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Abstract

Autonomous navigation is a critical aspect of robotic systems, particularly in hostile

and uncertain environments, and robot localization is central to navigation. Robot

localization establishes its position within its surroundings. This thesis addresses the

challenge of robot localization, focusing on a lunar-like environment with constraints

such as limited computational resources and the use of non-visual based sensors.

In this thesis, three sensors — wheel encoders (WE), Sun sensor (SS), and inertial

measurement unit (IMU) — are employed for localization. Each sensor contributes

distinct information regarding position and orientation. However, individual sensor

measurements suffer from inherent inaccuracies and errors, especially the IMU’s reliance

on integration over time, leading to significant drift.

To mitigate these challenges, three fusion methods are explored: sensor selection

based on predefined thresholds, Kalman filtering, and weighted fusion. Results indi-

cate substantial improvements in localization accuracy compared to individual sensor

measurements. The weighted fusion method, in particular, demonstrates superior per-

formance by assigning appropriate importance, according to their accuracy, to each

sensor’s information, resulting in significantly reduced positioning errors. The maxi-

mum localization error using this method is 92m, which is smaller than reported in

the literature. Further, the maximum localization percentage error over 65m is around

8%, which is comparable to the literature with visual sensors. The weighted fusion

method introduces only a marginal increase in the computational complexity. Thus,

this method stands out for its simplicity and delivers results superior to those docu-

mented in existing literature for non-visual sensors.

Despite promising results, the research is met with certain hurdles, notably the avail-

ability and consistency of datasets. The reliance on existing datasets, such as the Devon

Island Rover dataset, highlights the need for standardized and comprehensive datasets

for thorough testing and validation. Calibration inconsistencies and verification issues

further underscore the complexity of real-world implementation.

Nevertheless, the findings of this thesis offer insights into the integration of multiple

sensors for enhanced localization in lunar-like environments. By leveraging comple-

mentary sensor data and employing efficient fusion techniques, the proposed approach

enables more accurate and reliable navigation of lunar micro rovers, thus advancing the

capabilities of autonomous robotic systems for future lunar exploration missions.

iii



Acknowledgments

I extend my heartfelt gratitude to Dr. Raj T. Rajan my advisor, for his invaluable

assistance throughout the writing process of this thesis and for providing feedback that

enhanced the presentation of my work.

To my parents, whose unwavering support and guidance have afforded me oppor-

tunities and encouraged me to strive for excellence. I am grateful to my brother and

grandparents, for their boundless love and encouragement throughout my upbringing;

and my extended family for their blessings.

Special appreciation goes to Nathan for his continuous love and care, as well as to

his family for opening their home to me.

I express my sincere thanks to my friends, housemates, and colleagues in Delft,

whose companionship has made the city feel like home. I am equally thankful to my

friends from school and college, whose unwavering friendship and support have been

instrumental in shaping my journey thus far.

Finally, I would like to express genuine gratitude towards my counselor and thera-

pists, Paula, Jan and Simi for helping me navigate all aspects of my life.

Anitha Sarah Koshy

Delft, The Netherlands

8 May 2024

iv



Contents

Abstract iii

Acknowledgments iv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Robot Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Robot Localization Methods and Algorithms: A Review 9

2.1 State-of-the-art Localization Technology . . . . . . . . . . . . . . . . . 9

2.2 Terrestrial GPS-Denied Localization Technologies . . . . . . . . . . . . 10

2.3 Extraterrestrial Localization Technologies . . . . . . . . . . . . . . . . . 13

2.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Preliminaries 20

3.1 Coordinate Systems and Frames of Reference . . . . . . . . . . . . . . . 20

3.2 Coordinate Rotations and Transformations . . . . . . . . . . . . . . . . 21

3.3 Robot Pose and Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Solar Ephemeris Predictions . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Pose Estimation Using Sensors and Sensor Fusion 30

4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Wheel Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Sun Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Sensor Fusion Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Sensor Fusion Using Two Sensors . . . . . . . . . . . . . . . . . . . . . 56

4.8 Sensor Fusion Using Three Sensors . . . . . . . . . . . . . . . . . . . . 60

4.9 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusions and Future Work 70

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

v



A Davenport’s q-Method 80

B Code 82

vi



List of Figures

1.1 The Lunar Zebro [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The percentage of each category of mobile robot localization problems

surveyed in [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Illustration of the different coordinate frames [48]. . . . . . . . . . . . . 21

3.2 Robot pose, illustrated in a global coordinate system [49] . . . . . . . . 22

3.3 Illustration of the Standard Odometry Model [50] . . . . . . . . . . . . 23

3.4 Normal Distribution Curve . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Triangular Distribution Curve . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Components of Solar Position [51] . . . . . . . . . . . . . . . . . . . . . 25

3.7 Procedural Flow to Calculate Solar Position Predictions or Ephemeris . 25

3.8 Solar Position Computation (”Estimates”) Using the Algorithm from

[52] in Comparison to the (”True”) Positions from Online Calculators [51]. 28

3.9 Errors in Calculated Angles. (A): Altitude. (B): Azimuth. . . . . . . . 29

4.1 Rover path using GPS coordinates from [53] as waypoints. . . . . . . . 31

4.2 Subsets of Waypoints of Rover Path Used in This Thesis . . . . . . . . 32

4.3 Process of estimating position and orientation from the IMU . . . . . . 35

4.4 Pose Estimation Using the IMU (Dataset 1) . . . . . . . . . . . . . . . 37

4.5 Comparison of true and IMU-estimated position in the x direction

(Dataset 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Comparison of true and IMU-estimated position in the y direction

(Dataset 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 Position Estimation Using IMU for Dataset 2 . . . . . . . . . . . . . . 39

4.8 Illustration of the differential drive wheeled robot . . . . . . . . . . . . 40

4.9 Process of estimating position and orientation from the wheel encoder . 41

4.10 Dead Reckoning of a Robot in Motion using Differential Drive Rover Model 41

4.11 Position Estimation of the robot Using Wheel Encoder . . . . . . . . . 43

4.12 Comparison of true and wheel encoder odometry-based estimated posi-

tion in the x direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.13 Comparison of true and wheel encoder odometry-based estimated posi-

tion in the y direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.14 Orientation Angle Estimation Using Wheel Encoder . . . . . . . . . . . 45

4.15 Pose Estimation Using Wheel Encoder for Dataset 2 . . . . . . . . . . 46

vii



4.16 Representation of the different sun sensor measurement angles, with the

relevant sun sensor measurement and ephemeris frames [66]. . . . . . . 47

4.17 Illustration of the Process of Estimating Orientation using Sun Sensor . 47

4.18 Orientation Estimation Using Sun Sensor Measurements and Daven-

port’s q Method for Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . 51

4.19 Filtered Output of the Simulated Heading Angle, to be used to Correct

Bias in Sun Sensor Heading for Dataset 1 . . . . . . . . . . . . . . . . . 52

4.20 Bias Corrected Orientation Estimate Using Sun Sensor Measurements

for Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.21 Bias Corrected Orientation Estimate Using Sun Sensor Measurements

for Dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.22 Illustration of a cutaway through the Earth depicting the geometry of

refraction correction. [48] . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.23 KF Based Position Estimation Using Wheel Encoder and IMU Measure-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.24 KF Based Position Estimation Using Wheel Encoder and IMU Measure-

ments (Dataset 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.25 Comparison of Based on Wheel Encoder, Sun Sensor, and Using Simple

Fusion of both (Dataset 3) . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.26 Simple Fusion of Heading Based Position (x,y) Estimation Using Wheel

Encoder and Sun Sensor Measurements (Dataset 3) . . . . . . . . . . . 60

4.27 Position Estimation Based on Fused Heading Information . . . . . . . . 62

4.28 Comparison of Position Estimates using 2 Sets of Weights for Fused

Heading Information on Dataset 1 . . . . . . . . . . . . . . . . . . . . . 63

4.29 Comparison of Position Estimates using 2 Sets of Weights for Fused

Heading Information on Dataset 2 . . . . . . . . . . . . . . . . . . . . . 64

4.30 Comparison of errors in x direction for the 3 fusion methods (Dataset 1) 67

4.31 Comparison of errors in y direction for the 3 fusion methods (Dataset 1) 67

4.32 Position Estimation Using the Linear Weighted Fusion Method with LW1

Weights for a Path Length Similar to the Yutu Rover . . . . . . . . . . 69

viii



List of Tables

2.1 Different types of groupings of state of the art positioning techniques,

reproduced from [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 The relevant frames of reference [48]. . . . . . . . . . . . . . . . . . . . 20

4.1 Illustration of the format of the data from [53]. All angles are measured

in degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Computational flow for Estimating Position Using IMU in KF framework. 39

4.3 Computational flow for Pose Estimation By Odometry using Wheel En-

coders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Computational flow for Orientation Estimation Using Sun Sensor. . . . 51

4.5 Computational flow for Position Estimation By Sensor Fusion Using IMU

and Wheel Encoders in KF framework. . . . . . . . . . . . . . . . . . . 57

4.6 Computational Flow for Orientation Estimation by Simple Fusion Using

Sun Sensor and Wheel Encoder. . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Computational flow for Pose Estimation by Linear Weighted Fusion Us-

ing Sun Sensor, IMU and Wheel Encoder. . . . . . . . . . . . . . . . . 61

4.8 RMSE Values with Three Sensors. . . . . . . . . . . . . . . . . . . . . . 63

4.9 RMSE Values for Pose from Individual Sensors . . . . . . . . . . . . . . 66

4.10 RMSE Values for All Fusion Methods . . . . . . . . . . . . . . . . . . . 66

4.11 Maximum Position Error for All Fusion Methods . . . . . . . . . . . . 66

ix



The following list shows some symbols and operators which will be used in the

thesis.

Symbol Description

x Horizontal position

y Vertical position

θ Heading angle or orientation angle or yaw angle

R Rotation matrix

C Transformation matrix

Ψ GAST

S State

St State at defined time

δ/∆ change

δx/∆x change in specific variable

t time

ϕ latitude

λ longitude

π Pi

σ standard deviation

σ2 variance

A State space system or transition matrix

B State space input matrix

H State space measurement matrix

z measurement

k Time step

u control input

w process noise

v measurement noise

Q Covariance matrix

E[·] mean/average

x



Symbol Description

I Reference Frames

s position

v velocity

a acceleration

ω angular velocity

Γ Noise gain

l IMU frame

G Global frame

bg Gyroscope measurement bias

ba Accelerometer measurement bias

ng Gyroscope white Gaussian noise

na Accelerometer white Gaussian noise

γ Roll

β pitch

α yaw

sF Predicted sun vector

sS Measured sun vector

uSi q-Method Observation vector

uFi q-Method Prediction vector

m Number of measurements

gF Gravity vector

k heading weighting

P Covariance

Bij Element of B at row i and column j

RN Set of real vectors of length N

RMXN Set of real matrices of size M X N

xi



The following list tabulates some commonly used abbreviations which will be used

in the thesis.

Abbreviation Description

SLAM Simultaneous Localization And Mapping

GPS Global Positioning System

LiDAR Light Detection And Ranging

IMU Inertial Measurement Unit

UHF-FRID Ultra High Frequency Radio frequency Identification

AI Artificial Intelligence

UWB Ultra-Wide Band

VLC Visible Light Communication

IR Infrared

ToA Time of Arrival

ToR Time of Flight

FOV Field of View

GTIL Ground in the Loop

ECI Earth Centered Initial

ECF Earth Centered Fixed

GAST Greenwich Apparent Sidereal Time

JD julian Day

LZ Lunar Zebro

MEMS Micro-Electromechanical Systems

DoF Degrees of Freedom

AHRS Attitude Heading Reference Systems

ICC Instantaneous centre of curvature

KF Kalman Filter

RMSE Root Mean Square Error

xii



Introduction 1
Robots have become integral to various sectors of humanity and are omnipresent in

society. Their importance lies in their ability to perform tasks autonomously, often in

challenging or hazardous environments. The Lunar Zebro is a micro-rover that students

of the TU Delft are currently developing [1]. (A brief description of the Lunar Zebro is

provided in § 2.4.1, page 17.) Pictured in Fig. 1.1, the space mission aims to take flight

in 2025 to explore diverse scientific objectives. This thesis was conceived to resolve the

localization aspect of the rover’s mission. This chapter examines the localization prob-

lem and the need for robust localization technologies. The investigation includes the

different types of information available to the robot, how they are used for localization,

and finally, the difficulties and problems associated with localization.

Figure 1.1: The Lunar Zebro [1]

1.1 Motivation

Robot navigation is the cornerstone of autonomous robotics, enabling robots to move

through complex environments, make decisions about their paths, and reach their des-

tinations without human intervention. This critical field of robotics encompasses a

wide range of applications, from self-driving cars to space exploration, robots aiding

in healthcare, and those enhancing the logistics industry. The ability of robots to

navigate effectively and safely is at the heart of their utility and impact in today’s

world, promising increased efficiency, safety, and innovative solutions to many chal-
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lenges. Some authors, like in [2], believe that localization is the “most fundamental

problem to providing robots truly autonomous capabilities”.

1.1.1 Robot Navigation and Localization

Robot navigation consists of finding the answers to the following three basic ques-

tions [3]:

1. Where is the robot?

2. Where is the robot going?

3. How should the robot get there?

While robot localization aims to answer the first question Where is the robot now? ,

setting a target goal and path planning are the concepts involved in answering the

latter two questions.

Accurate localization lets robots know their precise position and orientation, en-

suring they can navigate, interact, and perform tasks precisely. This capability is

particularly critical in applications such as autonomous vehicles, where safety and pre-

cise positioning are paramount. Additionally, robot localization supports efficient path

planning, resource optimization, and the ability to adapt to dynamic surroundings.

In essence, it serves as the foundation for robots to function intelligently and safely,

making it a fundamental element in the field of robotics and automation.

Localization implies that one needs to find the location and orientation of the robot

relative to its environment. In other words, one must find the robot’s (x, y, θ) con-

figuration, with respect to the global or local frame, and not a topological frame [2].

Together, the parameters (x, y, θ) define a robot’s pose, allowing one to pinpoint its

location and the direction it is facing within a 2D environment.

As mentioned, a robot’s pose is expressed using the three parameters. The x co-

ordinate represents the robot’s position along the horizontal axis in the 2D space. It

specifies how far the robot is from a reference point (usually the origin) in the hori-

zontal direction. A positive x-value indicates movement to the right, while a negative

x-value represents movement to the left. Similarly, the y coordinate represents the

robot’s position along the vertical axis. Finally, θ represents the robot’s orientation or

angular position in the 2D space. It is typically measured in radians and indicates the

angle the robot faces relative to a reference direction, often the horizontal axis (x axis).

For example, a θ = 0 value implies that the robot is facing the positive x axis, while

other values of θ represent different orientations. The orientation angle is also called

heading angle, and these terms are used interchangeably throughout this report.
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1.2 Robot Localization

The localization of a robot plays a pivotal role in the effective operation of any robot,

particularly a lunar rover. Accordingly, this topic is discussed in some detail here.

1.2.1 The Localization Problem

As mentioned earlier in Section 1.1.1, the aim is to determine the robot’s pose, i.e., the

robot’s (x, y, θ) configuration. Based on information on initial position, self-localization

can be divided into two sub-problems: pose tracking and global localization [4]. In the

context of pose tracking, the starting robot pose is already established, and the primary

objective of localization is to detect and rectify minor discrepancies in the robot’s

odometry as the robot navigates its path. Position tracking thus involves odometry and

sensor data. In global localization, the robot must determine its pose using limited and

incomplete observed information, even with uncertainty regarding its initial position.

Of the two, global localization is the more challenging problem.

Figure 1.2: The percentage of each category of mobile robot localization problems surveyed

in [5]

Apart from pose tracking and global localization, the robot may sometimes find itself

in unfamiliar or arbitrary locations, either during pose tracking or through abduction

to an undisclosed area. This scenario is commonly encountered in what is known as the

kidnapped robot problem, where the robot is aware of its abduction [5]. Consequently,

3



the need for kidnap recovery becomes essential for any autonomous robot. Typically,

the robot relies on its current sensor data to estimate its pose in most situations.

In [5], the authors surveyed around a hundred papers dealing with the robot lo-

calization problem. They found that the pose tracking problem is majorly studied

compared to the other two. Their findings are depicted in Fig. 1.2.

The robot’s environment also influences the localization problem. Environments

may be static or dynamic. In a static environment, the localization process is relatively

straightforward, as the robot is the sole mobile entity. However, in a dynamic envi-

ronment, localization becomes considerably more complex because other moving ob-

jects can lead to confusion about the robot’s position. Autonomous movement control

presents a significant challenge for mobile robots operating in unfamiliar environments.

1.2.2 Available Information

When establishing its position, a robot has access to two distinct sources of information.

Initially, it possesses a priori data, which can be collected by the robot or provided by

an external source during the initialization phase. Furthermore, the robot continuously

acquires navigation information about its environment through each observation and

action it undertakes while navigating its environment.

A priori Information

Typically, the a priori information furnished to the robot defines the environment in

which the robot operates, highlighting specific attributes that remain constant over

time and can aid in localization. A priori information comes in various forms, including

maps and cause-effect relationships [6], providing essential context for determining the

robot’s location. Maps could be topological maps like special features or geometric maps

like pathways and grids. These could be initialized or learned as the robot explores

its environment, a technique commonly called Simultaneous Localization and Mapping

(SLAM). An example of cause-effect knowledge could be high noise levels in a factory,

which may be associated with regions with heavy machinery operating in them. If there

are multiple locations with similar visual cues, this associative knowledge can help the

robot distinguish between a working machine and a broken machine.

Navigational Information

In navigation, a robot typically engages in two distinct categories of actions: physical

movement within the environment, or driving, and the sensory perception of the sur-
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roundings, or sensing. These two action types yield two disparate forms of positional

data.

A robotic vehicle possesses a locomotion system to move around in an environment.

A guidance system can consist of wheels, tracks, or legs; these components are termed

actuators. By employing sensors to monitor the real-time actions of the robot’s driving

system, it becomes possible to estimate the displacement of the robot vehicle. This

estimation yields what are known as relative position measurements. These involve

observing the robot exclusively, without relying on external data, thereby providing

information relevant only to the reference point from which the measurements com-

menced. Reconciling such a self-contained system with the real outside world is a

central challenge.

The robot utilizes its sensors to perceive or sense the environment, generating in-

stantaneous situational data called observations or measurements. This information

characterizes the state of the robot’s surroundings at a specific instance. These obser-

vations, originating from the environment, offer insights into the robot’s location that

are not contingent on prior location estimations, thus constituting absolute position

measurements.

Techniques to obtain the relative and absolute position measurements are investi-

gated in Section 1.2.3.

1.2.3 Localization Techniques

There is no one-size-fits-all solution for the mobile robot positioning problem. In-

stead, one can use different partial solutions depending on the real-life application and

constraints. There are several widely researched and implemented techniques for lo-

calization based on the type of sensors or hardware solutions. These can be divided

into solutions that provide relative position measurements or those that yield absolute

position measurements. Such techniques are briefly mentioned and explained in the

following subsections.

Relative Position Measurements

The cumulative integration of a robot’s motion information or odometry is widely used

for pose tracking or relative position measurements. However, it leads to the unbounded

accumulation of errors. In inertial navigation, accelerometers and gyroscopes provide

linear acceleration and angular velocity measurements, respectively. These measure-

ments are suitably integrated to obtain the position and orientation. However, similar

to odometry, the small errors accumulate, causing a boundless increase in error.
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Absolute Position Measurements

Magnetic compasses are sensors that provide accurate heading information. Vehicle

heading is the most significant of the pose parameters in the manner it influences the

accumulated dead reckoning errors [7]. Robot localization can also be achieved using

satellite navigation systems such as the Global Positioning System (GPS), Galileo, and

GLONASS. An appropriate combination of usually two of the above-mentioned tech-

niques is used for every mobile robot system [7]. Active beacons are commonly used

by ships and airplanes. Beacons require accurate mounting for accurate positioning

estimation. Stars are also considered to be active beacons for maritime applications.

Robots can recognize distinct features or landmarks using sensory inputs with a tech-

nique called landmark matching . These include geometric shapes and may additionally

include supplementary information, like bar codes or QR codes. The positions of the

landmarks are fixed and known. Hence, the robot can localize itself relative to the

known landmark positions. These landmarks could be naturally occurring or artifi-

cially placed. Finally, in map matching, the robot uses onboard sensors to create a

local map of its environment. Also present in memory is a global map of the previously

stored environment. The robot compares the local and global maps to find a match.

The robot will have its current position and orientation if there is a positive match. All

of these methods provide absolute position measurements for the robot.

1.2.4 Difficulties, Errors and Uncertainties

The navigation challenge presents various intricate hurdles. Several factors contribute

to the complexity of navigation, including

• constraints on computational resources,

• challenges in object detection and recognition,

• obstacle avoidance,

• and the intricacies of effectively utilizing environmental information.

