
An Algebraic Effect for ML-Style References in Haskell

Daan Panis1

Supervisor(s): Casper Bach Poulsen1, Jaro Reinders1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Daan Panis
Final project course: CSE3000 Research Project
Thesis committee: Casper Bach Poulsen, Jaro Reinders, Annibale Panichella

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Errors from side-effecting operations, such as mu-
table state, error handling, and I/O operations, can
be costly during software development. Haskell’s
monadic approach often obscures specific operations,
limiting the ability to reason about them effectively.
This paper explores implementing ML-style refer-
ences in Haskell using algebraic effects separating
the syntax and semantics of side-effecting operations.
ML-style references are mutable storage locations,
similar to pointers that ensure type safety and al-
low imperative programming within a functional lan-
guage. We address how to implement ML-style ref-
erences in Haskell using algebraic effects while ad-
hering to Staton’s state laws. Our contributions in-
clude developing an algebraic effect for mutable ref-
erences, creating a corresponding handler, and prov-
ing adherence to Staton’s state laws.
Additionally, we demonstrate the practical applica-
tion of these principles by proving the correctness of
an imperative-style factorial function. This work pro-
vides a flexible and predictable framework for using
mutable references in Haskell, enhancing the ability
to reason about program behaviour and correctness.

1 Introduction
Mistakes in software can be extremely expensive and signifi-
cantly affect people’s lives. Tools that help programmers rea-
son about their programs and ensure their correctness can help
reduce critical errors.
A common cause of mistakes is side-effecting operations such
as mutable state, error handling, and I/O operations. While
avoiding side-effecting operations entirely might be ideal, but
their use is often necessary.
Haskell uses monads and monad transformers to manage side-
effecting operations. However, a limitation of this approach is
that most effects are represented through Haskell’s IO monad,
making it difficult to distinguish the exact side-effecting opera-
tions a program performs [2], making it harder to reason about
them.
Algebraic effects, as introduced by Plotkin and Power [3], of-
fer an alternative way to manage side effects. They separate
the syntax and semantics of side-effecting operations from their
implementation. This allows programmers to define different
handlers for an effect and clearly see which side effects a pro-
gram uses.
An interesting side effect is mutable references, as seen in ML
[4]. Mutable references in ML are similar to pointers in C or
Pascal but ensure type safety. Mutable references are well stud-
ied, Staton proposes laws governing mutable references [1], en-
suring they are well-behaved and easy to reason about.
While mutable references and their corresponding state laws
are well-studied, to our knowledge, no one has proven an effect
handler for references that adheres to these state laws.
This paper addresses the following research question:

How can ML-style references [4] be implemented in Haskell
using algebraic effects that adhere to global, block, and local

state laws as defined by Staton [1]?

Answering this question enables programmers to write Haskell
programs using mutable references in a predictable way.
Staton’s state laws allow for equational reasoning to prove
properties of programs, ensuring their correctness.
Additionally, it enables the use of imperative constructs like
while loops, which are common in languages like Java and
C. This simplifies the creation of programs and data structures
that are challenging to implement using standard Haskell tech-
niques, such as doubly linked lists among many others.
Using algebraic effects for implementing mutable references
abstracts away the handling of operations. This grants pro-
grammers greater control, allowing them to write handlers us-
ing different data structures for the store, tailored to their pro-
gram’s specific needs, making it a flexible way to use mutable
references in Haskell.
This paper makes the following contributions:

1. Provides an algebraic effect in Haskell for implementing
ML-style mutable references and a corresponding handler
(Section 3, Section 4)

2. Proves that the proposed effect handler adheres to the
global, block, and local state laws as defined by Staton
(Section 5, Appendix A).

3. Demonstrates a clear and simple way to use Staton’s state
laws to reason about the correctness of programs using
mutable references (Section 6)

The paper’s structure is as follows: Section 2 covers neces-
sary background on functors, monads, and algebraic effects us-
ing the Free monad. Section 3 describes mutable references in
ML and proposes the operations for the algebraic effect. Sec-
tion 4 provides an implementation for the MLRef algebraic
effect and a handler. Section 5 describes Staton’s state laws
and adapts them to Haskell syntax, with proofs in Appendix A.
Section 6 demonstrates using the laws to prove the correctness
of an imperative-style factorial program with the proposed al-
gebraic effect. Section 7 discusses the ethical considerations of
the research. Finally, Section 8 discusses the work and results
of this paper, followed by the conclusion in Section 9.

2 Background
This paper assumes familiarity with Haskell concepts such as
types, functions, and type classes. This section provides the
necessary background information, beginning with an explana-
tion of functors and monads. Next, the free monad is intro-
duced, followed by an introduction to algebraic effects using
the free monad.

2.1 Functors & Monads
A Functor is a type class that allows a function to be applied
to each element within a structure without altering the struc-
ture itself. Here, “structure” refers to the organisation of the
datatype.
The Functor type class in Haskell can be defined as fol-
lows:

class Functor f where
fmap :: (a → b)→ f a → f b

Formally, a Functor must obey two laws: the identity law and
the composition law. Although Haskell does not enforce these
laws, it is the programmer’s responsibility to ensure they are
satisfied.

1



Identity fmap id ≡ id

Composition fmap f ◦ g ≡ fmap f ◦ fmap g

The identity law states that mapping the identity function
over a Functor should return the Functor unchanged. The
composition law asserts that mapping the composition of two
functions over a Functor should be the same as first mapping
one function and then the other.

A Monad is a type class that represents computations
defined as a sequence of steps. It builds on the concept of a
Functor by providing two primary operations, return and
>>= (bind) [5]. The Monad type class can be defined as
follows:

class Monad m where
(>>=) ::m a → (a → m b)→ m b
return :: a → m a

The return function injects a value into a monadic context
making it a minimal monadic computation.
The >>= function, known as bind, is used to sequence monadic
operations. It takes a monadic value and a function that returns
a monadic value, chaining them together by passing the result
of the first computation to the second.
Formally, a Monad must satisfy three laws: the left identity,
the right identity, and associativity.

Left identity return a >>= k ≡ k a

Right identity m >>= return ≡ m

Associativity (m >>= k)>>= h ≡ m >>= (λx → k x >>= h)

The left identity law states that wrapping a value with return
and then applying a function using >>= is equivalent to applying
the function directly. The right identity law asserts that apply-
ing >>= to a monadic value followed by return does not change
the value. The associativity law ensures the order of monadic
operations does not affect the result.

2.2 Free monad & Algebraic effects
The Free monad in Haskell represents computations as abstract
syntax trees (ASTs). These trees are composed using a functor
that defines the structure of the computation [6].
All code in this section is based on Bach Poulsen’s blog post
on algebraic effects [7], chosen for its simplicity and clear ex-
planation. Similar approaches are described in other literature
on the topic ([8, 6, 9, 10], among others).

data Free f a = Pure a | Op (f (Free f a))

The Pure constructor represents a completed computation with
a value, while Op represents an ongoing computation involving
an operation described by the functor f .
The fold function can be defined to recursively collapse the free
monad. It interprets the free monad’s abstract syntax tree into
a concrete result by specifying how to handle both completed
and ongoing computations.

fold :: Functor f ⇒
(a → b)→ (f b → b)→ Free f a → b

fold gen (Pure x ) = gen x
fold gen alg (Op f ) = alg (fmap (fold gen alg) f )

Using this definition of fold and the Free monad data structure,
we can effectively allow any functor to be a monad by repre-
senting it as a free monad. The Monad instance for Free is
described below, the instances of Functor and Applicative are
omitted here for brevity.

instance (Functor f )⇒ Monad (Free f ) where
m >>= k = fold k Op m
return = Pure

With this Free monad, we can start creating algebraic effects
by describing them as Functor data types. For example, we
can define the Err and State functors:

data Err k = Err String deriving Functor

data State s k = Put s k | Get (s → k)
deriving Functor

These functors describe the operations available for the side
effects. The Err side effect has a single operation that ter-
minates the program with an error message, similar to excep-
tions in Java and C++. The State side effect has two opera-
tions: Put , which mutates the state, and Get , which retrieves
the current state.
To use multiple algebraic effects in a single program, we repre-
sent them with a functor sum data type:

data (f + g) a = L (f a) | R (g a) deriving Functor

This datatype represents the sum of two functors f and g ,
meaning a value of (f + g) a can either be type f a or
type g a (wrapped in the L and R constructor).
This functor sum allows writing programs using multiple al-
gebraic effects. For example, the following program reads the
state, throws an error if the state is less than 10, and otherwise
doubles the state value:

prog :: Free (State Int + Err) ()
prog = Op (L (Get (λn →
if n < 10 then Op (R (Err "Less than 10"))

else Op (L (Put (n ∗ 2) (Pure ()))))))

However, writing programs this way is verbose because the
L and R constructors must be manually specified. This also
means that if we switch the order of the functors to Free (Err+
State Int) (), we must update all L and R constructor invoca-
tions accordingly.
To address this issue, we use signature subtyping and smart
constructors. Specifically, we define the subtyping f <g , which
describes how to transform any f a into a g a [7].

class f < g where
inj :: f k → g k

instance f < f where inj = id
instance f < (f + g) where inj = L
instance f < h ⇒ f < (g + h) where inj = R ◦ inj

The first instance uses the identity function for self-
subtyping. The second uses L to inject f into the left of a
sum type. The third uses R and recursion to inject f into the
right of a sum type if f is a subtype of h .
Using signature subtyping, we use the following smart con-
structor definitions for State effect. The smart constructors
inject the operation in the AST regardless of the order of the
functor sum.

