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Kinematics of Soft Robots by Geometric Computing
Guoxin Fang , Student Member, IEEE, Christopher-Denny Matte, Rob B. N. Scharff , Student Member, IEEE,

Tsz-Ho Kwok , and Charlie C. L. Wang , Senior Member, IEEE

Abstract—Robots fabricated with soft materials can provide
higher flexibility and, thus, better safety while interacting in un-
predictable situations. However, the usage of soft material makes
it challenging to predict the deformation of a continuum body
under actuation and, therefore, brings difficulty to the kinematic
control of its movement. In this article, we present a geometry-
based framework for computing the deformation of soft robots
within the range of linear material elasticity. After formulating both
manipulators and actuators as geometry elements, deformation
can be efficiently computed by solving a constrained optimization
problem. Because of its efficiency, forward and inverse kinematics
for soft manipulators can be solved by an iterative algorithm with
a low computational cost. Meanwhile, components with multiple
materials can also be geometrically modeled in our framework with
the help of a simple calibration. Numerical and physical experimen-
tal tests are conducted on soft manipulators driven by different
actuators with large deformation to demonstrate the performance
of our approach.

Index Terms—Deformation prediction, geometric computing,
kinematics, soft robotics.

I. INTRODUCTION

W ITH the excellent behavior of continuum bodies, soft
robotics has attracted a lot of attention in research.

Mainly inspired by nature, designers have come up with a variety
of novel designs for soft robots to achieve different tasks (see [1]
and [2] for a comprehensive survey). By using soft materials and
specially designed structures, continuum bodies enable these
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Fig. 1. Example soft robotic systems that actuation can be represented as
geometric changes. (a) Soft finger actuated by stepper motor with cable length
shortening. (b) Soft crawling robot driven by DEA can achieve locomotion by
the area change using different voltage input [9]. (c) Pneumatic driven soft
manipulator controlled by syringe actuation system with the volume change in
chambers.

robots to generate large and complex deformations with an in-
finite number of degrees-of-freedom (DOFs). Highly dexterous
tasks like human-interactive grasping [3], and exploration in
confined regions [4] can then be realized with soft robots. In
the meantime, 3-D printing with multiple materials [5]–[8] has
been utilized to fabricate soft robots, providing flexibility in the
complexity of the geometry as well as the material properties.

A. Problems of Kinematics

While soft matter and 3-D printing open up many opportu-
nities in developing new soft robots, these advanced designs
along with the high amount of DOFs also bring challenges to
develop efficient and reliable algorithms for kinematics. Unlike
robots with rigid bodies for which the position and velocity of the
end-effector can be directly computed with joint parameters, it is
almost impossible to explicitly formulate the kinematic function
for soft manipulators. Although some reduced analytical models
have been developed for specific designs, they are usually based
on a particular type of soft body and, therefore, not general
enough to model robots with complicated shapes.

A numerical approach can also be used to predict the defor-
mation of soft robots by approximating a continuum body with
discretized finite elements. With precise modeling formulation
of soft materials, finite-element analysis (FEA) has proved its
effectiveness in simulating the behavior of soft robots [10], [11].
However, when dealing with large rotational deformation, the
high cost of computation by using enterprise-level FEA soft-
ware (e.g., Abaqus and ComSol) can hardly meet the required
efficiency in kinematics applications.

Our research is inspired by the fact that many forms of
actuation in soft robotic systems can be directly transformed
into geometric changes (see Fig. 1). In this article, we tackle
the problem of kinematics computing by presenting an efficient
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approach where soft robots with multiple materials and their
actuation are systematically modeled in a geometry-oriented for-
mulation. Comparing to other methods, our kinematic algorithm
shows better convergence and keeps a good balance between
the computational efficiency and the numerical accuracy. Both
forward kinematics (FK) and inverse kinematics (IK) can be ef-
ficiently computed in our framework. Case studies with physical
experiments have been conducted to demonstrate and verify the
effectiveness of our approach.

B. Related Work

Efficient computation for simulating the deformation of soft
robots under different types of actuation is a fundamental tech-
nique to solve the problems of kinematics, which is needed in
many applications—e.g., adaptive grasping of soft objects in
the food industry [12] and auxiliary systems for soft tissues
in medical surgery [13]. Prior research works can be classified
into three groups: 1) analytical methods, 2) numerical methods,
and 3) model-free methods (mainly using machine-learning and
computer vision).

When dealing with soft robots having simple (particularly
symmetric) structures, analytical methods based on mechanics
or differential geometry have been commonly used. In the early
stages, the backbone curve approach [14] and the constant curva-
ture assumption [15] were applied to build the kinematics of mul-
tisection soft robots. By using the work-energy principle, Trivedi
et al. [16] developed a geometric model for pneumatic-driven
soft manipulators that has better accuracy than the constant-
curvature model. Giorelli et al. [17]–[19] conducted a series of
work to build forward and IK for bioinspired manipulators by
applying the Jacobian method of statics models to compute the
equilibrium status of conical-shaped manipulators under cable
forces. Recently, efforts have also been made to use analytical
methods for soft robotic systems with high DOFs or hyperelastic
materials. For example, Panagiotis et al. [20] presented their
analysis for fiber-reinforced bending pneumatic actuators. A
teeth-structure soft gripper was studied by using a simplified
skeleton model [21]. However, the equilibrium of a static model
requires specific approximations and assumptions of shape and
material properties, which can hardly be generalized to soft
robots with freeform shapes fabricated by 3-D printing.

While using the numerical method, the deformation of a
continuum body is usually simulated by FEA with given material
properties and the boundary conditions of actuation. A deformed
shape can be computed in general and this method has been used
to help select the optimal design parameters of soft robot to meet
specific performance (e.g., providing a faster actuation behav-
ior [22] or making the bending curvature conformable to a design
surface [23]). Conversely, the tradeoff between computing time
and accuracy needs to be made when applying a numerical
method on real examples with more than 10k elements. Com-
mercial FEA software like Abaqus and ComSol can generate
precise calculations of FK for soft robots [10], [20]; however,
small time-steps are needed when confronted with situations of
large deformation. For these softwares, the high computation
cost and slow simulation speed restrict its usage for further
solving the IK problem. To speed up numerical methods, Allison

and Okamura [24] presented a closed-loop control of a haptic
jamming deformable surface by a mass-spring system. Hiller
and Lipson [25] developed a multimaterial simulation library
for general static and dynamic analysis—called Voxelyze, where
the voxel representation and beam theory were used. Based on a
physics-based simulation engine SOFA [26], Duriez et al. [27]
simulated the behavior of soft robots by progressively solving
a quasi-static equilibrium function for every sample time. This
method can achieve real-time computing speed with a reduced
model [28]. However, the progressive computation accumulates
numerical errors along time steps, which brings in the accuracy
problem for the case with large rotational deformation (see the
comparison given in Section V-A).

