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Abstract
Deformations of the earth’s crust create tortuous paths for groundwater flow, altering
pressure distributions and flow lines. A solution for steady groundwater flow through a
deformed aquifer is derived by applying the singular point method using a rectangular
reference plane. The singular point method is used to develop conformal mappings
with complex geometries using basic principles of groundwater mechanics including
superposition, the method of images, and stagnation point analysis. The derived solu-
tion contains three parameters that can be chosen to simulate flow through a variety of
deformed aquifers, including flow through a normal fault with a 90◦ dip, flow through
a fold, and flow through a relay ramp.

Keywords Analytical · Conformal mapping · Faults · Folds · Groundwater

1 Introduction

Movement of the earth’s crust creates complex shear zones, faults, folds, and deforma-
tion bands. These features impact fluidflowboth by changingflowpaths andby altering
the hydraulic properties of the crust [1–6]. Analytical investigations of groundwater
flow through faults with altered hydraulic properties have been made by Haneberg
[7] who considered one-dimensional flow through a fault zone with altered hydraulic
conductivity. Anderson [8] considered two-dimensional Dupuit flow through a linear
fault, and Anderson and Bakker [9] investigated flow through a faulted multi-aquifer
system, based on the Dupuit approximation. Numerous numerical studies of flow

Mark Bakker and Erik Anderson have contributed equally to this work.

B Mark Bakker
mark.bakker@tudelft.nl

Erik Anderson
eanderson@intera.com

1 Water Management Department, Civil Engineering and Geosciences, Delft University of
Technology, Stevinweg 1, 2628 CN Delft, Netherlands

2 INTERA, Molly Brown Lane, Green Bay, WI 54313, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10665-024-10405-8&domain=pdf


4 Page 2 of 14 M. Bakker, E. Anderson

Fig. 1 Examples of flow through a deformed aquifer: a an aquifer offset by a fault in a vertical plane; b an
isolated deformation band or shear zone in a vertical plane; c a fault relay ramp in a horizontal plane

through faulted or deformed aquifers exist, including Bense and Van Balen [10] who
investigated regional flow through a faulted system, including the effects of fault relay
ramps.

Even without changes to the hydraulic conductivity, the deformed geometry
increases head losses and alters pressure and stress distributions. Cornelissen and
Jansen [11] investigated the distribution of pore pressure in the vertical plane along a
displaced normal fault, characterized by both a dip and offset; they used a numerical
solution to the Schwarz–Christoffel transformation to solve the flow problem. Simi-
larly, the impacts of the deformation of a simple homogeneous and confined aquifer on
groundwater flow are considered here. The changing gradients and flow paths through
the deformed region are examined without considering local changes in the hydraulic
conductivity. Three idealized examples of deformed geometries are investigated, as
presented in Fig. 1. The first example shows a fault similar to that studied by Cornelis-
sen and Jansen [11], with a 90◦ dip.

A solution for steady groundwater flow through a deformed aquifer is derived by
applying the singular point method of Chaplygin and Zhukovsky [12]. The method
was originally developed to solve problems of free jets in ideal fluids by the hodograph
method using a circular sector as a reference plane. The method is well suited to solve
free boundary problems in groundwater flow [13–17]. The method is applied here to
confined groundwater flow using a rectangular reference plane. The singular point
method makes use of the basic principles of groundwater mechanics, including the
method of images and the analysis of stagnation points, to develop the conformal
mapping of the physical plane onto the plane of the complex potential.

