
Combinatorial optimization for job sequencing with one common and multiple
secondary resources by using a SAT solver augmented with a domain-specific

heuristic

Artjom Pugatšov

Supervisors: Emir Demirović, Konstantin Sidorov, Maarten Flippo

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Artjom Pugatšov
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Konstantin Sidorov, Maarten Flippo, Jérémie Decouchant

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
This paper solves job sequencing with one common
and multiple secondary resources (JSOCMSR)
problem by encoding it as a Boolean satisfiabil-
ity (SAT) problem and applying domain-specific
heuristics to improve the SAT solver’s perfor-
mance. JSOCMSR problem is an NP-hard schedul-
ing problem where each job utilizes two resources:
a shared resource and a secondary job-dependent
resource. First, the problem was modeled as an
instance of SAT and then the SAT solver was
augmented with a static greedy variable-ordering
heuristic. This heuristic has led to significant im-
provement in the solver’s speed compared to a
generic SAT heuristic for problem instances of
larger size.

1 Introduction
This paper discusses the job sequencing with one common
and multiple secondary resources (JSOCMSR) problem. It is
a scheduling problem, where each job uses two types of re-
sources: 1) a common resource that is shared between all the
jobs and is required only for a certain segment of the work,
and 2) a secondary resource that is shared by only a subset
of jobs, but is needed throughout their entire timespan. Addi-
tionally, the resources are non-sharable, meaning that no two
jobs can use the same resource at the same time. The goal of
the problem is to minimize the makespan of the solution, i.e.
the latest finish time of a job.

The JSOCMSR problem has multiple real-world applica-
tions. One such application is in metal-forming. A metal-
forming machine acts as the common resource and the molds
act as the secondary resources. The molds are needed
throughout the entire process, whereas the machine is only
required for the metal-pouring part of the job. Another ex-
ample of the problem’s application is in scheduling cancer
treatment appointments. It was first described by Horn et al
[6] and was the original reason for researching JSOCMSR.
This is a relatively new treatment, where a particle accelera-
tion beam is used. The beam is expensive and typically only
one beam is available. Whereas, there are multiple rooms
where the therapy is conducted. The beam corresponds to the
common resource and the rooms are the secondary resources.

JSOCMSR is an NP-Hard scheduling problem [6]. One
common way of tackling such problems is by modeling them
in terms of Boolean satisfiability problems (SAT) [1; 2].

By encoding the problems into SAT, a general SAT solver
can be used to solve them. This way a wide range of prob-
lems can be solved using the same solver, as long as it is
possible to model it with propositional logic. This allows for
flexibility in solving many different problems and makes it
possible to focus on improving a single solver algorithm, as
opposed to developing specialized algorithms for each prob-
lem [2]. However, this approach does not take into account
the specific properties of the problem when applying the solv-
ing algorithm. Employing problem-specific heuristics can
further improve the performance of SAT-solving algorithms

[14]. The goal of this paper is to encode JSOCMSR as
a SAT instance, develop a problem-specific heuristic for
it and measure the performance of the SAT solver aug-
mented by the heuristic.

To accomplish this goal, JSOCMSR has been encoded into
SAT. Then a heuristic that sorts variables based on the start
time and duration of their corresponding jobs has been added
to an existing SAT solver and experimentally tested. The
heuristically augmented version has displayed significant im-
provement compared to the baseline heuristic, especially for
the bigger problem instances.

The structure of this paper is as follows. Section 2 presents
the related work done for JSOCMSR and also discusses other
problems similar to it. Then section 3 gives a formal defi-
nition of the problem. Section 4 discusses the encoding of
JSOCMSR into SAT. In section 5 the examined heuristics are
described. Section 6 covers the experimental setup and the re-
sults of these experiments. Then section 7 discusses how the
responsible research principles have been incorporated into
the research. Section 8 provides a conclusion by summariz-
ing the most important results and putting them into a broader
context. And lastly, section 9 discusses the possible future
work that can be done as a continuation of this research.

2 Related Work
JSOCMSR is a relatively new problem. It was first introduced
and proven to be np-hard by Horn et al. in 2019 [6]. Before
that, a similar problem of scheduling jobs with a shared re-
source was researched by Van der Veen et al [16]. The crucial
difference is that compared to JSOCMSR, where each job has
a pre-processing times during which the common resource is
not used, this problem features no pre-processing times. This
has made it possible to apply an exact polynomial-time al-
gorithm to the problem, whereas pre-processing times make
JSOCMSR NP-hard.

There have been two works that directly cover the
JSOCMSR problem. The first work is by Horn et al., [6]
where the problem was initially introduced and formalized.
The authors have also proven JSOCMSR to be NP-hard and
proposed an A* beam search algorithm for solving the prob-
lem. In the second work by Kaufmann et al., [8] a differ-
ent algorithm was presented to solve the problem. A variable
neighborhood search (VNS) technique has been applied in or-
der to iteratively find better solutions. Both algorithms have
been compared to a CSP encoding of the problem in their
respective papers. Both approaches have been found to be
more efficient than the CSP encoding approach. Despite that,
it is worth noting that in both cases the CSP encoding was
not augmented beyond the default heuristics employed by the
CSP solvers that were used.