In the absence of analytical and numerical models, model-free
methods based on learning or vision, have been employed to
solve the challenge of computational kinematics for soft robots.
Machine intelligence approaches can generate forward and in-
verse mappings with limited samples obtained from either phys-
ical experiments [19] or precise numerical simulations [29]. The
accuracy of training-based kinematic computation, however,
mainly relies on the quality and quantity of the training datasets.
Visual servoing has been used to control the manipulation by cal-
culating the Jacobian of deformation between the control point
and an unknown elastic body [30], [31]. Similarly, Li et al. [32]
employed an adaptive Kalman filter to estimate the Jacobian and
only required data input from the vision tracking system. Zhang
et al. [33] built a closed-loop tip position control strategy for
specific soft robot design by combining the numerical simulator
with a visual servoing system. The vision-based methods are
efficient and robust after adjusting the control law. However,
the requirement of vision hardware and the complex calibration
process prevents the usage of this method in many scenarios.

C. Contributions

The technical contributions of this article are summarized as
follows.

1) A novel method of geometric computing is presented to
predict the deformation of continuum soft bodies under
geometric actuations—this results in an efficient forward
kinematic computation. Physical actuations are directly
transformed into geometric constraints that can be intrin-
sically integrated into the framework.

2) An image-based calibration method is introduced to en-
able the simulation of multiple materials in our compu-
tational framework by learning the relationship between
material properties and shape parameters.

3) A Jacobian-based iterative algorithm is developed to com-
pute the IK solution with the help of our efficient de-
formation computing framework. The Jacobian matrix is
calculated by numerical differences, which relies on a
highly efficient simulator.

Our method is direct and efficient. It has been verified on 3-D
printed soft robots driven by different types of actuation within
the deformation range of linear material elasticity. Applications
of trajectory following have been conducted to demonstrate the
performance of our method.
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An early version of this study, which focused on predicting the
deformed shape of cable- and pneumatic-driven soft manipulator
under single actuation in 2-D domain, has been presented in [34].
In this article, our approach has been enhanced in the following
aspects.

1) The method is extended to support kinematic computing
with multiple actuators in 3D, and has its correctness
verified in the deformation range of linear elasticity.

2) An algorithm of IK is developed by using Jacobian-based
iterations.

3) The generality of our method has been further verified on
additional distinct designs of soft robots.

The rest of this article is organized as follows. Section II
presents the mathematical modeling of our geometry computing
approach. Both forward and inverse kinematic problems are
formulated and solved with a corresponding algorithm presented
in Section III. In Section IV, we study the correctness of using
linear material elasticity for 3-D printed soft robots and also
introduce a method of physical calibration to transform mul-
timaterial properties into geometric parameters. Experimental
results are given in Section V, where the effectiveness of our
method has been validated on different applications and phys-
ically fabricated soft robots. Finally, Section VI concludes this
article.

II. GEOMETRY-BASED FORMULATION

In this section, we present the formulation of our geometry-
based modeling framework. The notations used in this article
are first presented. Then, deformation energy is defined based on
the shape variation of elements. After that, bodies and actuators
of soft robots are modeled as two types of elements in the
formulation. Last, the methods for computing target shapes of
different elements are presented in detail.

A. Notations

The small and capital bold letters are used to present column
vectors and matrices, respectively, e.g., v ∈ R3 and N ∈ Rk×k.
The subscript of a variable presents its order in corresponding
set, meanwhile the superscript present is for the status of meshes
or elements. Particularly, the superscript d denotes the deformed
(or current) shape and t means the target status. The identity
matrices are denoted by Ik×k ∈ Rk×k, and 1k×k is a matrix of
k × k ones.

A volumetric mesh M = (V, E) is used in our framework to
represent the body of a soft robot, whereV andE stand for the sets
of vertices and elements in the mesh. We define the shape of each
element by a k × 3 matrix Vi = [v1 v2 . . . vk]

T with k being
the number of vertices on an element. In this article, tetrahedron
(k = 4) and prism elements (k = 6) are used to model soft robots
with general 3-D geometry and thin-shell structure, respectively.

In our method, the status of actuation is described by a set C
of the following geometric parameters:

1) length shortening ratio s for cable actuation;
2) area stretching ratio λ for dielectric elastomer actuation

(DEA);
3) volume expanding ratio α for pneumatic actuation.

This can also be extended to support other types of geometry-
oriented actuation. Meanwhile, other notations used in this
article are summarized in Table I.

B. Elastic Energy Function

The general purpose of an elastic deformation simulator is
to determine a new shape Md for a soft body that best mimics
the physical behavior of deformation under the actuation of C
with reference to the initial shape M and the input material
distribution Ω. When different boundary conditions (or external
loads) are applied to deform an object, the elastic energy is trans-
ferred by the corresponding work and distributed internally in
M. Here, the elastic energy is caused by the shape deformation,
which can be evaluated from the strains (i.e., local deformations
throughout M). In this sense, the total elastic energy should
be minimized when the original shape is preserved as much as
possible. To mimic this physical phenomenon, we formulate the
difference between Vd

i (current shape under deformation) and
Vt

i (target shape) for a single element by discretized geometry-
elastic energy as

Ei = D(Vd
i ,V

t
i). (1)

To measure the shape differenceD(·, ·) ofVd
i andVt

i , they have
to be properly aligned in terms of both position and orientation.
Therefore, both shapes are centered at the origin and a rotation
is applied to match Vt

i with Vi, such that the abovementioned
energy for the ith element can be further defined as

Ei = ωi||NiV
d
i −Ri(NiV

t
i)||2F . (2)

ωi is a weight for each element, which is normally set as the
element’s volume [35]. || · ||F is the Frobenius norm, Ri is the
pure rotational matrix between two status for the ith element.
Ni is used to transfer an element’s center to the origin and
Ni = Iki×ki

− 1
ki
1ki×ki

.
Remark 1: Only elastic deformations are considered in our

framework.
As a result, we can assume that every soft model will come

back to its initial rest shape after releasing all the constraints
(i.e., actuations and handles). The energy function defined in (2)
consists of three sets of variables, including the following:

1) vertex positions of target shape Vt
i ;

2) rotation matrices Ri for individual elements;
3) vertex positions of current shape Vd

i under deformation.
How to determine these variables is presented below.

We first consider the target shape, which presents the ability of
a soft body to resist deformation under actuation. It is determined
commonly by the initial model M, the set of constraints C, and
the coefficients for material properties Ω. As shown in Fig. 2,
two types of elements defined in our system, body elements and
actuation elements, are modeled by using the same formulation
of elastic energy. However, their target shapes are defined in
different ways.