Two-dimensional, potential flows for multiple wells in rectangular domains with
various combinations of equipotential and impermeable boundaries have been long-
investigated. Only a few examples within the field of groundwater mechanics are
referenced here. Muskat [18] used the conduction sheet analog method to simulate
direct-line, staggered-line, and five-spot line drive flood networks for oil recovery
operations. Subsequently, the method of images with real analysis was used by Bear
[19] andMantoglou [20] to solve groundwater flow problems in a rectangular domain,
by creating a doubly periodic lattice of image wells. Similar work using the method
of images and complex analysis was performed more recently by Ding andWang [21]
who investigated multiple wells in a rectangular domain bounded by impermeable
boundaries. Lu et al. [22] used complex analysis, the method of images and conformal
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mapping to examine steady state pumping in rectangular aquifers with five different
combinations of equipotential and impermeable boundaries. Wang et al. [23] solved
the same suite of problems using real analysis and double Fourier transforms. Of the
five combinations of boundary conditions considered by Lu et al. [22], four can be
solved in parametric form using the Schwarz–Christoffel transformation. Many of
those solutions can also be written directly without a parametric relationship [24].
Only the problem with parallel equipotentials and parallel impermeable boundaries
cannot be solved by this approach, and the results must explicitly include an infinite
sum of image wells.

The three main objectives of this paper are as follows:

1. Provide an alternate potential flow solution for wells in a rectangular domain
bounded by parallel equipotentials and parallel impermeable boundaries.

2. Apply the singular point method to develop conformal mappings of the rectan-
gular domain onto more complex domains, using basic concepts of groundwater
mechanics.

3. Develop complete analytical solutions describing steady groundwater flow through
deformed aquifers.

The paper starts with a problem statement and a description of the chosen rectangular
reference pane. Next, general solutions are presented of the mapping of the reference
plane onto the physical domain and the complex potential domain. Finally, the solution
is applied to three specific groundwater flow problems: Flow through a vertical fault,
flow through a fold, and flow through a fault relay ramp.

2 Problem statement

Consider the physical plane (z-plane) illustrated in Fig. 2,which presents a very general
description of a deformed aquifer. This general geometry can be used to represent
all three geometries illustrated in Fig. 1, as well as others, as special cases. Steady
groundwater seepage occurs in the aquifer, entering on the left side of the deformed
zone and exiting on the right side.All boundaries of the physical plane are impermeable
and the total flow from left to right in the aquifer is constant and equal to U . The
thickness of the aquifer is Hl on the left and Hr on the right of the deformed region.
The base of the aquifer steps down by an amount a, while the top steps down by
Hl +a−Hr (see Fig. 2); the locations of the steps in aquifer base and top are offset by
the horizontal distance b. The vertices of the physical plane are numbered 1 through 6
in Fig. 2, with vertices 1 and 4 lying at x = ∞ and x = −∞, respectively; z = x + iy
is the complex coordinate.

The two vertices P and S are branch points in the z-plane, and each lies at the end
of a slot of infinitesimal width. As will be shown, the general solution allows these
points to shift between the numbered vertices. For example, the figure shows vertex S
lying at the end of a slot on boundary segment 5–6; alternately, S could lie on segment
4–5, rotating the slot by−π/2 and altering the shape of the physical plane. For clarity,
the locations of points S and P will be treated as illustrated in Fig. 2 in the derivation
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Fig. 2 The physical plane (z-plane)

of the solution; after the general solution is formulated, examples are provided that
demonstrate alternate locations for these points.

Steady groundwater flow is governed by Laplace’s equation. A solution is sought
in the form of a complex potential �(z) = φ + iψ , where φ is the specific discharge
potential and ψ is the stream function. The specific discharge potential is related to
the hydraulic head h as φ = kh, where k is the hydraulic conductivity. The x- and
y-components of the specific discharge vector are obtained from the specific discharge
potential as

qx = −∂φ

∂x
qy = −∂φ

∂ y
, (1)

or in complex form as

W = qx − iqy = −d�

dz
. (2)

The solution �(z) must satisfy the following conditions along the boundaries of
the physical plane:

1−2−3−4 : �� = ψ0, (3)

4−5−6−1 : �� = ψ0 +U . (4)

The notation 1–2–3–4 refers to the entire upper boundary of the aquifer from vertex 1
to 2 to 3 to 4. Similarly, 4–5–6–1 refers to the bottom boundary of the aquifer (vertex 4
to 5 to 6 to 1). Furthermore, � indicates the imaginary part of a complex function, and
ψ0 is an arbitrary constant value. In addition, the real part of the complex potential is
set to φ0 at a reference point, z0, to make the solution unique:

��(z0) = φ0, (5)

where z0 is any location in the physical plane, where the head is known to be φ0. The
specific location chosen is not important—it only affects the value of equipotentials
in the solution, but has no effect on the flow field.
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Fig. 3 The reference plane
(ζ -plane)

An analytic solution to the stated problem is derived using conformal mapping.
Introductions to conformal mapping in the context of groundwater flow can be found
in, e.g., Verruijt [25], Strack [26], and Bakker and Post [27]. The derived solution will
be in parametric form as z(ζ ) and�(ζ), where ζ = ξ + iη is the rectangular reference
plane with length L and height B, illustrated in Fig. 3. The reference plane is chosen
such that the two vertical sides of the rectangle correspond to the vertical sections
5–6 and 2–3, respectively, in the physical plane. Similarly, the piece-wise horizontal
section 6–2 corresponds to the bottom of the rectangle and the piece-wise horizontal
section 3–5 corresponds to the top of the rectangle. The exact locations of vertices 1,
4, P , and S are initially unknown in the reference plane, as well as the aspect ratio
B/L of the rectangular reference plane, and must be evaluated to obtain a complete
solution.

The parameters are evaluated from a non-linear system of conditions presented
along with the solution. The system of conditions is then simplified by considering
the three special cases introduced in Fig. 1, and flow nets are presented for each.

Themapping of the reference plane onto the physical plane, z(�)

The mapping of ζ onto z has three degrees of freedom, which are chosen as follows:
vertex 6 is placed at the origin (ζ6 = 0), vertex 2 is placed at a distance L along the real
axis (ζ2 = L), and the shape of the ζ -plane is chosen to be a rectangle. The mapping
is evaluated by identifying the singular behavior along the boundaries of the planes,
building the behavior into the mapping, and applying the method of images for flow in
a strip to satisfy all boundary conditions. As illustrated in Figs. 2 and 3, the conditions
on z along the boundaries of the reference plane are as follows:

1−2 : �z = Hr , (6)

2−3 : �z = b, (7)

3−4 : �z = a + Hl , (8)

4−5 : �z = a, (9)

5−6 : �z = 0, (10)

6−1 : �z = 0. (11)
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Fig. 4 Location and strength of images for n = −1, 0, 1. a Images for z(ζ ) and b Images for �(ζ)

No singular behavior is observed at vertices 2, 3, 5, and 6. The mapping z(ζ ) is
conformal as the internal angle at the matching vertices equals π/2 in both the z-plane
and the ζ -plane; no special behavior needs to be included in the mapping at these
vertices. Vertices 1 and 4 both have a logarithmic behavior, as �(z) jumps at both
vertices; at vertex 1, the jump equals Hr , while at vertex 4, the jump equals minus Hl .
Finally, conditions (7) and (10) show an offset of the real part of the two boundaries
of value b.

The basic term in the mapping is the complex potential for a logarithmic singularity
that creates a jump −A at ζ = ζd on the boundary of a horizontal, infinite strip of
height B, which may be written as

F = A

π
ln

(
eπζ/B − eπζd/B

)
. (12)

The vertex ζd may be located along the bottom (�ζ = 0) or the top (�ζ = B) of the
strip. When ζd is on the bottom of the strip, the imaginary part of F equals A along the
top of the strip and along the bottom of the strip to the left of ζd (�ζ < �ζd , �ζ = 0),
while it equals zero elsewhere along the boundary of the strip. Similarly, when ζd is
on the top of the strip, the imaginary part of F equals A along the top of the strip to the
right of ζd (�ζ > �ζd , �ζ = B) and zero elsewhere along the boundary of the strip.

The mapping z(ζ ) may be written, with the aid of function F, as

z(ζ ) = −Hr

π
ln

(
eπζ/B − eπζ1/B

)
+ Hl

π
ln

(
eπζ/B − eπζ4/B

)
+ f (ζ ), (13)

where the first two terms to the right of the equal sign fulfill boundary conditions (6),
(8), (9), and (11). In other words, these terms create the jumps in the imaginary part
of the mapping at vertices 1 and 4, where ζ1 and ζ4 are the complex coordinates of
vertices 1 and 4, respectively, in the ζ -plane. The function f (ζ ) is analytic everywhere
in the rectangle and on the boundary and will be chosen to fulfill boundary conditions
(7) and (10), while not altering the other boundary conditions.