For a robot to comprehend its surroundings, it relies on sensors, much like living or-

ganisms. However, the robot’s perception of information may not always align with

reality. Faults in object identification, the dynamic nature of environments, and sensor

data introduce complexities that hinder a precise understanding of the environment.

For example, a robot often uses odometry to estimate its position. However, due to

factors such as wheel slippage or other minor noise sources, inaccuracies are introduced
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into the odometer readings [8]. Additionally, since odometer readings rely solely on

the count of wheel revolutions, the robot cannot assess their accuracy based on these

readings alone. Consequently, the margin of error in the robot’s perceived location is

prone to escalate. The robot may employ visual sensors to maintain the location error

within manageable limits. These sensors perceive the environment, and the data is

used to scrutinize it. Resources such as vision, compasses, active beacons, landmarks,

or potentially GPS systems reinforce its confidence in its current location [7].

1.2.5 Multi-Sensor Fusion

Algorithms designed to address the localization problem combine initial data with both

relative and absolute position measurements, forming estimates of the robot’s location

at a specific point in time. When these measurements are read from diverse sensors,

the challenge shifts to amalgamating these readings to create an optimized, unified

representation of the environment. This dilemma is explored in research focused on

multi-sensor fusion [9]. This technique enables the combination of diverse relative and

absolute sensory input measurements to create a more comprehensive understanding

of the robot’s environment.

By combining the strengths of different sensors, multi-sensor fusion compensates

for the limitations or deficiencies of individual sensors, providing a more detailed and

accurate representation of the surroundings. This is particularly crucial when each

sensor does not possess identical sensing capabilities. Fusion not only improves the

perception of the environment but also aids in diminishing errors and uncertainties,

fostering robust decision-making and localization capabilities for robots operating in

complex and dynamic settings. Additionally, multi-sensor fusion is imperative as it can

mitigate the impact of measurement errors.

1.3 Thesis Organization

In this chapter, localization is introduced. Its requirements and how it is achieved

are discussed. The topic of multi-sensor fusion is briefly examined. Establishing this

concept is integral in the venture to optimize lunar rovers with only the most basic

hardware.

Chapter 2 presents the main research problem and associated research questions to

addressed in this thesis. A literature review of the localization technologies that are

in use today is conducted. Different studies into terrestrial and planetary localization

technology are also presented. This provides a good foundation to understand what
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can be considered as solutions to localize the lunar rover and also serves as a basis to

identify literature gaps and novel contributions in this thesis. The assumptions and

constraints of minimally equipped lunar rovers are described.

In Chapter 3, background knowledge about coordinate frames and rotations is in-

troduced. This is essential for multi-sensor systems, probabilistic localization, and

robot pose estimation. In addition, solar position calculations are detailed, which are

necessary to use the data from the sun sensor.

In Chapter 4, the system model is developed. Methods used to obtain information

about the position and orientation of the robot from the onboard sensors are presented.

In addition, some methods to combine information from different sensors is discussed

with reference to lunar rovers, specifically the Lunar Zebro.

Finally, Chapter 5 concludes the thesis with discussions and summaries of the results

and some suggestions for future work.

8



Robot Localization Methods

and Algorithms: A Review 2
In the previous chapter, an overview of general mobile robot localization technologies

was presented (see, § 1.2.3, page 5). This chapter explores and analyzes a few solutions

available in the literature. State-of-the-art solutions are included for generality. How-

ever, this thesis focuses on solutions viable for extraterrestrial (lunar and planetary)

environments where GPS is not available.

2.1 State-of-the-art Localization Technology

Remarkable advancements in precision, reliability, and versatility mark the state of the

art in robot localization technology. Modern robot localization systems integrate var-

ious sensors, including high-definition Light Detection and Ranging (LIDAR) sensors,

cameras, and Inertial Measurement Unit (IMU), enabling robots to navigate complex

and dynamic environments with exceptional accuracy.

Simultaneous Localization and Mapping (SLAM) algorithms have also seen signifi-

cant improvements [10, 11]. These algorithms enable robots to build detailed maps of

their surroundings and simultaneously localize themselves within these maps, even in

previously unexplored terrain. Machine learning and deep neural networks have been

instrumental in enhancing the performance of these algorithms, allowing robots to rec-

ognize and understand a wide range of environmental features and obstacles [12]–[14].

In addition, integrating cloud-based data and real-time communication further en-

hances the capabilities of robot localization [15, 16]. Robots can now access and share

environmental data with other connected devices, making them more adaptive and effi-

cient in collaborative tasks and contributing to developing autonomous and intelligent

systems.

An extensive review of SLAM based on the omni-directional camera is presented

in [17]. The authors in [18] present a state-of-the-art analysis of the current robot

localization methods based on the passive UHF-RFID technology. Finally, the surge

in artificial intelligence within the technological landscape has prompted the adoption

of AI methodologies in robot localization. In [19], a review of relevant works in mobile

robotics using AI techniques and visual information is presented. The review concen-

trates mostly on deep-learning tools for mobile robotics.
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The authors in [5] present a comprehensive review of the analysis of existing lo-

calization technologies. Based on the sensors used, cameras, sonars, and laser sensors

are the most prominent approaches. Other methods make use of IMU, odometry, and

compass, supplemented with a GPS. The prominent probabilistic techniques include

the extended Kalman filter-based localization and vision-based tracking. The authors

also explore evolutionary approaches as well as SLAM-based localization.

2.2 Terrestrial GPS-Denied Localization Technologies

Robot localization in terrestrial environments is a dynamic and evolving field of study.

While GPS technology is widely used for outdoor navigation, it may face limitations in

urban canyons, dense forests, or areas with signal obstructions. Robots often rely on

sensor fusion techniques to overcome challenges in such environments wherein data from

multiple sensors like LIDAR, cameras, and IMUs are integrated to improve accuracy.

In addition to traditional approaches, machine learning and artificial intelligence-

based techniques are increasingly being employed to enhance localization precision.

Deep learning models and computer vision techniques help robots recognize and in-

terpret environmental features, making them more adept at understanding their sur-

roundings.

The importance of accurate terrestrial robot localization extends beyond traditional

sectors like transportation and agriculture. It has applications in search and rescue

missions, environmental monitoring, infrastructure inspection, and more.

2.2.1 Indoor Environment Localization

It is widely observed that despite very high accuracy and wide coverage, GNSS sig-

nals are not suitable for localization in indoor environments. With intricate geome-

tries and dynamic scenarios, indoor environments present more complex constraints.

The suggested solutions for indoor applications are highly coupled to the environment

and target application [20]. Currently, indoor positioning widely makes use of Wi-Fi,

Bluetooth, ZigBee, Radio Frequency Identification (RFID), Ultra-Wide Band (UWB),

Inertial Measurement Unit (IMU), Visible Light Communication (VLC), Infrared (IR),

Ultrasonic, Geomagnetic, Light Detection and Ranging (LiDAR), and Computer Vi-

sion technology. The authors in [20] summarize different modern-day positioning tech-

nologies based on different classifications. These different classifications are shown in

Table 2.1.

Six categories of technologies based on the type of signal used to measure the position
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Gu et al.[21] Mautz [22] Basiri et al.[23] Mendoza-Silva et al.[24]

Type of sensor signal Similar Performance Groups Most Common Type of Sensor

•Infrared
•Vision-based
•Magnetic

•Audible Sound

•Ultrasound
•Radio Frequency

•Infrared
•Camera

•Magnetic Localization

•Sound
•INS

•UWB

•WLAN/WiFi

•RFID
•Tactile and Combined

Polar Systems

•High sensitive GNSS/

Assisted GNSS

•Pseudolite Infrastructure

systems

•Other RF (Cellular Networks,

Zigbee, Radar, DECTPhones,

Digital TV, FM radio)

•Infrared Market or

reflective element

•Infrared Light image

feature matching

•Light image feature

matching

•Light image market

•Magnetometer

•Sound
•UWB ToF

•WiFi RSS

•WiFi ToF/AoA

•RFID active

•Bluetooth RSS

•Tactile on user device

•Tactile Environment

•Tactile Odometer

•Pseudolite
•GNSS

•Electromagnetic

Systems

•Barometer

•Mobile Network

•Light
•Computer Vision

•Magnetic Field

•Sound
•Dead Reckoning

•UWB

•WiFi

•RFID and NFC

•Tactile Odometer

•BLE
•Other Technologies

(Cellular Network, ZigBee, 5G)

Table 2.1: Different types of groupings of state of the art positioning techniques, reproduced

from [20].

in wireless personal networks are presented in [21], the authors present six categories of

technologies based on the type of signal used to measure the position in wireless personal

networks. In [22], the author classified them into 13 groups with similar performance for

comparison. The authors in [23] survey the 20 most suitable positioning technologies

for location-based service applications. The most common sensor types are categorized

and compared in [24].

Six categories of technologies based on the type of signal used to measure the position

in wireless personal networks are presented in [21], the authors present six categories of

technologies based on the type of signal used to measure the position in wireless personal

networks. In [22], the author classified them into 13 groups with similar performance for

comparison. The authors in [23] survey the 20 most suitable positioning technologies

for location-based service applications. The most common sensor types are categorized

and compared in [24].
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The technique, algorithm, or strategy used heavily depends on the hardware or

technology employed. The most common techniques used collaboratively include using

the Received Signal Strength Indicator (RSSI) and Time of Arrival/Flight (ToA/ToF)

of signals. The predominantly used algorithms included Particle Filters, Belief Propa-

gation, Extended Kalman Filters, and Geometric Algorithms. WiFi is the most signifi-

cantly used technology, especially in combination with different techniques and method-

s/algorithms. The next most popular technologies include using UWB and Bluetooth.

In [25], the authors describe that the twelve positioning methods divided into Non-

Radio Frequency (IMU, VLC, IR, Ultrasonic, Geomagnetic, LiDAR, and Computer

Vision) and Radio Frequency (WiFi, Bluetooth, ZigBee, RFID, and UWB) methods.

An analysis of 147 papers surveyed in this review illustrates that the most used technol-

ogy in mobile robot technology is SLAM, with 68 papers using the technology. LiDAR

and cameras are used to implement this. The authors also found that researchers are

most interested in computer vision. Finally, they conclude that data fusion is the key

direction for researchers to innovate, combining IMU and other technologies as the best

solution. The predominant fusion algorithms that are used include the EKF, particle

filter, and neural networks.

2.2.2 Outdoor Localization

Localization technology and algorithms that are in place today, as state-of-the-art tech-

nology, and those that are used in indoor environments, can also be used in outdoor

environments with some modifications and with more effort towards robustness due

to the dynamic nature of the environment and other environmental factors. The au-

thors in [26] propose a method to provide accurate localization estimates of robots in

greenhouses. These robots cannot rely on GPS measurements due to unstructured, dy-

namic, and GPS-denied environmental conditions. Instead, they employ multi-sensor

fusion, including measurements from wheel odometry, an inertial measurement unit

(IMU), and a tightly coupled visual-inertial odometry (VIO) that are integrated using

an Extended Kalman Filter (EKF) in order to provide a more accurate pose estimate.

In [27], the authors propose a method for accurate dead-reckoning of wheeled vehi-

cles only using an IMU. The key components of this method include using a Kalman

filter and deep neural networks to dynamically adapt the noise parameters of the fil-

ter. The results achieved provide, on average, a 1.10 % translational error and thus,

the algorithm competes with top-ranked methods which, by contrast, use LiDAR or

stereo vision. The authors in [28] present an inertial-aided localization approach by

fusing information from multiple IMUs. While a single-IMU-based localization yields
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acceptable accuracy and robustness for different use cases, the overall performance can

be further improved by using multiple IMUs. This research highlights the importance

of environment adaptive fusion techniques and the use of multiple sensors to aid in

robustness.

The research conducted in [29] argues that using a visual sun compass as a nav-

igational aid to continuously determine absolute bearing considerably improves the

localization and navigation ability of planetary robots. This work further supports this

claim by presenting experimental results using a high rate 187° field of view (FOV)

visual sun compass.

2.3 Extraterrestrial Localization Technologies

Localization in extraterrestrial environments poses unique hurdles due to the absence of

familiar landmarks and the unavailability of traditional positioning systems like GPS.

Robotic systems deployed on celestial bodies such as the Moon or Mars must rely on

alternative methods, including sensor fusion and terrain mapping, to determine their

precise locations.

2.3.1 The Lunar Environment

Localization of a rover in a lunar environment presents more constraints. The number

of technologies that can be used is highly limited, with increasingly many constraints.

For many missions, micro-rovers produced by companies, and especially those produced

by student teams, have limited resources and infrastructure that can be deployed to aid

localization. Additionally, the challenges posed by the lunar environment itself include:

• Lack of magnetic field

• Craters

• Volcanic features/lava tubes

• Areas of high and low (shadow) illumination

• No localization infrastructure

2.3.2 Localization in Extraterrestrial Environments

Many rover localization systems operate predominantly with the help of visual odom-

etry and cameras. These are typically used for more accurate localization with more
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contemporary methods. In [30], the authors present a method whereby they use craters

as landmarks for localization. They achieve this using 3D point cloud data from Li-

DAR and stereo images for crater detection and shading cues from onboard monocular

imagery.

Onboard localization systems usually require an absolute position update from hu-

man operators on the ground, “ground-in-the-loop” (GITL) systems. The authors in

[31] build upon their crater detection algorithm to present LunarNav. Here, they focus

on crater matching and state estimation aspects of this localization using the craters

problem. Their proposed method permits higher autonomy, thereby eliminating the

need for GITL cycles, contributing to faster, more efficient systems. The authors duly

note that the sensors employed are not fully developed at present. Furthermore, they

assumed that the computational load of the object detection system of rovers would be

higher, and thus, their algorithm could be used efficiently for Lunar missions. However,

this may not always be the case.

Stereophotoclinometry and the use of panoramic images for robot localization are

investigated in [32]. The proposed technique can be used for both initial position de-

termination and continuous movement tracking. While high-quality resolution imagery

is needed for panoramic navigation, the resulting location estimates were within 6 m

of the truth.

Visual odometry can rationally be used to determine the amount of slippage in

high-slip environments [33]. The technique could consistently estimate rover motion

within 2.5% of the distance traveled. The estimate formed by merging data from visual

odometry and the inertial measurement unit (IMU) is compared to the kinematic data

using a Kalman filter to determine the amount of slippage suffered. Necessary steering

angles and velocities to compensate for the slip are then calculated and accounted for,

allowing the rover to traverse through high-slip environments.

Celestial trackers like star and sun sensors are widely researched and frequented

navigational tools. They can provide absolute heading information, which profitably

reduces the error growth in vision-based navigation [34]. In this work, the authors

explain in detail the formulation and working of star trackers. Using a star tracker and

an inclinometer, the authors in [35] present an accurate celestial navigation method

for localization. The work can manipulate multiple observations but focuses on using

a single-star observation. Nevertheless, the accuracy of the estimates is shown to be

relatively high. The accuracy of the star tracker limits the veracity of the estimates.

The authors suggest exploring alternative methods of measuring tilt (roll and pitch

angles) with higher precision and resolution.
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The work in [36] provides an algorithm that employs star trackers to correct odo-

metric estimates for drift and/or bias. Corrections are significant even during full-dark

rover operations. The algorithm was tested on a real rover with a star tracker and

an inclinometer. The results proved highly accurate, with an error rate of only 0.85

% of the total distance traveled when all the attitude measurements were used. The

demonstrated results emphasize the possibility of simpler sensors rivaling visual odom-

etry. However, simpler sensors like wheel encoders have disadvantages, such as wheel

slip and 2D Pose estimation.

An adaptive celestial positioning algorithm is introduced in [37]. The method uses a

self-calibration model for the star sensor. The positioning results indicated an obvious

improvement in accuracy using the proposed algorithm compared to no calibration.

Notably, the authors conclude that self-calibration should also improve the accuracy of

azimuth determination when using the sun.

2.3.3 Localization in Past Rover Missions

In this section, the localization techniques are briefly discussed for a few previous rover

missions.

2.3.3.1 Spirit and Opportunity

The rover carried a BAE Systems 20-MHz 32-bit RAD6000 CPU (a radiation-hardened

version of the PowerPC), and on-board memory includes 128 MB RAM, 256 MB flash,

and smaller amounts of other non-volatile memory [38]. The position estimation system

mainly leverages a stereo navigational camera pair (Navcam). Spirit (and Opportunity)

localization has been conducted through two distinct methods: one utilizes an incre-

mental bundle adjustment (IBA) with rover imagery, while the other compares shared

image features between a rover orthoimage and an orbital orthoimage [39]. The Spirit

and Opportunity rovers utilized IMU (Inertial Measurement Unit) and wheel encoders

for localization. The rovers utilize accelerometers and sun imagery to obtain their orien-

tation, autonomously tracking the sun by scanning the sky with a movable camera. For

updating their attitude and position, the rovers rely on either accelerometer and gyro-

scope data or gyroscope data and wheel odometry, adapting based on the commanded

movements from operators on Earth [40].
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2.3.3.2 Curiosity

The computational power available onboard included two redundant main computers

(one operational and one spare), each powered by a BAE Systems RAD 750. Further-

more, each computer possesses 2 GB of flash memory, 256 MB of DRAM, and 256

KB of EEPROM [41]. The rover has two pairs of black and white navigation cameras

mounted on the mast to support ground navigation. The rover also had the same IMU

as the MERs (Spirit and Opportunity) rovers and its localization algorithms are very

similar to those on the MERs mission. Additionally, a sequence of HiRISE images are

taken when the Mars Reconnaissance Orbiter (MRO) flies over the landing site region,

that can be used to identify rover tracks and determine the rover locations at the times

of HiRISE imaging. Both MER and MSL rovers are equipped with an IMU that pro-

vides attitude information of the rovers, while wheel encoders allow for calculation of

travelled distance. Finally, the cameras may also observe the Sun to obtain improved

azimuth information [42].

2.3.3.3 Yutu-1

The Yutu rover utilized a stereo camera pair positioned approximately 1.5 meters above

the lunar surface. This camera assembly could be adjusted in both yaw and pitch di-

rections, enabling the rover to capture various regions from a single location. Similar

to the Spirit and Opportunity rovers, Yutu primarily relied on an inertial measurement

unit (IMU) and wheel encoder data for its baseline localization system. However, this

system was further enhanced by incorporating a visual odometry algorithm, akin to

the methodology employed by Spirit and Opportunity. The visual odometry algorithm

utilized sparse feature correspondences extracted from multiple images. Initially, the al-

gorithm searched for feature correspondences across successive stereo image pairs, with

search regions initialized by the baseline position estimator. Detection and matching

of these feature points were performed using the ASIFT method. In ground test sce-

narios, the baseline localization system achieved an error of about 14%. The visual

odometry system reduced the errors to about 5% for a 43 m path [43] . Information on

the onboard computational resources is currently unavailable.

Comment: In the literature and available information on past rovers, such as the

Rocky 7 [44], the use of the sun sensor for pose estimation is often mentioned. How-

ever, the algorithms are rarely detailed. IMUs and wheel encoders are also present

onboard every rover surveyed. Thus, it is well-assumed that most rovers make use

of the IMU, the wheel encoder and the sun sensor. Furthermore, these rovers surely
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have the capability to process information from these sensors, given that other rovers

also make use of more computationally intensive processes such as SLAM and visual

odometry.

2.4 Problem Formulation

As stated in the previous section, the moon’s conditions must be considered to lo-

calize a lunar rover. Individual methodologies may not be sufficiently effective for

application on the moon or other celestial bodies. For example, GPS systems are im-

practical due to the requirement of a minimum of four satellites, a condition unmet in

such environments. Moreover, detailed maps are often unavailable beforehand, render-

ing map-based localization unfeasible. Landmark-based localization necessitates the

deployment of numerous landmarks on the lunar or planetary surfaces. Magnetic com-

passes are ineffectual due to the lack of a magnetic field. Additionally, dead reckoning

lacks accuracy, especially over extended robot movement ranges, primarily due to the

accumulation of integration errors. Such restrictions are to be taken into account while

formulating a localization solution.

2.4.1 The Lunar Zebro

In addition to the environment, one must also consider the capabilities of the specific

rover and its constraints. The Lunar Zebro is being developed as the world’s smallest

and lightest rover yet. With these specialities, however, the computing power available

onboard is limited. Further, as a choice, the localization must not use the single on-

board camera as it is exclusively used to take pictures of the lunar surface alongside

executing object detection. Supplementary sensors such as LiDAR increases the weight

and costs of the operation. Therefore, an additional constraint is to avoid such sen-

sors. Additionally, computational constraints also limit the use of machine learning,

deep learning and computer vision technologies, and by extension, the most popular

localization technique, SLAM, is also not considered.

