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a b s t r a c t 

Intricate knowledge of dislocation networks in metals has proven paramount in understanding the constitutive 

behaviour of these materials but current experimental methods yield limited information on the characteristics 

of these networks. Recently, the isotropic anelastic response of metals has been used to investigate complex dis- 

location networks through the well-known phenomenon that the observed elastic constants are influenced by 

dislocations. Considering the dependence of the behaviour of a Frank-Read (FR) source on its initial dislocation 

character and using discerning characteristics of dislocations, i.e. Burgers vector, line sense and slip system, the 

present paper takes dislocation character, crystal structure and dislocation network geometry into account and 

obtains the anisotropic mechanical response for a generic Poisson’s ratio. In this work, the tensile test tangent 

moduli and yield points are presented for spatially uniform and nonuniform dislocation distributions across slip 

systems. First, the reversible shear strain of the FR source is derived as a function of initial dislocation character. 

The area swept by a mobile and initially straight dislocation segment pinned at both ends is given as an ex- 

plicit function of the line stress. Secondly, the anisotropic anelastic strain contribution of FR sources to the total 

pre- and at-yield strain in single crystallites is calculated. For a given normal stress and superposition of the prin- 

cipal infinitesimal linear elastic lattice strain and anelastic dislocation strain, the tangent moduli are presented. 

The moduli and the inception of plastic flow have a notable dependence on initial dislocation character, spatial 

dislocation distribution and loading direction. 
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. Introduction 

It is well-known that the mechanical deformation of metals is

hiefly governed by the generation, glide and storage of dislocations.

ost-yield mechanical deformation is commonly captured in work hard-

ning models, e.g. Kocks and Mecking [1] , Bergström [2,3] and internal-

ariable models [4,5] , which make use of average quantities, e.g. the

otal dislocation density, average storage distance and average inter-

ction range. Lesser studied is the contribution of dislocations to the

re-yield constitutive behaviour. The nonlinear pre-yield mechanical

ehaviour, as observed by [6–10] , is due to an additional strain com-

onent on top of the elastic lattice strain during loading and unload-

ng. First Eshelby [11] and later Koehler and DeWit [6] connected the

pparent elastic constants, which are lower than the theoretical con-

tants, to the bowing out of pinned dislocation segments. Knowledge

f pre-yield mechanical behaviour has already proven important in the

esign of forming methods [12] , micro-mechanical systems [13] and ul-

rasonic measurement techniques [14] . An outstanding example is the

hysical-phenomenological full-field numerical crystal plasticity model
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f isotropic anelasticity by Torkabadi et al. [12] . However, it has not

een possible to accurately predict the apparent elastic constants after

lastic deformation [9] . 

At temperatures below about one-third of the melting point of met-

ls, movement of dislocations is the dominant mechanism for anelastic

nd inelastic deformation [15] . It is widely accepted that under these

onditions for single crystallites, the constitutive behaviour is entirely

overned by the dynamics of dislocations. A key microstructural feature

s the dislocation network. The dislocation structure in the network is

omplex, with a distribution of dislocation link lengths. Inelastic defor-

ation is considered by treating a dislocation model of the statistical

istribution of dislocation link lengths [16] . The probability of release

s determined by the link length; only certain link lengths with low line

tresses contribute to inelastic deformation [16,17] . Closed-form expres-

ions are found for quasi-static loading conditions, where a range of

egments are activated simultaneously [16–19] . Anelastic deformation

s governed by the same principles, but for static loading conditions only

he longest segments are expected to activate and determine the critical

hear stress. However, the Taylor relation [20] still holds on the level
rialia Inc. This is an open access article under the CC BY license 
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f single crystallites, which is often interpreted as describing the critical

hear stress needed to free (or activate) dislocations with the average

egment length [21] . It thus is necessary to use average statistical quan-

ities, which characterize the ensemble of dislocations in the crystallite,

hen one constructs an elastic-anelastic constitutive model for static

oading conditions. 

Recently, Van Liempt and Sietsma [8] showed that the pre-yield me-

hanical behaviour is a measure for the average properties of the disloca-

ion network which they characterized by the total dislocation density

nd the average dislocation segment length. The method championed

y Arechabaleta et al. [9,10] allows for obtaining information on the

haracteristics of a dislocation network via mechanical testing. How-

ver, the crystallographic texture of a polycrystalline material is only

aken into account by the Taylor factor and the assumed circular dislo-

ation loop shape is only valid for materials with Poisson’s ratio 𝜈 = 0 ,
.e. highly compressible materials. Hereby, for one, the model predicts

n isotropic anelastic response for Poisson’s ratio 𝜈 ∼ 0 , and secondly,

etrieves only spatially averaged quantities on a mesoscale. 

We envision a dislocation network as a continuous structure con-

isting of discrete dislocation segments delimited by microstructural

eatures like precipitates, solute atoms, grain boundaries and interac-

ion interacting with adjacent dislocation segments within the same

et [10,22] . Those points of interaction, which include all microstruc-

ural defects that impede local dislocation motion, are commonly

nown as pinning points where dislocation motion is locally im-

eded. The motion of a given dislocation segment, i.e. a straight dis-

ocation line under zero applied shear stress, delimited by pinning

oints, was first described by Frank and Read and is known as a

rank-Read (FR) source [23] . When the FR source bows out on its glide

lane and not yet attains its critical shape, the shear strain contribu-

ion is reversible. This reversible strain contribution affects the appar-

nt elastic constants and is termed the anelastic dislocation strain in this

ork. As the FR source attains its critical shape, the source is activated

nd the dislocation loop, if unimpeded, keeps expanding. The current

efinition of “anelastic ” and “anelasticity ” by Li and Wagoner [24] is

dopted here: a mode of deformation that is mechanically recoverable

nd energetically dissipative, where for metals, nonlinear elasticity is

mplicit because of the bowing out of pinned dislocation segments. Load-

ng/Unloading hysteresis thus is due to dissipation and the bow-out

odel captures the anelastic strain for a given stress state in metallic

rystallites. 

The circular equilibrium shape of the FR source under an applied

tress was first discussed by Frank and Read [23] , and Schoeck [25] .

owever, for isotropic linearly elastic materials, it is well-known that

he elastic energies per unit segment length of edge and screw dis-

ocations are unequal for a non-zero Poisson’s ratio. Therefore, a

ixed-character dislocation experiences an aligning torque towards

ts screw orientation because the self-energy of the edge dislocation

s greater than the self-energy of the screw dislocation. Therefore,

he equilibrium shape of FR sources in metals is non-circular. Firstly,

eWit and Koehler [26] obtained a parametric function for the static

quilibrium shape of the FR source as a function of the self-energy by cal-

ulus of variations. Following their seminal work [26] , Kovacs [27] for-

ulated a physical yield criterion depending on the initial disloca-

ion character of the FR source. More recently, Cash and Cai [14] in-

estigated the dislocation contribution to acoustic non-linearity in or-

er to non-destructively monitor plastic deformation. They presented

n implicit analytical expression for the anelastic dislocation shear

train contribution of initially straight edge and screw segments. Know-

ng the anelastic shear strain per FR source, Koehler and DeWit [6] ,

nd Agrawal and Verma [7] presented in their seminal works the

pparent Young’s moduli for face-centered and body-centered cubic

FCC and BCC) crystallites, respectively. Nearly all crystals are elas-

ically anisotropic, however the framework that emerges by assum-

ng elastic isotropy is useful and even reasonably accurate for most

rystals [28] . 
2 
Current models [6–10] assume a uniform dislocation distribution

ver slip systems. Hereby, the models of Refs. [6,7] predict a lin-

ar anelastic mechanical response with cubic symmetry. The principal

nelastic dislocation strain, however, increases non-linearly with the ap-

lied normal stress. Therefore, the tangent modulus is an appropriate

easure. The models of Refs. [8–10] predict a non-linear mechanical

esponse but with isotropic symmetry. However, it is trivial that the

ocal response of a given crystallite depends on its spatially uniform or

on-uniform dislocation distribution over slip systems. Using discerning

haracteristics of dislocations, i.e. Burgers vector, line sense and slip sys-

em, we take the crystal structure into account and obtain an expression

or the anisotropic anelastic mechanical response. 

In this work, we present an analytical model of the anisotropic tan-

ent moduli and the yield points for nonuniform dislocation networks

n single crystallites. First, the works by DeWit and Koehler [26] , and

ash and Cai [14] are extended with an explicit formulation of the area

wept by a single FR source as a function of the applied shear stress.

e derive an explicit analytical expression for the dislocation charac-

er at both pinning points as a function of the line stress. Secondly, the

ehaviour of crystallites is considered. The dislocation network is de-

cribed by the dislocation characters, densities and segment lengths per

lip system. The spatial correlation is given in discrete terms of dis-

ocation densities with a given character on individual slip systems.

he anelastic dislocation strain contribution is derived. Finally, com-

ining the elastic and the anelastic mechanical response, we present the

re- and at-yield mechanical behaviour of crystallites as a function of

he loading direction. 

A set of convenient formulae is presented, where every simplifica-

ion is made to find the closed-form expression for the tangent moduli

nd yield strength of cubic crystals. We are unaware of any other publi-

ation which presents such an exhaustive treatise of tangent moduli of

ubic crystallites without invoking additional phenomenological asser-

ions as made by e.g. Yoshida et al. [29] and Sun and Wagoner [30] . The

ormer [29] include the modulus degradation by varying the instanta-

eous modulus as an exponential function of strain. The latter [30] pro-

ose a Quasi-Plastic-Elastic model, which uses a two-yield-surface plas-

icity theory; a two-surface constitutive model in which the inner sur-

ace defines the transition between the linear and non-linear elasticity

nd the outer surface gives the yield criteria. Aforementioned models

re built based on computational convenience and lack a physical ba-

is [31] . For recent and exhaustive discussions on anelasticity we refer

o Torkabadi [31] and Li and Wagoner [24] . Our work is based on the

nderlying mechanism of dislocation driven anelasticity, which gives a

hysical prediction with a minimum number of parameters and is com-

utationally convenient as well. The central limitation in present model

s that the self-energy must adhere to the form of equivalent elastic con-

tants [32] . Present work though is readily extended to cubic anisotropy

ollowing [32–36] , which is discussed comprehensively. 

In the following, we consider the isotropic response of polycrystalline

aterials first. Our results for various dislocation densities are compared

ith the predictions made by Van Liempt and Sietsma [8] . The effects

f compressibility and dislocation character on experimentally obtained

otal dislocation density and effective segment length are presented. Our

ethod is directly applicable for analysis of experiments as preformed

y Li and Wagoner [24] . Secondly, the anisotropic response for single

rystallites is given and validated with the initial cubic Young’s moduli

btained by Koehler and DeWit [6] , and Agrawal and Verma [7] . Then,

he effects of a heterogeneous dislocation distribution over glide planes

n the anisotropic symmetry of the apparent elastic constants and the

ield point are discussed. A limit analysis of highly compressible and

ncompressible solids is performed for initial edge and/or screw charac-

er segments. The influences of compressibility and dislocation densities

n the initial (apparent) shear modulus are given. Finally, a relevant

ngineering case is presented with Poisson’s ratio 𝜈 = 1∕3 . The feasi-

ility of experimentally obtaining information, more than previously

ossible, on dislocation networks is discussed. The elastic-anelastic
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Fig. 1. Schematic representation of a mixed character FR source 𝜙i in the light 

gray 𝑥 - 𝑦 plane with initial segment length 𝐿 , dark gray swept-out area 𝑆 and 

dislocation characters 𝜙𝛼 and 𝜙𝛽 at the pinning points. 
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onstitutive model takes account of anisotropic effects on a per-grain ba-

is and presents a significant step towards modelling of crystallograph-

cally textured cubic materials. 

. Preliminaries and notations 

Following Nordmann [37] , we apply throughout this work the di-

ect tensor notation. Zeroth-order tensors/scalars are symbolized by

talic letters (e.g. 𝑎 , 𝑏 , 𝐴 and 𝐵), first-order tensors/vectors by italic

ower case bold letters (e.g. 𝒂 = 𝑎 𝑖 𝒆 𝑖 and 𝒃 = 𝑏 𝑗 𝒆 𝑗 with basis 𝒆 ), second-

rder tensors by italic uppercase bold letters (e.g. 𝑨 = 𝐴 𝑖𝑗 𝒆 𝑖 ⊗ 𝒆 𝑗 and

 = 𝐵 𝑘𝑙 𝒆 𝑘 ⊗ 𝒆 𝑙 ) and fourth-order tensors by italic uppercase bold cal-

igraphic letters (e.g.  = 𝐴 𝑖𝑗𝑘𝑙 𝒆 𝑖 ⊗ 𝒆 𝑗 ⊗ 𝒆 𝑘 ⊗ 𝒆 𝑙 ). Moreover, the first-

rder zero tensor is given by an italic lowercase bold letter 𝒐 . In

ector-matrix notation, vectors are denoted as upright lowercase sans

erif bold letters (e.g, normal 𝗻 = 

(
𝑛 1 , 𝑛 2 , 𝑛 3 

)⊺
, with superscript ∙⊺ indi-

ating the transpose of ∙) and matrices as upright uppercase sans serif

old letters (e.g. elastic matrix 𝗖 

el ). 

