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Abstract: In this contribution we consider mixed-integer

least-squares problems, where the integer ambiguities a ∈
ℤn and real-valued parameters b ∈ ℝ p are estimated. Both

a primal and a dual formulation can be considered, with the

latter concerning the ambiguity resolution process taking

place into the parameters’ domain. We study the p= 1 case,

where an ad hoc ‘P1’ algorithm is introduced, and some

geometrical insights are provided. It is demonstrated how

the algorithm’s complexity (i.e. number of candidate integer

solutions to be evaluated) grows linearly with the ambigu-

ity dimensionality n, differently from the primal formula-

tion where an exponential growth is observed. By means

of numerical simulations, here based on Global Navigation

Satellite System (GNSS) models, we show the efficiency of

this proposed ‘P1’ algorithm,meanwhile also demonstrating

its quasi-optimal statistical performance.

Keywords: GNSS; ambiguity resolution; integer

least-squares (ILS); dual mixed ILS; deterministic global

optimization; P1 algorithm

1 Introduction

The Integer Ambiguity Resolution (IAR) process concerns

the successful resolution of the unknown integer ambi-

guities present in mixed-integer models. For instance, in

the context of Global Navigation Satellite Systems (GNSS),
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carrier-phase IAR is the key to fast and high-precision base-

line estimation [1]. Once these ambiguities have been cor-

rectly resolved, the carrier-phase data starts acting as very

precise pseudo-range data, so enabling users’ precise posi-

tioning and navigation, see [2, 3].

When considering mixed-integer least-squares prob-

lems, two equivalent formulations are possible, denoted as

primal and dual, respectively introduced by Teunissen [4]

and by Teunissen and Massarweh [5]. In the primal formu-

lation, integer ambiguities are firstly resolved followed by

a conditional least-squares baseline estimator, so comput-

ing ambiguity-fixed baseline solutions. Efficient algorithms

exist for tackling such IAR problems within the ambigu-

ity domain, for instance with the Least-Squares AMBiguity

Decorrelation Adjustment (LAMBDA) method, see [6]. On

the other hand, in the dual formulation, the IAR process

takes place directly in the parameters’ domain and globally

convergent solutions could be defined, as presented by Teu-

nissen and Massarweh [5].

In this contribution we further study dual mixed-ILS

problems, focusing on the case p = 1, i.e. scalar real-valued

parameter b ∈ ℝ, meanwhile assuming an arbitrary num-

ber of integer ambiguity components in a ∈ ℤn, n ≥ 1. A

deterministic P1 algorithm is introduced here as an efficient

implementation for the ambiguity search process, now tak-

ing place in the parameters’ domain [7]. By defining the

algorithm complexity as ‘number of candidate solutions

evaluated’, it is demonstrated that, in the dual formulation

(for p = 1), the complexity grows linearly with the dimen-

sionality n. Besides the numerical performance, compared

here against LAMBDAmethod,we also investigate statistical

performances, thus showing that quasi-optimal solutions

can be obtained by the P1 algorithm.

In Section 2, a brief review of dual mixed-integer least-

squaresmodels is given, then focusing on the casen ≥ p = 1.

In Section 3, the P1 algorithm is presented, along with some

geometrical insights, and the linear growth of complexity

with respect to the dimensionality n is demonstrated. The

performance is numerically investigated in Section 4, i.e.

considering GNSS models, while the main conclusions are

summarized in Section 5.

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
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2 Review of dual mixed ILS models

The dual formulation for mixed-integer least-squares mod-

els was introduced by Teunissen and Massarweh [5]. We

start here with the observables’ vector y ∈ ℝm, so

y ∼ m

(
Aa+ Bb,Qyy

)
, a ∈ ℤn, b ∈ ℝ p (1)

where ∼ refers to distributed as, given an m-dimensional

normal distribution with expectation E{y} = Aa+ Bb and

dispersion D{y} = Qyy for Qyy ∈ ℝm×m being the variance-

covariance of y. The full-rank design matrix is given

by [A,B] ∈ ℝm×(n+ p), while integer ambiguities and real-

valued parameters are respectively denoted as a and b.

The dual formulation considers a dual objective func-

tion:ℝ p → ℝ given by

(b) = ‖‖‖b− b̂
‖‖‖
2

Q
b̂b̂

+ ‖‖â(b)− ă(b)‖‖2Qâ(b)
(2)

where the (dual) mixed ILS solution for the real-valued

parameters follows as

b̆ = arg min
b∈ℝ p

(b) (3)

given the (conditioned) ambiguity vectors

â(b) = â− Qâb̂Qb̂b̂

(
b̂− b

)
, ă(b) = argmin

a∈ℤn
||â(b)− a||2

Qâ(b)

(4)

with Qâ(b) ∈ ℝn×n as conditional variance-covariance

matrix of ambiguities. The latter ones are conditioned onto

the current b-value that could freely be defined in ℝ p.

