
Delft Center for Systems and Control

Efficient Scheduler Synthesis
For Periodic Event Triggered
Control Systems
An Approach With Binary Decision Diagrams

I. van Straalen

M
as

te
ro

fS
cie

nc
e

Th
es

is

Efficient Scheduler Synthesis For
Periodic Event Triggered Control

Systems
An Approach With Binary Decision Diagrams

Master of Science Thesis

For the degree of Master of Science in Embedded Systems at Delft
University of Technology

I. van Straalen

August 11, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

In recent years, Networked Control Systems (NCS) have become more popular, partly because
of the increasing accessibility. In NCS, multiple plants and controllers are connected over a
wired or wireless shared network, possibly having significant spatial separation. A major issue
that arises is network congestion: If too many control loops are connected to the network,
the shared communication channels become oversaturated, causing the packages to be lost,
and subsequently the individual control loops might become unstable.

One solution to this problem is to make use of Periodic Event Triggered Control (PETC),
where a triggering condition is checked periodically, and if this condition is satisfied the
control loop is closed. Control using PETC becomes inherently aperiodic, as opposed to the
periodic nature of standard control implementation. This aperiodicity introduces another
issue: Avoiding collision of communication events caused by the triggering of control loops.

To resolve this issue, schedulers have to be designed for the control loops. There are ap-
proaches already available that can automatically synthesize schedulers for a collection of
PETC systems. However, these share a common issue in that these scale poorly with the
number of subsystems.

This thesis explores new algorithms for synthesization of schedulers for PETC, with the
goal of better scalability. This is done by first abstracting the triggering behaviour of the
individual control loops and representing these by Transition System (TS). Then schedulers
are synthesized by solving a safety game. To increase efficiency of the safety game, several
states are combined by partitioning. Additionally, a major boost in performance is gained by
representing the TSs by Binary Decision Diagrams (BDDs). Finally, a method to increase
schedulability is also investigated by allowing the control loops to occasionally trigger late.

Master of Science Thesis I. van Straalen

ii

I. van Straalen Master of Science Thesis

Table of Contents

Acknowledgements and Preface vii

1 Introduction 1
1-1 Notation . 3
1-2 Organization . 3

2 Preliminaries 5
2-1 Transition Systems . 5

2-1-1 Safety Games . 8
2-1-2 Partitioning and Refinement . 9

2-2 Event Triggered Control . 9
2-2-1 Periodic Event Triggered Control . 10
2-2-2 Abstractions of linear PETC Systems . 11

2-3 Binary Decision Diagrams . 13
2-3-1 Ordered Binary Decision Diagrams . 14
2-3-2 Operations on (RO)BDDs . 14

3 Scheduling of PETC Systems 17
3-1 Construction of Abstractions . 17

3-1-1 Converting Traffic Models . 18
3-1-2 Composition . 18

3-2 Standard Scheduler Synthesization . 19
3-3 Alternative Synthesization Algorithm by Partitioning 20

3-3-1 Initial Partition . 20
3-3-2 Refinement . 23
3-3-3 Modified Scheduler Synthesization Algorithm 25

Master of Science Thesis I. van Straalen

iv Table of Contents

4 Scheduler Synthesis Using BDDs 27
4-1 Representation by BDDs . 27
4-2 Composition . 29
4-3 Synthesization with BDDs . 29
4-4 Partitioning using BDDs . 30
4-5 Refinement using BDDs . 30
4-6 Time Complexity . 32

5 Scheduling using Late Triggers 35
5-1 Motivation . 35
5-2 Modelling Late Triggers . 36
5-3 Modelling Late Trigger Limitation . 36
5-4 Stability Concerns . 37

6 Implementation 41
6-1 Algorithm Implementations . 41
6-2 Issues Regarding Scheduler Implementation . 42

7 Benchmarks and Simulations 47
7-1 Benchmarks . 47

7-1-1 Deterministic Subsystems . 47
7-1-2 Random Subsystems . 49
7-1-3 Auxiliary Benchmarks . 49

7-2 Simulation of Linearized Batch Plants . 53
7-2-1 Simulation with Randomized Inputs . 57

7-3 Simulation with late triggers . 57

8 Conclusions and Future Work 61
8-1 Future Work . 61

A Additional Simulation 63

B Proofs 65
B-1 Proof Proposition 3-3.1 . 65
B-2 Proof of Proposition 3-3.3 . 66
B-3 Proof of Proposition 3-3.5 . 67

Bibliography 69

Glossary 71
List of Acronyms . 71
List of Symbols . 71

I. van Straalen Master of Science Thesis

List of Figures

1-1 A depiction of an NCS, including multiple controllers and plants and other unrelated
nodes [1]. 2

2-1 An example BDD . 14

3-1 An example of converting a traffic model to a TS 19
3-2 An example of composing two identical systems. 21
3-3 An example of solving a safety game. 21
3-4 An example partitioning. 23
3-5 An example refinement. 24

4-1 An example of representing a TS by a BDD. 28

5-1 An example of a unschedulable TS and its extended form with late triggers. . . . 36
5-2 An example auxiliary TS with r = 2 and ∆ = 1. 37

6-1 Code snippet implementing the alternative scheduler synthesis algorithm. 44
6-2 Code snippet of two methods from the class ‘nfa_system_bdd ’ implementing the

safety game using BDDs. 45

7-1 Computation time of synthesizing a scheduler for deterministic systems withm = 2
subsystems. 48

7-2 Computation time of synthesizing a scheduler for deterministic systems with m = 3. 48
7-3 Computation time of synthesizing a scheduler for deterministic systems versus m. 49
7-4 Computation time of synthesizing a scheduler for random system with m = 2. . . 50
7-5 Computation time of synthesizing a scheduler for random system with m = 2. . . 50
7-6 Number of iterations needed to solve the safety game versus the number of transitions 51
7-7 Memory usage without the use of BDDs. 51

Master of Science Thesis I. van Straalen

vi List of Figures

7-8 Memory usage with the use of BDDs. 52
7-9 Resulting triggering times of a simulation of the systems 7-1 without the use of a

scheduler. 54
7-10 Simulation of two plants with scheduler. 55
7-11 The traffic model regions the systems are in over time, corresponding to Figure 7-10. 55
7-12 Triggering Times for both systems corresponding to Figure 7-10. 55
7-13 Simulation of two plants with random scheduler inputs. 56
7-14 The traffic model regions the systems are in over time, corresponding to Figure 7-13 56
7-15 Triggering Times for both systems corresponding to Figure 7-13. 56
7-16 Simulation of two plants with scheduler and allowed late triggers. 59
7-17 The traffic model regions the systems are in over time, corresponding to Figure 7-16 59
7-18 Triggering Times for both systems corresponding to Figure 7-16. 59

A-1 Simulation of the two plants 7-6 and 7-7 with scheduler. 64
A-2 The traffic model regions the systems are in over time, corresponding to Figure A-1 64
A-3 Triggering Times for both systems corresponding to Figure A-1. 64

I. van Straalen Master of Science Thesis

Acknowledgements and Preface

I would like to thank my supervisor dr.ir. M. Mazo Espinosa for their assistance and guidance
during the writing of this thesis. Furthermore, I would like to thank every member of the
research group for the discussion and insights during the meetings which helped me progress
further.

This work is supported by the ERC Starting Grant SENTIENT 755953.

Delft, University of Technology I. van Straalen
August 11, 2021

Master of Science Thesis I. van Straalen

viii Acknowledgements and Preface

I. van Straalen Master of Science Thesis

Chapter 1

Introduction

In modern control theory, the control action is typically (digitally) implemented in a periodic
manner, i.e. every period the current state is measured or estimated, a suitable control action
is computed and finally it is actuated. A disadvantage of this approach is that it can be quite
inefficient in terms of energy consumption, communication and computation as new control
actions are computed and transmitted even when not necessary to sustain stability. These
do generally not pose large constraints in regular systems, however, in Networked Control
Systems (NCS) [2], these issues are magnified. In NCS, multiple plants and controllers,
which are spatially separated, are connected by a common network. An illustration of this
is shown in Figure 1-1. The interest in NCS has increased greatly in the last few years,
largely because (wireless) networks have become more readily available. In the case of NCS,
communication especially poses tight constraints on the systems, as often only 1 or a small
amount of (bandwidth-limited) communication channels are shared by multiple control loops.

A common way to alleviate this issue is by reducing the amount of communications needed
for each control loop by utilising event-based control methods. These are inherently aperiodic
and only send control actions to the plant when a certain event happens. These events can be
designed in such a way that the amount of communication that is needed is possibly reduced
by only sending when absolutely necessary. One way to design such an event-generator
is by using a triggering condition. This called Event Triggered Control (ETC). In ETC,
‘out of date’ versions of the state are used to calculate the control action. Only when the
triggering condition is satisfied, is the current state transmitted to the controller. Of course
the triggering condition has to be designed in such a way that the system remains stable.
This triggering condition has to be checked continuously, which is practically impossible, so
often it is checked with a small period to simulate it. It is possible to convert the triggering
condition to one that is checked with a period h, that also takes into account what happens in
between the samples. This triggering condition will then also trigger if the original triggering
condition would have triggered during the next period. This approach is called Periodic Event
Triggered Control (PETC).

One issue that PETC does not resolve is the conflicts that can arise between different control
loops that would like to trigger simultaneously. A solution to this problem is to design a

Master of Science Thesis I. van Straalen

2 Introduction

Figure 1-1: A depiction of an NCS, including multiple controllers and plants and other unrelated
nodes [1].

scheduler that decides which control loops should trigger at the current sample. To make
the scheduling problem more feasible, the control loops should be allowed to trigger early,
i.e. before their triggering condition is satisfied. The scheduler can then ensure stability of
all the control loops if they trigger before or at the time instant the triggering condition is
first satisfied. Algorithms exists to synthesize schedulers for PETC systems [3, 4, 5] which
make use of Timed Automata, but they do not scale very well. The goal of this thesis is thus
then to design and implement more efficient and better scaling algorithms that automatically
synthesize a scheduler for a given set of PETC systems.
First, traffic models which capture the triggering behaviour of the PETC systems are con-
structed using the techniques from [6]. These models are then converted into a particular
form before they are combined, and used in a safety game. The solution to this safety game is
then used to construct the scheduler. More efficient algorithms are investigated by combining
several states in these models or by representing them by Binary Decision Diagrams (BDDs).

1-1 Notation

R represents the set of real numbers, N represents the set of natural numbers and B represents
the set of boolean numbers, i.e. B = {0, 1}. For a set A, |A| denotes its cardinality and for a
vector ξ, |ξ| denotes its 2-norm. A relation Q is a subset of the product of two sets: Q ⊆ A×B.
Denote by πQ(a) := {b ∈ B| (a, b) ∈ Q} ⊆ B the set of states related to a via Q, and π−1

Q

defined inversely. If A = B, Q is called an equivalence relation, and their elements are grouped
into equivalence classes, denoted by [a]Q := πQ(a) ⊆ A. For an arbitrary dynamical system
ξ̇(t) = f(ξ(t)), ξ(t) ∈ Rn, denote the solution with initial condition ξ(0) = x as ξx(t).

1-2 Organization

The contents of this thesis are organized as follows:

I. van Straalen Master of Science Thesis

1-2 Organization 3

• Chapter 2 contains preliminary theory required for the remainder of the thesis,

• Chapter 3 discusses how the acquired traffic models are converted as well as the main
synthesization algorithms that are performed on these,

• Chapter 4 covers how the models are represented using BDDs, and how the synthesiza-
tion algorithms can be expressed using BDDs,

• Chapter 5 discusses how some schedulers can be found for unschedulable systems by
allowing some late triggers,

• Chapter 6 covers shortly how the algorithms are implemented, and make some consid-
erations on how the resulting schedulers would be implemented physically,

• Chapter 7 contains some benchmarks of the algorithms and simulations using the re-
sulting schedulers, and

• Chapter 8 concludes the thesis and makes some comments about possible future work.

Master of Science Thesis I. van Straalen

4 Introduction

I. van Straalen Master of Science Thesis

Chapter 2

Preliminaries

2-1 Transition Systems

Transition systems are abstract systems consisting of states (possibly infinite) and transitions
between states. These can be used to model a large variety of systems. In this thesis they are
used to model triggering behaviour of Periodic Event Triggered Control (PETC) systems.

Following are some definitions and theorems used later on for the abstraction and scheduling
algorithms. The notation and names in the definitions are slightly modified in some cases for
consistent notation and naming conventions.

Definition 2-1.1 (Transition System (TS) [7]). A Transition System S is a sextuple (X,X0, U,−→
, Y,H), where:

• a set of states X;

• a set of initial states X0 ⊆ X;

• a set of inputs U ;

• a transition relation −→⊆ X × U ×X;

• a set of outputs Y ;

• an output map H : X → Y .

From the definition of a TS, three additional useful sets can be defined: First the set of
successors of x with action u:

Postu(x) := {x′ ∈ X| ∃(x, u, x′) ∈−→}, and
Post(x) :=

⋃
u∈U

Postu(x). (2-1)

Master of Science Thesis I. van Straalen

6 Preliminaries

For some states, Postu(x) might be empty, thus denote by U(x) the set of actions for which
Postu(x) is nonempty:

U(x) := {u ∈ U |Postu(x) 6= ∅}. (2-2)

Finally, the set of predecessors of x:

Pre(x) := {x′ ∈ X| ∃(x′, u, x) ∈−→}. (2-3)

When considering sets of states, these sets resolve to be simply the union over the individual
members, i.e.:

Post(C) =
⋃
x∈C

Post(x). (2-4)

Definition 2-1.2 (Composition of Systems [7]). Let Sa = (Xa, X0a, Ua,−−−→
a

, Ua, Ha) and
Sb = (Xb, X0b, Yb,−−−→

b
, Yb, Hb) be two systems and let I ⊆ Xa ×Xb ×Ua ×Ub be a relation.

The composition of Sa and Sb with interconnection relation I, denoted by Sa ×I Sb, is the
system (Xab, X0ab, Uab,−−−→

ab
, Yab, Hab), consisting of:

• Xab = πX(I);

• Xab0 = Xab ∩ (Xa0 ×Xb0);

• Uab = Ua × Ub;

• (xa, xb)
(ua,ub)−−−−→
ab

(x′a, x′b) if the following conditions hold:

1. xa
ua−−−−−→
a

x′a in Sa;

2. xb
ub−−−−−→
b

x′b in Sb;

3. (xa, xb, ua, ub) ∈ I;

• Yab = Ya × Yb;

• Hab(xa, xb) = (Ha(xa), Hb(xb)).

Definition 2-1.3 (Simulation Relation [7]). Consider two systems Sa and Sb with Ya = Yb.
A relation R ⊆ Xa ×Xb is a simulation relation from Sa to Sb iff:

1. ∀xa0 ∈ Xa0 : ∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

2. ∀(xa, xb) ∈ R : Ha(xa) = Hb(xb);

3. ∀(xa, xb) ∈ R it holds that ∀(xa
ua−→
a

x′a) in Sa implies the existence of (xb
ub−−−−−→
b

x′b)
in Sb such that (x′a, x′b) ∈ R.

If such a relation exists, it is said that Sa is simulated by Sb, denoted by Sa �S Sb.