For a real-valued Cartesian coordinate system and orthonormal ba-

is, e.g. �̂� 𝑖 , where the overscript ̂∙ indicates a unit vector, and origin 𝒐 ,

asic operations for tensors used are: 

1 The tensor product: 𝒂 ⊗ 𝒃 = 𝑎 𝑖 𝑏 𝑗 ̂𝒆 𝑖 ⊗ �̂� 𝑗 = 𝑪 ; 

2 The double-dot product between two second-order tensors: 

𝑨 ∶ 𝑩 = 𝐴 𝑖𝑗 𝐵 𝑘𝑙 ̂𝒆 𝑖 ⊗ �̂� 𝑗 ∶ �̂� 𝑘 ⊗ �̂� 𝑙 = 𝐴 𝑖𝑗 𝐵 𝑗𝑖 = 𝑐; 

3 The double-dot product between fourth- and second-order tensors: 

 ∶ 𝑩 = 𝐴 𝑖𝑗𝑘𝑙 𝐵 𝑚𝑛 ̂𝒆 𝑖 ⊗ �̂� 𝑗 ⊗ �̂� 𝑘 ⊗ �̂� 𝑙 ∶ �̂� 𝑚 ⊗ �̂� 𝑛 = 𝐴 𝑖𝑗𝑘𝑙 𝐵 𝑙𝑘 ̂𝒆 𝑖 ⊗ �̂� 𝑗 = 𝑪 . 

The Einstein summation convention is used where the Latin indices

e.g. 𝑖 , 𝑗, 𝑘 , 𝑙,... except 𝑥, 𝑦, 𝑧 and 𝑔) run through the values 1, 2

nd 3. Throughout this work, we choose to denote the second-order

tress and strain tensors, and derived variables by italic lowercase bold

Greek) letters (e.g. strain tensor 𝝐). Finally, for a Bravais lattice with

ranslation vectors 𝒕 𝑖 , crystal direction [ 𝑢𝑣𝑤 ] is parallel to direction

ector 𝒅 = 𝑢 𝒕 1 + 𝑣 𝒕 2 + 𝑤 𝒕 3 . 

. Method 

.1. Frank-Read sources 

We consider the differential equation of equilibrium of the

rank-Read (FR) mechanism for the case of a uniform applied shear

tress 𝝉, with components: (1) the external applied shear stress 𝝉 doing

ork on the dislocation; and (2), the potential energy changing as the

islocation bows out. In Fig. 1 , an FR source is depicted. 

The self-energy per unit length 𝑈 of a dislocation segment for an

lastically isotropic Volterra dislocation is approximated by the addition

f pure screw 𝑏 s and pure edge 𝑏 e Burgers vector components, i.e. 

 ( 𝜙) ≈ 𝑈 e + 𝑈 s = 

𝜇el 

2 

( 

𝑏 2 e 
1 − 𝜈

+ 𝑏 2 s 

) 

, (1a) 
3 
ith 

 s = ‖𝒃 ‖ cos ( 𝜙) , and 𝑏 e = ‖𝒃 ‖ sin ( 𝜙) , (1b)

here 𝜇el is the isotropic linear elastic shear modulus, 𝜙 indicates the

islocation character, i.e. it is the angle between the Burgers vector 𝒃

nd the local unit line-sense �̂�, ‖ ∙ ‖ the magnitude of the vector ∙ and

the Poisson’s ratio. Here, the start-finish/right-hand convention is

sed. Note that long-range elastic interaction and the specific energy as-

ociated with the dislocation core are neglected. The line tension model

s approximate because it considers the dislocation as a line that carries

n energy per unit length along itself, and ignores the long-range interac-

ion between different sections of the dislocation network. Only a single

R source is considered because the long-range interaction scales with

he inverse of the range. Hence why line tension and self-interaction are

ow-order approximations. Self-interaction is the elastic interaction be-

ween dislocation segments across the same dislocation line. The exact

xpression for the dislocation energy involves a double integral along

he whole loop [38,39] . In order to attain closed-form analytical expres-

ions, we solely consider line tension. Even with these approximations,

he model is able to qualitatively capture physical behaviour of disloca-

ions [28,40] , and hence is a useful model. 

Following DeWit and Koehler [26] , the static equilibrium of the FR

ource is determined by the method of the calculus of variation. Here,

he 𝑥 - 𝑦 plane is the glide plane; the initial segment with length 𝐿 lies

long the line 𝑦 = 𝑥 tan 
(
− 𝜙i 

)
, with initial dislocation character 𝜙i , is

entred on the origin {0 , 0 , 0} and is pinned at each end; the Burg-

rs vector 𝒃 is parallel to the 𝑥 -axis; the line sense of a positive edge

islocation is anti-parallel to the 𝑦 -axis; and, the unit plane normal

̂
 ≡ (

�̂�e × 𝒃 
)
∕ ‖�̂�e × 𝒃 ‖ is parallel to the 𝑧 -axis, which is defined as the

lip system with a Cartesian coordinate system and axes { 𝑥, 𝑦, 𝑧 } . The

quilibrium shape of a pinned dislocation for a shear stress 𝜏𝑥𝑧 as para-

etric functions is 

 ( 𝜙) ≡ 1 
𝜏xz 𝑏 

( 

𝑈 ( 𝜙) sin ( 𝜙) + 

𝜕𝑈 

𝜕𝜙
cos ( 𝜙) 

) 

+ 𝐶 1 , (2a) 

nd 

 ( 𝜙) ≡ 1 
𝜏xz 𝑏 

( 

𝑈 ( 𝜙) cos ( 𝜙) − 

𝜕𝑈 

𝜕𝜙
sin ( 𝜙) 

) 

+ 𝐶 2 , (2b) 

here 𝐶 1 and 𝐶 2 are the integration constants. Substituting Eq. (1) in

he equilibrium shape Eq. (2) , we obtain the normalised FR source shape

or a linear elastic isotropic material as 

𝜏xz 𝑥 ( 𝜙) 
𝜇el 𝑏 

= 

(
1 + 𝜈 cos 2 ( 𝜙) 

)
sin ( 𝜙) 

2 ( 1 − 𝜈) 
+ 

𝜏xz 𝐶 1 

𝜇el 𝑏 
, (3a) 

nd 

𝜏xz 𝑦 ( 𝜙) 
𝜇el 𝑏 

= 

( 2 − 3 𝜈 + 𝜈 cos (2 𝜙) ) cos ( 𝜙) 
4(1 − 𝜈) 

+ 

𝜏xz 𝐶 2 

𝜇el 𝑏 
, (3b)

here 𝐶 1 and 𝐶 2 are the 𝑥 - and 𝑦 -coordinates of the mid-point of the

ajor and the minor axis of the near-elliptical equilibrium shape, re-

pectively. Here, the 𝑥 - and 𝑦 -coordinates are normalized with twice

he seminal radius of curvature, which for a dislocation with character-

ndependent energy ( 𝜈 = 0 ) by Schoeck [25] is the parametric function

f a circle with radius 𝑅 = 𝜇el 𝑏 ∕(2 𝜏𝑥𝑧 ) . As the shear stress 𝜏𝑥𝑧 increases,

he radius of curvature of the dislocation loop decreases. The bowing

ut of a FR source becomes critical when the applied shear stress equals

he seminal maximum line stress 𝜏c = 𝜇el 𝑏 ∕ 𝐿 . At shear stresses higher

han the critical shear stress 𝜏c , the dislocation line stress 𝜇el 𝑏 ∕ ( 2 𝑅 ) does

ot compensate the applied shear stress and the FR source is activated.

he mixed character FR source in Fig. 1 is depicted for the critical shear

tress 𝜏c 
𝑥𝑧 

, by Kovacs [27] . Kovacs defined the critical shear stress 𝜏c 
𝑥𝑧 

s the line stress 𝜏𝑥𝑧 at which a diameter of the equilibrium shape co-

ncides with the initially straight dislocation segment, i.e. 𝐶 1 = 𝐶 2 ≡ 0 .
he critical stress 𝜏c 

𝑥𝑧 
is a function of the initial dislocation character 𝜙i 

nd Poisson’s ratio 𝜈 as well. 
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Fig. 2. The normalized critical shear stress (1 − 𝜈) 𝜏c 
xz 
𝐿 ∕( 𝜇el 𝑏 ) , the normalized 

critical difference angles Δ𝜙c 
𝛼
∕ 𝜋 and Δ𝜙c 

𝛽
∕ 𝜋 as functions of normalized initial 

character 𝜙i ∕ 𝜋 for different Poisson’s ratios 𝜈 = 0 1∕3 and 1∕2 . The values at 

𝜙i = 0 , 𝜋∕4 and 𝜋∕2 for 𝜈 = 0 , 1∕3 and 1∕2 are presented as square, triangle and 

circle symbols, respectively. 
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In order to calculate the anelastic dislocation shear strain contribu-

ion per FR source, the area 𝑆 swept by the source is needed. The area

nclosed by the initial and bowed-out segment is 

 

(
𝜏xz 

)
= 

1 
2 ∫

𝜙𝛼( 𝜏xz ) 

𝜙𝛽 ( 𝜏xz ) 

( 

𝑥 
(
𝜙′) 𝜕𝑦 (𝜙′)

𝜕𝜙′ − 𝑦 
(
𝜙′) 𝜕𝑥 (𝜙′)

𝜕𝜙′

) 

d 𝜙′, (4) 

here 𝜙𝛼 and 𝜙𝛽 represent the dislocation characters at the pinning

oints { 𝑥 𝛼, 𝑦 𝛼} and { 𝑥 𝛽 , 𝑦 𝛽} , respectively (See Fig. 1 ). To calculate the

wept area, the dislocation characters 𝜙𝛼 and 𝜙𝛽 as a function of the line

tress 𝜏𝑥𝑧 are needed. The dislocation line stays attached to both pin-

ing points when bowing out. The equilibrium shape must pass through

 𝑥 𝛼, 𝑦 𝛽} and { 𝑥 𝛽 , 𝑦 𝛽} , which serves as physical boundary conditions to

nd the coordinates of the mid-point of the major and the minor axis

f the near-elliptical equilibrium shape { 𝐶 1 , 𝐶 2 } . The two trigonometric

olynomials, which relate the 𝑥 - and 𝑦 -distance between pinning points

nd the line stress, are formulated, i.e. 

𝜏xz 𝐿 cos 
(
𝜙i 

)
𝜇el 𝑏 

= 

𝜏xz 𝑥 
(
𝜙𝛽

)
𝜇el 𝑏 

− 

𝜏xz 𝑥 
(
𝜙𝛼

)
𝜇el 𝑏 

, (5a)

nd 

𝜏xz 𝐿 sin 
(
𝜙i 

)
𝜇el 𝑏 

= 

𝜏xz 𝑦 
(
𝜙𝛼

)
𝜇el 𝑏 

− 

𝜏xz 𝑦 
(
𝜙𝛽

)
𝜇el 𝑏 

. (5b)

he domain of dislocation characters 𝜙𝛼 and 𝜙𝛽 at the pinning points

s shifted to [− 𝜋, 𝜋] by defining the difference angles Δ𝜙𝛼 ≡ 𝜙i − 𝜙𝛼
nd Δ𝜙𝛽 ≡ 𝜙𝛽 − 𝜙i . Inspecting Eq. (5) , we find that Δ𝜙𝛼 = Δ𝜙𝛽 for

i = 0 , 𝜋∕2 , 𝜋 and 3 𝜋∕2 . Hence the axes of symmetry for an initial

crew dislocation segment, with 𝜙i = 0 and 𝜋, is the line 𝑥 = 0 and for

n initial edge dislocation, with 𝜙i = 𝜋∕2 and 3 𝜋∕2 , the line 𝑦 = 0 . The

each-Koehler force is parallel to the outward normal of each infinites-

mal dislocation segment within the FR source and the newly created

islocation lines, on either half of the expanding loop, have the same

elf-energy. Hereby, the coordinate of the integration constant is 𝐶 1 = 0
or initial screw dislocation segments and 𝐶 2 = 0 for initial edge char-

cter segments [40] . 

Substituting Eqs. (3a) and (3b) into Eqs. (5a) and (5b) , we obtain the

elationship between the line stress, 𝜏𝑥𝑧 , and the dislocation characters

t both pinning points, 𝜙𝛼 and 𝜙𝛽 , by 

( 1 − 𝜈) 𝜏xz 𝐿 

𝜇el 𝑏 
cos 

(
𝜙i 

)
= 

1 
2 
(
sin 

(
𝜙𝛽

)(
1 + 𝜈 cos 2 

(
𝜙𝛽

))
− sin 

(
𝜙𝛼

)(
1 + 𝜈 cos 2 

(
𝜙𝛼

)))
; (6a) 

( 1 − 𝜈) 𝜏xz 𝐿 

𝜇el 𝑏 
sin 

(
𝜙i 

)
= 

1 
4 
(
cos 

(
𝜙𝛼

)(
2 − 3 𝜈 + 𝜈 cos 

(
2 𝜙𝛼

))
− cos 

(
𝜙𝛽

)(
2 − 3 𝜈 + 𝜈 cos 

(
2 𝜙𝛽

)))
. (6b) 

he Kovacs condition, which indicates where the applied stress becomes

ritical [27] , reads 

𝜙c 
𝛼
+ Δ𝜙c 

𝛽
= 𝜋, (7)

here ∙c indicates the dependent variable ∙ for the critical shear

tress 𝜏c 
𝑥𝑧 

. Substituting Δ𝜙c 
𝛼
, Δ𝜙c 

𝛽
and Eq. (7) into Eqs. (6a) and (6b) ,

e obtain the relationships between the critical shear stress and the dis-

ocation characters at both pinning points as 

( 1 − 𝜈) 𝜏c 
xz 𝐿 

𝜇el 𝑏 
cos 

(
𝜙i 

)
= sin 

(
𝜙i + Δ𝜙c 

𝛽

)(
1 + 𝜈 cos 2 

(
Δ𝜙i + 𝜙c 

𝛽

))
; (8a) 

( 1 − 𝜈) 𝜏c 
xz 𝐿 

𝜇el 𝑏 
sin 

(
𝜙i 

)
= − 

1 
2 
cos 

(
𝜙i + Δ𝜙c 

𝛽

)(
2 − 3 𝜈 + 𝜈 cos 

(
2 
(
𝜙i + Δ𝜙c 

𝛽

)))
(8b) 

y solving Eqs. (8a) and (8b) simultaneously with a semi-analytical

ethod, we find the critical values of the difference angles Δ𝜙c and

𝛼

4 
𝜙c 
𝛽
, and critical shear stress 𝜏c 

𝑥𝑧 
. The critical shear stress and associated

ifference angles are shown in Fig. 2 . Similarly, character angles 𝜙𝛼 and

𝛽 are calculated as a function of line stress 𝜏𝑥𝑧 with a generic initial dis-

ocation character 𝜙i ∈ (− 𝜋, 𝜋] . Knowing the critical shear stresses 𝜏c 
𝑥𝑧 

,

e obtain difference angles Δ𝜙𝛼 and Δ𝜙𝛽 as functions of 𝜏𝑥𝑧 from

qs. (6a) and (6b) . 