Two approximations of Eq. (2) are discussed in (ibid),

such as

I) Approximateweighting, wherewe replace the condi-

tional variance matrix Qâ(b) by an approximation Q
⚬
â(b)

,

e.g. diagonal matrix, such that

⚬(b) = ‖‖‖b− b̂
‖‖‖
2

Q
b̂b̂

+ ‖‖â(b)− ă⚬(b)‖‖2Q⚬
â(b)

(5)

for ă⚬(b) = argmin
a∈ℤn

||â(b)− a||2
Q⚬
â(b)

.

II) Approximate mapping, where we replace the inte-

ger minimizer of Eq. (4) by an arbitrary admissi-

ble estimator ∙:ℝn → ℤn, e.g. integer rounding, such

that

∙(b) = ‖‖‖b− b̂
‖‖‖
2

Q
b̂b̂

+ ‖‖‖â(b)− ∙(â(b))‖‖‖
2

Qâ(b)

(6)

and the two approximations differ since in the

‘approximate weighting’ case we neglect off-diagonal

terms in Qâ(b), whereas in the ‘approximate mapping’

case we might adopt simpler rounding estimators for

the many-to-one mapping function ∙.

2.1 Particular case for n ≥ p = 1

We focus on the case p = 1, thus defining 𝛽 ∈ ℝ and:ℝ→

ℝ, where


(
𝛽
)
= 1

(
𝛽
)
+2

(
𝛽
)
=

(
𝛽 − b̂

)2
𝜎2

b̂

+ ‖‖‖â
(
𝛽
)
− ă

(
𝛽
)‖‖‖

2

Qâ(b)

(7)

for â
(
𝛽
)
= â− qâb̂𝜎

−2
b̂

(
b̂− 𝛽

)
given qâb̂ ∈ ℝn, while ă

(
𝛽
)

follows Eq. (4). Note that in the parameter domain the dual

objective function is composed by a parabolic term 1

(
𝛽
)

and a periodic-like term 2

(
𝛽
)
, as shown in Figure 5 by

Teunissen and Massarweh [5]. At the same time, in the

ambiguity domain we are able to define ‘pull-in regions’,

i.e. subsets of ℝn where float vectors are mapped to the

corresponding integer.

For integer estimators, the pull-in regions are

translational invariant over the integers and cover the

entire space ℝn without gaps and overlaps [8, 9]. Moreover,

from Eq. (7), we observe that potential integer candidates

are the ones belonging to pull-in regions crossed by the

conditioned line â
(
𝛽
)
for 𝛽 ∈ ℝ. In Figure 1, we provide

Figure 1: The conditioned line â
(
𝛽
)
is shown in magenta given

𝛽 ∈
[
𝛽MIN, 𝛽MAX

]
, i.e. defined between the extreme points â

(
𝛽MIN

)
and

â
(
𝛽MAX

)
. The magenta circle refers to â

(
b
)
for the true b ∈ ℝ, while the

asterisk refers to â(b̂) ≡ â, i.e. the float ambiguity solution. Moreover,

two pull-in regions are defined as hexagons (in red) or unit squares (in

blue) when making use of Qâ(b) or Q
⚬
â(b)

as inverse-weighting matrix,

respectively.
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an illustrative example for p = 1, n = 2 given

𝛽 ∈
[
𝛽MIN = b̂− 1.7, 𝛽MAX = b̂+ 1.7

]
, with these bounds for

𝛽 further specified later, where

⎛⎜⎜⎜⎝

â1

â2

b̂

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

+0.4
−0.6
+0.2

⎞⎟⎟⎟⎠
,

⎡⎢⎢⎢⎢⎣

𝜎2
â1

𝜎â1â2 𝜎â1 b̂

𝜎â2â1 𝜎2
â2

𝜎â2 b̂

𝜎b̂â1
𝜎b̂â2

𝜎2

b̂

⎤⎥⎥⎥⎥⎦
≅
⎡⎢⎢⎢⎣

+0.733 −0.666 +0.294
−0.666 +1.031 −0.637
+0.294 −0.637 +0.490

⎤⎥⎥⎥⎦
,

(8)

such that qâb̂ =
(
𝜎b̂â1

, 𝜎b̂â2

)T
, and therefore

Qâ(b) = Qââ − qâb̂q
T

âb̂
𝜎−2
b̂

≅
[
+0.557 −0.284
−0.284 +0.203

]
,

Q⚬
â(b)

≅
[
0.557 0

0 0.203

] (9)

with two pull-in regions represented in red and blue respec-

tively when using Qâ(b) and its diagonal approximation Q
⚬
â(b)

as inverse-weighting matrix. In the first case (in red), we

are looking at Integer Least-Squares pull-in regions (i.e.

hexagons), while in the second case (in blue) we have more

simple Integer Rounding pull-in regions (i.e. unit squares).

