TEM HEAT DISSIPATION SYSTEM

INCREASING PERFORMANCE OF A THERMOELECTRICAL INTEGRATED FACADE THROUGH THE HEAT DISSIPATION SYSTEM

P5 - GRADUATION PRESENTATION YARAI MARIAM ZENTENO MONTEMAYOR IST OF JULY, 2020

- 01 INTRODUCTION
- 02 KNOWLEDGE
- 03 PROCESS
- 04 FINAL DESIGN
- 05 CONCLUSION

01 INTRODUCTION

- +BACKGROUND
- +FOCUS
- +OBJECTIVES
- +RESEARCH QUESTIONS
- +METHODOLOGY

01 INTRODUCTION

- +BACKGROUND
- +FOCUS
- +OBJECTIVES
- +RESEARCH QUESTIONS
- +METHODOLOGY

ANNUAL GROWTH IN TOTAL FINAL CONSUMPTION BY FUEL

+BACKGROUND GLOBAL TREND

+BACKGROUND DEVELOPING COUNTRIES

+BACKGROUND SPACE COOLING

increase in cdds (compared to historical data)

building electricity demand by end-use

01 INTRODUCTION

- +BACKGROUND
- +FOCUS
- +OBJECTIVES
- +RESEARCH QUESTIONS
- +METHODOLOGY

+FOCUS Climate hot-arid climate

+FOCUS

Building Typology
office building
(case-study)

+FOCUS

Building System cooling system

+FOCUS Building Element facade system

+FOCUS System component
heat dissipation for Peltier Module

01 INTRODUCTION

- +BACKGROUND
- +FOCUS
- +RESEARCH QUESTIONS
- +METHODOLOGY

01 INTRODUCTION

- +BACKGROUND
- +FOCUS
- +RESEARCH QUESTION
- +METHODOLOGY

+RESEARCH QUESTION

How could a heat dissipation system for an integrated façade with TE active cooling be designed, for it to cover the cooling loads of a typical office building?

01 INTRODUCTION

- +BACKGROUND
- +FOCUS
- +RESEARCH QUESTIONS
- +METHODOLOGY

START BACKGROUND RESEARCH - SPACE COOLING - TE FACADE INTEGRATION OFFICE BUILDINGS KNOWLEDGE PHASE - Passive Strategies NTEGRATION Possibilities COMPLEMENTARY HEAT DISSIPATION SYSTEM + THERMAL PERFORMANCE LEVEL A BUILDING LEVEL B FACADE LEVEL C COMPONENT PREDESIGN PHASE LEVEL A BUILDING LOVEL B FACADE LEVEL C COMPONENT THICKNESS + EXTENDED SHAPE + MATERIAL ← EVALUATION METHODOLOGY LEVEL B FACADE LEVEL C COMPONENT EVALUATION PHASE EXPERIMENTS -DESIGNBUILDER SIMULATIONS . EVALUATION DESIGN PHASE INTEGRATED LLVLL B FACADE DESIGN 01 INTRODUCTION 18 FINAL DESIGN

+METHODOLOGY

02 KNOWLEDGE

+TE TECHNOLOGY

+TE FACADES

+HEAT DISSIPATION

+CONTEXT

02 KNOWLEDGE

- +TE TECHNOLOGY
- +TE FACADES
- +HEAT DISSIPATION
- +CONTEXT

+TE TECHNOLOGY (TE=THERMOELECTRIC)

! EXCESS HEAT TRANFER TO COLD SIDE

Joule Heat

$$Q_h = \alpha I T_h + 0.5 I^2 R - k (T_h - T_c)$$

$$COP_c = Q_c/P$$

$$COP_h = Q_h/P$$

Conduction Peltier effect Heat flow $Q_h = \alpha I T_h + 0.5 I^2 R - k (T_h - T_c)$ $COP_c = Q_c/P$

k: thermal conductivity, Wm-1K-1

 α : Seebeck coefficient, *VK-1* R: electrical resistance, ohm

I: current. A

P: electric power, W

+TE TECHNOLOGY PERFORMANCE BOOST

Material design Current intensity & Voltage Decrease in temperature difference

02 KNOWLEDGE

- +TE TECHNOLOGY
- +TE FACADES
- +HEAT DISSIPATION
- +CONTEXT

SOLID-BASED

LIQUID-BASED

AIR-BASED

CONCEPT BY IBANEZ PUY ET AL.(2016)

