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Abstract

Computational Fluid Dynamics has been widely used to model flows for engineering applications. The
challenge has been to model or resolve turbulent flows accurately and there exist different approaches
such as Direct Numerical Simulations (DNS), Large Eddy Simulations (LES) and Reynolds Averaged
Navier Stokes (RANS). With limitations on the available computational power and time, RANS is the
favorable choice to model such flows despite significant modeling errors.

With recent advancements in machine learning (ML) algorithms and availability of high-fidelity (accu-
rate) data, the turbulence community has been actively working to improveRANSmodeling by informing
it from the reference data and developing corrections. This is also known as data driven turbulence
modeling. There exist several algorithms that have improved RANS modeling but their computational
cost and lack of physical interpretability remains an issue to gain an understanding of flow physics and
the relation between different flow quantities.

The present study implements two data driven methods to provide corrections ad improve RANS mod-
eling, focusing on Turbulent Kinetic Energy and the Reynolds Stress Tensor. However, the goal is
to also obtain symbolic models and physically interpretable corrections, while ensuring computational
cost remains minimum.

A priori analysis, where only the reference data is used to develop corrections, shows significant re-
ductions in the computational cost (function calls to the CFD solver) while converging to acceptable
correlations as well. The superior of the two methods is selected for a posteriori study where it is
coupled with a CFD solver. The correction is now formulated by differentiating the CFD code. This
information is given to the ML algorithm which adjusts its parameters accordingly to optimize the objec-
tive function and improve turbulence modeling. Results show that, with regularization, a generalized
symbolic formula can be obtained which when tested on different geometries improves the prediction
of flow quantities and turbulence modeling, as a whole.
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1
Introduction

Ranging from the strong atmospheric winds, external flows over an airfoil to internal flows in ducts,
engines and HVAC systems, the flow regime transitions to a turbulent flow state inevitably. It is a regime
characterized by chaotic and irregular motion, resulting in separation regions and vortices. Given their
presence, it is essential to model them accurately as it further has consequences on the aerospace,
automotive and other engineering industries.

Computational Fluid Dynamics, based on the Navier-Stokes equations, is used to model turbulence
in almost all engineering applications and simulate the flow to get an understanding of it. However,
these equations are very complex and thus, there exists different approaches to model turbulence.
While accuracy is preferred, the computational cost of such methods make them unlikely to be used for
engineering applications. Direct Numerical Simulation, for example, is a high-fidelity approach where
all the scales of the turbulent flow are resolved and the equations are solved numerically [51]. However,
their costs can go as high as O(Re3), making it impossible to be performed on non high-performance
systems [12]. Large Eddy Simulation is another approach which introduces where the large scales are
resolved while the small scales are modeled [85]. Although much cheaper at the expense of accuracy,
it still remains unfavorable for everyday simulations.

The most common approach is Reynold Averaged Navier Stokes (RANS). It decomposes the flow into
a mean and a fluctuating component and the resulting Navier-Stokes equations now have an addi-
tional stress term (Reynolds Stress Tensor), defined by the averaged product of fluctuating velocity
components [3]. The RST is responsible to represent turbulent anisotropy and capture phenomena
like separation and reattachment and wall shear distribution. However, most of the RANS models are
based on the Eddy viscosity hypothesis which assumes a linear relation between the anisotropy and
the mean rate of strain [61]. This does not hold for different flow regimes. Although computationally
cheapest, it introduces a lot of errors due to modeling of the RST, aside from other sources such as
averaging and coefficient calibration. The modeling of the RST is a well known problem and is referred
commonly to as the closure problem. There also exist other RANS approaches such as Reynolds
Stress Models to model turbulence. However, the improvement in results is not consistent and they
are also computationally expensive.

High-fidelity data has generally been used to gather insights on RANS closure modeling and has been
increasingly made available especially for canonical flow cases such as Periodic Hills. Furthermore,
with recent developments in efficient algorithms and possible to store large data, the turbulence com-
munity is working to leverage these high-fidelity data sets and improve RANS modeling [19]. This is
known as Data Driven Turbulence Modeling where the goal is to calibrate RANS models and inform
them to obtain more correct results.

There have been several machine learning methods used to accomplish this such as Neural Networks,
Random Forest and Evolutionary Algorithms among others. However, methods like Neural Networks,
though used extensively, have a black box nature that results in a lack of interpretability of the modeling

1
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process [5]. Evolutionary Algorithms can produce a symbolic formula but are computationally intensive
to train as they require evaluating the objective function (individual quality) multiple times [93].

The modeling improvement can be accomplished in two ways: a priori and the a posteriori framework.
A priori setting involves using high fidelity data as a reference to improve prediction of quantities such
as RST and Turbulent Kinetic Energy based on fixed data. The idea is to develop equations which
when inserted into the turbulence model should give improved results. However, the performance im-
provement may not be as good when implemented. It is explained that these discrepancies could exist
due to time-averaged high fidelity data, which tend to produce good models for anisotropy stress tensor,
but not so for other quantities[93]. To correct this, the a posteriori framework is used which involves
running CFD simulations and optimizing algorithm parameters simultaneously which is accomplished
by differentiating the CFD code. Thus, the corrections for instance, are produced by taking input from
the CFD solution where the velocity field is updated at each solve, rather than relying on fixed data. The
high fidelity data is now only used to evaluate the quality of the converged RANS results. In principal,
the number of function calls in the a priori setting equals the number of CFD runs in an a posteriori
setting. The a posteriori framework is also much more difficult as many models suffer from stability
issues and the CFD solution is more susceptible to divergence [65].

With this, the objective of this thesis is to improve turbulent flow modeling in a RANS model
by incorporating it with the necessary corrections. However, the focus of the thesis will not be
on flow modeling only but also to develop computationally cheaper algorithms. There already
exist many methods that can produce excellent correlations in the a priori setting. However,
the challenge is to use them in the a posteriori setting where the number of function calls are
the important factor. In addition, it is desirable to obtain a correction that can be physically
interpretable and composed of flow quantities. In the a posteriori setting, the goal is to obtain
a generalizable model that when applied to different geometries can produce improved results
by improving turbulence modeling and not just serving as an ad-hoc correction.

Thus, this thesis will study algorithms first in the a priori setting and then select the optimum one and
move to the a posteriori testing. Since the algorithms will be developed and are relatively new, they will
be first tested on benchmark regression problems before moving to CFD datasets.

The thesis is outlined as follows: Chapter 2 gives a detailed background on CFD approaches and the
governing equations. It highlights the work that has been done to to improve RANS modeling and
concludes with the research questions for this study. Chapter 3 explains the methodology adopted in
the development of the algorithms and the testing process by first implementing on benchmark datasets,
and then the CFD datasets. It explains in detail how the algorithms work and the how the a posteriori
framework is programmed. Chapter 4 presents the results of the algorithms on the benchmark datasets
followed by conclusions which serve as strong indicators about the effectiveness of these algorithms
before moving to Chapter 5 where these algorithms are then applied to CFD cases. The 2 CFD cases
under consideration are Periodic Hill and Square Duct which serve as canonical flow cases where
errors related to Turbulent Kinetic Energy and RST are dominant respectively. The optimum algorithm
is selected and Chapter 6 explains the results when applied in the a posteriori framework. Finally,
reflecting on the results, conclusions are drawn in Chapter 7, followed by future recommendations
mentioned in Chapter 8.



2
Literature Review

This chapter begins with an overview of the governing equations in a Computational Fluid Dynamics
(CFD) simulation, followed by approaches to model turbulence. Focusing on RANS, the limitations of
these models in accurately capturing turbulent phenomena is discussed, providing the basis to study
the role of data-driven turbulence modeling in improving their predictions of flow variables like turbulent
production over regions of adverse pressure gradients. Since the study focuses on the implementation
of Genetic Programming (GP), and Kolmogorov-Arnold Networks (KANs), recent advancements in
these techniques are reviewed. The chapter concludes by emphasis on combining GP with gradient
methods to enhance the modeling accuracy and convergence of such data-driven models, and the
capabilities of KANs, followed by the research questions.

2.1. Navier-Stokes Equations
A CFD solution is governed by the conservation of mass, momentum, and energy. Mathematically,
they are expressed in the form of continuity (Equation 2.1), momentum (Equation 2.2), and energy
(Equation 2.3). These are referred to as the Navier-Stokes (NS) equations, and are the statements of
fundamental physical principles, which influence the motion of fluid.

∂ρ

∂t
+∇ · (ρV⃗ ) = 0, (2.1)

∂(ρV⃗ )

∂t
+ V⃗ · ∇(ρV⃗ ) = −∇p+ ρf⃗ + µ∇2V⃗ , (2.2)

∂[ρ(e+ V 2

2 )]

∂t
+∇ · [ρ(e+ V 2

2
V⃗ )] = ρq̇ + kth∇2T −∇(V⃗ p) +∇(V⃗ τ) + ρf⃗ · V⃗ . (2.3)

The Eulerian form of these equations is described above, and referenced from [3].

2.2. Turbulence and Modeling
Turbulence is a flow regime,characterized by unsteadiness, rotational motion, viscosity, and chaotic
behavior, and is comprised of a wide range of length and time scales [90]. To indicate whether a flow
has transitioned into such a regime, Reynolds number (Equation 2.4) is used, and computed as

Re =
ρV L

µ
. (2.4)

The terms associated with viscosity, such as the non-linear diffusion term (Equation 2.2), are the mathe-
matical expressions that include turbulence within a flow. As the Reynolds number for a flow increases,
these non-linear processes dominate, and due to the influence of such terms, the Navier-Stokes equa-
tions is not trivial to solve [51]. Hence, there exists different methods to solve or approximate their
solutions, which forms the basis of CFD models and turbulence modeling.

3



2.2. Turbulence and Modeling 4

In a turbulent flow, the inertial forces dominate, with a continuous energy transfer. The largest scales
in the fluid, also known as the macro-structures, generate turbulence energy, which is transferred to
the smallest scales. This is the turbulence energy cascade and the process of vortex stretching, one
of the drivers for three-dimensional turbulence, is responsible for this [51]. With turbulence produc-
tion occurring at the macro-scales, the dissipation takes place at the smallest scales, also known as
micro-structures. Based on scaling parameters, Kolmogorov scales for length (Equation 2.5), velocity
(Equation 2.6), and time (Equation 2.7) are defined which represent the micro-structures present in a
turbulent flow.

ηk = (
ν3

ϵ
)

1
4 , (2.5)

uk = (νϵ)
1
4 , (2.6)

τk = (
ν

ϵ
)

1
2 . (2.7)

The scaling parameters, ν and ϵ, characterize the viscosity and amount of energy dissipation per unit
time at the micro-scale level. Kolmogorov relation also states that the dissipation at the smallest scales
directly scales (proportional) to the macro-structure.

2.2.1. Direct Numerical Simulation: DNS
Direct Numerical Simulation is able to capture all the length, time, and velocity scales in a flow, without
any underlying assumptions or modeling of the turbulent flow, and accurately resolve the temporal
evolution of the flow as well [51]. However, to completely resolve the flow field, the simulation domain
must be large enough to contain the large-scale motions and have a sufficiently small spatial resolution
to capture and resolve the smallest, i.e., Kolmogorov scales. For a 3-D simulation, the required number
of grid points NL, and the integration time step, NT , to resolve the Kolmogorov length, and time scales
is given by (Equation 2.8), and (Equation 2.9) respectively.

N3
L ≈

(
L

ηK

)3

≈ Re9/4, (2.8)

NT =
T

τ
≈ Re1/2. (2.9)

The total computational effort can thus be derived as

CostDNS = O(Re9/4 ·Re1/2) = O(Re11/4). (2.10)

Given the order of the computational cost, DNS becomes unfavorable to produce results quickly,
thereby limiting its applicability in the industry. Nonetheless, it remains a significant research tool in the
academic field [12].

2.2.2. Large Eddy Simulations: LES
Unlike DNS, LES only resolves certain scales. It decomposes the flow into two different parts, based
on a cut-off wavenumber (Equation 2.11), which determines the spatial scale of the fluid flow that must
be resolved and those that should be modeled

ξC =
π

∆C
. (2.11)

Serving as a filter with width ∆C, all scales below this cut-off wavenumber (or larger than ∆C) are
resolved, and the remaining scales modeled. The resolved scales, often referred to as the large scales
of turbulence, carry most of the energy and are responsible for generating the Reynolds stresses, and
thus, are computed [85]. The smaller scales, however, that are important for diffusion and molecular
diffusion, contribute less to the Reynolds stresses, and are similar in all turbulent flows, hence, universal
models are present. They are modeled in an LES simulation, and are not represented on the mesh.

As most of the dissipation occurs at these smaller scales, their neglect leads to a reduction in dissi-
pation. The energy of the velocity scales is also lower due to filtering, which in turn leads to reduced
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vortex stretching. Since vortex stretching is a key mechanism in turbulence production, its reduction
causes a diminished generation of turbulent structures, resulting in LES producing less accurate results
compared to DNS.

Nonetheless, although computationally less intensive than DNS, it still requires significant computa-
tional resources. In addition, implementing it can also demand a significant understanding and knowl-
edge of discretisation, and placement of filter, among others features, making it difficult to be adopted
easily.

2.2.3. Reynolds Averaged Navier Stokes: RANS
RANS decomposes the flow into a mean, and a fluctuating quantity, which when summed together,
gives the actual flow field. The decomposition is stated below

u(x, t) = U(x) + u′(x, t), (2.12)

u = ū+ u′. (2.13)

where ū (U ) and u′ (u′(x, t)) are the mean and fluctuating quantities respectively. The above flow-
quantity decomposition followed by Reynolds averaging procedure is applied through (Equation 2.1) to
(Equation 2.3) to arrive at the averaged NS equations. It directly eliminates the need to solve or resolve
for the turbulent structures, but attempts to model these structures on the time averaged flow [14]. This
makes then computationally cheap when compared to DNS and LES solutions, and the widely adopted
CFD methods in the industry as the averaged quantities contain sufficient information to perform flow
analysis and compute quantities such as skin friction coefficient Cf and heat transfer.

In general, Reynolds averaging can take multiple forms involving an integral or a summation. The
three common forms are time, spatial, and ensemble averaging [85]. Time averaging is an appropriate
choice when the turbulent flow is statistically stationary, or the mean flow quantities do not vary with
time such as the turbulent flow in the pipe driven a by a constant external source. The time averaged
quantity based on the instantaneous flow variable f(x, t) is written as

FT (x) = lim
t→∞

1

T

∫ t+T

t

f(x, t)dt. (2.14)

Spatial averaging is the norm when the turbulent flow, on average, remains uniform in all direction, also
referred to as homogeneous turbulence, and is described as

FV (t) = lim
V→∞

∫ ∫ ∫
V

f(x, t)dV. (2.15)

Ensemble averaging, the most general type, is suitable for flows that decay in time, and defined as

FE(x,t) = lim
N→∞

1

N
ΣN

n=1fn(x,t). (2.16)

Although the forms differ, there is no loss of generality as results for one type of averaging can also be
valid for other kinds [85]. With steady state turbulent flows considered for this study, henceforth, time
averaging will be considered, satisfying the relations

Ū(x) = lim
T→∞

1

T

∫ t+T

t

U(x)dt = U(x), (2.17)

ū′ = lim
T→∞

1

T

∫ t+T

t

[u(x, t)− U(x)]dt = 0. (2.18)

The NS equations, specifically continuity and momentum, after applying Reynolds averaging, can now
be written as

∂ūi
∂xi

= 0, (2.19)
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ρ
∂ūi
∂t

+ ρūj
∂ūi
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

[
2µS̄ij − ρ u′iu′j

]
,

where S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

) (2.20)

The RANS equations now have an additional quantity in the form of −ρu′ju′i, which needs to be com-
puted to evaluate the mean-flow quantities. The term is known as the Reynolds-stress tensor (RST),
and forms the cause of all turbulent modeling. A transport equation for the RST can be derived and is

∂u′iu
′
j

∂t
+Kij = Pij + Tij +Dνij +Dijp +Φij − εij . (2.21)

The term such as Ti,j represents turbulent diffusion and is mathematically expressed as

Ti,j =
∂u′iu

′
ju

′
k

∂xk
. (2.22)

This further includes additional unknowns. Thus, deriving conservation equations for every unknown
will lead to additional unknown quantities. The Reynolds-stress tensor (second order) is symmetric,
resulting in six unknown quantities which is in addition to the unknown mean pressure and velocity
components. On the other hand, there are 4 equations present (continuity, and three momentum
equations). This is an under-determined system, and modeling equations are necessary to close the
system.

2.3. Turbulence models for RANS
The following sections will explain the different turbulence modeling techniques and assumptions im-
plemented for RANS.

2.3.1. Eddy Viscosity Hypothesis
The Reynolds stresses are modeled via the Eddy (Turbulent) viscosity hypothesis, referred to as the
Boussinesq hypothesis. According to this, the deviatoric part of RST is proportional to the mean rate
of strain. Mathematically, it can be expressed as (Equation 2.23)

−ρu′iu′j +
2

3
ρkδi,j = 2ρνT S̄i,j . (2.23)

The strain rate can be defined as
S̄ij =

1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. (2.24)

The equations are referenced from [61]. νT acts as a proportionality scalar, and referred to as the eddy
(turbulent) viscosity. The hypothesis assumes that the anisotropy of the Reynolds stresses,

ai,j = −2νT ¯Si,j , (2.25)

can be computed via the mean velocity gradients, and is proportional to the mean strain rate tensor.
The RANS momentum equation, incorporating the Boussinesq hypothesis for turbulence closure, is
expressed as

∂ūi
∂t

+ ūj
∂ūi
∂xj

= − ∂

∂xi

(
p̄

ρ
+

2

3
k

)
+

∂

∂xj

[
2(ν + νT )S̄ij

]
,

(2.26)

It provides a straightforward closure to the RANS equations with one scalar unknown (νT ), but the
relation does not hold valid for different flow regimes. For example, in a wind tunnel with a straight
section, followed by an axisymmetric contraction and a downstream straight section again, the mean
strain in the downstream straight section is negligible. This implies that the Reynolds stress anisotropies
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must also be negligible there, however, experimental data indicates otherwise [80]. A sketch of the
wind-tunnel is shown below.

Figure 2.1: A similar wind tunnel sketch of the experiment
[61]

The proposed hypothesis, however, becomes reasonable for simple shear flows, wherein slow evo-
lution of local mean velocity gradients imply a relation between stresses and strains [61]. This is in
contrast to turbulent shear flows, flows with significant curvature, and swirling flows where such an
exact linear relation is difficult to establish [83] [2].

A number of different models are based on the mentioned Eddy viscosity hypothesis with improvements
to tackle the mentioned issues.

2.3.2. Prandtl Mixing length models
These are further divided into zero, one and two equation models. In zero and one equation models,
the mixing length, lm, has to be empirically specified beforehand.

Zero- and One- Equation Models
The zero equation model, for a 2 dimensional flow, computes eddy viscosity as

νT = l2m

∣∣∣∣∂Ū∂y
∣∣∣∣ , (2.27)

Multiple generalizations have been applied to this model to make it applicable for free shear flows. It is
one of the most simplest models, however, it lacks completeness as the mixing length, lm needs to be
specified. Furthermore, it is based on boundary layer assumptions, and this makes it difficult to apply
for complex flows or away from the wall. Some equations to determine the lm are{

0.2κuτδ99, y ≥ 0.2δ99,

κy
(
1− e−y+/A+

)
, y < 0.2δ99.

(2.28)

Here, κ and A+ are von Kármán and van Driest damping constants respectively.

An improvement to this was the one equation model which includes a transport equation for turbulent
kinetic energy, k in the turbulence model in the form of

νT = ck1/2lm. (2.29)

At high Reynolds number, dissipation scales with u3 and 1/l, hence, it can be modeled as

ε = CDk
3/2/lm. (2.30)

Here CD is a model constant. The transport equation for k reads as

∂k

∂t
+ ūj

∂k

∂xj︸ ︷︷ ︸
Convective

Term

= τij
∂ūi
∂xj︸ ︷︷ ︸

Pk (Production)

+
∂

∂xj

([
ν

Re
+

νT
Prk

]
∂k

∂xj

)
︸ ︷︷ ︸

Dk (Diffusion)

− CD
k3/2

lm︸ ︷︷ ︸
ε (Dissipation)

. (2.31)

The left hand side of the equation represents the temporal change of turbulent kinetic energy and its
transport by the mean flow (convection). Production refers to the transfer of energy from the mean



2.3. Turbulence models for RANS 8

flow to turbulence, and dissipation refers to the loss of turbulent energy due to viscous effects, thus
dominant at the small scales. The diffusion term represents the distribution of turbulent kinetic energy
due to molecular diffusion or viscous effects (ν/Re) and turbulent diffusion (νT /Prk).

Although an improvement over the zero equation model, it still remains incomplete due to the need to
specify lm beforehand.

Two-Equation Models
These models involve transport equations for two variables, and eliminate the need to specify lm be-
forehand, making them ”complete”. The formulations of the commonly used models are explained
below.

The k − ε model solves two transport equations; one for the turbulent kinetic energy, k and the other
for turbulence dissipation rate, ε [34]. The equations to compute the eddy viscosity, and the transport
equations used are

νT = Cµ
k2

ε
, Cµ = 0.09, (2.32)

D̄k

D̄t
= τij

∂ūi
∂xj︸ ︷︷ ︸

Pk (Production)

+
∂

∂xj

([
ν

Re
+
νT
σk

]
∂k

∂xj

)
︸ ︷︷ ︸

Dk (Diffusion)

− ε︸︷︷︸
Dissipation

, (2.33)

D̄ε

D̄t
= Cε1

Pkε

k︸ ︷︷ ︸
Pε (Production)

+
∂

∂xj

(
νT
σε

∂ε

∂xj

)
︸ ︷︷ ︸

Dε (Diffusion)

− Cε2
ε2

k︸ ︷︷ ︸
Dissipation

, (2.34)

The standard values of the constants involved are Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, and
σε = 1.3

The model by itself however, is not completely accurate. It often requires modifications in the form of
wall functions to make it accurate for near-wall regions. Furthermore, the model frequently struggles
with flows that have strong pressure gradients, stream lime curvature or separation, as it can over-
predict turbulence in such cases.

Another variation of the two equation model is the standard k − ω model wherein a transport equation
for the specific turbulence dissipation rate, ω is solved [84]. The transport equation is written as

ω ≡ ε/k, (2.35)

D̄ω

D̄t
= (Cε1 − 1)

Pkω

k︸ ︷︷ ︸
Pω (Production)

+
∂

∂xj

(
νT
σω

∂ω

∂xj

)
︸ ︷︷ ︸

Dω (Diffusion)

− (Cε2 − 1)ω2︸ ︷︷ ︸
Dissipation

+
2νT
σωk
∇ω · ∇k︸ ︷︷ ︸

Cross-Diffusion

. (2.36)

The k − ω model gives more accurate results in the near-wall regions and in areas of streamwise
pressure gradients as well, when compared to k−ε. However, a treatment of non-turbulent free-stream
boundaries can pose a concern, along with the over estimation of turbulence production at stagnation
points. Thus for this reason, k − ε maintains its superiority over external aerodynamic flows.

A blend of the above two, k− ε, and the k−ω, into a new model was then proposed [48]. Incorporated
with a blending function, it switches to k− ε when away from the wall regions (wake regions and shear
layers), while k − ω when modeling the flow close to the wall (boundary layers). This gives the best of
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both the models without being relatively computationally expensive. The k−ω SST model is described
as

Dρk

Dt
= Pk − β∗ρωk +

∂

∂xj

(
(µ+ σkµt)

∂k

∂xj

)
, (2.37)

Dρω

Dt
=
α

νt
Pk − βρω2 +

∂

∂xj

(
(µ+ σωµt)

∂ω

∂xj

)
+ 2(1− F1)ρσω2

∇k · ∇ω
ω

, (2.38)

where F1 =

tanh

(min

[
max

( √
k

β∗ωy
,
500ν

y2ω

)
,

4σw2k

CDkωy2

])4
 . (2.39)

The eddy viscosity is computed as
νt =

a1k

max(a1ω,ΩF2)
(2.40)

with F2 as

tanh

(max

(
2
√
k

β∗ωd
,
500ν

d2ω

))2
 , CDkω = max

(
2σw2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
. (2.41)

The numerical values of the constants are defined below.

α1 = 0.553, α2 = 0.44, β1 = 0.075, β = 0.0828, σk1 = 0.85, σk2 = 1.0,

σw1 = 0.5, σw2 = 0.856, β∗ = 0.09, κ = 0.41, a1 = 0.31
(2.42)

The model coefficients, for instance ψ are obtained by blending the coefficients between k−ω (ϕ1) and
k − ε (ϕ2) and accordingly, as

ψ = F1 · ϕ1 + (1− F1)ϕ2. (2.43)

An additional model that is also commonly used in the industry is the Spalart-Allmaras model which is
based on one equation [69].

2.3.3. Reynolds Stress Models: RSM's
In contrast to mixing-length models outlined in Subsection 2.3.2, Reynolds Stress Models (RSM) solve
the model transport equations for the individual Reynolds stresses. Thus, they directly rule out the
limitations of Boussinesq hypothesis. The exact transport equation for the Reynolds stresses are

D̄u′iu
′
j

D̄t
+
∂Tk,ij
∂xk︸ ︷︷ ︸

Diffusion

= Pij︸︷︷︸
Production

+ Rij︸︷︷︸
Pressure-Strain

− εij︸︷︷︸
Dissipation

. (2.44)

Tk,i,j , Ri,j and εi,j represent Reynolds stress flux, pressure rate of strain, and dissipation tensor re-
spectively. These quantities also require models, while the other quantities are in closed form [61].

For high Reynolds number flows, the dissipation as a consequence of local isotropy, can be modeled
as

εi,j =
2

3
εδi,j (2.45)

For moderate Reynolds number flows, the isotropic modeling may not hold valid, but the effect is neg-
ligible.

The pressure rate of strain tensor redistributes energy among Reynolds stresses and can be decom-
posed into three components, namely the rapid, slow, and the harmonic pressure. Analogously, the
pressure rate of strain tensor can also be decomposed into three parts as

Ri,j = R
(r)
i,j +R

(s)
i,j +R

(h)
i,j . (2.46)
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A generic model for the slow and rapid term was developed and is

ΦS
i,j = −ε(C1ai,j + C2(ai,kak,j −

1

2
Pi,jδi,j)), (2.47)

ΦR
i,j = k

∂uk
∂xl

(Xkjli(anm) +Xkilj(anm)). (2.48)

Based on this, two different modeling approaches were derived and proposed, namely the LRR RSM
(Launder, Reece and Rody), and the SSG RMS(Speziale, Sarkar and Gatzki) [41] [24].

These are some of the fundamental models that are used in reference to the RSM’s.

2.4. Comparison of RANS models
The zero and one equation models are limited to simple flows, and not complete as they require the
specification of the mixing length. Spalart-Allmaras is efficient for aerodynamic flows, but similarly
involves near wall distances, making it not the ideal model. The k − ε model is widely regarded as
being easy and computationally inexpensive. However, the source terms in these equations close to
the walls become large, and thus without wall functions, this model can become inaccurate. This can
be mitigated to a large extent by the k − ω SST model which combines the k − ω, and k − ε models.
Inheriting the advantages of both, it is able to balance near-wall and far-field accuracy, while only being
slightly more expensive.

Comparing the RSM, despite giving superior results for flows with strong anisotropy and curvature, it
is more computationally expensive as there are seven turbulence equations to be solved for, instead
of two [61]. There exist algebraic stress models as alternatives to avoid the cost and difficulty of RSM,
however, these benefits are not realized generally. This is in addition to the reduced numerical stability
effects when compared to k − ω SST , as it is sensitive to modeling of the pressure rate strain tensor.

2.5. Limitations of RANS modeling
As explained earlier in Subsection 2.3.1, the zero, one, and two-equation models are based on the Eddy
viscosity hypothesis, assuming that the anisotropy of the Reynolds stress tensor is linearly dependent
on the strain rate tensor. This only holds for limited flows. Although the two equation models tend to
correct for this up to some extent by including two transport equations, the models are still inaccurate
due to the underlying Eddy viscosity hypothesis assumption. Hence, the closure of these Reynolds
stresses is a well known problem.

Many industrially tested flow fields and setups have a well defined averaged and a unique solution.
However, RANS models often fail to accurately predict the correct mean flow solutions, such as in flow
separation cases. Furthermore, many ad-hoc fixes are proposed to the existing RANS models to flow
phenomena such as high speed cold-wall heat transfer, and mixing layers with density or temperature
variations. Although these ad-hoc fixes give acceptable results, they are not easily generalizable [9].

In addition, RANSmodels are also affected by the averaging operator. Although the Reynolds averaged
equations, the flow decomposition (into average and fluctuating values), and the Reynolds stresses are
valid, the modeled stresses or their formulations are only local as it involves the turbulence variables
and derivatives at one point only [71]. Particles are involved in different turbulent eddies and span
across regions of the flow. The turbulent motion at one point may be influenced by remote areas
as well. This highlights the issue of non-local effects with RANS modeling, in addition to the already
existing closure problems. For instance, in the wake of a cylinder, the averaging process often groups
together instances when a vortex is passing through, with instances when irrotational flow is passing
between the vortices. This averaging can be considered as unnatural. However, the localization of
turbulence by RANS is not an absolute effect. The use of wall distance d in the Spalart-Allmaras and
the k − ω SST (Menter) models perform well, despite the usage of the wall distance being argued as
deviating from purely local properties.

Moreover, the conventional Reynolds stress transport equations do not make use of second or higher
order derivatives of for instance, velocity ( ∂2Ui

∂xj∂t
, ∂2Ui

∂xj∂xk
). They can be used to incorporate the history

effects in an empirical manner. Although complex and may lead to incompatibility with discretisation
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schemes when used, stability problems were not reported when applied to SARC (Spalart-Allmaras
with Rotation and Curvature model) [72].

2.6. Other Methodologies
Aside from the explained models, hybrid approaches exist to balance computational cost, and accuracy.
They couple LES and RANS with a distinct interface. However, there are challenges because RANS
is not able to provide the correct instantaneous fluctuations for LES to resolve large scales. Thus, LES
cannot compute the correct velocity gradients, leading to under prediction of RST in the logarithmic
region of the boundary layer. This is generally overcome by injecting artificial fluctuations. A blended
hybrid approach, referred to as Detached Eddy Simulation (DES), uses unsteady NS equations with
eddy-viscosity models but suffers from significant RANS to LES transition regions due to inconsisten-
cies caused by grid spacing resulting in a premature transition to LES [70]. Although more accurate
than RANS, these methods have their own set of own challenges and will not be discussed in the
present study.

An illustration of the different CFD methods that exist is shown below, along with a visualization of the
differing results between RANS, LES and DNS for the same simulation setup.

Figure 2.2: A visual comparison of different CFD methods in terms of cost and accuracy
[16]

Figure 2.2 shows us that while DNS has the least model influence, it is also the most computationally
expensive. RANS on the other hand, relying significantly on modeling but the lower computational cost
makes it a favorable choice.

With this, the k-ω SST model is selected as the optimal model for the current study. The focus
of the following chapters will therefore, be on enhancing the modeling capabilities of it through
the development of data-driven turbulence closures, via techniques explained in later sections.

2.7. Uncertainty Quantification
It is established that the closure terms of RANS to model the Reynolds stresses result in non-reliable
predictions, and inaccurate mean flow quantities. However, these errors can be quantified in prob-
abilistic terms using uncertainty quantification techniques. In addition, using machine learning and
optimization algorithms, these model closure terms can be re-calibrated to give improved results.

While constructing a RANS model, several assumptions are made which result in information being
lost and introducing errors in the overall model. The four levels of simplification required to formulate
a RANS closure are mentioned below [19].

• Level 1 (L1) uncertainties are introduced due to the averaging operator applied on the Navier-
Stokes equations. Since RANS is based on this averaging operator, it is unavoidable but at the
same time, the loss in information is irrecoverable as well. With many distinct realizations of a
flow quantity compatible with the averaged field, it results in a hysteresis phenomena.

• Uncertainties introduced in the development of closures for the representation of Reynolds stresses
comprise Level 2 (L2) uncertainties. Eddy viscosity models, and algebraic stress models are com-
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mon examples, which assume that the Reynolds stress tensor is a function of local, averaged flow
quantities.

• Further simplifications to denote physical processes without having to derive their differential
models to reduce computational cost results in Level 3 (L3) uncertainties. Some processes in
the NS equations include convection, and diffusion among other contributors.

• Once the complete model form has been established, the coefficients that are involved, such as
those shown in Subsection 2.3.2 constitute the final uncertainties, known as Level 4 (L4). Their
calibration is essential to ensure the proper contribution of different terms in the closure equation,
which otherwise can lead to significant errors.

These combined 4 levels make it difficult for a RANS model to deliver consistent results for different
type of flow fields, and different methods have been used to quantify these uncertainties. Background
flow technique makes use of bounds for the unclosed terms. These bounds are based on theoretical
arguments, and represent the extreme values a term can take during a flow simulation. They can be
estimated via variational approaches to obtain a generic framework [17] [32]. However, it is practically
challenging to define bounds for different quantities of interest such as dissipation rate, and turbulent
kinetic energy [66]. An attempt to quantify L2 uncertainties wasmade by introducing realizable, physics-
constrained perturbations to the RST [22]. This was based on the eigen value decomposition of the RST.
Additional attempts include wherein the Reynolds Stress (model form) uncertainties were modeled in
the form of a probabilistic description [87]. A maximum entropy distribution was made use of to indicate
the uncertainties.

2.8. Data Driven Turbulence Modeling
Validation of different CFD models has usually been carried out with experimental data, or high-fidelity
data has been used to gather insights on the modeling of RANS closures. Recently, with efficient
algorithms and the possibility to store large data, the same data is now being used to calibrate RANS
models and inform them, to improve closure and obtain physically more correct results. The choice of
coefficients or optimal parameters has an effect on the results, and this leads to L4 uncertainties. The
impact of it can be studied via varying the choice of coefficients, and finding the optimal distribution
of parameter values. However, a more effective approach is to use high fidelity data to tune or inform
these coefficient values and propagate the resulting expressions into simulations to obtain improved
modeling of flow physics. A related example is the influential work by Kennedy and O’Hagan wherein
a discrepancy (correction) term was added to the model prediction to obtain a more accurate model
output of computer models, using Bayesian calibration [36].