Definition 2-1.4 (Bisimulation [7]). Given two systems Sa and Sb with Ya = Yb, Sa is
bisimilar to Sb, denoted by Sa ∼=S Sb, if there exists a relation R satisfying:

I. van Straalen Master of Science Thesis

2-1 Transition Systems 7

1. R is a simulation relation from Sa to Sb;

2. R−1 is a simulation relation from Sb to Sa.

Definition 2-1.5 (Quotient System [7]). Let S = (X,X0, U,−→, Y,H) be a system and let
Q be an equivalence relation on X such that (x, x′) ∈ Q implies H(x) = H(x′). The quotient
of S by Q, denoted by S/Q, is the system (X/Q, X/Q0, U/Q,−−−→

/Q
, Y/Q, H/Q), where

• X/Q = X/Q;

• X/Q0 = {x/Q0 ∈ X/Q0|x/Q0 ∩X0 6= ∅};

• U/Q = U ;

• x/Q
u−−→
/Q

x′/Q if there exists x u−→ x′ in S with x ∈ x/Q and x′ ∈ x′/Q;

• Y/Q = Y ;

• H/Q(x/Q) = H(x) for some x ∈ x/Q.

This is sometimes also called a symbolic model of S since each state x/Q ∈ X/Q can be
regarded as a symbol representing all the states π−1

Q (x/Q) ⊆ X.

Theorem 2-1.1 ([7]). S = (X,X0, U,−→, Y,H) be a system and let Q be an equivalence
relation on X such that (x, x′) ∈ Q implies H(x) = H(x′). The relation:

Γ(πQ) = {(x, x/Q) ∈ X ×X/Q|x/Q = πQ(x)} (2-5)

is a simulation relation from S to S/Q. Moreover, Γ(πQ) is a bisimulation relation between
S and S/Q if Q is a bisimulation relation between S and S.

Definition 2-1.6 (Alternating Simulation Relation [7]). Let Sa and Sb be systems with Ya =
Yb. A relation R ⊆ Xa×Xb is an alternating simulation relation from Sa to Sb if the following
three conditions hold:

1. ∀xa0 ∈ Xa0 : ∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

2. ∀(xa, xb) ∈ R : Ha(xa) = Hb(xb);

3. ∀(xa, xb) ∈ R and ∀ua ∈ Ua(xa) : ∃ub ∈ Ub(xb) such that ∀x′b ∈ Postub
(xb) : ∃x′a ∈

Postua(xa)) satisfying (x′a, x′b) ∈ R.

If such a relation exists, it is said that Sa is alternatingly simulated by Sb, denoted by Sa �AS
Sb.

Definition 2-1.7 (Extended Alternating Simulation Relation [7]). Let R be an alternating
simulation relation from system Sa to Sb. The extended alternating simulation relation Re ⊆
Xa ×Xb × Ua × Ub associated with R is defined by all the quadruples (xa, xb, ua, ub) ∈ Xa ×
Xb × Ua × Ub for which holds:

1. (xa, xb) ∈ R

Master of Science Thesis I. van Straalen

8 Preliminaries

2. ua ∈ Ua(xa);

3. ub ∈ Ub(xb) and ∀x′b ∈ Postub
(xb) : ∃x′a ∈ Postua(xa) satisfying (x′a, xb ∈ R).

Definition 2-1.8 (Feedback Composition [7]). A system Sc is feedback composable with a
system Sa if there exists an alternating simulation relation R from Sc to Sa. When Sc is
feedback composable with Sa, the feedback composition of Sc and Sa, with interconnection
relation F = Re, is given by Sc ×F Sa.

2-1-1 Safety Games

Definition 2-1.9 (Safety Game [7]). Let Sa be a system with Ya = Xa and Ha = 1x, and let
W ⊆ Xa be a set of safe states. The safety game for system Sa and specification set W asks
for the existence of a controller Sc such that:

1. Sc is feedback composable with Sa;

2. Sc ×F Sa is nonblocking

3. ∅ 6= Bω(Sc ×F Sa) ⊆Wω.

Here Bω(S) denotes the infinite (external) behavior of S, which contains the infinite sequence
of outputs that is allowed by the system S starting from any state x.

Consider the operator [7]:

FW (Z) = {xa ∈ Z|xa ∈W ∧ ∃ua ∈ Ua(xa) ∅ 6= Postua(xa) ⊆ Z},

which contains all the states xa ∈ Z ∩W for which all the ua-successors of xa are in Z.

Proposition 2-1.1 ([7]). The operator FW satisfies:

1. Z ⊆ Z ′ =⇒ FW (Z) ⊆ FW (Z ′);

2. If the safety game for system Sa and specification set W is solvable, then the maximal
fixed-point Z of FW satisfies Z ∩Xa0 6= ∅.

A controller can be constructed as: SC = (Xc, Xc0, Ua,−−→
c

), where:

• Xc = Z

• Xc0 = Z ∩Xa0;

• xc
ua−→
c
x′c if ∅ 6= Postua(xc) ⊆ Z.

Theorem 2-1.2 ([7]). The maximal fixed-point Z of FW can be obtained as:

Z = lim
i→∞

F iW (Xa). (2-6)

I. van Straalen Master of Science Thesis

2-2 Event Triggered Control 9

2-1-2 Partitioning and Refinement

The following definitions are from Section 7.3 of [8].

Definition 2-1.10 (Partition, Block, Superblock). A partition for set S is a set Π =
{B1, . . . , Bk} such that Bi 6= ∅, Bi ∩Bj = ∅ (i 6= j) and S =

⋃
0<i≤k Bi.

Bi ∈ Π is called a block. C ⊆ S is a superblock of Π if C = Bi1 ∪ · · · ∪ Bil for some
Bi1 , . . . , Bil ∈ Π.

Let [s]Π denote the unique block of partition Π containing s. A partition Π1 is finer than Π2,
or Π2 is coarser than Π1 if: ∀B1 ∈ Π1∃B2 ∈ Π2 : B1 ⊆ B2.

Definition 2-1.11 (The Refinement Operator). Let Π be a partition for S and C be a
superblock of Π. Then:

Refine(Π, C) =
⋃
B∈Π

Refine(B,C),

where Refine(B,C) = {B ∩ Pre(C), B\Pre(C)}\{∅}

By repeatedly applying the refinement operator, the partition becomes increasingly finer,
until it becomes a fixed-point for every superblock C. The induced equivalence relations RΠi

satisfy:
S × S ⊇ RΠ0 % RΠ1 % · · · % RΠi = Rbisim.,

where Rbisim. is a bisimulation relation between the maximally refined partitioned system and
the original system. The initial partition Π0 can be chosen as:

Definition 2-1.12 (The AP Partition). The AP partition of a transition system S denoted
ΠAP , is the quotient space S/RAP induced by RAP = {(x1, x2) ∈ X ×X |H(x1) = H(x2)}.

This is a rather natural choice since (alternatingly) (bi)similar states have the same output.

2-2 Event Triggered Control

Event Triggered Control (ETC) is an alternative for periodic control for implementation of
control. Instead of recomputing the control action periodically, it is computed whenever a
triggering condition is satisfied. An overview of different ETC techniques have been in [9],
from which the linear ETC will be followed in this section. Starting with a linear plant

ξ̇(t) = Aξ(t) +Bu(t), (2-7)

where ξ(t) ∈ Rn, u(t) ∈ Rnu , A ∈ Rn×n, B ∈ Rn×nu and a linear static state-feedback
controller

u(t) = Kξ(t), (2-8)

where K ∈ Rnu×n such that the closed loop is asymptotically stable, the corresponding ETC
system can be constructed as follows.
Suppose Lyapunov function V (t) := ξ(t)TPξ(t) (with P symmetric positive definite) exists
for the closed loop system 2-7, 2-8. This Lyapunov function has a time derivative of V̇ (t) =

Master of Science Thesis I. van Straalen

10 Preliminaries

−ξ(t)TQξ(t), where Q is guaranteed positive definite. A slower decay rate can be tolerated,
which still assures asymptotic stability:

V̇ (t) ≤ −σξ(t)TQξ(t), (2-9)

where σ ∈ (0, 1]. The idea is to recompute the control action only when 2-9 is about to be
violated. Replace u(t) by û(t) = u(tk) = Kξ(tk), where {tk}k∈N represent the times where
the feedback law is recomputed, such that it effectively becomes a sample-and-hold controller.
Then define the error

e(t) := ξ(tk)− ξ(t), ∀t ∈ [tk, tk+1), k ∈ N. (2-10)

The time derivative of the Lyapunov function can then be written as:

V̇ (t) = −ξ(t)TQξ(t) + 2ξTPBKe(t). (2-11)

Combining this with the relaxed condition on the decay of the Lyapunov function results in:
[
ξT (t) eT (t)

] [(σ − 1)Q PBK
KTBTP 0

] [
ξ(t)
e(t)

]
=: zT (t)Ψz(t) =: Γ(z) ≤ 0. (2-12)

This expression then becomes the triggering condition when equality holds. The matrix Ψ is
called the triggering matrix and Γ(·) the triggering condition. Other variants for the triggering
condition are possible, for example Γ(z) = |e|2 − σ |x|2. The trigger times generated by this
condition are in general aperiodic and are defined by:

t0 = 0, tk+1 = inf{t ∈ R| t > tk ∧ z(t)TΨz(t) = 0}. (2-13)

Since the triggering conditions needs to be checking continuously, it is sometimes also called
Continuous Event Triggered Control (CETC). Other implementations, such as Self-Triggered
Control (STC), where the next triggering time depends on which region of the state space the
system currently resides, output-based ETC and issues regarding for example Zeno behaviour
can be found in [9].

2-2-1 Periodic Event Triggered Control

A similar class of systems, called Periodic Event Triggered Control, is constructed in a similar
manner to regular ETC with one exception. Instead of continuously checking the triggering
function, it is checked periodically. Here, the approach of [10] is followed. In PETC, the
triggering times are integer multiples of the sampling period: tk = kh, k ∈ N and h is the
sampling period. The controller then takes the form û(t) = Kξ̂(t), t ∈ R+, where

ξ̂(tk) =
{
ξ(tk), when Γ(ξ(tk), ξ̂(tk) > 0
ξ̂(tk), when Γ(ξ(tk), ξ̂(tk) ≤ 0

(2-14)

Where Γ(·) is the triggering condition which is often times quadratic. The PETC system can
then equivalently be expressed as:

ξ̇(t) = Aξ(t) +BKξ̂(t)
ξ(0) = ξ̂(0) = ξ0.

(2-15)

I. van Straalen Master of Science Thesis

2-2 Event Triggered Control 11

In general, the maximum inter-event time can be unbounded: (tk+1 − tk) ∈ hN. However,
here we consider a maximum inter-event time hkmax, such that the next trigger time can be
expressed as:

ti+1 = inf{t = kh > ti, k ∈ N | Γ(ξ(t), ξ̂(t)) > 0 ∨ t− ti ≥ hkmax}. (2-16)

A similar method using a Lyapunov function to before can be used to generate the triggering
condition. However, this time it is required that the decay is low enough at least until the
next sample, otherwise the system should trigger. It can be derived by first discretizing the
dynamics 2-15:

ξ(tk+1) = Adξ(tk) +BdKdξ̂(tk), (2-17)

where
Ad := eAh, and Bd :=

∫ h

0
eAsBds, (2-18)

and Kd is designed such that the closed loop discrete time dynamics are rendered stable.
There exists a Lyapunov function V (ξ(tk)) = ξ(tk)TPξ(tk), where P is positive definite and

(Ad +BdKd)TP (Ad +BdKd) � λP, (2-19)

for some 0 ≤ λ < 1, implying that V (ξ(tk+1)) ≤ λV (ξ(tk)). Requiring that the Lyapunov
function decreases at least with some factor 0 ≤ β < 1, results a triggering condition with
triggering matrix:

Ψ =
[
ATd PAd − βP ATd PBdKd

KT
d B

T
d PAd KT

d B
T
d PBdKd

]
. (2-20)

The advantage of this approach is that V is a Lyapunov function for the PETC system 2-
15 with the triggering condition with matrix 2-20. This means that stability is inherently
guaranteed.

2-2-2 Abstractions of PETC Systems

The triggering behaviour of a (Periodic) ETC system 2-15 can be abstracted by a transition
system, which will be referred to as the traffic model of the (Periodic) ETC control loop.
In this thesis, only abstractions for PETC will be considered, as the algorithms discussed
will be directly applicable. Additionally, the considered abstractions will be limited to PETC
system as discussed in Section 2-2-1, i.e. linear, undisturbed, driven by a static state-feedback
controller and a quadratic triggering condition. Methods of constructing traffic models can
be divided into two main categories:

• Space partitioning: Here the state space of the plant is first divided into regions (for
example by isotropic partitioning [11]) and then computing the lower and upper bound
for the triggering time for each of those regions. This is done for PETC in [12].

• Time partitioning: Here a (finite) list of triggering times {τ0, . . . , τn} is specified, after
which the corresponding regions in the state space are computed. For PETC this is
done in [6]. This has the advantage over the previous method, because the number of
regions does not grow exponentially with the dimension of the state space. Instead it
grows with the number of triggering times considered.

Master of Science Thesis I. van Straalen

12 Preliminaries

In this thesis the time partitioning method is used, because of this scaling issue. In the rest
of the section, this approach [6] is summarized.

The only three parameters that determine the resulting traffic model are the sampling period
h, the maximum inter-event time kmax and the triggering matrix Ψ. Define

M(k) := eAkh +
∫ kh

0
eAτdτ BK, (2-21)

and

N(k) :=
[
M(k)
I

]T
Ψ
[
M(k)
I

]
. (2-22)

Then the discrete inter-event time can be expressed as:

κ(x) = min{k ∈ {1, 2, . . . , kmax} |xTN(k)x > 0 ∨ k = kmax}. (2-23)

The goal is to construct a quotient system model S/R of S = (X,X0,→, Y,H), where:

• X = X0 = Rn,

• →= {(x, x′) ∈ X ×X|x′ = ξx(hκ(x))},

• Y = {1, 2, . . . , k},

• H = κ,

which is basically an (uncountably) infinite-state transition system that captures the trigger-
ing behaviour. The state space can be partitioned by the sets:

Kk :=
{
{x ∈ Rn|xTN(k)x > 0}, k < kmax

Rn, k = kmax
, (2-24)

describing the set of states that have at least triggered by time k. These sets can then be
used to partition the state space as:

Qk =

Kk \
k−1⋃
j=1

Qj , k > 1,

Kk, k = 1.
(2-25)

The state set of the quotient system is then X/R = {Q1,Q2 . . . }. The size of this state set
grows linearly with the number of allowed trigger times. The problem of whether there exists
a transition between regions Qi and Qj is:

∃x ∈ Rn : x ∈ Qi, ξx(ih) = M(i)x ∈ Qj . (2-26)

This can be expanded into a non-convex quadratic constraint problem

∃x ∈ Rn

s.t. xTN(i)x > 0,
xTN(i′)x ≤ 0, ∀i′ ∈ {1, . . . , i− 1}
xTM(i)TN(j)M(i)x > 0,
xTM(i)TN(j′)M(i)x ≤ 0, ∀j′ ∈ {1, . . . j − 1}.