The function f , when combinedwith the other terms in (13),must satisfy conditions
(6) through (11); the function is evaluated by direct application of themethod of images
about the two vertical boundaries of the reference plane. The method of images is
applied by repeating the logarithmic singularities such that�z is constant along the left
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and right sides of the rectangular reference plane, as illustrated in Fig. 4a. Appropriate
constants and linear functions are added such that �z = 0 along the left side of the
reference plane and �z = b along the right side.

z(ζ ) =
∞∑

n=−∞

{
−Hr

π
ln

[
eπζ/B − eπ(2nL+ζ1)/B

eπζ/B − eπ(2nL−ζ1)/B

]
+ Hrδ1

B

}
− Hrδ1ζ

BL

+
∞∑

n=−∞

{
Hl

π
ln

[
eπζ/B − eπ(2nL+ζ4)/B

eπζ/B − eπ(2nL−ζ4)/B

]
− Hlδ4

B

}
+ Hlδ4ζ

BL
+ b

L
ζ + Hr i,

(14)

where δ1 = �ζ1 and δ4 = �ζ4. Theoretically, an infinite number of images is required,
but in practice a couple of images is sufficient to meet the boundary conditions up to
machine accuracy.

Function (14) fulfills all boundary conditions (6) through (11). The values of Hl ,
Hr and b may be specified. The jump of the base a and the offsets p and s (i.e.,
the locations of points P and S) are determined by the choice of the height B of the
rectangular reference plane and the locations of vertices ζ1 and ζ4 in the reference
plane, as will be demonstrated in the following.

The functional form of the mapping has been constructed, but the physical dimen-
sions of the z-planemust be related to themapping parameters to complete the solution.
The mapping of the reference plane onto the physical plane is not analytic in points P
and S as the angle of the boundary at these corner points is not equal to the angle at the
corresponding points in the reference plane. The points ζP and ζS are branch points in
the z-plane and critical points in the ζ -plane; in potential flow these points are referred
to as stagnation points. The function z(ζ ) (14) is not analytic at these points, i.e., the
derivative equals zero. The derivative of z is obtained from (14) as

z′(ζ ) = −Hr

B

∞∑
n=−∞

[
1

eπζ/B − eπ(2nL+ζ1)/B
− 1

eπζ/B − eπ(2nL−ζ1)/B

]
− Hr δ1

BL

+ Hl

B

∞∑
n=−∞

[
1

eπζ/B − eπ(2nL+ζ4)/B
− 1

eπζ/B − eπ(2nL−ζ4)/B

]
+ Hlδ4

BL
+ b

L
.

(15)

The location of points P and S in the reference plane may be obtained from the two
conditions

z′(ζ = ζP ) = 0, (16)

z′(ζ = ζS) = 0. (17)

Once the locations of points P and S are known, the values of the remaining parameters
a, p, and s may be obtained from

z(ζ = ζP ) = (b − p) + iHr , (18)

z(ζ = ζS) = i(a + s), (19)

z(ζ = iB) = ia, (20)
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4 Page 8 of 14 M. Bakker, E. Anderson

where it is noted that ζ5 = iB. Conditions (18) through (20) are a system of three
non-linear algebraic equations that may be used to evaluate the parameters B, ζ1, and
ζ4, completing themapping z(ζ ). In the second half of this paper, a number of practical
cases are presented, where it is shown how to obtain a solution by choosing some of
the parameters and by evaluating the others.