Given Section 2.7 where the causes of uncertainties, and briefly the different methodologies to quantify
them were highlighted, works that involve high-fidelity data to improve the overall performance of RANS
and reduce the uncertainties will now be focused on, which is also the objective of the current research.

Bayesian Optimization
One of the first works where high fidelity data (DNS) was used, dates back to 2011 [11]. In this study,
Bayesian inference was used to assign posterior probability distributions to model parameters to obtain
an optimal range of values for plane channel flows. This was a way to correct for L4 uncertainties. In
addition to this, the same group (in a different study) proposed the use of Reynolds stress discrepancy
tensor to account for overall uncertainties [53]. A random field defined by differential equations that
were simpler than the Reynolds stress transport equations was used, and their study enjoyed success
for plane channel flows at different Reynolds numbers. Another work involved the use of a complete
DNS velocity field to compute the viscosity field of a k− ω turbulence model, and the discrepancy was
modeled via a Gaussian process [18]. Furthermore, sparse velocity fields were also used in a physics
informed Bayesian framework to infer the structure of the Reynolds stress magnitude and its anisotropy.
Even with sparse data, the simulation data had better observations to the benchmark model when
compared to the baseline model [88]. Moreover, another study made us of limited observations of high
fidelity simulation and experimental data and compared it with RANS models to infer the discrepancies
in their source terms [67] [75]. This information in a Bayesian setup (field inversion) was utilized and
applied to channel flow, shock-boundary layer iterations, and flows with curvature and separation. It
was concluded that the accuracy of the propagated solution was improved over the entire domain, by
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addressing the connection between physical data and model discrepancies. Some of the results of
their work are presented below.

Figure 2.3: An illustration of the model improvement
[67]

In Figure 2.3, δMAP , and δSARC represent the correction terms. The Spalart-Allmaras, after optimiza-
tion, gives improved results and matches with LES, unlike the prior Spalart-Allmaras and Spalart-
Allmaras with rotation and streamline curvature models (SARC). The quantities illustrated are, from
left, the skin friction coefficient predictions, correction terms. In similar work, inverse modeling was
coupled with the adjoint method, to build a statistical model for the uncertainties in the k − ω model
[79]. The difference in the turbulent viscosity by the inverse RANS problem, and that of baseline RANS
model was described, in comparison to DNS data. This model, further developed by maximum likeli-
hood estimation, was used to propagate uncertainties to different quantities of interest. Elsewhere, a
posteriori error estimate was developed using Bayesian calibration with experimental data [21]. This
was then followed by Bayesian Model Scenario Averaging (BMSA) to gather the posteriors to provide
an estimate for the quantity of interest. It was concluded that the mean of the estimate was more
accurate than the individual model predictions.

2.8.1. Applications of Machine Learning
The challenge of the current study is to similarly leverage high fidelity data-sets and improve
RANS modeling. However, this will not just be limited to one type of flow such as the literature
reviewed above, but rather, to generalize the data or evidence to a class of flows sharing similar
features, and understand the relation between different flow quantities.

Machine learning (ML) has gained popularity due to recent advancements in data storage capacities,
data availability and efficient algorithms. It can be categorized into supervised and unsupervised learn-
ing. Since the present study deals with constructing a mapping between a set of given input vectors to
accurately model the output, the focal point will be around supervised learning. Specifically, regression
approaches of supervised learning are of particular importance in view of turbulent modeling. Unsu-
pervised learning, on the other hand, deals with the discovery of patterns and to reduce the complexity
of data, and will not be touched upon. Works involving supervised learning algorithms to effectively
correct for the errors in RANS modeling are reviewed in the following segment.

Some of the earliest works that used ML techniques for CFD were related to turbulence and combustion
modeling [74]. High fidelity (DNS) data was used to construct a stochastic model of the error for the k−ω
SST model. The technique was applied to model combustion in a turbulent mixing layer, and to predict
the anisotropy of the Reynolds stress tensor in a non-equilibrium boundary layer flow. Addressing
the L3 uncertainties, the methodology is generalizable and applicable to any turbulence model. The
local error model was derived based on kernel regression and was applied to RANS model. Better
approximations on the prediction of source term in the combustion test case, and improved prediction of
turbulent anisotropy as a function of various mean flow properties. An additional advantage of applying
ML techniques is that the fundamental properties of modeling are not compromised, such as invariance.
This was achieved by using tensor invariants of the Reynolds stresses, based on eigen decomposition.
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Neural Networks
Recently, neural networks have been wide adopted due to their ability to process complex data. They
are able to analyze and make functional forms for complex nonlinear models and can be used for high
dimensional data as well [46]. The group of Duraisamy made use of neural networks, with a single
hidden layer, for turbulence model development [75]. In this case, the Spalart-Allmaras model was
improved using DNS data, via neural networks. It was observed that the trained network was able
to improve the baseline model for two-dimensional flat plate boundary layers, and three-dimensional
transonic wings. In another work, spatial and temporal dependent terms were introduced to the RANS
model equation to compensate for the errors in the baseline model [92]. Fast Artificial Neural Networks
and inversion techniques were used to construct correction terms in channel flows, and bypass transi-
tion. Elsewhere, a similar methodology of inversion technique coupled with neural networks was used
to infer the functional form of deficiencies in closure models [20]. The inverse modeling step, in itself,
can give valuable insights and information, which is then converted into modeling knowledge via ML
techniques.

A significant work is that of Ling et al., where they incorporated multiple hidden layers and ensured
invariance [42]. Invariance is important to make the turbulent flow independent of a frame of reference,
and their methodology also provides the basis for the present work. By decomposing the anisotropy
Reynolds stress tensor and forcing it to be composed of a basis of isotropic tensors, Galilean (rotational)
invariance was embedded into the system. The mentioned invariance is defined as if the coordinate
frame is rotated by a certain degree, the anisotropy tensor also rotates by the same. This was accom-
plished by constructing an integrity basis of the input tensors. With rotational and strain rate tensors
taken as the inputs, the anisotropy tensor, b, with Galilean invariance, was represented as a linear
combination of of 10 isotropic basis tensors as

b = Σ10
n=1g

(n)(λ1, .., λ5)T
(n). (2.49)

If interested, further literature on the decomposition can be reviewed from [62]. The objective of the
TBNN framework was to determine the scalar coefficients, λ1, .., λ5 and then compute the anisotropy
stress tensor. Two cases were tested: flow over wavy wall and a square duct setting. Comparing
the TBNN framework with a generic multi layer perceptron (MLP) network without the invariance, the
former was more accurate, and also produced improved mean velocity profiles (a posteriori setting)
when compared to eddy viscosity models.

Although neural networks have been used extensively to improve turbulence modeling, they have sev-
eral tunable parameters such as activation functions, number of layers, and regularization schemes.
Furthermore, they can also be quite computationally intensive to train on a large (and a non-linear
complex) dataset. Moreover, it is their black box nature that results in a lack of interpretability of the
modeling process.

Random Forest
Building on TBNN, and to incorporate Galilean invariance, the tensor basis random forest (TBRF) was
then introduced for RANS modeling [35]. The random forest algorithm was modified to accept a tensor
basis, and used to improve the predictions of anisotropy stress tensor by leveraging DNS/LES data.
Stabilization was achieved via a continuation method and a modified k-equation. The algorithm was
easier to train, and had few hyper-parameters, making it less computationally intensive in comparison
to neural networks [26]. The resulting model was able to provide more accurate mean flow fields. Some
results from the work are shown below.

Figure 2.4: A comparison of TBRF with other methods
[35]
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Contours of turbulence anisotropy state in the square duct (Re = 3500) are visualized for DNS, followed
by baseline k − ω, TBNN, and then TBRF, from left to right.

Analogously, random forest regressors was used to model jets in cross-flow, using high-fidelity data
[43]. The algorithm, being robust and able to handle noise, was computationally cheap, and produced
significantly improved anisotropy tensor predictions.

Both neural networks, and random forest have their disadvantages. It was reported that while the
former is good in interpolations and extrapolations, they are susceptible to oscillatory behavior close to
the wall boundaries and when used to predict turbulent eddy viscosity [76]. The latter, on the other hand,
does not extrapolate well to unforeseen circumstances. Thus, both the techniques were combined to
implement a novel neural network random forest model (NNRF) which was able to improve the pressure,
skin-friction and velocity fields with respect to the baseline Spalart-Allmarasmodel and other MLmodels
[76]. Flows around bump were considered as test cases.

Physics Informed Machine Learning
Recently, physics informed machine learning (PIML) approaches have also been introduced. They
learn the functional form of discrepancy in the Reynolds stress tensor. The improved Reynolds stresses
that are predicted, are then propagated to quantities of interest such as velocities and improve the
RANS predictions for a flow [78]. Based on the discrepancy field calculated from the baseline RANS
model and the high fidelity data, random forest regressors were used to create regression functions for
the Reynolds stress discrepancies, with an input feature space constructed from 57 invariants. It was
concluded that PIML showed excellent predictive performances in both the Reynolds stresses and the
propagated velocities as well. The mentioned study is also similar to an earlier work that was able to
obtain an improvement in the Reynolds stress tensor, by utilizing a set of 10 invariants [86]. The same
research group also applied PIML’s to obtain excellent predictions for the Reynolds stresses for fully
developed turbulent flows at different Reynolds numbers in a square duct, and periodic hill flow cases,
by leveraging DNS data [77].

Sparse Regression of Turbulent Stress Anisotropy
Another novel strategy to infer the stress models is Spare Regression of Turbulent Stress Anisotropy
(SpaRTA), and can be treated as a deterministic symbolic regression tool [65]. A library of candidate
functions is built, from which potential candidate models are derived. It was concluded that the pre-
dictions of the discovered models were a significant improvement over the baseline k − ω SST model.
The algorithm selects an appropriate model using sparse-regression techniques. Elastic-net regular-
ization, and least squares regression was used to promote sparsity, and stability in the CFD model.
The augmented constitutive relation was defined as

bi,j = −
νt
k
si,j + b△i,j , (2.50)

where b△i,j denotes the data-drives correction for the anisotropy in RST. An additional correction, R,
was implemented and provided local information to correct the transport equation for turbulent kinetic
energy, and was modeled as

R = 2kbRij∂jUi. (2.51)

Velocity profiles were compared from the improved model to the high fidelity data. For the flow cases,
it was observed that corrections for both b∆i,j , and k were required to generate consistently improved
results. Three different cases of flow separation: periodic hill, converging-diverging channel and curved
backward-facing step were used.

An example of periodic hill test case, Re = 10595 is shown below. The LES data in their works is
referenced from [8].
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Figure 2.5: A visualization of the performance of SpaRTA
[65]

Evolutionary Algorithms: Gene Expression & Genetic Programming
In related work, evolutionary algorithms have gained momentum. They are based on the principle of
survival of the fittest, and perform genetic operators such as mutation and crossovers on the individu-
als to converge to the optimum solution. By using symbolic expressions, explicit algebraic models for
the Reynolds stresses are also directly attainable from high fidelity data. The optimization method has
been used to find the optimal value of coefficients in the k − ε, Spalart − Allmaras and k − ω SST
models [23]. Testing was performed on different flows: impinging jet, backward facing step, and a
nozzle, and significant improvement in the performance of the optimized models was observed. They
reported that the method was numerically very robust, and did not require any a priori knowledge of
the solution space. However, the fitness evaluation of the individuals made the algorithm computation-
ally very expensive, which was a major drawback to recalibrate the coefficients. An illustration of the
performance over a test case is shown below.

Figure 2.6: A visualization of the performance of the genetic algorithm framework
[23]

The velocity profiles are indicated at different downstream positions for a backward facing step, using
standard k−ω model in dashed format. The bold line is the result after optimizing parameters, and the
rectangles represent the reference data obtained from [64].

This methodology, combined with symbolic regression, has also applied to improve hybrid RANS/LES
models on coarse meshes, by taking the benefit of available DNS data of a turbulent pipe flow [82]. The
Gene Expression Framework was adopted due to its suitability with regression problems. In their work,
a new damping function was built which essentially governs the contribution level of a RANS model.
Considering tandem cylinders and periodic hill as test cases, the model with the new damping function
was able to accurately capture the flow phenomena and be on par with DNS data. This further highlights
the applications of Gene Expression Framework. An important advantage of such an algorithm is its
interpretability. The final outputs in the above works were tangible algebraic equations which could
easily be incorporated into CFD codes to propagate the effects of improved modeling.
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Gene expression programming was also then directly used for tensor modeling and improving existing
RANS models [81]. The anisotropy stress tensor was defined as

aij = aij(k, ε, Sij ,Ωij). (2.52)

A function of dissipation and turbulent kinetic energy, in addition to the rotation and strain rate tensors,
the models were able to extract non-linear constitutive stress-strain relationships. They were described
as ’implementation ready’ as the generated individuals were in the form of an algebraic equation that
could be easily inserted into the system. A linearly independent basis for aij was determined via the
Cayley-Hamilton theorem. The fitness function of an individual over n data points, defined as

Fit(T guess
ij ) = Σn

k=1

Tij,kT
guess
ij,k

Tmn,kTnm,kT
guess
pq,k T guess

qp,k

, (2.53)

influenced the evolution of individuals to convergence. T guess
ij is considered to be a combination of

tensors and scalars, also referred to as plasmids. The algorithm was tested over backward facing step
and periodic hill flows. An expression for the anisotropy tensor on of the test cases was

axij = 2νtV
1
ij [0.01− 0.0324τ21 (3I1 − I2)]− 0.018νtτ1[V

2
ij + V 3

ij + 2V 4
ij ], (2.54)

where Vij , & I represent the tensor and scalar invariants respectively. Verification of different quantities
such as τij , Cf and velocity profiles was performed. A much improved agreement was found between
the modified RANS model and the DNS data sets, barring an exception to a few profiles such as the
performance in the favorable pressure gradient regions.

A posteriori analysis - Gene Expression Programming
The group from the previous study expanded their methodology and presented an a posteriori approach
that evaluated the fitness of individuals by running real time RANS calculations in an integrated way
[93]. This gave the flexibility that the objective function could now be defined for any variable. By
integrating RANS calculations, a robust, stable and a straightforward Reynolds stress closure could now
be adopted. As the author of the work in discussion states, the motivation to include CFD calculations
was to avoid the discrepancies that may exist between the high fidelity data and RANS environment,
such as those in turbulent dissipation rate. It was explained that these discrepancies could exist due
to time-averaged high fidelity data, which tend to produce good models for anisotropy stress tensor,
but not so for other quantities. The high fidelity data was now only used to evaluate the fitness of
converged RANS results. With themodel trained on a high-pressure turbine cases, testing was done for
distinct turbine nozzle flows. It was observed that the wakemixing profiles of turbomachines were much
improved in the a posteriori setting. However, some discrepancies in the high fidelity data and improved
RANS models could be observed, which was attributed to the former’s ability to resolve complex flow
physics, while RANS may not be able to model it, such as low-frequency deterministic unsteadiness.
Moreover, since the model equation was explicitly derived and available, it also helped in deducing
the physics behind such wake profiles, and to understand the dominant relations for such profiles.
Nonetheless, it was stated that the computational cost of such an integrated CFD-GEP framework limits
its applicability and usage in the industry. This was because for each generation, CFD calculations have
to be performed, and there may be hundreds or thousands of candidate models in a given generation.

A primary advantage of using such an algorithm is its open-box learning approach since it makes
use of an evolutionary algorithm. In addition, its interpretability is also highly beneficial as the resulting
expressions can easily be incorporated into CFD solvers. However, as it is computationally expensive to
run the CFD calculations, and the GEP process in general, this poses a huge limitation to its widespread
applicability.

A result from one of the test cases is presented below.
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Figure 2.7: A visualization of the performance of the CFD-driven genetic algorithm framework
[93]

Frozen data refers to using time-averaged high fidelity data. It can be observed that the proposed
CFD-driven algorithm is much more accurate in this test setup. Further insights into the performance
can be gained from [93].

Kolmogorov-Arnold Networks
Recently, Kolmogorov-Arnold Networks (KANs), inspired by the Kolmogorov-Arnold theorem. Rather
than having learnable weights with fixed activation function, KANs have learnable activation functions
themselves, and the weight parameters are replaced by univariate parametrized functions represented
in the form of splines [45], defined as

f(x) =
2n+1∑
q=1

Φq(

n∑
p=1

ϕq,p(xp)). (2.55)

A visual representation of the KAN network, along with the mathematical formula, is presented below.

Figure 2.8: A visualization of the KANs network
[45]

An upper hand that KANs possess is its scalability. It is illustrated, through several examples, that
KANs require fewer parameters than much deeper MLPs. It was claimed that KANs are more effective
at representing functions for regression, and solving Partial Differential Equations. While KANs showed
a higher order for the reduction of testing root mean square errors with increasing parameters (l ∝ N−α)
where l represents the test RMSE, N the number of parameters, and α as the scaling exponent, MLPs
scaled much slowly and reached a plateau quickly. This is shown below.
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Figure 2.9: A visualization of scaling performance of KANs
[45]

It can be seen that KANs can achieve a scaling ∝ N−4 while MLPs are quick to slow down and plateau.
However, they also stated that for the same number of parameters, KANs can be much slower to train.

Furthermore, since KANs are based on splines, they exhibit the concept of fine graining. In MLPs,
increasing the width and depth are the ways to improve the performance which can lead to slow scaling
performance (shown earlier) and expensive. However, one can first train with very few parameters,
and if required, can extend it to more parameters by making the spline grids finer, without the need to
retraining a large model from scratch. This results in a more accurate spline to approximate the function
space, and is much cheaper as well. The method is able to generate interpretable symbolic models,
and also allow for effective pruning to reduce the functional space. Pruning is the process wherein
neurons, edges, and inputs below a certain threshold are automatically removed from the network and
it focuses only on the essential features and parameters and optimizes them to achieve the required
results. This simplifies the KAN architecture and makes them more interactive and interpretable.

In light of the detailed literature, the current study will focus on the implementation of an open-
box framework, i.e., Genetic Programming (GP). Henceforth, discussions will be made in refer-
ence to GP and literature will be discussed to make this algorithm more efficient in terms of
computational cost.

In addition, given the advantage of KANs to generate a symbolic model, and initial proofs show-
ing its high interpretability and improved scaling, they will also be researched upon.

2.8.2. Review and Analysis of Genetic Programming Methods and Applications
There have been several attempts to implement methodologies to accelerate the convergence of con-
ventional genetic programming method, and their application has not been limited to CFD-related prob-
lems.

A popular method is the implementation of probabilistic techniques to guide the evolutionary process
of genetic algorithms. In the works of Hauschild et al., the concept of Estimation of Distribution Algo-
rithms (EDA) was introduced to explore the space of potential solutions by building probabilistic models
[27]. They stated that the use of explicit probabilistic models provided an enhancement in the search
efficiency over other types of population-based evolutionary algorithms. Based on the probabilistic
models that are used, the EDA’s can be categorized such as Extended Compact Genetic Algorithms,
and Probabilistic Incremental Program Evolution among others. Building on this, a linear genetic pro-
gramming structure was adopted, coupled with a probability model [68]. This captured the structure of
the fit(ter) individuals and used it to sample new individuals. Each rule that governed the selection of a
parameter (operator or feature) set at a node had an associated (independent) probability distribution.
Two different approaches were tested - one where the individuals were sampled at every generation
from the probabilistic model, and another in which the resampling was done only at ”s” generations with
conventional genetic programming used as reference. Their study indicated that resampling at every
generation resulted in high success rates (determined by Mean Absolute Error and Median Absolute
Deviation), followed by hybrid approaches, and then followed by conventional linear genetic program-
ming. They tested their algorithms on symbolic regression problems, such as nguyen1, nguyen2, and
keijzer4 among others. The problems and their datasets can be referenced from [68]. Moreover, beam
designing was also achieved by implementing probabilistic-based natural selections in a genetic al-
gorithm [58]. Individuals were assigned probabilities based on fitness scores which resulted in good
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combinations likely to propagate, all the while maintaining diversity. Their study showed that they were
able to achieve lower mean errors, and narrower confidence intervals with the modified approach, thus
producing more accurate and reliable results.

Elsewhere, mimetic algorithms have also been popular. In the field of Computer Science, combining
evolutionary algorithms with local exploitation techniques are also referred to asmimetic algorithms [33].
For example, a tree based structure was adopted and instead of biasing the creation of individuals using
probabilities, genetic evolution operators such as crossover were modified, via back propagation [47].
Treating a GP individuals similar to a neural network, the partial derivative of each node was calculated
and this denoted the change a node/sub-tree can make towards the context of the tree. Ranking nodes
based on the values, they predicted the impact of sub-trees and concluded that if a small change in the
tree’s behavior was to be made, a low impact site can be selected for crossover, and vice-versa. This
prevented the random crossover wherein information regarding the tree structure was lost, and was
accomplished by incorporating derivatives. On several symbolic regression problems, they were able
to prove that their proposed method of redefining the crossover operation gave lower testing and train-
ing errors than other methods. However, despite achieving superior performance, incorporating back
propagation meant evaluating derivatives and doing significantly higher tree (function) evaluations.

In related work, geometric semantic GP (GSGP) was adopted with gradient-based optimizers to to
achieve the same [59]. Unlike tree based GP where the highlight is on the structure, GSGP focuses on
the semantic aspect, i.e., how it will behave for given inputs. The individuals, programmed in the form
of list, were subjected to Adam and Stochastic Gradient Descent Algorithm (SGD). Adam was able to
outperform SGD and improved fitness results were attained after a few evaluations when compared
to the converged results of conventional GP. However, instabilities were present and the performance
was dependent on the selection of hyper-parameters. Although the algorithm was mainly tested on
regression problems (up to 600 variables), the authors’ claimed that it was difficult to generalize for
complex datasets. The optimization was performed with respect to semantic operators such as α, that
is defined below.

• Geometric Semantic Crossover :

T = (T1 · α) + ((1− α) · T2) (2.56)

where 0 ≤ α ≤ 1 and T1, T2 are the parent trees.

Another notable work is related to the tuning of random constants (leaf coefficients) of a tree individ-
ual by gradient descent [73]. The results of local learning (gradient optimization) were coded back to
the genotype (individual) referred to as Lamarckian learning in their study. Applying algorithmic dif-
ferentiation to compute gradients with arithmetic operators (primitive set), they performed regression
analysis. They noted that crossover usually generated individuals with worse fitness levels than their
parents. However, once the coefficients were tuned, the resulting individuals from genetic operation
were appropriate. They concluded that local learning rates could create a bias mote towards more
readily adaptable and fitter individuals. Hence, accelerating convergence to a given point in function
space. In addition, a substantial improvement in final fitness and speed was also observed. However,
similar to the previous study, the cost was increased due to the additional function evaluation (cost of
differentiation). The numerical coefficients were updated in their study, by the following rule.

ck → ck − α
∂MSE(c)

∂ck
(2.57)

Similar work is related to parametrization of GP trees via gradient descent to improve the capabilities
of symbolic regression [60]. This was unique in the sense that they included learnable parameters
(multiplicative factors) for the operands. Hence, instead of having learnable terminal coefficients, they
now had learnable weights for the different operations in an individual. They developed two distinct
approaches - one where each operator would have the same weight for each instance, while the other
wherein a different weight is assigned to each individual operator. Moreover, they also studied the effect
of applying gradient based optimization after each generation, thus impacting the search at subsequent
generations, or only applying at the last generation, after the evolutionary algorithm ends. Using Adam
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with a learning rate of 0.01, it was concluded that GP coupled with gradient optimization was significantly
better than conventional GP. They were able to achieve faster convergence of the evolutionary search
process while testing on complex real-life regression datasets with greater than 5 features. A visual
representation of their individual structure is shown below.

Figure 2.10: Parametrized GP with learnable weights
[60]

While the individual can be computed as (x−2)+(y+3) from the right tree, it would now be computed
as w1 · (w3 · x− w4 · 2) + w2 · (w5 · y + w6 · 3)

Another novel approach to incorporate gradient based optimization into genetic programs was making
the use of differentiable symbolic trees to relax the discrete structure (function space) into a continuous
form [91]. They devised two different matrices to do so. A node matrix, which consisted of probabilities
of a node taking certain operators or variables (features). They were learnable and softmax activation
was applied to derive the matrix. The adjacency matrix represented the strength of connection between
nodes. It was used in sampling step and essentially, it dictated the contribution of multiple child nodes
to a parent node. A common issue with mimetic algorithms is that the local search method can force
the solution to converge to a local optima and avoid large explorations. The authors’ addressed this
by sampling from the optimized differentiable trees. They tested their algorithm on real-world bench-
marks (100+ features) and synthetic (regression) cases. They were able to observe that their proposed
method outperformed all GP-based and neural network based symbolic regression methods. They con-
cluded that they were able to achieve superior results because differentiable symbolic trees allowed
for a continuous search in localized space, while diversification helped escape local optima.

The literature above gives us an overview of recent developments in genetic programming, to
converge to superior results quickly. Given strong evidence that this results in improved and
consistent performances when tested, the present thesis will focus on developing a mimetic
algorithm to achieve superior results.

2.8.3. Review of Applications of KANs
Explained in Subsubsection 2.8.1.7, KANs have been applied for different problems. An example is the
application of KANs for predictive modeling of flexible electro hydrodynamic pumps [57]. Leveraging
the ability of having learnable activation functions, they were able to learn the nonlinear relationships
with greater flexibility. Using it for pressure and mass flow rate predictions, they utilized two hidden
layers and cubic splines with 5 input features and 2 output features. In addition, they made use of the
LBFGS optimizer, and pruning to streamline to architecture. They were able to extract the symbolic
formula which provided themwith further interpretability and understand how different quantities behave
and their relations. Furthermore, on comparison with Random Forest and MLP’s, they were able to
obtain better predictive accuracies. Another similar work follows the application of KANs to time series
forecasting [89]. They proposed two variants, namely the T-KAN and MT-KAN. The former was used
to detect concept drift and essentially capture the non linear relationships between predictions and
previous time steps through symbolic regression. The latter, on the other hand, was used to improve
predictive performance by effectively uncovering and leveraging the complex relationships (temporal
dependencies) among variables in a multivariate time series. From their results, they were able to
conclude that T-KAN, only with a single hidden layer with 5 neurons, achieved efficiency and robustness
comparable to other models making use of additional hidden layers (and neurons). Moreover, T-KAN
only made use of 193 parameters, as compared to Long Short Term Memory Network (along with Multi
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Layer Perceptrons and Recurrent Neural Networks) model that made use of roughly 11,671 parameters
to achieve the same level of accuracy.

KANs have also been utilized in conjunction with evolutionary algorithms [25]. In their study, they used
KANs as a surrogate model to evaluate the fitness of individuals that were generated by a genetic
program. The fitness was approximated based on previously evaluated data and predicted the perfor-
mance of the offspring. It aided in making informed decisions about which solutions to carry forward.
The surrogate was constructed using a set of already-evaluated solutions to learn the underlying pat-
terns. In addition, they were also train on the top x% of the individuals to assist in choosing the best
solution from the offspring. They showed that such a combination yielded quick convergence when
compared to MLPs, Bayesian Optimization, and other methods.

Elsewhere, KANs have also been coupled with Graph Neural Networks (GNN) [15]. They propose
GKAN, combining both the techniques and showed that it outperformed state-of-the-art GNN models
in node classification, link prediction, and graph classification tasks. In addition to this, they state that
GKANs provide clear insights into the model’s decision-making process, enhancing interpretability.

Theworksmentioned above demonstrate the capability of KANs and their superior performance
is clearly visible onmultiple datasets. Hence, this thesiswill involve implementingKANs onCFD
datasets and determine if it can efficiently learn the symbolic form of the corrective terms.

2.9. Research Questions
With the detailed literature review done above that gives us a thorough background on CFD models,
their limits, and the application of machine learning techniques in improving them, the research ques-
tions are summarized below.

The focus of the present thesis is to develop (and utilize existing) algorithm(s) to construct in-
terpretable models for correcting different quantities such as RST and the Turbulent Production.
It needs to be determine whether they can achieve acceptable correlations while ensuring re-
duced calls to the objective function (CFD solver) during the optimization process. Themethods
selected for this research are Genetic Programming, and Kolmogorov Arnold Networks.

Once accomplished, it will be investigated if the best-performing method can be used in an
a posteriori framework to improve the turbulence modeling which involves differentiating the
CFD code during the optimization process.

It can be sub-divided into the following objectives and questions that reflect the literature.

• Can genetic programs (algorithms) that are incorporated with information from derivatives (gra-
dients, and hessians) achieve quicker convergence, with reduced function evaluations, and ac-
ceptable correlations?

• How andwhich parameters (population size, evolution probabilities, number of generations) would
need to be optimized, in addition to the frequency and optimizer used?

• Does the local search overshadow the exploratory ability of genetic algorithms to observe large
function spaces, causing the solution to converge to a local optima?

• Can KANs be used on CFD datasets and converge to superior results with reduced function
evaluations? Can the learnable activation functions capture the complex (non linear) relation
between different quantities?

• Can the superior method maintain its performance when applied in an a posteriori setting and if
a generalizable model be obtained that is applicable for different flow cases without encountering
overfitting and stability issues? Is the symbolic formula physically meaningful?



3
Methodology

This chapter explains the working of the selected algorithms - Genetic Programming and KANs. It
describes the methodology adopted to generate corrective fields for turbulent production and RST,
and how it is ensured that the flow physics do not change with the reference frame (invariance). The
chapter then presents the development of the a posteriori framework using the algorithm found to be
most effective, with details on the implemented turbulence model.

3.1. Working of Genetic Programming
In the work of Mr. Koza, genetic programming initially enabled computers to solve problems without
being programmed [38]. This was further developed by John Holland’s genetic algorithm that generated
programs to solve various optimization problems, also laying the foundation for the present work [31].

Genetic Programs are a population based optimization algorithm. Population refers to a set of indi-
viduals, and these individuals, over a given number of iterations or generations, are evolved through
evolutionary operators to converge to the optimum solution. An individual will be referred to as a chro-
mosome, while the individual terms (symbols) that make up an individual will be called as genes in the
framework of genetic programming, for the present study.

A general representation of chromosomes, genes and a population is shown below.

Figure 3.1: Genetic program representation

Each individual is assigned a fitness value that corresponds to how well it performs in optimizing the ob-
jective function [1]. Based on natural selection, chromosomes with higher fitness values have a higher
chance to be propagated to the next generation and influence the evolutionary process. Such algo-
rithms need to evolve the individuals such that there is diversity in the population to allow exploration
of large functional spaces, thus preventing premature convergence to a local optima, and is achieved
via crossover and mutation. Crossover refers to the selection of two individuals and swapping them at

23
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a point. This point is chosen at random in a way such that the syntactical structure of the chromosome
remains intact. Mutation is another tool which selects a random node in an individual and replaces it
with a randomly generated expression. While the aim of such operators is to also modify the individu-
als in the direction of achieving a global optima, however, since they are random, it is often observed
that useful combinations of terms may be broken, and an individual’s fitness may worsen due to such
evolutionary tools.

The ability of genetic programs to efficiently explore the function space and optimize the objective is
influenced by population size, crossover and mutation probabilities, and total number of generations
among others.

Visualization of the genetic operators is shown below.

(a) One point crossover

(b) Uniform mutation

Figure 3.2: Genetic operators: (a) One point crossover, (b) Uniform mutation

Figure 3.2a shows us the process of one point crossover wherein two parents are selected and a
random point for interchanging their genes is chosen such that the overall syntax of the individual
remains valid. Figure 3.2b shows the process of uniform mutation, implemented by the DEAP package
in Python.

The main steps in a genetic algorithm are mentioned below.
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• Initialize the population using parameters such as probabilities of evolutionary operators, number
of generations and the number of individuals. The individuals have to be created with a certain
syntax (structure). There is no standard for the parameter values.

• Evaluate the individuals of the population and assign them numerical fitness scores based on a
chosenmetric for evaluation such as root mean square error, andR2 scores. The fitness measure
gives an indication to the algorithm on what needs to be performed further to achieve the optimal
objective function value.

• Selecting individuals for the next generation. In addition to selecting the best individual (elitism), in-
dividuals may be subjected to selection procedures such as tournament, roulette wheel, stochas-
tic methods, and so on. This is done to selectively pick individuals to either directly clone to the
next generation, or further undergo evolutionary operations. For further details on the selection
methods, the reader can refer to [1]

• Applying evolutionary operations to maintain diversity and evolve the individuals in the direction
of achieving an optimal objective value. Crossover and mutation are the two main techniques,
which have been explained earlier.

• Once the solution attains convergence, the algorithm may be terminated. This can be done in
three distinct ways. The number of generations can be specified beforehand, or the algorithm can
be terminated once tolerance levels in the fitness scores or the pre-set optimal requirement has
been met. The third way is to terminate after the Pareto-optimal solution (multi-point objectives),
with no better results further achievable [56]. Both, the number of generations in total, and the
desired tolerance level will be specified in our codes. The required data is recorded as well to
then evaluate the performance of the algorithm.

A pseudo algorithm of the genetic programming concept used for this thesis is also shown below, for
better understanding.

Algorithm 1: Genetic Algorithm Framework

1 Procedure Genetic_Algorithm;
Input: Define an initial parent population based on parameters, described earlier
Result: Optimal (elite) individual after optimization

2 for g = 1 to total generations do
3 fitness = evaluate fitness of individuals in parent population;
4 elite = optimal individual in parent population;
5 offspring = TournamentSelection(parent population);
6 foreach i in offspring do
7 if random.random() ≤ mutation probability then
8 1 = SelectParent(parent population);
9 1 = Mutate(1);
10 Insert(1, offspring);

11 foreach i in offspring do
12 if random.random() ≤ crossover probability then
13 1, 2 = SelectParent(parent population);
14 1, 2 = Crossover(1, 2);
15 Insert(1, 2, offspring);

16 parent population = elite + evolved offspring;
17 if fitness of elite satisfies tolerance then
18 Break;

19 return elite

This algorithm is followed for the implementation of conventional genetic programming, without any fur-
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ther optimization methods. The elite individual is returned and used to see how the algorithm performs.
Note that tournament selection is used as the mechanism to pick out individuals for the offspring as it
is one of the most significant selection methods in GA’s, due to being highly effective and easily imple-
mentable [1]. In this approach, X individuals are selected from a population of size Y. These selected
individuals are subjected to a tournament and the one with optimal fitness scores is added to the off-
spring. This method gives an opportunity for all individuals, good and bad, to be selected and helps in
retaining diversity thus not hindering the global search capabilities of genetic algorithms, provided the
tournament size is not very large.