(2-27)

I. van Straalen Master of Science Thesis

2-3 Binary Decision Diagrams 13

The non-convexity of this problem is a large disadvantage. However, it can be converted to
a semi-definite problem. The transition set then consists of the pairs (Qi,Qj) ∈ E\R which
satisfy Equation (2-27).
For the scheduling of such systems, it is advantageous that a system can trigger earlier as
well, i.e. for any state Qi ∈ X\R allow triggers at times k ∈ N : k < i. The corresponding
transitions can then be computed by verifying Equation (2-27), replacing j by k, resulting in
the transitions (Qi, k,Qj) ∈ E∗. These will be referred to as early triggers. The previously
defined transitions are also modified to make the trigger time explicit: (Qi, i,Qj) ∈ E\R

This results in a traffic model S\R = (X\R, X\R,0, U\R, E\R ∪ E∗, Y\R, H\R), where:

• X\R = X\R,0 = {Q1, . . . ,Qkmax},

• E\R and E∗ as defined above,

• U\R = Y\R = {1, . . . , kmax},

• H\R(Qk) = k.

In addition to early triggers, also transitions for late triggers can be calculated, i.e. transitions
(Qi, k,Qj) ∈ Elate, k ∈ N : k > i that satisfy Equation 2-27. These transitions are not used
for the main algorithms that will be discussed, since they do not guarantee stability inherently.
However, the transitions Elate will be added to the traffic model in the approach in Chapter 5.

2-3 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [13, 14] are directed acyclic graphs used to represent
boolean functions f : Bn → B. Each node v in a BDD corresponds to a boolean variable
var(v) = xi and has two children: low(v) corresponding to xi = 0 and high(v) corresponding
to xi = 1. A terminal node is either labelled 0 or 1. To construct the BDD, Shannon’s
expansion

f = xi · f |xi=1 + x̄i · f |xi=0

can be used to iteratively generate the BDD starting from the first boolean variable x1. An
example of a BDD is shown in Figure 2-1.

In addition to Boolean functions, BDDs can also be used to represent sets and functions
on finite domains [15]. Assume set A is encoded into n = dlog2 |A|e binary variables using
the encoding function σ : A → {0, 1}n, with σi(·) denoting the ith bit of the encoding. A
function f : A→ A can be represented with n Boolean functions fi : {0, 1}n → {0, 1} defined
as fi(σ(a)) = σi(f(a)). A set S ⊆ A can then be represented using the Boolean function
χS : {0, 1}n → {0, 1}, defined as:

χS(x) =
∑
a∈S

∏
1≤i≤n

[xi ⇐⇒ σi(a)], (2-28)

The function χS is also called the characteristic function for the set S.

Master of Science Thesis I. van Straalen

14 Preliminaries

2-3-1 Ordered Binary Decision Diagrams

The ordering of variables and nodes in a BDD can have significant impact on its size. Because
of this Ordered Binary Decision Diagrams (OBDDs) have been introduced [16, 15], in which a
certain ordering over the boolean variable is enforced: Given an ordering < over the boolean
variables, then for any vertex v and either nonterminal child v, var(u) < var(v) must hold.
The size of an OBDD can potentially be reduced further by three transformation that do not
change the function represented:

• Remove duplicate terminal nodes and redirect all the arcs into the removed nodes to
the remaining one.

• If nodes u and v have var(u) = var(v), low(u) = low(v) and high(u) = high(v), then
remove one of them and redirect all its incoming arcs to the other node.

• If node v has low(v) = high(v) then remove v and redirect all incoming arcs to low(v).

When these transformations are repeated until the resulting OBDD no longer changes, it is
called a Reduced Ordered Binary Decision Diagram (ROBDD). In the rest of this thesis when
referring to a BDD it is implied that it is an also a ROBDD.

2-3-2 Operations on (RO)BDDs

An advantage of BDDs is that operations on the original Boolean function can analogously
be directly applied to the BDD. Additionally, the following operations [16, 15] preserve the
ordering of the original OBDD. However, in general the resulting OBDD is not a ROBDD
and it has to be reduced again.

x1

x2

x3 x3

1 0

Figure 2-1: An example BDD representing the boolean func-
tion f = x1x̄2+x̄1x3+x̄3x1x2. Each node is labelled with its
corresponding boolean variable. The solid lines represent that
the variable is 1, the dashed lines represent a 0. The value of
f can be calculated by going through the diagram and taking
the edge corresponding to the value of the boolean variable.
The value of f is then the value of the terminal node that is
reached.

I. van Straalen Master of Science Thesis

2-3 Binary Decision Diagrams 15

APPLY

Given a binary Boolean operator ? and two Boolean functions f and g, the APPLY operation
generates a new Boolean function: h = f ? g. This can be expanded using the Shannon
expansion for any variable x:

f ? g = x̄ · (f |x←0 ? g|x←0) + x · (f |x←1 ? g|x←1). (2-29)

This can be used to recursively generate the OBDD representation of f ? g. For more details
and a more efficient implementation see [16, 15].

Restriction

The restriction operation transforms the BDD representing f into the BDD representing
f |xi=b by traversing the original BDD and looking for all arcs towards xi and changing those
to either low(xi) when xi = 0 or high(xi) when xi = 1. Finally the BDD is reduced back into
a ROBDD.

Composition

Composition of two functions f1 and f2, represented by BDDs, can be described using the
Shannon expansion:

f1|xi=f2 = f2 · f1|xi=1 + (¬f2) · f1|xi=0 = ITE(f2, f1|xi=1, f1|xi=0),

where ITE(if-then-else) is a ternary Boolean operation defined by:

ITE(a, b, c) = a · b+ (¬a) · c,

which can be applied using an extension of the APPLY operation. See [15] for more details.

Remarks

Often the operators ∃x and ∀x are also used, these can be expanded into:

∃x.f = f |x←0 ∨ f |x←1

∀x.f = f |x←0 ∧ f |x←1
(2-30)

The APPLY operation can then be used to resolve these expressions In the case that x =
(x0, x1, . . .), all the different combinations are combined depending on the operator. For
example if x = (x0, x1), then

∃x.f = f |x←(0,0) ∨ f |x←(0,1) ∨ f |x←(1,0) ∨ f |x←(1,1). (2-31)

Most of the time in this thesis, composition is used as a tool to require that two BDDs both
evaluate to true. This is accomplished by replacing the terminal node 1 of f1 by f2. This is
then equivalent to composition with node(xi) = 1, such that the composition just becomes
f1|xi=f2 = f1 · f2.

Master of Science Thesis I. van Straalen

16 Preliminaries

I. van Straalen Master of Science Thesis

Chapter 3

Scheduling of Periodic Event
Triggered Control Systems

In this chapter two algorithms for synthesizing schedulers for systems of Periodic Event Trig-
gered Control (PETC) subsystems are discussed. These schedulers have two requirements:

• The scheduler needs to render each subsystem stable, by triggering each subsystem in
time.

• The scheduler has to prevent a ‘collision’ of triggering events, i.e. not more than one
subsystem can trigger simultaneously.

First it is discussed how to construct the PETC systems for which the scheduler will be
synthesized. Secondly, it is described how the synthesization is performed by means of a safety
game. This will be the first algorithm. Thirdly, a way to reduce the size of the subsystems
is discussed, as well as the second algorithm which makes use of this. The procedures using
Binary Decision Diagrams (BDDs) are discussed in Chapter 4.

3-1 Construction of Abstractions

Given a set of m PETC systems, described by:

ξ̇i(t) = Aiξi(t) +BiKiξ̂i(t), and

Γi(zi(t)) =
[
ξTi (t) ξ̂Ti (t)

]
Ψi

[
ξi(t)
ξ̂i(t)

]
, i ∈ {0, . . . ,m− 1}.

(3-1)

The goal is to construct a model which abstracts and incorporates all the control loops. Traffic
models S\R,i for each of these control loops are constructed as is discussed in Section 2-2-2.
Other abstraction methods can be used as well to generate these traffic models (not restricted
to PETC), however the resulting models should satisfy some conditions:

Master of Science Thesis I. van Straalen

18 Scheduling of PETC Systems

• The traffic model should be finite-dimensional, and the actions must represent the next
triggering time, which additionally must be a multiple of the sample time h. This is
automatically satisfied when considering PETC.

• Here it is assumed that no two states in the traffic model share the same maximum
trigger time. While this will not hold for general traffic models, it is the case for the
abstraction algorithm described in Section 2-2-2, as the state space is split based on the
maximum trigger time.

• All the subsystems must share the same sampling times: h0 = · · · = hn−1 = h, because
then all the actions take place at the same time.

Each of the traffic models is first converted into a Transition System (TS) (with a certain
structure), and subsequently they should be composed into a larger system. This is discussed
in the next two subsections.

3-1-1 Converting Traffic Models

Before a scheduler can be synthesized on the traffic models S\R,i, they are first converted to
a different representation. A transition (Qi, k,Qj) in the traffic model can be represented by
a sequence of actions: Bk = w,w, . . . , t, where the number of w actions is k− 1, such that the
system triggers after k samples. This representation is possible because the sampling times
are periodic with period h resulting in inter-event times that are integer multiples of the
sampling period: τk = ti+1 − ti = kh for some k ∈ N, 0 < k ≤ kmax. All possible sequences
Bk can be generated by a TS S that is constructed as follows:

1. For every state Qi in S\R do:

(a) Create state Ti in the S, with output H(Ti) = T if i > 1 else H(Ti) = T1.
(b) If i > 1: create states Wi,j , 1 ≤ j < i, with outputs H(Wi,j) = Wi−j .

2. For every transition (Qi, k,Qj) in S\R do:

(a) If k > i: skip the transition, else
(b) If k = 1: Create transition (Ti, t, Tj) in S.
(c) Else: Create transitions (Ti, w,Wi,1), . . . (Wi,k−1, t, Tt) in S.

The outputs and output map is defined in such a way that partitioning according to the
outputs results in a useful partition. More on this in Section 3-3-1. An example of this
process is shown in Figure 3-1. If not explicitly specified or if it is clear from context, when
using the term subsystem or TS, usually the representation above is implied.

3-1-2 Composition

Before synthesization can start, all subsystems to be considered must be composed into a
single system. This can be done by defining interconnection relation Ipar. := Xn × · · · ×

I. van Straalen Master of Science Thesis

3-2 Standard Scheduler Synthesization 19

Q2 Q3

2

1, 2 1, 2

3
(a) An example traffic model.

T3 W3,1 W3,2

W2,1 T2

w

t
t

t

t

w w

t
t

(b) The equivalent TS.

Figure 3-1: An example of converting a traffic model to a TS.

X1 × Un × · · · × U1, which will be referred to a parallel interconnection relation. Using
Definition 2-1.2 of composition, a composed system can be constructed. Intuitively, this
allows all combinations of transitions of the subsystems to occur without interactions between
them, effectively letting every subsystem run in parallel. The composed system is then S :=
Sn ×Ipar. · · · ×Ipar. S0, where the descriptor ×Ipar. is often dropped and all the compositions
are contracted as S :=×i Si. The space complexity of this composed system is ∼ O(

∏
iN

i
T),

where N i
T is the number of transitions in subsystem i. As can be seen the composed system

will grow very quickly with the number of subsystems. An example composition is shown in
Figure 3-2.

3-2 Standard Scheduler Synthesization

A scheduler is synthesized on the composition of subsystems by solving a safety game. This
is done by iterating over the operator [7]:

FW (Z) = {x ∈ Z |x ∈W ∧ ∃u ∈ U(x) : ∅ 6= Postu(x) ⊆ Z}, (3-2)

where W is the safe set for which the game is solved. In this case, at most one state can be
in a trigger state or equivalently in a state which has output H(xi) ∈ {T1, T}. The safe set
can then be expressed as:

W = {(x1, . . . , xn) ∈ X | ∃≤1xi : Hi(xi) ∈ {T1, T}}. (3-3)

The safety game is then solved by initializing Z := X and iterating Z ← FW (Z) until it does
not change: Z∗ = FW (Z∗). A solution has been found if Z 6= ∅, otherwise the scheduling
problem is not feasible. Using this solution, a controller system which is feedback composable
can be constructed [7]: Sc = (Xc, Xc0, Uc,−→

c
), where:

• Xc = Z;

Master of Science Thesis I. van Straalen

20 Scheduling of PETC Systems

• Xc0 = Z ∩X0

• xc
u−→
c
x′c if ∅ 6= Postu(xc) ⊆ Z

Here Postu(x) refers to the post set of system S for input u and state x, which is valid because
the controller state set is a subset of the system state set. The controller state set can be
modified to include all states (even unsafe states): Xc = X. The advantage of this is if the
system starts in an unsafe state or some other state outside Z, the scheduler can still find an
input if it leads to a state in Z.
However, only the possible safe inputs are needed to safely schedule the subsystems and the
scheduler can be a somewhat simplified version of the controller system. The scheduler only
needs to choose an input from Uc(x) which is defined as:

Uc(x) = {u ∈ U | ∃x′ : (x, u, x′) ∈−→
c
} (3-4)

An example of the safety game is shown in Figure 3-3 for a very simple system, taking only
two iterations until a solution has been found.

3-3 Alternative Synthesization Algorithm by Partitioning

The generated TSs contain a lot of structure, in which a lot of states have similar behaviour.
It makes sense to group these states together into blocks and creating a new TS from these,
with the advantage of greatly reducing the number of states to be considered. This would
improves the efficiency of the safety game. However, it is not guaranteed a scheduler can
be found for these partitioned systems, even if the safety game is solvable for the original
system. To resolve this issue, partitioned subsystems can be refined by splitting apart blocks,
allowing more behaviour and hopefully solving the safety game. This section describes how
the subsystems are partitioned, refined and how the synthesization algorithm is modified to
include partitioning and refinement.

3-3-1 Initial Partition

Partitioning of the TS follows the definition of the AP partition (Definition 2-1.12). Each
block b is associated to an output o of the TS. Then a state s ∈ X̄ lies in b if H(s) = o. These
blocks form the set of states for the partitioned TS SI : XI = {b0, b1, . . . }. The transitions in
SI are:

−−−→
SI

:= { (b, u, c) | ∃(x, u, y) ∈ −−→̄
S

: x ∈ b ∧ y ∈ c }, (3-5)

The output of block b associated with output o is o: H(b) = o. This defines a new TS:
SI = (XI , XI

0 , U
I ,−−−→

SI
, OI , HI), where

• XI = {b1, b2, . . . },

• XI
0 = {b ∈ XI | ∃x ∈ X̄ : x ∈ b},

I. van Straalen Master of Science Thesis

3-3 Alternative Synthesization Algorithm by Partitioning 21

T2 W1

t

w

t

(a) The system that is used for the composi-
tion example.

T2, T2 W1, T2

T2,W1 W1,W1

(b) The composition of two identical copies
of 3-2a. The transitions are not labelled for
legibility. The states which lie in the safe set
are coloured green and the ones not in the
safe set are coloured red.

Figure 3-2: An example of composing two identical systems.

T2, T2 W1, T2

T2,W1 W1,W1

(a) Result after one iteration: Z1 :=
FW (Z0) = W .

T2, T2 W1, T2

T2,W1 W1,W1

(b) Result after two iterations: Z2 :=
FW (Z1) = {(T2,W1), (W1, T2)}. More
iterations do not have any effect so this
is the solution to the safety game.

