3.18) by ψ
(0)
p (x) and denote

the contribution to the second term due to J
(N)
R [0, |B|] by ψ

(N)
p (x). By Lemma 4.3,

ψ(0)
p (x) = (1 − δ0,x)

∑
A∈D(0,x)

Wp,D(A) ≤ (1 − δ0,x)ρ
a
p(x)2.(4.51)

By definition,

ψ(1)
p (x) = − ∑

|B|:|B|≥1

Wp,D(B)

[ |B|∏
i=0

∑
Ri∈D(vi ,ui+1)

Wp,D(Ri)

]

×U0|B|(R)
∏

0≤s<t≤|B|, st 
=0|B|

(
1 + Ust (R)

)
,

(4.52)

where the sum over B is a sum over |B| bonds (ui, vi) with vi − ui ∈ �D , where
v0 = 0 and u|B|+1 = x.

After relaxing the avoidance constraint appearing in (4.52) to
∏

1≤s<t≤|B|(1 +
Ust (R)), the beads R1, . . . ,R|B|, together with the pivotal bonds connecting them,
can be considered as a single lattice animal connecting v1 and x. Writing this
animal as A1, and stating the constraint imposed by U0|B|(R) in words, we obtain

0 ≤ ψ(1)
p (x) ≤ ∑

(u,v)

pD(v − u)
∑

R0∈D(0,u)

Wp,D(R0)
∑

A1∈A(v,x)

Wp,D(A1)

× I [R0 and the last bead of A1 share a common site]
≤ ∑

y

∑
(u,v)

pD(v − u)
∑

R0∈D(0,u):R0�y

Wp,D(R0)

× ∑
A1∈A(v,x)

Wp,D(A1)I [(last bead of A1) � y].

(4.53)

In (4.53), the summations over R0 and A1 can be performed independently. For
the summation over R0, we note that there must be a site w, and four disjoint
connections joining 0 to w, w to u, u to 0, and w to y. For the summation over A1,
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FIG. 7. Configuration for the lattice animal one-loop diagram.

there must be disjoint connections joining x to v and x to y, because y is in the
last bead of A1. This is illustrated in Figure 7, where on the left we show a typical
contribution to the one-loop diagram, and on the right we show the connections
used to bound it. Therefore, using Lemma 4.3 we obtain

0 ≤ ψ(1)
p (x) ≤ ∑

u,w,y∈Zd

ρa
p(u)ρa

p(w)ρa
p(u − w)

×ρa
p(y − w)ρa

p(x − y)ρ̃a
p(x − u),

(4.54)

where ρ̃a
p(x) = (pD ∗ ρa

p)(x) as in (4.38). This diagram is depicted in Figure 8.
The contribution arising from the term with u = w = 0 equals ρa

p(0)3 times the
triangle diagram of (4.39). Taking the full sum into account, the right-hand side of
(4.54) corresponds diagrammatically to the triangle diagram (4.39) with its vertex
at the origin replaced by a triangle.

The above procedure can be extended to bound the higher-order terms. The
resulting diagrams are the lattice tree diagrams, with an extra initial triangle as
observed for ψ

(1)
p (x). Now we define

A(0)(x, y) = ρa
p(x)ρa

p(y)(4.55)

FIG. 8. The one-loop and two-loop diagrams for lattice animals. Lines ending with double bars
represent ρ̃a-lines.
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and use the A(i) = A(end) of (4.41) (with ρ replaced by ρa) to define M(N)

recursively by (4.21) for N ≥ 1. Then for N ≥ 1, we have

0 ≤ ψ(N)
p (x) ≤ M(N)(x, x).(4.56)

The cases N = 1,2 are depicted in Figure 8.
The bounds described above for lattice animals differ from those of Hara and

Slade (1990b) in two respects. One difference is that the diagrams of Hara and
Slade (1990b) involve additional small triangles that make no significant difference
and need not be included. A second difference is that here we are using ρ̃a whereas
only ρa was used in Hara and Slade (1990b). It is in fact possible to avoid the use
of ρ̃a , but a more involved argument than the one provided in Hara and Slade
(1990b) is necessary for this. However, the use of ρ̃a poses no difficulties and is
simpler, so we will use it here.

PROOF OF PROPOSITION 1.8(b) for lattice animals. The proof proceeds in
the same way as for lattice trees. One minor difference for lattice animals is the
presence of the term ψ

(0)
p , for which (4.51) implies

0 ≤ ψ(0)
p (x) ≤ R2β2

|||x|||2q
(1 − δ0,x).(4.57)

Since 2q > 3q − d by assumption, this is smaller than what is required [second
term of (4.43)]. A second minor change is that the extraction of the extra factor β

from the bound on ψ
(1)
p is slightly different. �

4.5. Percolation diagrams. For percolation, the BK inequality [Grimmett
(1999)] plays the role that Lemma 4.3 played for lattice animals. In particular,
application of the BK inequality to (3.27) immediately gives