1) For a body element Vi, the target shape Vt
i is computed

with a shape blending function by combining its initial
rest shape and the coefficient Rω reflecting its material
property (i.e., the stiffness). Ideally, Vt

i is a blended shape
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TABLE I
LIST OF SYMBOLS

Fig. 2. Conceptual representation of our geometry-based framework for soft robotic systems with different types of actuation. The light-gray region presents the
body elements and the region in red denotes actuation elements. Three different types of actuation are transformed into the shape change of actuation elements.
(a) Cable-drive actuation is formulated as the edge-length shortening of cable elements. (b) DEA is presented as the area stretching of prism actuation elements.
(c) Pneumatic actuation is defined as the volume expansion of internal tetrahedral chamber elements.

between a superelastic material and a completely rigid
material, where Rω indicates the level of blending (see
Section II-C for the details of blending and Section IV for
coefficient calibration).

2) Target shape of an actuation element Vt
j is determined

according to the different types of actuations. All actuation
elements together actually serve as the driven handles to
deform a soft body. Detailed formulation can be found in
Section II-D.

The final energy function is determined by integrating all
the elementary elasticity together. By minimizing the integrated
energy function for the whole design domain together with
actuation constraints, the deformed shape of soft robots under
actuation can be computed. As shown in (2), Ri and Vd

i are
unknown variables to be determined during the optimization
computation, and the numerical method for solving this nonlin-
ear optimization problem will be presented in Section III. We
first present the details of how to compute the target shapes for
body and actuation elements below.

C. Modeling for Body Elements

For the soft robots fabricated by multiple materials, regions
with different materials will deform in different ways; thus, the
target shape should be computed disparately based on the input
material distribution Ω. In this section, we propose a method to
formulate soft objects with multiple materials by using the linear
blending method with a shape parameter.

To model the different properties of materials, a simple way
is to assign different weights ωi for each element in (2). The
rigidity of an element will be preserved differently through the
optimization when different weights are assigned. This mimics
the deformation of multiple materials. However, handling the
material difference in this way will lead to large approximation
errors. In order to gain a better control and reinforce the physical
property in large deformations, we control the deformation
behavior of elements at the local region by altering their target
shapes Vt according to different material properties.

Remark 2: When the material of an element is extremely
hard, it will be rigid during the deformation; respectively, an
element with extremely soft material will deform to the shape,
which conforms to its neighbors while preserving its volume.

Based on the abovementioned remark, we came up with a
method to compute two different target shapes for body element,
as shown in the left-hand side of Fig. 3. Here, the target shape
of a rigid element Vr comes from the rigid transformation of
its original shape. This method thoroughly preserves the initial
shape V and keeps the same orientation as the current shape,
which leads to

Vr = RV. (3)

R is the rotation matrix between the current and initial element,
and can be obtained by applying SVD to the affine transforma-
tion between Vd and V.

For a soft element, its target shape Vs comes from scaling
the current shape back to its original volume (see Fig. 3) and
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Fig. 3. Shape blending method for controlling the material stiffness in our
framework. (Top-left) The target shape for rigid material is computed by rotating
the initial shape to align with the current shape. (Bottom-left) The target shape
for extremely soft material is computed by scaling the current shape to preserve
the volume of the initial shape. (Right) The shape blending method is applied to
align the rigid and the soft materials, and merge their shapes to obtain the target
shape for an intermediate material.

we call this volume preservation. The shape comes from current
element shape Vd and can be calculated as

Vs = SVd (4)

where S = diag(r, r, r) with r = Vol(V)/Vol(Vd).
For a material in-between, the rigid and soft target shapes

are aligned by using a blending method with a shape parameter
Rω to get the target shape, as shown in the right-hand side of
Fig. 3. Here, a linear shape blending method [36] was used after
centering both shapes onto the origin withNmatrix for a general
case as

Vt = RωN(RV) + (1−Rω)N(SVd). (5)

In this way, the target shapes of elements according to different
materials can be properly controlled during the deformation.

To verify the correctness of the abovementioned method for
controlling the relative stiffness of materials, we have tested a
variety of polymer materials widely used in 3-D printing. In
Section IV-B, we present an image-based calibration process to
determine the shape parameter—the ratio Rω—for controlling
the material behavior. Our linear shape blending method works
very well when the deformation of each element is within the
range of linear material elasticity. The correctness of our method
will be verified in Section IV-A with the help of FEA simulation.

D. Modeling for Actuation Elements

Soft robots are deformed by applying external actuations
such as cable shortening, elastomer stretching, or pneumatic
expansion of a chamber—these are all based on geometric
metrics. When being at an equilibrium state, the geometry of
an actuation must completely satisfy its given length, area, or
volume constraints. A straightforward method is to formulate
them as hard constraints in a numerical optimization framework.
However, it is hard to converge because of its high nonlinearity,
especially when the initial values are far away from the feasible
regions.

To solve this problem of numerical computation, we formulate
the deformation of an actuator as the collected function of a
set of actuation elements (as shown in Fig. 2). The geometric

Fig. 4. Illustration of how the target shape of actuation element is computed
based on the input parameter. The initial shapes are presented by red dot lines
and the target shapes are displayed by black solid lines. Notice that the number
of vertices k is different for different types of actuation elements. Specifically,
(a) k = 3 for cable actuation, (b) k = 6 for DEA, and (c) k = 4 for pneumatic
actuation.

constraints for an actuator are then converted into target shapes
computed at each iterative step for these elements. The target
shape of an actuation element is achieved by integrating it
into the same elastic energy minimization framework. Larger
weights are given to the actuation elements to make the actua-
tion parameters satisfied effectively. As a result, the geometric
actuation can be seamlessly integrated to our geometry-based
simulation framework. Details of how we define the actuation
elements and compute their target shape Vt according to the
input actuation parameter C are given below. Note that, after
reshaping from the rest shape, each actuation element should be
transformed to a position and orientation according to its current
shape—i.e., the similar step as body element. Three different
types of actuation elements are considered.

1) Cable-Driven Actuation: A typical cable-driven soft grip-
per with design similar to [37] is as shown in Fig. 2(a), which has
three soft “knuckles.” A cable fixed on one side of the gripper
is passed through the holes along the gripper. While pulling the
cable (i.e., by shortening its length), the gripper bends toward
one side. To integrate this actuation into simulation, the V-shaped
“knuckles” are modeled as a set of triangular elements. One
edge of each triangle is aligning exactly with the cable, the
deformation of which drive the simulations.