The difference angle Δ𝜙s is defined as the monotonically increas-

ng difference between the initial right-hand side (RHS) screw dislo-

ation character, i.e. 𝜙i ≡ 0 , and the dislocation characters 𝜙𝛼 = −Δ𝜙s 

nd 𝜙𝛽 = Δ𝜙s . Substituting the definition of Δ𝜙s in Eq. (6a) , we obtain

he normalised dislocation line stress as 

𝜏′xz 

𝜏c 
= 

(
1 + 𝜈 cos 2 

(
Δ𝜙s 

))
sin 

(
Δ𝜙s 

)
, (9) 

ith the scaled shear stress 𝜏′
𝑥𝑧 

≡ 𝜏𝑥𝑧 (1 − 𝜈) and the range for 𝜏′
𝑥𝑧 
∕ 𝜏𝑐 

s [−1 , 1] . Since cos 2 (Δ𝜙s ) ≡ cos 2 ( 𝜋 − Δ𝜙s ) and sin (Δ𝜙s ) ≡ sin ( 𝜋 − Δ𝜙s ) ,
here are two branches of the solution for Δ𝜙s as a function of shear

tress 𝜏𝑥𝑧 . The dislocation bows out under a given applied shear

tress 𝜏𝑥𝑧 < 𝜏
c 
𝑥𝑧 

. The diameter of the equilibrium shape is larger than

he length of the initial dislocation segment with difference angle

 ≤ Δ𝜙s < 𝜋∕2 . When the applied shear stress (originally 𝜏𝑥𝑧 < 𝜏
c 
𝑥𝑧 

) is

ubsequently removed, the bowed-out RHS screw dislocation returns to

ts original configuration parallel to the line 𝑥 = 0 . Hence the process is

eversible. The corresponding branch with solutions Δ𝜙stable 
s 

(
𝜏′
𝑥𝑧 

)
< 𝜋∕2

s designated as “stable ” because the swept-out area will only increase

ith increasing applied shear stress. This reversibility causes the pre-

ield behaviour of FR sources. Secondly, for an applied shear stress 𝜏𝑥𝑧 
qual to the critical shear stress 𝜏c 

𝑥𝑧 
, the diameter of the equilibrium

hape coincides with the initial dislocation segment, i.e. the difference

ngle Δ𝜙s = 𝜋∕2 . When the applied shear stress (originally 𝜏𝑥𝑧 = 𝜏c 
𝑥𝑧 

)

s subsequently increased, the bowed-out dislocation line does not re-

urn to its initial configuration but keeps on expanding with differ-

nce angle 𝜋∕2 < Δ𝜙s ≤ 𝜋. The corresponding branch of the solution

𝜙unstable 
s 

(
𝜏′
𝑥𝑧 

) ≥ 𝜋∕2 is designated as “unstable ” because the swept-

ut area will increase. This is the at- and post-yield behaviour of FR

ources, which leads to plastic deformation and dislocation multiplica-

ion. Here 𝜏𝑥𝑧 = 𝜏c 
𝑥𝑧 

is part of the “unstable ” solution because, although

tatic equilibrium is attained, a small stress perturbation leads to the un-

table state of continuing plastic deformation. Finally, it is trivial that

𝜙unstable 
s 

(
𝜏′
𝑥𝑧 

)
= 𝜋 − Δ𝜙stable 

s 

(
𝜏′
𝑥𝑧 

)
. 

The explicit equation of the difference angle for the stable equilib-

ium shape is 

𝜙stable 
s ≡ sin −1 

( 

2 
√ 

1 + 𝜈

3 𝜈
sin 

( 

1 
3 
sin −1 

( 

3 
√
3 𝜈

2 ( 𝜈 + 1 ) 
1 √

( 𝜈 + 1 ) 

𝜏′xz 

𝜏c 

) ) ) 

, 

(10a) 



J.S. Van Dokkum, C. Bos, S.E. Offerman et al. Materialia 20 (2021) 101178 

Fig. 3. (a) The normalised difference angles Δ𝜙s ∕ 𝜋
and Δ𝜙e ∕ 𝜋 as a function of the normalised line 

stresses 𝜏′
𝑥𝑧 
∕ 𝜏c and 𝜏𝑥𝑧 ∕ 𝜏c for Poisson’s ratios 𝜈 = 

0 , 1∕10 , 1∕5 , 3∕10 , 2∕5 and 1∕2 . The coloured ar- 

rows indicate an increase in Poisson’s ratio 𝜈 across 

equivalently coloured lines. (b) The normalised half 

equilibrium shapes { 𝑥 ∕ 𝐿, 𝑦 ∕ 𝐿 } with shear stresses 

𝜏𝑥𝑧 ∕ 𝜏c = 𝜏′𝑥𝑧 ∕ 𝜏c = 1∕10 , 9∕10 and 1, and Poisson’s ratio 

𝜈 = 1∕2 . 
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or 𝜈 ≠ 0 . In the limit 𝜈 → 0 the difference angle for the stable equilib-

ium shape is given by 

𝜙stable 
s ≡ sin −1 

( 

𝜏𝑥𝑧 

𝜏c 

) 

, (10b)

n agreement with Eq. (9) . Secondly, the difference angle Δ𝜙e is de-

ned as the monotonically increasing difference between the initial

ositive edge dislocation character, i.e. 𝜙i ≡ 𝜋∕2 , and the characters

𝛼 = 𝜋∕2 − Δ𝜙e and 𝜙𝛽 = 𝜋∕2 + Δ𝜙e . Substituting the definition of Δ𝜙e 

n Eq. (6b) , we obtain the normalised dislocation line stress as 

𝜏𝑥𝑧 𝐿 

𝜇el 𝑏 
= 

(
2 + 3 𝜈 − 𝜈 cos (2Δ𝜙e ) 

)
sin (Δ𝜙e ) 

2 ( 1 − 𝜈) 
≡ 𝜏𝑥𝑧 

𝜏c 
. (11)

he explicit equation of the difference angle for the stable equilibrium

hape is 

𝜙stable 
e ≡ sin −1 

⎛ ⎜ ⎜ ⎝ 2 
√ 

1 − 2 𝜈
3 𝜈

sinh 
⎛ ⎜ ⎜ ⎝ 1 3 sinh −1 

⎛ ⎜ ⎜ ⎝ 
3 
√
3 𝜈

2 ( 1 − 2 𝜈) 

√ 

( 1 − 𝜈) 2 

1 − 2 𝜈
𝜏xz 

𝜏c 

⎞ ⎟ ⎟ ⎠ 
⎞ ⎟ ⎟ ⎠ 
⎞ ⎟ ⎟ ⎠ , 

(12a) 

or 𝜈 ≠ 0 and 𝜈 ≠ 1∕2 . Note that for Poisson’s ratio 𝜈 = 0 , Eq. (10b) holds.

ince cos (2Δ𝜙e ) ≡ cos 
(
2( 𝜋 − Δ𝜙e ) 

)
, again two branches of the solution

or Δ𝜙e are Δ𝜙unstable 
e 

(
𝜏𝑥𝑧 

) ≡ 𝜋 − Δ𝜙stable 
e 

(
𝜏𝑥𝑧 

)
. In the limit 𝜈 → 1∕2 the

ifference angle for the stable equilibrium shape is 

𝜙stable 
e ≡ sin −1 

( 

3 

√ 

𝜏𝑥𝑧 

𝜏c 

) 

. (12b)

ntermediate steps in the derivation of Eqs. (10) and (12) are given in

ppendix A.2 . 

In Fig. 3a , the difference angles as a function of the line stress are

resented. The difference angles for line stresses 𝜏𝑥𝑧 ∕ 𝜏c = 𝜏′
𝑥𝑧 
∕ 𝜏c = 1∕10 ,

∕10 and 1 are indicated with triangle, square, circle and gradient sym-

ols with Poisson’s ratios 𝜈 = 0 in black and for 𝜈 = 1∕2 in red and blue

n Fig. 3 . The gradient symbols correspond to an unstable static equilib-

ium solution with normalised line stress 𝜏𝑥𝑧 ∕ 𝜏c = 𝜏′
𝑥𝑧 
∕ 𝜏c = 9∕10 . In the

ollowing, the equilibrium shapes and swept-out areas for these stresses

nd Poisson’s ratios are studied in more detail. 

In Appendix A.1 , the equations for the equilibrium shape of a given

R source as a function of the angles 𝜙𝛼 and 𝜙𝛽 are given. Hereby, the

tatic equilibrium shape of a given FR source { 𝑥 
(
𝐿, 𝜏𝑥𝑧 

)
, 𝑦 
(
𝐿, 𝜏𝑥𝑧 

)
} as an

xplicit function of the line stress is obtained. In Fig. 3b , the equilibrium

hapes of the FR sources with RHS screw and positive edge character

re presented for Poisson’s ratio 𝜈 = 1∕2 . Since the shapes are symmet-

ic, half is shown in colour, half in grey. The triangle and square sym-

ols indicate the stable shapes, the circle symbols the critical shapes

nd the gradient symbols the unstable shapes. These symbols indicate

he shapes for the line stresses 𝜏𝑥𝑧 ∕ 𝜏c = 𝜏′ ∕ 𝜏c = 1∕10 , 9∕10 and 1 as

𝑥𝑧 

5 
ndicated in Fig. 3a . When the applied shear stress increases so does

he circumference of the FR source and the swept-out area 𝑆. For

oisson’s ratio 𝜈 = 1∕2 , the equilibrium shapes are markedly different

etween initial RHS screw and initial positive edge FR sources. For

sotropic elasticity, the energy per unit edge character line length is a

actor 1∕ ( 1 − 𝜈) times higher than that for pure screw character. This

s why the dislocation line aligns towards a majority of screw charac-

er and line length with edge character is minimised. However, because

he dislocation line must remain continuous, locally sharp corners ap-

ear for both “stable ” and “unstable ” geometries with increased Pois-

on’s ratio 𝜈. As expected for the maximum dislocation line stress [27] ,

he given diameter of the critical equilibrium shape coincides with the

nitial dislocation segment, i.e. Δ𝜙s = 𝜋∕2 and Δ𝜙e = 𝜋∕2 . Dislocation

ynamics governs line shape under quasi-static loading conditions in

oth the “stable ” and “unstable ” regime. However, for static loading

onditions, we show in [40] that the dislocation loop orients in the

owest line-tension direction as well when self-interaction is included.

hen the applied stress is increased beyond the critical shear stress 𝜏c 
𝑥𝑧 

,

he FR source continues to expand as depicted by the (dashed) lines

ith gradient symbols in Fig. 3b . This leads to the well known dis-

ocation multiplication mechanism. Note that once the critical stress

s exceeded, no stable quasi-static equilibrium is attained. The time-

ependent relation can solely be found solving the inherently dynamic

roblem. However, the tendency of the dislocation loop to orient it-

elf in the lowest self-energy direction remains. This is only captured

y the unstable quasi-static equilibrium solution, which also represents

he shape for 𝜏𝑥𝑧 > 𝜏
c 
𝑥𝑧 

. Notwithstanding, the present unstable equi-

ibrium solution is relevant beyond purely theoretical interest. We re-

eat the realistic numerical calculations by Fitzgerald et al. [36] , for

sotropic elasticity [40] . Long-range elastic interaction across the dis-

ocation loop is incorporated. The line tension model is qualitatively

onsistent with the results which include self interaction [28,40] . The

elf interaction suppresses the bowing out of the FR source. As a result,

or the same magnitude of applied shear stress, the inclusion of long-

ange interaction reduces the swept out area. It is demonstrated that

oops remain “stable ” even when the applied stress surpasses the max-

mum dislocation line stress by about a factor two. The FR source at-

ains static equilibrium beyond the approximate half-ellipse shape. Sec-

ndly, we reason that within a dislocation network, activated FR sources

ill experience long-range stresses from adjacent dislocation segments.

hese stresses are known as back stresses and allow for attaining a

quilibrium with dislocation loop shapes comparable to the unstable

quilibrium. 

