
Robust Interior-Exterior
Classification For 3D Models

MSc thesis in Geomatics for the Built Environment

Nikolaos Tzounakos
2019

R O B U ST I N T E R I O R - E X T E R I O R C L A S S I F I C AT I O N F O R 3 D M O D E L S

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Nikolaos Tzounakos

June 2019

Nikolaos Tzounakos: Robust Interior-Exterior Classification for 3D Models (2019)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was made in the:

3D geoinformation group
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Dr. Liangliang Nan
Dr. Hugo Ledoux

Co-reader: Dr. Yufu Zang

http://creativecommons.org/licenses/by/4.0/

A B ST R A C T

The use of 3D models has been rapidly expanding, finding applications in both
scientific and commercial fields. One common requirement for these various applica-
tions is the geometrical and topological validity of these models. However, many
models available online contain deficiencies in various forms, such as duplicated
geometry, gaps in the surface, etc.. To cope with those deficiencies, a standard
solution is the clean extraction of the model’s boundary, and simultaneously the
model’s reconstruction in a way that its structure is valid. This thesis tackles a
more generalized problem, the inside-outside classification for these models. Where
many approaches might have requirements for running analysis, the methodology
presented strives to robustly handle all cases.

These last decades, there have been various approaches in solving the ”inside -
outside classification problem”. A major attempt utilizes the winding number
algorithm, in order to assign values to elements whose position is relevant to the
input model. By assessing that value, a decision on whether the element in question
is interior or exterior is taken. Other approaches work with casting rays, or other
geometric analysis to also identify the borders of a model and segment the interior
from the exterior. Also, since deficiencies inhibit the kick-starting of the necessary
analysis, there are methods that try to restructure said models in order to clear any
existing deficiencies.

The methodology within this thesis will attempt a different approach from those that
have been presented until now, which is transferring the problem from three into
two dimensions. The first step is introducing a planar cross section on the area of
interest. From there, through some graph reconstruction, geometric and optimization
applications, a valid 1-manifold boundary of the cross-section is created. On that,
the application of inside-outside classification through ray casting is possible.

Assessing the results of the pipeline proves that the automated process can produce
valid results, for a particular point of interest, related to an input model. The pipeline
has been proven to function regardless of the cutting plane’s orientation, and can
handle robustly a multitude of geometrically and topologically defective models.
The results from this thesis can inspire further applications, and improvements on
the pipeline can further evolve the quality of its outcome.

v

A C K N O W L E D G E M E N T S

This last year, a lot of people have supported me directly or indirectly on this thesis
project, and I would like to express my appreciation towards them in this small
section.

Initially, I would like to give thanks to both my supervisors for this project, Lian-
gliang Nan, and Hugo Ledoux. Special thanks to Liangliang, who was completely
supportive to my venture, always available, patient, and providing me with technical
and theoretical knowledge, that were indispensable for this thesis. His constant
presence was a big support through the whole year. Also thanks to Hugo, for
being honest, apprehensive and also critical, while giving precious insight on crucial
moments. I would also like to express my gratitude to the co-reader, Yufu Zang,
who provided constructive feedback through the last stages of the thesis.

Furthermore, I appreciate the staff of the Geomatics program, for supplying me
with the necessary knowledge to go through these two years, and possibly through
my future as well. My special gratitude also to my co-students in Geomatics, who
were also making a positive, supportive and competitive-free environment, allowing
friendships and kindness to bloom.

Finally, I would also like to express my deepest gratitude to my family and my
friends. Without them, I would not be able to complete these two years, and their
presence has always been a big mental support for me.

vii

C O N T E N T S

1 introduction 1

1.1 Problem Statement . 1

1.2 Research Question . 3

1.2.1 Scope of the Research . 3

1.3 Importance . 4

1.3.1 Scientific . 4

1.3.2 Practical & Commercial . 5

1.4 Thesis Outline . 5

2 related work 7

2.1 Automated Geometric / Thematic Process 7

2.2 Signed Distance Field . 8

2.3 Winding Number . 8

2.4 Ray Casting . 9

2.5 Mesh Reconstruction . 10

2.5.1 Winding Number Dirichlet Energy Minimization 11

2.5.2 Ray Casting Re-Orientation . 11

2.5.3 Mesh Generation from CAD Models 11

2.5.4 Volumetric Intersection Removal 12

3 methodology 15

3.1 Pre-Processing . 16

3.1.1 Duplicated Geometry . 16

3.1.2 Self-Intersections . 17

3.2 Planar Cross Section Construction . 17

3.3 Topology-Based Line-Segment Component Creation 20

3.3.1 Graph Creation . 20

3.3.2 Connected Component Creation 22

3.4 Closing Gaps: Triangulation . 24

3.4.1 Alternative Triangulation . 26

3.5 Twin Ray Voting . 27

3.6 Extract Borders: Optimization . 29

3.6.1 The Optimization Problem . 31

3.7 Inside - Outside Classification . 33

4 implementation 35

4.1 Data . 35

4.2 Tools . 35

4.3 Prototype Implementation . 36

4.3.1 Pre-Processing . 36

4.3.2 Arithmetic Accuracy . 37

4.3.3 Creation of Viewers . 39

4.3.4 Triangulation Options . 39

4.3.5 Twin Ray Generation . 40

5 results & discussion 43

5.1 Results . 43

5.1.1 General Results . 43

5.1.2 Cases with Geometric Deficiencies 46

5.1.3 Table of Results . 47

5.2 Discussion . 48

5.2.1 General Remarks . 50

5.2.2 Execution Time . 51

5.2.3 Optimization vs. Threshold selection 52

ix

x contents

5.2.4 Comparison . 53

6 conclusions & future work 57

6.1 Conclusions . 57

6.1.1 Research Question . 57

6.1.2 Contribution . 60

6.1.3 Discussion . 60

6.1.4 Reflection . 61

6.2 Future Work & Improvements . 61

6.3 Applications . 62

6.3.1 Boundary Extraction . 63

6.3.2 Boundary Visualization . 63

6.3.3 Solid Conversion . 63

a algorithms 67

L I ST O F F I G U R E S

Figure 1.1 A clean model versus a model with deficiencies. 2

Figure 1.2 Digital Three Dimensional (3D) model deficiencies [Nan, 2018] 2

Figure 1.3 Example input model. 4

Figure 1.4 Research result applications. Left: Model editing. Right:
Visualization . 5

Figure 2.1 Extraction of the exterior surface of Industry Foundation
Classes (IFC) solids. [Donkers et al., 2016] 7

Figure 2.2 Left: Geometric representation of Signed Distance Field con-
struction. Right: Different results of produced iso-surface
dependent on σ [Xu and Barbič, 2014] 8

Figure 2.3 The idea of Winding Number. 9

Figure 2.4 Classification errors due to curve orientation. 9

Figure 2.5 Ray casting classification process 10

Figure 2.6 Ray casting method results [Nooruddin and Turk, 2000] . . . 10

Figure 2.7 Re-orientation results with Dirichlet Energy minimization
[Takayama et al., 2014a] . 11

Figure 2.8 Rays generated at random from a surface 12

Figure 2.9 Computer-Aided Design (CAD) to mesh reconstruction [Guo
et al., 2019] . 12

Figure 2.10 Evolution of item until self-intersection-free stage [Sacht et al.,
2013] . 13

Figure 3.1 Flowchart of the methodology’s pipeline 15

Figure 3.2 Example input model . 16

Figure 3.3 Duplicate geometry and holes in a model 16

Figure 3.4 Self-intersecting elements. The lower roof element is passing
through the other one. 17

Figure 3.5 Intersection of solids with planes, retrieved from http://

bookmarkurl.info/worksheets/cross-sections-of-solids-worksheet.

html . 18

Figure 3.6 Plane intersecting a building model. 19

Figure 3.7 Generated planar cross section of example building 20

Figure 3.8 Line-segments (above) against connected components (below) 21

Figure 3.9 Basic graph depiction . 21

Figure 3.10 Removing a duplicate vertex inside a graph 22

Figure 3.11 Removing self-intersections appearing inside a graph 22

Figure 3.12 Handling an element with ring-like topology. 23

Figure 3.13 Constructing connecting components on a cross-section. . . . 23

Figure 3.14 Results of component creation on example building. 24

Figure 3.15 Holes in cat model . 25

Figure 3.16 Selection of edge to keep. The orange colored edge is the
shortest edge that is adjacent to vertex a, so it is the one being
selected. 25

Figure 3.17 Closing gaps with Delaunay Triangulation 26

Figure 3.18 Closed hole of window in example cross section. 26

Figure 3.19 Handling new interections appearing through triangulation’s
application . 27

Figure 3.20 Selection of edge to keep. 27

Figure 3.21 Generation of twin rays from a line-segment’s centroid 28

Figure 3.22 Classification of element based on twin ray result 29

xi

http://bookmarkurl.info/worksheets/cross-sections-of-solids-worksheet.html
http://bookmarkurl.info/worksheets/cross-sections-of-solids-worksheet.html
http://bookmarkurl.info/worksheets/cross-sections-of-solids-worksheet.html

xii list of figures

Figure 3.23 Colored result of the twin ray casting votes 29

Figure 3.24 Colored result of the twin ray casting votes on the example
cross section. 30

Figure 3.25 Outer border extraction by threshold vs. optimization 30

Figure 3.26 Outer border extraction by border curve tracing. 31

Figure 3.27 Geometric & topological limitations of border curve tracing. . 31

Figure 3.28 Extraction of outer border . 33

Figure 3.29 Extraction of the example building’s outer border. 33

Figure 3.30 Inside-outside classification by ray casting 34

Figure 4.1 Remeshing 3D model to relieve of self-intersections. 37

Figure 4.2 Precision of points in space . 38

Figure 4.3 Plane intersecting close to model’s vertex 38

Figure 4.4 View of connected components along with their endpoints . . 39

Figure 4.5 View of segments after ray vote. Parts with higher border
vote appear as red, while those with lower vote have blue color. 40

Figure 4.6 Ordered vs random ray generation 41

Figure 5.1 Pipeline performed on model ”Task 14”. 44

Figure 5.2 Pipeline performed on model ”Task 3”. 45

Figure 5.3 Pipeline performed on model ”Person 45”. 45

Figure 5.4 Example on disjoint components 46

Figure 5.5 Results on model with various plane orientations. 47

Figure 5.6 Test of pipeline on model of real building. 48

Figure 5.7 Result of pipeline on model ”Task 20” 48

Figure 5.8 Filling of gap found in cross section. 48

Figure 5.9 Coping with self-intersecting elements. 50

Figure 5.10 Pipeline implemented on merged bunny model 50

Figure 5.11 Twin ray execution time - Number of components Chart . . . 52

Figure 5.12 Twin ray execution time - Number of section’s segments Chart 53

Figure 5.13 Input model for border extraction 53

Figure 5.14 Optimization vs. threshold extracted borders. 54

Figure 5.15 Comparison of our method against generalized winding num-
ber. 54

Figure 5.16 Comparing our method to Hu et al.’s TetWild. 55

Figure 6.1 Limitation against ”cup” geometries. 59

Figure 6.2 Extraction of the exterior borders 63

Figure 6.3 Application of outer surface extraction on tent and building
model. 64

L I ST O F TA B L E S

Table 5.1 Table of results. Simpler results have their lines highlighted. . 49

Table 5.2 Execution time of the pipeline’s steps 51

Table 5.3 Details of twin-ray method on various models. 52

xiii

List of Algorithms
A.1 Planar Intersection . 67

A.2 Component Creation . 68

A.3 Twin Ray Voting . 69

xv

A C R O N YM S

2D Two Dimensional . 15

3D Three Dimensional . xi
CAD Computer-Aided Design . xi
CDT Constrained Delaunay Triangulation . 15

CGAL Computational Geometry Algorithms Library . 36

CityGML City Geography Markup Language .2
DT Delaunay Triangulation . 24

GUI Graphical User Interface . 36

IFC Industry Foundation Classes . xi
LOD Level of Detail . 2

OFF Object File Format . 35

PLY Polygon File Format . 35

xvii

1 I N T R O D U C T I O N

Since the beginning of the 21st century, digital 3D models have been proven useful
in many applications. This rapidly expanding field has found applications in
entertainment, design, commerce, and many other technical and technological fields.
Such 3D models are created through surveying methods, digitization processes, or
plain digital design. There is a plethora of applications for such models, ranging
from real estate to learning/tutoring methods [Huk, 2006], scientific research and
even the production of objects through 3D printing. For all of these purposes, a
pre-requisite that is often taken as granted is the geometrical validity of the digital
3D model. In this case, valid structure means that a model is watertight, has no
self-intersections, and free of other types of deficiencies, which will be explained
later.

As has been stated above, there are many fields that benefit from a topologically
and geometrically sound model. This stands true for both the scientific, and the
commercial environment.

One main example is that of urban reconstruction. Musialski et al. [2013] note that a
valid urban model would be useful for many applications, such as their use in the
entertainment industry, the digital mapping of cities, or even for urban planning and
simulations. There are also cases where a building needs to be assigned semantic
information (eg. roof or wall, construction material, etc.), for such cases as those of
urban planning, environmental reports, or even emergency and catastrophe planning
[Benner et al., 2005]. For a more discrete representation, the optimal would be having
a clean model.

Another case is that geometrical and topological deficiencies in a model often inhibit
its correct analysis. For this case, Sindram et al.’s voluminator project exists, but still
only to handle one element of analysis in 3D models, that of the model’s volume.
Even seemingly unrelated scientific fields can benefit from valid 3D models. In the
case of Rusinkiewicz et al. [2002], there is mention of cases where a valid model
representation of the ground’s geological structure can help not only in the field of
geology, but even in others, such as archaeology. Furthermore, in today’s society,
there are even cases where building representations can be used in order to calculate
the annual tax that a residence’s owner has to pay [Boeters et al., 2015]. This can
be performed by calculating the area owned by a person, but of course there is a
requirement that such a model used for analysis is clean.

1.1 problem statement
In order to be able of effectively utilizing a digital 3D surface mesh model within an
application, the particular model has to be valid. Most model processing algorithms
(some of which will be presented in Chapter 2) have strict requirements on the input
data structure. For example, self-intersections are not a realistic representation of
geological structures [Caumon et al., 2009]. Indeed, having clean, discreet representa-
tions ”... is important in various applications, ranging from engineering to scientific
research...” [Guo et al., 2019]. An example of a clean model against a model with
deficiencies can be observed in Figure 1.1.

1

2 introduction

(a) Clean model [Sondermann, 2018] (b) Flawed model [Nagel et al., 2009]

Figure 1.1: A clean model versus a model with deficiencies. (a) Topologically and geometri-
cally sound basic building representation. (b) Elements of the model (windows
and roof) are crossing each other, which is not realistic representation of the
building.