The total lengthL of a cable equals to the length of the gripper.
It includes the inside portions LR and the tooth length {li}—
i.e., L = LR +

∑k
i=1 li, where k is the number of teeth. The

shortening factor s is also given together with a cable constrain.
The constraint function can be defined as

fc(C) = sL−
(

LR +

k∑

i=1

sili

)

≡ 0 (6)

where si is a local shortening factor for the ith tooth. Directly
imposing this constraint to the optimization framework will lead
to a computation very hard to converge.

It is more efficient to transform this function of constraint to
a target shape for each actuation element. For a cable-driven
actuation element, we place its rest shape into a position with its
cable-driven face located in the xy-plane, the cable coincident
with the x-axis, and the opposite vertex on y-axis [see Fig. 4(a)].
After that, the target shape can be computed by shrinking the
element along x-axis by the factor si.

2) Dielectric Elastomer Actuation: With voltage input, di-
electric elastomers can effectively generate large deforma-
tion [38]. Driven by DEA, soft robots with specific design can
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perform locomotion by the areal stretching within the elastomer
region. As show in Fig. 2(b), a thin-layer soft robot is modeled
by prism elements where the inner red region is formed by the
actuation elements. The total surface area A of the elastomeric
region can be computed by A =

∑k
i=1 ai, where ai is the

average area of the top and bottom triangles of a prism element.
To satisfy the stretching ratio λ for a DEA, the constraint function
can be defined as

fd(C) = λA−
k∑

i=1

λiai ≡ 0 (7)

where λi is a local expansion ratio of an actuation element.
Similar to the cable-drive actuation, this constraint should also
be transformed to the target shape of DEA elements.

When computing the target shape for a prism element from its
rest shape, the top and bottom triangles are scaled in their own
planes with the scaling ratio

√
λi. The center of each triangle is

chosen as the center of scaling [see Fig. 4(b) for an illustration].
After scaling, the triangles are shifted along their normal vectors
so that the “thickness” of an actuation element is scaled to 1/λi

to preserve the original volume.
3) Pneumatic Actuation: A pneumatic actuator usually

drives soft robots by pumping pressurized air into a bellow
formed by soft materials. An example is shown in Fig. 2(c),
where the left part is fixed when pumping air along the direction
of white arrow into the bellows. The internal tetrahedra that fill
the chamber are modeled as the actuation elements, which have
been highlighted in Fig. 2(c). These actuation elements are used
to model the expansion of air inside the bellows.

Given the volume ui of each pneumatic actuation element, the
total volume of a bellow is then U =

∑k
i=1 ui. To achieve

the volume expansion ratio α for a pneumatic-driven soft robot,
the geometric constraint can be described by

fp(C) = αU −
k∑

i=1

αiui ≡ 0 (8)

where αi is a local expansion ratio of each element.
The target shape for a pneumatic actuation element with the

volume expansion ratio αi can be determined by scaling its rest
shape with the ratio 3

√
αi. The scaling is conducted at the center

of tetrahedron [see Fig. 4(c)]. After scaling, the target shape
should be transformed to a position and orientation according to
the element’s current shape.

There is a remaining problem to be solved—how to determine
the scaling ratios on every elements (i.e., {si, λi, αi}) by a global
actuation parameter such as s, λ, or α. We determine them
proportionally to the ratios of an element’s current shape w.r.t.
its rest shape. The newly determined ratios must also satisfy the
geometric constraints defined in (6)–(8). In our implementation,
a least-norm solution is employed to compute their values on all
the actuation elements.

III. ALGORITHM FOR KINEMATICS

The kinematics of soft robots are hard to be solved analyt-
ically. In this section, we present the algorithms characterized
by our geometry-based formulation to solve both the forward

and the inverse problems of kinematics for soft robots. As a
general framework, our algorithms for kinematics can intrin-
sically handle the different configurations of actuation with
different material-distributions as long as the actuation can be
converted into geometric inputs.

A. Forward Kinematics

The FK for the soft robots can simply be described as the
computation of the deformed shape VD from the initial shape V
given the actuation in the form of constraints C. As formulated
in Section II, the deformed shape of a soft body can be computed
by minimizing the elastic energy after converting the actuation
constraints into a set of target shapes for the actuation elements.
This leads to a solution of FK in our framework by solving the
unconstrained optimization problem below as

min
V

E(M, C) =
m+n∑

i=1

wiV ol(Vi)‖NiV
d
i −Ri(NiV

t
i)‖2F (9)

where the variables of optimization are the vertices {Vd
i } of

a deformed shape. In this framework, the final shape of a soft
body under actuation is determined by the initial shape ofn body
elements and the target shape of m actuation elements.

In the formulation of (9), both the local rotation Ri and the
vertex positions Vd

i are unknowns to be determined. As a result,
the objective function of optimization is highly nonlinear, which
may lead to a very slow convergence and high computation
time. In order to solve it efficiently, a local/global scheme akin
to [39] is employed. In the step of local projection, the initial
shapes of actuation elements are first deformed according to the
actuation parameters (as introduced in Section II-D). After that,
the target shapes of all elements are independently transformed
by applying the rigid transformation determined between their
target shapes and the current positions (i.e., the rotation matrices
as discussed in Section II-C). Then, the new positions of vertices
can be computed in the global blending step by minimizing the
energy. Letting

∂E(M, C)
∂vj

= 0 (∀vj ∈ V) (10)

leads to a least-squares problem that can be solved efficiently.
Through this global blending step, the incompatible posi-

tions of a vertex in different elements are “glued” together. An
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Fig. 5. Illustration of the local-global optimization process on a simple model
where the whole mesh is actuated by shrinking elements in the red region.

illustration of this local-global computation can be found in
Fig. 5. Notice that, wi, Vol(Vi), and Ni are constant during the
iterations for minimizing E(M, C), factorization of the normal
equation defined by (10) can be precomputed and reused to
accelerate the computation of optimization. In order to well-
preserve the constraints of actuation, a larger weight aswi = 5.0
is employed for the actuation elements while keeping wi = 1.0
for all other body elements. The pseudocode of our algorithm
can be found in Algorithm 1.

B. Inverse Kinematic Problem

The computation of FK is able to generate the deformed shape
Vd from the given actuation C. In many robotic applications, it
is also demanded to obtain the needed actuation by the given
deformed shape. This is an inverse kinematic problem where
only a portion of the deformed shape is usually given as an
input.

Remark 3: As the FK can be computed efficiently, the de-
formed shape Vd can be considered as the output of an implicit
function Fdk(·), that is

Vd = Fdk(C,V,Ω) (11)

with the initial shape V , the actuation C, and the material
distribution Ω as the input.

Note that the material distribution Ω specifies the values of
Rω on every soft body elements. In our current work, it is given
by designers after the calibration of material properties.