The area swept by a given FR source as a function of the difference

ngles is given in Appendix A.3 . Combining Eqs. (10) and (12) , and

qs. (A.14) and (A.15) , respectively, we obtain the explicit equation for

he swept area 𝑆 
(
𝜏𝑥𝑧 

)
. For the sake of brevity, only two limiting cases
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Fig. 4. The normalised line stresses 𝜏′
𝑥𝑧 
∕ 𝜏c and 

𝜏𝑥𝑧 ∕ 𝜏c as a function of the normalised swept-out 

areas 8 𝑆 s ∕ 
(
𝜋𝐿 2 

)
and 8 𝑆 e ∕ 

(
𝜋𝐿 2 

)
for Poisson’s ra- 

tios 𝜈 = 0 , 1∕10 , 1∕5 , 3∕10 , 2∕5 and 1∕2 . The 

arrows indicate an increase in Poisson’s ratio 𝜈

across equivalently coloured lines, from 𝜈 = 0 to 
1∕2 . 
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Fig. 5. Schematic representation of the tangent modulus 𝑌 on a unit sphere in 

the crystal frame and the stereographic projection onto the plane with its normal 

parallel to ̂𝒆 3 containing the origin 𝒐 . 
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f

re given, namely the positive edge segment and only the normalised

reas for the stable equilibrium shape, being 

𝑆 
(
𝜏xz 

)
𝐿 

2 = 

1 
8 
(
𝜏xz ∕ 𝜏c 

)2 ( 

2 sin −1 
( 

𝜏xz 

𝜏c 

) 

− sin 
( 

2 sin −1 
( 

𝜏xz 

𝜏c 

) ) ) 

, (13a) 

nd 

𝑆 e 
(
𝜏xz 

)
𝐿 

2 = 

1 
128 

(
𝜏xz ∕ 𝜏c 

)2 ( 

60 sin −1 
( 

3 

√ 

𝜏xz 

𝜏c 

) 

− 45 sin 
( 

2 sin −1 
( 

3 

√ 

𝜏xz 

𝜏c 

) ) 

−9 sin 
( 

4 cos −1 
( 

3 

√ 

𝜏xz 

𝜏c 

) ) 

− sin 
( 

6 sin −1 
( 

3 

√ 

𝜏xz 

𝜏c 

) ) ) 

, (13b) 

or 𝜈 = 0 and 1∕2 , respectively. In Fig. 4 , the dislocation line stress is

resented in relation with the swept area. The axes are chosen as such

o readily relate with tensile curves, but note that hardening is not con-

idered here. The calculated stress is the stress needed to accomplish

lastic strain by a single dislocation loop. The triangle, square, circle

nd gradient symbols in Fig. 4 correspond to those in Fig. 3 . We observe

hat the area-to-stress relation has a continuously changing slope and

ero gradient for the critical shear stress 𝜏c 
𝑥𝑧 

. Initially the dislocation

ine stress increases with swept area 𝑆. The line stress increase depends

n the Poisson’s ratio 𝜈 and is largest for an initial screw dislocation

egment because mixed character dislocation line is formed upon ex-

ansion of the dislocation loop. Vice versa , the dislocation loop of an

nitial edge character FR source easily expands, which gives rise to a

igh 𝜕 𝑆∕ 𝜕 𝜏𝑥𝑧 . Secondly, the local gradient of the area-to-stress relation

epends on the length and orientation of the formed dislocation line.

he length of the loop with a majority of edge character is minimized

hile the formation of predominant screw character dislocation lines

equires less work (See Fig. 3b ). However, given that the dislocation

ine cannot terminate within the bulk of the material, parts of the loop

ust attain orientations with higher self-energy. Hereby, the disloca-

ion line stress increases rapidly upon the formation of approximately

ure edge character dislocation line as witnessed between the red square

nd circle symbols in Fig. 4 ( 0 . 9 ≤ 𝜏′
𝑥𝑧 
∕ 𝜏c ≤ 1 ). And, contrary, an initial

dge character FR source sweeps a large area between shear stresses

 . 9 ≤ 𝜏𝑥𝑧 ∕ 𝜏c ≤ 1 (the blue square and circle symbols in Fig. 4 ). The un-

oading curve will be the same as the loading curve because dissipation

s not taking place in the static solution here. It should be noted that

he present model reproduces the anelastic strain for a given stress state

ut not the symmetric unloading/loading curves as reported in e.g. [8–

0,24] . The maximum dislocation line stress is highest for screw charac-

er FR sources because a pure edge character dislocation line is formed.

nce the applied stress matches the critical shear stress, the line stress

educes upon further expansion of the dislocation loop. The dislocation
6 
oop will expand and the potential energy is minimized. This “unstable ”

ine stress equals the minimum applied stress needed for the loop to

ontinue expanding. Unimpeded expansion of the loop results in soften-

ng which is expected when a single FR source is considered and work-

ardening is excluded. 

.2. Strain in uniaxially loaded crystallites 

For an arbitrary stress 𝝈 in the crystal frame, the corresponding

train 𝝐 is a superposition of the elastic and anelastic strains, 𝝐el and
an , respectively. The crystal frame is a Cartesian coordinate system

ith axes { 𝑥 ′, 𝑦 ′, 𝑧 ′} with right-hand orthonormal basis �̂� 𝑖 ‖𝒕 𝑖 . In Fig. 5 ,

 schematic representation of the crystal frame is given. 

The second-order elastic lattice strain tensor 𝝐el is derived through

 linear mapping of the infinitesimal second-order stress tensor 𝝈 with

 fourth-order tensor 
(
 

el 
)−1 

called the inverse elastic (i.e. stiffness)

ensor [37,41,42] . The stiffness tensor has major and minor symmetry.

or a given slip system with Burgers vector 𝒃 and unit slip-plane nor-

al �̂� in the crystal frame, the Orowan equation [43] is used and the

econd-order infinitesimal anelastic strain is 

an ( 𝝈) = 

𝑁 

2 
𝑆 ( 𝝈) 
𝑉 

Sym ( 𝒃 ⊗ �̂� ) , (14)

here 𝑁∕ 𝑉 is the number of FR sources with length 𝐿 per unit volume

 and Sym ( ∙) is the symmetric part of tensor ∙. Hereby, slip is solely a

unction of the resolved shear stress. 



J.S. Van Dokkum, C. Bos, S.E. Offerman et al. Materialia 20 (2021) 101178 

Fig. 6. The normal stress 𝜎 as a function of 

principal strain 𝜖 for (a) effective segment 

length 𝐿 = 140 nm and total dislocation den- 

sities 𝜌total = 10 14 , 5 × 10 14 and 10 15 m 

−2 , and 

(b) density 𝜌total = 5 × 10 14 m 

−2 and lengths 𝐿 = 
100 , 140 and 200 nm. The tangent modulus 𝑌 as 

a function of the normal stress 𝜎 in (c) and (d). 

The arrows in (a) and (c) indicate an increase in 

total dislocation density 𝜌total , and in (b) and (d) 

an increase in effective segment length 𝐿 across 

lines with a given color. 
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For given stress tensor 𝝈 = 𝜎�̂� ⊗ �̂� , where �̂� is a unit vector paral-

el to the normal stress with magnitude 𝜎, the corresponding principal

train is 𝜖 = 𝝐 ∶ �̂� ⊗ �̂� . The unit vector in the loading direction is 

̂
 = ( cos ( 𝜃) sin ( 𝜙) , sin ( 𝜃) sin ( 𝜙) , cos ( 𝜙) ) ⊺, (15)

here 𝜃 is the azimuth angle, 𝜙 from here on the polar angle. The in-

nitesimal principal strain 𝜖 in the crystal frame is a superposition of

he elastic and anelastic components 𝜖el and 𝜖an . The principal elastic

attice and anelastic strains are 

el 
(
𝜎, ̂𝒅 

)
= 𝜎�̂� ⊗ �̂� ∶ 

(
 

el 
)−1 

∶ �̂� ⊗ �̂� (16a)

nd 

an 
(
𝜎, ̂𝒅 

)
= �̂� ⊗ �̂� ∶ 𝝐an ( 𝝈) , (16b)

espectively. In order to employ computational algebra to calculate the

patial representation of the moduli, the well-known Voigt scheme is

sed [40] . If the material is devoid of dislocations, the well-known defi-

ition of the linear elastic Young’s modulus 𝐸 ≡ 𝜎∕ 𝜖el is obtained. Con-

rary, with dislocations present the tangent modulus 𝑌 ≡ 𝜕𝜎∕ 𝜕𝜖 depends

n the direction �̂� , the magnitude of the normal stress 𝜎 and the dislo-

ation structure. Furthermore, equation (16a) is not limited to isotropic

r cubic elasticity but valid for any symmetric elastic tensor 𝑪 

el . We

ote that the effective Poisson’s ratio is unaffected because volume is

onserved during dislocation glide. Hence the scaled effective Poisson

atio 𝜈( 𝜃, 𝜙) ∕ 𝜈el remains a unit sphere. 

The scaled linear elastic Young’s modulus 𝐸 ( 𝜃, 𝜙) ∕ 𝐸 

el can

e graphically represented in spherical coordinates { 𝑟, 𝜃, 𝜙} , with
7 
 ≡ ||𝐸 ( 𝜃, 𝜙) ∕ 𝐸 

el ||. For isotropic linear elastic materials devoid of dis-

ocations [37,42] , the Young’s modulus is a unit sphere. Equivalent to

he frequently used spherical representation of linear elastic anisotropy,

he tangent modulus can be shown in spherical coordinates with

 ≡ ||𝑌 ( 𝜎, 𝜃, 𝜙)∕ 𝐸 

el ||. A two-dimensional representation by means of

 stereographic projection onto the plane with its normal parallel to

̂ 3 and containing the origin 𝒐 is possible since 𝑌 ( ̂𝒅 ) = 𝑌 (− ̂𝒅 ) . The

olar angle is expressed as 𝜙 = 2 tan −1 ( 𝑟 ′) , with the polar coordi-

ates { 𝑟 ′, 𝜃} [42] . The stereographic projection is included in Fig. 5 . 

. Results 

.1. Isotropic mechanical response 

In the following, we present the results for virtual tensile tests on

olycrystalline materials. For an isotropic mechanical response, the

rincipal strain is 

( 𝜎) = 

𝜎

𝐸 

el 
+ 𝜖an ( 𝜎) . (17)

n Appendix B , the relation between the normal stress and resolved shear

tress, and the principal anelastic strain and anelastic shear strain by

he Taylor factor 𝑀 [8,44,45] is revisited. Assuming FR sources to be

niformly distributed over 𝑘 = 12 slip systems with dislocation density
slip each, i.e. the total dislocation density 𝜌total = 

∑
𝑘 𝜌

slip 

𝑘 
≡ 𝑘𝜌slip , and

ubstituting Eqs. (14) and (B.4) in Eq. (17) , we give the total principal

train as 

( 𝜎) = 

𝜎

𝐸 

el 
+ 

𝑏 

𝑀 

( 

𝜌total 
e 𝑆 e ( 𝜎) 
𝐿 e 

+ 

𝜌total 
s 𝑆 s ( 𝜎) 
𝐿 s 

) 

, (18)
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ith 𝜌total ≡ 𝜌total 
s + 𝜌total 

e , where 𝜌total 
s and 𝜌total 

e , and 𝐿 s and 𝐿 e are

he dislocation densities and effective segment lengths of screw and

dge dislocations, respectively. In the works by Van Liempt and Si-

tsma [8] and Arechabaleta et al. [9,10] , the equilibrium shape of the

R source is circular and the total principal strain is 

iso ( 𝜎) ≈
𝜎

𝐸 

el 
+ 

𝑀𝜌total 
(
𝐸 

el 
)2 
𝑏 3 

32 ( 𝜈 + 1 ) 2 𝜎2 𝐿 

( 

2 sin −1 
( 

2 ( 1 + 𝜈) 𝜎𝐿 

𝑀𝐸 

el 𝑏 

) 

− sin 
( 

2 sin −1 
( 

2 ( 1 + 𝜈) 𝜎𝐿 

𝑀𝐸 

el 𝑏 

) ) ) 

, (19) 

ith 𝐿 independent of dislocation character. Here, four cases are

onsidered, namely: (1) the results by Van Liempt and Sietsma [8] ;

2) only screw dislocation segments (i.e. 𝜌total 
s = 𝜌total and 𝜌total 

e = 0 )
ith length 𝐿 s = 𝐿 ; (3) only edge dislocation segments (i.e. 𝜌total 

s = 0 and
total 
e = 𝜌total ) with length 𝐿 e = 𝐿 ; (4) mixed dislocation densities
total 
s = 𝜌total 

e = 𝜌total ∕2 with lengths 𝐿 e = 𝐿 s = 𝐿 . First, the total dis-

ocation density 𝜌total = 10 14 , 5 × 10 14 and 10 15 m 

−2 is varied while

he effective segment length 𝐿 = 140 nm is kept constant; secondly,

he effective segment length 𝐿 = 100 , 140 and 200 nm changes while

he total dislocation density 𝜌total = 5 × 10 14 m 

−2 remains constant. In

ig. 6 , the tensile results are presented with Young’s modulus 𝐸 

el =
10 × 10 9 Pa, Poisson’s ratio 𝜈 = 0 . 3 , Taylor factor 𝑀 = 3 . 06 [46–48] and

urgers vector magnitude 𝑏 = 0 . 25 nm. In Fig. 6 , the elastic response

s represented by a solid gray line marked “Elastic ”. The results with

onstant effective segment length 𝐿 = 140 nm and total dislocation

ensities 𝜌total = 10 14 , 5 × 10 14 and 10 15 m 

−2 are indicated by dashed,

ash-dotted and solid lines, respectively. The same line patterns hold

or results with constant density 𝜌total = 5 × 10 14 m 

−2 and lengths 𝐿 =
00 , 140 and 200 nm . 