ψ(0)
p (x) ≤ (1 − δ0,x)τp(x)2.(4.58)

Higher order contributions can also be bounded using the BK inequality. For
example, application of BK to the contribution to Figure 2 when u′ = x leads
to the bound

ψ(1)
p (x) ≤ ∑

u,w,y,z∈Zd

τp(u)τp(w)τp(u − w)τ̃p(y − u)

× τp(y − z)τp(z − w)τp(x − y)τp(x − z),

(4.59)

where

τ̃p(x) = ∑
v∈�D

pD(v)τp(x − v).(4.60)

The right-hand side of (4.59) is depicted in Figure 9 as M(1)(x, x). It involves the
two distinct routes 0 → u → y → x and 0 → w → z → x from 0 to x, which is



392 T. HARA, R. VAN DER HOFSTAD AND G. SLADE

FIG. 9. The diagrams for percolation. Lines ending with double bars represent τ̃ a -lines.

suggestive of the fact that ψ
(1)
p (x) will decay, like (4.58), twice as rapidly as the

two-point function.
To state bounds on ψ

(N)
p (x) for general N , we define

A(0)(x, y) = ∑
a,b∈Zd

τp(a)τp(b)τp(a − b)τ̃p(x − a)τp(y − b),(4.61)

A1(u, v, x, y) = τp(u − v)
∑

a,b∈Zd

τp(u − a)τp(v − b)

× τp(a − b)τp(y − a)τ̃p(x − b),

(4.62)

A2(u, v, x, y) = τp(y − u)
∑

a,b∈Zd

τp(u − a)τp(v − a)

× τp(a − b)τp(v − b)τ̃p(x − b),

(4.63)

A(i)(u, v, x, y) = A1(u, v, x, y) + A2(u, v, x, y), i ≥ 1,(4.64)

A(end)(u, v, x, y) = τp(u − v)τp(u − x)τp(v − y).(4.65)

The above quantities are depicted in Figure 9.
We define M(N) for N ≥ 1 by (4.21). It then follows from Proposition 2.4 of

Hara and Slade (1990a) that, for N ≥ 1,

0 ≤ ψ(N)
p (x) ≤ M(N)(x, x).(4.66)

Consistent with (4.58), we define M(0)(x, x) = (1 − δ0,x)τp(x)2. We also recall
from Proposition 2.4 of Hara and Slade (1990a) that for N ≥ 1 the expansion
remainder term R

(N)
p (x) of (3.30) obeys

0 ≤ R(N)
p (x) ≤ ∑

u∈Zd

M(N)(u,u)τ̃p(x − u).(4.67)
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We will use this below to conclude that limN→∞ R
(N)
p (x) = 0, assuming the

hypotheses of Proposition 1.8(c). The vanishing of this limit was claimed below
Theorem 3.4 and used under (2.5).

PROOF OF PROPOSITION 1.8(c). For percolation, we have z = p, Gz(x) =
τp(x) and �z(x) = ψp(x). The hypotheses of the proposition are that τp(x) ≤
β|||x|||−q for x 
= 0 with 2

3d < q < d , that β/Lq−d is bounded away from zero, and
that p ≤ 2. It suffices to show that

ψp(x) ≤ cβδ0,x + cβ2|||x|||−2q .(4.68)

It follows immediately from (4.58) that the contribution to ψp from ψ
(0)
p does

obey (4.68), and we concentrate now on N ≥ 1.
By the assumed bound on τ , we conclude as in (4.45) that

τ̃p(x) ≤ Cβ

|||x|||q .(4.69)

We will apply Lemma 4.1 with q1 = q2 = q . Our assumption on q implies
that (4.19) is satisfied. We also need to verify that A(0),A(i),A(end) obey the
assumptions of Lemma 4.1.

It is clear that A(end) obeys (4.23) with q1 = q2 = q and Kend = O(1). For A(0),
we note the decomposition

A(0)(x, y) = ∑
u,v

[τp(u)τp(v)] [τp(u − v)τp(y − v)τ̃p(x − u)].(4.70)

We can then apply Lemma 4.1, considering the first factor as A(0) and the second
factor as A(end), to conclude that A(0) obeys (4.22) with K0 = Cβ .

To check that A(i) = A1 + A2 obeys (4.23) with K = Cβ , we begin with A2.
Define a(u, v, x) = A2(u, v, x, y)/τp(y − u), which is just A(0)(x − v,u − v)

of (4.70). Therefore,

a(u, v, x) ≤ Cβ

|||v − u|||q |||x − v|||q ,(4.71)

and A2 obeys (4.23) with q1 = q2 = q and K = Cβ . For A1, recalling the
definition of H in (4.33), we see that A1(u, v, x, y) obeys the same bound as
Cβτp(u − v)H(u, v, x, y). By (4.34), A1 obeys (4.23) with K = Cβ .