There exists a modified version of JSOCMSR that cen-
ters around prize-collecting (PC), instead of minimizing the
makespan, called PC-JSOCMSR [7]. Even though PC-
JSOCMSR is based on JSOCMSR, the methods required to
solve the PC variant are significantly different from the ones
required for JSOCMSR. Due to this, the prize-collecting ver-
sion is not covered in this paper.

JSOCMSR properties are similar to the ones of the no-wait



flow-shop scheduling (NWFSS) problem. In this problem,
any non-dominated solution is determined by the order in
which the jobs start on the first machine [3]. Similarly, in
JSOCMSR, any non-dominated solution corresponds to the
order in which the jobs use the common resource [6]. This
makes it possible to express solutions to both problems as a
permutation of jobs and allows the use of similar heuristic
approaches when solving both problems.

3 Job Scheduling With One Common and
Multiple Secondary Resources

The following section first gives a formal definition of the
problem. After that, an example problem instance is given.

3.1 Formal Description
An instance of JSOCMSR problem consists of the following
components:

• J = {j1, j2, ..jn} - a set of n jobs that need to be sched-
uled.

• Rs = {r1, r2, ..rm} - a set of m secondary resources.

• r0 - the common resource shared between all the jobs.

Each job ji has a total processing time of pi > 0 during
which the secondary resource r ∈ Rs is fully used. Also,
each job ji requires p0i > 0 common resource processing time
throughout which r0 is utilized. Before the common resource
is processed, there is pre-processing time pprei . Processing of
the common resource is done in parallel with the secondary
resource, meaning that p0i ≤ pi − pprei . The common re-
source must be scheduled immediately after pre-processing
has finished. This means that the need for the common
resource starts at time pprei and ends at time pprei + p0i .
This makes it possible to define the post-processing time as
pposti = pi − pprei − p0i .

A solution for the problem has the form S = [s1, s2, .., sn]
with si ≥ 0, where si is the starting time of job ji. The jobs
must be scheduled in such a way that the solution is feasible,
meaning that no two jobs use the same resource at the same
time. The goal is to create a schedule such that the latest job
finishes as early as possible. This implies the minimization
of makespan L

L = max
0≤i≤n

(si + pi)

3.2 Example Problem
For the example, a simple problem instance with 5 jobs
and 3 common resources was chosen. Figure 1 depicts the
jobs. Each job consists of 3 parts: pre-processing, common-
resource usage, and post-processing. The jobs that use the
same common resource are on the same line and are colored
in the same way. The middle part of each job is the time at
which it uses the common resource.

The jobs cannot overlap with other jobs that use the same
secondary resource. The time they use the common resource
cannot overlap with that of any other job. In figure 1, the
schedule is invalid, since there is an overlap in the use of
the common resource for jobs I and III; IV and V. A valid
schedule can be created by interchanging jobs I and III and

scheduling IV at a later point. This schedule is shown in fig-
ure 2. The makespan of this schedule is 12 since the last job
ends at time 12.

Figure 1: Example instance of JSOCMSR problem with 3 secondary
resources and 5 jobs

Figure 2: Example of a valid schedule for a small instance of
JSOCMSR problem with makespan of 12

4 SAT Encoding
In order to solve the problem, it has to be first encoded in
terms of a SAT instance. A SAT problem consists of a set
of Boolean variables and the logical constraints that express
the relationship between these variables, such as AND, OR,
and NOT. In practice, the most widely used format by the
solvers is conjunctive normal form (CNF), meaning that after
creating a high-level encoding of the problem, it needs to be
expressed in terms of CNF.

Since JSOCMSR is a minimization problem, a straight-
forward SAT encoding is not sufficient, as there are multi-
ple valid solutions with varying makespans. As such, the
problem was encoded as a maximum satisfiability problem
(MaxSat).

MaxSat allows for a combination of soft and hard con-
straints. The hard constraints must be satisfied for any vari-
able assignment. The soft constraints act as a measure of op-
timality and they might be left unsatisfied. Each soft con-
straint has a weight associated with it and the final measure
of optimality is the sum of the weights of unsatisfied soft con-
straints. The fewer soft constraints are unsatisfied, the better
the solution [9].



One of the requirements for a MaxSat model is that each
part of the model needs to be discretized, as a SAT prob-
lem consisting of a set of boolean variables. Unfortunately,
the original dataset used for the JSOCMSR problem contains
very long duration times for the jobs ranging from 300 to
3000 unspecified time units. This means it is unfeasible to
directly apply a SAT encoding to the dataset, as the number
of clauses grows too fast. As such, it is necessary to apply
a scaling procedure to the test set. All the durations of jobs
have been divided by 150 to make the average duration of a
job equal to 10. The scaling preserves the overall difficulty
of the original problem but makes it feasible to encode the
problem in terms of SAT.