However, nowadays many models that are used or that circulate the World Wide
Web may contain deficiencies. Below are a few examples of such deficiencies, along
with a visual representation in Figure 1.2:

• Holes on a surface’s model.

• Faces or other elements of the 3D model that are intersecting.

• Faces, edges or vertices that are duplicate; existing multiple times.

• Inconsistent orientation; meaning neighboring surfaces whose normal vectors
point in opposite directions.

• Redundant/Undesired interior structure.

Figure 1.2: Digital 3D model deficiencies [Nan, 2018]

Campen et al. [2012] mention that it is often observed of 3D model meshes to have
a number of defects and flaws that make them ”incompatible with the quality
requirements of specific applications”. Thus, the importance of repair or removal
of such flaws is usually imperative to the uninhibited flow of 3D processes that use
these models.

More specifically, there are a plethora of applications where any interior information
that a 3D model might possess is considered a redundancy. An example of such
case would be the models of buildings used in a City Geography Markup Language
(CityGML) model, especially those with a Level of Detail (LOD) from 1 to 3, where the
geometric detail of the model’s exterior is required [Biljecki et al., 2016].

In many applications, there is a requirement about being able to extract the exterior
boundaries of a model. A more generalized approach would be the interior- exterior
classification of such model. In this case, a digital 3D mesh model would be used

1.2 research question 3

as input. Then in the process, the elements of the model have to be classified as
“interior” or “exterior”. The output would be the outer shell of the model, ideally
a 2-manifold devoid of geometrical and structural deficiencies, as they have been
mentioned above. This is the actual problem that the current research will tackle.

1.2 research question
As will be presented in Chapter 2, precedents that try to partially or completely
solve interior/ exterior classification exist. This research will try to give a different
approach to this method, and cover some of the flaws that have been observed in
others. It aspires to be a valid addition to the existing methods, and find a robust
solution through a stable methodology that can produce results of good quality from
beginning to end.

The main research question of this thesis is:

How can a point be robustly classified as lying in the interior or the exterior of a
complex polygonal mesh model?

As such, the main objective of this thesis is to develop a novel methodology that will
produce valid results even for models that contain deficiencies (such as holes). In
order to be able to meet this thesis’ main demand, there are some sub-questions,
whose answers pose an important role in this research:

• What is the methodology that should be followed in order to produce valid
results?

• What should be the structure (geometry, stored format, etc.) of the data to be
handled, as well the structural form of the final output?

• What advantages and disadvantages does this new method have? Is it a process
that can produce valid results?

• How does this method compare to other existing approaches?

1.2.1 Scope of the Research

This thesis will focus on a methodology of step-by-step computational processes that
will take as input digital 3D models that may even contain structural inconsistencies.
The input data are 3D surface meshes, not solid meshes, mainly those of buildings;
although the methodology can be applied on any type of model. An example input
model can be seen in Figure 1.3. The general type of model is also the same as the
one shown in Figure 1.2. The models used are comprised of triangular surfaces, and
are used without any semantic —or other types of — information.

The proposed methodology will have a two-dimensional approach, where planar
cross-sections of the model are created, and interior/exterior classification performed
on them, with the final result being the recognition of the model’s outer borders.
Every step of that process is evaluated and validated, before being able to explore
the next step. The tools which are known and available at this point will be utilized
for the purpose of producing the desired final result.

The approach of the methodology is two-dimensional, and thus a three-dimensional
approach will not be explored. Furthermore, the thesis will not focus on the
reconstruction of the input model before the computation, but rather use the model
as initially given, through the classification’s execution.

Finally, the research’s purpose is to give insight into the methodology that is applied
to produce reliable interior-exterior classification. This means that the scientific

4 introduction

(a) Example input.

Figure 1.3: Example input model. Building representation surface mesh model.

approach itself is going to be evaluated, and any advantages/ disadvantages against
other existing methods will be presented.

1.3 importance
A lot of research has been carried out in the field of digital 3D modeling and
reconstruction, not just focused on the visualization aspect of model design, but
also on the geometrical aspect of a model’s validity, digital storage structure and
geometric processing.

1.3.1 Scientific

What this thesis aspires to do is improve a step in the process of acquisition, analysis,
and presentation of data: that of data analysis. In the handling of data, various fields
take part, such as those of computer graphics, computer vision, photogrammetry,
remote sensing, etc. These fields could potentially benefit from a solution to the
research question’s problem.

In Chapter 2, a plethora of methods relevant to this subject are going to be presented.
Some try to solve interior-exterior classification, others attempt to identify the
outer boundaries of a model, and the rest present some approaches to fixing or
restructuring an input model in order to relieve it of its deficiencies. The degrees of
success are varying, although many have presented results of high quality. However,
one common observation is that in all these methods, there are requirements that an
input model needs to fulfill, in order for them to be smoothly executed.

As such, this graduation thesis will try and attempt a solution in a relevant problem,
as stated in the research question in Section 1.2. The main point of this thesis’
approach is to be robust against any type of input model, and still produce satisfying,
quality results. The methodology that tries to achieve this requirement will be
presented in Chapter 3.

The result of this research is expected to be useful in and of itself for users that
would like to be able to extract just the boundary elements of a 3D model. Until
this thesis’ writing, creating the exterior of a model is done mostly manually, but an
automated process is desirable by the scientific community [Donkers et al., 2016].

1.4 thesis outline 5

1.3.2 Practical & Commercial

Also, this thesis’ results would further enhance various applications that are benefited
by having knowledge of a model’s exterior elements. One such application would be
the calculation of a building’s Net Internal Area, which could be used for taxation
purposes as stated by Boeters et al. [2015].

Depending on model’s nature, just extracting the exterior would allow its further
processing for the purpose of animation. Reasons behind this would be for enter-
tainment, visualization, or even for simulation.

Some applications of this research’s results would be (but not restricted to): visu-
alization, surface editing, the ability to convert an IFC model into a valid CityGML

model [Donkers et al., 2016], 3D printing, etc. Visual examples of such applications
are shown in Figure 1.4.

Figure 1.4: Research result applications. Left: Model editing. Right: Visualization

1.4 thesis outline
After the introduction, the present document has the following structure:

• Chapter 2 reviews work that has been elaborated by others, but with a subject
relative or relevant to the one of this thesis.

• Chapter 3 is where the novel methodology is presented. Each step is explained
extensively, starting with the input of a model and ending with the acquisition
of the final result.

• Chapter 4 presents the options and elements used during the practical imple-
mentation of the algorithm. This section mentions the data that were handled,
the tools that were used during the analysis, as well as all the options that were
made during the implementation, along with their reason.

• Chapter 5 contains results from the methodology’s practical application, as
well as a discussion on those results.

• Chapter 6 is the final section of the document, where there is a small assessment
of whether the research question has been achieved, what is the importance of
the achieved results, together with a reflection on the thesis as a whole. The
final part is recommendations on improving this methodology, and how its
results could be used in various applications.

Finally, this document also contains an appendix, where:

• in Appendix A, some pseudo-code for the more important functions of the
methodology is presented.

2 R E L AT E D W O R K

The endeavor of this research is not unique. There are other precedents of attempts
where researchers have proposed various approaches to classify the interior and
exterior of a digital 3D model. These have all been met with varying degrees of
success, each method possessing specific advantages and disadvantages. As such,
this section aims at having summarized presentations of some major attempts at
interior/ exterior classification. The section’s structure is that initially (Section 2.1 to
Section 2.4), some noted attempts are shown. Then, Section 2.5 gives some cases
where mesh reconstruction is attempted, in order to make mesh models have cleaner
geometry and topology, with the goal of them being easier in analyzing.

2.1 automated geometric / thematic process
A unique method has been presented by Donkers et al. [2016], trying to keep the
exterior information of a model stored in IFC format, in order to create a valid LOD3

CityGML model. The input itself was often invalid.

In this process, the first step is to semantically map the elements (solids and surfaces)
of the input model. The semantics of a surface are given based on its orientation (or
normal vector). The next step is to perform morphological operations of dilation
and erosion on these elements, as to group together the ones that are similarly
defined semantically. This also helps in removing some of the initial geometric
and topological imperfections of the model, and ”patching” some of the surface’s
holes. Through this, the initial solid elements transform into surfaces (observed in
Figure 2.1). Finally, the model is further refined both geometrically and semantically;
the semantic refinement happens for CityGML purposes.

Figure 2.1: Extraction of the exterior surface of IFC solids. [Donkers et al., 2016]

This method produces valid results, but is only useful for the specific case of
converting data from IFC to CityGML format. As such, it is not meant for more
generalized applications. Furthermore, this automated process has been tested and
does not fare well against certain input model deficiencies, such as holes on surfaces,
or when large surfaces are missing.

There has been a similar approach by Deng et al. [2016], where a mapping framework
between IFC and CityGML models was presented. Their implementation contained a
reference ontology, a schema by which the various model elements where referenced

7

8 related work

from one format to the other. The results were of good quality, but the method is
restricted in that it can only be applied between these two specific file formats.

2.2 signed distance field
Another method that has been used for classification is that of the signed distance
field [Xu and Barbič, 2014].

In this approach, the input is a polygon soup mesh, meaning a collection of triangles,
the aggregation of which comprises a certain shape.Through this method a surface
which is the offset of the input is created, at a user-defined distance σ (seen in
Figure 2.2). To speed up computation, any elements of the model that lie within
other elements (are within the latter’s bounding box) are classified as being interior,
and excluded from the further computations. The next step is to check points on
the elements that are left. If their distance from the initial boundary’s iso-surface is
bigger than σ, then these points are also classified as the interior. Finally, the rest of
the points that are classified as exterior give that property to their parent elements,
which are then deemed the exterior boundary of the model.

Figure 2.2: Left: Geometric representation of Signed Distance Field construction. Right:
Different results of produced iso-surface dependent on σ [Xu and Barbič, 2014]

This method is used mainly for the creation of manifold iso-surfaces, where the input
can even be non-manifold. The only user defined parameter is the offset distance σ,
but a lot of careful tuning is needed, and the final output geometry can potentially
be altered from the initial input.

2.3 winding number
Jacobson et al. [2013] presented an automatic algorithm about inside – outside
segmentation of a digital 3D model. This method works by assigning an index
number to an element of the model, and then categorizing that element based on
how much “inside” or “outside” of the model it is, through the assigned number.

The index number assigned in this method is called the “Winding Number”. To
measure this number for a certain point in space, related to a surrounding curve,
the integral of the angle that the curve creates when projected on a unit circle
is calculated. If the elements of the curve are discreet (edges, vertices), then the
calculation of the winding number is given by the formula in Figure 2.3.

This method is also generalized for three dimensions. In this case, instead of curves,
surface elements are used. Also, the winding number is now calculated based on the
solid angle created by the surrounding surface, rather than the 2-dimensional angle.

By setting a number as a threshold, users can define all indices above that number as
“inside”. However, there are some flaws to the algorithm presented in that research.
One is that it demands from the input model to contain no deficiencies (watertight,

2.4 ray casting 9

Figure 2.3: The idea of Winding Number. Left: Winding number formula for discreet curve el-
ements. Center: Winding number geometric calculation depiction Right: Winding
number visualization [Jacobson et al., 2013]

no self-intersections, etc.). In a more recent paper, Hu et al. [2018] present a method
of preparing the input model and robustly making it valid. This process, however,
demands a lot of computational power and time, and even then, the geometry of
the initial model might be deformed. Furthermore, these processes demand the
consistent orientation of the model’s structure.

Another drawback on that method is that the orientation of the surrounding curve
greatly affects the result. An approach was made by Takayama et al. [2014a] on
this matter, by creating and utilizing a formula that tries to minimize the Dirichlet
Energy of the Winding Number. However, at the end of the paper the authors state
that their method did contain flaws. Specifically, the method is weak in cases where
the curves are incorrectly oriented. An example of bad results due to incoherent /
incorrect orientation is shown in Figure 2.4.

Figure 2.4: Classification errors due to curve orientation. Correct orientation in the image
is defined as counter-clockwise, and the pocket areas colored blue have been
classified as outside. [Takayama et al., 2014a]

2.4 ray casting
There has been a different approach in classifying the interior and exterior part of a
polygonal surface model, where the elements are categorized by an assigned number
called “Depth buffer” [Nooruddin and Turk, 2000].

The process of the particular algorithm is to create for each polygon (surface element)
of the model, random rays that fall on its surface. If the ray meets another surface
before the intended one, the surface is deemed interior; otherwise, exterior. If even a
small portion of the rays manage to hit the intended surface, then it is still classified
as exterior. The sum of these assigned interior/exterior classifications constitutes the

10 related work

depth buffer. In that case, if the depth buffer surpasses a user-defined threshold, the
polygonal surface is classified as exterior, or interior in the other case.

A simple example of how the ray casting works is shown in Figure 2.5. In this case,
the generated ray intersects with another surface before the intended target. As a
result, the target surface in this iteration would be classified as inside. However, if
rays from other origins / angles would hit the surface, then it would be classified as
exterior.

Generated Rays

Obstructing
Surface

Targeted Surface

Figure 2.5: Ray casting classification process

This is a simple solution to the interior/exterior classification problem, with results
of good quality, when the input model has a clear structure (as shown in Figure 2.6).
The drawbacks of this method are that it cannot robustly classify by itself models
that have holes on the surface, or on the model’s interior. The existence of duplicate
surfaces also inhibits the classification process. Furthermore, creating a multitude of
rays from many different points of view is computationally expensive.

Figure 2.6: Ray casting method results [Nooruddin and Turk, 2000]

2.5 mesh reconstruction
Many of the above methods require input models that follow certain criteria. For
example, the [Jacobson et al., 2013] method depends heavily on the orientation of the
curve surrounding the point, during winding number calculation. Generally, when
a model is geometrically and topologically valid, it is easier to perform analysis on
it. Any deficiencies on a model are treated as special cases, and may pose problems
during classification processes, or even make the production of results impossible.
In this section, a selection of methods that rely on restructuring a model and are
closely related to the current problem is presented.

2.5 mesh reconstruction 11

2.5.1 Winding Number Dirichlet Energy Minimization

As mentioned in Section 2.3, one approach to achieving the consistent orientation of
the boundaries of a mesh is through utilizing the winding number approach, and
minimizing the Dirichlet Energy of the winding number [Takayama et al., 2014a].

In this case, the input model is split into manifold surface patches comprised of
surface elements. The different patches are split in areas where non-manifold edges
exist. As such, input models with holes can be accepted in this method.