For articulated robots, the IK can be described as calculating
joint status. Given a subset of vertices V̄ = {vp} (V̄ ⊂ V), IK of
soft robots can be considered as finding the proper parameters of
actuation to drive the soft body into a shape that {vp}match their
desired positions—defined as {vc

p}. Different from low DOFs
articulated robots, where analytical IK can be obtained, IK of soft
robots cannot be directly calculated as C = F−1

dk (V̄,Ω). It needs
to be solved via numerical computation [40]. This heavily relies
on the efficient computation of FK. Specifically, we seek for an
approximate solution that satisfies the position requirement.

First, an objective function is defined below to quantify the
distance between the current position and the target position of
all vertices in V̄ as

J(Fdk(C,V,Ω)) =
∑

vp∈V̄
‖vd

p − vc
p‖2 (12)

where C is the set of actuation parameters that can have multiple
variables. Then, the IK of a soft robot can be defined as an
optimization problem that

Copt = argmin
C

J(Fdk(C,V,Ω)). (13)

We use the gradient-based method to solve this optimization
task, which needs to first figure out the gradients of J(·) with
respect to C = (C1, C2, . . . , Ci, . . .). The analytical solution
of ∂J

∂Ci
cannot be obtained as the position vd

p is only an im-
plicit function of C. Fortunately, we can efficiently and effec-
tively evaluate the value of Fdk(·) by our forward kinematic
algorithm—i.e., we can easily get the positions of investigated
vertices by computing a deformed shape according to the given
actuation. As a result, numerical differences are employed to
compute the gradient ∇J = [ ∂J

∂Ci
] as

∂J

∂Ci
=

J(. . . , Ci +ΔC, . . .)− J(. . . , Ci −ΔC, . . .)

2ΔC
(14)

where ΔC is a small constant, which can be determined accord-
ing to the value of J(·) by the strategy of [41].

Directly updating the values of {Ci} by the gradient ∇J may
lead to a computation with slow convergence. To improve it, a
linear search method is applied to determine the best updating
scale h so that

h = argmin J(Fdk(C + h∇J,V,Ω)). (15)

Specifically, we first determine a value of Δh so that J(C +
Δh∇J) < J(C) by a shrinking step starting from Δh = 1.0.
The shrinkage speed is controlled by a ratio τ ∈ (0, 1)—we use
τ = 0.1 in all our experimental tests. After that, the scale h is
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further optimized by being incrementally enlarged with the step
size of Δh—this is called an expanding step. These two steps
of linear search can help us to find a “loose” optimum along the
direction of ∇J .

The terminal condition of an optimization process for solv-
ing (13) is chosen to be J(Fdk(C,V,Ω)) ≤ λ with λ being
a threshold determined according to the accuracy allowed in
different applications. On the other hand, it is also possible that
a user-specified goal cannot be realized by a soft robot—e.g.,
when a desired position vc

p falls outside the reachable space of
a robot. Therefore, we also set a maximally allowed iterations
imax as the terminal condition in our IK algorithm. Since the
line-search strategy is used to ensure the decrease of an objective
function in every iteration, our method can always provide a local
optimum for objective function (12). The pseudocode of our IK
computation has been given in Algorithm 2.

IV. MATERIAL PROPERTY: ANALYSIS AND CALIBRATION

To formulate the deformation of soft robots made with mul-
tiple materials, we proposed a reduced model based on the
linear shape-blending method presented in Section II-C. The
effectiveness of our method mainly relies on two conjectures.

1) For a variety of smart soft robot designs, the large deforma-
tion of continuum body is mainly generated by structural
deformation instead of elemental deformation—i.e., the
strains are relatively small.

2) For many materials widely used for the fabrication of soft
robots, the material elasticity in the range with small strain
can be approximately described as a linear model.

In this section, these two assumptions are verified by both
the FEM simulation and the material tests. After proving the
correctness of our method, an image-based calibration process
is proposed to find a shape parameter to be used in our method
corresponding to the physical behavior of materials.

A. Linear Material Elasticity

Many materials used for fabricating soft robots can be largely
stretched and have a hyperelastic material property, which was
utilized to achieve large shape change under actuation in early
years. However, recent designs of soft robots have specially
designed advanced structures to realize more reliable defor-
mation with better durability. For example, inextensible layers
[8] are used to prevent the nondirectional expansion so that the
effectiveness of an actuator is tremendously enhanced. In these
cases, extreme local stretch is no longer necessary for realizing
a large global deformation. We study the range of elemental
deformation on a widely applicable soft finger structure [42]
and another smart design of soft manipulator [43].

Tensile tests have been conducted on two materials used in
fabricating these two soft robots—Ultimaker TPU 95A and
Aglius 30. The obtained stress–strain curves are shown in
Fig. 6(c). The strain–stress relationship is nonlinear in general.
However, when deformation occurs in a range with small
strains, the relationship can be linearly approximated with small
error. Specifically, when the strain is less than 20% for TPU
and 30% for Aglius, a linear stress/strain curve can be obtained

Fig. 6. Verification of small-strain assumption on two effective designs of
soft robots fabricated by soft materials. (a) Ultimaker TPU 95A. (b) Aglius
30. The strain distribution of body elements (shown in the right) is generated
by FEM simulation, and the histograms (left) show the statistics of strains on
these two designs under large structural deformation. (c) Stress-strain curves for
Ultimaker TPU 95A (left) and Aglius 30 materials (right) obtained by physical
experimental tests. It can be observed that the elemental deformation mainly
occurs in the range with linear material elasticity.

[see also the solid and dash lines shown in the zoom-view of
Fig. 6(a) and (b)].

We conduct the FEM to further study the strains generated on
these two designs of soft robots. Abaqus software is employed
to generate the strain distribution when large structural defor-
mation has been achieved on these two structures. In Fig. 6,
the histograms are used to visualize the statistical distribution
of strains in all elements. It can be easily found that the strains
are less than 20% for most regions and all fall in the range of
linear elasticity discussed above—i.e., less than 20% for TPU
and 30% for Aglius.

Note that, large elemental deformation can be achieved under
actuation for the materials with small Young’s modulus such as
silicon rubber. This material property was employed for some
designs developed in early years. For these cases, the elasticity
is not guaranteed to be linear for all elements, which brings
modeling uncertainty although our method can still successfully
predict the deformation in practice.