The following section provides a formal MaxSat encoding
of the problem. First, the variables and the hard constraints
are introduced, then the soft constraints are described, and
lastly, the encoding of high-level constraints is addressed.

4.1 Variables
There are 3 main types of variables that were used in mod-
eling the problem: start time variables, resource usage vari-
ables, and makespan variables. The first two are essential for
modeling the core constraints of the problem, and makespan
variables are used to determine the makespan and help in the
maximization process.

Start Time Variables
The start time variables determine when the jobs start. The
set S of start time variables comprises elements, where each
variable corresponds to a specific combination of a start time
with its respective job. The possible start times range from
0 to the maximum start time Tmax. The maximum start is
not given directly by the problem but can be calculated by
scheduling all the jobs sequentially, meaning that the maxi-
mum start time is Tmax =

∑n
i=1 pi. This makes it possible

to define the set S as

S = {sj,t| j ∈ J, t ∈ [0, 1, 2, .., Tmax]}

Variable sj,t is set to true if and only if the job j starts at time
t.

Resource Usage Variables
The job’s resource usage variables signify the use of a par-
ticular resource. Since each job can only use two types of
resources, the usage variables can be split into two sets: us-
age of the common resource Ucom and usage of the secondary
resource Usec.

Ucom = {ucom j,t| j ∈ J, t ∈ [0, 1, 2, .., Tmax]}

Variable ucom j,t is set to true if and only if the job j uses the
common resource at the time t.

Usec = {usec j,t| j ∈ J, t ∈ [0, 1, 2, .., Tmax]}

Variable usec j,t is set to true if and only if the job j uses its
secondary resource at the time t.

Makespan Variables
The makespan variables determine if a specific time is less
or equal to the latest time a job ends. This ensures that the
number of these variables that are set to true is precisely equal
to the makespan. The set M of makespan variables has a form:

M = {mt| t ∈ [0, 1, 2, ..., Tmax]}
Variable mt is set to true if and only if the time t is less or
equal to the makespan.

Additional Notation
For brevity, the additional notation describing subsets of vari-
ables is introduced. Sj is the set of all the possible start times
variables of a job j. Ucom t is the set of all resource usage
variables at time t. And Usec t,r is the set of all usage vari-
ables at time t which use the resource r.

4.2 Hard Constraints
The four main hard constraints describe the core constraints
of the JSOCMSR problem. These constraints are:

1. Each job must be scheduled exactly once
2. No resource can be used by more than one job at a time
3. Job uses the secondary resource throughout its entire du-

ration.
4. Job uses the common resource starting right after the

preprocessing finishes, and ending when the postpro-
cessing starts.

These constraints can be expressed by formulating them
as additional constraints on top of the three basic logic
ones. These constraints are logical implications, ”Exactly-
One” constraints which ensure that only one variable from
the set is set to true, and ”MaxOne” constraints which ensure
that either one variable from the set is true, or no variable is
true. These constraints can be then translated back into CNF
by encoding each of them separately into CNF and then cre-
ating a conjunction of these translations. There exist different
encodings for these higher-level constraints. The ones used
for this research paper are discussed in section 4.4.

This makes it possible to define the 4 constraints formally:

1. ∀j ∈ J : ExactlyOne(Sj)

2. Since there are 2 types of usage variables, this constraint
is composed of 2 sub-constraints:

∀t ∈ [0, 1, 2, ..., Tmax] : MaxOne(Ucom t)

∀t ∈ [0, 1, 2, ..., Tmax],∀r ∈ R : MaxOne(Usec t,r)

3. ∀sj,t ∈ S : sj,t =⇒ usec j,t∧usec j,t+1∧...∧usec j,t+pj

4. ∀sj,t ∈ S : sj,t =⇒ ucom j,t+tpre ∧ ucom j,t+ppre
i +1 ∧

... ∧ ucom j,t+ppre
i +p0

i

The other additional hard constraints are meant to ensure
the consistency of the makespan variables. These constraints
take on forms of implications since makespan is fully depen-
dent on the start times of jobs.

If a job J starts at time t, then the time at which it finishes
is within the makespan.

∀sj,t ∈ S : sj,t =⇒ mt+pj



The previous constraint does not take into account the full
duration of the job but only considers the final end time.
It is also required to ensure that when a time is within
the makespan, all the previous times are also within the
makespan. A straightforward way to ensure this would be
to make an implication from each makespan variable to all
the preceding makespan variables. This approach has the sig-
nificant drawback of requiring a number of constraints pro-
portional to O(T 2

max). To reduce the number of constraints
an inductive approach can be utilized. Each makespan vari-
able ensures only that the variable directly following it is set
to true. This way the number of constraints needed is propor-
tional to O(Tmax) instead.