In the end result, those elements of a single patch are all going to be decided together
whether they are going to be flipped (re-oriented) or not. Every surface is assigned
a binary variable, the two values stating whether the patch is going to be flipped
or not. Then, a formula is computed, calculating the Dirichlet Energy of the model
through the Winding Number Equation. Finally, a binary optimization problem
is introduced, with the objective being the Dirichlet energy’s minimization. The
solution of this optimization gives values that indicate whether each surface patch
needs to be flipped or not. An example result of this method is shown in Figure 2.7

Figure 2.7: Re-orientation results with Dirichlet Energy minimization [Takayama et al., 2014a]

2.5.2 Ray Casting Re-Orientation

Another, performed by the same [Takayama et al., 2014b] utilizes ray casting in order
to classify a surface; and flip its orientation, if necessary.

For this method, every face of the input model is approached separately. Rays in
random directions are generated from randomly sampled points on the face (as seen
in Figure 2.8). If a ray is generated in one direction, another is also generated aiming
at the opposite direction, so that there is an equal number of generated rays from
both sides of the face. When one ray does not intersect any other part of the model,
it is decided that this ray is facing towards the front (or outside) of the model. Since
the initial orientation of the face is known through its normal vector, if the general
direction of the rays that are looking ”outside” is opposite to the face’s normal vector,
that face is flipped.

Regarding interior faces, since no ray can see ”outside”, the distance between the
ray’s origin point and the first intersection with another face in its path is taken
into account. This means that the ray which crosses the longer distance in order to
intersect with a face is considered as the front one.

2.5.3 Mesh Generation from CAD Models

Guo et al. [2019] point that the creation of high-quality meshes often is an element
that leads to the success of the meshes’ numerical analysis.

12 related work

Normal

Back Rays

Front Rays

Surface

Figure 2.8: Rays generated at random from a surface

In their paper, they present a way to automatically create high-quality meshes from
CAD models. In their case, the input is a 3D model comprised of parametric surface
patches. Their first step is to work on each surface patch separately, and transform
it from a parametric surface into a triangle mesh. At this step, their algorithm
takes care to preserve the boundary geometry of these surface patches. When the
boundaries are recovered, they implement two-dimensional triangulation to the
patches.

Since the patches might not be topologically connected to each other, or there could
be degeneracies or holes in between them, any empty space between the patches
is also filled through triangulation. When this is done, patches that geometrically
depict the same surface are clustered together. The last step is implementing a
remeshing algorithm, which entails having less triangles in flat areas, and denser
meshes in areas where finer detail should be preserved. A basic example result of
this methodology is shown in Figure 2.9.

Figure 2.9: CAD to mesh reconstruction [Guo et al., 2019]

2.5.4 Volumetric Intersection Removal

One last method is a volumetric approach by Sacht et al. [2013]. This method uses a
conformalized mean curvature flow pipeline, which degrades a topologically sphere-
like object into a sphere unit, until a point where there are no more self-intersections.
Usually, according to them, the point at which the model becomes intersection-free
is long before the final stage of spherical geometry. A representation of the process
is shown in Figure 2.10.

At that point, the product is an intrinsically similar object to the input, but with
altered volume. Through a nonlinear optimization problem, they reverse the previous
iterations to a point where the processed model retains the original volume, and is

2.5 mesh reconstruction 13

as close as possible to the original shape as well. To recover its initial volume while
retaining this new form, volumetric parametrization is applied on it. This method’s
restriction is that it requires a closed surface in order to function, and the authors
have stated that the process may not always return the object to its original shape.

Figure 2.10: Evolution of item until self-intersection-free stage [Sacht et al., 2013]

3 M E T H O D O LO GY

Chapter 2 presented some approaches on interior-exterior classification. In them,
different processes appeared, aiming to solve certain problems. The main common
element found when observing them was that they had limitations when special
cases (eg. geometric deficiencies) where considered, or they would produce a result
the shape of which was close to the initial model, but could not always preserve the
original shape.

In this chapter, the methodology of this thesis will be presented. The main aspiration
of this is that the methodology should be able to robustly produce a result of good
quality. This means that it should arbitrarily handle all cases of degeneracy in a
model, but also be able to retain the finer geometric details of the model. For this,
it was decided to transfer the problem from three dimensions to two, since Two
Dimensional (2D) analysis is more easily executed.

The first step is to get a surface model as input. Then, it is handled in such a way
as to remove as much as possible of the more analysis-inhibiting deficiencies from
the input; namely, duplicate geometry and self-intersections. Then, the surface
model is intersected with a plane, to produce line-segment geometry, and transfer
the problem in two dimensions. The next step is to group the line segments into
connected components, a step necessary for simplifying later analysis processes.
Following that is the task of closing any gaps/ holes present by implementing
Constrained Delaunay Triangulation (CDT), in order to have a closed boundary. Next,
values are assigned to the connected components based on a ray casting method.
Finally, the outer borders of the planar cross section are extracted. Then, it is possible
to classify whether a point in space lies inside or outside of the model.

A flowchart depicting the methodology’s pipeline is shown in Figure 3.1.

INPUT MODEL Pre-processing

INSIDE-OUTSIDE
CLASSIFICATION

Outer Border
Extraction:

Optimization

CDT Gap
Closing

Twin-ray Voting

Line-segment
Component

Creation

Planar Cross
Sections

Gaps Exist

Yes

No

Figure 3.1: Flowchart of the methodology’s pipeline

At the end of each section explaining a respective step of the pipeline, an example
on a single building will be given, for better understanding. The example model in
this case is shown in Figure 3.2. The model depicted contains various deficiencies,
such as holes through is windows, and self-intersecting roof elements.

15

16 methodology

Figure 3.2: Example input model

3.1 pre-processing
The first step of the method is to prepare a model for the analysis that will be later
applied to it. As has been mentioned in both Chapter 1 and Chapter 2, models
available on the web and offline repositories often contain deficiencies, inhibiting
any analysis processes performed on them. Two such cases are encountered and
confronted in this step

The two deficiencies that are going to be tackled in this step are:

• duplicate geometry, and

• self-intersecting elements.

3.1.1 Duplicated Geometry

Duplicate geometry is a common problem that appears in modern models. It is
something that may appear due to the carelessness of the creator, or the person
editing the model. Or maybe because of the model’s creation through faulty digital
applications. Cases of duplicate geometry can have a face being input twice in the
data structure, or two vertices possessing the exact same geometrical coordinates,
but being perceived as two different entities. An example case is shown in the sketch
of Figure 3.3. In that case, the left wall of the building is supposed to exist twice,
possibly posing problems to future processing of the model.

Figure 3.3: Duplicate geometry and holes in a model

The problems that could surface during analysis steps due to repeating components
inside a model are various. A main one is that during storage, more space is
required as a result of the redundant information being saved. As such, analysis
of these models might take longer than required. Furthermore, there could be

3.2 planar cross section construction 17

cases where topological problems are present because of this. For example, a single
vertex appearing as two different entities might cause topological problems (eg.
connectivity of two edges or faces). Finally, duplicate geometry makes methods that
rely on object counting (eg. ray casting) produce inaccurate results.

Because of this problem, there is a requirement to remove as many repeating surfaces
as possible. Through already existing applications (presented in Chapter 4) most of
the input model’s repeating objects are removed.

3.1.2 Self-Intersections

Another deficiency that can be found in input models is self-intersecting elements.
This means that within the model there are invalid intersections, where there is no
vertex in the point of intersection. This make a model topologically inconsistent.
Again, this is something that may appear because the creator of the model put more
consideration in the model’s appearance, and not so much in any possibility of the
model’s future processing. Cases of intersecting elements would be when a wall
surface passes through a floor surface, with no information on their intersection
being stored. One example of self-intersecting elements is in Figure 1.1. Another
one is on Figure 3.4. In the latter, two roof elements are observed passing through
each other.

Figure 3.4: Self-intersecting elements. The lower roof element is passing through the other
one.

Self-intersections are a drawback to models not from a geometrical, but rather topo-
logical viewpoint. Modern storage formats take care to not only store the geometric
information of a model’s elements (as coordinates), but also the relationships be-
tween those elements; most often than not, their connections. Unfortunately, the
information of self-intersections is not retained when data is stored, and as such,
analysis of models with this flaw may produce unwanted results.

As with the previous case, algorithms that can recognize self-intersections and
restructure/remesh the model to remove them exist. Again, the application to remesh
the model in order to remove self-intersections will be presented in Chapter 4.

3.2 planar cross section construction
At this point, the model should be self-intersection free, and also rid of most of its
repeating objects. As such, it should be cleaned of some of its deficiencies, thus
making further processes easier to handle. After this pre-processing step is done,
the actual methodology is ready to be implemented.

18 methodology

Up until now, most methodologies have used three-dimensional approaches in order
to solve inside-outside classification. In this step, the methodology strives to deviate,
and enter a territory that has not been much explored before. Here, the goal is to
transform the problem from 3D space to two dimensions. In order to achieve this, we
introduce the model’s intersection with a plane that contains the point in question
for classification.

When a face element is intersecting with a plane object, the intersection result can
be the face itself, a line segment, or a point (barring the case that there could be no
intersection at all in 3D space) [Sunday, 2012]. All of these are elements that exist in
2D space. Images of 3D objects intersected with planes are shown in Figure 3.5.

(a) Cuboid-plane intersection (b) Prism-plane intersection and result

Figure 3.5: Intersection of solids with planes, retrieved from http://bookmarkurl.info/

worksheets/cross-sections-of-solids-worksheet.html

Introducing a planar intersection at this step is done for the following reasons.
First and foremost, an intersection with a plane allows us to approach the problem
of classification on top of the plane. This means that from three dimensions, the
problem is transferred in two, as the necessary information is now projected onto
that plane. Furthermore, when the plane crosses the model, all intersections with the
model’s surface elements are accounted. This means that the geometry information
of the model related to the certain crossing plain is preserved in its entirety. As such,
the result of a planar intersection is that we can retain the finer details of a model,
while analysis in 2D space is simpler and less ambiguous than in 3D space.

Of course this method does have some weaknesses against other approaches. The
first is that a planar cross-section cannot handle a model as a whole, it is only
possible to perform analysis on the area of interest. Also, if there is a need to go
back in three dimensions later, it is difficult to patch these information together to
present the original 3D model.

Going into the step itself, a plane (that contains the point to be classified) is intro-
duced. The plane is generated by having information of a point, and a vector. The
point in case is the point of interest. The vector in question can be created in a steady
direction, or be given at random — the plane’s orientation generally affects little to
nothing of the final result. In this case, the plane generated is passing through the
point, and the vector is the normal of the plane.

Since the model is comprised from surface elements, each of these is tested against
the plane. In general, the intersection of a plane and a surface element can provide
the following results:

• The surface itself.

• A line segment.

• A point.

• No result, if they do not cross.

http://bookmarkurl.info/worksheets/cross-sections-of-solids-worksheet.html
http://bookmarkurl.info/worksheets/cross-sections-of-solids-worksheet.html

3.2 planar cross section construction 19

If they intersect, then the intersection result is kept. In this case, only results of the
line-segment type are kept, while the others (polygons and points) are ignored. This
is due to the line segments being a sufficient source of information for the following
steps of the methodology.

An extra action happening in this step is that of retaining the topological information
of the model. This means that if a line segment is derived from a face’s intersection
with the plane, it should also keep information on its origin. This is made with
the goal of keeping the information of connections between the newly-created line
segments. Any qualitative information contained by the face (eg. texture, materials),
although possible, is not passed on to the line-segment, as it is unnecessary for the
final result’s production.

If f is a face of the input model, and l a line segment derived from f ’s intersection
with the plane, then l is defined by two vertices (source and target), v1 and v2. As l is
the result of an intersection with f (provided that f and the plane are not coplanar),
so are its two vertices results of the plane’s intersection with two edges of f , e1 and
e2. By storing in each vertex the information of its origin edge, we know that if
vertices from two separate line-segments derive from the same origin edge, then their
respective line-segments are connected. So, through the planar cross section, a set of
line segments is generated, along with a set of unique vertices. The steps can also be
seen in pseudo-code form in Algorithm A.1. This action is performed in order to
ensure the connectivity of the generated line-segments, which is a requirement for
later steps of the pipeline.

A visual example of this topology-retaining action is shown in Figure 3.6. In this, a
roof element is intersected by a plane. The two faces of the roof, f 1 and f 2, produce
two line-segments s1 and s2. s1 has vertices that inherit information of originating
from the edges e1 and e2. Similarly, line segment s2 inherits origin information
about edges e2 and e3. As such, at the end of the generation of line segments due to
the planar section, there is information on s1 and s2 being connected at vertex v2,
because for both of them it has the common origin of edge e2.

Figure 3.6: Plane intersecting a building model. Original edges of the model are shown in
yellow, while the generated line-segments are colored as green.

At the completion of this step, the product should be a sum of line-segments with
topology information, representing the geometry at the spot where the plane slices
the input model.

20 methodology

A result of constructing a cross-section on the example model can be seen in Fig-
ure 3.7.

Figure 3.7: Generated planar cross section of example building

3.3 topology-based line-segment component cre-
ation

Arriving at this step, the data should be comprised of multiple line-segments
representing the cross-section of the model with the plane. In this step, the data that
will be processed further along the pipeline will be grouped in a simpler structure.

Depending on the density or size of the input model, we could have a large number
of generated line-components, as was explained in Section 3.2. A large number of
these elements does not pose a problem in the production of the final result, but a
more condensed structure would speed up the computation time of the algorithm.
So for this purpose, in this step the entirety of the line segments are grouped in
connected components.

A connected component could be defined as a sum of successively interconnecting
line segments, or it would also be viewed as a poly-line. Considering the cross-
section of this stage as a graph, the basic structure of which are edges and vertices, a
connected component in our case can be considered as a sub-graph, or an element of
higher order than that of the edge. It is generally a path comprised of multiple edges,
where the vertices that lie within it have an adjacency grade of 2 (connected to only
two incident edges). Geometrically, each connected component has as endpoints
vertices that connect to multiple edges (junctions for multiple line-segments), or
connect to only one line-segment. A connected component can be useful because
all its contained segments can inherit from it the same qualitative attributes, and
iterating through poly-lines is significantly faster than coursing through every single
line-segment.

A simplified example is given in the sketches of Figure 3.8. As can be observed,
when line-segments are grouped into connected components, less elements are in
need of processing on later stages.

In the following subsections, the creation of the connected components is going to
be analyzed.

3.3.1 Graph Creation

As has been already stated, at this point, the available data are multiple line-segments.
However, they still have no connections between them. In order to create the con-
nected components, what is necessary is an intermediate topological data structure

3.3 topology-based line-segment component creation 21

Figure 3.8: Line-segments (above) against connected components (below)

where information on the connections between line segments exists. For this reason,
a graph structure was selected. A basic graph structure can be seen in Figure 3.9.