INTEGRATION WALL WINDOW VENTILATION HEAT DISSIPATION HEAT PIPES WATER STORAGE **HEAT SINKS**

+TE FACADES

X	X	X
X		X
	X	
		X
X	X	X
X	X	
	X	
X	X	X

02 KNOWLEDGE

- +TE TECHNOLOGY
- +HEAT DISSIPATION
- +TE FACADES
- +HEAT DISSIPATION
- +CONTEXT

+HEAT DISSIPATION PERFORMANCE BOOST

Lower thermal resistance through:
Base plate thickness
Fin shape/profile
Heat sink material
Cross-cut patters

02 KNOWLEDGE

- +TE TECHNOLOGY
- +HEAT DISSIPATION
- +TE FACADES
- +HEAT DISSIPATION
- +CONTEXT

+CONTEXT

HOT ARID CLIMATE

+CONTEXT

CASE STUDY

Koi Tower, Monterrey

03 PROCESS

- +CONCEPT
- +EVALUATION Component
- +EVALUATION Building

03 PROCESS

+CONCEPT

- +EVALUATION Component
- +EVALUATION Building

+CONCEPT Design Levels

LEVEL A

1 Glazing

+CONCEPT

Parameters

- 2 Insulation
- 3 Glass Type
- 4 Shading
- 5 Ventilation

LEVEL B

- 1 Configuration
- 2 Integration

LEVEL C

- 1 Thickness
- 2 Extended Surface
- 3 Material
- 4 Air flows

+CONCEPT

Design Strategies
Building

+CONCEPT

Design Strategies

Façade

03 PROCESS

+CONCEPT

- +EVALUATION Component
 - +Methodology
 - +Strategies
 - +Results
- +EVALUATION Building

+Methodology

+Methodology

Stepped Methodology

+Methodology

Experiments

Tested Component Layer Composition

Hot Box Composition / Probe Locations

+EVALUATION - Component +Methodology +Strategies

Experiment Baseline

TEC1 - 12706 Module						
6.4	6.4					
14.4	16.4					
66	75					
25	50					
50	57					
1.98	2.3					
127						
40*40*3.8						
	6.4 14.4 66 25 50 1.98 127					

+EVALUATION - Component +Methodology

+Strategies
Frozen parameters

TEM1

TEM1

1.49

1.75

7.45

10.2

Origami

Origami

Shape

Shape

				E>	xperiment	Set-Up: S	trategy 1							
num	TE module	TE quantity	Voltag (V)		nt Po	wer	HS shape	Parar	sical neter ted	Dim	nensions (mn	,	olume mm3)	
1	TEM1	1	5	1.23	3 6	.1 Alı	uminium Plate	thickness		250x250x0.8		5 5	0000	
2	TEM1	1	6	1.37	7 8.	16 Alı	uminium Plate	thick	ness	250x250x0.8		5	50000	
3	TEM1	1	5	1.22	2 6.	05 Alı	uminium Plate	thick	ness	2!	50x250x1.C	6	2500	
4	TEM1	1	6	1.41	8	.4 Alı	uminium Plate	thick	ness	2!	50x250x1.C	6	2500	
				E		nt Set-Up :	Strategy	2						
num	TE	TE	Voltage	Current	Power		S			Dim	Dimensions		Volume	
	module	quantity	(V)	(amps)	(W)	sha	ape	Parame teste		((mm)	(m	nm3)	
3	TEM1	1	5	1.22	6.05	A: Alur Pla	ninium ate	thickne	ess	250	x250x1.0	62	2500	
4	TEM1	1	6	1.41	8.4		ninium ate	thickne	thickness 250x250x1.0		62	62500		
5	TEM1	1	5	1.51	7.55	B: Or	igami	Shape 250:		250x250x1.0		62	2500	
6	TEM1	1	6	1.77	10.6	B: Or	igami	Shap	е	250)	x250x1.0	62	2500	
				E	Experimer	nt Set-Up:	Strategy	3						
num	TE module	TE quantity		Current amps)	Power (W)	HS shape	Parame teste		Dimens (mm		Volume (mm3)	Air Flow	Velocity m/s	
5	TEM1	1	5	1.51	7.55	Origami	Shap	e 2	250x25 1.0	5Ox	62500	NC	NA	
6	TEM1	1	6	1.77	10.6	Origami	Shap	e 2	250x25 1.0	50x	62500	NC	NA	