∀mt ∈ (M \ {m0}) : mt =⇒ mt−1

4.3 Soft Constraints
The soft constraints rely on the makespan variables. The bet-
ter the solution, the fewer makespan variables are set to true.

∀mt ∈ M : ¬mt

Since the makespan variables are strictly sequential, each soft
constraint has a weight of 1.

4.4 High-level Constraint Encoding
Throughout the encoding, several constraints incompatible
with CNF have been used. These constraints are Max-
One, ExactlyOne, and implication. The implication is very
straightforward to translate into CNF, as

a =⇒ b ≡ ¬a ∨ b

ExactlyOne can be formulated by additionally constraining
MaxOne, such that at least one variable is set to true. This can
be done by simply building a disjunction of all variables

ExactlyOne(a, b, c, ..) ≡ MaxOne(a, b, c, ..)∧ (a∨ b∨ c∨ ...)

This means that the only constraint that needs a special en-
coding is MaxOne.

There are multiple ways of encoding MaxOne into CNF.
The most straightforward approach that introduces no ad-
ditional variables is creating a conjunction of disjunctions,
where each pair of variables is represented within the dis-
junction and each variable is negated. This ensures that if any
2 variables are simultaneously true, at least one clause of the
conjunction fails, and thus the entire statement is false. Un-
fortunately, this encoding requires a number of clauses pro-
portional to O(n2), where n is the number of variables. This
leads to a rapid increase in the size of the encoding.

There are other ways to encode MaxOne constraints that
require fewer clauses. These encodings utilize additional
variables. For this work, a Matrix encoding has been cho-
sen. This encoding puts the variables into a square matrix
and introduces auxiliary variables corresponding to each row
and column in the matrix. Then MaxOne constraint is ap-
plied to the row and to the column variables separately. This
ensures a one-to-one correspondence between tuples of row
and column variables and original variables constrained by

MaxOne. Then they are linked through implications. This
encoding scales linearly in terms of clauses and additional
variables [3].

5 Heuristic
SAT solvers use a systematic approach to problem-solving,
exploring variable assignments and backtracking when con-
flicts arise. They find a solution to the problem by going over
different assignments to the variables present in the encod-
ing. At each step, it ensures that the next picked assignment
is consistent with all the previous ones. If the current partial
assignment leads to a conflict, it backtracks and tries a differ-
ent variable assignment.

SAT solver’s efficiency depends significantly on the heuris-
tics used for variable and value selection. Selecting variables
that lead to faster pruning reduces the search space and im-
proves performance. For MaxSAT, finding an initial solution
quicker allows for an upper bound that can further be used to
restrict the search to only the solutions below the upper bound
[13].

There are many different heuristics that are used within
the SAT solvers. They can be classified into two categories:
general-purpose heuristics and problem-specific heuristics.
The former are most widely used and are shown to perform
well for a variety of different SAT instances. Whereas the lat-
ter are not as widely used, even though they can lead to better
performance [14].

This chapter introduces the heuristics whose performance
has been measured. First, the baseline general-purpose Vari-
able State Independent Decaying Sum (VSIDS) SAT heuristic
is introduced, and then the JSOCMSR-specific variable selec-
tion heuristic is described.

5.1 VSIDS Heuristic
Variable State Independent Decaying Sum (VSIDS) is a
general-purpose SAT heuristic for variable selection. It has
been first introduced by Moskewicz et al. in 2001 [11]. Since
then it has been shown to be effective for a variety of different
SAT problems and is implemented by many state-of-the-art
SAT solvers [15]. For these reasons, this heuristic has been
chosen as the baseline for the performance evaluation.

VSIDS operates by keeping track of a dynamically-
changing weight for each variable. The variable weight is
increased when it is involved in a conflict. Then the solver
needs to make a decision on what variable to split on next,
the one with the highest weight is chosen. This way the vari-
ables that lead to conflicts are selected first, allowing for more
frequent pruning of the search space. Besides increasing the
weights of variables, VSIDS also periodically decreases the
weights of all variables. This allows for more exploration and
helps to prevent getting stuck on a small subset of variables
[10].

5.2 Variable Selection Heuristic for JSOCMSR
In order to improve the performance of the solver, a greedy
variable selection heuristic has been applied. The heuristic
provides a static variable ordering based on the potential start
times and overall job durations. This means that the solver



tries to schedule longer jobs first by putting them at the earli-
est available time slots.

The idea of scheduling longer jobs first comes from a well-
known Nawaz-Enscore-Ham (NEH) heuristic for flow-shop
scheduling. NEH greedily creates a schedule by iterating over
the jobs based on their length, building an initial solution by
adding the next job at every possible position, and picking the
one with the lowest makespan [12]. This heuristic, despite its
simplicity, has been shown to provide good initial solutions
and is often used as a subroutine in cutting-edge algorithms
for solving flow-shop scheduling [5].