It then follows from Lemma 4.1 that, for N ≥ 1,

0 ≤ ψ(N)
p (x) ≤ M(N)(x, x) ≤ (Cβ)N

|||x|||2q
.(4.72)

The factor βN here arises from the factors β present in A(0) and in each of the
N − 1 factors of A(i). This gives an adequate bound for N ≥ 2. To complete the
proof, it suffices to argue that for N = 1 the power of β in (4.72) can be replaced
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by β2 when x 
= 0. This follows from the observation that for N = 1 and x 
= 0, at
least two diagram lines in M(1)(x, x) must undergo a nontrivial displacement, and
each of these lines contributes a factor β . �

PROOF THAT limN→∞ R
(N)
p (x) = 0 UNDER THE HYPOTHESES OF PROPO-

SITION 1.8(c). This is an immediate consequence of (4.67), (4.69), (4.72) and
Proposition 1.7(i). �

5. Convolution bounds. In this section, we prove Proposition 1.7.

PROOF OF PROPOSITION 1.7. (i) By definition,

|(f ∗ g)(x)| ≤ ∑
y:|x−y|≤|y|

1

|||x − y|||a
1

|||y|||b + ∑
y:|x−y|>|y|

1

|||x − y|||a
1

|||y|||b .(5.1)

Using a ≥ b and the change of variables z = x − y in the second term, we see that

|(f ∗ g)(x)| ≤ 2
∑

y:|x−y|≤|y|

1

|||x − y|||a
1

|||y|||b .(5.2)

In the above summation, |y| ≥ 1
2 |x|. Therefore, for a > d , we have

|(f ∗ g)(x)| ≤ 2b+1

|||x|||b
∑

y:|x−y|≤|y|

1

|||x − y|||a ≤ C|||x|||−b.(5.3)

Suppose now that a < d and a + b > d . In this case, we divide the sum in (5.2)
according to whether 1

2 |x| ≤ |y| ≤ 3
2 |x| or |y| ≥ 3

2 |x|. The contribution to (5.2) due
to the first range of y is bounded above, as in (5.3), by

2b+1

|||x|||b
∑

y:|x−y|≤3|x|/2

1

|||x − y|||a ≤ C

|||x|||b |||x|||d−a,(5.4)

as required. When |y| ≥ 3
2 |x|, we have |y − x| ≥ |y| − |x| ≥ |y|/3. Therefore, the

contribution to (5.2) due to the second range of y is bounded above by

3a · 2
∑

y:|y|≥3|x|/2

1

|||y|||a+b
≤ C

|||x|||a+b−d
.(5.5)

This completes the proof.
(ii) By (i), the convolution of g with the error term of f gives a result that is

O(BC|||x|||−(d−2+s)). This leaves us with the convolution of the main term with g,
which is given by∑

y∈Zd

g(y)
A

|||x − y|||d−2

= A
∑

y g(y)

|||x|||d−2 + ∑
y∈Zd

g(y)

[
A

|||x − y|||d−2 − A

|||x|||d−2

]
.

(5.6)
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We denote the second term by X, and prove that X is an error term.
We denote the contributions to X due to |y| > 1

2 |x| and |y| ≤ 1
2 |x| by X1 and X2,

respectively. Then X1 is bounded above by

|X1| ≤ AC
∑

y:|y|>|x|/2

1

|||y|||d+s

[
1

|||x − y|||d−2 + 1

|||x|||d−2

]
.(5.7)

Using part (i) of the proposition, the first term of (5.7) is bounded above by

22+sAC

|||x|||2+s

∑
y∈Zd

1

|||y|||d−2

1

|||x − y|||d−2 ≤ O

(
AC

|||x|||d−2+s

)
.(5.8)

The second term of (5.7) obeys

AC

|||x|||d−2

∑
y:|y|>|x|/2

1

|||y|||d+s
= O

(
AC

|||x|||d−2+s

)
.(5.9)

Combining these gives X1 = O(AC|||x|||−(d−2+s)), so X1 is an error term.
For X2, there is no contribution from y = 0, and hence no contribution

from x = 0, and also x = y 
= 0 is impossible. Therefore |||x||| = |x| and |||x −y||| =
|x − y|. Let t = |x|−1|x − y| − 1, so that

X2 = A
∑

y:0<|y|≤|x|/2

g(y)|x|2−d [
(1 + t)2−d − 1

]
.(5.10)

We expand the difference (1 + t)2−d − 1 into powers of y. Because of the
Z

d -symmetry of g(y), odd powers of y in the expansion give no contribution.
This leads to the estimate

|X2| ≤ ∑
y:0<|y|≤|x|/2

|g(y)|cA|y|2
|x|d .(5.11)

Therefore, recalling that s2 = s ∧ 2, we have

|X2| ≤ cAC

|x|d
∑

y:0<|y|≤|x|/2

|y|2
|y|d+s

≤
{

cAC|x|−d−2+s2, s 
= 2,
cAC|x|−d log(|x| + 2), s = 2.