The Lunar Zebro is designed to have an onboard Inertial Measurement Unit and

Hall-Effect sensors (i.e., wheel encoders) on the wheels. Additionally, a sun sensor

aids in orienting the solar panels towards the Sun for more efficient battery charg-

ing. Inertial navigation and odometry from wheel information are relative positioning

techniques. Navigation using the Sun is a type of localization using active beacons, a

global positioning technique. Thus, by combining information from these sensors, one

can estimate the pose of the lunar rover.
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An additional property to note is the rover’s special locomotion system. It has

specialised C-type wheels that can climb rocks similar in size to the rover. The Lunar

Zebro has a differential drive wheeled (see § 4.4, page 38) configuration and has very slow

speeds in the order of a few centimetres per second. Furthermore, the presupposition

that the rover will alternate between mobility, and recharging for extended periods of

time, is assumed for the rest of this thesis. Therefore, in its lifetime of a single lunar

day, or a fortnight in Earth timings, the rover may only travel a few hundred metres.

2.4.2 Intended Contributions

Multiple works in the literature have discussed using Sun sensors or star trackers to

aid in heading angle determination. For example, a lunar global/local localization

method using Sun and earth vectors is described in [45]. Their simulations show that

the rover’s position is localized to within 0.5 km with the Sun and Earth vectors. The

authors develop a method of linking consecutive global localization readings using dead-

reckoning. Using this method increases the accuracy of the estimation to within 150 m.

However, the authors do not report any results of hardware experiments. Field testing

of the relative localization system on the Rocky 7 field rover is dealt with in [44]. The

Sun sensor heading determination scheme limits the cross-track error to linear growth

as the rover travels.

The authors in [46] present accurate results of using a Sun sensor to determine

heading. They also use position and gravity information to determine precise head-

ing angles. However, they do not use odometry and inertial measurement units. To

estimate position they make use of the sun sensor and inclinometer to estimate posi-

tion coordinate. However, the resulting positioning errors obtained are in the range of

200km even though their heading angles are quite accurate. As a future work point,

they intend to use visual odometry to localize the rover better. The authors in [47]

present an algorithm to determine the attitude of a rover using a Sun sensor. This

information is fused with an IMU in an Extended Kalman Filter framework to obtain

a more accurate heading estimate. While the heading angle result was highly accurate,

the position estimate that resulted from their algorithm was incorrect in the order of

kilometres. As a future research suggestion, the authors also suggest using wheel en-

coders to determine accurate position estimates. Finally, [29] used a 187◦ field-of-view

camera-based sun sensor to correct IMU and wheel odometry-based pose predictions.

This study is the first of its kind. Their results are highly accurate for a 302m travelled

distance with an error of less than 5%.

Thus, finding ways to properly combine the information from three commonly
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present onboard sensors (i.e., IMU, wheel-encoder and Sun sensor) for lightweight

micro-rovers is a critical problem. There appears to be a gap in the existing liter-

ature that treats this problem. Accordingly, in this work, a study of some fusion

methods that can combine information from multiple sensors is carried out and com-

pared. Specifically, the fused information is used to localize the rover. The efficacies of

the considered fusion methods are compared with respect to localization accuracy.

2.4.3 Research Questions

The crucial problem of lunar rover localization problem is investigated in this thesis.

The aim is to determine the most accurate position using information from the sensors

in a typical lightweight, low-complexity micro-rover, such as the Lunar Zebro. The

IMU, wheel encoder, and Sun sensor are considered in this thesis, and the use of other

specialized imaging and localization sensors is avoided. The following research questions

are addressed here:

• How can one combine information from the IMU, wheel encoder and sun sensor

to estimate the rover’s pose?

• How do different combinations of sensor fusion and estimation techniques compare

in accurately estimating the position and orientation of a Lunar rover using the

aforementioned three sensors?

• What is the achievable localization accuracy for such rovers?
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Preliminaries 3
This chapter covers different coordinate frames of reference and the transformations

between these. These concepts are crucial for multi-sensor systems to combine infor-

mation from various sensors. In addition, basic concepts in robot pose and motion are

presented in this chapter. Finally, the required calculations for determining solar posi-

tions at any given time from solar ephemeris data are also discussed. As will be seen

later in § 4.5.1 (page 47), this is made use of to derive information about the rover’s

orientation from the sun sensor.

3.1 Coordinate Systems and Frames of Reference

Multi-sensor systems are ever-prevalent today. Any random assortment of sensors could

sense different quantities to meet various objectives. An essential aspect of multi-sensor

systems is how one associates these assorted sensing platforms. Different sensors record

data in their respective coordinate frames. For example, a rover’s heading and motion

are best understood relative to the local topocentric frame. This frame is defined

with respect to the local horizontal. The reference frames relevant to this thesis are

illustrated in Fig. 3.1, and the parameters are tabulated in Table 3.1.

Frame Notation x-axis y-axis z-axis

Earth Centred Initial (ECI) I Vernal Equinox North Pole

Earth Centred Fixed (ECF) F Prime Meridian North Pole

Topocentric T Local East (Local North) Opposite Gravity

Sun Sensor S Alignment Pins Outward Normal

Table 3.1: The relevant frames of reference [48].
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Figure 3.1: Illustration of the different coordinate frames [48].

3.2 Coordinate Rotations and Transformations

In this thesis, all vector transformations are described as rotations, captured in trans-

formation matrices or rotation matrices. The rotation from b to frame a is denoted

Cab ∈ R3×3. Hence, the transformation of a 3D vector in frame b, xb ∈ R3, to its

representation in frame a, xa ∈ R3, is given by

xa = Cabxb (3.1)

It is most convenient to express frame transformations as a series of principal axis

rotations. To this end, one defines three standard rotations as follows:

Rx(θ) =

1 0 0

0 cθ −sθ
0 sθ cθ

 , Ry(θ) =

 cθ 0 sθ

0 1 0

−sθ 0 cθ

 , Rz(θ) =

cθ −sθ 0

sθ cθ 0

0 0 1

 . (3.2)

Here, cθ ≡ cos(θ) and sθ ≡ sin(θ) [46]. These matrices represent right-handed rotations

by an angle of θ about the x-, y-, andz-direction, respectively. Any rotation can be

described by a series of rotations around these principal axes.

Some of the relevant coordinate reference frames are illustrated in Fig. 3.1. These

come into play when sun-sensor data is used to estimate the rover’s heading. From the

figure, the transformation from ECF to ECI is a simple rotation:

CIF = Rz(Ψ), (3.3)

where Ψ is termed the Greenwich Apparent Sidereal Time (GAST). This is used and

described in § 4.5.1 (page 47).
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3.3 Robot Pose and Motion

Kinematics is the calculus describing the effect of control actions on the configuration

of a robot [49]. Six variables describe the configuration of a rigid mobile robot: its

three-dimensional Cartesian coordinates and its three Euler Angles (roll, pitch, yaw)

relative to the external coordinate frame. As mentioned in Chapter 1, the goal of this

project is to estimate the robot’s pose, the two-dimensional planar coordinates relative

to an external coordinate frame, along with its angular orientation, at each time step.

The vector
[
x y θ

]T
represents this for each instance. The three aspects of robot

pose are illustrated in Fig. 3.2.

Figure 3.2: Robot pose, illustrated in a global coordinate system [49]

Given a moving robot, one can describe its motion as going from a state St−1 to

St due to the execution of a control action ut at time step t. In this thesis, the state

S =
[
x y θ

]T
is the pose. Motion models, or the probabilistic kinematic model,

comprise the state transition probability p(St | ut, St−1).

3.3.1 Odometry Motion Model

The motion of a robot is modelled to calculate or estimate its motion over time. As

introduced earlier in § 1.2.3 (page 5), odometry is commonly obtained by integrating

wheel rotation information. This leads to the odometry motion model. This model

uses odometry measurements instead of controls. It is important to note that odometry

information is only available retrospectively or after the robot moves. This poses no

problem for filtering algorithms; however, they are not useful for motion planning.

The standard odometry model assumes that the motion of a robot can be described

by three deltas of motion [49]. The motion is approximated by a rotation δrot1, fol-

lowed by a translation δtrans, and finally a second rotation δrot2. This is illustrated in

Fig. 3.3. The odometry information can be considered to be as analogous to the control
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u = (δrot1, δtrans, δrot2). The pose computed at every step can also be considered as a

measurement from the wheel encoder sensors.

Figure 3.3: Illustration of the Standard Odometry Model [50]

In the time interval (t− 1, t], the robot advances from a pose St−1 to pose St. The

odometry reports a relative advance from S̄t−1 =
(
x̄ ȳ θ̄

)T
to S̄t =

(
x̄′ ȳ′ θ̄′

)T
. The

relative advances and change in motion can be calculated, via geometry, as follows. The

robot’s motion can be fully described with the pose information at different time steps:

δtrans =
√

(x̄′ − x̄)2 + (ȳ′ − ȳ)2

δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄

δrot2 = θ̄′ − θ̄ − δrot1

(3.4)

Here, atan2 represents the 2-argument arctangent function and is equivalent to finding

the phase angle of the complex number a+
√
−1b which accounts for the quadrant to

which the complex number belongs.

3.3.2 Distributions for Probabilistic Motion Models

Typically, motion models are described in a probabilistic manner, usually either by a

normal distribution model, which is described by (3.5) and illustrated in Fig. 3.4, or a

triangular distribution model [49]. The standard normal distribution curve is defined

as follows:

εσ2(x) =
1√
2πσ2

e−
1
2

x2

σ2 (3.5)

In the normal distribution, there is a tiny probability that the robot’s position is at

an infinite distance since this curve never reaches zero. In contrast, the triangular

distribution has well-defined bounds. It is defined by (3.6) and illustrated in Fig. 3.5.
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Figure 3.4: Normal Distribution Curve

There are clear restrictions on the probable robot’s position.

εσ2(x)

0 |x| >
√
6σ2

√
6σ2−|x|√

6σ2
otherwise

(3.6)

Figure 3.5: Triangular Distribution Curve

3.4 Solar Ephemeris Predictions

As stated earlier in § 2.4 (page 17), sun sensor measurements are used to estimate the

rover’s position on the moon.
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Figure 3.6: Components of Solar Position [51]

However, to accurately do so, the sun’s position with reference to the planet is to

be predicted. Specifically, the azimuth and elevation of the sun with respect to the

observer. These are referred to as the solar ephemeris calculations and are illustrated

in Fig. 3.6. The following calculations make use of Meeus’ solutions for approximations

of the solar position [52]. This section presents various astronomical concepts, the ex-

planations for which are beyond the scope of this thesis. Only those quantities relevant

to making the computations of the solar position are described. The computational

path is shown in Fig. 3.7. In what follows, each block depicted here is detailed.

Figure 3.7: Procedural Flow to Calculate Solar Position Predictions or Ephemeris

3.4.1 Julian Day

Given the date and time in the Gregorian calendar, one can calculate the corresponding

Julian Day (JD) as follows: Let Y be the year, M the month number and D the day

of the month of the given calendar date.

• If M > 2, leave Y and M unchanged.

• If M = 1 or 2, replace Y by Y − 1, and M by M + 12
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• In the Gregorian calendar

A = INT

(
Y

100

)
B = 2− A+ INT

(
A

4

) (3.7)

• In the Julian calendar B = 0

• The required Julian Day is given by

JD = INT(365.25(Y + 4716)) + INT(30.6001(M + 1)) +D +B − 1524.5 (3.8)

In the steps above, INT(x) represents the greatest integer less than or equal to x.

3.4.2 The Greenwich Apparent Sidereal Time (GAST) Angle

Given JD at any instant, there are a series of computations to determine the GAST

angle. These are as follows:

T =
JD − 2451545.0

36525
(3.9)

The mean sidereal time θ0 is given by:

θ0 = 280.46061837 + 360.98564736629(JD − 2451545.0) +

0.000387933T 2 − T 3/38710000 (3.10)

A periodic variation in the inclination of the axis of a rotating object is called nutation.

The nutation in longitude, denoted ∆ψ, and the nutation in obliquity, denoted ∆ε, of

the ecliptic are calculated as follows:

Ω = 125.04452− 1934.136261T + 0.0020708T 2 + T 3/450000

L = 280.4665◦ + 36 000.7698◦T

L′ = 218.3165◦ + 481 267.8813◦T

∆ψ = −17.20 ′′sinΩ−−1.32 ′′sin2L− 0.23 ′′sin2L′ + 0.21 ′′sin2Ω

∆ε = 9.20 ′′cosΩ + 0.57 ′′cos2L− 0.10 ′′cos2L′ − 0.09 ′′cos2Ω

(3.11)

The obliquity of the ecliptic is given by

ε0 = 23◦26′21.448′′ − 46.8150 ′′T − 0.000 59 ′′T 2 + 0.001 813 ′′T 3 (3.12)

The true obliquity of the ecliptic is ε = ε0 +∆ε. Finally, the apparent sidereal time or

the Greenwich hour angle Ψ of the true vernal equinox is given by:

Ψ = θ0 +∆ψcos(ε) (3.13)
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3.4.3 Solar Position

The Sun’s position in the Earth Centred Inertial (ECI) frame requires the computation

of the quantities mean longitude of the Sun L0, the mean anomaly of the Sun M , the

eccentricity of the Earth’s orbit e, and the Sun’s equation of the center C:

L0 = 280.466 46◦ + 36 000.769 83◦T + 0.000 303 2◦T 2

M = 357.529 11◦ + 35 999.050 29◦T − 0.000 153 7◦T 2

e = 0.016708634− 0.000042037T + 0.0000001267T 2

(3.14)

C = (1.914 602◦ − 0.004 817◦T + 0.000 014◦T 2) sinM

+ (0.019 993◦ − 0.000 101◦T ) sin 2M

+ (0.000 289◦) sin 3M

The Sun’s true longitude ⊙, and the true anomaly, ν are calculated using the relations,

⊙ = L0 + C

ν =M + C
(3.15)

The apparent longitude λ of the Sun is found as follows:

Ω = 125.04◦ − 1934.136◦T

λ = ⊙− 0.005 69◦ − 0.004 78◦ sinΩ
(3.16)

The Sun’s right ascension α and declination δ are then calculated as,

tanα =
cos ε sinλ

cosλ

sin δ = sin ε sinλ
(3.17)

Finally, the horizontal coordinates are calculated using the observer’s latitude φ and

the longitude L, using the Hour Angle H. These are the azimuth A and the altitude

or elevation angle h.

H = θ0 − L− α

tanA =
sinH

cosH sinφ− tanδ cosφ

sinh = sinφ sinδ + cosφ cosδ cosH

(3.18)

With these steps, the solar ephemeris is obtained in the ECI frame. This is useful for

pose computations using the sun sensor, further detailed in Section 4.5.1 (page 47).

27



3.4.4 Testing and Results

In this section, the aforementioned algorithm, i.e. (3.7)–(3.18), to compute the solar

position is tested and evaluated for accuracy. Specifically, the solar position for the

day 12 July 2008, from times 13:00:00 to 24:00:00 are computed. The positions

are calculated from a point on the Earth with latitude 75.43100678◦ and longitude

−89.8733219◦. This particular day and geographical coordinates are especially relevant

in this thesis. The sun sensor dataset used later in the sequel corresponds to this date

and location (see, § 4.1, page 30). The calculated ephemeris or solar position predic-

tions using (3.7)–(3.18) are compared with the true solar angle data of the azimuth

and elevation obtained from an online solar position calculator [51]. The results are

illustrated in Fig. 3.8. Evidently, the ephemeris calculations are quite accurate as the

two have negligible visual differences. To further emphasize, the errors in the angles

are shown in Fig. 3.9. The maximum error in the altitude angle over a 10-hour period

is 0.115◦ and the maximum error in the azimuth angle is of the order of 0.0035◦. To

conclude, the sun’s predicted (estimated) position is highly accurate compared to the

true value obtained from the online solar calculator. These errors are orders of magni-

tudes smaller than those that arise when using sensor data for localization purposes. In

the next chapter, the ephemeris predictions are juxtaposed with the sun sensor angles

to ascertain the rover’s orientation angle.

Figure 3.8: Solar Position Computation (”Estimates”) Using the Algorithm from [52] in

Comparison to the (”True”) Positions from Online Calculators [51].
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(A) (B)

Figure 3.9: Errors in Calculated Angles. (A): Altitude. (B): Azimuth.
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Pose Estimation Using Sensors

and Sensor Fusion 4
This chapter evaluates the methods to extract the pose information from the data

obtained with an IMU, wheel encoder, and a sun sensor. Matlab tools are used

to simulate the path taken by the Devon Island Rover. Subsequently, sensor fusion

techniques are assessed to procure more precise localization results from these sensors.

The odometry motion model was introduced earlier in § 3.3.1 (page 22). This

model describes the motion of a robot over time. However, the computation of the

robot’s new position requires a control input u. Currently, the development of the

Lunar Zebro takes effect in a decentralized manner, impeding direct integration of the

locomotion and control module’s output with the localization system. Accordingly, the

exploration in this chapter delves into the realm of passive localization, which operates

independently of the control input. In contrast, in active localization, the control input

is pivotal in estimating the robot’s position and orientation.

4.1 Simulation Setup

This section discusses the simulation setup to evaluate the methods of pose information

extraction. This dataset is used to extract pose information using different sensors.

Subsequently, the effect of fusing information from multiple sensors is also analyzed

using this dataset.

4.1.1 Dataset

The Devon Island Rover Navigation Dataset [53] encompasses a ten-kilometre rover

journey. Researchers collected many different types of data during the travel. They

recorded the rover’s journey on Devon Island between 10:00 and 18:00 hours. This

experimental setup is the only one available that includes a sun sensor. Accordingly,

this dataset is used in this thesis rather than other more commonly available simulated

data. The dataset comprises GPS measurements used here as the ground truth. These

measurements are used as waypoints of the rover. The GPS measurements, which used

as waypoints, captured during the same interval are illustrated in Fig. 4.1.
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Figure 4.1: Rover path using GPS coordinates from [53] as waypoints.

It is important to note that the sun sensor dataset available in [53] consists of fewer

data points than the GPS measurement data. The reason for this is that the sun sensor

data is not recorded whenever the rover is stationary. Therefore, as a pre-processing

step, the GPS measurements at timestamps when the sun sensor data was not recorded

are ignored. Only the remaining information is used to appropriately combine with the

sun sensor data. The format of the dataset used here is shown in Table 4.1. Using

the GPS measurements as the ground truth for waypoints that the rover must follow,

built-in libraries are used to simulate IMU and wheel encoder data. Accordingly, data

from three sensors are available for use in this thesis. The trajectory was modeled using

the waypointTrajectory function in the Sensor Fusion Toolbox of Matlab.

The planar path of the waypointTrajectory trajectory (the x-y plane projection)

consists of piecewise, clothoid curves. The curvature between two consecutive waypoints

varies linearly with the curve length between them. The tangent direction of the path

at each waypoint is chosen to minimize discontinuities in the curvature. Once the path

is established, the object uses cubic Hermite interpolation to compute the location of

the vehicle throughout the path as a function of time and the planar distance traveled

[54].

Timestamp Azimuth angle Zenith angle Latitude Longitude

Table 4.1: Illustration of the format of the data from [53]. All angles are measured in degrees.

The Devon Island rover travels a distance in the range of kilometres in the directions
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of x and y. In contrast, the Lunar Zebro travels only a distance of a few hundred meters

in its entire lifetime. Consequently, three subsets from the Devon Island rover dataset

are used in this thesis. These datasets, of much shorter duration, are listed below:

• Dataset 1 : 14:18:25 to 14:36:03

• Dataset 2 : 15:33:57 to 15:45:17

• Dataset 3 : 14:24:58 to 14:46:47

These datasets are illustrated in Fig. 4.2. The number of datapoints with missing sun

sensor data is minimal during these durations. Additionally, these subsets are in the

middle of the overall data. These measurements are assumed stable in contrast to the

start and end measurements.

Figure 4.2: Subsets of Waypoints of Rover Path Used in This Thesis

4.2 State Space Model

The state space representation allows one to model the rover motion system comprehen-

sively. The system’s state is the smallest dimension vector that completely summarizes

the system’s past [55]. The general discrete-time linear state space model is represented

by:

S(k + 1) = AS(k) +Bu(k) + w(k)

z(k) = HS(k) + v(k)
(4.1)

Here, A, B and H are the system, input and measurement matrices, respectively. Also,

S(k) represents the state at time step k, u(k) is the control input at instant k, and z(k)
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is the measurement at instant k. Finally, w(k) represents the process noise and v(k)
is the measurement noise. It is assumed that w(k) and v(k) are independent of each

other at every instant k, and independent of the initial condition S(0).

4.2.1 Kinematic Model for Position Estimation

The kinematic model is derived from the first principles. Let the robot’s position be

denoted s(t). The measurements from IMU provide acceleration data. An assumption

of constant acceleration results in the time-derivative of the acceleration being zero,

i.e.,
...
s = 0, leading to a third-order model. In practice, the acceleration is not exactly

constant, and a continuous-time zero-mean white noise process can model its changes.

Thus, one obtains a Wiener process model
...
s (t) = ṽ(t) [55].