In addition to employing the greedy heuristic, it has also
been combined with VSIDS. This means that the initial
weights of the variables are determined by the greedy vari-
able ordering heuristic and then later dynamically modified
by VSIDS during the solving process. This approach com-
bines the dynamic search space exploration of VSIDS with
problem-specific information, by providing an initial estima-
tion of the variables’ importance.

6 Experimental Setup and Results
Experiments have shown the effectiveness of the problem-
specific value ordering heuristic. It is able to provide initial
solutions much quicker than a general VSIDS heuristic which
is especially beneficial for larger instances.

This section first describes the dataset that has been used
in the experiments. Then it gives an overview of how the ex-
periments were conducted. And lastly, it discusses the results
of these experiments.

6.1 Dataset
In the experiment, a dataset based on the one compiled by
Horn et al. [6] has been used. In this dataset, the number
of secondary jobs considered is 2,3, and 5 to mimic the real-
world application of the problem in cancer treatment. The
dataset consists of 2 types of problem instances: balanced
and skewed. The balanced dataset was generated by sam-
pling the pre-processing, common resource usage, and post-
processing times uniformly from U(1, 1000). The usage of
the secondary resource is also balanced, with every job being
equally likely to require one of the secondary resources. For
the skewed, the usage of common resource was sampled from
U(1, 2500) instead, making it a bigger bottleneck. Addition-
ally, in the skewed instances around 50% of jobs require the
same secondary resource and the other jobs are equally likely
to require any of the other remaining secondary resources.

The dataset has been modified by scaling it down to make
it feasible to encode it as a SAT instance. Since the encoding
requires accounting for every possible start time of a job, the
number of variables and clauses scales linearly with the maxi-
mum bound on the makespan. This maximum bound depends
on the total duration of all the jobs. This means that encod-
ing problem instances with longer average job durations re-
quires significantly more variables and clauses. The original
dataset has a high average job length of 1500 time units for
the balanced and 2250 time units for the skewed dataset. The
dataset has been scaled down in such a way that the average
job length is 10 for the balanced and 11.25 for the skewed

dataset by dividing the durations of the jobs by 150 and 200
respectively. Due to the scaling, and additionally due to the
source code for the state-of-the-art algorithm by Horn et al.
[6] not being publicly available, no direct comparison to its
performance has been made. All the further discussion fo-
cuses on comparing the performance of the SAT solver under
different heuristics.

Because of the computational constraints, it was decided to
limit the original data set to 20 instances with similar configu-
rations, meaning that they had the same number of jobs, num-
ber of secondary resources, and type. It was decided to focus
on the more computationally complex instances that had the
number of secondary resources set to 3 and 5.

Overall, each evaluation consisted of 480 instances. From
which there were 24 unique configurations that are made of
the following combination of factors:

1. Number of jobs: 10, 20, 50, 100, 150, 200.

2. Number of secondary resources: 3 and 5.

3. Type of the dataset: balanced and skewed.

6.2 Experiments
The encoding has been done separately from the main solving
process in Java. Since the same encoding was shared between
the tests of different heuristics, the speed of the encoding pro-
cess has not been measured. For solving MaxSAT the Rust
version of Pumpkin solver developed by the project super-
visors was used. The solver was compiled using the Rustc
compiler and the tests were run on the DelftBlue supercom-
puter’s compute cluster with 2x Intel XEON E5-6248R 24C
3.0GHz CPUs and 6GB of memory dedicated for each prob-
lem instance [4].

Each run was given a time limit of 60 seconds. The encod-
ings were done separately beforehand and are not accounted
for in this limit, as both the baseline and the augmented ver-
sions share the same encoding. Throughout the runs, the
makespans of all the best-so-far solutions have been recorded
along with how much time has passed since the run started.
Along with this information, the final state of the solution was
noted. The states are:

1. Optimal - The solution is optimal

2. Satisfiable - A solution was found, but it is not guaran-
teed to be optimal

3. Unknown - No solution has been found

For each batch of 20 instances with similar configuration
the following statistics have been gathered:

• m̄ - average final makespan. If no makespan was found
it is set to Tmax.

• tfirst - average time in seconds to an initial solution. If
no solution was found it is set to 60 seconds.

• tbest - average time at which the best solution was found.
It is set to 1 if no solution was found.

• %best - the percentage of instances that are equal to the
best value found by any heuristic.



• s - statuses of jobs in the batch. It is in the form x/y/z,
where x is the number of optimal instances found by the
heuristic, y is the number of satisfiable solutions and z is
the number of unknown solutions.

In total 2 different configurations have been tested. These
are:

• Baseline - VSIDS with no heuristic augmentation

• Variable ordering - only the greedy variable ordering
heuristic

• Variable ordering + VSIDS - greedy variable ordering
heuristic augmented with VSIDS

6.3 Results
The full results featuring the previously mentioned statistics
are given in the table 1. The rest of the subsection discusses
the results in more detail and highlights the most noteworthy
observations.