2



get :: State s < f ⇒ Free f s
get = Op (inj (Get Pure))

put :: State s < f ⇒ s → Free f ()
put s = Op (inj (Put s (Pure ())))

Using smart constructors, the Monad instance for Free , and
Haskell’s do notation [11], we can represent our previous pro-
gram more plainly:

prog :: Free (State Int + Err) ()
prog = do
n :: Int ← get
if n < 10 then err "Less than 10"

else put (n ∗ 2)

The State and Err effects only describe how they are used in
a computation, not how they are implemented. To make them
useful, we need a way to perform the effects. We start by using
the following datatype:

data Handler f a f ′ b = Handler
{ret :: a → Free f ′ b,
hdlr :: f (Free f ′ b)→ Free f ′ b}

The ret function of a handler defines how pure val-
ues of type a are handled, producing a result within the Free f ′

monad. The hdlr function defines how to handle opera-
tions of the effect f , such as implementing the Err effect. A
handler typically handles a single side effect, leaving others in-
tact. In a program with multiple effects, you must handle each
effect sequentially to produce a final result. A handler for the
Err effect could look like the following:

hErr :: (Functor f ′)⇒ Handler Err a f ′

(Either String a)
hErr = Handler
{ret = pure ◦ Right ,
hdlr = λcase
Err s → pure (Left s)}

This handler handles the Err operation, by transforming its re-
sult into an Either String a , meaning it can either be some
error message or a result of a computation.
The State effect doesn’t have any meaningful implemen-
tation using the Handler datatype, as it requires weaving
some state through the computations. Instead, we use a differ-
ent datatype:

data Handler f a p f ′ b = Handler
{ret :: a → (p → Free f ′ b),
hdlr :: f (p → Free f ′ b)→ (p → Free f ′ b)}

The difference is that Handler has an additional type p, rep-
resenting a value passed along during handling. Using this, we
can write the following handler for the State effect:

hState :: Functor g ⇒ Handler (State s) a s g (a, s)
hState = Handler
{ret = λx s → pure (x , s)
, hdlr = λx s → case x of
Put s ′ k → k s ′

Get k → k s s }

Here, hState handles the State effect with a
state of type s . The result is a Free g with re-
sult type (a, s). The Put operation passes the newly set
state to the continuation k , while the Get operation retrieves
the state and passes it to the continuation s . We have omitted
the functions that use these handlers to handle the effects for
brevity, they are well described by Bach Poulsen [7].
One issue with this definition of handlers is that it requires a
Free f + f ′ as input, which cannot handle the last effect since
it is not a sum of two functors. To solve this, you can introduce
an empty data type:

data End k deriving Functor

Since this datatype is empty and has no operations, a Free End
can only be a pure value. This way, End marks the end of the
computation and contains the final result. In your programs,
you always add the End effect to your effect sum. You can then
retrieve the result of the computation after handling all effects
using the un function:

un :: Free End a → a
un (Pure x ) = x
un (Op f ) = case f of -- Can never happen

3 ML-style references
ML is a high-level functional programming language known
for its strong typing and type inference, introduced by Mil-
ner [12]. It provides mechanisms for side-effecting opera-
tions, such as mutable references, enabling imperative-style
code [13].
In ML, references are mutable storage locations similar to
pointers in C and Pascal but designed to be secure and type-
safe [13].
ML defines the following three operations for mutable refer-
ences:

• The ref function creates a new reference. For example,
ref 5 creates a reference to an integer with an initial value
of 5.

• The ! operator is used to retrieve the value stored in a ref-
erence. For instance, !p returns the value stored in the
reference p.

• The := operator updates the value stored in a reference.
For example, p := 10 sets the value of p to 10.

References enable imperative programming within ML, allow-
ing programmers to write code that modifies state. This ca-
pability is crucial for implementing algorithms and data struc-
tures that require mutable references, such as doubly linked
lists [13].
We propose a similar approach to references in ML by defining
an algebraic effect in Haskell with three operations:

• An operation that allocates a new memory location in a
store with a given value and returns a pointer to that loca-
tion.

• An operation that retrieves the value at a memory location,
given a pointer to that location.

• An operation that updates the value at a memory location,
given a pointer to that location.

3



4 Implementation
With a clear understanding of the operations and method for
implementing algebraic effects using the Free monad, we pro-
pose an algebraic effect for ML-style references. We define the
data type for our operations, similar to the State effect, and
propose a handler using a simple list as the store and an integer
wrapper pointing to store locations.

4.1 Algebraic Effect
The data type MLRef parametrises over a reference type and
a continuation type. The reference parameter can be any type
constructor of kind ∗ → ∗, providing a flexible abstraction that
allows for the creation of effect handlers with various reference
types. The algebraic effect handler we implemented uses a spe-
cific reference type and state to manage the effect, as detailed
later in this section.

data MLRef ref k where
MkRef :: s → (ref s → k)→ MLRef ref k
DeRef :: ref s → (s → k)→ MLRef ref k
UpdateRef :: ref s → s → k → MLRef ref k

instance Functor (MLRef ref ) where
fmap f (MkRef v k) = MkRef v (λx → f (k x ))
fmap f (DeRef r k) = DeRef r (λx → f (k x ))
fmap f (UpdateRef r v k) = UpdateRef r v (f k)

mkref :: (MLRef ref < f )⇒ a → Free f (ref a)
mkref v = Op (inj (MkRef v Pure))

deref :: (MLRef ref < f )⇒ ref a → Free f a
deref r = Op (inj (DeRef r Pure))

update :: (Functor f ,MLRef ref < f )⇒
ref a → a → Free f ()

update r v = Op (inj (UpdateRef r v (Pure ())))

Figure 1: Implementation algebraic effect ML-Style references.

As can be seen in the implementation in Figure 4.1, the MLRef
data type defines three constructors:

• MkRef : This constructor creates a new reference. It takes
a value of any type s and a function that receives a refer-
ence (ref s) and produces a continuation of type k . This
continuation can be any computation involving the newly
created reference.

• DeRef : This constructor is used to dereference a value.
It takes a reference of any type ref s and a function that
receives a value of type s , producing a continuation of type
k .

• UpdateRef : This constructor updates the value of an ex-
isting reference. It takes a reference of any type ref s , a
new value of type s , and a continuation of type k to be
executed after the update.

Furthermore, we introduced the smart constructors mkref ,
deref , and update to easily inject these operations into any pro-
gram using the MLRef effect. With these operations defined,
we can write programs using mutable references, as shown in
the following example:

program :: Free (MLRef ref + End) Int
program = do

r ← mkref 20
v ← deref r
update r (v ∗ 10)
deref r

Although this program is not particularly useful, it demon-
strates how to write programs using the MLRef algebraic ef-
fect.
An alternative implementation of MLRef could involve param-
eterising s in the data type itself, rather than in each constructor,
as shown below:

data MLRef ref s k -- Constructors are unchanged

However, this approach requires manually specifying each type
for which you want to create references. For example, if you
want a program that can create references to both numbers and
strings, you would need to specify:

program :: Free (MLRef ref Int +
MLRef ref String + End)

This quickly becomes unmanageable, especially when creat-
ing deeply nested references (e.g., a reference to a reference to
a reference, etc.). You would need to manually add type an-
notations for each level of nesting, which becomes extremely
inconvenient. Additionally, you would need to handle each ref-
erence type separately, potentially handling the program many
times.
Our definition avoids this issue by not parameterising s in the
data type definition, but only in the constructors. This makes
handling slightly more complex, as it requires weakening the
store to support any type of reference, which will be discussed
in the next section.

4.2 Algebraic Effect Handler
The algebraic effect handler, shown in Figure 4.2, handles the
MLRef effect using a specific reference type called IntRef .
The IntRef type is a simple wrapper around an integer, which
serves as an index into a list. The handler manages state using
a list, where each IntRef acts as a pointer to an element within
this list.

newtype IntRef a = IntRef Int deriving Functor

hRefCoerced :: (Functor g)⇒
Handler

(MLRef IntRef ) a [p ] g (a, [p ])
hRefCoerced = Handler
{ret = curry pure,
hdlr = λx state →

let l = length state in case x of
MkRef v k → k (IntRef l)

(unsafeCoerce v : state)
DeRef (IntRef i) k → k
(unsafeCoerce
(position (l − i − 1) state)) state

UpdateRef (IntRef i) v k → k
(replace (l − i − 1)

(unsafeCoerce v) state)}

Figure 2: Implementation algebraic effect handler ML-Style refer-
ences for IntRef .

