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A B S T R A C T

Auxetic metamaterials are architected structures that possess a unique property known as a negative Poisson’s
ratio. This remarkable characteristic enables them to expand or contract in a direction perpendicular to stretch
or compression. Due to their exceptional attributes such as energy absorption and fracture resistance, these
auxetic metamaterials hold great promise for various applications across multiple domains.

However, the widespread development of these materials has been hindered by the absence of an
efficient design method. Addressing this limitation, our work introduces a minimal 2D auxetic structure and
a corresponding design approach that comprises two geometric transformations. This design method not only
allows for the replication of existing auxetic structures but also facilitates the creation of novel structures.
Additionally, it enables the classification of these structures into six distinct categories.

To enhance the understanding and standardization of these structures, we propose a naming protocol
and define their associated unit cell. Furthermore, we explore the possibilities of tessellations within this
framework. Finally, we examine the auxetic structures from the perspective of surface strain, which is closely
linked to the Poisson’s ratio, the Bulk modulus and compressibility.
1. Introduction

Over the past few decades, mechanical metamaterials have emerged
as a new class of materials due to their architected structures which
enable them to possess exotic behaviors (Frenzel et al., 2017; Kadic
et al., 2019; Fernandez-Corbaton et al., 2019). Unlike conventional
materials, auxetic structures have a negative Poisson’s ratio (NPR),
which means they expand in transverse directions when stretched along
the longitudinal axis. This unusual behavior has led to a wide range of
potential applications, including impact-resistant materials (Giacomin
et al., 2006; Zhang et al., 2020; Ji et al., 2021), strong low-density
structures (Wang et al., 2016; Yousefi et al., 2022), advanced fil-
ters (Alderson et al., 2002), sensors (Lee et al., 2010; Jiang et al., 2018;
Ye et al., 2022; Taherkhani et al., 2023; Cuthbert et al., 2023), tissue
engineering (Flamourakis et al., 2020; Yarali et al., 2023), medical (Ali
and Rehman, 2011; Ali et al., 2014; Lee et al., 2016; Wu et al., 2018),
wearable devices (Rant et al., 2013; Papadopoulou et al., 2017; Duncan
et al., 2018; Faraci et al., 2021; Namvar et al., 2023), and stretchable
electronics (Jang et al., 2022).

In 1985, the first auxetic structures were created in foams with a
3D re-entrant structure (Kolpakov, 1985; Lakes, 1987; Zhang et al.,
2023; Ren et al., 2023). Since then, auxetic structures have gained
considerable research attention. Isotropic materials have a Poisson’s

∗ Corresponding author.
E-mail addresses: P.Roberjot@tudelft.nl (P. Roberjot), J.L.Herder@tudelft.nl (J.L. Herder).

ratio (PR) in the range between −1 and 0.5. While some materials
have positive PR, such as rubber (𝜈 = 0.499), copper (𝜈 = 0.330),
and steel (𝜈 = 0.285), cork has a PR of zero, meaning it maintains
its thickness when stretched. The rare instances of natural auxeticity
were found recently in structures such as tendons (Gatt et al., 2015b),
and bones (Williams and Lewis, 1982). In contrast, the auxetic be-
havior in artificial materials is typically engineered into the structure,
with the most common architecture being the re-entrant honeycomb
or bow-tie structure (Wang et al., 2017; Li et al., 2019; Lim, 2019;
Wu et al., 2021; Khoshgoftar et al., 2022). Over time, more complex
and modified structures have been developed, such as the double
arrowhead (Larsen et al., 1997; Kolken and Zadpoor, 2017), connected
stars (Grima et al., 2005b), and rotating triangles (Grima et al., 2005a,
2011; Papadopoulou et al., 2017). Auxetic structures can possess a
chiral geometry (Jiang and Li, 2017, 2018), leading to chiral and anti-
chiral structures such as the missing-rib (Smith et al., 2000; Zhu et al.,
2022a), chiral honeycombs (Zhang et al., 2022b), and some auxetic
fibers (Sloan et al., 2011; Ge et al., 2016; Ng and Hu, 2017; Cuthbert
et al., 2023). Most auxetic structures have a NPR between 0 and −1,
but some have shown a PR below −1, with values as low as −16 (Shaat
and Wagih, 2020), −17 (Dirrenberger et al., 2011), and even reported
to be −100 (Domaschke et al., 2019) for very small strains. While the
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isotropic definition is sufficient to describe natural auxetic structures,
it is not suitable for describing most of artificial auxetic materials or
metamaterials. Achieving a lower PR is typically accomplished through
large deformation or by adding anisotropy to the structure’s design.

Despite their promising potential, the lack of efficient design meth-
ods for auxetic metamaterials has hindered their widespread applica-
tion. Currently, trial-and-error methods are often used to develop these
materials, resulting in inefficient and time-consuming processes. There-
fore, the development of efficient design methods (Grima et al., 2005b;
Stavric and Wiltsche, 2019; Broeren et al., 2019; Liu et al., 2022) for
auxetic metamaterials is essential for advancing their practical appli-
cations. In addition, the trial-and-error design of auxetic metamaterial
prevents the elaboration of a general organic classification (Alderson
and Alderson, 2007; Liu and Hu, 2010; Lim, 2020; Hu and Zulifqar,
2017).

In this paper, we present a structural and topological design method
for both existing and novel 2D auxetic metamaterials based on a simple
minimal auxetic structure. Our design method in three steps, uses two
geometrical transformations and, creates three achiral and three chiral
2D auxetic groups. We first propose the topology of a minimal auxetic
chiral metastructure, we calculate the strain and Poisson’s ratio behav-
ior. We then propose a three-step design method that enable to classify
auxetic structures with their chirality, we introduce a naming proto-
col that encodes the transformations applied to the minimal auxetic
structure. Next, we use the design method to create six auxetic groups,
including higher order regular and irregular geometrical structures. We
introduce a protocol for the creation of the unit cells and a way to
tessellate planar auxetic metastructures in a regular and non regular
tiling. Lastly, we suggest observing the auxetic structures with surface
strain, a more general metric that directly links to the bulk modulus
and compressibility of the metamaterial.

2. Methods

In this section we are first proposing a classification of the auxetic
structures from the chirality point of view, second we present a base
chiral auxetic structure and detailing the calculation of its strain, third
we construct three base achiral structures from the chiral base and
finally we propose a design protocol for the creation of planar auxetic
metamaterials along with a naming and nomenclature protocol.

2.1. Poisson’s ratio metamaterials and a minimal auxetic metastructure

The Poisson’s ratio (𝜈) is defined as the negative ratio of transverse
𝜀trans) and longitudinal (𝜀long) strains:

= −
𝜀trans
𝜀long

(1)

For isotropic materials, 𝜈 falls within the range of −1 to 0.5. The
strain in one direction is determined by the initial (𝐿𝐼 ) and final (𝐿𝐹 )
lengths:

𝜀 =
𝐿𝐹 − 𝐿𝐼

𝐿𝐼
=

𝐿𝐹
𝐿𝐼

− 1 (2)

Poisson’s ratio metastructures can be distinguished by the sign of
heir Poisson’s ratio. Auxetic structures exhibit a negative Poisson’s ra-
io (NPR), expanding in the direction normal to traction or contracting
n the direction normal to compression. Anepirretic structures possess
Poisson’s ratio of zero (ZPR), maintaining constant width under trac-

ion or compression. Meiotic structures, with a positive Poisson’s ratio
PPR), narrow under traction and widen under compression (Dagdelen
t al., 2017).

Metastructures, defined as architected structures or material mecha-
isms exhibiting exotic properties, can be tessellated or tiled. Tessella-
ion is achieved by defining the contour of the architected structure,
he unit cell (see Section 3.4). Metamaterials, being tessellations of
etastructures, consist of repeated unit cells.
2

m

Metastructures and metamaterials, that are intended to be used as
aterials, conflict with isotropic materials when assigning material
roperties. Hence, we propose assigning metamaterial properties, or
eta-properties, to the unit cell containing the material mechanism.

or instance, the ‘‘meta’’ Poisson’s ratio 𝜈𝑚 (with the index 𝑚 indicating
he metamaterial property) represents the deformation ratio of the
ntire metastructure unit cell. The Poisson’s ratio of a metamaterial can
e expressed as:

𝑚 = −
𝜀𝑡𝑟𝑎𝑛𝑠𝑚
𝜀𝑙𝑜𝑛𝑔𝑚

(3)

2.1.1. A chiral classification of auxetics
Chirality plays a crucial role in the characteristics of metamaterials,

particularly in the context of Poisson’s ratio metamaterials. A structure
is deemed chiral when its configuration cannot be perfectly superim-
posed with its mirror image through any rotation in the plane. The
chiral structure and its mirror image, known as the anti-chiral form,
are referred to as the two enantiomorphs of the structure. Chirality
s indicative of a twist orientation within a structure, allowing it to
e categorized as either right or left-oriented. Conversely, a structure
acking chirality is termed achiral.

Certain auxetic structures exhibit chirality, implying that all others
ust inherently be achiral. Grouping auxetic structures based on their

hirality provides an initial classification, distinguishing those with
nd without an internal twist. In addition, chirality is a complete and
utually exclusive classification.

Upon combining two enantiomorphs, the resulting structure be-
omes achiral, possessing a single axis of symmetry. In essence, an
chiral structure with N axes of symmetry can be dissected into N chiral
ub-structures.

Our hypothesis posits the existence of a minimal chiral auxetic struc-
ure. This structure would not only be auxetic but also form the building
locks for both chiral and achiral auxetic structures. The identification
f such a minimal auxetic metastructure could significantly enhance
ur comprehension of existing planar auxetic structures and pave the
ay for the development of novel auxetic metastructures.

