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Abstract

This thesis develops and demonstrates a mission-oriented, early-stage design framework for mid-size

(40–90 [m]) Offshore Patrol Vessels (OPVs). The approach integrates hybrid scaling (geometric and tar-

geted parametric variation) with multi-objective optimisation (MOO) in a Systems Engineering / Set-Based

Design (SE–SBD) workflow. A parametric parent-hull model was implemented in CAESES and varied in

principal dimensions and selected hull parameters. Performance was evaluated using Holtrop–Mennen re-

sistance, intact-stability (GZ) analysis, and strip-theory RAOs aggregated into a multi-heading Seakeeping

Index (SKI). The optimisation process combines Design of Experiments (DoE), surrogate modelling, and

a MOGA-based global search. Objectives reflect key drivers (SKI, Stability Index (SI), total resistance

RT , and lightweight LWT ), while feasibility is enforced through GM/B limits, roll-period (Troll), and a range

constraint.

Verification through hypervolume convergence and trend analysis confirmed robust optimisation be-

haviour, while validation against tank, CFD, and stability booklet data for a 45 [m] reference OPV demon-

strated geometric fidelity and early-stage accuracy. The framework efficiently generates Pareto sets that

reveal trade-offs between endurance, comfort, stability, resistance, and weight, supporting mission-aligned

design choices.

The main contribution of this work is the development of a robust, adaptive, and mission-driven

optimisation framework for OPVs. It explicitly integrates nonlinear scaling effects, dynamic stability

criteria, and mission requirements within a single optimisation envelope. Beyond reproducing established

naval-architectural behaviour, the framework advances early-stage practice by treating SKI and SI as

explicit optimisation objectives and by embedding range and Troll as feasibility constraints. Its adaptive

structure allows objectives, variables, and constraints to be tailored flexibly to owner, shipyard, or designer

requirements, making it a practical decision-support tool for concept design.

Keywords: Offshore Patrol Vessels (OPVs); early-stage ship design; hybrid scaling; parametric modelling;

Systems Engineering (SE); Set-Based Design (SBD); multi-objective optimisation (MOO); Pareto analysis;

seakeeping; SKI; stability; SI; resistance; lightweight; decision-support framework
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1
Introduction

1.1. Introduction

Offshore Patrol Vessels (OPVs) are small surface vessels that serve as versatile maritime assets for navies

and coast guards. They are used for missions such as search and rescue, exclusive economic zone (EEZ)

monitoring, law enforcement, and counter-piracy operations. OPVs vary in size and capability, typically

classified into three length categories: vessels under 50 [m], 50–90 [m], and those exceeding 90 [m] [1, 2,

3].

As operational demands evolve, navies and coast guards often require modifications to existing OPV

designs to meet new mission profiles and technologies. Changes in operational range, payload capacity,

seakeeping performance, or endurance may necessitate adjustments in a vessel’s size and proportions,

which must balance versatility, cost-efficiency, and performance across diverse maritime conditions.

Expanding a proven hull form to accommodate new requirements, whether for increased autonomy,

improved habitability, or better hydrodynamic efficiency, is a common practice in naval architecture [4].

Naval architects frequently rely on parent hulls and regression-based models to determine new main

dimensions and optimise designs to meet specific requirements. These approaches often involve scaling

techniques such as Geometric (Linear) Scaling and Parametric Scaling. However, scaling introduces

significant challenges due to the non-linear interactions among key design factors, including resistance,

stability, seakeeping, powering and cost [5].

Traditional ship design methods, such as the design spiral, rely heavily on iterative, experience-driven

processes, which can be both time-consuming and costly. These conventional approaches often limit

the scope of design space exploration and miss the optimal solution. In contrast, modern computational

techniques—including parametric modelling, surrogate modelling, and multi-objective optimisation (MOO)

enable broader and more efficient design evaluations. These methods allow for extensive parametric

variation and mission-specific performance optimisation at the early design stage [5, 6, 7].

1
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1.2. Motivation

There remains a gap in linking mission-specific performance requirements (e.g., specific sea states,

seakeeping characteristics, operational speeds, endurance, cost, and range) directly to vessel geometry,

including both principal dimensions and full 3D hull form. Current scalingmethods do not effectively integrate

these factors into the early-stage design process, leading to suboptimal trade-offs between vessel size and

operational performance [7]. This thesis therefore, focuses on mid-size OPVs in the 40–90 [m] range, which

represent the majority of existing designs with comparable semi-displacement hull forms and multi-mission

roles such as EEZ surveillance, SAR, and law enforcement [4, 8]. MOO is increasingly used in modern

ship design to address complex and often conflicting performance requirements. Designers can generate

an optimal set of alternatives that reflect different trade-offs, supporting more informed and data-driven

decision-making. Unlike traditional scaling methods that rely on designer intuition or simplistic geometric

transformations, an MOO-based decision-making framework allows for a systematic exploration of vessel

dimensions while considering the complex inter-dependencies between key performance parameters [5, 7,

9].

1.3. Research Objectives

The objective of this thesis is to develop an MOO-based decision-making framework for mid-size (40–90 [m])

multi-purpose OPVs. The study focuses on exploring scaling methods to establish preferred scaling

relations based on performance trade-offs. It aims to identify how different scaling methods impact key

performance areas, including hydrodynamic and hydrostatic performance, seakeeping, propulsion, and

overall vessel efficiency. Through this analysis, the research seeks to develop a framework for rapid and

cost-effective design scaling, ensuring optimised designs that meet both performance and operational

requirements.

1.3.1. Main Research Question

“How can scaling and mission-oriented Multi-Objective Optimisation (MOO) be integrated into an early-

stage design framework that addresses the nonlinear effects of scaling, enhances operational flexibility,

and performance of multipurpose OPVs?”

1.3.2. Research sub-question

1. “How do the fundamental characteristics, mission roles, and design drivers of multi-purpose Offshore

Patrol Vessels (OPVs) influence their key design and mission requirements, and in turn shape overall

vessel performance and operational effectiveness?”

2. “Do contemporary ship-design and scaling methodologies—including geometric, parametric, and

hybrid approaches—adequately capture the non-linear interactions between key hull parameters

(length, beam, draft, block coefficient) and performance indicators (resistance, stability, seakeeping,
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propulsion efficiency), and if so, how can they support optimisation in the early stages of design?”

3. “What is the current state-of-the-art in design optimisation frameworks for early-stage ship design,

and based on this, what are the requirements for a Multi-Objective Optimisation (MOO)-based

decision-making framework suitable for OPV scaling?”

4. “What components are required for the proposed framework, and how can the setup be structured to

support early-stage OPV design?”

5. “How can the effectiveness of an integrated scaling and mission-oriented MOO framework be verified

and validated to ensure robust and reliable early-stage OPV design decisions?”

1.4. Thesis Road Map

This thesis is structured to systematically address the research sub–questions and, ultimately, the main

research question. The literature review provides a foundation by analysing existing research on OPVs, ship

design processes, scaling techniques, parametric modelling, and optimisation methods, while subsequent

chapters build and validate the proposed framework.

• Chapter 2 provides an overview of Offshore Patrol Vessels (OPVs), their roles, and design drivers,

addressing sub–question 1.

• Chapter 3 reviews ship design processes, scaling techniques, and parametric modelling approaches,

addressing sub–question 2.

• Chapter 4 presents multi–objective optimisation (MOO) methods and outlines the requirements for a

new framework based on parent–hull scaling, addressing sub–question 3.

• Chapter 5 describes the methodology of the proposed design framework, detailing its components

and setup, thereby addressing sub–question 4.

• Chapter 6 validates the framework against parent–hull reference data (hydrostatics, resistance,

stability, seakeeping), thereby addressing the validation part of sub–question 5.

• Chapter 7 verifies the framework through trend consistency checks and convergence analysis, and

demonstrates its application in a representative OPV case study, thereby addressing the verification

part of sub–question 5.

• Chapter 8 concludes the thesis with a discussion of findings, limitations, and recommendations for

future research.



2
Offshore Patrol Vessel (OPV)

This chapter presents the fundamental characteristics, mission roles, and design drivers of OPVs. By

examining their operational requirements, regulatory constraints, and cost considerations, it addresses

the research question 1: “How do the fundamental characteristics, mission roles, and design drivers of

multi-purpose Offshore Patrol Vessels (OPVs) influence their key design and mission requirements, and in

turn shape overall vessel performance and operational effectiveness?”.

2.1. Overview of OPVs

OPVs serve as cost-effective, multi-role assets in modern naval and coast guard operations, designed for

a wide range of missions. OPVs provide a cost-effective solution for navies and coastguards, bridging the

gap between smaller coastal patrol craft and larger combat ships such as corvettes and frigates. OPVs

are primarily used for missions such as Exclusive Economic Zone (EEZ) surveillance, Environmental

Protection (EP), search and rescue (SAR), counter-piracy, and law enforcement.

(a) OPV 45m – Multi-mission vessel. (b) OPV 62m – Naval Operations vessel

Figure 2.1: Examples of OPV configurations by Israel Shipyards Ltd. (ISL), illustrating differences in size,

capabilities, and mission orientation [10]

4
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Figure 2.1 presents two OPV configurations, highlighting their variations in size, operational capabilities,

and mission focus. The OPV 45 [m] (2.1a) is designed primarily for as a multi-mission vessel including

maritime security, border patrol and search and rescue operations, while the OPV 62 [m] (2.1b) features a

naval operations configuration, tailored for enhanced combat and strategic naval Operations.

2.1.1. Missions and Mission Requirements for OPVs’ Operational Roles

OPVs address multiple operational tasks, categorised by their intended purpose. Tasks can be divided

specifically for Coast Guard or Navy operations or grouped by broader roles, such as SAR, EP, or Naval

Operations. Many roles overlap in practice, demonstrating the versatility and multi-mission capabilities of

OPVs. Table 2.1 summarises these mission requirements by classifying OPV operational roles based on

their primary tasks and associated key features [2, 4, 11]

Table 2.1: Classification of OPVs Based on Missions and Operational Roles.

Operational

Role

Primary Tasks Key Features1

Maritime

Security and Law

Enforcement

(MSLE)

Maritime Border Patrol

and Surveillance

Countering Criminal

Law Enforcement

Anti-Terrorism

Maximum continuous speed: 20–28 [knots]

Operation Speed: 15–18 [knots] (Patrol),

10–12 [knots] (Surveillance)

Endurance: 3,500–6,000 [nm], 15–25 [days]

Sea State: Operable up to sea state (SS) 5

Equipped with radar, Surveillance systems,

Small-calibre weapons space for boarding operations

Search and Res-

cue (SAR)

Search and Rescue

(SAR) Humanitarian

Assistance and

Disaster Relief

Operation Speed: 18–22 [knots] (SAR)

Endurance: 2,000–4,500 [nm], 10–20 [days]

Sea State: Operable up to SS6

High manoeuvrability and towing capability

Medical facilities and evacuation decks

Accommodation for rescued personnel

Environmental

Protection (EP)

Environmental Protec-

tion

Operation Speed: 12–16 [knots]

Endurance: 3,000–5,000 [nm], 14–28 [days]

Sea State: Operable up to SS5

Advanced sensors for environmental monitoring

Oil spill cleanup equipment

Systems for environmental compliance

Naval Opera-

tions (NO)

Escort Duties

Mine Countermeasure

Operations

Support for Special

Operations

Maximum continuous speed: 20–26 [knots]

Endurance: 5,000–8,500 [nm], 20–35 [days]

Sea State: Operable up to SS6+

Heavier armament (e.g., missiles, torpedoes)

Integrated communication systems for fleet coordination

Wartime adaptability

1Source: Adapted from [2, 11, 4, 12].
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2.1.2. Existing Vessels and Case Studies

Existing OPVs vary in size, capabilities, and configurations, depending on the operational requirements of

the owner. Table 2.2 showcases the versatility of OPVs by presenting a range of existing OPV designs. It is

based both on an overview of current OPV specifications shown in Table A.1 [10, 13, 14, 15], and findings

from existing studies [2, 11, 12]. In Figure 2.2, a heat map was created showing that most existing OPV

designs are MSLE and SAR operations oriented. These analyses provide a basis for developing design

requirements tailored to meet both operational and financial constraints. While existing OPV designs span

a length range of approximately 40–120 [m], this thesis focuses on the mid-size segment between 40–90

[m], which encompasses the majority of multi-mission OPVs with comparable hull forms and operational

profiles (see Section 1.2 Motivation).

Table 2.2: Main characteristics and equipment of OPVs based on market research and literature

Design Aspect Key Features 2

LOA
3 40 to 120 [m]

breadth3 10 to 15 [m]

draft3 3.25 to 4.55 [m]

beam-to-draft ratio (B/T)2 2.88 to 4.3

volumetric coefficient (Cv)
1,2 2.7 to 4.3

Displacement3 300 to 2,500 [Ton]

Hull Form C-SHARP hull design

Propulsion
Diesel Mechanical

CODAE

Autonomy 3 21 to 40 [days]

Range 3 3,000 to 10,000 [nm]

Maximum continuous Speed3 22 to 30 [knots]

Sea-State Operational up to Sea-State 5–6

Mission Adaptability

Flexible and Reconfigurable:

- Mission bays

- Autonomous Underwater Vehicle (AUV) and

Unmanned Surface Vehicle (USV)

Launch-and-Recovery System (LARS)

- Helicopter operations

- Medical & Humanitarian aid

- Combat modules

Mission containers for ecological protection

Diving operations

Rigid Hull Inflatable Boats (RHIBs)

Helicopter accommodations (small, medium, or heavy)

Combat Capabilities
20–76 mm automatic cannons

Configurable weapon systems per mission

2The data in this table are compiled from a structured review of publicly available specifications from shipbuilders (Appendix A),

along with findings from academic and technical literature [2, 11, 12].
3This range represents the most common size and displacement for OPVs. However, there are OPVs that exceed or fall below

this range depending on specific operational requirements and national naval strategies.
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Figure 2.2: Heatmap of OPV Mission Groups distribution base on the table A.1 in Appendex A Overview

of existing OPVs designs.
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Figures 2.3 and 2.4, based on Table A.1, illustrate the diversity of OPVs in terms of length, range,

endurance, and Froude number (Fn). The majority of vessels operate within the semi-displacement regime,

with Fn values ranging between 0.4-0.6, and fall within the typical length range of 40–90 [m].

Figure 2.3: Length [m] vs Range [nm] with Endurance Representation

Figure 2.4 includes a fitted trend line illustrating a negative correlation between the L/B ratio and the

Froude number (Fn). However, the relatively low coefficient of determination (R2 = 0.45) indicates only

a moderate correlation, suggesting that the trend line should be interpreted cautiously as an indicative

representation of the general pattern rather than as a reliable predictive model. While classical theory

suggests that vessels designed for higher Fn would typically employ more slender hulls to minimise

resistance, the observed inverse trend reflects the operational context of OPVs, where maximum speeds

are relatively fixed across vessels and variations in Fn are primarily driven by differences in hull length.

Consequently, longer vessels, despite higher L/B ratios, operate at lower Fn due to their increased length

rather than hydrodynamic optimisation for speed. The data points are colour-coded by vessel length to

emphasise this hull-scaling effect. A complementary analysis using the hull-based Froude number (Fn,h),

defined by L ·B, is provided in Appendix A, showing a slightly stronger correlation (R2 = 0.51). Together,

the figures highlight that endurance is closely tied to absolute vessel length: longer OPVs operating at

the same mission speeds achieve lower Froude numbers and greater endurance, whereas shorter OPVs

operate at higher Froude numbers and can attain higher relative speeds but at the expense of range.

This reinforces the presence of design trade-offs and the diversity of OPV design approaches shaped by

differing operational requirements and mission profiles.

2.1.3. OPV Hull Design

Offshore Patrol Vessels (OPVs) typically adopt a semi-displacement, round-bilge hull form, which offers

a balanced compromise between hydrodynamic efficiency and operability. While many performance

attributes such as moderate resistance, fuel efficiency, and manoeuvrability can also be achieved with
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Figure 2.4: Length-to-Beam (L/B) Ratio vs Froude Number (Fn) with Length colour code Representation

hard-chine semi-displacement designs, the round-bilge configuration provides more favourable seakeeping

performance, making it well-suited for long-duration patrol missions [8, 11, 16].

From a dimensional perspective, OPVs generally employ a L/B between 4 and 7, reflecting the trade-off

between slenderness for resistance reduction and beam for transverse stability. The latter is especially

critical for ensuring weapon accuracy, safe helicopter operations, and overall crew comfort. Similarly, a

B/T between 2.5 and 4.5 is commonly adopted, while CB typically range from 0.30 to 0.60, balancing

endurance, payload capacity, and hydrodynamic performance. 4

To mitigate roll motions and enhance operability across a wide range of SS, OPVs are often fitted

with bilge keels, active stabilisers, or moderate keel lines. Depending on vessel size, speed, and mission

profile, some designs also integrate a bulbous bow, although its adoption is influenced by construction

simplicity and cost considerations.

In terms of operational profiles, OPVs are designed to operate across a broad speed envelope, with

sprint speeds of 20–28 knots for interception and rapid-response missions. However, they typically spend

the majority of their operational life—up to 80% of the time—at lower transit speeds of 20 knots or less,

where endurance and fuel economy dominate performance requirements [12].

2.2. Design drivers

2.2.1. Total Life Cycle Cost (TLCC)

Total Life Cycle Cost (TLCC) is a critical factor in the design and procurement of OPVs, which are typically

government-funded and acquired as part of fleet modernisation programs involving multiple vessels.

Schmitz et al. [4] described the United States Coast Guard Offshore Patrol Cutter (OPC) program, which

aimed to modernise the U.S. Coast Guard’s surface fleet with 25 new cutters at an average unit cost

of $329 million, emphasising cost as a design driver. However, OPV acquisition costs can vary widely

4The data in this table are compiled from a structured review of publicly available specifications from shipbuilders (Appendix A),

along with findings from academic and technical literature [2, 11, 12].
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depending on vessel size, mission capability, outfitting level, and regional procurement policies [1].

Like all maritime assets, OPV TLCC are evaluated using standard financial frameworks divided into:

• Capital Expenses (CAPEX), Costs related to materials, fabrication, and onboard systems. These

are commonly estimated using regression analyses relating Lightship weight (LWT ) and propulsion

power to construction costs [17, 18].

• Operational Expenses (OPEX), Recurring costs such as fuel consumption, maintenance, crew

salaries, and training, which play a key role in long-term cost efficiency [1, 17, 19].

2.2.2. Endurance and Range

Section 2.1 and Table 2.2 present the endurance and range requirements for OPV operations. These

requirements are governed by the vessel’s Deadweight Tonnage (DWT ), primarily comprising fuel and

consumables in the case of OPVs [20, 21], as well as propulsion efficiency, both of which are directly

influenced by hull design [18, 22]. Consequently, endurance and range are established as key design

drivers with significant implications for hull form and overall vessel configuration.

2.2.3. Ship Resistance

Ship resistance (RT ) is a fundamental performance parameter that directly determines the effective power

(PE) required, as expressed in Equation 2.1, where Vs is the ship speed. Effective power in turn defines

the installed propulsion capacity, influencing fuel consumption, emissions, operational endurance, range,

and ultimately both OPEX and CAPEX [12, 19, 23].

PE = RT · Vs (2.1)

Studies demonstrate that variations in key design parameters—such as length-to-beam ratio (L/B),

prismatic coefficient, and the presence of a bulbous bow—significantly affect the resistance profile of patrol

vessels [7, 8, 19, 24, 25]. Beyond hull-form optimisation, navies have also employed energy-saving devices

(ESDs), including stern flaps, wedges, hull-mounted foils and fins, propeller ducts, and energy-saving

rudders, These devices generate some additional drag themselves but improve overall resistance by

influencing vessel trim, wake flow, and propulsion efficiency. Nevertheless, they cannot substitute the

dominant influence of hull geometry on overall hydrodynamic performance [26, 27].

Although the International Maritime Organization (IMO) does not currently impose greenhouse gas

(GHG) reduction requirements on military vessels [28], increasing environmental awareness and national

policy frameworks encourage navies and coast guards to adopt emission-reduction strategies [29]. Reduc-

ing hull resistance directly contributes to lowering fuel consumption, emissions, and associated operating

costs. Taken together, the mixed-speed operational profile of OPVs, coupled with growing environmental

pressures and the strong influence of endurance, range, and TLCC in early-stage design, establishes

resistance as one of the most critical design drivers in OPV development.
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Resistance prediction methods can be broadly categorised into high-fidelity approaches (e.g., CFD

simulations, towing tank experiments) and low-fidelity approaches (e.g., empirical formulas, regression

methods, and systematic series). For early-stage OPV design, low-fidelity methods provide practical

estimates to compare multiple hull candidates before committing to more computationally expensive

simulations [8, 18].

2.2.4. Stability

Stability is a fundamental requirement in naval architecture, ensuring that a vessel can recover from heeling

moments and return to an upright condition, thereby maintain safe operations under varying loads and

environmental conditions. Stability analysis is conducted in calm water at zero speed, providing a baseline

measure of how the ship responds to heeling forces. However, OPVs must remain operational in more

demanding environments. For this reason, strong initial stability is essential to prevent excessive heeling

and dynamic rolling, thereby ensuring safe and comfortable operations. At higher speeds and in rougher

seas, seakeeping analysis is performed to evaluate dynamic responses such as motions, accelerations, and

overall operability. International regulations define criteria for both intact and damage stability (Equation 2.2).

The righting arm curve (GZ) provides an evaluation of a vessel’s stability characteristics; however, its

accurate calculation requires a fully defined 3D hull geometry and a sufficiently detailed estimate of weight

distribution, which is typically only available in later design stages.

GZ(L,B,D, T,CB ,KG) ≥ GZIMO (2.2)

In early-stage design, detailed information about weight distribution and internal configuration is limited.

Since the vertical centre of gravity (KG) is the main factor governing stability, designers rely on approximate

assumptions for KG and use the metacentric height (GM ) as a practical proxy for assessing initial stability

at small heel angles.

2.2.5. Seakeeping

Seakeeping directly impacts the operability, habitability, safety, and mission effectiveness of a vessel

in varying sea conditions. This is particularly relevant for OPVs, which frequently operate in SS5 or

6 while conducting surveillance, SAR, boarding operations, launch and recovery tasks, and helicopter

deployments [4]. Additionally, OPVs must sustain operational effectiveness during high-speed transits,

tactical manoeuvres, and dynamic operations such as RHIB deployments and flight deck operations. These

tasks require a stable platform capable of mild pitch, roll, and heave motions while ensuring endurance

over long missions [30]. To ensure safety, operational effectiveness, and crew endurance, OPVs must be

designed with careful consideration of their seakeeping capabilities. However, this presents a complication,

as seakeeping analysis requires a detailed 3D hull representation, which is typically available only in later

design stages. In the early phases of ship design, empirical formulas and simplified 2D models can be

used to estimate seakeeping behaviour. These methods, while useful for initial decision-making, lack the
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accuracy required to fully capture complex hydrodynamic interactions [22, 31].

The ship’s motion response is defined by amplitude, velocity, and acceleration across all six degrees of

freedom (DoF), though not all are equally critical in every operational context. Seakeeping performance

is largely influenced by hull geometry, centre of gravity, and displacement, making early-stage design

considerations critical. While damping systems can support achieving desired performance levels, the

hull geometry is the primary element considered in early-stage optimisation, as it provides the foundation

for any additional motion control systems. Neglecting seakeeping in the early design phases can result

in Performance issues that are difficult or, in some cases, impossible to correct later without significant

redesign and cost [4].

Optimising seakeeping performance ensures that OPVs function efficiently in adverse weather condi-

tions, keeping vessel motions and derived responses within acceptable limits. Understanding how vessel

dimensions, hull form, and loading conditions affect wave-induced responses is essential for evaluating

overall mission success. Gutsch et al. [30] emphasise that achieving optimal seakeeping requires a

comprehensive design approach, integrating computational analysis, tank testing, and the development of

key performance indicators (KPIs) for seakeeping assessment.

2.2.6. Seakeeping Criteria and Motion Limits

Various standards define acceptable motion limits for different operational profiles, including those set

by the USCGC, NORDFORSK (1987), NATO STANAG 4154, ISO 2631-1, and IMO Second Generation

Intact Stability Criteria (SGISC). Studies conducted by Cruickshank, Tasaki, and Tello et al. further support

these standards. Among them, the USCGC and NORDFORSK (1987) criteria are particularly relevant for

OPVs, as they establish motion limits that directly influence operational effectiveness [32].

Table 2.3: Comparison of key limiting factors in well-established seakeeping criteria for OPVs.

Criterion USCGC NORDFORSK NATO STANAG 4154

Roll Angle 4° (bridge) 4° (naval) Mission-dependent

Accelerations 0.2g (vertical) 0.275g (vertical FP) 0.4g (pilot house)

Slamming 20 slams/hr 0.03 probability Mission thresholds

Pitch 1.5° - 3°-9°

2.2.7. Vessel size

The size of an OPV is determined by a combination of mission requirements, operational constraints, and

design trade-offs. Larger OPVs generally offer greater endurance, improved habitability, and increased

payload capacity, while smaller OPVs benefit from enhanced agility, reduced fuel consumption, and lower

acquisition costs. The vessel must provide adequate space for machinery, equipment, crew accommo-

dations, and mission-specific systems while maintaining seakeeping performance, fuel efficiency, and

manoeuvrability. During the concept design phase, naval architects define minimum and maximum size
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boundaries based on mission profiles, payload requirements, and regulatory constraints. Vessel size

influences stability, endurance, resistance, and modular flexibility, making it a key parameter in OPV

optimisation. [19]

2.2.8. Manoeuvrability

Manoeuvrability influences an OPV’s ability to perform diverse missions, including search and rescue,

interception, and escort operations. It is primarily affected by hull form, propulsion system, steering devices

configuration, and control automation. Although manoeuvrability is a critical operational capability, it is

generally addressed in the later stages of the design process, once propulsion and control systems are

defined in detail. In the context of this thesis, which focuses on early-stage hull scaling and optimisation,

manoeuvrability is excluded due to its limited sensitivity to geometric scaling and its dependence on detailed

subsystem design. [11, 18].