4



This handler leverages Bach Poulsen’s Handler type, which
provides a convenient mechanism to recursively handle all
MLRef operations in a computation tree while leaving com-
putations of other effect types unchanged.
The handler operates on the MLRef operations and some state
as follows:

• MkRef : When handling the creation of a new reference,
the handler prepends the provided value to the state list
and creates an IntRef representing the index of this new
value. The index corresponds to the length of the list prior
to the insertion. The newly created IntRef is then passed
to the continuation, along with the updated state.

• DeRef : Dereferencing retrieves the value from the state
list at the position indicated by the IntRef . This value is
then applied to the continuation, along with the unchanged
state.

• UpdateRef : Updating a reference replaces the value in
the state list at the position indicated by the IntRef with
the new value. The updated state is then passed to the
continuation.

Helper functions position and replace are used and provide list
indexing and element replacement capabilities, respectively.
Many other handlers operating on many other different types
of references other than IntRef exist. The implementation pro-
vided here is a very simple one, but is much easier to prove
compared to some alternatives, which is the reason for choos-
ing this particular implementation.

5 Local & Global State Laws
Plotkin and Power first introduced the laws for global and lo-
cal state in computational effects [14]. Staton expanded on
these theories, offering a more comprehensive framework [1].
These laws describe interactions with mutable state: global
state shared across the entire program, block state within a spe-
cific scope, and local state that can be dynamically created, up-
dated, and read. To prove these laws hold for an algebraic effect
handler for ML-style references, it is necessary to show that the
handler accurately models these state interactions, maintaining
the correct behaviour of stateful computations.
First, we modify Staton’s syntax and definitions as needed for
our proofs. Next, we outline the necessary assumptions for
proving the laws, which we consider reasonable. Finally, we
present the global, block, and local state laws using these mod-
ifications and then explain each law.
The proofs for the laws in this section, as applied to the pro-
posed handler, can be found in Appendix A.

5.1 Modification to Staton’s definitions
Staton’s work describes the laws for global, block, and lo-
cal state using Moggi’s meta-language [15]. To prove these
laws for our Haskell handler, we modify the language to match
Haskell’s syntax, simplifying the proofs and reasoning about
programs using the algebraic effect.
We update Staton’s syntax for reference operations to match
our implementation: update a v for a := v , deref a for !a ,
and mkref v for ref v . We replace Moggi’s let notation with
Haskell’s do notation, requiring explicit return statements for
pure values.
Consider Staton’s first global state law:

a : A ⊢ let v ⇐ !a in a := v ≡ () : 1

By updating the reference operations and transforming to
Haskell’s do syntax, we get:

a : A ⊢ do v ← deref a; update a v ≡ return () : 1

These changes maintain consistency, preserving the operational
semantics and sequential logic of the original laws in Haskell’s
do notation. Dereference and update operations, type safety,
and return values remain equivalent, ensuring the correctness
of the original proofs.
Staton describes A as an infinite set of atoms representing store
locations [1]. Here, we define A as the set of IntRef instances
with non-negative indices. This retains A’s properties as an in-
finite collection of store references. Restricting to IntRef nar-
rows the scope without altering the reference nature, preserving
the algebraic theory’s integrity as defined by Staton. We also
restrict V to all valid Haskell values.

5.2 Assumptions
Since the implemented handler relies heavily on Haskell’s
unsafeCoerce function to support a state list of any type, we
must make the following two assumptions regarding the use of
unsafeCoerce in Haskell.

1. v : V ⊢ unsafeCoerce v ≡ unsafeCoerce v

2. v : V ⊢ unsafeCoerce (unsafeCoerce v) ≡ v

We deem these to be fair assumptions, particularly in the con-
text of ML-style references, since they can be supported by the
work done by Bach Poulsen et al. [16]. Their work empha-
sizes the importance of store extension and weakening envi-
ronments, ensuring that type safety is maintained even when
environments are extended. Additionally, the use of explicit
weakening in the type of bind operations ensures that store
extensions are well-handled, which aligns with the safe appli-
cation of unsafeCoerce in maintaining consistent type in this
handler.

5.3 Global State
The theory of global state focuses on two operations: lk : A→
V and upd : A×V→ 1 [1]. In our context, these correspond to
the update and deref operations. The global state laws, modi-
fied as previously defined, are shown in Figure 5.3.

GS1. a : A ⊢ do v ← deref a; update a v

≡ return () : 1

GS2. a : A ⊢ do v ← deref a; w ← deref a;
return (v ,w) ≡ do v ← deref a;
return (v , v) : V× V

GS3. a : A, v, w : V ⊢ do update a v ; update a w ;
≡ do update a w : 1

GS4. a : A, v : V ⊢ do update a v ; w ← deref a;
do update a v ; return v : V

GS5. (a, b) : A⊗ A ⊢ do v ← deref a; w ← deref b;
return (v ,w) ≡ do w ← deref b;
v ← deref a; return (v ,w) : V× V

GS6. (a, b) : A⊗ A, v, w : V ⊢ do update a v ;
update b w ≡ do update b w ; update a v : 1

5



GS7. (a, b) : A⊗ A, v : V ⊢ do update a v ; deref b

do w ← deref b; update a v ; return w : V

Figure 3: Global state laws as described Staton, adapted to use the
modified syntax.

The global state laws govern the behaviour of mutable refer-
ences and their interactions. These laws ensure consistency in
how state is read and updated within a program.

• GS1 states that reading and then writing the same value
back to a reference is equivalent to doing nothing.

• GS2 states that reading a value from a reference twice will
yield the same value both times.

• GS3 states that updating a reference twice in succession is
equivalent to just performing the second update.

• GS4 states that after updating a reference, reading from it
will yield the updated value.

• GS5 states that the order of reading values from two dis-
tinct references does not matter.

• GS6 states that updating two distinct references in any or-
der results in the same final state.

• GS7 states that updating one reference and reading from
another can be reordered without changing the result.

5.4 Theory of Block
Staton describes the disjoint product A⊗n as an n-tuple of dis-
tinct atoms, meaning n distinct references pointing to different
locations in the store [1].
They define ref n : (A⊗n × V)→ A⊗(n+1), which we rename
as mkref n (⃗a, v), to allocate a new reference distinct from all
in a⃗.
Finally, the function pn, an injection A⊗(n+1) → A⊗n × A,
returns the first n locations from a set of n+ 1 locations, sepa-
rating the first n elements from the last one.
The block state laws, using the previously stated modifications,
can be seen in Figure 5.4.

B1. v : V ⊢ do a ← mkref v ; return () ≡ return () : 1

B2. v, w : V ⊢ do a ← mkref v ; b ← mkref w ;
return (a, b) ≡ do b ← mkref w ;

a ← mkref v ; return (a, b) : A× A

B3n. v : V, a⃗ : A⊗n ⊢ do b⃗← mkref n(⃗a, v);

return pn(⃗b) ≡ do b ← mkref v ;
return (⃗a, b) : A⊗n × A

Figure 4: Block state laws as described Staton, adapted to use the
modified syntax.

The block state laws ensure consistent behaviour for allocating
references within a specific scope.

• B1 states that creating a reference and immediately return-
ing is equivalent to doing nothing.

• B2 states that the order of creating two references directly
after each other does not matter.

• B3n states that allocating a new reference distinct from an
existing set of references is equivalent to independently
allocating a new reference and adding it to the original
set. Its purpose is to ensure that each new reference that is

created is unique.
Law B3n might seem confusing without a definition of
the mkref n function for the handler. However, for the im-
plementation, we argue that B3n is trivially correct because
the implementation of the mkref operation always creates a
unique reference pointing to a distinct memory location from
all other allocated references. Further details are provided in
Section A.4.

5.5 Local State
Staton introduces local state as the combination of the theory
of global state with the theory of block, achieved by providing
four additional laws using a combination of the mkref , deref ,
and update operations [1]. Figure 5.5 presents these additional
laws with our syntax modifications.

LS1. v : V ⊢ do a ← mkref v ; update a w ;
return a ≡ do a ← mkref w ; return a : A

LS2. v : V ⊢ do a ← mkref v ; w ← deref a;
return (w , a) ≡ do a ← mkref v ;
return (v , a) : V× A

LS3. a : A, v, w : V ⊢ do b ← mkref v ; update a w ;
return b ≡ do update a w ; b ← mkref v ;
return b : A

LS4. a : A, v : V ⊢ do b ← mkref v ; w ← deref a

return (w , b) ≡ do w ← deref a;
b ← mkref v ; return (w , b) : V× A

Figure 5: Local state laws as described Staton, adapted to use the
modified syntax.

The local state laws ensure consistent behaviour for dynami-
cally allocated references that can be read an updated.

• LS1 states that creating a reference and immediately up-
dating it is equivalent to creating the reference with the
updated value.

• LS2 states that creating a reference, reading its value, and
returning a pair of the reference and the value is the same
as creating the reference and immediately returning the
reference and the value without reading it first.

• LS3 states that the order of creating a new reference and
updating a different reference does not matter.

• LS4 states that the order of creating a new reference and
reading the value of a different reference does not matter.