The weighting approximation leads to an approximate

dual objective function

⚬(𝛽) = 1

(
𝛽
)
+⚬

2

(
𝛽
)
=

(
𝛽 − b̂

)2
𝜎2

b̂

+ ‖‖‖â
(
𝛽
)
− ă⚬

(
𝛽
)‖‖‖

2

Q⚬
â(b)

(10)

so using⚬(𝛽) instead of(
𝛽
)
, both illustrated in Figure 2,

with a common parabolic term 1 highlighted in green

color. The periodic-like terms 2 and ⚬
2
are depicted in

red and blue colors, as for their pull-in regions, respectively

on the left and right side. Note that when Qâ(b) is diagonal,

no approximation takes place at all, and the original dual

problem is being considered. Even ifQâ(b) is diagonal, it does

not imply that alsoQââ is diagonal, and in the primal formu-

lationwemight deal with highly correlated (unconditioned)

ambiguities.

The required interval
[
𝛽MIN, 𝛽MAX

]
can be found start-

ing with an initial guess 𝛽0
def= b̂, so leading to â

(
𝛽0
)
= â, and

then seeking new solutions 𝛽 j for j > 0, such that


(
𝛽 j

)
≤ 

(
𝛽0
)
= ‖‖‖â− ă

(
𝛽0
)‖‖‖

2

Qâ(b)

(11)

and therefore(
b̂− 𝛽 j

)2
𝜎2

b̂

≡ 1

(
𝛽 j

)
≤ 

(
𝛽 j

) Eq.(11)
→

(
b̂− 𝛽 j

)2
𝜎2

b̂

≤ 
(
𝛽0
)
(12)

where the first inequality follows from the definition of


(
𝛽
)
, see Eq. (7). Hence, we are able to define an initial

search radius R0 = 𝜎b̂

√

(
𝛽0
)
such that−R0 ≤ 𝛽 j − b̂ ≤ R0

Figure 2: The dual objective function
(
𝛽
)
and its approximation⚬

(
𝛽
)
are shown in the left and right plots, respectively, with the parabolic term

1

(
𝛽
)
shown as green dashed line. The periodic-like contributions2

(
𝛽
)
and⚬

2

(
𝛽
)
are respectively given in red and blue, as well as their pull-in

regions, while the conditioning line â
(
𝛽
)
is depicted in magenta, centered in â

(
b̂
)
≡ â (magenta asterisk), where we have1

(
b̂
)
= 0.
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for any j-th candidate solution, i.e. interval
[
b̂− R0, b̂+ R0

]
is found. A grid search could be performed over this inter-

val, but in this workwewill consider an alternative efficient

approach for the enumeration of all potential solutions, as

discussed next.

3 The P1 algorithm

In the earlier Figure 1 we notice how several 𝛽 values might

belong to the same pull-in regions, implying that a grid

searchmight be inefficient. At the same time, pull-in regions

are convex regions for any n > 0, and the conditioning line

â
(
𝛽
)
will at most intersect them twice. By identifying any

𝛽 value associated with each different integer vector ă
(
𝛽
)
,

we could obtain a finite set of integer candidates where

we expect to find a global minimizer. This is the main idea

behind the ‘P1’ algorithm described in this section.

The intersection between â
(
𝛽
)
and ILS pull-in regions

is not trivial, therefore we will restrict our discussion to

the approximated dual objective function ⚬(𝛽). Hence,
we make use of Q⚬

â(b)
after neglecting the off-diagonal terms

of Qâ(b), but notice that in some mixed-integer models the

latter one might already be a diagonal matrix, as discussed

later. Based on the example of Figure 1, we can consider

again an illustration of the conditioning line â
(
𝛽
)
for 𝛽 ∈[

𝛽MIN, 𝛽MAX
]
given in magenta color in the Figure 3 (note a

rotated plot). The intersections with each interface (of unit-

square regions) are shown by magenta squares, while the

middle points 𝛽MP
j
are computed between two consecutive

intersections, here shown as (filled) blue hexagrams. Each

candidate 𝛽MP
j

will belong to an individual rounding pull-in

region.