(5.12)

This completes the proof. �

6. The random walk two-point function. In this section, we prove Proposi-
tion 1.6. In the process, we obtain estimates that will be essential in Section 7.
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6.1. A uniform bound. We begin with an elementary proof of the bound

δ0,x ≤ Sµ(x) ≤ δ0,x + O(L−d),(6.1)

which is uniform in µ ≤ 1 and x ∈ Z
d . The lower bound of (6.1) is immediate. For

the upper bound, it suffices to consider µ = 1.
In preparation, and for later use, we first note some properties of D. By

Definition 1.1, D(x) ≤ O(L−d) and σ ∼ const · L. In addition, it is proved in
Appendix A of van der Hofstad and Slade (2002) that there are constants δ2 and δ3,
such that for L sufficiently large,

1 − D̂(k) ≥ δ2L
2|k|2 for |k| ≤ L−1,(6.2)

1 − D̂(k) ≥ δ3 for k ∈ [−π,π ]d with |k| ≥ L−1.(6.3)

To prove the upper bound of (6.1), we rewrite [1 − D̂(k)]−1 as 1 + D̂(k) +
D̂(k)2[1 − D̂(k)]−1, to obtain

S1(x) =
∫
[−π,π ]d

ddk

(2π)d

e−ik·x

1 − D̂(k)

= δ0,x + D(x) +
∫
[−π,π ]d

ddk

(2π)d

D̂(k)2e−ik·x

1 − D̂(k)
.

(6.4)

The second term is O(L−d), so it remains to prove that the last term is also
O(L−d). We estimate the absolute value of the last term by taking absolute values
inside the integral, and then dividing the integral into two parts, according to
whether |k| is greater than or less that L−1. The integral over small k is easily
seen to be O(L−d), using |D̂(k)| ≤ 1 and (6.2). Also, using (6.3), the integral over
large k is bounded by δ−1

3 (2π)−d
∫
[−π,π ]d D̂(k)2 = δ−1

3
∑

y D(y)2 = O(L−d).
This proves (6.1).

The asymptotic formula (1.37) states that

S1(x) = ad

σ 2

1

|||x|||d−2 + O

(
1

|||x|||d−α

)
.(6.5)

Once (6.5) has been proved, the bound (1.36) will then follow easily. In fact,
it suffices to prove (1.36) for µ = 1, and this follows from (6.1) for |x| ≤ L

and from (6.5) for |x| > L. So it remains to prove (6.5). Note that (6.5) follows
immediately from (6.1) for x = 0. We may therefore take x 
= 0 and hence
|||x||| = |x|.

For |x| ≤ L1+α/d , the ratio of the error term to the main term in (6.5) is at
least L2|x|α−2 ≥ Lα(1−2/d), so the error term dominates the main term. Moreover,
the error term is at least L−d+α2/d . Since S1(x) ≤ O(L−d) for x 
= 0 by (6.1),
this implies (6.5) for |x| ≤ L1+α/d . It therefore suffices, in what follows, to restrict
attention to |x| ≥ L1+α/d . Although we may take µ = 1 to prove (6.5), we consider
also 0 ≤ µ < 1, as this will be used in Section 7.
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6.2. An integral representation. To prove (6.5), we will use an integral
representation for Sµ(x). Let

It,µ(x) =
∫
[−π,π ]d

ddk

(2π)d
e−ik·x e−t[1−µD̂(k)].(6.6)

By (1.21), Ŝµ(k) = [1 − µD̂(k)]−1. Thus, for 0 ≤ µ ≤ 1 we have the integral
representation

Sµ(x) =
∫
[−π,π ]d

ddk

(2π)d

e−ik·x

1 − µD̂(k)

=
∫
[−π,π ]d

ddk

(2π)d
e−ik·x

∫ ∞
0

dt e−t[1−µD̂(k)] =
∫ ∞

0
dt It,µ(x).

(6.7)

The integration variable t plays the role of a time variable, with the dominant
contribution to S1(x) due to t ≈ |x|2/σ 2. With this in mind, we write Sµ(x) =
S<

µ (x;T ) + S>
µ (x;T ) with

S<
µ (x;T ) =

∫ T

0
dt It,µ(x), S>

µ (x;T ) =
∫ ∞
T

dt It,µ(x),(6.8)

and choose T to be equal to

Tx =
( |x|

σ

)2−2α/d

,(6.9)

where α is the small parameter of Proposition 1.6.

6.3. Integration over [T,∞]. Let

pt(x) =
(

d

2πσ 2t

)d/2

exp
(
−d |x|2

2tσ 2

)
.(6.10)

In this section, we prove that for |x| ≥ L1+α/d and L sufficiently large depending
on α, we have

S>
1 (x;Tx) =

∫ ∞
Tx

It,1(x) dt =
∫ ∞
Tx

pt (x) dt + O

(
L−α

|x|d−α

)
.(6.11)

The proof will make use of the following lemma, which extracts the leading term
from It,1(x).