Baseline
The baseline has performed well on smaller instances with a
number of jobs n less or equal to 50. The table 2 provides
an overview of the state of solutions to the problems. The in-
stances are grouped by the number of jobs to make the table
more readable. Both types and the number of secondary re-
sources play a less significant role in the overall quality of the
solution, though if the instance is skewed and/or has 5 sec-
ondary resources, it is slightly more likely to be satisfiable or
unknown compared to similar problem instances. Amongst
all the instances, only some instances with n = 10 are solved
to proven optimality. For all instances with n in the range
from 20 to 100, a solution is found, and for larger instances
sometimes no solution is found within the time limit.

By examining the figure 3 showing the progression of the
best-so-far solution for instances with n = 150 it can be seen
that a significant portion of time is spent on discovering the
initial solution. This leads to the solver often not finding any
solutions for larger instances and thus not allowing it to im-
prove upon the initial solutions, as there are none.

Variable Ordering Heuristic
Two heuristically augmented experiments have been con-
ducted. One relies solely on picking the variables in the
static order determined by the variable-ordering heuristic and
the other additionally modifies the initial order by employing
VSIDS. From the table 1 it can be seen that the version aug-
mented with VSIDS generally displays better results, but it
is still valuable to examine the plain version, as it provides
insight into what is its contribution.

For the smaller instances with the number of jobs less or
equal to 50, the addition of the heuristic does not have a sig-
nificant impact on the performance of the solver. The final
average makespans between VSIDS and VSIDS + heuristic
are quite similar as can be seen from figure 4, though the
plain heuristic version does not perform that well and is out-
performed by both other versions.

Compared to the baseline, the main advantage of the
heuristic is that it is able to quickly find an initial solution,

Figure 3: Average best-so-far makespan for different problem in-
stances with the number of jobs equal to 150 when solved by the
baseline solver.

Figure 4: Average scaled final makespan achieved by different
heuristics grouped by the number of jobs. 100% for each number
of jobs corresponds to the highest final makespan and the average
makespans achieved by other heuristics are scaled proportionally.

resulting in getting a satisfiable solution to all the problem in-
stances in the dataset. The variable ordering heuristic points
the solver toward the core variables of the problem that repre-
sent the start times of jobs. This provides a good initial solu-
tion that is then improved upon during the rest of the search.

For larger instances with 100 and more jobs, the heuristi-
cally augmented versions outperform the baseline model sig-
nificantly, resulting in smaller average makespans as can be
seen from the figure 4. From figure 5 it can be seen that for
bigger instances with 150 jobs, an initial solution is found
significantly quicker in only a couple of seconds compared to
the baseline that takes more than 30 seconds to find an initial



Baseline VSIDS Heuristic Heuristic + VSIDS
Type n m m̄ %b s tf tb m̄ %b s tf tb m̄ %b s tf tb
b 10 3 52.7 100 19/1/0 1.0 1.1 52.7 100 18/2/0 1.0 1.1 52.7 100 19/1/0 1.0 1.0
b 20 3 91.5 95 0/20/0 1.2 11.9 97.1 20 0/20/0 1.0 10.7 91.8 80 0/20/0 1.0 7.8
b 50 3 222.0 60 0/20/0 7.5 44.0 238.3 0 0/20/0 1.1 15.4 221.6 55 0/20/0 1.0 43.0
b 100 3 473.9 25 0/20/0 23.2 56.8 464.1 5 0/20/0 1.9 28.9 450.7 80 0/20/0 1.6 49.0
b 150 3 1178.4 0 0/15/5 46.4 44.2 751.1 15 0/20/0 3.0 51.4 687.7 90 0/20/0 2.6 39.4
b 200 3 1841.9 0 0/7/13 55.5 21.6 1539.8 20 0/20/0 4.8 59.9 1215.5 80 0/20/0 4.2 53.6
b 10 5 44.1 100 15/5/0 1.0 1.0 44.4 85 13/7/0 1.0 7.7 44.1 100 15/5/0 1.0 1.5
b 20 5 84.7 80 0/20/0 1.0 7.6 87.7 10 0/20/0 1.0 9.7 84.7 80 0/20/0 1.0 4.8
b 50 5 213.6 90 0/20/0 5.3 32.8 219.1 0 0/20/0 1.0 4.8 213.9 65 0/20/0 1.0 35.5
b 100 5 512.9 0 0/20/0 26.6 55.8 443.9 35 0/20/0 1.8 32.0 439.6 80 0/20/0 1.4 37.2
b 150 5 1235.8 5 0/15/5 51.2 44.6 887.8 15 0/20/0 3.1 59.9 726.9 80 0/20/0 2.8 44.0
b 200 5 1895.8 0 0/1/19 59.9 4.0 1486.0 30 0/20/0 4.8 57.5 1178.7 70 0/20/0 4.8 50.0
s 10 3 78.8 95 3/17/0 1.0 7.7 79.7 55 4/16/0 1.0 6.4 78.9 90 2/18/0 1.1 6.8
s 20 3 152.9 85 0/20/0 1.6 23.0 158.4 10 0/20/0 1.0 9.4 153.0 80 0/20/0 1.0 15.6
s 50 3 368.6 70 0/20/0 8.2 54.0 384.2 0 0/20/0 1.0 16.5 369.1 45 0/20/0 1.0 47.2
s 100 3 846.0 0 0/20/0 33.5 57.2 762.5 20 0/20/0 2.0 35.4 758.5 85 0/20/0 1.9 43.9
s 150 3 1528.4 0 0/15/5 50.1 44.1 1252.8 25 0/20/0 3.5 57.3 1151.5 90 0/20/0 4.0 42.2
s 200 3 2148.6 0 0/1/19 59.6 4.0 1966.5 15 0/20/0 6.0 60.0 1698.0 85 0/20/0 5.7 49.8
s 10 5 73.2 100 3/17/0 1.0 6.5 73.7 65 3/17/0 1.0 7.1 73.3 95 2/18/0 1.0 4.6
s 20 5 148.8 55 0/20/0 1.1 18.7 153.3 0 0/20/0 1.0 3.6 148.3 75 0/20/0 1.0 20.9
s 50 5 375.1 55 0/20/0 8.8 49.0 380.7 5 0/20/0 1.0 10.9 374.6 55 0/20/0 1.0 48.0
s 100 5 867.5 0 0/20/0 36.5 57.8 748.3 70 0/20/0 2.1 35.5 748.1 50 0/20/0 2.0 40.6
s 150 5 1542.1 0 0/8/12 54.5 23.2 1250.9 10 0/20/0 3.5 59.6 1113.0 95 0/20/0 3.2 38.4
s 200 5 2168.8 0 0/1/19 59.9 4.0 1818.0 55 0/20/0 5.8 57.5 1736.2 45 0/20/0 5.8 52.8