2.2.9. Structural Integrity and Survivability

OPVs must be designed to withstand damage and maintain operational capability, particularly for security

and naval operations. Survivability measures are critical to ensure that vessels can operate even in hostile or

high-risk environments [11]. Survivability features, such as compartmentalised hulls, reinforced bulkheads,

and redundancy systems, are typically addressed in later design stages, requiring detailed internal layout

modelling. As this thesis focuses on early-stage hull form scaling, where internal arrangements are not

yet defined, survivability aspects are beyond the scope of the current methodology. Nevertheless, for

variants exceeding 79 meters, subdivision requirements as per SOLAS 2020 are acknowledged [33]. While

internal subdivision is not assessed, the hull scaling maintains a constant freeboard-to-depth ratio (F/D),

ensuring consistent floodable length characteristics and preserving feasibility for future compliance with the

required subdivision index R [34]. For an OPV treated as a cargo ship under SOLAS 2020, the Required

Subdivision Index R is a function of the subdivision length Ls. For 80 ≤ Ls < 100 m, SOLAS applies a

continuity formula referenced to the 100 m value R0:

R0 = 1− 128

100 + 152
= 0.492 (2.3)

Approximating Ls ≈ 90 m for the scaled OPV:

R = 1− 1

1 + 0.01Ls
R0

1−R0

⇒ R ≈ 0.466 (2.4)

Thus, the design must achieve:

A ≥ 0.466 (2.5)

table 2.4 Required subdivision index R for 80-90 feasible design will require meeting this criterion will

require detailed subdivision modelling, which is beyond the scope of this thesis.
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Table 2.4: Required subdivision index R for different subdivision lengths Ls (cargo ships, SOLAS 2020).

Ls [m] 80 85 90

R0 at 100 m 0.492 0.492 0.492

R (80 ≤ Ls < 100) 0.437 0.452 0.466

2.3. Criticality of Key Performance Indicators (KPIs)

While multiple KPIs influence OPV performance, their relative importance varies significantly depending

on the mission profile, operational environment, and stakeholder priorities. Table 2.5 presents a qualitative

ranking of KPI criticality across representative OPV mission profiles, using three levels: High (H), Medium

(M), and Low (L). The rankings are based on the findings presented in this chapter.

Table 2.5: Qualitative ranking of KPI criticality across representative OPV mission profiles.

KPI MSLE SAR EP MO

Resistance H M H M

Endurance / Range H M H H

Maximum Speed H H L H

Seakeeping (SS5–6) M H H H

Stability H H H H

Total Life Cycle Cost (TLCC) H M H M

2.4. Related Work

OPV design presents conflicting requirements such as high endurance and range while maintaining low

cost, low resistance versus high range and good seakeeping, and balancing good seakeeping with cost

efficiency. Additionally, trade-offs between ship size and range affect operability and mission performance,

necessitating a multi-objective design framework.

Schmitz et al. [4] analyse seakeeping and affordability but rely on regression models and Monte Carlo

simulations that lack a direct correlation between hull form and operational performance. Their approach

highlights the difficulty of linking cost considerations with operability criteria, yet also underscores the need

for design frameworks that explicitly integrate hull-form parameters with mission-specific performance

metrics.

Winyall et al. [8], utilised Design Synthesis combined with 3D parametric modelling and MOO for OPV

hull-form design, integrating 33 design variables such as L/B, B/T , and curvature. Performance metrics

included resistance and seakeeping, assessed using the Seakeeping Index (SKI) in SS5, focusing on

heave, pitch, and vertical displacements at critical locations in head seas. However, the study did not

address scalability or clear correlations between design parameters and performance, limiting fleet-wide

application.

Rahmaji et al. [35], applied regression analysis to evaluate hydrodynamic performance, focusing
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on resistance, stability, and seakeeping of fast patrol boats with hard-chine, V-shaped planing hulls.

Key variables included DWT and main dimensions (L,B,D, T ). Using Maxsurf® (a commercial naval

architecture software for hydrostatics, resistance, and seakeeping simulations), the study assessed

resistance through the Savitsky method [36], stability via GZ curves, and seakeeping using strip-theory-

based RAOs (heave, pitch, roll), Motion Sickness Index, slamming, and deck wetness probabilities. While

this approach is valid for hard-chine planing craft, the original Savitsky formulation is not applicable to

round-bilge or displacement-type OPVs considered in this thesis. Moreover, specific inconsistencies arise

between the stated methodology and the reported data: the regression is based on only five hulls with very

low R2 values, yet is treated as predictive; resistance analysis at Fn = 0.5 reports zero values for some

regression hulls while others show non-zero results, which is physically implausible; the scaling method

claims CB was fixed, yet Table 5 (in Rahmaji et al. [35] reports) shows variation (0.454–0.435); and claims

of scaling superiority rely on highlighting a maximum similarity value, even though the average similarity

is lower than that of the regression method. These issues require a cautious interpretation of the study

findings.

Yurdakul et al. [7] utilised Pareto frontier optimisation for principal dimensions of planning craft and

destroyers. Variables included beam, deadrise angle, speed, Longitudinal Centre of Buoyancy (LCB),

and Block coefficient (CB). For the planing craft, the longitudinal centre of gravity (LCG) was treated

as a variable because it directly affects the trim equilibrium and wetted length, which in turn determine

resistance and the vertical acceleration at the centre of gravity, as expressed in Savitsky’s acceleration

formulation. For the destroyer case, the performance criteria focused instead on effective power and

pitch acceleration at the bridge. Geometry variations were generated using MATLAB® and Maxsurf® and

evaluated through nuShalloTM (a non-linear potential-flow solver developed by HSVA, Hamburg), combined

with strip-theory-based seakeeping methods. While demonstrating effective early-stage optimisation, the

study lacked comprehensive parametric control and relied on mid-fidelity hydrodynamic tools.

DeGaaij [37] conducted a parametric optimisation study on naval support vessels, integrating a CAESES

(CAE Software for Engineering Simulations developed by FRIENDSHIP-Systems), based parametric model

with resistance prediction methods and simplified seakeeping calculations. Resistance was estimated

using RAPID® (a non-linear potential-flow solver developed by MARIN [38]) in combination with the

empirical Holtrop-Mennen (H&M)method [39], while motions were evaluated through linear strip theory.

Design variables included T ,LOA,B, Entrance Angle at WL, Stem distance, and frame indication factors.

Constraints included minimum volume and a Beam-to-Draft ratio (B/T ). Optimisation utilised a genetic

algorithm by DAKOTA (Design Analysis Kit for Optimization and Terascale Applications, developed by

Sandia National Laboratories [40]) to minimise resistance and vertical bow displacement. Resistance

predictions were validated against towing tank experiments, while seakeeping performance was checked

through Maxsurf® evaluations (Bentley Systems) of vertical bow acceleration. In total, seakeeping validation

was performed on 16 design variants (4 cases for 4 different ship types).

MacPherson et al. [41] present a practical case study demonstrating how a coupled optimisation
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approach using CAESES (for geometry and optimisation) and NavCad® (HydroComp, Inc., Durham, NH,

USA is a commercial software environment for ship resistance and propulsion analysis), can effectively

address performance deficiencies in patrol craft design. The study involved a patrol craft initially unable

to achieve its required contract speed of 26 knots, only reaching approximately 23 knots. The design

variables were LWL, Beam at Waterline (BWL), Transom immersion, Transom deadrise angle, CP , LCB,

and Displacement. This outcome illustrated how early-stage parametric optimisation, combined with

accurate performance prediction, can lead to significant lifecycle cost savings and improved mission

capability.

Two related studies by Ljulj et al. [3, 11], present a multi-attribute design synthesis framework for

early-stage naval vessel design, integrating decision-making based on TLCC and Overall Measure of

Effectiveness (OMOE). The approach employs a self-balancing concept model with 20 variables, including

hull form parameters (e.g., CP , CM , CDL, B/T , L/H), propulsion, autonomy, and mission range. ”Monako

PRB” (software developed for the multi-attribute concept design procedure of naval vessels) generates

feasible candidates filtered via Pareto optimisation. Though effective for early-stage analysis, it lacks

parametric geometry control and high-fidelity simulations.

Sariöz [42], proposes a method to determine the minimum ship size required to meet specified sea-

keeping performance at a given speed and SS. Using linear motion theory and RAO-based evaluations

(pitch, roll, vertical acceleration), the study applies geometric scaling (50%–150%) to assess how size

affects performance. This approach helps identify the smallest viable hull for given seakeeping criteria,

enabling early trade-offs between performance, speed, and vessel size.

Brown and Salcedo [22], presented a total-ship design synthesis framework employing Multi-Objective

Genetic Optimisation (MOGO) to explore 26 design variables, including hull geometry, propulsion, manning,

and combat systems. Performance metrics—cost, risk, and mission effectiveness—were combined into an

OMOE, supported by resistance (Gertler/Taylor series) and seakeeping (McCreight Index [43]) evaluations.

This approach enables a balanced early-stage trade-off analysis in naval designs.

Martin Gutsch et al. [30], introduced the Operability Robustness Index (ORI), evaluating seakeeping

under variable SS. Analysing L (80–160 [m]) and variations in B, T , and GM ≥2.0 [m], the study highlighted

ORI’s effectiveness in balancing resistance, cost, and motion performance. The results emphasised the

non-linear relationship between dimensions and seakeeping,

Other studies [2, 16, 17, 35, 44, 45] do not comprehensively explore the design space within a

multi-objective optimisation framework.

2.4.1. Important Dimensions for OPV

Figure 2.5 visualises the relationship between hull design parameters and KPIs relevant to OPVs. The

heat map aggregates the frequency and strength of each parameter’s appearance across multiple studies

and performance criteria, including resistance, stability, seakeeping, range, and cost.
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Each cell in the heatmap represents the number of times a given hull parameter was explicitly linked to

a specific performance indicator in the reviewed literature. For each paper analysed (see Section 2.4),

occurrences were recorded when a study either directly varied or optimised the parameter in relation to

the performance metric, or reported a quantified or described influence of that parameter on the KPI. If

multiple studies made similar links, their counts were summed, resulting in the values shown. For example,

the value 13 in the cell for L/B Ratio vs. Resistance means that 13 instances were identified across the

reviewed studies where the L/B ratio was connected to resistance performance. Darker colours indicate

stronger support or more frequent association in the literature.

Figure 2.5: Heat-map of Hull Parameters vs Performance Indicators in OPV Literature

Key hull parameters have consistently emerged as highly influential in ship design, including:

• L/B ratio - influence resistance and stability

• B/T ratio - influence on seakeeping and stability

• CB– influence resistance, range and endurance

• CP , CM - influence resistance and seakeeping

• Deadrise angle - influence seakeeping

• LCB - influence seakeeping

• Stem rake and curvature - influence seakeeping

It is important to note that the correlation discussed here is based on a limited number of studies relevant

to this thesis. Most of these studies focus primarily on the main geometric parameters (L, B, T , CB), while

other influential parameters are often held constant to reduce complexity and focus the optimisation process,

making it difficult to establish a direct correlation to key KPIs [7, 19, 22, 46]. Furthermore, analytic and
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regression-based methods are more commonly used than full parametric or surrogate-based modelling [4,

11, 22]. It should also be acknowledged that interdependencies exist among nearly all hull parameters, and

many can be defined in multiple valid ways. Finally, it should be noted that these parameter relationships

are not unique to OPVs; however, the relevance of a given configuration is driven by the OPV specific

performance matrix. In particular, range and cost are strongly linked to displacement, highlighting the need

to consider these trade-offs early in the design process.

2.5. Research gap

Despite the growing use of multi-objective optimisation in ship design, existing studies often treat critical

performance metrics such as endurance, range, and seakeeping in isolation or as fixed inputs. There

remains a need for an integrated approach that dynamically connects hull form and principal dimensions

to mission-specific performance demands. Addressing this gap requires a mission-driven, parametric

optimisation framework that systematically links vessel geometry to key design drivers, enabling balanced

trade-offs between endurance, resistance, cost, and seakeeping during the early design phase.

2.6. Conclusions

This chapter establishes a foundation for OPV design by outlining its fundamental characteristics, mission

roles, and key design considerations. Through an analysis of existing OPV configurations and operational

constraints, it addresses Sub-question 1:

“How do the fundamental characteristics, mission roles, and design drivers of multi-purpose Offshore

Patrol Vessels (OPVs) influence their key design and mission requirements, and in turn shape overall

vessel performance and operational effectiveness?”

The findings show that OPVs operate across a broad mission spectrum (Fig. 2.2, Table 2.2), including

MSLE, SAR, EP, and NO. These roles impose partly conflicting requirements: high endurance for long

patrols, sprint capability for rapid response, robust stability and seakeeping up to SS6, payload flexibility,

and strict cost and weight limits. Such demands translate into trade-offs that directly shape hull geometry,

propulsion configuration, and payload capacity.

Literature trends confirm that principal hull parameters (L, B, T , CB) strongly influence OPV per-

formance, with relationships such as L/B ratio affecting resistance and stability, B/T ratio influencing

seakeeping and stability, and CP shaping resistance and endurance (Fig. 2.5). OPVs therefore commonly

adopt semi-displacement, round-bilge hull forms as a compromise between efficiency, operability, and

mission flexibility. Addressing these trade-offs systematically is essential to ensure mission effectiveness

and cost-efficiency.

Despite the growing adoption of Multi-Objective Optimisation (MOO) in naval architecture, existing OPV

studies often lack integration between mission-specific requirements and parameterised hull form models.

This gap limits the ability to quantify how geometric variations influence performance, underlining the need
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for a framework that explicitly couples mission demands, operational constraints, and hull geometry from

the earliest stages of conceptual design.

The next chapter builds on this foundation by reviewing ship design methodologies, scaling frameworks,

and parametric modelling, thereby providing the methodological basis for developing an early-stage design

framework.



3
Ship Design, Scaling Methodology

This chapter reviews the principles of early-stage ship design. It first outlines the classical design-spiral work-

flow, then compares geometric, parametric and hybrid scaling methods together with modern parametric-

modelling tools. By evaluating the strengths and limitations of these approaches, the chapter addresses

research question 2: “How do contemporary ship-design and scaling methodologies—including geometric,

parametric and hybrid approaches—capture the non-linear interactions between key hull parameters

(length, beam, draft, block coefficient) and performance indicators (resistance, stability, seakeeping,

propulsion efficiency), and thereby support optimisation in the early stages of design?”.

While this chapter establishes the conceptual basis for the non-linear interactions between principal hull

parameters and key performance metrics, quantitative verification of these relationships will be presented

in the subsequent research and results chapters.

3.1. Ship Design

Ship design is an inherently complex process, influenced by the growing demands for efficiency, sustain-

ability, and multi-mission adaptability [31]. The hull form is a fundamental determinant of ship performance,

impacting resistance, seakeeping, and manoeuvrability. Consequently, optimizing the hull design early in

the process is critical, as later modifications can lead to significant cost escalations, as illustrated in Figure

3.1 [47].

3.1.1. Design Spiral

When considering ship design, one typically refers to the Design Spiral as illustrated in Figure 3.2, which

represents a traditional iterative refinement process. The Design Spiral remains fundamental in modern

shipbuilding due to its structured framework for integrating hydrodynamic, structural, and economic

considerations, among others. The process begins with defining the ship’s requirements, typically based

20
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Figure 3.1: Cost vs performance during the ship design and construction phases [47]

on the client’s needs. This is followed by iterative refinements of main dimensions, hull form, arrangement,

resistance, propulsion, structural integrity, cost, and other parameters [20, 48].

As the design progresses through these stages, more technical and cost-related data become available,

yet modifications become increasingly expensive. In the earlier conceptual and preliminary design stages,

there is more flexibility to make adjustments without significant cost implications. As the design matures,

incorporating higher-fidelity analyses such as Computational Fluid Dynamics (CFD) simulations, towing

tank testing, and structural integrity assessments becomes necessary [24, 34].

Figure 3.2: The Design Spiral [49]
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3.1.2. The Evolution Towards Modern Design Methods

Historically, ship design has often been guided by proven design precedents, where empirical formulas

and regression-based methods dictated hull dimensions and performance predictions. While this approach

ensures reliability and predictability, it also imposes constraints on innovations and optimisation, especially

when multiple, competing performance criteria must be balanced [5, 31].

As ships have become more complex, modern design approaches have blurred rigid phase boundaries,

embracing an integrated, system-level framework. Recent advancements in Multi-disciplinary Design

Optimisation (MDO) and knowledge management systems allow shipbuilders to optimise designs more

holistically, balancing hydrodynamics, structure, and propulsion within a unified process [5].

A key development in this evolution is the adoption of multi-objective optimisation-based decision

making, which enables designers to explore trade-offs between competing factors [22]. For instance,

improving seakeeping might lead to increased fuel consumption, but Pareto analysis helps identify optimal

compromises without overly sacrificing performance in any domain.

3.1.3. State-of-the-Art Design Approaches

The design spiral remains a foundational approach in ship design, but recent developments have placed

greater emphasis on optimisation during the early design stages, enabling the creation of more efficient and

refined design concepts. The 2022 State-of-the-Art report by Erikstad and Lagemann [50] introduced several

evolutionary tracks as alternatives to the conventional design spiral, including a systems engineering-based

approach, a set-based strategy, and a holistic optimisation strategy.

A Systems Engineering-Based Approach

The Systems Engineering (SE) -Based Approach is a structured, top-down process that integrates method-

ologies, tools, guidelines, and principles to ensure that all subsystems (hull, propulsion, structure, elec-

tronics, etc.) function cohesively within the overall ship system. This approach emphasises defining

both the correct requirements and measurable performance criteria at the early concept stage, involving

collaboration between the client and the designer. This approach acknowledges that there is no single

optimal design, but rather a trade-off-based design process that balances competing requirements. Figure

3.3 visualizes SE activities throughout the life cycle stages, emphasising the validation process from left to

right, with an increasing level of design detail [51]

A Set-Based Design (SBD) Strategy

A SBD Strategy employs a parallel exploration of multiple design options within design disciplines instead of

focusing on a single ship design iteration. The design space is progressively refined based on performance

metrics, constraints, and trade-offs, allowing for informed decision-making before committing to a final

design [52]. Figure 3.4 illustrates the SBD Strategy, showing how multiple design disciplines are explored

independently and gradually refined through an iterative convergence process. This approach minimises

design risk by avoiding premature convergence on a suboptimal solution. However, the broad design space
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Figure 3.3: The Systems Engineering V-Model [51]

Figure 3.4: Set-Based Design process

and complex decision-making structure of SBD can increase project uncertainty and demand significant

computational resources, especially in the early stages [52]. While this approach can lengthen early-stage

development time, when well-managed, the up-front investment can shorten overall time-to-market, it offers

greater flexibility and efficiency in the long run, particularly when requirements evolve during the design

process. For example, evaluating multiple hull forms, propulsion configurations, and layout arrangements

early on enables designers to identify robust solutions and avoid costly redesigns later, supporting an

optimised OPV design.

A Holistic Optimisation

Holistic Optimisation Strategy views ship design as an interconnected system, optimising multiple pa-

rameters (e.g., hydrodynamics, stability, propulsion) simultaneously rather than focusing on individual



3.2. Scaling Approaches 24

components in isolation. Using MOO to balance trade-offs between performance, cost, and sustainability.

Figure 3.5 visualises this approach.[6]

Figure 3.5: HOLISHIP design cycle - Holistic approach

Design Synthesis in Early-Stage Ship Design

While not a standalone methodology, design synthesis is worth mentioning as it is often applied in early-

stage studies to simplify the design problem [3, 11]. Traditional synthesis approaches, such as rule-based

or library-based combinations of global parameters (e.g., length, beam, draft), support early trade-off

decisions but typically lack geometric flexibility and rely on simplified performance predictions [22]. Although

useful for feasibility assessments, these methods lack precision as they do not explicitly model the hull

geometry and, therefore, cannot capture detailed hydrodynamic or seakeeping effects.

Andrews et al. [5] emphasise that no one-size-fits-all approach exists in ship design, highlighting the

need for frameworks tailored to specific ship types, companies, clients, or even individual designers. This

is particularly relevant for OPVs, which are often built to order for multi-mission roles, underscoring the

importance of flexible design frameworks capable of adapting to diverse scaling scenarios rather than

applying a single predefined method.

3.2. Scaling Approaches

3.2.1. Geometric Scaling

Geometric scaling is a fundamental approach in ship design where all primary dimensions, including length,

beam, and draft, are resized proportionally using a uniform scale factor (λ). This method maintains the hull

form and shape characteristics while preserving geometric similarity. The simplicity of this approach allows

for quick estimations of key ship parameters, making it a helpful tool in preliminary design. However, while

geometric scaling offers consistency, it does not inherently optimise performance. The assumption that

hydrodynamic, structural, and stability effects scale proportionally often does not hold due to non-linear

interactions between wave resistance, structural loads, and propulsion efficiency [5, 31].

Mathematically, geometric scaling follows well-established proportional relationships. The primary

dimensions length, beam, and draft scale linearly with the factor λ, Consequently, surface areas are scaled
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quadratically with λ2, while volumes and, by extension, displacement are scaled cubically with λ3.

Lnew = λLparent, Bnew = λBparent, Tnew = λTparent, Anew = λ2Aparent. ∇new = λ3∇parent

(3.1)

Hydrodynamic coefficients such as the block coefficient (CB), prismatic coefficient (CP ), water-plane

coefficient (CWP ) and Mid-section coefficient shown in equation 3.2 remain constant since they are

dimensionless and represent the overall shape of the hull rather than its absolute size.

CB =
∇

L ·B · T
CP =

∇
L ·AM

CWP =
AW

L ·B
CM =

AM

B · T
(3.2)

Ship speed, when preserving the Froude number (Fr = U/
√
gL), follows a square root scaling:

U ′ =
√
λU.

Stability characteristics such as the KB, BM , and LCB are geometric properties defined by the centroid

of the submerged volume, and under geometric similarity, they scale proportionally with the factor λ. In

contrast, the KG depends on weight distribution. For early-stage design, it can be approximated as a

fraction of the moulded depth, under the assumption of similar internal arrangements. The LCG is required

for seakeeping analysis as it governs trim and pitch. The LCB is a geometric property of the hull form

and cannot be altered without changing the hull design. For equilibrium, the LCG must align with the

LCB (no-trim condition).In early-stage design, when weight distribution is not yet known in detail, it is

common to assume LCG = LCB, which holds consistently across all designs. As the design progresses,

improved weight estimates may shift the assumed LCG, requiring reassessment of the initial balance

with the hull’s fixed LCB. This highlights how proportional scaling provides useful first-order estimates,

but practical considerations such as machinery layout and outfitting can lead to departures from strict

geometric similarity.

While geometric scaling provides a straightforward method for resizing vessels, it does not fully capture

the complexities of ship performance. One major limitation is that hydrodynamic resistance does not

scale proportionally, particularly in the case of wave-making resistance, which depends on the interaction

between hull form and fluid flow. As ship size increases, the Reynolds number changes, influencing the

boundary layer and frictional resistance in ways that geometric scaling alone cannot account for [53].

Stability and seakeeping behaviour are affected since a scaled-up ship experiences different wave-induced

loads and motion frequencies, as the natural ocean waves do not scale with geometry, potentially leading

to undesirable dynamic responses [54].

The ship’s required power depends on its resistance and speed, as shown in Equation 3.3, and can be

estimated using the Admiralty equation (Equation 3.4) [18]. However, this approximation is only valid in

the displacement speed regime; at the higher speed range of OPVs, where semi-displacement effects

dominate, the Admiralty relation breaks down. These equations nevertheless highlight the non-linear
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nature of propulsion performance, particularly its sensitivity to changes in displacement and speed. The

assumption that a scaled vessel will achieve the same efficiency as its original counterpart often leads to

suboptimal fuel consumption and power requirements [31].

down

P = RT · Vs (3.3)

P =
∆2/3 · V 3

S

C
(3.4)

In practical applications, ship designers often supplement geometric scaling with parametric adjustments

to refine hull proportions, optimise weight distribution, and enhance structural and hydrodynamic efficiency.

While geometric scaling remains a valuable tool in early-stage ship design, it is rarely used in isolation

when developing a fully optimised vessel.[5, 31].

3.2.2. Parametric Scaling

Parametric scaling is a more advanced method that refines hull form characteristics based on operational

and performance-driven constraints. Unlike geometric scaling, which applies uniform adjustments to all

dimensions, parametric scaling selectively modifies key design variables such as the length-to-beam

ratio, block coefficient, or flare angle to optimise specific aspects of performance [24, 31]. This method

allows ship designers to fine-tune critical parameters while maintaining overall design. By adjusting hull

proportions rather than simply enlarging or shrinking the entire vessel, parametric scaling can improve

efficiency, stability, and seakeeping while meeting mission-specific operational needs [5, 55].

Parametric scaling offers flexibility but comes with challenges. Unlike geometric scaling, it requires

engineering expertise to define meaningful parameter relationships and iterative adjustments to balance

performance and trade-offs. A major challenge is its reliance on empirical data, as historical ship data

and regression models are essential for accurate predictions. The complexity of non-linear interactions in

hydrodynamics, stability, and structural loads necessitates high-fidelity simulations like CFD and Finite

Element Analysis (FEA), increasing computational costs. Small changes in parameter values can lead to

significant performance variations, making optimisation an iterative process. Additionally, while parametric

scaling enhances performance, it may introduce complex hull shapes that complicate fabrication and

regulatory compliance. To mitigate these issues, parametric scaling is often integrated with MDO and

machine learning for automated parameter selection. However, these methods remain computationally

demanding and require validation against real-world prototypes [56].