LEMMA 6.1. Let d > 2, and suppose D obeys Definition 1.1. Then there are
finite L-independent constants τ and c1 such that for t ≥ τ ,

It,1(x) = pt(x) + rt (x) with |rt (x)| ≤ c1 L−d t−d/2−1 + e−tδ3 .(6.12)
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Before proving Lemma 6.1, we use it to prove (6.11). By (6.12), we have∣∣∣∣
∫ ∞
Tx

dt rt (x)

∣∣∣∣ ≤ cL−d T −d/2
x + δ−1

3 e−δ3Tx .(6.13)

The second term can be absorbed into the first term. In fact, since Tx ≥
cL2(α/d)(1−α/d), for any positive N we have

e−δ3Tx ≤ cN

T N
x

= cN

L−d

T
(d+2)/2
x

Ld

T
N−(d+2)/2
x

,(6.14)

with the last factor less than 1 for L and N sufficiently large depending on α. In
addition, since |x| > L and d > α, the first term of (6.13) is at most cL−α|x|α−d .
This proves (6.11).

PROOF OF LEMMA 6.1. By Taylor’s theorem and symmetry, for k ∈ [−π,π ]d
we have

1 − D̂(k) = σ 2|k|2
2d

+ R(k) with |R(k)| ≤ const · L4|k|4.(6.15)

Let k2
t = 4dσ−2t−1 log t . We write It,1(x) = ∑4

j=1 I
(j)
t (x) with

I
(1)
t (x) =

∫
Rd

ddk

(2π)d
e−ik·x−tσ 2|k|2/(2d) = pt(x),(6.16)

I
(2)
t (x) = −

∫
kt<|k|<∞

ddk

(2π)d
e−ik·x−tσ 2|k|2/(2d),(6.17)

I
(3)
t (x) =

∫
|k|<kt

ddk

(2π)d
e−ik·x−tσ 2|k|2/(2d) (e−tR(k) − 1),(6.18)

I
(4)
t (x) =

∫
k∈[−π,π ]d : |k|>kt

ddk

(2π)d
e−ik·x e−t[1−D̂(k)].(6.19)

We set rt (x) = ∑4
j=2 I

(j)
t (x) and show that rt (x) obeys (6.12). By definition,

|I (2)
t (x)| ≤

∫
kt<|k|<∞

ddk

(2π)d
e−tσ 2|k|2/(2d)

≤ c(tσ 2)−d/2e−tσ 2 k2
t /(4d) ≤ cL−d t−d/2−1.

(6.20)

For I
(3)
t (x), we note that for |k| < kt it follows from (6.15) and the definition of kt

that |tR(k)| ≤ c(log t)2/t , which is less than 1 for sufficiently large t . Using the
bound |ex − 1| ≤ e|x| for |x| ≤ 1, and increasing the integration domain to R

d in



CRITICAL TWO-POINT FUNCTIONS 399

the last step, we have

|I (3)
t (x)| ≤ c

∫
|k|<kt

ddk

(2π)d
e−tσ 2|k|2/(2d) |tR(k)|

≤ ctL4
∫
|k|<kt

ddk

(2π)d
e−tσ 2|k|2/(2d) |k|4 ≤ cL−dt−d/2−1.

(6.21)

For I
(4)
t (x), we divide the integration domain according to whether |k| is greater

than or less than L−1. By (6.2), the contribution due to |k| ≤ L−1 is at most
cL−d t−d/2−1. By (6.3), the contribution due to |k| > L−1 is at most e−tδ3 . �

6.4. Integration over [0, T ]. In this section, we prove the following lemma,
which will also be used in Section 7.

LEMMA 6.2. Let |x| ≥ L1+α/d and T ≤ Tx . Then for 0 ≤ µ ≤ 1 and
sufficiently large L depending on α,

S<
µ (x;T ) =

∫ T

0
It,µ(x) dt ≤ 1

|x|d+2 .(6.22)

We prove this using the following lemma, whose proof involves a large
deviations argument.

LEMMA 6.3. For x ∈ Z
d , t ≥ 0 and t0 = dL‖x‖∞/(2σ 2),

0 ≤ It,1(x) ≤
{

exp
[−‖x‖∞/L + σ 2t/(dL2)

]
, 0 ≤ t < ∞,

exp
[−d‖x‖2∞/(4σ 2t)

]
, t ≥ t0.

(6.23)

PROOF OF LEMMA 6.2 ASSUMING LEMMA 6.3. Expanding the exponential

etµD̂(k) in (6.6) and interchanging the integral and sum ( justified by absolute
convergence) gives

It,µ(x) = e−t
∞∑

n=0

(tµ)n

n!
∫
[−π,π ]d

ddk

(2π)d
e−ik·xD̂(k)n

= e−t
∞∑

n=0

(tµ)n

n! D∗n(x),

(6.24)

where D∗n denotes the n-fold x-space convolution. Because D∗n(x) is nonnega-
tive, this representation immediately implies the nonnegativity of It,µ(x), together
with its monotonicity in µ. Therefore S<

µ (x;T ) is increasing in µ and in T , and it
suffices to prove (6.22) for µ = 1 and T = Tx .
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In this case, (6.23) gives∫ Tx

0
dt It,1(x)

≤
∫ t0

0
dt exp

[
−‖x‖∞

L
+ σ 2t

dL2

]
+

∫ Tx

t0

dt exp
[
−d‖x‖2∞

4σ 2t

]
.