Suppose that the state vector is defined as follows:

S =
[
s ṡ s̈

]T
(4.2)

where s, ṡ and s̈ represent the distance, velocity and acceleration, respectively. The

corresponding continuous-time state-space model is

Ṡ(t) = AS(t) +Dṽ(t), (4.3)

where

A =

0 1 0

0 0 1

0 0 0

 , D =

00
1

 . (4.4)

In contrast, the standard one-dimensional equations of motion for constant acceleration

are

s = s0 + v0t+
1

2
at2

v = v0 + at
(4.5)

4.2.2 Discretized State-Space Model

The discrete-time state-space model is obtained by discretizing the continuous-time

state-space model. The resulting discrete-time state space model is given by

S(k + 1) = AS(k) + v(k) (4.6)

with the transition matrix defined as:

A =

1 T 1
2
T 2

0 1 T

0 0 1

 , (4.7)
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where T is the sampling interval. In addition, the covariance matrix of v(k) is given

by:

Q = E[v(k)v(k)T ] =


1
20
T 5 1

8
T 4 1

6
T 3

1
8
T 4 1

6
T 3 1

2
T 2

1
6
T 3 1

2
T 2 T

 q̃ (4.8)

where E[·] represents the expectation operator.

Comment: Although the above-mentioned algorithm was recorded in 2002, it is still

relevant today. For example, the authors in [56] use this model to estimate the position

and velocity from acceleration measurements. Similarly, this constant acceleration

model is also used in [57] in target tracking applications using a Kalman Filter. Finally,

in [58] the constant acceleration model is used to fit the movement of UAVs in an EKF

framework, in order to reduce localization errors.

4.3 Inertial Measurement Unit

The inertial measurement unit (IMU) provides linear acceleration along the three axes

and angular velocity values about the three axes. The accelerometer and the gyroscope,

respectively, provide this. Most IMUs also have a magnetometer module that can

help detect and measure magnetic fields. However, this module is irrelevant for the

application of lunar navigation due to the lack of a magnetic field on the moon.

Today’s most common technology in producing inertial sensors is micro-

electromechanical systems (MEMS). MEMS IMUs are used in different applications

with various complexity. For example, Analog Devices’ surface-mount ADIS16470 is

a compact IMU that targets a range of applications, including the Internet of Mov-

ing Things. Aceninna manufactures 9-DOF high-performance navigation systems and

attitude heading reference systems (AHRS) that incorporate Kalman filters with GPS-

aided attitude/heading algorithms to provide accurate roll/pitch/heading in dynamic

environments. They also offer 6-DOF vertical gyroscopes with Kalman filter and atti-

tude algorithm support.

IMU measurements of angular velocity, ωm ∈ R3 and linear acceleration, am ∈ R3

can be described by the following equations [59], with the IMU frame represented by

{I}, and the global frame, {G}:

ωk =
Iω + bg + ng, ng ∼ N (0, σ2

gI3)

ak =
IRG(

Ga−G g) + ba + na, , na ∼ N (0, σ2
aI3)

(4.9)

Here, Iω and Ga represent the the angular velocity and linear acceleration of the IMU

expressed in frames {I} and {G}, respectively. IRG represents the rotation from {G} to
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{I} and Gg is the known gravity vector in the global frame. Finally, bg and ba represent

the measurement biases of the gyroscope and accelerometer, which are modelled as

random walk processes, and ng and na are the white gaussian noises of the gyroscope

and the accelerometer.

4.3.1 Pose Using Inertial Measurement Unit

The IMU provides information on linear and angular accelerations. From these mea-

surements one has to obtain the velocity and position of the robot at each time step.

This is obtained by integration, a process called dead reckoning. The pose model from

the IMU measurements are as follows [60]:[
vx,k

vy,k

]
=

[
vx,k−1

vy,k−1

]
+

[
∆T 0

0 ∆T

][
ax,k

ay,k

]
(4.10)

These represent the velocity update along the x- and y-directions. The velocity v at

time step k is calculated using the accelerometer acceleration measurements ak at the

same time step, for each axes. The quantity ∆T is the time-step between the previous

measurement and the current measurement. The position update is then calculated by

integrating the estimated velocities:

sk = sk−1 +

∫ tk

tk−1

vkdt (4.11)

Here, sk is the computed position at time-step k, while vk is the velocity at the same

time-step, also calculated previously. The time interval [tk, tk−1] is the time-step length.

This complete computational process is illustrated in Fig. 4.3

.

Figure 4.3: Process of estimating position and orientation from the IMU

The pose estimation from a single IMU in a Kalman filter framework is analyzed

using the simulated IMU data from the rover simulation of Dataset 1 described earlier

in § 4.1. The resulting estimated pose is shown in Fig. 4.4. Clearly, the estimate drifts

considerably from the true position values. The deviation is of the order of kilometres
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even though the initial difference is zero. The corresponding position estimates along

the x- and y-directions are provided in Fig. 4.5 and Fig. 4.6, respectively. While there is

major drift in the y-direction, the drift along the x-direction is exponential. The metric

root-mean-square-error (RMSE) is used throughout the rest of the thesis to quantify

the errors. This RMSE metric is given by the following equation:

RMSE =

√√√√ 1

N

N∑
k=0

|e2(k)|,

where ek is the error between the true value and its estimate, and N is the total number

of samples in a dataset.

The RMSE values for the x- and y-position estimates respectively are 79639.4611

and 897.0596. The drift in the estimates is due to the dead reckoning process. There

is a double integration at every time-step resulting in accumulation of errors. Such a

phenomenon has been reported in the literature; see, for example, [61]. To conclude,

pose estimated using only IMU measurements is highly inaccurate and unreliable. It

may be emphasized that in applications utilizing the IMU, this typically involves inte-

grating its data with that of other sensors. For example, the IMU is used to correct

and smooth-out possible errors in GPS measurements in localization of vehicles in [62].

Here, the IMU measurements are used sparingly only when there is a perceived error

in GPS measurements. In [63], the IMU is used in combination with other sensors such

as the LiDAR, for robot localization. In aerospace applications, particularly during

extensive traversals exceeding 100 kilometers, LiDAR can serve to refine the position

estimated via the IMU, as demonstrated in [64]. Employing this method resulted in a

final position error of 27 meters over a 218-kilometer flight, which was only 0.012% of

the total distance covered. Later in this thesis, combining IMU sensor measurements

with other sensor measurements is explored.
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Figure 4.4: Pose Estimation Using the IMU (Dataset 1)

Figure 4.5: Comparison of true and IMU-estimated position in the x direction (Dataset 1)
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Figure 4.6: Comparison of true and IMU-estimated position in the y direction (Dataset 1)

Similarly, the results of pose computation using an IMU with Dataset 2 are illus-

trated in Fig. 4.7. These estimates are relatively better when compared with those

obtained with Dataset 1, and the RMSE values reflect these observations. For the x-

and y-position estimates, these values respectively are 52504.5042 and 264.4270. From

these values pertaining to both datasets, it can be concluded that the IMU alone results

in rather poor estimates. As explained earlier, this is due to the drift phenomenon. In

addition, the quality of the dataset affects the outcomes. It may be recalled that the

IMU measurements in both Dataset 1 and Dataset 2 are derived from the same Devon

Island rover dataset with the help of simulation tools in Matlab. While the resulting

heading angle is quite reasonable, the acceleration sometimes does not appear to be

satisfactory due to overcompensation.

4.4 Wheel Encoders

Wheel encoder sensors are used to count the number of times the wheel motor has

rotated, often called wheel ticks. They are usually attached to each wheel. The wheel

encoder consists of:

• a Hall Effect Sensor which measures the strength of the magnetic field

• a ring magnet which is attached to the motor shaft

When the motor rotates the wheel, it additionally rotates the ring magnet, causing a

change in the magnetic field. The Hall effect sensor positioned near the ring detects
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Figure 4.7: Position Estimation Using IMU for Dataset 2

Table 4.2: Computational flow for Estimating Position Using IMU in KF framework.

Matrix Initialisation: State Matrix A =


1 T 1

2T
2

0 1 T

0 0 1

, Measurement Matrix H =

[
0 0 1

]
, Process and Noise Covariance Matrices Q and R

Initialisation : Sampling time T , State Estimate Ŝ0, State Variance P0, z1, . . . , zn are the

acceleration measurements from IMU

for k = 1, 2, . . . n do

Compute Ŝk with A and Sk−1.

Compute Pk with A, Pk−1 and Q {(4.43)}
Determine ỹk, Mk and Kk with zk, H, Sk, Pk and R {(4.44)}
Update Ŝk with ỹk, Kk and Sk

Update Pk|k with Kk, H and Pk {(4.45)}
end for

changes in the magnetic field as the ring rotates. This is how the sensor counts the

number of times the wheel has rotated.

Popular configurations for a wheeled robot include [65]:

• Differential drive: Differential drive has two motorized wheels that are steerable

and can be driven independently either forward or backward, and one passive

wheel (in general).
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• Synchro drive: The wheels are mechanically coupled. All synchro drive robot has

two motors: a drive motor and a steering motor. The drive motor sets the speed

for all three wheels and the steering motor spins all three wheels together. All

wheels rotate at the same speed and orientation. The three wheels point at the

same direction and turn at the same rate.

• Ackermann drive: Here, there two steerable wheels in the front plus two non-

steerable wheels in the back. At least two wheels connected by an axle are mo-

torized.

The Lunar Zebro has a differential drive wheeled configuration, as designed by the

locomotion and mechanical engineers of the development team. For the robot to per-

form rolling motion, the robot must rotate about a point that lies along their common

left and right wheel axis. The point that the robot rotates about is known as the

Instantaneous Center of Curvature (ICC). This is illustrated in Fig. 4.8.

Figure 4.8: Illustration of the differential drive wheeled robot

4.4.1 Pose Using Wheel Encoders

Given the information on wheel rotations, one can derive pose information using the

process illustrated below:
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Figure 4.9: Process of estimating position and orientation from the wheel encoder

The equations of pose can be derived using the kinematic and trigonometric relations

applied to robot motion, as pictured in Fig. 4.10. The left and right wheel angular

velocities in radians per second (νl, νr) are given by,

νl =
Encoder ticks since previous loop (left motor)

Time elapsed since last poll from encoders

π

180

νr =
Encoder ticks since previous loop (right motor)

Time elapsed since last poll from encoders

π

180

(4.12)

The linear velocities (in m/s) thus travelled by the wheels, whose radius is R, is given

by

Vl = νlR

Vr = νrR
(4.13)

Figure 4.10: Dead Reckoning of a Robot in Motion using Differential Drive Rover Model

The linear (in m/s) and angular velocity (in rad/sec) for the entire robot can now

be obtained. Let L be the wheel base, which is calculated as the distance between the
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point of contact of the two wheels to the ground (in meters). Then,

ν =
Vr + Vl

2

ω =
Vr − Vl
L

(4.14)

From the computed velocities of the robot, its position (in meters) and its orientation

(in radians) are determined as follows:ẋẏ
θ̇

 =

ν cos(θ)ν sin(θ)

ω

 (4.15)

To obtain
(
x y θ

)T

, this non-linear system of differential equations must be solved.

The fourth-order Runge-Kutta method is a good technique to numerically solve differ-

ential equations:

k00 = ν cos(θk−1)

k01 = ν sin(θk−1)

k02 = ω

k10 = ν cos(θk−1 +
t

2
k02)

k11 = ν sin(θk−1 +
t

2
k02))

k12 = ω

k20 = ν cos(θk−1 +
t

2
k12)

k21 = ν sin(θk−1 +
t

2
k12))

k22 = ω

k30 = ν cos(θk−1 +
t

2
k22)

k31 = ν sin(θk−1 +
t

2
k22))

k32 = ω

(4.16)
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Finally, the pose can be computed as:xkyk
θk

 =

xk−1

yk−1

θk−1

+
t

6

k00 + 2(k10 + k20) + k30

k01 + 2(k11 + k21) + k31

k02 + 2(k12 + k22) + k32

 (4.17)

For clarity, t is the time elapsed since the last integration loop and k represents the

current timestamp or sample number of the loop.

Table 4.3: Computational flow for Pose Estimation By Odometry using Wheel Encoders.

Initialisation: Vehicle track width L, wheel radius R, vehicle x position x1,vehicle y

position y1, vehicle orientation θ1

for k = 2, 3, . . . n do

Compute νl and νr with encoder ticks and time. {(4.12)}
Compute Vl and Vr with νl, νr and R. {(4.13)}
Compute ν and ω with L, Vl and Vr. {(4.14)}
Determine constants k00, k01, k02, k10, k11, k12, k20, k21, k22 with ν, ω and θk−1. {(4.16)}

Update xk,yk and θk with xk−1, yk−1, θk−1 and k00, k01, k02, k10, k11, k12, k20, k21 and

k22. {(4.17)}
end for

Figure 4.11: Position Estimation of the robot Using Wheel Encoder

The wheel encoder ticks information simulated using Matlab is used to evaluate
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this method. Note that this information is derived and simulated using GPS measure-

ments as waypoints with their arrival times (see § 4.1). The computational flow is

provided in Table 4.3. Dataset 1 is used for the simulations. The sampling rate is set

at 1 Hz, the same as that for the sun sensor used in the Devon Island rover dataset.

That is, the sampling interval is 1 s. The results are shown in Fig. 4.11. It can be

observed that initially, the position estimates of the rover closely match the true values.

However, as time passes, the error between the two continuously increases. Such an

increase is expected in the case of a dead reckoning method wherein there is a process

of integration resulting in the accumulation of errors.

Figure 4.12: Comparison of true and wheel encoder odometry-based estimated position in

the x direction

The individual errors along the x- and y-directions are shown in Fig. 4.12 and

Fig. 4.13, respectively. The accumulated drifts in the position estimates are clearly

exhibited and are more pronounced along the x direction. This may be attributed to

the specific path of the rover, wherein there is an apparent change in the direction

along this direction. This change in the direction is not captured very well by the

wheel encoder. In contrast, the rover’s movement along the y-direction is in the same

direction, resulting in fewer errors. A similar phenomenon was observed with the IMU

sensor. However, the drifts with the wheel encoder are quite small relative to those

observed with the IMU sensor.

The estimates of the orientation angle are depicted in Fig. 4.14. Although the

changes in the estimation angles reflect well with those in the heading angle, a bias

is observed, which can be as large as 2 rad. The position estimates are computed at
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Figure 4.13: Comparison of true and wheel encoder odometry-based estimated position in

the y direction

Figure 4.14: Orientation Angle Estimation Using Wheel Encoder

any instant using the heading estimates from the previous instant. Thus, errors in

these estimates automatically reflect on the position estimates. Integrating the errors

and the error in the orientation angle are the main barriers to using wheel odometry

for pose computations alone. The RMSE values for the x-position, y-position and the

orientation estimates are 182.5101, 36.5429, and 65.0466, respectively. These values

concur with the observations made from the Figures 4.12–4.14, and they are much lower

than those obtained using an IMU. The estimates obtained using the wheel encoder
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are clearly better than those obtained with an IMU.

The results of pose computation using a wheel encoder with Dataset 2 are shown

in Fig. 4.15. The trend observed here is opposite that observed with Dataset 1. Here,

the x-position estimates are better than the y-position estimates even though the ori-

entation estimates are of the same order. The corresponding RMSE values of 38.6495,

202.6770, and 51.7827 agree with these observations. Overall, one can conclude that

errors are present when the wheel encoder is used.

Figure 4.15: Pose Estimation Using Wheel Encoder for Dataset 2

4.5 Sun Sensor

Sun sensors are navigational instruments used, especially by spacecrafts, to detect

the Sun’s position. Sun sensors are used for attitude control, solar array pointing,

gyro-updating, and fail-safe recovery. Essentially, the sun sensor is a device that can

determine the attitude between the sensor’s coordinate system and the Sun, which

comprises the so-called Sun vector. After image acquisition and post-processing, the

sun sensor determines the unit vector pointing from the sensor to the Sun. This unit

vector can be described entirely relative to the sun sensor frame by the measurement sk

consisting of a rotation about the x-axis by angle ϕk and a rotation about the y-axis by

θk. (It is important to note that these angles ϕk and θk are the sun sensor measurements

or the azimuth and altitude angles to the Sun. These are different from the angle θ

used to represent the rover’s orientation and ϕ used in the rest of the thesis to describe

latitude.) The angles and their representation are depicted in Fig. 4.16. There are sun
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sensors that are camera-based and those that are not. In this thesis, the sun sensor

used is the SS411 Sinclair Interplanetary sensor which does not have a camera. This

sun sensor requires low power and uses limited computational resources [46].

Figure 4.16: Representation of the different sun sensor measurement angles, with the relevant

sun sensor measurement and ephemeris frames [66].

4.5.1 Pose (Orientation) using Sun Sensor

Deriving orientation information from the Sun sensor is a more complex process. An

overview of the process which is described in this section is illustrated in the block

diagram in Fig. 4.17. In what follows, this process is explained and derived in detail.

Figure 4.17: Illustration of the Process of Estimating Orientation using Sun Sensor

Sun sensor data is obtained in the sun sensor frame. The heading angle computa-

tion using this sensor requires calculating solar ephemeris data, which is a tabulation

of computed positions of the Sun. Computations for solar ephemeris are described

and verified previously (see § 3.4). Given the definitions of rotation matrices and the
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illustration of the different reference frames in Fig. 3.1, one can derive expressions for

converting between frames of interest. The transformation from ECF to ECI is the

simple rotation CIF , where Ψ is the Greenwich Apparent Sidereal Time (GAST).

CIF = Rz(Ψ), (4.18)

The transformation between frames T and F is a function of the rover longitude, λ and

ϕ. From these definitions,

CFT = Rz(λ)Ry

(π
2
− ϕ

)
Rz(

π

2
) (4.19)

Finally, the transformation between the sun sensor and topocentric frames can be

computed using the three rotations roll γ, pitch β and heading or yaw, α.

CTS = Rz(α)Ry(β)Rz(γ) (4.20)

The final transformation between the sun sensor and the IMU frame is calculated using

the alignment of the two sensors as compared to the rover body.

Consider the rover with longitude, λ and latitude, ϕ. The predicted Sun vector, sF ,

is computed using the transformation from the ECI to ECF frame,

sF = CFIsI (4.21)

where, the sun vector prediction, sI is the vector notation of the solar ephemeris azimuth

and zenith data that were previously calculated in § 3.4 (page 24). For example,

considering a calculated predicted azimuth angle, az and a calculated predicted zenith

angle, zen, the predicted sun vector in ECI frame is computed using (4.22).

sI =
[
sin(zen) cos(az) sin(zen) sin(az) cos(zen)

]
(4.22)

These can be corrected, if required, using the equations that are further provided in

§ 4.5.1.1. These corrections are necessary in cases of atmospheric refraction of the sun

rays.

Consider the sun sensor that provides the measured sun vector, sS. Known informa-

tion is considered to estimate orientation. The objective is to find the best estimate of

the rotation matrix CSF that can explain the set of observation vectors uSi, obtained

from the Sun sensor and the predictions uFi, calculated as ephemeris data. This is sim-

ilar to the classic Wahba’s problem [67], where the aim is to find CSF that minimizes

a scalar-weighted cost function,

J(CSF ) =
1

2

m∑
i=1

∥uSi −CSFuFi∥2 (4.23)
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where ai is the scalar weight, m is the number of measurements, and ∥·∥ represents the

Euclidean norm. To solve this Wahba’s problem, Davenport’s q-method [68] is used.

(The full algorithm is explained in Appendix.) The sets of observations and predictions

are concatenated into two matrices:

W =
[√

a1uS1
√
a2uS2 ...

√
amuSm

]
V =

[√
a1uF1

√
a2uF2 ...

√
amuFm

] (4.24)

The following matrices are then calculated:

B = WVT Q = B+BT (4.25)

The cyclic components of B are extracted next. Let Bij be the element of B in row i

and column j. Thus,

Z =
[
B23 −B32 B31 −B13 B12 −B21

]
(4.26)

The trace of B is also required:

σ = trace(B) (4.27)

The following 4× 4 matrix K is constructed

K =

[
Q -1σ ZT

Z σ

]
(4.28)

where 1 is 3 × 3 matrix of ones. Let the eigenvector corresponding to the largest

eigenvalue of K be qSF . This is the 4× 1 unit quaternion that represents the best fit

from frame F to frame S. The quantity qSF comprises of a vector component qv and a

scalar qs:

qSF =

[
qv

qs

]
(4.29)

Finally, the desired rotation matrix, CSF is found using this quaternion

CSF = (q2s − qT
v qv)1+ 2qvq

T
v − 2qsq

x
v (4.30)

Here, the qx
F term is the skew-symmetric matrix that is formed from the components

of the vector qv.

qx
v =

 0 −qv3 qv2

qv3 0 −qv1
−qv2 qv1 0

 (4.31)

The weights ai are assumed equal with unity values, as considered in [48].
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The required rotation matrix, CSF relates frames F and S. However, the heading

angle of the rover α is present in the transformations between T and S. The heading

anlge α is extracted by first calculating CTS using the rover’s latitude ϕ, and longitude

λ using (4.19). The transformation required from T and S, CTS can be written as:

CTS = CTFCFS = CT
FTC

T
SF (4.32)

where the two known matrices CT
FT and CT

SF are known. Using (4.20), the final trans-

formation can be written as follows:

CTS =

cαcβ cαcβsγ − sαcγ cαcβcγ − sαcγ

sαcβ −sαsβsγ + cαcγ −sαsβcγ − cαsγ

−sβ cβsγ cβcγ

 (4.33)

Thus, by equating the computed CTS in (4.32) and (4.33), the rover heading α is found

from the components of CTS:

θ = atan2(CTS21 , CTS11) (4.34)

The computational flow is provided in Table 4.4.