Figure 3.9: Basic graph depiction

A graph’s main element is the vertex. The graph is comprised of a set of vertices,
and a set of connections between them, called edges [Bondy et al., 1976]. In our case,
the vertices are representing the actual vertices (points) defining the line segments,
and the line segments are represented as the graph’s edges.

To construct the graph, as a first step we populate it with the vertices of the cross
section. So, we traverse the set of the cross-section’s vertices, and insert them inside
the graph.

The second step is to make the connections within the graph. For that purpose,
every line-segment of the cross section is giving information on its source point, and
target point. By recognizing these two points as vertices in a graph, it is possible to
insert a connection between them in the graph. The connection itself represents the
line-segment.

After creating the graph, there could still be deficiencies in its structure, due to the
initial model’s remaining duplicate geometry and self-intersecting elements. For that
reason, before the graph is complete, it is processed by two cleaning methods.

The first one is detecting and removing duplicate vertices. When the same vertex
exists multiple times, it means that the corresponding line-segments should be, but
are not yet connected.

22 methodology

An example of the existence of a duplicate vertex is shown in Figure 3.10, as well as
the result after the duplicate’s removal.

(a) Duplicate vertex in V2 and V4 (b) State of graph after removal

Figure 3.10: Removing a duplicate vertex inside a graph

After that, there is also the matter of lingering intersecting segments. The majority, or
the sum of them could have been removed in the pre-processing step of Section 3.1,
but still there could be remnants appearing in the cross-section. The problems
presented when self-intersections exist have already been mentioned in Section 3.1.2.

The steps to recognize if two edges are crossing each other are as follow. First, edges
are searched in pairs of two, in order to check whether they have a common point. If
two edges

»

AB and
»

CD have a common point E, then if the newly created vectors
have a negative dot product (

»

AE · # »

EB < 0) it means that point E lies between A
and B. In that case, the two edges are truly intersecting.

When two edges are found intersecting, then the intersection point is inserted in the
graph. The initial intersecting edges are removed from the graph, and new edges
are introduced from the old edges’ vertices to the new intersection point.

An example is shown in Figure 3.11. In this, edges e1 and e2 are found intersecting.
As such, a new vertex, V5 is introduced in order to allow the graph have a cleaner
structure. All crossing edges are also split and reintroduced in the graph.

(a) State of two intersecting edges
(b) New state of the graph after intersec-

tion removal

Figure 3.11: Removing self-intersections appearing inside a graph

3.3.2 Connected Component Creation

After the graph representing the cross-section has a clean and valid structure, it can
be utilized in order to construct the connected components.

To construct the connected components, the graph’s set of vertices is traversed. When
a vertex’s number of adjacent edges —which is called degree or valency— is two,

3.3 topology-based line-segment component creation 23

then that vertex is an intermediate point of a poly-line, and the two adjacent edges
are considered connected and belonging to the same connected component. Thus
they are inserted in the same connected component.

When the vertex’s degree is one, then the incident edge is simply inserted in a
connected component. This case means that the vertex is a connected component’s
endpoint.

In the case that a vertex has a degree of three or more, then it is not considered
intermediate, but a junction. In this special case, the vertex acts as its name implies,
and becomes the endpoint for all adjacent edges (end by extent, to their respective
connected components). This also ensures that the connected components have
polyline geometry, and not forks of any form.

When an object is of a ring topology, the outcome is just a single circular component.
An example case of this can be seen in Figure 3.12.

(a) Object with ring-like topology. (b) Outcome of one connected component.

Figure 3.12: Handling an element with ring-like topology.

The methodology containing the steps that were mentioned above is given in pseudo-
code form, in Algorithm A.2.

One example showing the result of creating connected components can be seen
in Figure 3.8. Another one is in Figure 3.13. In the latter, it can be seen how a
planar cross-section’s structure, comprised of connected components, is represented.
Each connected component is represented by a different color, and in this case,
their endpoints are the junction vertices that have been mentioned earlier in this
subsection.

(a) Planar cross-section
(b) Result of connected component cre-

ation

Figure 3.13: Constructing connecting components on a cross-section. The result is a total of
seven components.

At this step, a list of all the vertices with degree other than 2 is kept, comprising all
the endpoints of the created connected components. The purpose of this is going to
be explained in later sections of this chapter.

Figure 3.14 shows the changes on the example model after performing this section’s
steps on it.

24 methodology

(a) Before intersection removal (b) After intersection removal

(c) Before component creation (d) After component creation

Figure 3.14: Results of component creation on example building. (a) Intersecting edges of
cross section. (b) Result of dealing with intersections. (c) Building’s cross-section
before component creation. Position of intersection removal example shown in
red rectangle. (d) Connected components created for building example.

3.4 closing gaps: triangulation
Arriving at this point, the available data is a cross-section comprised of multiple con-
nected components. Having this, we could go from the step described in Section 3.3
directly to the one of Section 3.5.

However, another thing that is demanded from the end-result of this pipeline’s pro-
cess is a watertight object. This means that apart from the other types of deficiencies,
(duplicate geometry, self-intersections) the model should also be rid of holes.

Holes do not pose a validity problem in the data structure, but in order to be able
of performing robustly the classification of an object as being interior or exterior, it
is required of the actual model (cross-section) to be devoid of holes. Reasons for
why holes are undesired for these types of methods have also been mentioned in
Section 2.4.

A basic example of a hole in a model was depicted in Figure 3.3’s sketch. Another
example with a real model is in Figure 3.15. In this case, the model is that of a big
cat. In the 3D representation, the hole allows the user to view the interior of the
model, shown with light purple color. When a planar cross-section is applied, the
holes are still visible as a discontinuity on the right side.

The selected process to close holes is by implementing Delaunay Triangulation (DT).
In this case, the cross-section is populated by triangles and edges. Out of the new
generated edges, some are selected methodically, in order to fill the pre-existing
holes.

First, a set of points has to be selected on which the DT will be applied. For this, the
connected component’s endpoints are used. Out of the total of those endpoints, only
those with a degree of 1 are selected. This means that only those that potentially are
endpoints of open gaps contribute to the DT’s creation. Also, each of the selected
endpoints constitutes one of the triangulation’s vertices.

3.4 closing gaps: triangulation 25

(a) Hole in 3D. (b) Hole in 2D

Figure 3.15: Holes in cat model. (a) Hole seen in 3D. Interior of model shown with purple
color. (b) Holes seen in 2D after slice of model. 4 gaps are observed in the side
of the cross section.

When the triangulation is performed, the result is newly created triangles and edges,
as has been mentioned. Out of all these edges, only a portion of them will be selected
and kept, the ones that will potentially close the holes.

The method to select the edges for extraction is to first traverse all the points of the
DT. For each point, its incident edges are checked. The edge with the least length is
kept, as it is the one that is filling the hole. At this stage, the assumption is made
that the gaps a model has are small enough when compared to its actual size. The
selection of edges is also depicted in Figure 3.16. In this case, edge e3 is the shortest
incident edge to point a, and as such, the one to be selected.

Figure 3.16: Selection of edge to keep. The orange colored edge is the shortest edge that is
adjacent to vertex a, so it is the one being selected.

A general application of closing gaps with DT can also be observed in the example
of Figure 3.17. There, The endpoints are recognized, then triangulation is performed
on them, and finally, only the edges that fill the gaps are being kept.

The extracted edges are introduced to the cross-section’s graph. Then, the graph
goes again through a cleaning process (removing duplicates and self-intersections),
to make it ready for the next step of the methodology.

The result of applying triangulation on the example cross-section is shown in
Figure 3.18.

There is also a possibility that an edge introduced through triangulation intersects
an already existing one. When that happens, the point of intersection is introduced

26 methodology

(a) Object before triangulation (b) Implementing triangulation

(c) Closed Holes

Figure 3.17: Closing gaps with Delaunay Triangulation

Figure 3.18: Closed hole of window in example cross section, next step from Figure 3.14.
Closed area highlighted within the red rectangle on the right side.

as a new vertex within the cross-section, in the same way as has been described in
Section 3.3.1. An example of how this is handled is shown in Figure 3.19.

3.4.1 Alternative Triangulation

During the implementation of DT, there were observed cases where the selection of
only the endpoints from the connected components was not sufficient. The geometry
of a cross section might present holes, but they were not surrounded by endpoints.

In that case, as points for the triangulation are selected all of the cross section’s
points. Then, the evaluation of which edges are going to be preserved is applied to
every vertex. This alternate selection of triangulation points is selected only in cases
where selecting just the endpoints was not sufficient.

3.5 twin ray voting 27

(a) Object before triangulation (b) Implementing triangulation.

(c) Newly created vertex.

Figure 3.19: Handling new intersections appearing through triangulation’s application (a)
Input having gap and a component passing through it. (b) Edge creation through
DT. (c) The point of intersection is introduced as the new vertex. Components
are restructured to accommodate the change.

An example case can be seen in Figure 3.20. Here, applying triangulation on just the
endpoints presents new edges as seen in green line. By utilizing all the vertices, the
hole is closed in the way that is shown with the red line.

Figure 3.20: Selection of edge to keep.

3.5 twin ray voting
Arriving at this step, all necessary groundwork has been laid. There is a set of
connected components, the sum of which represents the planar cross-section of
the model. At this point, the geometry is clean, meaning that no self-intersecting
elements remain, the vast majority of duplicate objects have been removed, and
the geometry is now watertight, with all adjacencies and connections stored as
information.

This step’s purpose is to extract the outer borders of the model, defining anything
within them as lying on the inside. The rest will be outside. For this, an arithmetic
value will be assigned to each connected component and consequently to the line-
segments that comprise them.

28 methodology

It has been decided that every component will be assigned one value, called border
vote. The vote’s minimum value will be 0, and the higher the value is, the bigger the
confidence of the component being an outer border. The value to define this will be
calculated by implementing a ray casting method.

As can already be derived from the name, the main concept of this method is to
generate rays that will help in classifying a component as being an outer border or
not.

The first step is to assign the border index for the core element of a cross-section,
the line-segment. For each line segment, its centroid is calculated. Then, from
the centroid, and with random direction, a ray is generated. For our method to
function —and also give more valid results— when a ray is generated, its twin ray
is also generated in the opposite direction. An example is seen in Figure 3.21. In a
line-segment with vertices v1 and v2, the centroic c is calculated, and from there the
twin rays rA and rB are generated.

Figure 3.21: Generation of twin rays from a line-segment’s centroid

The generated rays may pass through other line segments, but not the one they
originated from. The number of intersections for this pair of rays gives information
of whether the origin segment is an interior one, or part of the cross-section’s outer
border. For this case, if iA is the total number of intersections that ray rA has, and
accordingly iB the intersections of ray rb, the classification comes from the following
decision:

Result
{

outside iAmod2 = 1, iBmod2 = 0
inside iAmod2 = iBmod2

The above explains that if the remainders of the respective numbers of the twin
rays’ intersections, divided by two, are different, the segment is considered a border.
Otherwise, it is considered interior information.

Since most models may have irregular shapes, deciding from one twin ray casting
will possibly not always give robust results. As such, this process is repeated several
times, and each repetition consists one vote. For the sake of this pipeline, tests have
been done ranging from shooting 4 to 50 twin rays, and it was decided that time and
quality wise, shooting 20 twin rays for the voting process is acceptable.

The average result of all these votes consists the border vote value for the segment.
Furthermore, in cases where iA = 0 or iB = 0, it is understood that the segment has
an open view to the exterior of the model. When this happens, the vote gets a higher
weight, since the main goal of this step is to make possible the recognition of the
model’s cross-section’s borders. An example case of twin-ray voting is presented in
Figure 3.22.

3.6 extract borders: optimization 29

Figure 3.22: Classification of element based on twin ray result

When the line segments have their border vote, they can assign it to the connected
component that they comprise. The vote is the average sum of votes from the line
segments, where the values are weighted based on the length of the segments; longer
segments have more weight in this. The formula for computation is

Cv =
∑n

s=1 ls · vs

lc
(3.1)

where Cv is the component’s border vote, ls the length of segment s, vs its border
vote, and lc the total length of the connected component. The connected component
consists of n line-segments.

The flow depicting the process of this method is presented in Algorithm A.3.

The end result of this step is that every connected component has a value that can
help in deciding if the component belongs in the cross-section’s outer border. One
example, with colors that depending on the vote values is shown in Figure 3.23.

Figure 3.23: Colored result of the twin ray casting votes

A result on the border voting on the example cross-section can be seen in Figure 3.24.

3.6 extract borders: optimization
Arriving at this step, it is now possible to extract the outer borders of the cross-
section. Until now, there have been processes to remove geometrical and topological
deficiencies from the model, to make it watertight, and to assign border confidence

30 methodology

(a) Ray vote results

Figure 3.24: Colored result of the twin ray casting votes on the example cross section.

values on the section’s line-segments. Now it is time to use all the data gathered
until this moment to extract the cross-section’s exterior shell.

The purpose of extracting the borders is in order to perform inside-outside classifi-
cation based on ray casting. The intended result is to retrieve a closed polygon, on
which ray casting can be robustly applied.

A first option in this case was to use a threshold on the border vote indices. By
applying this threshold, only line segments with border value above it would be
selected. This would ensure that most segments looking outside would be selected,
but in case of concave shapes, some of them with not so high values might be
omitted. What is desired in this step is to have an outer border with a ring-like,
1-manifold topology. For this reason, instead of applying a simple threshold, it was
preferred to introduce an optimization problem for this selection. The differences
of these two approaches can be evident in Figure 3.25, where the two methods are
applied in the shape from Figure 3.23.

(a) Extraction by threshold (b) Extraction by optimization

Figure 3.25: Outer border extraction by threshold vs. optimization

Another potential method for border extraction was that of curve tracing. Basic steps
of this method are shown in Figure 3.26. In this case, an outer vertex (to ensure its
selection, the bottom-left one could be selected) is assumed to be on the border of
the shape. On a set rotation (eg. clockwise), the vertex’s incident edge that is next
in rotation order is selected. The output provided is a polyline representing the
boundary of the input complex geometry, similarly to Ohori et al.’s algorithm. In
the end, the result would be the initial input’s outer border.

3.6 extract borders: optimization 31

(a) Input Geometry (b) Border Tracing (c) Output

Figure 3.26: Outer border extraction by border curve tracing. (a) Input Shape (b) Starting
with vertex 1, vertices 2, 3 and 4 are consequently selected by clockwise order.
(c) Output of border tracing.