3.1 Algorithm description

The P1 algorithm starts with an initial search radius R0 and

we consider individually each i-th component of the condi-

tioned ambiguity vector. By making use of the expression of

the conditioned line â
(
𝛽
)
projected along each component,

i.e. âi
(
𝛽
)
= âi + qâib̂

𝜎−2
b̂

(
𝛽 − b̂

)
, it is then possible to bound

each i-th term since 𝛽 − b̂ ∈
[
−R0,+R0

]
, so having

âi
(
𝛽
)
∈
[
âi −Δi, âi +Δi

]
,Δi

def=
|||qâib̂|||
𝜎2

b̂

R0 (13)

where qâib̂
refers to the i-th component of the vector

qâb̂ ∈ ℝn. In this way, we can compute all the inte-

ger components 𝜈i ∈ ℤ between âi −Δi and âi +Δi, and

define values 𝛽𝜈i that are related to the interfaces with

rounding pull-in regions. These values are then collected

from all i-th ambiguity components in one sorted list,

i.e.
{
𝛽MIN,… , 𝛽 j−1, 𝛽 j, 𝛽 j+1,… , 𝛽MAX

}
, while also including

both two extrema 𝛽MIN = b̂− R0 and 𝛽MAX = b̂+ R0.

The middle point can be found by 𝛽MP
j

=
(
b j + b j+1

)
∕2,

and will belong to a single integer pull-in region, hence

refers to an individual integer candidate uj
def= ă⚬

(
𝛽MP
j

)
∈

ℤn. In the solutions’ evaluation process, we can start with

values 𝛽MP
j

that are closer to b̂, since they will be associated

with a smaller parabolic term 1

(
𝛽MP
j

)
. Moreover, during

the evaluations, we can make use of results from Eq. (12) in

order to reduce the search radius R0 after each evaluation.

This leads to discarding several outer values of 𝛽 that could

not further minimize the dual objective function.

This search-and-shrink strategy is similar to the pri-

mal counterpart already adopted in LAMBDA, but now we

Figure 3: Illustration of the example p = 1, n = 2, from Figure 1, with the conditioning line â
(
𝛽
)
in magenta color given 𝛽 ∈

[
𝛽MIN, 𝛽MAX

]
. The

intersections with all interfaces are shown as magenta squares, while the middle points 𝛽MP
j
are given as (filled) blue hexagrams.
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‘shrink’ the real-valued parameters’ domain (i.e. on the

conditioning line) where the enumeration process takes

place. Once all potential candidates in the current interval

are evaluated, the process stops and the global minimum

𝛽
∗ is obtained. A summary of ‘P1’ algorithm is given in

Algorithm 1, which consists of three parts: INITIALIZATION

where an initial guess allows computing the initial search

radius R0, ENUMERATION of the integer candidates that are

found inside the initial interval, and MAIN SEARCH, where

such potential solutions are evaluated, including the afore-

mentioned ‘shrinking’ strategy.

Algorithm 1: Summary of the ‘P1’ algorithm described in

Section 3.1

INPUTS:

â ∈ ℝn, b̂ ∈ ℝ,Qââ ∈ ℝn×n, q
âb̂
∈ ℝn, 𝜎

b̂
∈ ℝ

INITIALIZATION:

Given 𝛽0 = b̂ (initial guess), compute â
(
𝛽0
)
= â based on Eq. (4), which is

used to find ă⚬
0
= â ∈ ℤn, along with an initial search radius

R0 = 𝜎
b̂

√
⚬

(
b̂
(
ă⚬
0

))
.

ENUMERATION: % Find all potential integer candidates

For each i-th ambiguity component âi , with i = 1, . . . , n, find the

intersections with rounding pull-in regions given

𝜈i ∈ ℤ ∩
[
âi −Δi, âi +Δi

]
, see Eq. (13)

Collect all 𝛽-values in one sorted list:
{
𝛽MIN,… , 𝛽 j,… , 𝛽MAX

}
, so

including the extrema 𝛽MIN = b̂− R0 and 𝛽MAX = b̂+ R0.

Compute the middle points 𝛽MP
j

=
(
b j + b j+1

)
∕2, each associated to a

single integer candidate, and sorted now starting from smaller values of|||𝛽MPj − b̂
|||.

MAIN SEARCH: % Evaluate each potential integer candidate

Set∗ as the current best function value from the step INITIALIZATION,

with the current best solution defined by 𝛽∗ = b̂
(
ă⚬
0

)
.

% Iterate over each j-th potential solution, sorted by
|||𝛽MPj − b̂

|||.
for j = 1, . . . , N

% Outside the interval, search is over.

if
|||𝛽MPj − b̂

||| > R0

Break loop;

end

% Evaluation of the current integer candidate.

Compute the integer vector u j
def= ă⚬

(
𝛽MP
j

)
=
⌈
â
(
𝛽MP
j

)⌋
, which it is

used to evaluate a new objective functionNEW
j

= ⚬
(
b̂
(
u j
))
, see

Eq. (15).