A pseudo algorithm of the tournament selection mechanism can be referenced from Appendix Section
A.1.

From the reviewed literature in Subsection 2.8.1, individuals have been coded in the form of a tree
when genetic program has been applied on CFD datasets [81] [93]. This is known as a tree-based
genetic programming (TGP). In such a structure, there is a tree (root) node that consists of functions
such as +,−, /,×, while the terminal (leaf) node consists of a variable. They offer the advantage of
high interpretability when the final model is obtained. In addition, TGP has found its use in different
domains such as quantum computing, solving complex optimization problems, search problems, and
pattern recognition among others [6] [13]. An individual of TGP form is shown below.

Figure 3.3: An individual in tree format

An individual can be read via a bottom-up approach, and the above individual in Figure 3.3 is equivalent
to

TGPindividual = log(ARG4− (−0.566)) + exp(log(4.502)) (3.1)
Note that the operators have different names as compared to their conventional operator names such
as add, it is prefixed by weighted_. In addition, some operators such as log, exp, div have protected in
the names as well. This is to indicate that the basic operation of these operators has been modified
to avoid instabilities or overflowing values, such as log(x) where x < 1, or exp of a very large number.
This convention of naming the operators via this method is followed throughout the current study for
the author’s convenience. Moreover, nodes with an ARG_ are used to represent the input features.

3.2. Gradient Optimized Genetic Programming
The gradient based genetic program (mimetic algorithm) developed for this thesis couples genetic
program (algorithm 1) with a gradient optimization technique. From the population, a biased set of
individuals is selected via the tournament selection method. By implementing tournament selection,
diversity is ensured among the individuals as it gives a fair chance to the bad individuals to be selected
as well. Continuing, another subgroup is created from this biased distribution set via random sampling.
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These randomly samples individuals are then selected for optimization via the gradient method of an
appropriate choice. The reason to create such sub-sets of individuals within the population is to pre-
vent applying gradient optimization to all the individuals in a generation. If done so, only optimized
individuals would be propagated to the next generation, leaving minimal opportunity for variability and
diversity. This could then result in the algorithm achieving premature convergence without exploring
enough functional spaces to reach the global optima. Moreover, the current thesis is focused on re-
ducing the function evaluations. Optimizing each individual will unnecessarily increase the function
evaluations. Hence, to avoid large number of function calls, and ensure good results, the above proce-
dure is followed. The selected individuals then undergo optimization to modify the terminal constants
and the operator weights as well.

To optimize the individuals by a gradient method, using a TGP is not suitable as it is not trivial to modify
the nodes. This is because the DEAP library in Python represents individuals in the form of objects with
a unique identifier tag, such as of the form < 07xxxxx>. Although individual nodes may be accessible
and optimized, inserting the modified constants (and functions) back into the tree may break this identi-
fier tag, resulting in an error when an individual is evaluated or subjected to evolution. Hence, a linear
genetic programming (LGP) is employed. It is a variant of GP in which the individual is expressed in the
form of a linear list and the nodes are now stacked (appended) one over the other as shown in Figure
3.2. The decision to do so was the straightforward implementation of the nodes of the individuals with
scipy or PyTorch based gradient methods to optimize the nodes (operators and terminals) when an
LGP based individual was used. However, given that a tree based individual is much easier to interpret
and that LGP has a higher compiler overhead than the TGP, the linear list was then converted back to
a tree after optimization was performed [1]. In addition to this, implementation of evolutionary tools on
tree based individuals can be achieved directly from the DEAP packages. Hence, the gradient based
genetic programming algorithms made use of two different individual representations - a tree based
structure at all times, and a linear based structure when the individuals were subjected to optimization.

An individual, in its tree and linear list format, is visualized below for further clarity on these concepts.

Figure 3.4: TGP individual

Linear Sequence

ARG1, ARG2, weighted_protecteddiv, weighted_protectedlog, -1.075,
ARG2, weighted_add, ARG3, weighted_protectednexp, weighted_mul, weighted_protecteddiv.

Figure 3.5: LGP individual
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The following individual is equivalent to

exp(ARG3)× (ARG2 + (−1.075))
log(ARG2

ARG1 )
(3.2)

There are two components of the individual to optimize - the operators and the terminal constants.
After converting the tree based individual to a linear list based individual, it is then checked for how
many constants and operators are present in the individual. These terms are then assigned weights
that would be optimized by a gradient optimizer. The term at that node essentially becomes equivalent
to the term multiplied by the optimized weight. For instance, a terminal constant 2.3, which is a part
of a larger tree or an individual, has an initial weight of 1.0. With respect to a conventional genetic
algorithm, the 2.3 is taken as it is, and at the beginning of the optimization process, the 2.3 is multiplied
by 1.0, inherently reducing to a conventional algorithm. However, once these weights are optimized,
it may change to -0.67. Thus, the resulting constant becomes equivalent to 2.3 × -0.67 which equals
-1.541. This new constant is then inserted into the primitive set to avoid issues when converting the
linear list back to a tree representation, and subjecting it to evolutionary operators. In a way, these
weights represent how much a particular node (terminal or a function) is contributing to the prediction
of a target variable. Similarly, the function or the operator set is also optimized. For example, the
addition operator is acting on two variables, x1, x2 and the resultant is R = x1 + x2. This result is
stored under the addition function set. Initially assigning a weight of 1, it is equivalent toW ×R, where
W represents the weight. This weight is then optimized by the same gradient method. The optimized
weight, for the sake of understanding, becomes 1.2. Thus, the new resultant of the addition operator
will be equivalent to 1.2 × R, or 1.2 × (x1 + x2). This is defined as a new function in the primitive set
so there are no errors with the attributes of the individual and no connections are broken such as the
identifier tags. This is procedure of optimizing the terminal and operator nodes of an individual. The
modified individual (with a higher fitness value) is then inserted back to the population to guide the
evolution process.

A graphical representation of the optimization process is shown below.
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(a)

(b)

Figure 3.6: Comparison of the original and optimized individuals during the optimization process.

Optimizing W of each operator

Figure 3.6b shows how the weights of each operator are optimized, and gives a clear illustration of
the process. Initially set as 1 when an individual is created, the learnable weights (associated with the
operators) are then optimized by the gradient method. For instance, observing the right sub-tree, it was
computed initially as R = 1× (−0.408+0.288). However, after optimization, it will now be evaluated as
R = W × (−0.408 + 0.288), where W = 1.036. The number following the weight is a unique identifier,
given to each optimizer operator when added to the pset.

During the optimization process, the objective is defined as the root mean square error. Thus, at
each iteration of the optimizer when the weights are changed or optimized, the linear sequence of the
individual is evaluated. The resulting loss function then further guides the optimization process and
serves as the cost (objective) function which is to be minimized via these weights.

As the tree structure is converted to a linear list, the identifier tag is broken and hence the evaluation
of the individuals cannot occur via the DEAP package as it does not have the fitness attribute. In
order to tackle this, an explicit function is written which evaluates the resulting linear sequence of the
individual in a proper manner. However, once the optimization is completed, the weights are added in
the primitive set which restores the connection.
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Once the optimization of all the individuals are completed, they are converted back to trees. The
rest of the algorithm follows as algorithm 1, wherein an offspring is created via tournament selection,
which is then subjected to crossover and mutation operations. Thus in this manner, the individuals are
optimized and are inserted back into the population to guide the evolution process. This is how advan-
tage of both local search (gradient) methods, and global search (genetic programming) is leveraged
to achieve accelerated convergence (reduced function calls) to the global optima by incorporating the
extra information and reflecting it back onto the population.

A pseudo algorithm explaining the working of the gradient based genetic program is presented below.

Algorithm 2: Genetic Algorithm with gradient optimization Framework

1 Procedure Genetic_Algorithm;
Input: Define an initial parent population based on parameters, described earlier
Result: Optimal (elite) individual after optimization

2 for g = 1 to total generations do
3 fitness = evaluate fitness of individuals in parent population;
4 elite = optimal individual in parent population;
5 biased set = TournamentSelection(parent population);
6 optimization set = RandomSampling(biased set);
7 foreach i in optimization set do
8 original individual = SelectIndividual(optimization set);
9 optimized individual = GradientOptimize(individual 1);
10 Delete(original individual from parent population);
11 Insert(optimized individual into parent population);
12 statistics = RecordStatistics(parent population);
13 gradient optimized elite = optimal individual in parent population;
14 offspring = TournamentSelection(parent population);
15 foreach i in offspring do
16 if random.random() ≤ mutation probability then
17 1 = SelectParent(parent population);
18 1 = Mutate();
19 Insert(1 into offspring);

20 foreach i in offspring do
21 if random.random() ≤ crossover probability then
22 1, 2 = SelectParent(parent population);
23 1, 2 = Crossover(1, 2);
24 Insert(1, 2, into offspring);

25 parent population = elite + gradient optimized elite + evolved offspring;
26 if fitness of gradient optimized elite or elite satisfies tolerance then
27 Break;

28 return gradient optimized elite or elite

In this case, 2 elites are selected. One before optimization and one after optimization. This is taken as
a precaution in the case that the optimization fails to improve the fitness of the elite, the default elite
will still be present to guide the evolution process.

Pseudo algorithms for the different steps in the gradient based optimization process are shown below.
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Algorithm 3: Initialization of weights and individual pre-evaluation
Input: Individual represented as a tree structure
Output: Optimized individual with weighted operators and terminals

1 Procedure Optimize_Terminals_and_Operators(individual);
2 Convert TGP Individual into a linear representation (LGP Individual);
3 check = 0;
4 Initialize empty lists: weights;

5 foreach node element in LGP Individual do
6 if element is a constant and not an operator or feature then
7 Assign a learnable weight (requires_grad=True);
8 Store its position;
9 check = 1;

10 else if element is an operator then
11 Assign a learnable weight (requires_grad=True);
12 Store its position;
13 check = 1;
14 else
15 Assign a fixed weight (requires_grad=False);
16 Store weights and positions for the sequence;
17 if check = 0 then
18 return LGP Individual // No optimization needed

19 Perform optimization using gradient-based approach:

20 foreach position in optimized positions do
21 if node element is a weighted operator then
22 Compute weighted operator name and update primitive set;
23 else if node element is a constant then
24 Compute new constant value and update primitive set;

25 return LGP Individual with optimized weights
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Algorithm 4: Gradient-Based Optimization for Terminal and Operator Weights
Input: Linear sequence(s) L, inputs Xnondim, Xdim, initial weightsW indices to optimize I
Output: Optimized weights and final loss

1 Procedure Optimization(L, Xnondim, Xdim,W, I);
2 InitializeWoverall with ones for each node element in L;
3 foreach index i in positions do
4 Assign a random initial learnable weight in the range [0.9, 1.1] toWlearnable[i];

5 Define Objective_Function(Wlearnable);
6 CopyWoverall toWupdated;
7 AssignWlearnable to corresponding positions inWupdated;
8 Compute predicted outputs Ypred using

Evaluate_Linear_Sequence(L, Xnondim, Xdim,Wupdated);
9 Compute loss as the mean squared error: Loss = 1

N

∑
(Ytrain − Ypred)2;

10 return Loss;
11 FlattenWoverall for optimization;
12 Solve optimization using preferred gradient method with Objective_Function ;
13 foreach optimized index k do
14 UpdateWoverall with optimized weights;
15 Store function evaluation counts nfev, njev;
16 return Final loss and optimizedWoverall;

3.2.1. Gradient based optimization methods
Given the wide variety of optimizers available, 4 were chosen to be implemented. Newton’s method
is one of the most popular optimization algorithms that is based on using second order information
(Hessians). It constructs a local quadratic approximation, based on the 2nd order Taylor series, and
minimizes that. It can find the global minima of a quadratic function immediately. However, if the
Hessian is not positive definite, the solution diverges, in addition to the evaluation of Hessian being
impractical as well, for a large dataset. Thus, it is not robust. Given that this thesis is related to CFD
simulations, achieving converged stable solutions quickly is a primary focus to avoid the CFD solver
blowing up, therefore, implementing a model that is not robust will not be helpful, and hence, not used.
Alternatives to Newtons methods are the trust region, and quasi-Newton methods (1st order) that rely
on approximating the step size based on a trust region, or approximating the Hessian by utilizing only
first-order derivative information to do so. The former will be touched upon first, and then the latter will
be discussed.

Trust Region Method
Newton’s method, which is computationally cheapest on the Rosenbrock function in terms of the num-
ber of function calls, can further be made robust by applying the trust region approach [55]. The trust
region methodology makes use of the concept that the model approximation around the current point
(iterate), of the objective function, is bounded by a trust region wherein it is optimized. The trust region
essentially limits the search space to ensure that the local quadratic approximation also remains locally
valid and remains a good model. It is based on approximation quality, and is updated depending on
how well the model is able to estimate the objective function. At each iteration, a subproblem is solved
to find the optimum step size to minimize the model approximation. The methodology is formulated as

min
∆x

(
f(x) +∇f(x)T∆x+

1

2
∆xTH(x)∆x

)
.

subject to: ∥∆x∥ ≤ ε

where ε defines the trust region.

The scipy.optimize package offers the implementation of the trust region reflective, trf, method to op-
timize a nonlinear problem using the first-order optimality condition. It is based on a second order
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approximation by utilizing the Gauss Newton method via the Jacobian. The implementation of the
method can be found in [7].

L-BFGS optimization
Moving to quasi-Newton methods, a first order Taylor approximation of the gradient is used to approx-
imate the Hessian. The BFGS (Broyden, Fletcher, Goldfarb, Shannon) method is a Quasi-Newton
method, and is more robust and able to tackle the issue of computing Hessians at each step. How-
ever, for large problems that involve multiple features, it stores a dense matrix that approximates the
Hessian. This makes it memory intensive and unsuitable for multi-dimensional problems. Hence, the
Limited-memory BFGS (L-BFGS) is a strong candidate to be used along with GP, as it uses a limited
amount of computer memory [44].

It should be noted that the quasi-Newton optimizers make use of the Wolfe conditions to perform the
unconstrained minimization (loss function). It is used to determine a sufficient step size, α during the
line search to proceed to the global solution in an appropriate manner [52]. This is mainly because the
Hessian is not used directly, rather, an approximation of the inverse Hessian is, thus, the information
for a suitable step size is lost. Hence, line search is implemented, via iteratively testing candidate step
sizes, which further involves function and gradient calls to ensure the step is appropriate by checking
the curvature condition. The scipy.optimize library in Python provides the implementation of the LBFGS
method and its implementation can be referenced from [10].

Levenberg-Marquardt Method
The problems in Newton’s methods can also be tackled by the Levenberg-Marquardt method. It rede-
fines the Hessian into a modified version (approximation) given by

H̃ = H + βI. (3.3)

This is done so that H̃ remains positive definite at all times. The Hessian approximation, for function
curvature insights, is based on the information from Jacobians. scipy.optimize provides the implemen-
tation of the Levenberg-Marquardt method for nonlinear problems. It applies the method formulated
as a trust-region type algorithm to update the parameter β, and is very robust. If interested, the reader
can find the implementation in [50].

Adam: Adaptive Moment Estimation
Another common gradient based optimizer that has been used with GP is Adam [59]. It is a first-
order based method, efficient, and easily implementable. In addition to the inputs, Adam also requires
the specification of the learning and exponential decay rates. However, the learning rate for each
parameter is adjusted based on the gradients by the optimizer. The reader can find further information
on the optimizer from [37].

Based on preliminary results from symbolic benchmark problems, procedure explained in Section 3.4,
an optimizer and its settings were then finalized.

This completes the methodology on the developed mimetic algorithm as a part of this thesis, which
is able to successfully implement the global search method - genetic programming, and leverage the
advantages of a local search method to exploit functional spaces - gradient based optimization.

3.3. Working of Kolmogorov-Arnold Networks
This section will focus on the parameters of KANs. To implement the method, the source codes were
used from the developers, available at https://github.com/KindXiaoming/pykan. Building up on
(Equation 2.55), a general output of a KAN network, with L layers, can be written as

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0)x. (3.4)

wherein ΦL,ΦL−1 represent the linear and nonlinear transformations (activation functions). In the im-
plementation, a residual activation function is added such that the activation function ϕ(x) is equivalent
to the sum of the spline function, and the residual function. A silu function is taken as the residual basis
function, b(x). The activation can thus be written as

ϕ(x) = wbb(x) + wsspline(x), (3.5)

https://github.com/KindXiaoming/pykan
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In the context of KANs, it is the spline(x) that is learnable.

A silu function is smooth everywhere and allows for expressive representations, and improves the over-
all stability of the model. In addition, for a large input, it behaves like an identity function (linearly) and
can introduce non-nonlinearities for small or negative inputs as well. It acts similar to a residual connec-
tion, hence, facilitates training of deeper networks, and prevents performance degradation. Moreover,
it helps in preserving gradient flow, which can be affected due to the vanishing gradient problem, further
affecting the learning process [4].

The splines can be represented as a linear combination of B-splines which are further a combination
of Bezier curves. In space domain, these curves can be represented via Bernstein basis polynomials,
given by

B(x) =

n∑
i=0

(
n

i

)
(1− x)n−ixiPi =

n∑
i=0

bi,n(x)Pi.

The points to interpolate between are referred to as control points, and each Bernstein basis, bi,n gives
information about the contribution of each point. The B-splines can be formulated in a similar sense to
the Bezier curves, as

S(x) =

n∑
i=0

Ni,n(x)Pi ⇒ spline(x) =
∑
i

ciBi(x), (3.6)

where ci is the control point, andBi(x) represents the basis function. It is this B-spline that corresponds
to the spline(x) part in the activation function ϕ(x) that is learned during training. For simplicity, a spline
of order k = 3 was fixed with 5 number of grid intervals, G. Moreover, a cubic spline ensures C1 level
of continuity at the points where the underlying Bezier curves are joined, or at the knots. Hence, this
makes sure that the function (spline) and the its gradients remains continuous at these points, thus
avoiding potential discontinuities. The number of control points can be computed as

control points = G+ k. (3.7)

This subsequently fixes the basis functions as well. The concept of control points, B-splines, and the
basis function is illustrated and can be referred from Appendix Section A.2.

The remaining parameter, control points (ci), can be treated as weights or coefficients that when multi-
plied with the B-spline basis functions, define the shape of the activation. Moreover, the effect weights
wb, and ws can be absorbed by b(x) and spline(x) respectively, but to better control the overall magni-
tude of the activation function, avoid divergence, and irregular or oscillatory activation functions (over-
fitting/underfitting), these factors are also trainable. Furthermore, some noise is also added to the
initialization of the weights, ci, wb, ws, in order to make the training robust and avoiding sensitivity to
initialization. If interested, the reader can see the initialization of these weights from the source codes,
the link to which (git repository) has been provided earlier. These weights are the parameters of the
KAN network.

An oscillatory activation function due to non-uniform grid initialization is shown below.

(a) Oscillatory activation
function

(b) Smooth activation
function

Figure 3.7: Activation function behavior

Although at different edges, Figure 3.7 shows how an activation function can be represented or approx-
imated in different ways due to improper training or grid initializations. This then has implications on
the final model which can be unstable.
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Once the model is initialized, it undergoes optimization of the parameters via the LBFGS optimizer
where the objective function to minimize is the loss function (root mean square error). This is followed
by pruning when the training is completed. First, the inputs are pruned. This is based on the attribution
scores of the input, and if they are below a certain threshold, the inputs are discarded from the network.
A threshold hyperparameter of value 2 ×10−1 is chosen for our datasets. When inputs are pruned, we
iterate from the output layer to the input layer. Initially, the attribution scores are initialized as an identity
matrix, thus assigning unit scores, for each output. Based on the connectivity of each output node to
the number of sub-nodes in the preceding layer, the scores are distributed among them, also referred
to as sub-node scores. The key step is the calculation of the edge scores. Edge here refers to the
number of connections that a given node has. Based on these sub-node scores which can essentially
be treated as weights, Einstein summation is performed with the standard deviation of the activation
functions over that edge, referred as edge_actscale, and then normalized by the standard deviation of
all the activation functions over that sub-node, referred by subnode_actscale. This is performed over
all the edges that are connected to a given node, and the mean of them gives the node score for a given
neuron. This is back-propagated to the input layer, where subsequently, the node scores for each of
the inputs are computed. The inputs which then have lower attribution scores that the threshold are
discarded from the network.

Mathematically, the input pruning process is formulated below.

edge_scorei =
∑
j

edge_actscaleij × subnode_scorej
subnode_actscalej + 10−4

(3.8)

where:

• edge_actscaleij represents activation scale factors for the edges between subnode j in layer
(l − 1) and node i in layer l.

• subnode_scorej is the attribution score from the previous step.
• subnode_actscalej normalizes the contribution of each edge.

In other words, edge_actscale is a representative of the variance of the activation function at that edge,
and subnode_actscale correspondingly represents the variance in the output from a particular neuron.
The node score is then obtained by averaging the following quantity.

node_scorej =
∑
i

edge_scoreij (3.9)

Once the inputs are pruned, the redundant nodes and edges are removed from the network, as well.
In a similar sense to pruning the inputs, if the node attribution score is below a certain threshold, it
is removed. The threshold value used for node is set to 1 ×10−2. The threshold scores of each
node is calculated in the same way, followed by the initialization of tensors overall_important_up,
and overall_important_down that indicate which nodes are important. Depending on the number
of connections from a particular node, the attribution scores are distributed. This ensures that if a
particular neuron is considered important, then all of its branches are also considered important and
marked as active, to ensure that the information flows from one layer to another in the correct manner.
Similarly, if a neuron is considered to be inactive, or unimportant, it is removed and the corresponding
connections have their masks updated to 0, otherwise initialized as 1. Masks is a term in the context of
KANs which essentially represents if the edge is active or not. With an activation mask of 0, there is no
contribution of that edge in the model. The redundant neurons and edges are removed accordingly. If
the attribution score of the edge is greater than the threshold, set to 3×10−2, the edge is then multiplied
with its activation mask value. This ensures that even if the edge may have a higher threshold, if its
corresponding neuron is inactive, that edge will also be inactive. This avoids the issue of hanging
edges wherein an edge may be present due to a high attribution score, but may not be connected to
any neuron.

A pseudo-algorithm for the pruning of inputs and nodes & edges is presented below.
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Algorithm 5: Input Pruning Based on Attribution Scores
Input: Initialized model
Output: Model with pruned inputs

1 Prune Inputs Based on Attribution Scores;
2 Initialize attribution scores as an identity matrix (unit scores for each output);
3 for each output layer node do
4 Calculate node scores based on connectivity to subnodes in the previous layer;
5 for each edge connected to the node do
6 Retrieve subnode scores (weights for each connection);
7 Perform Einstein summation with standard deviation of the activations over the edge;
8 Normalize the result by the standard deviation of the activation functions over the

sub-node;
9 Average the edge scores to get the final node score for the given neuron;
10 Backpropagate the node scores to the input layer;

11 Calculate Final Input Scores;
12 for each input node do
13 Compute node scores from backpropagated values (propagate score from output to input);

14 Prune Inputs Below the Threshold;
15 Define a pruning threshold value (e.g., 2× 10−1);
16 for each input node do
17 if input node’s attribution score is below the threshold then
18 Discard the input node from the network;

19 Update the Model;

Algorithm 6: Pruning of Nodes and Edges Based on Attribution Scores
Input: Initialized model, threshold values for node and edge
Output: Pruned model with redundant nodes and edges removed

1 Prune Redundant Nodes;
2 Define node pruning threshold value (e.g., 1× 10−2);
3 for each node in the network do
4 Calculate the node attribution score based on connectivity and edge weights;
5 if node attribution score is below threshold then
6 Remove the node from the network;
7 Update masks for incoming and outgoing edges of the removed node to 0;

8 Identify Important Nodes and Update Connections;
9 Initialize tensors overall_important_up and overall_important_down;
10 For each active node, distribute its importance score across its connected nodes and edges;
11 for each active node do
12 Mark connected branches as important based on node attribution score;

13 Prune Redundant Edges;
14 Define edge pruning threshold value (e.g., 3× 10−2);
15 for each edge in the network do
16 Retrieve the edge attribution score based on its connected nodes;
17 if edge attribution score is greater than threshold then
18 Multiply the edge with its mask value;

19 Update the Model;

With pruning completed, the activations functions were set to be symbolic. A library of unary functions
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was given to KANs and each of the activation functions were approximated by the functions in the
library. The best fit, in terms of R2 score was chosen as the symbolic representative for that activation
function. An advantage of KANs is that it can also perform affine transformations of the input library
functions. Hence, if sin(x) is not a good fit, it can scale and shift the function to the form a · sin(bx).

An activation mask is used to determine whether an edge is active or not. Similarly, a symbolic mask
is used to determine if a certain connection is particularly valid, and if it can be represented via a
mathematical function, remains interpretable, is physically and mathematically correct.

Once completed, the model was trained again, and then finally the symbolic formula was exported in
the form of symbolic equations. If the network had multiple outputs, each output had its own symbolic
equation. The equations represented the final output of the model after the training. To promote a
simplistic model, basic algebraic and trigonometric functions were given in the library. This avoided
overly complex equations for turbulent production and the Reynolds Stress Tensor, and a trained model
with functions that could possibly cause bloating or divergence when put in the CFD solver, such as 1

x5 ,
exp(x), and log(x) among others.

The pseudo-algorithm of KANs, outlining the important steps is shown below.

Algorithm 7: KAN Pruning and Symbolic Regression
Input: Input dataset
Output: Pruned and trained model with symbolic representation

1 Step 1: Model initialization with input data;
2 Step 2: Prune Inputs Based on Attribution Scores;
3 prune_input()→ Algorithm 5;

4 Step 2: Prune Nodes and Edges;
5 prune()→ Algorithm 6;

6 Step 3: Update the Model;
7 Make a copy of the original model;
8 Remove unnecessary neurons from each layer;
9 Update the model by removing redundant edges;

10 Step 4: Train the pruned Model;
11 Step 4: Convert Activations to Symbolic Form;
12 Define a library of unary functions for symbolic representation;
13 for each activation function in the network do
14 Approximate using best fit function based on R2 score;
15 if symbolic mask and activation mask is 0 then
16 Set activation function to 0;

17 Step 5: Train the Model and Export Symbolic Formula;
18 Export symbolic formula for each output as equations;
19 Ensure mathematical correctness and interpretability;

3.4. Algorithm development procedure
An 80%-20% (training-testing) split is made for any dataset for the frozen or any a priori analysis.
This helps to identify if the model is overfitting on the training data and behaving poorly on unseen data,
or if it is able to train a sufficiently capable model and maintain the correlations. Based on the result,
parameters such as crossover, and mutation probabilities, population size, or number of grid points can
be changed for further refinement, if need be.

The development of the gradient based genetic algorithm was tracked by testing it against different
symbolic regression benchmark problems, referenced from [63], and [39]. Given the inherent random
nature of genetic programs, it is not possible to draw valid conclusions after one complete run with
a given dataset, and using one particular random seed. Hence, to tackle this, multiple runs were
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performed with the same dataset for the GP algorithms with different random seeds to be able to
come to a deterministic conclusion. For KANs however, results from the paper that introduced them
were reproduced using same (and similar) datasets and parameters [45]. When completed, they were
then directly applied to the CFD cases. Metrics such as root mean sure errors, R2 scores, median
distribution of quantities, and scatter plots were used as a comparison between the existing and the
developed methods. For the benchmark problems, the datasets had non-dimensional features and
target variable. Hence, the features could be combined in any way with mathematical operators without
having to worry about the dimensions of the resulting expression. Thus, the algorithm only produced
one expression as its output, and this expression was used to regress for the target variable.

Once the developed algorithms were successful, the next step was the development of models for CFD
quantities and perform a priori testing, as explained ahead.

3.5. Frozen (A priori) Model development
CFD datasets were used to see how well the developed methods were able to perform against real-
time simulation data, and if they were able to overcome the limitations of existing method(s) in terms
of computational cost (number of function evaluations), and predictive accuracy (correlations). Models
for turbulent production and the RST were developed and tested. Unlike several runs on benchmark
cases (GP), only a few iterations were performed when required as strong inferences were already
made for the developed methods.

3.5.1. CFD cases
The two CFD cases that were used for a priori testing were the Periodic Hill (PH), and the Square Duct
(SD) case setups, with LES data as the reference case. The Periodic Hill case setup is representative
of flow over a series of hills separated by a certain distance. RANS models fail to accurately predict the
separated flow and circulation regions, subsequently the reattachment point as well due to modeling
errors largely related to turbulent production. Square Duct on the other hand, provides a good case
where modeling errors due to RST are relevant.

The boundary conditions are and the geometries can be referenced from the Appendix Section A.4. Fur-
thermore, these datasets and simulation setups have previously been used by the author’s research
group for academic studies and serve as benchmark cases for evaluating new methods. Hence, no
validation has been performed to verify if the setup diverges. In addition, the quantities are from incom-
pressible simulations, and the flow is driven by fixing the bulk velocity (mass flow rate) at 0.7 m/s and
38.7 m/s for PH and SD cases respectively.

3.5.2. Turbulent Production and RST modeling
The methodology to represent the target variables as a function of flow quantities was referenced from
the works of [62], which has also been explained below. In it, the author deduces a more general
general form of the RST (anisotropy component) by applying dimensional analysis, variance, and co-
ordinate transformations. The RST is thus composed of isotropic ( 23kδij) and an anisotropic component
aij . The isotropic component is absorbed into the pressure term resulting in a modified mean pressure,
and responsible for pressure-like behavior of turbulence [65]. The anisotropy component however,
represents the deviations from isotropy, and is responsible for the directional transfer of momentum
in a turbulent flow. This makes it crucial in predicting separation, reattachment and secondary flows.
The anisotropy component of the RST can be represented as a function of the strain rate tensor, s and
the rotational rate tensor, ω, where each of the mentioned quantities can be scaled or normalized by
the turbulent production, k and dissipation, ε. The mathematical definitions of these quantities for an
incompressible flow are

aij = u′iu
′
j −

2

3
kδij , (3.10)

sij =
1

2
(k/ε)(∂jUi + ∂iUj), (3.11)

ωij =
1

2
(k/ε)(∂jUi − ∂iUj), (3.12)

aij = aij(s, ω). (3.13)



3.5. Frozen (A priori) Model development 39

Note that the form of (Equation 3.10) can also be inferred from (Equation 2.25). aij can be represented
as the sum of an infinite tensor polynomial, but with the application of the Cayley-Hamilton theorem,
the number of linearly independent second-order tensors that may be formed from s, and ω are finite,
with the independent coefficients, I a function of a finite number of invariants as well. Furthermore, the
anisotropy component aij can be formulated as 2kbij where bij can further be represented as − νt

k Sij .
The infinite tensor polynomial bij can now be expressed as

b(s, ω) =
∑
λ

IλTλ. (3.14)

It can be considered that the predicted anisotropy is forced to lie on a basis of isotropic tensors, hence,
rotational invariance is also embedded into it [42]. Thus, by adopting this methodology for the current
study, Galilean invariance is also ensured, which implies that the flow, or the physics is independent of
the frame of reference.

For a 2-D flow, there exists only 3 linearly independent tensors (Pope tensors) and 2 non-zero inde-
pendent variants. On the other hand, for a 3-D flow, there are 10 tensors, and 5 invariants, which
are

T1 = s,

T2 = sω − ωs,

T3 = s2 − 1

3
I(s2),

T4 = ω2 − 1

3
I(ω2),

T5 = ωs2 − s2ω,

T6 = ω2s+ sω2 − 2

3
I(sω2),

T7 = ωsω2 − ω2sω,

T8 = sωs2 − s2ωs,

T9 = ω2s2 + s2ω2 − 2

3
I(s2ω2),

T10 = ωs2ω2 − ω2s2ω.

and s2, ω2, s3, ω2s, ω2s2, where I = δij .

If interested, the reader can further learn about them from [62]. These Pope tensors are further functions
of rotational and strain rate tensors, that make use of higher order velocity gradients. Hence, often, it
may cause instability issues and the model developed may diverge. Thus, to tackle this, only the first
6 tensors will be used for some cases.

Thus, with this it can be concluded that the Reynolds stresses are a function of a limited number of
tensors (basis), and scalars. Moreover, in addition to the invariants, additional scalar features are also
added that are assumed to be important to the flow, and are explained below.

qQ =
||ω2|| − ||s2||

2 ·max(||s2||, 1× 10−10)
,

qT = ||S||F ·
k

max(ε, 10−10)
,

qγ =
||∇U || · k

max(ε, 1× 10−10)
,

qRe = 2−min(

√
k · ywall

50ν
, 2),

q
(B)
τ/k =

||τB || · k
max(k, 1× 10−10)

q
(B)
C/P =

U · ∇k
max(|s : ωτ (B)|, 1× 10−4)

,

These are non-dimensional ratios of local flow quantities which result in the final correction field being
physically meaningful, and aligning itself with the flow characteristics. The physical significance of the
terms is explained below.
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Table 3.1: Physical interpretation of turbulence quantification metrics

Notation Physical Interpretation
qQ Dimensionless Q-criterion evaluating vorticity dominance (ratio of rotation rate ten-

sor norm to strain rate tensor norm)
qT Turbulence intensity ratio: relative magnitude of turbulent fluctuations compared

to mean flow strain rate
qγ Shear production-dissipation balance: measures whether turbulence production

by shear dominates over viscous dissipation
qRe Local Reynolds number scaling: characterizes turbulence development based on

velocity and length scales
q
(B)
τ/k Boussinesq stress anisotropy: ratio of modeled turbulent stresses to normal

Reynolds stress components
q
(B)
C/P Energy ratio: compares convective transport to production of turbulent kinetic en-

ergy

The need to correct for turbulent production arises from bij ’s correction. The discrepancy in aij can be
obtained by subtracting the high-fidelity anisotropy component and that obtained from the Boussinesq
hypothesis. The augmented bij with the data driven correction can be formulated as

bij = −
νt
Sij

+ b∆ij (3.15)

However, νt needs to be computed for this which requires ω. To obtain it, the k-corrective Frozen
RANS is used by the author’s research group where the ω equation is iteratively solved for, keeping
other high-fidelity variables (U, k, bij) as frozen, to obtain νt. It is made clear that even though b∆ij alters
the turbulent production P , solving the k equation will not result in the same k from the high fidelity data
[65]. Thus, the residual of the k equation is also computed with the high fidelity data and the modeling
of this field, R, is referred to as Turbulent Production modeling in the present study. In addition, both
the target fields are treated together to ensure that energy remains conserved.