3.2.3. Hybrid Approaches

Hybrid scaling blends geometric and parametric methods, balancing simplicity with targeted performance

refinements. It is particularly useful for adapting a parent hull while incorporating mission-driven modifi-

cations. Common in naval and commercial ship design, this approach allows a standardised hull to be

geometrically scaled while adjusting key parameters like hull coefficients, deckhouse configurations, and
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propulsion to meet operational needs [5, 8]. Its advantages include incremental hull modifications while

preserving hydrodynamic performance, reduced computational effort compared to full parametric scaling,

and easier regulatory compliance. It has been successfully applied in naval platforms to standardise hull

frameworks while allowing mission-specific adaptations. However, iterative validation and CFD testing

remain necessary to ensure performance improvements [57].

3.3. Parametric Modelling

In contrast to parametric scaling, which non-uniformly resizes a hull’s dimensions, parametric modelling is

a technique to define the 3D hull form, where designers can directly alter the ship’s geometry by changing

a set of predefined control parameters. Parametric hull modelling has emerged as an effective tool for

optimising ship design processes. This approach leverages computational methods to generate and

modify ship hull forms by varying predefined parameters and constraints, enabling designers to efficiently

explore a vast design space and accelerate development cycles [58, 59]. Various methods and software

are supporting this approach. This section provides an overview of the main modelling techniques used

in parametric ship hull design. In general, these methods can be divided into two categories: Explicit

Parametrisation and Implicit Parametrisation.

3.3.1. Types of Parametric Modelling in Ship Design

Explicit Parametrization

Explicit Parametrisation directly defines ship geometry using control points or explicit mathematical def-

initions. Splines represent a specific category of explicit parametrisation utilising piecewise polynomial

functions, most commonly Bézier curves, B-Splines, T-Splines, F-Splines, or NURBS [54, 60, 61, 62].

• B-Spline curves are commonly used in ship design due to their flexibility and computational efficiency.

They offer local control over the hull shape through control points and knot vectors, allowing designers

to make targeted modifications without affecting the entire curve. However, they lack built-in fairness

constraints to ensure smooth curvature and surface continuity. Pérez-Arribas [54], demonstrates the

effectiveness of using B-splines for defining key geometric features in ship hulls.

• Non-Uniform Rational B-Splines (NURBS) extend B-Splines by incorporating weights, allowing for

the representation of conic sections and more complex surfaces. Weighted control points enable

the precise shaping of surfaces like circular arcs and ellipses. Transformations such as translation,

scaling, and rotation do not affect fundamental shape properties. Hui Zhou et al. [63] highlight the

effectiveness of NURBS-based parametric design in accurately defining and optimising ship hull

forms, emphasising its ability to effectively represent complex geometrical shapes and facilitating

efficient modifications for hydrodynamic optimisation.

• T-Splines generalise NURBS by introducing T-junctions, which allow local refinement without affecting

the entire mesh. This reduces the number of control points and supports the efficient modelling of
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complex areas such as bows, sterns, and midship transitions. Their compact and flexible control

structure makes them well-suited for precise and efficient hull form optimisation [61].

• F-Splines are specialised curves designed to ensure fairness by minimising curvature irregularities

and avoiding oscillations. Unlike conventional splines, they use geometric constraints such as

curvature distribution and enclosed area rather than only control points. Mainly used in tools like

CAESES, F-Splines enable smooth and hydrodynamically efficient hull lines with minimal manual

tuning [61, 62].

• Bézier curves, provide an intuitive mathematical description beneficial for hull form manipulation.

Khan et al. [60], employed cubic Bézier curves effectively for yacht hull design, utilizing them to

create Coons patches, which ensure geometric continuity and maintain hull fairness during parametric

modifications

Figure 3.6: Representation of the hull surface adopted in the effective power optimisation problem by

means of a single NURBS [24]

Implicit Parametrization

Implicit Parametrisation indirectly defines ship geometry through constraints or deformation frameworks

rather than through direct control point manipulation. These methods are particularly effective for complex

optimisation tasks where geometric and physical constraints, such as displacement, hydrostatics, or

smoothness, must be preserved. Common implicit methods in parametric modelling include Free-Form

Deformation (FFD), Lackenby Method, and Modal Deformation.

• Free-Form Deformation (FFD) is a geometric deformation technique introduced by Sederberg and

Parry (1986), widely used in ship design to optimize hull forms for hydrodynamic performance. It acts

as a deformation layer applied on top of explicitly defined geometry, such as NURBS surfaces, allowing

targeted, constraint-friendly shape modifications without altering the underlying topology. FFD

embeds the hull within a 3D lattice of control points, enabling smooth local and global deformations.

This technique is particularly useful for refining complex features like bulbous bows and sterns. It

is highly effective in MOO tasks involving resistance, stability, and seakeeping [64]. Dejhalla et al.

[65] integrated FFD with genetic algorithms and hydrodynamic solvers based on Dawson’s method,

demonstrating significant resistance reduction. An example is illustrated in Figure 3.7.
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Figure 3.7: Illustration of Free-Form Deformation (FFD) applied to hull form optimisation[64]

• Lackenby Method is a classical hull transformation technique used to adjust ship geometry by sys-

tematically shifting transverse sections along the longitudinal axis. Maartens, in his MSc thesis [66],

presents the Lackenby method as a systematic way to adjust hull geometry by shifting frames longi-

tudinally while keeping the sectional shape and area unchanged. This method enables modification

of key hydrodynamic parameters such as the prismatic coefficient, LCB, and overall hull length. An

extension of this technique is the Shifting Method, which generalises the Lackenby approach by

allowing 3D transformations of point data—not just longitudinal shifts, but also transverse (Y) and

vertical (Z) displacements. This increased geometric flexibility enables a wider exploration of hull

design variations while still preserving the essence of the parent hull geometry [66].

• Spline Interpolation with Constraints uses embedded fairness or geometric constraints (e.g., fixed

volume or slope continuity), which make the adjustment process implicit rather than explicitly defined

by control points. These constraint-driven spline methods are typically integrated into advanced CAD

platforms such as CAESES [53], where they enable fairness-preserving manipulation of NURBS and

F-splines to support hydrodynamic optimisation.

3.4. Conclusion

This chapter reviewed ship design and scaling methodologies, addressing Sub-question 2:

“How do contemporary ship-design and scaling methodologies—including geometric, parametric and

hybrid approaches—capture the non-linear interactions between key hull parameters (length, beam, draft,

block coefficient) and performance indicators (resistance, stability, seakeeping, propulsion efficiency), and

thereby support optimisation in the early stages of design?”.

Contemporary ship-design methodologies increasingly emphasise early-stage optimisation frameworks

to balance performance, cost, and mission capability. Traditional geometric scaling approaches rely on

proportional relationships derived from parent hulls but cannot capture the complex non-linear effects

of dimensional changes on key performance indicators. Parametric scaling allows selective adjustment

of individual parameters, thereby improving alignment of the hull form with specific performance goals,

though still requiring significant designer judgement and iteration. Hybrid approaches attempt to combine
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the benefits of geometric and parametric methods, but they remain dependent on designer expertise to

interpret the complex, non-linear interactions between parameters. This highlights the need for integrated

visual decision-support tools, such as design space mappings and sensitivity plots, that can help designers

systematically understand trade-offs, explore the design space efficiently, and make informed decisions

during the early design stages.

Advanced parametric modelling techniques enhance design flexibility by enabling direct manipulation of

hull geometry under fairness and constraint control. When coupled with structured exploration strategies,

these methods allow systematic investigation of large, complex design spaces and the non-linear interac-

tions between hull parameters and performance metrics. This capability provides a robust foundation for

integrating MOO methods into early-stage design workflows.

Despite these advances, most scaling approaches in the literature still do not embed direct performance

assessment into the design loop. Geometric methods, in particular, rely on proportional similarity and

implicitly assume comparable performance across scales, neglecting the non-linear effects of dimensional

changes. Parametric and hybrid approaches offer more flexibility, but they too often base scaling on

assumed similarity rather than systematic evaluation of resistance, stability, and seakeeping. As a result,

current methodologies fall short of providing an integrated, mission-driven framework for OPVs, where

multi-mission demands require explicit performance trade-off analysis.

While parametric and hybrid scaling methods advance the capabilities of early-stage hull design, their

integration within a systematic, mission-oriented MOO framework remains limited. This gap provides both

the motivation and foundation for the next chapter, which builds upon the insights from Chapters 2 and 3

to outline the requirements and structure of a decision-making framework for OPV scaling that explicitly

incorporates MOO methods and performance trade-offs from the earliest stages of design.



4
Multi-Objective Optimisation in Ship

Design

This chapter reviews the optimization Methodology. By evaluating the strengths and limitations of these

approaches, the chapter addresses research question 3: “What is the current state-of-the-art in design

optimisation frameworks for early-stage ship design, and based on this, what are the requirements for a

Multi-Objective Optimisation (MOO)-based decision-making framework suitable for OPV scaling?”.

Together with Chapters 2 and 3, this chapter defines the requirements for the new framework and

establishes the methodological foundation for the design framework developed in Chapter 5.

4.1. Formulation of MOO

An MOO solves an indeterminate problem by minimising or maximising a set of objective functions. It

typically consists of three main components: constraints, variables, and objective functions. Equation 4.1

presents the general mathematical formulation of an MOO problem [18].

min
x∈X

F (x) = {f1(x), f2(x), ..., fn(x)}

subject to gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

(4.1)

Here, F (x) represents a vector of n objective functions to be minimised. The design vector x ∈ Rd

belongs to the feasible design space X ⊆ Rd, which is defined by m inequality constraints gi(x) ≤ 0 and p

equality constraints hj(x) = 0.

The aim of MOO is to find solutions that represent the best possible trade-offs between conflicting

objectives. Unlike single-objective optimisation, MOO typically results in a set of optimal solutions rather

31
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than a single one and are known as a Pareto-optimal solution.

Pareto Optimality Concepts

A solution is considered Pareto optimal if no other solution exists that can improve one objective without

degrading at least one other. The collection of such non-dominated solutions forms the Pareto front.

The Pareto front helps decision-makers explore trade-offs between conflicting design goals and identify

balanced solutions suitable for further development. An example of such a Pareto front is shown in

figure 4.1, Bronkhorst [19], showed a Pareto exploring trade-offs between the ORI, RT , and LWT . In

this example, the base vessel is not Pareto optimal; it is dominated by other feasible solutions that offer

improvements in one or more objectives.

Figure 4.1: Example of Pareto front showing the trade-offs between ORI, RT ), and LWT for feasible OSV

designs [19].

Hypervolume as a Pareto Front Quality Metric

The hypervolume (HV) [9] is method used to quantitatively assess Pareto front quality. It measures the

n-dimensional volume dominated by the non-dominated solutions, bounded by a reference point, and

captures the convergence and diversity of the Pareto front. A higher HV indicates a better Pareto front.

The HV can be used to compare different optimisation algorithms and solution sets, with higher values

signifying better performance [9].

4.2. State-of-the-Art Review On MOO

Recent advancements in ship design optimisation integrate evolutionary algorithms, surrogate modelling,

and response surface models to refine the Pareto front.

Papanikolaou [67], utilise genetic algorithms within a multi-objective optimisation framework using
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NAPA and Multi-Objective Genetic Optimisation (MOGA) for holistic ship design, focusing on hull form

optimisation of high-speed vessels with respect to powering and wash.

Biliotti et al. [59], uses automated parametric modelling in CAESES and a multi-objective optimization

environment in modeFRONTIER™(a commercial multi-objective optimisation platform developed by ES-

TECO). Using the Sobol sequence to populate the design space. MOGA is applied to optimise multiple

objectives, including resistance at two speeds, the Seakeeping Operability Index, and the Motion Sickness

Incidence (MSI).

Winyall et al. [8] integrate parametric 3D hull-form modelling with ship design synthesis using a MOGO

framework. Initial sampling is performed using both full-factorial and Latin Hypercube Sampling (LHS) DoE,

which is used to build Response Surface Models (RSMs) for resistance and seakeeping. These RSMs

enable efficient NSGA-II (Non-dominated Sorting Genetic Algorithm), style optimisation and demonstrate

the coupling of geometry-level control with system-level performance evaluation.

Peri [24], investigates three sequential methods to enrich the Pareto front in multi-objective optimization:

Local Resampling, Interpolation-Based Resampling, and the Normal Boundary Intersection (NBI) method.

The process begins with Sobol sampling for the DoE to obtain an initial approximation of the Pareto front.

These techniques are applied iteratively to enhance the resolution and distribution of solutions along the

front. For comparison, NSGA-II and Multi-Objective Particle Swarm Optimization (MOPSO) algorithms are

also implemented. The study shows that the combined NBI-based approach yields a denser and more

uniform Pareto front than traditional methods.

Yurdakul et al. [7], Yurdakul et al. [7] propose a Pareto-based decision-making approach to select

improved ship main dimensions at an early design stage. They generate candidate designs using Sobol

quasi-random sampling in MATLAB® and analyse performance trade-offs, such as effective power and

seakeeping, through a combination of low-fidelity algorithm simulations. The method aims to identify a

technological barrier (Pareto frontier), offering better initial conditions for subsequent optimisation.

Ljulj et al. [3, 11], develop a multi-attribute design synthesis framework for Hybrid OPVs, primarily

utilising NSGA-II. Their approach integrates the adaptive Monte-Carlo method and employs an OMOE to

refine trade-off analysis, enabling system-level evaluation of early-stage configurations beyond parametric

modelling.

De Gaaij explored the use of parametric optimisation during the early-stage concept exploration of

naval support vessels, using CAESES as a geometry generation and control platform. The optimisation

process uses DAKOTA’s global optimisation module based on Genetic Algorithms (GA) and is applied to

RSMs that approximate resistance and seakeeping objectives. The initial design space is explored using

LHS to generate training data for the RSMs, which enables efficient optimisation within the concept design

phase.

Bronkhorst et al. [19], study includes the optimisation of Offshore Service Vessels (OSV) using NAPA®

(a commercial naval architecture software platform developed by NAPA Ltd.) and the SAMO-COBRA
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algorithm, developed by De Winter [9]. The method accounts for multiple objectives and constraints,

integrating the Operability Reliability Index (ORI) to reflect varying mission profiles.

De Winter [9] introduces a constraint-handling method for MOO in ship design using SAMO-COBRA,

which combines constraint dominance with evolutionary algorithms and RBF surrogates. The IOC-SAMO-

COBRA extension further reduces costly evaluations by using online constraint relaxation and inexact

evaluations, making it well-suited for early-stage design under complex constraints.

4.3. Design of Experiments (DoE)

DoE plays a foundational role in multi-objective ship design optimisation by enabling a systematic and

efficient sampling of the design space. A well-designed DoE ensures sufficient diversity and coverage, which

is essential for thoroughly exploring the design space and understanding trade-offs between conflicting

objectives. Table 4.1 summarises the advantages and disadvantages of three commonly used sampling

schemes: Random Sampling, LHS, and Sobol Sequences [68]. The effective use of DoE requires several

preconditions:

• clearly defined design variables and ranges,

• feasibility constraints to ensure only meaningful candidates are generated,

• a sufficient sample size to cover the design space while remaining computationally tractable,

• an appropriate distribution strategy (uniform, stratified, or low-discrepancy) to balance exploration

and coverage.

Meeting these conditions ensures that the DoE provides representative data for subsequent surrogate

modelling and optimisation

Table 4.1: Advantages and disadvantages of three sampling schemes [68]

Sampling Scheme Advantages Disadvantages

RandomSampling - Easy to implement

- Computationally inexpensive

- Can be inefficient (requires many sam-

ples)

Latin Hypercube

Sampling (LHS)

- Covers space more uniformly than ran-

dom sampling

- Better for numerical integration

- Difficult to add samples after the fact

- Higher computational cost than Ran-

dom or Sobol

- May not suit non-uniform multivariate

distributions

Sobol Sequences - Reproducible (deterministic)

- Better uniformity than Random or LHS

- Smallest error for computing integrals

- May not maintain theoretical advan-

tages for non-uniform multivariate distri-

butions

4.4. Optimization Algorithm

The choice of optimisation algorithm depends on computational efficiency, convergence behaviour, and

compatibility with ship design constraints. The literature highlights two main families: evolutionary algo-
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rithms and surrogate-assisted optimisation.

4.4.1. Global Optimization

Global Optimisation (GO) refers to the use of MOGA to solve complex design problems involving trade-offs

between conflicting objectives. In CAESES, MOGA is implemented via the DAKOTA framework [69],

The algorithm is governed by three key parameters: total population size, initial population size, and

the number of generations. It begins with an initial population sampled using methods such as Sobol

sequences or LHS, with each design candidate evaluated against the defined objectives. Based on

these evaluations, fitness functions are used to distinguish better from worse solutions in multi-objective

optimisation. MOGA applies a dominance-based ranking using a domination count strategy, where a

solution is considered non-dominated if no other solution performs better across all objectives. Lower

domination counts indicate higher fitness. This approach preserves trade-offs without scalarizing multiple

objectives [69].

To maintain diversity and prevent premature convergence, MOGA applies a crowding distance metric,

which favours individuals in less populated regions of the objective space (Figure 4.2a). Selection is carried

out using a below-limit selector, which retains designs with domination counts below a threshold. The

next generation is created by combining elite solutions with offspring generated through crossover and

mutation. Non-selected individuals are discarded. This evolutionary process repeats until a maximum

number of generations is reached or convergence is achieved—typically when the Pareto front stabilises

or diversity changes minimally (Figure 4.2).

Compared to NSGA-II, MOGA in DAKOTA is more flexible: populations can be extended, and additional

generations can be introduced without restarting. This makes it particularly effective for iterative, user-driven

workflows common in early-stage ship design.

4.4.2. Surrogate-Based Global Optimisation (SBGO)

SBGO builds an approximate model, called a surrogate, to predict objective values across the design

space. Instead of evaluating all candidates using high-fidelity simulations, SBGO evaluates a small number

of them to approximate the design space efficiently. In CAESES, SBGO is implemented via the DAKOTA

framework [69].

SBGO is based on GO using an MOGA but adds a surrogate model to significantly reduce the number

of expensive evaluations needed. Like GO, SBGO begins with an initial sampling process to populate the

design space with candidate solutions, though typically using a smaller sample size.

These initial candidates are evaluated using high-fidelity tools (e.g., CFD or motion analysis), and the

resulting input-output data is used to train a surrogate model, commonly based on Kriging (Gaussian

Process Regression). Kriging models the system response as a stochastic process, providing both mean

predictions and uncertainty estimates across the design space [6, 37].
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(a) Diversity methods used in MOGA [70]. (b) Generational process of MOGA in CAESES using DAKOTA.

Figure 4.2: Genetic algorithm flowchart, with the number of evaluations (designs) rejected, selected, and

evaluated in each of the generations [71].

Once trained, the optimiser explores the surrogate instead of the full model to generate new candidate

designs. Promising solutions are re-evaluated with high-fidelity simulations to improve the surrogate’s

accuracy. This loop—optimise, evaluate, update—continues iteratively until convergence is achieved.

A Gaussian Process (Kriging)

Kriging is a statistical modelling method that treats the output of a design evaluation as a realisation of a

random process. It provides both a predicted value and an uncertainty estimate for new design points [72].

Kriging relies on a correlation matrix R, which quantifies how similar the outputs of evaluated design

points are, based on their distance in the input space (e.g., length, beam, draft). If two points are close

together, their outputs are assumed to be highly correlated, so Rij ≈ 1. If they are far apart, the correlation

diminishes, and Rij ≈ 0 The structure of R is determined by a kernel function (e.g., Gaussian), which

governs how quickly correlation decays with distance. This matrix is essential for interpolating between

known evaluations and forms the basis of Kriging’s predictive power. The Kriging prediction at a new point
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x∗ is given by:

f̂(x∗) = µ+ r(x∗)TR−1(y − µ1)

Var[f(x∗)] = σ2
(
1− r(x∗)TR−1r(x∗)

)
where µ is the mean of the process, R is the correlation matrix between training points, r(x∗) is the

correlation vector between x∗ and the training points, and y is the vector of observed outputs.

4.4.3. Algorithm Selection

Comparing the three algorithms (excluding MOSA, which is not suited for large-scale exploration): NSGA-II

defines the number of evaluations by its generations and population size. GO is controlled by a fixed

evaluation budget. SBGO begins with an initial sample set and iteratively refines a surrogate model by

evaluating only the most promising candidates, improving efficiency. For GO, this is limited by a user-

defined maximum. SBGO starts with a small number of high-fidelity evaluations (initial samples), builds

a surrogate model, and iteratively refines it by evaluating only the most promising candidates, greatly

improving efficiency.

Yustina and Saptawijaya [72] recommend a LHS DoE with at least 11 · (n− 1) samples, where n is the

number of design variables. For the six-variable, n = 6, this translates to a minimum of 55 samples. They

used up to 150 initial samples with 200 total evaluations, applying both NSGA-II and MOEA/D with Kriging,

BPNN-PSO (Back Propagation Neural Network – Particle Swarm Optimisation), and MLP (Multilayer

Perceptron) surrogate models. Kriging, while less accurate, produced the highest hypervolume and fastest

computation time. Winter [9] advised a DoE size of de ·pe where p is the number of parallel evaluations(e.g.,

17 for p = 6) and recommended staying below 300 evaluations. De Gaaij [37] used 100 initial samples

and 33 iterations of 12 evaluations, totalling 396. SBGO outperformed NSGA-II and GO in both speed

(4.5 hours) and Pareto quality. Bronkhorst [19] used 300 evaluations in 3.5 hours with SAMO-Cobra,

incorporating seakeeping analysis. A convergence study is recommended to confirm Pareto front accuracy.

De Gaaij extended his SBGO run to 600 iterations and observed marginal improvements beyond 400,

identifying this as a practical limit.

Thus, SBGO is particularly suited for concept design phases, where fast yet informed decisions are

needed despite limited data and budget.

4.5. Required Framework

Chapter 2 defines OPVs, their mission profiles, and the key design drivers that influence their development.

Designing effective OPVs requires balancing trade-offs between endurance, range, resistance, and cost,

while ensuring required seakeeping and stability. Chapter 3 explores core ship design principles, including

the traditional design spiral, geometric and parametric scaling approaches, and parametric modelling. It

concludes that hull form parameters have a significant impact on performance metrics such as resistance,
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stability, and seakeeping. Chapter 4 introduces MOO techniques and presents evaluation methods aligned

with key design drivers.

These chapters establish the need for a more comprehensive and performance-driven approach to

early-stage OPV design. Rather than relying solely on parent hull scaling, this thesis proposes an MOO

framework that incorporates mission-specific performance requirements directly into the design process.

The aim is to develop a decision-making framework that supports informed trade-offs and enables the

generation of optimised hull forms tailored to operational demands, moving beyond the limitations of simple

geometric scaling.

To achieve this, the proposed framework must meet the following requirements:

• Integration of mission-specific performance requirements Directly link mission demands to hull

geometry and design constraints.

• Effective handling of non-linearities Account for non-linear relationships between design variables

and performance metrics.

• MOO capability Incorporate MOO techniques to manage conflicting objectives and provide a Pareto-

optimal solution set.

• Early-Stage design focus Support early design decision-making while ensuring cost-effectiveness.

• Consideration of key design drivers Integrate resistance, stability, seakeeping, endurance, range,

and TLCC into the optimisation process.

4.5.1. Resulting Framework

Based on the previous analysis, the resulting framework includes clearly defined objectives, constraints,

input parameters, design variables, and evaluation methods. The framework’s modularity ensures adapt-

ability, allowing it to be easily modified or expanded by adding or removing design variables, objectives,

or constraints. Table 4.2 summarises the core elements, while Figure 4.3 illustrates the global workflow.

Design inputs define environmental and operational constraints and provide baseline data for evaluation.

The optimisation algorithm steers a set of design variables to satisfy performance objectives under specified

constraints. Each design iteration is evaluated using performance metrics until a Pareto front of optimal

solutions is achieved.

Table 4.2: Summary of Required Design Framework

Objective Constraint Input Variables Evaluation Method

Maximise DWT ∆ Environmental conditions

(SS)

Length Empirical weight estimation

Minimize LWT L/B Motion sensitive locations Beam H&M resistance method

Minimize resistance B/T Draft GZ curve analysis

Maximise stability GM/B CB RAO-based seakeeping indices

Maximise seakeeping Deadrise angle

Stem rake
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Figure 4.3: Framework flow chart based on design drivers

4.6. Conclusion

This chapter reviewed contemporary optimisation techniques and connected evaluation methods to key

design drivers, thereby addressing Sub-question 3:

“What is the current state-of-the-art in design optimisation frameworks for early-stage ship design, and

based on this, what are the requirements for a Multi-Objective Optimisation (MOO)-based decision-making

framework suitable for OPV scaling?”

Current state-of-the-art frameworks in early-stage ship design are increasingly moving beyond tradi-

tional, sequential, and manual approaches. By integrating 3D parametric modelling environments with

evolutionary algorithms such as GA and SBGO, these frameworks enable systematic exploration of large,

complex design spaces. The use of LHS ensures efficient initial design space exploration, while MOO tech-

niques, particularly Pareto-front-based methods, allow balancing conflicting objectives such as resistance,

seakeeping, stability, and cost from the earliest design phases.

Based on this review, the requirements for an MOO-based decision-making framework suitable for

OPV scaling have been identified. The framework must:

• Integration of mission-specific performance requirements: link mission demands directly to hull

geometry and design constraints. This is achieved by systematically evaluating resistance, stability,

and seakeeping under mission-driven constraints such as minimum range and roll period limits.