Although border recognition through curve tracing is a valid method, there are
cases of input geometry that it cannot handle robustly. These cases are shown
in Figure 3.27. In Figure 3.27a two disjoint elements are shown. Curve tracing
can procure the outer border of one element, but it would completely disregard
the existence of the other. Furthermore, in cases with dangling elements, such
as in Figure 3.27b, the output would have the dangling element remaining. Still,
optimization would remove the dangling element, and generally cope with both of
those cases. As such, it was selected as the optimal option for the border’s extraction.

(a) Disjoint geometry (b) Dangling elements

Figure 3.27: Geometric & topological limitations of border curve tracing.

Optimization is a problem of linear programming in this case [Bradley et al., 1977].
The result of the problem’s solution is the selection of the connected components that
are suited to be the outer borders of the cross section. The result of this extraction
would have manifoldness, meaning that any remaining objects should have ring
topology, and no holes.

3.6.1 The Optimization Problem

The problem introduced is as follows:

The main objective is to maximize the value of the sum of the connected component’s
border votes. This means, that the solution will prioritize the components with
higher border votes, thus the ones more likely to be outer borders. In this case,
the value is called Border Energy (BE), its objective is to be maximized, and it is
calculated by the following equation:

BE =
nc

∑
i=1

bi · xi (3.2)

where:

• i denotes each connected component,

• nc is the total number of connected components in the cross-section

32 methodology

• xi is the value defining whether the ith component is going to be selected, with
the only two possible values being 1 for selection, and 0 for rejection

• bi is the ith connected component’s border vote value

Of course, by just attempting to maximize the Border Energy value, the result would
be the selection of every component. In this case, as has already been mentioned,
we want to extract an outer border that is continuously connected. For this reason,
constraints are inserted to the optimization problem.

The inserted constraints are:

Ae =
nac

∑
i=1

xi = 0 or 2 (3.3)

where:

• Ae is the eth endpoint’s degree of adjacency, e belonging in the set of existing
endpoints for the cross-section

• nac is the total number of connected components adjacent to the particular
endpoint

The above constraint means that each endpoint, at the solution of the problem,
should have either two adjacent connected components, or none. As such, there are
as many pairs of these constraints as there are endpoints in the cross-section. This
ensures that the produced result will have ring topology.

The two alternative constraints from Equation 3.3 can also be restructured into the
following single equation:

Ae =
nac

∑
i=1

xi + 2 · (1− we) = 2 (3.4)

or rewritten as

Ae =
nac

∑
i=1

xi − 2 · we = 0 (3.5)

In this case the value we is inserted. This value denotes whether the endpoint will
be kept in the end result (with value 0), or removed (with value 1). In the case from
Figure 3.23 to Figure 3.25 it is observed that the endpoint lying in the interior of the
cross-section is also removed.

When the energy maximization problem along with constraints have been defined,
the formulas are inserted into an optimization solution algorithm. The output from
the algorithm is the selection of those components that maximize the total border
energy, while at the same time satisfy the constraints’ requirements.

A final thing to take note is that the optimization solution produces a result that has
ring topology. This means that it would also be possible to have multiple rings. For
this reason, all interconnected components are grouped into ring elements. Then,
a formula similar to the one of Equation 3.1 is used to compute each ring’s border
vote. The final step is to apply a threshold into the border votes of the rings, keeping
those that surpass a certain value (eg. 0.5). Since the interior rings generally have
low border vote values, they are easily removed from this threshold’s application.

The process of border extraction through solving the integer optimization problem
can be seen in Figure 3.28. Initially, the state of the connected components along
with their border vote is given, and in the end the reader can see the result of the
outer border being extracted.

The outcome of the optimization problem’s solution, along with the final extracted
outer border for the example building model can be seen in Figure 3.29.

3.7 inside - outside classification 33

(a) State of connected components (b) Optimization result

(c) Removal of inner rings

Figure 3.28: Extraction of outer border

(a) Result of optimization solution. (b) Final outer border.

Figure 3.29: Extraction of the example building’s outer border. (a) Result of applying op-
timization solution on the cross-section. The extracted results have ring-like
geometry. (b) Removal of interior rings, outer border remains.

3.7 inside - outside classification
The steps up until now have produced a 2D planar cross section of the input model,
refined it, and finally extracted the information about the perceived outer borders of
the particular cross section.

At this stage solution to classifying a point as being inside or outside a polygon has
already been given by Shimrat [1962]. The solution entails generating a ray from
the point. Then, according to the number of surfaces the ray crosses, the point is
classified as lying inside (or outside) of the polygon.

When the number of intersections is odd, that means that the point lies inside the
polygon. In the opposite case, when the ray crosses the polygon’s boundary an even
number of times, that means that the point lies on the exterior of the polygon.

This solution works on simple polygons, whether they are of convex or concave
hull. These polygons should not have repeating elements (duplicate edge on the
boundary) or holes in their boundary, in order for a correct and robust result to be
produced. That has been the reason why each and every step of the pipeline until
now was performed.

The same solution can be applied for the present case. By shooting a ray from the
point in question, we can figure out if it belongs on the interior or the exterior of
the model. To ensure the result’s correctness, it would even be possible to shoot
multiple rays from the ray, and by rule of majority decide on the point’s position.

34 methodology

This would happen to avoid very rare cases where a ray intersects the boundary on
a vertex, thus crossing both of the vertex’s adjacent edges.

An example is shown in Figure 3.30. There, points A and B lie on the interior, since
their respective generated rays cross the boundary an odd number of times. On the
other hand, points C and D lie on the exterior, as the number of intersections from
the generated ray with the boundary are odd.

A

B

C

D

Figure 3.30: Inside-outside classification by ray casting

4 I M P L E M E N TAT I O N

This thesis can be a bit demanding on the technical side. Therefore, it is necessary
that there is enough computational power, as well as software relevant to the needs
of the methodology. Of course, the type of data handled should be of a certain type,
and also attention should be paid on the way they are handled.

In this chapter, the aforementioned needs are going to be addressed. First, the type
of data used is going to be mentioned, along with their source. Then, the tools
utilized for analysis, viewing and evaluating purposes will be presented. Finally,
certain choices to get satisfying results, help with the methodology’s robustness, and
the overall quality will be explained.

4.1 data
In order to test the proposed methodology, it is necessary to have a set of data where
the analysis part of the thesis is performed on. For this purpose, certain 3D model
representations were used.

The models used in this case were 3D surface meshes, representing various common
objects found in the world (buildings, cars, animals, furniture, persons, etc.). In this
case, the models used had their information stored as Object File Format (OFF) files.
OFF is a file format used for storing geometry information in the shape of vertices,
and polygons pointing to the vertices they are comprised of. Other file formats, such
as the Polygon File Format (PLY) could also be used as input. However, at this point
the created program for the methodology’s pipeline can read only OFF files. It is
possible to work on objects saved as other file formats, if there is a way to convert
those files into OFF.

For the purpose of testing the methodology, 3D models were retrieved from various
sources. Some models were retrieved from data stored and processed for the
purposes of Jacobson et al. [2013]’s methodology, containing a total of 35 models,
consisting mainly of animals, but also other forms. Another source was from the
personal repository of Liangliang Nan1. This one had tens of models that were mostly
building, car and airplane representations. Finally, a large amount of hundreds of
3D models was retrieved from the Princeton Model Repository (ModelNet)2, which
contained a plethora of CAD and OFF format models.

4.2 tools
For the purpose of data analysis needed within this thesis, the computations will
be carried out by algorithms that are entirely created in the C++3 programming
language.

1 https://3d.bk.tudelft.nl/liangliang/
2 http://modelnet.cs.princeton.edu/
3 http://www.cplusplus.com/doc/tutorial/

35

https://3d.bk.tudelft.nl/liangliang/
http://modelnet.cs.princeton.edu/
http://www.cplusplus.com/doc/tutorial/

36 implementation

For more demanding processes and geometric analysis, the Computational Geometry
Algorithms Library (CGAL), [CGAL, 2018], is used. This library contains code,
functions, data structures and other useful objects (structures for lines, points,
meshes, triangulation, etc.) when handling problems related to geometric analysis.

Most calculations are executed within a compiled and self-edited program containing
its own Graphical User Interface (GUI), called Surfacer 4. Its GUI was created with
the help of QT Designer5.

Finally, it is important at various intermediate steps as well as the final, to be able of
monitoring and evaluating the pipeline’s results. For this reason, various software
were used. For starters, and implementation was performed in Liangliang Nan’s
Easy3D6, to create viewers for the produced connected components, their endpoints,
and of course, the final extracted outer borders. Also, for monitoring reasons were
used two different programs: and interactive 3D model visualizer called Mapple7,
and a mesh processing system called MeshLab8.

4.3 prototype implementation
From having prepared the theoretical part to actually forming the ideas into an
executable, it takes a considerable amount of work. Some steps were relatively easy
to put into practice, while others demanded more attention, due to the nature of
programming languages and actual mathematical analysis.

This section will present some of the options selected during the implementation
process of this thesis. These options were made at points where digressing can really
alter the result, or where more specialized actions where needed in order to reach a
satisfactory product.

4.3.1 Pre-Processing

For the purpose of detecting geometrical deficiencies, multiple implementations
already exist. As such, there was not much need in exploring this particular field. In-
stead, already existing implementations can be used. In this case, one tool mentioned
in Section 4.2, Mapple, was used.

As has been mentioned in Section 1.1 and Section 3.1, it is important to identify
deficiencies such as duplicate geometry and self-intersections, and deal with them.

In this case, the 3D model editor of Mapple is sufficient. Having an input model,
there are functions to recognize and remove repeating faces. It is also capable of
identifying self-intersecting faces and also restructure (re-mesh) the model to create
new non-intersecting ones, with a method similar to that of Section 3.3.1 and shown
in Figure 3.11.

One example of the pre-processing step of the methodology will be explained in the
following images of Figure 4.1. This will be performed on a building representation.
In Figure 4.1a is the image of the building, as it is viewed from Mapple’s GUI. In
Figure 4.1c a planar section is applied on the model. From there, it is obvious that
the surfaces of the two roof elements are crossing each other. By applying Mapple’s
remeshing function on them, the difference between Figure 4.1b and Figure 4.1d is
visible. The theory behind the remeshing step is the same as the one presented in
Section 3.3.1, but is applied in 3D. In the newer state, the existing triangles have been

4 https://github.com/LiangliangNan/Surfacer/tree/Surfacer-Nikos
5 https://doc.qt.io/qt-5/qtdesigner-manual.html
6 https://github.com/LiangliangNan/Easy3D
7 https://3d.bk.tudelft.nl/liangliang/software.html
8 https://www.meshlab.net/

https://doc.qt.io/qt-5/qtdesigner-manual.html
https://github.com/LiangliangNan/Easy3D
https://3d.bk.tudelft.nl/liangliang/software.html
https://www.meshlab.net/

4.3 prototype implementation 37

split into finer ones. Also, it can now be seen that the two roof elements are now
touching (adjacent to each other) instead of crossing. The proof of that is the mesh
line that has now appeared where the two roof elements meet.

(a) Input building representation

(b) Roof of model (c) Intersecting roof surfaces

(d) Remeshed product

Figure 4.1: Remeshing 3D model to relieve of self-intersections. (a) and (b) Intersecting
roof faces of the building model. In the intersection of the elements, no mesh
wireframe is visible, as the intersection’s existence is not registered in the model.
(c) Cross-section view of the two intersecting roof elements. (d) After remeshing,
the wireframe now appears where the two roof elements meet.

4.3.2 Arithmetic Accuracy

An important issue when dealing with high-precision numbers in programming
application is the arithmetic accuracy.

Arithmetic accuracy during computations in this case means that numbers with same
digits until a certain point are treated as equal. A small example of how arithmetic

38 implementation

accuracy works would be that by having accuracy up to the 3rd decimal of a number,
numbers 3.3424 and 3.3427 are treated as the same.

This treatment has repercussions in Cartesian coordinates (as well as any multi-
dimensional space) and generally geometrical objects in space. One such case would
be seen in Figure 4.2. The image shows that A and B are two individual, independent
of each other points. However, due to arithmetic accuracy in this case (the precision
along the two axes), since their possible position areas overlap, they would be treated
as the same point.

Figure 4.2: Precision of points in space

Another case would be that of the plane intersecting the input model, as seen in
Figure 4.3. When the plane intersecting the model passes very close to one of its
vertices, the result would be multiple small segments. Due to the arithmetic accuracy
of the program, the vertices of these new points would be treated as the same point
(existing in the same coordinates). In that case, not only is the geometry of the
initial input altered, but the topology would also be compromised. All the generated
segments, # »p1 p2, # »p2 p3 and # »p3 p4 would be degenerate, equivalent to points, or the
same point in this case. This would lead to unwanted results later on in the pipeline.

Figure 4.3: Plane intersecting close to model’s vertex

To avoid this problem of arithmetic accuracy, CGAL offers the option of working with
the provided arithmetic accuracy, or to choose the use of exact numbers. This option
is called ”exact predicates exact constructions” [CGAL, 2018], and it means that
arithmetic accuracy is applied neither in the input data nor in those generated within
the program. This option slows down the analysis’ execution, but was deemed
necessary for preserving the results’ quality.

4.3 prototype implementation 39

4.3.3 Creation of Viewers

Working with geometry data makes it necessary to monitor the progress done
during each step performed within the pipeline. This necessitated the creation of
functions that would extract the geometry information during intermediate stages
of the pipeline, but also to create applications that would enable the visualization
of such geometry. As such, functions where implemented for the extraction and
visualization of:

• The line-segments comprising one cross-section. This is a simple geometry
visualization, with no special further information, or coloring.

• The connected components of a cross section. Each component is shown with a
separate randomly generated color, to differentiate them. An example is given
also in Figure 4.4.

• The endpoints of the connected components, along with their degree of con-
nectivity value. Based on their degree, endpoints appear as black when having
a value of one, red when having value of two, and green when the value is
three or more (meaning they are junctions). An example of a screenshot during
the intermediate state of a cross-section can be seen in Figure 4.4.

• The section’s line segments, along with their border vote value. An example
is seen in Figure 4.5. Red color means that there is a high border value, blue
means that it is low (and thus inside). Intermediate —but still relatively low —
values range from light blue to green to yellow.

Figure 4.4: View of connected components along with their endpoints

The viewers were created with C++ code, but also as an implementation of Easy3D.

4.3.4 Triangulation Options

In Section 3.4 a way has been presented for closing potential gaps in the planar cross-
section through DT. Also, there are two possible methods to apply triangulation: one
by utilizing only the connected components’ endpoints, and the other by selecting
and inserting inside the DT all of the existing vertices.

40 implementation

Figure 4.5: View of segments after ray vote. Parts with higher border vote appear as red,
while those with lower vote have blue color.