The fieldR will tend to correct the transport equations by adding or decreasing the local turbulent kinetic
energy production. Thus, it is modeled in a similar way to turbulent production as

R = 2kbRij
∂U

∂xj
. (3.16)

Thus, the tensor for turbulent production can be formulated as

Gi = 2k
∑
n

∑
i,j

∇U ij · T (i)
ij , (3.17)

with the same invariants. The modeling of the Augmented k-ω SST model which involves the inclusion
of these correction fields can be referenced from Appendix Section A.5

Once the basis are evaluated for a given flow, the objective of the developed algorithm(s) is to determine
the scalar coefficients, which when plugged into (Equation 3.14) will solve for b, or for the correction
in turbulent production. To do so, the approach of Tensor Basis Neural Networks is adopted from [42].
With regards to the gradient optimized genetic program, an individual will now contain λ expressions,
where λ corresponds to (Equation 3.14). Each of these coefficients will correspond to each of the Pope
tensors. The fitness will be evaluated by taking the dot product or the element-wise product of the
coefficients with the tensors, and observing how well the correlation is to the reference data. Similarly,
in the case of KANs, the dot product is then taken of each of the λ neurons in the output layer with the
tenors. In this way, both methods will be structured and evaluated to optimize the coefficients.

The concept of adapting the TBNN structure to KANs and genetic programming is visually shown and
can be referenced from Appendix Section A.3.
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3.6. A posteriori Model Development
The superior method among the two (KANs) is now selected for a posteriori analysis. This involves
running a flow simulation and differentiating the CFD code to correct for the turbulence modeling errors.
The model produced by the algorithm is inserted into the solver, and a CFD run is performed with the
correction field (β). This tells us how the correction field is influencing flow quantities such as velocities,
shear stresses, and visualize regions of circulation, flow separation and reattachment. The error, or
the objective I, is now defined as the squared L2 norm between the velocities produced from the CFD
run, and the high-fidelity data. This information is used to evaluate how the objective is changed by the
correction field, which gives us dI

dβ . The information is transferred to KANs, which uses it to compute the
quantity - dI

dθ . Given that the β field is produced by KANs, it is a function of the parameters, θ. Hence,
by direct chain rule, the computation is as

dI
dθ

=
dβ

dθ
· dI
dβ
. (3.18)

The L-BFGS optimizer uses this gradient to update its parameters accordingly which changes β to
optimize for the objective function. Once the model produces a new β, its symbolic formula is obtained
for better interpretability and to understand which flow quantities are influencing the correction field,
and subsequently the overall solution. The associated algorithm is presented below, for better clarity.

Algorithm 8: A Posteriori Optimization of turbulence modeling via KANs

1 Procedure A posteriori_CFD_Optimization;
Input: Flow invariants from converged CFD solution
Result: Optimized correction field β minimizing objective I and interpretable symbolic formula

2 Initialize parameters θ of KAN model and give it the inputs;
3 while not converged do
4 β ← ComputeBeta(θ);
5 Obtain symbolic form of β;
6 Insert β into CFD solver;

7 CFD velocity field Ucfd ← RunCFD(β);

8 Objective I ← ComputeError(CFD velocity field Ucfd, High-fidelity velocity field Utrue);
9 dI

dβ ← DifferentiateCFD(Objective I w.r.t. β);
10 dI

dθ ←
dβ
dθ ·

dI
dβ ;

11 θ ← L_BFGS_Step(θ, dI
dθ );

The above explanation briefly gives an overview about the framework, and how a posteriori analysis is
performed. The working of differentiating the CFD code, followed by the derivation of scalar invariants
and how they are inserted into the code is explained in detail below.

To begin with, the author uses DAFoam v4.0 to differentiate the CFD code (turbulence model), i.e.,
the objective function with respect to the correction field [29] [28]. It should be noted that at the time
of starting a posteriori analysis, DAFoam v4.0 was not complete, and unable to provide the required
derivatives, or differentiate the turbulence model, also referred to as field inversion modeling. The
author completed DAFoam v4.0, and successfully incorporated the field inversion models capable to
differentiate two turbulence models - k − ω SST , and Spalart − Allmaras. Moreover, the author also
developed the interface between DAFoam and KANs, as the former was written in C++, while the latter
in Python. This ensured that information could be easily transferred between the differentiation and the
machine learning frameworks.

Ideally, we need to compute the quantity dI
dβ directly so that the change the production field, β, can

be done accordingly to minimize I. However, that is a computationally expensive process as it would
involve observing how the velocity field changes with small perturbations in β, which would further
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invoke multiple CFD runs. Thus, we resort to the adjoint method to obtain the quantity dI
dβ , followed by

chain rule to compute dI
dθ . Python’sOpenMADO framework is used to facilitate the adjoint computation.

This involves first initializing the dR
dW matrix, the adjoint vector, adding the state variable (U) as an

output to the OpenMDAO framework to track its residuals, and β as the input field. After the flow
(non-linear problem) has been solved, the Jacobian dR

dW is computed using PETSc, where R,W refers
to the residuals, and state vector respectively. Accuracy, and memory usage is balanced by using
a pre-conditioner approximation, and lower-bound thresholding (< 10−16). Coloring is further used to
accelerate the finite differencing (δ = 10−5) by perturbing multiple states at once, and hence computing
(and extracting) multiple Jacobian columns simultaneously. The adjoint vector ψ is then computed via
the linear system as (

∂R
∂W

)⊤

ψ =
∂I
∂W

, (3.19)

where

• ∂I
∂W is the sensitivity of the objective I to state variablesW,

• ψ is the adjoint vector.

The state vector is the velocity, U , in our case. Krylov method (GMRES) is used to iteratively approxi-
mate ψ. State variable normalization ensures numerical stability, and is performed as

U → Uo (Bulk velocity normalization),

p→ U
2
o

2
(Pressure scaling),

ν̃ → 10ν̃o (Modified viscosity scaling).

ψ is then used to compute the derivative of the objective with respect to the correction field as Jacobian-
transposed vector product given by

dI
dβ

=
∂R
∂β

⊤

︸ ︷︷ ︸
Residual-Jacobian

w.r.t. β

· ψ︸︷︷︸
Adjoint
vector

, (3.20)

where dR
dβ is given by OpenMDAO. Essentially, substituting the quantities, the total derivative becomes

dI
dβ

=

(
∂R
∂β

)⊤

ψ

=

(
∂R
∂β

)⊤
[(

∂R
∂W

)−⊤
∂I
∂W

]
. (3.21)

This information is transferred to KANs to compute dI
dθ as per (Equation 3.18) and continue the opti-

mization process.

The case selected for a posteriori is the Periodic Hill. It was observed that the k − ω SST turbulence
model was unstable on coarsemeshes, and required turning of parameters such as relaxation factors to
allow for a stable optimization process. Thus, the Spalart − Allmaras turbulence (1-equation) model
was selected for optimization with k − ϵ (2-equation model) taken as the reference. The turbulence
model is described as

∂(ϕρν̃)

∂t︸ ︷︷ ︸
Unsteady
Term - Uns

+∇ · (ϕρUν̃)︸ ︷︷ ︸
Convection
Term - Conv

−∇ ·
(
ϕρ
ν + ν̃

σ
∇ν̃
)

︸ ︷︷ ︸
Molecular + Turbulent

Diffusion - Diff

− Cb2

σ
ϕρ∥∇ν̃∥2︸ ︷︷ ︸

Cross-Diffusion
Term - CrossDiff

= Cb1ϕρS̃ν̃︸ ︷︷ ︸
Production
Term - Prod

−Cw1ϕρfw
ν̃2

d2︸ ︷︷ ︸
Destruction
Term - Dest

(3.22)
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The transport equation is solved for a modified turbulent viscosity (ν̃) which is later used to compute the
turbulent viscosity. The model is a good candidate for optimization as it computationally cheap, and
over-predicts the separation region due to its inability to accurately model strong anisotropic effects
(recirculation, shear layer) as compared to k − ε.

The simulation parameters for training, testing and reference case are tabulated below. The geometry
and mesh details for the cases are presented later.

Table 3.2: Input Parameters for DAFoam Simulation

Category Value

Physical Parameters
Reference velocity (U0) 0.02
Reference viscosity (ν̃0) 1× 10−4

Solver Options
Solver name DASimpleFoam
Primal minimum residual tolerance 1.0× 10−8

KANs (optimization) tolerance 1.0× 10−4

fvSource Options
Type meanVelocityForce
Value Ū = 0.02
Direction [1.0, 0.0, 0.0]

Adjoint Options
PC fill level 1
GMRES relative tolerance 1.0× 10−8

Table 3.3: Boundary Conditions for PH CFD case

Variable bottomWall topWall inlet outlet
U noSlip noSlip cyclic cyclic

p zeroGradient zeroGradient cyclic cyclic

ν̃ fixedValue fixedValue cyclic cyclic
ν̃ = 0 ν̃ = 0

nut nutLowReWallFunction nutLowReWallFunction cyclic cyclic

Table 3.4: Fluid Transport Properties Used

Parameter Description Value
transportModel Constitutive model Newtonian
ρ Density [kg/m3] 1
ν Kinematic viscosity [m2/s] 5× 10−6

Pr Prandtl number (molecular) 0.7
Prt Turbulent Prandtl number 1.0

First order (bounded Gauss upwind) schemes were used for divergence, with GaussSeidel smoother
and smoothSolver used.

Based on the Relative Term Importance Analysis (RITA), new invariants were derived from the con-
verged Spalart−Allmaras flow field as the selected model did not have an explicit equation for k and
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b∆ij , hence the invariants or tensors from the k − ω SST model where not applicable. RITA technique
was developed by Monica et al. to understand the relative importance of different terms such as diffu-
sion and production in regions of circulation, separation, and shear layer and use them as invariants
[40]. For the Spalart-Allmaras model, they were defined as

RITAConv =
|Conv|

|Conv|+ |Diff |+ |CrossDiff |+ |Prod|+ |Dest|
, (3.23)

RITADiff
=

|Diff |
|Conv|+ |Diff |+ |CrossDiff |+ |Prod|+ |Dest|

, (3.24)

RITACrossDiff
=

|CrossDiff |
|Conv|+ |Diff |+ |CrossDiff |+ |Prod|+ |Dest|

, (3.25)

RITAProd
=

|Prod|
|Conv|+ |Diff |+ |CrossDiff |+ |Prod|+ |Dest|

, (3.26)

RITADest
=

|Dest|
|Conv|+ |Diff |+ |CrossDiff |+ |Prod|+ |Dest|

, (3.27)

(3.28)

Unsteady term is not taken into account as steady state is assumed. Since these are ratios of local flow
quantities, they also highlight regions where production is relatively dominant (shear layer), or where
destruction is (circulation region) in the flow. The correction field is thus easier to interpret and physically
meaningful. Moreover, as the same turbulence model is used to solve the flow, it was observed that
the distribution of relative importance of these terms across different periodic hill geometries remains
similar, a finding also supported by [40]. This also makes these ratios generalizable, and applicable to
different geometries, and flow conditions. In addition to the above, an invariant based on the viscosities
is also used, and formulated as

qν =
νt

100 · ν
. (3.29)

This invariant is representative of the turbulent and mean flow quantities, and is a function of the flow
Re. Thus, the values can be very large for a high Re due to lower ν causing instabilities in the model.
Hence, it is scaled by a factor of 0.01.

The invariants were given to a KANs model and the output was a correction field, β, with one value for
each mesh cell. This was then inserted into the production term of the turbulence model as

∂(ϕρν̃)

∂t︸ ︷︷ ︸
Unsteady
Term

+∇ · (ϕρUν̃)︸ ︷︷ ︸
Convection

Term

−∇ ·
(
ϕρ
ν + ν̃

σ
∇ν̃
)

︸ ︷︷ ︸
Molecular + Turbulent

Diffusion

− Cb2

σ
ϕρ∥∇ν̃∥2︸ ︷︷ ︸

Cross-Diffusion
Term

= Cb1ϕρS̃ν̃(1 + β)︸ ︷︷ ︸
New Production

Term

−Cw1ϕρfw
ν̃2

d2︸ ︷︷ ︸
Destruction

Term

.

(3.30)

Thus, the correction field, taken as the multiplicative factor to the production field, directly influences
the distribution of turbulent energy in the flow. It is to note that ideally, an invariant would need to be
Galilean and rotational invariant (independent of frame of reference, and rotation of coordinate axes)
and Re independent. This ensures the flow physics remains the same regardless of the frame refer-
ence, and the features do not diverge at high Re such as qν . Features such as velocity gradients, RST,
and transport scalar quantities are essential, however, as noted in a prior study, such features are
challenging to derive which can also demonstrate meaningful correlations. Therefore, while these fea-
tures will be used KANs pruning and mutual information will be implemented to systematically remove
non-informative features where feasible.



4
Preliminary Results of GP & KANs

This chapter presents the results of the algorithms against benchmark cases. Based on these results,
a firm conclusion is then deduced. The procedure has been explained in Chapter 3.

4.1. Preliminary Testing of Genetic Programming
The current section presents the benchmark results and conclude with the selection of an optimizer
and its parameters, to be subsequently used in CFD cases and discuss the limitations as well.

4.1.1. Initial Testing of GP with author defined problems
Prior to the testing against benchmark data, the ability of the GP algorithms was checked against
certain functions, defined arbitrarily by the author. They were implemented and served the purpose as
an initial indication of the performance of the GP algorithms and if optimizing the weights of terminals
and operators can generate good correlations.

The problems are tabulated below, and functions illustrated following it.

Function Expression Domain

f1(x1, x2) −7 sin(10x1) + 12.5 cos(10x2)− 2.5 log(x21 + x22) x1 ∈ [−1, 1], x2 ∈ [−2, 7]

f2(x1, x2) −2.5 sin(10x0.51 ) + 4.5 cos(10x22)− 3.5 exp(x2 + x−0.8
1 ) x1 ∈ [3, 10], x2 ∈ [−2, 7]

f3(x1, x2) 6 sin(x1) cos(x2) + log(x1) + exp(x2) + x−0.6
1 x1 ∈ [3, 6], x2 ∈ [−10,−3]

Table 4.1: Functions and Their Domains - Terminal Optimization

The functions were designed with amix of exponential, logarithmic, power, and trigonometric operations
to ensure that the devised algorithms can work against a wide variety of functions. In addition, the
input features were initialized with a random distribution, 250 sample points, within the domains. The
functional space of these problems is visualized below.

45
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Figure 4.1: Demo function - I

Figure 4.2: Demo function - II
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Figure 4.3: Demo function - III

Terminal Optimization
Optimization of the individuals was performed at every 2nd generation, and only of the top 40% individ-
uals in the population, to avoid excessive computational cost (function calls) and maintain a balance of
both diversity and localization. The results, along with the details on the parameters of the optimizers,
are presented below. Since we are interested to observe if the gradient optimization can result in con-
vergence to superior quality individuals, only the testing correlations are presented. The evolution of
metrics through the generations did not exhibit any informative trends, offering limited insights. Hence,
the training R2 and the Elite RMSE behavior of the algorithms is presented in Appendix Section B.1.
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Figure 4.4: Scatter plot comparing predicted values and ground truth for the elite individual of f1(x1, x2).

The underlying function is f1(x1, x2), and can be referenced from Table 4.1. The testing correlations for
all the optimized based GP were perfect scores. We can observe that CGP found it difficult to generate
as good a model and converged to a local optima when compared with the optimizer based algorithms.
This is also evident from the Elite RMSE where it can be seen that CGP struggles to reduce the error
(Appendix Section B.1).
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Figure 4.5: Scatter plot comparing predicted values and ground truth for the elite individual of f2(x1, x2).

The underlying function is f2(x1, x2), and can be referenced from Table 4.1. Given the function space
is not very challenging, it can be observed that all the methods were able to converge to very good
final models. However, LM struggled to find a good correlation. This shows us that the optimizers
act differently and it is not always certain that using gradient methods can result in a good model.
Depending on the function and parameter space, the optimization is susceptible to divergence as well.
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Figure 4.6: Scatter plot comparing predicted values and ground truth for the elite individual of f3(x1, x2).

The underlying function is f3(x1, x2), and can be referenced from Table 4.1. Similar to previous results,
the L−BFGS, and Adam give superior results in terms of R2 scores, when compared to conventional
genetic programming. Furthermore, the trust region algorithm achieves similar performance metrics as
compared to the conventional method, both unable to converge to good models.

The algorithms were evaluated between 5-10 times over these author-defined regression problems,
and a consistent behavior was observed in the performance of these algorithms when evaluated mul-
tiple times with these functions. However, given the inherent random nature of these algorithms, firm
conclusions cannot yet be drawn. Nonetheless, the results are in good agreement with literature, and
give a good indication that optimizing the terminals at every 2nd generation enhances the performance
of genetic programs. For the optimizers that often converge to a local optima quickly, it would imply that
the effect of local optimization is very strong and it is limiting the algorithm to explore diverse functional
spaces. One way to tackle this issue to further reduce the frequency of applying gradient optimization
between generations.

The hyper parameters of the genetic program and that of the optimizers are tabulated below.

Optimizer Parameters
Adam learning_rate=0.01, epochs=50
L-BFGS gtol=ftol=xtol=1× 10−4, eps=1× 10−2, max_iter=20
Trust Region gtol=ftol=xtol=1× 10−4, loss=huber
Levenberg-Marquardt gtol=ftol=xtol=1× 10−4, loss=linear

Table 4.2: Optimizer settings for terminal optimization
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Hyperparameter Value
pop_size 50
generations 100
tournament_size 3
n_elites 1
function_set add, sub, mul, protected_div, protected_nexp, protected_log
rc_ub 5
rc_lb -5
pb_cx1p 0.3
pb_cx2p 0.2
pb_mut_node_rep 0.05
pb_mut_uniform 0.05
metric rmse
tolerance 1e-9
optimizing frequency 2
num_optimizing_ind 20 - tournament selection

Table 4.3: Genetic Programming Hyperparameters

The paramaters rc_ub, and rc_lb are the upper and lower bounds for the terminals, when they are
generated initially by DEAP.

Operator Optimization
Once an indication was obtained that optimizing for terminals can give better correlations, and scores,
the next step was to incorporate the optimization of operators into the method, and observe if similar
superiority, at the least, could be obtained over the conventional genetic programming method. Similar
to the previous procedure, author-defined functions were implemented as an initial check. The functions
are tabulated below.

Function Expression Domain

f1(x1, x2) 6 sin(x1) cos(x2) + log(x1) + exp(x2) + x−0.6
1 x1 ∈ [3, 6], x2 ∈ [−10,−3]

f2(x1, x2) −7 sin(10x1) + 12.5 cos(10x2)− 2.5 log(x21 + x22) x1 ∈ [−1, 1], x2 ∈ [−2, 7]

f3(x1, x2) −2.8x31 + 1.7x22 + 5x1 + 25 sin(x2 − x1)− 2.25 sin(x21) x1 ∈ [−1, 0], x2 ∈ [0, 1]

Table 4.4: Functions and Their Domains - Operator Optimization

The functional space of f1(x1, x2) can be referenced from Figure 4.8. The functional space of the
remaining datasets is visualized below.
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Figure 4.7: Demo function - II

Figure 4.8: Demo function - III

Once again, the developed algorithms were only run a few times against these datasets to have an
initial justification to move forward. Unlike terminal optimization, the convergence evolution of these
algorithms demonstrated useful trends, providing valuable information on the optimization process.
Hence, the testing correlations and error convergence is presented, with the training R2 presented
in Appendix Section B.2. The results are presented below.
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Figure 4.9: Performance metrics (RMSE and R2) for the elite individual of f1(x1, x2).

The function is f1(x1, x2), and can be referenced from Table 4.4.

Over the course of a few iterations, the presented trend was observed to be consistent. Although the
methods exhibit good correlations with testing data, when observing the evolution of these algorithms,
we can see that the gradient based algorithms exhibit fluctuations, or jumps, as well, implying that the
balance of exploitation and exploration is not very well maintained. Although, the gradient effect is
strong and optimizes the solution, the effect of genetic operators often destroys these combinations,
resulting in abrupt destruction of fitter individual structures. This makes these algorithms more prone
to oscillations and divergence. An early conclusion can be made that the effect of optimizing operators
is more impactful and needs to be carefully balanced with the aggressiveness of genetic operators.
This is in contrast to when applying only terminal optimization wherein the algorithms were quite stable,
and the effect of exploitation was often overshadowed by exploration. In addition, it was observed that
Adam often diverged when optimizing an individual, making it unstable and unfavorable at this point.
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Figure 4.10: Performance metrics (RMSE and R2) for the elite individual of f2(x1, x2).

The tested function is f2(x1, x2), and can be referenced from Table 4.4. Adam optimizer exhibits oscil-
lations in this case highlighting its sensitivity. Although TRF converged to the same individual quality
as CGP , the convergence was not stable, further supporting our previous argument that the frequency
of operator optimization and genetic evolution needs to be carefully balanced.
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Figure 4.11: Performance metrics (RMSE and R2) for the elite individual of f3(x1, x2).

The function regressed is f3(x1, x2), and can be referenced from Table 4.4. It can be observed that
once again, all gradient based methods exhibited instabilities and only converged to the final model at
the last generation. This is an undesirable behavior as the whole motivation of applying this method is
to accelerate convergence.

Conclusions from testing with author-defined problems
Although strong conclusions cannot be yet drawn by the results presented from optimizing terminals,
and operators individually, due to lack of repeated testing, and not using benchmark datasets yet,
certain findings are evident and give us an indication regarding the devised algorithms.

• Both terminal and operator optimization can produce individuals with superior results, lower RMSE
and higher R2 scores, aligning with literature.

• Operator optimization has a tendency to cause instabilities and the algorithm may produce an
individual of inferior quality with respect to the evaluated metrics. Hence, a proper balance be-
tween the frequency of optimization, number of individuals to optimize and the probabilities of
genetic evolution would need to be carefully set.
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• Essentially when only terminal optimization was applied, the algorithms could converge to such
superior results quickly (lower RMSE and higher correlations). This is a favorable outcome as it
implies a potential decrease in the function calls when compared to the conventional implemen-
tation.

• Of all the optimizers implemented, Adam can be said to have a higher tendency to diverge or
overshoot from the optimal solution. However, this is not surprising. The adaptive learning rate
can make it susceptible to noise, and lead to convergence to a local optimum. Furthermore, it
has also been stated that

Adam can enter a state in which the parameter update vector has a relatively large
norm and is essentially uncorrelated with the direction of descent on the training loss
landscape, leading to divergence

[49]. Given the large-scale datasets associated with our problems, this behavior hence, can be
expected to occur frequently.

The same settings were implemented, as presented in Table 4.3 and Table 4.2.

With these insights, the study now progresses to deduce firm conclusions about these optimization
methods by implementing both terminal and operator optimization together, and deciding on the most
effective optimizer.

4.1.2. Benchmark Testing - phase I
3 benchmark symbolic regression problems were used to test the conventional genetic programming
and the devised gradient optimized GP. The characteristics of these datasets are tabulated below.

Dataset # observations # features # targets

210_cloud 108 5 1

537_houses 20,640 8 1

344_mv 40,768 10 1

Table 4.5: Symbolic benchmark regression problems

The datasets can be referenced from [54] and were chosen keeping in mind that CFD datasets poten-
tially also contain≥ 10,000 observations with≥ 5 features. Furthermore, 100 iterations were performed,
each with a distinct random seed to consider the effect of the inherent random nature of the algorithms
and be able to make conclusions with a proper basis.

Furthermore, given our insights from Subsection 4.1.1, the devised algorithms have the potential to
reach optimal results in fewer iterations. Hence, the challenge for these methods will be if they can
produce superior (or at least the same) results as the conventional methods in half the generations
when terminal and operator optimization is combined. Therefore, for the benchmark datasets, while the
conventional algorithmwas run for a 100 generations (as is implemented by the author’s research group
currently), the developed algorithms were run for 50 generations. In addition, the optimization was
performed at every 2nd and 5th generation for the operator and terminals respectively. The selection of
optimal hyper-parameter setting was done in a systematic manner, via benchmark testing and to begin
with, all the individuals of a given population were subjected to gradient optimization.

The results of these benchmark regression problems, along with the parameter settings are presented
below.
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Hyperparameter Value
pop_size 50
generations - CGP 100
generations - Optimized GP 50
tournament_size 3
n_elites 1
function_set add, sub, mul, protected_div, protected_nexp, protected_log
rc_ub 5
rc_lb -5
pb_cx1p 0.3
pb_cx2p 0.2
pb_mut_node_rep 0.05
pb_mut_uniform 0.05
metric rmse
tolerance 1e-9

optimizing frequency 2nd generation - operators
5th generation - terminals

num_optimizing_ind Population

Table 4.6: Genetic Programming Hyperparameters - Symbolic Benchmark Regression Datasets

Optimizer parameter settings can be referenced from Table 4.2. Note that there are multiple quantities
that can be plotted. However, only the testing correlations and function counts are presented here
to demonstrate whether the devised algorithms can meet the objectives. The behavior of remaining
quantities can be referenced from Appendix Section B.3

Dataset - 1: 210_cloud
For the above dataset, when Adam was implemented, the solution diverged 16.7% of the times, 1 in
every 6 iterations. Hence, it was decided to not implement the said algorithm further for any optimization
process. The diverging tendency could also be observed in the initial (preliminary) analysis with author-
defined functions. This reduces the number of optimizers to 3 : L−BFGS, TRF,&LM .
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Figure 4.12: Testing R2: Dataset-1

It is evident that the gradient-based algorithms achieve higher median scores compared to the conven-
tional approach in just half the generations. There is a significant improvement in the testing R2 values,
although the median RMSE and training R2 scores are superior only by a fine margin as seen from
Figure B.8, Figure B.7. This demonstrates the capacity of the algorithms to leverage the abilities of
both exploration and exploitation of functional space.

Nonetheless, the 10th, and 90th percentile distributions reveal the effect of exploitation (localization). It
can be observed that the conventional genetic program exhibits greater variation in the quality of elite
individuals across different random seeds. Although it has the potential to reach lower RMSE values,
and higher R2 scores, at the same time, it is also vulnerable to converging to poorer solutions.

This is also supported from the inter-quartile distribution which directly shows the variation between the
top 10% and the bottom 10% of the elite individuals. CGP has higher values and makes it is clear that
it has more diversity and potential to explore functional spaces, whereas genetic program coupled with
localized gradient optimization can lead to most of the individuals being converged around a certain
optimum.
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Figure 4.13: Median distribution of function evaluations: Dataset-1

Figure 4.13 is critical as it illustrates the distribution of function count, i.e., the number of times an
optimizer calls the objective function to further optimize the loss function, L. This is also the deciding
factor for the selection of the optimum algorithm, to be applied to CFD datasets.

It is noticeable how the TRF method is computationally the most cheapest algorithm for the given
dataset, with most of the iterations requiring the objective function to be evaluated in the vicinity of
2,000 counts. Looking at the same distribution for the Levenberg-Marquardt method, most of the iter-
ations required a significantly higher function count. There is a large gap the median distribution and
the 90th percentile. This can be explained by the way the methods, TRF & LM are implemented. The
former acts on a scalar loss function, and minimizes it by a trust region framework, explained in Sub-
section 3.2.1. It can efficiently balance the step quality and Jacobian computation via Singular Value
Decomposition (SVD) and trust region radius. On the contrary, the latter works directly on the residual
vector. Although it can potentially lead to faster convergence because of this, however, the gradient
(Jacobian) computations can be computationally expensive if the residual vector is large. Hence, for
a problem with large number of residuals or parameters, the approximation of Jacobian can invoke
multiple function calls, making it computationally expensive.

Moving to the L-BFGS method, it is the most expensive algorithm. This can be explained by the fact
that it makes use of information from both first and second order derivatives (approximations) which in
itself can require multiple function calls. In addition to this, the said method makes use of line search
to determine a suitable step size. Thus, the gradient history storage and line searches add to the
computational cost, when compared with the TRF and the LM methods. Although the approximated
Hessian can guide the optimization process in which direction to proceed to converge to the global
optima, the line search involves evaluating the objective function several times which can add to the
computational cost of the algorithm.

It is to be noted that L-BFGS diverged, or crashed twice out of the 100 iterations due to very large
(complex) expression, thereby giving syntax errors. The remaining algorithms did not report such an
issue. Moreover, LM, and TRF methods had the shortest expressions, and frequently converged to
similar individuals, followed by L-BFGS, and then CGP. This demonstrates another useful ability of the
gradient based algorithms - to produce shorter expression length individuals of superior quality.

Dataset - 2: 537_houses
Similar to the previous case, the results for this dataset are presented below.
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Figure 4.14: Testing R2: Dataset-2

The above reinforces the effectiveness of gradient-based optimization algorithms in consistently con-
verging to superior optima in fewer generations. This further strengthens the answer to the research
question - if genetic programs coupled with the derivative information can achieve quicker convergence,
and have acceptable correlations. All three performance metrics — RMSE, training R2, and testing R2

— show noticeable improvements with the proposed methods (Figures 4.14, B.11 & B.12). Notably, the
LM and TRF methods exhibit minimal variation in the performance of elite individuals across different
random seeds, as reflected in their narrow inter-quartile ranges. This indicates a strong tendency of
these methods to rapidly converge toward a common optimal region in the functional space, regardless
of initial population diversity. This can be also be correlated to the fact that both LM, and TRF often con-
verged to similar expressions. Although the L-BFGS method demonstrated slightly higher variability,
its median performance remains comparable to, or better than, that of the conventional approach.

Figure 4.15: Median distribution of function evaluations: Dataset-2
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The above figure further substantiates our previous findings that the TRF method is the most computa-
tionally efficient alternative, in terms of the number of function evaluations. A consistent pattern in the
number of function calls are observed to occur across multiple iterations indicating that the algorithm
is quite stable in terms of exploiting the functional space effectively. In addition, a very small region
beyond the 10th percentile is present, indicating minimal variation in the optimization cycles across the
random seeds.

Elsewhere, LM, and L-BFGS show an increased number of function calls during the optimization in that
order. There are instances wherein both the methods require the objective function to be evaluated
significantly more number of times. Similar findings were also observed for Dataset-1 (Figure B.9). This
results in a higher computational cost and reflecting that the methods may find it difficult, at instances,
to optimize the individuals, and maintain a balance between exploration and exploitation. TRF on the
other hand, is able to maintain this balance, making it a favorable choice, at this point.

With analysis now completed on 2 of the 3 symbolic benchmark datasets, certain conclusions can be
drawn and are mentioned below.

• All 3 optimizers can efficiently exploit the functional space when both terminal and operator op-
timization is performed on the individuals, with the former taking precedence. Adam is quite
unstable, and oscillating, as also observed in Subsection 4.1.1. Hence, not being considered
further.

• The TRF method is consistent with regards to the number of times it calls the objective function
to optimize over different random seeds for a particular dataset. Thus, it is quick to converge to
the optimum irrespective of the initial population.

• Both LM, and TRF are consistent in converging to an optimum point in the functional space, with
minimal inter-quartile values. L-BFGS, on the other hand, exhibits some variability in the quality
of elite individuals. Thus, the effect of global exploration is much more stronger in L-BFGS.

• In terms of computational cost (function evaluations), TRF emerges as a robust and a favorable
candidate at this point. Another merit of this method is its ability to generate compact expressions.
This results in simpler models with good correlation values, which make such expressions more
convenient to insert into CFD models.

Dataset - 3: 344_mv
This was the biggest dataset to be tested thus far, and consequently, consumed more computational
power than the previous 2 datasets. The results are presented below.
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Figure 4.16: Testing R2: Dataset-3

This dataset distinctly exploits the limitations associated with a gradient based genetic framework. It
is clearly visible that the conventional algorithm outperforms all the 3 optimizers. Although the risk
of converging to a local optimal individual is slightly higher, as reflected in the high variance of the
percentile plots, it also demonstrates a much greater chance of converging to a superior individual,
and by a significant margin.

This establishes that the extent of gradient optimization can be far too strong in certain function spaces.
Despite having the same probabilities of genetic operations on an individual, the gradient optimization
can dominate and suppress the effective exploration of the function space by prematurely guiding the
individuals toward a local optimum. Each optimization iteration is strong enough to force the search
for the global optimum to be confined within a narrow region of solution space (local optimum), thereby
causing difficulties in navigating the optimization landscape, and reducing the robustness of the global
search.

Similar to previous findings, the inter-quartile range for the gradient based algorithms remains notably
low when compared to that of the conventional algorithm. This additionally emphasizes the lack of
diversity among the individuals, in a given generation of a certain random seed.

The crux of implementing a genetic program is its inherent random (stochastic) nature, that enables
it to perform a form of random walk over the functional landscape. This capacity gives it the ability to
effectively traverse the function space, explore regions with multiple local optima, hence increasing the
likelihood of discovering globally optimal solutions. However, it can be observed that when this is cou-
pled with gradient optimization, while beneficial in some function spaces, it can hinder the exploratory
capacity. This lack of variability further highlights the tendency of these methods to converge rapidly
but locally.
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Figure 4.17: Median distribution of function evaluations: Dataset-3

Turning to the function evaluationmetrics, findings remain consistent with our previous results. The TRF
method, is once again able to demonstrate its effectiveness by requiring the least function evaluations
when compared to the other methods. We see that most of the random seeds required nearly 2,000
function evaluations, touching 3,000 occasionally. The Levenberg-Marquardt method on the other
hand had higher function calls with some counts going as high as 8,000. This was then followed by the
L-BFGS method, which was consistently the most expensive algorithm on all 3 datasets.

