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1 Introduction

1.1 Context

Geographical data are widely applied in various territories such as urban plan-
ning, civil engineering, resource management, transportation management and
many more. Traditional map generalization method uses vector format maps or
raster format maps with a stack of predefined scales [Huang et al., 2016]; it has
a fast responsiveness to the user for panning or zooming. However, it leads to an
unavoidable loss of details between two fixed and discrete scales. The accuracy of
the map can significantly affect the results of some application such as kriging and
mining [Belkhiri et al., 2017], therefore, this research focuses on the generalization
of continuous map based on a truly smooth vario-scale geographical data structure.

It is stated by Meijers et al. [2009] that a Space Scale Cube (SSC) offers non-
redundant geometric data for different level of details. SSC model represents
geographical data as closed polyhedron, to generate a 2D map, the SSC is inter-
sected with a plane and a set of 2D polygons is then resulted. These interested
polygons are transmitted to GPU in the format of vector data to be rendered. Vec-
tor data provides more semantic information as well as more functionalities that
are essential to interactive mapping applications; therefore, when too much vector
data is transferred or when the bandwidth is limited; there will be a delay of the
request dataset before the delivery [Huang et al., 2016]. To avoid unwanted data
being transmitted, the query of area of interest should be fetched as accurately
as possible. A proper 3D spatial index is therefore vital in order to retrieve data
efficiently.

1.2 Problem statement

According to the above mentioned, problems emerge when generating maps with a
large sized SSC dataset in a web service setting (limited bandwidth and decoding
speed).
Only relevant data is transferred to the client. For smooth SSC, every user action
results in a new relevant region. In previous work [Rovers, 2016], R-tree was used
as the indexing method; however, drawback appears when some objects have long
lifespan. It transfers the whole long-lived object to the client if the intersection
plane intersects with the bounding box of the object which causes redundancy
(redundancy means the transmission of unneeded data).
For one thing, the region of interest which is the chunk(s) of data intersecting with
the current viewport plane must be accurately determined. For another, due to
the relative low decoding speed under JavaScript environment, the pre-processing
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of raw data which produces data in optimized formats for WebGL rendering turns
out to be a vital point.
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2 Related work

2.1 Smooth SSC

Compared with the classic SSC, the smooth SSC is a gradual transition based
presentation see Figure 2.1(a) and (b). A dataset based on the SSC model is
represented as closed polyhedral. In this case, the SSC model is triangular meshed
for GPU rendering. While applying a gradual shift of the camera (of a rendering
scene) from the top of the cube downwards, there will not be any sudden appear
or vanishing of objects. As stated in the paper by van Oosterom, Meijers, Stoter,
and Šuba [2014], a small step in the scale dimension leads to a small change in
representation of geographic features that are represented on the map.
A map can be seen as a rectangle raster of the viewport size which intersects with
the SSC. According to the paper by Driel [2015], it is stated that the map can be
generated by projecting all points of the intersection plane downwards; the color
of the first polyhedron the point hits is the color of that point on the map, see
Figure 2.1(c).

(a) Classic SSC (b) Smooth SSC (c) Viewport plane

Figure 2.1: Space scale cube

2.2 3D R-tree

One of the advantages of a 3D R-tree is that compared with octree, there will not
be newly generated geometry. This feature means that R-tree can maintain a sta-
ble performance and high space utilization compared with Octree [?]. However, as
what has been stated in Section 1.2 that object with long life span can result in a
huge bounding box (could be from the bottom to the top of the SSC); redundancy
can lead to considerable bandwidth consumption.

Figure 2.2 shows how the SSC model is divided by a 3D R-tree. Chunks intersect
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with the viewport (colored in red) are the data required by GPU.

Figure 2.2: Example query for packages. The axis-aligned bounding boxes for the pack-
ages are shown. Using the index the client is able to find matching packages for its
viewport.[Rovers, 2016]

2.3 Web-based 3D Data Transmission: glTF

Recently, various efforts have been made in order to design file formats for trans-
mission of 3D geometry, for the use with high performance 3D applications on the
Web. The existing solutions either send all data within a single batch, or they
introduce an unnecessary large number of requests. However, limited bandwidth
pairing with limited computational power of JavaScript environment leads to a
bottleneck: the low decoding speed [Ponchio and Dellepiane, 2016]. Therefore,
the ultimate goal is to design a solution that scales well with large data sets, en-
ables a fast transmission of mesh data, eliminates decode time through direct GPU
uploads, and minimizes the number of HTTP requests.