The approximate heading angle is determined using the algorithm described above

and the Sun sensor measurements from Dateset 1 extracted from those recorded in [53].

A sliding window of three measurements and prediction values is used to construct the

W and V vectors. The results are depicted in Fig. 4.18. Evidently, these estimates

of orientation and heading angle are accurate, according to the trend and changes in

angle; however, a bias is present. This bias may perhaps be attributed to the absence of

calibration of the Sun sensor to account for its field of view. No calibration information

regarding the sun sensor in the Devon Island rover dataset is available. In addition,

the accuracy of the Sun sensor angles has not been verified or commented upon in

[53]. Additionally, there are durations where the Sun sensor data are not recorded

when the rover is stationary. Furthermore, it is evident from the figure that although

the resulting trajectory passes through the given waypoints accurately, the resulting

orientation angles have large spikes and sudden changes. These are impossible to occur

in reality.
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Table 4.4: Computational flow for Orientation Estimation Using Sun Sensor.

Initialisation: time h,m, s, latitude lat, lon

for k = 1, 2, . . . do

Compute JD(k) with h(k),m(k) and s(k). {(??) and (3.4.1)}
Compute GAST (k) with JD(k) {(3.9)–(3.13)}
Compute ephemeris in ECI : azimuth(k) and zenith(k) with JD(k), GAST (k), lat(k)

and lon(k). {(3.14)–(??)}
Compute Cif (k) with GAST (k). {(4.18)}
Compute sI(k) with azimuth(k) and zenith(k) {(4.22)}
Compute sF (k) with Cif (k) and sI(k) {(4.21)}
Compute s′F (k) {(4.39) and § 4.5.1.1}

end for

Initialisation: Window length WL

for k = WL+ 1,WL+ 2, . . . do

Construct W (k) with sI(k), sI(k − 1), . . ., sI(k −WL)

Construct V (k) with s′F (k), s
′
F (k − 1), . . ., s′F (k −WL) {(4.24)}

Compute θss(k) with W (k), V (k), lat(k) and lon(k) {(A.11)–(4.34)}
end for

Figure 4.18: Orientation Estimation Using Sun Sensor Measurements and Davenport’s q

Method for Dataset 1

An inherent bias can be observed in the Sun sensor-based heading estimation method

51



(Fig. 4.18). The following steps are performed to correct this bias. The simulated

estimates of the heading angle are very noisy and include heading angle changes from

instant to instant, which is not possible on a real rover. Therefore, the data is filtered

using a median filter. (Median filtering is a technique often used to remove random

noise [69].) The output of the median filter is illustrated in Fig. 4.19. Finally, a fixed

sliding window of 25 data samples is used to correct the bias, analogous to calibration

and re-calibration of the sensor in a real-life scenario. (The window size is obtained after

conducting several experiments. A larger window does not improve the bias removal,

and there is performance deterioration when a smaller window is used.) The resulting

data is depicted in Fig. 4.20. It shows the orientation estimate from the sun sensor

corrected for its bias. After bias correction, the orientation estimate’s output with

Dataset 2 is illustrated in Fig. 4.21. The corresponding RMSE values of the orientation

estimates are 50.7096 and 22.2837, respectively. Thus, as far as the Sun sensor is

concerned, Dataset 2 is better than Dataset 1. This may be attributed to the fact that

orientation angle estimates with Dataset 1 appears noisier when compared with those

obtained using Dataset 2.

Figure 4.19: Filtered Output of the Simulated Heading Angle, to be used to Correct Bias in

Sun Sensor Heading for Dataset 1
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Figure 4.20: Bias Corrected Orientation Estimate Using Sun Sensor Measurements for

Dataset 1

Figure 4.21: Bias Corrected Orientation Estimate Using Sun Sensor Measurements for

Dataset 2

4.5.1.1 Refraction Corrections

Due to refraction of sunlight as it enters the atmosphere, there exists an apparent

increase in elevation of the sun from the horizon. This phenomenon is inconsequential

for bodies without an atmosphere, such as the moon, but must be accounted for in

terrestrial trials. The ephemeris predictions sF can be corrected to reflect the apparent
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position of the Sun. Let the true and apparent elevation angles be εtrue and εapp,

respectively. Thus, they can be modelled as:

εapp = εtrue +∆ε (4.35)

If the rover’s position is known, the predicted gravity vector gF can also be computed:

gF = −

cϕcλcϕsλ

sϕ

 (4.36)

The true elevation is computed using the Sun and gravity vectors:

εtrue = cos−1(sTFgF )−
π

2
(4.37)

The elevation correction ∆ε is given by,

∆ε =
2.97x10−4

tan(εtrue +
0.180

εtrue+0.0892
)

(4.38)

This apparent change in location due to the refraction through the atmosphere is illus-

trated in Fig. 4.22.

Figure 4.22: Illustration of a cutaway through the Earth depicting the geometry of refraction

correction. [48]

The corrected Sun vector, as can be derived from Fig. 4.22, is then given by,

s′F = sin εapphF − cos εappgF (4.39)

Here, the local horizontal vector towards the sun, hF , is

hF =
−gx

Fg
x
F sF

cos εtrue
(4.40)
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where gx
F is the skew-symmetric matrix that is formed from the components of the

vector gF :

gx
F =

 0 −gF3 gF2

gF3 0 −gF1

−gF2 gF1 0

 (4.41)

4.6 Sensor Fusion Techniques

Sensor fusion is a technique used to combine data from multiple sensors to generate

a more accurate and robust conclusion about the environment than using individual

sensors alone. Different sensor fusion methods can be employed in this thesis, with

different estimates from sensors [70]. These are described in the following subsections,

using an example of measurements obtained from an odometer, θodom and a sun sen-

sor, θss. However, these techniques could be extended using other sensors or even

alternatives.

4.6.1 Simple Fusion

Simple fusion makes use of a threshold. In the context of this thesis, this threshold is

based on the angular acceleration:

θf =

{
θodom, |α| < αt

θss, |α| > αt

(4.42)

Thus, if the absolute angular acceleration α is below a threshold αt, then the fused

heading θf is determined by the encoder readings θodom . Otherwise, the fused heading

is determined based on the sun sensor module θss.

4.6.2 Kalman Filter Based Fusion

The Kalman filter is an efficient recursive means to estimate the state of a process,

provided the corresponding state-space representation is available. Essentially, the

mean of the squared error is minimised. This filter is quite powerful and has found

diverse applications in various fields over the past many decades. The Kalman filter

can be used even when the precise nature of the modelled system is unknown [71].

The Kalman filter requires a series of computations. The estimate of the state Ŝk

and its corresponding covariance Pk is first computed. It consists of the time update

Sk = AŜk−1

Pk = APk−1A
T
k +Qk

(4.43)
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followed by the measurement update where the above state estimate is corrected with

information from the measurements zk.

ỹk = zk −HkSk

Mk = HkPkH
T
k +Rk

Kk = PkH
T
k M

−1
k

(4.44)

Here, Qk and Rk are the process and measurement noise covariance matrices, respec-

tively, while Ak and Hk are the state transition, and observation matrices for the corre-

sponding state-space model, respectively. Finally, the predicted state Ŝk and covariance

Pk are computed.

Ŝk|k = Sk +Kkỹk

Pk|k = (I−KkHk)Pk

(4.45)

4.6.3 Linear Weighted Fusion

In this type of fusion, the different estimates are combined linearly with different

weights. Thus, the fused orientation angle, θf , for each time-step, θf ∈ R can be

written as:

θf = kodomθodom + kssθss (4.46)

The weighting assigned to the encoder heading is denoted by kodom and the sun sensor

heading weighting is denoted as kss. The weighting may vary as a function of the

robot’s angular velocity ω and are unit interval values. This function could be linear

or non-linear, and can be defined by:

kodom = f(ω)

kss = 1− kodom
(4.47)

4.7 Sensor Fusion Using Two Sensors

In this section, the techniques that use two of the three sensors discussed previously

implemented in this thesis are described.

4.7.1 Kalman Filter Based Sensor Fusion for Position Estimation

As discussed in § 4.6, one sensor fusion method uses a Kalman filter. In this experiment,

the acceleration from the IMU and the wheel encoder-derived positions are used as

measurements of the Kalman filter. Thus, sensor fusion occurs within the framework

of the Kalman filter itself. The computational flow is given in Table 4.5.
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Table 4.5: Computational flow for Position Estimation By Sensor Fusion Using IMU and

Wheel Encoders in KF framework.

Matrix Initialisation: State Matrix A =


1 T 1

2T
2

0 1 T

0 0 1

, Measurement Matrix H =

[
1 0 1

]
, Process and Noise Covariance Matrices Q and R

Initialisation : Sampling time T , State Estimate Ŝ0, State Variance P0, z1, . . . , zn are the

odometer computed positions from Table 4.3 and acceleration measurements

for k = 1, 2, . . . n do

Compute Ŝk with A and Sk−1.

Compute Pk with A, Pk−1 and Q {(4.43)}
Determine ỹk, Mk and Kk with zk, H, Sk, Pk and R {(4.44)}
Update Ŝk with ỹk, Kk and Sk

Update Pk|k with Kk, H and Pk {(4.45)}
end for

The simulation results with Dataset 1 are shown in Fig. 4.23. A comparison of

Fig. 4.11 and Fig. 4.23 reveal that the fused estimate follows the wheel encoder-derived

position measurements. This is because the acceleration values provided by the IMU

are double integrated according to the kinematic model previously defined and are

highly inaccurate and, hence, unreliable. Due to this, the Kalman filter gives very little

importance to the IMU measurements. The results with Dataset 2 shown in Fig. 4.24

are similar to those observed with Dataset 1. The fused data depends more on the

wheel measurements. The RMSE values for the Kalman filter-based pose estimation

using IMU and wheel encoders are 182.4219 and 36.5536, respectively for the x- and

y-position estimates with Dataset 1. The corresponding values with Dataset 2 are

38.4621 and 202.6116. These values are quite similar to those obtained when only the

wheel encoder is used and agree with the conclusion that the Kalman filter has entirely

ignored the IMU measurements. This brings about an important advantage of fusing

information from different sensors: a particular sensor is automatically ignored if it

does not provide proper information.
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Figure 4.23: KF Based Position Estimation Using Wheel Encoder and IMU Measurements

Figure 4.24: KF Based Position Estimation Using Wheel Encoder and IMU Measurements

(Dataset 2)

4.7.2 Simple Fusion for Pose Computation using Sun Sensor and Wheel

Encoder

In § 4.6.1, the simple fusion technique was introduced. In this section, this technique

is simulated using Dataset 3. This dataset has data points at which the wheel encoder

orientation accuracy is still relatively high. Thus, there is an opportunity to select

between the sun sensor orientation and odometer orientation, according to the manner

58



of sensor fusion. For the case of dataset 1 and dataset 2, the fused readings would

nearly always follow the sun sensor headings. The computational flow is provided in

Table 4.6.

Table 4.6: Computational Flow for Orientation Estimation by Simple Fusion Using Sun Sensor

and Wheel Encoder.

Initialisation: Block Size BL = 25, odometer orientation θodom from Table 4.3, sun sensor

heading θss from Table 4.4, threshold angle αl and θfused(1 : BL) = θss(1 : BL).

for k = BL+ 1, BL+ 2, . . . n do

Determine Biasodom and Biasss.

Compare θodom with αl.

if Biasodom ≤ αl then

θfused = θodom

else

θfused = θss

end if {(4.42)}
Compute xk and yk with θfused(k). {Table 4.3}

end for

The simple fusion method requires a threshold. Here, a threshold value of 15◦ is

selected. The fused heading is computed in blocks of 25 data points. Thus, if the

average of the bias of the previous 25 samples of the odometer orientation is less than

15◦, the fused angle reading would be the odometer orientation reading. Otherwise,

the sun sensor heading would be the fused heading angle. The results are shown in

Fig. 4.25. This figure compares the heading angles of the wheel encoder and sun sensor

individually and in combination, according to the simple fusion rule. It is observed that

the simple fusion heading is more accurate than just using the measurements from the

individual sensors. Finally, the position is calculated using the odometry algorithm,

using the fused heading angle as the orientation angle. These results are illustrated in

Fig. 4.26. The results obtained using this method are found to be quite accurate for the

data subset. The RMSE values for simple fusion-based position estimation on Dataset 3

using IMU and wheel encoders are 35.4698 and 64.0565 respectively for the x- and y-

position estimates. Evidently, the simple fusion method provides a better position

estimate when compared to those obtained with the individual sensors. Clearly, fusing

information from multiple sensors attempts to provide a better scenario than when

using sensors individually.
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Figure 4.25: Comparison of Based on Wheel Encoder, Sun Sensor, and Using Simple Fusion

of both (Dataset 3)

Figure 4.26: Simple Fusion of Heading Based Position (x,y) Estimation Using Wheel Encoder

and Sun Sensor Measurements (Dataset 3)

4.8 Sensor Fusion Using Three Sensors

In this experiment, the heading angle estimates from different sensors are fused. The

fusion method used here is the linear weighted fusion explained earlier. It consists of

a linear combination of the estimates from the Sun sensor, the IMU and the wheel
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encoder.

θf = wodomθodom + wssθss + wimuθimu (4.48)

where θodom, θss, and θimu are the estimates of the angle derived using a wheel encoder,

Sun sensor and IMU, respectively. The three associated weights wodom, wss and wimu

determine the relative importance of the three estimates. The computational flow is

depicted in Table 4.7.

Table 4.7: Computational flow for Pose Estimation by Linear Weighted Fusion Using Sun

Sensor, IMU and Wheel Encoder.

Initialisation: Heading Angles θodom, θss and θimu; weights wodom, wss and wimu

for k = 1, 2, . . . n do

Compute θf with θodom, θss, θimu and wodom, wss and wimu {(4.48)}
Compute xk and yk with θf . {Table 4.3}

end for

In the first experiment, the three estimates are fused as follows:

θf = 0.09 θodom + 0.9 θss + 0.01 θimu (4.49)

(The weights obtained here are as a result of several experiments to ensure that the

fused estimate results in the least position estimates.) The fused estimate is then used

as the heading angle to determine the rover’s pose. The results are shown in Fig. 4.27.

Clearly, there is an improvement in the position estimate when compared to methods

dealt with before. The estimates are better than those with individual sensors or with

fused data with three sensors. Thus, the errors in the estimates decrease as the number

of sensors increase.
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Figure 4.27: Position Estimation Based on Fused Heading Information

The choice of the weights wodom, wss and wimu is important, and they need to be

selected carefully. The choices in (4.49) have been obtained after several experiments.

To illustrate this, consider a second choice of weights as indicated in (4.50):

θf = 0.35 θodom + 0.6 θss + 0.05 θimu (4.50)

Here, the weights corresponding to the odometer and IMU are increased by 4 to 5

times, while the weight of the sun sensor heading reading is reduced appropriately. To

differentiate, the weights in (4.49) are referred to as Weights 1, and the weights in

(4.50) are referred to as Weights 2. The results obtained from fusion using Weights 1

and Weights 2 are compared in Fig. 4.28 for Dataset 1. Similarly, the results with

Weights 1 and Weights 2 are compared in Fig. 4.29 for Dataset 2. From these figures,

it is observed that using Weights 1 yields more accurate position estimates. The RMSE

values for these experiments are provided in Table 4.8. Evidently, these values are lesser

than those with individual or two sensors. Thus, there is an advantage to using in-

formation from as many sensors as possible. In this case, information from IMU, Sun

sensor and wheel encoder have been used. Further, the RMSE values with Weights 1

provide a better estimate when compared with those obtained with Weights 2. There-

fore, determining the relative importance of the information from multiple sensors is

significant.
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Table 4.8: RMSE Values with Three Sensors.

Dataset Weights x-position y-position

Dataset 1
Weights 1 38.2773 41.6996

Weights 2 89.6077 19.0359

Dataset 2
Weights 1 9.2921 46.5453

Weights 2 29.3801 100.6538

Figure 4.28: Comparison of Position Estimates using 2 Sets of Weights for Fused Heading

Information on Dataset 1
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Figure 4.29: Comparison of Position Estimates using 2 Sets of Weights for Fused Heading

Information on Dataset 2

4.8.1 Optimization of the Linear Weights

If the ground truth heading is available, it is possible to perform a simple least

squares optimization to find optimal weights. In this section, this least squares op-

timization problem is formulated. Consider N measurements of the 3 heading an-

gles, θimu1 , . . . , θimuN
, θwe1 , . . . , θweN , θss1 , . . . , θssN . The optimal linear weighted ad-

dition of this information should provide results that are close to the ground truth,

θtrue1 , . . . , θtrueN . Thus, this can be formulated as the following equation
θimu1 θodom1 θss1
θimu2 θodom2 θss2
· · ·
· · ·

θimuN
θodomN

θssN


wimu

wodom

wss

 =


θtrue1
θtrue2
·
·

θtrueN

 (4.51)

These matrices are henceforth called θmeas, W and θtrue. Thus,

θmeasW = θtrue (4.52)

To find the weights, we can find the least-squares optimal solution given by

W = (θmeas)
† θtrue (4.53)

where X† =
(
XTX

)−1
XT is the Moore-Penrose pseudo-inverse the matrix X [72]. This

can result in negative weights. Accordingly, constraints are placed on the weights, and
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the above is formulated as the following constrained convex optimization problem:

min
W

∥θmeasW − θtrue∥22
subject to wimu + wodom + wss = 1,

wimu ≥ 0, wodom ≥ 0, wss ≥ 0.

The resulting weights ensures a convex combination of the measurements.

For the Dataset1, the resulting weights using Matlab function lsqlin are as follows:

θf = 0.05 θodom + 0.95 θss + 0.00 θimu (4.54)

It may be noted that this closely resembles (4.49).

4.9 Discussions

This section summarizes the results of pose estimation using the individual sensors

and the sensor fusion methods. In addition to the results from the experiments that

are detailed throughout this chapter, the simple fusion method was also applied to

Dataset 1, in order to have a fair comparison of all the fusion methods later on in

this section. The RMSE values are shown in Tables 4.9 and 4.10. While the former

summarizes the values for the individual sensors, the latter does so when multi-sensor

fusion is incorporated. In these tables, the sensors are wheel encoder (WE), Sun sensor

(SS) and inertial measurement unit (IMU). (Whenever an experiment or result is not

applicable, the corresponding entry is a dash —.) From Table 4.9, it is clear that the

IMU measurements are not trustworthy. The results with WE alone are erroneous.

Further, the orientation results with SS are better than those obtained using WE. The

results in Table 4.10 reveal that the best option is to use all the information. The RMSE

values with linear weighted (LW) fusion give the best overall estimate when compared

with simple fusion (SF) or Kalman filter (KF) based fusion. When there are only two

sensors, it is clear that the fusion method opts for a better estimate. This is evident

when the RMSE values in Tables 4.9 and 4.10 are compared. Moreover, working with

a proper dataset is essential where all the sensors are correctly calibrated. This can be

observed from the RMSE values obtained with linear weighted fusion with Dataset 1

(LW-1) compared with those obtained with linear weighted fusion with Dataset 2 (LW-

2). Both datasets are derived from the same Devon Island Rover dataset. However,

different portions yield different results. This may be attributed to sensor calibration.

The results obtained using the different sensor fusion methods are analyzed next

from another perspective, by evaluating the largest error present in the estimated po-

sition, over the entire data. These are tabulated in Table 4.11. From this table, it is
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Table 4.9: RMSE Values for Pose from Individual Sensors

Dataset Estimate IMU WE SS

Dataset 1

x 79639.46 182.51 —

y 897.05 36.54 —

Orientation — 65.04 50.71

Dataset 2

x 52504.50 38.64 —

y 264.42 202.67 —

Orientation — 51.78 22.28

Table 4.10: RMSE Values for All Fusion Methods

Method Sensors Dataset 1 Dataset 2 Dataset 3

x y x y x y

SF WE, SS 35.4512 63.0093 — — 35.4698 64.0565

KF WE, IMU 182.4219 36.5536 38.4621 202.6116 — —

LW-1
WE, SS, IMU

42.5998 47.2395 14.9213 51.1437 — —

LW-2 93.3597 22.8366 24.2155 105.1069 — —

observed that the maximum error in position in the x and y directions for the Linear

Weighted Fusion method, on both datasets using the more optimal weights is between

49m to 92m. This is almost 60% of the maximum error reported in [45]. Finally, even

using the simple fusion method, the maximum error reported for Dataset 3 was found

Table 4.11: Maximum Position Error for All Fusion Methods

Method Sensors Dataset 1 Dataset 2 Dataset 3

x y x y x y

SF WE, SS 63.5752 123.7937 — — 58.9095 119.4314

KF WE, IMU 362.3356 63.3664 69.3892 302.1480 — —

LW-1
WE, SS, IMU

81.7866 92.3172 49.8294 72.2903 — —

LW-2 188.6931 49.3560 43.2561 154.9878 — —
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to be 119m and on Dataset 1 123m, which is still less than the 150m reported in [45].