This once again indicates the robust nature of TRF. Thus, TRF can effectively exploit the functional
space with minimal computational overhead, even in the presence of random initialization and evolution-
ary variation. The remaining methods were however susceptible to this, and often required significantly
more optimization efforts than the average or the median counts.

Conclusions - Benchmark Testing Phase I
This concludes the first phase of testing the proposed algorithms on the symbolic benchmark regression
datasets. With comprehensive analysis on the performance metric and supporting visualizations now
completed, definitive conclusions can now be made with regards to the performance of each of these
methods. These findings are summarized below.

• A genetic programming (global search) algorithm incorporated with gradient descent optimization
(local search) is, in general, able to have an enhanced performance (lower errors, and higher
correlations) while accelerating the convergence to a global optimum. It can be said firmly that
half the iterations are in fact sufficient to reach the same results, if not superior, attained by the
conventional algorithm.

• When comparing the performance of the optimizers, from Subsection 4.1.1, L-BFGS appeared
to be the most superior, consistently converging quickly to high-quality individuals without any
noticeable oscillations, or signs of divergence. However, given the implementation of the algo-
rithm wherein it makes use of an approximated Hessian and continuous line searches, it proves
to also be the most expensive algorithm with significantly more function calls compared to other
algorithms when tested against repeated runs of benchmark datasets. It also exhibits a relatively
large variation in the quality of individuals, with some of them being quite lengthy. This would
further make it inconvenient to insert the expressions into the CFD solver with certainty that the
solution will not diverge. Hence, although able to give improved results, it does not present itself
to be the best candidate.

• The remaining two optimizers, Levenberg-Marquardt, and Trust Region Reflective show compa-
rable performances, with regards to individual qualities, and function calls. It was observed that
in most of the cases, both of them converged to similar expressions which were simpler and
compact, with identical variations in the overall distribution of individual quality, and scores. Inter-
estingly, even the CPU times remained alike for them. However, TRF was deemed to be more
efficient due to its reduced number of function calls, thus emerging as the favorable optimizer.
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• Furthermore, for the same population, it can be observed that LM may require significantly more
function calls for convergence. This highlights a potential issue of improper initial guesses, or
the need for a proper balancing of the damping parameter, β. Although one would argue that
performing increased function evaluations within the same time frame as TRF makes it more
smarter and efficient, when these function calls are replaced by a CFD run in a posteriori setting,
it would make it inefficient.

• There is a risk that the gradient based optimization can be too powerful and it dominates the
global search for a global optimum. The gradient based optimization is only used for refining
the individuals by locally exploiting the search space. However, as observed with Dataset-3, it
was found that it was guiding the search process itself. This can be harmful as it would imply
a premature convergence to a sub-optimal optima, with genetic evolution not able to perform its
role. This needs to be addressed, and a distinction needs to be made between the two different
search methods. These methods are explained below.

– One way to mitigate this is by reducing the number of individuals that undergo gradient
based optimization. A selected group of individuals can be chosen, as done in Subsection
4.1.1. This would additionally, reduce the number of function evaluations as well. Hence,
potentially providing a solution to an issue, and improving the performance.

– Another alternate is to increase the mutation and crossover rates, or their strengths. This
would make the occurrence of genetic operations more frequent, allowing for effective ex-
ploration of the search space.

– A third method is to further reduce the frequency of optimizing the individuals to potentially
accumulate more randomness in the individual before subjecting them to a strong optimiza-
tion cycle.

– An additional possibility is to limit the number of function calls or the optimization iterations
performed. Although this can reduce the extent of optimization, it can however, lead to
convergence issues.

With an optimizer now chosen and these conclusions in hindsight, the TRF method is further tested
against the benchmark regression datasets, with the implementation of these modifications, to de-
termine if such adjustment can indeed enhance the performance of it. The next phase of testing to
establish the optimum conditions for implementing TRF, referred to as Phase-2, commences below.

4.1.3. Benchmark Testing - phase II
Multiple runs of symbolic benchmark datasets were implemented to ensure the reliability of the quantita-
tive results describing the overall performance of these algorithms. The datasets are presented below,
and were referenced from [54].

Dataset # observations # features # targets

210_cloud 108 5 1

344_mv 40,768 10 1

Table 4.7: Symbolic benchmark regression problems - contd.

The modifications done with the hyper-parameters of the algorithm are tabulated below.
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Hyperparameter Value
pop_size 50
generations - CGP 100
generations - Optimized GP 50
tournament_size 3
n_elites 1
function_set add, sub, mul, protected_div, protected_nexp, protected_log
rc_ub 5
rc_lb -5
pb_cx1p 0.5
pb_cx2p 0.3
pb_mut_node_rep 0.2
pb_mut_uniform 0.5
metric rmse
tolerance 1e-9

optimizing frequency 3rd generation - operators
5th generation - terminals

num_optimizing_ind Initially, select 50% of population based on tournament selection followed by
further selecting 40% of individuals from this subset via random sampling

Table 4.8: Genetic Programming Hyperparameters - Symbolic Benchmark Regression Datasets:2

Optimizer Parameter Settings
Trust Region

g_tol 1× 10−4

f_tol 1× 10−4

x_tol 1× 10−4

loss huber
max_nfev 40

Table 4.9: Optimizer settings for optimization

It can be seen that the probabilities of the genetic operations have been increased to allow for frequent
occurrence, thereby mitigating the effect of strong local optimization. Note that for the conventional al-
gorithm, the same probabilities were implemented as mentioned in Table 4.6. This modification is done
to only enhance the performance of the optimization. In addition, the number of function evaluations
have also been limited. Moreover, now instead of optimizing every individual in a given generation,
a new selection mechanism was devised to keep a balance between randomness, and optimization.
With these implemented changes, the results were gathered and are presented below.

Dataset - 1: 210_cloud
The results are visualized below.
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Figure 4.18: Median Testing R2: Dataset-1

From the above, improvements can be observed in the behavior of the TRF algorithm. However, they
are very slight and the performance does not enhance significantly. The RMSE decreases marginally
and when considering the testing R2 scores, we can see that the modified algorithm has an improved
probability to produce less optimum individuals. This signals some improvement towards our goals,
but also requires further analysis of other metrics.

Figure 4.19: Median distribution of function evaluations: Dataset-1

The above imply significant performance in terms of function calls. It can be seen that the total number
of function evaluations required for optimization have reduced by roughly 75%, which is a substantial
improvement over the current optimizer settings, even if the results remain the same. This implies
that even with just 25% of the total function calls, we can essentially converge to the same results
without any convergence issues, when compared to the original implementation of the optimizer. It
can be said that majority of the random seed iterations required the function to be evaluated in the
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range of ≈ [200, 600] with very few iterations exceeding this range and is mainly due to less number of
individuals now undergoing the optimization process coupled with the reduced optimization frequency.
This is a key metric to determine the effectiveness of the proposed algorithm, and the modifications
look promising.

(a) Averaged RMSE (b) Averaged Training R2

Figure 4.20: Comparison of RMSE and Training R2: Dataset-1

To better understand the performance enhancement, the averaged plots of metrics are plotted to be
able to obtain more information. Interestingly, it can be seen that the TRF optimizer, with the modifi-
cations, has a further acceleration in its convergence. It is able to obtain identical training R2 scores
as the conventional method, but more quickly as compared to the already implemented TRF optimizer.
Nonetheless, the improvement on the metric values remains rather small. It can be seen that although
there is significant improvement in the reduction of function calls, the overall results remain similar.
Thus, not proving to be effective in terms of the quality of the final individual obtained. However, given
one more dataset, it remains to be seen whether these modifications are robust and can cause further
improvements.

Dataset - 2: 344_mv
Similar to the previous case, the results for this dataset are presented below.
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Figure 4.21: Median Testing R2: Dataset-2

Unfortunately, as can be seen, there are no notable improvements in the results obtained from the
optimizer with the modifications. The conventional method still maintains its superiority in this dataset,
and is able to achieve far superior results. It can be said that the effect of local optimization is still
far too strong, and the increased probabilities of genetic operations are still not able to inculcate, into
the algorithm, the necessary randomness required to explore the functional space effectively. Despite
the implementation of modifications, the behavior of the optimized algorithm, in terms of RMSE and
R2 metrics, remains consistent to when there was no modifications. It shows us that the optimized
algorithms still largely have similar solutions (elite individuals).

Figure 4.22: Median distribution of function evaluations: Dataset-1

Despite the inability of the modified TRF to converge to optimal results, another consistent trend ob-
served was the reduced number of times the objective function was evaluated. The total function calls
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reduced by more than 50%, which in itself is a very positive takeaway.

This forces us to consider that these algorithms may potentially be effective in the long run with some
further modifications, if required, to tackle the issue of local optimum convergence, as the number
of function calls have reduced by an order of magnitude. Nonetheless, these are only benchmark
datasets, and not real CFD cases, hence, these findings cannot be extrapolated to CFD datasets with
surety. Even so, the behavior makes the author to consider such an algorithm as a promising choice.

(a) Averaged RMSE (b) Averaged Training R2

Figure 4.23: Comparison of RMSE and Training R2: Dataset-2

From the above visualization, significant improvements can be observed in the scores obtained by the
modified TRF, unlike with the previous dataset. The modified algorithm is now able to illustrate to us
that on average, it is able to converge to a superior optimum, although still not the global one. The R2

values are also improved for both training and testing data, with improved correlation from the scatter
plot observed.

This shows us that even though the modified TRF is not able to achieve a very significant improve-
ment and match the superiority of the conventional algorithm, it is still able to outperform the optimizer
that was initially implemented. It can be inferred that the average performance indicates that there
is a broader distribution of improved solutions, even though the central value remains largely similar.
Consequently, this implies that the variance in the converged solution quality increases, or a frequent
presence of superior solutions that push the algorithm to converge to a global optimum, thereby also
affecting the average distribution.

Conclusions - Benchmark Testing Phase II
This marks the end of the second phase of testing which focused on evaluating the performance of
both the original implementation of the optimizer, and its modified version to assess any potential im-
provements. Through a comprehensive analysis on the performance metric and the use of quantitative
visualizations, conclusive insights can now be drawn with regarding the effectiveness of these modifi-
cations. These findings are summarized below

• Altogether, from the analysis of the 2 symbolic benchmark datasets, it can be inferred that improve-
ments are obtained. The enhancement in the average performance, and the slight improvement
in the median scores make it clear that the modified TRF is able to alleviate the issues that were
highlighted in the previous testing phase, with 3 symbolic benchmark problems.

• However, what is of prime importance is the ability of the modified TRF to be able to converge
to the same results, if not improved, when compared to the original implementation by calling
the objective function a significantly reduced number of times. This directly translates to reduced
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calls to the CFD solver in the a posteriori setting. Furthermore, with the benchmark datasets, this
reduction is more than two-folds. This makes the modified TRF as the ideal replacement to the
original optimizer.

• In addition, it can be deduced that the average performance suggests a wider range of improved
solutions, despite the central tendency remaining largely unchanged. This indicates an increased
spread of the data, with a more frequent occurrence of superior solutions that guide the algorithm
towards convergence at a global optimum, consequently influencing the average distribution.

• It can be said that the impact of the modifications have not been strong and does not make the
proposed algorithm to directly rival the performance of the conventional method, nevertheless, it
is still able to deliver improved results with quicker convergence as well, when compared to the
initial implementation of TRF.

• It can be seen that with the 2nd dataset, the gradient based algorithm struggles to converge to the
global optimum, and settled for a sub-optimal value. This implies that the effect of exploitation is
still dominant over the exploration of functional space. The reduction in the number of individuals
undergoing optimization and increment in the probabilities of genetic operations have helped
mitigate this problem, however, the issue still remains. However, it is also noted that out of the
3 tested benchmark datasets, the proposed algorithm struggles against this particular dataset
only (344_mv), which is not enough to deem the algorithm as being completely ineffective. On
the remaining 2 datasets, the proposed algorithm was able to converge to at least slightly better
results in comparison to the conventional method, if not greatly superior.

• Given the large number of parameters to potentially manipulate aside from the ones already done,
the author does not consider it to be effective to repeat this symbolic benchmark testing by further
altering these parameters and determine the optimum settings for each one. This is because it
is clearly visible that even if the proposed algorithm struggles against one dataset, it can at the
same time, converge to much improved results on other datasets with the same parameters.

• Therefore, moving forward, the current settings will be implemented, as presented in Table 4.8,
unless seen as necessary to change.

This completes the testing process of genetic programming, making the algorithm implementation-
ready on CFD datasets. Further changes will only be implemented if found suitable, and after a thor-
ough analysis.

4.2. Preliminary Testing of Kolmogorov Arnold Networks
The present section will deal with the early testing of Kolmogorov-Arnold Networks before moving to
the CFD datasets. KANs are already well defined and established and been applied to model different
relationships for a variety of regression problems, as also seen in Subsection 2.8.3. That said, the initial
testing phase of KANs will, hence, not involve evaluating the algorithm against symbolic benchmark
problems to establish its performance and ability to capture complex relations between variables. The
already presented literature is enough to convince the author of its effectiveness. Therefore, the initial
testing will be only to understand the working of KANs, the effect of network architecture, and determine
if there can be any loss of information when generating the symbolic formulae.

The examples considered for the preliminary testing, also defined as supervised toy datasets in the
work that describes the implementation of KANs [45], and are presented below.

Function Expression Domain

f1(x1, x2) exp(sin(πx1) + x22 x1 ∈ [−1, 1], x2 ∈ [−1, 1]

f2(x1, x2) x1x2 x1 ∈ [−1, 1], x2 ∈ [−2, 7]

f3(x1, x2, x3, x4)
√
(x1 − x2)2 + (x3 − x4)2 x1 ∈ [−1, 0], x2 ∈ [1, 2], x3 ∈ [3, 4], x4 ∈ [5, 6]

Table 4.10: Functions and Their Domains - KANs



4.2. Preliminary Testing of Kolmogorov Arnold Networks 71

The functional space of the datasets is visualized below.

Figure 4.24: Demo function - I

Figure 4.25: Demo function - II
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Figure 4.26: Demo function - III

The library of functions that is given the model to generate the symbolic formula is also presented below.

L =
{
x, x2, x3, x4, exp(x), log(x),

√
x, tanh(x), sin(x)

}
The pruning of inputs is not applied to these cases, unless stated otherwise. Nonetheless, pruning
of nodes and edges is performed here. Moreover, although the functions are taken directly from the
publishers of KANs, the functional spaces are not. In the original implementation, all the input variables
were defined within the range [-1, 1]. However, keeping in mind the distribution of our CFD datasets
and to provide some variability in the input variables, the domains were redefined.

The parameters of the optimizers can be referenced from Appendix Section B.5.1. The model’s con-
vergence history in terms of RMSE and R2 is plotted, along with a scatter plot is against the testing
data. The final symbolic formula is also written, along with the R2 scores.

4.2.1. Function 1
[2, 5, 1] Network
For the given function, a [2, 5, 1] KAN network is adopted. Later, it is pruned to remove any redun-
dant neurons or edges. The results are presented below.

Figure 4.27: RMSE and R2 - Function 1: [2, 5, 1]
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We can see that the model is quickly able to reduce its RMSE and get to excellent R2 scores in ≈
10 iterations, and then converges. This shows the ability of the model to quickly learn the activation
functions and converge to a model with good quality. Even after pruning, which occurs at the 15th

iteration, the model retains its quality. This indeed shows us that the removal of edges and neurons
that do not contribute to the overall model behavior does not cause any instability issues.

However, it can be seen that at ≈ 28 iterations, there is a significant decrease in the overall quality
of the model. The RMSE, and the R2 values deteriorate significantly by over 30%. This is the part
where the learnt activation functions are now converted to a symbolic form via the library. It is to note
that not all numerically active activations may be symbolically active as well. In other words, there may
be some activations that cannot be represented or modeled via the given library. As a result, these
activations become symbolically inactive, and do not contribute further to the final model. Furthermore,
this loss can also be explained as the library is only intended to model the activation functions, and
not act as a true representation of them. This is a form of approximation that also causes the loss of
information when obtaining the symbolic formula. However, when this symbolic is further trained, the
KAN parameters are optimized to achieve excellent scores again, and reach to a similar state after
pruning,. This makes training after obtaining the symbolic formula necessary as well.

In addition to this, depending on the type of functions learnt, and the library given, this drop in the
model may or not be substantial. Nonetheless, we can observe that towards the end, the model is able
to converge to very good scores in only a few iterations, highlighting the potential of KANs to model
different relationships quickly.

Figure 4.28: Pruned network - Function 1: [2, 5, 1]

From the pruned network, it can be seen that although not many, one connection is absent from the
first neuron in the first layer (1st input) to the third neuron in the second layer. The edges are also
colored differently. This indicates the overall contribution of that edge to the overall model. If a learnt
activation function contributes significantly to the overall quality of the model, it is ”black”, and fades
as its importance diminishes. In a way, it can be though that if the pruning threshold was higher, the
light colored edges would be the first to be pruned away. The calculation of the edge scores has been
explained in Section 3.3.
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Figure 4.29: Scatter plot - Function 1: [2, 5, 1]

Table 4.11: Model Performance: R2 Scores

Dataset R2 Score

Training 0.967
Testing 0.955

The above plot indicates the performance of the final model and can be observed that it behaves quite
well and does not exhibit any overfitting issues. The final R2 values for both training and testing are
excellent and the model maintains its consistency.

The final symbolic formula can be referenced from Appendix Section B.5.2.

[2, 5, 5, 1] Network
To study the effect of depth, a [2, 5, 5, 1] layered network is also implemented, with the same
settings. The results are presented below.

Figure 4.30: RMSE and R2 - Function 1: [2, 5, 5, 1]

It can be clearly seen that with a deeper model, the model does not experience the drastic drop in
quality occurring at the 28th iteration. With only slight slumps at a few instances, the model is able to
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retain its good quality throughout the training process, without any fluctuations. Thus, it can be said
that a deeper network may be inherently more stable.

Figure 4.31: Pruned network - Function 1: [2, 5, 5, 1]

Unlike the previous case, it can be noted that none of the connections from the first layer are pruned.
Rather, only the second layer experiences some removals, such as the first neuron in the second layer
which only has 2 edges in what would be 5 edges representing 5 activation functions otherwise. Hence,
the behavior of the model completely changes, with the current model appearing to be more complex.
This is also expected as now it has to learn more activation functions.
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Figure 4.32: Scatter plot - Function 1: [2, 5, 5, 1]
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Table 4.12: Model Performance: R2 Scores

Dataset R2 Score

Training 0.935
Testing 0.928

These plots and values are more insightful. Although a deeper network can be expected to model
even more complex relations appropriately, the converse is observed here. Aside from the model
retaining more edges, and consequently more activation functions, it does not prove to be beneficial
as the R2 values drop by quite some margin when compared to a simpler network. This is also in line
and reported by the publishers of KANs wherein when the number of parameters in the KANs model
increased, the model accuracy dropped as well. Hence, not always can a deeper architecture model
achieve improvements over a shorter version of it.

The symbolic formula can be referenced from Appendix Section B.5.2 and it can be seen that the
resulting symbolic equation is severely more complex.

From the above dataset, it can be said that a deeper network is not favorable at all times. Although ex-
hibiting more stability and robustness, it not only results in more unknowns, but produces a significantly
complex model without further improvements in the R2 values as well.

4.2.2. Function 2
[2, 5, 1] Network
The findings are visualized below, in the same manner as for the previous case.

Figure 4.33: RMSE and R2 - Function 2: [2, 5, 1]

Identical to the previous case with a 1-layered network, a dip in the model performance can be noted
at the 28th iteration, when the model undergoes training after assigning the symbolic functions to the
activations. However, for this function, the model appears to be more robust as the drop in the perfor-
mance is not very substantial, and quickly converges to the optimal results it was at, prior to assigning
symbolic functions.
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Figure 4.34: Pruned network - Function 2: [2, 5, 1]

A very similar model can be observed as to the previous dataset. One of the connection from the first
neuron is removed, while others maintain their presence. In addition, the model has a mix of black and
faded edges, implying the presence of both of highly critical, and less significant activation functions in
the predictions made by the final model.
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Figure 4.35: Scatter plot - Function 2: [2, 5, 1]

Table 4.13: Model Performance: R2 Scores

Dataset R2 Score

Training 0.998
Testing 0.987
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We can see that the model behaves excellently with both training and testing data. With a nearly linear
plot on testing data, and getting an almost perfect training R2 of 1, it can be said that the model with
this architecture is easily able to regress for the formula of Function - 2. Perhaps it can be said that the
function is trivial, nevertheless, it is still impressive that the model is able to attain such high scores on
a dataset with 800 training points, and only one hidden layer.

The symbolic formula can be referenced from Appendix Section B.5.3.

[2, 5, 5, 1] Network
To analyze the impact of network depth as done in the previous case, a [2, 5, 5, 1] architecture was
also tested. The results are shown below.

Figure 4.36: RMSE and R2 - Function 2: [2, 5, 5, 1]

Similar to our previous findings with a deeper network, a deeper network for this function appears to be
more robust as well. The model only suffers from a minor decrease in its RMSE, and R2 when pruned
or when the activation functions are being approximated. This further strengthens our inference that
deeper models, with greater number of parameters to optimize for and activation functions to learn, are
more robust, and can handle the loss of information more efficiently.
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Figure 4.37: Pruned network - Function 2: [2, 5, 5, 1]

In this case, the pruning is more effective than with the previous function. Although no edges are
removed from the first layer, the second layer is subjected to the complete removal of one of its neurons.
The first neuron of the second layer does not receive or send out any information. This can contribute
further in obtaining a relatively simpler symbolic formula, as compared to when the pruned neuron
would also be involved and have the need to be approximated.
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Figure 4.38: Scatter plot - Function 2: [2, 5, 5, 1]
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Table 4.14: Model Performance: R2 Scores

Dataset R2 Score

Training 0.995
Testing 0.992

The R2 values and plots further describe the quality of the model. For the current case, a deeper
network is able to obtain excellent correlations, and maintain its superiority in having a better testing
R2 over a simple architecture, although only by the faintest of margins. The RMSE error, however,
remains identical across the two architectures.

The symbolic formula can be referenced from Appendix Section B.5.3. As we need much simpler ex-
pressions that can be inserted into the CFD solver and evaluated with ease without causing divergence
issues, a 2 layered network, or a deeper network in general, at this point, becomes unfavorable and
not the right architecture to be implemented for large datasets such as the CFD cases with 5,000+ data
points.

4.2.3. Function 3
This formula is also used to compute the Euclidean distance in a two dimensional space. Given the
results from the previous functions and the greater mathematical depth of the formulae, partly due
to a complex library as well, a different and a much simpler library is given to KANs for this function.
This also serves as a test to determine whether KANs can effectively adapt simpler functions to model
or represent the complex interactions between the variables in the functional space. The library is
presented below.

L = {x, sin(x), cos(x)}

The library was also chosen as such because the previous symbolic formulae predominantly consisted
of sin, cos, and linear algebraic terms.

[4, 3, 3, 1] Network
For the given function, a [4, 3, 3, 1] KAN network is applied, identical to the publishers of KANs.
The corresponding results are detailed below.

Figure 4.39: RMSE and R2 - Function 3: [4, 3, 3, 1]

It can be seen that the model finds it very difficult and struggles in the initial 10 iterations. With high
RMSE, and very low R2 scores, the model requires at least more than 10 iterations to generate scores
in the acceptable range. However, given the rate of change, it also tells us about the ability of a deeper
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architecture to learn the bulk of the mapping almost immediately. This can prove to be beneficial when
mapping complex interactions between variables in the functional space such as in CFD cases where
there can bemore than 15 scalar invariants, as it can very swiftly converge to at least acceptable scores,
if not excellent.

Figure 4.40: Pruned network - Function 3: [4, 3, 3, 1]

We can see that pruning has has been very effective in this case. Starting with a [4, 3, 3, 1] network,
is is reduced to a [4, 2, 3, 1] architecture. Moreover, the second layer is also subjected to many
edge removals, which in turn imply the complete removal of the associated activation functions as well.
Hence, the model only considers the crucial inputs, and the nonlinearities, discarding the rest. This
would also subsequently produce a simpler symbolic formula as well.

Once again, at iteration 28, the concerned metrics worsen before eventually recovering with training.
This represents the point where the activations are approximated via the library of the given functions,
resulting in too large a learning and possibly instabilities.
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Figure 4.41: Scatter plot - Function 3: [4, 3, 3, 1]

Table 4.15: Model Performance: R2 Scores

Dataset R2 Score

Training 0.838
Testing 0.827

With regards to the correlations, it can be said that the resulting model is not excellent or on par with
the models that were produced for previous functions. It is able to obtain an R2 only in early 0.80’s.
Despite its expressiveness, ability to quickly learn and model the relations, it can be said that KANs
may require further training iterations to achieve exceptional scores in the range of > 0.90, the range
that the present study also aims to obtain with the CFD datasets in the a priori testing. However, this
can also be contributed due to the limited library. By giving only a few functions, we are essentially
limiting the expressive power of KANs. This can increase the loss of information, which already occurs
when the approximation takes place, by the symbolic functions. Thus, having shorter library may not
be able to produce a very accurate model.

The symbolic formula can be referenced from Appendix Section B.5.4. The resulting equation does
not have any power terms, yet is able to learn the activation functions effectively. It can further be
observed that although the underlying function is more complex, the resulting symbolic formula is quite
short when compared to the previous 2-layered KAN implementations. The effect of pruning can be
indirectly visualized here. With less number of unknowns to approximate and reduced functions to
learn, the resulting model is also quite simpler.

[4, 3, 1] Network
Contrary to the previous cases, instead of implementing a deeper network than the choice of the authors
of KANs, the network is shortened. A [4, 3, 1] layered network is now implemented to determine if
a simpler network is also potentially able to model the relationships that a deeper network can. The
performance is visualized below.
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Figure 4.42: RMSE and R2 - Function 3: [4, 3, 1]

It can be clearly observed that suddenly, with a shallower network, the capability of KANs to learn and
model the functional spaces is also enhanced. Even at the very initial stages of optimization, the model
performs considerably better. The worst RMSE reported by this model, at the very beginning, is only
slightly above 10, as opposed to being greater than 50 with the 2-layered network. The same goes
with R2 values.

Another consistent trend is the drop in the performance once the activations are approximated via the
symbolic functions. However, it is quickly able to learn the updates, optimize the selected functions,
and return back to its original optimized state. This establishes that simpler networks are more effective
in optimizing its parameters θ to quickly learn the dependencies between variables, the target variable,
and explore the functional space.

Figure 4.43: Pruned network - Function 3: [4, 3, 1]

We can observe that pruning is much more effective in this scenario. Similar to the deeper network, one
of the neurons is removed in the hidden layer, thus reducing the [4, 3, 3, 1] to a [4, 3, 1] KAN.
Moreover, it is also clearly evident that more edges are pruned here. In comparison to Figure 4.40
wherein each input variable had 2 edges, the present network only has half the inputs with 2 edges,
or 2 association activation functions. This further makes learning quite fast as it has to approximate
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relations or optimize a significantly reduced number of parameters. We can strongly now say that
pruning is much more effective with short layered networks, and it makes the training process much
quicker as well.
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Figure 4.44: Scatter plot - Function 3: [4, 3, 1]

Table 4.16: Model Performance: R2 Scores

Dataset R2 Score

Training 0.923
Testing 0.922

It is clearly evident how well the resulting model behaves with both training and testing data. With
minimal drops between the datasets (training & testing), the shorter network is quickly able to produce
excellent correlations, which the deeper network was not able to.

The symbolic equation can be referenced from Appendix Section B.5.4. With more effective pruning
of neurons and edges, faster training as there are less number of functions and parameters to learn,
and a straightforward symbolic equation easily evaluated, a 1-layered KAN would be the reasonable
choice, moving forward.

Pruned Inputs - [4, 3, 1] Network
As discussed in earlier sections, specifically Section 3.3 wherein pruning of inputs was explained, the
same is applied in this iteration of the dataset to further assess the ability of KANs if it can remove an
unnecessary input(s) and still produce an excellent model. The graphs to illustrate the performance of
the resulting KAN model are presented below. The order of graphs is changed here as it would be wise
to first see the pruned model, and then proceed to visualize its performance.
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Figure 4.45: Pruned network (inputs) - Function 3: [4, 3, 1]

It was seen in Figure 4.43 that both x1, and x4 had only single edges coming from them, implying
that for the chosen network, their contribution in approximating the overall target variable was less, as
compared to the rest of the inputs. In this iteration, it is observed that x4 has been pruned. Thus, the
4-dimensional space will now be approximated using only 3 inputs. This reduces the model complexity
significantly, and makes the training a lot less computationally extensive. This ability of KANs to do so
in itself describes the potential of them to not just effectively model, and quickly adapt and learn the
functional space, but also reduce its dimensions.

Figure 4.46: RMSE and R2 (pruned inputs) - Function 3: [4, 3, 1]

The initial performance can be comparable to the network wherein pruning of inputs was not imple-
mented. It quickly converged to the optimal results. However, it can be seen that the model is more
sensitive now. It required additional training iterations to converge to a point in the solution space. This
is also coupled with the few drops in its performance occurring between ≈ 28-42 iterations. This sug-
gests that the model, with one input removed, has become more susceptible to potential divergence,
and extremely sensitive to even small changes in the symbolic formula. Thus, it necessitates further
training to make the model more robust, which would not be ideal when applied to the CFD datasets,
as it would mean to run the CFD solver several more number of times for the model to achieve conver-
gence.
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Figure 4.47: Scatter plot (pruned inputs) - Function 3: [4, 3, 1]

Table 4.17: Model Performance: R2 Scores

Dataset R2 Score

Training 0.761
Testing 0.762

It is clearly evident that the model only manages to reach sub-optimal convergence, and requires further
training to attain better correlations. With the reduced dimensions, it is not able to effectively capture
the interactions between variables.

The resulting symbolic formula can be referenced from Appendix Section B.5.4. Although much more
simpler to understand and evaluate, it is not ideal as it fails to give excellent correlations that the current
research aims for. However, the idea of reducing the dimensionality of the functional space and using
a select few variables to map the entire functional space resulting in simpler symbolic equations and
reduced computational cost is far too appealing to not be tried and implemented in the CFD datasets.

It is also important to note that it achieves the correlations without using any square or root functions,
despite the original function being primarily composed of such operations. This highlights the strong
capability of KANs to approximate complex functional relationships, even with a limited function library.
KANs are able to represent operations absent from the library by effectively mapping existing functions
onto the functional and parameter space, forming efficient and expressive combinations. This demon-
strates their potential to learn rich representations in constrained symbolic environments. Thus, we do
not need to know a priori the relationships between the different inputs and the target variables, as
KANs have repeatedly displayed its ability to model them smartly with the limited options that are given
to it.

4.2.4. Function 4
The testing on above 3 functions were sufficient to come to certain conclusions. This function only
served as a supplementary test case for the author to become more familiar with the working of KANs
and be confident of its performance. Hence, its results can be referenced from Appendix Section B.5.5.

4.2.5. Conclusions - Preliminary KANs testing
The preceding section concludes the preliminary evaluation of KANs. Their performance has been
assessed across multiple datasets using varying architectures and pruning strategies. A comprehen-
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sive analysis has been conducted, with results carefully examined and justified. To summarize the key
findings, the following conclusions are drawn.

• One of the initial observations made regarding the performance is that there can be loss of infor-
mation when converting or approximating the activation functions via to its symbolic form via the
library given. However, training further over a few iterations restores the model’s performance.
Deeper networks, however, tend to be more robust and have a less significant information loss.

• Nonetheless, when taking pruning into account, it is less effective on a bigger network. In a deeper
network with more number of neurons, an individual edge score can be lower, but relatively be
similar to the rest of the edges. In other words, it can be difficult to distinguish important edges,
and can potentially represent functions with overlaps. Hence, each activation function can have
similar contributions to the final approximations. However, with shallower networks, it is easier
to single out edges that contribute minimally, as they are forced to use fewer but meaningful
connections.

• This has direct consequences in the final symbolic formula obtained. With pruning not as effectual
as it could be, many more activation functions are learnt and approximated. This increases not
just the length of the symbolic expression, but the complexity of the model as well. Hence, shorter
networks need to be preferred for an interpretable compositional structure of the final model.

• KANs exhibit continual learning. This coupled with small models (small networks), and a simpler
final function can enhance its accuracy and efficiency. This can also be seen with the comparison
of correlations when a deeper and a shallower network were compared. The latter outperformed
and gave excellent correlations on almost all the functions. This makes a 1 hidden-layered net-
work an obvious and a favorable choice moving forward. Increasing or decreasing the number
of neurons in this 1 hidden-layered network can enhance the expressive of power of KANs, and
make training easier by quickly learning the activation functions and mapping them onto the sym-
bolic functions. However, this would also depend on the dataset and the user, as too many
neurons can once again also enhance the complexity of the model. In short, we can say KANs
are extremely expressive, and demonstrates fast learning capabilities, making it well-suited for
complex functional mappings in high-dimensional spaces.

• As seen in Subsection 4.2.3, KANs have the ability to prune inputs. This can prove to be very
useful in CFD datasets where there can be up to 25 inputs (scalar invariants). The curse of dimen-
sionality, which many machine learning algorithms suffer from, cam easily be tackled by KANs,
as they reduce the number of parameters, and the dimension of search space significantly. How-
ever, a balance between pruning inputs and training iterations would be needed, to get excellent
correlations.

• Another interesting observation is that it is not necessary to provide an extensive library to ap-
proximate the activations. Although having more functions available may potentially increase the
expressive power, it also results in a symbolic formula not easy to comprehend. KANs have
exhibited their capabilities to express a functional form by smartly selecting and making combina-
tions of functions from a limited library, and then further optimizing them by affine transformations.
Therefore, when implementing KANs on CFD datasets, a limited library of a few functions will be
given to fully leverage this ability of KANs, when obtaining the functional form of the model.

This culminates the entirety of the preliminary testing of both the methods - genetic programming
with gradient descent, and Kolmogorov-Arnold Networks. With parameter settings, optimizer, and the
methodology of KANs studied extensively and finalized, the present work, until now, gives us a strong
foundation of these methods, and evidence that they can potentially give excellent correlations on ac-
tual CFD datasets, and improve RANS modeling. The study now leads to the next chapter, wherein
different CFD cases are studied in a methodical manner.