.1.2. A minimal chiral auxetic metastructure
The bow-tie structure (Li et al., 2019), a prevalent auxetic config-

ration, is achiral and exhibits two axes of symmetry. Our proposal
nvolves dividing this bow-tie structure into four parts, resulting in a
‘Z’’-shaped structure as depicted in Fig. 1.a. This Z structure consists
f a three-bar kinematic chain interconnected by revolute joints, as
llustrated in Fig. 1.b, detailing the topological parameters of the kine-
atic structure. The Z structure features three rigid beams (𝐴′𝐴 = 𝑎1,
𝐵 = 𝑎2, and 𝐵𝐵′ = 𝑎3) and two angles (𝐴′𝐴𝐵 = 𝜃1 and 𝐴𝐵𝐵′ = 𝜃2).
or simplicity, we assume 𝑎1 = 𝑎3 and 𝜃1 = 𝜃2. The center of symmetry
f the Z structure is denoted as O.

The Z structure is capable of extension or compression along the
ine A′B′, represented by sliders positioned at points A′ and B′. This
inematic arrangement yields one degree of freedom (DoF), determined
y Grubler’s mobility equation. We will consider in this manuscript that
he structures presented possess a perfect auxetic behavior, for instance,
hey expand or compress in all direction evenly.

The Z structure is inherently one-dimensional since the positions of
oints A and B change during compression or extension, preventing
erfect tessellation in the transverse direction. However, points A′

nd B′ slide along the line A′B′ passing through point O, allowing
onnection along this line. To tessellate two Z structures, one can
onnect 𝑍1 and 𝑍2 at points 𝐵′

1 and 𝐴′
2, respectively. The unit cell of Z

s constructed from the lines normal to (A′B′) at the points A′ and B′,
nd the lines parallel to (A′B′) crossing the points A and B. The unit
ells are illustrated in Fig. 1.c for an arbitrary angle 𝜃 and in Fig. 1.d
t the maximum value of the angle 𝜃 = 𝜃𝑚𝑎𝑥, where the auxeticity is

aximum.
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Fig. 1. (a) The bow-tie structure with the two axes of symmetry and in black, the Z structure, (b) representation of the mechanism and the parameters of the Z structure, (c) the
epresentation of the unit cell of Z and (d) the unit cell when the angle 𝜃 is at the value of the maximum of the auxeticity.
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.1.3. Strains and Poisson’s ratio of Z
The Z structure is auxetic in the range of the angle 𝜃 ∈ [0◦, 𝜃𝑚𝑎𝑥],

ndeed, the structure can be compressed to a theoretical minimum,
here 𝜃 = 0◦. In this configuration the length of Z is 𝐿 = 𝑎1 + 𝑎3 − 𝑎2,
nd with 𝑎1 = 𝑎3, the length becomes

(0) = 2𝑎1 − 𝑎2 (4)

nd the height H is minimum, if the beams are considered having a
egligible thickness ℎ, 𝐻 = 3ℎ ≈ 0.

When 𝜃 = 𝜃𝑚𝑎𝑥 the triangle A′AO has a right angle at O, therefore
𝑚𝑎𝑥 can be derived with trigonometry:

𝑜𝑠(𝜃𝑚𝑎𝑥) =
[𝐴𝑂]
[𝐴′𝐴]

(5)

with [𝐴𝑂] = 𝑎2∕2 and [𝐴′𝐴] = 𝑎1, thus,

𝑜𝑠(𝜃𝑚𝑎𝑥) =
𝑎2
2𝑎1

(6)

The value of 𝜃𝑚𝑎𝑥 gives a limitation on the dimensions of Z, 𝑎2 ≤ 2𝑎1.
t this state, the height is maximum 𝐻𝑚𝑎𝑥 = 𝐻(𝜃𝑚𝑎𝑥) = 𝑎2. The length

[𝐴′𝐵′] can be decomposed as [𝐴′𝐵′] = [𝐴′𝑂] + [𝑂𝐵′] = 2[𝐴′𝑂], and can
be calculated with Pythagoras’s formula

𝑎21 =
(𝑎2
2

)2
+ [𝐴′𝑂]2 (7)

which yields to,

[𝐴′𝑂] =

√

𝑎21 −
𝑎22
4

(8)

he length at 𝜃𝑚𝑎𝑥 is

(𝜃𝑚𝑎𝑥) = 2

√

𝑎21 −
𝑎22
4

(9)

To calculate the length of Z for every 𝜃, one could calculate the length
(𝜃) = 2[𝐴′𝑂]. [A′O] belongs to the random triangle A′AO, hence the
l-Kashi law can be used,

𝐴′𝑂]2 = 𝑎21 +
(𝑎2
2

)2
− 2𝑎1

𝑎2
2
𝑐𝑜𝑠(𝜃) (10)

The length of the unit cell of Z can be derived for all 𝜃 as

𝐿(𝜃) = 2

√

𝑎21 +
(𝑎2
2

)2
− 𝑎1𝑎2𝑐𝑜𝑠(𝜃) (11)

The values of 𝐿(𝑂) and 𝐿(𝜃𝑚𝑎𝑥) can be found with this equation.
The calculation of the height is done with the law of sines, the

values of 𝑎1, 𝑎2 are fixed and 𝜃 is known, thus the angle 𝐴𝐴′𝑂 can
be determined

2𝑠𝑖𝑛(𝐴𝐴′𝑂)
𝑎2

=
2𝑠𝑖𝑛(𝜃)
𝐿(𝜃)

(12)

which can be written

𝑠𝑖𝑛(𝐴𝐴′𝑂) =
𝑎2𝑠𝑖𝑛(𝜃) (13)
3

𝐿(𝜃)
and using trigonometry in the right triangle A′AO′, with O′ the projec-
ion of A in the line (A′B′), the height can be derived as

𝐻(𝜃) = 𝑎1𝑠𝑖𝑛(𝐴𝐴′𝑂) =
𝑎1𝑎2𝑠𝑖𝑛(𝜃)

𝐿(𝜃)
(14)

Knowing the length 𝐿(𝜃) (Eq. (11)) and the height 𝐻(𝜃) (Eq. (14)),
one can calculate the longitudinal (𝜀𝐿(𝜃)) and transversal (𝜀𝐻 (𝜃)) strain.

𝜀𝐿(𝜃) =
𝐿(𝜃)
𝐿𝐼

− 1

𝜀𝐻 (𝜃) =
𝐻(𝜃)
𝐻𝐼

− 1
(15)

with 𝐿𝐼 and 𝐻𝐼 representing the values of length and height at 𝜃𝐼 , the
nitial state of Z. The longitudinal and transverse strain are plotted in
ig. 2.a,b as a function of 𝜃 for three couples of value of [𝑎1, 𝑎2]. The
oisson’s ratio (𝜈(𝜃)) as a function of 𝜃 can be written

(𝜃) = −
𝜀𝐻 (𝜃)
𝜀𝐿(𝜃)

(16)

The evolution of the Poisson’s ratio is shown as a function of 𝜃 in
Fig. 2.c for different values of 𝑎1 and 𝑎2, with an initial angle 𝜃𝐼 = 20◦

taken arbitrarily.

2.2. Design protocol of auxetic structures

We have been proposing the Z structure, a three-bar linkage struc-
ture, as a possible minimal chiral auxetic structure. We have shown
how to find the Z in the bow-tie auxetic metastructure and we demon-
strated that Z is also presenting an auxetic behavior. We are proposing a
design protocol that uses the Z metastructure as an input and generates
topological design of auxetic structures. The design method, illus-
trated in Fig. 3.a, is a three-step protocol composed of two topological
transformations.

The first transformation is called the ‘‘achiralisation’’ process. It
consists in joining the two enantiomorphs of a chiral object together to
create an achiral structure. The transformation is illustrated in Fig. 3.b.

The second transformation is the ‘‘copy-rotation’’ process. It consists
in copying an object N times and locating them equally around a point
of rotation 𝑂𝑅 and linked together. Each object is lying in one of the
𝑁 sectors thus created, each of the sector possessing an angle

𝜑𝑁 = 360◦
𝑁

(17)

The transformation is illustrated in Fig. 3.c.
In addition to these two topological transformations a set of four

rules needs to be respected in order for the design process to work
efficiently.

Rule 1. The Z structure is composed of rigid beams linked by revolute
joints,

Rule 2. The edges A′ and B′ of Z are joined rigidly by the achiralisa-
tion, copy-rotation and tessellation transformations,

Rule 3. The dimensions of the beams (𝑎1, 𝑎2, and 𝑎3) and the angles of
Z (𝜃 and 𝜃 ), can be changed,
1 2
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Fig. 3. Representation of (a) the flow diagram of the design method for 2D auxetic structures with the illustration of (b) an example of the achiralisation process, for the Z
structure and (c) an example of the copy-rotation process for the ‘‘connected star’’ reciprocal design with 4 base achiral elements.
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Rule 4. The revolute joints can be superimposed during the achiralisa-
tion and copy-rotation transformations.

The design method combines the two topological transformations in
hree steps to generate auxetic metastructures.