While varying the total dislocation density for the effective segment

ength 𝐿 = 140 nm, we observe in Fig. 6a that the principal strain in-

reases with dislocation density. The principal anelastic strain is the

orizontal distance between the line 𝜎 ≡ 𝐸 

el 𝜖 and any point on the ten-

ile curve. When the dislocation density per slip plane is increased, and

n turn, so is the anelastic dislocation strain (See Eq. 14 ). In Fig. 6b ,

he dislocation density 𝜌total = 5 × 10 14 m 

−2 and the effective segment

ength is varied. We observe that the principal anelastic strain increases

ith effective increasing segment length. The anelastic dislocation shear

train scales with the area swept by an FR source, which scales with the

quare of the effective segment length, 𝑆 ∝ 𝐿 

2 . Furthermore, the nor-

al stress for a given anelastic strain is inversely proportional to the

ffective segment length because the self-stress scales with the curva-

ure of the bowed-out dislocation. In the present work dissipation is

ot accounted for, hence why the initial modulus deviates from the

sotropic linear elastic modulus from the start of loading. Furthermore,

he tangent modulus vanishes when the applied stress matches the line

ension, because upon further expansion of the FR loops the line stress

ecreases. 

The differences between the prediction by Van Liempt and Sietsma

8] and the results for solely screw or edge dislocations are striking. Be-

ween screw dislocations and the prediction by [8] , the normal stress for

 given total principal strain differ up to a factor 1∕(1 − 𝜈) , i.e. on the

rder of 50% . Also for a given stress the principal anelastic strains differ

p to a factor (1 − 𝜈) . Hence the normal stress is underestimated and

otal principal strain overestimated. While the range of normal stresses

s unaffected between edge dislocations and the prediction by [8] , the

nelastic dislocation strains differ a factor 1∕(1 − 𝜈) , hence the total prin-

ipal strain is underestimated. The observed differences are easily ra-

ionalized by considering an elliptical equilibrium shape and with the

esults in 4 for initial screw and edge character sources. The prediction

y [8] and the results for mixed dislocation segments match closely. 

In order to present the tangent modulus, we take the inverse of the

erivative of Eq. (19) with respect to the normal stress and obtain the
8 
sotropic tangent modulus [8] , i.e. 

 iso ( 𝜎) ≈
⎛ ⎜ ⎜ ⎝ 1 𝐸 

el 
+ 

𝜌total Lb 

2 𝑀𝜎

(
𝑀𝐸 

el 𝑏 
)2 

( 2 ( 𝜈 + 1 ) 𝜎𝐿 ) 2 

⎛ ⎜ ⎜ ⎝ 
√ √ √ √ 

( 2 ( 𝜈 + 1 ) 𝜎𝐿 ) 2 (
𝑀𝐸 

el 𝑏 
)2 − ( 2 ( 𝜈 + 1 ) 𝜎𝐿 ) 2 

− sin −1 
⎛ ⎜ ⎜ ⎝ 
2 ( 𝜈 + 1 ) 𝜎𝐿 

𝑀𝐸 

el 𝑏 

⎞ ⎟ ⎟ ⎠ 
⎞ ⎟ ⎟ ⎠ 
⎞ ⎟ ⎟ ⎠ 
−1 

. (20) 

n Figs. 6c and 6d the tangent modulus as a function of the normal stress

extended Kocks-Mecking plot [8] ) is presented. These correspond to

igs. 6a and 6b , respectively. In Fig. 6c , we observe that the initial mod-

lus decreases with increasing total dislocation density. Furthermore,

n Fig. 6d , the given change in segment length affects the initial mod-

li. The inverse relationship between the yield stress and the effective

egment length is clearly visible in Fig. 6d . Considering the prediction

y Van Liempt and Sietsma [8] and the results for mixed dislocation

egments, we observe that the tangent moduli are close as well. 

Arechabaleta et al. [9] evaluated the validity of the model with ap-

roximate circular equilibrium shape [8] by comparison with disloca-

ion densities from X-Ray Diffraction (XRD) measurements. The disloca-

ion densities 10 12 < 𝜌total ≤ 10 14 m 

−2 obtained through aforementioned

odel [8] were consistent with those obtained by XRD. We note that

he prediction by [8] approximates the results for isopycnic disloca-

ion densities in Fig. 6 . Isopycnic means of, relating to, or marked by

qual or constant density. Hereby, the experimental XRD diffraction and

ensile-test measurements of the total dislocation density 𝜌total might

ave agreed too. 

It is of interest to study the effect of different screw and edge dis-

ocations densities on previously experimentally obtained total disloca-

ion densities and effective segment lengths. They were calculated by

eans of Eqs. (19) and (20) [8–10] . Here, a set of virtual tensile tests is

erformed for various edge and screw dislocation densities 𝜌total 
s ∕ 𝜌total =

 − 𝜌total 
e ∕ 𝜌total = 0 , 1∕8 , 1∕4 , 3∕8 , 1∕2 , 5∕8 , 3∕4 , 7∕8 , 15∕16 , 99∕100 and 1.

n Fig. 7 , the tensile results are given by solid black lines with screw dis-

ocation densities 𝜌total 
s ∕ 𝜌total = 0 , 1∕2 , 3∕4 and 1, total dislocation den-

ity 𝜌total = 10 15 m 

−2 and effective segment length 𝐿 = 140 nm. Here the

ashed gray line marked “Elastic ” indicates the linear elastic response;

n Fig. 7b , the tangent modulus as a function of the normal stress is

iven. Subsequently, a non-linear fitting and the fitting procedure as

ollowed by Van Liempt and Sietsma [8] are preformed on the tensile-

est data sets. The former method is the damped least-squares (DLS)

ethod [49,50] with Eq. (19) , 𝐿 = 𝐿 iso and 𝜌total = 𝜌total 
iso 

. In the latter

ethod, the effective segment length 𝐿 iso is obtained at the yield points

ith critical normal stress 𝜎c ≡𝑀𝜇el 𝑏 ∕ 𝐿 iso ; the initial Young’s modu-

us, i.e. 𝐸 ≡ lim 𝜎→0 𝑌 ( 𝜎) , is used to determine the effective dislocation

ensity 𝜌total 
iso 

. The numerical fits by DSL method and the method by

an Liempt and Sietsma are indicated by solid blue and dashed red lines,

espectively, in Figs. 7a and 7b solely for 𝜌total 
s ∕ 𝜌total = 0 , 1∕2 , 3∕4 and 1.

n Fig. 7c , the obtained ratios 𝐿 iso ∕ 𝐿 and 𝜌total 
iso 

∕ 𝜌total are presented. The

ed triangle and blue gradient symbols in Figs. 7a and 7b indicate re-

ults of the DLS method and the method by Van Liempt and Sietsma [8] ,

espectively. The symbols in Fig. 7c correspond to the tensile-test data

ith varying screw dislocation density 𝜌total 
s . The (dashed) lines con-

ecting these symbols are guides to the eye. The results for solely

crew dislocations are indicated separately. They represent a limit case

iven the difference in yield strength from finite edge dislocation den-

ities. The goodness of fit is assessed by calculating the coefficient of

etermination 𝑅 

2 . The obtained coefficients of determination are be-

ween 𝑅 

2 = 0 . 96 and 1. The non-linear fits by DLS method for ratio

∕4 ≤ 𝜌total 
s ∕ 𝜌total < 1 do not converge to the global minimum and are

herefore omitted. 

The effective dislocation density 𝜌total 
iso 

is significantly affected by the

atio between edge and screw dislocations. In the limit of solely edge

islocations, the total dislocation density 𝜌total is overestimated. The

bserved effective segment length 𝐿 iso differs far less from the actual

ength 𝐿 because the yield strength 𝜎c ∝ 1∕ 𝐿 . For an approximately
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Fig. 7. (a) The normal stress 𝜎 as a function of the principal strain 𝜖 and (b) the tangent modulus 𝑌 as a function of the normal stress 𝜎 with screw dislocation 

densities 𝜌total 
s 

∕ 𝜌total = 0 , 1∕2 , 3∕4 and 1, total density 𝜌total = 10 15 m 

−2 and effective segment length 𝐿 = 140 nm. The arrows in (a) and (b) indicate an increase in 

total screw dislocation density 𝜌total 
s 

across equivalently coloured lines. (c) The ratios 𝜌total 
iso 

∕ 𝜌total and 𝐿 iso ∕ 𝐿 as a function of the scaled screw dislocation density 

𝜌total 
s 

∕ 𝜌total via the damped least-squares (DLS) method and the method by Van Liempt and Sietsma [8] . 
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lliptic dislocation loop, the observed total dislocation density 𝜌total 
iso 

nd segment length 𝐿 iso agree well with density 𝜌total and length 𝐿

hen the ratio 𝜌total 
s ∕ 𝜌total ≈ 1∕(2 − 𝜈) . For Poisson’s ratio 𝜈 = 1∕3 this

crew dislocation density 𝜌total 
s ∕ 𝜌total ≈ 0 . 58 and in agreement with the

bserved unit ratios between 𝜌total 
s ∕ 𝜌total ≈ 0 . 62 − 0 . 64 . The method by

an Liempt and Sietsma underestimates the total dislocation density
total for a majority of screw dislocations, i.e. 1∕2 << 𝜌total 

s ∕ 𝜌total < 1 .
inally, for solely screw dislocations, the effective segment length is

nderestimated by a factor ∼ 0 . 3 because the critical shear stress is

c ∕(1 − 𝜈) . The effective dislocation density 𝜌total 
iso 

differs marginally from

he given total density 𝜌total . This is non-trivial. Quantifying the obser-

ational error in previous works is however only possible if additional

nformation on the geometry of the given dislocation network was mea-

ured. The method here does not need additional observations on the

islocation network geometry. The orientation of individual dislocations

nd a generic Poisson’s ratio are a priori incorporated. 

.2. Anisotropic mechanical response 

In the following, we present the results for virtual tensile tests on

ingle crystallites with cubic crystal lattices. In the supplementary ma-

erial [40] , the slip systems in face- and body-centred (FCC and BCC)

rystallites, respectively, are given. For BCC crystallites, only twelve

111 ⟩{110} slip systems are considered. They form the six main glide

lanes at low temperatures [28] , instead of the forty-eight potential slip

ystems which include {112} and {123} planes. In order to present the

ffect of a nonuniform dislocation distribution, the effective segment

ength 𝐿 s = 𝐿 e = 𝐿 is kept constant and solely the coefficient 𝜌slip is

aried. The present method is not limited to the same fractions of ini-

ial dislocation segments with a given character per slip-system either.

hough under static loading conditions it remains necessary to use ef-

ective segment lengths which characterize the ensemble of dislocations

n a given crystallite. 

Dislocations are spread homogeneously across each active

lip-system contained within a single crystallite. The total disloca-

ion density per slip system 𝜌slip ≡ 𝜌slip 
s + 𝜌

slip 
e , where 𝜌

slip 
s and 𝜌

slip 
e 

re the screw and edge dislocation densities per slip system. We

hoose to limit the results to pure (or a mixture of pure) screw and

dge character segments. The present method is not limited to these

ssumptions, but needs numerical root-finding to approximate the

quilibrium solution for an arbitrary initial dislocation character

 𝜙i ≠ − 𝜋∕2 , 0 , 𝜋∕2 and 𝜋) for Poisson’s ratio 𝜈 ≠ 0 , while the closed-

orm expressions for initial pure edge and screw character segments
9 
o not. The dislocation density on each glide plane is defined as

he sum of its constituent slip systems. Here, we use the seminal

roportionality coefficient 𝛼 ≡ (
𝐿 

√
𝜌total 

)−1 
= 1∕3 which was both

xperimentally [10] ( 𝛼 ≈ 0 . 4 ) and theoretically [51] obtained. 

In order to validate our method with the works by Koehler and De-

it [6] , and Agrawal and Verma [7] , we take the series expansion of

q. (13a) around zero applied shear stress and obtain the engineering

hear strain 

an 
𝑥𝑧 

= 

𝑏𝜌slip 

𝐿 

𝑆 
(
𝜏𝑥𝑧 

)
≃ 𝜌slip 𝐿 

2 

6 
𝜏𝑥𝑧 

𝜇el 
. (21)

ssuming the dislocation density 𝜌slip to be constant across all slip sys-

ems and Poisson’s ratio 𝜈 = 0 , we give the fourth-order inverse anelastic

ensor in vector-matrix notation as 
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3 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
⋅

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜎11 
𝜎22 
𝜎33 
𝜎23 
𝜎13 
𝜎12 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (22) 

his corresponds to the results for a uniform distribution of dislocations

cross all glide planes in FCC by Koehler and DeWit [6] and in BCC by

grawal and Verma [7] . 