Figure 3-3: An example of solving the safety game on the composed system in Figure 3-2b. The
states that lie in Z+ := FW (Z) are coloured blue, the others are coloured red. The safety game
is initialised with Z0 = X2. The transitions leading to any state in Z are kept while the others
are removed.

Master of Science Thesis I. van Straalen

22 Scheduling of PETC Systems

• U I = Ū ,

• OI = Ō,

• −−−→
SI

as above, and

• HI(b) = H̄(s), for any s ∈ b.

The partitioned system SI is equivalent to the quotient system of S̄ with equivalence relation

Q := {(x, y) ∈ X̄ × X̄ | H̄(x) = H̄(y)} (3-6)

Thus the state set can be alternatively expressed as XI := {[x]Q |x ∈ X̄}. An example of
partitioning a TS is shown in Figure 3-4.
In general, partitioning greatly reduces the size of the resulting TS: The number of states
are reduced from

∣∣∣X̄∣∣∣ = O(k2
max) to

∣∣∣XI
∣∣∣ =

∣∣∣Ō∣∣∣ = O(kmax). The number of transitions is

reduced from
∣∣∣∣−→̄
S

∣∣∣∣ = O(
∣∣∣X̄∣∣∣2 · ∣∣∣Ū ∣∣∣) = O(k4

max) to
∣∣∣∣−→
SI

∣∣∣∣ = O(
∣∣∣XI

∣∣∣2 · ∣∣∣Ū ∣∣∣) = O(k2
max). This size

reduction is advantageous for the size of the complete system, and thus will result in a faster
synthesization time.
However, it is not immediately clear that schedulers synthesized on these partitioned systems
are usable for the original systems. To show this, first consider the following proposition:
Proposition 3-3.1. A system S, as constructed in Section 3-1-1, is alternatingly simulates
its partitioned version SI (its construction as described above), i.e.:

SI �AS S̄. (3-7)

The alternating simulation relation is:
R = {(b, s) ∈ XI × X̄ | s ∈ b} (3-8)

A proof of Proposition 3-3.1 is given in Appendix B-1.
Additionally consider the following proposition:
Proposition 3-3.2 (From Section 8.2 of [7]). Let Sa, Sb, and Sc be systems with the same
output set, assume that Sc is feedback composable with Sa, and let cRa be the corresponding
alternating simulation relation. If there exists an alternating simulation relation aRb from
Sa to Sb, then Sc ×cRe

a
Sa is feedback composable with Sb and the corresponding alternating

simulation relation is given by:

caRb = {((xc, xa), xb) ∈ (Xc ×Xa)×Xb| (xc, xa) ∈ cRa ∧ (xa, xb) ∈ aRb}. (3-9)

This can be summarized by the following:
Sc �AS Sa ∧ Sa �AS Sb =⇒ Sc ×F Sa �AS Sb. (3-10)

Propositions 3-3.1 and 3-3.2 together prove that synthesizing a scheduler for the partitioned
system results in a scheduler SIc that can be used also on the original system: S̄c := SIc ×F
SI �AS S̄. Here F = Re, where Re is the extended alternating simulation relation based
on the alternating simulation relation (3-8). In general this will result in a very unwieldy
scheduler, however, similar to before, knowing the possible safe inputs is sufficient:

Ūc(x) = U Ic (b), ifx ∈ b. (3-11)

I. van Straalen Master of Science Thesis

3-3 Alternative Synthesization Algorithm by Partitioning 23

T W2 W1

t
w

w w

t

t

Figure 3-4: An example partitioning generated from the subsystem in Figure 3-1b.

3-3-2 Refinement

Synthesizing a scheduler on a collection of partitioned subsystems may not always be feasible,
even though a scheduler does exist for the original non-partitioned subsystems. This can be
explained intuitively by the fact that in some sense information is lost when partitioning.
To resolve this issue, one can refine the partitioned TS a little to allow for more behaviours,
which in turn makes the collection of subsystem more schedulable.

Use S(i) to denote system S after partitioning and i − 1 refinements and use S̄ to denote
the original system. Similarly for all other related elements, e.g. the state set X(i). The
refinement process uses the refinement operator 2-1.11:

Refine(X(i), C) :=
⋃

B∈X(i)

Refine(B,C), (3-12)

where C ⊂ X(i) and

Refine(B,C) = {B ∩ Pre(C), B \ Pre(C)} \ {∅}. (3-13)

Effectively this splits each block of the partitioned system into a part that does have transi-
tions to C and a part that does not have transitions to C. This refinement operator is applied
repeatedly for every state in the old system S(i), finally resulting in a new state set X(i+1).
To make this into a TS, new transitions have to be computed as follows:

(x(i+1), u, y(i+1)) ∈−−−−→
S(i+1)

if ∃(x̄, u, ȳ) ∈−→̄
S

: x̄ ∈ x(i+1) ∧ ȳ ∈ y(i+1),

and the new initial state set and output map have to be computed by ‘projection’:

X
(i+1)
0 := {x ∈ X(i+1) | ∃x0 ∈ X̄0 : x0 ∈ x}

H(i+1)(x) := H̄(y) if y ∈ x
(3-14)

This process has been summarized in Algorithm 3.1. An example of refining a partitioned
TS is shown in Figure 3-5.

As before with partitioning, controllers designed on refined systems can be used on the original
system. To show this first consider the following proposition:

Master of Science Thesis I. van Straalen

24 Scheduling of PETC Systems

Algorithm 3.1: Refinement of a system S(i).
Input: S(i): Current partitioned system, S̄: The original system.
Output: S(i+1): Refined system
X(i+1) ← X(i);
for C ∈ X(i) do

X(i+1) ←− Refine(X(i+1), C);
T ← {(x(i+1), u, y(i+1))| (x̄, u, ȳ) ∈−→̄

S
∧ x̄ ∈ x(i+1) ∧ ȳ ∈ y(i+1)};

X
(i+1)
0 ← {x ∈ X(i+1)| ∃x0 ∈ X̄0 : x0 ∈ x};

H(i+1)(x)← H̄(y) if y ∈ x;
return S(i+1) := (X(i+1), X

(i+1)
0 , U, T, Y,H(i+1))

T3 W2 W1 T2

tt

w

w

w w

t

t

t

Figure 3-5: An example refinement generated from the subsystem in Figure 3-4 using block W1.
Two new blocks are created: T3 = {T3} and T2 = {T2}. The blocks W2 and W1 remain the
same.

Proposition 3-3.3. Consider a system S that is partitioned once and refined i − 1 times
resulting in S(i), and the system S(i+1) that is the refined version of S(i). Then S(i+1) is
alternatingly simulation by S(i), i.e.:

S(i+1) �AS S(i). (3-15)

A proof for Proposition 3-3.3 is given in Appendix B-2. Then by transitivity of �AS and
Proposition 3-3.1 (recall that S(0) := SI), it is proved that S(i+1) �AS S. Then, again by
Proposition 3-3.2, a controller designed on the refined system can be used for the original
system. Similarly to before only knowing the safe inputs is sufficient:

Ūc(x) = U (i)
c (b(i)), ifx ∈ b(i). (3-16)

Remarks Although alternating simulation holds for partitioning and refining for individual
subsystems, it must also hold for composition to allow schedulers synthesized on a composi-
tion of partitioned subsystem to be used on the original system. However, by the following
proposition, schedulers synthesized on composed system where some of the subsystems are
partitioned can be used on the original composed system as well:

I. van Straalen Master of Science Thesis

3-3 Alternative Synthesization Algorithm by Partitioning 25

Proposition 3-3.4. [From Section 4.4 of [7]] Alternating simulation commutes with compo-
sition: If Sa �AS Sb and Sc �AS Sd, then Sa×I Sc �AS Sb×J Sd, J can be determined from
I and the alternating simulation relations from Sa to Sb and from Sc to Sd.

This proposition can be used recursively to show that a composed system where a subset of
the subsystems is partitioned is alternatingly similar to the original composed system (also
by noting the fact that S �AS S).

Algorithm 3.2: Alternative Synthesization Algorithm
Input: TSA = {s1, s2, . . . }: List of PETC subsystems represented as TSAs.
Output: Scheduler for the composed system, represented by Uc(x)
T ←− ∅;
for i ∈ TSA do

p←− ToNFA(i);
T ←− T ∪ InitPartition(p);

while not success do
sys←− Compose(T);
W ←− SafeSet(sys);
Uc(x)←− SafetyController(sys,W);
if ∀x Uc(x) = ∅ then

for t ∈ T do
t←− Refine(t)

if Refinement not successful then
return ∅

else
return Uc(x)

3-3-3 Modified Scheduler Synthesization Algorithm

The synthesization algorithm will be modified as follows: First all the subsystems are parti-
tioned. Subsequently they are composed and a scheduler is synthesized on the composition.
If it is successful, a controller (which is expressed in terms of the blocks) is returned. Oth-
erwise all systems are refined and synthesization is tried again. This continues until either
a scheduler is found or further refinement is not possible. This procedure is summarized in
Algorithm 3.2, and is applicable with or without BDDs. The advantage of this algorithm
is that the size of the subsystems decrease significantly after partitioning while keeping a
lot of the behaviour. This allows for much faster composition as well as a faster solution of
the safety game (requiring both less iterations as well as faster iterations). However, if syn-
thesization fails on the partitioned subsystems, refinement has to occur which increases the
computational cost considerably. It is possible that a lot of refinement-synthesization loops
have to occur before synthesization is successful causing the original algorithm to be faster
(but requiring more memory). However, if a scheduler exists, it will also be found using this
modified algorithm. To show this, the following proposition is used:

Master of Science Thesis I. van Straalen

26 Scheduling of PETC Systems

Proposition 3-3.5. Given a system S for which the safety game (Definition 2-1.9) has a
solution for some safe set W , and another system S′. Suppose S′ ∼= S holds, then there also
exists a solution to the safety game for S′ a suitable safe set W ′.

A proof for Proposition 3-3.5 is given in Appendix B-3. After maximally refining a system S,
resulting in system S(∞), it will become bisimilar to S: S(∞) ∼= S (See Section 2-1-2). Thus if
the safety game is feasible for the original system, it will also be found using Algorithm 3.2.

Finally, the resulting scheduler is expressed in terms of the blocks of the partition, meaning
it has to be either converted back into a representation of states or a lookup table has to be
provided to convert the states into blocks.

Remarks The alternative synthesization algorithm as prescribed above partitions and refines
all systems simultaneously. However, it is also possible to partly partition or refine some sub-
systems, while keeping other in their original form. It is possible to conceive algorithms that
perform refinement on subsystems based on some metric to slightly increase computational
efficiency and possibly scheduler performance. More on this in the discussion (Section 8).

I. van Straalen Master of Science Thesis

Chapter 4

Scheduler Synthesis Using Binary
Decision Diagrams

This chapter will discuss how to make the synthesization procedure more efficient by means
of Binary Decision Diagrams (BDDs). First will be discussed how to encode the transition
systems acquired from the PETC abstractions into BDDs. Then all the operations that make
up both synthesization algorithm are expressed using boolean functions and BDDs such that
a scheduler can be synthesized using BDD. Lastly, a rough comparison is made between the
multiple methods by means of a time complexity analysis.

4-1 Representation by BDDs

A transition systems can be represented by a BDD by encoding its states and actions by
binary variables xBDD := (xn−1, . . . , x0) ∈ Bnx , where nx := dlog2 |X|e and uBDD :=
(un−1, . . . , u0) ∈ Bnu , where nu := dlog2 |U |e and representing the transition set by a boolean
function which in turn can be represented by a BDD. The process of representing the tran-
sition set by a boolean function is as follows:

1. Define nx and nu as above,

2. Define encoding function σxi (x) for the states and encoding function σui (u) for the inputs.

3. Define three sets of boolean variables: x := (xn−1, . . . , x0) ∈ Bnx , u := (un−1, . . . , u0) ∈
Bnu , y := (yn−1, . . . , y0) ∈ Bnx .

4. Finally, the boolean function representing is a modification of Equation 2-28 (taking
into account multiple variables) and is written as:

χT (x, u.y) =
∑

(i,u,t)∈→

{
nx−1∏
k=0

[xk ⇔ σxk(i)]
}
∧
{
nu−1∏
k=0

[uk ⇔ σuk (u)]
}
∧
{
nx−1∏
k=0

[yk ⇔ σxk(t)]
}
,

(4-1)

Master of Science Thesis I. van Straalen

28 Scheduler Synthesis Using BDDs

T2 W2,1

t

w

t

(a) A very simple TS used as
reference for representation by
a BDD in Figure 4-1b.

x

u u

y y

10
(b) The BDD representing the TS in Fig-
ure 4-1a. The states and inputs are en-
coded as follows: σx(T2) = 0, σx(W2,1) = 1
and σu(w) = 0, σu(t) = 1.

Figure 4-1: An example of representing a TS by a BDD.

Even though only χT is necessary, for convenience a second boolean function χtr(x) is con-
structed. This boolean function describes whether the state x is a transmit state, i.e. whether
H(x) ∈ {T1, T}. It can be constructed by using Equation 2-28 and defining set A as:

A := {x ∈ X|H(x) ∈ {T1, T}}.

Representing the transitions set by boolean functions (and those by BDDs) has the advantage
of decreasing the effective states and transitions or variables that have to be manipulated.
This results in a lower time and space complexity. Without using BDDs, the space complexity
of a Transition System (TS) is O(|X|2 · |U |) ≈ O(NT). Using BDDs, the space complexity
becomes O(2nx +nx) = O(2 log2 |X|+ log2 |U |) ≈ O(log2NT). Thus using BDDs will require
much less memory for large systems, however, new points of overhead will also appear. These
new overheads do not have significant impact on the synthesization process. However, the
most impact will occur in the online setting, where actions satisfying a given BDD will have
to be generated. More on this in Section 6-2.
Time complexity will be discussed in Section 4-6 as this depends on multiple systems as well
as the algorithms used.

I. van Straalen Master of Science Thesis

4-2 Composition 29

For the rest of this thesis, both the elements of the state set and their binary encodings will
be represented by the same variable x for notational convenience. Likewise for the actions,
outputs and transitions of the transition system. From context it will be clear what the vari-
ables represent.

4-2 Composition

The process of composition when using BDDs is straightforward. The transition boolean
function of the composed system is simply the product of all the transition functions of the
subsystems:

χT ((xn, . . . x1), (un, . . . u1), (yn, . . . y1)) =
∧
i

χiT (xi, ui, yi), (4-2)

with a similar expressions for χtr(x) and χB(b, x) (which are defined in Section 4-4).