1.10-

1.30

1.10-

1.30

250x250x

1.0

250x250x

1.0

62500

62500

- +EVALUATION Component
 - +Methodology
 - +Strategies
 - +Results
 - 01 Thickness

0.8 mm ΔT: 1.2 °C HS Hot side: 25.04 °C

HS Cold side: 23.84 °C

- +Methodology
- +Strategies
- +Results
 - 02 Shape

HS Hot side: 39.37 °C HS Cold side: 19.13 °C

- +Methodology
- +Strategies
- +Results

03 Air Flows

Forced Convection

ΔT: 24.13°C

HS Hot side: 39.72°C

HS Cold side: 15.58°C

- +Methodology
- +Strategies
- +Results

03 Air Flows

Natural Convection Min T box: 22.13 °C

+EVALUATION - Component +Methodology

+Strategies
Simulation Baseline

*when laminar flow was included simulation time was very long
*so an empirical h was used, based on research

+Methodology

Boundary Conditions

Strategy 4

COMSOL DOMAINS (STRATEGY 4)

COMSOL HEAT TRANSFER (STRATEGY 4)

3D HEAT TRANSFER STUDY (STRATEGIES I-3)

3D HEAT TRANSFER STUDY (STRATEGY 4)

+EVALUATION - Component

- +Methodology
- +Strategies

Simulations – 3D Heat Transfer

+EVALUATION - Component +Methodology +Strategies +Results

Simulation Base

+Results 01 Thickness

Qc 3.52 W Qh 10.82 W COPh 1.48 COPc 0.48 Qc 8.11 W
Qh 15.41 W
COPh 2.11
COPc 1.11

Qc 9.00 W Qh 16.30 W COPh 2.23 COPc 1.23

Qc 6.57 W Qh 13.87 W COPh 1.90 COPc 0.90

+Results 01 Thickness

Qc 9.00 W Qh 16.30 W COPh 2.23 COPc 1.23

+Results 02 Extended Surface

PEAK DAY IN SUMMER

15.41 W COPh 2.11 COPc 1.11 S.A 0.063 m2

16.17 W

COPh 2.21 COPc 1.21 SA 0.076 m2

COPh 2.38 COPc 1.38 SA 0.142 m2

+Results 02 Extended Surface

+Results 03 Material Exploration

PEAK DAY IN SUMMER

+Results 03 Material Exploration

+Results 04 Air flows

PEAK DAY IN SUMMER

NC BOTH

Qc 11.87 W Qh 19.17 W COPh 2.63 COPc 1.63

Qc 12.09 W Qh 19.39 W

COPh 2.66

COPc 1.66

FC H UP / NC C

NC H / FC C UP

NC H / FC C DOWN

+Results 04 Air flows

+Results Summary

	STRATEGY	00	01	02	02	03	03	04	04	04
INITIAL	Ambient Temperature	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8
	Inside Temperature	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	Paramenter	Baseline	Thickness	Shape	Area Surface	Material	Material Combo	Airflows Base	Airflows	Airflows
ЭМС	HS Hot	56.46	46.51	42.07	41.57	41.57	41.57	41.78	41.15	41.41
	TEC H	55.86	49.08	44.14	41.40	41.40	41.39	41.49	41.15	41.12
	TEC C	27.30	29.37	28.60	30.09	30.09	30.07	29.60	29.73	29.53
	ΔΤ	28.56	19.71	15.54	11.31	11.31	11.31	11.89	11.43	11.59
	COPc	0.48	1.11	1.38	1.67	1.67	1.67	1.63	1.66	1.64
	Detail	-	5 mm	250x200/S.D	450x450/S.E	Aluminium	Alu + Terracotta	NC/S.E	FC/S.E	FC C/NC H, S.E
	Summary	-	130%	24%	21%	No Change	No Change	-	1.8%	0.61%