Inside Surfacer, the option to select either of those methods has been given to the
user. There, when the user is at the step of implementing DT, he/she can choose
which set of data are going to be used as input.

There may be occasions where the cross-section does not have any gaps. This
could be seen by the user by utilizing the viewers specified in Section 4.3.3. There,
the geometry of the cross-section can be monitored by observing the connected
components and their endpoints.

Since the function of applying DT to close any gaps has been implemented as a
separate one, it can be totally bypassed by the user if there is no need for it.

4.3.5 Twin Ray Generation

The way that twin rays are created in order to assign border confidence values to the
cross-section’s line-segments has been elaborated in Section 3.5.

If the cross-section was of valid, manifold structure, one iteration of the twin-ray
method would suffice. Unfortunately, most cross-sections generated were non-
manifold. For this reason, it was deemed better to create multiple instances of
twin-ray iterations, and use them in a voting process, getting in the end the most-
likely result for the outer-border classification of a connected component.

Another choice was the way by which the two rays would be generated. One
option was to generate the twin rays in an orderly manner, that of equal intervals.
This way, however, would mean that there would be cases that the generated rays
would consistently ignore. The other case was to generate the twin rays in random
directions. This was opted, because the direction of the rays would have more
freedom, and various parts of the cross-section’s geometry would be explored.
An example of the difference between generating rays in equal intervals, against
randomly directed rays, can be seen in Figure 4.6.

In order to take into account the cross-section’s geometry in different directions, it
was deemed better to make a denser set of twin rays instead of just one, and to
generate rays in random directions. This will ensure that the results of border voting
will be more consistent, and closer to what is expected.

A final note is that at this point, the generation and execution of the ray voting step
is performed repetitively, within a single thread. However, there would be a future
upgrade that will make this process faster. One such solution is to make multiple

4.3 prototype implementation 41

(a) Rays generated with set angle distance (b) Randomly generated twin rays

Figure 4.6: Ordered vs random ray generation

instances —threads— within the algorithm. That way, each thread would process
the separate analysis of one twin ray vote. By running multiple threads in parallel,
the process can be significantly sped-up.

5 R E S U LT S & D I S C U S S I O N

Chapter 3 introduced the complete methodology of this thesis, acquiring and pre-
processing a 3D input model, transforming the problem from 3D into 2D, working
on planar cross-sections, applying twin-ray voting, and extracting the borders by
solving an optimization problem. In Chapter 4 were presented the necessary tools
and data to realize the methodology, and some choices that were made during the
implementation process. This chapter will show some of the experimental results
that the pipeline has produced. Afterwards, there will be a small discussion on these
results, mentioning key points and important parts in them that have been observed.

At this point, there should be an important disclaimer. As far as the academic world
is concerned, the inside-outside classification problem through casting rays that has
been mentioned in Section 3.7 has been much explored, with valid and robust results
for this having been elaborated as far back as in the middle of the 20th century, by
Shimrat [1962]. Therefore, the main goal of this thesis was to robustly produce from
any 3D model a 2D shape for inside-outside classification. Consequently, most results
will be produced and offered at the point of the pipeline where the step mentioned
in Section 3.6 is completed.

5.1 results
In this section, results from the pipeline will be presented. At this point, a total of
over 40 man-made models has been tested, with various shapes, some containing
deficiencies, while others are clean. The models were mainly representations of
buildings, but in order to test the pipeline’s universality, other types were selected
as well (cars, furniture, animals, etc.). Out of all of them, the results that are most
iconic or that can show the handling of special cases will be presented.

5.1.1 General Results

One first result is the one performed on ”Task 14”, a 3D model representation of
a building. The input in the pipeline and the output produced can be seen in
Figure 5.1.

In this figure, the steps from getting the input until the end product are visualized,
showing even a part of the intermediate results. In the case of the images, the
building used as input is intersected by a plane, and in Figure 5.1b is seen the
planar cross section. In that step, the connected components comprising the section
have also been constructed. Each component has a unique random color, and the
endpoints that are their joints / junctions are visualized as green squared.

In the next step, seen in Figure 5.1c, the twin ray voting method has been applied in
the section. The result in this case is that higher values (denoting the outer borders)
have been colored with red, and lower values (denoting the interior)tend to blue
area of the color spectrum.

The final result of extracted borders through optimization is seen in Figure 5.1d.

43

44 results & discussion

(a) Input Model
(b) Connected components of the cross sec-

tion

(c) Border vote result (d) Extracted Border

Figure 5.1: Pipeline performed on model ”Task 14”. (a) View of input model. (b) Constructed
connected components from a planar cross-section. Each component has a distinct
color. Also, the endpoints are presented as squares (green, because they are
junctions). (c) Visual result of the border vote step. Blue are low values, where
with red are presented components with higher border confidence. (d) Final
extracted border.

Another result case is shown in Figure 5.2. This one is a 3D building model represen-
tation. Between the planar cross section of Figure 5.2b and the extracted borders of
Figure 5.2c, it is visible that the interior information of the horizontal ground and
first level —as well as the base of the roof part— has been removed.

Special note should be taken for the case of model parts with finer geometry. This
can be observed when comparing the result in Figure 5.2e to the original window
geometry of Figure 5.2d. The intricate geometry of the window’s panels is preserved
even after the complex geometric computations of the pipeline.

One additional model that has been tested is that of ”Person45”, retrieved from
Princeton’s ModelNet. The input model, along with the results, can be observed
in Figure 5.3. In this case, multiple planar cross-sections were simultaneously
performed on it (seen in Figure 5.3b). In the intermediate step, the geometry was
preserved in all connected components. Finally, the result in Figure 5.3c proves that
the pipeline preserves all geometric information in a cross-section, even in cases
where there are disjoint (not touching each other) elements, such as the hands with
the torso in one section, or the legs in another.

Through Figure 5.3, another aspect of the pipeline can be observed. And it is that
disjoint components from the same cross-section are preserved on the final outcome.
A single example of this can be seen in Figure 5.4, where a cross section of the
previous ”Person” model is presented.

A last general result is shown in Figure 5.5. Initially, the input is given, along with
the point in question for the purpose of being classified as being inside or outside.
Following, various slices from planes uniquelly oriented are shown, and after them

5.1 results 45

(a) Input Model (b) Section of building

(c) Border vote result (d) Window of building (e) Border

Figure 5.2: Pipeline performed on model ”Task 3”. (a) Input building representation. (b)
Planar slice of the building. The horizontal lines on the interior are the story
floors. (c) Extracted outer border from the cross-section. (d) Closer look of the
building’s window. (e) The extracted border retains the geometric information of
the window.

(a) Input model (b) Connected components (c) Border vote result

Figure 5.3: Pipeline performed on model ”Person 45”. (a) Input model representation. (b)
Constructed connected components on multiple cross-sections. (c) Result of
extracted outer border for each cross section.

the outcome of the pipeline, performed on the pipeline’s particular iteration. In
this case, it is proven that the result of classification is robust, regardless of the
intersecting planes’ orientation.

46 results & discussion

(a) Part of input model (b) Outer boundary output

Figure 5.4: Example on disjoint components. (a) Lower torso and hands of the Person model
shown in Figure 5.3. The elements are clearly not touching each other. (b) Result
of cross section preserves the components and outer boundaries from each disjoint
item.

Also, most models that were freely available online were manually made within
digital creators/ editors. However, the pipeline can also provide results for models
based on data acquired on real structures, through sensing technologies. One such
case is shown in Figure 5.6.

5.1.2 Cases with Geometric Deficiencies

The purpose of this thesis is not to just produce results, but also to perform robustly
under any circumstances of given input. In this subsection, results will be presented
for a model containing many of the geometric deficiencies that have been mentioned
in Section 1.1.

The example results shown here are produced from a 3D building representation
(seen in Figure 5.7a). The result of implementing the pipeline to extract the planar
cross-section’s outer border is seen in Figure 5.7b.

One special case of geometric deficiency is shown in Figure 5.8. This is a part of
the model of Figure 5.7a. In the left part of Figure 5.8a, a hole can be seen in the
model. This is a part of the roof’s base. The red connected component is disjoint
from the blue one, both heading towards the left, but not touching. The result of the
implementation can be seen in the next image, of Figure 5.8b. With the application
of DT, as has been mentioned in Section 3.4.1 (triangulation with all the vertices), the
gap has now been filled, and the wall element is meeting the base of the roof.

Another case found here is that of self-intersecting elements inside the 3D model. In
Figure 5.9a, it can be observed that the chimney element of the building is crossing
through the surface of the roof. The algorithm recognizes it, removes the intersection,
and works on all connected components in order to retrieve the ones that are most
likely classified as exterior. The end result is the outer boundary of the roof and the
chimney, as seen in Figure 5.9b.

Similar results have been observed in other such cases with models containing
geometric deficiencies. An extreme case was also tested in the form of a highly
deformed model. This case was performing the methodology’s pipeline (seen in
Figure 5.10) on the ”4Bunny” model. There, the original model of the Stanford
Bunny was multiplied and merged, to create a complex model with many geometric
deficiencies (seen in Figure 5.10a).

In this case, the planar section of Figure 5.10b shows that the model has multiple
intersections from the models being overlaid against each other, as well as holes
that can be seen at the bottom of the model. Figure 5.10c presents the connected
components created within the pipeline, along with their endpoints. The final result
(seen in Figure 5.10d) offers the generated outer boundaries of the model. There, it
is obvious that the complex interior information has been removed along with all

5.1 results 47

(a) Input Model (b) Point of Interest

(c) Slice A (d) Result

(e) Slice B (f) Result

(g) Slice C (h) Result

Figure 5.5: Results on model with various plane orientations. (a) Input building model. (b)
Slice with point of interest represented by red dot. (c) through (h) Slices of the
model with variously oriented planes, and their results. The point of interest is
shown with red on the 3D slices, and with green on the results.

self-intersections. Also, the holes that were located at the lower part of the model
have been filled to produce the manifold borders that are observed.

5.1.3 Table of Results

In Table 5.1 a multitude of models tested with the current pipeline are presented,
along with their results. Mainly, the pipeline has been tested on building representa-

48 results & discussion

(a) Arc de Triomphe (b) Model of Arc (c) Border Results

Figure 5.6: Test of pipeline on model of real building. (a) Input model representation of the
Arc de Triomphe. (Image retrieved from tiqets.com) (b) Surface mesh representa-
tion of the Arc. (c) Extracted border on different levels of the Arc’s model.

(a) Input Model (b) Extracted Border

Figure 5.7: Result of pipeline on model ”Task 20”

(a) Hole in the cross-section (b) Closed hole

Figure 5.8: Filling of gap found in cross section. (a) The part where the two elements should
be connected is highlighted. Vertices are represented by red squares. (b) The
separate parts are now connected through DT.

tions, but its implementation on other types of models (furniture, animals, persons,
cars etc.) has given valid results.

5.2 discussion
In this section, there will be a small discussion on the results that have been previ-
ously presented. Apart from the results, there will also be a small discussion about
parts of the pipeline’s execution that have been deemed important.

https://www.tiqets.com/

5.2 discussion 49

Input Intermediate Output

Table 5.1: Table of results. Simpler results have their lines highlighted.

50 results & discussion

(a) Chimney intersecting the roof (b) Extracted border

Figure 5.9: Coping with self-intersecting elements. (a) Zoomed in area from the model
presented in Figure 5.7. Chimney passing through the roof. The back/inside of
the triangle surfaces is shown in purple. (b) Extracted outline of the model in the
particular cross section.

(a) Merged Stanford Bunny model (b) Planar section of model

(c) Constructed connected components (d) Extracted outer border

Figure 5.10: Pipeline implemented on merged bunny model

5.2.1 General Remarks

In general, the implementation has proven to give results for a plethora of input
models. Its main positive points are:

• It can consistently produce results for all given models.

5.2 discussion 51

• The interior information is safely discarded, to produce a result of only the
cross-section’s outer boundary.

• The pipeline extracts the outline of the cross-section, while it preserves the
geometry of the initial model.

• Self-intersecting elements are robustly handled, allowing only their parts that
are classified as exterior to be extracted. This means that the final product of
the pipeline is the extracted outline of a cross-section.

• It has been proven that generally, the pipeline produces unique results, regard-
less of the intersecting plane’s orientation.

• Holes in the input model are dealt with through DT. This, in turn produces a
watertight, manifold result of ring-like topology.

5.2.2 Execution Time

Apart from the actual products of the pipeline, it is also important to mention its
temporal qualities. The results’ input models were tested on a laptop computer with
Intel i7-7500U 2.70GHz Dual-Core Processor. Table 5.2 shows the execution time of
certain steps in the pipeline. For each step, instead of a clear temporal value, a more
general order of magnitude is given, since times may vary depending on the input
model.

Step Time [order of magnitude]
Load Model 0.1∼5 seconds
Create Components ∼1 second
Apply DT ∼0.2 seconds
Twin Ray Voting 4 seconds ∼ 6+ minutes
Optimization ∼0.03 seconds
Outer border extraction ∼ 0.1 seconds

Table 5.2: Execution time of the pipeline’s steps

As can be observed in Table 5.2, most steps during the pipeline’s execution are
efficiently executed, time-wise. The only step that digresses is that of border voting
through twin ray creation (explained in Section 3.5). That is because processes such
as generating rays and intersections of geometric elements are computationally more
expensive than others.

To look a bit more into the matter of this certain step, a benchmark was created
to look more into its temporal property. Some results from this can be shown in
Table 5.3. It can be generally observed from there that input with bigger geometric
data size makes the algorithm take longer to complete.

In order to provide a visualization on these parameters, Figure 5.11 and Figure 5.12

are offered. These contain scatter plots of time against the number of components
in the former, and against the number of total line-segments in the latter. In both
charts, a trend line is also given, to see how execution time is generally affected by
each quantity.

Observing the two charts, it can be seen that indeed an increase in both connected
components and line segments provides an increase in the execution time as well.
Judging from the chart of Figure 5.11 it could be said that their relationship is
exponential, or hyper-linear at least.

52 results & discussion

planar cross-section twin-ray voting

type components segments time [s]

task 14 building 20 163 30

4 Bunny animal 30 2638 300

task 3 building 74 572 ∼360

task 8A building 17 160 ∼20

task 8B building 35 324 120

task 5 building 22 229 20

task 20 building 31 205 42

person 45 human 73 2049 264

task 1 building 22 276 84

task 18 building 26 249 84

task 19 building 37 365 126

task 7 building 58 369 168

task 13 building 61 433 192

car 4 car 37 1199 138

piano 239 furniture 102 728 480

holey cow animal 10 331 4

Table 5.3: Details of twin-ray method on various models.