4-3 Synthesization with BDDs

Firstly, an expression for the safe set using boolean functions is constructed. This can be
realized by using boolean functions χitr(xi) which describe whether state xi in system Si
is a trigger state, or equivalently if its output is: Hi(xi) ∈ {T1, T}. The boolean function
describing the unsafe is satisfied if two or more of χitr(xi) is satisfied. The expression for the
safe set is then simply the negation of the unsafe set, resulting in:

χW (x) := ¬
∨

i,j∈{1,...,N}, i 6=j
χitr(xi) ∧ χ

j
tr(xj), (4-3)

Secondly, the safety operator (3-2) can also directly be expressed using a boolean function:

χFW (Z)(x) := χW (x) ∧ ∃u.{[∃x′.χT (x, u, x′)] ∧ [∀x′.χT (x, u, x′) =⇒ χZ(x′)]}, (4-4)

where χZ(x) is the boolean function describing the set Z, and is initialized to χZ(x) = 1
before the synthesization iterations.
The iterations are stopped when χFW (Z)(x) = χZ(x). If ∃x.χZ(x) 6= 0, a scheduler has
been found and a safety controller system can be constructed and represented using boolean
function describing its transitions:

χTc(xc, u, x′c) := χT (xc, u, x′c) ∧ [∀α.χT (xc, u, α) =⇒ χZ(α)]. (4-5)

Similarly to before, the scheduler only needs to choose safe inputs from Uc(x), which can be
described using the boolean function:

χUc(x)(u) := χUc(x, u) = ∃x′.χTc(x, u, x′). (4-6)

Master of Science Thesis I. van Straalen

30 Scheduler Synthesis Using BDDs

4-4 Partitioning using BDDs

To describe the blocks in the partition, new boolean variables b ∈ Bnb and c ∈ Bnb describing
the blocks are introduced, as well as a new boolean function:

χB(b, x) =
{

1 if x ∈ b
0 otherwise,

(4-7)

describing whether state x lies in block b. This boolean function is constructed by using the
outputmap H:

χB(b, x) =
∨

x∈X,b=H(x)

∧
i

[xi ⇐⇒ σxi (x)] ∧ [bi ⇐⇒ σyi (b)))], (4-8)

where σxi (·) are the encoding functions for the states and σyi (·) are the encoding functions for
the outputs, which can be directly used for the blocks: σbi (·) := σyi (·). The transitions are
constructed analogously to Equation 3-5:

χT I (b, u, c) = ∃x, y.χT (x, u, y) ∧ χB(b, x) ∧ χB(c, y). (4-9)

4-5 Refinement using BDDs

Firstly, Pre(C) is expressed with a boolean function using the boolean function χT (·) repre-
senting the transition set:

χPre(C)(x) = ∃u, x′.[χC(x′) ∧ χT (x, u, x′)], (4-10)

where χC(x) is the boolean function or BDD representing the set C.
A new boolean variable β ∈ B can be introduced to specify whether x ∈ B ∩ Pre(C) or
x ∈ B \ Pre(C), such that b+ := (β, b−) and

χB+(b+, x) = χB+((β, b−), x) = χB−(b−, x) ∧ (β ⊕ χPre(C)(x)). (4-11)

The refined partition would then be obtained by iterating over this with all blocks in the cur-
rent partition, resulting in χB(i+1)(b(i+1), x). This is shown in Algorithm 4.2, where Refine(·)
is as defined above and success = True.
While this efficiently calculates one operation of the refinement operator, this has a large
problem. Each time the refinement operator is applied with a block C, a new boolean variable
is introduced, effectively causing the number of states that can be represented to be doubled.
This causes the representation to be very inefficient as most of the time only a few new states
are added. Effectively, the number of boolean variables that represent the blocks are doubled
every refinement. This has the effect that at some point performing refinement takes so
much time that regular synthesization would have been faster, partly because the number of
variables used to represent the blocks far outgrows the number of variables used to represent
the states. At this point it would be more useful to perform regular synthesization.
For this another method for refinement in presented in Algorithms 4.1 and 4.2. In short,
it loops through all the current blocks and tries to split them. If splitting occurs it adds
both blocks to the boolean function, otherwise it will add the original block. After this, it
will check if the newly added boolean variables are necessary for the representation, if not it
removes them. This is done for all the blocks in the current partition. Finally, if at least one
block is split, the new transition function is calculated.

I. van Straalen Master of Science Thesis

4-5 Refinement using BDDs 31

Algorithm 4.1: Refinement operator with block C using BDDs
Input: Block variables b, χC(x), and χT (x, u, y).
Output: New block variables b+, χB+(b+, x) and success.
nb is the number of boolean variables b;
b+ are new boolean variables with encoding functions σ+ : N→ Bnb+1;
χPre(C)(x)← ∃u, x′.[χC(x) ∧ χT (x, u, x′)];
n← 0;
χB+(b+, x)← 0;
for k ∈ [0, 2nb − 1] do

β ← (σnb−1(k), . . . , σ0(k));
χk(x)← χB(b, x)|b←β;
χ0(x)← χk(x) ∧ χPre(C)(x);
χ1(x)← χk(x) ∧ ¬χPre(C)(x);
if χ0(x) = 0 ∨ χ1(x) = 0 then

γ ←
∏nb
j=0[b+j ⇐⇒ σ+

j (n)];
χB+(b+, x)← χB+(b+, x) ∨ (γ ∧ χβ(x));
n← n+ 1;

else
γt ←

∏nb
j=0[b+j ⇐⇒ σ+

j (n+ t)], t ∈ {0, 1};
χB+(b+, x)← χB+(b+, x) ∨ (γ0 ∧ χ0(x)) ∨ (γ1 ∧ χ1(x));
n← n+ 2;
success← True

if χB+(b+, x)|b+
nb
←1 = 0 then

χB+(b+, x)← ∃b+nb
.χB+(b+, x);

Remove b+nb
from b+;

Master of Science Thesis I. van Straalen

32 Scheduler Synthesis Using BDDs

Algorithm 4.2: Refinement using BDDs
Input: χB(i)(b(i), x), χtr(x), χT (x, u, y)
Output: χB(i+1)(b(i+1), x), χtr(i+1)(b(i+1)) and χT (i+1)(b(i+1), x, c(i+1)).
nb is the number of boolean variables b(i);
s← 0;
b+ ← b(i);
χB+(b+, x)← χB(i)(b(i), x);
for k ∈ [0, 2nb − 1] do

β ← (σnb−1(k), . . . , σ0(k));
χC(x)← χB(i)(b(i), x)|b(i)←β;
b+, χB+(b+, x), success← Refine(b+, χC(x), χT (x, u, y)) (Algorithm 4.1);
s← s ∨ success;

if s then
b(i+1) ← b+;
χB(i+1)(b(i+1), x)← χB+(b′, x);
χtr(i+1)(b(i+1))← ∃x.χB(i+1)(b(i+1), x) ∧ χtr(x);
χT (i+1)(b(i+1), x, c(i+1))← ∃x, y.χT (x, u, y) ∧ χB(i+1)(b(i+1), x) ∧ χB(i+1)(c(i+1), y);

else
Refinement failed. Thus already maximally refined.

4-6 Time Complexity

The main reason for introducing BDDs and the alternative synthesization algorithm is to
increase computational efficiency. To study the impact these techniques might have, the time
complexity for the algorithms are discussed qualitatively in this section. In the following,
Nx denotes the number of states, Nu denotes the number of actions, No denotes the number
of outputs and NT denotes the number of transitions for a single TS. For simplicity, NT ≈
O(N2

x ·Nu) ≈ O(N2
x) (as the number of actions is constant for all TS). The amount of states

a the TS scales as Nx ∼ O(k2
max), since region Qj generates j states in the TS and in worst

case there are kmax regions. Furthermore, m will denote the number of subsystems.

First consider the time complexity of the safety game without the use of BDDs. Every time
the safety operator is applied, it will cause a cost of O(|Xcomp.|·|Ucomp.|) = O(Nm

x) = O(k2m
max)

as it calculates Postu(x) for all states and actions. In the worst case, the safety operator only
removes one state every iteration, until the result is the empty set. Thus the time complexity
of the safety game is O(|Xcomp.| · k2m

max) = O(k4m
max).

Secondly, the time complexity of the safety game on partitioned systems without the use of
BDDs. For the initial partition, the amount of states for a given TS goes from O(k2

max) to
O(kmax), since the TS contains kmax outputs. This means that the safety game has a cost of
O(k2m

max). However, this is only the case if a solution can be found immediately for the first
partition. In the worst case, every refinement only splits one block one time, resulting in a
total cost for the partitioning and refinement for a single subsystem of O(Nx ·NT) = O(k3

max)
(Section 7.3.2 of [8]), with total cost for m subsystems of O(mk3

max). After every refinement,
the safety game is performed again, in the worst case with only one more state. The total

I. van Straalen Master of Science Thesis

4-6 Time Complexity 33

cost of all the safety games is then

O

k2
max−kmax∑

i=0
(kmax + i)2m

 = O
(
k4m+2
max

)
This implies that in the worst case, this algorithm scales worse. However, generally only a
few refinements are necessary (or even none), resulting in a lower cost on average.

Lastly, the time complexity with the use of BDDs. The number of variables to represent the
states is nx = log(Nx) = log kmax and similar for the actions, blocks, etc. For the safety
game, the time complexity can be found by substituting this value: Nx → nx, resulting
in time complexity O(mk2m

maxlog(kmax)) without partitioning and O(mkmmaxlog(kmax)) with
partitioning. Partitioning has a lesser effect with the use of BDDs, but still scales somewhat
better. The problem lies with refinement. In the refinement implementation with BDDs,
the refinement operator loops over every block in the current partition and the refinement
operator is applied for every block of the old partition, a single refinement will have the cost

O

(∣∣∣X(i)
∣∣∣2 [log

∣∣∣X(i)
∣∣∣+ log

∣∣∣X̄∣∣∣]) = O
(
(kmax + i)2 · [2 log kmax + log(kmax + i)]

)
In the worst case, a single refinement will only split a block once until the original system is
retrieved, so the total cost will become

O

k2
max−kmax∑

i=0
(kmax + i)2 · [2 log kmax + log(kmax + i)]

 = O
(
k6
max log kmax

)
.

Completely refining m subsystems then has the cost O(mk6
max log kmax). The total cost for

all the safety games in the worst case is then

O

k2
max−kmax∑

i=0
m(kmax + i)m · log(kmax + i)

 = O
(
mk2m+2

max log kmax
)
.

Since refinement without the use of BDDs has a lower cost, an additional algorithm can be
proposed where the safety game is solved with the use of BDDs, but refinement is performed
without. It is expected that this should scale better, even when accounting for the fact that
the BDDs representing the subsystem need to be recomputed after every refinement.

Master of Science Thesis I. van Straalen

34 Scheduler Synthesis Using BDDs

I. van Straalen Master of Science Thesis

Chapter 5

Scheduling using Late Triggers

In this chapter another modification to the synthesization algorithm is discussed. In short,
the goal of the modification is to allow a certain amount of late triggers in a time period while
still retaining stability. Before the details are discussed, first a motivation is given for this
approach.

5-1 Motivation

For some collection of subsystem, no scheduler can be found. In this case, one can modify
some Periodic Event Triggered Control (PETC) parameters, such as the controller, sampling
time or triggering matrix, to try to make a subsystem more schedulable. However, sometimes,
this will not work. This can be because of multiple reasons, such as:

• The sampling time cannot be reduced further than it currently is because of physical
limitations (e.g. computational or communication limits).

• Changing the triggering mechanism or controller do not affect the nondeterminism of
incoming as well as outgoing edges of the state with the lowest triggering time. For a
lot of systems this state is the bottleneck regarding scheduling, because the scheduler
cannot avoid the transition to this state, causing multiple systems to having to trigger at
the same time. Reducing the sampling time considerably could increase the Minimum
inter-event time (MIET), however, because of the point above, this cannot be always
done.

By allowing late triggers to occur (for a subset of the subsystems), more behaviours are
possible, and thus possibly increasing the schedulability of the system. An example of a
subsystem which is unschedulable if composed with a copy of itself is shown in Figure 5-1a.
In the rest of this chapter, it is discussed how to add late triggers to the models used previously,
how to enforce the limitation on the number of late triggers and some considerations regarding
stability.

Master of Science Thesis I. van Straalen

36 Scheduling using Late Triggers

T1

T2 W2,1

t

t

t t
w

t

t

(a) An example unschedu-
lable Transition System
(TS) when composed with
a copy of itself.

T2 W2,1

T1 W1,1

W2,2

t

t

t
t

w

t

t

lw

t

lw

t

(b) The TS in 5-1a with added late triggers
with lateness L = 1.

Figure 5-1: An example of a unschedulable TS and its extended form with late triggers.

5-2 Modelling Late Triggers

Late triggers can be added to the TSs by adding states Wi,j , j ∈ [i, i + L), where L is the
maximum lateness that is allowed. As described in Section 2-2-2, late transitions can also
be generated for the traffic model. Previously these have been ignored, but now they can be
used. Similar to before, the transitions (Qi, k,Qj) in S\R are converted to the TS transitions:

• The states Ti,Wi,j j < i and the transitions from/to them are the same as in the non-late
TS.

• (Wi,i, lw,Wi,i+1), . . . , (Wi,g−2, lw,Wi,g−1),

• (Wi,g−1, t, Tt).

A new action lw (‘late wait’) has been added, to represent the fact that these transitions are
‘late’. An example subsystem with these late triggers is shown in Figure 5-1b.

5-3 Modelling Late Trigger Limitation

Limiting the number of lw actions in a certain time period can be modelled by a counter.
Denote by ∆ the maximum amount of lw actions, and by r the ratio by how much a lw
increases the counter to how much a w or t action decreases the counter. Here assume w and
t decrease the counter by 1. The maximum value of the counter is then r∆, and if it reached
more than that, the condition is violated. This counter can be modelled by an auxiliary TS
Saux:

I. van Straalen Master of Science Thesis

5-4 Stability Concerns 37

0 1 2 3

w, t

w, t w, t

lw lw

Figure 5-2: An example auxiliary TS with r = 2 and ∆ = 1.

• Xaux = {0, . . . , r∆, r∆ + 1}

• Uaux := U = {w, t, lw}

• −−−→
Saux

= {(i, w,max(0, i− 1)), (i, t,max(0, i− 1)), (i, lw,min(r∆ + 1, i+ r)) | i ∈ X}

• Yaux = {o,×}

• Haux(x) = × if x = r∆ + 1, else Haux(x) = o.

An example auxiliary system is shown in Figure 5-2, with r = 2,∆ = 1.

This auxiliary system has to be synchronized with the original TS, as both should take the
same inputs. This can be achieved by introducing interconnection relation:

I := {(x, xaux, u, uaux | x ∈ X, xaux ∈ Xaux, u = uaux ∈ U}. (5-1)

Thus allowing the two system to run in parallel with the exception being that the inputs are
equal. The result is a system S̃ which allows for some late triggers to occur, and which keeps
track of the amount of late triggers. When using Binary Decision Diagrams (BDDs), this
particular interconnection relation can be achieved by using the same input variables for both
the original TS as for the auxiliary TS and then using the regular composition (Section 4-2).
To synthesize a scheduler for a collection of systems where a subset of subsystem allows for
late triggers, the same algorithm as in Chapter 3 can be used, only with modification of the
safe set:

W = {((x1, xaux,1), . . . , xn) ∈ X | [∃≤1xi.Hi(xi) ∈ {T1, T}] ∧ [@xaux,i.Haux,i(xaux,i) = ×]}.
(5-2)

Or in other words, at most one system can be transmitting at a time and no system can
trigger late too often.

Note that if ∆ < L the last few late states of the extended TS cannot be reached, as such an
amount of late triggers cannot occur. This means that these can be removed from the TS,
reducing its size somewhat.