% Update the current best solution

if NEW
j

< ∗

Save∗ = NEW
j

and 𝛽∗ = 𝛽NEW
j

= b̂
(
u j
)
;

% Shrinking step, see Eq. (12)

Update current R0 (search radius);

end

end

OUTPUTS:

𝛽∗ ∈ ℝ, ă⚬
(
𝛽∗

)
∈ ℤn, ∗ ∈ ℝ

NOTE: the symbol ⌈·⌋ defines the integer rounding operator.

In Algorithm 1, the main search takes place start-

ing with smaller values
|||𝛽MPj − b̂

|||, then considering that|||𝛽MPj − b̂
||| ≤ |||𝛽MPj+1 − b̂

||| for any j > 0. Therefore, once the j-th

solution is found outside the interval
[
b̂− R0, b̂+ R0

]
, given

the current radius R0 (updated after each evaluation), we

can stop the for-loop iterations. For the evaluation of each

integer candidate uj
def= ă⚬

(
𝛽MP
j

)
, we might directly exploit a

primal formulation, thus evaluating

⚬(uj) = ||â− uj||2Q⚬
ââ

,

b̆
def= b̂

(
uj
)
= b̂− qT

âb̂
Q⚬−1
ââ

(
â− uj

) (14)

given the approximate primal objective function ⚬:ℤn →

ℝ forQ⚬
ââ
= Q⚬

â(b)
+ qâb̂q

T

âb̂
∕𝜎2

b̂
, so following Lemma 4 by Teu-

nissen and Massarweh [5].

On the other hand, the candidates’ evaluation could

also be performed directly in the dual formulation, starting

from a selected integer value u ∈ ℤn. Using Lemma 7 from

(ibid), we know that the local minimizer for â
(
𝛽
)
∈ u, i.e.

pull-in region of u such that ă⚬
(
𝛽
)
= u, can be computed

based on a primal conditioning b̂(u) = b̂− qT
âb̂
Q⚬
ââ

−1(â− u
)
,

where
⚬(u) = ⚬

(
b̂(u)

)
,∀u ∈ ℤn (15)

so now evaluating ⚬ and no other minima exist given

â
(
𝛽
)
∈ u, see (ibid). In this way it is possible to initial-

ize using Q⚬
ââ
rather than Q⚬

â(b)
, so leading to fewer integer

candidates.

3.2 Algorithm complexity

Before presenting a numerical analysis of the performance,

we can briefly discuss the linear growth of complexity, here

defined by the number of potential candidates that are eval-

uated during the enumeration process. In fact, in the dual

formulation with ⚬(𝛽), the algorithm’s complexity can

be shown to be linearly increasing with the dimensionality

n > 0.

Starting with Eq. (13), we can approximate a maximum

number of candidates of each i-th component directly using

NMAX
i

≅ 2Δi, such that the total number of candidates (i.e.

the middle points computed between successive intersec-

tions) follows as

NMAX =
i=n∑
i=1

NMAX
i

≅
i=n∑
i=1

2R0

|||qâib̂|||
𝜎2

b̂

= 2R0
𝜎2

b̂

i=n∑
i=1

|||qâib̂||| (16)

where the approximation ≅ gets more accurate for larger

values of NMAX
i

, i = 1,… , n.

Given that
|||qâib̂||| = |||𝜌âi b̂|||𝜎âi𝜎b̂ for the correlation term

𝜌âi b̂
∈ [−1,+1], we notice that each NMAX

i
grows with the

(unconditioned) standard deviation 𝜎âi of the i-th ambiguity
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component âi, which is dependent on the underlying model

strength. Note that the search of a global minimumwill take

around NMAX evaluations of all the middle points 𝛽MP
j

cur-

rently in the list, meanwhile we continue here by defining

|||qâib̂||| = 1

n

i=n∑
i=1

|||qâib̂||| (17)

andwe further reformulate the approximation in Eq. (16) as

NMAX ≅ 2R0
𝜎2

b̂

n
|||qâib̂||| (18)

where
|||qâib̂||| is smaller than the largest entry (in absolute

value) of qâb̂ ∈ ℝn. This shows how NMAX grows linearly

with the dimensionality n given an initial search radius R0,

which can be computed based on Eq. (11), e.g. using R0 =
𝜎b̂

√

(
𝛽0
)
, therefore we obtain

NMAX ≅ 2n ⋅
√


(
𝛽0
)
⋅

|||qâib̂|||
𝜎b̂

(19)

and the complexity is indeed dependent upon three ele-

ments: the problem dimensionality, the initial guess 𝛽0 and

the variance/covariance terms. Note that given
|||qâib̂||| = 0,

no correlation exists at all between the float ambiguities

âi and the parameter b̂, so the latter is actually the global

minimizer for our dual problem.