5
A priori CFD Results

The present chapter will implement the developed (and optimized) algorithms on different CFD datasets.

Initially, as an additional test or screening for these methods, the algorithms are applied to formulate
the corrective term for turbulent production based on only one tensor: dissipation (ϵ). It is well known
a priori that the turbulent production is heavily influenced by the ϵ for cases such as Periodic Hill, and
Square Duct. Essentially, this reduces to a least squares regression problem, wherein the coefficient of
ϵ will be optimized which further depends on the scalar invariants. Hence, a comparison with standard
least squares regression is also made where the coefficient is only a constant (scaling factor).

Furthermore, given the inherent random nature of GP’s, multiple random seed iterations were per-
formed to quantify the performance appropriately, and mitigate the effects of any randomness in the
final results. For KANs however, only one-off, or at most a few runs were performed with a selected
architecture to ensure the results remain consistent.

5.1. Genetic Programming with gradient descent for PH - ϵ
Identical to the previous methodology implemented in Subsection 4.1.3, 100 iterations were performed
with distinct random seeds. The input space comprised of 17 scalar invariants, combining to form the
coefficient of ϵ, used to regress for kdeficit. The results, along with the input space, are described
below.

Table 5.1: Functional Space

Set Type Variables
Non-dimensional Set S2s, W2s, S3s, W2Ss, W2S2s,

Ak2, Ak2Ss, Ak2S2s, Ak2WSs, Ak2WS2s,
Ak2SWS2s, qQ, qT , qCPB

, qtaukB
, qγ , qRe

Dimensional Set ϵ

Target Variable kdeficit

The presence of subscript s in the scalars indicate its non-dimensionalisation by the mean flow time
scale when these features are derived.

Note that we aremost interested in the function count and the quality of the converged individual. Hence,
correlation graphs and function counts are plotted, in addition to briefly discussing the convergence
behavior. An analysis on the evolution of quantities such as the Elite RMSE, training and testing R2 is
performed and can be referenced from Appendix Section C.1.

88
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5.1.1. Optimization - I
Optimization I refers to applying operator optimization at every 3rd and terminal optimization at every
5th generation, chosen as the final settings after preliminary testing in Section 4.1.

Figure 5.1: Log Median RMSE: kdeficit for PH based on ϵ

To gain a better perspective on the convergence rates of the algorithms, the above plot was made on a
logarithmic scale. It is seen that the mimetic algorithm exhibits superior convergence rates throughout.
The convergence rate especially experiences a jump when an optimization cycle occurs, at the 3rd,
and the 5th generation for terminals and optimizers, respectively. Notably, when going from the 2nd to
the 3rd, the elite individual after terminal optimization at the end of the 3rd generation is much more
improved than the preceding elite individual. This can be observed throughout until the end.

However, it can also be seen that at certain generations the quality may deteriorate as well. For in-
stance, when going from the 4th to the 5th generation, the bottom 10% of the individuals suffer from
the operator optimization, and their quality worsens. Hence, a proper balance is required between
exploration, and the extent of exploitation. The IQR plots shed further light on the capabilities of the
optimizer. We can see that the variation in the quality of the individuals significantly drops when an
optimization cycle occurs. Thus the optimizer is able to effectively guide the overall search into an
optimal space, with randomness from genetic programming providing the ability to explore this optimal
space only, rather than the whole functional space.

Nevertheless, as the algorithm proceeds and cycles of optimization keep on occurring, the key take-
away is that the proposed algorithm exhibits superior convergence rate to the optimal solution space,
and a higher quality of individuals. This is attributed to its structured exploitation of the search space,
and effective hybridization strategy.
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Figure 5.2: Function Evaluations: kdeficit for PH based on ϵ

It can be deduced that the optimization process is not very expensive. With a majority of the random
seeds requiring roughly 1000 and 90% of the runs requiring ≈ 1400 function evaluations over 100
runs, which translate to an equivalent number of CFD runs, the optimizer is interestingly very strong,
efficient and cheaper in converging to an optimal solution. The performance is aided by the fact that
the optimized algorithm is made to run for only half the generation.

Each generation requires the evaluation of the individuals in the population who’s fitness is not valid.
This is equivalent to performing a CFD run with the individual, and determining the fitness value with
an appropriate metric. As a rough estimate with the implemented population size and number of gener-
ations, the conventional method performs 4900 function evaluations, keeping one elite per generation.
The proposed algorithm on the other hand, performs ≈ 3500 function evaluations. Although only a
crude estimate, the proposed algorithm is around 30% more cheaper than the benchmark method.
These are very encouraging results.
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Figure 5.3: Averaged CGP correlations: kdeficit for PH based on ϵ
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Figure 5.4: Averaged TRF correlations: kdeficit for PH based on ϵ

The quality of the converged individuals can be further visualized via the scatter plot. The gradient
based algorithm is able to achieve better correlations. Although only a slight improvement, it clearly
demonstrates the ability of the proposed method to not only converge to higher quality individuals, but
also do it in a significantly reduced number of function calls.

This simplified analysis on an actual CFD case is directly able to answer the primary question laid
out in Chapter 2. A genetic program that is incorporated with information from derivatives can indeed
achieve quicker and a higher order convergence, with reduced function evaluations, and acceptable
correlations.

5.1.2. Optimization - II
It was now decided to further improve the performance of the gradient based algorithm. Instead of
performing operator and terminal optimization at the 3rd, and the 5th generation, it was decided to
combine both the terminal and operator optimizations at the 5th generation with the aim to make the
implementation easier and reduce the function calls made by the optimizer. However, to verify this
concept and evaluate its performance, the same case of Periodic Hill, with 1 dimensional quantity -
ϵ was tested over 100 random seeds, and a direct comparison was made with the existing optimal
conditions. The results are presented below. An analysis on the evolution of quantities such as the
Elite RMSE, training and testing R2 is performed and can be referenced from Appendix Section C.2.
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Figure 5.5: Log Median RMSE R2: kdeficit for PH based on ϵ - combined optimization

It is now clearly visible that the convergence rate, and its order also remains identical with the modified
optimization settings. Interestingly, the occasional deterioration in the individual qualities observed with
the previously implementation of the optimizer was no longer observed. Themodified optimizer showed
an improvement in the individual quality throughout, with minimal oscillations.

Thus, it can be said that the search trajectory is more stable. Simultaneous updates allow better coordi-
nation between terminals and the operators, preventing one of them from undoing improvements made
by the other. This makes the whole optimization process more coherent, wherein the operators and
terminals are adjusted in synchronously. Furthermore, since quality deterioration is not significant, the
simultaneous optimization is more efficient as it likely spends less time in correcting suboptimal config-
urations generated earlier. In addition, the algorithm exhibits an improved ability to exploit promising
regions without needing to backtrack due to poor operator-terminal compatibility. The information to ex-
plore and exploit the whole functional space is being propagated more effectively between successive
generations with simultaneous optimizations.

Figure 5.6: Median Function Evaluations: kdeficit for PH based on ϵ - combined optimization
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It can be seen that the median function calls have dropped by over 40%, with 90% of the runs experi-
encing a similar drop as well. This is a remarkable decrease, and as seen earlier, the algorithm is now
able to achieve excellent solutions with significantly few function evaluations, indicating that the simul-
taneous optimization process makes better use of each function call. From an a posteriori perspective,
this translates to CFD simulations in the order of a few hundreds only. The scatter plots for CGP and
TRF can be referenced from Figure 5.3 and Figure 5.4
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Figure 5.7: Scatter Plots: kdeficit for PH based on ϵ - combined optimization

Table 5.2: Performance of different algorithms: Converged Training and Testing R2 Scores

Method Training ρ Testing ρ

CGP 0.98026 0.97794
TRF 0.97953 0.97675
TRF - mod 0.97897 0.97857

The averaged correlation from the modified settings has improved. Hence, the quality of the individuals
is not compromised at the expense of fewer function calls. But rather, reinforces our claim earlier
that simultaneous updates allow a more coherent optimization preventing one of them from undoing
improvements made by the other and consistently improving the quality of the individual.

With this, the idea of having simultaneous optimizations is proven to be more efficient in terms of
improved metrics, and with regards to function calls as well. Thus, this setting will be used hereafter
when all the dimensional quantities will be used to develop the completed corrective equation, unlike
the partial corrective equation, based on only ϵ.

Observing the converged correlation numbers as well, it can be seen that the algorithm with simulta-
neous optimization is able to converge to ever superior correlations, although only by a small margin.
However, it is still sufficient to further reinforce our claim that simultaneous optimization is better than
the alternative optimizations.

Before concluding this, the author also wanted to give the reader further insights into how the scores
evolve over with repeated function calls, and how the algorithm proceeds (convergence). This can be
referenced from Appendix Section C.2.1.
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5.2. Kolmogorov Arnold Networks for PH - ϵ
The same set of 17 non-dimensional scalars will be used to optimize the coefficient of the dimensional
quantity, ϵ, to deduce the corrective term for turbulent production.

We have seen that having 4-5 neurons in the hidden layer from benchmark cases has produced fa-
vorable results, Section 4.2. Moreover, the authors of KANs claim it can be convenient to start with a
large enough network, which can then be pruned to reduce the parameter space. This was seen earlier
wherein a [2, 5, 1] network was pruned to [2, 2, 1], as reported in Subsection B.5.5. Keeping this
in mind, a [17, 6, 1] network was implemented.

The functional space can be referred from Table 5.1, and the results are presented below.

(a) Initial network (b) Pruned network

Figure 5.8: Comparison of initial and pruned KAN structures: kdeficit for PH based on ϵ

From the above figure, we can see the pruning of input space, and the activation functions. Only the
essential ones are considered for further model training, and symbolization. What is most beneficial is
not just its ability to prune one or two inputs, but rather 12 inputs, and significantly reduce the solution
space constrained by 5 variables only. This is one of the many very beneficial features of KANs, as
also has been demonstrated earlier.

Figure 5.9: Convergence History: kdeficit for PH based on ϵ
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The convergence history demonstrates that despite certain fluctuations, and not converging directly, the
model is still able to attain very good metrics by the end. When compared with the proposed genetic
programming algorithm, it is able to clearly outperform it. The achieved RMSE is significantly lower,
and it is able to achieve an excellent correlation of > 0.95, which is attained in a significantly lower
dimensional solution space. This further reinforces the smart ability of KANs of not just pruning the
input space, but also combining the remaining inputs in an effective manner, and then using a library
of user-defined functions to obtain a symbolic formula.
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Figure 5.10: Scatter Plot: kdeficit for PH based on ϵ

Table 5.3: Model Performance: R2 Scores

Dataset R2 Score

Training 0.983
Testing 0.979

It can be seen that excellent correlations are obtained on both the datasets, and the model does not
suffer from issues such as overfitting, or underfitting, despite having only 1 hidden layer with 6 neurons
and operating on 10, 000+ data points. This is a problem that is often encountered with neural networks
when the number of parameters are significantly lower than the number of data points, which does not
pose a problem in this case.

The symbolic formula can be referenced from Appendix Section C.3. It can be noticed the symbolic
formula is only composed of linear algebraic operations, and trigonometric functions. Despite not pro-
viding an extensive library with polynomials, logarithms, and exponential functions, the model is still
able to use the library and map the continuous space onto the unary functions.

In addition to this, a dominant factor is the total function count. For reference, roughly 4900, and ≈
3200 function calls were required by the conventional, and the modified genetic programs respectively.
KANs however, only required 848 function calls to train a model capable of converging to excellent
scores, and correlations, in addition to also giving out an interpretable symbolic formula. This makes
KANs heavily favorable as the method for further a posteriori studies.

This concludes the implementation of KANs to regress for a corrective equation for kdeficit, based on
one feature only.
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5.3. Least Squares comparison
Until now, we have taken one dominant tensor or a dimensional quantity and optimize its multiplicative
factor, which in turn is a function of a number of flow properties, referred to as the invariants. It can be
considered as a simple least squares regression problem where the coefficient is optimized. Therefore,
as a final validation, comparison of correlations is done with classical least squares regression algorithm
(LSR).

The correlations with the testing, and training data for all the 3 methods are tabulated below. Note that
median values are presented for genetic programming, while the obtained values from one-off runs via
KANs, and LSR are presented.

Table 5.4: Performance with different methods: Training and Testing R2 Scores

Method Training R2 Testing R2

Mimetic Algorithm 0.954 0.954
KANs 0.959 0.956
LSR 0.952 0.951

The scalar, α, for LSR was 1.44. The capability of KANs to converge to models with superior corre-
lations is clearly distinguishable. The predictive performance of the models remains identical for both
training and testing datasets, followed by the mimetic algorithm which has an improved correlation
when compared to the LSR. Although LSR can give an optimized coefficient instantaneously, it lacks
any physical significance. KANs and the genetic programming on the other hand, optimize the coeffi-
cient composed of a combination of invariants, and dimensional quantities (tensors) which is essential
to interpret the corrections in a physical way, and understand which flow quantities impact the overall
CFD solution.

Nonetheless, the devised algorithms are able to outperform classical least squares regression method.
This concludes the testing on a canonical flow case, with just one feature.

5.4. Periodic Hill Testing
The algorithms were applied to the Periodic Hill datasets. All the features and tensors were now utilized
to formulate the completed correction term. One-off runs were performed, and the converged results
are presented below (along with input space), for both GP + gradient descent and KANs.

Table 5.5: Complete Functional Space for Correction Terms - PH

Set Type Variables Target Application

Non-dimensional Set
S2s, W2s, S3s, W2Ss, W2S2s

Both CorrectionsAk2, Ak2Ss, Ak2S2s, Ak2WSs, Ak2WS2s
Ak2SWS2s, qQ, qT , qCP_B, qtauk_B, qγ , qRe

Dimensional Set G1s, G2s„ G3s, G4s, G5s, G6s, G7s, G8s, G9s,
G10s, ϵ

kdeficit

T1s, T2s, T3s, T4s, T5s, T6s, T7s , T8s , T9s,
T10s

b∆ij

This is the complete functional space. However, the author’s research group implies mutual information
and statistical measures to reduce the dimension of the input space. During the feature definitions,
certain invariants are culled depending on their standard deviations, or complexity. They are then
subjected to mutual information where the invariants and tensors above a certain threshold only are
selected as final inputs. Moreover, these tensors are derived from the velocity gradients raised to higher
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powers. These can potentially cause instabilities when inserted into the CFD solver. Hence, based on
experience and as a rule of thumb, certain tensors are neglected. This helps in converging to good
models and having a stable optimization process. The table presenting the mutual information thresh-
olds can be referenced from Appendix Section C.4, Table C.1. Note that for KANs, its own pruning
feature was used to reduce the dimension of the input space (invariants), as explained in Section 3.3.
To demonstrate the effectiveness and the quality of the converged model, scatter plots are presented
with testing data. Statistical comparison is presented in Section 5.6.

5.4.1. Turbulent Production
Table 5.6: Reduced Functional Space for PH Correction in Turbulent Production - GP

Set Type Variables
Non-dimensional Set S2s, W2s, qT , qCPB

, qtaukB
, qγ , qRe

Dimensional Set G1s, G6s, ϵ

Target Variable kdeficit

The symbolic formula and the model can be referenced from Appendix Section C.6.1.
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(a) CGP Scatter Plot
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(b) TRF Scatter Plot
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Figure 5.11: Comparison of CGP, TRF, and KANs Scatter Plots - kdeficit PH
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5.4.2. Reynolds Stress Tensor
Table 5.7: Reduced Functional Space for PH Correction in RST - GP

Set Type Variables

Non-dimensional Set
S2s, W2s, S3s, W2Ss, W2S2s, Ak2,
Ak2Ss, Ak2S2s, Ak2WSs, Ak2WS2s, Ak2SWS2s,
qT , qCP_B, qtauk_B, qγ , qRe

Dimensional Set T1s, T2s, T3s, T4s, T5s, T6s

Target Variable b∆ij
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Figure 5.12: CGP Scatter Plot - b∆ij PH

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Pr

ed
ict

ed

b11
 = 0.40

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Pr

ed
ict

ed

b12
 = 0.36

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Pr

ed
ict

ed

b13
 = nan

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Pr

ed
ict

ed

b22
 = 0.37

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Pr

ed
ict

ed

b23
 = nan

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Pr

ed
ict

ed

b33

 = 0.27

Testing Correlation - TRF

Figure 5.13: TRF Scatter Plot - b∆ij PH
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Figure 5.14: KANs Scatter Plot - b∆ij PH

The model and the Symbolic formula of all the methods along with the overall correlation of the RST can
be referenced from Appendix Section C.6.2. Conclusions are drawn after implementing the algorithms
on the Square Duct setup as well.

5.5. Square Duct Testing
The algorithms were now applied to the Square Duct datasets. The complete function space for this
CFD case can be referenced from Appendix Section C.5.

5.5.1. Turbulent Production
As done for PH, similar pruning of the input space is performed. The reduced space, comprised of the
selected invariants, is tabulated below.

Table 5.8: Reduced Functional Space for SD Correction in Turbulent Production - GP

Set Type Variables

Non-dimensional Set

S2s, W2s, S3s, W2Ss, W2S2s, Ak2,
Ak2Ss, Ak2S2s, WAks, WAkSs, WAkS2s,
Ak2WSs, W2AkS2s, Ak2WS2s, Ak2SWS2s,
qT , qQ, qCP_B, qγ , qRe

Dimensional Set G1s, G6s, ϵ

Target Variable kdeficit
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(b) TRF Scatter Plot
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(c) KANs Scatter Plot

Figure 5.15: Comparison of CGP, TRF, and KANs Scatter Plots - kdeficit SD

The Symbolic formula of the methods can be referenced from Appendix Section C.6.3.

5.5.2. Reynolds Stress Tensor
Table 5.9: Reduced Functional Space for SD Correction in RST - GP

Set Type Variables

Non-dimensional Set Ak2, Ak2S2s, Ak2WSs, Ak2WS2s
qγ , qRe

Dimensional Set T2s, T3s, T4s

Target Variable b∆ij
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Figure 5.16: CGP Scatter Plot - b∆ij SD
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Figure 5.17: TRF Scatter Plot - b∆ij SD
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Figure 5.18: KANs Scatter Plot - b∆ij SD

The KANs model and the symbolic formula of the methods can be referenced from Appendix Section
C.6.4.

5.6. Performance Comparison
The following tables summarize the performance of the algorithms. The correlations with testing data
and the function count is reported, as they directly relate to the research questions mentioned in Section
2.9.

Table 5.10: Performance Comparison of Different Methods - PH

Case Setup Quantity KANs GP + TRF CGP Metric Type

Periodic Hill

kdeficit 0.988 0.979 0.981 Correlations
b∆ij 0.782 0.739 0.721

kdeficit 1651 2871 4229 Function Evaluations
b∆ij 2793 3386 4889

Table 5.11: Performance Comparison of Different Methods - SD

Case Setup Quantity KANs GP + TRF CGP Metric Type

Square duct

kdeficit 0.998 0.998 0.999 Correlations
b∆ij 0.994 0.962 0.958

kdeficit 612 2746 4118 Function Evaluations
b∆ij 1245 3016 4130



5.7. A priori Conclusions 103

Table 5.12: Percentage Improvement Comparison of Different Methods - PH

Case Quantity KANs (%) GP+TRF (%) Metric Type

Periodic Hill

kdeficit +0.71 -0.20 Correlation
b∆ij +8.46 +2.49

kdeficit +60.9 +32.1 Function Evaluation
b∆ij +42.87 +30.74

Table 5.13: Percentage Improvement Comparison of Different Methods - SD

Case Quantity KANs (%) GP+TRF (%) Metric Type

Square Duct

kdeficit -0.1 -0.1 Correlation
b∆ij +3.75 +0.42

kdeficit +85.13 +33.31 Function Evaluation
b∆ij + 69.85 +26.97

In the tables, + signs indicate an improvement and a − sign indicates a deterioration for that metric.

5.7. A priori Conclusions
The testing of the algorithms is now completed and the results produced by them certainly outperform
the benchmark case (CGP). Among the tested algorithms, KANs are the best-performing algorithms
and able to produce consistently improved results. A detailed conclusion will be made for each of the
algorithms, highlighting their capabilities and limitations. Keeping in mind the research questions for
this thesis, Section 2.9, and further work related to a posteriori studies, the following conclusions are
made.

• Genetic programs incorporated with information from gradients indeed exhibit accelerated con-
vergence to excellent correlations. The number of times the objective function is evaluated is
reduced significantly for all the quantities.

• While the generations are reduced by half, a reduction in the function count >≈ 33% is not ob-
served. Although the genetic program itself calls the objective function only ≈ 50% of the times,
the added function calls are made by the TRF optimizer to tune the coefficients and the opera-
tor weightings of the individual, thus accounting for nearly 1/3rd of the total function calls by the
GP + TRF method.

• The converged individuals from the mimetic algorithms, though exhibiting strong correlations, are
weakly dependent on the flow-derived feature set. Most of the trees were only scalars as opposed
to conventional GP which had a stronger dependence on the invariants. This is not favorable as
the individual contributions of the tensors now lack any physical meaning.

• KANs are able to produce improved results for each quantity and each test case. Unlike the
GP+TRF method, correlations for RST are also improved by 3.5% at the least. Even for turbulent
production, while GP + TRF only managed convergence to nearly identical correlations, KANs
were able to get better results. This guarantees an improvement in the turbulent flow modeling
where either of the modeling errors are dominant.

• The decrease in function count is remarkable. Although using LBFGS proved to be expensive for
GP, KANs were able to effectively use it and converge rapidly. Especially for turbulent production,
it requires only 15% of the function evaluations to that of CGP.

• This can be explained by the input pruning. It is more effective than mutual information at
selecting out features which the target variable would significantly depend on. Its capability can
be seen from the Square Duct case. With an original input space of 25 invariants, it selects only
2 and 4 inputs for k and b∆ij , respectively. This reduces the search space significantly and helps
converge to excellent solutions very quickly. Thus, it can be said that as many features can be
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given, but pruning allows only themost important features to be used and form an efficient solution
space to model the target variable. The curse of dimensionality (input space) does not pose a
problem here.

• The activation functions are able to capture the complex (non-linear) relations between different
quantities. In addition, the resulting expressions are strongly reliant on the input space which give
it the physical interpretability advantage, as opposed to GP + TRF .

• However, the symbolic expressions are very lengthy and composed of sin and cos, with the
possibility of the coefficients lying on extreme ends. This can produce some high frequency
functions and make it susceptible to oscillations and divergence when inserted into a CFD solver.
However, when visualizing the symbolically active KANs, it can be seen that such high frequency
activations are absent. Nonetheless, the risk still remains.

• With regards to flow physics, correlations for the correction in TKE were nearly perfect. For RST
and its components however, all the model struggled. It was known beforehand from the author’s
research group that regressing for b∆ij as a whole for PH is challenging. In addition, although the
overall correlations of the tensors for SD case remains quite high, the component correlations are
not.

• For a PH, it is a 2D case setup. Hence, the tensor components b13 and b23 are zero, and give
NaN correlations. Each of the models show good correlation with the turbulent normal stress
(anisotropy) in the streamwise direction. KANs was however, also able to capture the trend in the
turbulent normal stress in the wall-normal direction and has a higher correlation. In addition, they
also have a better correlation with the diagonal components of the tensor, thus they can further
improve the turbulent energy distribution than GP +TRF . The correlations for off-diagonal terms
in PH are also more improved in KANs. It can be expected that they better improve the shear
stresses and momentum transfer in the streamwise-normal direction. Thus, It further improves
the production of the turbulence model and helps in more improved modeling of the separated
flow region.

• SD is a 3D setup and exhibit secondary flows due to anisotropy in the RST. Secondary vortices
and corner effects are better captured if the RST modeling (momentum transport) is improved.
Once again, the anisotropy distribution or structure in x, y, z direction is significantly better cap-
tured by the KANs model. In this case, b13 and b23 is more important for the out of plane momen-
tum transfer, subsequently also for secondary vortices. The KANs model is significantly better at
capturing this effect.

This concludes the 1st part of the thesis where the frozen or a priori study was performed. The thesis
began with the objective to develop or use a method that can accelerate quickly (reduced function calls)
to excellent correlations while also produce a physically meaningful symbolic formula for the corrections
in Reynolds Stress Tensor and Turbulent Production. It is now completed and comparing the methods,
KANs emerge as the superior candidate. It is shown that given a high-fidelity data, KANs can be used
to very efficiently develop models (that can be inserted into CFD models) to improve flow modelling.
Although the models developed were corrections for k and RST , they can effectively be used for any
other flow (turbulent) quantity as well.

Note that Pearson’s correlation coefficient was used to evaluate each method’s ability for the quantities.
We were interested in the model’s ability to reproduce the spatial distribution and directional alignment
of the RST components as it measures how the variables are linearly aligned. R2 can be negative
in poor models making it difficult to interpret if the model is even slightly better or not. The difference
between ρ and R2 for turbulent kinetic energy was not significant 10−2.



6
A posteriori CFD Results

This chapter of the thesis explains the application of the a posteriori framework with KANs to develop
these correction terms while taking information by differentiating the CFD code. The objective will be to
determine if they can be used to improve flow modeling without compromising the stability of the CFD
solver and produce a generalizable model. The methodology has been explained in Section 3.6.

6.1. Initial a posteriori testing
The Spalart-Allmaras Field Inversion model was used that incorporated the correction field from KANs
into the turbulence model. Equations (3.23) to (3.29) describe the invariants. Note that pruning was
not implemented during the optimization process. Hence, to adopt the most simplest network, pruning
of the inputs was performed beforehand. All the 6 invariants were given to a KAN network utilizing 1
hidden layer of 4 neurons and 1 run of optimization was performed followed by pruning. The resulting
pruned network consisted of the 4 invariants from the converged Spalart − Allmaras solution field:
RITADest

(qdest), RITADiff
(qdiff ), RITAProd

(qprod), and qν . Therefore, only these 4 invariants were used
for the entire training process and other cases.

Ideally, we would want to have only 1 neuron in the hidden layer capable of using the inputs to generate
the appropriate corrective field, thus having the least number of parameters to optimize. However, it was
often diverged. With 4 neurons in the hidden layer, the a posteriori process was found to convergemost
of the times, hence it was decided to go ahead with it. After completing the differentiation & machine
learning frameworks, the initial a posteriori testing was performed on a 3500 Periodic Hill mesh, which
also serves as the training case for the study. This is also used by the publishers of DAFoam for their
own optimization of Spalart − Allmaras to k − ϵ using the OpenMDAO framework where the correction
field β was defined as a spatially varying field (scalar). The mesh can be referenced from Appendix
Section D.1 and its characteristics are presented below.

Table 6.1: y+ Statistics - initial a posteriori testing testing

Statistic Value
Minimum 0.014
Maximum 0.700
Mean 0.332

The y+ is shown for the bottom wall which is that actual region of improvement for the turbulence
model. Tolerances of 10−8 and 10−3 were selected for the CFD solver and the optimization process
respectively.

The distribution of the invariants is shown below.
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Figure 6.1: 3500 mesh Periodic Hill - Invariant Distribution

The convective and diffusion ratios represent transport mechanisms. Soon after the inlet the fluid
accelerates and in the separated shear layer, the velocity is higher resulting in the convective transport
becoming relatively dominant. Similarly, the fluid again begins to accelerate upstream of the second
hill causing higher convection. Close to the solid walls (top & bottom), the velocity vanishes due to the
no-slip condition thus making convective ratio the weakest in that region. In the separated region, the
convective ratio also reaches minimal values due to low mean velocities.

Both the diffusion and cross-diffusion ratio are relatively higher at the walls. Close to the walls (bound-
aries), there is a sharp increase in the velocity gradient which increases molecular diffusion and cross-
diffusion due to mixing and the spread of turbulence. In the core of the flow and inside the separated
bubble, the ratios have lower magnitudes because of reduced turbulence variation, lower eddy viscos-
ity and velocity gradients. The diffusion ratio near the outlet again enhances due to flow reattachment
occurring that again enhances the velocity gradients and turbulence generation. The cross-diffusion
region highlights interactions between momentum & scalar transport, and depends on the gradient.
Hence, it becomes prominent in regions of strong acceleration and high curvature.

At the top wall, the flow remains attached and fully developed. The turbulent viscosity is not increasing,
the mean velocity gradients remain low and a boundary layer is developed. This results in the relative
dominance of destruction ratio, and lower production. The production ratio reaches high values at
the shear layer and reattachment regions that exhibit strong velocity gradients, thereby increasing
turbulence. Inside the separation (recirculation) region downstream of the periodic hill, the flow does
not exhibit strong shear and velocity gradients. Hence, destruction is stronger and production is weaker.
It was interesting to note the region of high production and low diffusion close to the top wall.

The viscosity ratio is minimal at the top and bottom wall as νt approaches 0 close to the walls due to the
no slip & boundary conditions, resulting in low turbulence generation. However, in regions of separation
and reattachment, turbulence production is strong, which in turn also increases the turbulent viscosity,
and hence the viscosity ratio as well.
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These ratios can be explained by flow physics and give insights into how the different turbulent quan-
tities are distributed, and helps in identifying the dominant physical processes occurring in the flow.
Thus, when used to develop the β field, it provides a more physically meaningful correction that also
aligns with the flow and can be explained by these invariants.

6.1.1. Results of Initial a posteriori
Before visualizing the optimized velocity field and flow quantities, the optimization process is analyzed.
The convergence of the objective function is shown below.
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Figure 6.2: Optimization Convergence

The left figure shows how the velocity field depends on the correction field, while the right figure shows
how the objective value is minimized over the optimization process. The optimization process is quick
to converge. In 63 iterations, a convergence of 10−4 is attained. Although the objective value does
deteriorate at one or two instances, the overall optimization process is stable and quick. From the
left figure, initially, the L2 norm is higher indicating that the velocity field that needs to be optimized is
sensitive to the correction field and that it can be easily improved. As the optimization progresses, the
L2 norm reaches 9.5×10−3 indicating that the optimized correction field is no longer able to significantly
influence the velocity field and that it has already been optimized.

To visualize the flow field and the extent of optimization, velocity (Ux) profiles, coefficient of friction and
the correction field is presented below. The converged correlations, flow streamlines and model details
can be referenced from Appendix Section D.1
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Figure 6.3: Velocity Profile Comparison across the PH domain
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Figure 6.4: Skin friction coefficient Comparison across the PH bottom wall

Figures 6.3 and 6.4 illustrate the axial velocity profiles and Cf in the regions of interest. Ux is divided by
the bulk velocity to provide an improved visualization of the profiles. The same turbulence model, after
inserting the correction field, is now able to accurately capture the flow separation region which was
being over-predicted by the baseline model and this is also supported by the Cf plot. It can be observed
that the a posteriori model closely follows the reference Cf curve and the the point of reattachment is
now very close to the reference case. Cf is calculated as

Cf =
|τw|
1
2ρU

2
b

. (6.1)

The initial decrease in Cf is due to flow deceleration and a strong adverse pressure gradient causing
the flow to separate from the wall (x ≈ 0). The a posteriorimodel is now able to accurately predict it. In
the recirculation zone downstream of the hill at (x ≈ 0.2 − 2), the Cf remains relatively constant. The
prediction of the reattachment point from the a posteriorimodel is significantly improved, now at x = 4.1
compared to x = 3.57 from reference. This is in contrast to the baseline model where the reattachment
location is predicted at x ≈ 7.67. After this first reattachment location, there is favorable pressure
gradient and the boundary layer develops. This is predicted by the a posteriori and reference cases
where the Cf shows a hump for a short distance until x ≈ 6, but is completely missed by the baseline
model. As the flow approaches the second hill, adverse pressure gradient develops and the boundary
layer decelerates. Both the a posteriori and reference have a local minimum at x ≈ 7.14 trying to
capture the secondary incipient separation region which would have been captured by a higher-fidelity
model such as LES, as seen in [40]. Nonetheless, the baseline model again completely fails to capture
this. As the flow reaches just upstream of the second hill, it accelerates which is shown by the sharp
increase in Cf , with a posteriori modeling it accurately.
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Figure 6.5: Viscosity Profile Comparison across the PH bottom wall

The viscosity profiles are a better representative of the turbulence modeling and it can be seen that
they are not as improved as the velocity profiles. Across the bottom wall, there is improvement in
the viscosity implying that it is able to better model turbulence (production, destruction & mixing) and
enhances momentum transfer near the wall, which is essential in predicting the separation and reat-
tachment points. Along the top wall, the first half has an improved viscosity while the latter half sees
almost no improvement. The improved model also suffers in the shear layer, downstream of the first
periodic hill where it exhibits large fluctuations. However, upstream of the second periodic hill, the mod-
eling improves. This suggests that the a posteriori model is able to capture the near-wall turbulence
up to some extent, but still struggles to model it in regions of strong velocity gradients and away from
the wall. Thus, although the model is able to get the correct mean flow suggesting improved turbulence
modeling, the viscosity profiles indicate otherwise. It can be inferred that the mean flow improvements
may be due to the correction field dominating the turbulence modeling and that turbulence is still not
accurately resolved as would be preferred.

Figure 6.6: β field

The values of the β field imply that there are regions where production is being enhanced by as much
as 18 times and reduced significantly as well. The range strongly indicates an overfit solution. It can be
said the turbulence modeling is dominated by this correction field and not the transport equation itself.

At the inlet and outlet regions, the turbulence production increases, but is more significant along the
bottom wall. As seen from Figure 6.5, the baseline model under-predicts νt close to the inlet. The
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strength of the shear layer is weak resulting in too long a separation bubble. The β field corrects
this by enhancing production locally, thus matching the velocity profiles. In the baseline model, the
reattachment point is located close to the second hill. To correct this, there is a large production increase
as this results in increased νt. With this, the diffusion increases and there is more effective momentum
transfer thus reducing the size of the separation bubble. This is also supported by Figure 6.5 where
the viscosity along the bottom wall is much improved. In the attached flow above the bottom wall, the
baseline model does sufficiently good in modeling the flow, hence the corrections are light. However,
in some regions, the correction modifies the production unnecessarily. In the recirculation region, β is
negative implying more destruction and is the region where the β field struggles to improve turbulence
modeling. The production is reduced such that the resulting shear stresses are able to improve the
velocity profiles while compromising the viscosity, thus not producing physical results. Similar behavior
can be observed at the top wall.