Gl Transmission format (glTF) is one of the applicable data formats for fast
WebGL decoding and rendering. According to Limper et al. [2014], glTF is an
optimized format for straightforward transmission and rendering of 3D assets. It
is intended to be a delivery format, specifically designed for rendering. A glTF
asset is represented by a scene description, texture images and binary mesh data
containers (As shown in Figure 2.3). The buffer layer contains a basic, raw data de-
scription, usually by referring to an external binary file, which is, on the client side,
represented as an ArrayBuffer object, being the raw result of an XmlHTTPRe-
quest that triggered the download. On top of that buffer layer, a bufferView layer
manages several sub-sections of buffer objects, where each sub-section is usually
represented as a separate GPU buffer on the client side. A buffer might, for exam-
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ple, be subdivided into two separate bufferViews that each map to a GPU buffer,
one for index data and one for vertex data. On top of the bufferView layer, there
is a layer with accessor objects that realize indices and vertex attributes. Two dif-
ferent accessors, one for normal data and one for position data, for example, might
then refer to different parts of a single bufferView, potentially in an interleaved
fashion. The highest hierarchical level of mesh data within glTF is represented
by the mesh layer. A mesh entry always refers to one or more attribute accessors
and index data, along with a material and a primitive type used for drawing (e.g.,
triangles).

Figure 2.3: glFT asset

2.4 Data preprocessing: binary format

Louis-Rosenberg [2012] described in his work that rather than loading a mesh in
OBJ file, processing it, and putting into arrays that could be send to a gl buffer
increases the client performance significantly. Binary data that could go directly to
the GPU will be an applicable data format. The binary representation of a mesh
that exactly mirrors the data which should be send to an array buffer consists of
a list of 32-bit floats representing the vertex data (6 for each vertex with position
and normals) followed by a list of 16-bit integers representing triangle indices. Two
integers at the start of the file representing the number of vertices and faces are
also required.

This data can be directly fetched with an http request as an ArrayBuffer object.
This ArrayBuffer can be accessed by creating a Float32Array for the vertex data
and Uint16Array for the index data. No new storage needs to be allocated because
both the vertex and index arrays use the same ArrayBuffer with different offsets.
The word ”little-endian” means the least significant byte comes first in the array.
Majority of common systems (x86, x86-64, IOS) use little-endian. Therefore, the
float value should be written in little endian [Louis-Rosenberg, 2012].
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3 Objective and research questions

3.1 Objectives

The goal of the research is to develop a web service for smooth vario-scale map
rendering during zooming and panning of large dataset. The delay due to data
transmission from source data to the client and the decoding at the client side
should be minimized. What is more, the web service should be enriched with user
interactions. The major objectives are:

• Query relevant data chunks by viewport position of the prototype.
Vario-scale data based on a smooth SSC model should be divided and in-
dexed, therefore during the retrieval, only the package(s) intersecting with
the viewport BBox is then transmitted to GPU.

• Determine the format and content of the static files to optimize transmission
time and WebGL processing time.

• Generate animated frames to achieve smoother visualization as a counter-
measure against arbitrary and large step in scale change (zooming).

• Other user interactions such as localization and map rendering according to
user entered coordinates. As shown in Figure 3.1, once the user entered a
location, the client will query related data and ’fly’ to the new scene.

Figure 3.1: ’Fly’ to user entered location

3.2 Research questions

Main research question:
The architecture within the prototype that allow client to conduct repetitive user
interactions and how does it reflect on the format of input data?
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1. Server side:

• In the existing OBJ files, vertices and triangles can be distinguished by
the starting character of each line. However, it has already been proved
that progressively comparing and splitting strings (decoding) of a static
file is slow under Javascript environment. How should the static files
be formatted? Is binary file a feasible format under this circumstance?

• How should the binary file be formed to be directly decoded by JavaScript?

• During the octree dividing, what is the affiliation of a triangle with
the chunks it is intersecting with? What will the size change before and
after the binary formatting if the one triangle belongs to all intersecting
chunks?

• If a user repetitively zooming in/out during a short period, will there be
overload? How to store loaded chunks in buffer? How to update draw-
calls without unloading all chunks that were requested by last drawcall?