The first step consists in defining the chirality of the base structure.
f the base structure is chiral, no transformation is applied to the Z. If
he base structure is achiral, thus the achiralisation process is applied to
he Z, we present three remarkable achiral bases in Section 3.1.1. The
utput of the first step is the creation of 1D (or 1.5D) auxetic structures,
ecause all the edges E are colinear, and can be tessellated only as a
ine.
4

c

The second step have two possible inputs, first an achiral structure,
the achiral base can be copy-rotated, however two options are per-
missible. The design can be ‘‘classical’’ or ‘‘reciprocal’’ before applying
the copy-rotation protocol. A classical structure possess one edge point
𝐸𝑁 per sector 𝑆𝑁 , whereas the reciprocal structures possess two edges
oints 𝐸𝑁1 and 𝐸𝑁2 per sector 𝑆𝑁 . For the higher-order metastructures,
classical design is defined as the side of the achiralised structure

hat possess the equivalent edge E closer to the edge points 𝐸𝑛 of the
etastructure, oppositely, the reciprocal design is possess the equiva-

ent edge E the furthest to the edge points 𝐸𝑛. The higher-order classical
nd reciprocal are illustrated in Section 3.3. Second, the structure is
hiral, the input is therefore the Z. A chiral structure cannot be classical



International Journal of Solids and Structures 295 (2024) 112777P. Roberjot and J.L. Herder

n

Fig. 4. The details of the code for (a) chiral and, (b) achiral auxetic metastructures.

nor reciprocal, it will consist of using one of the two enantiomorphs.
The copy-rotation process is applied to the Z directly. The second
step allows the creation of six remarkable families, three of which are
achiral (Section 3.1), the other three are chiral (Section 3.2). The type
of design and center of rotation 𝑂𝑅 are defined for each families. The
output of the second step is a 2D metastructure that can be tessellated
in the plane.

The third step is looping over the second step with, as input a 2D
metastructure, generated by the second step. The loop can be repeated
an infinite number of times and brings the creation of higher order
auxetic structures (Cf. Section 3.3). A chiral structure can be achiralised
in the third step to create a higher-order achiralised metastructure, or
copy rotated to create a higher-order copy-rotated metastructure, which
applies to the achiral structures too.

2.3. Naming and nomenclature protocol for auxetic structures

We have proposed a design protocol consisting of two design pro-
cesses that allow the creation of both existing and novel auxetic struc-
tures. These processes can be used to pursue the design of auxetic
base structures to an infinite number of structures. To enable refer-
encing these structures, a naming protocol is proposed. Our naming
protocol is encoding the topological transformations applied to Z to
generate any design following the design method. The name given to
auxetic structures are coded as presented in Fig. 4, and illustrated in
Appendix F.

First, the design method produces six families of auxetic structures,
which include the existing and novel structures, and as illustrated in
Section 3, three of which are achiral, the ‘‘Connected stars’’ (Cs), the
‘‘Puzzle tiles’’ (Pt), and the ‘‘Rotating triangles (Rt). The three others
are chiral families, the ‘‘Honeycomb’’ (Hc), the ‘‘Missing rib’’ (Mr), and
the ‘‘Closed geometry’’ (Cg). The family names are abbreviated by two
letters which are defining the chirality, the position of the remarkable
axes of achiralisation, and the position of the remarkable center of
rotation 𝑂𝑅.

Second, the naming protocol is the following, it defines steps to
ame a planar auxetic structure,

Step 1. The family name is the base of the coded name, it encodes
the chirality, the axes of achiralisation and the position of the
center of rotation 𝑂𝑅,

Step 2. All chiral copy-rotations are written on the right of a chiral
name, higher-order copy-rotations are separated with a dot ‘‘.’’,

Step 3. A chiral structure which is achiralised is noted with a ‘‘A’’ on
the left of the name,

Step 4. Achiral base structures possess a classical ‘‘C’’ or reciprocal ‘‘R’’
design, the type of design is written on the left of the achiral
name,

Step 5. All achiral copy-rotations are written on the left of the achiral
5

name, higher-order copy-rotations are separated with a dot ‘‘.’’.
An auxetic metastructure is constructed from a given name by first
reading the family name, then the chiral transformations, and finally
the achiral transformations.

A chiral structure, for instance, the missing rib design Mr, is copy-
rotated three times, giving the Mr3 structure. If Mr3 is copy-rotated to
the higher-order three times again, this yields to the structure Mr3.3.
Mr3.3 can be achiralised to AMr3.3 and copy-rotated, as a reciprocal
design, for instance 3 times to give 3RAMr3.3 the result is shown in
Fig. 13.e.

An achiral structure such as the connected stars Cs can only be copy-
rotated in the achiral form. For instance, four copy-rotation of Cs in the
classical form leads to 4CCs and a four times higher-order copy-rotation
leads to 4.4CCs as illustrated in Fig. 12.j.

3. Applications of the design method, tessellation, naming and
metric of auxetic structures

We have proposed a minimal chiral auxetic metastructure, we have
shown that this three-bar linkage present interesting large Poisson’s
ratio properties. We proposed a design method that enables the design
of existing and novel auxetic structures, along with a naming protocol
that encodes the transformations applied to the base structure Z.

In this section, we illustrate the design method. We show first the
achiralisation of the Z structure to shape the three base achiral struc-
tures, and second apply the copy-rotation protocol to these achiral, and
to the Z structure. Third, we illustrate the higher-order transformations.
Then, we propose a method to design the unit cells of the designed
auxetic structures. We finally present the surface strain as a metric for
auxetic metamaterials.

3.1. Building achiral structures

Here we first introduce how to use the achiralisation process to the
Z to create the base achiral auxetic structures. Second we illustrate how
to use the copy-rotation on the achiral base structures, how to define
the center of rotation 𝑂𝑅 the edges 𝐸 and how to design classical and
reciprocal structures.

3.1.1. Construction of base achiral auxetic structures
The first step of the design protocol allows to achiralize the Z

structure to create achiral base auxetic structures.
Z is a chiral structure, thus possesses two enantiomorphs, Z and its

mirrored image (Fig. 5.a). The two enantiomorphs can be joined to
form achiral structures. In other words, axes of symmetry can be chosen
around the Z structure, and, combining the two mirrored structures a
new achiral auxetic structure can be created. We present in Fig. 5 three
remarkable axes of symmetry and build three base auxetic structures.
These axes are remarkable because they enable to design existing
structures, however, any variation from these axes is possible and
brings small variation of the design.

As stated above, the Z is composed of rigid beams linked by revolute
joints, and when two beams are linked by an axis of symmetry they
form one single rigid element. The rules of topological construction of
the auxetic structures are detailed in Section 2.2.

The first achiralisation, designed as ‘‘Connected stars’’, Fig. 5.b,
is mirroring Z from the line (A′A) or (B′B). It generates one half of
the re-entrant auxetic structure (Almgren, 1985). The structure is fully
deployed when it reaches its maximum auxeticity, meaning that the
angles 𝜃 are maximum 𝜃𝑚𝑎𝑥 = 90◦. The family of the Cs structure is
presented in Section 3.1.2.

The second achiralisation, designed as ‘‘Puzzle tiles’’, depicted in
Fig. 5.c, is mirroring 𝑍 from a line normal to (A′A) passing thought the
point A′ (or normal to (B′B) and passing through B′). The structure is
fully deployed when the angles 𝜃 are maximum 𝜃𝑚𝑎𝑥 = 90◦. The family

of the Pt structure is presented in Section 3.1.3.
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Fig. 5. Topology and parameters of (a) the two enantiomorphs, in black and dark gray, of the chiral Z metastructure. The representation of the achiral bases, from the first step
of the design method, with on the top the undeformed and at the bottom the deformed (in light gray) topology, of (b) the connected stars base, (c) the Puzzle tiles base, and (d)
the rotating triangles base.
The third achiralisation, called ‘‘Rotating triangles’’, is mirroring 𝑍
from the line (A′B′), this results in creating a square structure that
s composed of two right triangles ABA′ and ABB′. As stated above,
wo beams that are linked by an axis of symmetry create a rigid body,
hus, the beams A′A and A′B are forming one rigid triangle AA′B, as
or the lines B′B and AB′ that create a rigid triangle AB′B. The two
riangles are joined at the point A, and the revolute join B is removed,
nd split in two points 𝐵1 and 𝐵2, to allow the triangles to rotate. The
opology and kinematics are represented in Fig. 5.d, the family of Rt
s presented in Section 3.1.4. The maximum of auxeticity of the base
tructure is achieved when the angle between the two triangle 𝛼 = 90◦,
n the general case it depends on the order of the copy-rotation (see
ection 3.1.4). The regular design is forming a square structure form
wo rights triangles, this design correspond also to the base structure
f the 2 and 4 copy-rotations of the family. The Rt family is also display
wo non-right triangles for other N copy-rotation, the example of the
CRt and 3RRt structure is illustrated in Fig. 8.c and f.

.1.2. Achiral auxetic connected stars
Auxetic ‘‘connected stars’’ (Grima et al., 2005b) (Cs) are one of the

ost common achiral auxetic metamaterials (Fu et al., 2016; Jiang
t al., 2019; Lurie et al., 2018; Yao et al., 2023). The classical (CCs)
tructures can be created with the copy-rotation protocol from the
chiral base Fig. 5.b, that is created by the 𝑥-axis symmetry of the Z ele-
ent. The center of rotation 𝑂𝑅 is created from the triangle (𝐴1𝑂𝑅𝐴2),
ith the angle 𝜑𝑁 between the lines (𝐴1𝑂𝑅) and (𝐴2𝑂𝑅), and the edge
of the structure is located at the point 𝐵′

1 = 𝐵′
2 (Fig. 6.a). The case

= 2 is a symmetry of the base achiral structure from the axis (𝐴′
1𝐴

′
2).

uilding the 𝑁-order connected stars (Fig. 6.b, c, and d), one uses the
opy-rotation on the base structure around the center 𝑂𝑅 and connects
he points 𝐴1𝑛 to 𝐴2(𝑛+1), with 𝑛 ∈ [1, 𝑁]. The beams (𝐴1𝐴′

1) and (𝐴2𝐴′
2)

have, for 𝑁 ≥ 3, a length of 𝑎1𝑛 = 𝑎′1𝑛 = 0, with 𝑎1𝑛 and 𝑎′1𝑛 the
length [𝐴1𝑛𝐴′

1𝑛] and [𝐴2𝑛𝐴′
2𝑛] of the copy-rotated structures. If the copy-

rotation was based on the triangle 𝐴′
1𝑂𝑅𝐴′

2, extra beams and revolute
joints would have been in the structure, thus more internal degrees of
freedom would have been present throughout the deformation, and the
auxeticity might be lost in a non-ideal embodiment of the design.