4 Numerical assessments

We start by a simple numerical example for a multi-

frequency geometry-freemodel, where the conditional vari-

ance matrix Qâ(b) is diagonal, whereas the unconditional

matrix Qââ is not. Given a single-epoch single-baseline

ionosphere-fixed scenario, two receivers track two Galileo

satellites based on a standard deviation of 𝜎 p = 30 cm and

𝜎𝜙 = 3 mm respectively for the undifferenced code and

phase observations.

Themixed-integer model of Eq. (1), given J frequencies,

is based on

A =
[
0

Λ J

]
,B =

[
e J

e J

]
,Qyy = 4

[
𝜎2
p
I J

𝜎2
𝜙
I J

]
(20)

where I J ∈ ℤ J× J refers to the identity matrix, e J ∈ ℤ J is

a vector of 1s, while Λ J ∈ ℝ J× J is a diagonal matrix with

its entries as the signal wavelengths, where n = J. The fac-

tor ‘4’ arises from the covariance propagation law follow-

ing the double-differencing operator for code and phase

observables.

We consider four scenarios based on Galileo signal, i.e.

E1 + E6 (n = 2), E1 + E6 + E5a (n = 3) E1 + E6 + E5a +
E5b (n = 4) and E1 + E6 + E5a + E5b + E5 (n = 5), where

computational time over 2,000 different samples has been

presented in Figure 4. In all these simulations, the results

for p = 1 using the P1 algorithm perfectly match with the

ILS solutions computed by LAMBDA 4.0 toolbox [10], since

Qâ(b) is a diagonal matrix, where

Q−1
â(b)

= ATQ−1
yy
A =

ΛT
J
Λ J

4𝜎2
𝜙

= 1

4𝜎2
𝜙

diag
(
𝜆2
1
,… , 𝜆2

J

)
(21)

therefore no approximation takes place in our dual formu-

lation, and


(
𝛽
)
≡ ⚬(𝛽) = n

(
𝛽 − b̂

)2
4𝜎2

p

+ 1

4𝜎2
𝜙

i=n∑
i=1

𝜆2
i
�̆�2
i

(
𝛽
)
, ∀𝛽 ∈ ℝ

(22)

for the ambiguity residuals’ defined by �̆�i
(
𝛽
)
= âi

(
𝛽
)
−⌈

âi
(
𝛽
)⌋

for i = 1,… , n and ⌈·⌋ being the integer rounding
operation. Notice how the parabolic term 1 and periodic-

like term 2 are mainly driven by the precision of code

and phase measurements, respectively. Moreover, in this

illustrative example, we observe a smaller computational

time for the P1 algorithm with respect to LAMBDA method,

and its efficiency becomesmore visible when increasing the

ambiguity problem dimensionality.

Based on 2,000 samples (n = 3), we show in Figure 5

the maximum number of integer candidates (in blue) as

defined by Eq. (16), which seems to well approximate the

potential number of candidates (in orange) iterated in the

MAIN SEARCH step (see Algorithm 1), i.e. number of mid-

dle points previously found in ENUMERATION. However,

by means of the search-and-shrink approach, we note that

the actual number of integer candidates evaluated (in yel-

low) is substantially reduced. This demonstrates substantial

improvements in terms of efficiency once accounting for a

search-and-shrink strategy in the ‘P1’ algorithm, as adopted

in the numerical results of Figure 4.

At this point, we continue with a different numerical

example, where the matrix Qâ(b) is not diagonal and subop-

timal performance (with respect to a primal ILS estimator)

might be expected, so we focus on statistical performances

rather than computational ones.

4.1 Statistical performance for Qâ(b) not

diagonal

We consider a single-epoch single-baseline geometry-based

ionosphere-fixed model, with m satellites tracked on GPS

L1 frequency. We assume the horizontal position known,
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Figure 4: The computational times for primal (ILS) and dual (P1) solutions are shown given four different Galileo scenarios, i.e. E1+ E6 (n = 2, top

left), E1+ E6+ E5a (n = 3, top right) E1+ E6+ E5a+ E5b (n = 4, bottom left) and E1+ E6+ E5a+ E5b+ E5 (n = 5, bottom right). For each scenario,

we use 2,000 different float samples, see text for more information.

leading to p = 1 estimation of the vertical (UP) coordinate

bUP ∈ ℝ, where

A =
[

0

𝜆1Im−1

]
, B =

[
DT
m
G

DT
m
G

]
,Qyy = 2

[
DT
m
Qp pDm

DT
m
Q𝜙𝜙Dm

]
(23)

with In ∈ ℤn×n refers to the identity matrix for n = m−
1, while DT

m
=
[
−em−1, Im−1

]
is the between-satellite single

differencing with respect to the first (pivot) satellite, and

the vector G ∈ ℝm consists of sin
(
el◦

)
terms for each GPS

satellite, see [11].