Figure 5.11: Twin ray execution time - Number of components Chart

5.2.3 Optimization vs. Threshold selection

Another thing to take note of is the effect of the optimization process on the produced
end result of the pipeline.

The intended outcome of the optimization is having a manifold object with ring-like
topology, so that a valid inside-outside classification process can be applied to it (as
explained in Section 3.7).

At some point, it was thought that applying a threshold on the border values of the
line segments would be sufficient for the extraction of the outer borders. However,
there are cases where the selection of the method poses a big difference. For the
purpose of those two methods’ comparison, the different methods were applied on
the model of Figure 5.13. The two different methods provided results that can be
seen in Figure 5.14,In the case of Figure 5.14c, the selected components are forming

5.2 discussion 53

Figure 5.12: Twin ray execution time - Number of section’s segments Chart

a ring shape of the building’s outer boundary. It can also be seen that the more
interior components of the porch-like section of the building have lower border vote
values. If only a threshold selection is applied, the result is that seen in Figure 5.14a;
a boundary with a big gaping hole.

(a) Input (b) Slice of input

Figure 5.13: Input model for border extraction

Through the above example comparison, it can be seen why it was important for the
optimization to be picked as the outer boundary selection process.

5.2.4 Comparison

The results from this pipeline could easily be compared to other methods that also
introduced interior-exterior classification approaches, like the ones of Jacobson et al.
[2013] or Nooruddin and Turk [2000].

Quantity-wise, there are not any significant aspects to compare.

The main property that separates this method to the ones of others is that it can
handle almost any type of geometric deficiency that the input model may have. For
example, this methodology is not affected by the orientation of the model’s faces,
like in the case of Jacobson et al.. Also, It can handle cases of duplicate geometry
of holes, against which Nooruddin and Turk’s method has a weakness. A basic
comparison of our method against that of generalized winding number (as explained
in Section 2.3), can be seen in Figure 5.15.

54 results & discussion

Threshold

(a) Applied threshold result

Threshold

(b) Another applied threshold result

(c) Ours

Figure 5.14: Optimization vs. threshold extracted borders. (a) (b) By threshold application,
the parts with lower values are removed, leaving a non-manifold outer bor-
der. (c) Even with low border values, the components are preserved, to retain
watertightness.

(a) Input Geometry (b) Winding Number Result (c) Our method’s result

Figure 5.15: Comparison of our method against generalized winding number. (a) General
input geometry depiction. (b) Winding number result, as has been presented by
Jacobson et al. [2013]. (c) Outcome from our methodology.

Another case is that our method can preserve the original geometry of the input
model. One comparison is given in Figure 5.16, where an iteration of remeshing
from Hu et al.’s TetWild, with parameters set for execution time comparable to our
own method, is placed against our method.

In conclusion, this is a method that tries more to show its uniqueness by its robust-
ness, rather than its high-end performance. In what it tries to do, it achieves to
obtain a distinction from other existing approaches.

5.2 discussion 55

(a) Input Model (b) Original window geometry

(c) Slice (d) TetWild result (e) TW (f) Ours

Figure 5.16: Comparing our method to Hu et al.’s TetWild. (a) Example input model. (b)
View of original window geometry. (c) Side view of original window geometry.
(d) Mesh result of one TetWild execution. (e) Side view of TetWild’s resulting
window geometry. (f) Our method’s resulting geometry.

6 C O N C LU S I O N S & F U T U R E W O R K

The purpose of this thesis was to produce a solid pipeline that can robustly per-
form interior-exterior classification on 3D models, regardless of whether geometric
deficiencies exist within the model. In this chapter, Section 6.1 will present some
conclusions on the whole attempt. The section is initiated with Section 6.1.1, where
answers will be given for the research question (along with the side questions) posed
in Section 1.2. Following that, Section 6.1.2 states the contribution of this work
towards the scientific field. The section ends with a look back upon the whole
process of the thesis, in Section 6.1.4. Finally, recommendations for improvement on
the pipeline and using it to realize future applications are given in Section 6.2 and
Section 6.3 respectively.

6.1 conclusions
As has been mentioned, this section of the manuscript will function as an overall
assessment of the thesis subject. First, answers to the original research questions
are given. Then, the contribution of this thesis’ results to the academic community
will be presented. Finally, there will be a general discussion evaluating the overall
process, as well as a reflection on the thesis’ procedure.

6.1.1 Research Question

• What is the methodology that should be followed in order to produce valid results?

The entire pipeline has been elaborated in Chapter 3. Furthermore, some finer
details of the analysis process and the tools utilized are presented in Chapter 4.
As has been explained in those chapters, the steps have been:

1. Pre-processing the input model with the purpose of removing initial
geometric deficiencies.

2. Apply planar cross section at the area of interest, to retrieve a 2D intersec-
tion of the model.

3. Through graph creation, group the line-segments comprising the cross-
section into connected components.

4. If necessary, perform DT in order to close existing gaps.

5. Apply a border vote value through twin ray casting implementation.

6. Perform solution of optimization problem with the purpose of retrieving
watertight exterior borders of the cross-section.

7. Do inside-outside classification through ray casting, as explained by Shim-
rat [1962].

An important choice is made to use exact numbers within the computation
process (mentioned in Section 4.3.2), to handle the arithmetic accuracy issues
posed by many digital applications. That way, the input model’s geometry and
topology is preserved throughout the pipeline.

57

58 conclusions & future work

• What should be the structure (geometry, stored format, etc.) of the data to be handled,
as well the structural form of the final output?

For the execution of this thesis, the data most commonly used were those that
stored information of 3D models as surface meshes. Many CAD models were
tested, with their format mainly being that of OFF. However, there were cases
where the input model was stored in PLY format. Nowadays, there is a plethora
of published software that can read various file formats, and convert them into
valid files of different format. As such, most generally supported file formats
would be viable for this solution.

One thing that should be noted is that the methodology has been constructed
with surface model geometry in mind. As such, at this point, solid geometry
(3D representations comprised of tetrahedrons) has not been explored within
this thesis’ scope.

Regarding the output geometry, presently the pipeline creates files that rep-
resent the extracted borders, the connected components and their endpoints.
These files have been stored in a self-created format that saves 3D line-segment
geometry (source and target point), together with any assigned value to the
segment. However, any valid commercial or open format could be used to
store the extracted results, for their further analysis.

• What advantages and disadvantages does this new method have? Is it a process that
can produce valid results?

The advantages and main selling points of this method are:

1. The pipeline can arbitrarily handle any complex geometries that are given
as input to the model.

2. The outline of the model’s borders can be preserved in full detail.

3. The pipeline is generally robust, regardless of the orientation of the plane
that intersects the model, in order to create the cross-section.

4. All cataloged geometric deficiencies can be dealt with within the pipeline’s
execution. The deficiencies that the methodology can handle are:

– Duplicate Geometry

– Inconsistent face orientation

– Self-intersecting elements

– Holes in the surface

The main disadvantages that this pipeline has are:

– The user should monitor the pipeline and produce and observe the inter-
mediate results, to make decisions such whether to implement DT on the
cross-section, and if so, which option of DT to choose.

– Although the algorithm is made in a way where it can create multiple
parallel cross-sections, as seen in Table 5.1, different cross-sections might
require to be handled differently. Working on them as a batch might not
give the expected results for all of them. It would be better to work on
each one separately, in order to produce the best outcome.

– After some testing, the pipeline has one limitation. Depending on the
geometry of the structure the results might not reflect reality totally. This
would happen in cases when the input model is hollow, or has ”cup”
geometry. In the former case, the interior boundary of the model will be
omitted, however the extracted outer boundary is still as intended.

6.1 conclusions 59

The case of ”cup” geometry refers to shapes where one cross-section will
wrongly classify a part as interior, while in another it is clearly seen as
exterior. This can be seen in Figure 6.1. Depending on the orientation
of the plane initiating the cross-section, the results would potentially be
different. This can be better understood when comparing the images of
Figure 6.1b and Figure 6.1c.

(a) Cup model input (b) Horizontal cross-section

(c) Vertical cross-section

Figure 6.1: Limitation against ”cup” geometries. (a) Input of a regular cup model. (b) Result
of horizontal cross-section, both the solid and the hollow part of the cup will be
classified as interior. (c) Result on vertical slice of the cup. The solid part can be
correctly classified as interior, while the hollow part as exterior.

• How does this method compare to other existing approaches?

This method does indeed produce valid results. Various approaches by others
— that have been mentioned in Chapter 2 — have indeed produced correct and
validated results as well. Performance wise, other methods could fare better,
but time and quality-wise, this method’s results are also evaluated as being
of good quality. In some cases, this method proves faster, as analysis in two
dimensions is faster than in three. For example, Hu et al.’s tetrahedral meshing
algorithm is indeed robust, but may take the best part of an hour, or even more,
to produce a result, based on the user’s selected parameters. In the case of this
thesis, pre-processing, along with the total execution, could be completed in a
couple of minutes.

Where this method really sets itself apart from others is that it does not have
any requirements for the input model. As has been stated already, it works
robustly for any presented deficiencies in the model, where other methods
may not.

The culmination of the answers to the above sub-questions is the final answer to the
thesis’ main research question:

• How can a point be robustly classified as lying in the interior or the exterior of a
complex polygonal mesh model?

A straight answer to this question is by implementing the pipeline presented
throughout Chapter 3, with the cornerstone of the methodology being the
utilization of planar cross-sections on the input model.

60 conclusions & future work

Still, this question poses two very important terms, those of ”robustness” in
execution, and the handling of ”complex” 3D models. Regarding robustness,
the pipeline can handle inside-outside classification for a planar cross-section,
regardless of the plane’s orientation. For this case, complex means that apart
from redundant interior information, a model may have all geometric deficien-
cies listed until now. The methodology handles all cases of these deficiencies
as follows:

– Duplicate geometry: Detection and removal algorithms that are imple-
mented inside the pre-processing step (mentioned in Section 4.2).

– Self-Intersections: Mesh and graph reconstruction (mentioned in Sec-
tion 3.1 and Section 3.3.1 respectively) handle this case.

– Inconsistent face orientation: This problem is bypassed, since face —
and consequently in this method, edge— orientation is irrelevant for the
execution of the twin ray voting step (mentioned in Section 3.5).

– Holes: If and whenever they exist, they can be filled by applying DT

on the cross-section (mentioned in Section 3.4). This way, along with
the optimization solution (mentioned in Section 3.6), the generation of a
manifold boundary is also ensured.

Finally, provided that the generated boundary is now watertight, a given point
can be classified as interior or exterior by applying the ray casting method
introduced by Shimrat.

6.1.2 Contribution

Apart from providing another solution to the decade-spanning ”inside-outside
classification” problem, this thesis aspires to offer some other benefits to the scientific
community tackling this particular problem.

First of all, this thesis introduces a novel method. Up to the point of this thesis’
writing, there has been no published method similar to this. Converting the problem
from 3D into 2D simplifies calculations and geometric analysis, without any sacrifices
on the final result’s quality. It is hoped that with the completion of this project, a
message is given that maybe ”not all paths have been explored yet”, and not just for
the interior-exterior classification problem.

In Chapter 1 it has already been mentioned that reasons for the solution to the
interior-exterior classification problem, as well as its derivatives, exist in multitude.
A lot more reasons than those presented definitely exist. The outcome from this
thesis should be a big helping hand for the resolution of some of those problems.

Furthermore, another aspiration is that this method becomes a cornerstone to
many more applications in the future. That many researchers would step on the
theory behind this to produce solutions to other problems. Or, that the results
from this methodology will help in the realization of future 3D model analysis
applications. Some recommendations for possible applications using this method
will me mentioned in Section 6.3.

6.1.3 Discussion

Using the methodology introduced in this thesis, one can perform interior-exterior
classification on a 3D model. The pipeline presented in Chapter 3 can produce a
valid result, regardless of any inconsistencies or deficiencies in the input model’s
structure.

6.2 future work & improvements 61

As has been mentioned already multiple times throughout the text, this method sets
itself apart from others presented in Chapter 2 through the introduction of planar
cross sections. With this, the problem gets converted from three dimensions into two.
Many are the benefits of this action. First of all, geometric computations in 2D are
far easier to handle, and less computationally expensive than in 3D. Furthermore,
results that have been posted in Chapter 5 prove that even the finer details of a
model’s outline are preserved throughout the whole process, as had originally been
claimed. Finally, in three dimensions, elements that would otherwise intersect when
in a planar surface may not still intersect, due to the arithmetic accuracy of digital
computers (explained in Section 4.3.2).

The original intent of achieving robustness for any form of model or geometric
deficiency encountered has been completed. Choices for progressing through the
pipeline, presented both in Chapter 3 and Chapter 4, have been made in order to
ensure that a valid and geometrically sound end-result is always reached. There
could be cases where the user may have expected different results, such as when
hollowed areas exist in the model. However, this project was performed mainly
as a step in producing valid low-LOD models by extracting their outer borders, to
populate city representations with them.

6.1.4 Reflection

This graduation project was initiated on September of 2018 as the final part of the
MSc graduation plan for the Geomatics program of TU Delft, and lasted for over 8

months. During this period, the way from the creation of the idea to its realization
was not a straight line, but it has been very educative.

For the purpose of the graduation project, this one is more oriented towards an
actual research rather than a project that demands a valid product to be provided at
the thesis’ completion. This has shown that a research project’s purpose is not to
actually produce results ”no matter what”, but rather to explore various approaches
and solutions to existing problems, and in the end report them regardless of whether
the method was a success or a failure.

Indeed, the final form of this research project was not the same from the beginning.
From the start, the main idea was to utilize a 2D approach by introducing planar
cross-sections. But a number of different approaches was explored until the project
ended up in this final state. One such approach that took several months to explore
was utilizing the winding number algorithm, in a similar way as Jacobson et al. [2013]
did. However, this approach was abandoned when it was found extremely hard to
pass the hurdle of models having inconsistent orientation with their faces. In total,
this research project did indeed have quite a few ”progress through trial-and-error”
moments.

One last thing that may seem rather irrelevant but was very important to the project’s
good and smooth progress was the constant communication with the supervisors.
While it may be quite stressful for some people, academic institutes —and even non-
academic ones— should encourage a strong communicative bond between project
workers and their supervisors, instead of having infrequent meetings to discuss
results and nothing else.

6.2 future work & improvements
In this subsection, some recommendations for future work and improvements on
the current state of the project will be provided. These are potential alterations to
already existing steps, or expansions to the pipeline’s functionality. Their omission

62 conclusions & future work

from the existing project was due to temporal limitations within the scope of the
graduation project, or because they rose as new ideas in later steps of the project’s
completion, not being as important as some of the pipeline’s main parts, which
should be fully functional at the time of completion.