Table 1: Full statistics on the performance of the baseline compared to the heuristically augmented versions by problem type, number of jobs
n, and number of resources m. The objectively best values are bolded.

Number of jobs #Optimal #Satisfiable #Unknown
10 40 40 0
20 0 80 0
50 0 80 0

100 0 80 0
150 0 53 27
200 0 10 70

Table 2: Final solution states for baseline experiment grouped by the
number of jobs.

solution as shown in the figure 3. This is not only specific to
bigger instances but applies to all instances as seen from the
table 1 by examining the average times at which the initial
solution is found (tf ).

7 Responsible Research
Throughout the project, a lot of effort was put into mak-
ing the experiments repeatable. The encoding, heuristics,
and the used datasets are described in full detail. Addition-
ally, the related code used for encoding the problem is pub-
licly available for inspection at ”https://github.com/Artjom-
Pugatsov/JSOCMSR SAT”.

Since in the result analysis problem instances with differ-
ent parameters are often grouped together for brevity, a full

Figure 5: Average best-so-far makespan for different problem in-
stances with the number of jobs equal to 150 when solved by the
solver with static variable ordering and VSIDS.

breakdown of case-by-case results is given in a separate ta-
ble 1. This is done to make the full results fully transparent



and let the reader themselves make sure that the conclusions
about the performance have not been supported by cherry-
picked data.

Moreover, it is worth mentioning that no sensitive data has
been processed during this project. Even though the original
dataset was inspired by cancer treatment scheduling, the ac-
tual dataset was randomly generated to only mimic the char-
acteristics of real-world data. This means that it has no con-
nections to any actual medical data.

8 Conclusions and Discussion
JSOCMSR is a relatively new problem. This research has
taken a different approach to solving this problem by mod-
eling it in terms of SAT and then applying a value selection
heuristic augmented by VSIDS. The value selection heuris-
tic first orders variables based on job length and start time
and then employs VSIDS to additionally provide a dynamic
variable ordering.

As shown in the evaluation of the experimental results, the
developed value selection heuristic has demonstrated its ef-
fectiveness compared to a more general heuristic. The main
advantage of the heuristic is quickly providing an initial solu-
tion which is thereafter improved upon by the VSIDS branch-
ing heuristic. It has significantly enhanced the performance
of the SAT solver on the bigger instances while displaying
similar performance for the smaller instances.

Despite the relative simplicity of the heuristic, it has
demonstrated significant performance improvement for the
SAT solver. This result provides further evidence of the vi-
ability of future research into problem-specific SAT heuris-
tics.