The stochastic model follows by a covariance prop-

agation law for the undifferenced code and phase stan-

dard deviation (at zenith), respectively given as 30 cm

and 3 mm, while an elevation weighting ∝ 1∕ sin
(
el◦

)
is

adopted. Therefore, bothmatricesQ𝜙𝜙 andQpp are diagonal

with entries being the elevation-dependent standard devia-

tions. Note that a term ‘2’ in the expression for Qyy arises

from the between-receiver differencing.

At this point, given Q⚬
ââ
, we aim to analyze such dual

approximation of the variance-covariance matrix Qââ for

the estimated (unconditioned) float ambiguities. The objec-

tive is to assess how accurate the dual approximation is,

where as a matter of comparison we will consider also a

primal approximation given Q⊙

ââ
. Three different scenarios

are compared:

– Case #1:We use Qââ = Qâ(b) + Qâb̂Q
−1
b̂b̂
Qb̂â;

– Case #2: We use Q⚬
ââ
= Q⚬

â(b)
+ Qâb̂Q

−1
b̂b̂
Qb̂â, with Q⚬

â(b)

diagonal;

– Case #3:We use Q⊙

ââ
=
(
Qâ(b) + Qâb̂Q

−1
b̂b̂
Qb̂â

)⊙
, with Q⊙

ââ

diagonal;
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Figure 5: The maximum number of expected integer candidates is

shown (in blue) based on the Eq. (16), while the potential number of

integers refers to middle points (in orange) actually computed in this

analysis over 2,000 different samples for n = 3. Lastly, we also provide

the actual total number of integers being evaluated (in yellow), largely

reduced thanks to the search-and-shrink strategy adopted by the ‘P1’

algorithm.

where in the Case #1, we consider a (primal) Integer Least-

Squares solution based on the full variance-covariance

matrix Qââ, in the Case #2 we adopt a dual approxima-

tion based on Q⚬
ââ
where Q⚬

â(b)
accounts only for the diag-

onal entries of Qâ(b) (that is not diagonal), while in the

Case #3 we consider a (primal) Integer Rounding solution

based on Q⊙

ââ
, being the diagonal matrix extracted from Qââ.

In LAMBDA, a decorrelation process [6] is used to reduce

the correlation between (unconditioned) float ambiguities,

based on an admissible transformation matrix Z ∈ ℤn×n

(unimodular), so ẑ = ZTâ. Still, in order to directly compare

statistical performances of these three cases, no ambiguity

decorrelation has been used here, while in Case #1 such

a re-parametrization would only affect the computational

time.

In Figure 6, the errors for the ‘UP’ component are shown

using 6,000 samples, where a total of 8 satellites has been

tracked, i.e. n = 7. In grey color, the float solution is illus-

trated, having a standard deviation𝜎b̂ ≅ 1.612 [m], while the

fixed results are presented in green and red color referring

to correctly fixed and incorrectly fixed ambiguities, respec-

tively. The success rate (SR) is computed for the three scenar-

ios, with SR ≅ 97.9%,≅ 97.0%,≅ 6.3% for each case. The

poor success rate of the primal rounding is visible in the

large UP errors, with a root mean squares (RMS) value of

around 1.6 [m] in contrast to the 1.6 [cm] found for the fixed

solutions when ambiguities are correctly resolved, i.e. a = 0

(in green).

We can further investigate the good performance of the

dual formulation by looking at the two individual terms of

Qââ, i.e. Qâ(b) and Qâb̂Q
−1
b̂b̂
Qb̂â, and we re-write those as

Qââ ≜ Qâ(b) + Qâb̂Q
−1
b̂b̂
Qb̂â

=
(
ATQ−1

yy
A
)−1

+ A+BQb̂b̂B
T
(
A+)T (24)

with A+ =
(
ATQ−1

yy
A
)−1

ATQ−1
yy
as the left inverse matrix of

A ∈ ℝm×n. In this last example, the conditional variance-

covariance matrix of the ambiguities Qâ(b) was given by

Qâ(b) =
(
ATQ−1

yy
A
)−1

= 2
(
DT
m
Q𝜙𝜙Dm

)
∕𝜆2

1
(25)

where the (conditioned) L1 ambiguities are correlated

through the between-satellite single-differencing operator.