A reciprocal design (Section 2.2) of the achiral connected stars (RCs)
(Fig. 6.f, g, and h) are created from a second center of rotation created
from the triangle (𝐴1𝑂𝑅𝐴2) (Fig. 6.e), here the center of rotation 𝑂𝑅
is the point 𝐵′. Two edges of the structure can be found 𝐸1 = 𝐴′

1 and
𝐸2 = 𝐴′

2, a constructed edge point 𝐸 can be defined as the normal
intersection of the line (𝐴′𝐴′ ) and (𝐵′𝐸). The classical and reciprocal
6

1 2
connected stars structures are fully deployed when the angles 𝜃 of all
the 𝑁 structures are deployed to their maximum, i.e. when 𝜃 = 90◦.

The reciprocal design with a 4 copy-rotation, referred to as 4RCs
(Section 2.3), possesses an initial length 𝐿𝐼 and height 𝐻𝐼 , illustrated
in Fig. 6.i. When stretched in the 𝑥 direction, the length changes from
𝐿𝐼 to a final length 𝐿𝐹 , while the height remains constant (Fig. 6.j) due
to the presence of a cross-like central rigid body.

This configuration results in an anepirretic behavior, characterized
by 𝜈 = 0 causing the strain 𝜀𝑥 = (𝐿𝐹 − 𝐿𝐼 )∕𝐿𝐼 to be decoupled from
the strain 𝜀𝑦 = 0. Similarly, the anepirretic and decoupled behavior is
observed between the strain 𝜀𝑦 = (𝐻𝐹 −𝐻𝐼 )∕𝐻𝐼 and 𝜀𝑥 = 0 (Fig. 6.k).
This anepirretic and decoupled behavior is also present in reciprocal
connected star designs that have an even number of copy-rotation,
starting from 𝑁 = 4. These decoupled designs can be stretched from
their opposite sectors without altering the shape of the unstretched
configuration.

3.1.3. Achiral auxetic puzzle tiles
Auxetic ‘‘puzzle tiles’’ (Pt) are built from the base achiral structure

depicted in Fig. 5.c. The center of rotation 𝑂𝑅, for the classical puzzle
tiles (CPt), is created from the triangle (𝐴1𝑂𝑅𝐴2), with the angle 𝜑𝑁
between the lines (𝐴1𝑂𝑅) and (𝐴2𝑂𝑅). The edge 𝐸 of the structure is
the center point of the beam 𝐵1𝐵2 (Fig. 7.a). The structure 2CPt gives
a similar topology as 2CCs, they correspond both to one half of the
bow-tie structure. For similar reasons as the Connected stars, the copy-
rotation of CPt for 𝑁 ≥ 3 requires to have the length of the beams
𝐴′
1𝑛𝐴1𝑛 = 𝑎1𝑛 and 𝐴′

2𝑛𝐴2𝑛 = 𝑎′1𝑛 to be 𝑎1𝑛 = 𝑎′1𝑛 = 0. The topology of the
classical structures of the Puzzle tiles are depicted in Fig. 7.b, c, d, the
copy-rotated structures around the point of rotation 𝑂𝑅 are connected
rigidly at the points 𝐴1𝑛 and 𝐴2(𝑛+1), with 𝑛 ∈ [1, 𝑁].

As for the connected stars design, there exists a reciprocal design
for the auxetic puzzle tiles (RPt). The center of rotation is also defined
by the triangle 𝐴′

1𝑂𝑅𝐴′
2 (Fig. 7.e), however, the points 𝐵1, 𝐵2, and 𝐵′

are ‘‘inside’’ the triangle, and thus the lengths 𝐴1𝐴′
1 and 𝐴2𝐴′

2 need
to be adapted not to have overlapping of the ‘‘inside’’ structures when
the copy-rotation is applied. Two edges of the reciprocal structure can
be found 𝐸1 = 𝐴1 and 𝐸2 = 𝐴2, the constructed edge 𝐸 is defined as
the normal intersection of the lines (𝐴′

1𝐴
′
2) and (𝑂𝑅𝐸). The reciprocal

𝑁-order puzzle tiles (Fig. 7.f, g, h), are built in the same manner as the
classical ones connecting the points 𝐴′

1𝑛 to 𝐴2(𝑛+1).
The classical and reciprocal connected puzzle tiles can be seen as

a complementary design of the connected stars. Indeed, when tiled the
connected stars and puzzle tiles are forming similar patterns, therefore,
CPt and CCs have an auxetic behavior whereas RCs and RPt possess,
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Fig. 6. Geometrical design of the regular achiral ‘‘connected stars’’ (Grima et al., 2005b), or re-entrant auxetic metamaterials, with (a) the construction of the center of rotation
𝑂𝑅 and the representation of the cases (b) 2CCs where 𝑁 = 2 (c) 3CCs where 𝑁 = 3, and (d) 4CCs 𝑁 = 4. The design of the reciprocal achiral connected stars, with (e) the
construction of the center of rotation 𝑂𝑅 = 𝐵′ and the edges 𝐸1, 𝐸2 and 𝐸, and representation of the geometries for (f) 2RCs where 𝑁 = 2, (g) 3RCs where 𝑁 = 3, and (h) 4RCs
where 𝑁 = 4. The design 4RCs (i) with the initial length 𝐿𝐼 and height 𝐻𝐼 , (j) 4RCs is stretched in the 𝑥 direction, the final maximum length is 𝐿𝐹 , however the height does not
change which gives the anepirretic behavior, the strain in the 𝑥 direction 𝜀𝑥 is uncoupled from the strain 𝜀𝑦. (k) 4RCs is stretched in the 𝑦 direction after being stretched in the
𝑥 direction, the strain 𝜀𝑦 is also uncoupled from 𝜀𝑥.
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both, an anepirretic behavior. We present the puzzle tiles as a separate
family because they could enable the creation of specific designs in the
higher order or with irregularities added to the structures.

For instance, an irregular variation of the 𝑁 = 2 puzzle tile is usually
called the ‘‘arrowhead’’ auxetic design (Larsen et al., 1997; Boopathi
et al., 2020), a detail of the symmetry and topology is depicted in
Appendix A, the name ‘‘arrowhead’’, can be short for ‘‘Pt arrowhead’’.

3.1.4. Achiral auxetic rotating-triangles
The achiral auxetic ‘‘rotating-triangles’’ (Rt) is created from the base

achiral structure as shown in Fig. 5.d. The center of rotation 𝑂𝑅 is
created from the triangle (𝐴′𝑂𝑅𝐵′), with the angle 𝜑𝑁 between the
lines (𝐴′𝑂𝑅) and (𝐵′𝑂𝑅). The classical structure (CRt) is ‘‘opening’’ with
the triangles rotating inward, the center of rotation 𝑂𝑅 is the point 𝐴,
and the edge of the structure 𝐸 is thus defined as the point 𝐵. Building
the 𝑁-order classical rotating-triangle structures (Fig. 8.b, c, and d),
one uses the copy-rotation on the base structure around the center 𝑂𝑅
and connects the revolute points 𝐴2𝑛 to 𝐴1(𝑛+1), with 𝑛 ∈ [1, 𝑁].

The reciprocal rotating-triangle (RRt) design has the triangles rotat-
ing outward (Fig. 8.e, f, and g), and the center of rotation is 𝑂 = 𝐵.
7

𝑅 d
The two edges of the reciprocal structure are 𝐸1 = 𝐴1 and 𝐸2 = 𝐴2, the
constructed edge 𝐸 is the middle point of the segment [𝐴1𝐴2] (Fig. 8.e).
Building the 𝑁-order reciprocal rotating-triangle structure, one rotates
the base structure around the center 𝑂𝑅 and connects the edges of
consecutive unit cells.

The 𝑁-order base rotating triangle structure has equal angles 𝜃1 =
𝜃2 = 𝜃𝑁 , because the axis of symmetry (𝐴′𝐵′) splits the angles equally
nd the angle 𝜑𝑁 gives the value of 𝜃𝑁 as:

𝜃𝑁 =
𝜑𝑁
2

= 360◦
2𝑁

(18)

The 𝑁-order rotating triangles structure is fully deployed when the
triangles are fully open, i.e. when the final internal angle 𝛼𝑁 is

𝑁 = 180◦ − 𝜑𝑁 (19)

q. (19) holds true for 𝑁 ≥ 3, indeed the case where 𝑁 = 2 is fully
eployed when 𝛼𝑁 = 90◦. While the N-copy-rotations are resulting in
uxetic designs, the case N = 2 showcases a meiotic structure both in
he classical and reciprocal design.