For a single active glide plane with two active slip systems in FCC

nd BCC, we find Tetragonal versus Rhombic anisotropic symmetry be-

ause of the difference in angles between the Burgers vectors ⟨110 ⟩∕2
nd ⟨111 ⟩∕2 . Inactive slip systems and/or glide planes are devoid of

islocations and active ones have isopycnic dislocation densities. For

wo active glide planes Rhombic versus Tetragonal anisotropic sym-

etry is found. In addition the angles between glide plane normals,

111}∕ 
√
3 and {110}∕ 

√
2 , differ. The anisotropic symmetry is unique for

ny (non)uniform distribution of dislocations and depends on the crys-

al structure as well. Furthermore, the obtained anisotropic symmetry

s independent of Poisson’s ratio 𝜈 and a given normal stress below the

ield stress. We find it notable that for distributions with differing edge

nd screw dislocation densities the number of symmetry planes reduces.

he anisotropic ratio [52] and index [53] do depend on dislocation dis-

ribution, densities and characters. In the supplementary material [40] ,

he normalised initial Young’s moduli 𝐸 ∕ 𝐸 

el for nonuniform distribu-

ions of dislocations in FCC and BCC are presented. Finally, as expected
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Fig. 8. The normalised initial Young’s modulus 𝐸 ∕ 𝐸 el in spherical coordinates 

for a cubic crystallite with Poisson’s ratio 𝜈 = 0 and a uniform distribution of 

dislocations across all glide planes. 
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or the uniform distribution of dislocations across all glide planes, the

nitial modulus has cubic anisotropy as seen in Fig. 8 . 

.3. Limit analysis 

In the following, we consider the compressibility and incompress-

bility limits, i.e. Poisson’s ratios 𝜈 = 0 and 1∕2 . In the supplementary

aterial [40] , the normal stress-strain relations are presented in five ra-

ional tensile directions for several nonuniform dislocation distributions

n FCC and BCC. For tensile tests on single crystallites, it is well-known

hat the normal stress at yield is predicted by means of the Schmid fac-

or and the often used critical shear stress 𝜏c ≡ 𝜇el 𝑏 ∕ 𝐿 [54] . Hence the

ield stress decreases, or remains the same, as more glide planes become

ctive. The normal stress-strain relationships for a uniform distribution

f dislocations are the same for FCC and BCC. From here on, only cubic

attices with uniform dislocation distributions are considered. 

In Fig. 9 , the tensile results are presented with Poisson’s ratio 𝜈 = 1∕2 ,
dge or screw dislocations and rational tensile directions ⟨100 ⟩, ⟨110 ⟩
nd ⟨111 ⟩. In Fig. 9 , the rational tensile directions are indicated by

oloured dots on the inserted stereographic projection of Fig. 8 . The

tress 𝜎c and strain 𝜖c at yield are depicted by coloured triangle and

radient symbols in Fig. 9 . Note that the choice of normalization orig-

nates from 𝐸 

el ∕2 ≡ 𝜇el for Poisson’s ratio 𝜈 = 0 . It is obvious that the

train 𝜖 is not obtained by the linear elastic stiffness alone because FR

ources contribute significantly to the total principal strain. As expected,

e obtain the largest anelastic dislocation strain contribution for edge

haracter segments and Poisson’s ratio 𝜈 = 1∕2 . Intermediate values are

ound for Poisson’s ratio 𝜈 = 0 independent of initial dislocation char-

cter (See Fig. 10 ) and the smallest anelastic strain contribution results

or screw dislocations and Poisson’s ratio 𝜈 = 1∕2 . The anisotropy is not

ffected by the dislocation character. 
ig. 9. (a) The normalised normal stress 2 𝜎𝐿 ∕( 𝐸 el 𝑏 ) as a function of normalised prin

he normalised stress 2 𝜎𝐿 ∕( 𝐸 el 𝑏 ) , and (c) the normalised strain 2 𝜖𝐿 ∕ 𝑏 with Poisson’s 

10 
In Figs. 9b and 9c , the normalised tangent moduli 𝑌 ∕ 𝐸 

el as a function

f the normalised stress 2 𝜎𝐿 ∕( 𝐸 

el 𝑏 ) , and the normalised strain 2 𝜖𝐿 ∕ 𝑏 ,
espectively, are presented. The flow-stress 𝜎c and critical principal

train 𝜖c are the intersects of given tangent modulus with 𝑌 ∕ 𝐸 

el = 0 .
uring tensile experiments the observed tangent modulus does not re-

uce to zero for critical normal stress 𝜎c [8–10,55,56] . Before the ten-

ile curve becomes horizontal, work-hardening initiates with shear stress

ontribution 𝜏w 

and plastic shear strain 𝛾p . The flow stress is 𝜎f ≃ 𝜎c + 𝜎w 

nd the work-hardening gradient Θ ≡ 𝜕𝜎f ∕ 𝜕𝜖p . Values of constant gradi-

nt Θ during Stage-I/II/III work-hardening are typically one to three or-

ers of magnitude smaller than the elastic Young’s modulus [1] . Hence

lastic deformation commences when the tangent modulus, 𝑌 , equals

he work-hardening gradient, Θ. Moreover, the critical stress 𝜎c and

train 𝜖c are the upper bounds of the yield point. 

In Fig. 9 , we observe a marked difference between the tangent mod-

li for edge or screw dislocation segments. Regarding initial edge char-

cter segments in the limit 𝜎 → 0 , we find that the initial tangent mod-

lus approaches zero. This is readily understood by taking the limit

im 𝜏𝑥𝑧 →0 𝜕Δ𝜙e ∕ 𝜕𝜏𝑥𝑧 of Eq. (12b) . It is intuitive that with a given change

f dislocation character at both pinning points, the total dislocation line

ength either increases or decreases, and the local line sense changes.

he associated change in potential energy can be split into: (1) a contri-

ution solely due to line length change with constant dislocation char-

cter; and (2), a change in self-energy with dislocation character for

 constant line length. Even though the line length increases when a

iven FR source with initial pure edge character bows out, the increase

n potential energy associated with total segment length is lowered be-

ause dislocation character changes along the dislocation loop. From

ure edge character, which has the maximum self-energy for a finite

oisson’s ratio, the local line sense changes to a mixed character. In the

imit of an incompressible solid, the total energy change is zero because

he increase in potential energy per unit dislocation line length with

onstant character equals the reduction in self-energy with dislocation

haracter. Contrarily, when a given FR source with initial pure screw

haracter bows out, the potential energy increases with both disloca-

ion line length and the change of character. Hence the apparent elastic

onstants depend on the initial dislocation character and compressibil-

ty. 

It is of interest to compare our results with the isotropic pre-

ictions by Van Liempt and Sietsma [8] . Moreover, a mix of ini-

ial edge and screw characters segments is incorporated. In Fig. 10 ,

he tensile results are presented with Poisson’s ratios 𝜈 = 0 and 1∕2 ,
nd isopycnic dislocation densities. In Fig. 10a , the normal stress-

train relation is given and the isotropic results for Taylor factor

 = 3 . 06 are represented with dashed and solid black lines. The
cipal strain 2 𝜖𝐿 ∕ 𝑏 , (b) the normalised tangent modulus 𝑌 ∕ 𝐸 el as a function of 

ratio 𝜈 = 1∕2 in rational tensile directions ⟨100 ⟩, ⟨110 ⟩ and ⟨111 ⟩. 
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Fig. 10. (a) The normalised normal stress 2 𝜎𝐿 ∕( 𝐸 el 𝑏 ) as a function of normalised principal strain 2 𝜖𝐿 ∕ 𝑏 with Poisson’s ratios 𝜈 = 0 and 1∕2 , screw dislocation density 

𝜌total 
s 

∕ 𝜌total = 1∕2 and rational tensile directions ⟨100 ⟩ and ⟨111 ⟩. The normalised tangent modulus 𝑌 ∕ 𝐸 el as a function of (b) the normalised stress 2 𝜎𝐿 ∕( 𝐸 el 𝑏 ) and (c) 

the normalised strain 2 𝜖𝐿 ∕ 𝑏 . The dashed and solid black lines indicate the isotopic results in (19) and (20) by Van Liempt and Sietsma [8] . 

Fig. 11. The normalised initial shear modu- 

lus 𝜇∕ 𝜇el as a function of (a) the Poisson’s ra- 

tio 𝜈 and (b) the scaled screw dislocation den- 

sity 𝜌
slip 
s ∕ 𝜌slip with inverse coefficients 𝐿 

√
𝜌slip = 

1 and 3 . The arrows indicate an increase in (a) 

screw dislocation density 𝜌
slip 
s and (b) Poisson’s 

ratio 𝜈 across equivalently coloured lines. 
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olid and dashed lines correspond to Poisson’s ratios 𝜈 = 0 and 1∕2 ,
espectively. Comparing Figs. 9a and 10a for Poisson’s ratio 𝜈 =
∕2 , we observe that the yield stress is determined by the initial

dge dislocation segments. These segments attain their critical shape

efore initial screw segments as predicted by Kovacs [27] . The prin-

ipal strain for a given stress decreases compared to solely edge

islocations since 𝜌total 
e < 𝜌total (See Figs. 9 and 10 ). The predicted

ritical normal stress 𝜎c by Van Liempt and Sietsma [8] agrees

ell with single crystallite results because the critical shear stress

s 𝜏c 
e ≡ 𝜇el 𝑏 ∕ 𝐿 . However, the predicted total principal strain at yield

c by Van Liempt and Sietsma [8] is an overestimate because

he anelastic shear strain across different slip systems is the same

See Appendix B ). Contrarily, here the anelastic shear strain depends on

lip system orientation. Hence not every slip system contributes equally

n the given tensile direction. The exaggerated anelastic strain in the

sotropic model [8] leads to overestimating the total dislocation density

See Section 4.1 ). 

The cubic tangent moduli and the isotropic tangent modulus by

an Liempt and Sietsma [8] are given in Figs. 10b and 10c . The

aylor factor 𝑀 proportionally scales the isotropic curves. For Pois-

on’s ratio 𝜈 = 0 , the functional forms of our results and the isotropic

rediction by [8] agree. For Poisson’s ratio 𝜈 = 1∕2 , we observe a

arge disparity between our results and the isotropic tangent modu-

us by [8] . Notable are the differences in tangent moduli for small

ormal stresses and principal strains. This is readily understood be-

i  

11 
ause the self-energy in the isotropic prediction by Van Liempt and Si-

tsma [8] is independent of dislocation character. Hereby, the potential

nergy always increases with dislocation line length. Hence the gradi-

nt of the normal stress/strain-to-modulus relation is negative for any

ormal stress (and principal strain). 

In order to illustrate the effects of compressibility, 𝜈, and disloca-

ion densities 𝜌total 
s and 𝜌total 

e , the normalised initial shear modulus,

∕ 𝜇el ≡ lim 𝜏𝑥𝑧 →0 𝜇
(
𝜏𝑥𝑧 

)
∕ 𝜇el , is given as a function of the Poisson’s ratio

and density 𝜌
slip 
s ∕ 𝜌slip in Fig. 11 . The densities are varied from solely

dge to only screw dislocations in increments of Δ𝜌slip 
s = 𝜌slip ∕5 across

oloured (dashed) lines in Fig. 11a . The shear moduli are presented

or the given proportionality coefficients ( 𝐿 

√
𝜌slip ) 

−1 
= 1∕3 and 1 in a

ingle active slip system. Several metals are depicted in Fig. 11a with

heir horizontal loci corresponding to their respective Poisson’s ratios,

.g. Au and Si with 𝜈 = 0 . 42 , and Cr with 𝜈 = 0 . 21 . The initial shear mod-

li predicted by Van Liempt and Sietsma [8] are depicted by horizontal

ashed-dotted lines. The initial modulus as a function of the screw

islocation density is given in Fig. 11b , for several Poisson’s ratios. As

xpected, we observe that the initial modulus is only independent of dis-

ocation character for Poisson’s ratio 𝜈 = 0 . Otherwise, when a given FR

ource with initial pure screw character bows out, the potential energy

ncreases with dislocation line length and the change of local line sense

owards a mixed character. Hereby, the initial shear modulus increases

ith Poisson’s ratio 𝜈 and screw dislocation density 𝜌
slip 
s . Juxtaposed, the

ncrease in potential energy with line length is lowered because of the
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Fig. 12. (a) The normalised normal stress 2 𝜎𝐿 ∕( 𝐸 el 𝑏 ) as a function of normalised principal strain 2 𝜖𝐿 ∕ 𝑏 with densities 𝜌total 
s 

∕ 𝜌total = 1∕4 and 3∕4 , and rational tensile 

directions ⟨100 ⟩, ⟨110 ⟩ and ⟨111 ⟩. The normalised tangent modulus 𝑌 ∕ 𝐸 el as a function of (b) the normalised stress 2 𝜎𝐿 ∕( 𝐸 el 𝑏 ) and (c) the normalised strain 2 𝜖𝐿 ∕ 𝑏 . 
The black arrows marked with 𝜌total 

s 
indicate an increase in screw dislocation density 𝜌total 

s 
across lines with a given color. The dashed-dotted black line indicates the 

isotopic results in (19) and (20) by Van Liempt and Sietsma [8] . 
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ormation of mixed character dislocation line from an initial pure edge

islocation. Hence the initial modulus depends on the fractions of screw

nd edge dislocations. For a given increase in Poisson’s ratio 𝜈 ≥ 0 . 4
nd/or edge dislocation density 𝜌

slip 
e , the initial shear modulus tends to

ero. As expected, the initial modulus decreases with increasing coeffi-

ient 𝐿 

√
𝜌slip . A given decrease in proportionality coefficient 𝛼 implies

n increase in dislocation density and/or initial segment length. Apart

rom an increase in dislocation density after plastic deformation, the

ccompanying changes in dislocation character affect the initial moduli.

his might explain why accurate predictions of the apparent linear elas-

ic constants after plastic deformation proved impossible up to now [9] .