Themapping of the reference plane onto the plane of the complex potential,Ä(�)

The conditions on � along the boundary of the reference plane are given by (3) and
(4); all boundaries are impermeable. The stream function is piece-wise constant along
the boundary of the reference plane, with jumps of magnitudeU occurring at vertices
1 and 4, indicating logarithmic behavior at these locations. This means that � may be
written, with the aid of (12), as

�(ζ) = U

π
ln

(
eπζ/B − eπζ1/B

eπζ/B − eπζ4/B

)
+ g(ζ ), (21)

where function g(ζ ) is analytic everywhere in the rectangle and on the boundary
and will be chosen to fulfill boundary conditions along the left and right sides of the
rectangular reference plane. The solution is again obtained with the method of images
(see Fig. 4b)

�(ζ) = U

π

∞∑
n=−∞

ln

[
(eπζ/B − eπ(2nL+ζ1)/B)(eπζ/B − eπ(2nL−ζ1)/B)

(eπζ/B − eπ(2nL+ζ4)/B)(eπζ/B − eπ(2nL−ζ4/B)

]
+ �0,

(22)

where �0 is a complex constant to fulfill (3) and (5). Note that this problem, with
wells and four impermeable boundaries, can be solved alternatively using Schwartz–
Christoffel by mapping the rectangle onto the upper half-plane and applying the
method of images in the upper half-plane, as discussed in the Sect. 1. To empha-
size the approach used to evaluate z(ζ ), the same approach is applied here to evaluate
�(ζ).

The presented solution is implemented in a Python script. A flow net illustrating
the general solution �(z), using z(ζ ) (14) and �(ζ) (22), is provided in Fig. 5 for the
case that Hl = 0.5, Hr = 0.4, and b = 0.2. The solution is evaluated in an inverse
manner: The parameters in the ζ -plane are specified as L = 1, B = 0.3, ζ1 = 0.05,
and ζ4 = 0.6 + 0.3i. The parameters in the z-plane are evaluated from the results as
a = 0.14, p = 0.368, and s = 0.0743.

3 Example 1: flow through a fault

The first example concerns flow through an aquifer with a vertical fault (Fig. 6). The
thickness of the aquifer is equal to H on both sides of the fault (Hr = Hl = H = 1),
the step in the base is a, and there is no offset (b = 0). Points 2 and P coincide (p = 0)
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Fig. 5 Flow net for the case Hl = 0.5, Hr = 0.4, b = 0.2, L = 1, B = 0.3, ζ1 = 0.05, and ζ4 = 0.6+0.3i.
Blue lines are equipotentials and orange lines are streamlines

Fig. 6 Definition sketch of an
aquifer in the vertical plane,
offset by a normal fault of 90◦
dip

and points 5 and S coincide (s = 0). Point 1 is located along the bottom boundary of
the rectangular reference plane at ζ1 = δ. Because of symmetry, point 4 is located at
ζ4 = L − δ + iB along the top boundary of the reference plane. The conditions for
evaluating the mapping parameters, (16) through (20), become

z′(ζ = ζ2 = L) = 0, (23)

z′(ζ = ζ5 = iB) = 0, (24)

z(ζ = L) = iH , (25)

z(ζ = iB) = ia, (26)

z(ζ = iB) = ia. (27)

Conditions (26) and (27) reduce to the same expression.
The length L of the rectangular reference plane and the location of point 1 are set

to L = 1 and δ = 0.25, respectively. The choice of δ determines the vertical jump a
of the base at the fault (a smaller value of δ results in a larger jump a). Finally, the
height of the rectangle B is adjusted such that the condition at point 5 (24) is met and
by symmetry the condition at point 2 (23) using a standard root-finding algorithm,
which gives B = 0.63963. Once the value of B is determined, the step in the base is
computed from condition (26) as a = 0.5.