6 Proving correctness of programs
Having a handler that complies with the state laws provides a
powerful tool for reasoning about programs that use mutable
references. These laws enable you to use equational reasoning
to prove the correctness of programs in a straightforward and
intuitive manner. We demonstrate its usefulness by proving the
correctness of a Haskell program that computes the factorial
in an imperative style using the MLRef effect, as shown in
Figure 6.

while :: (Functor f )⇒
Free f Bool → Free f ()→ Free f ()

while cond body = do
c ← cond

6



if c then do body; while cond body
else return ()

impFact :: Int → Free (MLRef ref + End) Int
impFact n = do
x ← mkref 1; acc ← mkref 1
while
(deref x >>= return ◦ (⩽ n))
(do x ′ ← deref x ; acc′ ← deref acc

update acc (acc′ ∗ x ′); update x (x ′ + 1)
)

deref acc

Figure 6: Factorial function, in an imperative style using a custom
while construct, using the reference algebraic effect.

We introduce a while function that takes two parameters: a
condition and a body. The condition should be a computation
that checks whether the while loop should continue. The body
should be a computation that performs an action, usually up-
dating some state to ensure the while loop will eventually ter-
minate.
The impFact function uses the while loop to iterate until the
reference x exceeds n . In the body, it multiplies the accumula-
tor reference acc by x and then increments x by one.
We want to prove that the impFact n function correctly com-
putes the factorial of n, as defined as:

0! = 1, n! = 1 · 2 · · · (n− 1) · n

We will use the state laws to prove the properties of this func-
tion. In the proof, we annotate the laws used at each step, al-
though we skip over annotating most order of operations laws.
We freely change the order of operations that clearly do not
conflict with each other, such as using different references or
dereferencing the same value multiple times without interme-
diate updates.

Proof. We will start by analysing and reasoning about the
while loop in the program. The definition of the while func-
tion, when expanded with our definition of cond , looks like
this:

xVal ← deref x
if xVal ⩽ n then body; while cond body

else return ()

First, consider the case where xVal > n . Here, the loop termi-
nates with return (). By GS1, we know that return () is equiv-
alent to dereferencing a reference and then updating it with the
previously dereferenced value:

xVal ← deref x ; acc′ ← deref acc
update acc acc′

Now, consider the case where xVal ⩽ n . Expanding the body
definition in this context, we obtain:

xVal ← deref x
x ′ ← deref x ; acc′ ← deref acc
update acc (acc′ ∗ x ′); update x (x ′ + 1)
while cond body

Applying GS2, which tells us that dereferencing the same refer-
ence multiple times in succession is redundant, we can remove
the second dereference of x and replace x ′ with xVal :

xVal ← deref x ; acc′ ← deref acc
update acc (acc′ ∗ xVal); update x (xVal + 1)
while cond body

Next, expanding the while loop again with our definition of
cond , we get:

xVal ← deref x ; acc′ ← deref acc
update acc (acc′ ∗ xVal); update x (xVal + 1)

xVal ′ ← deref x
if xVal ′ ⩽ n then body; while cond body

else return ()

Using GS4, which states that updating a reference and then im-
mediately dereferencing it is redundant, we can omit xVal ′ ←
deref x and substitute its occurrences with xVal + 1. In the
case where xVal + 1 ⩽ n , we expand the body again:

xVal ← deref x ; acc′ ← deref acc
update acc (acc′ ∗ xVal); update x (xVal + 1)

acc′′ ← deref acc
update acc (acc′′ ∗ (xVal + 1)); update x (xVal + 2)

while cond body

By applying GS4 again and using GS3, which tells us that up-
dating a reference twice (or more) in a row is redundant, we
simplify the sequence:

xVal ← deref x ; acc′ ← deref acc
update acc (acc′ ∗ xVal ∗ (xVal + 1))
update x (xVal + 2)
while cond body

Continuing this pattern, we observe that each iteration mul-
tiplies acc by successive integers up to n and increments x .
Therefore, the while loop of impFact can be summarised as:

xVal ← deref x ′; acc′ ← deref acc
update acc (acc′ ∗ xVal ∗ (xVal + 1) ∗ ... ∗ n)
update x n

Substituting this back into the impFact function, we get:

x ← mkref 1; acc ← mkref 1
xVal ← deref x ; acc′ ← deref acc

update acc (acc′ ∗ xVal ∗ (xVal + 1) ∗ ... ∗ n)
update x n

deref acc

Applying LS2, which tells us that dereferencing right after cre-
ating the reference is redundant, and LS1, which states that cre-
ating a reference and then immediately updating it is equivalent
to just making a reference with the updated value, we simplify
the creation and immediate updating of references:

x ← mkref 1; acc ← mkref 1
update acc (1 ∗ 1 ∗ 2 ∗ ... ∗ n); update x n
deref acc

Finally, by using B1, which states that creating a reference and
then immediately dereferencing it is unnecessary, we can fur-
ther simplify:

return (1 ∗ 1 ∗ 2 ∗ ... ∗ n)

This final expression is clearly equivalent to the definition of the
factorial function, confirming that the program correctly com-
putes the factorial of n .

7



This proof provides a clear procedure for proving the correct-
ness of programs using mutable references that adhere to state
laws. This approach is appealing because it allows you to de-
velop applications with mutable references, execute them, and
reason about their correctness entirely within Haskell, without
needing different models or environments for program verifica-
tion.

7 Responsible Research
This work is designed to be easily reproducible using the source
code provided in a GitHub repository. [17]. The source code in
the repository is made available under the MIT License, ensur-
ing that anyone can run, modify, and distribute the code freely.
The repository contains documentation, providing instructions
on how to execute the code and explanations of each compo-
nent’s functionality. This facilitates other researchers in repro-
ducing our work and building upon it.
Additionally, all theorems and their corresponding proofs are
included both in this paper and within the repository. This
thorough documentation ensures that all theoretical results can
be independently verified and correlated with the implementa-
tion.
These things together allow any researcher to reproduce, verify,
and build on top of the work provided in this paper.

8 Discussion
In this chapter, we discuss the results and findings of our re-
search. We begin by discussing related work and how our work
builds upon it, followed by the limitations of our proposed han-
dler. Finally, we explore potential optimisation strategies using
the state laws.

8.1 Related work
This research builds upon several key works in algebraic effects
and mutable references. Staton’s framework on global, block,
and local state laws provides the theoretical basis for reasoning
about mutable references [1]. Our work extends these concepts
by implementing an effect handler for ML-style references in
Haskell, proving its adherence to the state laws.
We draw on the principles of algebraic effects introduced by
Plotkin and Power [3], which separate the definition of side-
effecting operations from their implementation, allowing for
more flexible and clear reasoning about programs. We use
Bach Poulsen’s blog post on algebraic effects in Haskell as a
framework for developing our proposed algebraic effect [7].
Additionally, we use the work by Bach Poulsen et al. on type
correctness for languages using ML-style references and meth-
ods for handling store and value weakening, which supports the
practical aspects of our implementation [16].
Our research demonstrates how to implement ML-style refer-
ences in Haskell and shows a method for using algebraic effects
to verify the correctness of programs that use mutable refer-
ences. This combination of theoretical and practical insights
highlights the potential of algebraic effects to simplify and im-
prove the development of reliable software.

8.2 Limitations
The provided implementation of an ML-style reference alge-
braic effect demonstrates its usefulness but also has some limi-
tations.
The primary limitation is performance. We used a basic imple-

mentation using a list of values to represent the store and the
IntRef data type to represent pointers. While this approach is
easy to reason about, it sacrifices performance. Creating new
references is fast, as you can simply insert at the start of the
list. However, the update and read methods have a worst-case
time complexity ofO(n), making them inefficient compared to
other data structures.
Using unsafeCoerce allowed for a flexible handler that sup-
ports any type of value in the store. However, this flexibil-
ity comes at the cost of losing type information about the
store after handling a program. As a result, inspecting the
store becomes nearly impossible because unsafeCoerce causes
the type to be indeterminate. Alternatively, we could have
used Haskell’s Dynamic type, which allows conversion of any
Typeable instance into a Dynamic and vice versa. This would
enable type-safe inspection but would limit the values used to
create references to those that are Typeable .

8.3 Optimisations
An interesting topic of discussion is how the state laws can opti-
mise programs using the algebraic effect. A basic optimisation
strategy involves using these laws to remove redundant oper-
ations. For example, dereferencing the same reference twice
without an intermediate update is redundant. We can optimise
the code to dereference only once and use that value directly.
This strategy is relatively easy to implement and can be per-
formed at compile time.
Section 6 reveals a more complex strategy. We demonstrate
using the laws to transform an imperative-style factorial pro-
gram into its recursive definition. This suggests it is possible
to rewrite some imperative programs into functional recursive
versions without mutable references automatically. While this
may not apply to all programs, it could work for many.
However, the desirability of such transformations is debatable.
In some cases, using mutable references (especially those not
requiringO(n) time to dereference) might be faster. For a sim-
ple factorial function, the functional version is likely more ben-
eficial, as Haskell is highly optimised for such recursive func-
tions. Nonetheless, there will be situations where using muta-
ble references could be faster, even if the optimiser can rewrite
them.