This indicates a significant improvement in the accuracy of position estimates using

simple (non-camera) based sensors, when compared to existing literature.

Figure 4.30: Comparison of errors in x direction for the 3 fusion methods (Dataset 1)

Figure 4.31: Comparison of errors in y direction for the 3 fusion methods (Dataset 1)

The box and whisker plots of the errors along the x- and y-directions are respec-

tively shown in Fig. 4.30 and Fig. 4.31. With two sensors (namely, KF and SF), the

interquartile range for SF is much lower than KF. It may be recalled that the KF uses

IMU measurements, which is quite unreliable for the current experiment. The resulting
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errors are much smaller since SF relies on a wheel encoder and sun sensor. When three

sensors are used to determine the fused heading angle using a convex combination of

the weights, it is clear that the interquartile range is reasonably small. Further, the

maximum errors are also smaller. Furthermore, LW1 results in better estimates when

compared to LW2. It may be recalled that the weights corresponding to LW1 were cho-

sen after several experiments, and they compared well with the set of weights obtained

as a solution to a constrained optimization problem. The box and whisker plots cor-

responding to LW1 and SF are similar, and this is due to the unreliability of the IMU

measurements. However, one should use all the available measurements in a general

setting. Suppose the IMU measurements can be corrected with additional information,

as is done in typical aerospace applications. In that case, the resulting convex combi-

nation of the measurements is expected to yield smaller errors in position estimates.

While the box and whisker plots of the SF method appear better and comparable to

the LW1 results, it is important to also note that the RMSE values and maximum

position error values of the linear-weight method with LW1 weights are overall lower

than the SF method.

A meaningful comparison of the performance of linear weighted fusion to the liter-

ature is obtained using the results provided by the authors in [43]. In this paper, the

authors investigate the localization of the Yutu rover, part of the Chang’e-3 system

that landed on the moon in December 2013. The rover travelled around 43m from its

landing site on the first lunar day. Using the base localization system with dead reck-

oning, the authors achieved an accuracy of around 14%. Using visual odometry-based

correction resulted in the error dropping to around 5%. In order to compare these

results with those presented in this thesis, waypoints are selected from Dataset 1 such

that they result in a path around 65m. The ground truth and the position estimates

using the linear weighted fusion method with LW1 weights are illustrated in Fig. 4.32.
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Figure 4.32: Position Estimation Using the Linear Weighted Fusion Method with LW1

Weights for a Path Length Similar to the Yutu Rover

The resulting RMSE values in the x- and y-directions, respectively, are 5.4129 and

8.1634. Further, the maximum position errors in the x- and y-directions, respectively,

are 8.1681m and 12.3118m. These errors are comparable to those obtained with the

Yutu rover that the authors deemed suitable for the moon mission. The results are

significant as the linear weighted fusion method examined in this thesis, without using

vision-based localization, can produce results comparable to those with visual odometry.

Finally, the authors in [46] also state without proof that the radius of the planetary

body affects the accuracy of localization. In other words, a smaller radius results in

a more accurate estimate. Since the work in this thesis makes use of Earth’s mea-

surements, it is possible that in operations on the moon, which has a radius less than

one-thirds that of the Earth, the accuracy achieved using the methods in this thesis is

much higher.
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Conclusions and Future Work 5
A fundamental problem in autonomous robotics is that of robot navigation. This

enables it to move through environments which may be hostile and uncertain. Before

it can navigate, a robot must know where it is. This thesis focused on the problem of

robot localization. A robot with a higher payload can carry as many sensors as possible

and has sufficient onboard computing power to implement sophisticated algorithms.

However, a lunar-like environment is considered here, which poses many constraints

and challenges. In such environments, one cannot use GPS sensors due to the lack of

sufficient satellites to triangulate. In addition, payload constraints prevent the use of

cameras for localization problems. Accordingly, in this thesis, only three sensors are

used for this problem. The three sensors are the wheel encoder (WE), Sun sensor (SS)

and inertial measurement unit (IMU).

The method of extracting position and orientation information using each of the

three sensors is presented. In IMU, the acceleration information along the different axes

is integrated to extract the position along that direction. This is prone to inaccuracies

as the errors accumulate and grow with time. The WE works on counting the number

of times the wheel rotates per unit time. Essentially, the velocities of the two wheels

are integrated with the orientation to determine the positions. Similar to the IMU, the

errors do accumulate. However, they are less than IMU as the WE data is integrated

only once. The Sun sensor provides the orientation of the rover. The computations are

somewhat involved.

The position estimates using each of the sensors are obtained using each of the

three sensors. The IMU results in substantial errors in the position estimates relative

to the other two sensors. Wheel encoders provide estimates with errors. Evidently, it

is difficult to trust the results when each of the sensors works individually.

Accordingly, the possibility of fusing the information from multiple sensors is in-

vestigated. Three methods for fusion are tested. The simplest method is to choose

the better of two sensors when the orientation estimates are compared to a pre-defined

threshold value. The second method is to use a Kalman filter to fuse the information

provided by two sensors. Both methods were effective in choosing the better of the two

estimates. In the case of the former, the better one could be either of the estimates for

the considered dataset. The KF completely rejected the IMU measurements for a simi-
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lar dataset due to the significant inaccuracies. The weighted fusion technique is a simple

and effective method of fusing the information of two or more sensors. Essentially, a

convex combination of the sensor information is utilized. Thus, unlike other techniques,

the information from the three sensors can be provided with appropriate importance.

For the considered dataset, the estimates are reasonable even though there are localiza-

tion errors. These localization errors were quantified using RMSE, as well as the largest

position error.The results obtained using the simple fusion and linear weighted fusion

method (using more optimal weights) depicted maximum positioning errors that were

much smaller, by almost 40%, when compared to the the errors obtained in literature.

At present, the literature reports errors as large as 150 m, as mentioned in [45]. The

linear weighted fusion method also produced results with accuracies comparable to the

Yutu Rover [43] even without the use of visual odometry. Additionally, the onboard

computation of the information from the sensors is considered. It is noted in § 2.3.3

that the computational resources available on other rovers were capable of extracting

information from the SS, WE and IMU sensors. In addition, they were able to handle

computationally intensive sensors and algorithms. In this thesis, the only additional

required computations are three multiplications and two additions to compute the con-

vex combination of sensors. This brings out the significance of these results as they

are more accurate when compared to literature for the same class of sensors, but are

computationally low-cost.

The principal challenge in this thesis is the availability of a proper dataset to test the

different methods. At present, the datasets are derived from the Devon Island Rover

dataset. It was the only dataset that involved the three sensors of interest. However,

different portions of the datasets lead to different and inconsistent errors. While for

one portion of the dataset, the errors in the x-direction are larger than those along

the y-direction, the opposite is true for another portion of the dataset. It appears

there are calibration errors. In addition, the IMU measurements and the wheel encoder

measurements could not be verified.

5.1 Future Work

Several challenges arose during this thesis. The lack of a verified and accurate dataset

is one of the challenges where the data is assuredly calibrated sensors. At present,

the dataset is from a rover travelling on Earth. The limitations and constraints of the

different methods are better analyzed from the data collected from the Lunar Zebro.

The IMU is a popular sensor that is used abundantly in pose estimation. However,
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it has to be often recalibrated to the accumulation of errors to obtain meaningful data.

An analysis of the different methods to achieve this is to be carried out to determine

the process that is best suited for the considered lunar rover. Currently, the IMU

measurements do not carry any role in rover localization in this thesis. This can be

changed with improved IMU measurements.

There are errors specific to wheel encoders, such as wheel slippage. In order to

improve the results, these errors must be adequately accounted for. Further, as men-

tioned earlier, the Lunar Zebro has unique C-type wheels. This will require slight

modifications on the odometry calculations. The additional constraints posed by this

error must be considered to improve the accuracy. Optimizing the obtained heading

angle by testing for multiple window lengths of the measurement and predicted vectors

may provide a better result.

Research through multiple tests can be conducted to characterize the threshold

angle in the simple fusion method. Furthermore, using an adaptive solution, without

a reference signal or ground-truth, for the sets of weights must be investigated as they

may provide a more accurate result in the linear weighted fusion method.

Finally, more filters and methods to fuse the information from the three sensors can

be investigated. Along with this, methods to recalibrate the pose estimates from dead

reckoning methods would provide more accurate results.
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Davenport’s q-Method A
In 1965, Grace Wahba formulated the problem of finding a rotation between two coor-

dinate systems. Given a set of N vector measurements in the body coordinate system,

an optimal attitude matrix A would minimize the following loss function:

L(A) =
1

2

N∑
i=1

wi ∥ui −Avi∥2 , (A.1)

where ui is the ith vector measurement in the body frame, vi is the ith vector in the

reference frame, wis are a set of N scalar weights for each observation, N is the number

of measurements, and ∥·∥ represents the Euclidean norm.

Davenport proposed a solution in 1968 that solves Wahba’s problem, yielding a

unique optimal solution. The corresponding gain function is defined as:

g(A) = 1− L(A) =
N∑
i=1

wiU
TAV. (A.2)

This gain function g(A) is maximum when the loss function L(A) is at a minimum.

Thus, the aim is to find the optimal attitude matrix A which maximizes g(A).

g(A) =
N∑
i=1

wi trace(U
T
i AVi)

= trace(ABT ),

(A.3)

where B is the attitude profile matrix

B =
N∑
i=1

wiUV. (A.4)

The attitude matrix is parametrized in terms of quaternion q:

A(q) = (q2w − qT
v qv)1+ 2qvq

T
v − 2qwq

x
v. (A.5)

Here, the qx
v term is the skew-symmetric matrix that is formed from the components

of the vector qv.

qx
v =

 0 −qv3 qv2

qv3 0 −qv1
−qv2 qv1 0

 (A.6)
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The gain function, in terms of quaternions, becomes

g(q) = (q2w − qT
v qv) trace

(
BT

)
+ 2 trace

(
qvq

T
vB

T
)
+ 2qw trace

(
qx
vB

T
)
. (A.7)

This can be simplified to a bilinear relationship of the form:

g(q) = qTKq, (A.8)

where the 4× 4 matrix K is constructed as:

K =

[
σ ZT

Z Q -1σ

]
(A.9)

where 1 is 3 × 3 matrix of ones. The following are the intermediate values that are

used:

σ = trace(B) (A.10)

Q = B+BT (A.11)

The cyclic components of B are extracted next. Let Bij be the element of B in row

i and column j. Thus,

Z =
[
B23 −B32 B31 −B13 B12 −B21

]
(A.12)

The optimal quaternion q̂, which parametrizes the optimal attitude matrix, is an eigen-

vector of K. Using Lagrange multipliers, g(q) is maximum if the eigenvector corre-

sponding to the largest eigenvalue λ is chosen. Thus,

Kq̂ = λq̂ (A.13)

81



Code B
1 %% Retrieving the Data

clear all; clc;

%Setting plot properties

markstart = "diamond "; markend = "hexagram "; markerest = ":o";

marktruth = ":+";

6

blue = [114 147 203]./255;

red = [211 94 96]./255;

black = [128 133 133]./255;

green = [132 186 91]./255;

11 purple = [144 103 167]./255;

%Processing the Data

[t,ss_az ,ss_zen ,gps_x ,gps_y ,gps_z ,gps_lat ,gps_long] = readvars ("

data_final_1.csv");

gps_lon = -gps_long;

16 gps_lon_nonmod = gps_long;

[h,m,s] = hms(t);

times = h.*3600 + m.*60 + s;

times = times - times (1)*ones(length(times) ,1);

21

%Setting the waypoints

waypoints = [];

for i = 1: length(gps_x)

26 waypoints = [waypoints; gps_x(i)-gps_x (1) gps_y(i)-gps_y (1)

gps_z(i)-gps_z (1)];

end
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figure;

plot(waypoints (:,1),waypoints (:,2),'LineWidth ',2,'Color ',blue)

31 set(gca ,'FontSize ' ,14)

xlabel('X(m)','FontSize ' ,14)

ylabel('Y(m)','FontSize ' ,14)

title('Rover path using GPS Coordinates as Waypoints ','FontSize '

,14)

36 % SENSORS

imuFs = 1;

encoderFs = 1;

41 %Getting WayPoint Trajectory to simulate vehicle

groundTruth = waypointTrajectory('SampleRate ', imuFs , ...

'Waypoints ', waypoints , ...

'TimeOfArrival ', times);

46 %IMU Sensor

imu = imuSensor('SampleRate ',groundTruth.SampleRate ,'

ReferenceFrame ','ENU');

%Differential Drive Wheel Encoder Sensor : LZ works on

Differential Drive

encoder = wheelEncoderDifferentialDrive('SampleRate ',groundTruth

.SampleRate);

51

[position ,orientation ,velocity ,acceleration ,angularVelocity] =

lookupPose(groundTruth ,times);

orientation_Euler = eulerd(orientation ,"ZYX","frame "); %in

degrees

orient_Euler = (quat2eul(orientation)); %in radians

56

[accel ,gyro] = imu(acceleration ,angularVelocity ,orientation);

ticks = encoder(velocity , angularVelocity , orientation);
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orient_truth = orientation_Euler (:,1);

61

%% SUN SENSOR

leng = length(h);

66 Julian_Day = zeros(leng ,1);

gasts = zeros(leng ,1);

azimuths_I = zeros(leng ,1);

zeniths_I = zeros(leng ,1);

s_f_corr = zeros(3,leng);

71

for i = 1: leng

Julian_Day(i) = JD_calc(h(i),m(i),s(i));

end

76 for i = 1:leng

gasts(i) = gast_angle(Julian_Day(i));

end

for i = 1:leng

81 [azimuths_I(i),zeniths_I(i)] = calc_eph(Julian_Day(i), gasts

(i), gps_lat(i), gps_lon(i));

end

%Transform and correct to get S_f '

86 for i = 1:leng

C_if = rotz(gasts(i));

Ssi = sun_vector(azimuths_I(i),zeniths_I(i));

91 % Ssi = [sin(deg2rad(b)) * cos(deg2rad(a)), sin(deg2rad(b))

* sin(deg2rad(a)), cos(deg2rad(b))]';

S_f = C_if ' * Ssi; %predicted sun vector

G_f = [cos(deg2rad(gps_lat(i))) * cos(deg2rad(gps_lon(i)));
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cos(deg2rad(gps_lat(i))) * sin(deg2rad(gps_lon(i))); sin(

deg2rad(gps_lat(i)))];

96 %Correction of S_f

etrue = acos(S_f ' * G_f) - pi/2;

deltae = (2.97 * 10^ -4) / (tan (etrue + (0.180/( etrue +

0.0892)) ));

eapp = etrue + deltae;

101

gf_skew = skew(G_f);

h_f = -gf_skew * gf_skew* S_f / cos(etrue); %radian

S_F_corr = sin(eapp)*h_f - cos(eapp)*G_f; %radian

106 s_f_corr(:,i) = S_F_corr;

end

% SUN SENSOR ALGORITHM : Calculation of Heading Angle : Window

length 3

111

orient_truth = orientation_Euler (:,1);

times_cut3 = times (3:end);

heading_angle3 = zeros(leng ,1);

116 for cnt = 3: length(gps_y)

%Construting W Vector - These are in the sun sensor frame

us0 = sun_vector(ss_az(cnt),ss_zen(cnt));

us1 = sun_vector(ss_az(cnt - 1),ss_zen(cnt - 1));

us2 = sun_vector(ss_az(cnt - 2),ss_zen(cnt - 2));

121

W = [us2 us1 us0];

uf0 = s_f_corr(:,cnt);

uf1 = s_f_corr(:,cnt -1);

126 uf2 = s_f_corr(:,cnt -2);
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V = [uf2 uf1 uf0];

heading_angle3(cnt) = heading_calc(W,V,gps_lat(cnt),gps_lon(

cnt));

end

131

heading_angle3 = heading_angle3 (3: end);

figure;

plot(times ,orient_truth ,'Color ',green ,'LineWidth ' ,2);

136 set(gca ,'FontSize ' ,14)

hold on;

plot(times_cut3 ,heading_angle3 ,'Color ',red ,'LineWidth ' ,2)

xlabel('Time (s)','FontSize ' ,14)

ylabel('Heading Angle(deg)','FontSize ' ,14)

141 legend('Simulation Estimate ','Sun Sensor Estimate ','FontSize '

,14,'Location ','southwest ')

title('Simulated vs Sun Sensor Estimate of Heading Angle ','

FontSize ' ,14)

%Filtering the curve

truth_angle_mod2 = medfilt1(orientation_Euler (:,1) ,10);

146 figure;

plot(times ,orientation_Euler (:,1), 'Color ',green ,'LineWidth ' ,2)

set(gca ,'FontSize ' ,14)

hold on;

plot(times ,truth_angle_mod2 ,'Color ',red ,'LineWidth ' ,2)

151 hold off;

legend (" Simulated Orientation Angle","Filtered Orientation Angle

",'FontSize ' ,14)

title('Simulated vs Filtered Orientation Angle of the Simulated

Robot ','FontSize ' ,14)

xlabel (" Timestep ")

ylabel (" Heading Angle(deg)")

156

%Bias Calculation and Correction

Windowlength = 25;
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orient_truth_cut = truth_angle_mod2 (15: end);

161 heading_mod = heading_angle3 (13: length(heading_angle3) -

Windowlength ,1);

times_cutmod = times_cut3 (13: length(heading_angle3) -

Windowlength ,1);

Bias = zeros(length(heading_mod) ,1);

166

for idx = 1: length(heading_mod) - Windowlength

Blockh = heading_mod(idx:idx+Windowlength);

Blocko = orient_truth_cut(idx:idx+Windowlength);

Bias(idx) = mean(Blockh -Blocko);

171 end

heading_corrected = heading_mod - Bias;

%Correct range

176 for i = 1: length(heading_corrected)

if heading_corrected(i) >180

heading_corrected(i)= heading_corrected(i) -180;

elseif heading_corrected(i) <-180

heading_corrected(i)= heading_corrected(i)+180;

181 end

end

figure;

plot(times ,orient_truth ,'Color ',green ,'LineWidth ' ,2);

186 set(gca ,'FontSize ' ,14)

hold on;

plot(times_cutmod ,heading_corrected ,'Color ',red ,'LineWidth ' ,2)

xlabel('Time (s)','FontSize ' ,14)

ylabel('Heading Angle(deg)','FontSize ' ,14)

191 xlabel('Time (s)','FontSize ' ,14)

ylabel('Heading Angle(deg)','FontSize ' ,14)

legend('Heading Angle Estimate ','Bias -Corrected Estimate ','

FontSize ' ,10,'Location ','southeast ')
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title('Estimated and Bias -Corrected Heading Angle Obtained from

Sun Sensor ','FontSize ' ,12)

196 % RMSE

rmse_ss_only = rmse(heading_corrected ,orient_truth (15:end -

Windowlength));

%% WHEEL ENCODER

201 L = encoder.TrackWidth;

t = 1;

odom_x = zeros(length(ticks) ,1);

odom_y = zeros(length(ticks) ,1);

206 odom_orient = zeros(length(ticks) ,1);

odom_x (1) = waypoints (2,1);

odom_y (1) = waypoints (2,2);

odom_orient (1) = orient_Euler (2,1);

211

for i = 1: length(ticks)

if ticks(i,1) == 0

ticks(i,1) = 1;

end

216

if ticks(i,2) == 0

ticks(i,2) = 1;

end

221 nu_l = ticks(i,1)/t * (pi /180) * (360/2048);

nu_r = ticks(i,2)/t * (pi /180) * (360/2048);

V_l = nu_l * encoder.WheelRadius (1);

V_r = nu_r * encoder.WheelRadius (2);

226

nu = (V_l + V_r)/2;

omega = (V_r - V_l)/L;
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k00 = nu * cos(odom_orient(i));

231 k01 = nu * sin(odom_orient(i));

k02 = omega;

k10 = nu * cos(odom_orient(i) + t/2 * k02);

k11 = nu * sin(odom_orient(i) + t/2 * k02);

236 k12 = omega;

k20 = nu * cos(odom_orient(i) + t/2 * k12);

k21 = nu * sin(odom_orient(i) + t/2 * k12);

k22 = omega;

241

k30 = nu * cos(odom_orient(i) + t * k22);

k31 = nu * sin(odom_orient(i) + t * k22);

k32 = omega;