To better understand the solution, contours of x and y are drawn in the reference
plane for three values of B in Fig. 7. The corresponding boundary of the domain and
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4 Page 10 of 14 M. Bakker, E. Anderson

Fig. 7 Flow through a vertical fault. Solutions for different values of B. Flow net (left column) and contour
plots of x (green) and y (red) in the reference plane right column. B/2, (a) and (b) ; B, (c) and (d); and 2B,
(e) and (f)

resulting flow net are shown as well. The middle row of Fig. 7 is the solution to the
stated problem, computed with the value for B such that points 2 and P coincide as
well as points 5 and S (Fig. 7c, d). The top row corresponds to the case that the height
of the reference plane is B/2. Points P and S are visible in the reference plane as
stagnation points; point P is located on the bottom boundary of the reference plane
betweenpoints 1 and2, and point S is located on the top boundary of the reference plane
between points 4 and 5 (Fig. 7b). As a result, sections 1–2 and 4–5 of the boundary
of the domain in the physical domain extend horizontally beyond the fault and then
loop back over a distance p = 0.170 (Fig. 7a). The bottom row corresponds to the
case that the height of the reference plane is 2B and points P and S are on the right
and left boundaries of the reference plane, respectively (Fig. 7f). As a result, sections
2–3 and 5–6 extend vertically into the aquifer in the physical domain over a distance
s = 0.133 (Fig. 7e).
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Fig. 8 Definition sketch of an
aquifer fold in a vertical plane

4 Example 2: flow through a fold

The solution of Example 1 is modified to simulate flow through a fold, where the top
of the aquifer jumps at a different x-location than the bottom of the aquifer (Fig. 8).
All parameters are the same as in Example 1, except that the parameter b is chosen
non-zero. The conditions for evaluating the mapping parameters are the same as for
Example 1, except that (25) becomes

z(L) = b + iH . (28)

The value of B is again computed such that z′ = 0 in point 5. First, consider the case
that δ = 0.25 and b = 0.4. For this case the top of the aquifer jumps down after the
bottom. The shape of the boundary and flow net are shown in Fig. 9a. The resulting
value for B = 1.6838 and the jump in the base is a = 1.174. Second, consider the
case that δ = 0.15 and b = −0.4. For this case the top of the aquifer jumps down
before the bottom of the aquifer. The shape of the boundary and flow net are shown in
Fig. 9b. The resulting value for B = 0.4469 and the jump in the base is a = 0.5212.

5 Example 3: flow through a fault relay ramp

As a final example, consider flow through a fault relay ramp in the horizontal plane
(Fig. 10). In the horizontal plane, H represents thewidth of the aquifer, which is chosen
constant (Hl = Hr = H). The offset a is more than the width H , and the offset b
is positive. The branch points P and S do not coincide with vertices 2 and 5, as they
did in the previous two examples. Point 1 is again chosen at ζ = δ and point 4 at
ζ = L − δ + iB, so that the flow field is symmetric. The shape of the fault relay ramp
and the flow field are computed for H = 1, b = 2, δ = 0.15, and B = 0.6. The
locations of points P and S in the reference plane are obtained from conditions (16)
and (17). Point P is located between points 1 and 2 on the bottom of the rectangular
reference plane (ζP = 0.2770), while point S is located between points 4 and 5 on the
top of the reference plane (ζS = 0.7230+0.6i). The values of a, p, and s are obtained
from Eqs. (18–20), resulting in a = 1.9 and p = s = 1.129. Finally, the shape of the
fault relay ramp and a flow net are shown in Fig. 11.
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Fig. 9 a Flow net for the case
that the top of the aquifer jumps
down after the bottom (b = 0.4
and δ = 0.25) and b flow net for
the case that the top of the
aquifer jumps down before the
bottom (b = −0.4 and δ = 0.15)

Fig. 10 Definition sketch of a
fault relay ramp in a horizontal
plane

Fig. 11 Flow net for a fault relay
ramp in the horizontal plane
with H = 1, b = 2, δ = −0.15,
and B = 0.6, which gives
a = 1.9 and p = s = 1.129
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6 Conclusions

A new potential flow solution was derived for steady groundwater flow through a
deformed aquifer. The solution, developed by conformal mapping using the singular
point method and a rectangular reference plane, includes several parameters that may
be chosen to simulate flow through a variety of deformed aquifer features including
faults, folds, and relay ramps. The singular point method allows the development of
a very general solution using the basic tools of groundwater mechanics including
superposition, the method of images, and stagnation point analysis.
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