9 Conclusion
This research aimed to address how ML-style references can
be implemented in Haskell using algebraic effects that comply
with state laws as described by Staton.
We introduced an algebraic effect in Haskell that represents op-
erations similar to references in ML, along with a basic im-
plementation of a handler adhering to these state laws. We
provided proofs demonstrating that the effect handler complies
with all the described state laws.
The practical usability of this algebraic effect was shown by
proving the correctness of an imperative-style factorial func-
tion in Haskell, illustrating that the algebraic effect and the cor-
responding state laws can be used to reason about and verify the
correctness of programs that use the effect, in a straightforward
manner.
By exploring these points, we addressed the main research
question. We implemented an effect and handler that com-
ply with the state laws as described by Staton and demon-

8



strated a clear method for using these laws to prove the cor-
rectness of programs using the effect. This contribution en-
ables users to write programs using ML-style references, rea-
son about their properties and correctness, and execute them
directly in Haskell.
Overall, this paper provides programmers with a clean and effi-
cient way to write, run, and reason about programs with muta-
ble references in Haskell, suggesting potential further research
and improvement in this area.

9.1 Recommendations for future work
We noted that the proposed handler lacks performance effi-
ciency. Exploring more efficient implementations using data
structures other than lists would be beneficial. Alternatives
such as Haskell’s IORef or STRef for mutable references
could be considered, though proving the local and global state
laws for a handler using these may be more challenging. How-
ever, these laws are likely to hold in practice.
A promising area for future research is examining how the
proposed effect interacts with other common effects, such as
state, exceptions, and nondeterminism. Understanding these
interactions can enhance the usefulness of this algebraic ef-
fect in larger systems using multiple effects, thereby increas-
ing its real-world applicability. This knowledge can also help
with reasoning about programs with multiple effects, which is
a major motivation for this paper. Additionally, it could lead to
optimisations that improve the performance and efficiency of
programs using combined effects.
Finally, we recommend further research into optimisers for pro-
grams using the algebraic effect. As described in Section 8,
there are strategies to optimise such programs using the local
and global state laws. Reducing the overhead of the algebraic
effect and optimising user-written programs could significantly
enhance its real-world applicability, making it competitive with
other alternatives.

References
[1] Staton, S., “Completeness for Algebraic Theories of Lo-

cal State,” Foundations of Software Science and Compu-
tational Structures, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010, pp. 48–63.

[2] Swierstra, W., “Data types à la carte,” Journal of Func-
tional Programming, Vol. 18, No. 4, 2008, p. 423–436.

[3] Plotkin, G., and Power, J., “Adequacy for Algebraic Ef-
fects,” Foundations of Software Science and Computation
Structures, Vol. 2030, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001, pp. 1–24.

[4] Milner, R., Harper, R., MacQueen, D., and Tofte, M., The
Definition of Standard ML, The MIT Press, 1997.

[5] Wadler, P., “The essence of functional programming,”
Proceedings of the 19th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages - POPL
’92, ACM Press, Albuquerque, New Mexico, United
States, 1992, pp. 1–14.

[6] Yang, Z., and Wu, N., “Reasoning about effect interac-
tion by fusion,” Proceedings of the ACM on Programming
Languages, Vol. 5, No. ICFP, 2021, pp. 1–29.

[7] Bach Poulsen, C., “Algebraic Effects and Handlers in
Haskell,” , Jul. 2023. URL http://casperbp.net
/posts/2023-07-algebraic-effects/.

[8] Wu, N., and Schrijvers, T., “Fusion for Free: Effi-
cient Algebraic Effect Handlers,” Mathematics of Pro-
gram Construction, Vol. 9129, edited by R. Hinze and
J. Voigtländer, Springer International Publishing, Cham,
2015, pp. 302–322.

[9] Pretnar, M., “An Introduction to Algebraic Effects and
Handlers. Invited tutorial paper,” Electronic Notes in The-
oretical Computer Science, Vol. 319, 2015, pp. 19–35.

[10] Leijen, D., “Algebraic Effects for Functional Program-
ming,” , August 2016. URL https://www.microsoft.
com/en-us/research/publication/algebraic-e
ffects-for-functional-programming/.

[11] Marlow, S., “Haskell 2010 Language Report,” , 2010.
URL https://cse.sc.edu/˜mgv/csce330f16/ha
skell/haskell2010.pdf.

[12] Milner, R., “A proposal for standard ML,” Proceedings of
the 1984 ACM Symposium on LISP and Functional Pro-
gramming, Association for Computing Machinery, New
York, NY, USA, 1984, p. 184–197.

[13] Paulson, L. C., ML for the working programmer, 2nd ed.,
University of Cambridge, 1996.

[14] Plotkin, G., and Power, J., “Notions of Computation De-
termine Monads,” Foundations of Software Science and
Computation Structures, Vol. 2303, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2002, pp. 342–356.

[15] Moggi, E., “Notions of computation and monads,” Infor-
mation and Computation, Vol. 93, No. 1, 1991, pp. 55–92.

[16] Bach Poulsen, C., Rouvoet, A., Tolmach, A., Krebbers,
R., and Visser, E., “Intrinsically-typed definitional in-
terpreters for imperative languages,” Proceedings of the
ACM on Programming Languages, Vol. 2, No. POPL,
2018, pp. 1–34.

[17] Panis, D., “Algebraic Effect for ML-Style References in
Haskell,” https://github.com/daanpanis/MLRef,
2024.

9

http://casperbp.net/posts/2023-07-algebraic-effects/
http://casperbp.net/posts/2023-07-algebraic-effects/
https://www.microsoft.com/en-us/research/publication/algebraic-effects-for-functional-programming/
https://www.microsoft.com/en-us/research/publication/algebraic-effects-for-functional-programming/
https://www.microsoft.com/en-us/research/publication/algebraic-effects-for-functional-programming/
https://cse.sc.edu/~mgv/csce330f16/haskell/haskell2010.pdf
https://cse.sc.edu/~mgv/csce330f16/haskell/haskell2010.pdf
https://github.com/daanpanis/MLRef


A Proofs: Staton’s State Laws
In this section, we prove the state laws for mutable references
as defined by Staton. We begin by describing several theorems
and corollaries, along with their corresponding proofs, related
to our specific handler. We then propose and prove theorems
concerning the position and replace helper functions. Finally,
we prove the global, block, and local state laws for the proposed
handler.

A.1 Effect handler
We begin by defining hFold , which will be used to simplify
our proofs, as this expression will appear frequently.

Definition 1. We define the following function in order to be
able to shorten the proofs. This code will be used and substi-
tuted freely within the proofs.

hFold = fold
(ret hRefCoerced)
(λcase
L x → hdlr hRefCoerced x
R x → λp → Op (fmap (λm → m p) x ))

Next, we propose a theorem regarding the behaviour of the
handle function when handling MLRef operations.

Theorem 1. Let op be any of the described operations of the
MLRef algebraic effect.

hFold (Op (L op)) state
≡
(λx state →

let l = length state
in case x of
MkRef v k →
k (IntRef l)
(unsafeCoerce v : state)

DeRef (IntRef i) k →
k (unsafeCoerce (position (l − i − 1) state))
state

UpdateRef (IntRef i) v k →
k
(replace (l − i − 1)
(unsafeCoerce v) state))

(fmap hFold op)
state

Proof.

hFold (Op (L op)) state
≡ -- By definition of hFold and the fold function.
(λcase
L x → hdlr hRefCoerced x
R x → λp → Op (fmap (λm → m p) x ))

(fmap hFold (L op))
state
≡ -- definition of Functor (f + g),

-- fmap (L x ) is equal to L (fmap x )
(λcase
L x → hdlr hRefCoerced x
R x → λp → Op (fmap (λm → m p) x ))

(L (fmap hFold op))
state

≡ -- Apply (L x ) case
hdlr
hRefCoerced
(fmap hFold op)
state
≡ -- By definition of hdlr hRefCoerced
(λx state →
let l = length state
in case x of

MkRef v k →
k (IntRef l)
(unsafeCoerce v : state)

DeRef (IntRef i) k →
k (unsafeCoerce (position (l − i − 1) state))
state

UpdateRef (IntRef i) v k →
k

(replace (l − i − 1)
(unsafeCoerce v) state))

(fmap hFold op)
state

Corollary 1.1.

hFold (Op (L (MkRef v k))) state
≡
hFold (k (IntRef l)) (unsafeCoerce v : state)

Proof.

hFold (Op (L (MkRef v k))) state
≡ -- By Theorem 1
(λx state →
let l = length state
in case x of

MkRef v k →
k (IntRef l)
(unsafeCoerce v : state)

DeRef (IntRef i) k →
k (unsafeCoerce (position (l − i − 1) state))
state

UpdateRef (IntRef i) v k →
k
(replace (l − i − 1)

(unsafeCoerce v) state))
(fmap hFold (MkRef v k)))
state
≡ -- By definition of Functor (MLRef ref )
(λx state →
let l = length state
in case x of

MkRef v k →
k (IntRef l)
(unsafeCoerce v : state)