246 odom_x(i+1) = odom_x(i) + t/6 * (k00 + 2*( k10 +k20) + k30);

odom_y(i+1) = odom_y(i) + t/6 * (k01 + 2*( k11 +k21) + k31);

odom_orient(i+1) = odom_orient(i) + t/6 * (k02 + 2*( k12 +k22

) + k32);

end

251

odom_x = odom_x (2: end);

odom_y = odom_y (2: end);

odom_orient = odom_orient (2: end);

256 %RMSE AND PLOTS

rmse_enc_xposn = rmse(odom_x ,waypoints (:,1));

rmse_enc_yposn = rmse(odom_y ,waypoints (:,2));

rmse_enc_orient = rmse(odom_orient ,orient_truth);

261

% Plot WHEEL ENCODER

samples = 1: length(waypoints) ';
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266 figure;

plot(odom_x (1),odom_y (1),markstart ,'MarkerFaceColor ',purple ,'

MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

plot(odom_x (2:end -1),odom_y (2:end -1),markerest ,'Markersize ',2,'

Color ',red);

271 hold on;

plot(odom_x(end),odom_y(end),markend , 'MarkerFaceColor ',purple ,'

MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

plot(waypoints (1,1),waypoints (1,2),markstart ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

276 hold on;

plot(waypoints (2:end -1,1),waypoints (2:end -1,2),marktruth ,'

Markersize ',2, 'Color ',green);

hold on;

plot(waypoints(end ,1),waypoints(end ,2),markend ,'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

xlabel('Y(m)','FontSize ' ,14)

281 ylabel('X(m)','FontSize ' ,14)

legend('Start ','Position Estimate ','Stop ','','True Value ','','

FontSize ' ,14,'Location ','southeast ')

title('True vs Wheel Encoder Position (x,y) Estimate ','FontSize '

,14)

hold off;

286 figure;

plot(samples (1),odom_x (1),markstart ,'MarkerFaceColor ',purple ,'

MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

plot(samples (2:end -1),odom_x (2:end -1),markerest ,'Markersize ',2,'

Color ',red)

291 hold on;

90



plot(samples(end),odom_x(end),markend , 'MarkerFaceColor ',purple ,

'MarkerEdgeColor ',purple)

hold on;

plot(samples (1),waypoints (1,1),markstart ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

hold on;

296 plot(samples (2:end -1),waypoints (2:end -1,1),marktruth ,'Markersize

',2, 'Color ',green)

hold on;

plot(samples(end),waypoints(end ,1),markend ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

xlabel('Timestep ','FontSize ' ,14)

ylabel('X(m)','FontSize ' ,14)

301 legend('Start ','Position Estimate ','Stop ','','True Value ','','

FontSize ' ,14,'Location ','northwest ')

title('True vs Wheel Encoder Position (x) Estimate ','FontSize '

,14)

hold off;

figure;

306 plot(samples (1),odom_y (1),markstart ,'MarkerFaceColor ',purple ,'

MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

plot(samples (2:end -1),odom_y (2:end -1),markerest ,'Markersize ',2,'

Color ',red)

hold on;

311 plot(samples(end),odom_y(end),markend , 'MarkerFaceColor ',purple ,

'MarkerEdgeColor ',purple)

hold on;

plot(samples (1),waypoints (1,2),markstart ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

hold on;

plot(samples (2:end -1),waypoints (2:end -1,2),marktruth ,'Markersize

',2, 'Color ',green)

316 hold on;

plot(samples(end),waypoints(end ,2),markend ,'MarkerFaceColor ',
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purple ,'MarkerEdgeColor ',purple)

xlabel('Timestep ','FontSize ' ,14)

ylabel('Y(m)','FontSize ' ,14)

legend('Start ','Position Estimate ','Stop ','','True Value ','','

FontSize ' ,14,'Location ','southeast ')

321 title('True vs Wheel Encoder Position (y) Estimate ','FontSize '

,14)

hold off;

figure;

plot(odom_orient ,'Color ',red ,'LineWidth ' ,2);

326 set(gca ,'FontSize ' ,14)

hold on;

plot(orient_Euler (:,1),'Color ',green ,'LineWidth ' ,2);

xlabel('Timestep ','FontSize ' ,14)

ylabel('Heading Angle(rad)','FontSize ' ,14)

331 legend('Orientation Estimate ','True Value ','FontSize ' ,14,'

Location ','northeast ')

title('True vs Wheel Encoder Heading Angle Estimate ','FontSize '

,14)

hold off;

%% IMU Position Only Using Kalman Filter

336

dt = 1;

n = length(accel);

time = 0:dt:dt*(n-1);

341

ax = accel (1:n,1);

ay = accel (1:n,2);

az = accel (1:n,3);

346 Ax = [1 dt 0.5*( dt^2)

0 1 dt

0 0 1];

Ay = Ax;
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Az = Ax;

351

Cx = [0 0 1];

Cy = Cx;

Cz = Cx;

G = [0.5*( dt^2) dt 1]';

356 % var_a = 67.53e-06;

var_a = 1;

Q = G * G' * sqrt(var_a);

% Q = (1e-4)*eye(3);

361 R = eye(1);

P = 5000* eye(3);

%For x axis

thetax = zeros(3,n);

366 thx = [0;0.05;0]; %position ,velocity ,acceleration

y_mod = ax(1);

for i=1:n-1

371

%Time Update

th_currx = Ax * thx;

P = Ax * P * Ax '+ Q;

376 %Measurement Update

K = P * Cx ' /( Cx * P * Cx ' + R);

th_currx = th_currx + (K * (y_mod - Cx * th_currx));

P = (eye(3) - (K*Cx)) * P;

381

thetax(:,i) = th_currx;

thx = th_currx;

y_mod = ax(i+1);

386 end
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%For y axis

P = 5000* eye(3);

thetay = zeros(3,n);

391 thy = [0;0.05;0];

y_mod = ay(1);

for i = 1:n-1

396

%Time Update

th_curry = Ay * thy;

P = Ay * P * Ay '+ Q;

401 %Measurement Update

K = P * Cy ' /( Cy * P * Cy ' + R);

th_curry = th_curry + (K * (y_mod - Cy * th_curry));

P = (eye(3) - (K*Cy)) * P;

406 thetay(:,i) = th_curry;

thy = th_curry;

y_mod = ay(i+1);

end

411

thetax_imu = thetax;

thetay_imu = thetay;

%RMSE AND PLOTS

416

rmse_imu_x = rmse(thetax_imu (1,:) ',waypoints (:,1));

rmse_imu_y = rmse(thetay_imu (1,:) ',waypoints (:,2));

%PLOTS

421

figure;

plot(thetax_imu (1,1),thetay_imu (1,1),markstart ,'MarkerFaceColor '
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,purple ,'MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

426 plot(thetax_imu (1,2:end -1),thetay_imu (1,2:end -1),markerest ,'

Markersize ',2, 'Color ',red)

hold on;

plot(thetax_imu (1,end),thetay_imu (1,end),markend ,'

MarkerFaceColor ',purple ,'MarkerEdgeColor ',purple)

hold on;

plot(waypoints (1,1),waypoints (1,2),markstart ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

431 hold on;

plot(waypoints (2:end -1,1),waypoints (2:end -1,2),marktruth ,'

Markersize ',2, 'Color ',green)

hold on;

plot(waypoints(end ,1),waypoints(end ,2),markend ,'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

xlabel('Y(m)','FontSize ' ,14)

436 ylabel('X(m)','FontSize ' ,14)

legend('','Position Estimate ','','','True Value ','','FontSize '

,14,'Location ','northwest ')

title('KF Based Position (x,y) Estimate using only IMU

Measurements ')

hold off;

441 figure;

plot(samples (1),thetax_imu (1,1),markstart ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

plot(samples (2:end -1),thetax_imu (1,2:end -1),markerest ,'

Markersize ',2,'Color ',red)

446 hold on;

plot(samples(end),thetax_imu (1,end -1),markend , 'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

hold on;

plot(samples (1),waypoints (1,1),markstart ,'MarkerFaceColor ',
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purple ,'MarkerEdgeColor ',purple)

hold on;

451 plot(samples (2:end -1),waypoints (2:end -1,1),marktruth ,'Markersize

',2, 'Color ',green)

hold on;

plot(samples(end),waypoints(end ,1),markend ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

xlabel('Timestep ','FontSize ' ,14)

ylabel('X(m)','FontSize ' ,14)

456 legend('','Position Estimate ','','','True Value ','','FontSize '

,14,'Location ','southwest ')

title('True vs IMU Position (x) Estimate ','FontSize ' ,14)

hold off;

figure;

461 plot(samples (1),thetay_imu (1,1),markstart ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

plot(samples (2:end -1),thetay_imu (1,2:end -1),markerest ,'

Markersize ',2,'Color ',red)

hold on;

466 plot(samples(end),thetay_imu (1,end -1),markend , 'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

hold on;

plot(samples (1),waypoints (1,1),markstart ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

hold on;

plot(samples (2:end -1),waypoints (2:end -1,1),marktruth ,'Markersize

',2, 'Color ',green)

471 hold on;

plot(samples(end),waypoints(end ,1),markend ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

xlabel('Timestep ','FontSize ' ,14)

ylabel('Y(m)','FontSize ' ,14)

legend('','Position Estimate ','','','True Value ','','FontSize '

,14,'Location ','northwest ')
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476 title('True vs IMU Position (y) Estimate ','FontSize ' ,14)

hold off;

%% Combine IMU AND WHEEL ENCODER

481 dt = 1;

n = length(accel) ;

time = 0:dt:dt*(n-1);

486 ax = accel (1:n,1);

ay = accel (1:n,2);

az = accel (1:n,3);

Ax = [1 dt 0.5*( dt^2)

491 0 1 dt

0 0 1];

Ay = Ax;

Az = Ax;

496 Cx = [1 0 0; 0 0 1];

Cy = Cx;

Cz = Cx;

G = [0.5*( dt^2) dt 1]';

% var_a = 67.53e-06;

501 var_a = 1;

Q = G * G' * sqrt(var_a);

% Q = (1e-4)*eye(3);

R = eye(2);

506 P = 5000* eye(3);

%For x axis

thetax = zeros(3,n);

511 thx = [ -10;0.05; -0.0001]; %position ,velocity ,acceleration
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y_mod = [odom_x (1); ax(1)];

for i=1:n-1

516

%Time Update

th_currx = Ax * thx;

P = Ax * P * Ax '+ Q;

521 %Measurement Update

K = P * Cx ' /( Cx * P * Cx ' + R);

th_currx = th_currx + (K * (y_mod - Cx * th_currx));

P = (eye(3) - (K*Cx)) * P;

526

thetax(:,i) = th_currx;

thx = th_currx;

y_mod = [odom_x(i+1);ax(i+1)];

531 end

%For y axis

P = 5000* eye(3);

536 thetay = zeros(3,n);

thy = [ -0.2; -0.02;0.00005];

y_mod = [odom_y (1);ay(1)];

541 for i = 1:n-1

%Time Update

th_curry = Ay * thy;

P = Ay * P * Ay '+ Q;

546

%Measurement Update

K = P * Cy ' /( Cy * P * Cy ' + R);

98



th_curry = th_curry + (K * (y_mod - Cy * th_curry));

551 P = (eye(3) - (K*Cy)) * P;

thetay(:,i) = th_curry;

thy = th_curry;

556 y_mod = [odom_y(i+1);ay(i+1)];

end

%RMSE VALUES AND MAXIMUM POSITION ERROR

561 rmse_imu_enc_kf_x = rmse(thetax (1,1:end -1) ',waypoints (1:end -1,1)

);

max_imu_enc_kf_x = max(abs(thetax (1,1:end -1)' - waypoints (1:end

-1,1) ));

rmse_imu_enc_kf_y = rmse(thetay (1,1:end -1) ',waypoints (1:end -1,2)

);

max_imu_enc_kf_y = max(abs(thetay (1,1:end -1)' - waypoints (1:end

-1,2) ));

566

figure;

plot(thetax (1,1),thetay (1,1),markstart ,'MarkerFaceColor ',purple ,

'MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

571 plot(thetax (1,2:end -2),thetay (1,2:end -2),markerest , 'Markersize '

,2, 'Color ',red)

hold on;

plot(thetax(1,end -1),thetay(1,end -1),markend ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

hold on;

plot(waypoints (1,1),waypoints (1,2),markstart ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

576 hold on;

plot(waypoints (2:end -1,1),waypoints (2:end -1,2),marktruth ,'

Markersize ',2, 'Color ',green)
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hold on;

plot(waypoints(end ,1),waypoints(end ,2),markend ,'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

xlabel('Y(m)','FontSize ' ,14)

581 ylabel('X(m)','FontSize ' ,14)

legend('','Position Estimate ','','','True Value ','','FontSize '

,14,'Location ','southeast ')

title('Kalman Filter using IMU and Wheel Encoder Based Position

(x,y) Estimate ','FontSize ' ,14)

hold off;

586 %% Linear Weighted Fusion of Heading Angles : Weights 1

alpha_s = 0.9; alpha_enc = 0.09; alpha_imu = 0.01;

591 %Gyroscope to heading angle

gyro_deg = rad2deg(gyro (:,3));

head_imu = cumtrapz(times ,gyro_deg);

596

theta_fused = zeros(length(heading_corrected) ,1);

for cnt = 1: length(heading_corrected)

theta_fused(cnt) = alpha_s * heading_corrected(cnt) +

alpha_imu * head_imu(cnt +15) + alpha_enc * rad2deg(

odom_orient(cnt +15));

end

601 theta_fused_rad = deg2rad(theta_fused);

%Fused_theta odometry

odom_x_fused = zeros(length(theta_fused_rad) ,1);

odom_y_fused = zeros(length(theta_fused_rad) ,1);

606 odom_orient_fused = zeros(length(theta_fused_rad) ,1);

odom_x_fused (1:5) = odom_x (1:5);

odom_y_fused (1:5) = odom_y (1:5);
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odom_orient_fused (1:5) = theta_fused_rad (1:5);

611

for i = 5: length(theta_fused_rad)

nu_l = ticks(i,1)/t * (pi /180) * (360/2048);

nu_r = ticks(i,2)/t * (pi /180) * (360/2048);

616 V_l = nu_l * encoder.WheelRadius (1);

V_r = nu_r * encoder.WheelRadius (2);

nu = (V_l + V_r)/2;

omega = (V_r - V_l)/L;

621

k00 = nu * cos(theta_fused_rad(i));

k01 = nu * sin(theta_fused_rad(i));

k02 = omega;

626 k10 = nu * cos(theta_fused_rad(i) + t/2 * k02);

k11 = nu * sin(theta_fused_rad(i) + t/2 * k02);

k12 = omega;

k20 = nu * cos(theta_fused_rad(i) + t/2 * k12);

631 k21 = nu * sin(theta_fused_rad(i) + t/2 * k12);

k22 = omega;

k30 = nu * cos(theta_fused_rad(i) + t * k22);

k31 = nu * sin(theta_fused_rad(i) + t * k22);

636 k32 = omega;

odom_x_fused(i+1) = odom_x_fused(i) + t/6 * (k00 + 2*( k10 +k20)

+ k30);

odom_y_fused(i+1) = odom_y_fused(i) + t/6 * (k01 + 2*( k11 +k21)

+ k31);

odom_orient_fused(i+1) = odom_orient_fused(i) + t/6 * (k02 + 2*(

k12 +k22) + k32);

641

end

odom_orient_fused = rad2deg(odom_orient_fused);
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figure;

646 plot(odom_x_fused (1),odom_y_fused (1),markstart ,'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

plot(odom_x_fused (2:end -1),odom_y_fused (2:end -1),markerest , '

Markersize ',2, 'Color ',red )

hold on;

651 plot(odom_x_fused(end),odom_y_fused(end),markend ,'

MarkerFaceColor ',purple ,'MarkerEdgeColor ',purple)

hold on;

plot(waypoints (15 ,1),waypoints (15 ,2),markstart ,'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

hold on;

plot(waypoints (16: length(heading_corrected)+14 ,1),waypoints (16:

length(heading_corrected)+14 ,2),marktruth ,'Markersize ',2, '

Color ',green)

656 hold on;

plot(waypoints(length(heading_corrected)+15 ,1),waypoints(length(

heading_corrected)+15 ,2),markend ,'MarkerFaceColor ',purple ,'

MarkerEdgeColor ',purple)

xlabel('X(m)','FontSize ' ,14)

ylabel('Y(m)','FontSize ' ,14)

title('True Position vs Fused Heading Based Position (x,y)

Estimate ','FontSize ' ,14)

661 legend('','Position Estimate ','','','True Value ','','FontSize '

,14,'Location ','southeast ')

%% Linear Weighted Fusion: Weights Set 2

alpha_s = 0.6; alpha_enc = 0.35; alpha_imu = 0.05;

666

%gyroscope to heading angle

dt = 1;
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671 theta_fused1 = zeros(length(heading_corrected) ,1);

for cnt = 1: length(heading_corrected)

theta_fused1(cnt) = alpha_s * heading_corrected(cnt) +

alpha_imu * head_imu(cnt +15) + alpha_enc * rad2deg(

odom_orient(cnt +15));

end

theta_fused1_rad = deg2rad(theta_fused1);

676

%Fused_theta odometry

odom_x_fused1 = zeros(length(theta_fused1_rad) ,1);

odom_y_fused1 = zeros(length(theta_fused1_rad) ,1);

odom_orient_fused1 = zeros(length(theta_fused1_rad) ,1);

681

odom_x_fused1 (1:5) = odom_x (1:5);

odom_y_fused1 (1:5) = odom_y (1:5);

odom_orient_fused1 (1:5) = theta_fused1_rad (1:5);

686 for i = 5: length(theta_fused1_rad)

nu_l = ticks(i,1)/t * (pi /180) * (360/2048);

nu_r = ticks(i,2)/t * (pi /180) * (360/2048);

V_l = nu_l * encoder.WheelRadius (1);

691 V_r = nu_r * encoder.WheelRadius (2);

nu = (V_l + V_r)/2;

omega = (V_r - V_l)/L;

696 k00 = nu * cos(theta_fused1_rad(i));

k01 = nu * sin(theta_fused1_rad(i));

k02 = omega;

k10 = nu * cos(theta_fused1_rad(i) + t/2 * k02);

701 k11 = nu * sin(theta_fused1_rad(i) + t/2 * k02);

k12 = omega;

k20 = nu * cos(theta_fused1_rad(i) + t/2 * k12);

k21 = nu * sin(theta_fused1_rad(i) + t/2 * k12);
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706 k22 = omega;

k30 = nu * cos(theta_fused1_rad(i) + t * k22);

k31 = nu * sin(theta_fused1_rad(i) + t * k22);

k32 = omega;

711

odom_x_fused1(i+1) = odom_x_fused1(i) + t/6 * (k00 + 2*(k10 +k20

) + k30);

odom_y_fused1(i+1) = odom_y_fused1(i) + t/6 * (k01 + 2*(k11 +k21

) + k31);

odom_orient_fused1(i+1) = odom_orient_fused1(i) + t/6 * (k02 +

2*(k12 +k22) + k32);

716 end

odom_orient_fused1 = rad2deg(odom_orient_fused1);

figure;

plot(odom_x_fused (1),odom_y_fused (1),markstart ,'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

721 set(gca ,'FontSize ' ,14)

hold on;

plot(odom_x_fused (2:end -1),odom_y_fused (2:end -1),markerest , '

Markersize ',2,'Color ',red)

hold on;

plot(odom_x_fused(end),odom_y_fused(end),markend , '

MarkerFaceColor ',purple ,'MarkerEdgeColor ',purple)

726 hold on;

plot(odom_x_fused1 (1),odom_y_fused1 (1),markstart ,'

MarkerFaceColor ',purple ,'MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

plot(odom_x_fused1 (2:end -1),odom_y_fused1 (2:end -1),markerest , '

Markersize ',2,'Color ',black)

731 hold on;

plot(odom_x_fused1(end),odom_y_fused1(end),markend , '

MarkerFaceColor ',purple ,'MarkerEdgeColor ',purple)

hold on;
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plot(waypoints (15 ,1),waypoints (15 ,2),markstart ,'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

hold on;

736 plot(waypoints (16: length(heading_corrected)+ 14,1),waypoints (16:

length(heading_corrected)+14 ,2),marktruth ,'Markersize ',2, '

Color ',green)

hold on;

plot(waypoints(length(heading_corrected)+15 ,1),waypoints(length(

heading_corrected)+15 ,2),markend ,'MarkerFaceColor ',purple ,'

MarkerEdgeColor ',purple)

xlabel('X(m)','FontSize ' ,14)

ylabel('Y(m)','FontSize ' ,14)

741 title('True Position vs Fused Heading Based Position (x,y)

Estimate ','FontSize ' ,14)

legend('','Position Estimate - Weights :1','','','Position

Estimate - Weights :2','','','True Value ','','FontSize ' ,14,'

Location ','southeast ')