5-4 Stability Concerns

A major issue with this approach is that stability guarantees are lost. Stability for a given
subsystem is attained when it triggers at or before the point the trigger condition is satisfied,

Master of Science Thesis I. van Straalen

38 Scheduling using Late Triggers

(a) A typical decrease of a Lyapunov func-
tion for a PETC system.

(b) The evolution of a Lyapunov function
when allowing late triggers, while still re-
taining stability. Note that this is not a
typical behaviour, and in general it should
be assumed that allowing late triggers will
cause instability.

which happens when t − ti = hκ(x(ti)) (by definition). However, by the approach above,
sometimes a system can trigger later than this, thus losing the stability guarantees. To
explain (qualitatively) how stability could be preserved, first the inspiration behind how the
limitations on the number of late triggers is discussed.

Consider a LTI system ẋ = Ax + Bu(x), with control action u(x) such that the closed loop
dynamics are rendered stable. Stability of the closed loop is shown with a Lyapunov function
V (x). To convert this into a PETC system, a triggering condition can be designed based
on this Lyapunov function by requiring that V̇ (x) ≤ −α(|x|) for some K∞ function α (here
V̇ (x) is the flow along the new PETC dynamics). A depiction of how the Lyapunov function
might evolve for a PETC system is shown in Figure 5-3a. The triggering times correspond
to the time instances where the previous inequality become equality. Note that at these time
instances, the Lyapunov function is still decreasing.

To take advantage of this, the system might trigger somewhat later than the actual trigger
time and still retain stability. This can even be taken a step further: The Lyapunov function
can be temporarily allowed to increase as long as it decreases overall, for example by bounding
it by some function β: V (x(t)) ≤ β(x, t) which can also act as a Lyapunov function: β̇ ≤
−α̃(|x|). An example evolution of the Lyapunov function when allowing this behaviour is
shown in Figure 5-3b.

The Lyapunov function will decrease overall if the increase caused by late triggers is less than
the decrease during normal behaviour. By approximately keeping track of the Lyapunov
function (Ṽ), this can be ensured: Ṽ changes by ∆V for each sample before the trigger time
and by ∆Vlate after the trigger time. These values represent the minimal decrease or maximal
increase the Lyapunov function can undergo. Instead of these values, the ratio r := d∆Vlate

∆V e
can be defined, such that the model explained earlier can be used for this process. Note that

I. van Straalen Master of Science Thesis

5-4 Stability Concerns 39

if ∆V is calculated as:
∆V := min

x
min

i∈{0,...,kmax}

∫ (i+1)h

ih
V̇ dt, (5-3)

it will result in 0. Similarly for ∆Vlate, resulting in ∞. This suggests that the ratio r needs
to be calculated directly. However, more (formal) analysis on this has to be performed.
Intuitively, this method similar to the approach in [17]. Here an auxiliary variable is intro-
duced which models the Lyapunov function. The triggering condition is then modified using
this variable, such that the Lyapunov function is allowed to increase, as long as on average
it decreases at least with some rate. In [18], the triggering condition is relaxed even further,
such that the actual decay of the Lyapunov function matches much more closely to the desired
rate. These approaches have the advantage of decreasing the amount of transmissions needed
(thus possibly increasing schedulability).

Master of Science Thesis I. van Straalen

40 Scheduling using Late Triggers

I. van Straalen Master of Science Thesis

Chapter 6

Implementation

This chapter will discuss shortly how the algorithms presented are implemented and glob-
ally how the resulting schedulers can be implemented and used for real systems and some
challenges that may arise when doing this.

6-1 Algorithm Implementations

The algorithms presented in this thesis are implemented using Python. The abstraction al-
gorithm from Section 2-2-2 is implemented, by the author of [6], in the SENTIENT toolbox1.
Since the tool is still in development, an older version of the toolbox is used. The implemen-
tation of the algorithms discussed in this thesis is currently being integrated into this toolbox,
so it is not available yet. However, in this section,

The implementation does not have any dependencies on third-party packages except for the
package dd [19], which is used to implement the Binary Decision Diagram (BDD) parts
of the algorithm. An advantage of this package is that it has optional bindings to the C
package CUDD [20], which drastically speed up performance. The structure of the Python
implementation is for the most part split into two: One implementation without the use of
BDDs, and one with the use of BDDs. This mostly pertains to the classes representing the
single control loops and their variants which allow late triggers, and the classes which compose
multiple control loops into a single system. The steps that are taken to synthesize a scheduler
are as follows:

1. First specify multiple systems with dynamics matrices, a controller that renders the
closed loop stable and triggering matrices that convert the systems into the Periodic
Event Triggered Control (PETC) form.

2. These are then one by one converted into traffic models by the SENTIENT tool.
1As of writing not yet released.

Master of Science Thesis I. van Straalen

42 Implementation

3. Each of the resulting traffic models is converted to a Transition System (TS) by the
class ‘nfa’ or ‘nfa_late’ when late triggers should be used. The class ‘nfa_late‘ has
three more arguments representing the parameters r, ∆ and L.

4. All the resulting objects representing the TSs are combined into a list and from this
one of the following is created: ‘nfa_system’, ‘nfa_system_bdd’, ‘nfa_late_system’ or
‘nfa_late_system_bdd’. These objects represent the composed systems. However, the
systems are not actually composed until the ‘compose()’ method is called.

5. One of the following functions is then called with this object (the first two allow for all
four types of systems):

• ‘SynthesizeSafetySchedulerSimple()’: This implements the standard synthesization
algorithm. All four types of systems can be supplied.

• ‘SynthesizeSafetySchedulerPartitioningAll()’: This implements the synthesization
algorithm which makes use of partitioning (Algorithm 3.2). All four types of
systems can be supplied.

• ‘SynthesizeSafetySchedulerPartitioningViaNFA()’: This implements the same al-
gorithm as above, however, this time the refinement is performed without BDDs.

6. The output is either a Python dictionary or a BDD representing Uc(x) when a scheduler
has been found, or None or χ(x, u) = 0 when the scheduling problem is infeasible.

An example code snippet which implements one of the scheduling algorithms is shown in
Figure 6-1. Another code snippet showing the safety game implementation using BDDs is
shown in Figure 6-2.

6-2 Issues Regarding Scheduler Implementation

Physical implementations of the one of the schedulers is quite straightforward. Every sample,
the scheduler chooses whether to trigger one of the subsystems and which, and depending on
that action, the next states of the subsystems are updated. If a subsystem has been triggered,
the state-space region is it currently in is recomputed, and the corresponding state in its TS is
updated. To calculate the next state the scheduler needs two additional sources information:

• The region descriptors, which tell whether a continuous state x lies in a traffic model
state: x ∈ Qk. These are necessary to update the TS state when a subsystem triggers.

• The individual TSs of the subsystems, to determine the next state when a subsystem
waits.

I. van Straalen Master of Science Thesis

6-2 Issues Regarding Scheduler Implementation 43

The process is described in Algorithm 6.1.

Algorithm 6.1: Scheduler
Input: List of systems Si, TS states si and state space states xi.
Output: List of actions u for each of the subsystems, next TS state s+.
Take any a ∈ Uc(s);
u← a;
for si ∈ s, ui ∈ u do

if ui = t then
s+
i ← UpdateRegion(xi);

else
Take any a ∈ Postw(si);
s+
i ← x;

end
end

Recalculating the region every trigger event might not necessary, however, this does improve
the disturbance rejection as well as modelling inaccuracies. To save computation, the region
can be re-calculated less often with the risk of losing stability. For example, suppose a system
is in region Ri and triggers. If the next state is based on its TS, it could happen that it lands
in a state (because of nondeterminism) which has a higher allowable inter-event time than
what is allowed in the real region the system is in, causing it to trigger possibly too late. If
this occurs consistently enough, the system might become unstable.

Instead of the scheduler taking any action from Uc(s), it could first check if (w, . . . , w) ∈ Uc(s)
and take that action if possible. This enforces the systems to wait to trigger as long as possible,
lowering the average inter-event time. While this is generally not the optimal strategy, it still
offers a high potential performance gain with minimal logic. A comparison by means of
simulation between taking a random action and prioritizing (w, . . . , w) is made in Section 7-
2-1.

When implemented using a dictionary, the scheduler basically becomes a look-up table, and
thus choosing an input is O(1). However, when the scheduler is generated using BDDs,
choosing an input is different. Instead of acting as a look-up table, the scheduler only tells
whether a given input is valid or not. A solution to this is to convert the BDD representation
of the scheduler to the dictionary representation. However, this loses the relative compact
size of the scheduler as opposed to the size of the dictionary which can very well be too huge
to handle effectively (See Section 7-1-3 for a memory usage comparison).

The better solution is to loop over different input values and check if they are valid. If
done naively, this process is O(nmu). However, it is known beforehand that only one system
can trigger at once, thus choosing an input becomes O(m + 1) without late triggers and
O((1+m−l/2)·2l) with late triggers, where l is the number of subsystem which can trigger late.
These values can be deduced by counting possibly allowed inputs. Efficiency can be improved
even further by utilizing the techniques from [21] (which focuses on symbolic controllers, but
is applicable to this as well). Here multiple copies of the same BDD are implemented on a
FPGA, but with one or multiple input binary variables are already set (and the resulting
BDDs reduced). Then instead of looping through all possible values, only the output of these
BDDs needs to be checked to determine a valid input.

Master of Science Thesis I. van Straalen

44 Implementation

1 def SynthesizeSafetySchedulerPartitioningAll (S) :
2 """
3 Tries to synthesize a scheduler somewhat more efficiently by reducing

the size all subsystem ,
4 and synthesizing on the composition of those. If it fails , it will

refine each subsystem and
5 try again , until refinement is no longer possible.
6 :param S:
7 :return:
8 """
9 print ("Starting scheduler synthesization.")

10 print ("Partitioning all subsystems.")
11 res = S . partition_all ()
12 if not res :
13 print ("Partitioning failed.")
14 return None
15
16 num_tries = 1
17 RefSuccess = True
18 # Start synthesization loop
19 while RefSuccess :
20 print ("Try: {n}" . format (n=num_tries))
21 print ("Composing system.")
22 S . compose ()
23
24 print ("Generating safe set.")
25 W = S . safe_set ()
26 if W is None :
27 print ("No safe set found.")
28 return None
29
30 print ("Solving safety game.")
31 Z = S . safety_game (W)
32 if Z is None or (type (S) is nfa_system_bdd and Z == S . bdd . false) :
33 tempSuccess = False
34 print ("No solution to safety game found.")
35 print ("Refine all subsystem and try again..")
36 RefSuccess = S . refine_all ()
37 num_tries += 1
38 continue
39
40 print (’Safety game solved!’)
41 print (’Generating scheduler.’)
42 C = S . create_controller (Z , StatesOnlyZ=False)
43 return C
44
45 print (’Refinement no longer possible.’)
46 print (’No scheduler found.’)

Figure 6-1: Code snippet implementing the alternative scheduler synthesis algorithm.

I. van Straalen Master of Science Thesis

6-2 Issues Regarding Scheduler Implementation 45

1 def safety_game (self , W : _bdd . Function = None) :
2 """
3 Solves the safety game for given safety set W (expressed as BDD

function)
4 :param W: BDD function defining the safety set
5 :return: BDD function defining the solution Z of the safety game
6 """
7 if W is None :
8 W = self . safe_set ()
9

10 rename = {i : j for (i , j) in zip (self . bvars , self . cvars) }
11 Z_new = self . bdd . true
12 Z_old = self . bdd . false
13 while Z_old != Z_new :
14 Z_old = Z_new
15 Z_r = self . bdd . let (rename , Z_old)
16 Z_new = self . _safety_operator (W , Z_r)
17 return Z_new
18
19 def _safety_operator (self , W : _bdd . Function , Z : _bdd . Function) :
20 B1 = self . bdd . exist (self . cvars , self . tr)
21 B2 = self . bdd . forall (self . cvars , self . bdd . apply (’->’ , self . tr , Z))
22 B3 = self . bdd . apply (’&’ , B1 , B2)
23 Z_new = self . bdd . apply (’&’ , W , self . bdd . exist (self . uvars , B3))
24 return Z_new

Figure 6-2: Code snippet of two methods from the class ‘nfa_system_bdd ’ implementing the
safety game using BDDs.

Master of Science Thesis I. van Straalen

46 Implementation

I. van Straalen Master of Science Thesis

Chapter 7

Benchmarks and Simulations

7-1 Benchmarks

Several benchmarks have been performed to compare the performance of the different algo-
rithms. For clarity in the figures, the algorithms have been numbered as follows:

1. Alg. 1: Regular Synthesization, without Binary Decision Diagrams (BDDs).

2. Alg. 2: Synthesization with partitioning and refinement, without BDDs.

3. Alg. 3: Regular Synthesization, with BDDs.

4. Alg. 4: Synthesization with partitioning and refinement, with BDDs.

5. Alg. 5: Synthesization with BDDs, but partitioning and refinement without.

7-1-1 Deterministic Subsystems

First, the multiple synthesization methods are benchmarked with identitical deterministic
subsystems. These subsystem have the property that if the maximum trigger time is T ,
and N subsystems are composed, a scheduler can always be found if N ≤ T . The tests are
performed for N = 2 and N = 3 with and without partitioning and BDDs. In the case
of BDDs, two different partitioning methods are also tested: partitioning using BDDs and
regular partitioning with TSs. The results are shown in Figures 7-1and 7-2. Additionally, the
synthesization time versus the number of subsystems is also shown in Figure 7-3. In this case,
only Algorithms 3 are 4 are shown, as synthesis without using BDDs grows too quickly with
the number of subsystems, and Algorithm 5 has a negligible difference with Algorithm 3. For
m = 2 subsystems, using no BDDs and partitioned subsystems is the fastest. This is likely
caused by the overhead of representing the Transition Systems (TSs) by BDDs. However,
when m = 3, using BDDs is much faster, and when m = 4, only a few measurements did not
time out for

Master of Science Thesis I. van Straalen

48 Benchmarks and Simulations

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10−3

10−2

10−1

100

101

102

kmax

Ti
m

e
(s

)

Alg.1
Alg.2
Alg.3
Alg.4
Alg.5

Figure 7-1: Computation time of synthesizing a scheduler (excluding the creation of abstractions)
for deterministic systems (as described in Section 7-1-1) with m = 2 subsystems.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10−2

10−1

100

101

102

kmax

Ti
m

e
(s

)

Alg.1
Alg.2
Alg.3
Alg.4
Alg.5

Figure 7-2: Computation time of synthesizing a scheduler (excluding the creation of abstractions)
for deterministic systems (as described in Section 7-1-1) with m = 3.

I. van Straalen Master of Science Thesis

7-1 Benchmarks 49

2 3 4 5 6 7 8 9

10−1

100

101

m (number of subsystems)

Ti
m

e
(s

)

Alg. 3 kmax = 7 kmax = 8 kmax = 9 kmax = 10
Alg. 4 kmax = 7 kmax = 8 kmax = 9 kmax = 10

Figure 7-3: Computation time of synthesizing a scheduler (excluding the creation of abstractions)
for deterministic systems versus the number of subsystems used.

7-1-2 Random Subsystems

The second set of benchmarks measures the time for random systems, but this time only using
BDDs. For each measurement, first it is check whether the random system is schedulable, if
not a new system is generated, otherwise the system is used for measurement for all three
techniques. This ensures that the comparison is fair. The results are shown in Figures 7-4
and 7-5.