B. Calibration of Shape Parameter

After verifying the correctness of using the linear elasticity
simplification for body elements, our shape-blending method
needs to define proper shape parameters to mimic the real phys-
ical behavior. Rather than calibrating each material separately in
a tensile test, an image-based method is developed to calibrate
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Fig. 7. Image-based calibration of the shape parameter for simulating objects
with multiple materials. (a) Multimaterial bar with displacement on the right.
(b) Physical elongation test on 3-D-printed specimen using NinjaFlex and
flexible PLA materials. (c) Tensile test result generated by our simulation
framework after calibrating the shape parameter Rω . (d) Twisting test [6] is also
conducted to verify the correctness of our material elasticity and the calibration
method.

the relative properties between different materials. As shown in
Fig. 7, we impose the displacement on a rectangular specimen at
one end while fixing another end. Without loss of generality, the
specimen is fabricated with two materials A and B joined with a
sharp interface. Let the length of the whole specimen be L and
the distance between the interface and the fixed end beL1, where
different values of L1 ∈ (0, L) are used for different specimens.
When imposing a displacementΔL at the free end of the bar, the
displacement of the interface will be located at ΔL1 ∈ (0,ΔL)
depending on the relative material properties between A and
B. The relationship of two materials can be presented by an
elasticity ratio, which is mathematically defined as

Rm =
εA
εB

=
L1(ΔL−ΔL1)

(L− L1)ΔL1
(16)

where εA and εB are the strains in the regions of two materials
with A being linked to the fixed end and B locating at the free
end. Note that, for linear materials, Rm also equals to the ratio
of Young’s modulus (i.e., a constant when materials are given).
The rest of the problem is how to find the corresponding value
of the shape parameter Rω after obtaining the elasticity ratio
Rm on two materials through the physical tests. The basic idea
of our calibration is to apply different values of Rω to run
the elongation tests in our geometry-based simulation by the
same setup. The value of Rω is then determined by matching
our simulation results with the results of physical tests, where
the bisection-search method is used. With a well calibrated
parameter Rω , the position of the material interface generated
by our simulator matches well with the physical experiment
accurately [see Fig. 7(c)]. To further verify the generality of
this parameter, we conduct a twisting test similar to the one
presented in [6]. As shown in the left-hand side of Fig. 7(d), the
specimen with two materials gives a symmetry torsion where
the relatively soft region has a larger rotation angle. By using the

TABLE II
CALIBRATED PARAMETERS FOR DIFFERENT MATERIAL COMBINATIONS

same calibrated material parameterRω , our simulation generates
a similar result [see the right-hand side of Fig. 7(d)].

We have applied this calibration method to various materi-
als used for fabricating soft robots. For different 3-D printing
systems, different combinations of materials are tested and the
corresponding calibrated parameters are listed in Table II. The
effectiveness of our shape-blending-based deformation model
and the calibration method is further validated in the following
section by other experimental tests taken on different robot
designs.

V. RESULTS AND APPLICATIONS

We have implemented our geometric computing-based kine-
matic algorithms for soft robots in C++ and tested on a standard
PC with an Intel E5-1653 3.5 GHz CPU and 16 GB RAM. With
the help of parallelization on multicore CPU on the numerical
solver Eigen [44], our system can support the computation of FK
for models with up to 50 k tetrahedra in real-time (i.e., 25 fps).

In this section, the results of forward kinematic computation
for soft robots will be first presented and compared with existing
numerical modeling methods. After that, the effectiveness of our
IK solver is evaluated on different soft robots with multiple ac-
tuators. The performance of our approach in these experimental
tests is also presented in the supplementary video.

A. Validation of Forward Kinematics

The results generated by our FK algorithm on a deformed soft
body are validated by physical tests. Moreover, our method is
also compared with different simulation techniques. The models
of the soft robot are digitally represented by tetrahedral meshes,
and their corresponding physical objects are fabricated by a
multimaterial 3-D printer (e.g., Ultimaker 3 and Object 350
Connex3). The properties of soft materials are evaluated on a
Zwick Roell static testing machine.

The first test is conducted on a cable-driven gripper with
single material (Flexible PLA), as shown in Fig. 8. The top and
bottom rows show two sequences of deformations at different
time instants, where from left to right show the results of physical
test, our simulation, and SOFA [27]. Due to the reason that the
‘deformations are progressively computed for each time step and
the accuracy is tradedoff for computational speed in SOFA, its
results do not match with the physical tests in large deformation.
Specifically, simulation starts to vary from reality when cable
length change is larger than 45%.

The second test is conducted on a pneumatic soft gripper
by increasing the pressure of the air pumped into the chamber
to control bending of the gripper. We quantitatively present
the accuracy of our method by tracking the tip position of a
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Fig. 8. Comparisons of a cable-driven gripper among the physical test (left),
our simulation (middle), and the simulation by the SoftRobots plug-in for
SOFA [27] (right).

Fig. 9. Trajectories for a soft finger’s tip under pneumatic actuation. The
background image shows the bending results in real physical test. The results
of three different numerical simulators are presented: 1) FEA with linear (FEM
1) and nonlinear material properties (FEM 2); 2) SOFA simulator; and 3) our
method. The FEM results are generated by Abaqus.

TABLE III
COMPUTATIONAL COSTS FOR DIFFERENT METHODS OF SIMULATION

†Simulations of FEA use approximated linear material propriety in FEM 1 and nonlinear
model in FEM 2—both by the Abaqus software.

soft gripper. As shown in Fig. 9, our result matches well with
the analysis conducted by advanced FEA software as well as
the physical experiment. When using the similar number of
tetrahedra in the computation (i.e., around 45k), the computation
of our framework is much faster—with 23.2 s versus 13.6 min
required to complete the simulation for bending the soft actuator
up to 240◦ by the Abaqus software. Meanwhile, we test this
soft model on the SOFA platform with the similar mesh size.
The computing time has been reported in Table III. Noticed
that the simulation speed of SOFA is faster than our method;
however, the result begins to become unrealistic after being bent
for more than 90◦ (the yellow trajectory shown in Fig. 9). In
contrast, our simulation can produce very realistic results for

Fig. 10. Simulation result for a soft crawling robot by geometry modeling the
electrostatic-driven stretching behavior of DEA. (Top) The results of our forward
kinematic computing. (Bottom) The locomotion behavior of a real robot [45].

large deformation case while still having a fast speed in FK
computing.

A design of soft crawling robot [45] is studied to validate
our approach on the DEA in FK computing. The actuator is
fabricated by attaching bendable PET frames to a prestretched
elastomer membrane. After releasing the constraint, the elas-
tomer layer will shrink and drive the soft body deforming to
its initial status (as shown in the left-hand side of Fig. 10).
By applying the voltage to the electrodes, the elastomer region
will elongate the soft body. Two rigid legs are attached to the
robot and always kept on the xy plane during simulation. In
our simulation, an initial stretching ratio λinit = 0.7 is used on
actuation elements to first deform the planner model and get the
initial shape. We use the voltage and stretch relationship in [46]
to determine the parameter λ for the actuated status.