DeRef (IntRef i) k →
k (unsafeCoerce (position (l − i − 1) state))
state

UpdateRef (IntRef i) v k →
k
(replace (l − i − 1)

(unsafeCoerce v) state))

10



(MkRef v (λx → hFold (k x )))
state
≡ -- Apply the operation and the state to the lambda
(λx → hFold (k x )) (IntRef l) (unsafeCoerce v : state)
≡ -- Substitute in lambda
hFold (k (IntRef l)) (unsafeCoerce v : state)

Corollary 1.2.

hFold (Op (L (DeRef r k))) state
≡
hFold (k (unsafeCoerce
(position (l − i − 1) state)))
state

Proof.
hFold (Op (L (DeRef r k))) state
≡ -- By Theorem 1
(λx state →

let l = length state
in case x of
MkRef v k →
k (IntRef l)
(unsafeCoerce v : state)

DeRef (IntRef i) k →
k (unsafeCoerce (position (l − i − 1) state))
state

UpdateRef (IntRef i) v k →
k
(replace (l − i − 1)
(unsafeCoerce v) state))

(fmap hFold (DeRef v k)))
state
≡ -- By definition of ‘Functor MLRef‘
(λx state →
let l = length state
in case x of
MkRef v k →

k (IntRef l)
(unsafeCoerce v : state)

DeRef (IntRef i) k →
k (unsafeCoerce (position (l − i − 1) state))
state

UpdateRef (IntRef i) v k → k
(replace (l − i − 1) (unsafeCoerce v) state))

(DeRef r (λx → hFold (k x )))
state
≡ -- Apply the operation and the state to the lambda
(λx → hFold (k x ))

(unsafeCoerce (position (l − i − 1) state))
state

≡ -- Apply lambda
hFold (k (unsafeCoerce (position (l − i − 1) state)))

state

Corollary 1.3.

hFold
(Op (L (UpdateRef r v k)))

state
≡
(hFold k) (replace (l − i − 1) (unsafeCoerce v) state)

Proof.

hFold
(Op (L (UpdateRef r v k)))
state
≡ -- By Theorem 1
(λx state →
let l = length state
in case x of

MkRef v k →
k (IntRef l)
(unsafeCoerce v : state)

DeRef (IntRef i) k →
k (unsafeCoerce (position (l − i − 1) state))

state
UpdateRef (IntRef i) v k → k
(replace (l − i − 1)

(unsafeCoerce v) state))
(fmap hFold (UpdateRef r v k)))
state
≡ -- By definition of ‘Functor MLRef‘
(λx state →
let l = length state
in case x of

MkRef v k →
k (IntRef l)
(unsafeCoerce v : state)

DeRef (IntRef i) k →
k (unsafeCoerce (position (l − i − 1) state))
state

UpdateRef (IntRef i) v k →
k (replace (l − i − 1) (unsafeCoerce v) state))

(UpdateRef r v (hFold k))
state
≡ -- Apply the operation and the state to the lambda
(hFold k) (replace (l − i − 1) (unsafeCoerce v) state)

A.2 Replace & Position
In this section, we will state various theorems and proofs for
the replace and position helper functions. These theorems are
crucial for proving Staton’s state laws, as will be demonstrated
in the following chapters.

Theorem 2. Given any state such that length state > 0, and
given 0 ⩽ i < length state, it holds that:

replace i (position i state) state ≡ state

Proof. To prove that replacing the value at position i in state ,
with the value at position i in state , we use induction on i .

Base case: For the base case we let i = 0. We know
that state is not empty:

replace 0 (position 0 (x : xs)) (x : xs)
≡ -- By definition of ‘replace‘
(position 0 (x : xs)) : xs

11



≡ -- By definition of ‘position‘
x : xs

Inductive step: Assume the theorem holds for i = k , for some
k ⩾ 0. We prove the statement holds for i = k + 1:

replace (k + 1) (position (k + 1)
(x : xs)) (x : xs)
≡ -- By definition of position when n > 0
replace (k + 1) (position k xs) (x : xs)
≡ -- By definition of replace when n > 0
x : replace k (position k xs)
≡ -- By the inductive hypothesis
x : xs

Theorem 3. Given any state such that length state > 0, given
0 ⩽ i < length state, and given any v ,w ∈ V

replace (i w (replace i v state)) ≡ replace i w state

Proof. To prove the prove that replacing the value of a ref-
erence twice sequentially is the same as only performing the
replace, we use induction on i .

Base case: For the base case we let i = 0, and we
know state is not empty.

replace 0 (position 0 (x : xs)) (x : xs)
≡ -- By definition of replace
(position 0 (x : xs)) : xs
≡ -- By definition of position
x : xs

Inductive step: Assume the statement holds for i = k , where
k > 0 is an arbitrary number. We prove that the statement also
holds for i = k + 1.

replace (k + 1) (position (k + 1) (x : xs)) (x : xs)
≡ -- By definition of position when n > 0
replace (k + 1) (position k xs) (x : xs)
≡ -- By definition of replace when n > 0
x : replace k (position k xs)
≡ -- By the inductive hypothesis
x : xs

Theorem 4. Given any state such that length state>0. Given
0 ⩽ i , j < length state such that i ̸≡ j . For any v ∈ V it holds
that:

position i (replace i v state) ≡ v

Proof. To prove that retrieving a value at position i after
replacing a value at position i with value v , is the same as just
the value v , we use induction on i .

Base case: For the base case we let i = 0. We know
state is not empty.

position 0 (replace 0 v (x : xs)) = v
≡ -- By definition of replace, for n = 0
position 0 (v : xs)
≡ -- By definition of position , for n = 0
v

Inductive step: Assume the statement holds for i = k , where
k > 0 is an arbitrary number. We prove that the statement also
holds for i = k + 1.

position (k + 1) (replace (k + 1) v (x : xs))
≡ -- By definition of replace for n > 0
position (k + 1) (x : replace k v xs)
≡ -- By definition of position for n > 0
position k (replace k v xs)
≡ -- By inductive hypothesis
v

Theorem 5. Given any state such that length state > 0, given
0 ⩽ i , j < length state where i ̸≡ j . For any v ,w ∈ V:

replace i v (replace j w state) ≡
replace j w (replace i v state)

Proof. To prove that when replacing two values at different
indices in the state, the order doesn’t matter we use induction
on i and j .

Base case: First we consider the simplest case where ei-
ther i = 0 or j = 0. Without loss of generality, assume i = 0
and j ̸≡ 0:

replace 0 v (replace j w (x : xs))
≡ -- By definition of replace for n > 0
replace 0 v (x : replace (j − 1) w xs)
≡ -- By definition of replace for n = 0
v : replace (j − 1) w xs
≡
replace j w (v : xs)
≡
replace j w (replace 0 v (x : xs))

Inductive step: For the induction step, assume the theorem
holds for i ⩽ k and j ⩽ l . We will show that the theorem holds
for i = k + 1 and j = l + 1:

replace (k + 1) v (replace (l + 1) w (x : xs))
≡ -- By definition of replace for n > 0
replace (k + 1) v (x : replace l w xs)
≡ -- By definition of replace for n > 0
x : replace k v (replace l w xs)
≡ -- By the induction hypothesis
x : replace l w (replace k v xs)
≡ -- Reverse using the definition of replace for n > 0
replace (l + 1) w (x : replace k v xs)
≡
replace (l + 1) w (replace (k + 1) v (x : xs))

Theorem 6. Given any state such that length state > 0, given
0 ⩽ i , j < length state where i ̸≡ j . For any v ∈ V:

position j (replace i v state) ≡ position j state

Proof. To prove that retrieving the value at position j after
replace the value at position i , where i ̸≡ j , we use induction
on both i and j .

Base case: First we consider the simplest case where ei-
ther i = 0 or j = 0. Without loss of generality, assume j = 0
and i ̸≡ 0:

12



position 0 (replace i v (x : xs))
≡ -- By definition of replace for n > 0
position 0 (x : replace (i − 1) v xs)
≡ -- By definition of position for n = 0
x
≡ -- By definition of position for n = 0
position 0 (x : xs)

Inductive step: For the induction step, assume the theorem
holds for i ⩽ k and j ⩽ l . We will show that the theorem holds
for i = k + 1 and j = l + 1:

position (l + 1) (replace (k + 1) v (x : xs))
≡ -- By definition of replace for n > 0
position (l + 1) (x : replace k v xs)
≡ -- By definition of replace for n > 0
position l (replace k v xs)
≡ -- By the inductive hypothesis
position l xs
≡ -- By definition of replace for n > 0 (reversed)
position (l + 1) (x : xs)

A.3 Global State
GS1
We want to prove that the following equivalence holds:

handle hRefCoerced
(Op (L (DeRef a (λv →

Op (L (UpdateRef a v (Pure ())))))))
state
≡
handle (Pure ()) state

Proof.