7-1-3 Auxiliary Benchmarks

Two more benchmarks have been performed to study scalability. Firstly, how the size of
the subsystems impacts the number of iterations needed to solve the safety game. This is
shown in Figure 7-6. The size of each subsystems is expressed with the number of transitions.
This result is interesting, as it shows that the number of iterations decreases after a certain
point. Secondly, the memory used to represent the composed systems, with and without
partitioning and with and without BDDs. This is shown in Figures 7-7 and 7-8. Without
BDDs, the memory use scales poorly especially with the number of subsystems and somewhat
with the maximum trigger time. However, partitioning decreases the memory use by a lot,
implying better scalability. Using BDDs lowers the memory usage to comparatively negligible
amount, and partitioning in this case even almost doubles the memory usage.

Master of Science Thesis I. van Straalen

50 Benchmarks and Simulations

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10−3

10−2

10−1

100

kmax

Ti
m

e
(s

)

Alg.3
Alg.4
Alg.5

Figure 7-4: Computation time of synthesizing a scheduler (excluding the creation of abstractions)
for random system (as described in Section 7-1-2) with m = 2 subsystems. The error bars
represent one standard deviation.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10−3

10−2

10−1

100

kmax

Ti
m

e
(s

)

Alg.3
Alg.4
Alg.5

Figure 7-5: Computation time of synthesizing a scheduler (excluding the creation of abstractions)
for random system (as described in Section 7-1-2) with m = 3 subsystems. The error bars
represent one standard deviation.

I. van Straalen Master of Science Thesis

7-1 Benchmarks 51

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
3
5

10

15

20

25

Number of Transitions

Nu
m

be
ro

fI
te

ra
tio

ns

kmax = 8
kmax = 9
kmax = 10

Figure 7-6: Number of iterations needed to solve the safety game versus the number of transitions
in each subsystem. Here m = 2 subsystems are used. The minimum number of transitions is
such that the transition system for the subsystems stay connected.

5 6 7 8 9 10

103

104

105

106

kmax

M
em

or
y

Us
ag

e
(K

B)

m = 2
m = 3
m = 4

(a) Original Systems

5 6 7 8 9 10
102

103

104

105

kmax

M
em

or
y

Us
ag

e
(K

B)

m = 2
m = 3
m = 4

(b) Partitioned Systems

Figure 7-7: Memory usage (to represent the systems) for m = 2, 3, 4 subsystem without the use
of BDDs.

Master of Science Thesis I. van Straalen

52 Benchmarks and Simulations

5 6 7 8 9 10

15

20

25

30

35

kmax

M
em

or
y

Us
ag

e
(K

B)

m = 2
m = 3
m = 4

(a) Original Systems

5 6 7 8 9 10

30

40

50

60

kmax

M
em

or
y

Us
ag

e
(K

B)
m = 2
m = 3
m = 4

(b) Partitioned Systems

Figure 7-8: Memory usage (to represent the systems) for m = 2, 3, 4 subsystem with the use of
BDDs.

I. van Straalen Master of Science Thesis

7-2 Simulation of Linearized Batch Plants 53

7-2 Simulation of Linearized Batch Plants

Consider the plants [22]:

ξ̇i(t) =

1.38 −0.208 6.715 −5.676
−0.581 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 ξi(t) +

0 0

5.679 0
1.136 3.146
1.136 0

ui(t), i ∈ {1, 2} (7-1)

Following the same procedure as in [6], controllers and triggering mechanisms are generated
as follows. The two controllers are constructed using LQR with the matrices Q1 = Q2 = I
and R1 = 0.2I, R2 = 0.1I, resulting in the controllers:

u1(t) =
[

0.52 −1.97 −0.45 −2.14
−3.81 −0.023 −2.80 1.67

]
ξ1(t) = K1ξ1(t)

u2(t) =
[

0.91 −2.73 −0.56 −3.07
−4.82 0.0059 −3.63 2.04

]
ξ2(t) = K2ξ2(t)

(7-2)

The triggering conditions are based on Lyapunov function such that they guarantee that

V̇ (t) ≤ −ρiξi(t)TPiξi(t), (7-3)

in this case Pi are the solutions of the continuous time Lyapunov equation with matrix
Qlyap,i = Qi + KT

i RiKi and ρ1 = ρ2 = 0.8. From the condition 7-3 the triggering matrices
are generated, resulting in:

Ψ1 =

5.13 −0.34 3.75 −2.69 −2.96 0.19 −2.09 1.5
−0.34 1.2 0.34 1.5 0.19 −0.78 −0.19 −0.84
3.75 0.34 2.69 −1.34 −2.09 −0.19 −1.6 0.74
−2.69 1.5 −1.34 2.45 1.5 −0.84 0.74 −1.47
−2.96 0.19 −2.09 1.5 0.0 0.0 0.0 0.0
0.19 −0.78 −0.19 −0.84 0.0 0.0 0.0 0.0
−2.09 −0.19 −1.6 0.74 0.0 0.0 0.0 0.0

1.5 −0.84 0.74 −1.47 0.0 0.0 0.0 0.0

Ψ2 =

4.13 −0.45 3.05 −2.27 −2.4 0.25 −1.7 1.26
−0.45 1.15 0.27 1.51 0.25 −0.75 −0.15 −0.84
3.05 0.27 2.23 −1.02 −1.7 −0.15 −1.35 0.57
−2.27 1.51 −1.02 2.24 1.26 −0.84 0.57 −1.36
−2.4 0.25 −1.7 1.26 0.0 0.0 0.0 0.0
0.25 −0.75 −0.15 −0.84 0.0 0.0 0.0 0.0
−1.7 −0.15 −1.35 0.57 0.0 0.0 0.0 0.0
1.26 −0.84 0.57 −1.36 0.0 0.0 0.0 0.0

(7-4)

Constructing the abstractions with sampling time h = 0.01 and kmax,1 = kmax,2 = 20, results
in traffic models with regions:

R1 = {Q8, . . . ,Q20}
R2 = {P6, . . . ,P20}

(7-5)

Master of Science Thesis I. van Straalen

54 Benchmarks and Simulations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

System 1

System 2

Time(s)

Figure 7-9: Resulting triggering times of a simulation of the systems 7-1 without the use of
a scheduler. Triggers are denoted with an ’O’. When both systems trigger simultaneously, the
trigger event is denoted with an ’X’ instead.

A scheduler can be found for these traffic models. A simulation of the plants with the scheduler
is shown in Figure 7-10, how the traffic model regions evolve is shown in Figure 7-11 and the
triggering instants are shown in Figure 7-12. For reference, a simulation of both system
without the use of a scheduler has been performed as well, resulting in the triggering events
as shown in Figure 7-9. The unscheduled subsystems have two collisions of their triggering
events. With the introduction of a scheduler these collisions have been successfully avoided
while retaining stability.

I. van Straalen Master of Science Thesis

7-2 Simulation of Linearized Batch Plants 55

0 0.2 0.4 0.6 0.8 1

0

2

St
at

e

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

Time (s)

In
pu

t

(a) Simulation of the plant 7-1 with con-
troller K1 (7-2) with initial condition ξ0 =
[1,−1, 1,−1]T , h = 0.01 and kmax = 20.

0 0.2 0.4 0.6 0.8 1
−5

0

5

0 0.2 0.4 0.6 0.8 1

−20

0

Time (s)
(b) Simulation of the plant 7-1 with con-
trollerK2 (7-2) with initial condition ξ0 =
[1, 2, 3,−4]T , h = 0.01 and kmax = 20.

Figure 7-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6
8

10
12

Time (s)

Re
gi

on

System 1
System 2

Figure 7-11: The traffic model regions the systems are in over time, corresponding to Figure 7-10.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

System 1

System 2

Time(s)

Figure 7-12: Triggering Times for both systems corresponding to Figure 7-10. Early triggers are
denoted by a ‘X’, and triggers on the deadline are denoted with a ‘O’.

Master of Science Thesis I. van Straalen

56 Benchmarks and Simulations

0 0.2 0.4 0.6 0.8 1
−1

0

1

St
at

e

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

Time (s)

In
pu

t

(a) Simulation with ’random’ inputs of the
plant 7-1 with controller K1 (7-2) with initial
condition ξ0 = [1,−1, 1,−1]T , h = 0.01 and
kmax = 20.

0 0.2 0.4 0.6 0.8 1

0

5

0 0.2 0.4 0.6 0.8 1

−20

0

Time (s)
(b) Simulation with ’random’ inputs of
the plant 7-1 with controllerK2 (7-2) with
initial condition ξ0 = [1, 2, 3,−4]T , h =
0.01 and kmax = 20.

Figure 7-13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

15

20

Time (s)

Re
gi

on

System 1
System 2

Figure 7-14: The traffic model regions the systems are in over time, corresponding to Figure 7-13

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

System 1

System 2

Time(s)

Figure 7-15: Triggering Times for both systems corresponding to Figure 7-13. Early triggers are
denoted by a ‘X’, and triggers on the deadline are denoted with a ‘O’.

I. van Straalen Master of Science Thesis

7-3 Simulation with late triggers 57

7-2-1 Simulation with Randomized Inputs

In the previous simulation, if the action (w, . . . , w) was possible, it would be taken. To
illustrate the advantage this has over taking a random (but safe) action, simulation with
random inputs are shown in Figures 7-13, 7-14 and 7-15. Random inputs result in a much
higher transmission rate. Additionally, for this simulation every trigger is early, as opposed
to the earlier results where only one early trigger occurred.

7-3 Simulation with late triggers

First consider the system [23]:

ξ̇1(t) =
[

0 1
−2 3

]
ξ1(t) +

[
0
1

]
u1(t), and

u1(t) =
[
1 −4

]
ξ1(t).

(7-6)

and the second system [24]:

ξ̇2(t) =
[
−0.5 0

0 3.5

]
ξ2(t) +

[
1
1

]
u2(t), and

u2(t) =
[
1.02 −5.62

]
ξ2(t).

(7-7)

Both with sampling time h = 0.01 and maximum inter-event time kmax,1 = 40 and kmax,2 =
20. Using the same techniques as above to generate the triggering matrices results in:

Ψ1 =

−1.95 1 0.5 −2

1 7.05 1 −4
0.5 1 0 0
−2 −4 0 0

Ψ2 =

3.41 −6.76 −0.86 4.72
−6.76 13.15 2.51 −13.84
−0.86 2.51 0 0
4.72 −13.84 0 0

(7-8)

Constructing abstractions of these systems results in traffic models with regions:

R1 = {Q38,Q39,Q40}
R2 = {P1, . . . ,P20}

(7-9)

Unfortunately, using the regular synthesization algorithm, no scheduler can be found. The
likely explanation for this is that the second system has a lot of nondeterminism around Q1
(in- and outgoing edges). Using late triggering however, a scheduler can be found. Allow

Master of Science Thesis I. van Straalen

58 Benchmarks and Simulations

the second system to have late triggers with ∆ = 1 and r = 2. Results from simulations are
shown in Figure 7-16. How the traffic model regions change over time is shown in Figure 7-
17. While stability with these late triggers is not proven, it seems that (at least with these
initial conditions), the systems will stabilize. Notable is that the triggering times (shown
in Figure 7-18) for the second mostly occur in bursts. This is because the system is ‘stuck’
in P1, as is also shown in Figure 7-17. It should be noted that in [3] a scheduler has been
successfully found using different triggering mechanisms. Thus as reference, a scheduler has
also been synthesized with those triggering mechanisms, and a simulation has been performed.
The results of this are shown in the Appendix A.

I. van Straalen Master of Science Thesis

7-3 Simulation with late triggers 59

0 1 2 3 4 5
−1

0

1

St
at

e

0 1 2 3 4 5

−2

0

2

4

Time (s)

In
pu

t

(a) Simulation of the plant 7-6 with initial
condition ξ0 = [1, 1]T , h = 0.01 and kmax =
40.

0 1 2 3 4 5

−2

−1

0

1

0 1 2 3 4 5

−5

0

Time (s)
(b) Simulation of the plant 7-7 with ini-
tial condition ξ0 = [1,−1]T , h = 0.01,
kmax = 20 and late triggers with ∆ =
1, r = 2.

Figure 7-16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

Time (s)

Re
gi

on

System 1
System 2

Figure 7-17: The traffic model regions the systems are in over time, corresponding to Figure 7-16

0.5 1 1.5 2 2.5 3 3.5 4 4.5

System 1

System 2
System 2 Late

Time(s)

Figure 7-18: Triggering Times for both systems corresponding to Figure 7-16. Early triggers are
denoted by a ‘X’, triggers on the deadline are denoted with a ‘O’, and late triggers for the second
system are shown separately.

Master of Science Thesis I. van Straalen

60 Benchmarks and Simulations

I. van Straalen Master of Science Thesis

Chapter 8

Conclusions and Future Work

Several techniques and algorithms were introduced and implemented to safely schedule PETC
systems, with the main goal of finding a scalable synthesization algorithm. This was achieved
by abstracting the PETC systems by TSs and solving safety games on those. To increase
efficiency, the TSs were reduced in size by grouping several states, as well as using BDDs to
represent them and apply the operator symbolically.

Additionally, to increase schedulability, the subsystems are extended to occasionally allow
late triggers. However, stability when using these late triggers has not been formally shown.
This approach does show though that extension to these models can be quite easily designed
and integrated into the system.

8-1 Future Work

There are multiple modifications and extensions, both theoretical and practical, that expand
upon this thesis and fix some minor shortcomings that could be explored in the future:

• A practical implementation of a resulting scheduler, for example using a hardware-in-
the-loop simulation with techniques from [21] and [5].

• The traffic models can be refined such that they incorporate also the future triggering
behaviour [25, 26]. This can result in a more deterministic transition system (and
more states) potentially increasing its schedulability. With a little modification to the
construction of the Transition Systems (TSs), this technique could be incorporated if
synthesization fails.

• A theoretical analysis of stability of late triggers could be performed, mainly to derive
for which values of r and ∆ the system would remain stable.

• The discussed techniques can in principle be used for any ETC system and abstraction
algorithm as long as the resulting abstractions can be converted to TSs. One could for

Master of Science Thesis I. van Straalen

62 Conclusions and Future Work

example follow the approach from [27] with some modifications to create traffic models
for general nonlinear PETC systems.

• The synthesization approach could be extended to a collection of subsystems which
have different triggering times, as long as all of the trigger times are an integer multiple
of some common value: hi = ni · a, ni ∈ N. The TSs should be modified to add
‘in-between’-states and a ‘nothing’-action. However, this approach would add a lot of
states.

• Since synthesizing a scheduler takes a lot of computation time, it would be nice to be able
to determine whether a collection of subsystem is schedulable beforehand. Most likely
the only way to know this with certainty is to perform the synthesization procedure.
However, a set of heuristics (such as the Minimum inter-event time (MIET)) could be
developed, which would indicate if system is likely to be unschedulable.

• In the partitioning algorithm, if synthesization fails, all the systems are refined. How-
ever, a collection of heuristics could be used to determine which subsystems to refine
and how much, possible speeding up the process.

• Instead of adding ‘late’ states to all trigger states, one could only add these to bottleneck
states. This would greatly decrease the number of states, however, this would require
more manual labour or some heuristic to determine to which states to add.