• Consideration of key design drivers: integrate resistance, stability, seakeeping, endurance, range,

and TLCC into the optimisation process. These metrics are embedded directly into the framework’s
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evaluation loop to ensure mission-driven performance assessment.

• Effective handling of non-linearities: capture non-linear relationships between design variables and

performance metrics. This is achieved by training surrogate models on systematically sampled

design points (via DoE), enabling the optimisation algorithm to resolve complex interactions. The

resulting trade-offs are then visualised through Pareto frontiers.

• MOO capability: incorporate optimisation techniques to balance conflicting objectives and generate

Pareto-optimal solution sets. The combination of DoE and surrogate-based evolutionary algorithms

delivers this capability, exposing trade-offs between conflicting objectives. These trade-offs are then

visualised through Pareto frontiers to support informed early-stage decision-making.

• Early-stage design focus: support rapid and cost-effective decision-making under limited information.

This is enabled by parametric modelling of the parent hull, which allows the rapid generation of

scalable design variants and straightforward parameter variation.

Among available tools, CAESES was identified as a suitable parametric modelling platform, capable

of integrating geometry generation, hydrostatics, and performance evaluation workflows. Coupled with

LHS-based DoE and Kriging surrogate models within an SBGO approach, the framework can efficiently

handle the computational burden of seakeeping assessments, which remain a critical yet time-consuming

design driver in OPV design.

This chapter therefore, established the critical requirements for an integrated, mission-driven MOO

framework tailored to OPV scaling. By systematically connecting mission performance objectives, key

design drivers, and hull form parameters within a unified and computationally efficient workflow, the

proposed framework aims to enhance decision-making in the early design phase of OPVs. The subsequent

chapter presents the research plan, detailing the methodology, workflow structure, and validation steps for

implementing and testing the framework.
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Design Framework for OPV - Methodology

Based on the foundations laid in Chapters 1–4, a research methodology is formulated to address the

framework requirements defined in Section 4.5. This chapter presents the methodology of the proposed

framework and is structured into three core modules: parametric modelling, performance evaluation, and

MOO. Together, these modules support the development of scalable hull-form design methods for OPVs.

A schematic overview of the complete framework is shown in Figure 5.1.

The thesis employs CAESES, both as a parametric CAD platform and as the optimisation engine and

design manager. Maxsurf® Motion is integrated for seakeeping and motion analysis.

By detailing its components and setup, this chapter addresses Sub–question 4: “What components are

required for the proposed framework, and how can the setup be structured to support early-stage OPV

design?”.

5.1. CAESES

CAESES is a parametric design and optimisation platform, originally developed in the maritime field but

now used across multiple industries. In this thesis, it served as the central environment for modelling,

design-space exploration, and optimisation. Its functionality enabled the rapid generation of hull variants,

DoE sampling, surrogate modelling (Kriging), and multi-objective evolutionary optimisation. In addition,

CAESES was employed to automate workflows via internal feature definitions and external scripting,

ensuring smooth integration with evaluation tools. The dedicated maritime module was particularly useful,

providing hydrostatics and stability calculations directly within the design loop, thereby supporting early-

stage performance assessment.

41
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Figure 5.1: Overview of the proposed MOO-based framework for early-stage OPV design.

5.2. Baseline OPV Designs (“Parent Hull”)

Many OPV designs employ an initial baseline, or “parent hull”, as a reference for subsequent modifications

and scaling [8, 11]. This approach ensures that core capabilities are preserved while adapting the vessel

to evolving mission requirements [55]. However, direct geometric scaling of a parent hull is not always

optimal. Andrews et al. [5] caution that relying solely on baseline scaling, without considering mission-

specific functional requirements, may constrain performance. Similarly, parametric adjustments applied

without operational context can also lead to suboptimal outcomes. These observations reinforce the need

for a multi-criteria scaling approach that integrates mission demands with hydrodynamic, stability, and

seakeeping considerations.

For this thesis, an Israel Shipyards Ltd. (ISL) OPV design has been selected as the parent hull for

optimisation. The design is based on the MSc thesis work of Nir Almany [73] and was subsequently

constructed by ISL. [10]. The vessel is intended for patrol duties, maritime safety enforcement, protection

of exclusive economic zones (EEZs), and offshore search and rescue operations.

The vessel’s presented in figure 5.2 principal dimensions are presented in Table 5.1. Its hull form

features a raked stem and transom stern, with a round-bilge midbody incorporating a chine from the transom

to frame 10 (∼10 m from the aft perpendicular, about 22% of LWL). Additional appendages include a

skeg and box keel. The vessel is fitted with two rudders, two propellers, a bow thruster, stern ramp, two



5.3. Parametric Modelling 43

Figure 5.2: Render of Israel Shipyards Ltd. (ISL) OPV 45 hull design used

fin stabilisers, and two bilge keels. For simplicity and computational efficiency, these appendages were

excluded from the hydrodynamic modelling in this study. This simplification results in a lower predicted

resistance due to the absence of appendage drag and reduced wetted surface area. The influence on

hydrostatics will be minor, but in seakeeping and stability analysis the omission of bilge keels and stabilisers

leads to an underestimation of roll damping.

Table 5.1: Principal particulars of the ISL OPV 45, selected as the parent hull.

Main particulars Value

Length Overall (LOA) 45.7 m

Beam 8.6 m

Draft 2.3 m

Displacement 330 t

Maximum Speed 24 kn

5.3. Parametric Modelling

5.3.1. Geometry Modelling

To implement parametric modelling in CAESES, a set of topological features was defined to balance fidelity

to the parent hull with sufficient design freedom. The hull was represented using principal reference lines:

the design waterline (WL), main deck (MD) line, centreline (CL), chine line, and a series of transverse

frames. Additional curves were introduced to represent appendages such as the skeg and box keel.

The modelling process began with exporting offset points from the ISL design model in Rhino. These

points were organised into an Excel offset table and redefined as functions of five design variables: LOA,

L/B , B/T , deadrise angle, and rake angle. The points were then imported into CAESES, where they

were used to generate the hull curves.

Curves were constructed using a combination of F-splines, C-splines, multi-segment splines, and

interpolation curves. This provided flexibility in controlling tangents at the start and end of each spline, as

well as the number and placement of interpolation points, rather than relying solely on external control

points. This ensured hull fairness and smoothness while preserving the geometric fidelity of the original

hull lines.

• F-splines: Applied for frames in the aft section where a chine is present. These frames were

constructed using two splines joined at the WL. F-splines do not require intermediate interpolation
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points, producing smooth curves with controlled end tangents while capturing the chine geometry.

• Multi-segment splines: Used for frames without a chine, with the intermediate point located at the

WL. Each segment incorporated one interpolation point, enabling localised geometric control while

maintaining overall fairness.

• Interpolation splines: Applied for the WL and MD lines. These splines pass exactly through the

extracted offset points, ensuring strict preservation of the original geometry along these critical

references. The interpolation points correspond to the intersections of frames with the WL and MD.

• C-splines: Applied for the centreline curve (CLC). These splines allow multiple interpolation points

along a line, supporting accurate reconstruction of complex local features while maintaining curvature

continuity.

The principal sections used for reconstruction included frames at stations -1.8, 0, 2.6, 10, 15, 20,

25, 30, 35, 37, and 40. Surfaces were created by lofting through these generated curves. Lofting is a

surface-generation method that connects a sequence of transverse and longitudinal curves to form a

continuous 3D surface. In this model, the frames acted as the primary surface generators, while the WL,

MD, and CL curves were used as rails to guide the loft. This ensured that the surface smoothly interpolated

between frames while maintaining alignment with the longitudinal reference lines, thereby preserving both

fairness and geometric fidelity.

To reduce complexity and computational cost, certain simplifications were applied. The main deck

depth was assumed constant along the vessel (i.e., no sheer or camber), and detailed local features were

omitted from the model.

The resulting parametric hull model is illustrated in Figures 5.3–5.5, showing both the reference curves

(frames, WL, MD, CL) and the lofted surfaces.

Figure 5.3: Reconstructed hull fore view, showing WL, MD, and frames
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Figure 5.4: Reconstructed hull side view, showing WL, MD, and frames

Figure 5.5: Reconstructed hull top view, showing WL, MD, and frames

5.3.2. Design Variables

The selection of design variables is based on the literature review presented in Section 2.4.1, focusing

on parameters with the greatest influence on KPI relevant to OPVs. Increasing the number of variables

enhances geometric freedom and enables the exploration of more novel designs. However, it also enlarges

the design space and significantly increases computational time.

The selected design variables for the parametric geometry and their boundaries are presented in

table 5.2

Table 5.2: Design variables and ranges used for the parametric optimisation study.

Design Variable Lower limit Upper limit

Length Overall (LOA) [m] 40 90

Length-to-Beam Ratio (L/B) 4 7

Beam-to-Draft Ratio (B/T) 3 5

Stem Rake Angle [deg] 0◦ 20◦

Deadrise Angle [deg] 0◦ 15◦

5.3.3. Constraints

As mentioned in the design variables section, the ratios L/B and B/T were applied instead of directly

using beam or draft as independent design variables. This formulation indirectly constrains the feasible

design space by ensuring proportional scaling relationships between the principal dimensions.

To guarantee sufficient initial stability, a constraint on the normalised metacentric height was imposed:

0.05 ≤ GM

B
≤ 0.25

The lower bound ensures a minimum level of transverse stability, while the upper bound was deliberately

relaxed to 0.25 in order to avoid over-constraining the design space. It is acknowledged, however, that
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allowing higher GM/B values may result in overly stiff designs, which can lead to increased accelerations

and reduced seakeeping comfort. This aspect was explicitly checked during the motion evaluation stage

to ensure that feasible designs did not exhibit unacceptable dynamic behaviour. This is in contrast to the

stricter upper limit of 0.15 recommended by Ljulj et al. [11]. The constraint was applied during the DoE

generation stage to filter out designs with unrealistic transverse stability.

The metacentric height was estimated using Equation 5.1, where KB and BM were derived from

CAESES hydrostatics, and KG was estimated from the parent hull using Equation 5.2. This assumption is

based on a similar internal arrangement and weight distribution. The empirical coefficient C was taken as

0.7, following Gualeni [34], and reflects the ratio observed in the parent hull.

It should be noted that KG is inherently a function of displacement weight, which in turn depends on

mission profile, owner requirements, and onboard equipment. In early-stage design, such information is

typically unavailable. In practice, rules of thumb are often applied to approximate KG based on ship type

and size (e.g., regression-based estimates from reference vessels). Therefore, the present formulation

should be regarded as an indicative target for KG, or as a selection tool to identify designs that are most

likely to be feasible and best suited for subsequent refinement. Equation 5.1 represents the metacentric

height for initial stability, valid for small heel angles and hulls with near-vertical sides.

GM = KB +BM −KG (5.1)

KG = C ·D (5.2)

To ensure that all candidates did not exhibit an excessively “stiff” response, an additional post-processing

constraint was applied during results analysis, requiring the natural roll period to be greater than 6 [s]. This

criterion is expressed through the following formulation of the natural roll period:

Tφ = 2π

√
k2xx

g ·GM
(5.3)

where:

• Tφ = natural roll period [s],

• kxx = transverse radius of gyration [m],

• g = gravitational acceleration [m/s2],

• GM = metacentric height [m].

Finally, a no-trim condition was imposed by setting the longitudinal centre of gravity equal to the

longitudinal centre of buoyancy (LCG = LCB).
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5.4. Evaluation Methods

5.4.1. Hydrostatics

Using the CAESES maritime module, the hydrostatic particulars of the parent hull were extracted. These

values provide the fundamental geometric and stability characteristics of the vessel and serve as the

basis for all subsequent performance calculations, including LWT , resistance, stability, and seakeeping

assessments.

Figure 5.6: Hydrostatic particulars of the parent hull as calculated in CAESES.

LWT Estimation

Roh and Lee [18] propose estimating LWT by decomposing it into three primary components, as shown

in Equation 5.4, where Ws is the structural weight, Wo is the outfitting weight, and Wm is the machinery

weight.

LWT = Ws +Wo +Wm (5.4)

Each component is further expressed as a function of the vessel’s principal dimensions and design pa-

rameters, as shown in Equation 5.5. The coefficients CS (structural), CO (outfitting), and Cpower (machinery)

are determined from the parent vessel’s weight book and are summarised in Table 5.3.

LWT = CS · L1.6 · (B +D) + CO · L ·B + Cpower · (ρ · L ·B · T · CB · (1 + α))
2/3 · V 3

S (5.5)

This formulation provides a scalable foundation for estimating lightship weight in early-stage design

and enables CAPEX-related trade-offs to be incorporated into the optimisation process. Its robustness,

however, remains limited by the fact that the coefficients were derived from a single parent vessel with a
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specific arrangement. In practice, different mission requirements, equipment fits, or owner specifications

would lead to different weight distributions and coefficients. A more reliable and scalable application would

therefore require validation against additional OPVs and the derivation of a bandwidth of coefficients,

ideally through regression across multiple weight books. Since only one detailed dataset was available in

this study, the method is applied strictly as an early-stage approximation to capture relative trends and

support trade-off analysis, rather than as a definitive predictor of lightship weight.

Table 5.3: Coefficients for lightship weight estimation based on parent hull.

CS CO Cpower α

value 23.87 197.31 0.0059 0.1

units Ton/m2.6 Ton/m2 Ton
1/3

s3/m3 –

DWT Estimation

DWT is defined as the vessel’s carrying capacity, representing the total weight of cargo, fuel, water,

provisions, crew, and passengers that the ship can safely carry. Section 2.2.2 defines DWT as a key

indicator of endurance and range performance. For OPVs, DWT primarily consists of consumables such

as fuel and freshwater, both of which directly influence the vessel’s operational range [20]. The relationship

between DWT and range is given in Equation 5.8.

DWT is defined as the difference between the vessel’s total displacement (∆) and its LWT , as shown

in Equation 5.6. For OPVs, DWT represents the available weight capacity for fuel and mission-related

stores, and thus acts as a direct proxy for endurance and range.

Total displacement is obtained from Archimedes’ law, where the submerged volume (∇) is extracted

from the model hydrostatics and multiplied by the seawater density (ρ), as expressed in Equation 5.7.

DWT = ∆− LWT (5.6)

∆ = ρ · ∇ where: ρ = 1.025[Ton/m3] (5.7)

A feasible design cannot have DWT < 0, as this would imply that the vessel does not float. Similarly,

DWT = 0 is not realistic, since this would indicate no reserve capacity for fuel or other consumables.

Therefore, a feasibility constraint must be applied to ensure realistic designs.

For OPVs, the fuel fraction is typically between 60–70% of the DWT . By combining this with the

specific fuel consumption (SFC), propulsion efficiency, and the estimated resistance, the vessel’s range

can be calculated using Equation 5.8. In this study, a minimum operational range of 1500 nm was imposed

as a constraint and evaluated during the results analysis. The range was computed using Equation 5.8,

assuming 68% of theDWT allocated to fuel, a propulsion efficiency of 65%, and an SFC of 0.180 [kg/kWh].

These assumptions are consistent with common practice for medium-speed marine diesel engines, where
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fuel fractions of 60–70%, propulsion efficiencies of 0.60–0.70, and SFC values of 175–185 [g/kWh] are

typically reported [74]

Rangenew =
DWTnew · ffuel · ηprop

SFC ·RT,new
(5.8)

5.4.2. Resistance

The H&M method was employed for resistance prediction in this thesis. This approach is one of the

most widely used in early-stage naval design and is particularly common in MOO studies for OPVs and

related platforms [3, 8, 19, 37, 75]. Although originally developed for displacement merchant vessels, it

has been shown to provide reliable predictions for round-bilge, semi-displacement hulls up to a Froude

number of Fn = 0.5. At higher Froude numbers, accuracy decreases due to the increasing dominance of

wave-making resistance.

In this study, a single evaluation speed of VS = 18 knots was adopted. This choice reflects the typical

patrol speed of OPVs, at which they spend the majority of their operational time, and therefore ensures

that the optimisation results are relevant to their most common use case rather than to rarely used sprint

speeds. After selecting this representative speed, an analysis confirmed that across the full length range

under investigation the resulting Froude number remains below 0.5, keeping the H&M method within its

validated applicability limits. While this ensures consistency across variants in the present comparative

study, it is acknowledged that higher-fidelity resistance and powering methods, better tailored to OPVs,

would be required for detailed design or for optimisation at higher speeds. As such, the method provides

reliable relative trends, but does not capture the full spectrum of OPV operating speeds. More dedicated

power prediction approaches could be employed in future studies to extend the analysis, particularly toward

higher-speed regimes or alternative propulsion concepts (e.g., waterjets).

In comparative parametric hull studies, the influence of appendages can be simplified. In this thesis,

only the skeg was modelled and included in the resistance estimation, as it is expected to contribute the

dominant appendage-related effects. Other appendages (rudders, bilge keels, stabilisers, etc.) were

omitted, since their relative impact is expected to remain comparable across all variants and thus cancels

out in the optimisation. This simplification, however, also limits the scope for exploring design improvements

linked to appendage selection or integration. The implementation of the H&M method used in this study is

provided in Appendix C

5.4.3. Stability Assessment GZ Curve Evaluation

Stability is a fundamental design driver for OPVs, ensuring safe operability across a wide range of

missions and environmental conditions. In this study, stability is incorporated through two complementary

approaches: constraint-based filtration and righting arm (GZ) curve evaluation.

Static intact stability is evaluated by generating the GZ curve using the CAESES maritime module. The

IMO 2008 IS Code, Part A, Chapter 2 [76], specifies minimum requirements for stability, including righting
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arm values, the area under the GZ curve, the range of positive stability, and the initial metacentric height.

Although these standards were originally developed for merchant vessels, they are widely applied to naval

ships such as OPVs [31]. Table 5.4 summarises the relevant IMO criteria, together with the optimisation

targets used in this study.

Table 5.4: Stability optimisation criteria for OPVs.

Stability Parameter IMO Criteria Optimisation

Target

Description Reference

Area under GZ curve

(0◦–30◦)
≥ 0.055
m·rad

Maximise Proxy for initial stability and resistance to

heeling

IMO 2.2.1a

Area under GZ curve

(0◦–40◦)
≥ 0.09 m·rad Maximise Resistance to large heel or capsize; sur-

vivability

IMO 2.2.1b

Area under GZ curve

(30◦–40◦)
≥ 0.03 m·rad Maximise Stability reserve near critical angles; re-

covery margin

IMO 2.2.1c

GZ at φ ≥ 30◦ ≥ 0.20 m Maximise Stability margin at large heel IMO 2.2.2

Angle at Max GZ ≥ 25◦ 25◦–35◦ Indicates maximum restoring capability IMO 2.2.3

Initial GM ≥ 0.15 m Maximise

(within

bounds)

Transverse stiffness; sensitive to weight

distribution

IMO 2.2.4

Range of Positive Stabil-

ity

≥ 60◦ Maximise Heel range with restoring ability; broader

range = survivability

IMO (general)

Dynamic stability, i.e. the vessel’s response to time-varying forces such as wind gusts, waves, or abrupt

manoeuvres, is acknowledged but not explicitly modelled in this early-stage framework, as it requires

detailed mass distribution and windage characteristics. Instead, static GZ-based criteria are adopted as

proxies for overall robustness.

Stability Index (SI)

To integrate intact stability into the MOO framework, this thesis introduces a novel dimensionless SI

formulation. The index normalises GZ-based criteria against the IMO thresholds, thereby expressing

stability as a continuous optimisation objective rather than a binary pass/fail condition. The SI is defined

as:

SI =
1

3

(
A0−30

AIMO
0−30

+
A0−40

AIMO
0−40

+
A30−40

AIMO
30−40

)
(5.9)

where A0−30, A0−40, and A30−40 are the actual areas under the curve GZ in the respective heel angle

are the actual areas under the GZ curve in the respective heel angle ranges, and AIMO denotes the

corresponding minimum IMO requirements. An SI value greater than 1 indicates compliance with IMO

intact stability criteria, while higher values correspond to larger safety margins.

Only these three area-based IMO criteria were selected, as they are the most representative of the

overall righting-energy characteristics of OPVs in the operational heel range, and can be consistently

calculated in early-stage design without requiring detailed internal arrangements. Other IMO criteria, such

as maximum righting arm or angle of vanishing stability, were excluded to avoid redundancy and because

their values are strongly arrangement-dependent, which is not yet defined at this stage. The three selected
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ratios were averaged with equal weighting to avoid imposing subjective prioritisation among them and

to ensure that the SI remains a neutral, general-purpose index. In future work, the weighting could be

adapted to reflect mission-specific stability priorities (e.g., helicopter operations vs. weapons accuracy),

but for the present framework a uniform average provides a simple and transparent baseline.

By defining SI in this way, stability is incorporated into the optimisation process as a quantitative and

trade-off–oriented objective. This represents a methodological contribution of the thesis, enabling stability

to be directly optimised alongside resistance, seakeeping, and other design drivers in the early-stage

evaluation of OPV designs.

5.4.4. Seakeeping Evaluation

Seakeeping performance was assessed using Maxsurf® Motions, where a Strip theory (2D linear frequency-

domain analysis) is applied. This method analyses the hull as a series of independent transverse sections

under the assumption of linear potential flow. It offers good accuracy for conventional hull forms at a

relatively low computational cost [30].

A forward speed of 12k̃nots was selected for the seakeeping analysis, in contrast to the 18k̃nots used

in the resistance evaluation and optimisation. In SS6, higher transit speeds would likely amplify motions

and accelerations beyond practical limits, making them unrepresentative of operational practice. The

reduced speed of 12k̃nots therefore, provides a more realistic basis for assessing OPV behaviour in rough

conditions.

The hull geometry was exported from CAESES as an IGES file and imported into Maxsurf® Modeler,

where it was converted into a .msd file with defined hydrostatic reference points (WL, FP, AP). The .msd

file was then opened in Maxsurf® Motions, where the following environmental conditions, mass properties,

and monitoring points were defined:

• Sea state: JONSWAP spectrum, SS6, with significant wave height Hs = 5 m and peak period

Tp = 9.95 s.

• Forward speed: Vs = 12 kn.

• Headings: µ = 0◦, 45◦, 90◦, 135◦, 180◦.

• Mass properties: Radii of gyration fixed to parent hull values (kxx = 33.9% · BOA, kyy, kzz =

22.6% · LOA).

• Vertical CG: KG.

• Bridge location: Estimated 4 m above MD.

• Deck wetness location: MD at forward perpendicular (FP).

• Slamming location: Frame 40 at the baseline (BL).

The following response parameters were extracted:
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• Roll RMS (at CG).

• Pitch RMS (at CG).

• Absolute vertical acceleration RMS (at bridge).

• Lateral acceleration RMS (at bridge).

• Relative vertical motion at MD, FP (deck wetness).

• Relative vertical motion at Frame 40, BL (slamming).

• Relative vertical velocity at Frame 40, BL (slamming velocity).

• Motion Sickness Incidence (MSI, at bridge).

Deck wetness and slamming probabilities were calculated in post–processing from the extracted

spectral moments:

Pwet(%) = exp

(
− F 2

2m0,bow,rel

)
× 100 (5.10)

Pslam(%) = exp

(
− T 2

2m0,slam,rel
− V 2

cr

2m2,slam,rel

)
× 100, Vcr = 0.093

√
g LOA (5.11)

where F is freeboard, T is draft, g = 9.81 m/s2, and LOA is the overall length.

5.4.5. Criteria

The motion statistics were compared against selected seakeeping criteria adapted from NORDFORSK

(1987), Tello et al. [77], and USCGC standards. Table 5.5 summarises the applied thresholds.

Table 5.5: Seakeeping optimisation criteria for OPVs.

Motion Parameter Limit Location Description Reference

Roll angle (RMS) ≤ 6◦ CG Crew performance, safety on deck Tello et al. (2011)

Pitch angle (RMS) ≤ 3◦ CG Equipment/sensor operability Tello et al. (2011)

Vertical acceleration ≤ 0.2g Bridge Comfort, motion sickness NORDFORSK (1987)

Lateral acceleration ≤ 0.2g Bridge Balance control Tello et al. (2011)

Slamming frequency ≤ 0.03 Fr. 40 BL Structural loads, safety NORDFORSK (1987)

Deck wetness probability ≤ 0.05 FP deck RHIB/helicopter ops, safety NORDFORSK (1987)

Motion sickness incidence

(MSI)

≤ 40% (120

min)

Bridge Endurance, productivity USCGC

5.4.6. Seakeeping Index

To integrate seakeeping into the multi-criteria optimisation loop, a dimensionless SKI was defined. For

each heading µ, the SKI is calculated as:

SKIµ = 1− 1

n

n∑
i=1

xi

xi,max
0 ≤ SKIµ ≤ 1 (5.12)
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where xi is the measured motion response, xi,max is its associated threshold from Table 5.5, and n is

the number of seakeeping criteria considered. An SKIµ value of 1 indicates full compliance (all responses

below thresholds), while values approaching 0 indicate poor performance.

The combined seakeeping index for SS6 is obtained by averaging over the five headings:

SKISS6 =
1

5

∑
µ∈{0,45,90,135,180}

SKIµ (5.13)

This formulation provides a single, dimensionless measure of seakeeping performance that accounts for

both heading sensitivity and compliance with operational limits. The SKISS6 can be directly compared with

resistance and stability indices within the optimisation framework, facilitating trade-off analysis between

hydrodynamic efficiency, stability, and operability. The full implementation of SKI used in this study is

provided in Appendix D

Figure 5.7: Model view from Maxsurf® Motions showing reference locations for motion analysis

5.5. Multi-Objective Optimization

5.5.1. Micro-Batch Evaluation Strategy

Because no direct software connection exists between CAESES and Maxsurf®, a live evaluation loop was

not feasible. To address this limitation, a micro-batch evaluation strategy was adopted. In this approach,

CAESES generated small groups of candidate designs (10–20 per iteration), which were then exported

and evaluated offline in Maxsurf® Motions. The resulting seakeeping responses were post-processed to

compute the SKI and subsequently re-imported into CAESES, updating the optimisation database.