%% OPTIMAL WEIGHTS

746 theta_measurement = zeros (600 ,3);

for cnt = 1: length(theta_measurement)

theta_measurement(cnt ,:) = [head_imu(cnt +15), rad2deg(

odom_orient(cnt +15)), heading_corrected(cnt)];

end

751

theta_true = (orient_truth (15: cnt +14));

%weights= lsqnonneg(theta_measurement ,theta_true);

756 weights = lsqlin(theta_measurement ,theta_true ,[],[],ones (1,3) ,1,

zeros (3,1) ,0.95* ones (1,3));

weight_imu = weights (1); weight_we = weights (2); weight_ss =

weights (3);

theta_fused_opt = zeros(length(heading_corrected) ,1);
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for cnt = 1: length(heading_corrected)

761 theta_fused_opt(cnt) = weight_ss * heading_corrected(cnt) +

weight_imu * head_imu(cnt +15) + weight_we * rad2deg(

odom_orient(cnt +15));

end

theta_fused_rad_opt = deg2rad(theta_fused_opt);

766 %Fused_theta odometry

odom_x_fused_opt = zeros(length(theta_fused_rad_opt) ,1);

odom_y_fused_opt = zeros(length(theta_fused_rad_opt) ,1);

odom_orient_fused_opt = zeros(length(theta_fused_rad_opt) ,1);

771 odom_x_fused_opt (1:5) = odom_x (1:5);

odom_y_fused_opt (1:5) = odom_y (1:5);

odom_orient_fused_opt (1:5) = theta_fused_rad_opt (1:5);

for i = 5: length(theta_fused_rad_opt)

776 nu_l = ticks(i,1)/t * (pi /180) * (360/2048);

nu_r = ticks(i,2)/t * (pi /180) * (360/2048);

V_l = nu_l * encoder.WheelRadius (1);

V_r = nu_r * encoder.WheelRadius (2);

781

nu = (V_l + V_r)/2;

omega = (V_r - V_l)/L;

k00 = nu * cos(theta_fused_rad_opt(i));

786 k01 = nu * sin(theta_fused_rad_opt(i));

k02 = omega;

k10 = nu * cos(theta_fused_rad_opt(i) + t/2 * k02);

k11 = nu * sin(theta_fused_rad_opt(i) + t/2 * k02);

791 k12 = omega;

k20 = nu * cos(theta_fused_rad_opt(i) + t/2 * k12);

k21 = nu * sin(theta_fused_rad_opt(i) + t/2 * k12);
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k22 = omega;

796

k30 = nu * cos(theta_fused_rad_opt(i) + t * k22);

k31 = nu * sin(theta_fused_rad_opt(i) + t * k22);

k32 = omega;

801 odom_x_fused_opt(i+1) = odom_x_fused_opt(i) + t/6 * (k00 + 2*(

k10 +k20) + k30);

odom_y_fused_opt(i+1) = odom_y_fused_opt(i) + t/6 * (k01 + 2*(

k11 +k21) + k31);

odom_orient_fused_opt(i+1) = odom_orient_fused_opt(i) + t/6 * (

k02 + 2*(k12 +k22) + k32);

end

806 odom_orient_fused_opt = rad2deg(odom_orient_fused_opt);

figure;

plot(odom_x_fused_opt (1),odom_y_fused_opt (1),markstart ,'

MarkerFaceColor ',purple ,'MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

811 hold on;

plot(odom_x_fused_opt (2:end -1),odom_y_fused_opt (2:end -1),

markerest , 'Markersize ',2, 'Color ',red )

hold on;

plot(odom_x_fused_opt(end),odom_y_fused_opt(end),markend ,'

MarkerFaceColor ',purple ,'MarkerEdgeColor ',purple)

hold on;

816 plot(waypoints (15 ,1),waypoints (15 ,2),markstart ,'MarkerFaceColor '

,purple ,'MarkerEdgeColor ',purple)

hold on;

plot(waypoints (16: length(heading_corrected)+14 ,1),waypoints (16:

length(heading_corrected)+14 ,2),marktruth ,'Markersize ',2, '

Color ',green)

hold on;

plot(waypoints(length(heading_corrected)+15 ,1),waypoints(length(

heading_corrected)+15 ,2),markend ,'MarkerFaceColor ',purple ,'

MarkerEdgeColor ',purple)
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821 xlabel('X(m)','FontSize ' ,14)

ylabel('Y(m)','FontSize ' ,14)

title('True Position vs Fused Heading Based Position (x,y)

Estimate ','FontSize ' ,14)

legend('','Position Estimate ','','','True Value ','','FontSize '

,14,'Location ','southeast ')

826 %% RMSE: Linear Weighted Fusion

rmse_fuse_xposn = rmse(odom_x_fused (2:end),waypoints (15: length(

heading_corrected)+14 ,1));

rmse_fuse_yposn = rmse(odom_y_fused (2:end),waypoints (15: length(

heading_corrected)+14 ,2));

max_diff_fuse_xposn = max(abs(odom_x_fused (2:end) - waypoints

(15: length(heading_corrected)+14 ,1) ));

831 max_diff_fuse_yposn = max(abs(odom_y_fused (2:end) - waypoints

(15: length(heading_corrected)+14 ,2) ));

rmse_fuse1_xposn = rmse(odom_x_fused1 (2: end),waypoints (15: length

(heading_corrected)+14,1));

rmse_fuse1_yposn = rmse(odom_y_fused1 (2: end),waypoints (15: length

(heading_corrected)+14,2));

max_diff_fuse1_xposn = max(abs(odom_x_fused1 (2: end) - waypoints

(15: length(heading_corrected)+14 ,1) ));

836 max_diff_fuse1_yposn = max(abs(odom_y_fused1 (2: end) - waypoints

(15: length(heading_corrected)+14 ,2) ));

rmse_fuse_opt_xposn = rmse(odom_x_fused_opt (2:end),waypoints (15:

length(heading_corrected)+14 ,1));

rmse_fuse_opt_yposn = rmse(odom_y_fused_opt (2:end),waypoints (15:

length(heading_corrected)+14 ,2));

max_diff_fuse_opt_xposn = max(abs(odom_x_fused_opt (2:end) -

waypoints (15: length(heading_corrected)+14,1) ));

841 max_diff_fuse_opt_yposn = max(abs(odom_y_fused_opt (2:end) -

waypoints (15: length(heading_corrected)+14,2) ));

%% SIMPLE FUSION
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Windowlength = 25;

846 orient_truth_cut = truth_angle_mod2 (15: end);

odom_orient_deg = rad2deg(odom_orient);

times_cutmod = times_cut3 (13: length(heading_angle3) -

Windowlength ,1);

theta_simple_fused = zeros(length(heading_corrected) ,1);

851

for idx = Windowlength +1: length(heading_corrected)

Blockh = heading_corrected(idx -Windowlength:idx);

Blocko = orient_truth_cut(idx -Windowlength:idx);

Blockw = odom_orient_deg (15+idx -Windowlength:idx +15);

856 Biasho(idx) = mean(abs(Blockh -Blocko));

Biaswo(idx) = mean(abs(Blockw -Blocko));

end

theta_simple_fused (1: Windowlength) = heading_corrected (1:

Windowlength);

861 for indx = Windowlength +1: length(heading_corrected)

if Biaswo(indx) <15

theta_simple_fused(indx) = odom_orient_deg (15+ indx);

else

theta_simple_fused(indx) = heading_corrected(indx);

866 end

end

theta_simple_fused_rad = deg2rad(theta_simple_fused);

871

%Fused_theta odometry

odom_x_fused_simple = zeros(length(theta_simple_fused_rad) ,1);

odom_y_fused_simple = zeros(length(theta_simple_fused_rad) ,1);

odom_orient_fused_simple = zeros(length(theta_simple_fused_rad)

,1);

876

odom_x_fused_simple (1:5) = odom_x (1:5);
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odom_y_fused_simple (1:5) = odom_y (1:5);

odom_orient_fused_simple (1:5) = theta_simple_fused_rad (1:5);

881 for i = 5: length(theta_simple_fused_rad)

nu_l = ticks(i,1)/t * (pi /180) * (360/2048);

nu_r = ticks(i,2)/t * (pi /180) * (360/2048);

V_l = nu_l * encoder.WheelRadius (1);

886 V_r = nu_r * encoder.WheelRadius (2);

nu = (V_l + V_r)/2;

omega = (V_r - V_l)/L;

891 k00 = nu * cos(theta_simple_fused_rad(i));

k01 = nu * sin(theta_simple_fused_rad(i));

k02 = omega;

k10 = nu * cos(theta_simple_fused_rad(i) + t/2 * k02);

896 k11 = nu * sin(theta_simple_fused_rad(i) + t/2 * k02);

k12 = omega;

k20 = nu * cos(theta_simple_fused_rad(i) + t/2 * k12);

k21 = nu * sin(theta_simple_fused_rad(i) + t/2 * k12);

901 k22 = omega;

k30 = nu * cos(theta_simple_fused_rad(i) + t * k22);

k31 = nu * sin(theta_simple_fused_rad(i) + t * k22);

k32 = omega;

906

odom_x_fused_simple(i+1) = odom_x_fused_simple(i) + t/6 * (k00 +

2*(k10 +k20) + k30);

odom_y_fused_simple(i+1) = odom_y_fused_simple(i) + t/6 * (k01 +

2*(k11 +k21) + k31);

odom_orient_fused_simple(i+1) = odom_orient_fused_simple(i) + t

/6 * (k02 + 2*( k12 +k22) + k32);

911 end

110



odom_orient_fused_simple = rad2deg(odom_orient_fused_simple);

figure;

916 plot(odom_x_fused_simple (1),odom_y_fused_simple (1),markstart ,'

MarkerFaceColor ',purple ,'MarkerEdgeColor ',purple)

set(gca ,'FontSize ' ,14)

hold on;

plot(odom_x_fused_simple (2:end -1),odom_y_fused_simple (2:end -1),

markerest , 'Markersize ',2,'Color ',red)

hold on;

921 plot(odom_x_fused_simple(end),odom_y_fused_simple(end),markend ,'

MarkerFaceColor ',purple ,'MarkerEdgeColor ',purple)

hold on;

plot(waypoints (1,1),waypoints (1,2),markstart ,'MarkerFaceColor ',

purple ,'MarkerEdgeColor ',purple)

hold on;

plot(waypoints (2: length(heading_corrected) -1,1),waypoints (2:

length(heading_corrected) -1,2),marktruth ,'Markersize ',2, '

Color ',green)

926 hold on;

plot(waypoints(length(heading_corrected) ,1),waypoints(length(

heading_corrected) ,2),markend ,'MarkerFaceColor ',purple ,'

MarkerEdgeColor ',purple)

xlabel('X(m)','FontSize ' ,14)

ylabel('Y(m)','FontSize ' ,14)

legend('','Position Estimate ','','','True Value ','','FontSize '

,14,'Location ','southeast ')

931 title('True Position vs Simple Fusion Heading Based Position (x,

y) Estimate ','FontSize ' ,14)

rmse_simple_fuse_xposn = rmse(odom_x_fused_simple (2:end),

waypoints (15: length(heading_corrected)+14,1));

rmse_simple_fuse_yposn = rmse(odom_y_fused_simple (2:end),

waypoints (15: length(heading_corrected)+14,2));

936 max_simple_fuse_xposn = max(abs(odom_x_fused_simple (2: end) -
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waypoints (15: length(heading_corrected)+14,1) ));

max_simple_fuse_yposn = max(abs(odom_y_fused_simple (2: end) -

waypoints (15: length(heading_corrected)+14,2) ));

%% BOX PLOT: x & y direction

941 bpx1 = abs(thetax (1,:)- waypoints (:,1) ') ;

bpx2 = abs(odom_x_fused (2: end)'- waypoints (15: length(

heading_corrected)+14 ,1) ');

bpx3 = abs(odom_x_fused1 (2: end)' - waypoints (15: length(

heading_corrected)+14 ,1) ');

bpx4 = abs(odom_x_fused_simple (2: end)' - waypoints (15: length(

odom_x_fused_simple)+13,1) ');

bpx = [bpx1 bpx2 bpx3 bpx4];

946 grp = [zeros (1 ,888),ones (1 ,849) ,2*ones (1 ,849) ,3*ones (1 ,849)];

figure;

boxplot(bpx ,grp ,'Labels ',{'KF','LW:1','LW:2','SF'});

set(gca ,'FontSize ' ,14)

title('Box Plot of Errors in x for All Fusion Methods ','FontSize

' ,14)

951

bpy1 = abs(thetay (1,:)- waypoints (:,2) ') ;

bpy2 = abs(odom_y_fused (2: end)'- waypoints (15: length(

heading_corrected)+14 ,2) ');

bpy3 = abs(odom_y_fused1 (2: end)' - waypoints (15: length(

heading_corrected)+14 ,2) ');

bpy4 = abs(odom_y_fused_simple (2: end)' - waypoints (15: length(

odom_x_fused_simple)+13,2) ');

956 bpy = [bpy1 bpy2 bpy3 bpy4];

grp = [zeros (1 ,888),ones (1 ,849) ,2*ones (1 ,849) ,3*ones (1 ,849)];

figure;

boxplot(bpx ,grp ,'Labels ',{'KF','LW:1','LW:2','SF'});

set(gca ,'FontSize ' ,14)

961 title('Box Plot of Errors in y for All Fusion Methods ','FontSize

' ,14)

%% FUNCTIONS : Heading Angle

112



function heading = heading_calc(W,V,lat ,lon)

966 B = W * V';

Q = B + B';

Z = [B(2,3)-B(3,2) , B(3,1)-B(1,3), B(1,2)-B(2,1)];

sigma = trace(B);

971

K = [Q - ones (3,3)*sigma , Z';...

Z , sigma];

[V,D] = eigs(K,1);

976

q_v = V(1:3 ,1);

q_s = V(4);

q_v_skew = skew(q_v);

981 C_sf = (q_s^2 - (q_v ' * q_v))* ones (3,3) + 2 * (q_v * q_v ') - 2

* q_s * q_v_skew;

%C_ft = rotz(lon) * roty(pi/2 - lat) * rotz(pi/2);

C_ft = rotz(lon) * roty(rad2deg(pi/2) - lat) * rotz(rad2deg(pi

/2));

986 C_ts = C_ft ' * C_sf ';

heading = rad2deg(atan2(C_ts (2,1),C_ts (1,1)));

end

991

%% JULIAN DAY

function JD = JD_calc(h,m,s)

996 Y = 2008;

M1 = 7;

113



A = floor(Y/100);

B = 2 - A + floor(A/4);

1001

%The (h + 5) is used as the measurements are in local EST time

and for

%solar position calculations , we must convert to standard UTC.

The offset

%to UTC for EST would be +5, as the time zone is (-5)

1006 D = 12 + ((h + 5) /24.0) + (m/1440.0) + s/86400.0; % h min s ms

JD = floor (365.25 * (Y + 4716)) + floor (30.6001 * (M1+1)) + D +

B - 1524.5;

end

1011 %% GAST ANGLE

function gast_mod = gast_angle(JD)

T = (JD - 2451545.0) /36525;

%GAST

theta_gast = 280.46061837 + 360.98564736629 * (JD - 2451545.0) +

0.000387933 * T^2 - T^3 / 38710000;

1016

% This part is from Chapter 22 for ecliptic

omega_g = 125.04452 - 1934.136261 * T + 0.0020708 * T^2 + T^3 /

450000;

L = 280.4665 + 36000.7698 * T; % in deg; mean lon of Sun

1021 L1 = 218.3165 + 481267.8813 * T; % mean lon of Moon

%To dms

delta_psi = dms2degrees ([0 0 -17.20]) * sin(deg2rad(omega_g)) -

dms2degrees ([0 0 1.32]) * sin(deg2rad (2*L)) - dms2degrees ([0

0 0.23]) * sin(deg2rad (2*L1)) + dms2degrees ([0 0 0.21]) * sin

(deg2rad (2* omega_g));

%To dms

1026 delta_eps = dms2degrees ([0 0 9.20]) * cos(deg2rad(omega_g)) +

dms2degrees ([0 0 0.57]) * cos(deg2rad (2*L)) - dms2degrees ([0
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0 0.10]) * cos(deg2rad (2*L1)) - dms2degrees ([0 0 0.09]) * cos

(deg2rad (2* omega_g));

%To dms

eps0 = dms2degrees ([23 26 21.448]) - dms2degrees ([0 0 46.8150])

* T - dms2degrees ([0 0 0.00059]) * T^2 + dms2degrees ([0 0

0.001813]) * T^3;

%To dms

1031 eps_g = eps0 + delta_eps;

%Continuation of GAST

corr = delta_psi * cos(deg2rad(eps_g))/15;

gast = theta_gast + corr;

1036 gast_mod = correctdegrange(gast);

end

%% CORRECTED DEGREE RANGE

function d = correctdegrange(angle)

1041 d = rem(angle ,360);

if d<0

d = d + 360;

end

end

1046

%% CONSTRUCT SUN VECTOR

function svec = sun_vector(a,b)

svec = [sin(deg2rad(b)) * cos(deg2rad(a)), sin(deg2rad(b)) * sin

(deg2rad(a)), cos(deg2rad(b))]';

end

1051

%% SKEW MATRICES

function sk = skew(G_f)

sk = [0 -G_f (3) G_f (2);...

G_f(3) 0 -G_f(1);...

1056 -G_f (2) G_f (1) 0];

end

115



%% ROTATION MATRICES

function rx = rotx(angle)

1061 rx = [1 0 0; 0 cos(deg2rad(angle)) -sin(deg2rad(angle)); 0 sin(

deg2rad(angle)) cos(deg2rad(angle))];

end

function ry = roty(angle)

ry = [cos(deg2rad(angle)) 0 sin(deg2rad(angle)); 0 1 0 ; -sin(

deg2rad(angle)) 0 cos(deg2rad(angle))];

1066 end

function rz = rotz(angle)

rz = [cos(deg2rad(angle)) -sin(deg2rad(angle)) 0; sin(deg2rad(

angle)) cos(deg2rad(angle)) 0; 0 0 1];

end

1071

%% EPHEMERIS

function [a,b] = calc_eph(JD,theta_gast ,lat ,long)

T = (JD - 2451545.0) /36525;

1076

L0 = 280.46646 + 36000.76983 * T + 0.0003032 * T^2; %Geometric

Mean Longitude of the Sun

L0 = correctdegrange(L0);

M = 357.52911 + 35999.05029 * T - 0.0001537 * T^2; % Mean

Anomaly of the Sun

1081 M = correctdegrange(M);

e = 0.016708634 - 0.000042037 * T - 0.0000001267 * T^2; %

Eccentricity of the Earth 's Orbit

C = +(1.914602 - 0.004817 * T - 0.000014 * T^2) * sin(deg2rad(M)

)...

+ (0.019993 - 0.000101 * T) * sin(deg2rad (2 * M)) ...

1086 + 0.000289 * sin(deg2rad (3 * M)); %Sun 's Equation of the

Centre
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Ltrue = L0 + C;

Ltrue = correctdegrange(Ltrue); %Sun 's true geometric longitude

1091 n = M + C; %Sun 's true anomaly

n = correctdegrange(n);

R = 1.000001018 * (1 - e^2) / (1 + e * cos(deg2rad(n))); %Radius

Vector of Sun

1096 %Apparent Longitude of the Sun

omega = 125.04 - 1934.136 * T;

Lapp = Ltrue - 0.00569 - 0.00478 * sin(deg2rad(omega));

%Obliquity of the Ecliptic 22.3

1101 U = T/100;

eps0 = dms2degrees ([23 26 21.448]) - 4680.93/3600.0 * U ...

- 1.55 * U^2 + 1999.25 * U^3 ...

-31.38 * U^4 - 249.67 * U^5 ...

-39.05 * U^6 +7.12 * U^7 ...

1106 +27.87 * U^8 + 5.79 * U^9 +2.45 * U^10;

%Solar Coordinates

%Correction for parallax

eps0_corr = eps0 + 0.00256 * cos(deg2rad(omega));

1111

%Sun 's right ascension and declination

asc = rad2deg(atan2(cos(deg2rad(eps0_corr))* sin(deg2rad(Lapp)),

cos(deg2rad(Lapp))));

decl = rad2deg(asin(sin(deg2rad(eps0_corr))* sin(deg2rad(Lapp)))

);

1116 HA = theta_gast - long - asc;

az = rad2deg( atan(sin(deg2rad(HA)) / (cos(deg2rad(HA)) * sin(

deg2rad(lat)) - tan(deg2rad(decl)) * cos(deg2rad(lat))) ));

alt = rad2deg(asin(sin(deg2rad(lat)) * sin(deg2rad(decl)) + cos(
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deg2rad(lat)) * cos(deg2rad(decl)) * cos(deg2rad(HA)) ));

1121 b = 90 - alt; %Zenith Angle

HA = HA + 180;

HA = correctdegrange(HA);

1126 %Default: Clock wise from South

%az = az + 180; %To make it from North -clock wise

a = az;

%az_corr = correctdegrange(az);

1131 %a = az_corr; % Azimuth angle

end
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