Following are some recommendations that have been specified:

• One first thing to consider is the results generated with hollow objects. Inner
boundaries are bypassed in this pipeline. However, a method to also recognize
them, and include them in the final extracted borders would prove a valuable
extension to this methodology.

• Another welcome addition would be the implementation of multiple planes
—each one uniquely oriented— crossing from the same point of interest, and the
methodology applied to each of them. This process will yield multiple results,
in the likeness of those shown in Figure 6.1. Having multiple interior-exterior
classifications, a voting method could be implemented, in order to withdraw
one final, universal result.

• Regarding the optimization process, the problem has been structured in such
a way that its solution provides the generation of closed loops of connected
components. This is also assisted by the step implementing DT in order to fill
gaps in the boundaries. However, there would be highly unlikely cases where
triangulation might not always consistently fill all holes. When that happens,
components that would not form closed loops would be removed through the
optimization problem’s solution. As such, a method to also be able to retain
this open geometry would be welcome.

• In Section 5.2.2, an explanation of the temporal properties for every step of
the pipeline has been given. However, there would possibly still be room for
speeding up the process. Especially on the ”twin ray border voting” step.
A method to parallelize the repetitive execution of component voting or ray
generation might hasten the process’s time. Other ways to quicken the result
could also be explored.

• At this point, the execution of the pipeline is highly automated, with just
minimal additional input required from the user where necessary. A further
improvement would be implementing machine learning on the pipeline. For
this purpose, a multitude of input data would have to be fed to an artificial
neural network. These data — both the input and output — would be given
to the computing system for analysis, in order for it to produce results in the
future that are similar to the one it has been fed.

• One final note is that at this point, the pipeline’s algorithm only accepts as
input models of OFF format. This is a minor inconvenience, as many software
exist, capable of converting otherwise formatted files into the particular one.
However, making other formats also accepted by the algorithm will lessen
some of the workload on the user’s end.

6.3 applications
In this graduation project, the notion of interior-exterior classification has been
explored, and a solution has been provided. However, this in no way constitutes the
end result of research for this field. On the contrary, the results from this research
can constitute a stepping stone for various applications that handle 3D models.

Some example applications that would benefit from the results of this research are
given below:

6.3 applications 63

6.3.1 Boundary Extraction

An important part of the pipeline is the extraction of the model’s outer borders,
as mentioned in Section 3.6. This particular function, with some additions, can be
extended into its own application.

Having retrieved the exterior borders, it would be possible to overlay them on the
original model. That way, any of the 3D model’s faces that meet with the extracted
borders can be safely classified as exterior. Performing this over multiple, densely
created and variously oriented planar cross sections will provide the outer surface of
the model as end result. One iteration of this can be seen in Figure 6.2.

(a) Vertical section of a car (b) Outcome of border extraction

Figure 6.2: Extraction of the exterior borders

Having such an application, it would be possible to automate a process of trans-
forming building models into valid low LOD representations, for purposes such as
populating city simulations with building models. Another reason would be just to
free up space from models with complex interior information deemed redundant by
model analysts or other users. A basic example of such an application can be seen in
Figure 6.3, and a more complex one in ??.

6.3.2 Boundary Visualization

Another application would have the user keep all the faces of the model. In this
case, he would preserve the boundary information as a separate property for these
faces. Then, it would be possible to apply various visualization techniques on the
faces classified as boundaries. For example the exterior surfaces would become
transparent, enabling the user to observe both the interior and exterior structure of a
given 3D model.

6.3.3 Solid Conversion

A final proposition would be the tetrahedralization of the model’s extracted border.

On occasion, having a solid model instead of a shell works more realistically, Ja-
cobson et al. mentions. Solids represent reality better, especially when handled
through volumetric processes. For that reason, populating the extracted empty outer
shell of an input model with tetrahedra might allow the exploration of further 3D

representation applications.

Software performing tetrahedralization already exist. However, utilizing this project’s
extracted, watertight results will remove cases were the algorithm sometimes inaccu-
rately fills the model’s holes.

64 conclusions & future work

(a) Original tent model (b) Model without central pole

(c) Original building model (d) Remaining shell of building

Figure 6.3: Application of outer surface extraction on tent model. (a) Interior view of the tent
model. (b) Removed central supporting pole through outer surface extraction. (c)
Interior view of the building model. (d) Removed horizontal floor surfaces and
chimney element through outer surface extraction.

B I B L I O G R A P H Y

Benner, J., Geiger, A., and Leinemann, K. (2005). Flexible generation of semantic 3d
building models. In Proceedings of the 1st international workshop on next generation
3D city models, Bonn, Germany, pages 21–22.

Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved lod specification for 3d
building models. Computers, Environment and Urban Systems, 59:25–37.

Boeters, R., Arroyo Ohori, K., Biljecki, F., and Zlatanova, S. (2015). Automatically
enhancing citygml lod2 models with a corresponding indoor geometry. Interna-
tional Journal of Geographical Information Science, 29(12):2248–2268.

Bondy, J. A., Murty, U. S. R., et al. (1976). Graph theory with applications, volume 290.
Citeseer.

Bradley, S. P., Hax, A. C., and Magnanti, T. L. (1977). Applied mathematical pro-
gramming.

Campen, M., Attene, M., and Kobbelt, L. (2012). A practical guide to polygon mesh
repairing. In Eurographics (Tutorials).

Caumon, G., Collon-Drouaillet, P., De Veslud, C. L. C., Viseur, S., and Sausse, J. (2009).
Surface-based 3d modeling of geological structures. Mathematical Geosciences,
41(8):927–945.

CGAL (2018). Computational geometry algorithms library.

Deng, Y., Cheng, J., and Anumba, C. (2016). Mapping between bim and 3d gis
in different levels of detail using schema mediation and instance comparison.
Automation in Construction, 67:1–21.

Donkers, S., Ledoux, H., Zhao, J., and Stoter, J. (2016). Automatic conversion of
ifc datasets to geometrically and semantically correct citygml lod3 buildings.
Transactions in GIS, 20(4):547–569.

Guo, J., Ding, F., Jia, X., and Yan, D.-M. (2019). Automatic and high-quality surface
mesh generation for cad models. Computer-Aided Design, 109:49–59.

Hu, Y., Zhou, Q., Gao, X., Jacobson, A., Zorin, D., and Panozzo, D. (2018). Tetrahedral
meshing in the wild. ACM Transactions on Graphics (TOG), 37(4):60.

Huk, T. (2006). Who benefits from learning with 3d models? the case of spatial
ability. Journal of computer assisted learning, 22(6):392–404.

Jacobson, A., Kavan, L., and Sorkine-Hornung, O. (2013). Robust inside-outside
segmentation using generalized winding numbers. ACM Transactions on Graphics
(TOG), 32(4):33.

Musialski, P., Wonka, P., Aliaga, D., Wimmer, M., Van Gool, L., and Purgathofer, W.
(2013). A survey of urban reconstruction. In Computer graphics forum, volume 32,
pages 146–177. Wiley Online Library.

Nagel, C., Stadler, A., and Kolbe, T. (2009). Conceptual requirements for the au-
tomatic reconstruction of building information models from uninterpreted 3d
models. In Proceedings of the Academic Track of the Geoweb 2009-3D Cityscapes
Conference in Vancouver, Canada, 27-31 July 2009.

Nan, L. (2018). Inside-outside classification for polygonal meshes. TU Delft Geomat-
ics MSc topics presentations.

65

66 BIBLIOGRAPHY

Nooruddin, F. S. and Turk, G. (2000). Interior/exterior classification of polygonal
models. In Proceedings of the conference on Visualization’00, pages 415–422. IEEE
Computer Society Press.

Ohori, K. A., Ledoux, H., and Meijers, M. (2012). Validation and automatic re-
pair of planar partitions using a constrained triangulation. Photogrammetrie-
Fernerkundung-Geoinformation, 2012(5):613–630.

Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. (2002). Real-time 3d model acquisition.
ACM Transactions on Graphics (TOG), 21(3):438–446.

Sacht, L., Jacobson, A., Panozzo, D., Schüller, C., and Sorkine-Hornung, O. (2013).
Consistent volumetric discretizations inside self-intersecting surfaces. In Pro-
ceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry
Processing, pages 147–156. Eurographics Association.

Shimrat, M. (1962). Algorithm 112: position of point relative to polygon. Communica-
tions of the ACM, 5(8):434.

Sindram, M., Machl, T., Steuer, H., Pültz, M., and Kolbe, T. (2016). Voluminator
2.0–speeding up the approximation of the volume of defective 3d building
models. ISPRS annals of photogrammetry, remote sensing and spatial information
sciences, 3:29–36.

Sondermann, H. (2018). Rhino3d: Basic house model.

Sunday, D. (2012). Intersections of lines and planes.

Takayama, K., Jacobson, A., Kavan, L., and Sorkine-Hornung, O. (2014a). Consis-
tently orienting facets in polygon meshes by minimizing the dirichlet energy of
generalized winding numbers. arXiv preprint arXiv:1406.5431.

Takayama, K., Jacobson, A., Kavan, L., and Sorkine-Hornung, O. (2014b). A simple
method for correcting facet orientations in polygon meshes based on ray casting.
Journal of Computer Graphics Techniques, 3(4):53.

Xu, H. and Barbič, J. (2014). Signed distance fields for polygon soup meshes.
In Proceedings of Graphics Interface 2014, pages 35–41. Canadian Information
Processing Society.

A A LG O R I T H M S

Algorithm A.1: Planar Intersection (M, P, f)
Input: A surface meshM, having faces f and edges e, and a plane P
Output: C: the produced cross-section containing line-segments s and their

vertices v

1 for each f do
2 if P intersects f then
3 s← get line segment intersection result;
4 for each edge e of f do
5 if P intersects e then
6 v← get vertex (point) result of intersection;
7 assign origin information e to v;

8 assign vertices to s;

9 add s to C

10 return C

67

68 algorithms

Algorithm A.2: Component Creation (G, e, v)
Input: A grarph G, comprised of vertices v and edges e
Output: CC: a list containing connected components ci

1 for each v of G do
2 degreev ← number of adjacent edges to v ;
3 if degreev = 2 then

// v is connection, should add together adjacent edges e
4 e1, e2 ← the adjacent edges of v;
5 if CC is empty then
6 add e1, e2 to component c;
7 add c to CC;
8 else
9 for ci in CC do
10 if e1 or e2 in ci then
11 c1, c2 ← ci;

// c1 component that e1 is already inside of, same for c2
and e2

12 if e1 inside AND e2 not inside then
13 add e2 to c1;
14 else if e1 not inside AND e2 inside then
15 add e1 to c2;
16 else if (e1 AND e2 inside) AND (c1! = c2) then
17 join c1 and c2;
18 else if e1 AND e2 not inside then
19 add e1, e2 to component c;
20 add c to CC;

21 else if degreev > 2 then
// v is junction, check edges separately

22 for each adjacent edge e do
23 if CC is empty then
24 add e to component c;
25 add c to CC;
26 else
27 if e not inside any c of CC then
28 add e to component c;
29 add c to CC;

30 return CC

algorithms 69

Algorithm A.3: Twin Ray Voting (CC, SS)
Input: all the connected components CC, the total of the cross-section’s

segments SS
Output: all components of CC enriched with their border votes bv

1 for each component c in CC do
2 bc the border vote of c;
3 for each segment s of c do
4 cents ← centroid of s;
5 numr ← number of twin rays to be generated;
6 vs ← the vote for the segment;
7 for twin rays from 1 to numr do
8 r1 ← ray generated from cents and random direction ;
9 r2 ← opposite ray of r1;

10 intscts1, intscts2 ← the number of intersections for rays r1 and r2;
11 for each segment s in SS do
12 if r1 intersects s then
13 intscts1 += 1;

14 if r2 intersects s then
15 intscts2 += 1;

16 if ((intscts1 = 0) AND (intscts2 mod 2 = 1)) OR ((intscts1
mod 2 = 1) AND (intscts2 = 0)) then

17 vs += 2.5 ;
18 else if (intscts1 = 0) OR (intscts2 = 0) then
19 vs += 1.0 ;
20 else if ((intscts1 mod 2 = 0) AND (intscts2 mod 2 = 1)) OR

((intscts1 mod 2 = 1) AND (intscts2 mod 2 = 0)) then
21 vs += 0.5 ;

22 bc += vs
numr

× lengthsegment
lengthcomponent

;

23 update CC with new info of c ;

24 return CC

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

	1 Introduction
	1.1 Problem Statement
	1.2 Research Question
	1.2.1 Scope of the Research

	1.3 Importance
	1.3.1 Scientific
	1.3.2 Practical & Commercial

	1.4 Thesis Outline

	2 Related Work
	2.1 Automated Geometric / Thematic Process
	2.2 Signed Distance Field
	2.3 Winding Number
	2.4 Ray Casting
	2.5 Mesh Reconstruction
	2.5.1 Winding Number Dirichlet Energy Minimization
	2.5.2 Ray Casting Re-Orientation
	2.5.3 Mesh Generation from CAD Models
	2.5.4 Volumetric Intersection Removal

	3 Methodology
	3.1 Pre-Processing
	3.1.1 Duplicated Geometry
	3.1.2 Self-Intersections

	3.2 Planar Cross Section Construction
	3.3 Topology-Based Line-Segment Component Creation
	3.3.1 Graph Creation
	3.3.2 Connected Component Creation

	3.4 Closing Gaps: Triangulation
	3.4.1 Alternative Triangulation

	3.5 Twin Ray Voting
	3.6 Extract Borders: Optimization
	3.6.1 The Optimization Problem

	3.7 Inside - Outside Classification

	4 Implementation
	4.1 Data
	4.2 Tools
	4.3 Prototype Implementation
	4.3.1 Pre-Processing
	4.3.2 Arithmetic Accuracy
	4.3.3 Creation of Viewers
	4.3.4 Triangulation Options
	4.3.5 Twin Ray Generation

	5 Results & Discussion
	5.1 Results
	5.1.1 General Results
	5.1.2 Cases with Geometric Deficiencies
	5.1.3 Table of Results

	5.2 Discussion
	5.2.1 General Remarks
	5.2.2 Execution Time
	5.2.3 Optimization vs. Threshold selection
	5.2.4 Comparison

	6 Conclusions & Future Work
	6.1 Conclusions
	6.1.1 Research Question
	6.1.2 Contribution
	6.1.3 Discussion
	6.1.4 Reflection

	6.2 Future Work & Improvements
	6.3 Applications
	6.3.1 Boundary Extraction
	6.3.2 Boundary Visualization
	6.3.3 Solid Conversion

	A Algorithms