.4. Cubic crystallites 

In the following, we study materials with Poisson’s ratio 𝜈 = 1∕3
hich is commonly used for steels and aluminum. It is well-known

hat at low temperatures BCC iron contains predominantly screw

islocations [57] . Furthermore, BCC related non-Schmid effects [58] ,

.g. the lack of mirror symmetry with respect to planes orthogonal to

he dominant ⟨111 ⟩ slip directions and the structure of the screw cores,

re not considered here. Recently, Cash and Cai [14] discussed the sur-

lus of edge dislocations in fatigued FCC metals. Given that a dislo-

ation network is continuous and cannot terminate inside the bulk, a

ingle character segment distribution is rare. Here, dislocation densi-

ies 𝜌total 
s ∕ 𝜌total = 1∕4 and 3∕4 are considered. The virtual tensile re-

ults are presented in Fig. 12 . As expected [27] , the yield strength is

ndependent of screw dislocation density 𝜌total 
s . Here, the initial seg-

ent lengths are equal 𝐿 s = 𝐿 e . Thus edge character FR sources become

ritical first; when 𝐿 s > 𝐿 e ∕ ( 1 − 𝜈) , screw character FR sources become

ritical before edge character segments. Hence the yield strength de-

ends on the length of edge character segments, or the segment length

f screw dislocations. This is a general observation. The isotropic pre-

iction by Van Liempt and Sietsma [8] with Taylor factor 𝑀 = 3 . 06
s indicated by a dashed-dotted black line with diamond symbols in

ig. 12 . In accordance with Fig. 11 , the initial Young’s modulus 𝐸 ∕ 𝐸 

el 

ncreases with increasing screw dislocation density 𝜌total 
s . We note that

he gradients of the cubic tangent moduli 𝑌 ∕ 𝐸 

el are initially positive.

he positive initial gradient is markedly different from the prediction

y Van Liempt and Sietsma [8] . The principal strain increases with edge

islocation density 𝜌total 
e . The increase in anelastic strain is most appar-

nt at the yield stress (See Figs. 12b and 12c ). Given that the anelastic

train increases with (edge) dislocation density, the linear elastic stiff-

ess cannot a priori predict the principal strain in compressible materials

ither. 
12 
In order to experimentally obtain information on a physical dislo-

ation network, the quantitative and qualitative change in stress-strain

elationship, with a given change in dislocation densities, has to be ob-

ervable. It is obvious that this criterion is satisfied for Poisson’s ra-

io 𝜈 = 1∕2 (See Figs. 9 –11 ). However, many engineering materials are

ompressible due to which the difference in initial moduli decreases

See Fig. 11 ). Fortunately, the anelastic strain, and in turn the tangent

oduli, differ significantly for Poisson’s ratio 𝜈 = 1∕3 . This is most ap-

arent between the tensile results in the ⟨100 ⟩ directions. These display

 difference in initial moduli 𝐸 of about a tenth of the linear elastic

oung’s modulus 𝐸 

el ; the difference in principal strains 𝜖c is about half

he elastic strain 𝜖el 
c for 𝜎c (See Fig. 12b ). The latter is intuitive because

n initial edge character FR source sweeps out a large area 𝑆 near acti-

ation of the FR source. 

Nearly all crystals are elastically anisotropic, at least to some ex-

ent. For several technically important engineering materials with cu-

ic anisotropy the Zener ratio 𝑍 ≡ 2 𝐶 44 ∕( 𝐶 11 − 𝐶 12 ) [59] . In materials

ith low Zener ratios, the FR source equilibrium shape is approximately

lliptical because self-energy chiefly depends on dislocation character.

s the anisotropy ratio increases, discrete segments of the dislocation

oop tend to align themselves along directions which are not necessar-

ly screw orientations. Even so, Fitzgerald [33] showed that the criti-

al shear stress 𝜏c 
𝑥𝑧 

of various initial dislocation segment orientations,

n BCC iron at room temperature, is approximated within an order of

agnitude by an equivalent elastically isotropic material provided that

 < 5 . When the ratio 𝑍 ≥ 2 . 5 , depending on the Burgers vector and slip

ystem, sharp corners emerge in the dislocation loop equilibrium shape.

ontrary to the elastically isotropic case, these corners are not directly

ssociable with dislocation character [33] . Those sharp corners are due

o thermodynamic instability of certain dislocation orientations [35] as

 given crystallite’s anisotropy ratio increases with, e.g., temperature.

he influences of Zener ratio and dislocation orientation in 𝛼-iron are

omprehensively discussed in [33–36] . 

Firstly, we argue that aluminum is a promising candidate to per-

orm single crystal tensile-test upon. Foremost, aluminum is considered

 “fairly isotropic ” FCC material with anisotropy ratio 1.23 (equal to

he Zener ratio for cubic anisotropy [52] ). The Poisson’s ratio 𝜈 ≈ 0 . 33
s high enough to experimentally obtain distinguishable changes in tan-

ent modulus and yield point with a given change in dislocation den-

ity, effective segment length and dislocation character. Furthermore,

he emergence of a surplus of edge character dislocation segment is ex-

ected for a fatigued specimen [14] . This warrants a noticeable change

n tensile behaviour. Secondly, for crystallites with cubic anisotropic

lasticity, Scattergood and Bacon [32] developed a method to calcu-
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ate effective elastic isotropic moduli with dislocations in mind. Note

hat these effective elastic isotropic moduli are not the apparent elas-

ic moduli, but similar to the Voigt [60] and Reuss [61] average elas-

ic moduli, which were developed to model the aggregate behaviour of

oly-crystallites. The effective moduli are defined as explicit functions

f the pre-logarithmic part of the self-energy of straight screw and edge

islocations in a given slip system. Aubry et al. [35] showed that one

an model dislocation loop equilibrium shapes in BCC crystallites us-

ng the isotropic elasticity and Scattergood and Bacon’s approximation.

ccording to [35] , the Scattergood and Bacon model produces results

n reasonable agreement with the full anisotropic numerical calculations

f a given dislocation loops on a given slip system. Our framework dis-

inguishes between different slip systems and allows for tailoring the

ffective elastic constants per glide plane, and even per initial line sense

nd Burgers vector. This allows one to model the tangent moduli and

ield points in crystallites with high Zener ratios, e.g, in single iron crys-

allites with 𝑍 ≈ 8 as the 𝛼- 𝛾 transition is approached [62] . The present

lastic-anelastic constitutive model takes account of anisotropic effects

n a per-grain basis. For crystallographically textured materials, with

.g. cubic elasticity, an additional level of abstraction is necessary be-

ond the present constitutive model, which is satisfied by probabilistic

r spatially resolved crystal plasticity methods. 

. Concluding remarks 

In this work, the anisotropic tangent moduli and the yield points

or heterogeneous dislocation networks in single crystallites are pre-

ented. First, the explicit expression for the area swept by a FR source

re-, at- and post-yield is derived. Secondly, the geometries of the slip

ystems in FCC and BCC single crystallites are incorporated. Making use

f well known methods from linear elastic theory, we visualize the ap-

arent elastic constants. 

It is shown that the previously predicted isotropic tangent modulus

y Van Liempt and Sietsma [8] only yields accurate results for highly

ompressible material. For a finite Poisson’s ratio, previous analysis was

rone to over- and/or underestimate the total dislocation density and ef-

ective segment length. Varying the dislocation density across slip sys-

ems to describe a (non)uniform dislocation distribution, we observe: 

- The pre-yield mechanical response for a given dislocation network

in a linear elastic isotropic material is anisotropic. The anisotropic

symmetry and the magnitude of anisotropy depend on the disloca-

tion distribution, density and character; 

- The initial moduli depend on the ratio between edge and screw dis-

locations for a finite Poisson’s ratio. They decrease with increas-

ing edge dislocation density and Poisson’s ratio. For incompress-

ible solids with a finite edge dislocation density, the apparent initial

Young’s modulus vanishes; 

- The yield strength of single crystals depends on the initial lengths of

edge or screw dislocation segments. The anelastic dislocation strain

increases with (edge) dislocation density. Hence the total princi-

pal strain at yield cannot be predicted by the linear elastic stiffness

alone. 

In this work, the fundamental understanding on the effects of disloca-

ion network geometry on the pre- and at-yield constitutive behaviour

s expanded. The obtained knowledge will aid in the future design of

orming methods [12] and micro-mechanical systems [13] . The main

ontribution is incorporating dislocation densities with varying charac-

er in predicting the pre-yield mechanical behaviour of materials with a

eneric Poisson’s ratio. Dislocation character has major effects on both

he apparent elastic constants and yield points. This suggests that re-

ssessment of studies on aforementioned topics is appropriate. Current

imitations on e.g. the distribution of dislocation links lengths, (far-field)

lastic interaction and equivalent isotropic elasticity, are readily lifted

y the Dislocation Dynamic Method [63] . Present model though is of

ngineering interest in higher scale computational methods under static
13 
oading conditions. The model’s ulterior application is to experimentally

btain information on the geometry of an a priori unknown dislocation

etwork. We find that near-incompressible materials and aluminum are

romising candidates for future experimental research. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

cknowlgedgments 

This research was carried out under project number T17019n in the

ramework of the Research Program of the Materials innovation institute

M2i) (www.m2i.nl) supported by the Dutch government. 

ppendix A. Frank-Read source 

1. Equilibrium shapes 

The loci of the pinning points are given by 
 

𝑥 𝛼
(
𝜙𝛼

)
𝐿 

, 
𝑦 𝛼
(
𝜙𝛼

)
𝐿 

} 

≡
{ 

− 

cos 
(
𝜙i 

)
2 

, 
sin 

(
𝜙i 

)
2 

} 

, (A.1a) 

nd 
 

𝑥 𝛽
(
𝜙𝛽

)
𝐿 

, 
𝑦 𝛽
(
𝜙𝛽

)
𝐿 

} 

≡
{ 

cos 
(
𝜙i 

)
2 

, − 

sin 
(
𝜙i 

)
2 

} 

. (A.1b) 

ence the scaled integration constants are 

𝐶 1 
𝐿 

= − 

𝜏c 

8 𝜏′
𝑥𝑧 

(
4 sin 

(
𝜙𝛼

)
+ 𝜈 sin 

(
𝜙𝛼

)
+ 𝜈 sin 

(
3 𝜙𝛼

))
− 

cos 
(
𝜙i 

)
2 

, (A.2a)

nd 

𝐶 2 
𝐿 

= − 

𝜏c 

8 𝜏′
𝑥𝑧 

(
4 cos 

(
𝜙𝛽

)
− 5 𝜈 cos 

(
𝜙𝛽

)
+ 𝜈 cos 

(
3 𝜙𝛽

))
− 

sin 
(
𝜙i 

)
2 

. (A.2b)

ombining Eqs. (A.1) and (A.2) , we give the coordinates along the dis-

ocation loop as 

𝑥 ( 𝜙) 
𝐿 

≡ 𝜏c 

8 𝜏′
𝑥𝑧 

(
(4 sin ( 𝜙) + 𝜈 sin ( 𝜙) + 𝜈 sin (3 𝜙)) − 

(
4 sin 

(
𝜙𝛼

)
+ 𝜈 sin 

(
𝜙𝛼

)
+ 𝜈 sin 

(
3 𝜙𝛼

)))
− 

cos 
(
𝜙i 

)
2 

; (A.3a) 

𝑦 ( 𝜙) 
𝐿 

≡ 𝜏c 

8 𝜏′
𝑥𝑧 

(
(4 cos ( 𝜙) − 5 𝜈 cos ( 𝜙) + 𝜈 cos (3 𝜙)) − 

(
4 cos 

(
𝜙𝛽

)
− 5 𝜈 cos 

(
𝜙𝛽

)
+ 𝜈 cos 

(
3 𝜙𝛽

)))
− 

sin 
(
𝜙i 

)
2 

. (A.3b) 

sing Eqs. (A.6) and (A.9) , we obtain the normalised equilibrium shape

f the initial RHS dislocation segment as 

𝑥 ( 𝜙) 
𝐿 

= 

4 sin ( 𝜙) + 𝜈 sin ( 𝜙) + 𝜈 sin (3 𝜙) 
2 
(
4 sin 

(
Δ𝜙s 

)
+ 𝜈 sin 

(
Δ𝜙s 

)
+ 𝜈 sin 

(
3Δ𝜙s 

)) ; (A.4a)

𝑦 ( 𝜙) 
𝐿 

= 
4 cos ( 𝜙) − 5 𝜈 cos ( 𝜙) + 𝜈 cos (3 𝜙) − 

(
4 cos (Δ𝜙s ) − 5 𝜈 cos 

(
Δ𝜙s 

)
+ 𝜈 cos 

(
3Δ𝜙s 

))
2 
(
4 sin 

(
Δ𝜙s 

)
+ 𝜈 sin 

(
Δ𝜙s 

)
+ 𝜈 sin 

(
3Δ𝜙s 

)) , 

(A.4b) 

nd the normalised equilibrium of the initial positive edge dislocation

egment as 

𝑥 ( 𝜙) 
𝐿 

= 
4 sin ( 𝜙) + 𝜈 sin ( 𝜙) + 𝜈 sin (3 𝜙) − 

(
4 cos 

(
Δ𝜙e 

)
+ 𝜈 cos 

(
Δ𝜙e 

)
− 𝜈 cos 

(
3Δ𝜙e 

))
2 
(
4 sin 

(
Δ𝜙e 

)
− 5 𝜈 sin 

(
Δ𝜙e 

)
− 𝜈 sin 

(
3Δ𝜙e 

)) ; 