An irregular variation of Rt with equilateral triangles possessing a

iamond shape unit cell is illustrated in Appendix B, the tessellation
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Fig. 7. Topological representation of the classical ‘‘puzzle tiles’’ auxetic achiral metamaterials, with (a) the construction of the center of rotation 𝑂𝑅, the representation of the
undeployed (top) and deployed (bottom) case (b) 2CPt where 𝑁 = 2, (c) 3CPt where 𝑁 = 3, and (d) 4CPt where 𝑁 = 4. Topological representation of the reciprocal ‘‘puzzle tiles’’
uxetic achiral metamaterials, with (e) the construction of the center of rotation 𝑂𝑅, the representation of the undeployed cases (f) 2RPt where 𝑁 = 2, (g) 3RPt where 𝑁 = 3, and
h) 4RPt where 𝑁 = 4.
f the ‘‘Rt diamond’’ structure leads to the structure that is usually
alled ‘‘rotating rigid triangle’’ (Grima et al., 2011; Papadopoulou et al.,
017).

Other irregular structures can be created modifying the dimension
f the Z structure, first, if the Z parameters are 𝑎1 = 𝑎3 and 𝑎2 ≠ 𝑎1

√

2
the triangles are still right-triangles (for the base structure or 𝑁 = 2)
and not isosceles. The base structure thus becomes rectangular, in
addition to the change of the shape, the modification of the parameters
makes the structure chiral. Therefore, the structure can be copy-rotated
as a chiral structure, but most importantly can be achiralised, the
Appendix C illustrates this irregularity and details the calculation of
the Poisson’s ratio.

3.2. Building chiral structures

We present here how to create, from the Z structure (Fig. 5.a), the
three chiral auxetic families, how to construct the center of rotation 𝑂𝑅
and the edges 𝐸 and apply the copy-rotation protocol for 𝑁 = 2, 3, and
4.

3.2.1. Chiral auxetic honeycomb
Auxetic chiral ‘‘honeycomb’’ (Hc) metastructures (Lakes, 1991;

Alderson et al., 2010; Pasini and Rafsanjani Abbasi, 2017; Mizzi and
Spaggiari, 2022; Ren et al., 2023) are common chiral auxetic metama-
terials. The center of rotation 𝑂𝑅 is created from the triangle 𝐴𝑂𝑅𝐵,
with the angle 𝜑𝑁 between the lines (𝐴𝑂𝑅) and (𝐵𝑂𝑅), and the edge
𝐸 of the structure is located at the point 𝐴′ (Fig. 9.a). Building the 𝑁-
order honeycomb (Fig. 9.b, c, d), one uses the copy-rotation on the base
structure around the center 𝑂𝑅 and connects the points 𝐴𝑛 to 𝐵(𝑛+1),
with 𝑛 ∈ [1, 𝑁]. In the case 𝑁 = 2 (Fig. 9.b), the angle 𝜑2 = 180◦

position the point 𝑂𝑅 at the center 𝑂, thus recreates the base chiral
Z structure. For the copy-rotation of 𝑁 ≥ 3, the length of the beam
𝐵𝐵1 needs to be adapted for the point 𝐵1 to be located in the beam
𝐴𝐵𝑛+1, meaning that the central shape (triangle for 𝑁 = 3, or square
8

for 𝑁 = 4) is over constrained and can thus be considered as a rigid
body, as illustrated in Fig. 9.b,c. Thus the central rigid body can be
rotated and only the legs 𝐴𝑛𝐴′

𝑛 are free to move.
The reciprocal design proposed for the achiral auxetic structures

can also be applied to the chiral structures. The resulting structures
are ‘‘anti-chiral’’, i.e. the structures are still chiral but mirrored from
the classical chiral. The chiral and anti-chiral honeycomb structures are
deployed when all the 𝑁 copy-rotations are deployed to their maximum
angle, i.e. when the angles 𝜃𝑁 are:

𝜃𝑁 = 180◦ −
(180◦ − 𝜑𝑁 )

2
= 90◦ +

𝜑𝑁
2

(20)

A representation of the tessellated Hc3 and Hc4 structures topologies
are represented undeployed and deployed in Fig. 9.d,e.

An irregular design, sometimes called ‘‘pattern p31 m’’ (Stavric
and Wiltsche, 2019), is a variation of the 𝑁 = 3 honeycomb design
(Hc3). The axis of symmetry of the achiralised AHc3 is parallel and
non colinear to one leg and is passing through one edge of an other
of the three legs. The achiralised structure AHc3 is copy-rotated three
times to form a structure that can be named ‘‘3AHc3 star’’ design, the
structure and unit cell are depicted in Appendix B.

3.2.2. Chiral ‘‘missing-rib’’ auxetic
Chiral ‘‘missing-rib’’ (Gaspar et al., 2005; Clausen et al., 2015;

Rafsanjani and Pasini, 2016; Jiang et al., 2019; Olvera et al., 2020;
Attard et al., 2020; Zhu et al., 2022a; Zhang et al., 2022a; Zhu et al.,
2022b) (Mr) topologies are quite common chiral metastructures that
are close to the topology of the honeycombs. The center of rotation
𝑂𝑅 is located at the point 𝐴′ (or B′ depending on which orientation of
chirality the users require) of the Z structure, with 𝜑𝑁 = ̂𝐴𝑛𝑂𝑅𝐴𝑛+1 the
angle between two copies. As 𝑂𝑅 is located at the position of the point
𝐴′, the 𝑁-order missing-rib structures are created from a Z structure
with the length of the beam [𝐵𝐵′] = 𝑎3 = 0. The case 𝑁 = 2 (Fig. 10.a)
gives, as the honeycomb design, the topology of the base chiral Z
structure. The copy-rotation Mr3 and Mr4 are presented in Fig. 10.b,c,

the beams 𝐵𝑛𝐴𝑛 are connected rigidly at the center of rotation 𝑂𝑅.
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Fig. 8. The topological representation of the design of the regular achiral ‘‘rotating triangles’’ auxetic metamaterials, with (a) the construction of the center of rotation 𝑂𝑅 and
the representation of the undeployed (top) and deployed (bottom) of the classical designs for (b) 2CRt where 𝑁 = 2, (c) 3CRt where 𝑁 = 3, and (d) 4CRt where 𝑁 = 4. The
topological representation of the reciprocal designs for (e) 2RRt where 𝑁 = 2, (f) 3RRt where 𝑁 = 3, and (g) 4RRt where 𝑁 = 4.
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A representation of tessellated Mr3 and Mr4 structures are pre-
sented in Fig. 10.d,e to illustrate the auxeticity and behavior of the
structures, which are fully deployed when the angles 𝜃𝑁 = 180◦, in
this configuration, all legs of the Mr structures are extended to their
maximum.

Oppositely to the achiral connected stars, for the even 𝑁 cases, the
center cross-like rigid body does not decouple the branches because of
the chiral property of the structure input a natural twist around the
point 𝑂𝑅 when two opposite edges are stretched or compressed.

3.2.3. Chiral auxetic closed-geometry
We present here novel chiral ‘‘closed-geometry’’ (Cg) auxetic metas-

tructure, represented in Fig. 11. The center of rotation 𝑂𝑅 is created
rom the triangle (𝐴′𝑂𝑅𝐵′), with the angle 𝜑𝑁 between the lines
𝐴′𝑂𝑅) and (𝐵′𝑂𝑅), and the edge 𝐸 of the structure is located at the
rojection of 𝑂𝑅 in the beam A′A (or B′B if the structure is chosen chiral
r anti-chiral).

As for the honeycomb and missing-rib, the 2 copy-rotation is not
hanging the topology of the Z. Building the 𝑁-order closed-geometry
Fig. 11.b, c), one uses the copy-rotation on the base structure around
9

he center 𝑂𝑅 and connects rigidly the points 𝐴′
𝑛 to 𝐵′

(𝑛+1), with 𝑛 ∈
1, 𝑁].

A representation of the tessellation of Cg3 and Cg4 are depicted in
ig. 5.d,e the structures are deployed when all the 𝑁 structures are
eployed to their maximum, i.e. when the angles 𝜃 = 90◦. One could

perceived the Closed-geometry topology as a chiral variation of the
connected stars.

3.3. Building complex higher-order auxetic structures

The copy-rotation process can be continued for higher order 𝑁 for
the six auxetic families presented above and can, theoretically continue
to infinity. In addition, we present here how the 𝑁-order auxetic struc-
tures can be used as a base to create more complex structures via both
the copy-rotation and the achiralisation processes. Such higher-order
design can generate hierarchical auxetic planar metamaterials (Gatt
et al., 2015a; Hamzehei et al., 2018).