Each SBGO iteration proposed a new batch of designs based on the current surrogate model. These

candidates were exported, analysed in Maxsurf®, and their results fed back into the DAKOTA framework,

thereby expanding the results archive and refining the surrogate. This strategy preserved the iterative

learning cycle of the surrogate model, while making the evaluation process practical through offline

integration.

The search began with batches of 10 candidates per iteration to ensure frequent retraining of the

surrogate and stable improvement in the early exploratory phase. Once the surrogate demonstrated
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improved accuracy and the search converged toward the Pareto front, the batch size was increased to

15 candidates per iteration. This adjustment improved local trade-off surface coverage and accelerated

convergence while preserving diversity across the front.

5.5.2. Initial Sampling and Motivation

The optimisation was initialised with a LHS of 100 design points, spanning the ranges of the selected

design variables (Table 5.2). This initial sample ensured broad coverage of the design space and provided

a robust starting dataset for training the surrogate model.

5.5.3. Surrogate-Based Global Optimisation (SBGO)

The optimisation framework employed a SBGO strategy, implemented in DAKOTA and embedded within

CAESES. The algorithm combined DAKOTA’s Multi-Objective Genetic Algorithm (MOGA, based on the

JEGA framework) with a Kriging (Gaussian Process) surrogate model. The surrogate was used to predict

promising candidate solutions at each iteration, thereby reducing the number of expensive evaluations in

Maxsurf®.

After each iteration, the quality of the Pareto front was monitored using the hypervolume metric, which

served as a measure of convergence and front diversity. This setup enabled efficient exploration of the

multi-objective design space, while keeping computational costs manageable and maintaining the fidelity

required for seakeeping evaluation.

5.5.4. Normalization of Objectives and Variables

In early optimisation runs, neither the objectives nor the design variables were scaled. This introduced

bias into the multi-objective ranking, as metrics with larger numerical ranges exerted disproportionate

influence. To eliminate this effect, both design variables and objectives were normalised.

Objective normalisation: A “worst + 10%” scaling scheme was adopted. For each objective fi, the

normalised value f∗
i was calculated as:

f∗
i =

fi
1.1 · fi,worst

, 0 ≤ f∗
i ≤ 1 (5.14)

where fi,worst is the worst observed value in the initial LHS sample. The factor of 1.1 inflates the

denominator by 10% to avoid boundary locking.

Variable normalisation: Design variables xj were normalised relative to their lower and upper bounds as:

x∗
j =

xj − xj,min

(xj,max − xj,min)
, 0 ≤ x∗

j ≤ 1 (5.15)
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where xj,min and xj,max are the lower and upper limits of the variable range, respectively. This ensured

that all variables contributed equally in distance-based metrics such as niching and orthogonal distance

thresholds.

Together, these normalisation schemes were introduced with the aim of stabilising the SBGO search,

reducing numerical dominance bias, and improving the comparability of objectives and variables on the

Pareto front. The actual effect of this choice is evaluated in Chapter 7, where hypervolume convergence

histories are presented.

5.6. Conclusion of Methodology

This chapter has presented the methodology developed to integrate scaling and mission-oriented MOO into

an early-stage OPV design framework. The process was structured into three main modules: parametric

modelling, performance evaluation, and optimisation.

First, a parametric hull model was constructed in CAESES, based on the ISL OPV parent hull, using

selected design variables and constraints to balance geometric fidelity with design flexibility. Hydrostatics,

resistance, stability, and seakeeping evaluations were then defined using a combination of low- and

mid-fidelity methods, including the H&M resistance model, IMO intact stability criteria, and strip-theory-

based seakeeping analysis in Maxsurf®. Indices such as the SI and SKI were introduced to condense

multi-criteria performance into continuous, dimensionless measures suitable for optimisation.

Finally, a surrogate-assisted optimisation framework was implemented in CAESES/DAKOTA, featuring

Latin Hypercube initial sampling, a micro-batch evaluation strategy to enable offline integration with

Maxsurf®, and objective/variable normalisation to eliminate ranking bias. Objective refinement led to a

reduced but balanced set of four objectives—LWT , resistance, SI, and SKI—enabling robust exploration

of the design space while enforcing feasibility through range-based DWT constraints.

Together, these modules form a scalable and computationally efficient methodology for early-stage

OPV design. The framework supports rapid trade-off analysis across hydrodynamic efficiency, stability,

and seakeeping performance. providing a robust foundation for the verification and validation activities that

follow in the next chapter. In doing so, this chapter has addressed Sub–question 4: “What components

are required for the proposed framework, and how can the setup be structured to support early-stage OPV

design?”.



6
Validation Study

This chapter validates the proposed modelling framework. Validation is performed by comparing predictions

of the reconstructed parametric parent hull against external datasets provided by ISL. These datasets

include towing–tank measurements, CFD studies, and intact–stability documentation.

Since the as–built geometry of the ISL vessel is confidential, to respect confidentiality and to reconcile

minor differences in loading conditions and reference frames, results are reported either as normalised

quantities or as percentage deviations with respect to the CAESES baseline.

Scope of checks. The validation focuses on the following aspects:

• Hydrostatics: accuracy of displacement, centres, and hydrostatic coefficients;

• Stability: accuracy of GM , GZ metrics, KM , KB, and BM ;

• Resistance/powering: comparison of model–scale and trial–scale predictions;

• LWT : consistency with weight documentation and regression methods;

• Seakeeping: accuracy of RAOs, accelerations, and SKI under matched sea states and headings.

The final section synthesises the findings of these validation checks and addresses research sub–ques-

tion 5: “How can the effectiveness of an integrated scaling and mission-oriented MOO framework be

validated to ensure robust and reliable early-stage OPV design decisions?”

6.1. Parent–hull accuracy

6.1.1. Hydrostatics Validation

The hydrostatic particulars of the existing vessel were compared with those of the reconstructed parametric

model in CAESES to establish a baseline for validation. Data were assembled from four independent

sources: (i) the CAESES model, (ii) the intact stability booklet, (iii) the resistance test report, and (iv)

56
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the seakeeping assessment. Each of these references was produced at different times by different

organisations and often under slightly different loading conditions or reference conventions.

For consistency, the CAESESmodel is taken as the numerical baseline. Percentage deviations reported

for the external sources are therefore expressed relative to this baseline. Table 6.1 presents side-by-side

values for all four sources, together with the corresponding deviations.

Table 6.1: Cross-check of principal particulars and hydrostatic coefficients for the parent hull.

Percentages indicate deviation from the CAESES model baseline.

Particular Sym-

bol

Unit CAESES

model

Intact sta-

bility

CFD Towing

tank

Sea-

keeping

assess-

ment

Displacement ∇ m3 324 +1% −1%

Displacement ∆ t 331 +1% −7% −4% −1%

Length overall LOA m 45.5 +1%

Length between perpen-

diculars

LPP m 42.4 0% 0%

Length waterline LWL m 43.7 +4% 0% 0%

Beam overall BOA m 8.6 0% +4%

Beam waterline BWL m 7.57 0% +4% 0% 0%

Draft T m 2.3 +1% −2% 0% 0%

Wetted surface area S m2 360.5 +20% +1%

Block coefficient CB – 0.381 +4% +12% +15% +10%

Prismatic coefficient CP – 0.683 −8% −2%

Midship coefficient CM – 0.557 +13% +15%

Waterplane coefficient CWP – 0.710 +3% +14% +11%

Metacentric radius BM m 3.083 +3%

keel to centre of buoyancy KB m 1.565 +0% −4% 1%

LCB from AP LCB m 19.07 −2% 0% 0% 0%

keel to metacentre KM m 4.648 0% +2% +1%

vertical centre of gravity KG m 3.017 +19% +6%

It should be noted that the intact stability booklet is based on a fully appended model, whereas the

CFD, towing–tank, and seakeeping references are based on the bare hull. This explains, for exam-

ple, the significant 21% difference in wetted surface area between CAESES and the stability reference.

Similarly, a 19% difference in KG arises from the fact that the stability documentation assumes a dif-

ferent displacement and loading condition than the CAESES baseline. Overall, the core hydrostatic

quantities
(
∇, LWL, BWL, T, KB, BM, KM

)
agree within a few percent across sources, which is con-

sidered adequate for early-stage validation. Larger deviations are observed for the form coefficients

(CB , CP , CM , CWP ), with differences reaching up to 15%. These discrepancies arise from several in-

teracting factors. First, form coefficients are ratios of volumes and areas (e.g. prismatic coefficient

CP = ∇/(AM · LPP )), which makes them highly sensitive to small local shape differences even when the

global dimensions and displacement remain consistent. Second, the referencemodels are not geometrically
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identical: the stability booklet includes appendages (bilge keels, shafts, rudders) while the CFD and towing

tank use a bare hull, and CAESES employs a simplified NURBS reconstruction. This leads to systematic

shifts in wetted area (S) and waterplane shape, directly affecting CWP and CB . Finally, the displacement

conditions differ: hydrostatics from the intact stability document are based on a specific loading case with a

slightly higher displacement, whereas the CAESES baseline assumes a neutral reference condition. Since

coefficients are evaluated at the design draft, even a 1–2% change in draft or KG can amplify into 10%

differences in coefficients. Taken together, these effects explain why form coefficients differ more strongly

than primary hydrostatics, while still remaining within acceptable tolerances for early-stage validation.

6.1.2. Stability: GZ Curve

Intact-stability performance of the parent hull was validated by comparing the CAESES-derived GZ

characteristics with the shipyard’s reference stability documentation. External results are reported as

percentage deviations relative to the CAESES baseline (Table 6.2). The comparison covers the standard

IMO-type metrics:

• areas under the GZ curve over 0–30◦ and 0–40◦

• the incremental area over 30–40◦

• GZ at 30◦

• heel at GZmax

• the initial metacentric height GM(0)

The shipyard documentation provides several load-case scenarios. For validation, the case closest

to the reconstructed CAESES baseline (denoted here as CAESES LC1, ∆ ≈ 324 t) was compared with

the corresponding shipyard load case. This alignment, however, still produced substantial discrepancies

in the stability metrics, with deviations up to −81% in the 30–40◦ area (column “Shipyard vs LC1”). The

main cause is the residual difference in displacement and draft between the two definitions, which strongly

affects the GZ curve at large heel.

To remove this mismatch, a second CAESES run (LC2, ∆ ≈ 336 t) was performed at the same

displacement as the selected shipyard case. This adjustment brought the hydrostatics into closer alignment

and reduced the deviations considerably. At LC2, the key intact-stability measures (areas up to 30◦, GZ

at 30◦, GM(0), heel at GZmax) differ by only a few percent. The remaining gap is concentrated in the

30–40◦ area (−22%), which is expected. This incremental area is highly sensitive to KG placement, flare,

freeboard immersion, and trim assumptions. In addition, the CAESES parametric model does not include

appendages, and the midship coefficient CM was already shown to differ from the shipyard reference.

Both factors increase the righting moment at large heel in the shipyard data, whereas they are absent or

simplified in CAESES.

Overall, the CAESES reconstruction reproduces the GZ curve shape and magnitude with good fidelity

once displacement is matched. While residual deviations remain at extreme heel, the IMO intact-stability
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criteria are satisfied with adequate margin, confirming the validity of the CAESES baseline for subsequent

analysis.

Table 6.2: Comparison of key intact-stability metrics between CAESES and the shipyard report (half-load

condition).

Metric CAESES CAESES Shipyard (vs. LC1) Shipyard (vs. LC2) Criteria

LC1: 324 Ton LC2: 336 Ton [%] [%]

Area 0–30◦ 0.2114 0.147 −46% −1% 0.055

Area 0–40◦ 0.3472 0.238 −57% −8% 0.09

Area 30–40◦ 0.1358 0.091 −81% −22% 0.03

GZ at 30◦ 0.7880 0.535 −52% −4% 30

Heel at GZmax 36.05◦ 31.685◦ −6% 7% 0.2

GM(0) 1.6152 1.152 −39% 1% 0.15

Stability index 0.3185 0.224 0.205 0.205

6.1.3. Resistance Validation (Bare Hull)

Bare–hull total resistance RT was predicted with the H&M method, using the ITTC’57 friction line and

H&M form factor (1+k). For validation, results were compared against (i) ISL towing–tank measurements

and (ii) an independent CFD study at three speeds spanning the semi–displacement regime. The H&M

implementation used here is provided in Appendix C. Deviations of experimental and CFD results are

reported as percentages relative to H&M predictions. The numerical results are summarised in Table 6.3.

All three datasets use the same LPP . However, the CFD geometry differs slightly from the CAE-

SES/H&M model, with a 4% larger BWL and a 2% smaller T . As a result, the wetted surface area and

slenderness differ, which in turn influences both frictional and residuary components. Form coefficients

(CB , CP , CM , CWP ) therefore diverge more noticeably across sources.

In addition, the towing–tank “bare hull” includes small geometric details (e.g., thruster tunnels) that

increase wetted surface and disturb the wave field. These effects tend to raise the measured RT relative

to the idealised H&M and CFD geometries.

Despite these systematic but explainable biases, the H&M method is considered adequate for

early–stage OPV screening. In particular, at the reference speed of 18 knots used throughout the

framework, H&M predictions remain within the expected deviation range for semi–displacement hulls.

Table 6.3: Bare–hull resistance validation: H&M vs. towing–tank and CFD. Percentage deviations are

relative to H&M predictions.

Speed Fn H&M RT [kN] Tank test (∆) CFD (∆)

12 0.298 40.59 +8% −17%

18 0.447 108.00 +22% +9%

24 0.596 216.80 +9% −10%
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6.1.4. Seakeeping Validation

The motion behaviour of the reconstructed hull was validated by comparing results from the ISL seakeeping

assessment with a corresponding analysis conducted in Maxsurf® Motions. For consistency, only bare–hull

results were considered. The Maxsurf® simulations were configured to replicate the same conditions

reported in the shipyard assessment, with matching draft and zero–trim assumptions.

Three representative sea states were investigated:

• SS3: Hs = 1.2 [m], Tp = 4.9 [s],

• SS4: Hs = 2.0 [m], Tp = 6.0 [s],

• SS5: Hs = 2.8 [m], Tp = 7.0 [s].

These conditions span a progression from moderate to rough seas and provide a basis for assessing

the accuracy of the reconstructed model in reproducing the motion responses reported by ISL.

Three aspects of seakeeping performance were examined:

• Roll decay: comparison of the natural roll period and damping characteristics;

• Motions at CG: pitch, heave, and roll motions at the vessel’s centre of gravity;

• Basic seakeeping responses: RAOs and RMS values for key motions and accelerations under

specified headings and sea states.

This comparative approach provides a check on the ability of the framework to reproduce first–order

motion behaviour, ensuring that the simplified strip–theory modelling in Maxsurf® remains consistent with

the independent ISL assessment.

Roll Decay

The natural roll behaviour of the reconstructed hull was validated by comparing a roll–decay simulation in

Maxsurf® Motions with reference results from the ISL seakeeping assessment. Figure 6.1 shows the time

histories of roll motion for three cases:

1. the Maxsurf® model without appendages

2. the ISL reference hull without appendages

3. the ISL reference hull fitted with bilge keels and stabilising fins

Conditions are assumed as zero forward speed (stationary in calm water). The roll–decay simulations

were compared for zero forward speed (V = 0 kn) in calm water (no waves).
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Figure 6.1: Roll decay test: comparison between reconstructed Maxsurf® model and ISL reference data

(bare hull and appended configurations).

The comparison demonstrates that the parametric Maxsurf® model reproduces the natural roll period of

the bare hull with good accuracy. The Maxsurf® model shows stronger damping compared to the bare–hull

reference, which can be attributed to numerical damping settings in Maxsurf® and to scaling effects in

the physical model tests. Nevertheless, the alignment of oscillation peaks indicates that the natural roll

frequency is captured correctly.

This validation step is important because roll decay directly reflects the natural roll period, which

depends on both hydrostatics (GM ) and mass distribution (kxx). Accurate reproduction of the natural

period therefore confirms that the reconstructed parametric model captures the essential stability properties

of the parent hull. The result provides confidence in the model’s baseline dynamic behaviour and supports

the reliability of subsequent RAO-based seakeeping analyses.

Response Amplitude Operators (RAOs)

The RAOs of the reconstructed hull were compared against reference data from the ISL seakeeping

assessment for the three primary rigid–body motions: heave, pitch, and roll. Figures 6.2–6.4 show the

RAOs for heading 135◦ at Vs = 18 knots.

Overall, the comparison demonstrates that the reconstructed model reproduces the correct natural

frequencies and the general shape of the RAO curves. The resonance peaks align closely across all three

modes, indicating consistency in hydrostatics and inertia properties. Larger discrepancies are observed in

the peak amplitudes, particularly for heave and roll. These can be attributed to differences in damping (as

also highlighted by the roll–decay comparison), the strip–theory assumptions in Maxsurf®, scale effects

between model and full scale, and geometric differences between the reconstructed hull and the ISL

reference, especially in the form coefficients (e.g. CWP and CM ).
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Figure 6.2: Heave RAO comparison between reconstructed Maxsurf® model and ISL reference at

18 knots, heading 135◦.

Figure 6.3: Roll RAO comparison between reconstructed Maxsurf® model and ISL reference at 18 knots,

heading 135◦.
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Figure 6.4: Pitch RAO comparison between reconstructed Maxsurf® model and ISL reference at 18 knots,

heading 135◦.

The results confirm that the reconstructed parametric model provides an adequate representation of

the parent hull’s seakeeping behaviour. Despite some deviations in response amplitude, the alignment of

resonance peaks across pitch, heave, and roll indicates that the framework captures the essential motion

characteristics needed for early–stage optimisation.

Basic Seakeeping Motion Responses

Basic motion responses were validated for heave, roll, and pitch across three representative sea states

(SS3, SS4, SS5), seven headings (0◦–180◦ in 30◦ increments), and three forward speeds (0, 6, 12 kn).

The Maxsurf® Motions analysis was carried out using unidirectional wave spectra, while the ISL reference

seakeeping study employed multidirectional spectra. To ensure comparability, the ISL results were

mirrored about 180◦ in the polar plots, so that both datasets covered the same 0◦–180◦ range (with 180◦

corresponding to head seas).

Figures 6.5–6.7 show the polar RAOs for heave, roll, and pitch motions in sea states 3–5.
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Figure 6.5: Polar RAOs of heave, roll, and pitch in Sea State 3 for multiple headings and speeds.

Figure 6.6: Polar RAOs of heave, roll, and pitch in Sea State 4 for multiple headings and speeds.

Figure 6.7: Polar RAOs of heave, roll, and pitch in Sea State 5 for multiple headings and speeds.

The polar plots show that the reconstructed model reproduces the directional dependence of motion

responses, with maxima occurring in beam and quartering seas as expected. Differences in absolute

magnitudes are observed between the two analyses, which can be attributed to the unidirectional spectrum

assumption in Maxsurf® compared to the multidirectional treatment in the ISL reference study. In particular,

the unidirectional model produces zero roll at 0◦ and 180◦, while the multidirectional analysis captures

some residual roll excitation due to cross–wave components. Similarly, pitch responses appear sharper in
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the unidirectional case and more moderate in the multidirectional case.

This explains why damping estimates differ between the roll–decay test and the RAO responses: roll

decay represents free–decay damping at zero forward speed, whereas RAOs capture the frequency

response under spectral excitation at finite speeds and headings. Nevertheless, the relative trends across

headings, speeds, and sea states are consistently reproduced, confirming that the framework provides a

reliable basis for seakeeping evaluation in early-stage design.

6.2. Validation Conclusion

This chapter has validated the proposed framework against reference data from the ISL parent hull,

addressing Sub–question 5: “How can the effectiveness of an integrated scaling and mission-oriented

MOO framework be verified and validated to ensure robust and reliable early-stage OPV design decisions?”

The validation against hydrostatics, stability, resistance, and seakeeping confirms that the reconstructed

parametric model provides an adequate representation of the ISL parent hull for early–stage optimisation

purposes. The validation against hydrostatics, stability, resistance, and seakeeping confirms that the

reconstructed parametric model provides an adequate representation of the ISL parent hull for early-stage

optimisation purposes. Core hydrostatic properties and dynamic behaviour (e.g. the natural roll period)

are reliably reproduced, with deviations in form coefficients attributable to geometric simplifications in the

reconstruction and differences in loading conditions across sources. Overall, the reconstructed model

preserves the governing physical behaviour of the parent hull and provides sufficient fidelity for early-stage

optimisation.

In hydrostatics, displacement, centres, and metacentric properties agreed within a few percent, while

larger deviations in coefficients (up to 15%) reflect modelling choices rather than fundamental inconsis-

tencies. Stability comparisons show that the model reproduces the overall shape of the GZ curve and

satisfies IMO intact-stability criteria, with minor differences again traceable to geometric simplifications.

Resistance predictions with H&M fall within the expected error range for semi-displacement hulls

when benchmarked against towing–tank and CFD results. Discrepancies are consistent with the differing

fidelity of the methods and with scale effects in the experimental model. While suitable for early-stage

optimisation due to its low cost, the H&M method could be complemented by alternative approaches for

closer agreement at higher Froude numbers.

For seakeeping, the model reproduces natural frequencies and the qualitative form of RAOs across

headings and sea states. Differences in amplitudes reflect the limitations of strip theory and the use

of unidirectional spectra in Maxsurf compared to the multidirectional ISL reference, yet overall motion

behaviour remains consistent.

In summary, validation confirms that the proposed framework is accurate, reliable, and consistent with

naval-architectural principles. It provides sufficient fidelity for early-stage OPV design and comparative

scaling studies, while acknowledging that higher-fidelity tools remain essential in later design stages. The
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results establish a robust foundation for exploring design scaling and mission-oriented optimisation in the

following case study.



7
Test Case

This chapter demonstrates the practical application of the MOO framework developed for scaling OPVs,

with a focus on its verification. Whereas validation (Chapter 6) compared reconstructed model predictions

against external reference data, verification evaluates whether the framework behaves consistently with

established principles and expected naval-architectural physics.

The chapter is organized into three main sections. First, the Convergence Analysis (Section 7.1)

examines the evolution of the hypervolume and Pareto front projections, highlighting the constraints and

objectives that shaped the set of optimal designs. Second, the Trend Analysis (Section 7.3) confirms

that the framework reproduces well-known naval architectural behaviors, such as the influence of hull

length, beam, and draft on resistance, stability, and seakeeping. Finally, the Application and Implications

(Section 7.4) discusses the significance of these results for real-world OPV design and how the framework

can support early-stage design decisions.

The case study is based on the reconstructed S45 OPV from ISL, introduced in Chapter 5. Through

this test case, the chapter provides a clear understanding of how the MOO-based approach behaves under

realistic conditions and how it can be leveraged to make robust and reliable early-stage design choices

for OPVs. In doing so, it directly addresses Research Sub-question 5: “How can the effectiveness of

an integrated scaling and mission-oriented MOO framework be validated to ensure robust and reliable

early-stage OPV design decisions?”

7.1. Pareto optimal and Pareto front

The Pareto front is defined as the set of non-dominated solutions, representing design candidates that are

not outperformed by any other candidate across all objectives. In this case study, four objectives were

considered: the SKI, SI, RT , and LWT . To preserve a feasible design space, constraints on the GM/B

67
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ratio, roll period (Troll), and operational range were applied during candidate generation.

0.05 ≤ GM/B ≤ 0.25, 6.0 ≤ Troll ≤ 10.0 [s], Range > 1500 [nm].

Literature recommends a GM/B ratio between 0.05 and 0.15. However, the reconstructed parent hull

exhibited a GM/B ratio close to 0.20. This elevated value can be attributed to the relatively full waterplane

distribution of the parent vessel, which increases the transverse waterplane moment of inertia and conse-

quently raises the initial stability. While this improves static margins, it also shortens the natural Troll and

results in dynamically “stiff” behaviour. To accommodate this geometry, the upper limit was extended to

0.25. However, a secondary constraint on Troll was introduced in post-processing to exclude dynamically

unrealistic designs.

Figure 7.1 illustrates the relation between GM/B and Troll, with colours indicating the CWP . The plot

confirms that high GM/B values systematically correspond to short Troll, particularly in designs with fuller

waterplanes. This demonstrates that static criteria such as GM/B are insufficient on their own, and that

direct constraints on Troll provide a more robust filter against seakeeping deficiencies.

An additional requirement of a minimum operational range of 1, 500 nm was imposed to ensure mission

feasibility. This was calculated using resistance predictions at 18 knots combined with the corresponding

DWT estimate. It should be noted that these filters represent an early-stage design scenario using a

bare-hull model. In later design stages, when appendages are included, additional damping effects are

expected to influence both Troll and GM/B.

Figure 7.1: Relation between GM/B and Troll coloured by waterplane coefficient (CWP ). High GM/B
values correspond to unrealistically short Trolls, highlighting the need for dynamic constraints in addition to

static stability margins.
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For completeness, a supporting figure showing the relation between GM/B and the IMO intact stability

requirements is provided in Appendix F (Figure F.1). The results confirm that all designs withGM/B > 0.05

satisfy the IMO (2008) criteria. Therefore, maintaining a GM/B ratio above 0.05 remains a valid baseline,

as all candidates meeting this constraint also fulfilled IMO stability requirements. However, the additional

Troll constraint ensures that the feasible design set is more consistent with realistic seakeeping behaviour.