(6.25)

The first integral can be performed exactly. For the second, we use the fact that
for a ≥ T , ∫ T

0
dt e−a/t = a

∫ ∞
a/T

duu−2e−u ≤ T 2

a
e−a/T .(6.26)

Now choose T = Tx and a = d‖x‖2∞/(4σ 2) ≥ Tx , for |x| ≥ L1+α/d . This gives

∫ Tx

0
dt It,1(x) ≤ c exp

[
−‖x‖∞

2L

]
+ 4σ 2

d‖x‖2∞
T 2

x exp
[
−d‖x‖2∞

4σ 2Tx

]

≤ c exp
(
−c

|x|
L

)
+ c

( |x|
L

)2−4α/d

exp
(
−c

( |x|
L

)2α/d)
.

(6.27)

For |x| ≥ L1+α/d , we have |x|/L ≥ |x|(α/d)/(1+α/d). The integral
∫ Tx

0 dt It,1(x)

therefore decays at least as fast as a constant multiple of an exponential of a power
of |x|, and hence eventually decays faster than |x|−(d+2). This completes the proof
of (6.22). �

PROOF OF LEMMA 6.3. Since D is supported only on ‖x‖∞ ≤ L, we have
D∗n(x) = 0 for ‖x‖∞ > nL. Since 0 ≤ D∗n(x) ≤ 1 for all n, we can therefore
bound (6.24) using the inequality

∞∑
n=N

tn

n! ≤ et t
N

N ! ≤ et

(
et

N

)N

(6.28)

as

It,1(x) = e−t
∑

n≥‖x‖∞/L

tn

n!D
∗n(x) ≤ e−t

∑
n≥‖x‖∞/L

tn

n!

≤
(

et

‖x‖∞/L

)‖x‖∞/L

.

(6.29)

Thus, It,1(x) decays in |x| more rapidly than any exponential, and we may define
the quantity

φt(s) = ∑
x∈Zd

esx1 It,1(x), s ∈ R.(6.30)
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Using (6.24) and symmetry of D gives

φt(s) = e−t
∞∑

n=0

tn

n!
∑
x

esx1D∗n(x) = e−t
∞∑

n=0

tn

n!
[∑

x

esx1D(x)

]n

= exp

[
t

∑
x

D(x)[cosh(sx1) − 1]
]
.

(6.31)

Given x ∈ Z
d , there exists an x̃ ∈ Z

d such that x̃1 = ‖x‖∞, ‖x̃‖∞ = ‖x‖∞ and
It,1(x̃) = It,1(x). Therefore φt(s) ≥ esx̃1It,1(x̃) and hence It,1(x) ≤ e−s‖x‖∞φt(s).
The Z

d -symmetry and the formula (6.31) for φt(s) then give

It,1(x) ≤ exp

[
−s‖x‖∞ + t

∑
y

D(y)[cosh(sy1) − 1]
]
.(6.32)

When s ≤ L−1, we have s|y1| ≤ 1 for any y that makes a nonzero contribution to∑
y D(y)[cosh(sy1) − 1]. Since coshx ≤ 1 + x2 for |x| ≤ 1, we obtain

0 ≤ ∑
y

D(y)[cosh(sy1) − 1] ≤ s2
∑
y

D(y)y2
1 = s2 σ 2

d
.(6.33)

Thus, for s ≤ L−1 we have

It,1(x) ≤ exp
[−s‖x‖∞ + σ 2td−1s2]

.(6.34)

Putting s = L−1 in (6.34) gives the first bound of (6.23).
The minimum of the right-hand side of (6.34) is attained at s = d‖x‖∞/(2σ 2t),

but we may use (6.34) only for s ≤ 1/L. This condition will be valid provided
t ≥ t0. Using the minimal value of s in (6.34) gives the second bound of (6.23).

�

6.5. Proof of the asymptotics. We now prove (6.5). As discussed below (6.5),
it suffices to consider |x| ≥ L1+α/d . By (6.11) and (6.22),

S1(x) =
∫ ∞
Tx

pt(x) dt + O

(
L−α

|x|d−α

)
, |x| ≥ L1+α/d.(6.35)

Let R(x) = ∫ Tx

0 pt(x) dt . Since
∫ ∞

0 pt(x) dt = adσ−2|x|2−d , it suffices to show
that

R(x) ≤ O

(
1

|x|d
)
, |x| ≥ L1+α/d .(6.36)

By definition,

|R(x)| ≤ cL−d
∫ Tx

0
dt t−d/2e−c′|x|2/(tL2).(6.37)
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To estimate the right-hand side, we use the fact that∫ T

0
dt t−b e−a/t = a1−b

∫ ∞
a/T

ub−2e−u du

≤
{

a−1T 2−be−a/T , 1 < b ≤ 2,

C(b)a1−be−a/2T , b > 2,

(6.38)

if a ≥ T > 0 and b > 1, where C(b) is a b-dependent constant. This inequality can
be proved for 1 < b ≤ 2 using ub−2 ≤ (a/T )b−2. For b > 2, it can be proved using
e−u ≤ e−u/2e−a/2T .