Overall, the a posteriori shows very good agreement of the velocity profiles and Cf with the reference
case. The prediction of reattachment point is much more accurate now, and also correctly capturing
the flow acceleration (& deceleration). Although the representation of the near-wall flow is improved
up-to some extent as seen from the viscosity profiles, when observing the complete profiles, it indi-
cates that turbulence modeling itself is not significantly improved. From the β field, it can be said that
the optimization is very strong and only focuses on matching the velocity fields while the turbulence
modeling is compromised. The β modifications are more localized and counteract each other with the
extreme values. Even though these effects are strong enough to correct the velocities, the net effect
on νt overall remains small.

The next section explores solutions to mitigate this overfitting issue and have a β field that lies in
acceptable ranges.

6.2. Regularization Analysis
This section gives details on the regularization penalty that was implemented in the objective. To
penalize large values of β and get a correction field that can be easily generalizable, squared L2 norm
of the β field was added in the objective function. The objective function can now be written as

I =
∑
i∈Ω

∥∥∥ui − uref
i

∥∥∥2︸ ︷︷ ︸
Velocity L2 norm

+
∑
i∈Ω

β2
i︸ ︷︷ ︸

β L2 norm

This has now become a multi-objective optimization problem with the parameters of KANs (θ) being
optimized so as to match the velocity field with reference data by using the numerically smallest β
field possible. However, according to this implementation, one of the costs can easily dominate the
other cost function and produce unfavorable results. Hence, to control the effect of the β L2 norm, a
regularization parameter λ was used, which modifies the objective as

I =
∑
i∈Ω

∥∥∥ui − uref
i

∥∥∥2︸ ︷︷ ︸
Velocity L2 norm

+ λ ·
∑
i∈Ω

β2
i︸ ︷︷ ︸

regularized β L2 norm

,

where λ controlled the contribution of β in the overall objective function. It was not known beforehand
which value of λ would be optimal. Hence, by selecting values in the range [10−4, 100], a regularization
study was performed where an appropriate value of λ was determined. The a posteriori process
remains the same with modifications only in the objective function. The results are presented below.
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Figure 6.7: Effect of regularization of β field on the velocity field
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Figure 6.8: β field statistics

Figure 6.7 tells us about the effect of penalizing the correction field, β. When the regularization is high,
(λ = 1), the optimizer finds it difficult to optimize the velocity field and converge to a correlation > 0.9.
The regularization error dominates the objective and the optimizer prefers smaller β values even at the
cost of a higher velocity field error. KANs exhibit a very limited ability or parameter space to reduce
the velocity error and the β is confined within a small space as attempts to explore other spaces get
penalized. This can effectively be seen from Figure 6.8 as well. At λ = 1, all the statistical quantities
of β converge to a single point.

However, at lower λ values, the optimizer has more freedom to adjust β and explore large values. This
reduces the error between the velocity fields and the objective drops due to reduced penalization. This
is also supported by Figure 6.8. At lower λ values, β starts to take extreme values and has a higher
mean value resulting in overfitting issues and lack of robustness. The error between velocity fields
starts to dominate the objective.

Looking at Figure 6.7, λ = 1 is where the optimizer struggles to find a good β field and λ = 10−4 is where
the risk of overfitting becomes significant as the training correlations become very high. Ideally, λ =
10−2 is the optimal regularization value as it strikes a good balance between overfitting and underfitting,
without compromising generalization. However, the optimizer at this regularization penalty diverges.
Hence, the next best is chosen as the most suitable regularization parameter, λ = 10−3
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Figure 6.9: Effect of regularization on overall optimization process

Figure 6.9 describes the convergence history of the optimization process. It can be seen that at higher
regularization, the optimization is stable as the search is conservative. KANs are penalized heavily
to change β drastically and remain in a confined parameter space. The functional space is such that
the sensitivity of velocity with the β field remains large and constant. Although the L2 norm remains
higher thus implying that the velocity field can change significantly if the correction field changes, KANs
inability to produce a good β field due to regularization limits this.

At λ = 10−2, divergence is observed. At iteration 24, the optimizer takes a step that generates a
β field that reduces the velocity error. However, the optimizer is penalized by the regularization and
unable to recover, the optimization process diverges. The unstable L2 norm indicates that β can cause
potentially non-physical adjustments to the flow. At lower λ values, the L2 norm also converges to a
lower value. This indicates that a correction field is learnt such that the flow is not strongly dependent
on the β field anymore. Ideally, this is desired as this means the velocity field will not change with
further changes in β and reaches a converged state. However, this is also where the optimization risks
overfitting the correction field. In general, a lower converged sensitivity is preferred as the correction
becomes efficient and the velocity field is not very sensitive to it. This further supports our decision
to select λ = 10−3 as the velocity field has a lower converged sensitivity to the β field, in addition to
smooth convergence.

It is also seen at lower regularization, the L2 norm of velocity field is no longer as smooth as β now
moves into regions where the flow is easy to change. It is seen at instances that the L2 norm may
fluctuate while the objective remains stable. I can remain stable as it is a sum of two errors, but it can
also cover the instability in the sensitivity. The optimizer now prefers fitting the data over small values
of β which can lead to less stable changes in the sensitivity when mapping β to u. In addition, it was
observed that there is no unique solution. There can be more than one β field capable of producing
the same velocity field overall. However, depending on the magnitudes, the β field is then penalized
which guides the optimization.

6.3. Final a posteriori training and testing
With the regularization parameter implemented, a correction field was formulated by optimizing the
same periodic hill geometry, thus serving as the training case. When completed, the correction field
(from the symbolic formula) was computed and used for different PH geometries at the same mass flow
rates. These served as test cases to verify if our model can be generalizable and improve turbulence
modeling.
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6.3.1. Training Case
Similar to the presentation in Section 6.1, the velocity and viscosity profiles are presented & discussed
along with Cf and the β field. The symbolic formula, converged model and the streamlines can be
referenced from Appendix Subsection D.2.1.
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Figure 6.10: Velocity Profile Comparison across the PH domain - training with λ
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Figure 6.11: Skin friction coefficient Comparison across the PH bottom wall - training with λ
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Figure 6.12: Viscosity Profile Comparison across the PH domain - training with λ

Although the improvements in profiles from Figures 6.10 and 6.12 are not as significant as in Section
6.1, the results are better. The velocity profiles are improved the most. In the separation region, the
velocities match accurately and are no longer under-predicted. However, as we move towards the
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top wall, slight deviations can be observed from the reference profiles. Even with regularization, a
correlation of 0.965was obtained for Unet. With regards to Cf , the model is unable to capture accurately
the adverse pressure gradient causing the flow to decelerate and separate. However, the prediction
remains accurate in the recirculation zone until x ≈ 2. The prediction of reattachment point is improved
with a posteriori predicting it at x = 4.76 compared to x = 3.57 from reference. After attachment the
improved model is unable to completely capture the effect of favorable pressure gradient where the
boundary layer develops before the flow again decelerates (adverse pressure gradient) due to the
presence of the second hill. The Cf due to acceleration of the flow, upstream of the second hill, is
much improved.

The viscosity is much improved and no longer exhibits oscillations. Very close to the boundaries, the
model struggles to improve the viscosity. But significant improvements can be observed in the core
region of the flow. Although viscosity is over-predicted in the shear layer that develops due to flow
separation, the behavior becomes accurate as we move downstream of the first hill. The model still
finds it difficult to optimize the viscosity in the region close to the top wall where flow is slightly disturbed
from the flow at the bottom wall, if at all. The trends are consistent with Figure 6.5 except now the
profiles are more smoother and physically meaningful.

Figure 6.13: β field - training with λ

The β field is much more acceptable now, not very aggressive and regions of modifying production sig-
nificantly in opposing manners is not observed. the correction physically makes sense as the baseline
model significantly over-predicts the size of the separation bubble and reattachment point. The β field
correct this by increasing the production in the shear layer due to separation and in the circulation zone
as well. This increases the turbulent diffusion and mixing in the flow that help the flow overcome the ad-
verse pressure gradient. With improved momentum transfer, the separation bubble becomes smaller
and reattachment occurs sooner, as seen. Corrections in other regions are weaker. The strong cor-
rection along the bottom wall is likely an effect of the input invariants. This patch along the top wall
is also seen in production, diffusion and slightly in the destruction ratios, Figure 6.1. When the β field
is formulated, it strongly depends on the diffusion and production ratios. Thus, it can be thought of a
correction that should not be present, ideally.

With this, the training is completed. Improvements are substantial and the β field does not exhibit
overfitting now. The symbolic formula is exported and needs to be applied to testing cases to verify if
it is generalizable. This is performed in the next section.

6.4. Testing Cases
The β derived from the symbolic formula was applied to 3 different geometries that were characterized
by different slopes of the hills. The geometries were used from the author’s research group and have
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been used already in other studies for validation purposes. Hence, no further studies were done to
verify if the mesh refinement and setup needed improvements. Moreover, as stated in Section 3.6,
the distribution of invariants remains similar for different geometries as they are representative of the
turbulent phenomena. Hence, the mesh along with the y+ values and the distribution of invariants can
be referenced from Appendix Section D.2.2.

The velocity & viscosity profiles, Cf and the β field is presented below. The streamlines can be refer-
enced from Appendix Section D.2.2.
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Figure 6.14: Velocity profiles - Baseline, Reference and A posteriori
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Figure 6.15: Skin friction coefficient - Baseline, Reference and A posteriori
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(a) α = 0.5

(b) α = 0.8

(c) α = 1.5

Figure 6.16: β fields
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Figure 6.17: Viscosity profiles - Baseline, Reference and A posteriori

It can be concluded that the model is robust as all the testing cases show an improvement. When
considering the velocity profiles from Figure 6.14, most significant improvements can be observed for
α = 1.5◦. The velocities at the recirculation regions and along the entirety of the bottom wall show a
good match with the reference profiles. However, close to the top wall, the velocities are over-predicted
as was also observed in the training case. This can be directly related to the β field as shown in Figure
6.16. The region of high production at the top wall is causing the over-prediction of the velocities which
is believed to be derived from the invariants. The β field is also physically meaningful and aligns with
the flow physics. For all 3 cases, there is significant increase in production in the shear layer to correct
for the larger separation bubble predicted by the baseline model. Corrections in other regions remain
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mild. Moreover, for α = 0.5◦ specifically, there is also a small region of strong correction immediately
downstream of the first periodic hill. This can be explained by the velocity streamlines presented in
Appendix Section D.2.2, Figure D.15. The baseline model predicts a secondary separation region
which is absent from the reference case. This is corrected by the strong production, and hence absent
from the a posteriori model.

With regards to Cf as shown in Figure 6.15, improvements are not as significant. The a posteriori
model is not able to capture the flow deceleration and acceleration from the periodic hills as the β field
only weakly enhances the production in those regions. Nonetheless, the recirculation region along the
bottom wall is accurately captured by the a posteriorimodel. Close to the reattachment point predicted
by the reference case, the results are improved. For the case of α = 1.5◦, there is an over prediction
of Cf at x = 0.57 which can be explained because of the more stronger than required correction which
causes the size of separation bubble to in fact be reduced from the reference case. For the case also,
the model had a better prediction of the reattachment point at (x = 3.4)when compared to x = 2.96 from
reference. However, after this reattachment point (reference case), the a posteriori model struggles,
performing worse than the baseline model in some regions. It is not able to capture the region of
favorable and adverse pressure gradient post reattachment. However, as the second hill approaches,
the model is better able to capture the flow acceleration (favorable pressure gradient).

The viscosity profiles from Figure 6.17 also show improvements. Starting from the bottom wall, the
recirculation region and shear layer, viscosity is improved for both α = 0.5◦, 0.8◦. As the top wall
approaches however, the effect of corrections on νt diminishes and the a posteriori behaves similarly
to the baseline model, as issue also faced in the training case. For α = 1.5◦ however, the improvements
are not significant. In the recirculation region, the model tends to over damp the solution by increasing
νt more than the reference, and in other regions, it struggles for even the slightest improvements.

6.5. A posteriori Conclusions
A short summary of the current chapter is provided, before moving to the detailed conclusions of the
complete thesis in the next chapter.

KANs continue to demonstrate strong performances in the programmed a posteriori framework. Con-
sidering the initial testing, it took just 63 CFD runs to get a correlation ≈ 0.97. This shows that the
optimization is very strong and also stable as none of the iterations diverged. Although the quality de-
teriorated occasionally, the optimizer was quick to learn the functional space and adjust its parameters
to optimize the objective.

However, with the initial testing, the β field was more of an ad-hoc correction to get accurate velocity
fields rather than an improvement in turbulence modelling. This is undesirable and highlights that the
optimization effect needs to be controlled. Given this, regularization was introduced to allow for a more
robust and a generalizable model. As seen with the overfit solution, high frequency oscillations could
be observed in the symbolic model. Such oscillations were absent with regularization, thus converging
to a much more stable model. The resulting model produced improved results on the testing cases. On
3 different hill slopes, the velocity profiles showed the most improvements. Improvements in viscos-
ity profiles and the correction field now aligned with flow physics and consistent with how turbulence
modeling should be improved. Moreover, the quality of the correction field reflects the input variants.
The β field struggled to improve the top wall region as the invariants exhibited unusual behavior as
well, which the author believes are due to the limitations of the Sapalart − Allmaras model to model
turbulence.

Overall, it can be concluded that the programmed a posteriori framework, when subjected to a repre-
sentative training case, can produce a generalized symbolic formula to improve turbulence modeling.
The resulting β field is able to provide corrections to not just match the velocity fields, but improve flow
quantities as well, thus, answering the last research question mentioned in Section 2.9.
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Conclusion

Based on the detailed research and reflecting each sub-question and main question presented in Sec-
tion 2.9, they are answered here. The a priori study is first addressed and then the a posteriori study.

Sub-question 1: Can genetic programs that are incorporated with information from derivatives
achieve quicker convergence, with reduced function evaluations, and acceptable correlations?

Yes. A genetic program is a heuristic method that depends on evolutionary operators to converge to
the optimal solution. These genetic operators (crossover and mutation) depend on probabilities and
they occur at random nodes of an individual. This can eliminate useful combinations and often makes
the algorithm behave similar to a random search method. Gradient information to optimize the weights
of operators and terminals helps the algorithm to quickly learn the functional space. As seen, the
convergence rate and the individual quality increases significantly as soon as gradient information is
incorporated. It refines the search by exploiting the space and makes the algorithm converge quickly.
The optimal solution also exhibits improved correlations with a reduced functional count by up-to 30%.

Sub-question 2: How and which parameters (population size, evolution probabilities, number
of generations) would need to be optimized, in addition to the frequency and optimizer used?

Sub-question 3: Does the local search overshadow the exploratory ability of genetic algorithms
to observe large function spaces, causing the solution to converge to a local optima?

These are important parameters that need to be carefully adjusted. A population size of 50 was chosen
to provide sufficient diversity in the initial sample space. A larger population can also be used but makes
the process more expensive as there are more individuals to evaluate. The optimizer and the frequency
of optimization are the most important as it can make the algorithm computationally very expensive if
it calls the objective function repeatedly. It was seen that simultaneous optimization of terminals and
operators at every 5th generation is more effective than doing it separately. As seen with benchmark
testing in Section 4.1, the evolution probabilities were modified in phase I and phase II and were also
critical to the algorithm’s performance.

Linking this to the next sub-question, gradient based optimization and optimization by genetic operators
needs to be carefully balanced. The rate of occurrence of these operations needed to be increased
as gradient-based optimization can confine the algorithm’s search space causing it to converge to
a local optimum. When optimization was performed separately, the developed algorithm struggled
on some benchmark cases. However, with the increased probabilities and simultaneous optimization
now, the local search did not overshadow the exploratory ability of conventional genetic program. The
correlations remained similar, if not improved.

Sub-question 4: Can KANs be used on CFD datasets and converge to superior results with
reduced function evaluations? Can the learnable activation functions capture the complex (non
linear) relation between different quantities?
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Yes. KANs can be used on CFD datasets and reduce the computational cost (function calls) by as
much as 85% for some cases. KANs, by pruning, select only the most relevant inputs and reduce the
functional space significantly. The learnable activation functions can be dynamically adapted to modify
the shape of the basis functions and are capable to efficiently map the relations between different
quantities in the reduced space. They are able to converge to improved correlations.

This completes the a priori research questions and its objectives. Both methods, GP + TRF and
KANs have significantly lower computational costs (function calls). They are able to converge to
superior correlations and provide meaningful symbolic formula for the regressed quantities - RST and
Turbulence Production. However, KANs are the better candidate for the a posteriori study as it has
much lower computational costs, a symbolic formula strongly dependent on the pruned functional space
and individuals of a higher quality as well (correlations).

Sub-question 5: Can the superior method maintain its performance when applied in an a poste-
riori setting and if a generalizable model be obtained that is applicable for different flow cases
without encountering overfitting and stability issues? Is the symbolic formula physically mean-
ingful?

KANs can maintain is performance when incorporated with the differentiation framework. It is able to
adjust its parameters tomodify the correction field to optimize the objective function. Although applied to
improve the Spalart−Allmarasmodel which is computationally cheaper than k−ω SST , it takes only 63
iterations to achieve a correlation of ≈ 0.97. However, when applied as is, the optimization is too strong
and the solution over fits. A generalizable model for the correction field that aligns with flow physics
cannot be obtained. Thus, regularization is needed to limit this effect and balance the optimization of the
objective function while converging to a stable model as well. An appropriate regularization parameter
is selected by incorporating the squared L2 norm of the correction field. KANs can now produce a
generalizable symbolic formula when subjected to a representative training case. The correction field
obtained from the symbolic formula is interpretable and aligns with how turbulence modeling must be
improved.

It is also important to mention that the quality of the correction field depends on the invariants. The
Spalart − Allmaras model tends to over predict the production ration at the top wall (close upstream
of the second hill) and this influences the corrections as well. The β field exhibits strong production
correction in that region as well, thus compromising the overall improvement in turbulence modeling.

This answers the last research question of the thesis. The investigation of KANs in an a posteriori
framework is completed and this completes the study.

Note that there are a lot of code files with 1000+ lines in each file, especially for the a posteriori
framework. Thus, instead of presenting it here, all the codes can be obtained from the git repository:
https://github.com/affu5154/MSc_Thesis_Codes.git

https://github.com/affu5154/MSc_Thesis_Codes.git
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Recommendations

Based on the research performed, some improvements can be made if decided to continue with the
study and the following recommendations are made:

• The tree expressions of GP + TRF method are weakly dependent on the input features. Often,
they are just scalars which does not provide them with the physical interpretability advantage,
as exhibited by KANs or CGP . To resolve this, a tree syntax can be enforced such that every
individual has at least one input feature in its node.

• KANs can generate a symbolic formula but is often very complex or composed of multiple sin and
cos that can cause instability. This can be resolved by providing a more interpretable library of
functions or further increasing the correlation which serves as the threshold to accept a symbolic
function to represent the activation function.

• GP+TRF was allowed to evolve for 50 generations and was able to converge to superior results.
However, it was seen from benchmark cases that convergence could also be attainedmuch earlier
for some cases. Hence, the number of function calls could further be reduced by reducing the
number of generations and analyzing the effect.

• The quality of the converged individuals from the developed methods was superior in the a priori
setting. However, often the results are not as improved when the symbolic model is inserted into
a turbulence model (CFD solver). As also reported by [30], the a priori model required further
optimizing the model coefficients to produce improved results. Hence, to be sure of the model’s
quality, it can be inserted into the CFD solver and checked if turbulence modeling does improve.

• Regarding a posteriori study, Spalart − Allmaras was chosen as it is computationally cheap to
evaluate. However, to further continue this study, k − ω SST can be chosen as the model to
improve with LES orDNS taken as reference. This will also improve the quality of the invariants
as it does not suffer from the peak in production anomaly that Spalart−Allmarasmodel predicts.
k − ω SST model is better suited for such internal flows.

• It was seen that KANs exhibit loss of information and individual quality when the continuous
space is mapped using symbolic functions. In the a priori setting, further training was required to
compensate this loss. Whether the effect of this loss is detrimental to the quality of the correction
field or convergence in the a posteriori setting can be studied.

• The effect of regularization can further be studied. Squared L2 norm was used to align it with the
already calculated error in the velocity fields. However, a different regularization can be imple-
mented to select a more appropriate penalty factor.

• The training was performed on the Periodic Hill and testing also done on Periodic Hills but char-
acterized by different slopes. To further verify the generalization of the correction field, a vastly
different testing case such as a backward facing step can be implemented and the CFD solution
be observed.
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• Since the current study dealt with incompressible flows and developing the a posteriori framework,
velocity field was chosen as the target flow quantity. However, a different flow variable can also be
used or added in the objective function such as viscosity or pressure fields for compressible flows.
This can help develop a correction field that may significantly improve multiple flow quantities
simultaneously and improve turbulence modeling.

• The current study did not involve implementing a reverting mechanism. If the CFD solution di-
verged due to a poor correction, it was not possible for the CFD solver to run again with the
previous best model and have the optimizer use this information to update its parameters. This
can be implemented further which can tackle the issue of stability in the a posteriori framework
and maybe also allow for more improved results.
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A
Methodology

A.1. Tournament Selection Algorithm
Algorithm 9: Tournament Selection
Input: Population Pop, tournament size k
Result: Best individual selected based on fitness

1 Tournament_Selection(population, tournament size) ;
2 Best← null ;
3 for i = 1 to tournament size do
4 Individual← population [random(1, population size)] ;
5 if Best = null or fitness (Individual) better than fitness (Best) then
6 Best← Individual;

7 return Best;
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A.2. Illustration of control points, B-splines and basis functions

(a) B spline basis functions

(b) One half approximation of the complete activation function

Figure A.1: B splines, and its parameters

The dashed vertical lines in Figure A.1 indicate the knots.

A.3. Adopted TBNN concept
The concept of adapting the TBNN structure to KANs and genetic programming is visually shown below,
for better understanding.
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(a) TBNN-adapted GP

(b) TBNN-adapted KANs

Figure A.2: Algorithm architecture

A.4. Apriori CFD setups
Periodic Hill
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Table A.1: Boundary Conditions for PH CFD case

Variable bottomWall topWall inlet outlet
U noSlip noSlip cyclic cyclic

p zeroGradient zeroGradient cyclic cyclic

omega omegaWallFunction omegaWallFunction cyclic cyclic

k fixedValue fixedValue cyclic cyclic
k = 10−15 k = 10−15

nut nutLowReWallFunction nutLowReWallFunction cyclic cyclic

Figure A.3: Periodic Hill - frozen setup

Square Duct

Table A.2: Boundary Conditions for SD CFD case

Variable bottomWall topWall inlet outlet
U (velocity) noSlip noSlip cyclic cyclic

p (pressure) zeroGradient zeroGradient cyclic cyclic

omega omegaWallFunction omegaWallFunction cyclic cyclic
ω = 10 ω = 10

k fixedValue fixedValue cyclic cyclic
k = 10−15 k = 10−15

nut nutLowReWallFunction nutLowReWallFunction cyclic cyclic
νt = 0 νt = 0
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Figure A.4: Square Duct - frozen setup

A.5. Apriori CFD Modeling
Augmented k-ω SST model

Turbulence Kinetic Energy Equation
ρ
∂k

∂t
+ ρ

∂(Ujk)

∂xj
= (P̂k + σR)− β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(A.1)

Specific Dissipation Rate Equation
ρ
∂ω

∂t
+ ρ

∂(Ujω)

∂xj
=

γ

νt
(P̂k + σR)− βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2ρ(1− F1)

σω2

ω

∂k

∂xj

∂ω

∂xj
(A.2)

The production term in the above equations and the Reynolds-stress tensor are augmented by b∆ij :

P̂k = min

(
−2k

(
bij,Boussinesq + σb∆ij

) ∂Ui

∂xj
, 10β∗ωk

)
(A.3)

τij = 2k

(
bij,Boussinesq + σb∆ij +

1

3
δij

)
(A.4)



B
Preliminary Results

B.1. Terminal Optimization - RMSE & Training R2

B.1.1. Function 1− f1(x1, x2)

(a) RMSE of elite individual (b) R2 of elite individual

Figure B.1: Performance metrics (RMSE and R2) for the elite individual of f1(x1, x2).

134



B.1. Terminal Optimization - RMSE & Training R2 135

B.1.2. Function 2− f2(x1, x2)

(a) RMSE of elite individual (b) R2 of elite individual

Figure B.2: Performance metrics (RMSE and R2) for the elite individual of f2(x1, x2).

B.1.3. Function 3− f3(x1, x2)

(a) RMSE of elite individual (b) R2 of elite individual

Figure B.3: Performance metrics (RMSE and R2) for the elite individual of f3(x1, x2).
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B.2. Operator Optimization - Training R2

B.2.1. Function 1− f1(x1, x2)

Figure B.4: R2 of elite individual

B.2.2. Function 2− f2(x1, x2)

Figure B.5: R2 of elite individual
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B.2.3. Function 3− f3(x1, x2)

Figure B.6: R2 of elite individual

B.3. Benchmark Testing - Phase I
B.3.1. Dataset 1: Median RMSE, Training R2, Average Function Count & CPU Time

Figure B.7: RMSE: Dataset-1
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Figure B.8: Training R2: Dataset-1

Figure B.9: Total function evaluations: Dataset-1
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Figure B.10: Median computation time: Dataset-1

The above figure shows us the computational time, in seconds, that was required by each of the algo-
rithms. Although this only serves as a pseudo-representation to the effectiveness of the algorithms, it
does give us some insights. L-BFGS took up the most computational time which can be explained by
the exponentially increased number of function evaluations. Most of the TRF, and LM iterations were
in fact cheaper than the conventional method.

B.3.2. Dataset 2: Median RMSE, TrainingR2, Average Function Count & CPU Time

Figure B.11: RMSE: Dataset-2
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Figure B.12: Training R2: Dataset-2

Figure B.13: Total function evaluations: Dataset-2
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Figure B.14: Median computation time: Dataset-2

In terms of CPU time taken by the algorithms, the gradient based methods take impressively less time
than the conventional methods. This can be explained by 2 reasons. Primarily, the said algorithms
are run for 50 generations, while the conventional is made to run for 100 generations, hence having
more individuals to evaluate. In addition to this, larger and/or complex expressions require more com-
putational time to be evaluated and having a fitness value assigned to them. From the analysis, it was
clear that CGP, more than often, had the lengthiest expressions with multiple sub-trees and nodes,
which would eventually require more CPU time to be evaluated. Therefore, this explains the large 90th

distribution region, which would be affected by this.

B.3.3. Dataset 3: Median RMSE, TrainingR2, Average Function Count & CPU Time

Figure B.15: RMSE: Dataset-3
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Figure B.16: Training R2: Dataset-3

Figure B.17: Total function evaluations: Dataset-3
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Figure B.18: Median computation time: Dataset-3

Identical to our previous insights, the conventional method incurs the highest computational time, fol-
lowed by the optimized algorithms. The reasons remain the same as explained earlier: the reduced
number of generations and the tendency to converge to shorter, simpler expressions allowing for faster
evaluation, thereby contributing to lower CPU times for the gradient based algorithms and allowing it
to finish a random seed iteration quickly.

B.4. Benchmark Testing - phase II
B.4.1. Dataset 1: Median RMSE, Training R2 & Average Function Count

Figure B.19: Median RMSE: Dataset-1
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Figure B.20: Median Training R2: Dataset-1

Figure B.21: Total function evaluations: Dataset-1
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B.4.2. Dataset 2: Median RMSE, Training R2 & Average Function Count

Figure B.22: Median RMSE: Dataset-2

Figure B.23: Median Training R2: Dataset-2
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Figure B.24: Total function evaluations: Dataset-2

B.5. Preliminary Testing of Kolmogorov Arnold Networks
B.5.1. Optimizer Parameters
Some important parameters that were used during this preliminary testing of KANs with such datasets
are tabulated below.

Parameter Settings
grid 5
grid_eps 1
optimizer LBFGS
max_iter 20
epochs 7
batch_size 500

Table B.1: Parameter settings for preliminary testing of KANs

B.5.2. Symbolic Formula of Function 1
[2, 5, 1] KAN network

The final symbolic formula is

f(x1, x2) = 26.9805 (0.9732 sin(0.1097x2 + 8.052)− 1)
2

+ 0.7703
(
−0.3738(−x2 − 0.1632)2 + sin(1.7715x1 − 3.1889)− 0.1454

)2
− 0.3241 sin (21.165 sin(0.1658x1 + 7.9741)− 32.9382 sin(0.1602x2 − 4.6184) + 5.684)

− 0.4899 sin (0.9236 sin(1.3389x1 − 0.4286)− 1.5045 sin(0.5587x2 − 4.0216) + 11.2972)

− 6.4014 sin (0.1235 sin(2.6429x1 − 2.4094)− 3.9255 sin(0.1287x2 + 4.5107) + 3.6472)

+ 6.2865

[2, 5, 5 ,1] KAN network
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The final symbolic formula is

f(x1, x2) = 49.6885

(
0.0899 (0.1357 sin(1.4846x1 + 6.0228)− 0.8703 sin(0.4x2 − 4.64) + 1)

2

+ 0.0358 sin(1.1694x1 + 5.7952)− 0.0652 sin(0.772x2 − 4.4224)

+ 0.0129 sin
(
0.2274(−0.9625x2 − 1)2 − 0.622 sin(1.2639x1 − 9.7794) + 2.6953

)
+ sin (0.691 sin(0.5242x1 + 5.1474)− 0.0258 sin(1.9986x2 + 1.2052) + 2.1343)

− 0.1012 sin (−1.4627 sin(0.9252x1 + 5.552) + 0.6652 sin(1.164x2 + 1.6066) + 0.0549)− 0.8745

)2

− 0.7336 sin
(
0.5949 sin(0.9252x1 + 5.552)− 0.2705 sin(1.164x2 + 1.6066)

+ 1.7365 sin(2.0149 sin(0.5242x1 + 5.1474)− 0.0751 sin(1.9986x2 + 1.2052) + 0.797)− 1.395
)

− 0.3155 sin
(
0.4811 sin(0.1208(−0.9625x2 − 1)2 − 0.3304 sin(1.2639x1 − 9.7794) + 9.7487)

− 3.3261 sin(2.1509 sin(0.5242x1 + 5.1474)− 0.0802 sin(1.9986x2 + 1.2052) + 2.1056)

− 0.84 sin(−1.7569 sin(0.9252x1 + 5.552) + 0.799 sin(1.164x2 + 1.6066) + 7.919) + 7.5524
)

+ 0.668 sin
(
− 0.4721 sin(1.1694x1 + 5.7952) + 0.8586 sin(0.772x2 − 4.4224)

+ 0.8031 sin(4.1842 sin(0.5242x1 + 5.1474)− 0.156 sin(1.9986x2 + 1.2052) + 11.8769)

− 1.1154 sin(1.8125 sin(0.9252x1 + 5.552)− 0.8243 sin(1.164x2 + 1.6066) + 6.3279) + 8.5172
)

− 1.229 sin
(
0.3077 sin(−0.3216(−0.9625x2 − 1)2 + 0.8797 sin(1.2639x1 − 9.7794) + 8.7574)

− 5.927 sin(1.2754 sin(0.5242x1 + 5.1474)− 0.0476 sin(1.9986x2 + 1.2052) + 0.1779)

+ 0.6347 sin(2.95 sin(0.9252x1 + 5.552)− 1.3416 sin(1.164x2 + 1.6066) + 11.0924)

+ 1.1114 sin(0.71 sin(1.1694x1 + 5.7952)− 1.2912 sin(0.772x2 − 4.4224) + 10.8675)

+ 1.938 sin(0.6429 sin(1.4846x1 + 6.0228)− 4.1242 sin(0.4x2 − 4.64) + 3.5257)− 5.3774
)

+ 0.8504

It is not at all user-friendly to understand the equation and its interpretability. However, this is not
surprising. As each activation function is being approximated by the library, and we can observe that not
many connections are pruned, hence, the number of approximations to be made increases drastically.
This translates to an overall complex equation and comparable behavior was also reported when KANs
were applied to Knot Theory, wherein the resulting symbolic expression doubled in its length when just
one neuron was added in a hidden layer. Similar effect was observed when a new hidden layer was
added.

B.5.3. Symbolic Formula of Function 2
[2, 5, 1] KAN network

The final symbolic formula is
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f(x1, x2) = − 2.148 sin(0.2702x2 + 1.3568)

+ 3.0112 sin(−0.4222x1 + 0.4331x2 + 1.3744)

+ 1.5009 sin(0.6948x1 + 17.0494 sin(0.0906x2 − 7.7259) + 15.7934)

− 8.3982 sin(0.1834x2 − 0.8191 sin(0.116x1 + 2.0) + 2.1223)

+ 0.2783 sin(3.5614 sin(0.6192x1 − 0.9952) + 38.5033 sin(0.0962x2 − 1.4746) + 42.7439)

+ 8.5873

Despite converging to a very a good model, the symbolic equation remains rather complex to under-
stand and lengthy as well. A way around this issue is to give a more shorter library with only simple
functions, an idea explored further ahead.