Table 7.1 presents how these constraints filtered the 465 candidate designs generated by the CAESES

optimisation engine. Out of 465 candidates, 422 satisfied the GM/B requirement (0.05 ≤ GM/B ≤ 0.25),

454 fulfilled the range requirement, and 182 met the Troll criterion. When all constraints were combined,

177 designs were classified as feasible. Among these, approximately 32% had a GM/B ratio above 0.15.

Metric Count Percent of total [%]

Total candidates 465 100.0

GM/B in (0.05, 0.25) 422 90.8

Troll in [6.0, 10.0] s 182 39.1

Range > 1500 nm 454 97.6

Roll-feasible total 182 39.1

Roll-feasible with GM/B ≤ 0.15 118 25.4

Roll-feasible with GM/B > 0.15 64 13.8

Feasible (all constraints) 177 38.1

Table 7.1: Constraint filtering of candidate designs.

These results indicate that the Troll constraint is a more effective indicator of seakeeping feasibility

than the GM/B ratio alone. While 91% of the candidates satisfied the GM/B bounds, only 39% met

the Troll requirement. This demonstrates that static stability margins, such as GM/B, are not sufficient to

ensure acceptable dynamic behaviour. Directly constraining the Troll filters out over-stiff designs that would

otherwise appear feasible, thereby improving the robustness of the feasible design set.

The resulting Pareto-optimal set is shown in Figure 7.2, where SKI, SI, and RT are plotted in three

dimensions, with LWT indicated through colour coding. Because a full four-dimensional Pareto set is

difficult to visualise, Figure 7.3 provides a series of 2D projections, each showing trade-offs between

two objectives. In these projections, the 2D Pareto frontier is shown in blue, and designs are coloured

by a gradient of 0.15 ≤ GM/B ≤ 0.25. Both the 4D Pareto-optimal set and the 2D front include only

non-dominated candidates. Reference points for the baseline ship and the reconstructed parent hull are

also indicated for comparison.

The reconstructed parent hull is not included in the Pareto-optimal set or the feasible solution space

because it fails the roll-period constraint, with a computed Troll of only 4.5 [s]. This makes the design

dynamically infeasible under the bare-hull assumption. In reality, however, the full vessel is equipped

with appendages, stabilisers, rudders, and bilge keels, all of which provide additional damping and would

increase the effective Troll into the acceptable range. It is therefore important to emphasise that this analysis
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considers a bare hull without appendages. As a result, the parent hull does not appear in the Pareto front

projection. This also explains why, in the SI-RT and LWT -SI subplots, the reconstructed hull lies outside

the Pareto front and appears more optimal: it performs well in those two objectives but is excluded due

to failing the dynamic feasibility constraint. In the RT–LWT projection, the Pareto set degenerates to a

single non-dominated candidate, so no continuous 2D Pareto line is shown.

Figure 7.2: Four-dimensional Pareto set visualisation showing RT , SKI, and SI, with LWT mapped by

colour. Only Pareto-optimal candidates are shown.
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Figure 7.3: Dashboard of 2D projections of the 4D Pareto front, showing the projected 2D Pareto front

(blue) and a colour gradient for GM/B. The parent hull and baseline ship are indicated as reference
markers. Only Pareto-optimal candidates are shown.

7.2. Convergence and Monitoring Using Hypervolume

The convergence of the MOO process was assessed using the hypervolume (HV) indicator, a widely

recognised metric for quantifying both the quality and diversity of Pareto fronts [72]. The HV measures

the region of the objective space dominated by the current set of non-dominated solutions, relative to a

predefined reference point. Larger HV values reflect a Pareto front that is closer to the ideal point and

better distributed across trade-offs. This scalar measure is particularly valuable when more than two

objectives are considered, since visual inspection alone becomes insufficient to track convergence [9].

The reference point was established through LHS of 100 initial designs, from which the worst observed

performance in each objective was selected and inflated by 10% to prevent boundary lock. This yielded

reference values:

• SKI = 0.3735

• RT = 0.8907
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• LWT = 0.9605

• SI = 0.0290

The use of LHS ensured a broad initial coverage of the design space, while inflation provided a conservative

margin that stabilised the convergence assessment. The HV implementation used here is provided in

Appendix E.

HV was calculated exclusively on feasible designs that satisfied all imposed constraints, ensuring

that convergence reflected realistic design candidates rather than infeasible outliers. Convergence was

considered achieved once HV exhibited a plateau, defined as a relative change below a set threshold

over three consecutive iterations. Beyond this point, additional evaluations provided only marginal gains,

indicating that the surrogate-assisted optimisation had stabilised on a representative Pareto front.

Figure 7.4 presents the incremental (top) and cumulative (bottom) HV contributions. The incremental

plot shows that only a few iterations made substantial improvements, with later designs adding marginal

value. The cumulative HV exceeded 99% of its final value after approximately 25 iterations, confirming that

the search had adequately explored the trade-off space and that the optimisation process had converged

to a stable front. The steady plateau also indicates that the surrogate model provided reliable guidance in

locating the true Pareto-optimal region, rather than overfitting to local extremes.

In addition, a noticeable increase in hypervolume occurred after the introduction of normalised variables

and objectives, which temporarily renewed the convergence process. This confirms the methodological

choice discussed in Chapter 5, where normalisation was introduced to reduce numerical dominance and

improve comparability among objectives. The jump in HV illustrates that this step not only stabilised the

search but also enabled the discovery of new Pareto-optimal candidates, strengthening both the diversity

and robustness of the optimisation outcome.

This outcome confirms that the optimisation framework produced a diverse and converged set of

solutions, offering a reliable basis for subsequent trend analysis and decision-making in early-stage OPV

design.
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Figure 7.4: Incremental (top) and cumulative (bottom) hypervolume contributions, expressed as a

percentage of the final HV, demonstrating convergence of the Pareto front.

7.3. Trend Analysis

The trend analysis evaluates whether the optimisation framework reproduces expected naval-architectural

behaviour across the key design variables.

7.3.1. Resistance Trends

Three complementary analyses were conducted to verify that the framework reproduces established

resistance scaling laws.

Figure 7.5 presents calm-water resistance RT against Froude number, evaluated at the design speed

of 18 knots (Vs = 9.26 m/s). Because speed is fixed, variation in Fn directly reflects the influence of length.

The global regression trend (R2 = 0.44) shows that longer hulls (lower Fn) systematically exhibit reduced

resistance, consistent with classical Froude scaling, though the correlation appears moderate due to the

breadth of the design space.

L/B is represented as a colour gradient, clearly demonstrating the hull slenderness effect. At constant

Fn, slender hulls (higher L/B ratios) consistently exhibit lower resistance than fuller hulls (lower L/B

ratios). To isolate this slenderness influence, a subset analysis was performed for hulls with similar

slenderness ratios (L/B ∈ [6.0, 7.0]), highlighted with circular markers. This subset exhibits a dramatically

improved correlation with Fn (R2 = 0.93).

The striking improvement in correlation from R2 = 0.44 for all data to R2 = 0.93 for the controlled

subset demonstrates that slenderness variation is the primary source of scatter in the global dataset. This
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validates that the framework correctly captures both length effects through Froude scaling and slenderness

effects, with both mechanisms being equally critical for accurate resistance prediction in design studies.

Figure 7.5: Resistance RT versus Froude number Fn at 18 knots (V = 9.26 m/s). Colour indicates L/B.
The subset analysis (circled points, L/B ∈ [6.0, 7.0]) demonstrates excellent Froude scaling (R2 = 0.93),

compared to the global trend (R2 = 0.44) across the full design space.

Second, the size effects were examined by plotting resistance against LOA (Figure F.2), beam, and

draft (Figure 7.6). The results demonstrate strong correlations (R2 = 0.89 for beam, R2 = 0.92 for draft),

confirming that increasing principal dimensions leads to higher resistance, primarily due to displacement

growth and larger wetted surface area. The colour coding highlights secondary effects of form coefficients,

although the independent influence of parameters such as CB and CP (Figure F.3) cannot be fully isolated

in this dataset, since variations in length and displacement dominate the overall trends.
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(a) Total resistance RT vs. Beam (colour: CWP ) (b) Total resistance RT vs. Draft (colour: CB)

Figure 7.6: Scaling sensitivities of total resistance RT with respect to beam and draft. Colour encodes

either CWP or CB , highlighting the influence of waterplane and block coefficients.

Finally, the volume effect was assessed by plotting resistance against displacement volume (Figure 7.7).

The relationship is strongly nonlinear (R2 = 0.83). A power-law regression,

RT = 1.84× 105 ∇0.567,

captures the observed trend, consistent with viscous scaling (via wetted area growth) together with wave-

making contributions at the design speed. Within this dataset, the prismatic coefficient CP shows a mild

but consistent tendency: at approximately constant ∇, fuller forms (higher CP ) exhibit slightly higher

RT , whereas finer forms (lower CP ) lie slightly below the fit. The effect is secondary to the dominant

volume scaling but aligns with the expectation that, for semi-displacement OPVs at fixed speed, increased

longitudinal fullness raises wetted surface and wave-making near the bow and stern [78].
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Figure 7.7: Resistance RT versus displacement volume ∇ with colour indicating CP . A nonlinear

power-law regression confirms the volume effect; higher CP (warmer colours) tend to lie slightly above the

fit at similar ∇.

Together, these analyses confirm that the framework reproduces the three dominant resistance mecha-

nisms:

(i) Longer hulls reduce resistance through Froude scaling,

(ii) Greater slenderness lowers wave-making resistance,

(iii) Displacement growth drives nonlinear viscous penalties, with CP acting as a secondary modifier at

fixed volume.

This alignment with classical hydrodynamic principles reinforces the validity of the framework for OPV

design studies.

7.3.2. Stability Trends

The stability analysis confirms that the beam is the dominant driver of transverse stability. As shown in

Figure 7.8, wider hulls systematically achieve higher SI values. This behaviour is explained by hydrostatics:

increasing beam enlarges the waterplane area, thereby raising the transverse moment of inertia (IT ). This

directly increases the BM and consequently theGM , improving static stability and reducing roll amplitudes.

These findings are consistent with classical metacentric theory [3, 31, 78] and quantified by Gutsch et

al. [30], who showed that beam growth systematically increases stiffness while lowering operability indices.
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(a) SI versus beam, colour indicates CWP . (b) SI versus draft, colour indicates CB .

Figure 7.8: Trends of SI with principal dimensions. Beam and draft both exert strong influence, with

colour coding highlighting secondary effects of form coefficients.

Draft effects are also evident (Figure 7.8b), with deeper drafts contributing to higher SI through

increased displacement and righting lever arm. Length effects are less pronounced in the global dataset,

as they are partly masked by displacement scaling, but the general trend with LOA is included in Appendix F

(Figure F.4).

Overall, a strong positive correlation between beam and stability is observed (R2 = 0.82), with both the

reconstructed parent hull and the reference OPV lying close to this regression line, confirming the fidelity

of the parametric model.
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Figure 7.9: SI versus B/T ratio (colour indicates CWP ). A strong correlation confirms transverse

proportions as a key predictor of initial stability.

The stability framework validation demonstrates compliance with IMO 2008 IS Code criteria and confirms

the suitability of GM/B as a proxy metric. As detailed in Section 7.1 and Appendix F, the framework

reproduces expected stability behaviour: designs with GM/B < 0.05 fail the IMO criterion, while higher

values improve compliance but risk excessive stiffness (Troll < 6 [s]). These results confirm the validity of

the parametric model in capturing the balance between sufficient and excessive stability.

Regarding coefficients, the waterplane coefficient (CWP ) is a local descriptor of waterplane efficiency

and directly affects BM . However, within the wide dimensional range considered here (40–90 [m]), CWP

alone does not provide additional explanatory power: the same value may occur for both a 50 and a 90 [m]

vessel. Dimensional drivers (beam, draft, B/T ) remain the primary explanatory factors.

Overall, the framework reproduces expected stability behaviour:

(i) insufficient GM/B yields IMO non-compliance,

(ii) moderate values provide balanced and acceptable stability, and

(iii) excessive values result in stiff roll responses.

The consistent beam–SI relationship strengthens confidence in the framework’s ability to capture stability

trends relevant for OPV scaling.

7.3.3. Seakeeping Trends

The seakeeping analysis reveals that hull proportions, particularly slenderness, are the dominant drivers of

motion performance. Figure 7.10 demonstrates a strong negative correlation (R2 = 0.71) between the SKI



7.3. Trend Analysis 79

and the L/B ratio, indicating that slender hulls, while favorable for resistance, exhibit significantly reduced

seakeeping performance. This fundamental trade-off highlights the competing nature of hydrodynamic

efficiency and operability in OPV design, where optimizing for fuel economy directly conflicts with motion

comfort and operational capability in rough seas.

Figure 7.10: SKI versus L/B ratio (colour indicates CWP ). More slender hulls (higher L/B) show
reduced seakeeping performance, confirming the resistance–seakeeping trade-off.

The influence of absolute dimensions on seakeeping performance presents a contrasting pattern.

Figures 7.11a and 7.11b reveal that draft exhibits the strongest positive correlation (R2 = 0.80), confirming

that deeper hulls achieve improved seakeeping through enhanced added mass and damping effects. This

relationship aligns with classical strip theory, where increased draft reduces heave and pitch motions

by augmenting the vessel’s hydrodynamic inertia. Beam contributes positively (R2 = 0.60), though with

greater scatter, reflecting complex interactions between transverse stability, roll damping, and waterplane

area effects.

Most significantly, Appendix F (Figure F.5) shows that LOA has only a weak correlation (R2 = 0.14) with

seakeeping performance. This counterintuitive result demonstrates that hull proportions dominate over

absolute vessel size in governing motion behaviour—a finding with important implications for OPV scaling

strategies. Unlike resistance, where length effects are paramount through Froude scaling, seakeeping

performance is primarily governed by dimensional ratios rather than absolute scale.
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(a) SKI versus beam, colour indicates CWP . (b) SKIversus draft, colour indicates CB .

Figure 7.11: SKI trends with principal dimensions. Beam and draft both exert strong influence, with

colour coding highlighting form coefficients.

The theoretical basis for these trends can be understood through established seakeeping principles.

Increasing draft enhances the vessel’s addedmass and damping coefficients, reducing response amplitudes

across all motion modes. Greater beam improves roll stability and can provide beneficial roll damping,

though this benefit may be offset by increased beam-sea excitation. The weak length correlation suggests

that for the OPV size range considered, natural frequencies and encounter frequency effects are less

influential than sectional properties and proportional relationships.

The CWP shows secondary influence in both figures, with fuller waterplanes generally associated

with reduced seakeeping performance. This reflects the increased wave excitation forces on broader

waterplane areas, particularly in beam and quartering seas where waterplane shape directly affects heave

and pitch coupling.

These results confirm that the framework reproduces established seakeeping scaling behaviour:

(i) L/B dominates seakeeping performance, creating a fundamental trade-off with resistance optimisa-

tion,

(ii) draft provides the strongest beneficial effect through added mass and damping enhancement.

(iii) beam contributes positively but with greater variability due to competing stability and excitation effects,

and

(iv) absolute length has minimal influence, indicating that proportional scaling governs seakeeping more

than dimensional scaling.

This alignment with classical seakeeping theory, particularly the dominance of sectional properties over

absolute dimensions, strengthens confidence in the framework’s ability to capture operability trends in OPV
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scaling studies. The resistance-seakeeping trade-off quantified through the L/B relationship provides

crucial guidance for mission-oriented hull optimisation, where the balance between fuel efficiency and

operational capability must be explicitly managed.

7.3.4. Lightweight

The lightweight analysis confirms that the framework correctly captures fundamental scaling relationships

between vessel dimensions and structural weight. Figures 7.12a and 7.12b demonstrate strong linear

correlations between LWT and LOA (R2 = 0.87) and beam (R2 = 0.86), while Appendix F (Figure F.6)

shows a slightly weaker correlation with draft (R2 = 0.76). These results validate the geometric scaling

embedded in the weight estimation methodology and confirm that the framework reproduces expected

volumetric and surface-area scaling laws.

(a) LWT versus LOA, colour indicates CWP . (b) LWT versus beam, colour indicates CWP .

Figure 7.12: LWT trends with principal dimensions. LOA and beam both drive increases in displacement

weight, while colour coding highlights CWP .

The near-identical correlations for LOA and beam reflect the combined influence of structural steel

weight, which scales with hull surface area and length, and outfit weight, which scales with deck area and

internal volume. The weaker correlation with draft is consistent with naval architectural practice, where

draft variations primarily affect hull plating weight but have less influence on superstructure and outfit

components that comprise a significant portion of total lightweight. The strong correlations observed

validate this approach and demonstrate that the parametric weight model maintains fidelity across principal

dimensions.

The positioning of both the reconstructed parent hull and reference OPV close to the regression trends

further validates the accuracy of the weight estimation framework. This alignment suggests that the

scaling coefficients derived from the ISL OPV 45 remain applicable across the broader size range, though

future work should validate these relationships against additional reference vessels to improve predictive
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accuracy.

The analysis reveals several important characteristics of weight scaling in OPVs:

(i) LWT exhibits nearly linear scaling with principal dimensions, confirming the validity of dimensional-

based weight estimation.

(ii) length and beam show equivalent influence, reflecting their combined role in determining structural

and outfit weight,

(iii) draft exerts slightly weaker influence, consistent with its more limited impact on non-hull weight

components, and

(iv) the framework maintains consistency with reference data across the design space.

However, several limitations must be acknowledged in the current weight estimation approach. The

regression coefficients are derived from a single parent vessel, which may not represent the full variability

in OPV construction standards, outfit levels, or structural design philosophies. Different mission require-

ments—such as enhanced armament, extended endurance equipment, or specialised sensor fits—would

significantly alter weight distribution and scaling relationships. Additionally, the assumption of similar

internal arrangements across the size range may not hold for larger vessels, where structural efficiency

and outfit density typically improve with scale.

This lightweight analysis provides confidence in the framework’s ability to capture first-order weight

scaling effects essential for early-stage trade-off studies. The strong dimensional correlations enable

reliable comparative assessment of design alternatives, though higher-fidelity weight estimation methods

would be required for detailed design phases where absolute accuracy becomes critical.

7.3.5. Deadrise and Rake Angle Effects

The influence of deadrise angle on seakeeping and stability, and of rake angle on resistance and lightweight,

was also explored. As shown in Figure 7.13, no consistent global trends were identified. This outcome is

expected, since the effect of local hull-form parameters such as deadrise can be masked by concurrent

changes in principal dimensions (length, beam, draft). These parameters should therefore be investigated

under controlled, local optimisation conditions (i.e. fixed principal dimensions) to isolate their contributions.
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Figure 7.13: Influence of deadrise on SKI and SI. No global trend is visible, as deadrise effects are
masked by variations in principal dimensions.

Figure 7.14: Influence of Deadrise on RT and LWT . No consistent trend is observed, indicating that
deadrise contributions are second-order compared to principal dimensions.

Similarly, Figure 7.16 indicates no clear global correlation between rake angle and either resistance

or lightweight. This suggests that rake effects are second-order compared to the dominant influence of

length, displacement, and block coefficient. As with deadrise, targeted local optimisation would be required

to quantify rake contributions reliably. These results confirm that deadrise and rake exert only a secondary

influence compared to beam and draft. Capturing such effects would require dedicated local studies or

higher-fidelity methods.
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Figure 7.15: Influence of rake angle on SKI and SI. No systematic correlation is identified.

Figure 7.16: Influence of Rake angle on RT and LWT . The absence of a global trend suggests rake is a
secondary driver compared to principal dimensions.

7.3.6. Range Trade-offs

Although range was not included as an explicit optimisation objective, it was retained as a feasibility

constraint (> 1500 nm). Analysing its variation across the feasible design set provides valuable insight into

how endurance interacts with other objectives. Range can be interpreted as an emergent performance

metric, reflecting the combined effects of displacement, resistance, and payload capacity. By projecting

range onto Pareto frontiers, the trade-offs with primary objectives become visible.

Figure 7.17 presents Pareto-projected scatterplots of SKI against RT and LWT , with points coloured

by range and markers for the reference ship and reconstructed model.
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Figure 7.17: Pareto front projections of SKI versus resistance RT (left) and SKI versus LWT (right),

coloured by range. The reference ship and reconstructed model are shown for comparison.

Two main insights emerge:

• Range versus resistance (left panel): At constant SKI, increasing range requires higher resistance

(moving right). At constant RT , increasing range reduces SKI (moving down). In both cases, higher

endurance shifts designs away from the Pareto frontier, confirming that range cannot be improved

without sacrificing efficiency or motion performance.

• Range versus weight (right panel): At constant SKI, increasing range requires higher LWT (moving

right), reflecting heavier structures to support additional endurance. At constant LWT , however, SKI

can be improved without reducing range. This highlights a promising design direction: seakeeping

can be enhanced without penalising endurance or weight, but extending range beyond certain limits

inevitably drives the design off the Pareto frontier.

Overall, these results show that range acts as a secondary discriminator. It does not define the

Pareto set directly, but it strongly conditions the balance between endurance, resistance, and seakeeping.

Designers seeking an extended range must either accept higher resistance or heavier vessels, while

opportunities exist to improve seakeeping without reducing endurance if weight is held constant. This

confirms that range is a critical—but indirect—driver of trade-offs in OPV scaling and must be considered

explicitly when selecting mission-oriented designs.

7.3.7. Effects of Variables on Objectives

To complement the trend analysis, the relationship between objectives and design variables was examined

using a correlation heatmap (Figure 7.18). The heatmap compares objectives (rows: SKI, SI, RT , LWT ,

Range) against principal dimensions, form coefficients, and derived ratios (columns: LOA, Beam, Draft,

CP , CB , CWP , L/B, B/T , etc.). Pearson correlation coefficients (r ∈ [−1, 1]) were calculated as:

rXY =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
,
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Figure 7.18: Pearson correlation coefficients between objectives and main particulars, form coefficients,

and ratios. Strong positive correlations are shown in red, strong negative correlations in blue.

where values close to ±1 indicate strong linear association, and values near zero indicate weak or no

linear relationship. It is important to note that Pearson captures only linear dependencies, whereas many

naval–architectural relations are nonlinear (e.g. the power-law between RT and displacement). Therefore,

the heatmap should be interpreted as a first-order diagnostic rather than a complete causal description.

The underlying code in Appendix G.

The following key patterns emerge:

• Strong dimensional drivers; RT , LWT , and range all exhibit very high positive correlation with LOA,

Beam, and Draft (r > 0.85). This reflects the dominant scale effect: larger ships are heavier, offer

more displacement, and achieve longer endurance, but also incur greater resistance.

• Seakeeping; SKI correlates positively with Beam (r = 0.78) and Draft (r = 0.89), confirming that

fuller cross-sectional dimensions improve motion performance. By contrast, SKI is negatively

correlated with slenderness (L/B, r = −0.82), underlining the resistance–seakeeping trade-off.

• Stability; SI correlates strongly with Beam (r = 0.90) and GM/B (r = 0.92), consistent with hy-

drostatic theory. Negative correlation with L/B (r = −0.59) highlights how slender hulls reduce

transverse stiffness.

• Secondary coefficients; Form coefficients such as CP , CB, and CM show only weak to moderate

correlations (|r| < 0.25). Their effects are largely masked by the dominant influence of principal

dimensions in the explored design space.

Overall, the heatmap confirms that hull size and proportions dominate the behaviour of the objectives,

while form coefficients exert secondary influence. This analysis also demonstrates the value of correlation

methods: rather than examining each scatterplot separately, the heatmap provides a compact overview

of how design variables systematically shape performance. At the same time, the complementary trend

analysis remains essential for capturing nonlinear scaling laws that Pearson correlation cannot reveal.
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7.4. Framework Application and Implications

The verification results confirm that the MOO framework consistently reproduces established hydrodynamic

and hydrostatic scaling laws. Having demonstrated physical validity, the framework can now be considered

a practical decision-support tool for early-stage OPV design.

Application in Early-Stage Design

The framework provides designers with a structured method to explore large design spaces rapidly. By

combining Pareto fronts with constraints on stability, resistance, range, and seakeeping, the framework

identifies sets of non-dominated designs that balance performance trade-offs. This approach enables

systematic comparison of alternatives that would traditionally require multiple sequential analyses. In

particular, it allows:

• Rapid exploration of scaling effects, such as assessing the impact of length or displacement growth

on resistance and endurance.

• Quantitative trade-off analysis, for example, between seakeeping and stability when adjusting beam

or GM .

• Identification of robust design ranges, where acceptable performance is achieved across multiple

criteria without excessive sensitivity to a single parameter.

Operational Implications

The Pareto-optimal sets generated by the framework illustrate the design tensions faced in multipurpose

OPVs. For instance, wider beams improve stability but may degrade seakeeping, while deeper drafts

enhance seakeeping at the cost of resistance and displacement. The framework makes these trade-offs

explicit and transparent, allowing decision-makers to prioritise criteria according to mission requirements.

This is particularly valuable in OPVs, where operational profiles can vary widely between patrol, escort,

and surveillance roles.

Visualisation of Feasible Substitutions

Figure 7.19 presents pairwise projections of the feasible non-dominated set within the range 40 ≤ LOA ≤

60 m. Each subplot overlays: (i) the reconstructed parent hull (cyan triangle), (ii) iso–lines of constant RT ,

LWT , SI, and SKI (cyan dashed), and (iii) the local two-dimensional Pareto front (green dashed). This

representation highlights feasible substitutions, i.e. designs that maintain comparable performance in one

objective while achieving improvements in another.
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Figure 7.19: Pairwise projections of the feasible non-dominated set for 40 ≤ LOA ≤ 60 m. The plots show
the parent hull (cyan triangle), iso–lines of constant objectives (cyan dashed), and the local 2D Pareto

fronts (green dashed).