(A.5a) 

𝑦 ( 𝜙) = 

4 cos ( 𝜙) − 5 𝜈 cos ( 𝜙) + 𝜈 cos (3 𝜙) ( ( ) ( ) ( )) . (A.5b)

2 4 sin Δ𝜙e − 5 𝜈 sin Δ𝜙e − 𝜈 sin 3Δ𝜙e 
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Fig. A.13. The normalised swept-out areas 8 𝑆 S ∕ 𝜋𝐿 2 and 8 𝑆 e ∕ 𝜋𝐿 2 as a func- 

tion of the normalised difference angles Δ𝜙s ∕ 𝜋 and Δ𝜙e ∕ 𝜋 for Poisson’s ratios 

𝜈 = 0 , 1∕10 , 1∕5 , 3∕10 , 2∕5 and 1∕2 . The coloured arrows indicate an increase 

in Poisson’s ratio 𝜈 across equivalently coloured lines. 
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2. Pure character angles 

For initial pure screw character segments, Eq. (6) is rewritten as 

𝜏′xz 

𝜏c 
= sin 

(
Δ𝜙s 

)
+ 𝜈 sin 

(
Δ𝜙s 

)
− 𝜈 sin 3 

(
Δ𝜙s 

)
. (A.6) 

e are interested in the difference angle Δ𝜙∙ as an explicit function of

he shear stress 𝜏𝑥𝑧 , for which we substitute 𝑠 ≡ sin 
(
Δ𝜙∙

)
. Rearranging

q. (A.6) , we find a convenient form to determine the three roots 𝑠 𝑔 ,

ith subscript 𝑔 = 0 , 1 and 2 , being 

 = 𝑠 3 
𝑔 
− 

(
1 + 

1 
𝜈

)
𝑠 𝑔 + 

1 
𝜈

𝜏′
𝑥𝑧 

𝜏c 
. (A.7)

he three real-valued roots of a cubic equation [64] 

 = 𝑟 3 + 𝑝𝑟 + 𝑞, (A.8a)

re 

 𝑔 ≡ 2 
√ 

− 

𝑝 

3 
cos 

( 

1 
3 
cos −1 

( 

3 𝑞 
2 𝑝 

√ 

− 

3 
𝑝 

) 

− 

2 𝜋𝑔 
3 

) 

, when 𝑝 < 0 . (A.8b) 

ubstituting Eq. (A.7) in Eq. (A.8) and noting sin 
(
Δ𝜙s 

)
∈ [−1 , 1] , we

nd 𝑔 = 1 and the explicit equation of the difference angle for the stable

quilibrium shape Δ𝜙s . 

For initial pure edge character segments, Eq. (11) is rewritten as 

𝜏xz 

𝜏c 
= 

1 
4 ( 1 − 𝜈) 

(
4 sin 

(
Δ𝜙e 

)
− 5 𝜈 sin 

(
Δ𝜙e 

)
− 𝜈 sin 

(
3Δ𝜙e 

))
, (A.9a) 

nd 

𝜏xz 

𝜏c 
= 

sin 
(
Δ𝜙e 

)
1 − 𝜈

− 

2 𝜈 sin 
(
Δ𝜙e 

)
1 − 𝜈

+ 

𝜈 sin 3 
(
Δ𝜙e 

)
1 − 𝜈

. (A.9b) 

earranging Eq. (A.9b) , we find a convenient form to determine the

hree roots 𝑠 𝑔 of the cubic equation: 

 = 𝑠 3 
𝑔 
+ 

( 1 
𝜈
− 2 

)
𝑠 𝑔 + 

( 𝜈 − 1 ) 
𝜈

𝜏xz 

𝜏c 
, (A.10) 

hich is of the same form as Eq. (A.8a) , but with 𝑝 ≥ 0 , since 𝜈 ≤ 1∕2 .
he single real-valued and two complex-valued roots of the cubic equa-

ion (A.8a) [64] for 𝑝 > 0 are 

 𝑔 = 2 
√ 

𝑝 

3 
sinh 

( 

1 
3 
sinh −1 

( 

− 

3 𝑞 
2 𝑝 

√ 

3 
𝑝 

) 

+ 

2i 𝜋𝑔 
3 

) 

, (A.11) 

here i is the imaginary unit. Substituting Eq.

A.10) in (A.8a) and (A.11) , and noting sin 
(
Δ𝜙e 

)
∈ [−1 , 1] , we

se 𝑔 = 0 and find the explicit equation of the difference angle for the

table equilibrium shape Δ𝜙e . 

3. Swept areas 

Considering a FR source with generic initial dislocation character 𝜙i ,

e substitute Eq. (A.2) in Eq. (4) and, noting 

1 
𝐿 2 

( 
𝑥 ( 𝜙) 

𝜕𝑦 ( 𝜙) 
𝜕𝜙

− 𝑦 ( 𝜙) 
𝜕𝑥 ( 𝜙) 
𝜕𝜙

) 
= 2 − 𝜈 + 3 𝜈 cos ( 2 𝜙) 

32 

( 
𝜏c 

𝜏′
xz 

) 2 
( 
cos ( 𝜙) 

( 
2 𝜈 cos ( 𝜙) + ( 4 − 5 𝜈) cos 

(
𝜙𝛽

)
+ 𝜈 cos 

(
3 𝜙𝛽

)
+ 4 

𝜏′
xz 

𝜏c 

sin 
(
𝜙i 

)) 
+ sin ( 𝜙) 

( 
−2 𝜈 sin 

( 
𝜙+ ( 𝜈+ 4 ) sin 

(
𝜙𝛼

)
+ 𝜈 sin 

(
3 𝜙𝛼

)
+ 4 

𝜏′
xz 

𝜏c 

cos 
(
𝜙i 

)) ) 
+2 𝜈 − 4 

) 
, (A.12) 

btain the normalised area swept out as 

𝑆( 𝜙𝛼, 𝜙𝛽 ) 
𝐿 

2 = 

1 
256 

( 

𝜏c 

𝜏′
xz 

) 2 

(16(2( 𝜙𝛽− 𝜙𝛼) + 4 sin ( 𝜙𝛼) cos ( 𝜙𝛽 ) 

− sin (2 𝜙𝛼) − sin (2 𝜙𝛽 )) − 8 𝜈( sin (4 𝜙𝛼) + sin (4 𝜙𝛽 ) 
+4( 𝜙𝛽− 𝜙𝛼− sin (2 𝜙𝛽 ) + 2 sin ( 𝜙𝛼) cos ( 𝜙𝛽 )) 
14 
−2( sin ( 𝜙𝛼) cos (3 𝜙𝛽 ) + sin (3 𝜙𝛼) cos ( 𝜙𝛽 ))) 

+8 
𝜏′

xz 

𝜏c 

(4 cos ( 𝜙𝛽+ 𝜙i ) − 2 𝜈 cos ( 𝜙𝛽+ 𝜙i ) − 2(2 − 𝜈) cos ( 𝜙𝛼+ 𝜙i ) 

+3 𝜈( cos ( 𝜙i − 𝜙𝛼) − cos ( 𝜙i − 𝜙𝛽 )) + 𝜈( cos (3 𝜙𝛽+ 𝜙i ) 

− cos (3 𝜙𝛼+ 𝜙i ))) + 𝜈2 (4( 𝜙𝛼− 𝜙𝛽 ) + 3 sin (2 𝜙𝛽 ) + 19 sin (2 𝜙𝛼) 
+ sin (4 𝜙𝛽 ) + 7 sin (4 𝜙𝛼) − sin (6 𝜙𝛼) − sin (6 𝜙𝛽 ) + 4( sin ( 𝜙𝛼) cos (3 𝜙𝛽 ) 
+ sin (3 𝜙𝛼) cos (3 𝜙𝛽 )) − 20( sin ( 𝜙𝛼) cos ( 𝜙𝛽 ) + sin (3 𝜙𝛼) cos ( 𝜙𝛽 ))) . (A.13) 

ereby, the normalised area swept by the RHS screw FR source is 

𝑆 s 
(
Δ𝜙s 

)
𝐿 

2 = 

1 
32 

(
2 + 𝜈 + 𝜈 cos 

(
2Δ𝜙s 

))2 sin 2 (Δ𝜙s ) 
((32 − 32 𝜈 − 4 𝜈2 )Δ𝜙s 

−(16 − 32 𝜈 − 3 𝜈2 ) sin (2Δ𝜙s ) − (8 𝜈 − 𝜈2 ) sin (4Δ𝜙s ) 
− 𝜈2 sin (6Δ𝜙s )) , (A.14) 

nd for the positive edge FR source 

𝑆 e 
(
Δ𝜙e 

)
𝐿 

2 = 

1 
32 

(
𝜈 cos 

(
3 𝜈 + 2Δ𝜙e 

)
−2 

)2 sin 2 (Δ𝜙e 

)((32 − 32 𝜈 − 4 𝜈2 
)
Δ𝜙e

−(16 − 19 𝜈2 ) sin (2Δ𝜙e ) + (8 𝜈 − 7 𝜈2 ) sin (4Δ𝜙e ) 
− 𝜈2 sin (6Δ𝜙e )) . (A.15) 

quations (A.14) and (A.15) are equivalent to the swept areas

ash and Cai [14] obtained apart from different definitions of difference

ngle. The area swept 𝑆 ( Δ𝜙) is given in Fig. A.13 . For the ease of com-

arison with Figs. 3a and 3b , the swept areas, which correspond to line

tresses 𝜏𝑥𝑧 ∕ 𝜏c = 𝜏′
𝑥𝑧 
∕ 𝜏c = 1∕10 , 9∕10 and 1 are indicated with (coloured)

riangle, square, circle and gradient symbols as well in Fig. A.13 . 

ppendix B. Taylor factor 

Using the principle of virtual work, we require that the rate of ex-

ernal anelastic work is equivalent to the rate of internal anelastic work

cross 𝑘 slip systems, i.e. 

∶ 𝜕 𝝐
an 

𝜕𝑡 
≡ ∑

𝑘 

|||||𝜏xz 

𝜕𝛾an 
xz 

𝜕𝑡 

|||||, (B.1) 

here 𝜏𝑥𝑧 and 𝛾an 
𝑥𝑧 

are the shear stress and anelastic shear strain, re-

pectively, and their magnitudes may vary between slip systems. It is

onvenient to express the rate of external anelastic work in terms of the

rincipal deformation rates by 

𝜕𝑊 

an 

𝜕𝑡 
= 

|||| 𝜕 𝜖an 
1 
𝜕𝑡 

(
𝜎1 + 𝜆𝜎2 + ( 1 − 𝜆) 𝜎3 

)||||, (B.2a) 
| |



J.S. Van Dokkum, C. Bos, S.E. Offerman et al. Materialia 20 (2021) 101178 

w  

d

w  

v  

r

𝜎

F  

w  

b

𝑀

F  

s  

l  

a  

s  

b  

𝜏  

S

 

t

R

 

 

 

 

 

 

 

 

 

 

[  

[  

 

[  

[  

 

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

 

[  

[  

 

[  

[  

[  

[  

[  

[  

[  

 

[  

 

[  

[  

[

[  

[  

[  

[

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[

[  

[  

[  

 

ith contraction ratio 𝜆 ≡ 𝜕 𝜖an 
2 ∕ 𝜕 𝜖

an 
1 and conservation of volume during

islocation glide, i.e. 

𝜕 𝜖an 
2 
𝜕𝑡 

+ 

𝜕 𝜖an 
2 
𝜕𝑡 

+ 

𝜕 𝜖an 
2 
𝜕𝑡 

≡ 0 , (B.2b) 

here | 𝜕 𝜖an 
1 
𝜕𝑡 

| ≥ | 𝜕 𝜖an 
2 
𝜕𝑡 

| ≥ | 𝜕 𝜖an 
3 
𝜕𝑡 

| are the absolute principal strain rates. In a

irtual tensile test, there is a single principal stress component and we

ewrite Eq. (B.1) as a function of the normal stress 

𝜕 𝜖an 

𝜕𝑡 
= 

∑
𝑘 

|||||𝜏xz 

𝜕𝛾an 
xz 

𝜕𝑡 

|||||. (B.3a) 

ollowing Van Liempt and Sietsma [8] and using the Taylor factor 𝑀 ,

e relate the normal stress to the resolved shear stress 𝜏 in each grain

y 

 ≡ 𝜎

𝜏
= 

∑
𝑘 

𝜕𝛾an 
xz 

𝜕 𝜖an 
. (B.3b) 

urthermore, we assume: (1) each grain is subjected to a normal

tress parallel to the tensile axis [45] ; (2) all orientations are equally

ikely [45] ; (3) the resolved shear stress 𝜏 is the same in each grain [8] ;

nd (4), each grain extends by the same amount along the ten-

ile axis [44] . Integrating the right-hand side of Eq. (B.3b) with the

oundary condition 𝛾an 
𝑥𝑧 
( 0 ) ≡ 0 for no applied principal strain, we obtain

= 

𝜎

𝑀 

, and 𝜖an = 

1 
𝑀 

∑
𝑘 

𝛾an 
𝑥𝑧 
. (B.4)

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.mtla.2021.101178 . 
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