3.3.1. Higher order copy-rotation of auxetic structures
The copy-rotation process can be applied using 𝑁-order auxetic
structures as a rotated structure. Most of the structures presented above
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Fig. 9. Geometrical design of the chiral ‘‘honeycomb’’ auxetic metamaterials, with (a) the construction of the center of rotation 𝑂𝑅, the representation of the undeployed (top)
and deployed (bottom) case (b) Hc3 where 𝑁 = 3, and (c) Hc4 where 𝑁 = 4. Representation of the undeployed (left) and deployed (right) tiling of unit cells of (d) Hc3 and, (e)
Hc4.
Fig. 10. Topological representation of the design of the missing-rib auxetic chiral metamaterials, with (a) the construction of the center of rotation 𝑂𝑅, the representation of the
ndeployed (top) and deployed (bottom) case (b) Mr3 where 𝑁 = 3, and (c) Mr4 where 𝑁 = 4. Representation of the undeployed (left) and deployed (right) tiling of unit cells of
d) Mr3 and, (e) Mr4.
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an be copy rotated to create higher order auxetic structures, the design
rotocol is the same as previously, the center of rotation 𝑂𝑅 is defined
his time by the triangle (𝐸1𝑂𝑅𝐸2), formed by two edges of the chosen
tructure 𝐸1 and 𝐸2. The angle 𝜑𝑀 , with 𝑀 the number of order of
opy-rotation of the 𝑁 order copy-rotated structures, is defined by
he intersection of the lines (𝐸1𝑂𝑅) and (𝐸2𝑂𝑅), the 𝑀 structures
re rotated around 𝑂𝑅. The angle 𝜑𝑀 defined the possible regular
tructures that can be produced. If 𝜑𝑀 is a divisor of 360◦, with 𝑘0
s an integer, such as

60 = 𝑘 × 𝜑 (21)
10

0 𝑀
nd 𝑘1, 𝑘2, . . .𝑘𝑛 are divisor of 𝑘0, such as,

60 = 𝑘1 × 𝑘2 ×⋯ × 𝑘𝑛 × 𝜑𝑀 (22)

then the base structure can be copy-rotated 𝑘0 times, or 𝑘1 times, or
2 times, . . . or 𝑘𝑛 times in a regular manner. The case where 𝑘𝑛 = 1
roduces the initial structure and, 𝑘𝑛 = 2 tessellates the initial structure,

therefore these cases can be avoided. If the structure is copy-rotated a
number 𝑘𝑚 times with 𝑘𝑚 not a divisor of 360◦ the structure created is
irregular and its geometry needs to be adapted to be tessellated.

Examples of regular and irregular structures are given in
(Fig. 12.a,b,c,d,e) for the honeycomb chiral structures and in
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Fig. 11. Topological representation of the design of the regular chiral ‘‘closed geometries’’ auxetic metamaterials, with (a) the construction of the center of rotation 𝑂𝑅, the
representation of the case where (b) Cg3 where 𝑁 = 3, and (c) Cg4 where 𝑁 = 4. Representation of the undeployed (left) and deployed (right) tiling of unit cells of (d) Cg3 and,
(e) Cg4.
Fig. 12. The representation of some higher order copy-rotation, of the honeycomb (Hc) design with, the regular design (a) 𝑁 = 3 and 𝑀 = 3 (Hc3.3), the irregular design (b)
𝑁 = 3 and 𝑀 = 4 (Hc3.4), the regular design (c) 𝑁 = 3 and 𝑀 = 6 (Hc3.6), the irregular design (d) 𝑁 = 4 and 𝑀 = 3 (Hc4.3), and the regular design (e) 𝑁 = 4 and 𝑀 = 4
(Hc4.4). The representation of some higher order copy-rotation, of the reciprocal connected stars (CCs) design with, the regular design (f) 𝑁 = 3 and 𝑀 = 3 (3.3CCs), the irregular
design (g) 𝑁 = 3 and 𝑀 = 4 (4.3CCs), the regular design (h) 𝑁 = 3 and 𝑀 = 6 (6.3CCs), the irregular design (i) 𝑁 = 4 and 𝑀 = 3 (3.4CCs), and the regular design (j) 𝑁 = 4 and

= 4 (4.4CCs).
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Fig. 12.f,g,h,i,j) for the achiral reciprocal connected stars design. The
rder of the new structures can be defined as an 𝑀.𝑁 order, see
ection 2.3 for the details of the naming protocol.

.3.2. Achiralisation of higher order chiral structures
The process of achiralisation can be applied to design achiral struc-

ures from 𝑁 orders, or more complex, chiral structures. The chiral
tructures presented above can be used in the achiralisation process, by
oining two enantiomorphs together, forming an achiralised structure.
he achiralised metastructures can be copy-rotated once more, two
11

o

egular options of design are possible, having a classical or reciprocal
esign type. A classical design possesses the center of rotation 𝑂𝑅 on
he side where the virtual edge 𝐸𝐶 is the closest to the edge points 𝐸𝑛,
ppositely the reciprocal design possesses the points 𝐸𝑛 the furthest to
𝑅, as depicted in Fig. 13.a,b,c,d. The achiralised 𝑁 order structures
an be copy-rotated 𝑀 times to form higher-order achiral auxetic
tructure, by defining a center of rotation 𝑂𝑅 and an edge point 𝐸
ollowing the same design protocol. Examples of these achiral higher-
rder classical and reciprocal metastructures are presented in Fig. 13
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Fig. 13. The achiralisation and representation of the classical 𝑂𝑅𝐶 and reciprocal 𝑂𝑅𝑅 center of rotation of (a) AHc3, (b) AHc4, (c) AMr4, and (d) ACg3. Topological representation
of the achiralised structures of (e) the classical copy-rotation of AHc3 with 2CAHc3 and 3CAHc3, (f) the reciprocal copy-rotation of AHc4 with 2RAHc4 (Lipton et al., 2018;
Broeren et al., 2020; Ren et al., 2023) and 3RAHc4, (g) the classical copy-rotation of AMr3 with 2CAMr3 and 3CAMr3, (h) the classical copy-rotation of AMr4 with 2CAMr4 (Li
et al., 2018) and 3CAMr4, (i) the classical copy-rotation of ACg3 with 2CACg3 and 3CACg3, (j) the classical copy-rotation of ACg4 with 2CACg4 and 3CACg4.
I
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for the honeycomb, missing-rib, and closed geometry chiral structures
for 𝑀 = 3, 4 and 𝑁 = 2, 3.

3.3.3. Hierarchical and fractal auxetic metamaterial structures
Hierarchical structures are formed by assembling structural ele-

ments, which themselves possess a nested structure (Gatt et al., 2015a;
Li et al., 2021; Shen et al., 2021). Hierarchical auxetic structures can
be derived from chiral structures that undergo at least two levels
of copy-rotation, followed by an achiralisation process, and finally
another copy-rotation step. For example, Hc4 is subjected to four copy-
rotations, resulting in Hc4.4, then achiralized to AHc4.4, and finally
copy-rotated two times in the reciprocal design to obtain 2RAHc4.4,
as depicted in Appendix F. The structure 2CAHc3.4 (Hamzehei et al.,
2018) has been proposed as a hierarchical auxetic metamaterial for the
investigation of significant compressive deformation.

Fractal structures are self-replicating patterns found at all scales,
and are abundant in both natural and engineering contexts (Mandel-
brot, 1983; Wang et al., 2022). These proposed auxetic designs can
serve as fundamental building blocks for creating larger-scale structures
with the same design.

Both hierarchical and fractal auxetic metamaterials offer intriguing
possibilities for controlling and programming the deformation behavior
of a structure.

3.4. Tessellation of auxetic metamaterials

Metamaterials can be seen as artificial crystal structures (Frenzel
et al., 2017; Fernandez-Corbaton et al., 2019) and their main con-
stituents can be, thus, identified as unit cells that repeat in a lattice
structure and be tessellated in the plane. We are going to consider
12

the structures by their contour, a repeatable geometrical object, that
we call the auxetic unit cell (UC). We propose, in the following sec-
tions, a method to design the unit cells of the above-presented auxetic
structures, a way to tessellate identical unit cells with the Wigner–Seitz
tessellation and, presented in Appendix E a way to tessellate different
unit cells together following an Archimedean and Laves tiling.

3.4.1. The voronoi decomposition
Through the achiralisation and the copy-rotation design protocols,

we have been presenting chiral and achiral auxetic N-order structures.
To conserve the auxeticity order, the unit cell of an 𝑁-order auxetic
structure will be defined as an N-face polygon. The unit cells are built
from a Voronoi decomposition of the auxetic structures (Fig. 14), the
protocol for the construction of the unit cell is the following:

Step 1. The center of rotation 𝑂𝑅 is a vertex of the unit cell,
Step 2. For each sector, the segment [𝑂𝑅𝐸], with 𝐸 the edge point of

the sector, is perpendicular to the face [𝐹 ] of the sector,
Step 3. The edge 𝐸, or equivalent edge, is the center point of the

segment [𝐹 ],
Step 4. The angle 𝛼 between two faces of the unit cell is

𝛼 = 360◦ − 90◦ − 90◦ − 𝜑𝑁

= 180◦ − 𝜑𝑁
(23)

n the case of 𝑁 = 2, the two faces produced by this protocol are
arallel, one needs to complete the drawing of the unit cell drawing
wo lines that passes through the two points used to build the center
f rotation 𝑂𝑅 (e.g. the creation of the unit cell of the case 𝑁 = 2 of

the connected stars Fig. 14.a). The Fig. 14.b,c,d,e represents examples
of unit cells design protocol for low order auxetics. The Fig. 14.f
represents the unit cell of the 4.4CCs classical connected star design.

The Fig. 14.g give an example of the unit cell of the 3CACg3 achiralised
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Fig. 14. Representation of the Voronoi decomposition for the creation of the unit cells of (a) the base Z structure, (b) bow tie, 𝑁 = 2 connected star (2CCs), (c) the classical
puzzle tiles with 𝑁 = 3 (3CPt), (d) the undeployed and deployed version of the 𝑁 = 4 classical (4CRt) and reciprocal (4RRt) rotating triangles, (e) the chiral honeycomb with
𝑁 = 4 (Hc4) and it is achiralised higher order (2AHc4), (f) the higher order copy rotated classical connected stars (4.4CCs) and, (g) the higher order achiralised closed geometry
copy rotated three times (3CACg3).
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closed geometry, two triangular unit cell possibilities exist from the
design protocol, however one is not separable form the other. In this
case, the union of the two UC can be taken, forming an hexagon, to
use it as a unit cell, one needs to design the structure to be a regular
hexagon and be sure that the edge points can connect to the following
unit cell.