To illustrate this in detail, Figure 7.19 and Table 7.2 compare four candidate hulls against the recon-

structed parent. Each candidate was selected to represent an alternative with similar performance in one

metric while improving another: one with comparable resistance, one with similar SKI, one with similar

LWT , and one combining improved SKI with reduced resistance.
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Table 7.2: Comparison of candidate designs relative to the parent hull. Values higher than the parent hull

are highlighted in green, lower in red.

Run Parent

hull

SBGO_run_1_13

(des0016)

LHS_OPV_4_8_02

(des0288)

SBGO_run_1_21

(des0018)

SBGO_run_1_04

(des0018)

LOA 45.5 44 42 40 53

Beam 8.6 7.39 8.92 6.99 8.29

Draft 2.3 2.19 2.66 2.06 2.51

Depth 4.25 4.65 5.66 4.37 5.33

Deadrise 15 11 13 13 14

Rake an-

gle

17 3 7 7 3

SKI 0.488 0.51 0.59 0.50 0.52

RT 108198 91793 151021 86838 107766

SI 0.023 0.11 0.14 0.12 0.12

DWT 91 113.93 199.20 78.91 180.82

LWT 240 210.72 241.30 174.91 304.81

GM/B 0.1945 0.05 0.06 0.06 0.05

221a_IMO 0.21 0.06 0.07 0.06 0.06

221b_IMO 0.347 0.11 0.13 0.11 0.11

221c_IMO 0.136 0.05 0.06 0.05 0.05

222_IMO 0.788 0.31 0.39 0.32 0.33

223_IMO 0.629 0.70 0.70 0.66 0.70

224_IMO 1.615 0.37 0.49 0.43 0.42

Range 4706 6944 7380 5084 9388

Interpretation of Results

All selected candidates satisfy IMO intact stability criteria by construction. Interestingly, although the

optimisation objective was formulated to maximise SI, the best overall trade-offs were achieved when SI

remained close to its lower feasible bound. Excessive stiffness was shown to reduce seakeeping quality

without providing further benefit to compliance. This indicates that IMO compliance alone is not sufficient:

balanced performance emerges when stability is moderated rather than maximised.

Finally, all candidates demonstrated improved range relative to the parent hull. Since range is a

combined function of resistance and available DWT , gains were achieved whenever RT was reduced

and/or payload fraction was increased. These findings confirm the framework’s ability to reveal performance-

driven substitutions and to reproduce the expected trade-offs between resistance, stability, seakeeping,

and endurance.

Limitations and Further Development

While the framework captures first-order behaviour, it remains an early-stage tool. Simplifications such as

the use of H&M resistance predictions and bare-hull seakeeping models mean that appendage effects,

nonlinear damping, and viscous–wave interactions are not yet accounted for. Integrating higher-fidelity
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methods (e.g., CFD or model testing) in later stages will refine the Pareto-selected candidates.

Implications for OPV Design Practice

By combining scaling methods with multi-objective optimisation, the framework provides a repeatable and

cost-effective pathway for generating balanced OPV designs. It offers not only theoretical verification but

also practical decision-support, enabling designers to identify substitutions and trade-offs that would be

difficult to capture through sequential, single-objective analyses. This represents a step toward digitalised,

knowledge-driven early-stage OPV design.

7.5. Test Case Conclusion

This chapter verified the behaviour of the proposed optimisation framework through a dedicated OPV

scaling case study. Three key outcomes were demonstrated: convergence, trends, and application.

Together, they assess the effectiveness of the framework in verifying physical consistency, capturing

expected scaling behaviour, and supporting practical design decisions.

Convergence: The HV analysis confirmed stable optimisation: after approximately 25 iterations, the

HV plateaued above 99% of its final value. Out of 465 candidates, 177 satisfied all feasibility constraints

and 137 formed the Pareto-optimal set. Constraint filtering revealed that while 91% of designs passed

the GM/B bound, only 39% satisfied the roll-period requirement, highlighting Troll as a more reliable

discriminator of dynamic feasibility. This supports the argument that static stability margins alone are

insufficient and that dynamic criteria must be incorporated directly to ensure operational realism. In addition,

normalising objectives and variables improved the definition of the Pareto front, adding non-dominated

candidates that were previously masked. This shows that normalisation is essential to avoid bias when

comparing heterogeneous objectives.

Trends: The framework reproduced established naval–architectural behaviour. Longer hulls increased

displacement and resistance but improved stability and seakeeping, consistent with slender-body scaling.

Greater beam enhanced SI but reduced SKI, reflecting the classical stability–comfort trade-off. Deeper

drafts raised displacement and resistance while also improving stability.

Form coefficients (CB , CP , CWP , CM ) showed weaker and less consistent global correlations compared

to principal dimensions and derived ratios (L/B, B/T , GM/B). Their influence is partly masked by large

variations in L, B, and T , and becomes clearer only in narrow-band studies. Still, secondary patterns were

evident: fuller waterplanes (CWP ↑) were linked to shorter roll periods and lower SKI, while higher prismatic

coefficients (CP ↑) tended to raise resistance at constant displacement. This shows that coefficients act as

conditioning factors rather than dominant drivers, reinforcing the need for localised studies to isolate their

influence.

Range, although not an explicit optimisation objective, emerged as a decisive secondary discriminator.

Higher endurance was shown to require either increased resistance (for fixed SKI), reduced SKI (for
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fixed RT ), or higher LWT (for fixed SKI). In rare cases, SKI improved without reducing range, but overall

endurance strongly conditioned the feasible design space.

Correlation heatmaps confirmed that principal dimensions and derived ratios (L/B, B/T , and GM/B)

exert the strongest global influence on performance, while secondary factors such as deadrise, rake, and

coefficients provide nuanced effects that require targeted exploration.

Application: The framework was applied locally within the 40 ≤ LOA ≤ 60 m range to explore feasible

substitutions. Iso-lines of constant RT , LWT , SI, and SKI provided a transparent way to compare

candidates against the reconstructed parent hull. The results showed that viable alternatives exist which

maintain comparable performance in one metric while offering improvements in another. For example,

designs were identified with equal RT but higher SKI, or with equal SKI but lower LWT . This highlights

the framework’s strength: by presenting a structured set of trade-offs, it enables designers to select

solutions that best align with mission priorities, whether endurance, comfort, or economy.

Taken together, these results confirm that the framework is:

• Robust, as convergence monitoring produced a stable Pareto set.

• Physically consistent, as the observed trends align with established naval-architectural theory.

• Insightful, as several critical trade-off patterns were revealed: the need to minimise rather than

maximise SI, the importance of the roll-period (Troll) constraint, the confirmation that GM/B > 0.05

is a valid lower bound, the necessity of normalising objectives and variables to avoid bias, and the

conditioning effect of range trade-offs.

• Applicable, as the framework supports mission-oriented substitutions in OPV design.

These findings verify the framework and directly address the final part of Research Sub-question 5.

Chapters 6 and 7 jointly provide the answer: Chapter 6 validates the framework against reference data,

while Chapter 7 verifies its behaviour against expected physical laws and trade-offs.
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Discussion and Conclusion

This chapter synthesises the findings of the thesis and provides final conclusions of the thesis. The

discussion is structured around the research sub-questions, followed by an integrated answer to the main

research question. Subsequent sections address the implications of the work, recommendations for design

practice and future research, Finally a brief personal reflection.

8.1. Discussion

8.1.1. Research Sub-questions

1. “How do the fundamental characteristics, mission roles, and design drivers of multi-purpose

Offshore Patrol Vessels (OPVs) influence their key design and mission requirements, and in

turn shape overall vessel performance and operational effectiveness?”

Chapter 2 confirmed that multipurpose OPVs operate across diverse mission profiles, including EEZ

surveillance, environmental protection, SAR, counter-piracy, and law enforcement. These roles

impose heterogeneous demands: endurance and cost efficiency favour slender hulls, while stability

and seakeeping require wider beams and deeper drafts, making conflicting requirements inherent

to OPV design. From this mission analysis, five key design drivers were identified: seakeeping,

resistance, stability, TLCC, and operational range. In the framework, TLCC was represented by LWT

as a practical early-stage proxy for cost, while range was reformulated from a DWT measure into a

minimum-range constraint to ensure endurance feasibility before other trade-offs were explored. The

heatmap in Figure 2.5 shows that global performance is dominated by the main particulars—length,

beam, draft—together with metacentric height (GM ). Beam and GM/B govern stability, draft and

beam improve seakeeping, and all three dimensions drive resistance, weight, and range. Ratios

further clarify trade-offs: slender hulls (L/B) reduce resistance but harm stability and seakeeping,

while wider B/T ratios improve stability and range at the cost of resistance. By contrast, coefficients

92
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(CB , CP , CWP ), deadrise, and rake angle showed only minor global influence, reflecting their role as

local refinements within constrained design spaces.

2. “How do contemporary ship-design and scaling methodologies—including geometric, para-

metric, and hybrid approaches—capture the non-linear interactions between key hull parame-

ters (length, beam, draft, block coefficient) and performance indicators (resistance, stability,

seakeeping, and propulsion efficiency), and thereby support optimisation in the early stages

of design?”

Contemporary ship-design methodologies have increasingly shifted their focus toward optimisation

in the early design stages, where multiple objectives and performance drivers must be balanced

simultaneously. Scaling methods provide the foundation for this exploration and can be classified into

geometric, parametric, and hybrid approaches. Pure geometric scaling preserves similarity but cannot

capture the nonlinear effects of changing principal dimensions—for example, beam may improve

stability while increasing resistance, and draft may enhance seakeeping at the expense of weight.

Parametric scaling addresses these limitations by allowing targeted variation of individual dimensions,

but exhaustive sweeps across the design space quickly become computationally expensive. Hybrid

approaches combine proportional scaling with selective parametric variation, offering a balance

between efficiency and the ability to reveal nonlinear interactions. In this thesis, these ideas are

integrated within a Systems Engineering (SE) and Set-Based Design (SBD) framework: SE provides

a requirement-driven structure where objectives, constraints, and evaluation methods are defined

up front, while SBD supports the parallel evaluation of multiple candidates to avoid premature

convergence. A parametric parent-hull model enables this integration by applying proportional

scaling for efficiency while introducing targeted parametric variation to expose nonlinear behaviours

systematically. This ensures that key performance trade-offs are identified early and that optimisation

in OPV design is both efficient and robust.

3. “What is the current state-of-the-art in design optimisation frameworks for early-stage ship

design, and based on this, what are the requirements for a Multi-Objective Optimisation

(MOO)-based decision-making framework suitable for OPV scaling?”

Early-stage ship design is characterised by incomplete information: detailed data on weight distri-

bution, arrangement, and subsystems are not yet available. Optimisation under such uncertainty

requires broad exploration of the design space, since focusing on one objective or variable at a time

risks converging to local or sub-optimal solutions. Contemporary frameworks therefore treat early-

stage design as a multi-objective exploration problem, supported by parametric modelling, systematic

Design of Experiments, surrogate modelling, Pareto-based optimisation, and convergence monitor-

ing. Building on these insights, the framework developed in this thesis links mission requirements

directly to objectives and constraints, explores nonlinear parameter interactions through a hybrid

SE–SBD setup, employs DoE and surrogate-assisted optimisation for computational tractability,

filters infeasible candidates early, and visualises Pareto fronts to support trade-off decisions. In this
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way, it fully meets the requirements for an OPV-specific, MOO-based decision-support framework.

4. “What components are required for the proposed framework, and how can the setup be

structured to support early-stage OPV design?”

The proposed framework supports early-stage OPV design by enabling both the rapid generation

of candidate designs and the rapid evaluation of those candidates within a multi-objective context.

It is built from three integrated components: parametric modelling, performance evaluation, and

multi-objective optimisation. The framework operates on four main inputs: the parent hull as the

geometric baseline, hull variables defined through a parametric model, operational conditions (sea

states, headings, and speeds), and mission requirements (motion limits and minimum range). Ob-

jectives correspond directly to the key design drivers—SKI, SI, RT , and LWT—while constraints

ensure feasibility of the design space through static stability bounds, dynamic roll-period limits, and

displacement consistency. These elements are embedded within a multi-objective optimisation

algorithm, implemented as a surrogate-based global optimisation (SBGO) flow with a MOGA core.

The parametric model enables candidate generation, the evaluation module provides consistent per-

formance indicators, and the optimisation envelope integrates constraint filtering, surrogate modelling,

and Pareto analysis. Structurally, the setup follows a sequential–parallel logic: sequential in defining

mission-driven objectives and constraints (Systems Engineering), and parallel in evaluating broad

candidate sets (Set-Based Design). The use of a parent hull with geometric scaling provides rapid

variation, while targeted parametric scaling of selected dimensions enables systematic exploration

and reduces the risk of converging to local optima.

5. “How can the effectiveness of an integrated scaling and mission-oriented MOO framework be

verified and validated to ensure robust and reliable early-stage OPV design decisions?”

For such a framework to be considered effective and reliable, it is validated against high-fidelity

external reference data and verified through internal consistency checks. In this thesis, validation

began with the parent hull, which was compared against available reference data, including towing

tank resistance tests, seakeeping RAOs, and intact stability booklets. Demonstrating close agreement

confirmed that the parametric reconstruction and evaluation methods provide a credible baseline.

Verification was carried out by showing that the optimisation process converges and reproduces

established naval-architectural behaviour through trend analysis. Hypervolume monitoring plateaued

after approximately 25 iterations, confirming stable convergence, while trend analysis reproduced

known relationships: length reducing Froude number and resistance while improving seakeeping,

beam enhancing stability at the cost of seakeeping, and draft improving stability while increasing

resistance. Application across the 40 ≤ LOA ≤ 60 m range further demonstrated that the framework

could identify feasible variants satisfying IMO stability requirements while improving mission-oriented

criteria such as range and comfort. Through validation of the parent hull against high-fidelity data and

verification via convergence and trend analysis, the framework is shown to be a robust and reliable

decision-support tool for early-stage OPV design.
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8.2. Main Research Question

How can scaling and mission-oriented Multi-Objective Optimisation (MOO) be integrated into an early-stage

design framework that addresses the nonlinear effects of scaling, enhances operational flexibility, and

performance of multipurpose OPVs?

A design framework has been developed to support naval architects in the concept design of OPVs.

The framework integrates scaling methods with multi-objective optimisation in order to quickly generate

and evaluate a large number of design variants. Using a parent hull as the baseline, geometric scaling

provides rapid variation, while targeted parametric scaling exposes nonlinear effects by adjusting principal

dimensions. These variants are assessed against mission-oriented objectives—resistance, stability,

seakeeping, and lightweight as a proxy for cost—within a constraint-driven optimisation environment. The

resulting Pareto frontiers make explicit the trade-offs between competing requirements such as endurance,

stability, and comfort.

In the validation and verification studies, the added value of the framework became clear. Validation

against towing tank data, seakeeping RAOs, and intact stability booklets showed that the reconstructed

parent hull and evaluation methods reproduce external reference data with sufficient accuracy for early-

stage use. Verification through optimisation test cases confirmed both convergence and consistency

with established naval-architectural trends: length reducing resistance and improving seakeeping, beam

improving stability but penalising motions, and draft enhancing stability at the cost of resistance.

By achieving the above, the framework allows the naval architect to rapidly explore the design space

and identify optimal trade-offs under realistic mission constraints. In the OPV case study, the framework

evaluated 465 candidate designs, of which 137 formed the Pareto-optimal set. These solutions demon-

strated how conflicting drivers could be balanced—for instance, by satisfying IMO stability requirements

while improving range and seakeeping.

To conclude, the developed framework enables scaling and mission-oriented MOO to be effectively

integrated into early-stage OPV design. It is able to reveal nonlinear interactions, ensure feasibility through

constraint filtering, and provide transparent decision support via Pareto analysis. In doing so, it offers

naval architects a robust and practical tool to guide OPV design under diverse and conflicting mission

requirements.

8.3. Contributions

This thesis advances early-stage OPV design research by providing the following contributions:

1. Developed and demonstrated a new framework that integrates hybrid scaling with mission-oriented

MOO, tailored specifically to multipurpose OPVs. The framework uniquely combines seakeeping,

stability, resistance, and lightweight objectives, allowing nonlinear effects, mission constraints, and

operational trade-offs to be systematically addressed in early-stage naval design.
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2. Extended the application of the SKI by incorporating it as an explicit optimisation objective, combining

multiple wave headings into a single metric and demonstrating its effectiveness in balancing motions

against resistance, stability, and weight during OPV scaling studies.

3. Introduced the SI as an optimisation objective, based on IMO intact stability criteria, enabling stability

to be treated directly as a performance driver in early-stage optimisation rather than only as a

feasibility check.

4. Demonstrated that using the roll period (Troll) as a dynamic stability criterion is more effective than

relying solely on static GM/B limits, ensuring that overly stiff designs are constrained in a way that

reflects operational realism.

5. Incorporated range as a constraint, ensuring that all feasible designs satisfy a minimum endurance

requirement and remain operationally relevant.

6. Confirmed that maintaining GM/B > 0.05 is consistent with IMO intact stability requirements,

validating its use as a lower-bound constraint in early-stage design studies.

8.4. Recommendations and Future Research

Building on the contributions of this thesis, the following recommendations are proposed to guide both the

practical application and further development of the framework:

1. Building on the demonstration that Troll is a more effective constraint than static GM/B limits, future

frameworks should incorporate dynamic stability criteria alongside static margins to avoid overly stiff

designs and ensure realistic motion behaviour.

2. Extending the use of Pareto frontiers in this work, designers are encouraged to adopt Pareto

visualisation as a decision-support tool for balancing endurance, comfort, and stability under conflicting

mission requirements.

3. To strengthen the validation established against towing tank and seakeeping data, future work should

incorporate additional high-fidelity analyses (e.g. CFD simulations, seakeeping model tests) to further

enhance the accuracy and credibility of the framework.

4. Building on the observed influence of L/B and B/T ratios in shaping performance, future studies

should extend the investigated ranges—particularly at the lower bound of L/B—to broaden the

design space and capture a wider spectrum of feasible OPV hull forms.

5. As this thesis treated freeboard only indirectly, introducing freeboard as a bounded design variable

would allow its influence on SKI and DWT to be captured more explicitly.

6. To refine LWT estimates beyond the proxy used here, additional data points and empirical methods

should be incorporated to improve predictive reliability.

7. Building on the use of the SI as an explicit optimisation objective,KG should be included as a design

variable to better capture its influence on intact stability and roll behaviour.
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8. The optimisation objectives can be expanded to include additional performance aspects such as

manoeuvrability and damaged stability, extending the framework beyond the current scope of intact

seakeeping and stability.

9. To complement the deterministic approach in this thesis, future studies should incorporate uncertainty

quantification to account for variability in input parameters and improve the robustness of optimisation

outcomes.

10. Sensitivity studies on coefficient variation within narrow parameter ranges should be conducted to

clarify their local influence, complementing the global trends identified in this work.

11. The SI, introduced here as an objective, can be further refined to target minimum or moderate values,

balancing stability with other performance drivers.

12. Finally, extending the parametric model to include superstructure effects would allow the framework

to capture additional stability-related criteria, such as significant wave crest (SWC) compliance.

8.5. Conclusion

This thesis set out to integrate scaling and mission-oriented multi-objective optimisation (MOO) into an

early-stage design framework for multipurpose OPVs. The work has demonstrated that this integration is

feasible and effective when built around a hybrid Systems Engineering and Set-Based Design (SE–SBD)

approach. By combining geometric scaling for rapid variation with targeted parametric scaling for nonlinear

sensitivity, and embedding these within a constraint-driven optimisation process, the framework provides a

systematic means of exploring the OPV design space.

The results showed that key performance trade-offs—between resistance, stability, seakeeping, and

lightweight—can be captured explicitly in Pareto frontiers, supporting transparent decision making under

conflicting mission requirements. Novel contributions included the use of the SKI across multiple headings

as an optimisation objective, the introduction of the SI alongside dynamic roll-period constraints, and the

incorporation of range as a feasibility requirement. Verification confirmed convergence and consistency

with established naval-architectural trends, while validation against high-fidelity reference data established

that the parent hull and evaluation models provide sufficient accuracy for early-stage application.

In doing so, the thesis advances OPV design research by demonstrating a practical decision-support

tool that is both computationally efficient and operationally relevant. The framework enables naval architects

to rapidly generate, evaluate, and compare feasible design alternatives, offering clear insights into the

trade-offs that govern OPV performance. While the study was limited to a specific hull baseline and a

selected set of objectives and constraints, the results provide a foundation for future research to expand

the design space, refine the models, and incorporate additional performance aspects.
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8.6. Personal Reflection

This thesis concludes a two-year adventure at TU Delft. Looking back on the research process, there are

several aspects I would approach differently if given the opportunity.

First, closer communication with a shipyard or client would have been valuable in order to better

understand practical constraints, demands, and objectives. Early alignment with stakeholders could have

ensured that the framework reflected not only academic rigor but also industrial applicability.

Second, the choice of parameters and variables deserves reconsideration. While global optimisation

of ship size with respect to length, beam, and draft is a useful starting point, it should be coupled with

complementary factors such as GM , structural considerations, and freeboard. These influence not only

stability but also seakeeping, weight, and range, and therefore directly affect design trade-offs.

From an optimisation perspective, the process would have benefited from using normalised variance for

both variables and objectives from the outset. This would have improved comparability between objectives

and avoided biases in Pareto-front convergence. In hindsight, the use of the Stability Index as a separate

optimisation objective was redundant. It did not provide significant additional insight beyond its role as a

regulatory constraint. Interestingly, lower Stability Index values often corresponded to improved seakeeping

and reduced resistance, while still maintaining compliant roll behaviour and damping.

Another lesson learned concerns the treatment of roll. Roll behaviour is strongly affected by appendages

such as bilge keels and stabilisers, as well as by the internal arrangement of the ship. For this reason, the

optimisation of roll-related criteria in an early-stage framework has inherent limitations unless these factors

are explicitly modelled.

Finally, I recognise that a more realistic strategy would have been to segment the design study into

narrower size ranges—for example 40–60 m, 60–80 m, and 80–90 m. This would have yielded results

more precise to each operational scale and more reflective of the practical decisions faced by designers.