9 Future Work
This research has centered around testing the impact of a vari-
able ordering heuristic on the performance of the SAT solver.
Thus in the experiments, the encoding of the problem has re-
mained the same throughout all the tests. In the future, it
could be of interest to check different encodings. One im-
portant parameter for the encoding is the maximum start time
Tmax. This parameter determines the latest time at which a
job can be scheduled. Varying this parameter can drastically
change the number of variables and clauses present in the en-
coding. The Tmax that was used in the encoding is a straight-
forward sum of all the lengths of jobs. This provides a robust
upper bound that does not make any assumptions about the
underlying problem instance. For future research, it could be
of interest to create additional heuristics for getting a lower
bound on this parameter. One such approach could be to use
a heuristic for calculating a smaller upper bound on this value
by finding an initial solution before the problem is encoded.

When JSOCMSR was originally proposed, it was also
modeled as a constraint satisfaction problem (CSP) [6].
This model has not been augmented with any additional
JSOCMSR-specific heuristics when it was evaluated. It could
be of interest to apply additional problem-specific heuristics
to this model to further research their application for CSP
solvers.



References
[1] Kenneth R. Baker and Dan Trietsch. Principles of Se-

quencing and Scheduling. Wiley Publishing, 2009.

[2] Armin Biere, Marijn Heule, Hans van Maaren, and Toby
Walsh, editors. Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[3] Jiatong Cai, Yating Su, Xixi Yang, Jionghao Min, and
Yong Lai. A new sat encoding scheme for exactly-
one constraints. Journal of Physics: Conference Series,
1288(1):012035, aug 2019.

[4] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 1). https://www.
tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

[5] Luis Fanjul-Peyro and Rubén Ruiz. Ruiz, r.: Iterated
greedy local search methods for unrelated parallel ma-
chine scheduling. european journal of operational re-
search 207, 55-69. European Journal of Operational
Research, 207:55–69, 11 2010.

[6] Matthias Horn, Günther Raidl, and Christian Blum. Job
sequencing with one common and multiple secondary
resources: An a*/beam search based anytime algorithm.
Artificial Intelligence, 277:103173, 09 2019.

[7] Matthias Horn, Günther R. Raidl, and Elina Rönnberg.
A* Search for Prize-Collecting Job Sequencing with
One Common and Multiple Secondary Resources. An-
nals of Operations Research, 302(2):477–505, July
2021.

[8] Thomas Kaufmann, Matthias Horn, and Günther R.
Raidl. A variable neighborhood search for the job se-
quencing with one common and multiple secondary re-
sources problem. In Thomas Bäck, Mike Preuss, André
Deutz, Hao Wang, Carola Doerr, Michael Emmerich,
and Heike Trautmann, editors, Parallel Problem Solv-
ing from Nature – PPSN XVI, pages 385–398, Cham,
2020. Springer International Publishing.

[9] Chu Min Li and Felip Manya. Maxsat, hard and soft
constraints. In Handbook of satisfiability, pages 903–
927. IOS Press, 2021.

[10] Jia Hui (Jimmy) Liang, Vijay Ganesh, Ed Zulkoski, At-
ulan Zaman, and Krzysztof Czarnecki. Understanding
VSIDS branching heuristics in conflict-driven clause-
learning SAT solvers. CoRR, abs/1506.08905, 2015.

[11] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and Sharad Malik. Chaff: Engineering an efficient sat
solver. Proceedings - Design Automation Conference,
pages 530–535, 2001. 38th Design Automation Con-
ference ; Conference date: 18-06-2001 Through 22-06-
2001.

[12] Muhammad Nawaz, E Emory Enscore Jr, and Inyong
Ham. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, 11(1):91–95,
1983.

[13] Knot Pipatsrisawat, Akop Palyan, Mark Chavira, Arthur
Choi, and Adnan Darwiche. Solving weighted max-
sat problems in a reduced search space: A performance
analysis. Journal on Satisfiability, Boolean Modeling
and Computation, 4(2-4):191–217, 2008.

[14] Jussi Rintanen. Planning as satisfiability: Heuristics.
Artificial Intelligence, 193:45–86, 2012.

[15] Karem A Sakallah et al. Anatomy and empirical eval-
uation of modern sat solvers. Bulletin of the EATCS,
(103):96–121, 2011.

[16] Jack A. A. van der Veen, Gerhard J. Woeginger, and
Shuzhong Zhang. Sequencing jobs that require common
resources on a single machine: A solvable case of the
tsp. Mathematical Programming, 82(1):235–254, Jun
1998.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

	Introduction
	Related Work
	Job Scheduling With One Common and Multiple Secondary Resources
	Formal Description
	Example Problem

	SAT Encoding
	Variables
	Start Time Variables
	Resource Usage Variables
	Makespan Variables
	Additional Notation

	Hard Constraints
	Soft Constraints
	High-level Constraint Encoding

	Heuristic
	VSIDS Heuristic
	Variable Selection Heuristic for JSOCMSR

	Experimental Setup and Results
	Dataset
	Experiments
	Results
	Baseline
	Variable Ordering Heuristic


	Responsible Research
	Conclusions and Discussion
	Future Work