• For some systems, the solution Z of the safety game could be only a small subset of
the complete state-set. If such a system has an initial state outside of Z, it cannot find
a safe input. A reachability game could be solved to reach this solution Z as fast as
possible. However, this could possibly result in a collision of transmissions. A possible
solution to resolve this issue is to add ‘late’ states only to the states outside the solution
Z. This would decrease stability (or even cause instability) of the system, but possibly
allows to reach Z from any initial condition.

• A more efficient refinement algorithm using Binary Decision Diagrams (BDDs).

• Modify the resulting schedulers (by removing some possible inputs for example) to
maximize the average inter-event time.

• In this thesis, it is assumed that only the control loops are connected to a Networked
Control Systems (NCS). However, in general networks, other unrelated systems are
connected to the network as well. The additional network traffic that these nodes
would cause could be modelled by one or more additional TSs and integrated into the
complete system.

I. van Straalen Master of Science Thesis

Appendix A

Simulation of Systems 7-6 and 7-7,
with different triggering conditions

In [3], systems 7-6 and 7-7 have been successfully scheduled using a different triggering con-
dition:

Γ(z) =
[
ξT

ξ̂T

]T [
(1− σ2)I −I
−I I

] [
ξ

ξ̂

]
= |e|2 − σ |ξ|2 , (A-1)

where σ = 0.05. The two systems share this same triggering condition. This results in
abstractions with regions (with h = 0.01 and kmax = 20):

R1 = {Q11, . . . ,Q20}
R2 = {P4, . . . ,P20}

(A-2)

For reference, a scheduler has also been synthesized using this triggering condition, for which
the results are shown in Figures A-1, A-2 and A-3.

Master of Science Thesis I. van Straalen

64 Additional Simulation

0 1 2 3 4 5

0

1

St
at

e

0 1 2 3 4 5

−2

0

2

4

Time (s)

In
pu

t

(a) Simulation of the plant 7-6 with initial
condition ξ0 = [1, 1]T , h = 0.01 and kmax =
20 and triggering condition A-1.

0 1 2 3 4 5

−2

−1

0

1

0 1 2 3 4 5

−5

0

Time (s)
(b) Simulation of the plant 7-7 with ini-
tial condition ξ0 = [1,−1]T , h = 0.01,
kmax = 20 and triggering condition A-1.

Figure A-1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

Time (s)

Re
gi

on

System 1
System 2

Figure A-2: The traffic model regions the systems are in over time, corresponding to Figure A-1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

System 1

System 2

Figure A-3: Triggering Times for both systems corresponding to Figure A-1. Early triggers are
denoted by a ‘X’, and triggers on the deadline are denoted with a ‘O’.

I. van Straalen Master of Science Thesis

Appendix B

Proofs

B-1 Proof Proposition 3-3.1

In the following system S is created as is described in Section 3-1-1 and system SI is the
partitioned system as described in Section 3-3-1. Here it is shown that S′ �AS S.

Proof. In the following, T = {s | H(s) = T}. By construction, SI is alternatingly simulated
by S̄: SI �AS S̄. This can be shown by defining the relation

R = {(b, s) | s ∈ X̄, b := [s]H}, (B-1)

where [s]Q is the equivalence class on X̄ defined by the equivalence relation Q induced by the
output map H:

Q := {(x, y) ∈ X̄ × X̄ | H̄(x) = H̄(y)}. (B-2)

The first condition of alternating simulation is satisfied by setting X̄0 = T and XI
0 = {T}.

The second condition is satisfied by definition of the relation R. The final condition can be
shown to be satisfied by considering four separate cases:

• b = T1: The only state in S̄ related to b is s = T1. The only possible action in
b is U(b) = {t}. The only possible actions in s is U(s) = {t}. Choose uSI = t:
Postt(T1) = {T1}. Then if uS̄ = t: Postt(s) = {T1} and (T1, T1) ∈ R.

• b = T :
All states in S̄ related by R to b are: s ∈ T . The possible actions in b are U(b) = {t, w}.
The possible actions in s are U(s) = {t, w}.

– uSI = t: Postt(b) = {b}. Then if uS̄ = t: Postt(s) ⊆ T . By definition of R:
∀y ∈ T : (b, y) ∈ R

– uSI = w: Postt(b) ⊆ {Wkmax−1,Wkmax−2, . . . }. Then if uS̄ = w: Postt(s) =
{Wn,1} for some n dependent on s. By definition of R: ∀y ∈ T : (b, y) ∈ R

Master of Science Thesis I. van Straalen

66 Proofs

• b = Wn, n > 0: All related states are of the form s = Wn+l,l. Additionally, U(b) = {t, w}
and U(s) = {t, w}.

– uSI = t: Postt(b) = {T}. Then if uS̄ = t: Postt(s) ⊆ T . By definition of R:
∀y ∈ T : (b, y) ∈ R

– uSI = w: Postt(b) ⊆ {Wn−1, . . . ,W0}. Then if uS̄ = w: Postt(s) = {Wn+l+1,l}.
By definition of R: (Wn−1,Wn+l+1,l) ∈ R.

• b = W0: All related states are of the form s = Wl,l. U(b) = U(s) = {t}. If uSI = t:
Postt(b) = {T}. Then if uS̄ = t: Postt(s) ⊆ T . By definition of R: ∀y ∈ T : (b, y) ∈ R.

Thus the third condition is also satisfied and SI �AS S̄ holds.

B-2 Proof of Proposition 3-3.3

Proof. In this proof it is shown that S(i+1) �AS S(i).
Since refinement is performed with every block C ∈ X(i), each block b(i) ∈ X(i) is split apart
at most n :=

∣∣∣X(i)
∣∣∣ times, i.e.

b(i)
split−−−→ {b(i) ∩ Pre(c(i)

1) ∩ Pre(c(i)
2) ∩ · · · ∩ Pre(c(i)

n),

b(i) ∩ Pre(c(i)
1) ∩ Pre(c(i)

2) ∩ · · · \ Pre(c(i)
n), . . . ,

b(i) \ Pre(c(i)
1) \ Pre(c(i)

2) \ · · · \ Pre(c(i)
n)}

=: f (i)(b(i)).

(B-3)

Then the relation R can be defined as:

R := {(a, b(i)) ∈ X(i+1) ×X(i)| a ∈ f (i)(b(i))}. (B-4)

Alternating simulation between the two systems will be shown using this relation, but first
note that if (b(i), u, c(i)) ∈−−→

S(i)
, then there is at least one transition (a, u, a′) ∈−−−−→

S(i+1)
, where

a ∈ f (i)(b(i)), a′ ∈ f (i)(c(i)). This implies that,

Postu(a) ⊆
⋃

c(i)∈Postu(b(i))

f (i)(c(i)), (B-5)

where b(i)) is the originating block of a, i.e. a ∈ f (i)(b(i)). Thus ∀(a, b(i)) ∈ R and ∀ua ∈
U (i+1)(a), there exists ub ∈ U (i)(b(i)) (namely ub = ua = u), such that ∀c(i) ∈ Postu(b(i))
there exists a′ ∈ Postu(a), namely the a′ ∈ f (i)(c(i)) for which the transition (a, u, a′) exists,
such that (a′, c(i)) ∈ R.
By construction of X(i+1)

0 and H(i+1)(x), the first two conditions of alternating simulation
are also satisfied, thus S(i+1) �AS S(i).

I. van Straalen Master of Science Thesis

B-3 Proof of Proposition 3-3.5 67

B-3 Proof of Proposition 3-3.5

Proof. After maximally refining a Transition System (TS), it is known that S′ ∼= S (Section 2-
1-2). Denote the corresponding bisimulation relation as R. Additionally, it is given that for
someW ⊆ X a solution to the safety game (Definition 2-1.9) for system S exists, with solution
Z, i.e.:

Z = FW (Z) = {x ∈ Z|x ∈W ∧ ∃u : ∅ 6= Postu(x) ⊆ Z}. (B-6)

The goal is to show that there also exists a solution to the safety game for the system S′ with
W ′ := {x′ ∈ X ′| ∃x ∈W : (x′, x) ∈ R}. FW ′(Z ′) can be expanded as follows:

FW ′(Z ′) : = {x′ ∈ Z ′|x′ ∈W ′ ∧ ∃u′ : ∅ 6= Post′u′(x′) ⊆ Z ′}
= {x′ ∈ Z ′| ∃x ∈ X : (x′, x) ∈ R ∧ x ∈W ∧ ∃u : ∅ 6= Postu(x) ⊆ Z}
= {x′ ∈ Z ′| ∃x ∈ X : (x′, x) ∈ R ∧ x ∈ FW (Z)}
= {x′ ∈ Z ′| ∃x ∈ X : (x′, x) ∈ R ∧ x ∈ Z}

(B-7)

Then choosing Z ′ as:

Z ′ := {x′ ∈ X ′| ∃x ∈ X : (x′, x) ∈ R ∧ x ∈ Z}, (B-8)

solves the safety game for S′ with W ′ as Z ′ = FW ′(Z ′).
Thus if the safety game for some system can be solved, a solution will be found for all bisimilar
systems (with a suitable safety set).

Master of Science Thesis I. van Straalen

68 Proofs

I. van Straalen Master of Science Thesis

Bibliography

[1] L. Bushnell and H. Ye, Networked Control Systems: Architecture and Stability Issues,
pp. 1–9. London: Springer London, 2013.

[2] J. Lunze and L. Grüne, Introduction to Networked Control Systems, pp. 1–30. Heidelberg:
Springer International Publishing, 2014.

[3] D. Adzkiya and M. Mazo Jr., “Scheduling of Event-Triggered Networked Control Systems
using Timed Game Automata,” arXiv e-prints, p. arXiv:1610.03729, Oct. 2016.

[4] P. Schalkwijk, Automating scheduler design for Networked Control Systems with Event-
Based Control: An approach with Timed Automata. M.s. thesis, 2019.

[5] A. A. Samant, Scheduling Strategies for Event-Triggered Control Using Timed Game
Automata Over CAN Networks. M.s. thesis, 2020.

[6] G. de Albuquerque Gleizer and M. Mazo, “Scalable traffic models for scheduling of linear
periodic event-triggered controllers,” in Proceedings IFAC World Congress 2020, IFAC,
2020.

[7] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach. Springer
Science Business Media, 2009.

[8] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008.

[9] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-
triggered and self-triggered control,” in 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), pp. 3270–3285, 2012.

[10] W. P. M. H. Heemels, M. C. F. Donkers, and A. R. Teel, “Periodic event-triggered control
for linear systems,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 847–861,
2013.

Master of Science Thesis I. van Straalen

70 Bibliography

[11] C. Fiter, L. Hetel, W. Perruquetti, and J.-P. Richard, “A state dependent sampling for
linear state feedback,” Automatica, vol. 48, no. 8, pp. 1860–1867, 2012.

[12] A. Fu and M. Mazo, “Traffic models of periodic event-triggered control systems,” IEEE
Transactions on Automatic Control, vol. 64, no. 8, pp. 3453–3460, 2019.

[13] C. Y. Lee, “Representation of switching circuits by binary-decision programs,” The Bell
System Technical Journal, vol. 38, no. 4, pp. 985–999, 1959.

[14] Akers, “Binary decision diagrams,” IEEE Transactions on Computers, vol. C-27, no. 6,
pp. 509–516, 1978.

[15] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-decision diagrams,”
ACM Comput. Surv., vol. 24, no. 3, p. 293–318, 1992.

[16] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Trans.
Comput., vol. 35, no. 8, p. 677–691, 1986.

[17] A. Girard, “Dynamic triggering mechanisms for event-triggered control,” IEEE Trans-
actions on Automatic Control, vol. 60, pp. 1992–1997, July 2015.

[18] A. Szymanek, G. d. A. Gleizer, and M. Mazo, “Periodic event-triggered control with a
relaxed triggering condition,” in 2019 IEEE 58th Conference on Decision and Control
(CDC), pp. 1656–1661, 2019.

[19] C. Control and D. Systems, “dd (version 0.5.6.).” https://pypi.org/project/dd/,
2020.

[20] F. Somenzi, “Cudd: Cu decision diagram package release 2.2.0,” 1998.

[21] A. R. Arjona, Implementing Symbolic Controllers into FPGAs. M.s. thesis, 2019.

[22] M. Donkers, Networked and event-triggered control systems. PhD thesis, Mechanical
Engineering, 2011.

[23] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE
Transactions on Automatic Control, vol. 52, no. 9, pp. 1680–1685, 2007.

[24] L. Hetel, A. Kruszewski, W. Perruquetti, and J. Richard, “Discrete and intersample
analysis of systems with aperiodic sampling,” IEEE Transactions on Automatic Control,
vol. 56, no. 7, pp. 1696–1701, 2011.

[25] G. d. A. Gleizer and M. Mazo, “Towards traffic bisimulation of linear periodic event-
triggered controllers,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 25–30, 2021.

[26] G. de A. Gleizer and M. Mazo, Computing the Sampling Performance of Event-Triggered
Control. New York, NY, USA: Association for Computing Machinery, 2021.

[27] G. Delimpaltadakis and J. Mazo, Manuel, “Traffic Abstractions of Nonlinear Homo-
geneous Event-Triggered Control Systems,” arXiv e-prints, p. arXiv:2003.09361, Mar.
2020.

I. van Straalen Master of Science Thesis

https://pypi.org/project/dd/

Glossary

List of Acronyms

NCS Networked Control Systems
ETC Event Triggered Control
STC Self-Triggered Control
CETC Continuous Event Triggered Control
PETC Periodic Event Triggered Control
MIET Minimum inter-event time
BDD Binary Decision Diagram
OBDD Ordered Binary Decision Diagram
ROBDD Reduced Ordered Binary Decision Diagram
TS Transition System

Master of Science Thesis I. van Straalen

72 Glossary

I. van Straalen Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	Acknowledgements and Preface

	Main Matter
	Introduction
	Notation
	Organization

	Preliminaries
	Transition Systems
	Safety Games
	Partitioning and Refinement

	Event Triggered Control
	Periodic Event Triggered Control
	Abstractions of linear PETC Systems

	Binary Decision Diagrams
	Ordered Binary Decision Diagrams
	Operations on (RO)BDDs

	Scheduling of PETC Systems
	Construction of Abstractions
	Converting Traffic Models
	Composition

	Standard Scheduler Synthesization
	Alternative Synthesization Algorithm by Partitioning
	Initial Partition
	Refinement
	Modified Scheduler Synthesization Algorithm

	Scheduler Synthesis Using BDD
	Representation by BDD
	Composition
	Synthesization with BDD
	Partitioning using BDD
	Refinement using BDD
	Time Complexity

	Scheduling using Late Triggers
	Motivation
	Modelling Late Triggers
	Modelling Late Trigger Limitation
	Stability Concerns

	Implementation
	Algorithm Implementations
	Issues Regarding Scheduler Implementation

	Benchmarks and Simulations
	Benchmarks
	Deterministic Subsystems
	Random Subsystems
	Auxiliary Benchmarks

	Simulation of Linearized Batch Plants
	Simulation with Randomized Inputs

	Simulation with late triggers

	Conclusions and Future Work
	Future Work

	Appendices
	Additional Simulation
	Proofs
	Proof Proposition 3-3.1
	Proof of Proposition 3-3.3
	Proof of Proposition 3-3.5

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