2. Client side:

• How to pass mouse events at the canvas to JavaScript side after ren-
dering?

• What is the limitation of the web service? What will be the maximum
size of packages for one rendering process?

• If there is gap between the package(s) required before and after zooming,
how can the animated frames be generated? By loading all chunks in
between?

3.3 Scope

The octree structure proposed by Driel [2015] dose not seem to function as ex-
pected (the prototype still loads the full dataset); thus the research will be con-
ducted based on the R-tree structure created by Rovers [2016]. This research will
be focused on the machinery of the web service for smooth rendering and its re-
quirements of the data structure at the server side. The pipeline of the research is
shown in see Figure 3.2, the priorities of the research are marked in blue boxes.
The scope of the research is:

• Preprocessing of the structured OBJ file, thus less data processing at client
side.

• Building up the client components related to different user interactions, pa-
rameters should be well determined.
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• Testing limitations of the web service.

Figure 3.2: Pipeline of the communication between server and client
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4 Methodology

The research framework is shown in Figure 4.1, two segments: (1)client develop-
ment and, (2) data preprocessing at server side are marked off.

4.1 Data preprocessing

The original file consists of three parts: index file, OBJ file and color file. The OBJ
file contains x, y and z coordinates of each vertex and the faces composed by vertex
indices; the faces are group by different objects. Color file has a 1-to-1 relationship
between object id and RGB value. As what has been mentioned in Section 2.3
and Section 2.4, one of the most feasible data format is binary mesh data. The
desired data format will be generated by following the steps listed below.

1. Preprocessing per chunk, an ArrayBuffer. Two raw data file are
required:

(a) Chunk information (tree-structured):
Table 1 explains how the tree-structured chunk information should be
formed. The bounding box of each node is represented by three at-
tributes: R-tree index, upper left coordinate and lower right coordinate.
Each line of the output file represents a chunk; attributes are separated
by space. The bounding box of the viewport in format of [upper left,
lower right, z] is posted to the server.

Chunk id Upper left (float) Lower right (float)

R-tree 288, 976.1, 110 377, 659.2, 100

Table 1: Content of chunk information file

An array contains the related chunk indices can be generated using

pseudo code:

Data: Tree structured chunks, viewport
Result: related chunk id
for the tree structure do

test;
if chunk [ i ] intersects with viewport then

Intersected chunk array. append [ i ];
else

continue;
end

end
Algorithm 1: Generate related chunk(s) id
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(b) Vertices-color information file:
An array contains the mesh information can be generated using pseudo
code:

Data: Color list=[[R, G, B], [R, G, B]...], OBJ file
Result: vertices-color array
New vertives list;
New faces list;
New object id list;
if OBJ file line[0]=”v” then

Split line;
vertices list.append [x], [y], [z];

else if OBJ file line[0]=”f” then
Split line;
vertices list.append [vertex1],[vertex2],[vertex3];

else
Split line;
object id list.append [number of triangles];

end
Algorithm 2: Generate vertices-color array

For example, the object id list for the sample dataset is [0, 45, 93, 120,
136] which means object 1 consists of triangle 0 to triangle 45, objects
2 consists of triangle 46 to triangle 93. The color list should be order
by object. Merge face list with vertex list and color list according to
the face index with regard to the object id list. The vertices-color in-
formation array should be formed as: [x, y, z, R, G, B, x, y, z, R, G,
B. . . ]; Figure 4.2 shows an example array.

2. Encode the vertice-color information file in binary format:
As what has been mentioned in Section 2.4, binary data can go directly into
GPU; the next step is to encode the obtained vertices-color array into binary
format.

(a) Generate a vertices-color array for every chunk, the number of vertices
to be drawn equals to the length of array divided by 2.

(b) Write every float in this array into binary use, for example, write-
Float(dos,xcoordinate).
Finally, each line of the output binary file contains all information for
WebGL drawArray command including chunk id, number of vertices to
be drawn and RGB value.
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4.2 Prototype development

Develop a WebGL based prototype implementing continuous map rendering re-
gards to user’s zooom and panning. For SSC models, zoom-in means shifting the
camera downwards. Normally, in 3D object rendering, the camera is placed away
from the object because clipping occurs if it is too close to the object; objects
above the camera will not be projected. However, clipping is suitable for this
scenario; in this case, only the bounding surfaces of the polyhedrons below the
camera are rendered. The testing prototype functioned with zoom and panning is
completed which allows the data to be queried from a file-based dataset. A small
dataset (four objects, one chuck) has been tested for debugging. The viewport
of the prototype is seen as a slicing plane which intersects with the SSC model;
data in the blocks which intersect with the plane will then be transferred to the
client and rendered at the client side. The zoom-in function is shown in Figure 4.3.