We apply (6.38) with a = c|x|2/L2, which is greater than Tx when |x| ≥ L1+α/d

and L is large. The exponent b equals d/2, which is greater than 1 for d > 2. The
result is that

|R(x)| ≤ cL−d e−c′′(|x|/L)2α/d
( |x|

L

)q(d)

,(6.39)

for some power q(d). For |x| ≥ L1+α/d sufficiently large, we therefore have

|R(x)| ≤ cL−d

(
L

|x|
)d

≤ c

|x|d .(6.40)

This completes the proof of (6.5) if |x| ≥ L1+α/d , and hence for all x. �

7. The main error estimate. In this section, we prove Proposition 1.9. We
first obtain bounds on Ez(x) and Êz(k) in Section 7.1, and then complete the proof
of Proposition 1.9 in Section 7.2.

7.1. Bounds on Ez.

LEMMA 7.1. Under the assumptions of Proposition 1.9,

|Ez(x)| ≤



cγ, x = 0,
cγL−d, 0 < |x| < 2L,
cγ |x|−(d+2+κ), |x| ≥ 2L.

(7.1)

PROOF. By virtue of its definition in (1.28), we can write

Ez(x) = (1 − λz)δ0,x − (D ∗ Nz)(x)(7.2)

with

Nz(x) = [
(1 − λz) + λzz�̂z(0)

]
δ0,x − λzz�z(x).(7.3)

To derive bounds on Nz and thus on Ez, we first derive bounds on �z and λz.
Assuming |�z(x)| ≤ γ |||x|||−(d+2+κ), we have∑

y

|�z(y)| ≤ cγ,
∑
y

|y|2 |�z(y)| ≤ cγ.(7.4)
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Also, by the formula for λz of (1.30) and our assumption that z ≤ C, it follows that

λz = O(1), λz − 1 = O(γ ).(7.5)

The bounds (7.4) and (7.5) imply

Nz(x) = O(γ )δ0,x + O(γ |||x|||−(d+2+κ)),
∑
x

Nz(x) = O(γ ),(7.6)

and hence

|(D ∗ Nz)(x)| =
∣∣∣∣∣

∑
|y|≤L

Nz(x − y)D(y)

∣∣∣∣∣
= ∑

|y|≤L

|Nz(x − y)|O(L−d) = O(γL−d).

(7.7)

By (7.2), this proves (7.1) for 0 ≤ |x| < 2L. For |x| ≥ 2L, we note that |x − y| ≥
|x|/2 when |y| ≤ L. For such y, (7.6) implies |Nz(x − y)| = O(γ |x|−(d+2+κ)),
and therefore

|(D ∗ Nz)(x)| =
∣∣∣∣∣

∑
|y|≤L

Nz(x − y)D(y)

∣∣∣∣∣
= O

(
γ

|x|d+2+κ

) ∑
|y|≤L

D(y)

= O

(
γ

|x|d+2+κ

)
.

(7.8)

�

LEMMA 7.2. Let κ2 = κ ∧ 2. As k → 0, under the assumptions of Proposi-
tion 1.9,

|Êz(k)| ≤
{

cγL2+κ2|k|2+κ2, κ 
= 2,

cγ |k|4 (L4 + log |k|−1), κ = 2.
(7.9)

PROOF. The proof proceeds as in the proof of Lemma 2.3. Since Êz(0) =
∇2Êz(0) = 0, as in (2.27) and (2.28) we have

|Êz(k)| ≤ c|k|4 ∑
x:|x|≤|k|−1

|x|4 |Ez(x)|

+ c
∑

x:|x|>|k|−1

(1 + |k|2|x|2) |Ez(x)|.
(7.10)

A calculation using Lemma 7.1 then implies that for |k| ≤ (2L)−1,

|Êz(k)| ≤
{

cγ
[
L4|k|4 + |k|2+κ2

]
, κ 
= 2,

cγ
[
L4|k|4 + |k|4 log |k|−1]

, κ = 2.
(7.11)
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The above bounds imply (7.9) for |k| ≤ (2L)−1. The case |k| > (2L)−1 is bounded
simply as

|Êz(k)| ≤ ∑
x

|Ez(x)| = O(γ ),(7.12)

which satisfies (7.9) for |k| > (2L)−1. �

7.2. Proof of Proposition 1.9. To prove Proposition 1.9, it suffices to consider
the case of small α. The proof is divided into three cases, according to the value
of x. We first assume κ 
= 2, and comment on the minor modifications for κ = 2 at
the end.