3.4.2. The Wigner–Seitz tessellation, or regular tiling
Auxetic metastructures are formed by a repetition of a unique

auxetic unit cell that is repeated in space (Kolken and Zadpoor, 2017;
Czajkowski et al., 2022).

The Voronoi decomposition and the tessellation of a unique and
minimal unit cell have been proposed as the Wigner–Seitz (WS) cell.
The WS cell is a primitive cell that possesses a discrete translational
symmetry, i.e. the repetition of the WS cell follows a translation 𝑇
following two unit vectors 𝑎1 and 𝑎2

𝑇 = 𝑢1𝑎1 + 𝑢2𝑎2 (24)

with 𝑢1 and 𝑢2 integers. Thus the WS cell is able to describe the
epetition of the same unit cell in space, in 2D, they are represented by
wo types of parallelograms (presented in Appendix E) that are either
ozenges (𝑁 = 2, 4) (rectangles and squares) or hexagons (𝑁 = 6).

Triangular unit cells (𝑁 = 3) are to be joined to a second triangular cell
to form a lozenge to be a tessellable WS cell. The Wigner–Seitz tessel-
lation gives the possibility to tessellate similar unit cells, however, it is
limited to a few geometrical shapes. A more complete lattice definition
uses the Archimedean or semiregular tiling of polygons. Archimedean
tiling or plane-vertex tiling (also semiregular tiling) uses regular convex
polygons that can form 21 plane-vertex tilings (Golomb et al., 1988).
The tessellation possibilities offered by the plane vertex tiling, also
called archimedean or Laves tiling are detailed in Appendix E.

3.5. A general metric for auxetics, surface strain, bulk modulus and com-
pressibility

The design method produces an infinite amount of topologies. For
certain instances, the calculation of Poisson’s ratio can be challenging
when structures do not possess a natural x/y orientation. In this regard,
the unit cells of structures can be defined for tessellating the structures
and exploiting the copy-rotation symmetry that enables full definition
13

in the 𝑁 direction of auxeticity. By considering the unit cell as a whole
auxetic element, surface strain 𝜀𝑆 can be used by applying it directly
o the unit cell.

𝑆 =
𝑆𝐹 − 𝑆𝐼

𝑆𝐼
(25)

with 𝑆𝐼 and 𝑆𝐹 the initial and final surface area of the unit cell. Unlike
he Poisson’s ratio, which is limited to directionality, i.e., dimensions

and 𝑦, the surface strain is directionless and considers all the 𝑁
directions of an 𝑁-order auxetic metamaterial. The calculation of the
surface strain uses the surface area of one sector (𝑆𝐼𝑁 , 𝑆𝐹𝑁 ) multiplied
by the number 𝑁 of sectors.

𝑆𝐼 = 𝑁 × 𝑆𝐼𝑁

𝑆𝐹 = 𝑁 × 𝑆𝐹𝑁

(26)

To calculate the surface area of a sector, one needs to consider the inner
and outer borders of the repeated element. For instance, the calculation
of the surface strain 𝜀𝑆 and the Poisson’s ratio 𝜈 of the simple case of the
bow-tie structure (2CCs) can be derived (Fig. 15.a). The initial length
and height of 2CCs can be written as

𝐿𝐼 = 2(𝑎1 + 𝑎3 − 𝑎2 cos(𝜃)) (27)

𝐻𝐼 = 2𝑎2 sin(𝜃) (28)

For an ideal deformation, when stretched, the structure deploys and
thus only the angle 𝜃 changes. The angle can be considered to grow
with a variation 𝛿, therefore going from 𝜃 to 𝜃+𝛿 (Fig. 15.b). Thus, the
final length and height are

𝐿𝐹 = 2(𝑎1 + 𝑎3 − 𝑎2 cos(𝜃 + 𝛿)) (29)

𝐻𝐹 = 2𝑎2 sin(𝜃 + 𝛿) (30)

The directional strains (𝜀𝐿 and 𝜀𝐻 ), the Poisson’s ratio 𝜈 and the
surface strain (Eq. (25)) can be thus formulated. The structure 2CCs is a
topology close to 4RCs and therefore the length and height can be found
following the same process, while taking into account the anepirretic
behavior of the structure.

For N copy-rotation structures, the calculation of the surface strain
can be simplified, considering each sector independently. For instance
the surface strain of the family of the connected stars (Cs) designs
can be simplified by analyzing the surface of the copy-rotated element

(Fig. 15.c.d). The sector can be split into two right triangles, right in E,



International Journal of Solids and Structures 295 (2024) 112777P. Roberjot and J.L. Herder

T
N

𝑆

A
i
b
s
i

𝐿

t
s

Fig. 15. Representation of (a) the structure 2CCs (Bowtie) undeformed, (b) 2CCs deformed at the angle 𝜃 + 𝛿. The details of the surface area of one sector of the Cs family with
(c) the undeformed, and (d) deformed structure. Representation of (e) the Mr4 chiral structure for the calculation of the surface area. Evolution, for the structures 2CCs, 4CCs,
4RCs and Mr4, of (f) the Poisson’s ratio 𝜈, and (g) the surface strain 𝜀𝑆 .
of angle 𝜑𝑁
2 , enabling trigonometry to be used to calculate the surface

area of the right triangle, and therefore, the isosceles triangle. The
initial length is written as a function of 𝜃 and 𝑁 as

𝐿𝐼 (𝜃,𝑁) = 𝑎1 − 𝑎2 cos(𝜃) +
𝑎2 sin(𝜃)

tan
(

𝜑𝑁
2

) (31)

and the initial height as

𝐻𝐼 (𝜃,𝑁) = 𝐿𝐼 (𝜃,𝑁) tan
(𝜑𝑁

2

)

(32)

he surface area of a unit cell 𝑆𝐼 is therefore determined by the number
of copy-rotations as stated in Eq. (26).

𝐼 (𝜃,𝑁) = 𝑁𝐻𝐼 (𝜃,𝑁)𝐿𝐼 (𝜃,𝑁) (33)

s 𝜑𝑁 is fixed by design, only 𝜃 changes with 𝛿. The case of 4CCs
s using four copy-rotations and thus the total length and height can
e derived as well as the Poisson’s ratio. The parametrization of the
tructure Mr4 is presented in Fig. 15.e where the length of one sector
s calculated as

(𝜃) =
√

𝑎21 + 𝑎22 − 2𝑎1𝑎2 cos(𝜃) (34)

and the height is

𝐻(𝜃) = 𝐿(𝜃) tan
(𝜑𝑁

2

)

(35)

The evolution of Poisson’s ratio and surface strain are plotted in
Fig. 15.f.g with the evolution of 𝛿 for an initial angle 𝜃 = 40◦ for
he structures 2CCs, 4CCs and 4RCs and Mr4. The calculations of the
ectors’ parameters for Mr4 and 4RCs (as for all other structures) are
14
based on the same approach. The Poisson’s ratio for 4CCs and Mr4 as
for many 4-copy-rotations is −1, this is explained by the fact that all
sectors behave the same and a Poisson’s ratio in 𝑥 and 𝑦 direction can
be calculated (and projected in the 𝑥𝑦 base).

The surface strain, by its independence from any axis, gives more
general information on the behavior of the auxetic structures. Indeed,
the surface strain 𝜀𝑆 gives the information about the surface bulk
modulus 𝐾𝑆 of the auxetic structure

𝐾𝑆 = −
𝜎𝑆
𝜀𝑆

(36)

with 𝜎𝑆 the surface stress applied to the edge of the unit cell. One can
define the surface compressibility 𝛽𝑆 , the inverse of the bulk modulus

𝛽𝑆 = 1
𝐾𝑆

(37)

Auxetic metamaterials increase in surface area 𝜀𝑆 > 0 when stretched,
i.e. with a negative pressure 𝜎 < 0 (resp decrease 𝜀𝑆 < 0 when
compressed, with a positive pressure 𝜎 > 0), therefore the surface
bulk modulus 𝐾𝑆 is positive for auxetic metamaterials and therefore
the compressibility always positive and can be very large if the surface
strain 𝜀𝑆 is very large too. Highly positive compressible structures were
named ‘‘supercompressible’’ metamaterials (Bessa et al., 2019; Houlder
and Bessa, 2019; Liu et al., 2020).

4. Discussion

The design protocol proposed using the achiralisation and copy-
rotation topological transformations appears to offer infinite possibil-

ities for creating auxetic structures. The creation of some structures
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require a modification of the length of some beams and of the an-
gles, this particularity enables the creation of an infinite amount of
topologies. Many of these structures, particularly those with higher
orders, cannot be tessellated with regular tiling. We anticipate that such
complex structures may be useful for specific applications due to their
designed Poisson’s ratio, compressibility or deformation behavior.

While we have primarily focused on regular topological designs,
we note that introducing irregularities can lead to even more unique
and specialized auxetic structures. Such irregularities can be introduced
geometrically through mismatches in lengths and angles, or in the copy-
rotation protocol itself by modifying each of the 𝑁 repeated entities to
behave in a unique manner in each of the 𝑁 directions. We have shown
that the higher order copy-rotation protocol, with 𝑁.𝑀 copy-rotations
when 𝑁 ≠ 𝑀 , can also introduce irregularities, although modifications
o the structure may be required to create a complete unit cell.

Naming conventions for irregular structures may need to be adapted
o reflect classes of irregularities. For example, the addition of a low-
rcase 𝐼 or adding a detail after the regular name (for instance Rt
iamond rotating triangle design, presented in Appendix B) could
ignify an irregularity in some cases, but might not be required for
tructures such as 3.4.RCs (Fig. 12.i), which are irregular due to the
‘3.4’’ copy-rotation mismatch.