In summary, this reflection highlights both the strengths of the framework developed in this thesis and

the areas where it could be refined. These insights form a valuable foundation for future research, bridging

the gap between academic methods and the realities of OPV design practice.
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Table A.1: Overview of existing OPVs designs [10, 13, 14, 15]
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ARES ARES 51 OPV 51 9 2.5 22 3,000 270 10 2,240

ARES ARES 55 OPV 55 9.5 2.7 23 3,500 340 12 2,500

ARES ARES 66 OPV 66 10 3 24 4,000 400 14 3,000

ARES ARES 72 OPV 72 11 3.5 25 4,500 450 15 3,500

ARES ARES 160 SAR 48 8.8 2.4 22 2,800 250 8 1,800

ARES ARES 150 BOLD 56 10 3 24 3,800 350 12 2,800

BAE OPV 90 90 13 4 24 5,500 2,000 35 7,000

Austal Patrol 58 58 11 3 25 4,000 350 21 4,500

Austal Patrol 56 56 10 2.9 26 3,800 340 20 4,200

Damen Stan Patrol 4207 43 7.1 2.4 26 1,800 240 7 4,100

Damen Stan Patrol 5009 50 9.4 2.8 25 3,000 400 10 5,000

Damen Stan Patrol 5509 55 9 2.7 26 3,500 450 12 5,200

Damen Stan Patrol 6211 62 11 3.3 23 4,000 500 14 6,000

Damen OPV 1400 Coast Guard 72 11 3.5 22 5,000 1,400 21 7,200

Damen OPV 1800 Coast Guard 83 14 4 21 6,000 1,800 30 8,500

Damen OPV 2200 Military 92 14 4.2 22 7,000 2,200 30 9,000

Damen OPV 2400 Coast Guard 98 15 4.5 22 8,000 2,400 35 9,500

KERSHIP OPV 45 46 8.4 3 22 3,200 270 10 2,500

KERSHIP OPV 52 CG 52 9 3.2 22 3,500 440 12 3,000

KERSHIP OPV 85 CG 84 14 4 24 8,000 1,750 35 6,000

KERSHIP OPV 60 62 9.5 3.6 23 5,000 620 21 3,500

KERSHIP OPV 70 65 11 3.8 24 5,000 870 21 4,000

KERSHIP OPV 90 92 15 4.2 25 8,000 2,200 30 6,500
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VARD VARD 7 043 43 8.5 2.8 24 2,500 450 10 3,200

VARD VARD 7 055 55 10 3.2 25 3,500 600 12 3,800

VARD VARD 7 072 72 12 3.6 24 4,500 900 14 4,500

VARD VARD 7 080 80 12 4 24 5,000 1,200 15 5,000

VARD VARD 7 085 85 14 4.2 23 5,500 1,500 20 5,500

VARD VARD 7 090 90 14 4.5 22 6,000 1,800 25 6,000

DEARSAN Tuzla Class 57m 57 9.4 2.7 25 3,000 400 10 3,500

DEARSAN HSV 58 58 10 2.9 24 2,500 450 12 4,000

DEARSAN MPOSV 72 72 13 3.5 23 4,500 850 14 5,000

DEARSAN RV 70 70 12 3 22 3,800 700 12 4,200

DEARSAN HSV 41 41 8.5 2.5 26 2,000 300 8 3,200

DEARSAN MHV 55 55 9.5 2.8 24 3,200 450 10 3,800

DEARSAN TS 65 65 11 3.2 22 4,000 500 12 4,500

DEARSAN FAC 65 65 11 3 28 2,800 480 10 5,000

DEARSAN C 74 Corvette 74 13 3.6 27 5,500 1,200 15 6,000

DEARSAN OPV 76 76 13 3.8 24 6,000 1,500 20 5,500

Fincantieri Musherib Class (OPV) 56 9.2 3 22 3,000 650 15 4,000

Fincantieri Sars Turkey (OPV) 66 12 3.5 23 4,500 850 20 5,200

Fincantieri Sirio Class (OPV) 52 10 3.2 21 3,500 700 15 3,800

Fincantieri Falaj 2 Class (Stealth) 55 9.5 3 28 2,800 600 12 5,000

Fincantieri Saettia MK2 (IPV) 53 9 2.8 22 3,000 500 12 4,000

Fincantieri Saettia MK3 (IPV) 54 9.2 3 23 3,200 520 14 4,200

Fincantieri Saettia MK4 (IPV) 56 9.4 3.2 24 3,500 550 15 4,500



1
0
9

S
hi
py

ar
d

V
es

se
l N

am
e

Le
ng

th
(m

)

B
ea

m
(m

)

D
ra

ft
(m

)

m
ax

sp
ee

d
(k

no
ts
)

R
an

ge
(n

m
)

D
is
pl
ac

em
en

t (
to

ns
)

E
nd

ur
an

ce
(d

ay
s)

po
w
er

(k
W

)

Fassmer CPV 50 50 9.5 2.8 23 3,000 450 12 3,800

Fassmer OPV 50 50 9.5 3 24 3,200 470 12 4,000

Fassmer OPV 60 60 11 3.2 24 4,000 600 14 4,500

Fassmer OPV 70 70 11 3.4 24 4,500 850 15 5,200

Fassmer OPV 80 80 12 3.8 23 5,000 1,200 20 5,500

Fassmer OPV 80 S 80 12 3.8 24 5,200 1,250 20 5,800

Fassmer OPV 80 L 80 13 4 24 5,500 1,300 20 6,000

Fassmer Fassmer MPV 70 70 12 3.5 22 4,500 900 15 4,800

Fassmer SAR 46 46 8.8 2.6 22 2,800 400 10 3,500

Fassmer CPV 40 40 8.5 2.5 25 2,500 350 8 3,200

Fassmer MPV 70 70 11 3.3 23 4,800 950 16 5,000

Navantia Avante 300 46 8.6 2.8 21 2,500 380 8 3,200

Navantia Avante 1400 70 11 3.5 24 4,500 1,400 15 5,500

Navantia Avante 1800 80 12 3.8 25 6,000 1,800 20 6,000
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Figure A.1: Length-to-Beam (L/B) ratio versus hull-based Froude number (Fn,h) calculated at maximum

sustained speed.
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B
SWBS Groups and LCG, V CG Ratios

Figure B.1: WMEC 270 (US Coast Guard Cutter,77 [m]) SWBS Groups and LCG, V CG Ratios [20]



C
Resistance Calculation Code in CAESES

1 // Reynolds number

2 double Re(Vs * LWL / nu)

3

4 // Froude number

5 double Fn(Vs / pow(g * LWL, 0.5))

6

7 // ITTC-1957

8 double ITTC(0.075 / pow(log(Re) - 2, 2))

9

10 // Frictional resistance

11 double R_F(0.5 * rho * pow(Vs, 2) * S * ITTC)

12

13 // --- Wave resistance helpers ---

14 double B_L(B / LWL)

15 if (B_L < 0.11)

16 double C_7(0.229577 * pow(B_L, 0.33333))

17 elseif (B_L > 0.25)

18 double C_7(0.5 - 0.0625 * B_L)

19 else

20 double C_7(B_L)

21 endif

22

23 double C_1(2223105 * pow(C_7, 3.78613) * pow(T_A / B, 1.07961)

24 * pow(90 - i_E, -1.37565))

25

26 if (bulb == 1)
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27 double C_3(0.56 * pow(A_BT, 1.5) / (B * T_A * (0.31 * pow(A_BT, 0.5) + T_F - h_B)))

28 else

29 double C_3(0)

30 endif

31

32 double C_2(exp(-1.89 * pow(C_3, 0.5)))

33 double C_5(1 - ((0.8 * A_T) / (B * T_A * C_M)))

34

35 if (1 / B_L < 12)

36 double gamma(1.446 * C_P - 0.03 / B_L)

37 else

38 double gamma(1.446 * C_P - 0.36)

39 endif

40

41 if (C_P < 0.8)

42 double C_16(8.07981 * C_P - 13.8673 * pow(C_P, 2) + 6.984388 * pow(C_P, 3))

43 else

44 double C_16(1.73014 - 0.7067 * C_P)

45 endif

46

47 if (pow(LWL, 3) / dis < 512)

48 double C_15(-1.69385)

49 elseif (pow(LWL, 3) / dis > 1727)

50 double C_15(0)

51 else

52 double C_15(-1.69385 + (LWL / pow(dis, 1.0/3.0) - 8) / 2.36)

53 endif

54

55 double m1(0.0140407 * LWL / T_A

56 - 1.75254 * pow(dis, 1.0/3.0) / LWL

57 - 4.79323 * B / LWL

58 - C_16)

59

60 double m2(C_15 * pow(C_P, 2) * exp(-0.1 * pow(Fn, -2)))

61

62 // Wave resistance

63 double R_W1(C_1 * C_2 * C_5)

64 double R_W2(exp(m1 * pow(Fn, d) + m2 * cos(gamma * pow(Fn, -2))))

65 double R_W(R_W1 * dis * g * rho * R_W2)

66

67 // Transom resistance
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68 double Fn_T(Vs / pow(2 * g * A_T / (B * B * C_wp), 0.5))

69 if (Fn_T < 5)

70 double C_6(0.2 * (1 - 0.2 * Fn_T))

71 else

72 double C_6(0)

73 endif

74 double R_TR(0.5 * rho * pow(Vs, 2) * A_T * C_6)

75

76 // Air resistance

77 double T_F_LWL(T_F / LWL)

78 if (T_F_LWL < 0.04)

79 double C_4(T_F / LWL) // NOTE: ����� ��"/" ��� ������

80 else

81 double C_4(0.04)

82 endif

83 double C_A(0.006 * pow(LWL + 100, -0.16) - 0.00205

84 + 0.003 * pow(LWL / 7.5, 0.5) * pow(C_b, 4) * C_2 * (0.04 - C_4))

85 double R_A(0.5 * rho * pow(Vs, 2) * S * C_A)

86

87 // --- (1+k) form-factor correction ---

88 // C_12

89 double T_L(T_A / LWL)

90 if (T_L > 0.05)

91 double C_12(pow(T_A / LWL, 0.2228446))

92 elseif (T_L < 0.02)

93 double C_12(0.479948)

94 else

95 double C_12(48.2 * pow(T_A / LWL, 2.078) / 0.479948)

96 endif

97

98 double C_13(1 + 0.003 * C_stern)

99 double L_R((1 - C_P + (0.06 * C_P * LCB) / (4 * C_P - 1)) * LWL)

100

101 double k1(0.93 + C_12 * pow(B / L_R, 0.92497))

102 double k2(pow(0.95 - C_P, -0.521448))

103 double k3(pow(1 - C_P + 0.0225 * LCB, 0.6906))

104 double k(C_13 * k1 * k2 * k3)

105

106 // Appendage resistance (example)

107 double R_APP(0.5 * rho * pow(Vs, 2) * S_APP * (1 + k_2) * ITTC)

108
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109 // Total resistance

110 double R_T(R_F * k + R_W + R_TR + R_A + R_APP)



D
Seakeeping Index (SKI) Code (Python)

1 import pandas as pd

2 import os

3 import math

4 import time

5 import sys

6

7 # === USER SETTINGS ===

8 excel_file = r"OPV_design.xlsx"

9 output_csv = r"Single_SKU_Result.csv"

10 sheets_to_process = ["SS6_180", "SS6_135", "SS6_90", "SS6_45", "SS6_0"]

11

12 # Provisional maximums

13 provisional_max = {

14 "Roll (deg)": 6,

15 "Pitch (deg)": 4,

16 "Vert. acc. (g)": 0.2,

17 "Lat. acc. (g)": 0.2,

18 "MSI (%)": 40,

19 "Deck Wetness (%)": 5,

20 "Slamming Probability (%)": 3

21 }

22

23 def compute_provisional_ski(results_dict, provisional_max):

24 """Compute SKI and penalties for each component."""

25 penalties = {}

26 for key, max_value in provisional_max.items():
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27 result_value = results_dict.get(key, None)

28 if result_value is None or max_value == 0:

29 penalties[key.lower()] = 0.0

30 else:

31 penalties[key.lower()] = round(result_value / max_value, 3)

32 ski = 1.0 - sum(penalties.values()) / len(provisional_max)

33 ski = round(max(0.0, min(ski, 1.0)), 3)

34 return ski, penalties

35

36 def process_excel_sheet(sheet_name, excel_path, freeboard, draft, loa, provisional_max):

37 """Process one Excel sheet to extract raw values and compute Deck Wetness & Slamming."""

38 df = pd.read_excel(excel_path, sheet_name=sheet_name)

39 df.columns = df.columns.str.strip().str.lower()

40 results = {}

41

42 # Loop through each row

43 for _, row in df.iterrows():

44 item = str(row["item"]).strip().lower()

45 rms = row.get("rms")

46 m0_val = row.get("m0")

47

48 # Roll, Pitch, Accelerations, MSI

49 if "roll motion" in item and pd.notna(rms):

50 results["Roll (deg)"] = rms

51 elif "pitch motion" in item and pd.notna(rms):

52 results["Pitch (deg)"] = rms

53 elif "abs. vert. accel" in item and "bridge" in item and pd.notna(rms):

54 results["Vert. acc. (g)"] = rms / 9.81

55 elif "lat. (due to roll) accel" in item and "bridge" in item and pd.notna(rms):

56 results["Lat. acc. (g)"] = rms / 9.81

57 elif "bridge: sm" in item and pd.notna(rms):

58 results["MSI (%)"] = rms

59

60 # Deck Wetness (based on bow vertical motion)

61 elif "bow: rel. vert. motion" in item and pd.notna(m0_val):

62 results["bow_rel_m0"] = m0_val # Save for Deck Wetness

63 P_wet = math.exp(-((freeboard + 0.8) ** 2) / (2 * m0_val))

64 results["Deck Wetness (%)"] = round(P_wet * 100, 2)

65

66 # Slamming Probability (based on slamming location)

67 elif "slamming: rel. vert. motion" in item and pd.notna(m0_val):
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68 results["slamming_rel_m0"] = m0_val

69 term1 = (draft ** 2) / (2 * m0_val)

70 elif "slamming: rel. vert. velocity" in item and pd.notna(m0_val):

71 Vcr = 0.093 * math.sqrt(9.81 * loa)

72 term2 = (Vcr ** 2) / (2 * m0_val)

73 results["slamming_rel_m2"] = m0_val

74

75 # Calculate Slamming Probability

76 if "slamming_rel_m0" in results and "slamming_rel_m2" in results:

77 term3 = term1 + term2

78 P_slam = math.exp(-term3)

79 results["Slamming Probability (%)"] = round(P_slam * 100, 2)

80 else:

81 results["Slamming Probability (%)"] = 0.0 # Default to 0 if missing

82

83 # If Deck Wetness wasn’t calculated, default to 0

84 if "Deck Wetness (%)" not in results:

85 results["Deck Wetness (%)"] = 0.0

86

87 ski_value, penalties = compute_provisional_ski(results, provisional_max)

88 return ski_value, penalties, results

89

90 # === Main Logic ===

91 try:

92 ship_data_df = pd.read_excel(excel_file, sheet_name="ship_data")

93 ship_data_df.columns = ship_data_df.columns.str.strip().str.lower()

94 freeboard_val = ship_data_df.loc[0, "|opv|parameters|calculated|freeboard"]

95 draft_val = ship_data_df.loc[0, "|opv|parameters|variables|draft"]

96 loa_val = ship_data_df.loc[0, "|opv|parameters|variables|loa"]

97 except Exception as e:

98 print(f"� Could not read ship data: {e}")

99 sys.exit(1)

100

101 ss6_ski_sum = 0.0

102 all_rows = []

103

104 for sheet in sheets_to_process:

105 ski_value, penalties, raw_results = process_excel_sheet(

106 sheet, excel_file, freeboard_val, draft_val, loa_val, provisional_max

107 )

108 ss6_ski_sum += ski_value
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109

110 row = {"Sheet": sheet, "SKI": ski_value}

111 # Add raw results and penalties to the row

112 for key in provisional_max:

113 row[key] = raw_results.get(key, "N/A")

114 row[f"{key} Penalty"] = penalties.get(key.strip().lower(), "N/A")

115 all_rows.append(row)

116

117 # Compute combined SKI

118 combined_ski_ss6 = round(ss6_ski_sum / len(sheets_to_process), 3)

119

120 # Add combined SKI row

121 combined_row = {"Sheet": "Combined_SS6", "SKI": combined_ski_ss6}

122 for key in provisional_max:

123 combined_row[key] = "-"

124 combined_row[f"{key} Penalty"] = "-"

125 all_rows.append(combined_row)

126

127 # --- Save to CSV (fixed) ---

128 # Previously: output_df = pd.DataFrame([{combined_ski_ss6}]) -> malformed

129 output_df = pd.DataFrame(all_rows)

130 output_df.to_csv(output_csv, index=False)

131

132 sys.exit(0)
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Hypervolume code

1 # --- Cumulative HV across runs (constant reference point) ---

2

3 import numpy as np

4 import pandas as pd

5 import matplotlib.pyplot as plt

6 from pymoo.indicators.hv import HV

7

8 # Preconditions:

9 # - feasible_df exists (filtered)

10 # - ref_point_min exists (constant ref from LHS_OPV_4_8_02)

11

12 ref_min = np.asarray(ref_point_min, dtype=float)

13 hv_indicator = HV(ref_point=ref_min)

14

15 # Your run order (left-to-right on x-axis)

16 RUN_LIST = [

17 "LHS_OPV_4_8_02", "dakota1_03",

18 "SBGO_run_1_02","SBGO_run_1_04","SBGO_run_1_05","SBGO_run_1_07",

19 "SBGO_run_1_08","SBGO_run_1_10","SBGO_run_1_11","SBGO_run_1_12",

20 "SBGO_run_1_13","SBGO_run_1_15","SBGO_run_1_17","SBGO_run_1_20",

21 "SBGO_run_1_21","SBGO_run_1_22","SBGO_run_1_23","SBGO_run_1_24",

22 "SBGO_run_1_25","SBGO_run_1_26","SBGO_run_1_27",

23 "OPV_norm_1_27","OPV_norm_1_28","OPV_norm_2_31","OPV_norm_2_32",

24 "OPV_norm_2_33","OPV_norm_2_34","OPV_norm_2_35","OPV_norm_2_36","OPV_norm_2_37"

25 ]

26 RUN_LIST = [r.lstrip("\\/") for r in RUN_LIST]
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27

28 # Column detection

29 def find_col(df, cands):

30 for c in cands:

31 if c in df.columns:

32 return c

33 return None

34

35 RUN_COL = find_col(feasible_df, ["run","Run","RUN","seed","experiment","exp","Exp","EXP"])

36 if RUN_COL is None:

37 raise KeyError("Run column not found. Expected one of:

run/Run/RUN/seed/experiment/exp/Exp/EXP")↪→

38

39 # Prefer normalized objectives if present

40 OBJ_CANDIDATES = {

41 "SKI": ["SKI"],

42 "R_T": ["R_T_norm"],

43 "LWT": ["lightweight_norm"],

44 "SI": ["SI"],

45 }

46 def choose_existing_cols(df, candidates_map):

47 chosen = {}

48 for key, cands in candidates_map.items():

49 for c in cands:

50 if c in df.columns:

51 chosen[key] = c

52 break

53 if key not in chosen:

54 raise KeyError(f"No column found for objective '{key}'. Tried: {cands}")

55 return chosen

56

57 col_map = choose_existing_cols(feasible_df, OBJ_CANDIDATES)

58 obj_cols = [col_map["SKI"], col_map["R_T"], col_map["LWT"], col_map["SI"]]

59

60 # Map to minimization space (+1 for min, -1 for max) in this order

61 senses = np.array([-1, +1, +1, -1], dtype=float)

62

63 def to_min_space(df, cols, senses_vec):

64 Y_raw = df[cols].apply(pd.to_numeric, errors="coerce").to_numpy(dtype=float)

65 return Y_raw * senses_vec

66
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67 # Build cumulative HV over runs

68 cum_df = pd.DataFrame(columns=feasible_df.columns)

69 x_labels, hv_values = [], []

70

71 for run_name in RUN_LIST:

72 dfr = feasible_df.loc[feasible_df[RUN_COL].astype(str) == run_name].copy()

73 if dfr.empty:

74 print(f"� Skipping {run_name}: no feasible rows.")

75 continue

76

77 # Add all feasible points from this run to the cumulative pool

78 cum_df = pd.concat([cum_df, dfr], ignore_index=True)

79

80 # Compute HV of the cumulative pool in minimization space

81 Y_min = to_min_space(cum_df, obj_cols, senses)

82 good = np.all(np.isfinite(Y_min), axis=1)

83 Y_min = Y_min[good]

84 hv_val = float(hv_indicator.do(Y_min)) if Y_min.shape[0] else np.nan

85

86 x_labels.append(run_name)

87 hv_values.append(hv_val)

88

89 # Plot to match your style

90 plt.figure(figsize=(12,5))

91 plt.plot(range(len(hv_values)), hv_values, marker="o")

92 plt.xticks(range(len(x_labels)), x_labels, rotation=70, ha="right")

93 plt.xlabel("Cumulative file")

94 plt.ylabel("Hypervolume")

95 plt.title("HV Convergence (constant ref = worst + 10%)")

96 plt.grid(True, alpha=0.3)

97

98 # Optional: tighten y-lims with a small margin

99 if len(hv_values) > 0 and np.isfinite(hv_values).any():

100 ymin = np.nanmin(hv_values)

101 ymax = np.nanmax(hv_values)

102 pad = 0.002 * (ymax - ymin if ymax > ymin else 1.0)

103 plt.ylim(ymin - pad, ymax + pad)

104

105 plt.tight_layout()

106 plt.show()
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Results from Optimization

F.1. GM/B vs IMO requirements

For completeness, Figure F.1 presents the generated design set evaluated against the IMO 2008 Intact

Stability Code (Part B, Ch. 2). The individual panels correspond to criteria 221a–224. In all cases, designs

with GM/B > 0.05 satisfy the respective IMO thresholds, confirming that the adopted lower bound is a

suitable constraint for statutory compliance. However, the plots also demonstrate that while IMO criteria

filter out only a small number of candidates, they do not address the dynamic stiffness effects visible in the

main results (see Section 7.1). This underlines the added value of applying a direct roll-period constraint.
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Figure F.1: Evaluation of candidate designs against IMO intact stability criteria (221a–224). All designs

with GM/B > 0.05 comply with statutory thresholds, confirming that this bound is suitable for regulatory
purposes. However, IMO compliance alone does not ensure realistic dynamic behaviour, justifying the use

of roll-period constraints in the main analysis.

F.1.1. Principal variables vs objectives

This section provides supporting plots linking principal design variables (length, beam, draft) to the four

main objectives (resistance RT , lightweight LWT , stability index SI, and seakeeping index SKI). These

figures complement the trend analysis in Section 7.3 by showing the raw pairwise relations across the

feasible design set.
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Figure F.2: Total resistance RT versus length overall LOA; colour indicates waterplane coefficient CWP .

At fixed speed, increasing LOA changes slenderness and displacement, affecting both wave-making and

frictional components.
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Figure F.3: Total resistance RT versus Froude number Fn = V /
√
g L at V = 9.26 ms−1 (18 kn), with

L = LOA. Colour indicates prismatic coefficient CP . At fixed speed, increasing L lowers Fn and is

generally associated with reduced RT (slenderness effect); the colour scale highlights the spread due to

volumetric distribution (CP ). The line shows the fitted linear trend (legend reports R2).
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Figure F.4: Stability index (SI) versus length overall LOA, colour indicates CWP . Increasing length tends

to improve SI, though effects are partly masked by displacement variations.



F.1. GM/B vs IMO requirements 129

Figure F.5: Seakeeping index (SKI) versus length overall LOA, colour indicates CWP . Longer vessels

generally achieve improved SKI, though displacement scaling partly masks the independent effect of LOA.
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Figure F.6: Lightweight (LWT) versus draft, colour indicates CB . Deeper drafts correspond to larger

displacement and therefore higher LWT, though the effect is partly moderated by form coefficient

variations.
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Correlation Heatmap (Pearson)

G.1. Code (Python)

Dependencies: NumPy [79], pandas [80], Matplotlib [81], Seaborn [82].

1 # === Heatmap: Objectives vs Particulars, Coefficients & Ratios (incl. L/B, B/T, Range) ===

2 import numpy as np

3 import pandas as pd

4 import matplotlib.pyplot as plt

5

6 # Try seaborn for the heatmap; fallback if missing

7 try:

8 import seaborn as sns

9 _HAS_SNS = True

10 except Exception:

11 _HAS_SNS = False

12

13 # ---------- pick source DF ----------

14 D = (feasible_df if "feasible_df" in globals() and isinstance(feasible_df, pd.DataFrame)

15 else df if "df" in globals() and isinstance(df, pd.DataFrame)

16 else None)

17 if D is None:

18 raise NameError("Need feasible_df or df in scope.")

19 D = D.copy()

20

21 # ---------- helpers ----------

22 def _num(s): return pd.to_numeric(s, errors="coerce")
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23

24 def _find_range_col(dframe: pd.DataFrame):

25 for c in dframe.columns:

26 lc = str(c).strip().lower()

27 if lc in {"range"} or "range" in lc:

28 return c

29 return None

30

31 # ---------- ensure R_T_plot (Newtons) ----------

32 RT_FACTOR = globals().get("RT_FACTOR", 557125.1) # R_T_norm -> R_T [N]

33 if "R_T_plot" not in D.columns:

34 if "R_T_norm" in D.columns:

35 D["R_T_plot"] = _num(D["R_T_norm"]) * RT_FACTOR

36 elif "R_T" in D.columns:

37 D["R_T_plot"] = _num(D["R_T"])

38

39 # ---------- add derived ratios: L/B and B/T (if inputs exist) ----------

40 if {"LOA","Beam"}.issubset(D.columns):

41 L = _num(D["LOA"]); B = _num(D["Beam"])

42 with np.errstate(divide="ignore", invalid="ignore"):

43 D["L_over_B"] = (L / B).where(np.isfinite(L) & np.isfinite(B) & (B != 0))

44

45 if {"Beam","Draft"}.issubset(D.columns):

46 B = _num(D["Beam"]); T = _num(D["Draft"])

47 with np.errstate(divide="ignore", invalid="ignore"):

48 D["B_over_T"] = (B / T).where(np.isfinite(B) & np.isfinite(T) & (T != 0))

49

50 # ---------- add Range (nm) as an objective if present ----------

51 rng_col = _find_range_col(D)

52 if rng_col is not None:

53 D["Range_nm"] = _num(D[rng_col]) # assumes the stored unit is nautical miles

54

55 # ---------- define sets ----------

56 # Objectives (only keep those that exist)

57 OBJECTIVES_CAND = ["SKI", "SI", "R_T_plot", "LWT", "Range_nm"] # <-- added Range

58 OBJECTIVES = [c for c in OBJECTIVES_CAND if c in D.columns]

59 if not OBJECTIVES:

60 raise KeyError("No objectives found among: " + ", ".join(OBJECTIVES_CAND))

61

62 # Main particulars & coefficients (+ ratios)

63 FEATURES_CAND = [
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64 "LOA","LWL","Beam","Draft","Deadrise","rake_angle",

65 "C_P","C_B","C_M","C_WP","GM_B",

66 "L_over_B","B_over_T"

67 ]

68 FEATURES = [c for c in FEATURES_CAND if c in D.columns]

69 if not FEATURES:

70 raise KeyError("No features found among: " + ", ".join(FEATURES_CAND))

71

72 # ---------- numeric matrix ----------

73 USE_COLS = OBJECTIVES + FEATURES

74 X = D[USE_COLS].apply(_num, axis=0).dropna(how="all")

75

76 # ---------- correlations (Pearson) ----------

77 corr = X[OBJECTIVES + FEATURES].corr(method="pearson")

78 corr_obj_feat = corr.loc[OBJECTIVES, FEATURES]

79

80 # ---------- plot: Pearson heatmap ----------

81 fig, ax = plt.subplots(figsize=(1.2*len(FEATURES)+2.5, 0.9*len(OBJECTIVES)+2.5),

constrained_layout=True)↪→

82

83 if _HAS_SNS:

84 sns.heatmap(

85 corr_obj_feat, ax=ax, annot=True, fmt=".2f",

86 vmin=-1, vmax=1, center=0, cmap="coolwarm",

87 linewidths=0.4, linecolor="white", cbar_kws={"label": "Pearson r"}

88 )

89 else:

90 im = ax.imshow(corr_obj_feat.values, cmap="coolwarm", vmin=-1, vmax=1, aspect="auto")

91 ax.set_xticks(range(len(FEATURES))); ax.set_yticks(range(len(OBJECTIVES)))

92 ax.set_xticklabels(FEATURES, rotation=45, ha="right"); ax.set_yticklabels(OBJECTIVES)

93 for i in range(corr_obj_feat.shape[0]):

94 for j in range(corr_obj_feat.shape[1]):

95 ax.text(j, i, f"{corr_obj_feat.values[i, j]:.2f}",

96 ha="center", va="center", color="black", fontsize=9)

97 cbar = fig.colorbar(im, ax=ax, pad=0.02); cbar.set_label("Pearson r")

98

99 ax.set_title("Objectives vs Particulars, Coefficients & Ratios (incl. L/B, B/T, Range) —

Pearson")↪→

100 try:

101 _save_fig(fig, "heatmap_objectives_vs_particulars_coeffs_ratios_range_pearson")

102 except Exception:
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103 pass

104 plt.show()
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