To verify the result of our forward kinematic computation
for multiple materials, we test two cable-driven grippers with
different material compositions. The simulation and physical
results are compared visually with its dynamics in Fig. 11. The
deformations are also compared quantitatively by the trajectory
of three corresponding markers located on the boundary of the
grippers. It can be seen that both results match with the physical
experiments very well.

B. Validation of IK Algorithm by Trajectory Following

To verify the accuracy and efficiency of our IK solver, we
first demonstrate the behavior of our algorithm in a trajectory
planning experiment by a cable-driven soft finger with three
“knuckles.” The soft finger is fixed on a solid base in our exper-
imental setup [as shown in Fig. 12(a)] and for every “knuckle,”
one iron cable is linked to its top and driven individually by
its corresponding stepper motor through the pulley shaft. The
design with multiple actuators enables the ability of controlling
the soft finger to move in a plane.

Given a desired motion trajectoryL for an investigated pointq
on the soft robot V , the task of trajectory planning can be solved
by finding the parameters of actuation that drive q traveling
along L accurately. To realize this, we first sample L into N
points as PL = {p1,p2, . . . ,pN}. After running the IK compu-
tation presented in Algorithm 2 for each target point pk ∈ PL,
we are able to determine the corresponding parameter set Ck in
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Fig. 11. Two cable-driven soft grippers (left and right) with different material
distributions have different behaviors under actuation. Locations of markers
determined by our simulation are well matched with theirs in physical test.

joint space for actuation (i.e., the shortening ratio for each ten-
don’s length). For the terminal condition J(Fdk(Ck,V,Ω)) ≤ λ

that is used for IK computation, we choose λ = 0.2 mm and
imax = 30 for all sample points.

1) Implementation Details: After using different initial
guesses for the IK computation, we find that its speed of con-
vergence strongly relies on the position of initial guess [see
Fig. 12(c)]. Therefore, the following two strategies are con-
ducted to speed up the computation in our trajectory planning
application.

1) First, we generate a sample-based representation for the
configuration space Pω [see Fig. 12(b)], where the sample
pointspc ∈ Pw are obtained by applying the FK algorithm
with various combination of actuation parameters. The
initial guess of IK solution (i.e., C in Algorithm 2) for the
first point p1 on a trajectory L is then set as the control
parameter of its closest sample point in Pw.

2) Second, a deformed shape is always kept during the com-
putation and serves as the initial shape for realizing the
next target point. Specifically, after obtaining the actuation
parameters Ck for the target point pk, we update the
shape of soft robot Vd by applying the FK with Ck as
the input. This updated shape will be used as the input for
IK computation targeting on the next point pk+1.

The pseudocode of our trajectory following algorithm and the
abovementioned acceleration strategies are given in Algorithm
3. The computation of our method is very efficient. First, a
roughly sampled configuration space (e.g., 125 sample points)
can be generated in 8.3 s for obtaining good initial values.
Then, we conducted the tests on a “L” trajectory (with N = 55)
and a flame trajectory (with N = 85), as shown in Fig. 13, the
computing times are 38 and 46 s, respectively.

Fig. 12. Cable-driven soft finger with three tendons is used for the validation
of IK computation. (a) Experiment setup. (b) Configuration space is sampled to
obtain good initial values for IK computing (125 sample points are displayed).
(c) Study of convergence for IK computation by evaluating the objective function
J(·) (12) with the target position of the tracking point being given as the black star
shown in (b). We can find that the converging speed of IK computation is greatly
improved when the closest point (red triangle) in the sampled configuration space
is used as initial guess.

Fig. 13. Results of experimental tests for moving a marker point along desired
trajectories. (a) Comparison between the tracked actual movement and two target
trajectories. (b) Position errors of the investigated point while moving along the
“L” trajectory (top) and the flame shape curve (bottom). The dimension of our
actuator is 120 × 25 × 25 mm.
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We further conduct physical experiments [see the hardware
setup shown in Fig. 12(a)] to verify the parameters of actuation
generated by Algorithm 3. Arduino Mega 2560 and the RAMPS
extension board are used to generate the modulated pulse signals
that control the pull and release of cables. To generate a motion
that linearly interpolates the neighboring target points, dynamic
speed controller provided by Marlin firmware[47] is used to
synchronize the three motors. A camera system is used to track
the actual position of the investigated pointq, which is located at
the top-right corner of the soft finger. The resultant trajectories
of physical movement are given in Fig. 13(a) while comparing
to the target trajectories. The errors of motion are also visualized
as two error curves shown in Fig. 13(b). Besides computation
error, errors in physical experiments are also generated by many
other factors, including the fabrication error, the control strategy,
and the unpredictable friction between cables and the soft finger.

By sampling the configuration space for a soft robot, one intu-
itive solution of trajectory following can be realized by directly
searching the closest sample points in Pω and using their corre-
sponding parameters for actuation. However, this method needs
very dense sampling rate to guarantee the required numerical
accuracy that is comparable with our IK computing. Although
our FK computing is very fast, the cost of this searching-based
planning is still much higher than the IK-based trajectory fol-
lowing the method presented in Algorithm 3. For example,
computing 3375 sample points beforehand [see Fig. 8(b)] takes
more than 5 min. Moreover, continuity is hard to be preserved on
a path realized by the sample-searching method. Differently, our
IK computing presented in Algorithm 2 can ensure the continuity
by its nature of an iterative algorithm. We test it on an extreme
case, as shown in Fig. 14, where part of the desired trajectory
falls out of the working space. The result of our algorithm is a
smooth path completely inside the feasible region.

C. Kinematic Computing for Pneumatic-Driven Soft Actuator

The deformation of a pneumatic-driven soft robot is usu-
ally driven by changing the pressure of inflation. To conduct
kinematic computation by our framework, we should be able to

Fig. 14. Results of IK computing and trajectory following with a desired
trajectory L that is partially out of the soft robot’s working space. Waypoints
(red) on L and their corresponding reachable points (black) determined by our
IK solution are visualized by the gray dash lines.

convert the pressure into a ratio of chamber’s volume-change as

α = Vc/V
0
c (17)

where V 0
c and Vc are the volumes of chamber before and after

inflation, respectively. In literature, Mosadegh et al. [22] first
introduce an experiment setup, which can draw pressure–volume
hysteresis curves of soft fingers. Although straightforward, this
method is limited as it only supports the actuation of incompress-
ible fluid (i.e., water). Inspired by the volumetric control system
present in [48], we developed a general method to calibrate the
relationship as α(P ) with P being the pressure of inflation.