The prototype consists of the following components:

• Data acquiring and rendering function:

1. Determine the centroid of viewport and its bounding box after every
user action.

2. Load chunk file, by comparing the viewport BBox with chunk BBox,
the required chunk id can be obtained.

3. Load the corresponding geometry in those chunks from the preprocessed
binary static file.

• Caching and animated frames function:

1. Store the packages and its rendering queried by the previous zoom in
local memory.

2. Apply new zoom, compare the newly required package id with existing
id in local memory.

3. If new package(s) are needed, query it from the server.

4. Check the limitation of local memory, if the limitation is exceeded,
unload the packages that is furthest from the viewport centroid.

5. If two set of packages are non-adjacent, get all packages between the
two viewport positions.

• User input function:

1. To collect user input, add slider (how many frames to generate) and
input box (coordinates) as HTML components.

13



2. Post user input to javascript as variables.

Figure 4.1: Project framework

Figure 4.2: Example vertices-color array
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(a) Sample data (b) Zoomed in view

Figure 4.3: Zoom in function tested with a sample dataset (4 objects)

Figure 4.4: Time and cache size traced by Chrome
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5 Time planning

5.1 Activities

Figure 5.1 shows the schedule. It sets up a series of activities that are needed
to achieve the research objectives. Literature study of the SSC model and the
development of a testing prototype are done before P2. The schedule of P3 is
listed in Table 3. Those activities have to be done before 5th April. The writing
of draft report will be started on 18th April, if time allowed, user testing and
prototype customization will be carried out in the same time. Here listed some
important date:

Date Activity

5 April P3 should be held before the date
13 April Final application dates for P4

11-24 May P4
24 May Final application dates for P5 (the draft should be finished before)

26 June–7 July P5 (report should be finalized before)

Table 2: Important dates

Date Activity

4-11 February Format data into binary and viewport position determination

11-24 February Combine binary data with R-tree

25 February - 11 March Local memory limitation test

25 February - 11 March Load and unload packages at client side

11-18 March Modify input file based on limitation

18-25 March Generate slices inbetween two interactions

25 March - 1 April Enrich user interactions

Table 3: P3 activities

5.2 Meetings

Weekly meetings will be held with the daily supervisor dr.ir. B.M. Meijers when
necessary. Additional guidance and feedback will be provided by the second su-
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pervisor Prof.dr.ir. P.J.M. van Oosterom. The advices about GPU rendering will
be provided by the advisor Timothy Kol.
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Figure 5.1: Gantt chart
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6 Datas and Tools

6.1 Dataset

The dataset produced by Driel [2015] consists of two statics files:

• Structure file describes the bounding box, number of objects, chunk ID and
number of triangles in each chunk.

• Content file contains all vertices, triangles formed by vertex index (grouped
by object). An example content file is shown in Table 3, ”v” represent
vertices, followed by x, y, z coordinates. Lines start with ”F” represent the
start of an object, the second integer is object id, the third integer means the
number of triangles the object contains. ”f” represent a triangle, followed by
vertices index by which the triangle is formed.

v 0.0064175 0.732813 0
v ... ... ...
v ... ... ...
... ... ... ...
F 1 3
f 2 20 17
f 19 20 2
... ... ... ...

Table 4: Example content file

The prototype has been tested with a small sample dataset which contains only
4 objects (137 triangles) without binary formatting. A classic SSC dataset of
”leiden” which contains more than 200k triangles is also tested; the result indicates
that the web service failed to handle raw static file of that size. The previous work
[Rovers, 2016] was conducted with classic SSC model. It is preferred that a smooth
SSC dataset of the size of ‘leiden’ dataset can be achieved in February.

6.2 Tools

• PostgresSQL with PostGIS extended

• Webmatrix as a web page developing tool to compile PHP, HTML and
Javascript

• Localhost generated by Webmatrix as webserver
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• Meshlab for SSC visualization

• Chrome and Firefox as the testing web browser

• Latex for academic writing
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