[2, 5, 5, 1] KAN network

The symbolic formula is

f(x1, x2) =

0.2514 · sin
(
1.9542 · (− sin(0.2601x1 − 4.5027) + 0.9084 · sin(0.5943x2 + 5.1777) + 0.9444)

2

+ 2.0183 · sin(0.5609x1 + 2.3803) + 0.5348 · sin(0.2859x2 − 2.0241)

− 1.1482 · sin(0.1319x2 − 1.779 · sin(0.6029x1 − 3.9735) + 7.894) + 3.5044

)
− 0.759 · sin

(
0.2768 · (−0.5541x2 − 0.2833 · sin(2.9578x1 + 6.8118)− 1)

2

− 1.7121 · (0.1085x2 − sin(0.1559x1 + 1.7361) + 0.6554)
2

− 0.1061 · sin(−0.5073x2 + 6.8422 · sin(0.6029x1 − 3.9735) + 0.5224)

+ 0.5307 · sin(0.3618 · sin(0.2601x1 − 4.5027)− 0.3286 · sin(0.5943x2 + 5.1777) + 8.4657)

+ 1.974 · sin(1.7995 · sin(0.5609x1 + 2.3803) + 0.4769 · sin(0.2859x2 − 2.0241) + 3.5167) + 7.2767

)
+ 0.5887 · sin

(
3.9345 · sin(0.5609x1 + 2.3803) + 1.0426 · sin(0.2859x2 − 2.0241)

+ 6.3952 · sin(0.2045x2 + 0.1046 · sin(2.9578x1 + 6.8118) + 8.319)

− 0.4524 · sin(1.7621x2 − 16.2394 · sin(0.1559x1 + 1.7361) + 21.5225)

+ 0.2535 · sin(3.3934 · sin(0.2601x1 − 4.5027)− 3.0827 · sin(0.5943x2 + 5.1777) + 4.0266)− 13.0778

)
− 3.8156 · sin

(
0.2884 · sin(−0.2611x2 + 3.5213 · sin(0.6029x1 − 3.9735) + 7.1809)

− 5.1186 · sin(0.1305x2 − 1.2025 · sin(0.1559x1 + 1.7361) + 2.7964)

+ 1.6922 · sin(0.2066x2 + 0.1056 · sin(2.9578x1 + 6.8118)− 4.8701)

− 0.4383 · sin(−1.8254 · sin(0.2601x1 − 4.5027) + 1.6583 · sin(0.5943x2 + 5.1777) + 6.7094)

− 0.2997 · sin(8.3457 · sin(0.5609x1 + 2.3803) + 2.2115 · sin(0.2859x2 − 2.0241)− 10.9034) + 11.7175

)
+ 2.4627

As expected, with the increased depth of the network, the final equation also consequentially becomes
more and more intricate and challenging to comprehend.
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B.5.4. Symbolic Formula of Function 3
[4, 3, 3, 1] KAN network

The resulting symbolic equation is

f(x1, x2, x3, x4) =

− 0.4545 · sin
(
2.1 · cos

(
0.0658x2 + 0.102x3 − 0.1088x4 + 0.0314 · cos(1.4134x1 − 5.5828) + 5.9437

)
− 3.5832

)
+ 1.4964 · sin

(
0.1074x2 + 0.1667x3 − 0.1777x4 − 1.1263 · sin

(
− 0.2164x2 + 0.2776x3 − 0.3475x4

+ 0.1899 · cos(1.4005x1 + 6.7965) + 4.6985
)
+ 0.0513 · cos(1.4134x1 − 5.5828) + 1.5488

)
+ 1.0843 · cos

(
0.0973x2 + 0.151x3 − 0.161x4 − 3.3593 · sin

(
− 0.1116x2 + 0.1431x3 − 0.1792x4

+ 0.0979 · cos(1.4005x1 + 6.7965) + 4.2424
)
+ 0.0464 · cos(1.4134x1 − 5.5828)− 1.5842

)
+ 6.3465

[4, 3, 1] KAN network

The resulting symbolic formula is

f(x1, x2, x3, x4) = 0.5583x2 − 0.5121x3 + 0.5666x4 + 0.5615 · cos(1.2388x1 − 9.3118)− 1.0542

The inherent simplistic nature of the resulting equation itself makes the choice of a shorter network as
more favorable.

Pruned Inputs - [4, 3, 1] KAN network

The resulting symbolic formula is

f(x1, x2, x3, x4) = 0.5027x1 − 0.4828x2 + 0.5176x3 − 0.223

The complexity of the equation is further reduced with just 3 inputs and no trigonometric functions as
well.

B.5.5. Function 4
For the given function, a [2, 5, 1] KAN network is applied. The same library as subsection 4.2.3 is
implemented. Note that this is the dimensionless formula of the gravitational potential energy, defined
by the following.

F = Gm1m2(
1

r2
− 1

r1
) (B.1)

The results are presented below.
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Figure B.25: RMSE and R2 - Function 4: [2, 5, 1]

Despite early struggles, the resulting model is able to converge to outstanding metrics in less than
10 iterations. This once again highlights the impressive capability of KANs to very quickly learn the
optimized parameters, and model the functional space.

Figure B.26: Pruned network - Function 4: [2, 5, 1]

KANs continue to exhibit remarkable effectiveness of pruning for shorter networks. It can be sen that a
[2, 5, 1] network is now reduced to just a [2, 2, 1] architecture, reducing the number of parameters
and the computational cost by a large margin. This further speeds up the training process, and makes
the model itself more easily understandable and interpretable.
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Figure B.27: Scatter plot - Function 4: [2, 5, 1]

Table B.2: Model Performance: R2 Scores

Dataset R2 Score

Training 0.968
Testing 0.970

Strong correlations are evident from the above plot. The model is able to represent the functional space
in a superior manner, with excellent scores.

The obtained symbolic formula is

f(x1, x2) = −0.9032x1 − 0.1025x2 − 2.71 · sin(−0.0558x1 + 0.0785x2 + 8.0287) + 2.7203

We observe that the resulting equation is relatively concise and not particularly difficult to evaluate.
Although it appears more computationally intensive than the underlying function, it is important to note
that it achieves high correlation and significantly low RMSE values using only three functions—none
of which include a division operator, despite the original function being primarily composed of such
operations.



C
A priori CFD additional Results

C.1. Genetic Programming with gradient descent for PH - ϵ
C.1.1. Median Plots

Figure C.1: Median RMSE: kdeficit for PH based on ϵ
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Figure C.2: Median training R2: kdeficit for PH based on ϵ

Figure C.3: Median Testing R2: kdeficit for PH based on ϵ

The above results clearly indicate that the combination of genetic programming with gradient optimizer
is able to achieve superior results. Although the R2, and RMSE scores are only slightly better, the
solution space is much more confined when compared to the classical method. This is exactly what the
current research aimed to accomplish - gradient optimization able to exploit the solution space, allowing
for consistent convergence to high quality individuals with little variation in the converged solutions.



C.1. Genetic Programming with gradient descent for PH - ϵ 154

This is inferred from the percentile and the IQR plots. It can be clearly observed that the values of the
latter are significantly lower for the proposed algorithm. The difference mainly arises from the methods’
capability to not only have its top 10% converge to at least the same scores as those of the conventional
method, but also have the bottom 10% of the individuals be significantly better than that of classical
genetic programming. Thus, the solution space is more refined, and of better quality overall.

This gives a strong indication that the proposed algorithm is very effective, and able to achieve its
objectives.

C.1.2. Logarithmic Plots

Figure C.4: Log Median training R2: kdeficit for PH based on ϵ
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Figure C.5: Log Median Testing R2: kdeficit for PH based on ϵ

C.2. Genetic Programming with gradient descent and combined op-
timization - ϵ

Figure C.6: Median RMSE: kdeficit for PH based on ϵ - combined optimization
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Figure C.7: Median training R2: kdeficit for PH based on ϵ - combined optimization

Figure C.8: Median Testing R2: kdeficit for PH based on ϵ - combined optimization

It is clear from the above median, percentile, and IQR scores that combining operator and terminal op-
timization does not downgrade the performance of the algorithm. It is able to achieve a nearly identical
behavior with the previously implemented optimizer. To further gain insights into the rate and order of
convergence, the plots are also made on the logarithmic scale, and presented below. Note that given
the similarity in the performances of these algorithms over the metrics, as seen from above, only a few
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plots are made. This is done to avoid analyzing any repetitive patterns, and be able to come to firm
conclusions efficiently.

C.2.1. Analysis of quantities with respect to function calls
To observe how quantities change as the objective function is evaluated repeatedly, the following plots
are presented, and a brief analysis made, before concluding this section.

Figure C.9: RMSE and Function Calls vs Generations: kdeficit for PH based on ϵ - combined optimization

Figure C.10: R2 and Function Calls vs Generations: kdeficit for PH based on ϵ - combined optimization

The above figures give useful insights into how early the algorithm can achieve convergence with the
function calls. An interesting observation is the near-linear line for the function calls. The optimization
cycles occurred 10 times over the course of 50 generations, with each cycle requiring nearly 60 function
calls to optimize the selected individuals. It can be observed that with just ≈ 300-400 function calls
made by the optimizer, the algorithm is able to achieve convergence, which occurs quite before the 50
generations mark. Hence, to potentially make it more efficient, the function calls could be limited, or the
algorithm made to run for fewer than 50 generations. Both the alternatives could further have a positive
impact on the overall performance of the algorithms. However, as far as the current study is concerned,
and the scope of the existing research, these alternatives will not be studied or implemented.
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C.3. KANs for PH - ϵ
The symbolic formula is

f(x) = 0.0051x1 − 0.8563 sin
(
1.3341x3 − 0.049 cos(2.3102x1 − 6.773)

+ 1.6238 cos(0.5261x2 + 9.7931) + 0.5231 cos(3.1081x4 − 5.2153)

− 19.743 cos(0.1714x5 + 9.236)− 17.1287
)

+ 0.1271 cos(0.6517x1 − 2.3859)− 0.0564 cos(0.7934x5 − 8.9887)

− 0.3153 cos(0.5787x1 − 0.9008x3 + 0.1994x5 + 8.8271)

+ 0.1237 cos(0.9566x1 + 1.9999x3 + 1.4906x5 − 4.6646) + 0.6823

Note that in the equation, x1, x2, x3, x4, x5 refer to the pruned input space defined by [qQ, qT , q(B)
τ/k, qγ , qRe],

respectively.

C.4. Mutual Information Values
The thresholds set for invariants and scalars for different CFD datasets is tabulated below.

Table C.1: Mutual Information - PH & SD cases

Target Variable Invariants Tensors
kdeficit 0.5 0.9
b∆ij 0.6 1.0

C.5. Completed Function Set for SD
Table C.2: Complete Functional Space for Correction Terms - GP

Set Type Variables Target Application

Non-dimensional Set
S2s, W2s, S3s, W2Ss, W2S2s

Both CorrectionsW2SWS2s Ak2, Ak2Ss, Ak2S2s, Ak2SAkS2s,
WAks, WAkSs, WAkS2s, W2AkSs, Ak2WSs,
W2AkS2s, W2SAkS2s, Ak2WS2s, Ak2SWS2s
qQ, qT , qCP_B, qtauk_B, qγ , qRe

Dimensional Set G1s, G2s„ G3s, G4s, G5s, G6s, G7s, G8s, G9s,
G10s, ϵ

kdeficit

T1s, T2s, T3s, T4s, T5s, T6s, T7s , T8s , T9s,
T10s

b∆ij

C.6. Mathematical Representation of Individuals and Overall Cor-
relations

C.6.1. kdeficit PH
Conventional Genetic Programming
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Tree 1: qRe × qγ (C.1)
Tree 2: (0.7795 +W2_s)− [(W2_s×W2_s)× (W2_s× 0.7795)] (C.2)
Tree 3: 1.6707× qT (C.3)

Genetic Programming with gradient descent

Tree 1: 0.6764 ·

[
-1.2834 ·

[
1.214 · (1.5874− 1.3365)− 1.0781

]
− 0.518 · (1.4376− 0.9952)

]
(C.4)

Tree 2: 0.7888 · [4.9509− 0.8309] (C.5)

Tree 3: 1.4873 ·

[
0.1485 ·

[
0.0563 · (6.2873− 1.7301)× (−1.1039)

]
− qγ

]
(C.6)

KANs

Figure C.11: Symbolically Active converged model
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Output 1: 0.126qRe + 0.0050qT − 0.0882 cos (0.0644qT + 2.1855qtaukB

−0.1882 sin(2.5281qRe + 3.4246)− 2.0347)

− 0.673 tanh (0.0143qT − 0.1337qtaukB

+0.6163 cos(0.5922qRe − 5.7974)− 1.3128)

+ 0.515 tanh (0.1226qT + 1.1137 sin(0.2507qtaukB − 0.9939)

+0.1935 sin(1.0714qRe + 1.7538) + 1.9154)− 1.19 (C.7)
Output 2: 0.173 cos(0.0270qT + 0.0519qRe + 6.7761)

− 0.219 cos(0.0125qT + 0.3150qRe + 9.7753)

+ 0.498 tanh (0.0285qT − 0.2672qtaukB

+1.2315 cos(0.5922qRe − 5.7974)− 2.5920) + 0.0851 (C.8)
Output 3: − 1.6 cos(0.0130qT + 0.0250qRe − 5.6969)

+ 4.1 tanh (0.0065qT − 0.0605qtaukB

+0.2787 cos(0.5922qRe − 5.7974)− 2.0270) + 5.24 (C.9)
Output 4: − 0.0049qT − 0.122qRe

− 1.46 tanh(0.0131qT + 0.0252qRe + 0.6081)

− 0.538 tanh (0.0439qT − 0.4112qtaukB

+1.8949 cos(0.5922qRe − 5.7974)− 4.0724) + 0.595 (C.10)
Output 5: 2.9 cos (0.0043qT + 0.1464qtaukB

−0.0126 sin(2.5281qRe + 3.4246) + 0.1658)

− 0.508 tanh (0.0295qT − 0.2768qtaukB

+1.2756 cos(0.5922qRe − 5.7974)− 2.7654)

+ 0.0382 tanh (0.5136qT + 4.6639 sin(0.2507qtaukB − 0.9939)

+0.8105 sin(1.0714qRe + 1.7538) + 1.8057)− 3.24 (C.11)
Output 6: 0.0887qRe + 0.02qT + 0.117 tanh(1.0060qT − 1.8718)

+ 0.778 tanh (0.0527qT + 1.7886qtaukB

−0.1540 sin(2.5281qRe + 3.4246)− 2.5846)

+ 0.107 tanh (0.1893qT − 1.7746qtaukB

+8.1783 cos(0.5922qRe − 5.7974)− 1.6613)

+ 0.151 tanh (1.0205qT + 9.2678 sin(0.2507qtaukB − 0.9939)

+1.6106 sin(1.0714qRe + 1.7538) + 5.1327) + 0.663 (C.12)

C.6.2. b∆ij PH
Conventional Genetic Programming

Tree 1: [Ak2× Ak2] (C.13)
Tree 2: [qτkB × qγ ] (C.14)
Tree 3: [W2S_s×W2S_s] (C.15)
Tree 4: [Ak2S2_s× Ak2S2_s] (C.16)
Tree 5: [−1.4313 + 0.7795] (C.17)
Tree 6: [qγ × qγ + S2_s× S2_s× (−1.4313)× qγ ] (C.18)

Genetic Programming with gradient descent
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Tree 1: 0.8929 · [Ak2WS2_s× 1.4885] (C.19)
Tree 2: 0.8045 · [0.679× 0.58] (C.20)
Tree 3: 0.9444 · [Ak2WS2_s− 0.9205 · (1.3573 · (Ak2WS2_s× 4.7565)× 0.8756 · (−1.353× 4.0546))] (C.21)
Tree 4: 0.8801 · [Ak2S2_s× (0.7958 · (5.3408× 4.5559))] (C.22)
Tree 5: − 1.3945 (C.23)
Tree 6: 1.2121 · [1.1161 · (1.5942 + 1.1183)× (-0.29 · (0.9239 · (-0.1326 · (1.4409 + S3_s) + qγ) + qγ))]

(C.24)

KANs

Figure C.12: Symbolically Active converged model
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Out 1: − 0.216 sin(0.686qtaukB + 0.525 sin(1.27qT + 4.37) + 0.421 sin(1.37qγ − 6.79)

+ 3.81 cos(0.407S2s + 3.05)− 174 cos(0.043qRe − 6.20) + 935 tanh(0.004qQ − 2.8) + 1112)

− 0.119 tanh(0.104qQ − 52.1 tanh(0.576qRe + 1.2) + 44.1)

− 0.043 tanh(1.80S2s − 2.30qQ + 3.94qtaukB + 1.67qRe + 1.50 cos(1.92qT − 3.35)− 10.7)

+ 0.002 tanh(−4.31qtaukB + 2.61 sin(3.11qγ + 6.02) + 0.531 cos(2.66S2s + 6.96)

+ 0.033 tanh(9.0qT − 8.36)− 0.213 tanh(5.0qRe − 2.85) + 11.8)

− 0.032 tanh(−1.12qT + 1.85qtaukB + 5.23qRe − 3.98 sin(4.02qγ − 9.02)

+ 0.109 tanh(2.47S2s − 1.03) + 38.0 tanh(0.012qQ − 3.0) + 29.2) + 0.241 (C.25)
Out 2: 0.505qtaukB + 0.387 sin(1.27qT + 4.37) + 0.31 sin(1.37qγ − 6.79)

+ 3.44 sin(0.24qtaukB − 0.145 sin(3.11qγ + 6.02)− 0.030 cos(2.66S2s + 6.96)

− 0.002 tanh(9.0qT − 8.36) + 0.012 tanh(5.0qRe − 2.85) + 4.05)

+ 2.81 cos(0.407S2s + 3.05)− 128 cos(0.043qRe − 6.20) + 688 tanh(0.004qQ − 2.8)

+ 0.361 tanh(0.068qQ − 34.0 tanh(0.576qRe + 1.2) + 33.1)

− 1.04 tanh(0.478S2s − 0.609qQ + 1.04qtaukB + 0.444qRe + 0.397 cos(1.92qT − 3.35)− 0.929)

− 0.861 tanh(1.71qQ + 0.896qtaukB − 1.13 sin(1.89S2s + 0.978)− 0.349 sin(0.849qγ − 7.17)

+ 0.059 tanh(5.61qRe − 9.25)− 2.05) + 816 (C.26)
Out 3: − 0.089 sin(2.12qtaukB − 1.28 sin(3.11qγ + 6.02)− 0.261 cos(2.66S2s + 6.96)

− 0.016 tanh(9.0qT − 8.36) + 0.105 tanh(5.0qRe − 2.85) + 4.61)

+ 2.15 cos(−0.057qT + 0.095qtaukB + 0.268qRe − 0.204 sin(4.02qγ − 9.02)

+ 0.006 tanh(2.47S2s − 1.03) + 1.95 tanh(0.012qQ − 3.0) + 5.85)

− 0.981 cos(0.618qtaukB + 0.473 sin(1.27qT + 4.37) + 0.379 sin(1.37qγ − 6.79)

+ 3.44 cos(0.407S2s + 3.05)− 157 cos(0.043qRe − 6.20) + 842 tanh(0.004qQ − 2.8) + 992)

+ 0.133 tanh(0.106qQ − 53.2 tanh(0.576qRe + 1.2) + 45.0)− 0.013 (C.27)
Out 4: 0.119qT − 0.197qtaukB − 0.556qRe + 0.423 sin(4.02qγ − 9.02)

− 0.535 sin(0.438qtaukB + 0.335 sin(1.27qT + 4.37) + 0.268 sin(1.37qγ − 6.79)

+ 2.43 cos(0.407S2s + 3.05)− 111 cos(0.043qRe − 6.20) + 596 tanh(0.004qQ − 2.8) + 706)

+ 0.63 cos(−0.442qtaukB + 0.267 sin(3.11qγ + 6.02) + 0.054 cos(2.66S2s + 6.96)

+ 0.003 tanh(9.0qT − 8.36)− 0.022 tanh(5.0qRe − 2.85) + 7.47)

− 0.012 tanh(2.47S2s − 1.03)− 4.04 tanh(0.012qQ − 3.0)

− 0.263 tanh(0.080qQ − 40.1 tanh(0.576qRe + 1.2) + 34.3)− 3.38 (C.28)
Out 5: 0.571 cos(0.151qtaukB + 0.116 sin(1.27qT + 4.37) + 0.093 sin(1.37qγ − 6.79)

+ 0.838 cos(0.407S2s + 3.05)− 38.3 cos(0.043qRe − 6.20) + 205 tanh(0.004qQ − 2.8) + 243)

− 0.075 tanh(0.021qQ − 10.4 tanh(0.576qRe + 1.2) + 9.98)

− 0.22 tanh(0.237S2s − 0.302qQ + 0.518qtaukB + 0.220qRe + 0.197 cos(1.92qT − 3.35)− 1.20)

+ 0.295 tanh(0.690qtaukB − 0.418 sin(3.11qγ + 6.02)− 0.085 cos(2.66S2s + 6.96)

− 0.005 tanh(9.0qT − 8.36) + 0.034 tanh(5.0qRe − 2.85) + 0.589)− 0.903 (C.29)
Out 6: 0.012 tanh(1.74S2s − 2.21qQ + 3.80qtaukB + 1.61qRe + 1.44 cos(1.92qT − 3.35)− 10.7)

− 0.006 tanh(−3.09qtaukB + 1.87 sin(3.11qγ + 6.02) + 0.381 cos(2.66S2s + 6.96)

+ 0.023 tanh(9.0qT − 8.36)− 0.153 tanh(5.0qRe − 2.85) + 7.70)

+ 0.034 tanh(1.57qtaukB + 1.21 sin(1.27qT + 4.37) + 0.966 sin(1.37qγ − 6.79)

+ 8.75 cos(0.407S2s + 3.05)− 400 cos(0.043qRe − 6.20) + 2145 tanh(0.004qQ − 2.8) + 2534) + 0.27
(C.30)
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Figure C.13: Comparison of CGP, TRF, and KANs Scatter Plots - overall b∆ij PH

C.6.3. kdeficit SD
Conventional Genetic Programming

Tree 1: Ak2× 1.6707 (C.31)
Tree 2: Ak2WS2_s+ [Ak2WS2_s+ (WAk_s− (W2_s×W2S2_s))] (C.32)

Tree 3:

[[[[[
(qRe −WAk_s)− ((S2_s+ 1.6707)×WAk_s)

]
− Ak2

]
− Ak2

]
− (qQ −W2S_s)

]
− (qT × qQ)

]
× S2_s (C.33)

Genetic Programming with gradient descent
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Tree 1: 0.872 ·

[
0.9076 · (0.7048 + 0.7708)

− 0.9775 ·
[
0.8197 · (0.415 + 1.0156) + 0.0482

]]
(C.34)

Tree 2: 0.7546 ·

[
0.8822 ·

[
-2.6908 ·

[
0.828 + 0.9686 · (Ak2S2_s× 0.7455)

]
× 0.7278

]
× Ak2S2_s

]
(C.35)

Tree 3: 0.9883 ·
[
0.7669× 1.0481 ·

[
1.0469 · (0.9549× 0.7286) + 0.7286

]]
(C.36)

KANs

Figure C.14: Symbolically Active converged model
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Output 1: − 0.0404 tanh (0.1217 tanh(10.0qRe + 5.0)− 0.0643)

− 0.0118 tanh (0.1306 tanh(10.0qγ − 5.0)− 0.0703 tanh(10.0qRe + 5.0) + 0.0383)

+ 0.0508 (C.37)
Output 2: − 0.0127 tanh (0.0586 tanh(10.0qRe + 5.0) + 0.0463)

− 0.0233 tanh (0.0362 tanh(10.0qγ − 5.0)− 0.0263 tanh(10.0qRe + 5.0) + 0.0246)

+ 0.015 tanh (0.1095 tanh(10.0qγ − 5.0)− 0.00121 tanh(10.0qRe + 5.0) + 0.0530)

+ 0.0117 tanh (0.1306 tanh(10.0qγ − 5.0)− 0.0703 tanh(10.0qRe + 5.0) + 0.0383)

+ 0.00233 (C.38)
Output 3: 0.0172 tanh (0.00889 tanh(10.0qRe + 5.0)− 0.0815)

− 0.0118 tanh (0.0586 tanh(10.0qRe + 5.0) + 0.0463)

− 0.00329 tanh (0.1217 tanh(10.0qRe + 5.0)− 0.0643)

− 0.0118 tanh (0.0362 tanh(10.0qγ − 5.0)− 0.0263 tanh(10.0qRe + 5.0) + 0.0246)

+ 0.0142 tanh (0.1306 tanh(10.0qγ − 5.0)− 0.0703 tanh(10.0qRe + 5.0) + 0.0383)

+ 0.0483 (C.39)
Output 4: 0.018 tanh (0.00889 tanh(10.0qRe + 5.0)− 0.0815)

+ 0.0047 tanh (0.0586 tanh(10.0qRe + 5.0) + 0.0463)

+ 0.018 tanh (0.1095 tanh(10.0qγ − 5.0)− 0.00121 tanh(10.0qRe + 5.0) + 0.0530)

− 0.0185 tanh (0.1306 tanh(10.0qγ − 5.0)− 0.0703 tanh(10.0qRe + 5.0) + 0.0383)

+ 0.0992 (C.40)
Output 5: − 0.0068 tanh (0.0586 tanh(10.0qRe + 5.0) + 0.0463)

+ 0.014 tanh (0.1217 tanh(10.0qRe + 5.0)− 0.0643)

− 0.0139 tanh (0.0362 tanh(10.0qγ − 5.0)− 0.0263 tanh(10.0qRe + 5.0) + 0.0246)

+ 0.00282 tanh (0.1306 tanh(10.0qγ − 5.0)− 0.0703 tanh(10.0qRe + 5.0) + 0.0383)

− 0.0454 (C.41)
Output 6: − 0.0126 tanh (0.00889 tanh(10.0qRe + 5.0)− 0.0815)

− 0.0103 tanh (0.0586 tanh(10.0qRe + 5.0) + 0.0463)

− 0.0122 tanh (0.1217 tanh(10.0qRe + 5.0)− 0.0643)

− 0.0199 tanh (0.0362 tanh(10.0qγ − 5.0)− 0.0263 tanh(10.0qRe + 5.0) + 0.0246)

− 0.0127 tanh (0.1306 tanh(10.0qγ − 5.0)− 0.0703 tanh(10.0qRe + 5.0) + 0.0383)

− 0.0126 (C.42)
Output 7: − 0.118 tanh (0.1217 tanh(10.0qRe + 5.0)− 0.0643)

− 0.000347 tanh (0.1306 tanh(10.0qγ − 5.0)− 0.0703 tanh(10.0qRe + 5.0) + 0.0383)

+ 0.989 (C.43)

C.6.4. b∆ij SD
Conventional Genetic Programming

Tree 1: [Ak2SAkS2_s+Ak2SAkS2_s] (C.44)
Tree 2: [0.7795 +W2SAkS2_s] (C.45)
Tree 3: Ak2SAkS2_s (C.46)
Tree 4: − 1.4313 (C.47)
Tree 5: 4.9403×W2_s (C.48)

Tree 6:

[[[[[
W2AkS_s−WAk_s

]
−WAk_s

]
−WAk_s

]
−WAk_s

]
−WAk_s

]
×WAk_s

− (WAk_s×WAk_s) (C.49)

Genetic Programming with gradient descent
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Tree 1: 1.0918 · [0.3265 · (0.7744 + 1.6102) +W2AkS2_s] (C.50)
Tree 2: 0.8144 · [−0.0828− 0.8234] (C.51)
Tree 3: 0.9193 · [1.765− 0.0855] (C.52)
Tree 4: −3.934 · [1.0418 · (−0.0839×−0.094) + 0.9975 · (0.6061− 0.8062)] (C.53)
Tree 5: 0.9772 · (0.7676×−1.5092) (C.54)
Tree 6: 0.9707 · [0.8787 · (−1.4786− 0.4529)−Ak2WS2_s] (C.55)

KANs

Figure C.15: Symbolically Active converged model
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Output 1: − 0.0828 sin(2.126 cos(0.655qRe + 0.392)− 3.743)

− 0.285 sin(1.134qγ + 0.471 sin(0.730qRe + 5.239)− 2.274)

− 1.73 sin(0.331qtaukB + 0.289qRe − 0.214 sin(2.441qγ + 9.187)− 5.617)

+ 0.183 cos(0.752qtaukB + 0.546 cos(1.543qγ − 5.979)

+ 1.727 cos(0.701qRe + 6.645)− 1.028)

− 0.389 tanh(−0.152 sin(2.392qγ − 0.808) + 37.91 sin(0.0597qRe − 1.391) + 35.79)

+ 1.22 (C.56)
Output 2: 0.715 cos(0.566qtaukB + 0.494qRe − 0.366 sin(2.441qγ + 9.187) + 9.457)

+ 0.594 (C.57)
Output 3: 0.0386qtaukB + 0.028 cos(1.543qγ − 5.979) + 0.0886 cos(0.701qRe + 6.645)

+ 0.388 cos(0.917qγ + 0.381 sin(0.730qRe + 5.239)− 0.432)

− 0.348 cos(0.786qtaukB + 0.686qRe − 0.509 sin(2.441qγ + 9.187)− 1.614)

+ 0.122 tanh(−0.850 sin(2.392qγ − 0.808) + 211.5 sin(0.0597qRe − 1.391) + 206.7)

+ 0.0856 (C.58)
Output 4: − 1.39 sin(0.599qγ + 0.249 sin(0.730qRe + 5.239)− 4.950)

+ 0.703 cos(0.576qtaukB + 0.503qRe − 0.373 sin(2.441qγ + 9.187)− 1.027)

− 0.111 tanh(−0.976 sin(2.392qγ − 0.808) + 243.0 sin(0.0597qRe − 1.391) + 237.6)

+ 0.337 (C.59)
Output 5: − 0.0323qtaukB + 0.0107 sin(2.392qγ − 0.808)− 2.67 sin(0.0597qRe − 1.391)

− 0.0235 cos(1.543qγ − 5.979)− 0.0742 cos(0.701qRe + 6.645)

− 1.12 cos(0.248 cos(0.655qRe + 0.392) + 0.0807)

+ 0.0771 cos(1.524qγ + 0.634 sin(0.730qRe + 5.239) + 1.304)

+ 0.159 cos(0.361qtaukB + 0.315qRe − 0.234 sin(2.441qγ + 9.187)− 0.177)

− 1.67 (C.60)
Output 6: − 0.439 sin(0.550qγ + 0.229 sin(0.730qRe + 5.239)− 5.426)

− 0.919 sin(0.326qtaukB + 0.284qRe − 0.211 sin(2.441qγ + 9.187)− 2.226)

− 0.107 sin(0.714qtaukB + 0.518 cos(1.543qγ − 5.979)

+ 1.639 cos(0.701qRe + 6.645)− 11.88)

− 0.0784 cos(0.655qRe + 0.392)

+ 3.03 tanh(−0.0666 sin(2.392qγ − 0.808) + 16.58 sin(0.0597qRe − 1.391) + 14.31)

+ 2.36 (C.61)
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(a) CGP Scatter Plot
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(b) TRF Scatter Plot
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(c) KANs Scatter Plot

Figure C.16: Comparison of CGP, TRF, and KANs Scatter Plots - Overall b∆ij SD



D
A posteriori CFD additional Data

D.1. Initial a posteriori

Figure D.1: 3500 mesh Periodic Hill - initial testing and training case

The results from the initial a posteriori testing are presented below

169
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Figure D.2: Baseline Spalart-Allmaras streamlines

Figure D.3: A posteriori Spalart Allmaras streamlines

Figure D.4: Reference k − ε velocity streamlines
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Figure D.5: Velocity Correlations

Figure D.6: Final KANs model

The obtained symbolic formula is
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f(qdest, qdiff, qprod, qν) = 29.265 · qdiff − 22.932 · qprod
− 0.058 sin(0.703 · qν − 1.051)

− 1.551 sin
(
− 22.214 · qdest + 10.320 · qν

+ 0.367 sin(1.654 · qdiff − 4.591)

+ 0.296 cos(1.614 · qprod + 6.990) + 0.233
)

− 0.781 sin
(
10.095 · qdiff + 0.536 sin(0.777 · qdest + 2.206)

+ 2.224 cos(0.704 · qprod − 9.251)

+ 12.573 cos(0.069 · qν + 6.728)− 0.811
)

+ 1.710 sin
(
3.805 · qν + 0.367 sin(0.860 · qdiff + 3.996)

+ 0.154 sin(1.958 · qprod − 7.829)

+ 0.340 cos(1.724 · qdest − 8.776) + 3.043
)

− 0.622 cos(1.853 · qdest − 0.049) + 6.400

(D.1)

D.2. Final a posteriori - training and testing
D.2.1. Training Case

Figure D.7: Baseline Spalart-Allmaras streamlines - Training with λ
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Figure D.8: A posteriori Spalart Allmaras streamlines - Training with λ

Figure D.9: Reference k − ε velocity streamlines - Training with λ
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Figure D.10: Final KANs model - Training with λ

The obtained symbolic formula is

f(qdest, qdiff, qprod, qν) = − 2.220 qdiff + 2.753 qprod

+ 0.425 sin(0.846 qν − 0.996)

− 0.001 sin(−1.375 qdest − 0.177 qν + 0.131 sin(1.652 qdiff − 4.597)

+ 0.559 cos(1.634 qprod + 7.012) + 7.969)

+ 0.120 sin(0.266 qdiff + 0.656 sin(0.781 qdest + 2.204)

+ 2.095 cos(0.721 qprod − 9.220) + 12.834 cos(0.169 qν + 6.673)− 9.856)

+ 1.091 sin(−1.162 qν + 0.298 sin(0.857 qdiff + 3.966)

+ 0.139 sin(1.971 qprod − 7.801) + 0.073 cos(1.689 qdest − 8.789) + 1.372)

+ 0.190 cos(2.040 qdest + 0.222) + 0.490
(D.2)

D.2.2. Testing Case
The mesh and its statistics are presented below



D.2. Final a posteriori - training and testing 175

(a) α = 0.5

(b) α = 0.8

(c) α = 1.5

Figure D.11: Testing geometries and mesh

Table D.1: y+ statistics for a posteriori testing across different mesh sizes (α)

Statistic α = 0.5 α = 0.8 α = 1.5

Minimum 0.02 0.050 0.042
Maximum 0.895 0.772 1.01
Mean 0.531 0.447 0.555

The distribution of invariants for the meshes is presented below
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Figure D.12: Flow invariants for α = 0.5.
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Figure D.13: Flow invariants for α = 0.8.
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Figure D.14: Flow invariants for α = 1.5.
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The velocity streamlines for the testing cases are presented below

α = 0.5

(a) Baseline Spalart-Allmaras streamlines

(b) A posteriori Spalart Allmaras streamlines

(c) Reference k − ε streamlines

Figure D.15: Velocity streamlines - α = 0.5

α = 0.8
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(a) Baseline Spalart-Allmaras streamlines

(b) A posteriori Spalart Allmaras streamlines

(c) Reference k − ε streamlines

Figure D.16: Velocity streamlines - α = 0.8

α = 1.5
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(a) Baseline Spalart-Allmaras streamlines

(b) A posteriori Spalart Allmaras streamlines

(c) Reference k − ε streamlines

Figure D.17: Velocity Streamlines - α = 1.5
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