handle hRefCoerced
(Op (L (DeRef a (λv →

Op (L (UpdateRef a v (Pure ())))))))
state
≡ -- By definition of handle and by Corollary 1.2
hFold
(Op (L (UpdateRef a
(unsafeCoerce (position (l − i − 1) state))
(Pure ()))))

state
≡ -- By Corollary 1.3
hFold
(Pure ())
(replace (l − i − 1)
(unsafeCoerce
(unsafeCoerce (position (l − i − 1) state)))

state)
≡ -- Assuming unsafeCoerce (unsafeCoerce x ) = x

-- By Theorem 2:
-- (replace i (position i state) state) = state

hFold
(Pure ())
state
≡ -- By definition of handle
handle (Pure ()) state

GS2
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (DeRef a (λv →
Op (L (DeRef a (λw → Pure (v ,w))))))))

state
≡
handle
hRefCoerced
(Op (L (DeRef a (λv → Pure (v , v)))))
state

Proof.

handle
hRefCoerced
(Op (L (DeRef a (λv →
Op (L (DeRef a (λw → Pure (v ,w))))))))

state
≡ -- By definition of handle , and by Corollary 1.2
hFold

(Op (L (DeRef a (λw →
Pure (unsafeCoerce
(position (l − i − 1) state),w)))))

state
≡ -- By Corollary 1.2
hFold

(Pure (unsafeCoerce (state !! (l − i − 1)),
unsafeCoerce (position (l − i − 1) state)))

state
≡ -- By Corollary 1.2 (in reverse)
hFold

(Op (L (DeRef a (λv → Pure (v , v)))))
state
≡ -- By definition of handle
handle

hRefCoerced
(Op (L (DeRef a (λv → Pure (v , v)))))
state

GS3
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (UpdateRef a v
(Op (L (UpdateRef a w (Pure ())))))))

state
≡
handle
hRefCoerced
(Op (L (UpdateRef a w (Pure ()))))
state

Proof.

handle
hRefCoerced
(Op (L (UpdateRef a v
(Op (L (UpdateRef a w (Pure ())))))))

13



state
≡ -- By definition of handle and by Corollary 1.3
hFold
(Op (L (UpdateRef a w (Pure ()))))
(replace (l − i − 1) (unsafeCoerce v) state)
≡ -- By Corollary 1.3
hFold
(Pure ())
(replace (l − i − 1) (unsafeCoerce w)
(replace (l − i − 1) (unsafeCoerce v) state))

≡
-- By Theorem 3:
-- replace i w (replace i v state) = replace i w state)

hFold
(Pure ())
(replace (l − i − 1) (unsafeCoerce w) (state))
≡ -- By Corollary 1.3 (reversed)
hFold
(Op (L (UpdateRef a w (Pure ()))))
state
≡ -- By definition of handle
handle
hRefCoerced
(Op (L (UpdateRef a w (Pure ()))))
state

GS4
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (UpdateRef a v
(Op (L (DeRef a (λw → Pure w)))))))

state
≡
handle

hRefCoerced
(Op (L (UpdateRef a v (Pure v))))
state

Proof.

handle
hRefCoerced
(Op (L (UpdateRef a v

(Op (L (DeRef a (λw → Pure w)))))))
state
≡ -- By definition of handle , and by Corollary 1.3
hFold
(Op (L (DeRef a (λw → Pure w))))
(replace (l − i − 1) (unsafeCoerce v) state)
≡ -- By Corollary 1.2
hFold
(Pure
(unsafeCoerce
(position (l − i − 1)
(replace (l − i − 1)

(unsafeCoerce v) state))))
(replace (l − i − 1) (unsafeCoerce v) state)
≡

-- By Theorem 4:
-- position i (replace i x state) ≡ x

hFold
(Pure (unsafeCoerce (unsafeCoerce v)))
(replace (l − i − 1) (unsafeCoerce v) state)
≡

-- Assuming unsafeCoerce (unsafeCoerce x ) ≡ x
hFold

(Pure v)
(replace (l − i − 1) (unsafeCoerce v) state)
≡ -- By Corollary 1.3 (reversed)
hFold

(Op (L (UpdateRef a v (Pure v))))
state
≡ -- By definition of handle
handle

hRefCoerced
(Op (L (UpdateRef a v (Pure v))))
state

GS5
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (DeRef a (λv →
Op (L (DeRef b (λw → Pure (v ,w))))))))

state
≡
handle
hRefCoerced
Op (L (DeRef b (λw →

Op (L (DeRef a (λv → Pure (v ,w)))))))
state

Proof.

handle
hRefCoerced
(Op (L (DeRef a (λv →
Op (L (DeRef b (λw → Pure (v ,w))))))))

state
≡ -- By definition of handle , and by Corollary 1.2
hFold

(Op (L (DeRef b (λw →
Pure

(unsafeCoerce
(position (l − i − 1) state),w)))))

state
≡ -- By Corollary 1.2
hFold

(Pure
(unsafeCoerce (position (l − i − 1) state),

unsafeCoerce (position (l − j − 1) state)))
state
≡ -- By Corollary 1.2 (reversed)
hFold

(Op (L (DeRef a (λv →
(v , unsafeCoerce (position (l − j − 1) state))))))

state
≡ -- By Corollary 1.2 (reversed)
hFold

Op (L (DeRef b (λw →
Op (L (DeRef a (λv → Pure (v ,w)))))))

14



state
≡ -- By definition of handle
handle
hRefCoerced
Op (L (DeRef b (λw →

Op (L (DeRef a (λv → Pure (v ,w)))))))
state

GS6
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (UpdateRef a v
(Op (L (UpdateRef b w (Pure ())))))))

state
≡
handle

hRefCoerced
(Op (L (UpdateRef b w
(Op (L (UpdateRef a v (Pure ())))))))

state

Proof.

handle
hRefCoerced
(Op (L (UpdateRef a v
(Op (L (UpdateRef b w (Pure ())))))))

state
≡ -- By definition of handle , and by Corollary 1.3
hFold
(Op (L (UpdateRef b w (Pure ()))))
(replace (l − i − 1) (unsafeCoerce v) state)
≡ -- By Corollary 1.3
hFold
(Pure ())
(replace (l − j − 1) (unsafeCoerce w)
(replace (l − i − 1) (unsafeCoerce v) state))

≡
-- By Theorem 5:
-- replace i v (replace j w state)
-- ≡ replace j w (replace i v state)
-- This assumes i ̸≡ j , otherwise this would not hold.

hFold
(Pure ())
(replace (l − i − 1) (unsafeCoerce v)
(replace (l − j − 1) (unsafeCoerce w) state))

≡ -- By Corollary 1.3 (reversed)
hFold
(Op (L (UpdateRef a v (Pure ()))))
(replace (l − j − 1) (unsafeCoerce w) state)
≡ -- By Corollary 1.3 (reversed)
hFold
(Op (L (UpdateRef b w
(Op (L (UpdateRef a v (Pure ())))))))

state
≡ -- By definition of handle
handle
hRefCoerced
(Op (L (UpdateRef b w

(Op (L (UpdateRef a v (Pure ())))))))
state

GS7
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (UpdateRef a v
(Op (L (DeRef b (λw → Pure w)))))))

state
≡
handle
hRefCoerced
(Op (L (DeRef b (λw →
Op (L (UpdateRef a v (Pure w)))))))

state

Proof.

handle
hRefCoerced
(Op (L (UpdateRef a v
(Op (L (DeRef b (λw → Pure w)))))))

state
≡ -- By definition of handle , and by Corollary 1.3
hFold

(Op (L (DeRef b (λw → Pure w))))
(replace (l − i − 1) (unsafeCoerce v) state)
≡ -- By Corollary 1.2
hFold

Pure
(unsafeCoerce (position (l − j − 1)

(replace (l − i − 1) (unsafeCoerce v) state)))
(replace (l − i − 1) (unsafeCoerce v) state)
≡

-- By Theorem 6:
-- position j (replace i x state)
-- ≡ position j state
-- This assumes i ̸≡ j or this won’t hold.

hFold
Pure (unsafeCoerce (position (l − j − 1) state))
(replace (l − i − 1) (unsafeCoerce v) state)
≡ -- By Corollary 1.3
hFold

Op (L (UpdateRef a v (Pure
(unsafeCoerce (position (l − j − 1) state)))))

state
≡ -- By Corollary 1.2
hFold

Op (L (DeRef b (λw →
Op (L (UpdateRef a v (Pure w))))))

state
≡ -- By definition of handle
handle

hRefCoerced
(Op (L (DeRef b (λw →
Op (L (UpdateRef a v (Pure w))))))

state

15



A.4 Theory of Block
B1
We want to prove that the following equivalence holds:

handle
hRefCoerced
Op (L (MkRef v (λa → Pure ())))
state
≡
handle

hRefCoerced
(Pure ())
(unsafeCoerce v : state)

Proof.

handle
hRefCoerced
Op (L (MkRef v (λa → Pure ())))
state
≡ -- By definition of handle , and by Corollary 1.1
hFold
(Pure ())
(unsafeCoerce v : state)
≡ -- By definition of handle
handle

hRefCoerced
(Pure ())
(unsafeCoerce v : state)