Tessellating auxetic structures from a Wigner–Seitz or Archimedean
iling appears to be well-defined for structures within the same scaling
ange. Modifications to the tiling can be introduced through a hierarchy
ffect, such as dividing a geometrical object into sub-objects that do not
hange the outer shape of the unit cell but introduce additional internal
omplexity. Irregularities in the tiling of geometrical shapes could be
sed to define different auxetic regions within a planar surface.

The presented calculations take into account a perfect topology,
ith rigid beams and revolute joints, the embodiment analysis of the

tructures would necessarily not be ideal and deflection of the beams,
nd spring stiffness of the joints need to be added.

We did not find any 2D auxetic metamaterial that could not be
esigned following our proposed design method, however, we did not
rove yet our method can generate all possible auxetic structures.

We considered the Z structure only in a part of its range of motion
rom the initial configuration to the maximum auxeticity. It would be
nteresting to consider the other part of its range of motion leading
o meiotic behavior (Positive Poisson’s ratio). It is likely that a similar
pproach could be developed which is left for future study.

. Conclusion

In summary, we have presented a comprehensive study on the
esign and classification of auxetic structures. Our approach involves
he use of chiral and achiral elements, along with geometrical sym-
etries, to create a variety of auxetic structures with positive, null,

r negative Poisson’s ratios. We have proposed a design method that
nables the recreation of existing and the creation of novel auxetic
tructures, with the flexibility to accommodate minor irregularities.
dditionally, we have introduced a naming protocol for the structures,
hich allows for easy identification of their type, chirality, and geo-
etrical complexity. Our designs can be tessellated in the plane, and
e have provided a detailed construction process for the unit cells
nd described how to tessellate 2D auxetic structures. Finally, we have
roposed using the surface strain of the unit cell as a general metric
or auxetic structures, which relates directly to the bulk modulus and
ompressibility of the metamaterial. Overall, our findings provide a
aluable contribution to the field of auxetics and can serve as a basis for
he design and fabrication of new auxetic metamaterials with unique
echanical properties.
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ppendix A. Puzzle tiles arrowhead design

See Fig. A.16.

ppendix B. Rt diamond

See Fig. B.17.

ppendix C. Rt irregular

The irregular 𝑅𝑡𝐼 structure is presented in Fig. C.18.a, the irregular-
ties are making the structure chiral and therefore, can be copy-rotated
s a chiral structure, 𝑅𝑡𝐼4 is illustrated in Fig. C.18.d. As the 𝑅𝑡𝐼
s chiral it can be achiralised and copy-rotated, the case 2𝐶𝐴𝑅𝑡𝐼2 is
llustrated in Fig. C.18.b.c. The base structure is composed of two
chiralised 𝑅𝑡𝐼 , where the points 𝐵1, 𝐵2, 𝐴2 and 𝐴4 are hinges, and
he triangle 𝐵1𝐵2𝐵 is rigid. The unit cell of the structure is rectangular
nd therefore the value of the Poisson’s ratio might differ from square
nit cells. To simplify the writing of the Poisson’s ratio one could write
= 𝑎1 = 𝑎3, and 𝑏 = 𝑎′1 = 𝑎′3, with 𝑏 > 𝑎. The initial parameters of

length and height can be calculated as

𝐿𝐼 = 2𝑏 (C.1)

nd

𝐼 = 2𝑎 (C.2)

he intermediate values can be written as

= 2(𝑏 + 𝑎 cos(𝛼)) (C.3)

nd

= 2(𝑎 sin(𝛼) + 𝑏 cos(𝛼)) (C.4)

ith the angle 𝛼 = 𝐴1𝐵1𝐴′
1 ∈ [90◦, 0◦] with the point 𝐴′

1 the projection
f the point 𝐴1 on the line (𝐵1𝐵2). The final parameters are

𝐹 = 2(𝑎 + 𝑏) (C.5)

nd

𝐹 = 2𝑏 (C.6)

herefore, the strain and Poisson’s ratio can be derived

𝐿 =
2(𝑎 + 𝑏)

2𝑏
− 1 = 𝑎 + 𝑏

𝑏
− 1 = 𝑎

𝑏
(C.7)

and

𝜀𝐻 = 2𝑏
2𝑎

− 1 = 𝑏
𝑎
− 1 (C.8)

hus the Poisson’s ratio between the initial and final state is

= −
𝜀𝐻
𝜀𝐿

= −
( 𝑏
𝑎
− 1

) 𝑏
𝑎
= − 𝑏2 − 𝑎𝑏

𝑎2
(C.9)

The value of the Poisson’s ratio is different from −1 between the initial
ad final state, it might exists an intermediate value of 𝜈 = −1, however,
or this structure the Poisson’s ratio (𝜈(𝑎, 𝑏)) can be tuned with the
alues of a and b. For instance 𝜈(2, 1) = −2 and 𝜈(3, 1) = −6.
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Fig. A.16. An irregular variation of the 𝑁 = 2 puzzle tiles, usually called the ‘‘arrowhead’’ auxetic design (Larsen et al., 1997; Boopathi et al., 2020; Gao et al., 2020). (a) drawing
f the axis of symmetry passing through the points 𝐴 and 𝐵′, (b) representation of ‘‘Pt arrowhead’’ and, (c) the representation of the unit cell in a stack of four.
Fig. B.17. The particular case ‘‘Rt diamond’’ of the rotating triangle family (Grima et al., 2011; Papadopoulou et al., 2017). Rt diamond is a variation of the Rt achiral base,
here the two rotating triangles are equilateral, where 𝐴′𝐴𝐵′ = 120◦, represented in (a) the base Rt diamond undeformed and deformed, (b) shows the unit cell design passing

by the points 𝐴′, 𝐵′, 𝐵1 and 𝐵2 with the angles 𝛼 = 60◦ and 𝛽 = 120◦. (c) Representation of the tessellation of four unit cells of Rt diamond.
Fig. C.18. Representation of (a) the irregular chiral Rt structure (𝑅𝑡𝐼 ) case where 𝑎1 = 𝑎3 ≠ 𝑎′1 = 𝑎′3, and (b) the achiralised (𝐴𝑅𝑡𝐼2) and copy-rotated two times (2𝐶𝐴𝑅𝑡𝐼2)
ndeployed and (c) deployed structures. Representation (d) of the copy-rotation of 𝑅𝑡𝐼4, the irregular structure presents a topology close to Mr4, where the triangles in gray are
otating and the white ones are fixed.
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ppendix D. Honeycomb 3AHc3 star design

See Fig. D.19.

ppendix E. Archimedean and Laves semiregular tiling

The Wigner–Seitz tessellation gives the possibility to tessellate simi-
ar unit cells, however, it is limited to a few geometrical shapes. A more
omplete lattice definition uses the Archimedean or semiregular tiling
f polygons. Archimedean tiling or plane-vertex tiling (also semiregular
16

o

iling) uses regular convex polygons that can form 21 plane-vertex
ilings (Fig. E.20) (Golomb et al., 1988).

The Archimedean tiling gives an understanding of how to tessellate
he unit cells together, in addition, it is possible to view the tiling
ot from the geometry of the unit cell but from the connection of the
ertexes, or how to connect the center of rotations 𝑂𝑅 of the auxetic
etamaterials by their edge points 𝐸. This type of tiling is called

‘Dual’’ or ‘‘Laves’’ tiling. The Laves tiles are called ‘‘planigons’’, convex
olygons that connect the vertexes of the neighbor unit cells, each side
f a planigon is normal to the line formed by two vertexes. Planigon
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Fig. D.19. The particular case ‘‘AHc3 star’’ design is also called ‘‘pattern p31 m’’ (Stavric and Wiltsche, 2019). AHc3 star is a variation of the 𝑁 = 3 honeycomb design Hc3,
here (a) the axis of symmetry of AHc3 is parallel to one leg and is passing through one edge of an other of the three legs. (b) The achiralised structure AHc3 is copy-rotated

hree times to form a structure that can be named ‘‘3AHc3 star’’ design, in (c) is a drawing of the unit cell.
Fig. E.20. Archimedean tiling of the unit cells and Laves tiling with the construction of the planigons (Golomb et al., 1988).
otation uses a naming protocol, the letter 𝑉 for vertex is followed by
he geometrical orders of the planigons forming the tiling pattern that
ill the plane, as an example 𝑉 4.4.4.4 or 𝑉 44 is the notation for the

planigon connecting 4 square (4) unit cells, also 𝑉 4.8.8 or 𝑉 4.82 is the
otation for the planigon connecting a square (4) and two octagons (8).

One can distinguish the 21 planigons in four families,

(i) 3 regular planigons are the equilateral triangles, squares, and
regular hexagons;

(ii) 8 semiregular planigons such as triangles, quadrilaterals, and
pentagons;

(iii) 4 ‘‘demiregular’’ planigons, they can only fill the plane combin-
ing other planigons;
17
(iv) 6 irregular planigons that can fill the plane only by combining
with irregular polygons.

Planigons are tiled edge-to-edge as the angles are divisors of 360◦ and
connect the vertexes together.

The Archimedean and Laves tiling give the possibility to extend the
tessellation to more complex lattices through the process of complex
Euclidean tiling and geometrical fractalization (Gomez-Jauregui et al.,
2021).

Appendix F. Illustration of the naming protocol

See Fig. F.21.
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Fig. F.21. Representation of the naming process for the achiral connected stars (Cs) design with the branching of the classical and reciprocal copy-rotation, with two level of
copy-rotation complexity. The naming process also shows the chiral Honeycomb (Hc) design with two level of complexity of chirality with two level of copy-rotation complexity.
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