The most difficult part of this calibration process is that
the current volume of a deformed chamber Vc is not directly
measurable. Without loss of the generality, we can consider a
pneumatic-drive soft robot, as shown in Fig. 1(c)—the chamber
is actuated by a syringe pump module meanwhile connecting to
a pressure sensor. As a result, both the inflation pressure P and
the changed volume of air in the syringe ΔVsy can be measured.
As the system is closed, we can derive the following equation
for two balanced statuses of the system based on the Idea Gas
Law:

P̄ (V 0
c + V 0

sy + Vt) = P (Vc + V 0
sy −ΔVsy + Vt) (18)

whereV 0
c ,Vt, andV 0

sy present the initial volumes of the chamber,
the tube, and the syringe, respectively—all can be obtained from
the design. P̄ = 100 kPa is used as the standard atmospheric
pressure in our calculation. This formula can be converted into

α =
Vc

V 0
c

=
P̄ V 0

c + PΔVsy − (P − P̄ )(V 0
sy + Vt)

PV 0
c

. (19)

Therefore, we only need to measure the value of ΔVsy during
the calibration process to obtain the value of α by (19).

The aforementioned method for calibrating expanding ratios
is general and easy to be implemented. We have applied it to
a soft robot driven by multiple pneumatic actuators [by the
experiment setup shown in Fig. 1(c)]. This design was originally
presented in [48], and the robot has three chambers that can be
actuated individually to bend its body in 3-D space. The soft
part of the actuator is fabricated by the Object 350 Connex3
printer with the mixture between a rigid (VeroMagenta) and a
soft material (Agilus 30 Black), which has a rigidity of shore
70 A hardness. In our experiments, the three chambers are
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Fig. 15. Experiments taken on a multichamber 3-D-printed pneumatic-driven
soft actuators, which is reproduced from [48]. (a) Physical behavior under
actuation—from left to right: rest shape, expanding one chamber, expanding
two chambers, and expanding all chambers with the same volume-change ratio.
(b) Results computed by our forward kinematic algorithm. (c) Calibrated ratio for
the relationship between pressures and expanding ratios under different actuation
statuses. (d) Study the trajectories for the tip point [shown as the red dot in (a)]
by comparing the results of physical tests, analytic computation [43], and our
forward kinematic algorithm, where the black arrow shows the direction of tip
moving.

pressurized one after another by P = 100∼240 kPa, and the
related hysteresis curve α(P ) can be found in Fig. 15(c).

The forward kinematic computation for actuating multiple
chambers are shown Fig. 15(b) and compared with analytic
computation [43] and physical tests. The trajectories of the tip’s
moving are plotted in Fig. 15(d). It is easy to find that our
algorithm can generate results more accurately than the analytic
prediction method presented in [43], which determines the posi-
tion of an investigated point by simply combining the prediction
results of individual chambers. The maximum tracking error (on
every waypoint) observed on our results of forward kinematic
computation is less than 3mm throughout the whole trajec-
tory. The dimension of this soft actuator is 48 × 48 × 136 mm
and the model used in kinematic computing contains 135 k
tetrahedra.

Efficiently predicting the required pressure that can generate
an expected deformation on a pneumatic-driven soft robot can
be very challenging for the conventional methods (such as the

Fig. 16. Results of trajectory planning on a pneumatic-driven soft robot.
(a) Configuration space for the tip point on this robot is presented as the red 3-D
region, where the blue curve gives the target trajectory. (b) Top view of tracked
trajectory realized by our IK-computation-based actuation. (c) Corresponding
position error for the tracked tip point.

static force modeling [4] or the FEM analysis [7]) because of the
highly nonlinearity of the problem. Benefited by the efficiency
of our kinematic computation, we can also solve the trajectory
planning on the pneumatic-driven soft actuator. Specifically,
Algorithm 3 is applied to compute the required volume Vc for
each chamber, which is then converted into a volume-change
ratio α and mapped to the required pressure P to be provided
by a pump. The result is shown in Fig. 16 with the tracked
trajectory plotted in the top-view while comparing with the
desired trajectory. The offline IK computation conducted in the
3-D space and the procedure of actuation have been provided in
the supplementary video.

VI. CONCLUSION

In this article, we presented a novel framework to solve
kinematic problems for soft robots based on geometric com-
puting. In our method, both the soft body of robots and differ-
ent types of actuations were modeled as geometric elements
that were integrated in an energy optimization formulation.
Meanwhile, the distribution of multiple materials on the body
of a soft robot was formulated by giving different stiffness to
different elements, where the stiffness was represented by a
calibrated shape parameter in our framework. We proposed an
efficient optimize-based algorithm for solving FK and further
evolved it to the computation of IK. Our method was fast,
adaptable for various actuation type and can handle soft robots
with complex designs. Compared with existing kinematic so-
lutions, our method made a good balance between the effi-
ciency and the accuracy in computing. In particular, it showed
very excellent performance in convergence and robustness
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Fig. 17. Performance of our kinematic computing method on meshes with
different resolutions from coarse to fine. As can be expected, a finer mesh
takes more time on each iteration but can generate more accurate results. In
our practice, we use a relatively fine mesh that can also give very accurate
prediction (i.e., a mesh with 25.8k vertices as shown in the circled dash line).

when dealing with large rotational deformation. We conducted
several physical experiments to validate the accuracy of our
framework.

As a numerical method, our method represented soft robots in
a discrete form as volumetric meshes. Our framework supported
different types of elements that could precisely describe the
model (e.g., tetrahedron for general 3-D shape and prism for
thin-shell structure). The average time used to compute FK for
a single step of iteration kept a nearly linear relationship with
the number of vertices in a mesh (see Fig. 17). At the same
time, we also observed that accurate results could already be
achieved when only a relatively fine mesh was employed to
conduct the simulation. Specifically, the average tracking error
was less than 1 mm for the experiment presented in Section V-C
when a relatively fine mesh was employed. In real applications,
we always adjusted the mesh density and compared the results of
FK computing to seek for a good balance between the accuracy
and efficiency.

There were two major limitations for our geometric
computation-based framework. First, the correctness of our for-
mulation relied on the level of elemental deformation falling in
the range with small strains so that it gave a linear stress–strain
relationship. Therefore, the current material model needed to be
further extended to support cases with large local stretch—e.g.,
the soft robots fabricated by silicon rubber. Second, viscoelas-
ticity of soft material was not considered in our framework
as we only computed kinematics for quasi-static status. The
actuation parameters computed by our inverse kinematic and
trajectory following algorithms could perform very well when
the actuation speed is relatively slow.

In our future work, the abovementioned limitations need
to be solved by developing a more advanced material model.
Modeling the soft robot driven by field-defined actuation (e.g.,
magnetic or electric field distribution [49]) is also an interesting
extension of our framework. Moreover, collision responses can
be incorporated into the process of kinematic computation by
following the strategy of geometry-based optimization proposed
in [50], which will enable the function of simulating a variety
of collided interactions.
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