B2
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (MkRef v (λa →

Op (L (MkRef w (λb → Pure (a, b))))))))
state
≡
handle
hRefCoerced
(Op (L (MkRef w (λb →
Op (L (MkRef v (λa → Pure (a, b))))))))

state

Proof. We start by unfolding the first expression of the equiva-
lence to arrive at the following:

handle
hRefCoerced
(Op (L (MkRef v (λa →

Op (L (MkRef w (λb → Pure (a, b))))))))
state
≡

-- By definition of handle , and by Corollary 1.1
hFold
(Op (L (MkRef w (λb → Pure (IntRef l , b)))))
(unsafeCoerce v : state)
≡ -- By Corollary 1.1
hFold
(Pure (IntRef l , IntRef (l + 1)))
(unsafeCoerce w : unsafeCoerce v : state)

Next we look at the second expression of the equivalence and
arrive at the following:

handle
hRefCoerced
(Op (L (MkRef w (λb →

Op (L (MkRef v (λa → Pure (a, b))))))))
state
≡

-- By definition of handle , and by Corollary 1.1
hFold
(Op (L (MkRef v (λa → Pure (a, IntRef l)))))
(unsafeCoerce w : state)
≡ -- By Corollary 1.1
hFold
(Pure (IntRef (l + 1), IntRef l))
(unsafeCoerce v : unsafeCoerce w : state)

Although the expressions Pure (IntRef l , IntRef (l +1)) and
Pure (IntRef (l + 1), IntRef l) look different at first glance,
using these references in either case would result in the same
outcome. This is because references a and b are essentially
swapped, but their relative positions and subsequent usage re-
main consistent. The Replace & Position theorems support this
by showing that the order of independent operations (like cre-
ating references) does not affect the final state.

B3n
We want to prove that the following block state law
holds:

v : V, a⃗ : A⊗n ⊢ do b⃗← mkref n(⃗a, v); return pn(⃗b)

≡ do b ← mkref v ; return (⃗a, b) : A⊗n × A
As previously discussed, the mkref n function is defined to al-
locate a new location different from all other references passed
as its input. For our handler implementation, this is always the
case, as it utilizes the entire state to allocate a new location, en-
suring the uniqueness of each allocated location. Consequently,
this law is trivially true for our implementation. We argue that
this law is trivially true based on the fact that each reference
created using our handler will be a unique reference into the
store.

A.5 Local State
LS1
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (MkRef v (λa →

Op (L (UpdateRef a w (Pure a)))))))
state
≡
handle hRefCoerced
(Op (L (MkRef w (λa → Pure a)))

Proof.

handle
hRefCoerced
(Op (L (MkRef v (λa →

Op (L (UpdateRef a w (Pure a)))))))
state

16



≡
-- By definition of handle , and by Corollary 1.1

hFold
(Op (L (UpdateRef (IntRef l) w
(Pure (IntRef l)))))

(unsafeCoerce v : state)
≡
(hFold (Pure (IntRef l)))

(replace ((l + 1)− l − 1) (unsafeCoerce w)
(unsafeCoerce v : state))

≡ -- By definition of hFold and fold
(ret hRefCoerced)
(IntRef l)
(replace 0 (unsafeCoerce w)
(unsafeCoerce v : state))

≡ -- By definition of replace
(ret hRefCoerced)
(IntRef l)
(unsafeCoerce w : state)
≡ -- By definition of hFold and fold (reversed)
(hFold (Pure (IntRef l)))

(unsafeCoerce w : state)
≡ -- By Corollary 1.1 (reversed)
hFold
(Op (L (MkRef w (λa → Pure a))))
state
≡ -- By definition of handle
handle
hRefCoerced
(Op (L (MkRef v (λa →

Op (L (UpdateRef a w (Pure a)))))))
state

LS2
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (MkRef v (λa →

Op (L (DeRef a (λw → Pure (w , a))))))))
state
≡
handle

hRefCoerced
(Op (L (MkRef v (λa → Pure (v , a)))))
state

Proof.

handle
hRefCoerced
(Op (L (MkRef v (λa →

Op (L (DeRef a (λw → Pure (w , a))))))))
state
≡

-- By definition of handle and by Corollary 1.1
hFold
(Op (L (DeRef (IntRef l) (λw →

Pure (w , IntRef l)))))
(unsafeCoerce v : state)
≡ -- By Corollary 1.2
hFold

(Pure (unsafeCoerce (position ((l + 1)− l − 1)
(unsafeCoerce v : state)), IntRef l))

(unsafeCoerce v : state)
≡
hFold
(Pure (unsafeCoerce (position 0
(unsafeCoerce v : state)), IntRef l))

(unsafeCoerce v : state)
≡
hFold
(Pure (unsafeCoerce
(unsafeCoerce v), IntRef l))

(unsafeCoerce v : state)
≡

-- Assuming unsafeCoerce (unsafeCoerce x ) ≡ x
hFold
(Pure (v , IntRef l))
(unsafeCoerce v : state)
≡ -- By Corollary 1.1 (reversed)
hFold
(Op (L (MkRef v (λa → Pure (v , a)))))
state
≡ -- By definition of handle
handle
hRefCoerced
(Op (L (MkRef v (λa → Pure (v , a)))))
state

LS3
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (MkRef v (λb →

Op (L (UpdateRef a w (Pure b)))))))
state
≡
handle
hRefCoerced
(Op (L (UpdateRef a w
(Op (L (MkRef v (λb → Pure b)))))))

state

Proof.

handle
hRefCoerced
(Op (L (MkRef v (λb →

Op (L (UpdateRef a w (Pure b)))))))
state
≡ -- By definition of handle and Corollary 1.1
hFold

(Op (L (UpdateRef a w (Pure (IntRef l)))))
(unsafeCoerce v : state)

≡
-- Assuming a = IntRef i , and i < l

hFold
(Pure (IntRef l))
(replace ((l + 1)− i − 1) (unsafeCoerce w)

(unsafeCoerce v : state))
≡

-- We know i < l , since we just increased the size by 1

17



-- Since we know that i < l , we know that
-- ((l + 1)− i − 1)> 0. By the definition of replace,
-- we know that for the case where n > 0:
-- replace (k + 1) z (x : xs)
-- ≡ x : replace k xs

hFold
(Pure (IntRef l))
(unsafeCoerce v : (replace (l − i − 1)
(unsafeCoerce w) state))

≡ -- By Corollary 1.1 (reversed)
hFold
(Op (L (MkRef v (λb → Pure b))))
(replace (l − i − 1)
(unsafeCoerce w) state)

≡ -- By Corollary 1.3
hFold
(Op (L (UpdateRef a w
(Op (L (MkRef v (λb → Pure b)))))))

state
≡ -- By definition of handle
handle
hRefCoerced
(Op (L (UpdateRef a w
(Op (L (MkRef v (λb → Pure b)))))))

state

LS4
We want to prove that the following equivalence holds:

handle
hRefCoerced
(Op (L (MkRef v (λb →

Op (L (DeRef a (λw → Pure (w , b))))))))
state
≡
handle
hRefCoerced
(Op (L (DeRef a (λw →
Op (L (MkRef v (λb → Pure (w , b))))))))

state

Proof.

handle
hRefCoerced
(Op (L (MkRef v (λb →

Op (L (DeRef a (λw → Pure (w , b))))))))
state
≡

-- By definition of handle , and by Corollary 1.1
hFold
(Op (L (DeRef a (λw → Pure (w , IntRef l)))))
(unsafeCoerce v : state)
≡

-- By Corollary 1.2, assuming a = IntRef i , i < l
hFold
(Pure (unsafeCoerce (position ((l + 1)− i − 1)
(unsafeCoerce v : state)), IntRef l))

(unsafeCoerce v : state)
≡

-- We know i < l , since we just increased the size by 1
-- By the definition of replace, we know that for the

-- case where n > 0:
-- replace (k + 1) z (x : xs)
-- ≡ x : replace k xs

hFold
(Pure (unsafeCoerce
(position (l − i − 1) state), IntRef l))

(unsafeCoerce v : state)
≡ -- By Corollary 1.1 (reversed)
hFold
(Op (L (MkRef v (λb →

(Pure (position (l − i − 1) state), b)))))
state
≡ -- By Corollary 1.2 (reversed)
hFold
(Op (L (DeRef a (λw →
Op (L (MkRef v (λb → Pure (w , b))))))))

state
≡ -- By definition of handle
handle
hRefCoerced
(Op (L (DeRef a (λw →

Op (L (MkRef v (λb → Pure (w , b))))))))
state

18


	Introduction
	Background
	Functors & Monads
	Free monad & Algebraic effects

	ML-style references
	Implementation
	Algebraic Effect
	Algebraic Effect Handler

	Local & Global State Laws
	Modification to Staton's definitions
	Assumptions
	Global State
	Theory of Block
	Local State

	Proving correctness of programs
	Responsible Research
	Discussion
	Related work
	Limitations
	Optimisations

	Conclusion
	Recommendations for future work

	Proofs: Staton's State Laws
	Effect handler
	Replace & Position
	Global State
	GS1
	GS2
	GS3
	GS4
	GS5
	GS6
	GS7

	Theory of Block
	B1
	B2
	B3n

	Local State
	LS1
	LS2
	LS3
	LS4