+Results Conclusions

03 PROCESS

- +CONCEPT
- +EVALUATION Component
- +EVALUATION Building
 - +Methodology
 - +Strategies
 - +Results

+Methodology

+Methodology

Design Builder

+Methodology
Peak Gains

Summer

Internal Gains + solar - Typical Office Floor 12 Jul - 12 Jul, Hourly EnergyPlus Output Student General Lighting Computer + Equip Cocupancy Solar Gains Exterior Windows Zone Sensible Cooling 60 40 Heat Balance (kW) -40 -60 5.5 5.0 4.5 4.0 7.0 (kW) 3.5 2.5 2.0 2.0 1.5 1.0 0.5 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 13 Sat Jul 12 Fri 2002 Time/Date

+Methodology

+Strategies

Peak Gains - Summer

00	01	02	03 GLASS TYPE	04	05
BASE	WWR	INSULATON		SHADING	VENTILATION
	20%	50 mm	Solarban 3mm clear	Exterior	Natural
					Ventilation
	30%	75 mm	Double, Low-e reflective coating	Interior	Night Ventilation
	40%	100 mm	Double Low- e tint		

+EVALUATION — Building

+Methodology

+Strategies

+Results

Summary

- +Methodology
- +Strategies
- +Results
 Summary

53.7% ENERGY SAVINGS

04 DESIGN

- +CONCEPT
- +GUIDELINES
- +FAÇADE DEVELOPMENT
- +FAÇADE TYPES
- +EVALUATION

04 DESIGN

- +CONCEPT
- +GUIDELINES
- +FAÇADE DEVELOPMENT
- +FAÇADE TYPES
- +EVALUATION

+CONCEPT

Chosen Configuration

+CONCEPT

Cooling concept

+RESULTS LEVEL B Facade modules

+CONCEPT

TEM Quantity based on:

Required fresh air Required cooling power Space Available

=3786 TEMs

04 DESIGN

- +CONCEPT
- +GUIDELINES
- +FAÇADE DEVELOPMENT
- +FAÇADE TYPES
- +EVALUATION

04 DESIGN

- +CONCEPT
- +GUIDELINES
- +FAÇADE DEVELOPMENT
- +FAÇADE TYPES
- +EVALUATION

FAÇADE MODULE TYPES
BY SIZE

02

FAÇADE PANEL GRID BY SPACE

03

FAÇADE MODULE LAYER TEM SYSTEM

04

FAÇADE AIR CAVITY INTERNAL

)5

FAÇADE EXTERNAL HEAT SINK VENTILATION

04 DESIGN

- +CONCEPT
- +GUIDELINES
- +FAÇADE DEVELOPMENT
- +FAÇADE TYPES
- +EVALUATION

06

FACADE MODULE BY FUNCTION FRESH AIR INTAKE

07

FACADE MODULE BY FUNCTION OFFICE AIR INTAKE

08
FACADE MODULE BY FUNCTION
AIR CONDITIONING

09

FACADE MODULE BY FUNCTION AIR SUPPY TO INTERIOR

06-09 COMPLETE SYSTEM

04 DESIGN

- +CONCEPT
- +GUIDELINES
- +FAÇADE DEVELOPMENT
- +FAÇADE TYPES
- +EVALUATION

05 CONCLUSION

- + CONCLUSION
- +OTHER POSSIBLITIES
- + FUTURE WORK

+CONCLUSIONS

TEM low capacity requires high quantity of modules

Performance improved but it requires all the façade panels having TEMs

Much material usage (heat sinks)

Difference in temperature is small (component level)

Geometry affects thermal performance

Identified trends (both scales)

Potential!

+OTHER POSSIBILITIES

+OTHER POSSIBILITIES

+FUTURE WORK

Exploration on the TE material

Design possibilities (too many)

Parametrization for the heat sink shape

Material

Other climatic conditions

Other typologies

THANK YOU

MENTORS:

Dr. Alejandro Prieto

Ir. Eric van den Ham

Lei Qu