Case 1. x = 0. The uniform bound (6.1) on Sµz(x) implies that∣∣(Ez ∗ Sµz)(0)
∣∣ ≤ |Ez(0)| + O(L−d)

∑
y

|Ez(y)|.(7.13)

Lemma 7.1 implies
∑

y |Ez(y)| = O(γ ), and hence (7.13) is O(γ ) and satis-
fies (1.49).

Case 2. 0 < |x| ≤ L1+α/(d+κ2). For arbitrary x 
= 0, it follows from Lemma 7.1
and (6.1) that

∣∣(Ez ∗ Sµz)(x)
∣∣ =

∣∣∣∣∣Ez(x)Sµz(0) + ∑
y:y 
=x

Ez(y)Sµz(x − y)

∣∣∣∣∣
≤ O(γL−d) + ∑

y

|Ez(y)|O(L−d)

= O(γL−d).

(7.14)

This proves the first bound of (1.49). Also, when 0 < |x| ≤ L1+α/(d+κ2), (7.14)
implies ∣∣(Ez ∗ Sµz)(x)

∣∣ = O(γL−d)

= |x|d+κ2−α

Ld
O

(
γ

|x|d+κ2−α

)

≤ O

(
γLκ2

|x|d+κ2−α

)
.

(7.15)

Case 3. |x| > L1+α/(d+κ2). We fix T = (
|x|
2σ

)2−2α/(d+κ2), which is equal to Tx/2
of (6.9) with a smaller α. We then define X1 and X2 by(

Ez ∗ Sµz

)
(x) = ∑

y

Ez(x − y)S<
µz

(y;T ) + ∑
y

Ez(x − y)S>
µz

(y;T )

= X1 + X2.

(7.16)
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The contribution X1 is further divided as

X1 = ∑
y:|y|≤|x|/2

Ez(x − y)S<
µz

(y;T ) + ∑
y:|y|>|x|/2

Ez(x − y)S<
µz

(y;T )

= X11 + X12.

(7.17)

It remains to estimate X11, X12 and X2.
For X12, by our choice of T we can use (6.22). Since

∑
y |Ez(y)| = O(γ ), we

obtain

|X12| ≤ ∑
y:|y|>|x|/2

|Ez(x − y)| 1

|y|d+2

≤ ∑
y

|Ez(x − y)|O
(

1

|x|d+2

)

= O

(
γ

|x|d+2

)
.

(7.18)

For X11, we use (1.36) to obtain

S<
µz

(y;T ) ≤ Sµz(y)

≤ δ0,y + O

(
1

L2−α|||y|||d−2

)
.

(7.19)

Since |x − y| ≥ |x|/2 ≥ 2L (for large L), the third bound of Lemma 7.1 gives

|X11| ≤
[

1 + ∑
y:|y|≤|x|/2

O

(
1

L2−α|||y|||d−2

)]
O

(
γ

|x|d+2+κ

)

≤ O

(
γ

|x|d+κ

)
.

(7.20)

To control X2, we use the integral representation (6.8) for S>
µz

to write

X2 = (
Ez ∗ S>

µz

)
(x) =

∫ ∞
T

dt
(
It,µz ∗ Ez

)
(x)

=
∫ ∞
T

dt

∫
[−π,π ]d

ddk

(2π)d
e−ik·x Ît,µz(k)Êz(k).

(7.21)

By (6.6), Ît,µz(k) = e−t[1−µzD̂(k)]. It can be argued as in the paragraph below (2.7)
that µz ∈ [0,1], and therefore 1 − µzD̂ ≥ [1 − D̂]/2. It then follows from
Lemma 7.2 that

|X2| ≤
∫ ∞
T

dt

∫
[−π,π ]d

ddk

(2π)d
e−t[1−D̂(k)]/2 cγL2+κ2|k|2+κ2 .(7.22)
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We divide the k-integral according to whether |k| is greater or less than L−1, as in
the analysis of I

(4)
t (x) in Section 6.3. This gives∫

[−π,π ]d
ddk

(2π)d
e−t[1−D̂(k)]/2 |k|2+κ2

≤ O(L−(d+2+κ2))t−(d+2+κ2)/2 + O(e−δ3t ).

(7.23)

The second error term can be absorbed into the first for t ≥ T and sufficiently
large L, by arguing exactly as was done for (6.13). Performing the t-integral then
gives

|X2| ≤ O(γL−d)

∫ ∞
T

t−(d+2+κ2)/2 dt ≤ O(γLκ2−α)

|x|d+κ2−α
.(7.24)

Combining (7.18), (7.20) and (7.24) gives the desired estimate

∣∣(Ez ∗ Sµz

)
(x)

∣∣ ≤ O

(
γLκ2−α

|x|d+κ2−α

)
(7.25)

for |x| > L1+α/(d+κ2).
The case κ = 2 adds extra factors log |k|−1, | log t| and log(|x|/L) in (7.22)–

(7.25). However, the extra logarithm of (7.25) can be absorbed in |x|d+κ2−α , by
slightly increasing the exponent α of (1.49). �
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