In several GNSS models, like the one adopted for our last

numerical example, most of the correlation in the uncondi-

tional variance matrix Qââ arise due to the presence of real-

valued parameters, meanwhile Qâ(b) is generally also small

due to the much higher precision of phase measurements,

e.g. 𝜎 p∕𝜎𝜙 ≅ 100.

For sake of completeness, in Figure 7 we can show the

numerical values of Qââ and its individual matrix terms,

where it is visible how the approximation Q⚬
â(b)

would actu-

ally have little impact, so Q⚬
ââ
is very similar to the original

matrix Qââ. In the Case #3, where large off-diagonal compo-

nents have been neglected, the approximation is poor, and

therefore the correlation among ambiguities is not taken

properly into account.

4.2 Additional remarks

The proposed P1 algorithm is limited to the rounding pull-

in regions (i.e. unit hyper-cubes in ℝn) since they allow

efficiently computing intersections and middle points, later

used for the enumeration of potential integer candidates

(see Section 3.1). In this way, in the dual case it was possi-

ble to demonstrate a linear growth of the complexity with

respect to the ambiguity dimensionality n, differently from

the exponential growth found in the primal problem, e.g. see

[12]. At the same time, we have restricted the algorithm to

the case p = 1 since the computation of these intersections

in a more general case p > 1 is not trivial, even while work-

ingwith the rounding pull-in regions. In fact, in this case, the

enumeration of candidates belonging to each pull-in region

would require amore expensive search for all intersections,
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Figure 6: The ‘UP’ error component [m] is shown for different samples generated based on a single-epoch single-baseline geometry-based

ionosphere-fixed model for L1 signal tracked by 8 GPS satellites. In grey color, we show the float solution, along with fixed solutions in red or green

respectively for incorrectly resolved or correctly resolved ambiguities. See text for more details on the three cases considered for this example.

Figure 7: The entries of matrix Qââ, as well as Qâ(b) and Qâb̂Q
−1
b̂b̂
Qb̂â, are shown based on the numerical example used in Figure 6. Note that the

elevation for the eight satellites was 62.6◦, 49.6◦, 48.8◦, 43.9◦, 18.5◦, 18.2◦, 9.3◦ and 7.3◦, using a weighting scheme∝ 1∕ sin
(
el◦

)
.

i.e.most likely very inefficient. On the other hand, the poten-

tial repeated use of P1 algorithm for searching over different

directions in ℝ p (parameters’ domain) is also possible, and

it will be subject of future works.

5 Conclusions

In this contributionwehave consideredmixed-integermod-

els, and the dual mixed-Integer Least-Squares (ILS) formu-

lation introduced by Teunissen and Massarweh [5]. In the

dual problems, the resolution of integer ambiguities takes

place in the domain of real-valued parameters, which are

freely defined inℝ p. We focus here on the p = 1 case, where

a scalar parameter is estimated together with an arbitrary

number of ambiguities n ≥ 1.

As an alternative to a grid search approach, we present

the ‘P1’ algorithm, i.e. a deterministic global solution for

the minimization of dual problems (p = 1). This algorithm

is based on the intuition that potential integer candidates

are the ones whose pull-in region is crossed by the condi-

tioning line â
(
𝛽
)
= â(0)+ qâb̂𝜎

−2
b̂
𝛽 , for 𝛽 ∈ ℝ. Therefore,

we show how algorithm’s complexity grows linearly with
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respect to the dimensionality n. Moreover, the proposed ‘P1’

algorithm makes use of a search-and-shrink strategy that

further enhances its computational performance, here eval-

uated numerically with respect to an implementation of the

LAMBDAmethod, see [10]. As the ambiguity dimensionality

n increases, the P1 algorithm computationally outperforms

the LAMBDA search process that takes place in the primal

formulation.

Given that the algorithm assumes an approximate con-

ditional matrix Q⚬
â(b)

, i.e. after neglecting the off-diagonal

terms of Qâ(b), this work shows how quasi-optimal perfor-

mance could still be achieved when Qâ(b) provides a small

contribution to the unconditional matrix Qââ. This is often

the case in GNSS models, where the term Qâ(b) is generally

small since driven by the high precision of phase data, while

most of correlation among (unconditioned) ambiguities is

due to the presence of the estimated real-valued parame-

ters. Lastly, as this efficient algorithm is limited to the case

p = 1, a further extension to the case p > 1 will be inves-

tigated in the future. This is possible, e.g. by considering a

partitioneddual formulation [5], thus solving the problem in

a lower dimensioned space, or by exploiting heuristic search

strategies in ℝ p, thus looking along multiple ‘search lines’

that intersect with pull-in regions, where the P1 algorithm

could be effectively employed.
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